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A program is presented for the construction of relativistic symmetry-adapted molecular basis functions. It is applicable to
36 finite double point groups. The algorithm, based on the projection operator method, automatically generates linearly
independent basis sets. Time reversal invariance is included in the program, leading to additional selection rules in the
non-re1ativistic limit.

PROGRAM SUMMARY

Title 0/program : TSYM

Catalogue number: ABHW

Program obtainable from: CPC Program Library, Queen's
University of Belfast, N. Ire1and (see application form in this
issue)

Computer: IBM 3090-200; Installation: Gesellschaft für
Schwerionenforschung (GSI), Darmstadt, Fed. Rep. Germany

Operating system: MVS/XA

Programming language used: FORTRAN IV

Peripheral used: line printer (optional)

No. of bits in a word: 32

No. 01 lines in combined program and test deck: 6048
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Nature 0/physical problem

Re1ativistic symmetry-adapted basis functions are generated
for molecules of 36 finite point symmetry groups. Time
reversal is inc1uded as an additional symmetry operation.

M ethod 0/ solution
The symmetry orbitals are constructed by means of a projec­
tion operator technique. Linearly independent basis functions
are se1ected.

Restrietions on the complexity 0/ the program
The program is applicable to finite double point groups only.
36 groups are inc1uded.

Typical running time
Less than 30 s.
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LONG WRITE-UP

1. Introduction

J. M eyer et al. / Relatioistic symmetry orbitals

Group theory provides a valuable tool for the simplification of molecular calculations. By means of a
projection operator formalism, symmetry-adapted molecular basis functions can be constructed from
atomic orbitals. This method is widely used in quantum chemistry. It leads to a full exploitation of the
spatial symmetry properties of the moleeule and, as a consequence, greatly simplifies the diagonalization
of the molecular single-electron Hamiltonian. The projection operator technique has been applied in
relativistic molecular calculations by several authors, e.g. Malli and Oreg [1], Rosen [2], Pyykkö and
Toivonen [3,4], Ellis and Goodman [5]. An additional symmetry property of the molecular Hamiltonian is
its invariance under time reversal, leading to the twofold Kramers degeneracy in systems with half-integer
angular momentum. The exploitation of time reversal in molecular calculations has been recently analysed
by Hafner [6], Rösch [7], and Ellis and Goodman [5].

In a previous paper [8], we have presented a theory combining the exploitation of spatial and time
reversal symmetry for finite double point groups. The influence of time revers al on molecular symmetry
orbitals generated by means of projection operators is studied for two-component Pauli spinors. The
results have been applied in a program computing relativistic molecular symmetry orbitals under
consideration of time reversal. The structure of this program is described in the present paper. The
algorithm is partly based on earlier calculations performed by Rosen [2]. In the version presented here, it
has been extended to the 36 most important finite double point groups.

Moreover, the program contains an algorithm selecting out a set of linearly independent basis functions.
In general, employing the projection operator technique will produce a number of linearly dependent
symmetry orbitals. For calculations it is therefore necessary to select out the indepcndent ones. A
systematic method is developed in ref. [8].

The paper is divided into six sections. Section 2 contains a summary of the underlying theory. Details
can be found in refs. [2,8]. Section 3 presents a survey of the program structure. The input data are
described in section 4 and the output data in section 5. Finally, an example of the output is given in
section 6.

2. Theory

2.1. Construction 0/ symmetry orbitals

The molecular wave functions are constructed as linear combinations of atomic orbitals (LeAO). The
basis functions are Dirac four-spinors [2,8]

IpaKm):= (2.1)

where
- the spherical coordinate system is centered at the site of the a th atom,
- p symbolizes the radial part of the wave function, including the principal quantum number n of the

atomic state,
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- K and mare the usual atomic quantum numbers,
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K = { - ( j + 1/2) = - (1+ 1)
j + 1/2 = I

The functions

for j = 1+ 1/2,
for j= 1-1/2.

YKm( {}, cp) := Yljm( {}, cp)

= L(I m - m s 1/2 m s I j m)lf,m-m/ o, <p) 11/2 m s )

are the spin spherical harmonics [8,9].
As a consequence of the basis expansion, the Dirac equation takes the form of a matrix equation.
The next step consists in a symmetry-dependent linear transformation of the atomic basis set. The

atomic states span aspace invariant under the full rotation group and under spatial inversion. By means of
the basis transformation, this space is divided into several subspaces invariant under the point symmetry
group of the moleeule. The vectors of each subspace transform according to an irreducible representation
of this group [10].

Let D(i) denote the ith of the inequivalent irreducible representations of the molecular symmetry group.
Here, the basis systems of the subspaces corresponding to D(i) are called

where
J.L counts the basis functions ITiJl ),
ni is the dimensionality of D(i), and
T is an index distinguishing between different invariant subspaces belonging to the same irreducible

representation tr».
The elements of the group are the symmetry operations S. Their effect on a symmetry orbital I TiJl) is
given by

SITiJl) = L D;~)(S) ITiv).
v=l

(2.2)

For the symmetry-adapted basis transformation, the transformation behaviour of the atomic states under
the influence of the molecular symmetry group has to be known. Application of S to a Pauli two-spinor

(2.3)

with the radial function Pnlj yields [2,8]:

(2.4)
m'

Here, Sa denotes the new site of the a th atom, a, ß and y are the Euler angles of the operation S, and

if S contains aspace inversion,
otherwise.
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R()) is the representation matrix of the full rotation group [2,8-10], given by the Wigner formula

( 1) k !( . ) '( . ) '( . 1 ) '( , 1 ) ,

( ') _., _ . ,,- V} + m . } - trl . 1 + m . 1, - m .
R} ( Ci.ßy ) = e 1m a e i m v L..J

mm k k!(j+nl-k)!(j-m'-k)!(k+nl'-nl)!

X (cOS ß/2)2)--2k-m'+m( -sin ß/2)2k+-m'--m. (2.5)

(2.6)

Eq. (2.4) remains valid for Dirac four-spinors if I is taken to be the r quantum number of the upper
component [8]. A symmetry orbital

ITiJ-t) = Ipaljmuip.)

is generated from an atomic state I paljm) by a projection operator ß:~) [2,8]:

ß};) Ipaljm) = :i LD:~)* (S)S Ipaljm)
s

=: I oaljmvip.)

=: ITij.t),

T := (palj'mv ).

Here, h is the order of the symmetry group.
In the case of half-integer angular momentum j, each spatial transformation S corresponds to two

group operations § and S differing in a rotation through 2'TT [11,12]. Acting on a wave function with
half-integer j,

S= -So
The group consisting of all operations Sand S is called a double group. In eq. (2.6), n(i) refers to only
those irreducible representations of the double group with [8]

D(i)(S) = -D(i)(S).

As before, h is the order of the single group containing the operations .S only.
The explicit form of the symmetry orbitals, expressed in terms of atomic states, is given by

I I , ') - "C1jvi/l I 'I' ')p atjmuui - L..J am,a'm' pa um ,, ,
am

with the symmetry coefficients [8]

c':': ._" i' D(i)* (S)( 1-) lT·<"'R()) ( ß )am,a'm"- L..Jua',Sa u» - m m Ci. Y .
s

2.2. Linear independence 0/symmetry orbitals

(2.7)

(2.8)

(2.9)

In general, the number of functions generated by the projection operator formalism exceeds the
dimensionality of the space spanned by the atomic orbitals. Consider a set of A equivalent atoms
a = 1, ... , A, i.e. of atoms transformed among each other by the syrnmetry operations. The number of
states

I paljm)

with fixed quantum numbers land j is then

A(2j + 1),
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whereas the application of the different possible projection operators,

P,};) Ipaljm) = Ioaljmvip.),
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leads to Ah(2j + 1) functions [8]. However, it is sufficient to apply the projectors to the states of a single
atom with a fixed index a so that the degrees of freedom are reduced to h(2j + 1).

If A = h, the symmetry orbitals obtained in this way are linearly independent [8].
If A < h, a set of linearly independent symmetry orbitals is derived with the following algorithm [8]:

1. The number N, of linearly independent basis systems { I TiJl), Jl = 1, ... , n i } of D(i) is given by

~ = ~ LX(i)*(S) L (_l)/Ts R<'/')m(S)13a',,<;a"
S arn'

where x'" denotes the characters of DU).

2. For each irreducible representation tr», N, linearly independent basis functions

IpaljmviJl) =: ITiJl), a, I, j, i, Jl fixed,

have to be found.
3. Then the Ni basis systems

of D(i) automatically fulfil the condition of linear independence.

2.3. Block structure 0/ the matrix equation

(2.10)

An essential property of the synunetry-adapted basis functions is their orthogonality. The matrix
elements of any operator fI invariant under the symmetry group are reduced to [10]

<TiJlI fj I akA) = 8ik8JlA< Ti 11 H 11 ai) (2.11)

(Wigner-Eckart theorem). As a consequence, the Hamiltonian and the overlap matrix of the symmetry
orbitals fall into smaller blocks along the mean diagonal. All matrix elernents vTiJlI H IaiJl) with fixed
values of i and Jl form a block. The n i blocks with J.l = 1, ... , n i corresponding to the same irreducible
representation D(i) are equal. Therefore, the number of matrix elements to be computed in molecular
calculations is considerably reduced.

2.4. Time reversal

A further simplification of quasi-relativistic molecular calculations lS obtained by including time
reversal as an additional symmetry operation.

The time reversal operator for two-spinors is given by [10]

(2.12)

with the Pauli matrix o}, and the operator K of complex conjugation in configuration space. The effect of
t on a Pauli spinor is [8]

" ( ) /--J+rnTlpaljm) = - -1 Ip*alj-m), (2.13)

where the radial part of the wave function is transformed into its complex conjugate. In the following, p is
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assumed to be real so that the space of the atomic orbitals is mapped on itself by time reversal. In the case
of Dirac four-spinors, this is not possible because, due to the imaginary factor i, the upper and the lower
component show a different transformation behaviour [8]. Therefore, time reversal, as it is applied here,
provides an additional simplification in the case of Pauli spinors only.

For half-integer angular momentum j, the matrix elements of any two states I tf;), I<:p) satisfy the
relations [13]

(2.14)

for an operator Hinvariant under time revers al.
The most important property of time reversal to be considered here is the effect on symmetry orbitals.

A basis system {I Till), Il= 1, ... , n i } of DU) is converted into a basis set {TI Till), Il= 1, ... , n i } of the
complex conjugate representation o''>. Three alternatives are to be distinguished here [13-16]:

a) D(i) and D(i)* are equivalent to areal representation. Therefore, D(i) can be assumed to be real. The
basis systems { ITill)} and { Irill)} of D(i), given by

ITill) := Ioaljmvip.v ;

Irill) := T ITill) (2.15)

( 1) I- i +m I li , )= - - palJ - mVlll

are linearly independent then and obey the relations:

(riIIHllai)= -(TiIIHllai)*,

(riIlHllai) = (TiIlHllai)*.
(2.16)

(2.17)

b) D(i) and D(i) * are inequivalent, i.e.

tr-> =: tr».

In this case, the basis systems { ITill)} and { Irkll)} with

ITill) := Ioaljmviu r,

Irkll) := f ITill)

= -(-I)/-i+mlpalj-mvkll)

span orthogonal subspaces, and the matrix elements belonging to n(i) and D(k) are complex conjugate:

(2.18)

c) D(i) and D(i) * are equivalent, i.e.

(2.19)

with a matrix ß, but cannot be transformed into real form. According to Wigner [14], D(i) can then be
chosen in such a way that ß takes the form

with

ß - .u:«/lA - 1 A /lA'

Ji := n i - Il + 1,

(2.20)
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In the following, let S' be a symmetry operation with the Euler angles a', ß', y' and ß' = 'TT.

Such an operation is contained in any finite double point group possessing irreducible representations
of case c). Inspection of the representation matrices published by Pyykkö and Toivonen [3] shows that
for molecules with a principal axis of symmetry or with cubic symmetry, these operations can be
represented by matrices of the form

D(i)(S') = m(i){(i)ttJ-tp 't'P J P J-tp

with a complex phase factor ep~i).

D(i) is now assumed to fulfil these requirements. We then arrive at the following results [8]:

Cl) S'a =1= a for all equivalent atoms a and all symmetry operations S' with ß' = '!T.

In this case, the basis systems of direct and reversed time are linearly independent:

f ITi/l) = fJ-t(i) I iiJi)

with

ITi/l) := Ipaljmvi/l) ,

Iii/l) := 1J~i) IpS'aljmvip.v;

and the phase factor

(i).- (i)(_l)/(l-Ts') i(y'-a')m1JT .- epp e.

From this, the following relations are deduced:

(ii 11 H 11 iJi) = (Ti 11 H 11 ai)*, (ii 11 H 11 ai) = (Ti 11 H 11 iJi)*.

c2 ) S'a = a for an atom a and a symmetry operation S' with ß' = '!T.

The basis systems of direct and reversed time are linearly dependent:

f IT'i/l) = fJ-t(i)1J~) IT'iJi),

with

IT' i/l) := Ipaljmvi/l)

and the matrix elements

(2.21 )

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.29)

(2.28)(T'i 11 H 11 a'i) = 1J~i)TJ~)*(T'i 11 H 11 a'i)*.

The matrix elements coupling symmetry orbitals of both cases, Cl) and c2 ) , are

( Ti I1 H 11 o' i) = 1J~) *( Ti 11 H 11 a' i ) * ,

(T'i 11 H 11 iJi) = l1~i)(T'i 11 H 11 ai)*.

In any of the three cases a), b) and c), the inforrnation needed for the calculation of matrix elements is
reduced by half. A schematic sketch of the structure within the blocks, illustrating the relations between
the matrix elements, is given in fig. 1 for the cases a), b) and c).

The following test, originally published by Frobenius and Schur, allows an easy classification of a given
irreducible representation D(i) [15]:

{

I ==> case a},*LX(i)(S2) = 0 = case b},

s - 1 ==> case c).

(2.30)
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3. Structure of the program

3.1. Application

J. Meyer et al. / Relatioistic symmetry orbitals

The program computes the coefficients of a complete set of linearly independent relativistic symmetry
orbitals according to eq. (2.9). The application of the routine is restricted to finite groups, i.e. to non-linear
molecules. The data of the following 36 double point groups are included in the program:

Cl' Ci' C2 , Clh, C2h, C2v, D2, D2h, C4, S4' C4h, C4v, D4, D2d, D4h, C3, C3i, C3v, D3, D3d, C6 , C3h' C6h, C6v,
D6 , D3h, D6h, T, Th, Td, 0, o., CSv' Ds, DSd' DSh'

3.2. Requirements

The structure of the irreducible representations used in the program is subject to the following
requirements:

1. In case a), D (i) is chosen real.
2. Irreducible representations belonging to case b) have to be given In pairs of complex conjugate

representations. These are stored in the program consecutively.
3. In case c), D(i) has to obey the conditions (2.20) and (2.21).
4. One two-dimensional or two one-dimensional irreducible representations of the group form a represen­

tation with the structure

(

e-ia/2 co.s e/: e- iy
/

2

R(1/2) ( aßy) = . .
e1a

/
2 sin ß/2 e -ly/2

3.3. Survey 01 the program structure

_e- ia
/

2 sin ß/2eiY
/

2
) .

e1a
/

2 cos ß/2 e1y
/

2
(3.1)

The subroutine TSYM forms the main part of the program. This routine receives the input data from
the calling program and calls several smaller subroutines executing special parts of the calculation. Specific
group data are contained in a further set of subroutines and in BLOCK DATA.

0 a 0 0

a) -- b) [)

T+ T* r T.
n f. *

f* / r~
) D10·

T'i
- * * *

ö

*
fi)

771"'*

0'

(i)* )e1}

77u ' *
Phase

)e2 }
tat tor
known

~~

[,) [2)

Fig. 1. Block structure in case a), b) and c). Sectors with the same hatching are related by complex conjugation ( * ) and, in some
cases, an additional phase fac tor.
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In the following, the characteristic features of the program are outlined:

1. Input of atomic data
The input mainly consists of the name of the symmetry group and the coordinates and quantum
numbers of the atoms, as described in detail in section 4. The atoms are divided into sets of equivalent
atoms. For each set, the input may be restricted to the data of one single atom. The coordinates of the
remaining atoms are reconstructed by the program.

2. Calculation of Euler angles
The Euler angles are computed according to the method of Slater [17]:
Any point symmetry operation can be separated into a rotation Rand, In some cases, a spatial
inversion. The effect of R on a wave function t/J is given by

(3.2)

(3.3a)

cos a = ±A3l / K ,
cos ß = A 33 ,

cos Y = +A 13/K,

where A is a matrix. The Euler angles «, ß and y, as defined by Edmonds [9], are deduced as folIows:

If A~3 = 1:

sin a = ±A32/K,

sin ß = ±K,
sin y = ±A23/K,

(3.3c)

(3.3b)

with K:= VI - A~3 .

Either the upper or the lower signs are to be used together. In the program, the upper signs are used.

If A 33 = + 1:

cos ß = 1,

cos( y + a) = All = A 22 ,

sin( y + a) = A l 2 = -A 2l .

If A 33 = -1:

cos ß = -1,

cos( y - a) = - A 11 = A 22 ,

sin( y - a) = A 12 = A 2l .

In this way, the Euler angles are derived up to a multiple of 21T. For an exact determination of their
values, requirements 4 of section 3.2 is needed.The matrices R(1/2)( aßy) are calculated and adjusted to
the given irreducible representations of the group by means of a suitable choice of a, ß and y.

3. Construction of symmetry orbitals
Für each set of equivalent atoms, the symmetry orbrtals are constructed by applying the projectors to
the states of one single atom. In case c2 ) , this atom is mapped on itself by a symmetry operation S'
with ß' = 1T (see section 2.4). Otherwise, the first atom of the set is chosen.
Linearly independent symmetry orbitals are selected by means of the algorithm described in section 2.2
and under consideration of time reversal. To verify the linear independence of a given set of basis
functions, the determinant of their overlap matrix is calculated. The syrnmetry orbitals are computed in
an order ensuring that the block structure is simplified as far as possible. In the case of Pauli spinors,
the matrix elements within the blocks show the structure displayed in fig. 1.
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3.4. List of subroutines of the program TSYM

INVERS

ROAT
FROSCH
EULER
FINDAT

DJNMB
FACT
SAMMA

computes the transformation matrices of the atomic coordinates. Moreover, the inverse
symmetry operations and the spherical coordinates of the transformed axes are calculated.
These data are needed for the determination of the Euler angles.
computes Sa for a given atom a and all group operations S.
performs the Frobenius-Schur test (2.30).
calculates the Euler angles and checks the existence of aspace inversion.
determines the atom whose states the projection operators are acting on. In case c), the
operation S' with ß' = 'TT is selected.
calculates the ß-dependent part of R~)m(aßy) (eq. (2.5)).
is called by DJNMB to compute n! for integer values of n.
computes the matrix

using the results of DJNMB.
TIMFAC calculates the phase factor occurring in the relation between symmetry orbitals of direct and

reversed time: If a relation of the form

IakA) = rpf ITiJ.t)

holds, the phase factor cp is associated with the symmetry orbital IakA).
PROJEC calculates the symmetry coefficients

C1jviJ-L, ,
a m ,a m

(3.4)

for variable values of a' and m' (eq. (2.9)).
TIMREV uses the results of PROJEC to derive the symmetry coefficients corresponding to reversed time

in the cases a) and b).
INDEP verifies the linear independence of symmetry orbitals.
OUTPUT controls the output. For details, see section 5.

The following subroutines contain the matrices of the irreducible representations and other specific data of
the groups:

Subroutine:
BASCI
BASC2
BASD2
BASC4
BASD4
BASC3
BASD3
BASC6
BASD6
BAST
BASO
BASD5
BASD5H

Groups:

Cl' Ci
C 1h , C2 , C2h

C2v , D2 , D2h

C4 , S4' C4h

C4v , D4 , D2d , D4h

C3 , C3i

C 3v , D3 , D3d

C6 , C3h , C6h

C6v , D6 , D3h , D6h

T, Th

Td , 0, 0h
CSv ' Ds, DSd

DSh
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MATRIX
SPIN:
DBETA
TIME
CTIME

Finally, the information on the transformation behaviour of the coordinate axes is stored in BLOCK
DATA for all 36 groups.

3.5. Contents 01 COMMON blocks

INPUT Input data transferred by the calling program
ATRANS Transformation properties of atomic sites (Sa for all atoms a and all operations S)
EQUIVA Data concerning the sets of equivalent atoms
OPERATOrder of the group and spherical coordinates of the transformed axes as taken from BLOCK

DATA
SPHERI Transformation matrices of atomic coordinates and data needed for the calculation of Euler

angles
ANGLES Euler angles and indicator of space inversion
IRREPS Number of irreducible representations of the given group; names and dimensionalities of these

representations
Matrices of the irreducible representations of the given group
Indicator of the irreducible representations acting on the eigenfunctions of spin 1/2
ß-dependent part of the matrices R(j)( aßy) for the different possible values of ß
Results of the Frobenius-Schur test (2.30)
Indicators needed for the construction of the basis set corresponding to reversed time in case
c)

BLOCKS Information on the block structure
DEGEN Data indicating the degeneracy of blocks
SYMORB Quantum numbers a, I, j, m, u, i, J.L of symmetry orbitals
COEFF Non-zero symmetry coefficients (2.9)
Several additional COMMON blocks contain the information stored in BLOCK DATA.

A detailed description of the COMMON variables is included in the program listing.

4. Input

4.1. Input data

1. Name of the group:

2. Control parameters:

INTEGER GROUP (Format A4)

INTEGER IPRINT, IFILE, INDCO

Choice of output:
- Output in readable form, suitable for printing:

IPRINT ~ 0: No output in this form
IPRINT> 0: Writing of output data on a file IPRINT

- Output in compact form, suitable for storing on a file:
IFILE ~ 0: No output in this form
IFILE> 0: Writing of output data on a file IFILE

Choice of atomic coordinates:
INDCO = 1: Input of Cartesian coordinates x, y, z
INDCO = 2: Input of cylindrical coordinates r, cp, Z

INDCO = 3: Input of spherical coordinates r, {}, cp
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3. Input of atomic sites and quantum numbers:
In the input, each set of equivalent atoms is represented by one atom. If the input contains the data of
several equivalent atoms, the program adjusts them to the proper set, provided that their orbitals are
identical. Otherwise, an error message appears. The input consists of several data sets, each containing
the coordinates of one atom and the quantum numbers 1 and 2) of its states.
Number of data sets: INTEGER NDAT
For each data set IDAT = 1,NDAT:

Coordinates of one atom
(Angles in degrees, -180 0 < cp ~ 180 0

) : REAL * 8 CODAT (K,IDAT), K = 1,3
Number of atomic orbitals: INTEGER NORBIT (IDAT)
For each orbital IORB = I,NORBIT (IDAT):

Quantum number I: INTEGER LVAL(IORB,IDAT)
Quantum number 2): INTEGER JVAL(IORB,IDAT)

The input data are transferred by the calling program in the COMMON block

COMMON /INPUT/ CODAT (3,10), GROUP, LVAL (10,10), NAL (10,10), NORBIT (10), NDAT,
IPRINT, IFILE, INDCO.

4.2. Choice 0/ the coordinate system

The orientation of the coordinate axes used in the input is dependent on the choice of the irreducible
representations. Here, the following rules have to be obeyed [3]:

1. For molecules with a principal axis of symmetry (groups C, ... , D, ... , Sn):
- The z axis coincides with the principal axis.
- If a reflection plane exists perpendicular to the principal axis, it is chosen as xy plane.
- If the molecule possesses C2 axes perpendicular to z ; one of them is taken as y axis, except in the

case of the group D 3h , where the x axis is a C2 axis.
- The xz plane is one of the mirror planes of Cn v .

2. For molecules of cubic or tetrahedral symmetry (groups T, Th, Td , 0, 0h):
The axes x, y, z are taken as C4 axes.

5e Output

5.1. Input data

The output begins with the name of the group, the Cartesian coordinates of the atoms, divided into sets
of equivalent atoms and their quantum numbers. These data are taken from the COMMON blocks
/INPUT/ (see section 4.1) and /EQUIVA/:

COMMON /EQUIVA/:
ACO (K,IA), K = 1,3 Cartesian coordinates of the atom with index IA
IATSET (ISET) Index of the first atom belonging to the set ISET of equivalent atoms
INDSET (lA) Index of the set containing the atom IA
NEQUAT (ISET) Number of atoms belonging to ISET
INDDAT (ISET) Index of the data set containing the data of ISET in the input (see section 4.1)
NSET Number of sets of equivalent atoms
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5.2. Results

The output data are contained in the following four COMMON blocks:

COMMON /BLOCKS/:
NAMBLO (K,IBLO) Name of the block IBLO:

K = 1: name of the irreducible representation D<i)

K = 2: basis function index J-l
NSOBLO (IBLO) Number of symmetry orbitals belonging to the block IBLO
NBLO Total number of blocks

COMMON I/DEGEN/:
MYDEG (IBLO) Degree of degeneracy of the block IBLO:

J.l = 1: MYDEG (IBLO) = n i

u > 1: MYDEG (IBLO) = °
KRATYP (IBLO) Classification of the representation D(i) of the block IBLO:

= A: case a)
= BI: case b)
= B2: case b), complex conjugate representation
= C: case c)

67

IFCOSO(ISO)
NSO

COMMON /SYMORB/:
This COMMON block contains the parameters characterizing the symmetry orbital with the index ISO,

given by

I oaljmuiu »:

FACTOR(ISO) Phase factor as given in eq. (3.4)
IATSO(ISO) Index of atom a
LSO(ISO) Quantum number I
JSO(ISO) Quantum number 2j
MSO(ISO) Quantum number m

NYSO(ISO) Index v

IRSO(ISO) Index i of the representation D(i)

MYSO(ISO) Basis function index J-l
KRAPAR(ISO) Index of the symmetry orbital proportional to f Io aljmvip.), In case c),

KRAPAR(ISO) = O.
Index of the first non-vanishing symmetry coefficient of ISO (eq. (2.9))
Total number of symmetry orbitals

COMMON /COEFF/:
This COMMON block contains the non-zero symmetry coefficients, numbered by the index ICO (eq.
(2.9)):

cu:». ,a m ,a m

SYMCO(ICO)
IATCO(ICO)
MCO(ICO)
NCO

Symmetry coefficient with the index ICO
Atom index a'
Quantum number m'
Total number of non-vanishing symmetry coefficients

If IPRINT > 0, tbe output data are printed in self-explaining form.
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5.3. Output on a file

J. M eyer et al. / Relativistic symmetry orbitals

FORMAT (10X,2I5)

FORMAT (I5,lX,A4,I2)

If IFILE > 0, an output with the following structure is generated:

Name of the group:
GROUP FORMAT (A4)
Number of sets of equivalent atoms:
NSET FORMAT (15)

For each set:
Set index, number of atoms, number of orbitals:
ISET, NEQUAT (ISET), NORBIT (IDAT) FORMAT (315)
(with IDAT = INDDAT (ISET), see section 5.1)

For each atom:
Atom index, Cartesian coordinates:
IA, (ACO (K,IA), K = 1,3) FORMAT (5X,I5,lX,3F15.10)

For each orbital IORB:
Quantum numbers I, 2j:
LVAL (IORB,IDAT), N AL (IORB,IDAT)

Total number of blocks:
NBLO FORMAT (15)

Total number of symmetry orbitals:
NSO FORMAT (15)

Total number of non-zero symmetry coefficients:
NCO FORMAT (15)

Degree of degeneracy of the blocks:
(MYDEG(IBLO), IBLO = 1,NBI.J0) FORMAT (1215)

Case:
(KRATYP (IBLO), IBLO = 1,NBLO) FORMAT (3X,12(lX,A4))

For each block IBLO = 1,NBLO:
Number of symmetry orbitals, name of the block:
NSOBLO (IBLO), (NAMBLO (K,IBLO), K = 1,2)

For each symmetry orbital ISO of this block:
Quantum numbers 1 and 2j, number of symmetry coefficients, phase factor (eq. (3.4)):
LSO(ISO), 1S0(ISO), NCOSO(ISO), FACTOR(ISO) FORMAT (315,F15.10,5X,F15.10)

For each non-zero symmetry coefficient ICO of this symmetry orbital:
Quantum number m', atom index a', symmetry coefficient:
MCO (ICO), IATCO (ICO), SYMCO (ICO) FORMAT(215,2F20.10)

5.4. Error diagnostics

In the following cases, the program stops and an error message appears, describing the corrections to be
made:
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x

2

Fig. 2. Atom configuration used in the test run.

1. if the group name given in the input is not found among the groups included in the program,
2. if the control parameter INDCO (section 4.1) takes a value other than 1, 2 or 3,
3. if the orbitals of equivalent atoms given in the input are not identical,
4. if the total number of symmetry orbitals, NSO, exceeds the dimension of the arrays of COMMON

/SYMORB/,
5. if the total number of non-zero symmetry coefficients, NCO, exceeds the dimension of the arrays of

COMMON /COEFF/.

In any of these cases, the program has to be started again with the correct data.

6. Test roß output

In the test run, symmetry orbitals are calculated for a molecule consistmg of five atoms in the
configuration shown in fig. 2. The symmetry group is Td . Its irreducible representations are two-dimen­
sional and belong to case c). The five atoms are divided into two sets. The first set consists of four atoms
forming a tetrahedron, whereas the second set contains the central atom only. The symmetry orbitals of
the molecule serve as an example of case c2 ) (see section 2.4).
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TEST RUN OUTPlJT

SYMMETRY ORBITALS FüR THE OOUBLE GROUP TD

ATOMIC DATA:

NUMBER OF SETS OF EQUIVALENT ATOMS

1. SET: NUMBER OF EQUIVALENT ATOMS: 4
NUMBER OF ORBITALS 2

ATOM: CARTESIAN COORDINATES:
X: Y: z:
1 .00000000 1.00000000 1.00000000
1.00000000 -1.00000000 -1 . 00000000

-1.00000000 1.00000000 -1. 00000000
-1.00000000 -1.00000000 1.00000000

QUANTUM NUMBERS:
L: J:
1 1/2
1 3/2

2. SET: NUMBER OF EQUIVALENT ATOMS:
NUMBER OF ORBITALS

ATOM: CARTESIAN COORDINATES:
X: Y: z:
0.00000000 0.00000000 0.00000000

QUANTUM NUMBERS:
L: J:
1 1/2
1 3/2

SYMMETRY BLOCKS:

TOTAL NUMBER OF BLOCKS 8
TarAL NUMBER OF SYMMETRY ORBITALS 30
TarAL NUMBER OF NON-ZERO SYMMETRY COEFFICIENTS: 206
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BLOCK:

1)6 1
1)6 2
D7 1
D7 2
00 1
00 2
00 3
00 4

DIDREE OF
DIDENERACY:
(0 FüR
DEnENERATE
BLOCKS)

2
o
2
o
4
o
o
o

TIME REVERSAL
CASE:
(B1, B2 FüR
COMPLEX CONJUGATE
REPRESENTATIONS)

C
C
C
C
C
C
C
C
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SYMMETRY ORBITALS:

BLOCK: D6 1
NUMBER OF SYMMETRY ORBITALS: 2

S.O.: COEFF.: SYMMETRY ORBITAL: SYMMETRY COEFFICIENT: ATOMIe ORBITAL:
A L J M NY I MY> REAL PART: IMAGINARY PART: A" L J M">

1 2 1 1/2 1/2 1 D6 1 > ( -0. 0833333333, o . 0000000000 ) 1 1 1/2 1/2>
2 + ( -0.0833333333, -0. 0833333333 ) 1 1 1/2 -1/2>
3 + ( e .0833333333, 0.0000000000 ) 2 1 1/2 1/2>
4 + ( -0.0833333333, 0.0833333333 ) 2 1 1/2 -1/2>
5 + ( 0.0833333333, 0.0000000000 ) 3 1 1/2 1/2>
6 + ( 0.0833333333, -0.0833333333 ) 3 1 1/2 -1/2>
7 + ( -0.0833333333, 0.0000000000 ) 4 1 1/2 1/2>
8 + ( 0.0833333333, 0.0833333333 ) 4 1 1/2 -1/2>

2 9 2 1 3/2 3/2 1 D6 1 > ( 0.0000000000, -0. 1250000000 ) 1 1 3/2 3/2>
10 + ( -0.0721687836, 0.0721687836 ) 1 1 3/2 1/2>
11 + ( -0.0721687836, 0.0000000000 ) 1 1 3/2 -1/2>
12 + ( 0. 1250000000, 0.0000000000 ) 2 1 3/2 3/2>
13 + ( 0.0721687836, -0.0721687836 ) 2 1 3/2 1/2>
14 + ( 0.0000000000, 0.0721687836 ) 2 1 3/2 -1/2>
15 + ( -0 .1250000000, 0.0000000000 ) 3 1 3/2 3/2>
16 + ( 0.0721687836, -0.0721687836 ) 3 1 3/2 1/2>
17 + ( 0.0000000000, -0.0721687836 ) 3 1 3/2 -1/2>
18 + ( 0.0000000000, e . 1250000000 ) 4 1 3/2 3/2>
19 + ( -0.0721687836, 0.0721687836 ) 4 1 3/2 1/2>
20 + ( 0.0721687836, 0.0000000000 ) 4 1 3/2 -1/2>

BLOCK: D6 2
NUMBER OF SYMMETRY ORBITALS: 2

S.O.: COEFF.: SYMMETRY ORBITAL: SYMMETRY COEFFICIENT: ATOMIC ORBITAL:
A L J M NY I MY> REAL PART: IMAGINARY PART: A" L J M">

3 ( -1.0000000, 0. 0000000 ) T 2 1 1/2 1/2 1 D6 1 >
21 2 1 1/2 1/2 1 D6 2 ) ( -0.0833333333, 0. 0833333333 ) 1 1 1/2 1/2>
22 + ( 0.0833333333, 0.0000000000 ) 1 1 1/2 -1/2>
23 + ( -0.0833333333, -0. 0833333333 ) 2 1 1/2 1/2>
24 + ( -0 .0833333333, 0.0000000000 ) 2 1 1/2 -1/2>
25 + ( o . 0833333333, 0.0833333333 ) 3 1 1/2 1/2>
26 + ( -0.0833333333, o . 0000000000 ) 3 1 1/2 -1/2>
27 + ( e .0833333333, -0 . (833333333) 4 1 1/2 1/2>
28 + ( 0.0833333333, 0. 0000000000 ) 4 1 1/2 -1/2>

4 ( 0.0000000, 1.00(0000) T 2 1 3/2 3/2 1 D6 1 >
29 2 1 3/2 3/2 1 D6 2 > ( 0.0000000000, -0.(721687836) 1 1 3/2 1/2>
30 + ( -0.0721687836, 0.0721687836 ) 1 1 3/2 -1/2>
31 + ( -0. 1250000000, 0.0000000000 ) 1 1 3/2 -3/2>
32 + ( 0.0721687836 , 0.0000000000 ) 2 1 3/2 1/2>
33 + ( 0.0721687836, -0.0721687836 ) 2 1 3/2 -1/2>
34 + ( 0.0000000000 , 0. 1250000000 ) 2 1 3/2 -3/2>
35 + ( -0.0721687836, 0.0000000000 ) 3 1 3/2 1/2>
36 + ( 0.0721687836 , -0.0721687836 ) 3 1 3/2 -1/2>
37 + ( 0.0000000000 , -0. 1250000000 ) 3 1 3/2 -5/2>
38 + ( 0.0000000000, 0.0721687836 ) 4 1 3/2 1/2>
39 + ( -0.0721687836, 0.0721687836 ) 4 1 3/2 -1/2>
40 + ( 0. 1250000000, 0.0000000000 ) 4 1 3/2 -3/2>
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BLOCK: D? 1
NUMBER OF SYMMETRY ORBITALS: 3

S.O.: COEFF.: SYMMETRY ORBITAL: SYMMETRY COEFFICIENT: ATOMIC ORBITAL:
A L J M NY MY> REAL PART: IMAGINARY PART: A" L J M">

41 1 1/2 1/2 1 D7 1 > ( o.2500000000 , e.0000000000 ) 1 1 1/2 1/2>

42 + ( o.2500000000 , e.0000000000 ) 2 1 1/2 1/2>
43 + ( o.2500000000 , e.0000000000 ) 3 1 1/2 1/2>
44 + ( o.2500000000 , 0.0000000000 ) 4 1 1/2 1/2>

45 2 1 3/2 3/2 1 D7 1 > ( o.0000000000 , 0.0416666667 ) 1 1 3/2 3/2>

46 + ( 0.0721687836, 0. 0000000000 ) 1 1 3/2 -1/2>
47 + ( 0.0416666667, 0.0416666667 ) 1 1 3/2 -3/2>
48 + ( 0.0416666667, e.0000000000 ) 2 1 3/2 3/2>

49 + ( 0.0000000000 , 0.0721687836 ) 2 1 3/2 -1/2>

50 + ( -0.0416666667, -0.0416666667 ) 2 1 3/2 -3/2>
51 + ( -0.0416666667, o.0000000000 ) ,3 1 3/2 3/2>
52 + ( o.0000000000 , -0.0721687836 ) 3 1 3/2 -1/2>
53 + ( -0.0416666667, -0.0416666667 ) 3 1 3/2 -3/2>
54 + ( 0.0000000000 , -0.0416666567 ) 4 1 3/2 3/2>
55 + ( -0.0721687836 , o.0000000000 ) 4 1 3/2 -1/2>
56 + ( 0.0416666667, 0.0416666667 ) 4 1 3/2 -3/2>

57 5 1 1/2 1/2 1 D7 1 > 1 . 0000000000 , 0. 0000000000 ) 1 1/2 1/2>

BLOCK: D? 2
NUMBER OF SYMMETRY ORBITALS: 3

S.O.: COEFF.: SYMMETRY ORBITAL: SYMMETRY COEFFICIENT: ATOMIC ORBITAL:
A L J M NYI MY> REAL PART: IMAGINARY PART: A" L J M">

8 ( 1.0000000, 0.0000000) T 1 1/2 1/2 1 D7 i >
58 1 1/2 1/2 1 D7 2 > ( o.2500000000 , e.0000000000 ) 1 1/2 -1/2>

59 + ( 0. 2500000000 , e.0000000000 ) 1 1/2 -1/2>
60 + ( o.2500000000 , o.0000000000 ) 1 1/2 -1/2>
61 + ( o.2500000000 , o.0000000000 ) 1 1/2 -1/2>

( 0. 0000000 , -1. 0000000) T 1 3/2 3/2 1 D7 1 >
62 1 3/2 3/2 1 D7 2 > ( 0.0416666667, 0.0416666667 ) 1 1 3/2 3/2>
63 + ( o.0000000000 , -0.0721687836 ) 1 1 3/2 1/2>

64 + ( -0.0416666667, e.0000000000 ) 1 1 3/2 -3/2>

65 + ( -0.0416666667, -0.0416666667 ) 2 1 3/2 3/2>

66 + ( -0.0721687836, o.0000000000 ) 2 1 3/2 1/2>
6? + ( o.0000000000 , -0.0416666667 ) 2 1 3/2 -3/2>

68 + ( -0.0416666667, -0.0416666667 ) 3 1 3/2 3/2>

69 + ( 0.0721687836, o.0000000000 ) 3 1 3/2 1/2>

70 + ( o.0000000000 , 0.0416666667 ) 3 1 3/2 -3/2>
71 + ( 0.0416666667, 0.0416666667 ) 4 1 3/2 3/2>
72 + ( o.0000000000 , 0.0721687836 ) 4 1 3/2 1/2>

73 + ( 0.0416666667, o.0000000000 ) 4 1 3/2 -3/2>

10 ( 1.0000000, 0. 0000000 ) T 1/2 1/2 1 D7 1 >
74 1/2 1/2 1 D7 2 > 1 .0000000000 , o.0000000000 ) 5 1 1/2 -1/2>

BWCK: 00
NUMBER OF SYMMETRY ORBITALS:

S.O.: COEFF.: SYMMETRY ORBITAL: SYMMETRY COEFFICIENT: ATOMIC ORBITAL:

A L J M NY I MY> REAL PART: IMAG INARY PART: A" L J M">

11 75 1 1/2 1/2 1 00 1 > ( o.0000000000 , e .2500000000 ) 1 1 1/2 1/2>
76 + ( o.2500000000 , o.0000000000 ) 2 1 1/2 1/2>

77 + ( -0 . 2500000000 , o.0000000000 ) 3 1 1/2 1/2>

78 + ( o.0000000000 , -0 . 2500000000 ) 4 1 1/2 1/2>

12 79 2 1 3/2 3/2 1 00 1 > ( -0.1666666667, o.0000000000 ) 1 3/2 3/2>

80 + ( -0.0721687836, -0.0721687836 ) 1 1 3/2 1/2>

81 + ( -0.0416666667, 0.0416666667 ) 1 3/2 -3/2>

82 + ( 0.1666666667, o.0000000000 ) 2 3/2 3/2>

83 + ( -0.0721687836, 0.0721687836 ) 2 3/2 1/2>

84 + ( -0.0416666667, -0.0416666667 ) 2 3/2 -3/2>

85 + ( 0.1666666667, o.0000000000 ) 3 1 3/2 3/2>

86 + ( 0.0721687836, -0.0721687836 ) 3 1 3/2 1/2>


