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HHF(r)<1>j(r) = (- 1/2V2 + VnUC(r) + L (2~ - ~))<1>j(r)
j

2. Theory

2.1. Hartree-Fock equations

We repeat in short the basic HF equations [4] which we are
going to solve in this paper with the FEM.

For a closed shell system the HF equations read

(1)

(2)

8;<1>j(r); i = 1, ... ,N

mentioned above. A review of the basis sets used in the
quantum chemical calculations is given by Wilson [13]. The
new developments are the two dimensional fully numerical
finite difference method (FDM) [14] and the finite element
method (FEM) [15]. It has been shown in both methods that
the accuracy to calculate e.g., the total energy is many orders
of magnitude better than in the old quantum mechanical
method because both methods are basis set independent.
With regard to the comparison ofthese two purely numerical
methods the FEM seems to be even more stable and accurate
than the FDM at least for the total energy. An overview of
the finite difference method and a comparison with further
numerical methods like the seminumerical partial wave
method by McCullough [17] is given in Ref. [14]. Preliminary
results for the solution ofthe HF equations with the FEM are
given by Sundholm et al. in Ref. [15]. The papers published
so far on the FEM from our group for the one- and two­
dimensional solution of the Hartree-Fock-Slater (HFS) and
spin polarized HFS calculations are given in Ref. [16] and
[18-21].

In Chapter 2 we are going to discuss in brief the Hartree­
Fock problem for atoms and molecules as weIl as the FEM
and computational approach. In Section 3 we discuss the
results of the solution of the HF problem in a two dimen­
sional way for the atoms Be, Ne and Ar as weIl as LiH, BH,
N 2 and CO as examples for diatomic molecules.

Here ~ and K, are the Coulomb and the exchange operators,
respectively. VnUC(r) is the nuclear potential. The direct
Coulomb operator ~ can be written as

~(r)<I>i(r) = f ~* (r') Ir ~ r' I ~(r') dr' <I>;(r)

Jjc (r)<1>j (r)

Abstract

1. Introduction

The finite element method (FEM) is now developed to solve two-dimensional
Hartree-Fock (HF) equations for atoms and diatomic molecules. The method
and its implementation is described and results are presented for the atoms
Be, Ne and Ar as weIl as the diatomic moleeules LiH, BH, N2 and CO as
examples. Total energies and eigenvalues calculated with the FEM on the
HF-level are compared with results obtained with the numerical standard
methods used for the solution of the one dimensional HF equations for
atoms and for diatomic moleeules with the traditional LCAO quantum
chemical methods and the newly developed finite difference method on the
HF-level. In general the accuracy increases from the LCAO - to the finite
difference - to the finite element method.

The one dimensional atomic problem on the HF-level has
already been treated very early with great success in a purely
numerical way [1]. With the access to powerful computers in
the early sixties Herman and Skillman [2] published extensive
calculations within the Hartree-Fock-Slater model for all
elements in the periodic table. A good example of a relativistic
atomic program using basis set expansion was set up by Kim
[3]. Thestandard programs nowadays used to solve for atomic
problems in Hartree-Fock (HF) or Multi-configuration
Hartree-Fock (MCHF) [4] approximation or its relativistic
counterparts (MCDF) [5, 6] all apply the one dimensional
finite difference method, This holds also for the even more
extended many Body Perturbation calculations (MBPT) [7, 8].

Until recently basis set expansion methods were the only
ones available for two dimensional quantum chemical cal­
culations which are based on the molecular orbital approach
with a linear combination of atomic orbitals (MO-LCAO)
[9]. Despite serious attempts the accuracy of such calculations
on the HF level are rarely better than 10- 5

• The molecules
which we are going to discuss here LiH and BH (Ref. [10]), N 2

(Ref. [11]) as weIl as CO (Ref. [12]) as examples are all of this
accuracy. Of course the absolute values of the total energies
in the HF limit are by itself not so interesting but in order to
get good values of the correlation contributions they are
nevertheless of principal importance.

During the last years a number of computational schemes
have been developed and tested for highly accurate numerical
calculations for the solution of two dimensional problems in
atomic and molecular physics. Such accurate methods are
necessary to eliminate the basis set of truncation errors which
are a serious bottleneck in quantum chemical calculations
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The direct Coulomb potential JjC(r) satisfies the Poisson
equation

Pier) == I~i(r) 1

2

and the exchange potential Vj~(r) the Poisson like equation
[22, 23]

whereas the exchange potential can be written

\72 JjC(r) == - 4npj(r)

with

(12)

(13)

(14)

<Di(s, t) exp (imicP)

~C(s, t)

Vj~(s, t) exp (injicP)

equations one starts from the variational equivalent of the
second order partial differential equations. Details of this
formulation and the details ofthe computational method can
be found in Ref. [14].

Using axial symmetric coordinate systems as defined in
Ref. [14] the angular coordinate can be treated analytically as
we write,

<l>i(S, t, cP)

~C(s, t, cP)

Vj~(s, t, cP)

m, denotes the projection of the angular momentum onto the
internuclear axis of orbital <l>i and nji is the difference nji ==

tm, - mj ) of the m-quantum numbers of the orbitals <l>j and

<1?j'
With these representations of the wavefunctions and

potentials the variational integral of eq. (4) takes the form

(5)

(3)

(4)

f~* (r') Ir ~ r' I <I>i(r') dr: ~(r)

Jj;(r) ~(r)

~j (r )<I>i (r)

\72 Vj; (r) == - 4npji(r)

with

In order to determine the new approximation of the wave­
functions eq. (1) is rewritten to

(15)

(16)

(17)

f - -41 K
1

(8<1>j)2 _ lK
2

(8<1>i)2 _ -41m; K
3

(<I>i)2
8s 4 8t

- !( V - ci)K4(<I>J
2

- !~K4 <Dj(s, t) ds dt,

f - tKj (o~cJ - tK2 (o~cJ

+ 4nK4 (s, t)Pi(S, t) ~c ds dt.

The variational integral of eq. (5) can be written

12 = f - tK) (
0~~)2 - tK2 ( 0~~J-tn7iK 3 ( f/j~ )2

(6)
+ 4nK4(s, t)Pij(s, t) Jj; ds dt,

and the integral of eq. (7) is

(7)

here V denotes the sum ofnuclear and direct Coulomb poten­
tial. The coefficient functions K1 , ••• , K4 are calculated from
the coordinate transformation functions of the coordinate
system in use [16]

The next step in applying the FEM is to subdivide the
two-dimensional space of our problem into M small domains

(8) called elements. The subdivision of the space into elements
can be adapted to the physical problem by combining triangles
of different sizes and shapes. On each of the elements the

(9) unknown functionJ (s, t) is approximated by a trial function
u(s, t) which is written as

L J!j~<I>j(r);
j

i == I, ... , N

using the definitions of eqs. (2) and (3). For the right hand
side of eq. (7) the approximations <1>; (r) of the wavefunctions
<l>i(r) are used. Thus the right hand side of eq. (7) is a known
function and the equation can be solved for a new approxi­
mation of the wavefunction <l>j(r). This can formally be
written as

The actual solution of the HF equations is done in an iterative
procedure. If we start with a set of approximations <1>/ (r) of
the unknown wavefunctions ~(r) we can calculate the direct
Coulomb potential VjC(r) and the exchange potential Jj~(r).

The expectation value of the one particle energy can be
evaluated as

and

with

i, ==

( - Ij2V2 + VnUC(r) + 2I Vjc - Ci)<I>i(r)
j

Formally eq. (8) takes the same form as eqs. (4) and (5) and
is solved by the FEM in a similar way. The Hartree-Fock
iteration is started with wavefunctions calculated with the
Themas-Fermi potential of the system.

2.2. Finite element method and computational approach

The FEM method was originally developed in engineering
science in order to calculate static and dynamic stresses of
complicated constructions. Recently, it has been demonstrated
[24-31, 35] that this method can also be used with great
success to solve quantum mechanical problems.'

In order to apply the FEM to the solution of the HF-

(19)

( 18)

with integrals running over the areas of the M elements. The
substitution of the trial function u(s, t) into the element

M M M

11 == I Ir, 12 == I 15 and 13 == I I~',
('=1 e > 1 ('= 1

a linear combination of the two-dimensional polynomials
N, (s, t). These polynomials are defined such that the coeffic­
ients u, can be interpreted as the values of the unknown
function .f (s, t) at certain points. In our case we choose
two-dirnensional Lagrange polynomials up to order 6 as trial
functions. Because of the subdivision of the region into M
elements the functionals 11 (eq. (15)) 12 (eq. (16)) and 13

(eq. (17)) can be written as a surn of element integrals

(11 )I V:. (r)<I>j(r).
.i
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integrals It , /I and /; and summation according to eq. (19)
leads to matrix expression for the variational integrals.

t, u1
• D~ · u - u1

• di (20)

/2 u1
• Dij · u - ut

• du (21)

/3 u1
• Li · U - u1

• ~ (22)

As the global matrices D~, Dij and Li are built up by contri­
butions of elements which are distinct in space they are band
structured matrices. The vectors u contain the coefficients u,
of eq. (18) from all elements. The functionals L; 12 , and 13 can
now be seen as functions of these coefficients. The conditions
for L; /2' and /3 to be extreme therefore are

( a/l
) = 0, (aI2

) = 0, (aI3
) = 0, k = 1, ... , Np.

aUk aUk aUk

(23)

These conditions lead to the matrix equations

D~ ·U d, (24)

Dij·u du (25)

Li· u ~ (26)

The resulting matrix eqs. (24), (25) and (26) are solved by a
Cholesky type decomposition of the matrices. After the sol­
ution of eq. (8) for the different wavefunctions of same
symmetry due to the solution of the matrix eq. (26), the
different vectors u are orthonormalized using Schmidt's
orthonormalization method.

The boundary conditions for the Poisson type eqs. (4) and
(5) are calculated by means of a multipole expansion of the
densities pier) or the exchange densities pu(r), respectively. As
boundary values for the wavefunctions the value <I>i(r) = 0 is
used for practical infinity at distances of 25 a.u.

3. Results and discussion

3.1. Atoms

The two-dimensional approach described above was tested
by solving for the atoms Be, Ne and Ar as examples. The
calculations were performed with up to 385 points for Be, 931
points for Ne and 1729 points for Ar. The results given in
Table I are compared with the results of one-dimensional
calculations [4, 32, 33] in the HF limit where the last digit given
is uncertain. The agreement between both methods is perfect.

Because the FEM calculation explicitly allows a two
dimensional freedom for the wavefunctions they are thus two
dimensional unrestricted HF calculations, which in principle
allow for deformation in the second dimension. We started
the FEM calculations with a dipole and quadrupole deformed
initial potential, but during the convergence all three atoms
calculated so far definitely converged towards the spherical
symmetric restricted HF limit. This behaviour seems to be
obvious because all these atoms are closed shell systems, but
it is important to see that they really behave like this.

3.2. Diatomic moleeules

The first results for diatomic molecules in the HF limit are
given in Table 11 for the two hydrids IjH and BH and in
Table 111 for the systems N 2 and CO as typical examples for
first row molecules. All these results are compared for the
total energies and the energy eigenvalues of the occupied
levels first with the best quantum chemical MO-LCAO cal­
culations on the HF level and second with the finite difference
calculations of Laaksonen et al. [14]. For all these systems we
used 2401 points. In order to improve the accuracy the sizes
of the elements were adjusted by a logarithmic scaling [21].
The last digit in the values given is uncertain.

For the system LiH the agreement with the value of
Laaksonen et al. [14] is in the order of 10- 7 a.u. for the

Table I. A comparison 01 total energy and eigenvalues for the atoms Be, Ne and Ar calculated with the two dimensional FEM
using different grid sizes and one-dimensional HF

Be

This work This work This work Ref. [4]
Points 175 301 385
Etat -14.573019 - 14.57302316 - 14.57302317 -14.573023
c(ls) -4.732674 - 4.732669898 - 4.732669897 - 4.732669897
E(2s) -0.3092695 - 0.309269551 - 0.309269552 - 0.30926955

Ne

This work This work This work Ref. [31]
Points 481 637 931
Etat - 128.547093 - 128.547097 - 128.547098 - 128.547098
c( Is) - 32.772442 - 32.772443 - 32.772443 - 32.772443
E(2s) - 1.930391 - 1.930391 - 1.9303909 - 1.9303909
E(2pn) -0.850410 -0.8504097 - 0.85040964 -0.8504096
c(2pa) -0.850409 -0.8504095 - 0.85040963 -0.8504096

Ar

This work This work This work Ref. [33]
Points 403 949 1729
e.; - 526.8171 -526.81751 - 526.8175127 - 526.8175130
c(ls) - 118.61041 - 118.61036 - 118.6103506 - 118.6103506
c(2s) -12.32217 -12.32216 - 12.3221533 - 12.3221533
E(2pn) -9.57153 -9.57148 - 9.5714656 -9.5714656
c(2pa) - 9.57149 - 9.57147 - 9.5714656 - 9.5714656
E(3s) -1.27736 -1.277358 - 1.2773530 -1.2773530
c(3pn) -0.59104 -0.591023 - 0.5910174 - 0.5910174
E(3pa) - 0.59102 - 0.591021 - 0.5910174 - 0.5910174
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Table 11. Total energy and molecular eigenvalues for the dia­
tomic moleeules LiH and BH calculated with the FEM using
different grid sizes. Comparison is done with results of FDM
calculations and LCAD basis set expansion methods

LiH
This work This work Ref. [14] Ref. [10]

Points 625 1369
R 3.015 3.025 3.015 3.015

Etat -7.9873517 -7.8973522 -7.9873524 -7.987313
8(1(J) - 2.4452370 - 2.4452338 - 2.4452338 - 2.44525

8(2s) - 0.3017360 - 0.3017382 - 0.3017383 - 0.30172

BH
This work This work Ref. [14] Ref. [10]

Points 1369 2401
R 2.336 2.336

Etat -25.1315984 -25.1315987 - 25.131609 -25.13137
8(1(J) -7.6861673 -7.6862674 -7.686271 -7.68633
8(2(J) -0.6481873 -0.6481873 -0.648188 -0.64816
8(3(J) - 0.3484238 - 0.3484238 -0.348424 - 0.34837

total energy whereas the traditional calculations [10] devi­
ates by 10--5 a.u. In this Table 11 we also show the con­
vergence with increasing number of points. The change from
625 to 1369 points just leads to changes of a few 10- 7 a. u.
only.

One favourable point of the FEM is that it is based on a
variational principle, therefore we always get convergence for
the total energy with increasing number of points and always
from above. This we found in all cases we calculated so far.
In the case of the finite difference method the convergence
usually is reached from above, but in a few cases it converges
from below [34].

The results for the system BH show a disagreement with
the LCAO method [l l ] at the 10- 4 a.u. level but also a
difference of 10- 5 a.u, in comparison to the FDM method
[14] which is not quite clear to uso The convergence pattern
with increasing number of points definitely shows that our
calculations are at least one order of magnitude better than
the FDM results of Laaksonen et al. [14].

The same statement holds true in the comparison for N 2 in
Table II!. The error in the LCAO calculation [10] is already
10- 3 a.u. and the comparison with Laaksonen results shows
a disagreement at the 10--5 a.u. level. We do not want to
overstress this sm all disagreement but it is a very clear indi­
cation that the FEM method is able to get very accurate
results.

The results for CO are quite similar to those of N 2 • Again
there is a disagreement of the total energy at the 10- 5 a. u.
level with the results of Laaksonen et al. [14]. The change of
the total energy when going from 1369 to 2401 grid points is
ofabout 2 x 10--6 a.u. Therefore we expect our results to be
accurate at a level of 10--6 a.u.

Thus the FEM proves to be a very powerful tool to achieve
very accurate results also for the solution of the Hartree­
Fock equations for diatomic moleeules which are unpre­
cedented. The stability of the method is insured by the fact
that the FEM is based on a variational principle which is not
the case for the FDM. The possibility ofusing adapted point
distributions makes the method very effective. Making practical
use of this statement it may be possible to use the FEM also
for solution of 3-dimensional quantum mechanical problems
within reasonable computer time.

Table II!. Total energy and eigenvalues for the diatomic mol­
ecules N2 and CO calculated with the FEM. Comparison is
given with the results from FDM and LCAD basis set expan­
sion methods

N2

This work Ref. [14] Ref. [11]
R 2.068 2.068 2.068

Etat - 108.993826 - 108.993808 - 108.9928
8(1(Jg) - 15.681867 - 15.681862 - 15.6820

8(1(Ju) - 15.678252 - 15.678246 -15.6783
8(2(Jg) - 1.473423 - 1.473401 - 1.4736
8(2(Ju) -0.778077 - 0.778075 - 0.7780
8(3(Jg) -0.634793 - 0.634784 -0.6350
8(17t~) -0.615625 -0.615611 -0.6154

CO
This work This work Ref. [14] Ref. [12]

Points 1369 2401
R 2.132 2.132 2.132 2.132

Etat - 112.790905 - 112.790907 - 112.79095 - 112.6986
8(1(J) - 20.664521 - 20.664521 - 20.664531 - 20.6903
8(2(J) - 11.360051 - 11.360051 - 11.360055 - 11.3945
8(3(J) - 1.521490 - 1.521490 - 1.521491 - 1.5665
8(4(J) - 0.804530 -0.804530 -0.804531 -0.8006
8(5(J) - 0.640361 - 0.640361 - 0.640362 -0.6493
8(ln) -0.554923 - 0.554923 -0.554925 - 0.5594
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