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H 2 SOLVED BY THE FINITE ELEMENT METHOD
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We report on the solution of the Hartree-Fock equations for the ground state of the H 2 molecule using the finite element
method. Both the Hartree-Fock and the Poisson equations are solved with this method to an accuracy of 10- 8 using only 26 x l t
grid points in two dimensions. A 41 X 16 grid gives a new Hartree-Fock benchmark to ten-figure accuracy.
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The connection between the charge density and the
potential VC is given by the Poisson equation

-!\7 2qJ(r) + VnUC(r)qJ(r) +! VC(r)qJ(r) = EqJ(r) ,

equation for the ground state of H2, which in this case
can be written:

If eqs. (1) and (2) are both solved iteratively, a self­
consistent solution can be reached.

In order to apply the finite element technique one
has to start from the variational principle for the
functional
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\72 VC(r) = - 41tp(r) ,

with

to solve the Schrödinger-type Hartree-Fock equa­
tions, and from the functional

! f (V V c)2 d3 r- 41t fPVC d3 r (4)

Calculation of the ground-state energy of the H2

molecule is the standard test to prove the quality of
a new method for solving the Schrödinger equation
of a many-electron molecule. A bibliography of pub­
lications on this system can be found in ref. [1].

Atomic physics has always preferred purely
numerical [2,3] instead of basis-set methods to solve
the many-electron Hartree-Fock equations. This is
due to practical reasons as weIl as a certain arbi­
trariness always introduced by the choice of basis
functions.

For molecules, basis set methods have been the
only methods able to solve the problem in a reason­
able time. However Laaksonen et al. [4] have
recently devised a purely numerical finite difference
method able to solve the many-electron Hartree
-Fock-Slater problem for diatoms containing rela­
tively heavy atoms [5]. Of course, this method is not
expected to be an alternative to actual quantum
chemical calculations but it can be regarded as a new
development which might be interesting for the
future. A review by the same authors can be found
in ref. [6].

We would like to present another method which
may also be of interest in time to come: The finite
element method (FEM). This method is well known
in engineering science, and recently it was shown that
it might be useful for quantum mechanical problems
as weIl [7].

We use this method to solve the Hartree-Fock
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Table 1
Total energy and 1So energy eigenvalue for H 2 for differing number of mesh points. The best values from ref. [4] are E = - 1.13362957
and€= -0.59465857 au, respectively. The calculation with 41 X 16 points, i.e. 48 elements, leads to values with 2 more significant figures
for E and €

Number of Numberof E
points elements (au)

6x6 2 -1.12873769
n x n 8 - 1.13362024
16x 11 12 - 1.13362884
21Xll 16 - 1.13362949
26x 11 20 -1.13362956
41 X 16 48 -1.1336295717(2)

Relative € Relative
error (au) error

-4.3x 10- 3 -0.59583041 2.0X 10- 3

-8.2X 10- 6 - 0.59466119 4.4X 10- 6

-6.5xl0- 7 -0.59465813 - 7.4X 10- 7

-6.9x 10- 8 -0.59465860 4.8X 10- 8

-5.3xl0- 9 - 0.59465856 -1.2xl0- 8

- 0.5946585694( 3)

to solve the Hartree-Fock equations. This varia­
tional approach is analogous to the work by Becke
[8]. The FEM method itself comprises the follow­
ing: The whole space is divided into a finite number
of elements (we use triangles for the two-dimen­
sional H 2 problem). For each element the unknown
function rp respectively VC is described by a sum of
polynomials with free coefficients. The order can be
choosen freely but for this problem we use fifth order.
The coefficients are determined by the solution of
the matrix eigenvalue equation

for the Poisson equation (2).
The matrix H results from the insertion of the ele­

ment trial functions into the first and second term of
eq. (3) integrating the trial function over each ele­
ment, and summing over all elements. The matrix 5
comes from the third term of eq. (3). Similarly the
matrix 0 results from the first and the vector d from
the second term of eq. (4). The vectors x and y con­
tain the expansion coefficients. Details of finite ele­
ment calculations as a general rnethod can be found
in ref. [9]. Full details of the method for this par­
ticular quantum mechanical application will be pub­
lished elsewhere [10].

Here we present preliminary results for the ground
state of the many-electron system H 2 • Table 1 lists
the total and orbital energies obtained as the number
of elements used increases. No special care has been
taken to partition the space in the most effective way
in order to get the best results for this system. We

HX==ESX

for eq. (1), and the matrix equation

Dy==d

(5)

(6)

simply divided the space equidistantly in intrinsic
elliptic hyperbolic coordinates. For 26 X 11 points,
i.e. 20 elements, the total energy obtained already
has an accuracy better than 10- 8• For a comparison
we used the definitive results of Laaksonen et al. [4].
With 41 X 16 points, i.e. 48 elements, we were able
to add two more significant figures to the results (see
table 1).

The high quality of the finite element calculation
demonstrates the usefulness of this method, As is
obvious from eqs. (5) and (6) this is, in principle,
a matrix method using higher-order two-dimen­
sional spline functions. These functions - which
describe approximately the functions rp respectively
VC over each element - are the basis states. So, once
one has chosen the order of the polynomials for the
elements the basis is fixed. It should be noted that
even for the relatively small number of 20 elements,
the use of fifth-order polynomials over each element
as in this case, leads to very accurate results.

We intend to extend this work to the solution of
the Hartree-Fock-Slater equations for heavier
systems.
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