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Collision Systems
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Abstract

Various approximations which are possible for the theoreticaJ description of colliding ion-atom
systems are reviewed. With the emphasis on relativistic influences, a few comparisons of experimental
results with relativistic calculations are made.

1. Introduetion

When two many-electron atoms or ions collide with each other, a large
number of processes can occur: inner- and outer-shell ionization via one- or
more step processes followed by separated atom and molecular x-rays and/or
Auger transitions and their cascades. The cross sections of each of these processes
strongly depend on the impact energy as weil as the charges of tbe two nuclei
and the number of electrons involved. From a theoretical viewpoint such systems
are many-body problems par excellence.

In classical quantum chemistry, such problems (wbere the nuclear charges
and the number of electrons involved are very low as are tbe impact energies)
are treated. However, recent developments in accelerators made the whole range
of energies and nuclear charges (up to U - U) available for experiments, whieh
means that relativistic effects have to be included. Since ab initio fully quantum­
mechanical calculations are not available, it is important to distinguish between
various possible approximations.

Two important quantities in a collision process are the distance of closest
approach which (for a Rutherford trajectory) is R min =2· Zv- Z2· e2IM -v: and
the de Broglie wavelength ;\ = h/M · V I. Their quotient is the Sommerfeld para­
meter 11 = R min/2A =Z -2 2·e2/h . VI- If Tl « 1, a quantum mechanical description
of nuclear motion is necessary and if 11 » 1, a classical description of the nuclear
motion is appropriate, In addition, the adiabatic parameter T = V7/V~h where Vel

is the electron velocity, is often used. T« 1 is called adiabatic and T » 1 is called
sudden or nonadiabatic.

The aim of this paper is to review from a general viewpoint the various
approximations which are being used in tbe theoretical treatment of collision
problems [1] as weil as the influence of relativity for some very heavy systems.
Abrief comparison of a few experiments with new calculations is made.
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2. Quantum-Mechanical Treatment of Nuclear Motion

In this very general case the time-independent Schrödinger (or Dirac)
equation has to be solved

(H - E)'I'(x, R) = 0, (1)

where H is the full Hamiltonian of the system, x is the electronic coordinates,
and R is the internuclear distance. If we use H = -V~/2M +He + V and know
the solution of

Hel/Jn (x, R) = E; (R )t/Jn (x, R),

we can use «/In as basis functions. With

'I'(x, R) =L r, (R)«/Jn (x, R),
n

we get a set of coupled differential equations

[V~ +k~]Fn(R)= 2M L (<</In 1Vltfim)Fm(R)
m

m~n

- L (l/JnJV~+k~l«/Jm)Fm(R),
m#n

(2)

(3)

(4)

with k~ = 2M[E -En(R)].
Asymptotically the right-hand side goes to zero. For the incident channel at

t -+ 00 we have

(5)

and the other channels behave like

(6)

The cross section for excitation in astate n is

(7)

The amplitudes are obtained by examining the asymptotic behavior of the
solution of the coupled equations (4).

Two expansions have proved useful in the solution of these equations: (a)
atomic basis functions and (b) molecular basis functions. Case (a) is appropriate
in fast collisions where T » 1 or when the influence of one atom on the other is
only a smaJl perturbation, which means that V must be smalI. If the incoming
wave is assumed to be a plane wave and if exchange is neglected, one gets the
very familiar form of the plane wave Born approximation (PWBA) with tbe



scattering amplitude
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(8)

------ BINDING

For the matrix elements <t/Jn t VJl/lo> atomic wave functions with different sophisti­
cation like hydrogenie screened, Dirac-Fock-Slater, Dirac-Fock, etc., are used.
Equation (8) and related approximate formulas are applied to calculate various
excitation cross sections [1].

Case (b) is appropriate when the electronic wave functions change during
the collision. In Eq. (4) the first term on the right-hand side is zero if molecular
wave functions are used as a basis. This coupled set of differential equations
analogous to Eq. (4) is the perturbed stationary state method (rss) of Mott and
Massey [2]. This method has been used to describe excitation and charge transfer
in very slow atom-atom collisions.

In addition to PWBA and tractable forms of rss several inftuences have been
discussed, although some of them already mix with the picture of the classical
motion of the nucleus. (i) Increased binding of the electrons in the collision; (ii)
Polarization of the electron clouds (both corrections for PWBA only); (iii)
Coulomb deflection of tbe ion, and (iv) Relativistic influences.

Figure 1 gives an example of the influences of these effects in the total K
x-ray production cross sections for F ~Z2 (Z2 = 20-60) at 20 MeV impact energy

20 MeV 19F ---- X
9 Z
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..~l A.RI ZATION

-­COULOMB --
OEFlECTJON

30 40

Figure 1. Correction factors for polarizat ion, Coulomb defiection, binding, and
relativistic effects in F -+Z2 K -shell ionization total cross section. All correction

Iactors are given with regard to PWBA cross sections (from Ref. 3).
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which is taken from the paper of Knaf et al. [3]. All correction factors are given
with regard to PWBA cross sections, Because we are here especially interested
in relativistic effects, one sees that this contribution strongly increases for higher
Z; at 2 2 =60, one already has a factor of 6. If one uses instead of F(Z = 9) a
charge which is much higher, this factof can go up to 104 or 105

• This is the
reason why the K ionization cross section even in very high Zeollision systems
(at least for small impact parameters) still is in the order of a few percent,
although the binding becomes very strong.

3. Classical Treatment of Nuclear Motion

If tbe nuclear motion is treated classically, the Schrödinger (Dirac) equation
for the electrons is time dependent

( HeU) - i a~ l)iP(X, t) = O.

The Hamiltonian He for the N electrons with coordinates rh r2, ... , rN is

(9)

(10)

(11 )

The theory must be Galileo invariant; i.e., the classical trajectory formulation
must be independent of an internal reference frame. Tbe so-called translational
factor

u=exP[-ict v'rk -i v 2t)J.
accounts for the electronic energy and linear momentum associated with the
translational motion of two reference frames with relative velocity v, The transla­
tional factor must be multiplied to the separated atom solutions cp ~ (XA) and
cp ~ (XB) to meet the boundary conditions. Thus the asymptotic form of the wave
function '" is thus given in terms of traveling separated atom states

t/J(x, 1)1,-+-00 = (()~(XA) exp (-i I vArk) exp [-i(E~ -!NAvl)t]
k=l

The time-dependent electronic wave functions depend on the nuclear position
and velocity vectors,

A solution of the time-dependent Schrödinger (Dirac) equation (9) can be
achieved in three ways: (a) direct numerical integration; (b) using a variational
procedure, and (c) expansion in known basis functions.

Method (a) has just become interesting because it needs large and fast
computers. For details and first results for non relativistic H+ - H collisions at
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<30 keV with impact parameter b = 0 see Ref. 4. Very recently, the first results
for one-electron systems with b "#- 0 were published by Botteher [5].

Method (b) has been used up to now only by Kleber and Zwiegel [6] in the
nonrelativistic form and Krause and Kleber [7] in the relativistic form for K -shell
ionization. Their main problem is to find a relevant parametrization to describe
the time dependence of the wave functions. Once this is chosen, a variational
calculation determines the parameters as a function of time and thus the wave
functions. It has been shown [6] that the wave functions more or less follow the
time-independent correlation diagram energy eigenvalues in the first half of the
collision but strongly deviate for higher-impact energies in the second half of
the collision.

Method (c) is the well-known procedure usually used in quantum-chemical
calculations. The wave functions are expanded in basis functions Xk(X, t)

«{1(x, t) = L Ck(t)Xk(X, t).
k

(13)

If this Ansatz is inserted in Eq. (9), we get the well-known coupled set of
differential equations, which in matrix formulation are usually written

iS!!:.-C=MC
dt '

(14)

where C the column matrix of the coefficients ci, S is the overlap matrix with
elements Ski = (XkIXr), and M is the coupling matrix with elements

Again as in Sec. 2 one has two possibilities: (a) expansion in atomic eigenfunc­
tions, which is good for ZA «ZB and VI »Vel and (b) expansion in molecular
eigenfunctions, which is good for ZA ~ ZB and VI< Vel.

If method (a) is used, such approximations as, for example, the impact
parameter Born approximation and the semiclassical approximation (SCA) can
be derived [1].

If method (b) is used, the molecular eigenfunctions 'Pn are obtained from the
solution of

He'Pn(r, R) =En(R)CPn(r, R). (15)

The energy eigenvalues E; (R) are usually shown in the so-called correlation
diagrams. Figure 2 shows a very simple very schematic nonrelativistic diagram
and Figure 3 shows a complicated relativistic correlation diagram. The wave
function of the time-dependent problem is then given by

I./J(r, t) =~ c; (t)CPn (r, R) exp [ig(r, R)v· r]
n

(16)
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Figure 2. Schematic correJation diagram. Processes (a)-(c) indicate direct ioniz­
ation, td) rotational coupling, and (e) radial coupling (vacancy sharing).
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Figure 3. Relativistic many..electron self-consistent-charge correlation diagram for
Pb-Pb with 96 electrons. Levels: (-) 1/2; (- --) 3/2; (... ) 5/2.
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(17)

and the coupled set of differential Eqs. (14) has to be soIved to determine the
en (r). B« is a function in tbe translational factor, which at t --+ -00 is one but which
can go to zero for small internuclear distances. In very slow collisions one may
expand the translational factor in powers of v. Retaining only the lowest-order
term ODe gets Ski = Ski and

Mkl "" -i(cpk/:r Icp/) exp (ir(Ek- EI) dt).

The matrix element (lwOk)<ajiJt)lfP,) can be rewritten

R(cpk/ a~ Icp/) +~~ (cpdLx \cp/),

where the first part usually is called the radial and the second part tbe rotational
coupling matrix element. tL, is the angular momentum operator perpendicular
to the collision plane.)

4. 1>iscussion

The most famous example for this radial and rotational coupling is the
two-state 2p1T - Zp.; rotational coupling for small Z systems [8] where an initial
hole from the heavier (H) atomic 2p shell is transferred at the united (U) 2p
level to the lighter (L) ls level in the outgoing channel. This is process d in
Figure 2 which is a very simple schematic correlation diagram. Processes a, b,
and c are direct ionization processes that are described in Sec. 2. (The electrons
which are emitted here usually are called 8 electrons.) Process e is the so-called
vacancy sharing which is just the radial coupling between the two outgoing Is
levels.

Experiment and theory agree relatively weIl for the Zp.;- Zp; rotational
coupling for small Z systems, but are not consistent for heavier systems, where
relativistic effects change the simple two-state picture. Spin-orbit splitting and
screening effects change this part of the correlation diagram drastically [9] for
higher Z. How strong the relativistic effects really are can be seen in Figure 3,
which shows the correlation diagram [10] for Pb-Pb with a united Z of 164.
The spin-orbit splitting is so tremendous that the 2p1/2 level is even below the
2s united level and very far away in energy (as weIl as the shape of the
wavefunction) from the 2p3/2 level. Also the 3pl/2 level is below the 2p3/2 level
at very small internuclear distances. This probably has strong effects on the
matrix elements which describe rotational and radial coupling. But coupled
channel calculations with good ab initio matrix elements and energies are not
yet available.

Figure 3 is calculated using a full self-consistent charge relativistic program
where 96 electrons were included. As basis functions to construct the molecular
wave functions 'Pn numerical relativistic Dirac-Fock-Slater atomic wavefunctions
[11] were used. The time dependence is then treated as a coupled channei
calculation.
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The superheavy quasimolecular systems have been studied experimentally
for several years [12]. MO x-rays as weil as Auger processes in the quasimoleeule,
measurements of the anisotropy, and impact parameter measurements now exist
in the region of large Z above 100. Within the experimental accuracy the
theoretical treatments described above are at least partially able to yield a general
agreement with the experimental results in this region of large Z where no stable
element exists. Here relativistic effects as weil as screening efIects are both very
important (and inftuence each other).

But even at the medium Z region accurate ab initio relativistic calculations
are absolutely necessary. Figure 4 shows a comparison of experimental and
theoretical cross sections of the elastic scattering of Xe +-Xe normalized to the
cross section derived from a Lenz-Jensen potential [13] as a function of the
scaled scattering angle. The inftuence of the electronic shell structure in the
quasimoleeule during the scattering can be clearly seen.
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Figure 4. Differential elastic scattering cross sections for (0-0) experimental
Xe+-Xe [13] and theory relative to the Lenz-Jensen cross section «-) calculated

I-I).

These are only a very few examples that are given to demonstrate the necessity
for relativistic calculations even down to relatively small Z as weIl for the fact
that these have to be often good, which means self-consistent, calculations.

If this is not possible or necessary, one has to be weIl aware of the large
number of approximations that go into each of these calculations as can be seen
in Sees. 2 and 3.
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