
Lower Bounds for

Nonforgetting Restarting Automata and

CD-Systems of Restarting Automata

Friedrich Otto

Fachbereich Elektrotechnik/Informatik, Universität Kassel
34109 Kassel, Germany

otto@theory.informatik.uni-kassel.de

August 25, 2008

Abstract

Some lower bound results are presented that separate the language classes accepted by
certain types of nonforgetting restarting automata or CD-systems of restarting automata
from each other.

1 Introduction

The nonforgetting restarting automaton is a generalization of the restarting automaton that,
when executing a restart operation, changes its internal state based on the current state and
the actual contents of its read/write window instead of resetting it to the initial state [13]. The
expressive power of various monotone and/or deterministic types of nonforgetting restarting
automata has been investigated in [10]. Another generalization of the restarting automaton
is the cooperating distributed system (CD-system) of restarting automata [11]. Here a finite
system of restarting automata works together in analyzing a given sentence, where they inter-
act based on a given mode of operation. As it turned out, CD-systems of restarting automata
of some type X working in mode = 1 are just as expressive as nonforgetting restarting au-
tomata of the same type X. Further, in [12] various types of determinism are introduced for
CD-systems of restarting automata called strict determinism, global determinism, and local
determinism, and it is shown that globally deterministic CD-systems working in mode = 1
correspond to deterministic nonforgetting restarting automata.

Here we derive some lower bound results for some types of nonforgetting restarting au-
tomata and for some types of CD-systems of restarting automata. In this way we establish
separations between the corresponding language classes, thus providing detailed technical
proofs for some of the separation results announced in [9, 10, 12].

2 Definitions

We first describe in short the types of restarting automata we will be dealing with. Then we
restate the definition of CD-systems of restarting automata from [11].

An RRWW-automaton is a one-tape machine that is described by an 8-tuple M =
(Q,Σ,Γ, c, $, q0, k, δ), where Q is a finite set of states, Σ is a finite input alphabet, Γ is a
finite tape alphabet containing Σ, the symbols c, $ 6∈ Γ serve as markers for the left and right
border of the work space, respectively, q0 ∈ Q is the initial state, k ≥ 1 is the size of the
read/write window, and δ is the transition relation that associates a finite set of transition
steps to each pair (q, u) consisting of a state q ∈ Q and a possible contents u of the read/write
window. There are four types of transition steps:

– Move-right steps of the form (q′,MVR) with q′ ∈ Q. This step causes M to shift the
read/write window one position to the right and to enter state q′. However, the window
cannot be shifted across the right border marker $.

– Rewrite steps of the form (q′, v), where q′ ∈ Q, and v is a string satisfying |v| < |u|.
This step causes M to replace the content u of the read/write window by the string v,
thereby shortening the tape, and to enter state q′. Further, the read/write window is
placed immediately to the right of the string v. However, some additional restrictions
apply in that the border markers c and $ must not disappear from the tape nor that
new occurrences of these markers are created.

– Restart steps of the form Restart, which cause M to place the read/write window over
the left end of the tape, so that the first symbol it contains is the left border marker c,
and to reenter the initial state q0.

– Accept steps of the form Accept, which cause M to halt and accept.

If δ(q, u) = ∅ for some pair (q, u), then M necessarily halts, and we say that M rejects in
this situation. There is one additional restriction that the transition relation must satisfy:
ignoring move operations, rewrite steps and restart steps alternate in any computation of M ,
with a rewrite step coming first. However, it is more convenient to describe M by so-called
meta-instructions (see below).

A configuration of M is described by a string αqβ, where q ∈ Q, and either α = ε (the
empty word) and β ∈ {c} · Γ∗ · {$} or α ∈ {c} · Γ∗ and β ∈ Γ∗ · {$}; here q represents the
current state, αβ is the current content of the tape, and it is understood that the head scans
the first k symbols of β or all of β when |β| ≤ k. A restarting configuration is of the form
q0cw$, where w ∈ Γ∗; if w ∈ Σ∗, then q0cw$ is an initial configuration.

In general, an RRWW-automaton is nondeterministic, that is, to some configurations
several different instructions may apply. If that is not the case, then the automaton is called
deterministic. To describe M more transparently, we can use a finite sequence of so-called
meta-instructions (see, e.g., [15]).

A rewriting meta-instruction for M has the form (E1, u → v,E2), where E1 and E2 are
regular expressions, and u, v ∈ Γ∗ are words satisfying k ≥ |u| > |v|. To execute a cycle
M chooses a meta-instruction of the form (E1, u → v,E2). On trying to execute this meta-
instruction M will get stuck (and so reject) starting from the restarting configuration q0cw$,
if w does not admit a factorization of the form w = w1uw2 such that cw1 ∈ E1 and w2$ ∈ E2.
On the other hand, if w does have factorizations of this form, then one such factorization
is chosen nondeterministically, and q0cw$ is transformed into the restarting configuration
q0cw1vw2$. This computation, which is called a cycle, is expressed as w `cM w1vw2. In order

2

to describe the tails of accepting computations we use accepting meta-instructions of the form
(E1,Accept), which simply accepts the strings from the regular language E1.

An input word w ∈ Σ∗ is accepted by M , if there is a computation of M which starts with
the initial configuration q0cw$, and which finishes by executing an accepting meta-instruction.
By L(M) we denote the language consisting of all words accepted by M .

We are also interested in various restricted types of restarting automata. They are ob-
tained by combining two types of restrictions:

(a) Restrictions on the movement of the read/write window (expressed by the first part
of the class name): RR- denotes no restriction, and R- means that each rewrite step is
immediately followed by a restart.

(b) Restrictions on the rewrite-instructions (expressed by the second part of the class name):
-WW denotes no restriction, -W means that no auxiliary symbols are available (that is,
Γ = Σ), and -ε means that no auxiliary symbols are available and that each rewrite
step is simply a deletion (that is, if (q′, v) ∈ δ(q, u) is a rewrite step of M , then v is
obtained from u by deleting some symbols).

A cooperating distributed system of RRWW-automata (or a CD-RRWW-system for
short) consists of a finite collection M := ((Mi, σi)i∈I , I0) of RRWW-automata Mi =
(Qi,Σ,Γi, c, $, q

(i)
0 , k, δi) (i ∈ I), successor relations σi ⊆ I (i ∈ I), and a subset I0 ⊆ I

of initial indices. Here it is required that Qi ∩Qj = ∅ for all i, j ∈ I, i 6= j, that I0 6= ∅, that
σi 6= ∅ for all i ∈ I, and that i 6∈ σi for all i ∈ I. Further, let m be one of the following modes
of operation, where j ≥ 1:

= j : execute exactly j cycles;
t : continue until no more cycle can be executed.

The computation of M in mode = j on an input word w proceeds as follows. First an
index i0 ∈ I0 is chosen nondeterministically. Then the RRWW-automaton Mi0 starts the
computation with the initial configuration q

(i0)
0 cw$, and executes j cycles. Thereafter an

index i1 ∈ σi0 is chosen nondeterministically, and Mi1 continues the computation by executing
j cycles. This continues until, for some l ≥ 0, the automaton Mil accepts. Should at some
stage the chosen automaton be unable to execute the required number of cycles, then the
computation fails.

In mode t the chosen automaton Mil continues with the computation until it either ac-
cepts, in which caseM accepts, or until it can neither execute another cycle nor an accepting
tail, in which case an automaton Mil+1

with il+1 ∈ σil takes over. Should at some stage
the chosen automaton be unable to execute a single cycle or an accepting tail, then the
computation of M fails.

By Lm(M) we denote the language that the CD-RRWW-system M accepts in mode m.
It consists of all words w ∈ Σ∗ that are accepted by M in mode m as described above. If X
is any of the above types of restarting automata, then a CD-X-system is a CD-RRWW-system
for which all component automata are of type X.

The nonforgetting restarting automaton [13] is a generalization of the restarting automa-
ton that is obtained by combining restart transitions with a change of state just like the
move-right and rewrite transitions. This allows a nonforgetting restarting automaton M to
carry some information from one cycle to the next. We use the notation (q1, x) `cM (q2, y)

3

to denote a cycle of M that transforms the restarting configuration q1cx$ into the restarting
configuration q2cy$.

Three different notions of determinism have been introduced for CD-systems of restarting
automata.

The first notion is motivated by the way in which determinism is used in CD-grammar
systems (see, e.g., [2, 3]). A CD-system M := ((Mi, σi)i∈I , I0) of restarting automata is
called locally deterministic if Mi is a deterministic restarting automaton for each i ∈ I. As
the start component is chosen nondeterministically from among all automata Mj with j ∈ I0,
and as in each round the successor component is chosen nondeterministically from among all
automata Mj with j ∈ σi, computations of a locally deterministic CD-system of restarting
automata are in general not completely deterministic.

To avoid this remaining nondeterminism we strengthen the above definition. We call
a CD-system M := ((Mi, σi)i∈I , I0) strictly deterministic if I0 is a singleton, if Mi is a
deterministic restarting automaton, if |σi| = 1 for each i ∈ I, and if the mapping σ : I → I
that maps each component to its unique successsor is a bijection.

Remark 2.1 Let M := ((Mi, σi)i∈I , I0) be a strictly deterministic CD-system of restarting
automata. Because of the above restrictions on I0 and the successor sets σi, we can assume
without loss of generality that I = {1, . . . , n} for some positive integer n, that I0 = {1}, that
σi = {i + 1} for all i = 1, . . . , n − 1, and that σn = {1}. This means that each sufficiently
long computation of M consists of a sequence of meta-cycles of the form

w0 `cM1
w1 `cM2

· · · `cMn−1
wn−1 `cMn

wn.

Thus, if M does not have any auxiliary symbols, then with w0 ∈ L=1(M) we also have wn ∈
L=1(M), that is,M satisfies a variant of the correctness preserving property for deterministic
restarting automata (see, e.g., [4]). In [12] the notion of strict determinism was given without
the requirement that the mapping σ is a bijection. In that case a computation may never
return to the initial component, which means that the correctness preserving property will in
general not be of any help.

The restriction of having only a single possible successor for each component is a rather
serious one, as we will see below. Thus, we define a third notion. A CD-system M :=
((Mi, σi)i∈I , I0) is called globally deterministic if I0 is a singleton, if Mi is a deterministic
restarting automaton for each i ∈ I, and if, for each i ∈ I, each restart operation of Mi is
combined with an index from the set σi. Thus, when Mi finishes a part of a computation
according to the actual mode of operation by executing the restart operation δi(q, u) =
(Restart, r), where r ∈ σi, then the component Mr takes over. For example, when working
in mode = j for some j > 1, then the first j − 1 applications of restart steps within the
computation of a component Mi just restart Mi itself, but at the j-th application of a restart
step, the component r ∈ σi becomes active, if r is the index associated with this particular
restart operation. In this way it is guaranteed that all computations of a globally deterministic
CD-system are deterministic. However, for a component Mi there can still be several possible
successors. This is reminiscent of the way in which nonforgetting restarting automata work.

We use the prefix det-local to denote locally deterministic CD-systems, the prefix det-
global to denote globally deterministic CD-systems, and the prefix det-strict to denote
strictly deterministic CD-systems. For each type of restarting automaton X ∈ {R,RR,RW,

4

RRW,RWW,RRWW}, it is easily seen that the following inclusions hold:

L(det-X) ⊆ L=1(det-strict-CD-X) ⊆ L=1(det-global-CD-X).

Concerning globally deterministic CD-systems, the following results have been obtained
which correspond to the results for nondeterministic CD-systems established in [11].

Theorem 2.2 [9] If M is a nonforgetting deterministic restarting automaton of type X for
some X ∈ {R,RR,RW,RRW,RWW,RRWW}, then there exists a globally deterministic CD-
system M of restarting automata of type X such that L=1(M) = L(M).

For the converse we even have the following stronger result.

Theorem 2.3 [9] For each X ∈ {R,RR,RW,RRW,RWW,RRWW}, if M is a globally de-
terministic CD-X-system, and if j is a positive integer, then there exists a nonforgetting
deterministic X-automaton M such that L(M) = L=j(M).

In addition, we have the following inclusion result.

Theorem 2.4 [9] For each type X ∈ {R,RR,RW,RRW,RWW,RRWW}, and each integer
j ≥ 1, L=j(det-global-X) ⊆ L=1(det-local-X).

3 A Lower Bound for Locally Deterministic
CD-RRW-Systems

Here we separate the locally deterministic CD-RR- and CD-RRW-systems from the nondeter-
ministic CD-RR- and CD-RRW-systems. For that we will use the following example language.

Definition 3.1 Let Σ1 := {a, b, c}, let ϕ1 : Σ∗1 → Σ∗0 be the morphism that is defined by
a 7→ a, b 7→ b, and c 7→ a, and let ϕ2 : Σ∗1 → Σ∗0 be the morphism that is defined by a 7→ a,
b 7→ b, and c 7→ b. Now we define the language Lcc as follows:

Lcc := {ucϕ1(u)c ϕ2(u) | u ∈ Σ∗1 }.

Observe that the morphism (ϕ1, ϕ2) : Σ∗1 → (Σ∗0 × Σ∗0) is injective. Thus, for each word
u ∈ Σ∗1, there exists a unique pair (v, w) ∈ Σ∗0 ×Σ∗0 such that ucvcw ∈ Lcc, and for each pair
(v, w) ∈ Σ∗0 × Σ∗0, there is at most one word u ∈ Σ∗1 such that ucvcw ∈ Lcc.

Lemma 3.2 Lcc is accepted by a CD-RR-system working in mode = 1.

Proof. Let M := ((M1, {2}), (M2, {3}), (M3, {1}), {1}) be the following CD-RR-system with
input alphabet Σ1, where the RR-automata M1, M2, and M3 are given through the following
meta-instructions:

M1 : (c · Σ∗1 · ac · Σ∗0 · ac · Σ∗0, a · $→ $, ε),
(c · Σ∗1 · bc · Σ∗0 · bc · Σ∗0, b · $→ $, ε),
(c · Σ∗1 · cc · Σ∗0 · ac · Σ∗0, b · $→ $, ε),
(c · cc · $,Accept),

M2 : (c · Σ+
1 · c · Σ∗0, xc→ c,Σ∗0 · $) for all x ∈ Σ0,

M3 : (c · Σ∗1, yc→ c,Σ∗0 · c · Σ∗0 · $) for all y ∈ Σ1.

5

Given an input z ∈ Σ∗1, it is obvious that M1 will immediately reject, if |z|c ≤ 1. Thus,
assume that w has the form z = ucvcw, where u ∈ Σ∗1 and v, w ∈ Σ∗0. Observe that
|u| = |v| = |w| must hold if w = ucvcw belongs to the language Lcc. If u = v = w = ε,
then M1 accepts immediately. Observe that w = cc belongs to the language Lcc. If only
one or two of the factors u, v, or w are empty, then M1 rejects immediately. Otherwise, M1

compares the last letter of u, say d, to the last letter of v, say e, and the last letter of w,
say f . If ϕ1(d) = e and ϕ2(d) = f , then f is deleted, and M2 becomes active; otherwise, M1

halts and rejects. In the latter case w = ucvcw does not belong to Lcc, while in the former
case M2 simply deletes the letter e, and then M3 deletes the letter d. Thus,M has executed
the sequence of cycles z = ucvcw = u1dcv1ecw1f `c

3

M u1cv1cw1. Now z ∈ Lcc if and only if
u1cv1cw1 ∈ Lc, and hence, it follows inductively that L=1(M) = Lcc. 2

Observe that the RR-automata M1 to M3 in the construction above are nondeterministic,
as they must guess the last and the last but one occurrence of the symbol c on the tape while
scanning the tape from left to right. In fact, we claim that Lcc is not accepted by any locally
deterministic CD-RRW-system working in mode = 1. To establish this claim we need some
preparations. In particular, we will make use of the notion of Kolmogorov complexity and its
properties [8, 6]. Here we use K(x) to denote the Kolmogorov complexity of a word x over
a finite alphabet of cardinality at least two.

A word x ∈ Σ+
1 is called incompressible if K(x) ≥ |x| holds. It is c-incompressible for a

constant c ∈ N+, if K(x) ≥ |x|−c holds. Finally, x is called random if K(x) > |x|−4 · log3 |x|
holds. Here log3 denotes the logarithm to base 3.

Lemma 3.3 For each c ≥ 0 and each n ≥ 1, there are more than (1 − 1
2·3c) · 3n words of

length n over Σ1 that are c-incompressible.

Proof. There are 3n words of length n over Σ1. On the other hand, there are only
∑n−c−1

i=0 3i =
3n−c−1

2 many words of length at most n − c − 1 over Σ1. Thus, at most this many words of
length n have a description of length at most n−c−1. Thus, at least 3n− 3n−c−1

2 ≥ (1− 1
2·3c)·3n

many words of length n over Σ1 are c-incompressible. 2

Not all factors of incompressible words are themselves incompressible. However, we have
the following result saying that sufficiently long suffixes of c-incompressible words are random.

Proposition 3.4 For each m ∈ N+, there exists an integer n0 ∈ N+ such that the following
statement holds for all n ≥ n0 and all c-incompressible words u ∈ Σn

1 : If u is factored as
u = u1u2 · · ·umû such that |ui| = log2

3(n), 1 ≤ i ≤ m, then the suffix u(i) = ui+1 · · ·umû of u
is random for each 1 ≤ i ≤ m.

Proof. Let i ∈ {1, . . . ,m}, and let u(i) = ui+1 · · ·umû, that is, u = u1 · · ·uiu(i). Then
|u(i)| = |u| − |u1 · · ·ui| = n− i · log2

3(n). We have to prove that K(u(i)) > |u(i)| − 4 · log3 |u(i)|
holds.

For r ∈ N+, let bin(r) denote the binary representation of r. If p(i) is a (shortest)
description for u(i), then p := 0|bin(|u1···ui|)| ·1 ·bin(|u1 · · ·ui|) ·u1 · · ·ui ·p(i) is a description for
the word u. Indeed from p a program can first extract the information |bin(|u1 · · ·ui|)|, which
it can use to determine bin(|u1 · · ·ui|) and then u1 · · ·ui. Finally, from the remaining suffix
of p, which is p(i), it can determine the suffix u(i) of u. Thus, we see that |p| ≥ K(u) ≥ n− c
holds. As

|p| = 2 · |bin(|u1 · · ·ui|)|+ 1 + |u1 · · ·ui|+ |p(i)|
= 2 · log2(i · log2

3(n)) + 1 + i · log2
3(n) + |p(i)|

= 2 · log2(i) + 4 · log2(log3(n)) + 1 + i · log2
3(n) + |p(i)|,

6

it follows that

|p(i)| ≥ n− c− 2 · log2(i)− 4 · log2(log3(n))− 1− i · log2
3(n)

= n− (c+ 1 + 2 · log2(i))− 4 · log2(log3(n))− i · log2
3(n).

On the other hand, we have

|u(i)| − 4 · log3 |u(i)| = n− i · log2
3(n)− 4 · log3(n− i · log2

3(n)).

Since i ≤ m, where m is a fixed constant, we see that for all sufficiently large values of n,

4 · log3(n− i · log2
3(n)) > (c+ 1 + 2 · log2(i)) + 4 · log2(log3(n))

holds, which implies that K(u(i)) = |p(i)| > |u(i)| − 4 · log3 |u(i)| holds. Thus, u(i) is random.
2

The next proposition, which is taken from [6], is concerned with the behaviour of a
deterministic finite-state acceptor on a random word of sufficient length.

Proposition 3.5 Let A be a deterministic finite-state acceptor with tape alphabet Γ ⊇ Σ 6= ∅.
Then there exists a constant n0 ∈ N+ such that, for each integer n > n0 and each random
word w ∈ Σn, the following condition is satisfied for each word v ∈ Σ+: Assume that A is
in state q when it enters the factor wv on its tape from the left, and that it reaches state q′

when its head is located inside the factor v. Then A already encounters state q′ while its head
is still inside the prefix of w of length log2

s n, where s = |Σ|.

Assume that M = ((Mi, σi)i∈I , I0) is a locally deterministic CD-RRW-system such that
L=1(M) = Lcc. For each i ∈ I, Mi = (Q(i),Σ1,Σ1, c, $, q

(i)
0 , k, δi) is a deterministic RRW-

automaton that can also be described through a finite sequence of rewriting meta-instructions
I

(i)
j = (E(i)

j , u
(i)
j → v

(i)
j , F

(i)
j), 1 ≤ j ≤ ni, and a single accepting meta-instruction I

(i)
0 =

(E(i)
0 ,Accept).
As each Mi is deterministic, the above meta-instructions are used as follows. Assume

that Mi is in the restarting configuration q
(i)
0 cw$. Then Mi scans the tape from left to right

until it detects the shortest prefix w1 of w such that w1 = w3u
(i)
j and cw3 ∈ L(E(i)

j) for

some j ∈ {1, . . . , ni}. It then rewrites u(i)
j into v

(i)
j and checks whether the corresponding

suffix w2 of w satisfies the condition that w2$ ∈ L(F (i)
j). At the same time it checks whether

the original tape content cw$ belongs to the language L(E(i)
0). If the latter holds, then Mi

halts and accepts; if cw$ 6∈ L(E(i)
0), but w2$ ∈ L(F (i)

j), then Mi restarts, which yields the

restarting configuration q
(r)
0 cw3v

(i)
j w2$ for some r ∈ σi. Finally, if w2$ ∈ L(F (i)

j) does not
hold, either, then Mi halts and rejects. If no prefix of the above form is found, then Mi halts
and rejects as well, unless cw$ ∈ L(E(i)

0) holds, in which case Mi halts and accepts.
Thus, we can replace each regular constraint E(i)

j by a regular constraint Ê(i)
j such that

L(Ê(i)
j) = { cw | cw ∈ L(E(i)

j), but for all x, y ∈ Σ∗1, y 6= ε : if cxy = cwu(i)
j ,

then cx 6∈
⋃ni
r=1(L(E(i)

r) · u(i)
r) },

and the resulting meta-instructions Î(i)
j = (Ê(i)

j , u
(i)
j → v

(i)
j , F

(i)
j) (1 ≤ j ≤ ni) will also

describe Mi together with I
(i)
0 . The advantage of the new constraints is the following:

7

If cw$ ∈
⋃ni
j=1

(
L(Ê(i)

j) · u(i)
j · Σ∗1 · $

)
, then there exist a unique index j ∈ {1, . . . , ni} and

a unique factorization w = w1u
(i)
j w2 such that cw1 ∈ L(Ê(i)

j) holds. Observe, however, that

in general the intersection L(E(i)
0) ∩

⋃ni
j=1

(
L(Ê(i)

j) · u(i)
j · Σ∗1 · $

)
will not be empty, that is,

some words are accepted by Mi in tail computations that have a prefix from the language
L(Ê(i)

j) · u(i)
j for some value of j.

With Mi we can now associate a deterministic finite-state acceptor Ai such that L(Ai) =⋃ni
j=1

(
L(Ê(i)

j) · u(i)
j

)
. Thus, given an input of the form cw$, where w ∈ Σ∗1, Ai will determine

the shortest prefix cw1 such that w1 = w3u
(i)
j and cw3 ∈ L(E(i)

j) for some index 1 ≤ j ≤ ni.
Finally, we define a deterministic finite-state acceptor (without initial state) A as the disjoint
union of the finite-state acceptors Ai, i ∈ I.

For the following discussion we distinguish between inner rewrites and suffix rewrites of
M. A rewrite step u

(i)
j → v

(i)
j is a suffix rewrite, if u(i)

j (and therewith also v(i)
j) ends with

the right delimiter $; otherwise it is called an inner rewrite. By ρsuf we denote the number
of suffix rewrite operations of M.

Proposition 3.6 For each m ∈ N+, there exists an integer n0 ∈ N+ such that the following
statement holds for all n ≥ n0 and all c-incompressible words u ∈ Σn

1 : If M starts from
an initial configuration corresponding to the input z = ucϕ1(u)c ϕ2(u), then in any resulting
computation of M the first m inner rewrites are executed within the prefix of u of length
m · log2

3(n).

Proof. Let m ∈ N+ be a constant. For m we obtain a constant n(1)
0 ∈ N+ from Proposi-

tion 3.4, and for the deterministic finite-state acceptor A, we get a constant n(2)
0 ∈ N+ from

Proposision 3.5. Thus, we can choose n0 := max{n(1)
0 , n

(2)
0 }.

Now let n ≥ n0, and let u ∈ Σn
1 be a c-incompressible word. We can factor u as u =

u1u2 · · ·umû such that |ui| = log2
3(n), 1 ≤ i ≤ m. Then we know from Proposition 3.4 that

the suffix u(i) = ui+1 · · ·umû of u is random for each 1 ≤ i ≤ m.
Consider a computation of M starting from the initial configuration

q
(i0)
0 cucϕ1(u)c ϕ2(u)$, where i0 ∈ I0. If in the first cycle an inner rewrite is exe-

cuted, then A must reach a corresponding state from the state that corresponds to the initial
state of Ai0 . By Proposition 3.5 this happens already inside the prefix u1. Continuing with
the computation of M, the next inner rewrite is either also executed on (the successor of)
the prefix u1, or the same argument can be used to show that it is executed on the factor u2.
Inductively it follows that the first m inner rewrites are executed on the prefix u1 · · ·um of
u of length m · log2

3(n). 2

For the following considerations we denote the constant n0 from Proposition 3.6 by n0(m),
as it depends on the chosen value of m.

Proposition 3.7 There exists a constant γ ∈ N such that the following statement holds for
all m ∈ N+: If u ∈ Σn

1 is a c-incompressible word of length n ≥ n0(m), then before the
first inner rewrite and in between any two of the first m inner rewrites that M executes in
an accepting computation starting from an initial configuration corresponding to the input
ucϕ1(u)c ϕ2(u), M executes at most γ suffix rewrites.

Proof. For all i ∈ I and all 1 ≤ j ≤ ni, if the rewrite step u
(i)
j → v

(i)
j is an inner rewrite,

then let B(i)
j be a finite-state acceptor for the language L(F (i)

j), and if u(i)
j → v

(i)
j is a suffix

8

rewrite, then let B(i)
j be a finite-state acceptor for the language L(Ê(i)

j). Assume that B(i)
j

has b(i)j ≥ 1 internal states, and let β :=
∏
i∈I
∏ni
j=1 b

(i)
j .

A suffix rewrite x→ y has the form x = x1$ and y = y1$ for some words x1 ∈ Σk−1
1 and

y1 ∈ Σ∗1 of length |y1| ≤ k − 2. The next suffix rewrite x′ → y′ that follows after executing
the suffix rewrite x → y necessarily satisfies the condition that x′ = x̂y1$ for some word
x̂ ∈ Σk−1−|y1|

1 . In particular, a sequence of ` suffix rewrites replaces a suffix of length at most
` · (k − 1) of ϕ2(u) by the right-hand side y of the last rewrite in that sequence.

Now assume thatm′ < m is minimal such that in the accepting computation consideredM
executes a sequence of suffix rewrites of length α > ρsuf ·β between the m′-th and the m′+1-
st inner rewrite step. Hence, at least one of the suffix rewrites ofM, say x = x1$→ y1$ = y,
is used at least β + 1 times. Let u′ be the successor of the word u that is produced from u
by the first m′ inner rewrites, and let w′ be the successor of the word ϕ2(u) that is produced
by the suffix rewrites that are executed before and between the first m′ inner rewrites, that
is, ϕ2(u) = ŵw̃ and w′ = ŵy′, where w̃ is rewritten into y′ by these suffix rewrites. Then the
computation considered contains a subcomputation of the following form:

cu′c ϕ1(u)cw′$ = cu′c ϕ1(u)cw0w1 · · ·wβwβ+1y
′$

`s0M cu′c ϕ1(u)cw0w1 · · ·wβy1$
`s1M cu′c ϕ1(u)cw0w1 · · ·wβ−1y1$
`s2M · · ·
`sβ−1

M cu′c ϕ1(u)cw0w1y1$
`sβM cu′c ϕ1(u)cw0y1$.

In each of the cycles preceding this subcomputation the factor w0w1 · · ·wβ is scanned by the
active component of M, which means that one of the finite-state acceptors B(i)

j is used to
read this factor. Consider the positions that correspond to the first letter of w1, w2, . . . , wβ
and wβ+1. As these are β + 1 many positions, we see from the definition of β that there are
indices 1 ≤ r < s ≤ β + 1 such that each of the B(i)

j used is in the same state when reading
the first letter of wr and the first letter of ws.

Now consider the input

û := ucϕ1(u)cw0w1 · · ·wr(wr+1 · · ·ws)2ws+1 · · ·wβwβ+1w̃

that is obtained from ucϕ1(u)c ϕ2(u) by repeating the factor wr+1 · · ·ws. Then û 6∈ Lcc,
as the third syllable is too long. However, given û as input, M can execute the following
computation:

cucϕ1(u)cw0w1 · · ·wr(wr+1 · · ·ws)2ws+1 · · ·wβwβ+1w̃$
`∗M cu′c ϕ1(u)cw0w1 · · ·wr(wr+1 · · ·ws)2ws+1 · · ·wβwβ+1y

′$
`s0M cu′c ϕ1(u)cw0w1 · · ·wr(wr+1 · · ·ws)2ws+1 · · ·wβy1$
`∗M cu′c ϕ1(u)cw0w1 · · ·wrwr+1 · · ·wswr+1 · · ·wsy1$
`∗M cu′c ϕ1(u)cw0w1 · · ·wrwr+1 · · ·wsy1$
`∗M cu′c ϕ1(u)cw0y1$.

This, however, contradicts the error preserving property for M. Thus, before the first inner
rewrite and between any two of the first m inner rewrites M must not execute more than
γ := ρsuf · β suffix rewrites. 2

9

Thus, in the initial part of the above computation up to the application of the m-th inner
rewrite step, a suffix w2 of ϕ2(u) of length at most γ ·m · (k− 1) is replaced by a word of the
form w3y1, where y = y1$ is the righthand side of a suffix rewrite rule, and w3 is the prefix
of w2 that is not touched by these suffix rewrites.

Using the same pumping argument as in the proof above, it can be shown thatM cannot
accept in a tail computation any word that can be reached from an initial configuration on
input ucϕ1(u)c ϕ2(u) by executing less than m inner rewrite steps, if u is a c-incompressible
word of length n ≥ n0(m). Thus, we have the following result.

Lemma 3.8 Let m ≥ 1, and let u ∈ Σn
1 be a c-incompressible word of length n ≥ n0(m).

Then each accepting computation of M on input ucϕ1(u)c ϕ2(u) contains at least m appli-
cations of inner rewrite steps.

Next we will see that many c-incompressible words u of length n are rewritten into the
same word u′ by the first m inner rewrites of M.

Proposition 3.9 Let c ≥ 1 and m ≥ 1 be constants, and let n ≥ n0(m). Then there exists
a word u′ ∈ Σ∗1 that has the following properties:

• n−m · k ≤ |u′| ≤ n−m;

• there are at least (1 − 1
2·3c) · 3m−1 different c-incompressible words u of length n such

that, for each of these words,M has an accepting computation on input ucϕ1(u)c ϕ2(u)
that rewrites the prefix u into the word u′ through the first m inner rewrites of this
computation;

• u′ has the form u′ = u′1û, where |û| = n−m · log2
3(n), and each of the c-incompressible

words u above has the same suffix û.

Proof. According to Lemma 3.3 there are more than (1− 1
2·3c) · 3n words of length n over Σ1

that are c-incompressible. On the other hand, by executing m rewrite operations inside the
prefix of length m · log2

3(n) of a c-incompressible word u of length n, M reduces the word
u to a word u′ ∈ Σ∗1 of length n′ such that n − m · k ≤ n′ ≤ n − m. As there are only∑n−m

i=n−m·k 3i ≤
∑n−m

i=0 3i ≤ 3n−m+1 words of this length, we see that there exists a word u′

such that at least (1− 1
2·3c) · 3n

3n−m+1 = (1− 1
2·3c) · 3m−1 different c-incompressible words u of

length n are reduced to this particular word u′. As for each of these c-incompressible words
of length n the rewrite operations are executed inside the prefix of length m · log2

3(n), we see
that they all have the same suffix û of length n −m · log2

3(n), and that u′ = u′1û holds for
some word u′1 ∈ Σ∗1. 2

Let γ be the constant from Proposition 3.7, let m ∈ N+ be a constant, and let n ≥ n0(m)
such that n ≥ m·log2

3(n)+γ ·m·(k−1). Finally, let u ∈ Σn
1 , and let v := ϕ1(u) and w := ϕ2(u).

Then u can be factored as u = u1û such that |u1| = m · log2
3(n) and |û| ≥ γ · m · (k − 1),

and w can be factored as w = w1w2 such that |w2| = γ ·m · (k − 1) and |w1| ≥ m · log2
3(n).

Obviously, the word z = ucvcw belongs to the language Lcc, and accordinglyM has accepting
computations that start from an initial configuration corresponding to this input.

None of these computations can just consist of an accepting tail, and also none of them can
just consist of suffix rewrites (cf. the proof of Proposition 3.7). Indeed if u is c-incompressible,
then each of these computations contains at least m applications of inner rewrite steps
(Lemma 3.8). We now consider the initial phase of such a computation that ends with

10

the m-th inner rewrite. If u is c-incompressible, then by Proposition 3.6 the m inner rewrites
of this initial phase are executed within the prefix u1 of u. By Proposition 3.7 at most γ suffix
rewrites are executed before the first inner rewrite and between any two of these m inner
rewrites. Thus, these suffix rewrites only affect the suffix w2 of w. Hence, the initial phase of
the computation considered transforms the initial tape content ucvcw = u1ûcvcw1w2 into a
word of the form u′1ûcvcw1y, that is, the inner factor ûcvcw1 is not changed at all during this
initial phase. Thus, for each cycle of the partial computation considered, the behaviour ofM
on this factor can be expressed by one of the finite-state acceptors B(i)

j (i ∈ I, 1 ≤ j ≤ ni)
introduced in the proof of Proposition 3.7.

LetB(i)
j be one of these finite-state acceptors with finite set of statesQ(B(i)

j) and transition

function δ(B(i)
j). Without loss of generality we can assume that B(i)

j is deterministic and

complete, that is, for each q ∈ Q(B(i)
j) and each word x ∈ Σ∗1, δ(B(i)

j)(q, x) is a unique

and well-defined element of Q(B(i)
j). Hence, the word ûcvcw1 induces a unique mapping

ψu(B(i)
j) : Q(B(i)

j)→ Q(B(i)
j) by taking ψu(B(i)

j)(q) := δ(B(i)
j)(q, ûcvcw1) for all q ∈ Q(B(i)

j).

As B(i)
j has b(i)j many states, we see that there are (b(i)j)b

(i)
j such mappings.

This consideration applies to all the finite-state acceptors B
(i)
j . Thus, with the c-

incompressible word u, we can associate a mapping

ψu :
∏

i∈I,1≤j≤ni

Q(B(i)
j) →

∏
i∈I,1≤j≤ni

Q(B(i)
j)

by taking the product of all mappings ψu(B(i)
j). Then there are

η :=
∏

i∈I,1≤j≤ni

(b(i)j)b
(i)
j

such mappings. Observe that η is a constant that only depends on the CD-RRW-systemM.

Now we are prepared to prove the following lower bound result.

Theorem 3.10 The language Lcc is not accepted by any locally deterministic CD-RRW-
system working in mode = 1.

Proof. Assume that M is a locally deterministic CD-RRW-system such that L=1(M) = Lcc.
Let γ be the corresponding constant from Proposition 3.7, let η be the corresponding constant
from the considerations above, let ι be the number of components ofM, let k denote the size
of the read/write windows of the components of M, and let ρsuf be the number of different
suffix rewrite rules of M.

We choose a constant m ∈ N+ such that

3m−2 > η · ι · γ · (k − 1) · ρsuf ·m

holds, and let n ≥ n0(m) such that n ≥ m · log2
3(n) + γ ·m · (k− 1). Then by Proposition 3.9

there exists a word u′ ∈ Σ∗1 that has the following properties:

• n−m · k ≤ |u′| ≤ n−m;

• there are at least (1 − 1
2·3c) · 3m−1 different c-incompressible words u of length n such

that, for each of these words,M has an accepting computation on input ucϕ1(u)c ϕ2(u)
that rewrites the prefix u into the word u′ through the first m inner rewrites of this
computation;

11

• u′ has the form u′ = u′1û, where |û| = n−m · log2
3(n), and each of the c-incompressible

words u above has the same suffix û.

Then each of these c-incompressible words u can be factored as u = u1û such that |u1| =
m · log2

3(n) and |û| ≥ γ ·m · (k − 1), and w = ϕ2(u) can be factored as w = w1w2 such that
|w2| = γ ·m · (k − 1) and |w1| ≥ m · log2

3(n). Obviously, the word z = ucϕ1(u)cw belongs to
the language Lcc, and accordingly M has accepting computations that start from an initial
configuration corresponding to this input.

As above we consider the initial phase of such a computation that ends with the m-th
inner rewrite. If u is c-incompressible, by Proposition 3.6 the m inner rewrites of this initial
phase are executed within the prefix u1 of u. By Proposition 3.7 at most γ suffix rewrites are
executed before the first inner rewrite and between any two of these m inner rewrites. Thus,
these suffix rewrites only affect the suffix w2 of w. Hence, the initial phase of the computation
considered transforms the initial tape content ucϕ1(u)cw = u1ûc ϕ1(u)cw1w2 into a word of
the form u′1ûc ϕ1(u)cw1y, that is, the inner factor ûc ϕ1(u)cw1 is not changed at all during
this initial phase. Thus, as pointed out above this inner factor induces a unique mapping ψu
on the product of the sets of states of the finite-state acceptors B(i)

j (i ∈ I, 1 ≤ j ≤ ni).
There are at least (1 − 1

2·3c) · 3m−1 different c-irreducible words u ∈ Σn
1 with the above

properties. As

(1− 1
2 · 3c

) · 3m−1 ≥ 1
2
· 3m−1 > 3m−2 > η · ι · γ · (k − 1) · ρsuf ·m,

as there are at most η different mappings ψu, as there are at most γ ·m · (k − 1) · ρsuf many
different suffixes y that can be produced from the same word w2 by using at most γ ·m suffix
rewrite steps, and as there are only ι components of M, there are (at least) two different c-
incompressible words u, U ∈ Σn

1 , a suffix y derivable from w2, and an index i0 of a component
of M such that the following conditions are all satisfied simultaneously:

• u = u1û and U = U1û, where |u1| = |U1| = m · log2
3(n),

• w = ϕ2(u) = w1w2 and W = ϕ2(U) = W1w2, where |w2| = γ ·m · (k − 1),

• the mapping ψu and ψU are identical,

• there is an accepting computation of M on input ucϕ1(u)c ϕ2(u) such that through
the first m inner rewrites, the prefix u1 of u is rewritten into the word u′, through the
suffix rewrites up to the m-th inner rewrite the suffix w2 of ϕ2(u) is rewritten into the
word y, and after this part of the computation component i0 becomes active,

• there is an accepting computation of M on input Ucϕ1(U)c ϕ2(U) such that through
the first m inner rewrites, the prefix U1 of U is rewritten into the word u′, through the
suffix rewrites up to the m-th inner rewrite the suffix w2 of ϕ2(U) is rewritten into the
word y, and after this part of the computation component i0 becomes active.

Now consider the input zmix := Ucϕ1(u)c ϕ2(u). As u 6= U , and as the mapping (ϕ1, ϕ2) :
Σ∗1 → (Σ∗0 × Σ∗0) is injective, we see that zmix 6∈ Lcc holds. Thus, there must not be an
accepting computation of M on input zmix.

There is an accepting computation of M on input Ucϕ1(U)c ϕ2(U) that begins with an
initial segment Ucϕ1(U)c ϕ2(U) `c∗M u′ûc ϕ1(U)cW1y. Also there is an accepting computa-
tion of M on input ucϕ1(u)c ϕ2(u) that begins with an initial segment ucϕ1(u)c ϕ2(u) `c∗M

12

u′ûc ϕ1(u)cw1y. In both cases component i0 is the next that becomes active. As the map-
pings ψu and ψU that are induced by the factors ûc ϕ1(u)cw1 and ûc ϕ1(U)cW1, respectively,
coincide, it follows that in the former of these accepting computations we can replace the
factor ϕ1(U)cW1 by ϕ1(u)cw1, which yields the following computation:

Ucϕ1(u)c ϕ2(u) = U1ûc ϕ1(u)cw1w2 `c
∗
M u′ûc ϕ1(u)cw1y.

Also in this case component i0 is the next that becomes active. Hence, with the word
ucϕ1(u)c ϕ2(u),M will also accept the word zmix. This, however, contradicts our assumption
that L=1(M) = Lcc holds. It follows that Lcc is not accepted by any locally deterministic
CD-RRW-system that is working in mode =1. 2

Together with Lemma 3.2 this yields the following separation results.

Corollary 3.11 [9] For all types X ∈ {RR,RRW},

L=1(det-local-CD-X) ⊂ L=1(CD-X) = L(nf-X).

4 A Lower Bound for Deterministic Monotone
nf-RRW-Automata

Each computation of a restarting automaton proceeds in cycles, where each cycle contains
exactly one application of a rewrite operation. Thus, each cycle C contains a unique con-
figuration αqβ in which a rewrite instruction is applied. The number |β| is called the right
distance of C, denoted by Dr(C). We say that a sequence of cycles S = (C1, C2, · · · , Cn) is
monotone if Dr(C1) ≥ Dr(C2) ≥ . . . ≥ Dr(Cn). Now a computation of a restarting automaton
M is called monotone if the corresponding sequence of cycles is monotone, and a restarting
automaton M is monotone if all its computations that start with an initial configuration
are monotone. Here we apply the lower bound technique developed in the previous section
to separate the deterministic monotone nf-RRW-automata from the deterministic monotone
nf-RRWW-automata.

Definition 4.1 As before let Σ0 = {a, b} and Σ1 = {a, b, c}, and let ϕ : Σ∗1 → Σ∗0 be the
morphism that is induced by a 7→ aa, b 7→ bb, and c 7→ ab. Then ϕ : Σ∗1 → Σ∗0 is an encoding.

Now let Lp be the following language:

Lp := {wc(ϕ(w))R | w ∈ Σ∗1, |w| ≥ 2, and |w| ≡ 0 mod 2 }.

Using auxiliary letters the language Lp is easily accepted by a deterministic, monotone,
and nonforgetting restarting automaton.

Lemma 4.2 Lp is accepted by a deterministic monotone nf-RRWW-automaton.

Proof. Let M be the nonforgetting RRWW-automaton with input alphabet Σ1 and tape
alphabet Γ := Σ1 ∪ ∆, where ∆ := { [x, y] | x, y ∈ Σ1 }, that is given by the following
sequence of meta-instructions:

(1) (q0, c ·∆∗, xy → [x, y],Σ∗0 · c · Σ∗1 · c · Σ∗0 · $, q0) for all x, y ∈ Σ1,
(2) (q0, c ·∆∗, xy → [x, y], (Σ2

0)∗ · c · Σ∗0 · $, q1) for all x, y ∈ Σ1,
(3) (q1, c ·∆∗ · Σ∗0, x · c · ϕ(x)R → c,Σ∗0 · $, q1) for all x ∈ Σ0,
(4) (q1, c ·∆∗, [x, y] · c · (ϕ(xy))R → c,Σ∗0 · $, q1) for all x, y ∈ Σ1,
(5) (q1, c · c · $,Accept).

13

Given an input z ∈ Σ∗1, M works as follows. If |z| < 3, then M rejects immediately, as neither
meta-instruction (1) nor (2) is applicable to the corresponding initial tape contents c · z · $.
Thus, assume that z = xyz1, where x, y ∈ Σ1 and z1 ∈ Σ+

1 . Again, if z1 does not contain an
occurrence of the symbol c, then again it follows that M will reject immediately. Hence, we
can assume that z1 = z2cz3, where z2 ∈ Σ∗1 and z3 ∈ Σ∗0. Then M rewrites its tape contents
cz$ = cxyz2cz3$ into c[x, y]z2cz3$, and it restarts in the restarting state q1, if |z2|c = 0 and
|z2| ≡ 0 mod 2, and it restarts in the restarting state q0, if |z2|c ≥ 1. Continuing with the
latter case, assume that z2 = z4fgβ, where z4 ∈ (Σ2

1)∗, f, g ∈ Σ1 such that f = c or g = c,
and β ∈ Σ∗0. Then, after a finite number of cycles the prefix of z4fg is encoded by a string
α ∈ ∆+, and then M switches to the restarting state q1, provided |β| ≡ 0 mod 2 holds. If
|β| ≡ 1 mod 2 holds, or if f = c and gβ = ε, which means that fgβcz3 = ccz3 is rewritten
into [c, c]z3, then M cannot complete the current cycle and rejects. Otherwise, starting from
the restarting state q1, M compares the prefix [x, y]αβ to the suffix z3, and it accepts if and
only if z3 = (ϕ(xyz4fgβ))R holds. Thus, we see that L(M) = Lp.

Finally, it is easily seen from the definition of M that M is deterministic, and it follows
from the above description of the way in which M works that it is also monotone. Thus, M
is a deterministic monotone nf-RRWW-automaton for the language Lp. 2

Now the main part of the work in this section consists in establishing the following lower
bound result.

Theorem 4.3 The language Lp is not accepted by any deterministic monotone nonforgetting
RRW-automaton.

Proof. Assume that M = (Q,Σ1,Σ1, c, $, q0, k, δ) is a deterministic monotone nonforgetting
RRW-automaton such that L(M) = Lp. We will now derive a contradiction through a
sequence of claims.

As M is monotone, we see that each (accepting) computation of M consists of two parts:
The first part consists of a number of cycles in which inner rewrite steps are performed, and
the second part consists only of cycles in which suffix rewrite steps are performed. Concerning
the first part we have the following result.

Claim 1. For each m ∈ N+, there exists an integer n0 ∈ N+ such that the following statement
holds for all even n ≥ n0 and all c-incompressible words u ∈ Σn

1 : If M starts from an initial
configuration corresponding to the input z = uc(ϕ(u))R, then in the resulting computation
of M the first m inner rewrites are executed within the prefix of u of length m · log2

3(n).

Proof. This is proved in exactly the same way as Proposition 3.6. 2

As before we will denote the constant n0 that corresponds to a given value of m by n0(m).
The next claim shows that the first part of the computation of M on input uc(ϕ(u))R consists
of more than m cycles.

Claim 2. Let m ≥ 1, and let u ∈ Σn
1 be a c-incompressible word of even length n ≥ n0(m).

Then the accepting computation of M on input uc(ϕ(u))R contains more than m applications
of inner rewrite steps.

Proof. Assume that the accepting computation of M on input uc(ϕ(u))R consists of only
r ≤ m cycles in which inner rewrite steps are executed followed by a sequence of cycles that
only involve applications of suffix rewrite steps. Then it follows from Claim 1 above that
in the first part of the computation considered, uc(ϕ(u))R is rewritten into a word of the
form u′u2c(ϕ(u))R, where u = u1u2, |u1| = r · log2

3 n, and u′ is obtained from u1 through the

14

execution of the above-mentioned r inner rewrite steps. In the second part of the computation
considered a sequence of cycles is executed that only involves suffix rewrite steps, and that
leads to a restarting configuration from which M accepts. By using the pumping argument
from the proof of Proposition 3.7 this can be shown to yield a contradiction. Thus, in the
computation considered M must execute more than m inner rewrite steps. 2

After performing an inner rewrite step inside the prefix of length m · log2
3 n of a c-

incompressible word of even length n ≥ n0(m), M scans the corresponding suffix u2c(ϕ(u))R

of the tape contents, and we can assume that at the right delimiter it either accepts, executes
a restart operation Restart(q) for some q ∈ Q, or rejects. Thus, with the word u2c(ϕ(u))R we
can associate a mapping

ψu : Q→ {Accept,Reject} ∪ {Restart(q) | q ∈ Q }.

Obviously, there are only η := |Q||Q|+2 such mappings. Accordingly, we choose a constant
m ∈ N+ such that 3m−2 > η · |Q|, and let n ≥ n0(m) be an even integer.

Claim 3. There exists a word u′ ∈ Σ∗1 that has the following properties:

• n−m · k ≤ |u′| ≤ n−m;

• there are at least (1 − 1
2·3c) · 3m−1 different c-incompressible words u of length n such

that, for each of these words, M has an accepting computation on input uc(ϕ(u))R

that rewrites the prefix u into the word u′ through the first m inner rewrites of this
computation;

• u′ has the form u′ = u′1û, where |û| = n−m · log2
3(n), and each of the c-incompressible

words u above has the same suffix û.

Proof. This is proved in exactly the same way as Proposition 3.9. 2

There are at least (1 − 1
2·3c) · 3m−1 different c-irreducible words u ∈ Σn

1 with the above
properties. As

(1− 1
2 · 3c

) · 3m−1 ≥ 1
2
· 3m−1 > 3m−2 > η · |Q|,

as there are at most η different mappings ψu, and as there are at most |Q| different restarting
states of M , there are (at least) two different c-incompressible words u, U ∈ Σn

1 , and a
restarting state q ∈ Q such that the following conditions are all satisfied simultaneously:

• u = u1û and U = U1û, where |u1| = |U1| = m · log2
3(n),

• the mapping ψu and ψU are identical,

• through the first m inner rewrite steps in the accepting computation of M on input
uc(ϕ(u))R, the prefix u1 of u is rewritten into the word u′, and after these m cycles M
restarts in the restarting state q,

• through the first m inner rewrite steps in the accepting computation of M on input
Uc(ϕ(U))R, the prefix U1 of U is rewritten into the word u′, and after these m cycles
M restarts in the restarting state q.

Now consider the input zmix := Uc(ϕ(u))R. As u 6= U , and as the mapping ϕ : Σ∗1 → Σ∗0
is injective, we see that zmix 6∈ Lp holds. Thus, there must not be an accepting computation
of M on input zmix.

15

There is an accepting computation of M on input Uc(ϕ(U))R that begins with an initial
segment Uc(ϕ(U))R `c∗M u′ûc(ϕ(U))R. Also there is an accepting computation of M on input
uc(ϕ(u))R that begins with an initial segment uc(ϕ(u))R `c∗M u′ûc(ϕ(u))R. In both cases q is
the restarting state with which M starts the next cycle. As the mappings ψu and ψU that
are induced by the factors ûc(ϕ(u))R and ûc(ϕ(U))R, respectively, coincide, it follows that in
the former of these accepting computations we can replace the factor (ϕ(U))R by (ϕ(u))R,
which yields the following computation:

Uc(ϕ(u))R = U1ûc(ϕ(u))R `c∗M u′ûc(ϕ(u))R.

Also in this case q is the restarting state with which M starts the next cycle. Hence, with the
word uc(ϕ(u))R, M will also accept the word zmix. This, however, contradicts our assumption
that L(M) = Lp holds. It follows that Lp is not accepted by any deterministic monotone
nonforgetting RRW-automaton. 2

Together with Lemma 4.2 this yields the following separation results.

Corollary 4.4 [10] L(det-mon-nf-RRW) ⊂ L(det-mon-nf-RRWW).

5 A Lower Bound for Deterministic Monotone
nf-RR-Automata

In the proof of Lemma 4.2 we have presented a deterministic monotone nf-RRWW-automaton
M with tape alphabet Γ = Σ1 ∪∆ for the language Lp. Here we consider the characteristic
language LΓ

p := LC(M) of M . We claim that this language is accepted by a deterministic
monotone nf-RRW-automaton, but that it is not accepted by any deterministic monotone
nf-RR-automaton.

Lemma 5.1 LΓ
p is accepted by a deterministic monotone nf-RRW-automaton.

Proof. Let MC be the deterministic nf-RRW-automaton that is obtained from the aforemen-
tioned nf-RRWW-automaton M by declaring all tape symbols to input symbols. Then it is
immediate that L(MC) = LC(M) = LΓ

p holds. It remains to show that MC is monotone, that
is, for each restarting configuration of MC, the computation of MC starting from that configu-
ration is monotone. But this follows easily from the definition of the nf-RRWW-automaton M ,
as its meta-instructions ensure that a cycle can be completed only if the current tape content
is of the form cUxcycz$ or cUycz$, where U ∈ ∆∗, x ∈ Σ∗1, and y, z ∈ Σ∗0. In the former case
the current rewrite replaces the prefix of x of length 2 by a symbol from ∆, and in the latter
case it deletes some symbols surrounding the c-symbol. 2

It remains to establish the announced lower bound.

Theorem 5.2 The language LΓ
p is not accepted by any deterministic monotone nonforgetting

RR-automaton.

Proof. Assume to the contrary that M ′ = (Q,Γ,Γ, c, $, q0, k, δ) is a deterministic monotone
nf-RR-automaton such that L(M ′) = LΓ

p holds. Define a deterministic nf-RR-automaton Mr

as a restricted variant of M ′ by taking Mr := (Q,Σ1,Σ1, c, $, q0, k, δr). Here δr is simply
the restriction of δ to words that only contain letters from the subalphabet Σ1 of Γ, that is,
δr(q, u) := δ(q, u) for all q ∈ Q and all words u ∈ c·Σk−1

1 ∪Σk
1∪Σ≤k−1

1 ·$∪c·Σ≤k−2
1 ·$. As M ′ is

16

an RR-automaton, all its rewrite operations are just deletions. Thus, for each input w ∈ Σ∗1,
the computation of Mr on input w is identical to the computation of M ′ on input w. Hence,
we see that Mr is monotone, and that L(Mr) = L(M ′)∩Σ∗1 = LΓ

p ∩Σ∗1 = LC(M)∩Σ∗1 = Lp.
This, however, contradicts Theorem 4.3, which states that the language Lp is not accepted by
any deterministic monotone nf-RRW-automaton. This shows that the language LΓ

p is indeed
not accepted by any deterministic monotone nf-RR-automaton. 2

Together with Lemma 5.1 this yields the following separation results.

Corollary 5.3 [10] L(det-mon-nf-RR) ⊂ L(det-mon-nf-RRW).

6 A Lower Bound for Monotone nf-RW-Automata

Next we apply our lower bound technique to separate the monotone nf-RW-automata from
the monotone nf-RWW-automata by showing that the context-free language Lpal (see below)
is not accepted by any monotone nf-RW-automaton.

Definition 6.1 The language Lpal is defined as follows, where Σ0 = {a, b}:

Lpal := {wwR | w ∈ Σ∗0 },

that is, Lpal is the language of palindromes of even length over Σ0.

Obviously, Lpal is context-free, and therewith it is accepted by a monotone nf-RWW-
automaton, since

CFL = L(mon-R(R)WW) = L(mon-nf-R(R)WW)

according to [5] and [9, 10]. On the other hand, the following lower bound result shows that
monotone nf-RW-automata are less expressive.

Theorem 6.2 The language Lpal is not accepted by any monotone nonforgetting RW-
automaton.

Proof. Assume that M = (Q,Σ0,Σ0, c, $, q0, k, δ) is a monotone nonforgetting RW-automaton
such that L(M) = Lpal. We will now derive a contradiction through a sequence of claims.

As M is monotone, we see that each (accepting) computation of M consists of two parts:
The first part consists of a number of cycles in which inner rewrite steps are performed, and
the second part consists only of cycles in which suffix rewrite steps are performed. Using the
arguments from the proof of Proposition 3.7 it can easily be shown that the second part of
any accepting computation consists of a sequence of cycles the length of which is bounded
by a constant depending on M . Concerning the first part we have the following result.

Claim 1. For each m ∈ N+, there exists an integer n0 ∈ N+ such that the following statement
holds for all n ≥ n0 and all c-incompressible words u ∈ Σn

0 : If M starts from an initial
configuration corresponding to the input z = uuR, then in an accepting computation of M ,
M executes more than m inner rewrite steps, and the first m of these rewrites are executed
within the prefix of u of length m · log2

2(n).

Proof. For each u ∈ Σ∗0, an accepting computation of M on input uuR consists of a sequence
of cycles in which inner rewrites are performed, followed by a sequence of bounded length
in which suffix rewrites are performed. If the first sequence could be bounded in length by

17

a fixed constant m, then for words u of sufficient length we could use pumping to fool M
into accepting incorrect words. Thus, for each m ∈ N+, there exists an integer n(0)

0 such that
each accepting computation of M on input uuR (|u| ≥ n

(0)
0) begins with more than m inner

rewrites.
It remains to prove that the first m inner rewrites are executed within the prefix of length

m · log2
2(n) for each c-incompressible word of sufficient length. Here we cannot simply refer

to the proof of Proposition 3.6, as M is nondeterministic. In fact, we must use the fact that
M is monotone.

With each (restarting) state q of M , we can associate a deterministic finite-state acceptor
Aq such that, given a word w ∈ Σ∗0 as input, Aq will determine the shortest prefix of the form
w1uj of w such that cw1 ∈ L(Ej) for a meta-instruction of M of the form Ij = (q, Ej , uj →
vj , q

′). By A we denote the disjoint union of these deterministic finite-state acceptors.
Now let m ∈ N+ be given. For m we obtain a constant n(1)

0 ∈ N+ from Proposition 3.4 (or
rather its analog for Σ0), and for the deterministic finite-state acceptor A, we get a constant
n

(2)
0 ∈ N+ from Proposision 3.5. We now take n0 as n0 := max{n(0)

0 , n
(1)
0 , n

(2)
0 } (cf. the proof

of Proposition 3.6).
Now let n ≥ n0, and let u ∈ Σn

0 be a c-incompressible word. We can factor u as u =
u1u2 · · ·umû such that |ui| = log2

2(n), 1 ≤ i ≤ m. Then we know from Proposition 3.4 that
the suffix u(i) = ui+1 · · ·umû of u is random for each 1 ≤ i ≤ m.

Consider a computation of M starting from the initial configuration q0cuuR$. Assume
that in the first cycle (q0, uu

R) `cM (q1, x), M executes an inner rewrite, but not inside
the prefix u1. Now consider the second cycle that begins with the restarting configuration
q1cx$ = q1cu1x

′$. If in the second cycle M also executes an inner rewrite, then A must
reach a corresponding state starting from the state that corresponds to the initial state of
Aq1 . By Proposition 3.5 this happens already inside the prefix u1. Thus, in the second
cycle M could execute an inner rewrite inside the prefix u1, which implies that the sequence
consisting of these two cycles is not monotone. This contradicts our assumption that M is
monotone. Hence, the inner rewrite in the first cycle is executed inside the prefix u1. Arguing
inductively it follows that, for each i = 1, . . . ,m, the i-th inner rewrite is executed inside the
prefix u1 . . . ui. 2

Claim 2. Let m ≥ 1, and let n ≥ n0. Then there exists a word u′ ∈ Σ∗0 that has the following
properties:

• n−m · k ≤ |u′| ≤ n−m;

• there are at least (1− 1
2c+1)·2m−1 different c-incompressible words u of length n such that,

for each of these words, M has an accepting computation on input uuR that rewrites
the prefix u into the word u′ through the first m inner rewrites of this computation;

• u′ has the form u′ = u′1û, where |û| = n−m · log2
2(n), and each of the c-incompressible

words u above has the same suffix û.

Proof. There are at least (1 − 1
2c+1) · 2n words of length n in Σ∗0 that are c-incompressible.

On the other hand, by executing m inner rewrite steps on the prefix of length m · log2
2(n) of a

c-incompressible word u ∈ Σn
0 , u is rewritten into a word u′ such that n−m ·k ≤ |u′| ≤ n−m.

As there are only
∑n−m

i=n−m·k 2i ≤
∑n−m

i=0 2i ≤ 2n−m+1 words satisfying this length restriction,
we see that there exists a word u′ such that at least (1 − 1

2c+1) · 2n

2n−m+1 = (1 − 1
2c+1) · 2m−1

different c-incompressible words u of length n are reduced to this particular word u′. Further,

18

u′ has the form u′ = u′1û, where û is the common suffix of length n −m · log2
2(n) of all the

c-incompressible words u that are rewritten into this word u′. 2

We now choose a constant m ∈ N+ such that 2m−2 > 2 · ι, where ι be the number of
(restarting) states of M , and take n ≥ n0 such that n ≥ m · log2

2(n). Then by Claim 2
there exists a word u′ ∈ Σ∗0 of length n −m · k ≤ |u′| ≤ n −m such that there are at least
(1 − 1

2c+1) · 2m−1 > 2 · ι different c-incompressible words u of length n such that, for each
of these words u, M has an accepting computation on input uuR that rewrites the prefix u
into the word u′ through the first m inner rewrites of this computation, and u′ has the form
u′ = u′1û, where |û| = n−m · log2

2(n), and each of the c-incompressible words u above has the
same suffix û. Obviously, the word z = uuR belongs to the language Lpal, and accordingly
M has accepting computations that start from an initial configuration corresponding to this
input.

We consider the initial phase of such a computation that ends with the m-th inner rewrite.
By Claim 1 these m inner rewrites are all executed within the prefix u1 of u, transforming
this prefix into the word u′1. As (1 − 1

2c+1) · 2m−1 > 2 · ι, there are (at least) two different
c-incompressible words u, U ∈ Σn

0 , and a (restarting) state p of M such that the following
conditions are all satisfied simultaneously:

• u = u1û and U = U1û, where |u1| = |U1| = m · log2
2(n),

• there is an accepting computation of M on input uuR such that through the first m
inner rewrites, the prefix u1 of u is rewritten into the word u′1, and after this part of
the computation M restarts in state p,

• there is an accepting computation of M on input UUR such that through the first m
inner rewrites, the prefix U1 of U is rewritten into the word u′1, and after this part of
the computation M restarts in state p.

Now consider the input zmix := UuR. As u 6= U , we see that zmix 6∈ Lpal holds. Thus,
there must not be an accepting computation of M on input zmix.

There is an accepting computation of M on input UUR that begins with an initial segment
UUR `c∗M u′1ûU

R. Also there is an accepting computation of M on input uuR that begins
with an initial segment uuR `c∗M u′1ûu

R. In both cases M restarts in the same state p. It
follows that in the former of these accepting computations we can replace the factor UR by
uR, which yields the computation:

UuR = U1ûu
R `c∗M u′1ûu

R.

Also in this case M restarts in state p. Hence, with the word uuR, M will also accept the
word zmix. This, however, contradicts our assumption that L=1(M) = Lpal holds. It follows
that Lpal is not accepted by any monotone nonforgetting RW-automaton. 2

This yields the following separation result.

Corollary 6.3 [10] L(mon-nf-RW) ⊂ L(mon-nf-RWW) = CFL.

References

[1] G. Buntrock. Wachsende kontext-sensitive Sprachen. Habilitationsschrift, Fakultät für
Mathematik und Informatik, Universität Würzburg, 1996.

19

[2] E. Csuhaj-Varju, J. Dassow, J. Kelemen, and G. Păun. Grammar Systems. A Gram-
matical Approach to Distribution and Cooperation, Gordon and Breach, London, 1994.

[3] J. Dassow, G. Păun, and G. Rozenberg. Grammar systems. In: G. Rozenberg and
A. Salomaa (eds.), Handbook of Formal Languages, Vol. 2, Springer, Berlin, 1997, 155–
213.

[4] P. Jančar, F. Mráz, M. Plátek, and J. Vogel. Restarting automata. In: H. Reichel (ed.),
FCT 1995, Proc., Lect. Notes Comput. Sci. 965, Springer, Berlin, 1995, 283–292.

[5] P. Jančar, F. Mráz, M. Plátek, and J. Vogel. On monotonic automata with a restart
operation. Journal of Automata, Languages and Combinatorics 4 (1999) 287–311.

[6] T. Jurdziński and F. Otto. Restarting automata with restricted utilization of auxiliary
symbols. Theoretical Computer Science 363 (2006) 162–181.

[7] C. Lautemann. One pushdown and a small tape. In: K. Wagner (ed.), Dirk Siefkes zum
50. Geburtstag, Technische Universität Berlin and Universität Augsburg, 1988, 42–47.

[8] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its Applications.
Springer, 1997.

[9] H. Messerschmidt. CD-Systems of Restarting Automata. Doctoral dissertation, Fach-
bereich Elektrotechnik/Informatik, Universität Kassel, 2008.

[10] H. Messerschmidt and F. Otto. On nonforgetting restarting automata that are deter-
ministic and/or monotone. In: D. Grigoriev, J. Harrison, and E.A. Hirsch (eds.), CSR
2006, Proc., Lect. Notes Comput. Sci. 3967, Springer, Berlin, 2006, 247–258.

[11] H. Messerschmidt and F. Otto. Cooperating distributed systems of restarting automata.
Intern. J. Found. Comput. Sci. 18 (2007) 1333–1342.

[12] H. Messerschmidt and F. Otto. Strictly deterministic CD-systems of restarting automata.
In: E. Csuhaj-Varjú and Z. Ésik (eds.), FCT 2007, Proc., Lect. Notes Comput. Sci. 4639,
Springer, Berlin, 2007, 424–434.

[13] H. Messerschmidt and H. Stamer. Restart-Automaten mit mehreren Restart-Zuständen.
In: H. Bordihn (ed.), Workshop “Formale Methoden in der Linguistik” und 14. Theo-
rietag “Automaten und Formale Sprachen”, Proc., Institut für Informatik, Universität
Potsdam, 2004, 111–116.

[14] K. Oliva, P. Kvĕton̆, and R. Ondrus̆ka. The computational complexity of rule-based part-
of-speech tagging. In: V. Matousek and P. Mautner (eds.), TSD 2003, Proc., Lect. Notes
Comput. Sci. 2807, Springer, Berlin, 2003, 82–89.

[15] F. Otto. Restarting automata. In: Z. Ésik, C. Martin-Vide, and V. Mitrana (eds.), Recent
Advances in Formal Languages and Applications, Studies in Computational Intelligence
Vol. 25, Springer, Berlin, 2006, 269–303.

[16] M. Plátek, M. Lopatková, and K. Oliva. Restarting automata: Motivations and applica-
tions. In: M. Holzer (ed.), Workshop “Petrinets” und 13. Theorietag “Automaten und
Formale Sprachen”, Institut für Informatik, Technische Universität München, Garching,
2003, 90–96.

20

