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Calculations of the polycentric linear molecule H~+

with the finite element method
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A fully numerical two-dimensional solution of the Schrödinger equation is presented for the linear polyatomic molecule Hj+
using the finite element method (FEM). The Coulomb singularities at the nuclei are rectified by using both a condensed element
distribution around the singularities and special elements. The accuracy of the results for the 10' and 20' orbitals is of the order of
10- 7 au.

The finite element method (FEM) is a weIl es­
tablished technique for solving static and dynamical
problems in engineering sciences [1]. During the last
fifteen years it has been shown that this method can
also provide accurate solutions for quantum me­
chanical problems [2-6].

Diatomic molecules have been treated fully nu­
merically by the finite difference method (FDM) [7]
and the FEM [8-10]. For a given number of points
the results achieved with the FEM proved to be more
accurate than those obtained with the FDM. Over
the years the FEM has been extended successfully
from the solutions of the Schrödinger equations for
Hi [8], to the Hartree-Fock-Slater [9 ], the Hartree­
Fock [ 10], the two-center Dirac [ 11], and the Dirac­
Fock-Slater equations [12] for small diatomic
molecules.

As a next step we extended the method to the cal­
culation of linear polycentric molecules. In this Let­
ter we present results on the solution of the Schrö­
dinger equation for the linear polyatomic molecule
H~+ using the FEM.

Every one-electron quantum mechanical system
like H~+ , which we are going to solve here, is de­
scribed by the Schrödinger equation

( 1)
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with 'Pi (r) the electronic wavefunctions and V( r)
the nuclear three-center potential. The non-relativ­
istic Hamiltonian in the cylindrical coordinates p, Z

and rp is given by

H - lu2 ~ Zn
--2 V i - L.

n=llr-Rnl

M

- L Zn [(p cos rp-Pn cosrpn)2
n=l

where M is the number of nuclear centers, Zn is the
charge of the nth center, P, rp and z are the coordi­
nates of the electron and Pm rpn and Zn are the co­
ordinates of the nth center. The equivalent varia­
tional problem is given by the requirement that the
variation öl of the functional

J=! f IV'P;1 2 d3r+ f (V- f i) l lJ7i I2 d3r (3)

be zero.
Owing to the axial symmetry of linear molecules,

in our case the problem is reduced to two dimen­
sions using the Ansatz

lJIi (p, Z, rp ) ---+ cPi (p, z) eim iP
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Fig. 1. Three-center mesh für H~+ as an example.

(5)

(6)

1 x

f f f(x, y) dydx
o 0

be the integral over a unit triangle. By a change of
variables x=u and y=vu with

The solution of this matrix equation leads to an ap­
proximate solution of the Schrödinger equation (1 ).
The order of the matrices is equal to the total num­
ber of grid points used in the calculations.

The most appropriate coordinate system for poly­
centric linear molecules is the cylindrical coordinate
system. In contrast to the one- or two-atomic prob­
lems it is not possible anymore to take care of the
Coulomb singularities at the nuclei with suitable
coordinates.

The two obvious ways of handling these singular­
ities within the FEM approach [13] are:
- A condensed element distribution around the
singularities
- Special elements.

A combination of both is possible and we have
done so in our calculations. In order to construct a
geometrically adapted element distribution we de­
veloped a pre-processing program. We start~~y con­
structing equi-curves in the physical space /(see fig.
1) so that the sub-areas formed contribute almost
equal amounts to the error of the system [14]. On
these equi-curves we distribute points equidistantly,
thus forming the edge points of triangles for the
triangulation of the whole region. In order to avoid
numerical problems it is assured that each element
is a triangle with angles larger than ~ 150 and smaller
than ~ 130 0

• This approach leads to a condensed
element distribution in the nuclear region (see ref.
[ 14] ); every triangle contributes about equal
amounts to the error in energy.

The matrix elements arising from the functional
(3) when using the Ansatz (4) were calculated by a
conical product Gaussian integration rule [15] on
each of the finite elements (triangles ). This method
is a product Gaussian integration rule where two
edges of the normalized square are condensed to a
single point to construct a normalized triangle (see
fig. 2), which is then a special element.

Let

(4)
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All in all this leads to the matrix eigenvalue equation

Atj(rk) = 1 , j=k,

Atj(rk) =0 , ji=k,

holds for all grid points r., Only for those elements
to which these grid points belong do the shapefunc­
tions Nj ( rk) possess values not equal to zero; this is
localized to a very small area of the entire region. In
this definition the coefficients (node variables) l/>j
are the approximate values of the unknown func­
tions at the gridpoint j. In our calculations we use
5th-order polynomials as shapefunctions. With the
Ansatz (4) the functional (3) becomes a function of
the node variables l/>j' the condition of the variation
8J=0 becomes equivalent to the condition

where P is the number of points.
The shapefunctions Nj(rk) (polynomials ofhigher

order) are defined such that the condition

for the electronic wavefunctions. Here m (the pro­
jection of the angular momentum onto the inter­
nuclear axis) is a good quantum number.

With the FEM approach the whole region of in­
tegration is subdivided into small regions, the finite
elements [1,13]. We use triangles as finite elements
because triangles of different size can be combined
quite easily, thus enabling a problem-adapted ele­
ment distribution (see fig. 1).

For the approximation of l/> we use the Ansatz
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Fig. 2. Principle of the conical product Gaussian integration rule.
The left square shows the integration point distribution for the
product Gaussian integration rule with 3 X 3 integration points.
By transforming the integration region into a triangle (right),
edges A and D of the square become one point of the triangle and
the integration points are concentrated at this edge.

From this it is inferred that the 1/r singularity in en­
ergy integrals is rectified by the factor U of the vol­
ume element provided the singularity is positioned
in the conical edge of the triangle, because as a result
of the conical transformation the integration points
are properly condensed atone edge point. For ac­
curate integration 8 X 8 integration points are just
suitable.

We are able to show that just two correct1y orien­
tated triangles can handle the Coulomb singularities.
Fig. 3 shows the principle of the correct orientation
of the triangles at one center.

The current approach was tested by .calculating H
and Hf in the grid constructed for the system
Hej+ (fig. 1). The results for H, Hi and Hj+ are
given in table 1. To determine the accuracy of the
energy eigenvalues for Hf we use the results from
ref. [16]. The calculations were performed with 5th­
order polynomial shapefunctions. In the upper part
of table 1 we use a mesh with 245 elements corre­
sponding to 3125 points (see fig. 1) in order to cal­
culate the H atom and the Hi molecule in the three­
center grid. As expected the accuracy of the results
increases from H (L\Els~2.4X 10-6 au) over Hf
(Milcrg~(1.4-6.3)XI0-7au) to Hj+ because the

x=u, O~u~l,

y =UV , 0~ V~ 1 ,

this is transformed into the integral

1 1

f f f(u, v) dvudu.
o 0

(7)

(8)

Fig. 3. Correct orientation of the triangles at a nuc1ear center.
This figure shows the conical product Gaussian integration point
distribution with 3 X 3 integration points at each triangle. The
triangles are orientated such that the edge with the condensed
integration points (point A=D in fig. 2) is congruent with the
nuc1ear center.

mesh is optimized to the asymptotic behaviour of
the low-lying electronic levels of the system H ~ + . The
differences in accuracy of the H calculations arise
from the asymmetric grid for the outer-center cal­
culations. In addition the mesh is better adapted for
the middle-center calculation. The lower part of ta­
ble 1 presents an additional calculation of H t in a
mesh with 2665 points (209 elements). The number
of mesh points differs according to the geometry
changes of the mesh. In general the number of mesh
points varies with R, roughly tripling for Rs-cc.

In fig. 4 we compare our results for the 10' orbital
(see table 2) with those found in the literature [1 7] .
As reference line we use the mean values of upper
and lower bounds given in ref. [1 7] but we should
mention that we are several orders ofmagnitude more
accurate. For distances greater than or equal to 2.0
au there is agreement within the accuracy given in
ref. [17]. For small distances we find a significant
discrepancy. We may infer our calculations to be ac­
curate to the order of some units of 10-7 au by com­
paring our results on Hand Hf to precise values
[ 16]. For the 20' orbital (see table 2) the agreement
with the values of ref. [18] (obtained from its fig.
12) is within drawing precision.

We were able to demonstrate the applicability of
the FEM to the solution of those polycentric linear
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R (au) Orbital E(au) Points

0.1 lcr -4.4300999 2435
2cr -1.1272460

2.0 lcr -2.2425227 2665
2cr -1.3509358

3.0 lcr -1.8015337 2205
2cr -1.2750837

4.0 lcr -1.5241599 3125
20 -1.1733743

5.0 Icr -1.3343619 4045
2cr -1.0807938

6.0 10 -1.1968609 ~585

2cr -1.0011893
8.0 10 -1.0155017 4045

20 -0.8837918

Table 2
Results for the linear symmetrie H~+ moleeule for the l o and 2cr
orbital at different distances, R being the distance between the
outer centers. In general the number of mesh points varies with
R, roughly tripling for R --HXJ, however the ratio ofR/r,ought to
be taken into account, too. The mesh with R = 4.0 au belongs to
the upper part of table 1 and the mesh with R = 2.0 au to the lower
part oftable 1. We use 10 equi-curves (rl =0.24 au, r2=0.61 au,
rs> 1.90 au, r4= 1.66 au, r5=2.35 au, r6=3.20 au, r7=4.31 au,
'8=5.86 au, r9=8.39 au, rlO=20.00 au). Only at R=O.1 au one
additional radius (r= 0.03 au) is necessary to construct at least
one separate equi-line around the centers

of grid points when using condensed element distri­
bution and the special elements around the centers.
As for a non-singular problem one recovers the full
convergence order N - 5. Three-center Coulomb cal­
culations do need quite a few more points for a given
accuracy than for one- and two-center calculations
with tailor-made coordinates where the Coulomb
singularities are rectified [9] (spherical coordinates
in one-center, elliptic-hyperbolic coordinates for two­
center Coulombic problems); however, up to now
they offer the only possibility to obtain the desired
accuracies.

5.0

- 7.5 L..-....I....---'----&.------'----'------'-_"---~_'__----'

0.0 10.0 R I e.u.

Mesh System Orbital E (au) M(au)

.00 H Is -0.4999977 2.3x 10-6

2s -0.1249958 4.2X 10-6

0.0 Is -0.4999995 5.3X 10- 7

2s -0.1249980 2.0x 10-6

00. l s -0.4999976 2.4X 10-6

2s -0.1249963 3.7X 10-6

•• 0 Ht lOg -1.1026341 1.4x 10- 7

2.0 au 10u -0.6675337 6.9x 10- 7

0 •• lOg -1.1026341 1.4X 10- 7

10u -0.6675337 6.9x 10- 7

.0. Ht lOg -0.7960843 6.3x 10- 7

4.0 au 10u -0.6955490 1.6xl0-7

••• H~+ 10 -1.5241599 ~ 10- 7

2.0/2.0 au 20 -1.1733743 ~ 10- 7

.0. Ht lcrg -1.1026340 2.0X 10-7

2.0 au l o, -0.6675332 1.2X 10-6

öE I 10- 3 e.u. 7.5

0.0 ~--++--T---+--+---t---+-----;

.t'FEM

+-[ 17]

Table 1
Results for Hand Ht (error M from comparison with precise
calculations [16]) and for H~+ in a mesh with 3125 points and
a distance of 2.0 au between neighbouring centers (upper part of
the table) and 2665 points and a distance of 1.0 au between
neighbouring centers (lower part of the table), see also table 2.
The full dots in the row Mesh symbolize the charged center (s) in
the three-center grid (see fig. 1). All the calculations we per­
formed by using 5th-order polynomial shapefunctions

Fig. 4. Differences of the FEM calculations from the upper and
lower bounds calculated mean values of ref. [17] for the 1o or­
bital ofH~+. R is the distance between the outer centers and M
the energy deviation from the mean value.

Coulombic problems whose nuclei singularities are
taken care of by the condensed element distribution
and special elements. One also finds that the nu­
merical accuracy increases strongly with the number
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