
Volume 145, number 2 CHEMICAL PHYSICS LETTERS 25 March 1988

ACCURATE HARTREE-FOCK-SLATER CALCULATIONS
ON SMALL DIATOMIC MOLECULES WITH THE FINITE-ELEMENT METHOD
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We report on the self-consistent field solution of the Hartree-Fock-Slater equations using the finite-element method for the
three small diatomic molecules N2, BH and CO as examples. The quality of the results is not only better by two orders of magni­
tude than the fully numerical finite difference method of Laaksonen et al. but the method also requires a smaller number of grid
points.

with

H is the Hamiltonian matrix, 5 the norm matrix and

which is minimised by the solution of the matrix
equation

(1 )

(2)

(3)

V(r) = vnUC(r) + VC(r) + VX(r) ,

vnUC(r) = -21/lr1 -rl-22 / l r 2 -rl ,

VC(r) = f p(r') d3 r' ,
Ir-r' I

VX(r) = -1a [( 3/1t)p ( r ) ] 1/3 ,

order of the polynomials are the "parameters" which
can be changed in this method, Once the final choice
is made a matrix diagonalisation with respect to the
free expansion coefficients leads to the solution of
the differential equations.

In the case of the Hartree-Fock-Slater equations

HX=fSX.

~f IV'P1 2 d3 r+ f Ver) 1'P1 2 d3 r

-ffl'P1 2 d3 r ,

the finite-element method can be applied if these
equations are written as the functional

Besides the standard basis set expansion methods
[1] for solving the self-consistent Hartree-Fock
equations for molecules, the fully numerical finite­
difference method has recently been introduced by
Laaksonen, Pyykkö and Sundholm. In aseries ofpa­
pers [2-4] they have shown that this method can be
used with high accuracy to solve the same physical
problem. Their examples were the solution of the
Hartree-Fock-Slater equations for smaIl diatomic
molecules (a first step towards relativistic calcula­
tions has also been taken by the same authors [5]).
The main disadvantage of this method is the need
for a large number ofpoints to achieve high accuracy.

The finite-element method represents an alterna­
tive approach to solve the same differential equa­
tions. In two preceding papers we have shown that
the finite-element method can be adapted to quan­
tum mechanical problems. The one-electron systems
Hi and HHe2 + [6] as weIl as the simplest two-elec­
tron system H2 [7] have been solved with consid­
erable success.

In the finite-element method the space is divided
into a number of elements. Oneach of these ele­
ments basis functions are chosen. Hence from a
practical point of view, the finite-element method is
a basis set method, but no global basis functions are
chosen as in standard basis set expansion methods.
The local basis functions on each element are poly­
nomials with free expansion coefficients. The size,
the shape and the number of elements as weIl as the
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x represents the values of the eigenfunctions at the
grid points.

The solution of the Poisson equation which con­
nects the electron charge density and the molecular
potential is obtained by solving for the functional

which leads to the matrix equation

Dy=d.

(4)

(5)

0, d and y are the analogs of H, Sand x in eq. (3).
To actually calculate the matrix elements in eqs.

( 3) and (5) we choose prolate spheroidal coor­
dinates and divide the space so as to be equidistant
in these coordinates. The main problem, of course,
is to have a sufficient number of elements in the vi­
cinity of the nuclei where the large charge density of
the inner electrons is concentrated. This shows up
especially for large internuclear distances where the
charge density is a strongly peaked function of the
angular variable.

Using this finite-element method we have solved

Table 1
Total energy and energy eigenvalues for the systems N2 , BH and CO. The Slater exchange parameter was 0.7 for all calcu1ations. For the
largest grids the last figure is uncertain. All values are given in au

N2, internuclear distance R =2.07 au

ref. [5] this work, fifth-order polynomials

points 5989 2601 3136 3721 4356
ET - 108.346622 - 108.346605 -108.3466076 - 108.3466086 - 108.3466090
€ ( 1<J g ) -13.981070 -13.9810680 -13.98106828 -13.98106837 -13.98106840
€ ( Io u ) ~ 13.979661 -13.9796581 - 13.97965838 -13.97965847 -13.97965850
€ ( Zo g ) -1.007215 -1.00721471 - 1.00721472 -1.00721471 -1.00721471
€(2<Ju ) -0.460725 - 0.46072506 - 0.46072505 - 0.46072505 - 0.46072505
€( l n., ) -0.404235 - 0.40423461 - 0.40423462 - 0.40423462 - 0.40423462
€(3a g ) -0.350058 -0.35005851 - 0.35005852 -0.35005852 -0.35005852

N2, internuclear distance R =2.07 au
this work, sixth-order polynomials

points 2401 3025 3721 4498
ET - 108.3466090 -108.34660925 - 108.34660932 - 108.34660934
€( 1<J g) -13.9810686 -13.98106844 -13.98106844 -13.98106844
€(la u ) - 13.9796587 -13.97965854 - 13.97965854 -13.97965854
€(2a g ) -1.00721474 -1.00721471 -1.00721471 -1.00721471
€(2a u ) - 0.46072506 - 0.46072505 - 0.46072505 - 0.46072505
€(In: u ) - 0.40423461 - 0.40423462 - 0.40423462 - 0.40423462
€ ( 3a g ) - 0.35005852 - 0.35005852 - 0.35005853 -0.35005852

ref. [5] this work, fifth-order polynomials

BH CO BH CO

points 15609 5989 4356 4356
R 2.366 2.13 2.366 2.13
ET -24.808852 -112.129925 - 24.8088515 -112.129915
€ ( 1o ) - 6.5323604 -18.744146 - 6.53236004 -18.7441431
€ ( Zo ) -0.4078652 -9.911347 -0.40786519 -9.9113461
€ (3a ) -0.1731323 -1.044171 -0.17313242 -1.0441708
€(4<J ) -0.489071 -0.4890707
€ (In: ) -0.413613 -0.4126127
€( So ) -0.303029 -0.3030299
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the three standard systems N 2, BH and CO in order
to ascertain whether or not this approach is a useful
alternative to the finite-difference method,

Table 1 presents the energy eigenvalues as well as
the total energies of N 2 for different grid sizes and
fifth- and sixth-order two-dimensional polynomials
as basis functions on the elements.

For 2401 points the accuracy ofthe sixth-order po­
lynomial grid is comparable to that ofthe 4356-point
fifth-order polynomial grid. This shows clearly the
advantage of high-order polynomials as basis func­
tions for the finite-element method in order to
achieve results of high precision.

To compare the current results for N 2 with those
of Laaksonen et al. [4,5] we emphasise that their
number of points is the number of points in the half
box, whereas our number ofpoints refers to the whole
box. Laaksonen et al. give an absolute error of
1X 10- 5 au for the total energy. This same accuracy
is reached in our calculations with 2601 points and
fifth-order polynomials. The error in the total energy
attained with the 240 I-point sixth-order grid is about
5X 10- 7 au. The results achieved with the 4489-point
sixth-order grid are probably correct to 10-8 au. This
value is two to three significant figures better than
the values ofLaaksonen et al., who used about a fac­
tor of two more points. Values for the systems BH

and CO are given at the end of table 1.
This comparison shows that the finite-element

method is capable of solving the Hartree-Fock­
Slater equations to an accuracy never reached before
and thus is more than an alternative to all other
methods. An attempt to achieve very accurate values
for the Hartree-Fock equations as a bench mark for
the quality of quantum chemical calculations is our
next goal.

This work was partially supported by the Deutsche
Forschungsgemeinschaft (DFG).
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