Redox Reactions for Group 5 Elements, Including Element 105, in Aqueous Solutions

G. V. Ionova,
Institute of Physical Chemistry, Russian Academy of Sciences, Moscow, Russia

V. Pershina,* E. Johnson,' B. Fricke,
Theoretical Physics Department, University of Kassel, Kassel, Germany

and M. Schädel
Gesellschaft für Schwerionenforschung, Darmstadt, Germany (Received: June 16, 1992; In Final Form: September 3, 1992)

Standard redox potentials \(E^\circ(M^{n+}/M^{n+}) \) in acidic solutions for group 5 elements including element 105 (Ha) and the actinide, Pa, have been estimated on the basis of the ionization potentials calculated via the multiconfiguration Dirac–Fock method. Stability of the pentavalent state was shown to increase along the group from V to Ha, while that of the tetra- and trivalent states decreases in this direction. Our estimates have shown no extra stability of the trivalent state of hafnium. Element 105 should form mixed-valence complexes by analogy with Nb due to the similar values of their potentials \(E^\circ(M^{n+}/M^{n+}) \). The stability of the maximum oxidation state of the elements decreases in the direction \(105 > 104 > 103 \).

I. Introduction

During the past few years, there has been a growing interest in actinide and transactinide chemistry. Besides the importance of the lighter elements and their compounds in applied research, there is a basic interest in the detailed mapping of the periodic table of the elements. The high degree of interest in this region of the periodic table comes from the fact that in the heavy elements increasingly large relativistic effects become very important and can influence the electronic structure, which may affect physicochemical properties and chemical behavior.

These fundamental properties are ground-state electronic configurations, atomic (ionic) radii, and ionization potentials. Changes in these characteristics may influence the stability of different oxidation states, enthalpies of hydration or sublimation, complexing behavior in aqueous solutions, and many other properties.

Relativistic atomic multiconfiguration Dirac–Fock calculations\(^1\) (MCDF) have shown that the relativistic stabilization of \(\text{I}_{\text{I}_{2}} \) and \(\text{p}_{\text{I}_{2}} \) orbitals for the heavy elements causes the ground-state electronic configurations for elements 103 and 104 to be different from that expected on the basis of a straightforward extrapolation of the periodic system: Lr turned out to have a \(7\text{s}^27\text{p}^1 \) ground-state electronic configuration instead of the expected \(6\text{d}^77\text{s}^2 \), and element 104 \(6\text{d}^77\text{s}^27\text{p}^1 \) instead of \(6\text{d}^67\text{s}^2 \). For element 105, MCDF calculations\(^2\) give, as was expected, the ground-state electronic configuration \(6\text{d}^77\text{s}^2 \).

A number of chemical experiments have been carefully planned and conducted to study the physicochemical properties of the heavy elements and, in particular, to attempt to observe the influence of relativistic effects on them. These include experiments\(^3,4\) on the volatility of elements 103, 104, and 105 and their halides using the gas chromatography technique and on solution chemistry of element 105 through a chromatographic solvent extraction.\(^5\)

These experiments have revealed an interesting chemical behavior of the heavy elements and have been considered theoretically in our previous work.\(^6\)

The influence of the relativistic effects on the stability of oxidation states is one of the interesting aspects of experimental investigations. Thus, it has been suggested\(^7\) that the \(7\text{s}^2 \) closed shell in Lr might be sufficiently stabilized by the relativistic effects to make it an "inert core" so that only the \(\text{p}_{\text{I}_{2}} \) (or \(6\text{d} \)) electron may be removed under reducing conditions, thereby producing monovalent Lr. Nevertheless, there was no experimental evidence for the reduction of \(\text{Lr}^{3+} \) in aqueous solution,\(^8\) although in the similar experiments \(\text{Md}^{3+} \) was reduced to \(\text{Md}^{2+} \). The resulting limit for the reduction potential of the \(\text{Lr}^{3+}/\text{Lr}^{2+} \) couple was found to be \(E^\circ < -0.44 \) V. Attempts to reduce \(\text{Lr}^{3+} \) to \(\text{Lr}^{2+} \) in ethanol with \(\text{Sm}^{2+} \) have yielded only a limit of \(E^\circ < -1.56 \) V, and no reduction of \(\text{Lr}^{2+} \) has been observed.\(^9\)

In ref \(11 \), it was expressed that the \(+1 \) oxidation state of element 104 should show a higher stability as compared to the analogues Zr and Hf due to a lower value of the first ionization potential and a \(6\text{d}^7 \) ground-state electronic configuration with a presumably delocalized p electron. In refs \(12 \) and \(13 \), estimates of the standard electrode potentials for elements 103 and 104 are given based on an ionic model. In this paper, we present the results of an evaluation of redox potentials for group 5 elements in acidic solutions, including element 105, based on our MCDF calculations\(^1\) of the ionization potentials. These predicted thermodynamic properties will contribute to our knowledge about the chemical behavior of element 105 in solutions.

II. Characteristics of the Redox Potentials

For niobium and tantalum, all the formal oxidation states from \(+5 \) to \(-2 \) have been reported.\(^14\) The small difference between energy levels of the \(\text{d} \) and \(\text{s} \) electrons gives rise to a wide range of oxidation states. The oxidation states \(+4, +3, \) and \(+2 \) for Nb and Ta are nevertheless less characterized than the corresponding ones for vanadium.

The complete picture of the reduction-oxidation properties of group 5 elements should include potentials for the following couples: \(\text{M}^{n+}/\text{M}^{n+}, \text{M}^{n+}/\text{M}^{n+}, \text{M}^{n+}/\text{M}^{n+}, \text{M}^{n+}/\text{M}^{n+}, \text{M}^{n+}/\text{M}^{n+} \).

For characterizing an oxidation state, the oxidation-reduction potential \(E^\circ \) is of crucial importance. For the reaction

\[
\text{M}^{n+}(m + n) + ne = \text{M}^{n+}(m)
\]

the redox potential \(E^\circ(\text{M}^{n+}/\text{M}^{n+}) \) defines all the changes when an ion of charge \(z + \) and valency \(m + n \) comes over to a state with charge \(z + \) and valency \(m \). (We will equate here the valency to the effective charge for the species in solutions, which is generally not the case.)

For reaction 1 involving electron \(e \), the change of the free energy \(\Delta G \) is expressed as

\[
\Delta G = -nF\varepsilon \quad (\text{j} \text{mol}^{-1})
\]
Redox Reactions for Group 5 Elements

where F is the Faraday constant (the charge of a mole of electrons), equal to 96 487 C mol$^{-1}$. In other units, eq 2 has the form

$$\Delta G = -n(23060)E$$

(cmal $^{-1}$)

The standard potential E^0 can be calculated using eq 2 when the activities of all species in solution are equal to 1. On the other hand, the change of the free energy in the redox reaction (1) can be expressed in the following form:15

$$\Delta G = -(1P + \Delta G_{hyd})$$ (3)

where ΔG_{hyd} is the change in hydration energy when an ion in valent state m over to valent state $m + n$ during the reduction process.

The ionization energy

$$IP = I \pm \Delta E$$ (4)

where I is the one-particle ionization energy for $M^{m+} \rightarrow M^{m+\ast}$ and an electronic configuration is the energy necessary for the reconstruction (or a change) of an electronic configuration of the metal ion when it is transformed from valent state m to valent state $m + n$.

As an example, we consider here the process $Ta^{2\ast+}(d^8) \rightarrow Ta^{3\ast+}(d^7)$. In this case, there is no reconstruction of the electronic configuration, and in eq 4, $\Delta E = 0$ so that $IP = I$. For the process $Ta^{2\ast+}(d^8) \rightarrow Ta^{3\ast+}(d^7)$, there is a reconstruction of the electronic configuration and $IP = I + \Delta E$, where $\Delta E = E(d^7) - E(d^8)$.

On the example of the actinide series, it was shown15-17 that the E^0's correlate linearly with the redox potentials and define all the changes in their values. In ref 17, a linear dependence of the redox potentials on the energies of the electron-transfer spectra corresponding to the changes in the electronic configurations has been established. Ionization potentials I and ΔG_{hyd} were shown15 to be smooth functions of the atomic number (e.g., for the lanthanide and actinide series) and contribute only to the absolute values of ΔG.

The fact that ΔG_{hyd} is a smooth function of the atomic number for the group 5 elements can be seen from the following.

According to the Born theory of ionic solvation,18 $\Delta G_{hyd}(M^{m\ast+})$ is a function of ionic charge z and the radius of an ion $r_{M^{m\ast+}}$:

$$\Delta G_{hyd} = A(z)/[r_{M^{m\ast+}} + r(z)]$$ (5)

where A is the dielectric constant of water or an aqueous solution and $r(z)$ is a radius parameter to be added to the crystal ionic radius and which depends on z. The change in the hydration energy when the ion is transformed from oxidation state z to oxidation state $z + x$ is

$$\Delta G_{hyd} = \Delta G_{hyd}(M^{m\ast+}) - \Delta G_{hyd}(M^{m\ast}) = A(z + x)/[r_{M^{m\ast+}} + r(z + x)] - A(z)/[r_{M^{m\ast+}} + r(z)]$$ (6)

One can see from the results of the MCDF calculations1 that the differences in ionic radii of V, Nb, Ta, and Ha between one oxidation state and any other state are very similar. Assuming that the same is valid for $r(z + x)$ and $r(z)$, ΔG_{hyd} (eq 6) can be assumed as a smooth function of the atomic number.

Thus, from the foregoing, it follows that the redox potentials $E^{m\ast+}(M^{m\ast+}/M^{m\ast})$ should be proportional to the values of the ionization potentials IP in which the changes in electronic configurations are included.

The validity of such a correlation is well seen on the example of E^0 (II – III) for early actinides,19 where the IPs already contain the reconstruction of the electronic configurations: $IP = E_{d^{m\ast+}}(d^2) - E_{d^{m\ast+}}(f^2)$. Also in same ref 15, the redox potentials for all members of the lanthanide and actinide series have been estimated using the methodology outlined.

In the present work, we will estimate the unknown values of the redox potentials for group 5 elements V, Nb, Ta, and Ha, along with a pseudomember of group 5—Pa—using the correlation between experimental $E^{m\ast+}(M^{m\ast+}/M^{m\ast})$ and the calculated IPs, which have been normalized and extrapolated to the experimentally known values.19 These calculated IPs are actually the differences between the energies of the electronic configurations corresponding to the reduced and the oxidized states. For the oxidation processes $M^0/M^{m\ast}$, $M^{m\ast+}/M^{m\ast}$, $M^{m\ast+}/M^{m\ast+}$, and $M^{m\ast+}/M^{m\ast}$,

<table>
<thead>
<tr>
<th>Chemical</th>
<th>ΔG (kcal/mol)</th>
<th>IP (eV)</th>
<th>E^0 (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_2O_5</td>
<td>-2.91</td>
<td>1.05</td>
<td>-1.05</td>
</tr>
<tr>
<td>Nb_2O_5</td>
<td>-2.81</td>
<td>0.95</td>
<td>-0.85</td>
</tr>
<tr>
<td>Ta_2O_5</td>
<td>-2.71</td>
<td>0.85</td>
<td>-0.75</td>
</tr>
</tbody>
</table>

The standard formation energies of an element M, e, and H^+ are the free formation energies of the components in the right and left parts of this reaction:

$$\Delta G_f = 2\Delta G^0(M) + 5AGf^0(H_2O) - AGf^0(M_{2O5}) - 10AGf^0(H^+) - 10AGf^0(e)$$ (9)

The standard formation energies of an element M, e, and H^+ are set equal to zero. The value $\Delta G_f^0(H_2O) = -56 690$ cal mol$^{-1}$.20 Thus, for reaction 8 using eq 2, $E^0(M_{2O5}/M)$ can be defined as

$$E^0(M_{2O5}/M) = -5(56 690) - \Delta G^0(M_{2O5})$$ (10)

where one has to know the value of $\Delta G^0(M_{2O5})$.

In Table 1, we present the data on $\Delta G^0(M_{2O5})$ from different sources and, based on them the corresponding standard potentials $E^0(M_{2O5}/M)$. For the process $V_{2O_5}^2 + 4H^+ + 5e \rightarrow V(O_2 + 2H_2O$ has been measured, with its value being listed in Table 1. For protactinium, the potential can be determined through the reaction

$$PaO_2^2 + 4H^+ + 5e \rightarrow Pa(c) + 2H_2O$$ (11)

since the hydrated oxide in solution, $PaO_2(aq)$, is thought to be PaO_2^2. The standard potential for reaction 11 is -1.0 V.22 In

Table I: Standard Free Energies of Formation (in kcal mol$^{-1}$), Ionization Potentials ($0 \rightarrow 5+$) (in eV), and Standard Reduction Potentials (in V) for the $M^{m\ast+}/M$ Couple for the Pentoxides of Group 5 Elements

<table>
<thead>
<tr>
<th>Compound</th>
<th>ΔG (kcal/mol)</th>
<th>IP (eV)</th>
<th>E^0 (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_2O_5</td>
<td>-2.91</td>
<td>1.05</td>
<td>-1.05</td>
</tr>
<tr>
<td>Nb_2O_5</td>
<td>-2.81</td>
<td>0.95</td>
<td>-0.85</td>
</tr>
<tr>
<td>Ta_2O_5</td>
<td>-2.71</td>
<td>0.85</td>
<td>-0.75</td>
</tr>
</tbody>
</table>
Figure 1. Correlation between ionization potentials [0 \rightarrow 5+] and the standard potentials $E^\circ(M_{02}^+/M)$ for group 5 elements. (Pa point is not included in the correlation.) Filled circles are experimental values (see Table I); open circles are estimated values (from this work); open triangle is Pa point which is not included in the correlation.

Figure 2. Correlation between ionization potentials [0 \rightarrow 5+] and the standard potentials $E^\circ(M_{02}^+/M)$ for group 5 elements. (Pa point is included in the correlation.) Filled circles are experimental and estimated values (see Table I); open circles are estimated values (this work).

ref 27, the value of the standard potential for the $PaOOH^{2+}/Pa(c)$ couple is given as -1.25 V, and an estimate has been done of the potential for the $Pa_{02}^+/Pa(c)$ couple as -1.24 V.

The ionization potentials $IP[0 \rightarrow 5+]$ obtained as a result of the MCDF calculations are also listed in Table I. From a linear correlation with a least-squares fit between the known values of $IP[0 \rightarrow 5+]$ for V, Nb, and Ta and IP[0 \rightarrow 5+] of the group 5 elements (Figure 1), one obtains $E^\circ(Ha_{02}^+/Ha) = -0.81 \text{ V}$. Including the value $E^\circ(Ha_{02}^+/Pa) = -1.24 \text{ V}$ in this correlation gives $E^\circ(Ha_{02}^+/Ha) = -0.9 \text{ V}$ (Figure 2). Using the value of the potential Ha_{02}^+/Ha as -0.81 V, one can calculate the free energy formation of Ha_{02}^+ as $-474.85 \text{ kcal mol}^{-1}$. Thus, the stability of the pentavalent state in solutions increases in the direction $V < Nb < Ta < Ha < Pa$, with $E^\circ(Ha_{02}^+/Ha)$ being between the corresponding values for Ta and Pa.

B. Reduction Reaction $M^{5+} \rightarrow M^{4+}$. For the process $M^{5+} \rightarrow M^{4+}$, the standard potentials have been measured\(^ {22,26,27}\) for V, Nb, and Pa, with that of protactinium being a tentative one (Table II).

At 1 M $[\text{H}^+]$ concentration in aqueous solution, $V(V)$ is a moderately good oxidizing agent, and the potential $E^\circ(MO_2^+/MO^{2+})$ is equal to 1.0 V for the reactions

$$\text{V(OH)}^+ + 2\text{H}^+ + e \rightarrow \text{VO}_2^+ + 3\text{H}_2\text{O}$$

or

$$\text{VO}_2^+ + 2\text{H}^+ + e \rightarrow \text{VO}^{2+} + \text{H}_2\text{O}$$

The following thermodynamic data have been obtained for the VO^{2+} ion in aqueous solution:\(^ {23}\) $\Delta H^\circ = -116.3 \text{ kcal mol}^{-1}$; $\Delta G^\circ = -106.7 \text{ kcal mol}^{-1}$, and $\Delta S^\circ = -32.0 \text{ cal mol}^{-1} \text{ K}^{-1}$. Similarly, the reduction of $Pa(V)$

$$PaO_2^+ + 2\text{H}^+ + e \rightarrow Pa^{2+} + \text{H}_2\text{O}$$

was studied,\(^ {26}\) where PaO_2^+ is a hypothetical species. The value given for $E^\circ(PaO_2^+/Pa^{2+})$ of reaction 13 is -0.1 V. In ref 27, the experimental value of the potential for the $PaOOH^{2+}/Pa^{4+}$ couple is given as -0.1 V and an estimated potential for the Pa_{02}^+/PaO_2 couple as -0.2 V. Our earlier estimate\(^ {20}\) of $E^\circ(Pa^{2+}/Pa^{4+})$ was -0.34 V.

Comparing pentavalent vanadium and protactinium, one sees that PaO_2^+ is a stable species, and $PaOOH^{2+}$ is unstable and it is easily reduced.

To evaluate the standard potentials $E^\circ(M_{02}^+/MO^{2+})$ for Nb, Ta, and Ha, we have used again the linear correlation (Figure 3) between the known redox potentials for V and Nb, the estimated ones for Ta and Pa, and the fifth ionization potentials, obtained as a result of MCDF calculations\(^ {\text{a,b}}\) (Table II). The resulting value of $E^\circ(Nb_{02}^+/NbO_2)$ for Ha is presented in Table II.

The Pa point is not included in the correlation, because it does not fit the plot in Figure 3. If the estimated value of $E^\circ(\text{Ta}_{02}^+/\text{TaO}_2)$ is not used, then the correlation based only on the two experimental points (V and Nb) gives the values $E^\circ(\text{Ta}_{02}^+/\text{TaO}_2) = -0.45 \text{ V}$ and $E^\circ(\text{Ha}_{02}^+/\text{HaO}_2) = -0.75 \text{ V}$.

These data show that the stability of the tetravalent state in solution decreases from V to Ha: $V > Pa > Nb > Ta > Ha$. Thus, the cation PaO_2^+ (or Pa^{2+}) in solution is difficult to reduce, then PaO_2^+ will be even more difficult to reduce.

For potentials $E^\circ(MO_2^+/MO^{2+})$, the values are known only for V and Pa. For Nb and Ta, we can assume that their potentials for the hydrolyzed species, $E^\circ[Nb(OH)^+/Nb(OH)_2]^2$ is -0.2 V and $E^\circ[Ta(OH)_3^+/Ta(OH)_2]^2 = -1.0 \text{ V}$ would correspond roughly to the potentials for the NbO_2^+/NbO_4^2 and TaO_2^+/TaO_4^2 couples. These cations, MO_2^+ and MO^{2+}, obviously do not occur in aqueous solutions, as they will decompose. Nevertheless, we will use them to make a complete picture of the redox potentials. Such a choice can be justified because in solution chemistry unstable species which are immediately decomposed by water are used very often and, in addition, the real situation about which compound is present in a solution under which conditions is very complicated. Even for vanadium, there are hydrolyzed forms along with the pure cationic ones, and for protactinium, hydrolysis is extremely complicated.\(^ {26}\)

The correlation between the known potentials for the MO_2^+/MO^{2+} couple for V and Pa, along with the estimates for

Table I: Fifth Ionization Potentials [4+ \rightarrow 5+] (in eV), Standard Free Energies of Formation (in kcal mol$^{-1}$) for MO$_2^+$ and MO$_2$ Species, and Standard Reduction Potentials for the MO$_2^+/MO_2$ Couples (in V) for Group 5 Elements

<table>
<thead>
<tr>
<th>Element</th>
<th>V</th>
<th>Nb</th>
<th>Ta</th>
<th>Ha</th>
<th>Pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP[4+ \rightarrow 5+]</td>
<td>65.23</td>
<td>50.55</td>
<td>48.19</td>
<td>44.62</td>
<td>46.62</td>
</tr>
<tr>
<td>$E^\circ(MO_2^+/MO^{2+})$</td>
<td>0.9574</td>
<td>-0.248</td>
<td>-0.8</td>
<td>-1.0</td>
<td>-0.2</td>
</tr>
<tr>
<td>$E^\circ(MO^{2+}/MO^{2+})$</td>
<td>1.00</td>
<td>-0.2</td>
<td>-1.0</td>
<td>-1.13</td>
<td>-0.1</td>
</tr>
<tr>
<td>$\Delta G^\circ(MO^{2+}/MO^{2+})$</td>
<td>-140.3</td>
<td>-163.0</td>
<td>-201.4</td>
<td>-244.0</td>
<td>-228.7</td>
</tr>
<tr>
<td>$\Delta G^\circ(MO_2^+/MO^{2+})$</td>
<td>-106.7</td>
<td>-101.7</td>
<td>-121.65</td>
<td>-161.3</td>
<td>-169.7</td>
</tr>
</tbody>
</table>

Table II: Fifth Ionization Potentials [4+ \rightarrow 5+] (in eV), Standard Free Energies of Formation (in kcal mol$^{-1}$) for MO$_2^+$ and MO$_2$ Species, and Standard Reduction Potentials for the MO$_2^+/MO_2$ Couples (in V) for Group 5 Elements

<table>
<thead>
<tr>
<th>Element</th>
<th>V</th>
<th>Nb</th>
<th>Ta</th>
<th>Ha</th>
<th>Pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP[4+ \rightarrow 5+]</td>
<td>65.23</td>
<td>50.55</td>
<td>48.19</td>
<td>44.62</td>
<td>46.62</td>
</tr>
<tr>
<td>$E^\circ(MO_2^+/MO^{2+})$</td>
<td>0.9574</td>
<td>-0.248</td>
<td>-0.8</td>
<td>-1.0</td>
<td>-0.2</td>
</tr>
<tr>
<td>$E^\circ(MO^{2+}/MO^{2+})$</td>
<td>1.00</td>
<td>-0.2</td>
<td>-1.0</td>
<td>-1.13</td>
<td>-0.1</td>
</tr>
<tr>
<td>$\Delta G^\circ(MO^{2+}/MO^{2+})$</td>
<td>-140.3</td>
<td>-163.0</td>
<td>-201.4</td>
<td>-244.0</td>
<td>-228.7</td>
</tr>
<tr>
<td>$\Delta G^\circ(MO_2^+/MO^{2+})$</td>
<td>-106.7</td>
<td>-101.7</td>
<td>-121.65</td>
<td>-161.3</td>
<td>-169.7</td>
</tr>
</tbody>
</table>

Figure 3. Correlation between ionization potentials [4+ \rightarrow 5+] and the standard potentials $E^\circ(M_{02}^+/MO_2)$ for group 5 elements. Filled circles are experimental and estimated values (see Table II); open circles are estimated values (this work). (Pa point does not fit the curve.)
Redox Reactions for Group 5 Elements

Figure 4. Correlation between ionization potentials [4+ → 4+] and the standard potentials $E^\circ(MO_2^+/MO_3^+)$ for group 5 elements. Filled circles are experimental and estimated values (see Table II); open circles are estimated values (this work). (Pa point does not fit the curve.)

Table: Redox Reactions for Group 5 Elements

<table>
<thead>
<tr>
<th>Group</th>
<th>V</th>
<th>Nb</th>
<th>Ta</th>
<th>Ha</th>
<th>Pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>V</td>
<td>Nb</td>
<td>Ta</td>
<td>Ha</td>
<td>Pa</td>
</tr>
<tr>
<td>V</td>
<td>V</td>
<td>Nb</td>
<td>Ta</td>
<td>Ha</td>
<td>Pa</td>
</tr>
</tbody>
</table>

Table III: Fourth Ionization Potentials [3+ → 4+] (in eV) and Standard Reduction Potentials for the MO_2/MO_3^+ Couple (in V) for Group 5 Elements

<table>
<thead>
<tr>
<th>V</th>
<th>Nb</th>
<th>Ta</th>
<th>Ha</th>
<th>Pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>V</td>
<td>Nb</td>
<td>Ta</td>
<td>Ha</td>
</tr>
<tr>
<td>V</td>
<td>V</td>
<td>Nb</td>
<td>Ta</td>
<td>Ha</td>
</tr>
</tbody>
</table>

Table IV: Third Ionization Potentials [2+ → 3+] (in eV) and Standard Reduction Potentials for the M^{3+}/M^{2+} couple (in V) for Group 5 Elements

<table>
<thead>
<tr>
<th>V</th>
<th>Nb</th>
<th>Ta</th>
<th>Ha</th>
<th>Pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>V</td>
<td>Nb</td>
<td>Ta</td>
<td>Ha</td>
</tr>
<tr>
<td>V</td>
<td>V</td>
<td>Nb</td>
<td>Ta</td>
<td>Ha</td>
</tr>
</tbody>
</table>

Figure 5. Correlation between ionization potentials [3+ → 4+] and the standard potentials $E^\circ(MO_2^+/MO_3^+)$ for group 5 elements. Filled circles are reference values (see Table III); open circles are estimated values (this work).
Low oxidation states of Group 5 Elements can be evaluated. The oxidation states of Group 5 Elements are evaluated using the relation $E^*(M^{3+}/M^{2+}) = E^*(M^{2+}/M) + 2E^*(M^{2+}/M)$. The resulting potentials are listed in Table V. A second set of potentials $E_0(M^{3+}/M^{2+})$ gives the following two schemes for the potential $E_0(M^{3+}/M^{2+})$: the estimated potentials $E^*(M^{3+}/M^{2+})$ for group 5 elements. Filled circles are reference values (see Table IV); open circles are estimated values (this work). The resulting values of the redox potentials are given in Table IV, which show that the stability of the divalent state changes in the following order: $V > Nb > Ha > Ta > Pa$. On the basis of the two values of the potential Pa^{3+}/Pa^{2+}, we give the following two schemes for the potential $E^*(Pa^{2+}/Pa)$:

$Pa^{2+}(S^3) \rightarrow Pa^{2+}(S^{2+}d)$

$Pa \rightarrow S + 5.2 \rightarrow Pa^{2+} \rightarrow Pa^{2+} \rightarrow Pa^{2+} \rightarrow Pa^{2+}$

Using the relation $E^*(M^{3+}/M) = 2E^*(M^{2+}/M) + E^*(M^{2+}/M^{2+})$, the estimated potentials $E^*(M^{2+}/M)$ along with the measured ones for V, Nb, Ta, Ha, and Pa are -1.125, -0.733, -0.225, -0.24, and 0.59, respectively.

IV. Conclusions

A complete picture of the redox potentials for the group 5 elements and Pa is shown in Figure 7. For the group 5 elements, the stability of the pentavalent state increases in going from V to Pa, while that of the tetra- and trivalent states decreases in this direction. The divalent state of Ha should be slightly less stable than that of Nb, and Ha would be expected to form mixed-valence complexes, as does Nb. The present estimates show that there will be no extra stability of the trivalent state of hahnium, as could be expected from the ground-state electronic configuration of $Ha d^{5}$. The examples show the possibility of forming mixed-valence complexes of Nb under certain circumstances. Apparently, the same can be true for Ha because they have similar values of potentials $E^*(M^{3+}/M^{2+})$. In complexes $[Ta_6S^{3+}O_{19}]^{8-}$ and $[Nb_6S^{3+}O_{19}]^{8-}$, the metals are not reduced to lower oxidation states. The cation $[Ta_6Cl_6]^+$ exists, but it is unstable in solution.

Acknowledgment. We acknowledge useful discussions of the redox potentials with Professor N. N. Krokhin. V.P. thanks the Gesellschaft für Schwerionenforschung (GSI), Darmstadt, for

financial support. This research was cosponsored by the Division of Chemical Sciences, U.S. Department of Energy, under Contract DE-FC05-85ER25000 with Martin Marietta Energy Systems, Inc.

References and Notes

