
Exploring Conceptual Similarities of Objectsfor Analyzing Inconsistenciesin Relational DatabasesGerd StummeTechnische Universit�at Darmstadt, Fachbereich Mathematik, Schlo�gartenstr. 7,D{64289 Darmstadt; stumme@mathematik.tu-darmstadt.de1 IntroductionOn-Line Transaction Processing (OLTP) systems gather huge amounts of au-tomatically generated data, often without su�cient integrity checking. Hence,during the knowledge discovery process, one discovers inconsistencies which con-tradict to constraints that have never been made explicit, but which exist onlyas personal knowledge of the analyst.Conceptual Information Systems support the detection of such contradic-tions to expert knowledge which is not explicitly given. They provide a multi-dimensional conceptually structured view on data stored in relational databases([5], [10]). Conceptual Information Systems are similar to On-Line AnalyticalProcessing (OLAP) tools, but focus on qualitative (i.e. non-numerical) data ([6]).The analog to OLAP dimensions are conceptual scales. Each conceptual scalerepresents a conceptual hierarchy describing the semantics of the range of valuesfor one or more attributes of the database scheme. The conceptual scales are visu-alized by so-called Hasse diagrams which indicate the subconcept-superconcepthierarchy on the concepts. Unlike statistical data mining tools, Conceptual Infor-mation Systems always present information about the individual objects. Hencethe existence of outliers is not hidden in numerical values as, e. g., standard de-viations. Conceptual Information Systems rely on the mathematical theory ofFormal Concept Analysis ([12], [3]) which provides a formalization of the conceptof `concept'. It reects an understanding of `concept' which is �rst mentionedexplicitly in the Logic of Port Royal in 1668 ([1]) and has been established inthe German standards DIN 2330 and DIN 2331.If inconsistencies have been discovered in the knowledge discovery process,then the task is to examine their causes. In cases where the detection of such in-consistencies was possible only by human interaction, it is very unlikely that thecause will be discovered by a fully automatic tool. Hence we promote a knowl-edge discovery support environment that supports a human-centered discoveryprocess. In this paper we present the state of research about extending Con-ceptual Information Systems such that they support the process of analyzingpossible causes for such inconsistencies.



2 Conceptual Information SystemsConcepts are necessary for expressing human knowledge. Therefore, the knowl-edge discovery process bene�ts from a comprehensive formalization of conceptswhich can be activated to represent knowledge coded in databases. Formal Con-cept Analysis ([12], [3]) o�ers such a formalization by mathematizing conceptswhich are understood as units of thought constituted by their extension andintension ([11]). For allowing a mathematical description of extensions and in-tensions, Formal Concept Analysis always starts with a formal context.De�nition. A (formal) context is a triple K := (G;M; I) where G and M aresets and I is a relation between G and M . The elements of G and M are calledobjects and attributes, respectively, and (g;m) 2 I is read \the object g has theattribute m".A (formal) concept is a pair (A;B) such that A � G, B � M are maximalwith A � B � I. The set A is called the extent and the set B the intent of theconcept (A;B). The subconcept-superconcept-relation is formalized by (A1; B1) �(A2; B2) :() A1 � A2 (() B1 � B2): The set of all concepts of a context(G;M; I) together with this order relation is always a complete lattice, calledthe concept lattice of (G;M; I) and denoted by B(G;M; I).Example 1. The cross-table in Figure 1 represents a formal context about thegates of Terminal 1 at Frankfurt Airport. The object set G comprises the gates,the attribute set M four di�erent functionalities. The binary relation I is repre-sented by the crosses. A cross at cell (g;m) (i. e., (g;m) 2 I) means `gate g hasfunctionality m'.
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Fig. 1. A formal context concerning gates at Frankfurt AirportIn the line diagram of the concept lattice in Fig. 2, each circle stands for aformal concept. The subconcept-superconcept hierarchy can be read by following



Terminal Gate
Bus Gate
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A10-21, A23 A22
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A2-5, A8, A9, B1, B3-9

B10

C2

B11-16, B30-35, B90, B91, C3, C10, C21-23

B20, B22-28, B41-48, C4-9Fig. 2. The concept lattice of the formal context in Fig. 1ascending paths of straight line segments. The intent [extent] of each conceptis given by all attribute labels [object labels] reachable from that context byascending [descending] paths of straight line segments. Hence, an object has anattribute if and only if they are linked by an ascending path. For instance, theleftmost concept in the diagram (which is labeled by B10) is the concept(fB10;A1;B2;C1g; fDomestic Gate;Terminal Gateg) :The fact that the lattice is a four-dimensional hypercube indicates that thereare no implications between the four attributes. In general, the visualization byline diagrams supports the study of dependencies between the attributes.In most applications, there are not only Boolean attributes in the databases.The conceptual model we use for this is a many-valued context. In databaseterms, a many-valued context is a relation of a relational database with onekey attribute whose domain is the set G of objects. Throughout this paper, weconsider only one (denormalized) database relation at a time.In order to obtain a concept lattice from a many-valued context, it has tobe translated into a one-valued (formal) context. The translation process is de-scribed by conceptual scales:De�nition. A many-valued context is a tuple (G;M; (Wm)m2M ; I) where Gand M are sets of objects and attributes, resp., Wm is a set of values for eachm 2M , and I � G �Sm2M (fmg �Wm) is a relation such that (g;m;w1) 2 Iand (g;m;w2) 2 I imply w1 = w2.A conceptual scale for an attribute m 2 M is a one-valued context Sm :=(Gm;Mm; Im) with Wm � Gm. The context Rm := (G;Mm; Jm) with gJmn :() 9w2Wm: (g;m;w)2I ^ (w; n)2Im is called the realized scale for the at-tribute m 2M .A Conceptual Information System consists of a many-valued context togetherwith a set of conceptual scales.



SpanienPortugal MaltaItalien

Nordafrika

TunesienMarokko

Algerien

Nicht aus diesem Gebiet

985251 701022 11153 14 16433Fig. 3. Realized scale Destination Southern Europe/Mediterranean SeaThe set M consists of all attributes of the database scheme, while the setsMm contain the attributes which are shown to the user by the Conceptual In-formation System.Example 2. The information system INFO-80 supports planning, realization, andcontrol of business transactions related to ight movements at Frankfurt Airport.A Conceptual Information System has been established in order to facilitateaccess to the data of INFO-80 ([4]).Here we consider 18389 outbound ight movements e�ectuated at FrankfurtAirport during one month. For each of these ight movements 110 attributes areregistered automatically and stored in a database (e. g., destination, estimatedtime of departure, actual time of departure, number of passengers, terminalposition, : : : ). 77 conceptual scales have been designed (some of the 110 databaseattributes were of minor importance for data analysis). By combining the scalesand zooming into them with other scales, the analyst can explore dependenciesand irregularities.Figure 3 shows the realized scale Destination Southern Europe/MediterraneanSea. Because of the large number of ight movements, TOSCANA displays onlythe number of ight movements assigned to each concept. If desired, the usercan drill-down to the ight number and to more detailed information. For in-stance, the concept labeled by `Marokko' (Morocco) has 53 objects (i. e., ightnumbers) in its extent, and the attributes `Marokko' and `Nordafrika' (Northern
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Fig.4.NestedlinediagramofthescalesPositionofBaggageConveyorandPosition
ofAircraftAfrica)initsintent.Itsupperneighbor(whichislabeledby`Nordafrika')has
53+14+111=178objectsinitsextent,and`Nordafrika'initsintent.

Foranalyzinghowobjectsaredistributedovertwodi�erentscales,onecan
combinethetwoconceptualscales.Theresultofcombiningthetwoconceptual
scalesPositionofBaggageConveyorandPositionofAircraftisdisplayedinthe
nestedlinediagraminFigure4.



Each of the 17 lines of the outer scale represents seven parallel lines linkingcorresponding concepts of the inner scale. The concept lattice we are interestedin is embedded in this direct product. The embedding is indicated by the boldcircles. Each non-realized concept (i. e., the empty circles) indicates an implica-tion. For example, the leftmost circle in the leftmost ellipse has the attribute`Halle A' (hall A) and `G' (general aviation) in its intent. These two attributesform the premise of the implication. The conclusion of the implication is givenby the intent of the largest realized concept below. In this case, it is the bot-tom concept which has all attributes in its extent. Hence hall A as position ofthe baggage conveyor and the general aviation apron as position of the aircraftimplies everything else. This means that the premise is not realized by any ob-ject. There are no general aviation aircraft with a baggage conveyor assigned athall A. There are concepts in the nested line diagram which are expected to benon-realized as well. For instance, an aircraft at Terminal 1 should not have abaggage conveyor assigned at Terminal 2. But in the diagram, we see that theconcept with these two attributes is realized. There are 180 ight movementshaving the attribute `Terminal 2' of the outer scale and the attribute `T1' of theinner scale.We can detect some more unnormal combinations. There are four aircraftthat docked at Terminal 2, while their assigned baggage conveyors are at Termi-nal 1. To seven aircraft at Terminal 2 and 17 aircraft at Terminal 1, conveyors onthe `Vorfeld V3' (Apron V3) were assigned. In all these cases, one can drill downto the original data by clicking on the number to obtain the ight movementnumbers, which in turn lead to the data sets stored in the INFO-80 system.The knowledge that the combinations are unnormal, is not coded explic-itly in INFO-80, but is only implicitly present as expert knowledge. Since thesecombinations happen at the airport, they cannot be forbidden by database con-straints. But once such conicts are discovered, one can implement an alarmwhich informs the operator of the baggage transportation system about suchcases.If there are too many scales involved in the knowledge discovery process,then zooming into the outer scale reduces the size of the displayed diagram.For instance, by zooming into the concept labeled by `Terminal 2' in Fig. 4, weobtain the diagram of the conceptual scale Position of Aircraft, but with theobjects being restricted to those ight movements where the assigned baggageconveyor is at Terminal 2. Then one can continue the exploration by adding anew conceptual scale on the inner level. This interactive human-centered knowl-edge discovery process is described in detail in [8].3 Exploring Conceptual SimilaritiesWhat are the reasons for the mismatches between the aircraft positions andthe assigned baggage conveyors for certain ight movements? By adding a newconceptual scale and zooming into the concepts in Fig. 4 where these ight move-ments are grouped together, the analyst can examine the properties of these ight



movements with regard to the new scale. But he has still the choice between 75scales, whereof most are probably irrelevant for the analysis. Hence we need aranking of the scales which tells the analyst which scales are probably the mostinteresting.One approach is to determine, in each scale, all attributes that all these ightmovements have in common. The scales can then be listed according to the num-ber of these attributes. For instance, for the 180 ight movements with aircraftpositions at Terminal 1 and baggage conveyors at Terminal 2, we obtain 27 com-mon attributes in 21 scales out of the total of 731 attributes of the 77 scales.These attributes obviously include `Terminal 2' in the scale Position of BaggageConveyor and `T1' in the scale Position of Aircraft. While these attributes pro-vide no new information to the user, there are also more interesting attributesas, e. g., `none' in the scale Number of mail pallets, or `last airport in the EU'in the scale All Informations in [PCG]. The computation and representation ofthe attributes common to all objects is discussed in more detail in [7].The result of retrieving all attributes common to all 180 ight movementsprovides interesting insights in the situation (e. g., that the destination is the lastairport in the EU for all these ights), but is not su�cient for explaining themismatch. One di�culty of this approach is that we require that all objects musthave the attributes to be returned. Attributes that do not pertain to all, but onlyto most of the objects are not shown to the analyst. The second drawback is thateven if an attribute pertains to all objects, it may be relatively irrelevant. Thisis the case if almost all objects in the database have that attribute. For instance,18811 of the 18939 outbound ight movements have the attribute `none' in thescale Number of Mail Pallets. This does not mean that the information thatnone of the 180 aircraft has mail pallets on board is irrelevant for the analysis,but it provides an estimation of its signi�cance.Hence, beside the percentages of the common attributes, another criterion fora ranking of the scales is needed, which indicates the di�erence of the distributionof the sample set to the distribution of the total set of objects. Once we havea measure for this di�erence, we can rank those scales where the sample setof objects has attributes in common, thus measuring the signi�cance of theseattributes. The second possibility is to rank all scales according to that measure,even if they do not provide common attributes.For the 180 ight movements with aircraft positions at Terminal 1 and bag-gage conveyors at Terminal 2, we will for instance discover that the scale Desti-nation Southern Europe/Mediterranean Sea provides interesting insights: Amongthe 180 ight movements, there are 87 with destination Italy1, hence much morethan estimated from the distribution of all objects which is shown in Fig. 3. Forall of the three di�erent measures that we discuss next, this scale appears onprominent positions in the rankings.1 Two of the remaining 93 ight movements have destinations in Spain, two in Mo-rocco, three in Tunisia, and 86 are out of the region Southern Europe/MediterraneanSea.



4 Measuring Di�erences of Distributions over ConceptualScalesThe three measures that we discuss are based on the �2 distance functionQ(x1; : : : ; xn; y1; : : : ; yn) := nXi=1  xiPnj=1 xj � yiPnj=1 yj!2 :For each scale in the Conceptual Information System, we compute such a value(with the xi and yj as de�ned below), and rank the scales in descending orderof these values.1. The �rst measure, Q1, is obtained by letting n be the number of concepts ofthe scale to be measured, xi the cardinality of the extent of the ith conceptin the sample set, and yi the cardinality of the extent of the ith concept inthe set G of all objects.2. The second measure, Q2, is de�ned as Q1 with the exception that the topelement of the scale is not regarded (i. e., we have that n is the number ofconcepts in the scale minus 1).3. The third measure, Q3, is again similar to Q1, but now, the xi and yj areset to the cardinalities of the contingents rather than of the extents. Thecontingent of a concept c is the set of all objects which belong to the extentof c but not to the extent of any proper subconcept of c.There are arguments for and against each of these three measures: i) The �rstmeasure involves the di�erence in each concept. This seems the most naturalapproach. ii) Because the top concept of a scale always contain all objects, thedistribution of the sample set and the total set is always equal in this concept.This is the argument for studying the modi�cation Q2 of Q1. iii) The standardin comparing distributions is to consider classi�cations of the objects in disjointclasses. This is the case for contingents, while extents share objects. This isthe reason for introducing the third measure. However, the third measure losesinformation about the structure of the conceptual scale, since its measure isalways equal to the corresponding nominal scale. Variations of the distributionwhich appear only at a very specialized level of concepts are thus considered tobe more important than by the �rst two measures.The research for determining which of the measures should be preferred is stillin progress. In sample applications, the di�erent rankings have to be computedand evaluated by experts of the �eld. These experts have to decide which of therankings reects best their intuitive understanding of interestingness. We haveapplied all three measures to the sample set of 180 ight movements. In thispaper, we discuss some observations that can be made in the �rst experiments:The rankings obtained by the �rst two measures do not di�er signi�cantly.The ranking of Q3 gives scales with at hierarchies a preference compared tothe other two. However, all three rankings are similar in a global sense: Theyprovide local di�erences, but in the whole they consider the same scales to be



important. The scales an analyst considers to be potentially signi�cant are allamong the top twenty in each of the rankings.In the ight movement database, there is no information coded about thesemantics of the database attributes. Hence the algorithm can not distinguishwhether a high score indicates a cause or a consequence of the examined situ-ation. For instance, the scale Area Control Group has a high score in all threerankings. This is a consequence of the fact that by �xing the aircraft positionthe area control group is determined as well. If the data model provides suchinformation (e. g., by functional dependencies), then one could use it for �lteringthe ranking. This feature cannot be applied to the presented system, becausethe ight movement database is just a at table.Concluding this section, we want to emphasize again that our purpose is nottesting hypotheses or providing statements about dependencies. This is the taskof a human expert. The analyst is free to look at any scale he wants. The systemonly supports him by providing suggestions where to look �rst. This approachcombines a systematic investigation with the freedom to navigate around.5 OutlookAs already mentioned in the last section, �eld studies have to be done in orderto compare the di�erent measures. Once a measure is decided to be the mostsuitable, this application should be implemented in the management systemTOSCANA for Conceptual Information Systems. The implementation can becombined with a highlighting of interesting concepts as proposed in [9]. Thishighlighting marks those concepts of a conceptual scale which contribute over-proportionally to the sum of squared di�erences. Further research should alsoinclude the exploitation of information provided by the conceptual data model.References1. A. Arnauld, P. Nicole: La logique ou l'art de penser | contenant, outre les r�eglescommunes, plusieurs observations nouvelles, propres �a former le jugement. 3o �edit.reve�ue & augm. P., Ch. Saveux, 16682. R. Cole, P. Eklund, B. Groh: Scalability in Formal Concept Analysis. J. on Com-putational Intelligence (to appear)3. B. Ganter, R. Wille: Formale Begri�sanalyse: Mathematische Grundlagen. Sprin-ger, Heidelberg 19964. U. Kaufmann: Begri�iche Analyse von Daten �uber Flugereignisse | Implemen-tierung eines Erkundungs- und Analysesystems mit TOSCANA. Diplomarbeit, TUDarmstadt, 19965. W. Kollewe, M. Skorsky, F. Vogt, R. Wille: TOSCANA | ein Werkzeug zurbegri�ichen Analyse und Erkundung von Daten. In: R. Wille, M. Zickwol�(eds.): Begri�iche Wissensverarbeitung | Grundfragen und Aufgaben. B. I.{Wissenschaftsverlag, Mannheim 1994
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