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Abstract

Knowledge discovery support environments in-
clude beside classical data analysis tools also
data mining tools. For supporting both kinds
of tools, a unified knowledge representation is
needed. We show that concept lattices which
are used as knowledge representation in Con-
ceptual Information Systems can also be used
for structuring the results of mining association
rules. Vice versa, we use ideas of association
rules for reducing the complexity of the visual-
ization of Conceptual Information Systems.

1 Introduction

The aim of Knowledge Discovery in Databases (KDD) is
to support human analysts in the overall process of dis-
covering useful information and knowledge in databases.
Many real-world knowledge discovery tasks are both too
complex to be accessible by simply applying a single
learning or data mining algorithm and too knowledge-
intensive to be performed without repeated participation
of the domain expert. Therefore, knowledge discovery in
databases 1s considered an interactive and iterative pro-
cess between a human and a database that may strongly
involve background knowledge of the analyzing domain
expert. Following [Fayyad et al., 1996], we understand
KDD as the overall process of discovering useful knowl-
edge from the data while data mining is considered as
one step of KDD, namely the application of algorithms
for extracting patterns from the data. ITn most applica-
tions, classical data analysis and decision support facili-
ties (for instance Online Analytical Processing (OT.AP)
or statistical packages) are already present when data
mining tools are added to the knowledge discovery sup-
port environment. For supporting the analyst in the
overall process of human-centered knowledge discovery,
both decision support and data mining tools should pro-
vide a homogeneous environment. In particular, this
shows the need of a unified knowledge representation.
In this paper, we use concept laitices as such a uni-
fied knowledge representation for a knowledge discovery
support environment which integrates Conceptual Infor-

Association rules are statements of the type ‘37 % of
the customers buying coffee also buy milk’. The task
of mining association rules is to determine all rules that
have a certain confidence (37 % in the example) and
a certain support (the percentage of customers buying
coffee and milk). Mining association rules can nowadays
be considered as one of the core tasks of KDD.

Conceptual Information Systems are based on Formal
Concept, Analysis. Formal Concept Analysis (FCA) is
a mathematical theory formalizing the concept of ‘con-
cept’, introduced by Wille [1982]. During the years,
FCA grew to a data analysis method [Ganter, Wille,
1999] which is now commercially applied by NaviConN
(GESELLSCHAFT FUR BEGRIFFLICHE WISSENSVERAR-
BEITUNG MBH. In the past few years, FCA has been used
by different AT researchers as a knowledge representation
mechanism in various fields (e. g., [Schmitt, Saake, 1997],
[Erdmann, 1998]). Stumme [1998] compares Conceptual
Information Systems with OLAP and Stumme, Wille,
and Wille [1998] discuss how FCA can support, a human-
centered knowledge discovery process called Conceptual
Knowledge Discovery in Databases (CKDD).

Concept lattices are the knowledge representation of
FCA. In Conceptual Information Systems, they are also
used for visualizing the knowledge. We will show in this
paper that concept lattices can also support the mining
of association rules. The benefit of combining FCA and
association rules is mutual:

1. Knowledge representation by concept lattices has to
face the problem of exponential growth of the lattices.
This is especially problematic when dealing with large
data tables, for instance in the analysis of basket data
for a supermarket. The management tool TOSCANA
for Conceptual Tnformation Systems [Vogt, Wille, 1994]
solves this problem by vertically splitting the database
and combining only those parts which are of interest for
the actual query. Tn this paper, we present another ap-
proach (which can be combined with TOSCANA) bor-
rowed from association rules: We prune horizontally all
concepts with low support and keep only the frequent
concepts.

2. Usually the algorithms for mining association rules
return long lists of rules where many rules are not of
interest to the market analyst. Different approaches



have been made for reducing the list, for instance ‘meta-
mining’ the list or defining the ‘surprisingness’ of rules.
In this paper we show how the list of association rules can
be structured and reduced by using frequent concepts.

In the next section, we present the basics of FCA and
association rules as far as they are needed for this pa-
per. For more detailed introductions, refer for instance
to [Ganter, Wille, 1999] and [Agrawa] et al., 1996]. Tn
Section 3, frequent concepts are introduced, and in Sec-
tion 4, we discuss how they can help structuring and
reducing the mining of association rules.

2 Basics of Formal Concept Analysis
and Association Rules

2.1 Formal Concept Analysis

Since concepts are necessary for expressing human
knowledge the knowledge discovering process benefits
from a comprehensive formalization of concepts. FCA
offers such a formalization by mathematizing concepts
that are understood as units of thought constituted by
their extension and intension. This understanding of
‘concept’ 1s first mentioned explicitly in the Logic of Port
Royal [Arnand, Nicole, 1668] and has been established
in the German standards DIN 2330 and DIN 2331.

To allow a mathematical description of extensions and
intensions, FCA starts with a (formal) contert defined as
a triple K := (G, M, T), where (5 is a set of objects, M is
a set of attributes, and T is a binary relation between (¢
and M (i.e. T C G x M). (g,m) € I is read “the object
g has the attribute m”.

Figure 1 shows the formal context Koofee =
(Gcoﬁ‘em M(‘,oﬁ'em [(‘,oﬁ‘ee) where the Ob.ieCt’ set G(‘,oﬁ'ee com-
prises all coffees sold by a supermarket and the attribute
sett Meofree provides some attributes describing them.

For A C (G, we define A" := {m € M | Vg € A:
(g9,m) € T} and, for B C M, we define B’ := {g € G|
Ym € B:(g,m) € T}. (In Sections 3 and 4, we will use
the fact that B C B”, B’ = B and (By U By) =
Bi N B), for all B C M. The same holds for B C (7.)

A formal concept of a formal context (G, M, T) is de-
fined as a pair (A, B) with A C G, B C M, A’ =
B and B® = A. The sets A and B are called the
extent and the intent of the formal concept (A, B).
The subconcept superconcept relation is formalized by
(A17B1) < (A27B2) <= Ay C A, (<:> B D BQ)
The set of all concepts of a context K together with the
order relation < is always a complete lattice, called the
concept lattice of K and denoted by B(K). Figure 2
shows the concept lattice of the context in Figure 1 by
a line diagram.

In the line diagram, the name of an object ¢ is always
attached to the circle representing the smallest concept
with ¢ in its extent; dually, the name of an attribute m
s always attached to the circle representing the largest
concept with m in its intent. This allows us to read the

'T. e., for each subset. of concepts, there is always a greatest
common subconcept and a least common superconcept.
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Figure 1: The formal context K.qffee

context relation from the diagram because an object g
has an attribute m if and only if there is an ascending
path from the circle labeled by ¢ to the circle labeled
by m. The extent of a concept consists of all objects
whose labels are below in the diagram, and the intent
consists of all attributes attached to concepts above in
the hierarchy. For example, the concept labeled by ‘<
6 DM’ has {‘Plus Naturmild’, ‘Plus milde Sorte’, ‘Plus
Gold’} as extent, and {‘< 6 DM’, ‘Plus’ (the house brand
of the supermarket), ‘< 8 DM’} as intent.

For X, Y C M, we say that the implication X — Y
holds in the context, if each object having all attributes
in X also has all attributes in Y. For instance, the im-
plication {Plus, classic} — {< 6 DM} holds in the coffee
context. Tt can be read directly in the line diagram: the
largest concept having both ‘Plus’ and ‘classic’ in its in-
tent is below the concept labeled by ‘< 6 DM’.

A Conceptual Information System consists of a many-
valued contert and a set of conceptual scales. A
many-valued context may not only have crosses (i.e.,
yes/no) as entries; but attribute-value pairs. More
precisely, a many-valued contert is a tuple K :=
(G, M, (Wi)mem, ) where (5 is a set of objects, M a
set of attributes, W, the set of possible values for the
attribute m € M, and the relation T C G x {(m,w) |
me M, we W, } [with (¢g,m,wy) € T,(g,m,ws) € I =
wn = ws] indicates if an object g € (G has value w € W,
for attribute m € M. A conceptual scale for a subset
B C M of attributes is a (one-valued) formal context
SF; = (GR7 /\/[]g7 [R) with GR g XMERWm' (Th@ idea
is to replace the attribute values in W, which are often
too specific by more general attributes which are pro-
vided in Mpg. For an example, see below.)

For a basket data analysis of a supermarket, we con-
sider as set (Fi.x of a many-valued context Ki., the set
of all transactions of the supermarket (more precisely,
their TDs); and as set My, of attributes the set of all
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Figure 2: The concept lattice B(Keofree) of the context Kooree

items sold by the supermarket together with the two
attributes time and date. (One could add other at-
tributes like credit card number etc.) For all items
of the supermarket the attribute set is Boolean, e.g.,
WDaHmayr‘ Prodomo = {yes7n0}- For an item m € M‘nr‘)m
we let (g, m, yes) € I if item m was purchased (at least
once) in transaction g, and (g,m,no) € Iy else. For
time we have Wiime =[9.00, 19.59], and Wiate contains
all dates during the period to be analyzed.

An example of a conceptual scale for B={time} is
given in Figure 3. The attributes Mime={morning, ...,

between 12 and 6pm

Figure 3: The conceptual scale Stime

evening} have been chosen because the analyst is usu-
ally not interested in seeing the exact time of the trans-
actions, but is thinking in more general terms. When
the analyst chooses the scale Sijme 1n the management
system TOSCANA| then the diagram in Figure 3 1s dis-
played, but instead of the wHERE-clauses of SQI. queries
(e.g., time in [12.00, 13.59]) the numbers of transactions
which fulfill the queries are shown. (This is the derived

context for § = {Siime} as defined below.)

For B = {Dallmayr Prodomo, ..., Kaisers Kaffee
Auslese Mild}, the formal context K.sfree cannot be used
directly as a conceptual scale. The context we need must
have the powerset PB(Goofree) as set of objects, not the
set Geofree 1tself, because customers can buy arbitrary
combinations of coffee. This is provided by the con-
Ceptua] scale Scoﬁ‘ee = (%(Gcoﬁ‘ee)7 M(‘,oﬁ'em J(‘,oﬁ'ee) with
(A7m) € J(‘,oﬁ‘ee Sl 3(] €A ((],m) € [(‘,oﬁ'ee-

Now let & be the set of conceptual scales for the many-
valued context K := (G, M, (W )mem, I). For any sub-
sett & C & of scales, we can now translate the many-
valued context into a one-valued one: The derived con-
tert Ks 1s defined by Kg = (G7USReS Mg, TS) with
(9,n) € Is if there is a scale S € § with m € Mg and
w € W, with (¢9,m,w) € T and (¢g,n) € Ig. For in-
stance, if § = {Stime}, and (TTD 0815, time, 11.17am)e
7, then we have (TTD 0815, morning), (TTD 0815, hefore
2pm)€ Is [because (time < 12.00, morning)€ lijme and
(time < 12.00, before 2pm)€ I as one can see in Fig-
ure 3].

One can hence derive from each many-valued context
K one large one-valued context Kg, for which the con-
cept lattice could be computed. However, this approach
is not feasible because the resulting lattice 18 usually
much too large, and nobody wants to see 1t as a whole.
Instead, the system TOSCANA allows to combine the
diagrams of two (or more) conceptual scales in a nested
line diagram: Tn each concept of the first scale, the sec-
ond scale is inserted.?

2 This works well because the lattice of the whole derived
context can always be embedded (as a join-semilattice) in the
direct product of all the scales. Because of space limitation,



For instance, by combining Stime and Scofee, the an-
alyst can see how the types of coffee purchased change
during the day: Ts classical coffee bought more often in
the morning, and light coffee in the evening? Hence if the
analyst already guesses that there i1s some relationship
between the time of the purchase and the type of cof-
fee purchased, then the Conceptual Information System
supports him in analyzing the situation in more detail.
Supporting the user in finding such hypotheses is the
task of mining association rules.

2.2 Association Rules

We can describe association rules in terms of Formal
Concept Analysis: Consider again the context K., . For
the moment, we restrict the set M of attributes to the
items sold by the supermarket (and ignore the many-
valued attributes time and date). Then we can see the
restricted context K2 as a one-valued context. Fach

trx
subset X of M is called an itemset. The support of X is
defined by supp(X) := ll)éll (where |(7] is the cardinality

of G).
An association rule X — Y consists of two subsets X

and Y of M. We say that the rule X — YV holds with

[(Xuv)'|

support supp(X — V) := el and with confidence

conf(X = Y) = % (in short: X 2% Y with

s :=supp(X — V) and ¢ := conf(X — V)). (An impli-
cation is hence an association rule with confidence 1 and
arbitrary support.)

Rules that hold only with a certain confidence have
been investigated for a long time by many researchers.
For instance, in the framework of FCA, Tuxenburger
[1991] has called them partial implications. The notion
of association rules (which additionally have high sup-
port) and their application to large databases was intro-
duced by [Agrawal et al., 1993]. They stated the follow-
ing problem and provided a first algorithm: Compute,

for given Smin, tmin € [0, 1], all association rules X N
with s > smin and ¢ > enin.

There are now several algorithms for mining associ-
ation rules in the literature. All algorithms work in
two steps. First they determine the set F of all fre-
quent itemsets, i.e., F := {Y € M | supp(Y) > Smin}-
Then they determine, for each Y € F, all X C Y with
conf(X = V) > cmin- The expensive step is the first
one. Hence almost all research effort is focussed on that
step. In this paper, we focus on structural aspects of
association rules, and discuss algorithms only briefly.

Generalized association rules have been introduced in
[Srikant, Agrawal, 1995] because the association rules
obtained by mining directly the large context K7, with
all items as attributes returns rules which are often too
specific, for instance ‘37% of customers buying Jacobs
Meisterrostung also buy Barenmarke Kaffeemilch 0.251°,
instead of ‘39% of customers buying classically roasted
coffee also buy coffee milk’.

we refer to [Vogt, Wille, 1994] for an example.

For generalized association rules, one considers addi-
tionally a taxonomy on the set M7, of items. The tax-
onomy is a partially ordered set (77, <) (in which usually
the items (i.e., the elements in M. ) are considered as
the minimal elements). All other elements are called
generalized items. We say that lransaction ¢ € (3,
contains the generalized item t € T if there is a (non-
generalized) item m € MS, with (¢9,m) € T and m <1
in (T,<). For instance, if ‘Plus Schonkaffee’ < ‘light,
coffee” in the taxonomy, then each transaction contain-
ing ‘Plus Schonkaffee’ also contains the generalized item
‘light coffee’. For mining generalized association rules,
one could first add all generalized items to the context,
and then mine that as a flat table. But this approach
1s quite inefficient, and all existing algorithms try to use
the taxonomy to support, pruning. Weber [1998] gives
an overview over algorithms for mining association rules
and generalized association rules.

Up to now, we have stated the basics of both Formal
Concept Analysis and association rules. Now let us see
how both theories can enrich each other.

3 Frequent Concept Lattices

Concept lattices provide exactly the same information
than the formal context they are derived from. While
this i1s a big advantage over other data analysis tech-
niques in many applications, it is a serious handicap for
large datasets. As mentioned before, this problem 1s usu-
ally faced by vertically splitting the database by using
conceptual scales and displaying only a part by combin-
ing two or more scales in nested line diagrams. Here we
consider a horizontal pruning of the concept lattice. As
we will see later, both approaches can be combined.
For a given smin € [0, 1], we define the frequent con-
cepts of K := (G, M, T) as the concepts (A, B) € B(K)

with % > Smin. The lattice B, (K) = {(A,B) €

B(K) | % > Smin p U {(M', M)} is called the frequent

concept lattice of the context K.3

By fixing a suitable threshold s, we can now consid-
erably reduce the concept lattice B(KP.,. ) to the frequent
concept lattice B, (KP_ ). The latter contains still all
relevant information for the basket data analysis.* The
frequent concept lattice is usually still too large to be
displayed as a whole. But now, we can combine this hor-
izontal pruning of the lattice with the vertical splitting of
the data table: For each conceptual scale Sg (i.e., each
‘slice’ of the context K. ) we only display its frequent
concept lattice B, (Sg). The frequent concept lattice
B, . (K) of the total context K can then be embedded

*We have to add the smallest concept of B(K), (M', M),
in order to obtain a lattice again. This is more a technical
detail; see Footnote 5.

*Observe that the restriction to the frequent concepts is
not suitable for other kinds of applications. For instance,
in Conceptual Information Systems used for Information Re-
trieval, one is especially interested in the concepts with low
support.



(as a join-semilattice) in the direct product of the fre-
quent concept lattices of the conceptual scales (compare
with Footnote 2). Hence one can still use the visualiza-
tion method by nested line diagrams as it is implemented
in TOSCANA. The use of frequent concept lattices al-
lows us to work with conceptual scales which are too
large to be displayed completely. For instance, the con-
ceptual scale S ofee which we introduced in Section 2 has
99 concepts. But it is only so large in order to cover all
eventualities: Each of the 2'% = 65536 combinations of
coffees is considered in the scale. But with a reasonable
threshold spin for the support, we can assume that only
single coffees and very few combinations of two different
coffees are bought together frequently. Then the result-
ing lattice 1s not much larger than the concept lattice in
Figure 2 and can bhe combined with another scale (for
instance Siime) in a nested line diagram. Tf there are no
frequent combinations of two different coffees, then the
lattices are even identical.

For computing the frequent concept lattice of a con-
text K, one can apply the Next-Closure-Algorithm
(1984) of B. Ganter in [Ganter, Wille, 1999]. Tt is usually
used for computing concept lattices, but can be used for
determining arbitrary closure systems. A closure system
C C P(M) on a set M is a set of subsets of M such
that for any subset X C C, (X is a closure again, i.e.,
X € C.% To each closure system is assigned a closure
operator " P(M) — P(M) which maps each subset X
of M to the smallest closure X containing X .

We briefly recall the Next-Closure-Algorithm. For
a given closure operator, it determines all closures in
the lectic order. For simplicity, we assume that M —
{1,...,n}. For XY C M, we say that X <; YV if
and only if An{l,....i —1} = Bn{l,...,i — 1}
and i € B\ A. Then the lectic order is defined by
X <Y <= die M:X <; Y. The lectic order is
a total order on P(M), i.e., for XV € PB(M), we have
always X <Yor X =Y or X >VY.

Algorithm: The lectically smallest closure is . For a
given set X € M, the lectically next closure is deter-
mined by: 1. Let i := n.

2. While A &, (AN{1,...i— 1) U{i}, doi=i—1.

3. Then (AN{1,...,i—1}) U {i} is the lectically next
closure. The last closure 1s M. O

The intents of a concept lattice form a closure system,
and can hence be determined by the algorithm with the
closure operator X := X”. For determining the frequent
concept lattice B,  (K), we have to modify the closure

operator: X := X" if supp(X) > smin and X := M else.
Since X C YV implies X <Y, the algorithm prunes then
all itemsets which have an infrequent itemset as proper
subset.©

"Remark that M = ﬂ@ is always a closure. That is the
reason why we had to add (M', M) to B, (K).

in

SPrutax [Hipp et al, 1998], a depth-first algorithm for

In the next section, we discuss how frequent concepts
can be used for structuring and reducing the results of
mining association rules.

4 Structuring Association Rules

In this section we show that it is not necessary to know
all frequent itemsets for computing the relevant associa-
tion rules. Tt is sufficient to consider intents of frequent
concepts.

Let us call the intent of a frequent concept frequent
intent. T.e., X C M is a frequent intent if and only if
X = X" and supp(X) > smin. We will see that instead
of providing all association rules to the market analyst,

we can restrict ourself to those rules X 5V where X
and Y are frequent intents, together with a set of impli-
cations, called frequent Duguenne-Guigues-basis, which
describes the structure of the frequent concept lattice
B, (¥).

The intents of a given context K := (G, M, T) are ex-
actly those subsets of M which are closed under all im-
plications which hold in K. Hence it is sufficient to know
how to generate all implications that hold in K. A basis
of implications is a set of implications from which one
can derive all implications by using the following three
rules [Amstrong, 1974]: (1) X — X forall X C M. (2)
It X — VY then XUZ — X forany 7 C M. (3)1Tf
X—=>YandYUZ - W, then XUZ — W.

Duquenne and Guigues [1986] have shown that the set
of all implications P — P” where P is a pseudo-intent
forms a minimal basis. A pseudo-intent is a subset P of
M with P # P” such that, for each pseudointent Q C P
with Q@ # P, Q" C P holds.

As we are interested in describing the frequent concept
lattice only, we can prune the Duquenne-Guigues-Basis:
We define the frequent Duquenne-Guigues-basis as the
set, {P — P | P pseudo-intent, supp(P) > smin }. This
set. generates now all frequent implications, 1.e., all as-
sociation rules with high support and confidence 1.

The following theorem shows that for determining
the remaining association rules (those with confidence
# 1), we can restrict ourselves to those rules where both
premise and conclusion are frequent intents. The proof
1s straightforward. For the confidence, it goes back to
[LuXerﬂburger7 1991].

Theorem. Tet X, Y C M. Then X =Y and X"/ = V"
have the same support and the same confidence.

We can now present the results to the market ana-
lyst in two parts: We provide the frequent Duquenne-
Guigues-Basis together with the list of all association
rules X 25V with X = X7,V = V", s > $min and
¢ > Cmin. From these two lists, we can check whether
an association rule X — Y holds with support s > snin
and confidence ¢ > cnin 1n two steps: First we determine
the implication X — X’ by applying the implications

mining generalized association rules, traverses the power set

PB(M) in the lectic order, too.



from the frequent Duquenne-Guigues-Basis to the set X.
Similarly we determine Y. Then we can check whether

X" 25y provided in the second list.

By using these two lists, we can save the user from
reading redundant association rules. The gain of our
approach depends on how many frequent itemsets are
not frequent intents. While itemsets with very few items
tend to be intents (hecause there are transactions which
have exactly these items in common), the more items an
itemset, has (and the lower its support is), the higher is
the chance that the itemset 1s not an intent.

The gain is higher when we deal with generalized asso-
ciation rules. For instance, the implication {> 8 DM} —
{classic} will hold in any case; and it is not, unlikely that
the implication {Plus, classic} — {< 6 DM} will hold as
well.

5 Qutlook

We have shown in this paper that bringing together For-
mal Concept Analysis and association rules can enrich
both theories. Not all questions are solved yet, and fur-
ther research 1s needed. We briefly state three interesting
questions:

1. Tmplications can be read directly from the line di-
agram, which is more accepted by the users than a long
list of implications. Due to the fact that association rules
are not transitive, their visualization is much more dif-
ficult. The modification of line diagrams such that they
also visualize association rules is one topic of further re-
search.

2. The Next-Closure-Algorithm is not optimized for
contexts with |(F] > |M|, the typical situation in super-
market basket data analysis. Further research is needed
to adapt existing data mining tools (which are optimized
for this situation) such that they can compute the fre-
quent pseudointents. (The computation of the frequent
intents can easily be integrated in the existing algo-
rithms, since X C M 1is an intent if and only if there
isnom e M\ X with supp(X U {m}) = supp(M).)

3. A promising approach is to consider Conceptual
Information Systems as preprocessing tools for mining
association rules. Conceptual scales can be used as tax-
onomies for generalized association rules; and by select-
ing scales one can restrict the data to be mined and the
level of detail on which the mining shall take place.
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