
Numerical Aspects in the Data Modelof Conceptual Information SystemsGerd Stumme1 and Karl Erich Wol�21 Technische Universit�at Darmstadt, Fachbereich Mathematik, Schlo�gartenstr. 7,D{64289 Darmstadt; stumme@mathematik.tu-darmstadt.de2 Fachhochschule Darmstadt, Fachbereich Mathematik und Naturwissenschaften,Sch�o�erstr. 3, D{64295 Darmstadt; wol�@mathematik.tu-darmstadt.deAbstract. While most data analysis and decision support tools use nu-merical aspects of the data, Conceptual Information Systems focus ontheir conceptual structure. This paper discusses how both approachescan be combined.1 IntroductionThe data model of Conceptual Information Systems relies on the insight thatconcepts are basic units of human thinking, and should hence be activated indata analysis and decision support. The data model is founded on the math-ematical theory of Formal Concept Analysis. Conceptual Information Systemsprovide a multi-dimensional conceptually structured view on data stored in re-lational databases. They are similar to On-Line Analytical Processing (OLAP)tools, but focus on qualitative (i. e. non-numerical) data. The management sys-tem TOSCANA visualizes arbitrary combinations of conceptual hierarchies andallows on-line interaction with the database to analyze and explore data concep-tually.Data tables are usually equipped with di�erent types of structures. Whilemost data analysis tools use their numerical structure, Conceptual InformationSystems are designed for conceptually structuring data. As concepts are the basicunits of human thought, the resulting data model is quite universal | and isalso able to cover numerical aspects of the data. However, up to now, the modeldoes not have any features which support techniques speci�c to numerical data.Many applications indicate the need for not only using tools which operateonly on numerical or only on conceptual aspects, but to provide an integrativeapproach combining both numerical and conceptual structures for data analysisand decision support in one tool. In this paper we discuss how the data modelof Conceptual Information Systems can be extended by numerical aspects. Thedevelopments discussed in the sequel arose mostly from scienti�c and commercialapplications, but for sake of simplicity, we start with a small demonstrationapplication: a Conceptual Information System for a private bank account. But�rst, we provide some basics about Formal Concept Analysis.
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N2OFig. 1. Formal context and concept lattice of gaseous pollutants2 The Mathematical Background: Formal ConceptAnalysisConcepts are necessary for expressing human knowledge. Therefore, the processof knowledge discovery in databases bene�ts from a comprehensive formalizationof concepts which can be activated to represent knowledge coded in databases.Formal Concept Analysis ([10], [1], [13]) o�ers such a formalization by mathe-matizing concepts which are understood as units of thought constituted by theirextension and intension. For allowing a mathematical description of extensionsand intensions, Formal Concept Analysis always starts with a formal context.De�nition. A formal context is a triple (G;M; I) where G is a set whose ele-ments are called (formal) objects, M is a set whose elements are called (formal)attributes, and I is a binary relation between G and M (i. e. I � G �M ); ingeneral, (g;m) 2 I is read: \the object g has the attribute m".A formal concept of a formal context (G;M; I) is de�ned as a pair (A;B) withA � G and B �M such that (A;B) is maximalwith the property A�B � I; thesets A and B are called the extent and the intent of the formal concept (A;B).The subconcept-superconcept-relation is formalized by (A1; B1) � (A2; B2) :()A1 � A2 (() B1 � B2). The set of all concepts of a context (G;M; I) togetherwith the order relation � is always a complete lattice, called the concept latticeof (G;M; I) and denoted by B(G;M; I).Example. Figure 1 shows a formal context about the potential of gaseous pollu-tants. The six gases NOx, : : : , CO2 are the objects, and the seven listed perilsare the attributes of the formal context. In the line diagram of the concept lat-tice, we label, for each object g 2 G, the smallest concept having g in its extentwith the name of the object and, for each attribute m 2 M , the largest con-cept having m in its intent with the name of the attribute. This labeling allowsus to determine for each concept its extent and its intent: The extent [intent]of a concept contains all objects [attributes] whose object concepts [attributeconcepts] can be reached from the concept on a descending [ascending] path of



no. value paid for objective health date3 42.00 Konni ski-club s 03. 01. 199520 641.26 Konni, Florian o�ce chairs / 23. 01. 199527 68.57 Family health insurance hi 02. 02. 199534 688.85 Tobias o�ce table / 06. 02. 199537 25.00 Father gymn. club s 08. 02. 199552 75.00 Konni gymn. club s 24. 02. 199573 578.60 Mother Dr. Schmidt d 10. 03. 199577 45.02 Tobias Dr. Gram d 17. 03. 199580 77.34 Parents money due / 21. 03. 1995Fig. 2. Withdrawals from a private bank accountstraight line segments. For instance, the concept labeled with CO has fCO, SO2,NOxg as extent, and fhuman toxicity potential, greenhouse e�ect, ecotoxicitygas intent. The concept lattice combines the view of di�erent pollution scenarioswith the in
uence of individual pollutants. Such an integrated view can be ofinterest for the planning of chimneys for plants generating speci�c pollutants.In the following, we distinguish, for each formal concept c, between its extent(i. e., the set of all objects belonging to c) and its contingent (i. e., the set of allobjects belonging to c but not to any proper subconcept of c). In the standardline diagram, the contingent of a formal concept c is the set of objects which isrepresented just below the point representing c. The extent of the largest conceptis always the set of all objects. The extent of an arbitrary concept is exactly theunion of all contingents of its subconcepts.In many applications, the data table does not only allow Boolean attributesas in Fig. 1, but also many-valued attributes. In the next section, we show bymeans of an example how such many-valued contexts are handled by formalconcept analysis.3 The Conceptual Aspect of the Bank Account SystemThe basic example underlying this paper consists of a table of all withdrawalsfrom a private bank account during several months. A small part of this tableis shown in Fig. 2. As an example, the row numbered 20 contains informationabout a withdrawal of 641.26 DM for o�ce chairs for the sons Konni and Florianpaid on January 23, 1995. In formal concept analysis, data tables such as theone in Fig. 2 are formalized as many-valued contexts.De�nition. A many-valued context is a tuple K := (G;M; (Wm)m2M ; I), whereG, M , and Wm, m 2 M , are sets, and I � f(g;m;w) j g2G;m2M;w2Wmg isa relation where (g;m;w1) 2 I and (g;m;w2) 2 I implies w1=w2. Thus, eachm 2M can be seen as a partial function. For (g;m;w) 2 I we say that \objectg has value w for attribute m" and write m(g) = w.



sport doctor healthinsurance healthhealth=\s" � �health=\d" � �health=\hi" � �health=\/" health

health insurancedoctorsport

health="/"

health="hi"health="d"health="s"Fig. 3. The scale \health"Clearly each �nite many-valued context can be represented as a relational data-base table where the set G of objects occurs in the �rst �eld chosen as primarykey.In the following we construct a conceptual overview with the purpose toanswer questions like \How much has been paid for health for each familymember?". Therefore we �rst introduce a conceptual language representing themeaning of the values occuring in the column health of Fig. 2. This languageis represented by the formal context in Fig. 3. For example, the withdrawalslabeled \s" in column health of Fig. 2 are assigned to \sport" and to \health",while the withdrawals labeled \/" are not assigned to any attribute of this scale.The concept lattice of this formal context is represented by the line diagramin Fig. 3 which demonstrates graphically the intended distinction between thewithdrawals not assigned to \health" and those assigned to \health" and theclassi�cation of these into three classes. This is an example of a conceptual scalein the sense of the following de�nition.De�nition. A conceptual scale for an attribute m 2M of a many-valued con-text (G;M; (Wm)m2M ; I) is a formal context Sm := (Wm;Mm; Im).Conceptual scales serve for \embedding" the values of a many-valued attributein a conceptual framework describing the aspects the user is interested in. Butto embed also the original objects, in our example the withdrawals, into thisframework we have to combine the partial mapping of the many-valued attributem and the embedding of the values. This is done in the following de�nition of arealized scale.De�nition. Let Sm = (Wm;Mm; Im) be a conceptual scale of an attribute mof a many-valued context (G;M; (Wm)m2M ; I). The context (G;Mm; J) withgJn : () 9w2Wm: (g;m;w)2I ^ (w; n)2Im is called the realized scale for theattribute m.To construct the concept lattice of the realized scale we assign to each value w ofm, hence to each object of the scale Sm, an SQL-query searching for all objects
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686Fig. 4. Frequencies of withdrawals related to \health".g in the given many-valued context such that m(g) = w. The concept latticeof the realized scale for \health" is shown in Fig. 4 where the contingents arereplaced by their cardinalities, called frequencies.Reading example: There are exactly six withdrawals assigned to \sport" andexactly 67 withdrawals not assigned to \health". Finallywe remark that there areno withdrawals which are assigned to \health" but neither to \sport", \doctor"or \health insurance".In TOSCANA, the user can choose conceptual scales from a menu. Thedatabase is queried by SQL-statements for determining the contingents of theconcepts. Finally the results are displayed in a line diagram representing theembedding of the concept lattice of the realized scale in the concept lattice ofthe scale.The line diagram in Fig. 4 is unsatisfactory insofar as we would like to seenot only the frequencies of withdrawals but the amount of money paid. In thenext section we shall discuss how this can be visualized.4 The Numerical Aspect of the Bank Account SystemFor an e�cient control of the household budget, the user needs an overview overthe distribution of the money, and not of the number of withdrawals. Hence,for each contingent S, we display the sum over the corresponding entries in thecolumn \value" instead of the frequency of S. The result of this computation isthe left line diagram in Fig. 5. We can see for example that the withdrawals for\sport" sum up to 383 DM and the withdrawals not concerning \health" sumup to 41538 DM. The right line diagram shows, for each formal concept, thesum over the values of all withdrawals in the extent (instead of the contingent)of this concept, for instance the total amount of 45518 DM for all withdrawalsin the given data table and the amount of 3980 DM for \health". To visualizealso the amount of money paid for the family members (and for relevant groups
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23211773329092445Fig. 6. Summing up book-values over contingents of the scale \family".of them), we use the scale \family" in Fig. 6. This diagram shows for instancethat there are withdrawals of 2445 DM for \Mother", that 78 DM are classi�edunder \Parents", but not under \Mother" or \Father" (this is the \money due"in the last row of Fig. 2) and that 38213 DM appear for withdrawals classi�edunder \Family" which are not speci�ed further.Next we combine the scales \family" and \health". The resulting nested linediagram is shown in Fig. 7. Now the withdrawals are classi�ed with respect tothe direct product of the scales for family and health. For instance, 733 DMexpended for Tobias split into 45 DM for a doctor and 688 DM not concerninghealth, i. e., the amount spent on his o�ce table (see Fig. 2). This nested line
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1159Fig. 7. Summing up over contingents in the nested line diagram of the scales \health"and \family".diagram shows also that the withdrawals for health insurance (which amount to1930 DM) are all summarized under the concept \Family" and are not speci�edfurther.In the next section, we describe the formalization of numerical structures.This is the basis for generalizing the example in Section 6.5 Relational StructuresIn Section 2, we have seen how conceptual structures are formalized. Let us nowconsider the numerical aspect of the data. In fact, the formalization is a bit moregeneral, such that it covers arbitrary relations and functions on arbitrary sets.It is based on the mathematical notion of relational structures.In the bank account example, the bankbook values are real numbers, forwhich addition is de�ned. In general, for each m 2 M , there may be functionsand relations on the set Wm.



De�nition. A relational structure R := (W;R;F) consists of a set W , a set Rof relations R � W ar(R) on W , and a set F of functions f :W ar(f) !W , wherear assigns to each relation and function its arity.For instance, the data types implemented in the database management system(e. g., Integer, Real, Boolean, Currency, or Datetime) are relational structures.Hence, for each attribute m 2 M , we can capture the algebraic structure of itspossible attribute values by a relational structure Rm := (Wm;Rm;Fm), just aswe captured their hierarchical relationships by a conceptual scale Sm.De�nition. A conceptual-relational scheme of a family (Wm)m2M of sets isa family (Rm;Sm)m2M where, for each m 2 M , Rm := (Wm;Rm;Fm) is arelational structure and Sm = (Wm;Mm; Im) is a conceptual scale.Here we should mention, that sometimes conceptual and relational aspects over-lap. Depending on the purpose, they should be covered by a relational structureor by a conceptual scale, or by both. Time, for instance, can be captured bya linear order in a relational structure or by some scale (e. g., an inter-ordinalscale, if only certain time intervals are of interest).Relational structures can be used for creating new scales. This logical scalingwas developed by S. Prediger (cf. [5]). In this paper, however, we discuss only howrelational structures may a�ect the data analysis process once the conceptualscales are created.6 Conceptual Scaling Supported by Relational StructuresThe bank account example and other applications show that it is useful notto analyze numerical and conceptual aspects of the data independently, but tocombine them. In this section, we discuss how Conceptual Information Systemscan be extended by a numerical component. Since the required functionalitiesdi�er from application to application, the idea is to delegate application-speci�ccomputations to an external system (e. g., book-keeping system, CAD system,control system, etc.). TOSCANA already provides an SQL-interface to the rela-tional database management system in which the many-valued context is stored,so that we can use the numerical tools of the relational database system (as, forinstance, in the bank account example).In the process of going from the request of the user to the diagram shownon the screen, we can distinguish two consecutive, intermediary subprocesses.First, the chosen scale is imported from the conceptual scheme, and to each ofits concepts, a subset of objects is assigned (by default, its extent or contingent).Second, for each of these sets, some algebraic operations may be performed. Mostof the implemented Conceptual Information Systems only activate the �rst step.Our bank account system is an example where the second step is also activated.In the �rst step, we also can identify two actions where a numerical componentcan in
uence the analysis or retrieval process: the import of scales from theconceptual scheme, where parameters can be assigned to parametrized scales,



and the import of objects from the database, which can be sorted out by �lters.Finally, we can imagine a further action, following the display of the line diagram,which results in highlighting interesting concepts. These four activities whichmake an interaction between conceptual and numerical component possible nowshall be discussed in detail.6.1 Adapting Conceptual Scales to the DataA conceptual scale represents knowledge about the structure of the set Wmof possible values of the attribute m. In general, it is independant from thevalues m(G) that really appear in the database. In some situations however, itis desirable to construct the scale automatically depending on m(G).Inter-ordinal scales are typically used when a linear order (e. g., a price scale, atime scale) is divided into intervals with respect to their meaning. The boundariesof the intervals are usually �xed by a knowledge engineer. However, the range ofpossible attribute values is not always known a priori. Hence, for a �rst glanceat the data, it has proved useful to query the database for the minimal andthe maximal value and to split up this interval into intervals of equal length.Depending on the application, it might also be useful to �x the boundaries oncertain statistical measures, as for instance average, median, quantiles. These\self-adapting scales" reduce the e�ort needed to create the conceptual scheme,since they are re-usable. It is planned to implement a user interface by meansof which the user can edit parameters at runtime. For instance, he could �rstinvoke an inter-ordinal scale with equidistant boundaries and then �ne-tune itaccording to his needs.This user interface leads to the second example, an application in controltheory: Process data of the incineration plant of Darmstadt were analyzed inorder to make the control system more e�cient (cf. [2]). Process parameters likeram velocity and steam are stored in a database. The ram velocity does notin
uence the steam volume directly, but only with a certain time delay. Whenthe time delay is kept variable, the user can change it via the interface duringthe runtime of TOSCANA. That can be used, for instance, for determining thetime delay of two variables experimentally: The engineer examines the nestedline diagram of the corresponding scales for ordinal dependencies. By varyingthe shift time, he tries to augment the dependencies, and to determine in thisway the time delay.The possibility of using parameters is also of interest for �lters that controlthe data 
ow from the database to TOSCANA. They are discussed in the nextsubsection.6.2 Filtering the Objects of the Many-valued ContextIn many applications, users are interested in analyzing only a speci�c subsetof objects of the many-valued context; for instance, if one is interested in thewithdrawals from the bank account during the past quarter only. If such a subsetis determined conceptually, being the extent (more rarely the contingent) of a



concept of a suitable combination of conceptual scales, TOSCANA provides forthe possibility of \zooming" into that speci�c concept by mouse click. In thesequel of the analysis only objects belonging to that concept are considered.But if the interesting subset is not available as extent or contingent of somecombinations of earlier constructed scales it is often easier to use a �lter. Fil-ters are designed to generate one single interesting subset of the set of objectswhile conceptual scales generate a whole set of interesting extents and all theirintersections and contingents.For such applications, the conceptual scheme should be extended by �lters.In addition to conceptual scales, the user can choose �lters from a menu. Whena �lter is activated, then objects are only considered for display if they passthe �lter. A �lter is realized as an SQL-fragment that is added by AND to theconditions provided by the chosen scales.The remarks about parameters in the previous subsection apply to �ltersas well. An example for the use of parameters in �lters is again the system ofSects. 2 and 3. As described above, we can construct a �lter that only acceptswithdrawals e�ected in a certain period, e. g., the last quarter. The interface forediting parameters introduced in Sect. 5.1 provides the possibility of examiningthe withdrawals of any period required. When the user activates the �lter, he isasked for start and end date.6.3 Focussing on Speci�c Aspects of the ObjectsThe bank account system is an example of focussing on di�erent aspects of thedata. There we focus not only on withdrawal numbers, but also on the sum ofbankbook values. Now we discuss how this example �ts into the formalizationdescribed in Sect. 4. Once the user has chosen one or more scales, TOSCANAdetermines for each concept of the corresponding concept lattice a set S of objects{ in most cases its extent or its contingent. In Sect. 1 we mentioned that theuser can choose for each concept whether all names of the objects in S shall bedisplayed or only the cardinality of S. A third standard aspect in TOSCANA isthe display of relative frequencies. The last two aspects are examples of algebraicoperations.The focussing in the example of Sects. 2 and 3 can be understood as beingcomposed of two actions: Firstly, instead of working on the set S, the sequence(m(g) 2Wm)g2S is chosen. In the bank account example, this projection assignsto each withdrawal from S the corresponding book-value. Secondly, the sumP(m(S)) := Pg2S m(g) is computed (and displayed). The latter is done inthe relational structure assigned to the corresponding attribute. In TOSCANA,this is realized by a modi�cation of the way the SQL-queries are generated: thestandard COUNT-command used for the computation of the frequency of S isreplaced by a SUM-command operating on the column \value".



6.4 Highlighting Interesting ConceptsFocussing also can be understood in a di�erent setting. It also means drawingthe user's attention to those concepts where the frequency of objects (or the sumof book-values, etc.) is extraordinarily high (or low). The determination of theseconcepts is based on the frequency distribution of the nested line diagram. Thisdistribution can be represented { without its conceptual order { by a contingencytable with entry nij in cell (i; j) where i (j, resp.) is an object concept of the�rst (second) scale. As a re�nement of Pearson's Chi- Square calculations forcontingency tables we recommend calculating for each cell (i; j) the expectedfrequency eij := (ninj)=n (\expected" means \expected under independenceassumption") where ni ( nj , resp.) is the frequency of object concept i (j, resp.)and n is the total number of all objects. To compare the distribution of theobserved frequencies nij and the expected frequencies eij, one should study thedependency double matrix (nij ; eij). Pearson's Chi-Square calculations reducethe dependency double matrix to the famous �2 := Pij((nij � eij)2=eij). Butthe matrix also can be used as a whole in order to highlight interesting placesin a nested line diagram:{ If the user wants to examine the dependency double matrix in detail, then hemay choose to display their entries at the corresponding concepts. Addition-ally, one of the matrices of di�erences nij � eij, quotients (nij � eij)=eij, orquotients nij=eij may be displayed in the same way. The conceptual struc-ture represented by the line diagram helps us to understand the dependencydouble matrix.{ If a less detailed view is required, then the calculation component can gener-ate graphical marks which indicate those concepts where the matrix entriesare above or below a given threshold. A typical condition in applications is"eij > k and nij=eij > p" where k and p are parameters which can be chosenon a suitable scale.The Chi-Square formula is a very rough reduction of the information aboutdependencies, but, clearly, the degree of reduction depends on the purpose of theinvestigation. If one is interested not only in having an index showing whetherthere is a dependency, but in understanding the dependencies between two many-valued attributes with respect to chosen scales in detail, then one should carefullystudy the distribution of observed and expected frequencies. This can be donewith the program DEPEND developed by C. Wehrle in his diploma thesis ([9],supervised by K.E. Wol�).)7 OutlookThe connections between conceptual scales and relational structures should bestudied extensively. Therefore, practical relevant examples containing both partsshould be considered.It is of particular interest to examine the compatibility of various conceptualscales and relational structures on the same set of attribute values. From a formal



point of view both structures are of the same generality in the sense that eachconceptual scale can be described as a relational structure and vice versa. Butthey are used di�erently: conceptual scales generate overviews for knowledgelandscapes, while relational structures serve for computations.This paper discussed how numerical components can support conceptual dataprocessing. One should also investigate how, vice-versa, results of data analysisand retrieval activities in Conceptual Information Systems can be made acces-sible to other systems. This discussion may lead to hybrid knowledge systemscomposed of conceptual, numerical and also logical subsystems, each focussingon di�erent aspects of the knowledge landscape inherent in the data.References1. B. Ganter, R. Wille: Formale Begri�sanalyse: Mathematische Grundlagen. Sprin-ger, Heidelberg 1996 (English translation to appear)2. E. Kalix: Entwicklung von Regelungskonzepten f�ur thermische Abfallbehand-lungsanlagen. TH Darmstadt 19973. W. Kollewe, C. Sander, R. Schmiede, R. Wille: TOSCANA als Instrument der bib-liothekarischen Sacherschlie�ung. In: H. Havekost, H.-J. W�atjen (eds.): Aufbau undErschlie�ung begri�icher Datenbanken. (BIS)-Verlag, Oldenburg 1995, 95{1144. W. Kollewe, M. Skorsky, F. Vogt, R. Wille: TOSCANA | ein Werkzeug zurbegri�ichen Analyse und Erkundung von Daten. In: R. Wille, M. Zickwol�(eds.): Begri�iche Wissensverarbeitung | Grundfragen und Aufgaben. B. I.{Wissenschaftsverlag, Mannheim 19945. S. Prediger: Logical scaling in formal concept analysis. LNAI 1257, Springer,Berlin6. P. Scheich, M. Skorsky, F. Vogt, C. Wachter, R. Wille: Conceptual data systems.In: O. Opitz, B. Lausen, R. Klar (eds.): Information and classi�cation. Springer,Heidelberg 1993, 72{847. F. Vogt, C. Wachter, R. Wille: Data analysis based on a conceptual �le. In: H.-H. Bock, P. Ihm (eds.): Classi�cation, data analysis, and knowledge organization.Springer, Heidelberg 1991, 131{1408. F. Vogt, R. Wille: TOSCANA | A graphical tool for analyzing and exploringdata. LNCS 894, Springer, Heidelberg 1995, 226{2339. C. Wehrle: Abh�angigkeitsuntersuchungen in mehrwertigen Kontexten. Diplomar-beit, Fachhochschule Darmstadt 199710. R. Wille: Restructuring lattice theory: an approach based on hierarchies of con-cepts. In: I. Rival (ed.): Ordered sets. Reidel, Dordrecht{Boston 1982, 445{47011. R. Wille: Lattices in data analysis: how to draw them with a computer In: I. Rival(ed.): Algorithms and order. Kluwer, Dordrecht{Boston 1989, 33{5812. R. Wille: Conceptual landscapes of knowledge: A pragmatic paradigm of knowledgeprocessing. In: Proc. KRUSE '97, Vancouver, Kanada, 11.{13. 8. 1997, 2{1413. K. E. Wol�: A �rst course in formal concept analysis { How to understand linediagrams. In: F. Faulbaum (ed.): SoftStat '93, Advances in statistical software 4,Gustav Fischer Verlag, Stuttgart 1993, 429{438




