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Abstract. Conceptual Information Systems unfold the conceptual struc-
ture of data stored in relational databases. Tn the design phase of the
system, conceptual hierarchies have to be created which describe differ-
ent aspects of the data. In this paper, we describe two principal ways
of designing such conceptual hierarchies, data driven design and theory
driven design, and discuss advantages and drawbacks. The central part of
the paper shows how Attribute Faploration, a knowledge acquisition tool
developed by B. Ganter can be applied for narrowing the gap between
both approaches.

1 Introduction

Conceptual Tnformation Systems ([20], [21]) unfold the conceptual structure of
data stored in relational databases. A Conceptual Information System consists
of the relational database together with conceptual hierarchies. These hierar-
chies, called conceptual scales, are used to support navigation through the data.
Conceptual Information Systems are based on the mathematical theory Formal
Concept, Analysis ([10]). The management system TOSCANA visnalizes arbi-
trary combinations of conceptual scales and allows on-line interaction with the
database to analyze and explore data conceptually. TOSCANA has been devel-
oped at the Technische Universitat Darmstadt and is, for four years now, also
marketed by NaviCoN GRSEILSCHAFT FUR BRGRIFFLICHE, WISSENSVERAR-
BEITUNG MBH. There are more than 30 Conceptual Information Systems imple-
mented up to now, including an information system about laws and regulations
in civil engineering ([7]), a library retrieval system ([14]) and an information sys-
tem about flight movements ([12]). The use of Conceptual Tnformation Systems
gave rise to new theoretical questions which now dominate the research in For-
mal Concept Analysis. The demand of integrating knowledge acquisition tools
in the design process of Conceptual Information Systems appeared for instance
during the development of a Conceptual Information System about I'T security.

For most applications, the Conceptual Information System is designed in a
discursive process involving a domain expert and a knowledge engineer. Beside
the database design, the conceptual scales have to be generated. Both steps re-
quire knowledge about the domain and about the structure of conceptual scales.
In order to obtain interesting and non-trivial insights from the data, 1t is crucial
that the domain expert is intensively involved in the design process. On the other



hand, 1t has been observed that the time a domain expert is expected to spend
for the design is one of the most critical factors for the decision of a company
whether to implement a Conceptual Information System. Hence, one important
requirement is to make the knowledge acquisition from the domain expert more
efficient.

In order to keep the scales in a suitable size, they are, in some applications,
designed to fit the actual data, and are not conform to all possible updates of
the underlying database. These scales are derived semi-automatically from the
actual data, thus their design needs less expertise  and time  from the domain
expert. If an update violating the structure of the scale happens, then the user
is warned, and he has to redraw the scale. Tf there are only small changes, the
re-drawing can be done automatically, but due to the lack of acceptable drawing
algorithms for lattices, large changes cannot be recovered automatically, and
have to be effectuated by the knowledge engineer. If the latter is not part of the
company in which the system 1s implemented, then these eventualities should be
covered 1n advance. Hence, a second requirement is the stability of the conceptual
scales against all possible updates of the underlying database. This requirement,
will be obsolete when acceptable drawing algorithms for lattices are developed,
but this evolution is not in sight in the next future.

In this paper, we describe two principal ways of designing conceptual scales,
data driven design and theory driven design, and discuss advantages and draw-
backs with respect to the two requirements. The central part of the paper
shows how Attribute Erploration, a knowledge acquisition algorithm developed
by B. Ganter, can be applied in order to narrow the gap between both ap-
proaches. Attribute Exploration determines implications (functional dependen-
cies) between attributes in an interactive session. Tts typical application is in
Mathematics, where mathematical theorems or counter-examples, resp., are asked
from the mathematician in a systematic way in order to obtain a complete theory
about specific mathematical structures.

In the next section, we describe the basics of Conceptual Information Systems
and illustrate them by means of examples. Section 3 discusses the two principal
ways of preparing a Conceptual Information System: theory driven design and
data driven design. The design of the underlying database scheme is not topic of
this paper. In Section 4, we describe the algorithm of Attribute Exploration and
show by means of an example how it can be applied to the design of Conceptual
Scales.

2 Conceptual Information Systems

Conceptual Information Systems provide a multi-dimensional conceptually struc-
tured view on data stored in relational databases. Conceptual Information Sys-
tems are similar to On-Line Analytical Processing (OLAP) tools, but focus on
qualitative (i.e. non-numerical) data. The analog to OLAP dimensions are hier-
archies of concepts. They are based on Formal Concept Analysis ([23], [10]), a
mathematical theory modeling the concept of ‘concept’ as discussed in Philoso-



phy since the logic of Port Royal ([3]) and described in the German Tndustrial
Standards DIN 2330 and DIN 2331. There, a concept is understood as a unit
of thought, consisting of two parts: its extension and its intension ([22]). The
extension consists of all objects belonging to the concept, and the intension of
all attributes common to all the objects. ITn OLAP terminology, intensions of
concepts correspond to coordinates addressing a cell, and extensions to entries
of cells of a data cube. Formal concepts as defined below act as knots tying
together the extensional and the intensional aspect of the data.

Fach conceptual scale is generated from a formal contert, a binary relation
which allocates subsets of the attribute domains of the database to attributes
which are meaningful to the analyst. The derived conceptual hierarchy can be an
arbitrary lattice. Tt is displayed by a Hasse diagram which provides a universal
and intuitively readable visualization of the data. By combining Hasse diagrams
and zooming into them, operations similar to slicing, pivoting, drill-down and
drill-up are supported ([17]). Tn the next section, we provide the mathematical
background. Readers not familiar to mathematical notation may directly skip to
the example.

2.1 The Mathematical Background: Formal Concept Analysis

Definition. A (formal) context is a triple K := (G, M, T) where GG and M are
sets and T is a relation between (G and M. The elements of (G and M are called
objects and attributes, respectively, and (g, m) € T is read “the object g has the
attribute m”.

For A C 5, we define A’ :={m &€ M |Vg € A: (g,m) € T}. For BC M, we
define dually B' := {g € G |¥Ym € B: (¢,m) € T}. Now a (formal) concept is a
pair (A, B) such that A C G, B C M and A’ = B, B’ = A. (This is equivalent,
to A and B being maximal with A x B C I.) The set. A is called the extent and
the set. B the intent of the concept.

Fach formal context gives rise to a conceptual hierarchy, called concept lattice
of K and denoted by B(K). The hierarchical subconcept. superconcept relation
of concepts is formalized by

(AVB)<(C\D):<—= ACC (<= BDD).

Theorem 1 (ef. [10]). The set of all concepts of the contert K together with
this order relation is a complete lattice. I e., for each set (A, By), 1 € T, of
concepts, a least common superconcept and a greatest common subconcept erist.
They are computed as follows:

V (Ae B = (L A" () B A A B = () A (U B

teT teT teT teT teT teT

The first equation describes the aggregation along the subconcept-superconcept-
hierarchy: The extent of the least common superconcept is the closure by 7 of
the set union J,cp As. Because of the symmetry of the definition, attributes
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Fig. 1. Formal context about perils and counter-measures concerning 1T security in

Human Resources

can be aggregated in an analogous way by descending the hierarchy (cf. second
equation). Again, the appropriate aggregation is not set union, but its closure
by ”. This allows the investigation of implications (functional dependencies)
between the attributes:

Definition. For two sets X, Y C M of attributes, the implication X —'Y holds
in a formal context, if each object having all attributes in X also has all attributes
inV (i.e., X' C Y’ or equivalently Y C X").

These implications play an important role in data analysis, and are also crucial
for knowledge acquisition by Attribute Exploration (cf. Sect. 4).

Example: The following example 1s taken from an information system about I'T
security ([16]). Tn the TT Grundschutzhandbuch’ of the Bundesamt fiir Sicher-
heit in der Tnformationstechnik ([4]), perils to certain objects, such as e.g. infra
structure, telecommunication, human resources, are listed, and counter-measures
are discussed. The presented information system is for demonstration purpose
only, but a similar, more praxis oriented system with a higher level of detail is
offered by NaviCoN. The design of conceptual scales for the latter gave rise to
this paper.

' A remark for readers who are familiar with association rules ([1]): Tmplications are
association rules with minsupp=0 and minconf=1. In the framework of this paper,
other association rules than implications are of no importance, because the concep-
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Fig. 2. Hasse diagram of the formal context in Fig. 1

The table for human resources from [4] is given in Fig. 1. Tt can be under-
stood as a formal context, where the perils ‘Personalausfall’ (Staff drop out),
..., ‘Social Engineering’ are the attributes, and the counter-measures M 3.1,
..., M 3.8 are the objects. The relation assigns to each peril possible counter-
measures. The context has 13 formal concepts. For instance, there is one concept
having M 3.2, M 3.5, M 3.7, and M 3.8 in its extent, and ‘Fahrlassige Zerstorung
von Gerit oder Daten’ (negligent destruction of machines or data), ‘Manipu-
lation/Zerstorung von TT-Geridten oder Zubehor’ (manipulation of TT tools or
accessories), and ‘Manipulation an Daten oder Software’ (manipulation on data
or software) in its intent.

The concept lattice of that formal context is shown in Fig 2. Each circle
stands for a formal concept, and the subconcept-superconcept hierarchy can be
read by following ascending paths of straight line segments. The intent [extent]
of each concept is given by all labels reachable from that context by ascending
[descending] paths of straight line segments. For instance, the concept mentioned
above 1s the one labeled by M 3.8.

In such a diagram, we can read the implications between the attributes.
For determining the conclusion of an implication, one determines the greatest
common subconcept. of the premise (the concept, where “the attributes of the
premise first meet” by descending the diagram), and collects all attributes listed
above. I.e., the implication X — V" holds if and only if \/ 5 ({m}’, {m}") <
({n}, {n}") for all n € Y. The concept ({m}’,{m}") is the concept which is
labeled by the attribute m. For instance, we have that each counter-measure
against hoth ‘Fehlerhafte Nutzung des TT-Systems’ (misuse of the TT system)

tual scales to be created shall cover all possible combinations, not only the frequent

ones.



Bauteil | Bauteileart | Nennweite | DichtWerkst | Wanddicke
Rohr DIN 2448- 13 CrMo 4 4 -355,6x8.,0 Rohr 350 8
Rohr DIN 2448- 13 CrMo 4 4 -355,6x8.8 Rohr 350 8.8
Rohr DIN 2448- 13 CrMo 4 4 -355,6x11.0 Rohr 350 11
Rohr DIN 2448- 13 CrMo 4 4 -406,4x8.8 Rohr 400 8.8
Rohr DIN 2448- 13 CrMo 4 4 -406,4x11.,0 Rohr 400 11
Rohr DIN 2448- 13 CrMo 4 4 -406,4x14,2 Rohr 400 14,2
Flansch C 15x21,3 DIN 2631 - St 37-2 VorschweiBflansch 15 Weichgumm 2
Flansch C 20x26,9 DIN 2631 - St 37-2 VorschweiBflansch 20 Weichgumm 23
Flansch C 25x33,7 DIN 2631 - St 37-2 VorschweiBflansch 25 Weichgumm 2,6
Flansch C 32x42.4 DIN 2631 - St 37-2 VorschweiBflansch 32 Weichgumm 2,6

Fig. 3. Part of a many-valued context

and ‘Manipulation an Daten oder Software’ (the only counter-measure against
both perils simultaneously is M 3.5) is also a counter-measure against the perils
‘Manipulation/Zerstorung von IT-Geraten oder Zubehor’, ‘Nichtbeachtung von
TT-SicherheitsmaBinahmen’ (ignoring of TT security measures), and ‘Fahrlissige
Zerstorung von Gerat oder Daten’.

2.2 The conceptual data model of Conceptual Information Systems:
Many-valued contexts and conceptual scales

Often attributes are not one-valued as in the previous example, but allow a
range of values. This is modeled by a many-valued context. Tn order to obtain a
concept lattice, a many-valued context is ‘translated’ into a one-valued context
by conceptual scales. (Remark that ‘conceptual’ is used in two different meanings
in the heading!)

Definition2. A many-valued context is a tuple (G, M, (W, )mewm, T) where G
and M are sets of objects and attributes, resp., W, 1s a set of values for each
m € M, and I C GxJ,,cpr ({m}x Wy, ) such that (g, m,w) € Tand (g, m, ws) €
I imply wy = wsy. A conceptual scale for an attribute m € M is a context
Sm = (G, My, I,) with W, C Gy, The context (G, M,,, J) with gJn : <=
JweW,,: (g, m,w)el A (w,n)€T, is called the realized scale for the attribute
me M.

Example: Figure 3 shows a part of a many-valued context about pipes. The
total context consists of 240 pipes, 2428 curved pipes, 560 T-parts, 348 flanges,
and 38b restricted fittings, and of b4 attributes. The objects are listed in the
column ‘Bauteil” (Part). Tn Fig. 4, the realized scale for the attribute ‘Bauteileart’
(Part type) is given. Since there are almost 4000 objects, the diagram does not,
display their names, but contingents only.

Conceptual Information Systems consist of a many-valued context together
with a collection of conceptual scales. The many-valued context 1s implemented
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Fig. 4. Realized scale ‘Part type’

as a relational database. The collection of the scales is called conceptual scheme
([20], [15]). Tt is written in the description language CoNScrRIPT ([19]). Beside
the contexts of the conceptual scales, the conceptual scheme also contains the
layout of their line diagrams. The layout has to be provided in advance, since,
in general, well readable line diagrams cannot be generated fully automatically.

For Conceptual Information Systems, the management system TOSCANA
([13], [21]) has been developed. Based on the paradigm of conceptual landscapes
of knowledge ([24]), TOSCANA supports the navigation through the data by
using the conceptual scales like maps designed for different purposes and in
different granularities. We illustrate the navigation procedure by the pipeline
system.

Example: The context in Fig. 3 and the conceptual scale in Fig. 4 are part of a
Conceptual Tnformation System on pipelines ([18]). Tt shall support the engineer
by choosing suitable parts for a projected pipeline system. Let us assume that he
needs a pipe which has an inner diameter of about 100 mm and a wall thickness
of about 4 mm. Starting with the scale ‘Part type’ in Fig. 4, he finds the concept
labeled with the attribute ‘Rohre’ (Pipes), and sees that he can choose among
240 different pipes. By zooming into that context with the scale ‘Tnner diameter’,
see Fig. 5), he can see the distribution of the 240 pipes according to their inner
diameter. Each concept stands for an interval. Since the engineer is interested in
pipes with about 100 mm inner diameter, he chooses the 8th concept from the
right at the bottom level, which stands for the interval 90 110mm. By taking a
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Fig. 5. Realized scale ‘Inner diameter’ after zooming into the concept labeled by
‘Rohre’ in Figure 4

concept which is higher in the hierarchy, he could have continued with an interval
of larger width. By zooming into the chosen concept with the next conceptual
scale (e.g.‘Wall thickness’), the engineer can drill-down further until he obtains
a small number of parts which are suitable for the projected pipeline system.
By clicking on the numbers, he can obtain the names of the parts, and can then
drill-down to the original data given in the database or to additional information
such as DIN standards.

3 Preparation of Conceptual Information Systems

The preparation of a conceptual information system consists basically of two
steps. First, the underlying many-valued context has to be designed and imple-
mented as a database system. Second, the conceptual scales have to be created.
Both are non-trivial tasks which require expertise in the domain of interest as
well as 1n the knowledge representation techniques of formal concept analysis.
Hence conceptual information systems are usually designed in a discursive pro-
cess involving both domain experts and knowledge engineers ([2]). This process
is described in detail in [7] for a system about laws and regulations in civil
engineering.



In this paper, we focus on the second step of the preparation. We assume that
the many-valued context 1s already given. The task is then to design adequate
conceptual scales. We discuss the two basic ways.

3.1 Theory Driven Design

The first step in designing scales driven by theory is to choose attributes mean-
ingful to the user. They need not to be the domain values of the database, but
are usually on a more general level. For instance, the user is often not interested
in exact numerical values but only in certain ranges: In a medical application,
the physician is not interested in the exact pH level of the blood, but only if the
pH level is pathological or even dangerous.

The second step is to assign the domain values to the attributes. Here, the
knowledge engineer has to bring in his expertise about conceptual hierarchies,
since domain experts always tend to scale nominally. In the medical example, for
instance, a longer discussion revealed that a dangerous pH level is also under-
stood as pathological, hence a bi-ordinal scale (with a third attribute ‘pH level
normal’) was chosen.

Figures 4 and b show two theory driven scales. While the scale in Fig. 4
is specially designed for the application, the inter-ordinal scale in Fig. 5 is a
standard scale that is used in many applications. Typically, database attributes
of type string need an individual design, while numerical types as integer or
real allow the use of standard scales. There is a broad variety of standard scales
that can be used, e.g., nominal scales, ordinal scales, and inter-ordinal scales.
In the latter case, only the number of intervals to be considered and the interval
boundaries have to be fixed. Tt is planned to release the knowledge engineer from
implementing such standard scales by implementing parametrized scales which
adopt themselves to the actual range of the values. Naturally this approach fails
for free-text entries such as those in ‘Bauteileart’ in Fig. 3. Here the conceptual
structure in the data has to be determined 1n a discursive process.

3.2 Data Driven Design

While theory driven design is typically (but not exclusively) applied to many-
valued attributes, data driven design is only possible for the data type boolean.
In that case, the attributes of the database are usually also the attributes of the
conceptual scale. While there is normally one conceptual scale for each many-
valued attribute, some one-valued (i.e., Boolean) attributes are grouped together
in order to form one conceptual scale. The task for knowledge engineer and
domain expert is to find a suitable grouping of the attributes. Groups should
not be too large since the size of the scale may be exponential to the number
of attributes; neither too small in order not to hide dependencies between the
attributes. Typically there are between five and ten attributes. But before all,
it 1s important that attributes addressing similar topics are grouped together.
Therefore it 1s possible that attributes appear in more than one scale.
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Having obtained a suitable grouping, a conceptual scale has to be designed
for for each of the sets of attributes. In a first approach, one could assume that
there are no valid implications between the attributes. This leads to a scale that
is conform to all possible updates of the database. However, this scale will be too
large for more than five attributes, since for n attributes the number of concepts
of such a Boolean scale scale is 27. Therefore, data driven design takes into
account all implications which hold for the actual entries in the database. Tt is
supported by DOKUANA, a tool developed by NaviCon. An example for a data
driven scale is the scale ‘Rooms’ of the TT security system (Fig. 6). Tt shows the
distribution of perils according to locations. Tnstead of 26 = 64 possible concepts
it only consists of 14 concepts.

When knowledge engineer and domain expert agreed on a data driven design
process, then the design can be performed by the former without any support
by the latter, once the grouping of the attributes 1s decided. Hence data driven
design 1s efficient for the client in the way that he does not have to invest
much time of the domain expert. This is an important argument in marketing
Conceptual Information Systems.



The big disadvantage of this approach however is that scales need not be
consistent with updates of the database. New entries can contradict to the func-
tional dependencies used for the design of the conceptual scales. If there are not
too many new concepts (up to ten at the moment), and if the structure of the
new scale does not differ too much from the original scale, then the diagram
can be re-drawn automatically. However, if the change is more complex, then
the layout has to be done manually, which usually requires the expertise of the
knowledge engineer. Hence, an important research task 1s the development of
fully automatic lay-out algorithms for lattices. Unfortunately, satisfying answers
are not in sight 1n the next future.

For applications provided to a remote client or for time critical applications
it 1s therefore important to prepare the scales such that future updates of the
database are covered. Hence all possible combinations of attributes have to be
determined before handing over the information system. In the next section we
discuss how this task can be performed in a systematic way by involving the
domain expert, as less as possible.

4 Extending Scales by Attribute Exploration

The data driven design of a conceptual scale provides us with all combinations of
attributes which occur as concept intents for the actual data. Then the question
arises which combinations may occur additionally. As we pointed out in the last
section, the powerset of the attribute set would cover all eventualities, but is in
general too large for practical applications. Hence we have to find a subset of the
powerset, which contains all possible combinations, by systematically inquiring
the domain expert.

The solution to that problem is Attribute Erploration ([8], [10]), an inter-
active knowledge acquisition algorithm developed by B. Ganter. The algorithm
is implemented in the program ConTmp ([5]) of P. Burmeister. Tt benefits from
the fact that the requested set of intents must be closed under set intersec-
tion (cf. to first equation in Theorem 1). The knowledge is acquired from the
domain expert in a dialogue in which he has to answer questions of the form

“Does each possible object in the database having attributes xq, ...x, nec-
essarily have the attributes yi, ...y, as well? (T.e., “Does the implication
{o1, .. ,20} = {y1, ..., Ym } hold?”) Either the expert confirms the implication,

or he has to provide a counter-example.

Details about, Attribute Exploration can be found in [8] and [10]. Here, we
only give a short summary: The algorithm uses the fact that, for a given formal
context, the implications P — P"  where P is a pseudo-intent (see helow), are
sufficient, (and even minimal) for describing the structure of the concept lattice.
This set. of implications is called the Duguenne-Guigues-basis ([6], [11]).

The algorithm asks the implications in such a sequence that pseudo-intents
determined once remain pseudo-intents even after adding the counter-examples
to the context:

11



Definition. A set P C M of attributes is called a pseudo-intent, if P # P’ and
if for each pseudo-intent Q C P the inclusion Q” C P holds.

For aset X C M and a set £ of implications, we define £*(X) as the closure
of X under repeated applicationof X — XU|J{B|A—=>Be L, AC X, A+ X}

For sake of simplicity, we assume now that M = {1,2, ... n}. Fori € M, we
define X <; V:i<— iecV\Xand Xn{l,....i—1}=VYNn{l,...;i—1}.
Furthermore we define a lectic order on the subsets of M by X <V : <= Fi €
{1,...n}: X <; V.

Algorithm: Tet (G, M, T) be the formal context determined by data driven
design. The set M contains the attributes that are used as labels in the diagram.
The set (G contains strings which are used as where-parts of SQI.-statements
which TOSCANA generate in order to query the database.

1. The first intent or pseudo-intent is the empty set.

2. For a given intent or pseudo-intent X one obtains the next intent or pseudo-
intent in the lectic order by letting i := n, and decreasing 7 until X <;
X* = L((XNn{1,2,...,i — 1} U {i}) holds. X* is then the next intent or
pseudo-intent in the lectic order.

. IF X* = M then Stop.

4. Tf X* is an intent, then let X := X and go to 2).

5. Tf X* is a pseudo-intent, then ask the user “Does the implication X* — X*"

hold?” Tf the answer is “Yes”, then add the implication to £. et X := X*
and go to 2). Tf the answer is “No”, then the user has to provide a counter-

Lo

example. Add the counter-example to (G and go to 4).

The dialogue is optimal in the sense that the number of confirmed implications
is minimal. The complexity of the algorithm is, for each concept, cubic in the
number of attributes and objects. As the number of the concepts can grow
exponentially in the number of attributes, the overall complexity of the algorithm
is exponential. However, as the number of attributes for one scale is usually
between five and ten, and the attributes are normally not totally independent,
the number of questions is tolerable in all practical applications.

Attribute Exploration can handle the answer “I don’t know”, but for design-
ing a conceptual scale, finally each of the implications has to be either confirmed
or rejected. As “I don’t know” indicates that there may be objects that violate
the implication, only the interpretation of these answers as “no” assures that
the scale will be consistent for all possible updates of the database.

Example: The ‘TT-Grundschutzhandbuch’ provides for each object the relation-
ship between its related perils and counter-measures. The relationship between
objects and perils is not given explicitly in the handbook. Since the data tables
are designed locally for each single object only, there may be groups of
objects sharing the same perils which are not identified in the book. Figure 6
provides us with the scale considering only the actual entries in the handbook.

12
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4.3.2 Serverraum

For determining all possible combinations of objects, we applied Attribute Ex-
ploration to that scale. The exploration dialogue consisted of twelve questions,

starting with:

“Ts each possible peril for ‘Gebaude’ (building) and ‘Archiv’ (archive) neces-
sarily a peril for ‘Serverraum’ (server room) and ‘Infrastrukturraum’ (infras-
tructure room)?” “Yes” “Is each possible peril for ‘Infrastrukturraum’
necessarily a peril for ‘Serverraum?” “Yes” “TIs each possible peril for
‘Infrastrukturraum’ necessarily a peril for ‘Serverraum?” “Yes” “Ts each
possible peril for ‘Serverraum’ and ‘Archiv’ necessarily a peril for ‘Infrastruk-

turraum?” “No.” ...

For the last question, one can e. g. provide the attribute ‘Datentragervernichtung’
(destruction of storage media) as counter-example. Tn this example, nine of the
twelve implications were accepted, and three denied. The resulting scale is shown
in Figure 7. Tt consists of 18 concepts, while the ‘worst case’, the Boolean scale,
has 26 = 64 concepts and is too large for a useful visualization. The black
circles indicate how the data driven scale is embedded in the scale determined
by Attribute Exploration. This example also shows that the diagram has to be
re-layouted for remaining readable.
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5 Qutlook

We have shown how the gap between data driven and theory driven design
can be bridged (or at least narrowed) by applying Attribute Exploration. This
knowledge acquisition process serves three purposes. Firstly, 1t makes knowledge
acquisition from the domain expert more efficient, since 1t starts with the ac-
tual data (instead from the scratch) and solves the remaining questions in a
systematic and somehow minimal way. Secondly, it allows to prepare the scales
so that all eventual updates of the database are covered a priori. Hence the sys-
tem can be run without support of the knowledge engineer. Thirdly, the process
provides to the domain expert a better understanding of the data by making his
knowledge explicit.

A restraint for the approach is however that a certain knowledge about the
dependencies between the attributes must be present. Although the answers
during the dialogue do not have to be infallible (since TOSCANA provides a
warning if an accepted implication is violated), they must however be confident
to a certain degree. For instance, the Library Retrieval System at the “Zentrum
fur interdisziplinare Technikforschung’ at the Technische Universitat Darmstadt
([14]) is also based on a data driven design. Tn that application, books and jour-
nals are objects, and catchwords are attributes. The conceptual scales produced
by data driven design are almost all near to Boolean scales, i.e., almost all com-
binations of catchwords are possible. In this application, the experts were not
able to answer the questions with a certain confidence, since for each remain-
ing combination of catchwords one could 1magine a book having exactly those
catchwords. Such applications would profit enormously from automatic layout
algorithms for lattices.

An automatic layout algorithm would also provide the possibility to choose
on-line Boolean attributes (e.g., catchwords) of the database and to let the
resulting conceptual scale be drawn on the fly. The development of layout algo-
rithms is one of the most urgent research tasks for advancing the commercial
application of conceptual knowledge processing.

Attribute Exploration determines the structure of the conceptual scale only;
but it does not indicate which concepts may be labeled by objects. Each concept
which potentially 1s labeled gives rise to a SQIL-query. Hence it may be of interest
for time-critical applications to minimize the number of these concepts. For
determining them, a variation of Attribute Exploration called Clause Frploration
([9]) can be applied. As this knowledge acquisition procedure generates more
questions than Attribute Exploration, it has to be examined for each application
if the extra work during the design phase is really necessary.
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