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Abstract. This paper presents a lattice-based visual metaphor for knowl-
edge discovery in electronic mail. It allow a user to navigate email using
a visual lattice metaphor rather than a tree structure. By using such a
conceptual multi-hierarchy, the content and shape of the lattice can be
varied to accommodate any number of queries against the email collec-
tion. The system provides more flexibility in retrieving stored emails and
can be generalised to any electronic documents. The paper presents the
underlying mathematical structures, and a number of examples of the
lattice and multi-hierarchy working with a prototypical email collection.

1 Introduction

Email management systems usually store email as a tree structure in analogue
to the file management system. This has the advantage that trees are simple
and easily explained to novice users as a direct mapping from the physical struc-
ture of the file system. The disadvantage is that at the moment of storing an
email the user preempts the way he will later retrieve the email. The tree struc-
ture forces a decision about the criteria considered a primary and secondary
indexes for the email. For instance, when storing email regarding the organi-
zation of a conference, one needs to decide whether to organise the email as
Komorowski/pkdd2000/program commitee where “Komorowski” is a primary index
alternatively conferences/pkdd/pkdd2000/organisation. This problem is common
when a user cooperates with overlapping communities on different topics with
multiple viewpoints. Should we organise our email as a specialisation or a gen-
eralisation hierarchy, i.e. are we trying to give every email a unique key based
on its content or group emails together broadly on category? There is no general
answer except that it is context and query dependent.

In this paper, we profile the Conceptual Email Manager called Cem. This
follows earlier work reported in [3, 2]. Cem is a lattice-based email retrieval and
storage programme that aids in knowledge discovery by a number of flexible
views over email. It uses as data structure for storing emails by a concept lattice
rather than a tree. This permits clients to retrieve emails along different paths.



For the example above, the client need not decide which of the two paths to store
the email. When retrieving the email later, he can consider any combination of
the catchwords in the two paths. Email retrieval is totally independent of the
physical organisation of the file system.

There are related approaches to the above problem. For instance, the concept
of a virtual folder was introduced in a program called View Mail (VM)[6]. A
virtual folder is a collection of email documents retrieved in response to a query.
The virtual folder concept has more recently been popularised by a number
of open-source projects, e. g. [8]. Our system differs from those projects in the
understanding of the underlying structure – via formal concept analysis – and
in its implementation.

Concept lattices are defined in the mathematical theory of Formal Concept
Analysis [11]. A concept lattice is derived from a binary relation which assigns
attributes to objects. In our application, the objects are all emails stored by the
system, and the attributes catchwords like ‘conferences’, ‘Komorowski’, or ‘or-
ganisation’. We assume the reader to be familiar with the basic notions of Formal
Concept Analysis, and otherwise refer to [5]. In the next section, we describe the
mathematical structures of the CEM. Requirements for their maintenance are
discussed in Section 3. We also describe how they are fulfilled by our implemen-
tation.

2 Mathematical Structure

We assume the reader familiar with the two basic notions of Formal Concept
Analysis: formal context and concept lattice. Definitions and examples can be
found in [5]. In this section, we describe the system on a structural level; we
abstract from implementation details. They are discussed in Section 3. We dis-
tinguish three fundamental structures:

1. a formal context that assigns to each email a set of catchwords;
2. a hierarchy on the set of catchwords in order to define more general catch-

words;
3. a mechanism for creating conceptual scales used as a graphical interface for

email retrieval.

2.1 Assigning Catchwords to Email

In the Cem, we use a formal context (G,M, I) for storing email and assigning
catchwords. The set G contains all emails stored in the system, the set M con-
tains all catchwords. For the moment, we consider M to be unstructured. (In
the next subsection we will introduce a hierarchy on it.)

The relation I indicates emails assigned to each catchword. In the exam-
ple given in the introduction, the client might want to assign all the catchwords
‘Komorowski’, ‘pkdd2000, ‘program commitee’, ‘conferences’, ‘pkdd, and ‘organ-
isation’ to a new email. The incidence relation is generated in a semi-automatic
process: (i) an automatic string-search algorithm recognizee words within sec-
tions of an email and suggests relations between email attributes, (ii) the client
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may accept the suggestion of the string-search algorithm or otherwise modify it,
and (iii) the client may attach his own attributes to the email. In Section 3, we
will discuss how the user is supported in this assignment. At the moment, we
suppose that the relation is given.

Instead of a tree of disjoint folders and sub-folders, we consider the concept
lattice B(G,M, I) as navigation space. The formal concepts replace the folders.
In particular, this means that emails can appear in different concepts. The most
general concept contains all email. The deeper the client moves into the hier-
archy, the more specific the concepts, and subsequently the fewer emails they
contain.
2.2 Hierarchies of Catchwords

To support the semi-automatic assignment of catchwords to the emails, we pro-
vide the set M of catchwords with a partial order ≤. For this subsumption
hierarchy, we assume that the following compatibility condition holds:

∀g ∈ G, m, n ∈M : (g,m) ∈ I, m ≤ n ⇒ (g, n) ∈ I (‡)

i.e., the assignment of catchwords respects the transitivity of the partial order.
Hence, when assigning catchwords to emails, it is sufficient to assign the most
specific catchwords only. More general catchwords are automatically added.

For instance, the user may want to say that ‘pkdd’ is a more specific catch-
word than ‘conferences’, and that ‘pkdd2000’ is more specific than ‘pkdd2000’
(i. e., ‘pkdd2000’≤‘pkdd’≤‘conferences’). Emails concerning the creation of this
paper are assigned by the email client to ‘pkdd2000’ only (and possibly some ad-
ditional catchwords like ‘cole’, ’eklund’ and ‘stumme’). When the client wants to
retrieve this email, he is not required to recall the pathname. Instead, they also
appear under the more general catchword ‘conferences’. If ’conferences’ provides
too large a list of email, the client can refine the search, by choosing a sub-term
like ‘pkdd’, or adding a new catchword, for instance ‘cole’.

Notice that even though we impose no specific structure on the subsumption
hierarchy (M,≤) it naturally splits three ways. One relates the contents of the
emails, e.g., if an email is related to ’conference’ (or not) or classified to ’organ-
isation’ etc. A second relates to the sender or receiver of the email. The third
describes aspects of the emailing process (if it is inbound or outbound mail). An
example of a hierarchy is given in Fig. 1.

The hierarchy displayed in Fig. 1 is a forest (i. e., a union of trees), but the
resulting concept lattice — used as the search space — is by no means a forest.
The partially order set is displayed both in the style of a folding editor and as a
connected graph.

Consider for example the concept generated by the conjunction of the two
catchwords ‘PKDD 2000’ and ‘conference organisation’. It will have at least two
incomparable super-concepts, namely the one generated by the catchword ‘PKDD

2000’ and the one generated by the catchword ‘conference organisation’. In gen-
eral, all we know is that the resulting concept lattice is embedded as a join-
semilattice in the lattice of all order ideals (i. e., all subsets X ⊆ M s. t. x ∈ X
and x ≤ y imply y ∈ X) of (M,≤).
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Fig. 1. Partially ordered set of catchwords: as a folding editor and connected graph.

2.3 Conceptual Scales and Navigating Email

Conceptual scaling deals with many-valued attributes. Often attributes are not
one-valued as are the catchwords given above, but allow a range of values. This
is modelled by a many-valued context. A many-valued context is roughly equiv-
alent to a relation in a relational database with one field being a primary key.
As one-valued contexts are special cases of many-valued contexts, conceptual
scaling can also be applied to one-valued contexts to reduce the complexity of
the visualisation.

In this paper, we only deal with one-valued formal contexts. Readers who
are interested in the exact definition of many-valued contexts and the use of
conceptual scaling in this more general case are referred to [5]. Applied to one-
valued contexts, conceptual scales are used to determine the concept lattice that
arises from one vertical ‘slice’ of a large context:

Definition 1. A conceptual scale for a subset B ⊆ M of attributes is a (one-
valued) formal context SB := (GB , B,3) with GB ⊆ P(B). The scale is called
consistent wrt K := (G,M, I) if {g}′ ∩B ∈ GB for each g ∈ G. For a consistent
scale SB, the context SB(K) := (G,B, I ∩ (G×B)) is called its realized scale.

Conceptual scales are used to group together related attributes. They are de-
termined as required by the user, and the realized scales are derived from them
when a diagram is requested by the user. Cem stores all scales that the client
has defined in previous sessions. To each scale, the client can assign a unique
name. This is modelled by a mapping (S).

Definition 2. Let S be a set, whose elements are called scale names. The map-
ping

α:S → P(M)
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defines for each scale name s ∈ S a scale Ss := Sα(s).

For instance, the user may introduce a new scale which classifies the emails ac-
cording to being related to a conference by adding a new element ‘Conference’ to
S and by defining α(Conference) := {CKP ‘96,AA 55,KLI ‘98,Wissen ‘99,PKDD 2000}.

Observe that S and M need not be disjoint. This allows the following con-
struction deducing conceptual scales directly from the subsumption hierarchy:
Let S := {m ∈M |∃n ∈M :n < m}, and define, for s ∈ S, α(s) := {m ∈M |m ≺
s} (with x ≺ y if and only if x < y and there is no z s. t. x < z < y). This means
all catchwords m ∈ M , neither minimal nor maximal in the hierarchy, are con-
sidered as the name of scale Sm and as a catchword of another scale Sn (where
m ≺ n). This last construction, first been presented in [9], defines a hierarchy of
conceptual scales for a library information system [7].

3 Requirements of the Cem

In this section, we discuss requirements of the Cem based on the Formal Concept
Analysis paradigm. In the following section we explain how our implementation
responds to these requirements. The requirements may be divided along the
same lines as the underlying mathematical structures defined in Section 2;

1. assist the user in editing and browsing a catchword hierarchy;
2. help the client visualise and modify the scale function α;
3. allow the client to manage the assignment of catchwords to emails;
4. assist the client search the conceptual space of emails for both individual

emails and conceptual groupings of emails.

In addition to the requirements stated above, a good email system needs to be
able send, receive and display emails: processing the various email formats and
interacting with the current popular protocols. Since these requirements are al-
ready well understood and implemented by existing email programs they are not
discussed further.

Editing and Modifying a Catchword Hierarchy The catchword hierarchy
is a partially ordered set (M,≤) where each element of M is a catchword. The
requirements for editing and browsing the catchword hierarchy are:

– graphically display the structure of the (M,≤). The ordering relation must
be evident to the client.

– make accessible to the client a series of direct manipulations to alter the
ordering relation. It should be possible to create any partial order to a rea-
sonable size limit.

Visualising and Modifying the Scale Function α The user must be able to
visualise the scale function, α, explained in Section 2. The program must allow
an overlap between the set of scale labels, S, and the set of catchwords M .
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Fig. 2. Scale, catchword and concept lattice. The central dialogue box shows how α
can be edited.

Managing Catchwords Assignment Section 2 introduced the formal context
(G,M, I). This formal context associates email with catchwords via the relation
I. Also introduced was the notion of the compatability condition,(‡).

The program should store the formal context (G,M, I) and ensure that the
compatability condition is always satisfied. It is inevitable that the program will
have to sometimes modify the formal context in order to satisfy the compatability
condition after a change is made to the catchword hierarchy.

The program must support two mechanisms for the association of catchwords
to emails. Firstly, a mechanism in which emails are automatically associated with
catchwords based on the email content. Secondly, the user the should be able to
view and modify the association of catchwords with emails.

Navigating the Conceptual Space The program must allow the navigation
of the conceptual space of the emails by drawing line diagrams of concept lattices
derived from conceptual scales [5]. This is shown in Fig. 2. These line diagrams
should extend to locally scaled nested line diagrams[9] shown in Fig. 3. The
program must allow retrieval and display of emails forming the extension of con-
cepts displayed in the line diagrams.

4 Implementation of Cem

This section divides the description of implementation of the Cem into a similar
structure to that presented in Section 3.
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Fig. 3. Scale, catchword and nested-line diagram.

4.1 Catchword Hierarchy

Browsing the Hierarchy The user is presented with a view of the hierarchy,
(M,≤) as a tree widget1, shown in Fig. 2. The tree widget has the advantage
that most users are familiar with its behaviour and it provides a compact rep-
resentation (in the sense screen space) of a tree structure.

The catchword hierarchy, being a partially ordered set, is a more general
structure than that of tree. Although the example given in Fig. 1 is a forest, no
limitation is placed by the program on the structure of the partial order other
than that it must be a partial order.

The following is a definition of a tree derived from the catchword hierarchy
for the purpose defining the contents and structure of the tree widget. Let (M,≤)
be a partially ordered set and denote the set of all sequences of elements from
M by < M >. Then the tree derived from the catchword hierarchy is comprised
by (T,parent, label), where T ⊆< M > is a set of tree nodes, <> the empty
sequence is the root of the tree, parent : T/ <>→ T is a function giving the
parent node of each node (except the root node), and label : T → M assigns a
catchword to each tree node.

T = {< m1, . . . ,mn >∈< M > | mi � mi+1 andmn ∈ top(M)}

parent(< m1, . . . ,mn >) := < m1, . . . ,mn−1 >
parent(< m1 >) := <>
label(< m1, . . . ,mn >) := m1

1 A widget is a graphical user interface component with a well defined behaviour
usually mimicking some physical object, for example a button.
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Each tree node is identified by a path from a catchword to the top of the
catchword hierarchy. The tree representation has the disadvantage that elements
from the partial order occur multiple times in the tree and the tree can become
large. If however the user keeps the number of elements with multiple parents
in the partial order to a small number, the tree is manageable.

Modifying the Hierarchy (M,≤) The program provides four operations
for modifying the hierarchy: insert & remove catchword and insert & remove
ordering. More complex operations provided to the client, moving an item in
the taxonomy, are resolved internally to a sequences of these basic operations.
In this section we denote the order filter of m as ↑ m := {x ∈ M | m ≤ x},
the order ideal of m as ↓ m := {x ∈ M | x ≤ m}, and the upper cover of m as
�m:= {x ∈M | x � m}.

The operation of insert catchword simply adds a new catchword to M , and
leaves the ≤ relation unchanged. The remove catchword operation takes a single
parameter a ∈M for which the lower cover is empty, and simply removes a from
M and (↑ a)× {a} from the ordering relation.

The operation of insert ordering takes two parameters a, b ∈ M and inserts
into the relation ≤, the set (↑ a)× (↓ b). The operation of remove ordering takes
two parameters a, b ∈ M where a is an upper cover of b. The remove ordering
operation removes from ≤ the set ((↑ a/ ↑ (�b /a))× (↓ b)).

4.2 Visualisation of the Scale Function α

The set of scales S, according to the mathematisation in Section 2 is not disjoint
from M , thus the tree representation of M already presents a view of a portion of
S. In order to reduce the complexity of the graphical interface, we make S equal
to M , i.e. all catchwords are scale labels, and all scale labels are catchwords.

Such an assumption is made possible by the definition of the default scale
for a catchword given in Section 2. A result of this definition is that catchwords
with no lower covers lead to trivial scales containing no other catchwords.

The function α maps each catchword m to a set of catchwords. The program
displays this set of catchwords, when requested by the user, using a dialog (see
Fig. 2 – centre). The dialog box contains all catchwords in the down-set of m an
icon (either a tick, or a cross) to indicate membership in the set of catchwords
given by alpha(m). Clicking on the icon changes the membership of α(m).

By only displaying the down-set of m in the dialog box, the program restricts
the definition of α to α(m) ⊆↓ m. This has an effect on the “remove ordering
operation” defined on (M,≤). When the ordering of a ≤ b is removed the image
of α function for attributes in ↑ a must be checked and possibly modified.

4.3 Associating Emails with Catchwords

Each member of (M,≤) is associated with a query term, in this application is
a set of section/word pairs. That is: Let H be the set of sections found in the
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email documents, W the set of words found in email documents, then a function
query:M → P(H ×W ) attaches to each attribute a set of section/word pairs.

Let G be a set of email. An inverted file index stores a relation R1 ⊆ G ×
(H ×W ) between documents and section/word pairs. (g, (h,w)) ∈ R1 indicates
that document g has word w in section h.

A relation R2 ⊆ G×M is derived from the relation R1 and the function query
via: (g,m) ∈ R2 iff (g, (h,w)) ∈ R1 for some (h,w) ∈ query(m). A relation R3

stores user judgements saying that an email should have an attribute m. A
relation R4 respecting the compatibility condition (‡) is then derived from the
relations R2 and R3 via: (g,m) ∈ R4 iff there exists m1 ≤ m with (g,m1) ∈
R2 ∪R3.

Maintaining the Compatability Condition Inserting the ordering b ≤ a
into ≤ requires the insertion of set (↑ a/ ↑ b) × {g ∈ G | (g, b) ∈ R4} into
R4. Such an insertion into an inverted file index is O(nm) where n is the aver-
age number of entries in the inverted index in the shaded region, and m is the
number of elements in the shaded region. The real complexity of this operation
is best determined via experimentation with a large document sets and a large
user defined hierarchy [1]. Similarly the removal of the ordering b ≤ a from ≤
will require a re-computation of the inverted file entries for elements in ↑ a.

Processing new Email and Integrating user Judgements When new
emails, Gb, are presented to Cem, the relation R1 is updated by inserting new
pairs, R1b, into the relation. The modification of R1 into R1 ∪ R1b causes an
insertion of pairs R2b into R2 according to query(m) and then subsequently an
insertion of new pairs R4b into R4.

R1b ⊆ Gb × (H ×W )
R2b = {(g,m) | ∃ (h,w) ∈ query(m) and (g, (h,w)) ∈ R1b}
R4b = {(g,m) | ∃m1 ≤ m with (g,m1) ∈ R2b}

When the user makes a judgement that an indexed email should be associ-
ated with an attribute, m, then an update must be made to R3, which will in
turn cause updates to all attributes in the order filter of m to be updated in R4.
In the case that a client retracts a judgement, saying that an email is no longer
be associate with an attribute, m, requires a possible update to each attribute,
n, in the order filter of m.

4.4 Navigating the Conceptual Email Space

When the user requests that the concept lattice derived from the scale with
name s ∈ S be drawn, the program computes Sα(S) from Definition 1 via the
algorithm reported in [1]. In the case that the user requests a diagram combining
two scales with names labels s and t, then the scale SB∪C with B = α(s) and
C = α(t) is calculated by the program and its concept lattice B(SB∪C) is drawn
as a projection into the lattice product B(SB)×B(SC).
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5 Conclusion

This paper gives a mathematical description of the algebraic structures that can
be used to create a a lattice-based view of electronic mail. The claim is that this
structure, its implementation and operation, aid the process of knowledge dis-
covery in large collections of email. By using such a conceptual multi-hierarchy,
the content and shape of the lattice view is varied. An efficient implementation
of the index promotes client iteratation.

Note for reviewers, the screen-shots and the text example introduced early
in the paper need to be synchronised if the paper were acceptable to PKDD,
however we ran out of time.
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