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Abstract. Recently, research projects such as PADLR and SWAP have
developed tools like Edutella or Bibster, which are targeted at establish-
ing peer-to-peer knowledge management (P2PKM) systems. In such a
system, it is necessary to obtain provide brief semantic descriptions of
peers, so that routing algorithms or matchmaking processes can make
decisions about which communities peers should belong to, or to which
peers a given query should be forwarded.
This paper proposes the use of graph clustering techniques on knowl-
edge bases for that purpose. Using this clustering, we can show that our
strategy requires up to 58% fewer queries than the baselines to yield full
recall in a bibliographic P2PKM scenario.

1 Introduction: Ontology-Based P2PKM

Recently, a lot of effort has been spent at building peer-to-peer systems
using semantic web technology [23, 5, 2, 16], based on a notion of peer-
to-peer, personal knowledge management (P2PKM for short). In such a
scenario, users will model their knowledge in personal knowledge bases,
which can then be shared with other users via a peer-to-peer network.
Many use cases for P2PKM have been implemented recently. In the
PADLR and ELENA projects1, a P2P infrastructure is established for
the exchange of learning material; Bibster2 is a tool for sharing BibTEX
entries between researchers; the SCAM tool3 for knowledge repositories
connects to a P2P network. In these systems, each peer builds a knowl-
edge base on top of a common ontology such as LOM and ACM CCS.
One crucial point in such a P2P network is that query messages need to
be routed to peers which will be able to answer the query without flooding
the network with unnecessary traffic. Several proposals have been made
recently as to how the network can self-organize into a topology consist-
ing of communities around common topics of interest, a structure which
is beneficial for routing, and how messages can be routed in this topol-
ogy [21, 22, 8, 24]. All of these are based on the idea of routing indices
[3]. In a routing index, peers store an aggregated view of their neighbors’
contents, enabling them to make content-based routing decisions.
One missing link towards these self-organized network topologies is the
extraction of expertises – semantic self-descriptions – of peers from the

1 http://www.l3s.de/english/projects/projects_overview.html
2 http://bibster.semanticweb.org
3 http://scam.sourceforge.net/



peers’ knowledge bases. In this paper, a method of extracting these ex-
pertises using a clustering technique on the knowledge base is proposed
and evaluated.
The remainder of this paper is structured as follows: After a brief re-
view of an ontology-based P2P knowledge management scenario and re-
lated work, we will introduce technical preliminaries in Section 2. In Sec-
tion 3 the automatic generation of self-descriptions of peers’ knowledge
bases through the use of graph clustering will be demonstrated. Section 4
presents evaluation results for a bibliographic P2PKM scenario. Section 5
concludes and discusses future work.

1.1 Related Work

To the best of our knowledge, the exact problem discussed in this paper
has not been treated before. There are, however, related areas which
touch similar topics.
Knowledge-rich approaches from the text summarization area [10, 9] use
algorithms on knowledge representation formalism to extract salient top-
ics from texts in order to generate summaries. We compare our approach
to the one in [10] in Section 4.
In semantic P2P overlays, peers need some means of obtaining a notion
of other peers’ contents for routing tables and other purposes. [13] and
others rely on observing the past behavior of peers – queries sent and an-
swered – to guess what kind of information peers contain, including some
fallback strategies to overcome the bootstrapping problem. In [8], peers
publish their expertise containing all topics they contain information
about without any aggregation, which will be a resource consumption
problem for larger knowledge bases and networks.
Keyword-based P2P information retrieval systems can make use of the
bag-of-words or vector-space models for IR. [20] proposes the use of
Bloom filters to maintain compact representations of contents for rout-
ing purposes. These techniques, however, do not provide a semantically
aggregated view of the contents, but rather a bitwise superposition of
keywords which loses semantic relationships between related keywords.
Much work has been done on graph clustering (e. g. [17]) in a variety of
areas. Most of these algorithms, though, do not readily yield representa-
tives such as the centroids from the k-modes algorithm used in Section 3,
and/or may not be naturally adapted to the shared-part/personal-part
consideration used in this paper.

2 Basics and Definitions

2.1 P2P Network Model

Following [21], the following assumptions are made about about peers in
a P2PKM network:

– Each peer stores a set of content items. On these content items, there
exists a similarity function called sim. We assume sim(i, j) ∈ [0, 1]
for all items i, j, and the corresponding distance function d := 1−sim



shall be a metric. For the purpose of this paper, we assume content
items to be entities from a knowledge base (cf. Section 2.2), and
the metric to be defined in terms of the ontology as described in
Section 2.4.

– Each peer provides a self-description of what its knowledge base
contains, in the following referred to as expertise. Expertises need
to be much smaller than the knowledge bases they describe, as they
are transmitted over the network and used in other peers’ routing
indices. A method of obtaining these expertises is outlined in Section
3. Formally, an expertise consists of a set {(ci, wi)|i = 1 . . . k} of pairs
mapping content items ci to real-valued weights wi.

– There is a relation knows on the set of peers. Each peer knows
about a certain set of other peers, i. e., it knows their expertises and
network address (e. g. IP address, JXTA ID, . . . ). This corresponds
to the routing index as proposed in [3]. In order to account for the
limited amount of memory and processing power, the size of the
routing index at each peer is limited.

– Peers query for content items on other peers by sending query mes-
sages to some or all of their neighbors; these queries are forwarded
by peers according to some query routing strategy, which uses the
sim function mentioned above to decide which neighbors to forward
messages to.

2.2 Ontology Model

Fig. 1: Example Knowledge Base

For the purpose of this paper, we use the view on ontologies proposed
by the KAON framework [6]. Following the simplified nomenclature of
[6], an ontology consists of concepts with an subclassOf partial order,
and relations between concepts. A knowledge base consists of an ontology
and instances of concepts and relations. Concepts and instances are both
called entities (for details cf. [6]).

Another important feature of KAON is the inclusion mechanism for
knowledge bases, enabling the implementation of the shared and per-
sonal parts of knowledge bases as introduced in the next section.



2.3 Shared and Personal Parts of the Knowledge Bases

Based on the use cases mentioned in Section 1, peers Pi, i = 1 . . . n in
the system are assumed to share a certain part O of their ontologies:
in the case of e-learning, this could be the Learning Object Metadata
(LOM4) standard plus a classification scheme; when exchanging bibli-
ographic metadata as in Bibster, this would be an ontology reflecting
BibTEX and a classification scheme such as ACM CCS5, etc.
Additionally, the knowledge base KBi of each peer Pi contains personal
knowledge PKi which is modeled by the user of the peer and is not known
a-priori to other peers. Querying this knowledge efficiently and sharing
it among peers is the main task of the P2PKM system. Formally, we can
say that for all i, KBi = O ∪ PKi.
In Figure 1, the ontology used in the evaluation in Section 4 is shown. In
this case, the shared part O comprises the concepts Person, Paper, Topic,
and their relations, as well as the topics of the ACM CCS. The personal
knowledge PKi of each peer contains instantiations of papers and persons
and their relationships to each other and the topics for the papers of each
individual author in DBLP with papers in the ACM digital library (cf.
4.1 for details).
For the purpose of this paper, an agreement on a shared ontology O
is assumed. The problem of ontologies emerging in a distributed KM
setting [1], of ontology alignment, mapping, and merging [4], are beyond
the scope of this work.

2.4 Ontology-Based Metrics

An ontology of the kind we use is a graph: the set of node comprises the
entities, and the relations between entities make up the set of edges. An
edge between entities in this graph expresses relatedness in some sense:
the instance paper37 may have an instanceOf edge to the concept Paper,
Paper and Topic would be connected by an edge due to the hasTopic

relation, etc.
On this kind of semantic structure, [18] has proposed to use the distance
in the graph-theoretic sense (lengths of shortest paths) as a semantic
distance measure.

Metric Used in the Evaluation We follow this suggestion and
apply it to the abovementioned graph as follows:
– To each edge, a length is assigned; taxonomic edges (instanceOf, sub-

classOf) get length 1, while non-taxonomic edges are assigned length
2. This reflects the fact that subclassOf(PhDStudent, Person) is a
closer link between these concepts than, say, rides(Person, Bicycle).

– Edge lengths are divided by the average distance of the incident
nodes from the root concept. This reflects the intuition that top-level
concepts such as Person and Project would be considered less sim-
ilar than, e.g., Graduate Student and Undergraduate farther from
the root.

4 http://ltsc.ieee.org/wg12
5 http://www.acm.org/class



Similarity, Relatedness, and Semantic Distances – Why
Edge Counting? The notions of semantic similarity (things hav-
ing similar features) and relatedness (things being associated with each
other) have long been explored in various disciplines such as linguistics
and cognitive sciences. Discussions about these phenomena and their re-
spective properties have lasted for decades (cf. [25, 7]). While most of
this discussion is outside the scope of this paper, some key points [7]
are worth mentioning: Thematic relatedness and similarity are distinct
phenomena, but both can get mixed up or influence each other.
In the context of this paper, where the goal is to provide self-descriptions
of knowledge in a P2PKM system, some more influences on the choice
of the semantic distance should be noted:

– The ontologies to be used in a P2PKM will be engineered specifically
for KM purposes. Thus, regarding a relation between two concepts
as an indication that these two have something to do with each other
reflects the intention of a knowledge engineer to express relatedness.

– In a P2PKM system, domain specific ontologies will be used. These
represent a conceptualization of a small part of the world which is
relevant for the given domain, so that stray associations such as lamp
– round glowing object – moon – . . . , which might be occur in a a
“world ontology”, will be avoided.

– Modeling idiosyncrasies of certain tools and formalisms such as de-
scribed in the next section need to be anticipated. This can be done
by allowing for flexible weighting and filtering strategies.

Various constraints are present on other kinds of metrics which have
led to the use of an edge-counting metric for the purpose of this paper.
Approaches such as [19] or [25] assume the presence of full text or lin-
guistic background knowledge; others such as [14] only use concepts and
an instanceOf relationship, neglecting instances and non-taxonomic rela-
tionships altogether. To yield maximum flexibility and to use as much of
the modeled content as possible, an edge counting approach was chosen
for this paper.
Keeping this discussion in mind, one needs to be aware of what kinds
of similarity and/or relatedness should be expressed in modeling the
ontology and parameterizing the metric.

Pitfalls on Real-World Ontologies While the edge-counting met-
ric seems straightforward, applying it to real-world ontologies turned out
to be non-trivial:

Noise and Technical Artifacts Often not all of the content of a knowl-
edge base is used to model a certain domain as such; e. g., in KAON,
lexical information is represented as first-class entities in the knowl-
edge base. This yields entities which are not relevant for the semantic
distance computation. There is also a root class which every entity
is an instance of, which would render our approach to calculating
distances useless.

Modeling Idiosyncrasies Engineering an ontology implies design de-
cisions, e. g. whether to model something as an instance or as a
concept [26]. These decisions carry implications for the weighting of



edges, e. g. when taxonomic relationships are expressed by a relation
which is not one of instanceOf, subclassOf.

To overcome these problems, we have implemented extensive entity fil-
tering and weighting customization strategies which are applied prior to
the metric computation itself.

Choice of Parameters One obvious question is where the param-
eters, weighting schemes and filtering rules necessary for this kind of
metric should come from. These can be agreed upon just like the ontol-
ogy to be used itself. When stakeholders deside that there should be a
“see also” relation between topics, they could also agree on its impor-
tance or non-importance for retrieval tasks (cf. the discussion about the
value of non-taxonomic relations in [18]).
Secondly, this kind of semantic metric will not primarily be used to reflect
human judgment of similarity or relatedness directly, but to structure a
network topology. For this type of use, optimal parameters can be deter-
mined in simulation experiments or might be learned over the lifetime of
the system.

2.5 k-Modes Clustering

In Section 3, we will use an extension of k-modes clustering [11] to obtain
aggregations of knowledge bases. The basic version of k-modes clustering
for partitioning a set S of items into k clusters S1, . . . , Sk such that

S =
⋃̇

i
Si works as follows:

1. Given k, choose k elements Ci, i = 1 . . . k of S as centroids
2. Assign each s ∈ S to the cluster Si with i = arg minj d(Cj, s)
3. For i = 1 . . . k, recompute Ci such that

∑
s∈Si

d(Ci, s) is minimized.
4. Repeat steps 2 and 3 until centroids converge.

This algorithms yields (locally) optimal centroids which minimize the
average distance of each centroid to its cluster members. A variation we
will use is bi-section k-modes clustering, which produces k clusters by
starting from an initial cluster containing all elements, and then recur-
sively splitting the cluster with the largest variance with 2-modes until
k clusters have been reached.

3 Graph Clustering for Content Aggregation

As mentioned in the motivation, a peer needs to provide an expertise
in order to be found as an information provider in a P2PKM network.
From the discussion above, the following requirements for an expertise
can be derived:

– The expertise should provide an aggregated account of what is con-
tained in the knowledge base of the peer, meaning that using the sim-
ilarity function, a routing algorithm can make good a-priori guesses
of what can or cannot be found in the knowledge base. More specif-
ically, the personal part PKi should be reflected in the expertise.



– The expertise should be much smaller than the knowledge base itself,
preferably contain only a few entities, because it will be used in
routing indices and in computations needed for routing decisions.

With these requirements in mind, we propose the use of a clustering
algorithm to obtain an expertise for each peer.

3.1 Clustering the Knowledge Base

We use a version of bi-section k-modes clustering for the extraction of
such an expertise. As mentioned before, k-modes clustering yields cen-
troids which are locally optimal elements of a set regarding the average
distance to their cluster members.
Using the semantic metric, these centroids fulfill the abovementioned
requirements for an expertise: We can compute a small number of cen-
troids, which are – on the average – semantically close to every member
of their respective clusters, thus providing a good aggregation of the
knowledge base.
In order to apply this algorithm in our scenario, however, some changes
need to be made:

– The set S to be clustered consists only of the personal parts PKi

of the knowledge bases. Otherwise, the structure of the shared part
(which may be comparatively large) will shadow the interesting struc-
tures of the personal part.

– The centroids Ci will not be chosen from the whole knowledge base,
but only from the shared part O of the ontology. Otherwise, other
peers could not interpret the expertise of a peer.

The expertise for each knowledge base is obtained by clustering the
knowledge base as described, obtaining a set {Ci, i = 1 . . . k} ⊆ O of
entities from the ontology as centroids for a given k. The expertise then
consists of the pairs {(Ci, |Si|)|i = 1 . . . k} of centroids and cluster sizes.

3.2 Determining the number of centroids

One problem of the k-modes algorithm is that one needs to set the
value of k beforehand. As the appropriate number of topics for a given
knowledge base may not be known a-priori, we use the silhouette coeffi-
cient [12], which is an indicator for the quality of the clustering. In short,
it determines how well clusters are separated in terms of the distances
of each item to the nearest and the second nearest centroid: if each item
is close to its own centroid and far away from the others, the silhouette
coefficient will be large, indicating a good clustering.

4 Experimental Evaluation

In the following sections, we will try to verify three hypotheses:

1. Extracting a good expertise from a knowledge base is harder for
large knowledge bases.

2. With larger expertises, the retrieval results improve.



3. The clustering strategy extracts expertises which are useful for re-
trieval.

Extracting a good expertise from a knowledge base is harder for large
knowledge bases: the interests of a person interested in many areas will
be more difficult to summarize than those of someone who has only few
fields of interest.
With larger expertises, the retrieval results improve: if we spend more
space (and processing time) for describing someone’s interests, we can
make better guesses about what his knowledge base contains.
The clustering strategy extracts good expertises with respect to retrieval
performance: returning the cluster centroids and counts gives a good
approximation of what a knowledge base contains.

4.1 Setup

To evaluate the usefulness of the expertise extraction approach from the
previous sections, we consider a P2PKM scenario with a self-organized
semantic topology as described in [21, 8, 24]: the expertises of peers are
stored in routing tables, where similarity computations between queries
and expertises in the routing indices are used to make greedy routing
decisions when forwarding queries.
If the routing strategy of this network works as intended, the peers which
published an expertise closest to a given query will be queried first. In
the following experiment, the quality of the expertises is evaluated in
isolation based on that observation: An expertise was extracted for each
peer. All of the shared entities of the ontology were used in turn as
queries. For each query, the authors were sorted in descending similarity
of the closest entity of the expertise to the query. Ties were resolved by
ordering in decreasing weight order.
The evaluation is based on the bibliographic use case mentioned in Sec-
tion 1: there are scientists in the P2P network sharing bibliographic
information about their publications. An ontology according to Figure 1
is used. Only the top level concepts (Person, Topic, Paper) and the ACM
classification hierarchy are shared among the peers. Each user models a
knowledge base on his peer representing his own papers.
We instantiated such a set of knowledge bases using the following data:

– For 39067 papers from DBLP which are present in the ACM Digital
Library, the topics were obtained from the ACM website. There are
1474 topics in the ACM Computing Classification System. Details
on the construction of the data set and the conversion scripts can be
found on http://www.kde.cs.uni-kassel.de/schmitz/acmdata.

– To yield non-trivial knowledge bases, only those authors who wrote
papers on at least 10 topics were considered. This left 317 authors.
A discussion of this pruning step can be found in Section 4.3.

For each of the summarization strategies described below, we show the
number of authors which had to be queried in order to yield a given level
of recall. This is an indicator for how well the expertises capture the
content of the authors’ knowledge bases: the better the expertises, the
fewer authors one needs to ask in order to reach a certain level of recall.



This is a variation of the usual precision-over-recall evaluation from in-
formation retrieval. Instead of precision – how many of the retrieved
documents are relevant? – the relative number of the queried authors
which are able to provide papers on a given topic is measured.

4.2 Expertise Extraction Strategies

In comparison with the clustering technique from Section 3, the following
strategies were evaluated. The expertise size was fixed to be 5 except
where noted otherwise.
Counting (#5): The occurrences of topics in each author’s knowledge

base were counted. The top 5 topics and counts were used as the
author’s expertise.

Counting Parents (#P5): As above, but each topic did not count for
itself, but for its parent topic.

Random (R5): Use 5 random topics and their counts.
Wavefront (WFL7/WFL9): Compute a wavefront of so-called fuser

concepts [10]. A fuser concept is a concept many descendants of
which are instantiated in the knowledge base. The intuition is that
if many of the descendants of a concept occur, it will be a good sum-
mary of that part of the knowledge base. If only few children occur,
a better summarization would be found deeper in the taxonomy.
There are two parameters in this computation: a threshold value
between 0 and 1 for the branch ratio (the lower the branch ratio, the
more salient the topic), and a minimal depth for the fuser concepts.
There are some problems in comparing this strategy with the others
named here:
– it is not possible to control the number of fuser concepts returned

with the parameters
– leaves can never be fuser concepts, which is a problem in a rela-

tively flat hierarchy such as ACM CCS, where many papers are
classified with leaf concepts

– all choices of parameters yielded very few fuser concepts
In order to fix these problems, the expertise consisted of the fuser
concepts as returned by the wavefront computation with the inverse
of the branch ratio as weights. If the number of fuser concepts was
less than 5, the expertise was filled up with the leaf concepts occur-
ring most frequently. We examined thresholds of 0.7 (WFL7) and
0.9 (WFL9).

Clustering (C5/C37): The expertise consisted of centroids and clus-
ter sizes determined by a bisection-k-modes clustering as described
in Section 3. C5 used a fixed k of 5, while C37 selected the best
k ∈ {3, . . . , 7} using the silhouette coefficient.

4.3 Results

In this section, results are presented for the different strategies. The
values presented are averaged over all queries (i. e. all ACM topics), and,
in the cases with randomized algorithms (C5, C37, R5), over 20 runs.
Note that all strategies except C37 returned expertises of size 5, while
in C37, the average expertise size was slightly larger at 5.09.



Pruning of the Evaluation Set In order to yield interesting knowl-
edge bases to extract expertises from, we pruned the ACM/DBLP data
set as described in Section 4.1. Thus, only the knowledge bases of authors
which have written papers on at least 10 topics were considered.

Recall full data pruned data

10% 0.01 4.09
30% 0.04 4.93
50% 0.07 6.43
70% 0.16 12.53
90% 0.55 18.73

100% 3.45 22.88

Table 1: Full vs. pruned data: Fraction of authors (%)
queried to yield given recall, C5 strategy

Table 1 presents a comparison of the full and the pruned dataset for the
C5 strategy. It can be seen that the full data require querying only a
fraction of the authors which is one or two orders of magnitude smaller
than the pruned data, indicating that the first hypothesis holds and the
pruning step yields the “hard” instances of the problem.

Influence of the Expertise Size Intuitively, a larger expertise can
contain more information about the knowledge base than a smaller one.
In the extreme case, one could use the whole knowledge base as the
expertise.

To test the second hypothesis, Figure 2 and Table 2, show the influence
of the expertise size on retrieval performance for the clustering strategy.

Fig. 2: Influence of Expertise Size



Expertise Size
Recall 1 3 5 7 10

10% 15.06 6.80 4.09 3.38 3.03
30% 17.66 8.16 4.93 4.12 3.69
50% 21.79 10.59 6.43 5.35 4.82
70% 33.37 19.79 12.53 10.21 9.18
90% 44.57 28.20 18.73 15.44 14.15

100% 49.07 33.04 22.88 19.10 17.67

Table 2: Percentage of Authors Queries against Expertise Size

Exp. Size Percentage of Authors

3 20%
4 15%
5 21%
6 23%
7 21%

Avg.: 5.09

Table 3: Distribution of Expertise Sizes for C37

While the small number of data points for each recall level do not lend
themselves to a detailed quantitative analysis, it is clear that the exper-
tise size has the expected influence in the clustering technique: the larger
the expertise is, the more detail it can provide about the knowledge base,
and the better the retrieval performance is.

Note that the resources a peer would be willing to spend on storing
routing tables and making routing decisions are limited, so that a trade-
off between resources set aside for routing and the resulting performance
must be made.

Influence of the Summarization Strategy Finally, we evaluate
the performance of the clustering strategies against the abovementioned
baselines.

Table 4 and Figure 3 show that the k-modes clustering compares favor-
ably against the other strategies: fewer authors need to be asked in order
to find a given proportion of the available papers on a certain topic. This
is an indication that the clustering technique will yield expertises which
can usefully be applied in a P2PKM system with a forwarding query
routing strategy based on routing indices. For example, to yield 100%
recall, 58% fewer (18.42% vs. 44.15%) peers would have to be queried
when using C37 instead of the #5 strategy. With C37 and a routing
strategy that contacted best peers first, 100% − 18.42% ≈ 81% of the
peers could be spared from being queried while still getting full recall.

The standard deviations σ of the randomized strategies given in Table 4
show that while the concrete results of the C5, C37, R5 strategies may
vary, the quality of the results for querying is stable.



Authors Queried
Recall WFL7 WFL9 C5 (σ) C37 (σ) #5 #P5 R5 (σ)

10% 6.11 6.37 4.09 (.28) 3.10 (.18) 10.69 9.25 6.96 (.48)
30% 7.16 7.43 4.93 (.28) 3.80 (.19) 12.15 10.72 8.26 (.52)
50% 9.61 9.86 6.43 (.32) 5.01 (.21) 15.33 13.67 11.33 (.61)
70% 19.06 19.67 12.53 (.52) 9.65 (.33) 27.43 23.38 24.04 (.82)
90% 28.97 29.78 18.73 (.64) 14.78 (.47) 39.45 33.91 35.16 (.93)

100% 34.35 35.37 22.88 (.75) 18.42 (.48) 44.15 39.27 39.65 (.83)

Table 4: Percentage of Authors Queried against Recall;
σ: Standard Deviation

Fig. 3: Percentage of Authors Queried against Recall

To get an impression about why the clustering strategies work better
than the others, consider one author whose papers are labelled with the
following topics6: B.5, B.6, B.6, B.6.1.a, B.6.1.a, B.6.3.b, B.7, B.7.1.c,
B.8, B.8, C.0.d, C.3.e, C.5.3.f, D.3.2, G.1, I.5.4.g, J

The different strategies delivered the results shown in Table 5. It can be
seen that the clustering strategies find the best balance between spread-
ing the expertise over all occuring topics, and on the other hand gener-
alizing to that many occuring topics are subsumed under one expertise
entry. Most other strategies, for example, did not consider any of the
topics outside the B and C parts of ACM CCS.

6 Note that the fourth level topics do not have names of their own originally; we
attached artificial IDs to handle them



#P5 #5 R5 WFL7 WFL9 C5 C37
B. (6) B.6.1.a (2) B.6.1.a (2) C. (3) C. (3) B. (11) B.6 (10)

B.6.1 (2) B.6 (2) B.6.3.b (1) B.6.1.a (2) B.6.1.a (2) C. (3) C. (3)
B.6.3 (1) B.8 (2) D.3.2 (1) B. (2) B. (2) I.5.4.g (1) J. (1)

C.0 (1) B.6.3.b (1) C.5.3.f (1) B.6 (1.5) B.6 (1.5) D.3.2 (1) G.1 (1)
B.7.1 (1) B.5 (1) B.7 (1) B.6.3.b (1) B.6.3.b (1) G.1 (1) D.3.2 (1)

I.5.4.g (1)

Table 5: Sample Results for Different Strategies

5 Summary and Outlook

5.1 Conclusion
In this paper, an algorithm which can be used to extract semantic sum-
maries – called expertises – from knowledge bases is proposed. A moti-
vation for the necessity of this kind of summary is given, namely, that
such summaries are needed for routing tables in semantic P2P networks.
We demonstrate that the clustering method outperforms other strategies
in terms of queries needed to get a given recall on a set of knowledge bases
from a bibliographic scenario. We also show qualitatively that larger
knowledge bases are harder to summarize, and that larger expertises are
an advantage in determining which peers to query.

5.2 Outlook and Work in Progress
Evaluation in Context. This paper provides evidence that the cluster-
ing procedure extracts suitable expertises for a P2PKM setting. The next
step will be combining the clustering with self-organization techniques
for P2PKM networks as described in [21]. Note that usually the value of
aggregations or summaries is measured by evaluating it against human
judgment. In our case, however, the aggregations will be evaluated with
regard to their contribution to improving the performance of the P2P
network.

Scalability Issues. Computing the metric as described above is very ex-
pensive, as it needs to compute all-pairs-shortest-paths. For large ontolo-
gies having tens or hundreds of thousands of nodes, this is prohibitively
expensive. In the current evaluation, the shortest paths needed are com-
puted on the fly, but for a real-world P2PKM implementation, some
faster solution needs to be found. The obvious idea of pre-computing the
metric does not mitigate the problem very much, because maintaining
the shortest path lengths requires O(n2) storage.
On possible direction of investigation is to look at the actual usage of the
metric in a P2PKM system. If the community structure of the network
leads to a locality in the use of the metric, caching and/or dynamic
programming strategies for the metric computation may be feasible.

Test Data and Evaluation Methodology. Other than in Information
Retrieval, for example, there are neither widespread testing datasets nor
standard evaluation methods available for Semantic Web and especially
P2PKM applications. In order to compare and evaluate future research in
these areas, standardized data sets and measures need to be established.
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