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1 Introduction

Diabetes mellitus is a disease where the glucosis-content of the blood does not automatically

decrease to a ”normal” value between 70 mg/dl and 120 mg/dl (3,89 mmol/l and

6,67 mmol/l) between perhaps one hour (or two hours) after eating. Several instruments

can be used to arrive at a relative low increase of the glucosis-content. Besides drugs (oral

antidiabetica, insulin) the blood-sugar content can mainly be influenced by

(i) eating, i.e., consumption of the right amount of food at the right time

(ii) physical training (walking, cycling, swimming).

In a recent paper the author has performed a regression analysis on the influence of eating

during the night. The result was that one ”bread-unit” (12g carbon-hydrats) increases the

blood-sugar by about 50 mg/dl, while one hour after eating the blood-sugar decreases by

about 10 mg/dl per hour. By applying this result-assuming its correctness - it is easy to eat

the right amount during the night and to arrive at a fastening blood-sugar (glucosis-content)

in the morning of about 100 mg/dl (5,56 mmol/l).

In this paper we try to incorporate some physical exercise into the model. For every day

a number is specified describing the physical activity during the past day. Mostly it consists

of the kilometers walked during the past day. It turns out that the estimated regression

coefficient associated with the physical exercise is negative. Unfortunately it is not significant.

At the beginning of the night it is of moderate magnitude but in the morning it is very small.

The paper starts in the next two sections with some mathematical topics, namely Gram-

Schmidt orthogonalization, Gauss-Markov theorem and its application to the estimation of

regression coefficients. Then the linear model for the description of the behaviour of glucosis

during the night is formulated and some empirical data from 2008 are analyzed. A concluding

remark concerns the application of the results and the empirical outcome of the corresponding

method.
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2 Gram-Schmidt orthogonalization

Given vectors x1, . . . , xk of the inner-product vector-space V with inner product (x, y) the

following task arises: Determine orthogonal vectors q1, . . . , qk such that span{x1, . . . , xi} =

span{q1, . . . , qi} , i = 1, 2, . . . , k .

From the representation

xi =
i

∑

j=1

λj qj (1)

we get (xi, qj) = λj(qj, qj) and hence λj is arbitrary if qj = 0 and λj = (xi, qj)/(qj, qj) if

qj 6= 0 . Thus

xi =
i

∑

j=1,qj 6=0

(xi, qj)

(qj, qj)
qj (2)

and

qi =



xi −

i−1
∑

j=1,qj 6=0

(x, qj)

(qj, qj)
qj





(qi, qi)

(xi, qi)
(3)

if (xi, qi) 6= 0 . Therefore

qi = (xi − Pspan{q1,...,qi−1}xi)
(qi, qi)

(xi, qi)

=
(

P{q1,...,qi−1}⊥xi

) (qi, qi)

(xi, qi)
, (4)

where PMy denotes the orthogonal projection of y ∈ V onto the linear subspace Mc V .

Since trivially

P{q1,...,qi−1}⊥xi ⊥ q1, . . . , qi−1 (5)

it follows that

2.1 Theorem:

Let q0 = 0 and qi = P{q0,...,qi−1}⊥xi, i = 1, . . . , k . Then qi, i = 1, . . . , k form on orthogonal

system of vectors such that span{q1, . . . qi} = span{x1, . . . , xi}, i = 1, . . . , k .

Proof: From q0 = 0 it follows that q1 = x1 and span{q1} = span{x1} . If span{x1, . . . ,

xi−1} and span{q1, . . . , qi−1} coincide then it follows that qi = xi − Pspan{q1,...,qi−1}xi =

xi − Pspan{x1,...,xi−1}xi ∈ span{x1, . . . , xi} and xi = qi + Pspan{q1,...,qi−1}xi ∈ span{q1, . . . , qi} .

Orthogonality follows from the symmetry of the inner product. �

Moreover (xi, qi) = (xi−Pspan{q1,...,qi−1}xi, qi) = (qi, qi) and (xj, qi) = (qj, qi) = 0 if i > j .
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3 Gauss-Markov theorem, estimation

of regression coefficients

Consider a linear model

Ey ∈ L Cov y = Q , (1)

where y is a n-dimensional random vector and L is a linear subspace of the n-dimensional

vector-space V .

The Best Linear Unbiased Estimators (BLUE) or Gauss-Markov Estimators (GME) in

this model is a linear mapping Gy from V to V such that Gy is an unbiased estimator

of Ey (i.e., Gl = l for all l ∈ L) and Gy possesses smallest Covariance-matrix among all

linear unbiased estimators of Ey

3.1 (Gauss-Markov theorem 1):

Gy is BLUE of Ey in the model Ey ∈ L , Cov y = Q iff

(i) Gy = y ∀ y ∈ L

(ii) GQy = 0 if y ∈ L⊥ (Gy is the projection onto L along QL⊥) .

Proof: Drygas (1970), page 55.

Besides this theorem another Gauss-Markov theorem is important. It concerns the estimation

of a simple parametric function (a,Ey) .

3.2 (Gauss-Markov theorem 2):

(a, y) is BLUE of (Ey, c) iff

(i) a − c ∈ L⊥

(ii) Qa ∈ L .

Such an estimator always exists.

Proof: From L ∩ QL⊥ = {0} it follows that L⊥ + Q−1(L) = V .

Therefore for given c ∈ V , c = b+a , Qa ∈ L and b ∈ L⊥ . Since (c−a) = b ∈ L⊥ it follows

that (a, y) is an unbiased estimator of (c, Ey) and Qa ∈ L . Let a1 ∈ V an alternative

element of V such that c − a1eL
⊥ , i.e., (a1, y), is an unbiased estimator of (a,Ey) . Then

(Qa1, a1) = Var(a1, y) = (Q(a1 − a) + a, (a1 − a) + a))

= (Q(a − a1), (a − a1) + (Qa, a) + 2(Qa, (a − a1)) . (2)

The letter expression vanishes since Qa ∈ L and a − a1 = (a − c) − (a1 − c) ∈ L⊥ . Thus

(Qa1, a1) = (Q(a − a1), (a − a1)) + (Qa,Qa) ≥ (Qa, a) (3)
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with equality iff (Q(a − a1), (a − a1)) = 0 , i.e., Q(a1 − a) = 0 or Qa1 = Qa ∈ L .

This Proof ist essential a linear version of the Lehmann-Scheffé theorem which says that

an estimator (a, y) is BLUE iff (a, y) is uncorrelated with any unbiased estimator (d, y) of

0 . (d, y) (Schmetterer, 1966, p. 332) is an unbiased estimator of 0 iff d ∈ L⊥ and we get

the condition (Qa, d) = 0 ∀d ∈ L⊥ , i.e.,Qa ∈ L⊥⊥ = L . This approach is discussed in some

detail in Sengupta/Jammalamadaka (2003). �

We want to apply this theorem to the estimation of βk in the case where

L = {Xβ = x1β1 + x2β2 + . . . + xkβk} (4)

where X = (x1, . . . , xk) . The case where the estimation of (l, β), l ∈ R
k is desived can be

reduced to this case as follows. Let l1, . . . , lk−1 be can orthogonal basis of (l)⊥ and lk = l .

Then

Xβ =
k

∑

i=1

Xli(li, li)
−1(li, β) (5)

as can easily be verified for β = li , i = 1, . . . , k . Let

zi = Xli(li, li)
−1 , γi = (li, β) . (6)

Then Xβ =
k

∑

i=1

ziγi and the estimation of γk is desired.

3.3 Theorem:

Let G1y be the BLUE of Ey in the model Ey ∈ im(X1) , X1 = (x1, . . . , xk−1) such that

im(G1) ⊆ im(X1) . Then if

W = Q + cXX ′ (7)

c ≥ 0 such that im(X) ⊆ im(W) it follows that (a, y) is BLUE of βk iff

Wa = λ(I − G1)xk (8)

for some λ ∈ R and (a, xk) = 1 .

Proof: (a, y) is an unbiased estator of βk = (ek, β) , ek = (0, . . . , 0, 1)′ , the k-th unit-

vector iff (a,Xβ) = (β, ek) for all β ∈ R
k . If we let β = ei , the i-th unit-vecor,

i = 1, . . . , k − 1 then (a, xi) = 0 and if we let β = ek then (a, xk) = 1 . The optimality

condition of theorem 3.2 tells us that

Qa ∈ L , i.e , Qa = a1 + µxk , (9)

where a1 ∈ im(X1) and µ ∈ R . This is equivalent to

Wa = a2 + µ1xk (10)
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where a2 ∈ im(X1) and µ1 ∈ R . Since a ∈ (im (X1))
⊥ it follows that

G1Wa = 0 (11)

and

Wa = (I − G1)Wa = (I − G1)(a2 + µ1xk) = µ1(I − G1)xk . (12)

�

The question now arises how the equation Wa = µ1(I −G1)xk can be solved. One attempt

may be

a =
W−(I − G1)xk

(xk,W−(I − G1)xk)
(13)

where W− is a g-inverse W, i.e, WW−W = W .

This formula is indeed correct if

(i) W− is n · n · d and W−(I − G1) is symmetric

and

(ii) xk /∈ im(X1) .

If xk ∈ im(X1) then βk is not estimable. Indeed, then Xl1 = 0 for some l1 = (l11, . . . , l1k)
′

and l1k 6= 0 . But (l1, l) = l1k 6= 0 and l = ek /∈ im(X′) , i.e., (β, ek) = βk is not estimable.

If W− = W+ , the Moore-Penrose inverse of W and

G1 = X1(X
′
1W

+X1)
+X ′

1W
+

then W+G1 is symmetric, W+ is n.n.d and im(G1) ⊆ im(X1) , (I − G1)
′W−(I − G1) =

W−(I − G1)(I − G1) = W−(I − G1) . It follows that the dedominator in (12) is equal to

((I − G1)xk , W+(I − G1)xk) . (14)

This expression ranishes iff W+(I − G1)xk = 0 or WW+(I − G1)xk = (I − G1)xk = 0 or

xk ∈ im(X1) . This is just the case when βk = (β, ek) is not estimable.

The question is now to compute a in (12). If Q = I , then orthogonalizingx1, . . . , xk

by the Gram-Schmidt orthogonaliziation procedure yields qk = (I − G1)xk In the general

case the most elegant approach is to change the inner product to (x, y)0 = (x,W+y) . Then

Cov y = I with respect to this inner product and again the Gran-Schmnidt orthogonalization

procedure yields to the desired estimator. (See Drygas (2008)).

Perhaps also βk−1, . . . , β1 are to be estimated. One way is to change indices. This is not

a very economic approach. From

xj =

j
∑

i=1

(xj, qi)

(qi, qi)
qi (15)
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it follows that

X = QR , (16)

Q = (q1 . . . qk) , R =
((xj, qi)

(qi, qi)

)

. (17)

The decomposition is called QR-decomposition. Since (xj, qi) = 0 if i > j and

(xi, qi) = (qi, qi) it follows that R is an upper triangular matrix with diagonal elements equal

to one. In Drygas (2008) it has been show that the BLUE of β̂ can be obtained by solving

the equation

Rβ̂ = α̂ = (α̂1, . . . , α̂k) (18)

where

α̂i =
(qi, y)

(qi, qi)
. (19)

Since R is uppes triangular, the equation Rβ̂ = α̂ can succesively be solved beginning with

β̂k .

There is an alternative more statistical approach to solve this problem. Since

E(y − xkβk) =
k−1
∑

i=1

xiβi (20)

the BLUE of βk−1 in this model is given by

(qk−1 , y − xkβk)

(qk−1 , qk−1)
= β̃k−1 . (21)

Unfortunately βk is unknown. But if we replace in (20) βk by its BLUE β̂k the assertion

concerning the expectation is still correct. The assention is now that

(qk−1 , y − xkβ̂k)

(qk−1 , qk−1)
= β̂k−1 . (22)

is BLUE of βk−1 . Since β̂k is BLUE of βk there exist a vector ak ∈ im(X) such that

β̂k = (ak, y) . Thus

β̂k−1 =
(qk−1, y) − (qk−1, xk)(ak, y)

(qk−1, qk−1)
(23)

=
(qk−1 − (qk−1, xk)ak, y)

(qk−1, qk−1)
. (24)

Since qk−1 − (qk−1, xk)ak ∈ im X , this estimator is the BLUE of βk−1 .
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3.4 Theorem:

Let β̂i , β̂i+1, . . . , β̂k be the BLUE of βi, βi+1, . . . , βk , where i ≥ 2 .

β̂i−1 =

(

qi−1 , (y −
k

∑

j=i

xjβ̂j)
)

(qi−1 , qi−1)

is BLUE of βi−1 .

Proof: Since E(y −
k

∑

j=i

xjβ̂j) =
i−1
∑

j=1

xjβj and qi−1 = xi−1 − Pspan{x1,...,xi−2}xi−1 it follows

that E((qi−1 , y−
k

∑

j=i

xjβ̂j) = βi−1(qi−1 , xi−1) = βi−1(qi−1 , qi−1) . Hence β̂i−1 is an unbiased

estimator of βi−1 .

Since β̂j is BLUE of βj it follows that there is an element aj ∈ im(X) such that

β̂j = (y, aj) . Thus

β̂i−1 =

(qi−1 −
k

∑

j=i

(qi−1, xj)aj, y)

(qi−1, qi−1)
= (ai−1, y) . (25)

Since ai−1 ∈ im(X) , the theorem is proved. �

Theorem 3.4 shows the difference between Gauss-Markow estimation and Least Squares Es-

timation. While it is possible to find a GME/BLUE of a linear function (l, β) by Least

Squares we can only obtain an estimator of the whole vector β . A minimization of

Q = (y − x1β1 − . . . xkβk , y − x1β1 − . . . − xkβk) (26)

with respect to β1 would yield

β̂1 =

(y −
k

∑

i=2

βixi, x1)

(x1, x1)
if x1 6= 0 . (27)

If x1 = 0 , then β̂1 can be chosen arbirary Plugging β̂1 into (24) yields

Q =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(y −
(x1, y)

(x1, x1)
x1 −

k
∑

i=z

βi(xi −
(xi, x1)

(x1, x1)
x1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

. (28)

Now the minimization process can be continued and it is possible to find the least squares

estimators by mathematical induction.

3.5 Remark:

There is also an easy approach for obtaining the least squares estimator without using the

QR-decomposition. The minimizet of ‖ y − Xβ ‖2 is the orthogonal projection of y onto

im(X) , i.e.

Xβ̂ = Pim(X)y . (29)
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Let Xβ̂ = x1β̂1 + . . . + xkβ̂k This is orthogonal projection if

(y − Xβ̂, a) = 0 ∀a ∈ im(X) . (30)

By taking a = Xβ , the normal equations X ′Xβ̂ = X ′y are obtained. (30) is, however,

correct if it valid for a basis of im(X) . If x1, . . . , xm are linear independent and form a basis

of im(X) , then by choosing a = x1, . . . , xm the equations

X ′
1Xβ = X ′

1y (31)

is obtained, where x1 = (x1, . . . , xm) . Now if we replace {x1, . . . , xm} by {q1, . . . , qm} , an

orthogonal basis of span{x1, . . . , xm} then

(y − Xβ̂, qi) = 0 , i = 1, . . . ,m (32)

is the necessary and sufficient condition for the Least Squares Estimators. Since (xj, qi) =

δij(qi, qi) for j ≤ i it follows that we arrive at the triangular equation system

y − xmβ̂m −

k
∑

j=m+1

βj(xj, qm) = 0 (33)

or

(y −

k
∑

j=m+1

βjxj, qm) = β̂m(qm, qm) (34)

and

(y −

m
∑

j=i+1

β̂jxj −

k
∑

j=m+1

βjxj, qi) = β̂i(qi, qi) , i = m − 1, . . . , 1 . (35)

We see that βm+1, . . . , βk are completely arbitrary. An unique solution is only available if

m = k .
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4 Statistical Analysis of Diabetes Mellitus

This section is devoted to the study of the behaviour of blood-sugar during the night. The

following strategy is followed to control the blood-sugar and to arrive at a ”near normal”

value in the morning:

The blood-sugar is measured in the evening just before bedtime. If the blood-sugar is

above 150 mg/dl (8,32 mmol/l) nothing is eaten. If the value is 100 mg/dl (5,55 mmol/l)

or below then one bread-unit (BE) (12g Carbon-hydrats) is eaten. If the value is between

100 mg/dl (5,55 mmol/l) and 150 mg/dl (8,32 mmol/l) then a smaller amount is eaten. For

example if the value is 120 mg/dl (6,66 mmol/l), then 0,6 BE are eaten (linear interpolation).

The blood-sugar is again measured during the night at perhaps 2 a.m. or 3 a.m. and it is

assumed that the following is approximately correct: one bread-unit increases the blood-

sugar within one hour by about 50 mg/dl (2,77 mmol/l). After this hour the blood-sugar

decreases by about 10 mg/dl (0,55 mmol/l) per hour. As an example consider the following

situation (1.10.2008): At 2.11. a.m. a value of 93 mg/dl (5,16 mmol/l) is measured. The

decision was now to eat 0,8 BE. According to the assumption made before the blood-sugar

increases to 133 mg/dl (7,38 mmol/l) and will arrive at about 6.11. a.m. at a value of 103

mg/dl (5,72 mmol/l). The actual value at 7,24 a.m. was 108 mg/dl (5,99 mmol/l).

My diabetic career began in 1974 just at the end of the era Nixon. The fastening value

was 230 mg/dl (12,76 mmol/l). The proposed therapy consisted of taking one tablet of a

very well known sulfonylurea both in the morning and in the evening. A physician at another

place declared that a tablet should not be taken in the evening unless some food is eaten

during the night. Since the winter-term 1974/1975 I worked at the University of Frankfurt

am Main. I decided to consult the endocrinologist Karl Schöffling at the Klinikum of the

Johann Wolfgang Goethe-Universität. Concerning the tablets he declared:

”Man soll nicht mit Kanonen auf Spatzen schießen.”

As a consequence of this statement the food-strategy was changed according the principle

”Eat the right at the right time.” Drugs were only occasionally taken until 1982/83. After a

new visit in the clinic of Karl Schöffling 1 mg of a not so well known sulfonylurea was taken in

the morning. This medication remained valid for a long time until 1994. Karl-Heinz Usadel,

the successor of Karl Schöffling at the chair for endocrinology at the JWG-Universität, now

increased the sulfonylurea to 3 mg per day. 2 mg should be taken in the morning, 1 mg

in the evening. The latter proposal was very surprising to me. The explanation was that

the opinion about the drugs has changed. Also during the night insulin is needed. There

was, however, no change concerning the food that should be consumed in the evening. Up

to now it is recommended that the patient should eat one bread-unit (12 g carbon-hydrats)

just before bedtime.

It is a rather contradictory approach to take simulatanmeusly measures against both high

and low blood-sugar values. This can’t be correct. At least the amount of food consumed just

before bedtime should depend on the blood-sugar at this time. In this way I arrived at the
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(100, 150)-rule. Together with the (10,50)-rule applied during the night an optimal fastening

value can be obtained in the morning besides some exceptional situations (flight, sickness

etc.) The drugs in the evening are fixed. They are not subject to any change. Besides 1 mg

of a very well known third generation sulfonylurea, 1 mg of a sensitizer and

250 mg of a bigunaid is taken. The following figure shows the successfulness of the method.

Figure 1, Fastening Glucosis 2007 (every 8th day)

117 102 114 83 90 105 126 111 91 89 90 98 123

118 94 110 70 108 94 95 95 100 100 147 95 93

85 98 123 101 119 104 97 97 99 100 127 151,5 102

101 103 115,5 102 126 115

Mean m = 105, 369565 . . . , Standard-Deviation (SD) s = 15, 16884 , s(46) = 15, 003056

Computed HbA1c = (m + 86)/33, 3 = 5, 7468339 .

In a recent paper (Drygas (2008)) the author has studied the behavivur of glucosis during

the night. The following models were formulated:

(I) y = α + βx/(t − D) + ǫ (1)

(II) = α(t − D) + β(x) + γ . (2)

Here y is the difference of the glucosis-values either between night-time and the evening of the

past day or between the morning-time and the night-time. x is the amount of food consumed

in the evening of the past day and during the night, respectively. t is the time passed between

the two measurements in the night and in the morning, respectively. D = I{x>0} , i.e. D = 1 ,

if something is eaten and 0 otherwise. α and β are regression parameters and ǫ and γ ,

respectively are the disturbance termes.

The stochastic assumptions are

E(ǫ) = 0, E(γ) = 0 , E(ǫǫ′) = σ2I , E(γγ′) = σ2
0I . (3)

The estimated parameters were as follows:

Figure 2 Estimated regression coefficients

α β

Evening/Night I −8, 159 99, 6107

Evening/Night II −10, 3167 105, 68752

Night Morning I −11, 2354 47, 0156

Night Morning II −8, 8415 32, 724

It is supposed that these results support the (10, 50)-hypothesis.

The idea behind the models is that the blood-sugar increases by about β mg/dl within

one hour and decreases thereafter by about −α mg/dl per hour.
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In this paper we want to extend this model by the inclusion of physical exercise during

the past day. It was observed that the case of intensive physical activity during the past day

the glucosis-content was very low during the night.

The new model is

y = α(t − D) + βx + γB + ǫ (4)

where B (”Bewegung”) measures the amount of physical activity during the past day. As al-

ready mentioned in the introduction B mostly consists of the kilometers of walking performed

during the past day. The data are as follows:

Evening / Night y = α(t − D) + βx + γB + ǫ , D = I{x>0}

Date y t t-D x B

1. 11./12.4.08 -52 3,52 2,52 1,0 10

2. 12./13.4.08 + 11 4,83 3,83 0,5 7

3. 13./14.4.08 + 27 4,98 3,98 1,0 7

4. 14./15.4.08 - 21 3,3 3,3 0 3

5. 15./16.4.08 -53 5,8 4,8 0,2 9

6. 16./17.4.08 +9 3,25 2,25 0,5 3

7. 17./18.4.08 -33 4,57 4,57 0 6

8. 18./19.4.08 +31 5,2 4,2 0,8 6

9. 19./20.4.08 +9 2,72 2,72 0 4

10. 20./21.4.08 -79 4,95 4,95 0 1

Mean m −15, 1 3,712 0,4 5,6

σ = σ9 37,9720006 0,9711711 0,4189935 2,836273

9σ2
g =

10
∑

i=1

(zi − z̃)2 12976, 914 8, 48856 1, 58 72, 4

(z, z) = 9σ2
g + 102

m 15257 146, 278 3, 18 386

y = a4 + b4B, y = −16, 925414 + 0, 3259668B , r = 0, 0243 476

y = −30, 188608 +37, 721519x, r = 0.4162289

(y, z) −111, 561 −0, 8 −822

(B, z) 208, 17 28, 6

(x, z) 13, 86

q1 = x, q2 = (t − D)− (t−D,x)
(x,x)

x, q3 = B − (B,x)
(x,x)

x − (B,q2)
(q2,q2)

q2

(qi, qi) −668, 59321 3, 18 47, 55042

(qi, y) 85, 869321 −0, 8 −164, 5260714

y = α̂(t − D)+ β̂x + ǫ̂ = −7, 786171(t − D) + 33, 68431x + ǫ̂

y = α̃(t − D)+ β̃x + γ̃B + ǫ̃ = −4, 4209447(t − D) + 50, 15828x − 3, 460034B + ǫ̃
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The measures of determination are as follows:

R̂2 =
1

(y, y)

((q1, y)2

(q1, q1)
+ (

(q2, y)2

(q2, q2)

)

=

1

15257

(0, 64

3, 18
+

(668, 59321)2

85, 869321

)

= 0, 34129 . . . (5)

R2 =
1

15257

(q3, y)2

(q3, q3)
+ R̂2 = 0, 3785 . . . (6)

Thus the explanation of the data via both models is still very poor. Moreover, the coefficient

γ̃ is not significant, i.e., the hypothesis γ = 0 can not be rejected in the case of a normal

distribution of y . The test-statistic is

γ̃

(Var (γ̃))
1

2

=
γ̃(q3, q3)

1

2

σ
(7)

which follows a normal distribution N(0, 1) . Since σ is unknown it will be replaced by an

estimator σ̃ . This estimator is obtained from

σ̃2 = s2 =
1

7
(1 − R̃2)(y, y) = 1354, 5753 = (36, 804528)2 (8)

The test-statistic is therefore

t7 =
γ̃(q3, q3)

1

2

s
=

γ̃ · 6, 8956523

36, 804528
= −0, 6482678 . . . (9)

This value is not significant for a t-distribution with 7 degrees of freedom.
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Night / Morning y = α(t − D) + βx + γB + ǫ , D = I{x>0}

Date y t t-D x B

1. 12.4.08 +13 5,2 4,2 0,8 10

2. 13.4.08 -34 3,62 3,62 0 7

3. 14.4.08 -25 5,23 4,23 0,2 7

4. 15.4.08 - 37 5,75 4,75 0,2 3

5. 16.4.08 + 4 2,97 1,97 0,4 9

6. 17.4.08 -21,5 5,43 4,43 0,25 3

7. 18.4.08 -31 4,45 4,45 0 6

8. 19.4.08 -31 3,33 3,33 0 6

9. 20.4.08 -38,5 4,92 4,92 0 4

10. 21.4.08 -14 3,75 2,75 0,14 1

Mean m −21, 5 3, 865 0, 199 5, 6

σ = σ9 17, 559423 0, 9418451 0, 2507965 2, 836273
10
∑

i=1

(zi − z)z = 9σ2
9 2775 7, 98365 0, 5660899 2, 836273

(z, z) = 9σ2
g + 10m2 7397, 5 157, 3659 0, 9621 386

(y, z) −906, 445 −7, 735006 −962, 5

(β, z) 14, 49 211, 33

(x, z) 7, 4365

q1 = x, q2 = (t − D) − (t−D,x)
(x,x)

x, q3 = B − (B,x)
(x,x)

x − (B,q2)
(q2,q2)

q2

(qi, qi) 99, 467772 0, 9621 68, 57568

(qi, y) −846, 36015 −7, 735 −0, 81453

y = a1 + b1x = −38, 821274 + 61, 91595x, r = 0, 8843288

y = a2 + b2B = −40, 179558 + 3, 3356354B, r = 0, 538786

y = α̃(t − D)+ β̂x + ê = −8, 508882(t − D) + 57, 968077x + ê

y = α̃(t − D)+ β̃x + γ̃B + ẽ = −8, 4970268(t − D) + 58, 15905x − 0, 0118778B + ẽ
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The coefficient of B is very small and clearly not significant. The measures of determina-

tion are

R̂2 =
1

(y, y)

((q1, y)2

(q1, q1)
+

(q2, y)2

(q2, q2)

)

= 0, 9735159

and

R2 = R̂2 +
(q3, y)2

(q3, q3)

1

(y, y)
= 0, 97351720785 ,

respectively.

4.1 References

Drygas, H. (1970), The coordinate-free approach to Gauss-Markov estimation, Lecture notes

in Operations Research and Mathematical Systems, Springer-Verlag Berlin-Heidelberg-New

York.

Drygas, H. (2008), QR-decomposition from the statistical point of view, Recent Advances

in Linear Models and Related Areas, Essays in Honour of Helge Toutenburg, Shalabh and

Heumann (Eds) p. 293-311, Physica-Verlag, Springer, Heidelberg, 2008.
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