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Abstract: We report OD &1l elemeJltary C01lrle iD ordinuy cWreremtial equa.tiOJll (odes) for
students in eDpeeriDg eci9ces~ The course is alao intended to become a aeIf...tudy pachge for
odes &Dd is is bued on Bever&! iDtera.ctive computer leuo.1 uing R.EDUCE &Dd MATHEMAT­
ICA. The aim of the course is Dot to do Computu Algebra (CA) by. exampl~ or to uae it for
doing classroom examples. The aim is to teach and to learn mathemailcs by lWDg CA-.ystems.
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1 Rell1arks on the use of COlll­

puters in teaching IIIathe­
ntatics as a service subject

For several years now J computers have proliferated
into many areas in society, including the educational
system, and they are also infiuencing mathemat­
ics teaching (compare, e.g., the international sur­
vey given by Fey, 1989). Computers may be used
as a means for performing numerical and a.lgebraic
ca.lcula.tions, or for dra.wing graphs and visualizing
situations, and as an aid for creating new tea.ching
methods. By the use of computers, Dew p08sibili­
'ties have become available for making mathematical
contents accessible to learners, for promoting the in­
"tended a.ims, or for relieving mathematics learning
and teaching of some tedious a.ctivities. This holds
true also and especially for mathematics as a service
subject for science, economy or technology (compare)
e.g., the survey by Blum/Niss 1991).
B'owever) it should be remarked that computers may
also entail many kinds of problems and risks. For
instance. students ma.y try to replace Decessary iD­
t.ellectual efforts by mere button pressing. And) a.l­
though computers ought to contribute towards treat­
ing more real world examples a.nd devoting more time
to modelling and applications (which, of course, is
particularly important in teaching mathematics as a
service subject)) computer simulations may replace
handling real situation. or computer graphics may
serve as substitutes for real objects, so teaching and
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learning may become even more remote from real life
than before. Sometimes, the chances of computers
are considerably overestimated. For example) when
treating differential equations, computers may only
support the mathematical solution process) whereas
conceptual p~obJems or difficulties in transla.ting be­
tween the rea) world and mathematics (mathematiz­
ing and interpreting) remain Dearly unaffected.

In the last few years, powerful so-called Computer
Algebra SYltems such as Derive, Macsyma, Maple,
Mathematica or Reduce have considerably increased
the possibilities of using computers in mathematics
tea.ching (see) e.g., the review by Leadbetter/Thomas
1990 or the collection of articles in Karian 19921 in­
eluding the literature mentioned there). Calculating
limits) derivatives, integrals or matrix produet is e~
ily performed by these systems. Thus, the necessity
of re-thinking contents and methods of ma.thematics
teaching has become even much more urgent. Today
ma.ny people a.rgue for eliminating scheme! aDd al­
gorithms such as curve sketching in differential cal­
culus or formally solving differential equations from
mathematics tea.ching since computers are much more
effective than buman beings. However) this seems to
be very short-sighted. For, schemes and algorithms
will be relevant for mathematics eurricuJa also in tb e
future) among others sinee they are still ind~speDs­

able for exercises or for providing students wIth ex­
periences of success (also in examinations) since a Jot
of students get to understanding only by way of per­
forming algorithms s a.nd since the effect of comput­
ers can only be appreciated after having ~xperienced

the strain of carefully performing calculations. Nev­
ertheless, computers (and in particular CA-systems



3. Linear systems of ode's

Next we look for a particula.r solution, yielding

3 Linear equations

(a) Characteristic equation, fundamental sys­
tems

(b) Inhomogeneous equations, particular solu­
tions

(1)

(2)

(4)Y == Yh +YP

11 + J(z,)y =g(:r)

materials as wen as for self-studying . To begin with
we considered odes. The odes course usually covers
the following subjects:

1. Odes of first order

(8.) Directional field

(b) Successive approximation

(c) Linear equations

(d) Separable equations

(e) Exact equat.ions

(f) Some Ipecial equations

2 .. Linear odes of D-th order

(a) 2x2 Systems

i. Method of elimination
ii. Eigenvalues, Eigenvectors

(b) nxn Systems, Jordan normalform

(c) Inhomogeneous systems

In the following we sha.ll present a few examples such
as linear equations of the first order, separabJe an d ex­
act equations as well as 2x2 systems by the method
of elimination. In each case we shall briefly recollect
the mathematical background and the present a sym­
bolie procedure which step by step guides the student
along the solution algorithm.

with continuous functions! and g.
The solution of the homogeneous equation becomes

1/11 = Cexp(-Jf(:r:)d:r:).

A linear equation of the first order has the form

Jlp = Jg(z)exp (J f(X)dX) dx ·

exp(-Jf(z)dz)dz. (3)

The general solution then becomes

Many papers dealing with the question of how to do
mathematics by CA-systems proceed in the follow­
ing way: a problem from seience or engineering is
considered and mathematicaUy modelled. Then the
mathematical model is prepared in such a way that
tools from a certain CA-system can be used for its so­
lution. For example the motion of a forced pendulum
may be studied by Mathematica (see Abell/BraseltoD
1992). After the physical and mathematical mod­
elling is done, the Mathematica procedure DSOLVE
is presented and it is shown how DSOLVE can be used
for solving the resultiDg ode. Then the great graph­
ical faciliti~s of Mathematica are used to show the
behavior of the trajectories and to demonstrate the
influence of initial conditions and parameters upon
them.
Such teaching modules are very well suited for vi­
sualizing solutions &bd giving a feeling for the be­
haviour of the solution space of an ode, (see also
several contributions in Zimmermann/CUDningbam
199]).. However, the solution algorithms do not ap­
pear) in contrast the solver acts as a bla.ck box. For us
this is not appropriat.e when we teach a nrst course
in odes. Instead, we want students to know some
important algorithms (compare the arguments given
in section 1), in &ddition to understanding the ba­
sic ideas. Nevertheless, when we teach mathematical
algorithms in the field of od~, CA--systems may be
very useful in the following sense. First, the com­
puter may do routine calculations or problems from
elementary calculus like differentiation or integration.
Second, the computer can lead students through the
solution procedure. We realized this by designing in­
teractive computer lessons that will be presented in
sections 3-6 of this paper.
At KasseI-University we have a basic course in math­
ematics for students in engineering sciences which is
divided into four parts. In part] and ]1 an introduc­
tion to calculus and linear algebra is given. In part III
and l\~ odes and numerical mathematics are treated.
It is our aim to design CA packages for teaching those

2 Description of an
odes course and the role of
CA-systeUls

force us to reflect upon the real meaning of schemes
and algorithms~ We propose to continue treating the
essential mathematical topics -including eorrespond­
ing algorithms- and buildinr; up basic conceptioDS,
and afterwards to use computers to perform the algo­
rithms when these are needed iD another context. An
example dealt with in this paper: When the coneept
of integral has been elaborated and students have cal­
culated integrals conventionally in integral calculus, a
eomputer is used for c:a1culat.ing integrals when these
are needed as & tool for solviD& differential equations.
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UDUCE PROCEDURE

~ IIPUT OF THE EQUATIOI

is separable through

8 (h~)8y h = 0, or .!. (hv ) - 08:: h - · (5)

wri'te ttI.PUT OF f(z):";
1:-xread(f) ;
niece "I.POT OF I(x):";
I:cxread(g) ;

XSOLUTIOI OF TBE BOKOGEJEOUS
~ EQU.1TIOI

h: =c *.•xp(-int(f,x»;
wri"te "--> J=" ,hi

~ GEI'ElllL SOLUTIO. OF THE
~ IIBOMOGElEOUS EQUATIOI

z:c(int(C··zp··(iDt(f.z».x)+C).
exp•• (-int(1,x»i

wri'te tt > ., = ",%;

~ IIPUT OF THE IIITIJL VALOES

wri-te "I.PUT OF %0: If;
xa.:sxr.ad(xa);
write "IIPUT OF 1(xO): It;
ya:-uead(ya)i

~ COMPUTATIOI OF TIE COIST C

C:=sub(x=xa.ya*.xp(int{f,x»­
int(g••xp(int(f.x»),x»;

end;

4 Separable equations

lEDUCE PJ.OCEDtmE

IIPUT OF THE EQU!TIOI

write "1.,01' OF f(x): It;

p:-zrea4(p):
wri'te "1.,01 OF g(y):";
q:-ue.cl(q) ;

x
X SGLVTIOJ PAOCEDtJJlE
X
if qeO then
begin

wri"te "STATIO.iIT SOLUTIO• ., cell;

d:-c-y;
J.:=e;

end

.la.
b"U

a:aint(1/q.y) :
b:=int(p.x);
d:-b-a.+C;
li.te:=(801ve(d t y));

1e:-rh.(fira1:(lilt.»);

IIPUT IIITIAL COIDITIOI

rO:=uead(yO) t
xO:=xread{xO);

1c:club(x-xO,y=yO.d);
e.:~rh.(1ir.~(.olv.(yc)c»);

erg:=lub(c=c.,ye);

are solved by separation of variables

Ode's of the type

11 = J(z)g(y)

1 .
.9(11) 11' =f(z) I

(g(y) # 0).

(1)

(2)

if length li.~. > 1 ~h.n

'begin
erg1:=8ub(c=ce.yt);
writ.", = .. ,erg1 ;
end;

end;

Note that any solution of g(y) :::: 0 provides a sta­
'tiona.ry solution. Starting from (1.2) we obtain the
implicit equa.tion for solutions

5 Exact equations

J dy jg(y) =' J(z)dx. (3)
An ode of the type

P(:r, y)dz + Q(z, y)dy =0 (1)

It is also easily possible to check by CA-systerns
whether a given equation

is said to be exact if

y' ::: h(:r l Y)
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X IIPUT OF T!E EQUATIOI

%SOLUTIOI 11 THE EXACT CASE

does not depend upon tI we may look for a multiplier
which depends only upon %. From the exactness con­
dition we obtain the multiplier as

If the equation is Dot exact we may look for a multi­
plier M suc.h tha.t multiplication by M yields an exact
equation. Assuming that the quantity

it d1(d/q.,.1)=O then
begin
a: -iD't(d/q. z);
a:.'%p(a) ;
wri<t. ,u';
write "MULTIPLIER 11(%) : =" ,11;

.:=1;
end

e1••
i1 d1(d/p.x.t)=O thin
b.gin
a:-int(d/p,y) :
a: ••zp(-1*a) :
wri'te .... ;
wri't. t'KULTIPLIER lI(y) :=" .mj
.:=1;
end

el••
begin
write .t .. ;

write "10 MULTIPLIER FOUWDtt;
.:=0;
vt:=O;

end;
;end;

Examples:

IIPUT OF P(z,y):

-x 2 2
P(x,y)=e *(2*%-% -7 )

(4)1. (BP _8Q)
Q 831 8z

M(: y) =exp (I!. (8P - 8Q) d%) (5), Q 8y 8z

Similar considerations hold in the case of multipliers
depending upon !I only.

ItEDUCE PROCEDURE

write nIIPUT OF P(x.y):tt;
write;
p: cxread(p) ;
writ. "IIPUT OF Q(X,y):fI:
nite;
q:=xread(q) ;

Solutions are obtained through

l t P(t,lI)dt + lit Q(:o, t)dt = 0 . (3)
~o 'n

IIPUT OF P(x , J ) :

2 2
P(x,y)=2*x-x -y

THE EQUATIOI IS EXACT
AID THE SOLUTIOI BECOHES

2
.,0- .

IIPUT OF Q(x,y):

-x
Q(x,,)=. *2*y

-x 2 -%:2
F(x,y)=e *x + e .y -

-%0 2 -xO
.%0 -.

a:=d1 (p ,y, j.);
b:=d1 (q,x J 1) ;
if a=b "then

begin
a: =int (p t z);
b:=int(q,y) :
b:=sub(x=xO,b) ;
a:=a-sub(x=xO.&);
b:=b-sub(y:yO.b);
~:=a+b;

wk:*1;
write "SOLUTIO' OF THE E1ACT EqU.lTIOJl;
write "";
write IfF(x,.,)=","1;
return 't;
end

.1••

XTBE IO.EXACT CASE
IJPUT OF Q(x, y):

begin
write "THE EQUiTIOI IS lOT EXACT"; Q(x,y)=2*y
write "TRY TO FIID ! MULTIPLIER SUCH THAT";
wite "M.P(.x,y).dx+M.Q(x~y)*dy=OIf; THE EQUATIOI IS lOT EXACT
wite" BBCOMES EIACT";

TRY TO FIND j MULTIPLIER SUCH TBAT
d:=(a-b);
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BECOMES EXACT

-x
MULTIPLIER H(x):-,

THE SOl.UTIDI BECOMES

By solution algorithms for second order equations we
can write down the solution of this equation and then
discuss again the 101ution of the system from the
point of view of linear algebra.

RATI!JUTICA PIlOCEDtJU

J J I: A, IY ELIIIIIATIOI

IIPUT OF A

a={{a11,a12}.{a21,a22}}j

-x 2 -% 2
F(z,J)c, *% +. .y-

-sO 2 -zO 2
-. -xO -. .'0

6 2x2-systerns by elilDination

We eonsider 2x2 linear systems with constant coeffi­
cients

,; =Ay, A = (all 012). (1)
021 022

"'''e want to solve this system by taking recourse to lin­
ear equations of second order and by the way give an
introduction to methods from linear algebra needed
for a systematic treatment of nxn-systems.
We discuss first the special case a12 = O. In that case
We obtain

PriD't [,u'J ;
al1.Inpll~["IIPUT OF
PriD~ [ttl'J ;
a12=Inpu"t [·'IlPtTr OF
Print [t'ltJ j

&21-Iaput; [IIIIPUT OF
Print [IfUJ ;
a22-1Dput["IIPUT OF
Prat[....] ;

JUTltII A

SYSTEM

71 '.a11*y1+a12.y2;
72'-&21.,1+&22*12;

.11 • It];

&12 I: It];

&21 I: It];

&22 • "J;

yielding

!I = Cl (~) e4u
:" + C2 (~) e02

:J
Z

• (4)
all-a~:l

if all '# 022- The vectors a.ppearing in the result are
solutions of

"Where eigenvectors (~), (~) and a vector (a~l)
satisfying

appear.
Now let us discuss the case 012 # O. Differentiating
the first equation of the system and using th second
one we are led to

3/1 = cleG11Z
•

JI~ ..... a22Y2 +a21C] eQ11
& ,

(A - "\E)y =0,

with ~ :: all ,~ = 022 respectively.
In the case 011 =022, Q21 :f.: 0 We obtain

(A - allE)y = (~) I

y;' - tr(A)y~ + det(A)Yl =0 ,
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(2)

(3)

(5)

(6)

(7)

THE CASE a12 == 0

If (.12 == 0,

11 = c1*Erp[a11*xJ;
y2'= &22.72 + e1.a22*ExpCa11*xJ;

It [a11 == a22,
J2= c1*a21*:r*E%p (&11-%J +c2*Exp [a11*%J

]

TBE CASE a12 <> 0

It [.12 != O.

,1"=&11.,l'+a12*12 ';
Print[tly1" I: &11.,1' + &.12*12 'U);
Print C",.1 J' e &11*J1 J +uJ;
Print [u+ &12.(&21*11 + ~2*72) tlJ.; "
Print ["11 J J = &11*J'1 J + "J:
Print[" + -.22.(,1' - &11*y1) + a12*a21.y1"];
Print C"11 ' J - (a11 + &22) -)'1' +tlJ j

Print [11+ (&11*&22 - &12.a21)*y1 =OH);

J
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