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Abstract: We report on an elementary course in ordinary differential equations (odes) for
students in engineering sciences. The course is also intended to become a self-study package for
odes and is is based on several interactive computer lessons using REDUCE and MATHEMAT-
ICA. The aim of the course is not to do Computer Algebra (CA) by example or to unse it for
doing classroom examples. The aim is to teach and to learn mathematics by using CA-systems.

Keywords:

1 Remarks on the use of com-
puters in teaching mathe-
matics as a service subject

For several years now, computers have proliferated
into many areas in society, including the educational
system, and they are also influencing mathemat-
ics teaching (compare, e.g., the international sur-
vey given by Fey, 1989). Computers may be used
as a means for performing numerical and algebraic
calculations, or for drawing graphs and visualizing
situations, and as an aid for creating new teaching
methods. By the use of computers, new possibili-
ties have become available for making mathematical
contents accessible to learners, for promoting the in-
tended aims, or for relieving mathematics learning
and teaching of some tedious activities. This holds
true also and especially for mathematics as a service
subject for science, economy or technology (compare,
e.g., the survey by Blum/Niss 1991).

However, it should be remarked that computers may
also entail many kinds of problems and risks. For
instance, students may try to replace pecessary in-
tellectual efforts by mere button pressing. And, al-
though computers ought to contribute towards treat-
ing more real world examples and devoting more time
to modelling and applications (which, of course, is
particularly important in teaching mathematics as a
service subject), computer simulations may replace
handling real situation, or computer graphics may
serve as substitutes for real objects, so teaching and
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learning may become even more remote from real life
than before. Sometimes, the chances of computers
are considerably overestimated. For example, when
treating differential equations, computers may only
support the mathematical solution process, whereas
conceptual problems or difficulties in translating be-
tween the real world and mathematics (mathematiz-
ing and interpreting) remain nearly unaffected.

In the last few years, powerful so-called Computer
Algebra Systems such as Derive, Macsyma, Maple,
Mathematica or Reduce have considerably increased
the possibilities of using computers in mathematics
teaching (see, e.g., the review by Leadbetter/Thomas
1990 or the collection of articles in Karian 1992, in-
cluding the literature mentioned there). Calculating
limits, derivatives, integrals or matrix product is eas-
ily performed by these systems. Thus, the necessity
of re-thinking contents and methods of mathematics
teaching has become even much more urgent. Today
many people argue for eliminating schemes and al-
gorithms such as curve sketching in differential cal-
culus or formally solving differential equations from
mathematics teaching since computers are much more
effective than human beings. However, this seems to
be very short-sighted. For, schemes and algorithms
will be relevant for mathematics curricula also in the
future, among others since they are still indispens-
able for exercises or for providing students with ex-
periences of success (also in examinations) since a lot
of students get to understanding only by way of per—
forming algorithms, and since the effect of comput-
ers can only be appreciated after having experienced
the strain of carefully performing calculations. Nev-
ertheless, computers (and in particular CA-systems
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force us to reflect upon the real meaning of schemes
and algorithms. We propose to continue treating the
essential mathematical topics -including correspond-
ing algorithms- and building up basic conceptions,
and afterwards to use computers to perform the algo-
rithms when these are needed in another context. An
example dealt with in this paper: When the concept
of integral has been elaborated and students have cal-
culated integrals conventionally in integral calculus, a
computer is used for calculating integrale when these
are needed as a tool for solving differential equations.

2 Description of an
odes course and the role of
CA-—-systems

Many papers dealing with the question of how to do
mathematics by CA-systems proceed in the follow-
ing way: a problem from science or engineering is
considered and mathematically modelled. Then the
mathematical model is prepared in such a way that
tools from a certain CA-system can be used for its so-
lution. For example the motion of a forced pendulum
may be studied by Mathematica (see Abell/Braselton
1992). After the physical and mathematical mod-
elling is done, the Mathematica procedure DSOLVE
is presented and it is shown how DSOLVE can be used
for solving the resulting ode. Then the great graph-
ical facilities of Mathematica are used to show the
behavior of the trajectories and to demonstrate the
influence of initial conditions and parameters upon
them.

Such teaching modules are very well suited for vi-
sualizing solutions and giving a feeling for the be-
haviour of the sclution space of an ode, (see also
several contributions in Zimmermann/Cunningham
1991). However, the solution algorithms do not ap-
pear, in contrast the solver acts as a black box. For us
this is not appropriate when we teach a first course
in odes. Instead, we want students to know some
important algorithms (compare the arguments given
in section 1), in addition to understanding the ba-
sic ideas. Nevertheless, when we teach mathematical
algorithms in the field of odes, CA-systems may be
very useful in the following sense. First, the com-
puter may do routine calculations or problems from
elementary calculus like differentiation or integration.
Second, the computer can lead students through the
solution procedure. We realized this by designing in-
teractive computer lessons that will be presented in
sections 3-6 of this paper.

At Kassel-University we have a basic course in math-
ematics for students in engineering sciences which is
divided into four parts. In part I and II an introduc-
tion to calculus and linear algebra is given. In part 111
and I'V odes and numerical mathematics are treated.
1t is our aim to design CA packages for teaching those
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materials as well as for self-studying . To begin with
we considered odes. The odes course usually covers
the following subjects:

1. Odes of first order

(2) Directional field

(b) Successive approximation
(c) Linear equations

(d) Separable equations

(¢) Exact equations

(f) Some special equations
2. Linear odes of n-th order

(a) Cbaracteristic equation, fundamental sys-
tems

(b) Inhomogeneous equations, particular solu-
tions

3. Linear systems of ode’s

(a) 2x2 Systems

i. Method of elimination
ii. Eigenvalues, Eigenvectors

(b) nxn Systems, Jordan normalform

(c) Inhomogeneous systems

In the following we shall present a few examples such
as linear equations of the first order, separable and ex-
act equations as well as 2x2 systems by the method
of elimination. In each case we shall briefly recollect
the mathematijcal background and the present a sym-
bolic procedure which step by step guides the student
along the solution algorithm.

3 Linear equations

A linear equation of the first order has the form

v + f(z)y = 9(2) (1)

with continuous functions f and g.
The solution of the homogeneous equation becomes

w=Cexp(~ [ fz)d). @)

Next we look for a particular solution, yielding

Yp = /9(2)€XP (/ f(z)dr) dz .
exp(~ [ f(z)dz)e. @)

The general solution then becomnes

YV=Yr+Yp (4)
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REDUCE PROCEDURE
% INPUT OF THE EQUATION

write "INPUT OF £(x):";
£:mxread(f);
write "INPUT OF g(x):";
g:=xread(g);

% SOLUTION OF THE HOXOGENEOUS
% EQUATION

h: = ¢ * exp(~int(f,x));
write "===> y=" h;

% GENERAL SOLUTION OF THE
% INHOMOGENEOUS EQUATION

z:=(int(grexp*+*(int(?,x)),x)+C)*
exp**(-int(f,x));
write "~=--> y = ",z;

% INPUT DF TERE INITIAL VALUES

write “INPUT OF x0:“;
xa:=xread(xa);

write "INPUT OF y(x0):";
ya:sxread(ya);

% COMPUTATION OF TEE CONST C

C:=sub(x=xa,ya*exp(int (f,x))~
int(geexp(int(f,x)),x));
end;

4 Separable equations

Ode’s of the type

v = f(2)9(y) (1)

are solved by separation of variables

Ly, (y)#0). (2)

9(y)

Note that any solution of g(y) = 0 provides a sta-
tionary solution. Starting from (1.2) we obtain the
implicit equation for solutions

/ﬁ%=]ﬂﬂh- (3)

It is also easily possible to check by CA~systems
whether a given equation

v = h(z,y) (4)
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is separable through
4(8)0 = &
dy\h/) ™~ 6z

REDUCE PROCEDURE

>|F

INPUT OF TEE EQUATION

write "INPUT OF f£(x):";
p:=xread(p);
write "INPUT OF g(y):";
q:=xread(q);

%
% SOLUTION PROCEDURE
%
if gq=0 then
begin
write "STATIONARY SOLUTION y = c";
d:=c-y;
ye:=c;
end
else
begin

a:=int(1/q,y);
b:=int(p,x);

d:=b-a+C;
liste:=(solve(d,y));
ye:=rhs (first(liste));

INPUT INITIAL CONDITION

yO0:=xread(y0);
x0:=xread(x0);

yc:=sudb (x*x0,y=y0,d);
ce:=rhs(first(solve(yc,c)));

eTg:=sub(c=ce,ye);

if length liste > i then

begin
ergi:=sub(c=ce,yt);
write''y = " ,ergl;
end;

end;

5 Exact equations

An ode of the type

P(z,y)dz + Q(z,y)dy = 0

is said to be exact if

o _ o
8y ~ bz’

®)

()

(2)
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Solutions are obtained through
T 4 4
/ Plt,y)dt + / Q(zo,t)dt = 0. (3)
Zo yo
If the equation is not exact we may look for a multi-

plier M such that multiplication by M yields an exact
equation. Assuming that the quantity

1 /8P 8Q
(&%) “

does not depend upon y we may look for a multiplier
which depends only upon z. From the exactness con-
dition we obtain the multiplier as

e/ (%)) o

Similar considerations hold in the case of multipliers
depending upon y only.

REDUCE PROCEDURE
% INPUT OF TEE EQUATIOX

write "INPUT OF P(x,y):";
write;

p:sxread(p);

write "INPUT OF Q(x,y):";
write;

q:=xread(q);

%SOLUTION IR THE EXACT CASE

a:=df(p,y,1);

b:=df(q,x,1);

if a=b then

begin
a:=int(p,x);
b:=int(q,y);
b:=sub(x=x0,b);

a:=a-sub(x=x0,a);

b:=b-sub(y=y0,db);

k4

:=a+b;

wk:=1;

write “SOLUTION OF TEE EXACT EQUATION;
write "";

write "F(x,y)=",*;

Teturn ¥;

end
else

%TEE NONEXACT CASE

begin

write “THE EQUATION IS XOT EXACT";

write “TRY TO FIND A MULTIPLIER SUCE THAT";
write “M*P(x,y)*dx+M*Q(x,y)=dy=0";

write " BECOKES EXACT";

d:=(a~b);
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itz df£(d/q,y,1)=0 then

begin
a:=int(d/q,x);
m:=exp(a);
':it' "”;
write "MULTIPLIER M(x):=",m;
w:=1;
end
else
it d£(d/p,x,1)=0 then
begin
a:=int(d/p,y);
m:zexp(-1%a);
'Z’it. nn;
write "MULTIPLIER M(y):=",m;
w:=1;
end
else
begin
'rit. Nll;
write "NO MULTIPLIER FOUND";
w:=0;
wk:=0;
end;
;end;
Examples:
INPUT OF P(x,y):
-x 2 2
P(x,y)=e #*(2#x-x -y )
INPUT OF Q(x,y):
-X
Q(x,y)=e #2¢y
TEE EQUATIOR IS EXACT
AND TBE SOLUTION BECODMES
-x 2 -x 2
F(x,y)=e¢ *x +6e¢ =*y -
-x0 2 -x0 2
- e *x0 - e *y0

INPUT OF P(x,y):

2 2
P(x,y)=s2*x-x ~y

INPUT OF Q(x,y):
Q(x,y)=2*y
THE EQUATIOK IS NOT EXACT

TRY TO FIND A MULTIPLIER SUCHE TEAT
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M#*P(x,y)*dx+NsQ(x,y)*dy=0
BECOMES EXACT

-x
MULTIPLIER M(x):=e

TEE SOLUTIOX BECOMES

-x 2 -x 2
F(x,y)=e *x + o sy -
-x0 2 -x0 2
-e *x0 - o *y0

6 2x2-systems by elimination

‘We consider 2x2 linear systems with constant coeffi-
cients

= _ (e an
v=dy, A=(2 %), )
‘We want to solve this system by taking recourse to lin-
ear equations of second order and by the way give an
introduction to methods from linear algebra needed
for a systematic treatment of nxn—systems.

We discuss first the special case aj2 = 0. In that case
we obtain

o= ceth®, (2
Yo = anys+axnce®, (3)
yielding
v (L Yeera(®)em. (o
a)1—az;

if a1y # azo. The vectors appearing in the result are
solutions of

(A-AE}y=0, ()

with A = aj1,A = az; respectively.
In the case a1 = a32,a2; # 0 we obtain

1 0 0 a5 x
y=(cl ((0)+<a21):)+°’(1))‘ :
where eigenvectors ((1)), ((1)) and a vector (021)

satisfying
(A-anE)y = (é) ) (6)

appear.
Now let us discuss the case a;2 # 0. Differentiating

the first equation of the system and using th second
one we are led to

vy = tr(A)Y; + det(A)y, =0, ™
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By solution algorithms for second order equations we
can write down the solution of this equation and then
discuss again the solution of the system from the
point of view of linear algebra.

MATEEMATICA PROCEDURE

y' = Ay BY ELIMINATION
INPUT OF A

Print [nn] ;
ali=Input["INPUT OF all = ");
Print[""];
a12=Input["INPUT OF a12 = "];

Print [u nJ :
a2i=Input["INPUT OF a21 = "];
Print[""];
a22=Input [“INPUT OF
Print [n nJ :

a22 = "};

MATRIX A
a={{a11,a12},{a21,222}};
SYSTEM

yi’=alisyi+ai2#y2;
y2'=a2isy1+222%y2;

TEE CASE al2 ==

It [a12 == 0,
y1 = cisExplaiisx];
y2'= a22#y2 + cisa22+*Explai1#x];
If (a1l == 222,
y2= cisa2isxsExp[aiisx]+c2sExp[al1sx]
]
THE CASE ai2 <> 0

I1r [a12 != 0,
yi’'=alisyl’'+al2»y2’;
Print["y1’'? = aiteyl’ 4+ a12%y2'"]);
Print["y1’’ = aiisyi’ +"];
Print["+ ai2#*(a21*y1 + a22#y2) "]; -
Print{"y1’'’ = atisy1’ + “];
Print[" + a22+(y1’ - aii*y1) + a12*a2i*y1"];
Print["y1’'’ - (a1l + a22)=*y1’ +"];
Print["+ (a11%a22 - al2sa21)*yt = 0"];
]
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