

User Profile Management and Selection

in Context-Aware Service Platforms

for Networks Beyond 3G

-

A Practical Application of Semantic Web Technologies

Dissertation
zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften (Dr. rer. nat.)
im Fachbereich Elektrotechnik / Informatik

der Universität Kassel

von

Michael Sutterer

Kassel 2009

Tag der Disputation: 1. Oktober 2009

2

3

Abstract

In recent years, progress in the area of mobile telecommunications has changed our way of
life, in the private as well as the business domain. Mobile and wireless networks have ever
increasing bit rates, mobile network operators provide more and more services, and at the
same time costs for the usage of mobile services and bit rates are decreasing. However,
mobile services today still lack functions that seamlessly integrate into users’ everyday life.
That is, service attributes such as context-awareness and personalisation are often either
proprietary, limited or not available at all. In order to overcome this deficiency,
telecommunications companies are heavily engaged in the research and development of
service platforms for networks beyond 3G for the provisioning of innovative mobile services.
These service platforms are to support such service attributes.

Service platforms are to provide basic service-independent functions such as billing,
identity management, context management, user profile management, etc. Instead of
developing own solutions, developers of end-user services such as innovative messaging
services or location-based services can utilise the platform-side functions for their own
purposes. In doing so, the platform-side support for such functions takes away complexity,
development time and development costs from service developers.

Context-awareness and personalisation are two of the most important aspects of service
platforms in telecommunications environments. The combination of context-awareness and
personalisation features can also be described as situation-dependent personalisation of
services. The support for this feature requires several processing steps. The focus of this
doctoral thesis is on the processing step, in which the user’s current context is matched
against situation-dependent user preferences to find the matching user preferences for the
current user’s situation. However, to achieve this, a user profile management system and
corresponding functionality is required. These parts are also covered by this thesis.
Altogether, this thesis provides the following contributions:

The first part of the contribution is mainly architecture-oriented. First and foremost, we
provide a user profile management system that addresses the specific requirements of service
platforms in telecommunications environments. In particular, the user profile management
system has to deal with situation-specific user preferences and with user information for
various services. In order to structure the user information, we also propose a user profile
structure and the corresponding user profile ontology as part of an ontology infrastructure in a
service platform.

The second part of the contribution is the selection mechanism for finding matching
situation-dependent user preferences for the personalisation of services. This functionality is
provided as a sub-module of the user profile management system. Contrary to existing
solutions, our selection mechanism is based on ontology reasoning. This mechanism is
evaluated in terms of runtime performance and in terms of supported functionality compared
to other approaches. The results of the evaluation show the benefits and the drawbacks of
ontology modelling and ontology reasoning in practical applications.

4

5

Acknowledgement

First of all, I would like to thank my supervisor, Prof. Dr. Klaus David, head of the chair for
Communication Technology at the University of Kassel, for the opportunity of doing this
dissertation. I am very grateful to him for countless discussions and invaluable feedback.

I would also like to express my sincerest appreciation to Dr. Josip Zoric, Senior Research
Scientist at Telenor Research and Innovation, and Associated Professor II at the Norwegian
University of Science and Technology, for very useful technical discussions and feedback for
my doctoral thesis. Many thanks also to Prof. Dr. Kurt Geihs and Prof. Dr. Albert Zündorf as
members of the doctoral committee.

Special thanks to Dr. Olaf Drögehorn, who has been a continual inspiration, with whom I
had very profitable discussions and who has provided indispensable support and feedback.
Thanks as well to all my colleagues at the chair for Communication Technology. We had
many interesting and fruitful discussions on countless topics in the area of context-awareness,
personalisation and ubiquitous computing.

Furthermore, I would also like to thank all my colleagues from countless companies,
universities and research institutes throughout Europe, with whom I have worked in the EU-
FP6 projects MobiLife and SPICE. The work in these two projects provided the background
and the inspiration for my dissertation.

Finally, I would also like to thank my family and my friends who have supported me
throughout the whole time of studying and writing this thesis.

6

7

Erklärung

Hiermit versichere ich, dass ich die vorliegende Dissertation selbständig und ohne unerlaubte
Hilfe angefertigt und andere als die in der Dissertation angegebenen Hilfsmittel nicht benutzt
habe. Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder unveröffentlichten
Schriften entnommen sind, habe ich als solche kenntlich gemacht. Kein Teil dieser Arbeit ist
in einem anderen Promotions- oder Habilitationsverfahren verwendet worden.

Michael Sutterer Kassel, November 2009

8

9

Table of Contents

1 INTRODUCTION.. 13
1.1 Motivation .. 13

1.2 Problem Statement ... 14

1.3 Requirements and Goals... 15

1.4 Approach .. 17

1.5 Contribution ... 17

1.6 Structure of the Thesis.. 18

1.7 Publications and Book Chapters .. 19

2 FUNDAMENTALS AND RELATED WORK.. 23
2.1 Fundamentals ... 23

2.1.1 Definitions.. 23
2.1.2 Service Platforms for Networks Beyond 3G.. 24
2.1.3 User Profile Management... 26
2.1.4 Semantic Web Technologies.. 30

2.2 Related Work.. 32

2.2.1 User Profile Schemas and Ontologies.. 32
2.2.2 User Profile Management and Context-Aware Systems.................................. 37
2.2.3 Ontologies for User Situations ... 42

2.3 Summary .. 43

3 FRAMEWORK FOR USER PROFILE MANAGEMENT....................................... 45
3.1 User Profiles... 45

3.1.1 User Profile Structure... 45
3.1.2 Runtime Performance for Search Tasks... 50

3.2 User Profile Management Framework ... 58

3.2.1 User Profile Management... 58
3.2.2 Context Management Framework.. 64

3.3 Summary .. 66

4 USER PROFILE AND CONTEXT ONTOLOGY ... 69
4.1 Ontologies in Service Platforms... 69

4.2 User Profile Ontology .. 70

4.2.1 Classes and Properties.. 71
4.2.2 Ontology Visualisation... 73
4.2.3 Extensibility ... 74

4.3 Context Ontology ... 75

4.3.1 Modelling Goal for the Location Ontology.. 76
4.3.2 Location Classes and Properties... 79

10

4.4 Summary .. 83

5 AUTOMATIC SELECTION OF USER PROFILES... 85
5.1 User Profile Selection Module ... 85

5.1.1 Functioning of the User Profile Selection Module... 85
5.1.2 Selection Mechanism ... 86

5.2 Ontology Reasoning Examples .. 89

5.2.1 Equals Operator.. 90
5.2.2 IsWithin Operator... 91
5.2.3 IsConnectedTo Operator .. 92
5.2.4 IsA Operator... 94
5.2.5 IsWithinA Operator.. 96
5.2.6 IsConnectedToA Operator ... 98

5.3 Summary .. 100

6 EVALUATION OF THE USER PROFILE SELECTION MECHANISM 101
6.1 Setup... 101

6.1.1 System Environment .. 101
6.1.2 Individuals Database .. 102
6.1.3 Measurement Steps .. 103
6.1.4 Measurement Samples.. 104

6.2 Results .. 108

6.2.1 Comparison of Reasoner Performance... 109
6.2.2 Comparison of Query Samples .. 116
6.2.3 Comparison of Numbers of Individuals ... 118
6.2.4 Comparison of Interrelations between Individuals .. 123
6.2.5 Comparison of User Profile Selection Approaches.. 129

6.3 Summary .. 133

7 CONCLUSION... 137
7.1 Summary .. 137

7.2 Evaluation... 139

7.3 Implications and Suggestions... 141

7.4 Discussion .. 143

7.5 Outlook... 145

APPENDIX A: SPICE SERVICE PLATFORM... 147

APPENDIX B: USER PROFILE MANAGEMENT INTERFACE................................ 149

APPENDIX C: SPECIFICATION OF THE USER PROFILE ONTOLOGY 155

APPENDIX D: ADDITIONAL PROPERTY SPECIFICATION 159

APPENDIX E: SPECIFICATION OF THE LOCATION ONTOLOGY 161

11

APPENDIX F: MEASUREMENT RESULTS .. 179

LIST OF FIGURES ... 187

LIST OF TABLES ... 189

ACRONYMS .. 191

REFERENCES... 193

12

CHAPTER 1: INTRODUCTION

13

1 Introduction

In recent years, progress in the area of mobile telecommunications has changed our way of
life, in the private as well as the business domain. Mobile and wireless networks have ever
increasing bit rates, mobile network operators provide more and more services, and at the
same time costs for the usage of mobile services and bit rates are decreasing. However,
mobile services today still lack functions that seamlessly integrate into users’ everyday life.
That is, service attributes such as context-awareness and personalisation are often either
proprietary, limited or not available at all. In order to overcome this deficiency,
telecommunications companies are heavily engaged in the research and development of
service platforms for networks beyond 3G for the provisioning of innovative mobile services.
These service platforms are to support such service attributes.

Service platforms are to provide basic service-independent functions such as billing,
identity management, context management, user profile management, etc. Instead of
developing own solutions, developers of end-user services such as innovative messaging
services or location-based services can utilise the platform-side functions for their own
purposes. In doing so, the platform-side support for such functions takes away complexity,
development time and development costs from service developers.

The service platform model referred to and described in this thesis is only a simplification
of real-world service platforms. In reality, such service platforms are much more complex,
including numerous layers and enablers, which are not addressed here. Hence, the service
platform model described in this thesis should be seen as an approximation of a real-world
service platform for the intended domain, in which the description is restricted to that parts
that are of interest in this thesis. In addition, the mentioned service platform is directed
towards networks beyond 3G. This is because current 3G service platforms or infrastructures
do not yet provide advanced context-awareness and personalisation functions in the intended
way.

1.1 Motivation
Context-awareness and personalisation are two of the most important aspects of service
platforms in telecommunications environments. The combination of context-awareness and
personalisation features can also be described as situation-dependent personalisation of
services. The support for this feature requires several processing steps:

1. Data about the user’s environment has to be captured by sensors
2. Sensor data has to be transformed into meaningful context information
3. The resulting context information has to be matched against situation-dependent user

preferences to find the matching user preferences for the current user’s context
4. The matching user preferences can be applied for service personalisation

The focus of this doctoral thesis is on the third step, the automatic selection of matching
situation-dependent user preferences to support the situation-dependent personalisation of
services. However, to achieve this, a user profile management system and corresponding
functionality are required. These parts are also covered by this thesis.

One of the basic requirements for this step is to research and develop a user profile
management system that manages multiple user data. In particular, it should manage user data
required by platform services, e.g. for accounting and billing, and also user data required by
end-user services such as innovative messaging services or location-based services. On the
one hand, there are general user data such as user name, date of birth, address, credit card
details, etc. which may be required by all or many services. Furthermore, there are service-
specific user data and preferences such as ring tone preferences for telephony, which is only

14

required by a particular service. Last but not least, there are situation-dependent user data and
preferences. For example, a user could have different preferences for the notification of
incoming news messages. While the user is at home, she may want to be notified of incoming
messages immediately, whereas in a business meeting, she may want the notification to be
postponed until after the meeting.

Another important aspect to be considered is the use of different or extensible
vocabularies for expressing user attributes. An overall vocabulary that is used on platform
side may simply not be sufficient for developers of end-user services. These may require or
prefer different vocabularies or may have to extend a vocabulary that is provided by the
service platform operator. Extensibility of vocabularies is especially important, because it is
not possible to create a common overall vocabulary for user attributes during design time of
the service platform. This is so because existing services can be changed, substituted or
extended with additional functionality or new services can be added. Still another reason for
addressing this issue is the matter of roaming, in which the user enters the network of a
foreign network operator and is not directly connected with her home service platform. As the
user wants to continue the use of her subscribed services, exchange of user attributes and
interoperability of user attribute vocabularies is needed.

Yet another challenge is the process of situation-dependent service personalisation. This
process should be carried out automatically without the need for user interaction. Thus, the
user should not be the one who has to change the user profile to match her changed situation.
Instead, the service platform functionality, i.e. the user profile management system, should
control this automatically. In order to achieve this, the user profile management system
requires notifications about changes in the user’s situation, selects the matching user
preferences and subsequently informs subscribed services about the changed user preferences.

What has not yet been covered above is one of the most important aspects, the user. She is
the one who decides about the success and acceptability of personalised services, and hence
the success of service platforms. For this reason, services must provide convincing and
precise mechanisms for situation-dependent personalisation. At the same time, the user should
always have the control of her personal data. The user should know about all stored data that
is related to her person, she should be able to view and edit her personal data, and she should
be able to activate or deactivate processing of personal data such as location tracking. This
aspect also has to be taken into consideration with legal issues, i.e. national laws as well as
European directives. Eventually, this means that it would be very beneficial to find an easily
understandable way for the normal non-technical user to let her participate in the specification
of user data and in particular of situation-dependent user preferences. The challenge here is
twofold: on the one hand, situation-dependent user preferences have to be encoded in a
machine processible way in order for the user profile management system to provide
automatic selection of matching situation-dependent user preferences, and hence to support
automatic service personalisation. On the other hand, the user should not be challenged with
complex visualisations of user preferences. That is, situation-dependent user preferences
should be editable in an easily understandable way.

1.2 Problem Statement
As described above, the field of user profile management in service platforms for networks
beyond 3G includes a lot of challenges. Although we will not address all challenges in detail
in this doctoral thesis, we will address many of the above aspects in order to reach our main
goal. This is to research and develop a user profile and preferences selection module as part of
the user profile management system.

Existing research on user profile management systems and related user profile structures
does not fully cover the requirements for the targeted service platform. Either they do not

CHAPTER 1: INTRODUCTION

15

provide a means for managing situation-dependent user preferences, or they do not support
service specific user data, or they do not cover required functions such as automatic selection
of matching user preferences for the current user’s situation, or existing solutions do not fit
the envisioned requirements in the proper way.

Also, when it comes to how the user can interact with the system in order to specify
expressive situation-dependent user preferences, we think that most existing research
approaches are not very user-friendly. Some approaches, especially approaches that address
learning by evaluating user history and usage data, do not even consider interfacing with the
user. And for those approaches, which support the user-driven specification of situation-
dependent user preferences, only simple rules are supported. This in turn means that the
mechanism for automatically detecting a user profile or preference change cannot be very
sophisticated. Finally, user acceptance of such an approach for given reasons will not be very
high.

In this thesis therefore, we will investigate how we can improve automatic selection of
matching situation-dependent user preferences and profiles in the targeted service platform
environment combined with an easily understandable way to define expressive situation-
dependent user preferences by the normal non-technical user. In doing so, the user should not
be confronted with the complexity of the underlying user profile and user preferences
selection mechanism and technology.

Figure 1: Processing Steps for User Profile Selection

Figure 1 shows the basic processing steps required for the user profile and user

preferences selection mechanism. First, the user enters situation-dependent user preferences to
the user profile. Afterwards, the selection mechanism is fed with these situation-dependent
user preferences, and identifies the ones that match the current user’s situation.

1.3 Requirements and Goals
Based on the descriptions in the previous two subsections, the requirements and goals of this
thesis are stated as follows:

Requirement 1:

• The user profile management service in service platform environments should be
flexible enough to manage different types of user data

User adds
situation-dependent

user preferences
to user profile

Selection mechanism
is fed with

situation-dependent
user preferences

User
Preference

Matching situation-dependent
user preferences
are identified by

selection mechanism

User Profile

User
Preference

User
Preference

User
Preference

User adds
situation-dependent

user preferences
to user profile

Selection mechanism
is fed with

situation-dependent
user preferences

User
Preference

Matching situation-dependent
user preferences
are identified by

selection mechanism

User Profile

User
Preference

User
Preference

User
Preference

User Profile

User
Preference

User
Preference

User
Preference

16

Goal 1:
• Design and implementation of a user profile management system that is capable of

managing the following kinds of user data
a. User data required by platform services such as accounting and billing services
b. User data required by end user services such as innovative messaging services

and location-based services
c. Service-specific user data that is only required by specific services such as ring

tone preferences for telephony services
d. Situation-dependent user data such as notification preferences for incoming

new messages that are related to different situations

Requirement 2:

• The user profile management system should be flexible enough to manage user data
that adheres to different or extensible vocabularies for expressing user attributes

Goal 2:

• Design and implementation of a user profile management system that is capable of
managing user data that adheres to different and extensible vocabularies for
expressing user attributes

a. It should be possible to manage user data that adheres to different user attribute
vocabularies

b. It should be possible to manage user data that adheres to extensions of user
attribute vocabularies

Requirement 3:

• The user profile management system should provide a means to support automatic
service personalisation for various services

Goal 3:

• Design and implementation of a user profile management system that supports
automatic service personalisation

a. Design and implementation of a user profile selection module as sub-module
of the user profile management system that enables automatic selection of
matching situation-dependent user preferences

b. Design and implementation of a module to receive and process context
parameters as input to the user profile selection module

Requirement 4:

• The user profile management system should provide an easily understandable way for
the normal user to manage her user data with the focus on situation-dependent user
data

Goal 4:

• Design and implementation of a user profile management system that supports an
easily understandable way for the normal user to manage her situation-dependent user
data

a. It should be possible for the user to easily specify and edit situation-dependent
user preferences

b. It should be possible for the user to control user data and personalisation
features

CHAPTER 1: INTRODUCTION

17

1.4 Approach
Our approach to research a user profile selection module with the above described goal
comprises several steps:

1. Design of a suitable user profile structure
2. Analytic evaluation of search tasks to show the benefits of our user profile structure
3. Design and implementation of a suitable user profile management system
4. Modelling of a user profile ontology
5. Modelling of a location ontology
6. Design and implementation of a user profile selection mechanism
7. Evaluation of the user profile selection mechanism in terms of runtime performance

and supported functionality
First, we design and implement a user profile management system that addresses specific
requirements for the targeted service platform. This user profile management system is
capable of managing various user data. In particular, general user data, service-specific user
data and preferences, and situation-dependent user data and preferences have to be taken into
account. In order to achieve this, we also have to design a suitable user profile structure that is
capable of including all this user data. This user profile structure is also defined by means of
an ontology language. Second, the user profile management system addresses the challenge of
enabling different user attribute vocabularies to express the actual user data.

The user profile management system will be designed and implemented in a modular way,
consisting of several exchangeable modules. One of these is the user profile selection module
that selects the matching situation-dependent user profile and preferences for a user’s current
situation. Our approach for a user profile selection mechanism is based on Semantic Web
technologies [1] [2]. In particular, the matching mechanism is based on ontology reasoning
capabilities. In this regard, we will also model the ontologies that are used for the ontology
reasoning-based user profile selection mechanism.

The use of Semantic Web technologies makes sense, as the trend for representing and
exchanging user context in service platforms is also based on Semantic Web technologies.
Furthermore, the use of Semantic Web technologies is becoming more and more important.
This is because developers and researchers are starting to understand the advantages provided
by these technologies. Still, practical applications that use Semantic Web technologies such as
ontology reasoning are rare.

Finally, we evaluate our ontology reasoning-based user profile selection mechanism in
terms of runtime performance and supported functionality. In doing so, we provide an
experience report including advantages and disadvantages of using ontology reasoning
capabilities.

1.5 Contribution
As a result of our approach, this thesis makes the following contribution:

• A suitable user profile structure
• An analytic evaluation of search tasks with regard to our user profile structure
• A suitable user profile management system
• A user profile ontology
• A location ontology
• A user profile selection mechanism
• An evaluation of our user profile selection mechanism in terms of runtime

performance and supported functionality
• An experience report on using ontology reasoning capabilities

18

First, in the field of user profile structures and vocabularies, we provide and evaluate a user
profile structure and ontology that enables the definition of service- and situation-dependent
user preferences. The corresponding ontology is extensible with arbitrary user attribute
vocabularies, and user profile exchange and interoperability is supported in the best possible
way. Second, in the field of user profile management systems in service platforms we provide
a modular system, in which several modules are easily exchangeable.

In addition we contribute to the field of automatic service personalisation, which is an
important aspect for the user acceptance and success of future context-aware services. This is
done in researching and developing a user profile selection mechanism that takes advantage of
ontology reasoning. Also linked to this mechanism is the modelling of ontologies and the
evaluation of ontology reasoning performance in terms of execution time and supported
functionality related to different variables that influence the ontology reasoning process.

Considering this aspect, the results of our approach can be used as instruction on how to
model ontologies, how to use ontology reasoning capabilities, and to understand the
advantages and disadvantages of using ontology reasoning capabilities. Furthermore, it can
also be used as experiences report. In doing so, service developers can estimate the system
properties in the sense of execution time with regard to used software environment, hardware
environment, size of database and other parameters of their systems. This can be done based
on the measurement results carried out in this thesis. With the resulting estimation, they can
then plan their system accordingly beforehand.

Not addressed in this thesis are some very important aspects related to our approach:
Firstly, we do not address the issue of user modeling, i.e. we do not learn user models.
Secondly, privacy and security issues related to personal data are beyond the scope of this
thesis. Thirdly, we do not deal with probabilities related to user context. This means that the
user context provided to the user profile management system is supposed to be accurate.
Fourthly, we do not research or extend ontology reasoning algorithms. Instead we use several
existing software libraries for our purposes. Finally, we do not carry out user evaluations.
However, all these aspects need to be addressed in future work in order to further progress
made.

1.6 Structure of the Thesis
In chapter 2, we first depict the fundamentals of user profiles and user profile management in
service platforms for networks beyond 3G. We then list related work and discuss it with
regard to the requirements for service platforms. In chapter 3, we describe our approach of a
user profile management system, including the related user profile structure. Chapter 4 is
dedicated to ontologies. On the one hand we present the ontology definition for the user
profile structure. On the other hand we explain the modelling of a context ontology that is
strongly connected to the specification of situation-dependent user preferences. Subsequently,
chapter 5 includes the user profile selection mechanism. In chapter 6 we evaluate the user
profile selection mechanism in terms of supported functionality and execution time. That is,
the supported functionality is compared to that of other approaches that do not include
ontology reasoning. As well execution time is compared between different reasoning libraries.
In addition, the execution time is also compared between other parameters related to ontology
processing. Finally, we conclude in chapter 7 with a summary and discussion of our results
and an outlook for future research.

CHAPTER 1: INTRODUCTION

19

1.7 Publications and Book Chapters
The following list shows the publications and book chapters I wrote during the work on my
thesis. The corresponding conferences and workshops such as VTC 2007-Spring, SAINT
2007 and Middleware 2007, the international research and development projects EU-FP6
MobiLife and EU-FP6 SPICE, in which I was involved with big companies, and my work on
European and national project acquisition provided me a broad platform for discussion and
feedback for the topics addressed in my thesis.

1. M. Sutterer, O. Droegehorn, and K. David, “User Profile Selection by Means of

Ontology Reasoning”, In proceedings of the Fourth Advanced International
Conference on Telecommunications (AICT 2008), IEEE Computer Society Press,
ISBN 978-0-7695-3162-5, pp 299-304, Athens, Greece, June 2008.

2. M. Sutterer, O. Droegehorn, and K. David, “UPOS: User Profile Ontology with
Situation-Dependent Preferences Support”, In proceedings of the First International
Conference on Advances in Computer-Human Interaction (ACHI 2008), IEEE
Computer Society Press, ISBN 978-0-7695-3086-4, pp 230-235, Sainte Luce,
Martinique, February 2008.

3. M. Sutterer, O. Droegehorn, and K. David, “Making a Case for Situation-
Dependent User Profiles in Context-Aware Environments”, Best Paper Award, In
proceedings of the Middleware 2007 Workshop on Middleware for Next-
Generation Converged Networks and Applications (MNCNA 2007), ISBN 978-1-
59593-932-6, Newport Beach, California, USA, November 2007.

4. D. Bonnefoy, M. Boussard, N. Brgulja, A. Domene, O. Droegehorn, G. Giuliani, R.
Kernchen, S.L. Lau, J. Millerat, B. Mrohs, P. Nurmi, P.J. Ollikainen, M.
Radziszewski, C. Raeck, M. Salacinski, A. Salden, and M. Sutterer, “Multimodality
and Personalisation”, chapter 5 in “Enabling Technologies for Mobile Services:
The MobiLife Book”, John Wiley & Sons, ISBN 0-470-51290-3, pp 153-184,
September 2007.

5. P.P. Boda, N. Brgulja, S. Gessler, G. Giuliani, J. Koolwaaij, M. Martin, D.
Melpignano, J. Millerat, R. Nani, P. Nurmi, P.J. Ollikainen, P. Polasek, M.
Radziszewski, M. Salacinski, G. Schultz, M. Sutterer, D. Trendafilov, and L.
Ukropec, “Reference Applications”, chapter 7 in “Enabling Technologies for
Mobile Services: The MobiLife Book”, John Wiley & Sons, ISBN 0-470-51290-3,
pp 227-261, September 2007.

6. S.L. Lau, J. Millerat, M. Sutterer, N. Brgulja, O. Coutand, and O. Droegehorn,
“Integrating Expert Knowledge into Context Reasoning in Context-Aware
Environment”, In proceedings of the 7th International Workshop on Applications
and Services in Wireless Networks (ASWN 2007), ISBN 978-84-690-5727-8, pp
75-80, Santander, Spain, May 2007.

7. M. Sutterer, O. Droegehorn, and K. David, “User Profile Management on Service
Platforms for Ubiquitous Computing Environments”, In proceedings of the IEEE
65th Vehicular Technology Conference (VTC 2007-Spring), IEEE Computer
Society Press, ISBN 1-4244-0266-2, pp 287-291, Dublin, Ireland, April 2007.

20

8. M. Sutterer, K. van der Sluijs, O. Coutand, O. Droegehorn, and K. David,
“Managing and Delivering Context-Dependent User Preferences in Ubiquitous
Computing Environments”, In proceedings of the 3rd IEEE SAINT 2007
Workshop on Next Generation Service Platforms for Future Mobile Systems
(SPMS 2007), IEEE Computer Society Press, ISBN 0-7695-2757-4, Hiroshima,
Japan, January 2007.

9. P. Nurmi, A. Salden, S.L. Lau, J. Suomela, M. Sutterer, J. Millerat, M. Martin, E.
Lagerspetz, and R. Poortinga, “A System for Context-Dependent User Modeling”,
In proceedings of the OTM 2006 Workshop on Context-Aware Mobile Systems
(CAMS 2006), Springer, ISBN 978-3-540-48273-4, pp 1894-1903, Montpellier,
France, October 2006.

10. A.V. Zhdanova, J. Zoric, M. Marengo, H. van Kranenburg, N. Snoeck, M. Sutterer,
C. Raeck, O. Droegehorn, and S. Arbanowski, “Context Acquisition,
Representation and Employment in Mobile Service Platforms”, In proceedings of
the IST Mobile & Wireless Communications Summit 2006 Workshop on Capturing
Context and Context Aware Systems and Platforms, Myconos, Greece, June 2006.

11. O. Coutand, M. Sutterer, S.L. Lau, O. Droegehorn, and K. David, “User Profile
Management for Personalizing Services in Pervasive Computing”, In proceedings
of the 6th International Workshop on Applications and Services in Wireless
Networks (ASWN 2006), Fraunhofer IRB Verlag, ISBN 3-8167-7111-4, pp 3-11,
Berlin, Germany, May 2006.

12. A. Salden, R. Poortinga, M. Bouzid, J. Picault, O. Droegehorn, M. Sutterer, R.
Kernchen, C. Raeck, M. Radziszewski, and P. Nurmi, “Contextual Personalization
of a Mobile Multimodal Application”, In proceedings of the 2005 International
Conference on Internet Computing (ICOMP 2005), CSREA Press, ISBN 1-932415-
69-6, pp 294-300, Las Vegas, Nevada, USA, June 2005.

My contribution to the works listed above is explained below, in reverse order:

1. In “Contextual Personalization of a Mobile Multimodal Application”, an architecture
is described that enables the contextual personalisation of a mobile multimodal
application. The term contextual personalisation is used to emphasize personalisation
means that are based on contextual parameters such as the user’s location, time of day,
activity, the capabilities of the user’s mobile device and other contextual parameters.
This personalisation architecture was later refined to support various mobile
applications. Besides working on the specification of this architecture and its
subcomponents, I implemented the corresponding user profile management as part of
this architecture that enables the definition of situation-dependent user preferences.
The matching situation-dependent user preferences are selected by different kinds of
rule engines, which match the conditions of the user preferences with contextual
parameters. This work was part of the EU-IST project MobiLife (Mobile Life), in
which I worked as the Task Leader of task 2.3 on Mobile Lifestyle Personalisation
Components Research and Development.

CHAPTER 1: INTRODUCTION

21

2. In “User Profile Management for Personalizing Services in Pervasive Computing”, the
main focus is on the challenges and requirements for a user profile management in
pervasive computing. In particular it focuses on the challenge of serving various
applications with the same base set of user data. The suggested approach was the use
of application-specific views on that base set of user data, so that applications can use
different vocabularies for describing and using user data. This idea served as one
starting point for the finally implemented and evaluated user profile management
system of this doctoral thesis.

3. In “Contextual Acquisition, Representation and Employment in Mobile Service

Platforms”, ideas were presented on how a mobile service platform can utilize context
information from heterogeneous context sources. As part of this work I presented the
ideas how to utilize contextual information in the area of user profile management for
the contextual personalisation of services. This work was done in the scope of the EU-
IST project SPICE (Service Platform for Innovative Communication Environment), in
which I worked as Task Leader of task 4.1 on Personal Information Management.

4. In “A System for Context-Dependent User Modeling”, the refined personalisation

architecture of the EU-IST project MobiLife was shown, which explains the learning,
management and application of context-dependent user models for serving various
mobile applications. As part of this User Modeling framework, which was
implemented and presented in various demos, I was responsible for the subcomponent
on the management of user models.

5. In “Managing and Delivering Context-Dependent User Preferences in Ubiquitous

Computing”, the user profile management component developed and used in the EU-
IST project MobiLife was presented in more detail, showing the main idea of using
application-dependent views on user data on the one hand, and using situation-
dependent sub-profiles on the other hand.

6. In “User Profile Management on Service Platforms for Ubiquitous Computing

Environments”, the user profile management aspects, already mentioned in some of
the above papers has been adapted and described in the background of service
platforms in the telecommunication domain as researched and developed in the EU-
IST SPICE project.

7. In “Integrating Expert Knowledge into Context Reasoning in Context-Aware

Environment”, it is shown, how the user profile management system of the EU-IST
project MobiLife is used in a system that integrates expert knowledge in the context
reasoning step to learn and apply user preferences in a context-sensitive environment.

8. In “Enabling Technologies for Mobile Services: The MobiLife Book”, I was the main

contributor on the sub-chapter 5.2 on Contextual Personalisation that summarises the
contextual personalisation architecture approach of the EU-IST project MobiLife. I
was also main contributor to the sub-chapter 7.6 on Wellness-aware Multimodal
Gaming System as an example of an application that was implemented to show the
capabilities of the contextual personalisation architecture researched and developed in
that project.

22

9. In “Making a Case for Situation-Dependent User Profiles in Context-Aware
Environment”, parts of this doctoral thesis are shown that include my analytic
evaluation of clustering use data into situation-dependent sub-profiles evaluated for
two main use cases. More details are shown in section 3.1.2 of this doctoral thesis.

10. In “UPOS: User Profile Ontology with Situation-Dependent Preferences Support”,

also parts of this doctoral thesis are shown. In particular, I presented my user profile
ontology (UPOS) that is also described in this doctoral thesis. More details are
provided in section 4.2.

11. In “User Profile Selection by Means of Ontology Reasoning”, details of my selection

mechanism are provided, which explain the ontology reasoning based approach to
select matching situation-dependent user preferences used in this doctoral thesis. More
details are provided in chapter 5.

CHAPTER 2: FUNDAMENTALS AND RELATED WORK

23

2 Fundamentals and Related Work

In this chapter, we first provide the fundamentals related to the thesis. This includes
definitions of central terms, fundamentals about service platforms for networks beyond 3G,
related user profile management and fundamentals about the Semantic Web. Afterwards
related work is shown and discussed.

2.1 Fundamentals
This subsection provides the fundamentals for this thesis. We first introduce definitions for
user context, user profile and further terms required for the understanding of the subsequent
sections. Second, we present basic knowledge about service platforms, in which our user
profile selection mechanism is integrated. Third, user profile management in service
platforms is depicted. Finally, we introduce the field of the Semantic Web, of which we use
several technologies for our user profile selection approach.

2.1.1 Definitions
For user context, we take the definition from Dey [3], which is as follows:

Context: Context is any information that can be used to characterise the situation of an entity.
An entity is a person, place, or object that is considered relevant to the interaction between a
user and an application, including the user and application themselves.

For user profiles, user profile subsets and user sub-profiles as used in this thesis, we use
the following definitions:

User profile: A user profile is the collection of all user data about a particular user apart from
context. This includes general user information such as user name and user address, service-
specific user data, situation-dependent user data, user history and data that is inferred from
other user data. Not included in a user profile is dynamically changing context such as user
location and user activity. Context is only included in the user profile if it is part of situation-
dependent user data. In this case, the context is used to describe one or more conditions, i.e.
the situation, in which situation-dependent user data is relevant. These conditions are also
called situational conditions in the following.

User profile subset: A user profile subset is a subset of all user data of a user profile.

User sub-profile: Synonym for user profile subset.

In addition, also the following term is frequently used in this thesis:

Situational condition: A situational condition is the condition part of a situation-dependent
user preference. It describes the situation, in which the situation-dependent user preference is
relevant.

24

2.1.2 Service Platforms for Networks Beyond 3G
Service platforms in telecommunications environments aim to support easy and quick
creation, test and deployment of mobile communication and information services. In order to
achieve this, service platforms first have to address the design and development of efficient
and innovative service creation and execution platforms for mobile services. Key objectives
for service platforms are the seamless delivery of mobile services over heterogeneous
execution platforms, networks and terminals, offering a personalised user experience anytime
and anywhere, simple use of services and devices through context-awareness, personalisation
and customisation provided by a trusted platform, and the enabling of service provision over
different countries, network operators and service platform operators.

Figure 2: Service Platforms for Networks Beyond 3G

Figure 2 provides a simplified view of service platforms. As mentioned in the introduction

chapter, in reality, such service platforms are much more complex architectures, which we
will not describe here in detail as many parts of such service platforms are not relevant for
this thesis. However, for a more detailed view on an example service platform, see Appendix
A: SPICE Service Platform, in which the service platform developed in the SPICE project [4]
[5] [6] is shown.

In addition, the shown service platform is directed towards networks beyond 3G. This is
because current 3G service platforms or infrastructures do not yet provide the mentioned
functions in the intended way.

The entities in Figure 2 are defined as follows:

Operator: The operator of a service platform

Service Platform: A set of components that provide an architecture for service delivery

Service Execution: The environment, in which the services provided by the service platform
are executed

Network Enablers: Components that provide access to network capabilities

Operator A

Network
A-1

Network
A-1

Service Platform 1

Service Execution

Se
rv

ic
e

R
oa

m
in

g

Network Enablers

Network
A-2

Network
A-2

Operator B

Network
B-1

Network
B-1

Service Platform 2

Service Execution
Service R

oam
ing Network Enablers

Network
B-2

Network
B-2

3rd Party
Platform

Operator A

Network
A-1

Network
A-1

Service Platform 1

Service Execution

Se
rv

ic
e

R
oa

m
in

g

Network Enablers

Network
A-2

Network
A-2

Operator A

Network
A-1

Network
A-1

Service Platform 1

Service Execution

Se
rv

ic
e

R
oa

m
in

g

Network Enablers

Network
A-2

Network
A-2

Operator B

Network
B-1

Network
B-1

Service Platform 2

Service Execution
Service R

oam
ing Network Enablers

Network
B-2

Network
B-2

Operator B

Network
B-1

Network
B-1

Service Platform 2

Service Execution
Service R

oam
ing Network Enablers

Network
B-2

Network
B-2

3rd Party
Platform

CHAPTER 2: FUNDAMENTALS AND RELATED WORK

25

Network: Communication system that interconnects computer systems or devices at different
sites

User: The end user consuming services provided by the service platform.

Service Roaming: The provision of a service in a location that is different from the location
where the service was registered

3rd Party Platform: Service platform of third party service provider accessing and providing
service components

Based on Figure 2, a user could have several terminals such as a mobile phone, a laptop
and a home personal computer with which she wants to access multiple services. Depending
on the device and the user’s situation, different networks should be available to communicate
with the service platform for what the service platform has to provide the corresponding
network enablers. In case the user enters the network of a foreign network operator and is not
directly connected with her home service platform her services should still be available. This
could be achieved by roaming her services from the home service platform to the visited
service platform or providing other means to exchange relevant information between the
home and visited service platform to support the use of her services. Finally, services could
also be provided to users by third-party service providers via other service platforms.

The design of such a service platform has to cover many aspects. These are rapid service
introduction to the market, a rich set of service enabler components, compelling user
experience, and access control and identity management. Rapid service introduction is
addressed with a service creation environment, semantically annotated service descriptions
and interfaces, and automatic service composition. Interaction of individual enabler
components is addressed with service discovery facilities, service broker functionality and
service roaming management.

Compelling user experiences is another important issue as the success of a service
platform depends on the user’s experiences in terms of user-service interaction and a user
tailored service experience. This includes ease of use of services, support for content
management and delivery, and context-awareness and personalisation features. The latter one
includes the management and selection of situation-dependent user preferences and profiles
respectively. More details on the objectives, design and development of service platforms can
be found in [4] [5] [6]. Also [7] provides detailed guidelines and experiences in the
development of mobile service architectures.

26

Figure 3: User Profile Management in Service Platforms

Figure 3 provides a simplified view of the service execution environment of service

platforms and the classification and interconnection of the user profile management to other
types of services. The entities in Figure 3 are defined as follows:

Service Execution: The environment, in which the services provided by the service platform
are executed

Platform Services: Base services of the service platform that are needed to manage and
operate the service platform

Intelligent Service Behaviour: Services that support Value Added Services in providing
intelligent service behaviour such as situation-dependent behaviour

Value Added Services: Services that interact with the end user, also called end-user services
or applications

As shown in Figure 3, the user profile management system is classified as service that
enables intelligent service behaviour. On the one hand, the user profile management should be
capable of managing user data needed for platform services such as billing or lifecycle
management. On the other hand, the user profile management should be capable of managing
user data for Value Added Services such as a Restaurant Finder or a Personalised Ticket
Booking Service, also called end-user services or applications in the following.

2.1.3 User Profile Management
User profile management systems in service platforms for networks beyond 3G differ
essentially from ones in stand-alone applications. In order to depict the differences between
these two systems, we consider four architectural components, in particular an application
core, a user profile management system, a user context management system and a user profile
selection module. These are described as follows:

Service Execution

Value Added Services

Platform Services

Billing

Intelligent
Service
Behaviour

User Profile
Management

Lifecycle
Management

Personalised
Ticket Booking

Restaurant
Finder

Service Execution

Value Added Services

Platform Services

Billing

Intelligent
Service
Behaviour

User Profile
Management

Lifecycle
Management

Personalised
Ticket Booking

Restaurant
Finder

CHAPTER 2: FUNDAMENTALS AND RELATED WORK

27

Application Core: The central component of an application that manages the application
logic and applies situation-dependent user preferences for the customisation of the offered
services

User Profile Management: The component that provides a means to manage user profiles,
i.e. to create, set, update, query and delete them

User Context Management: The component that gathers user context, derives high-level
descriptions of user context and provides it to interested clients

User Profile Selection Module: The component that evaluates whether user profiles or single
user preferences match the user’s current situation

Figure 4: Request / Response Pattern for Stand-Alone Applications

Figure 4 shows how the request / response pattern for user profile query in stand-alone

applications could look. In this case, all four architectural components are part of the stand-
alone application and hence are application-specific. The sequence steps are as follows:

1. In step 1, a user interfaces with the application core.
2. The application requests the user’s preferences from the user profile management

subsystem in step 2, in order to execute the user’s query.
3. In step 3, the current user’s context is requested from the user context management

system.
4. The answer in step 4 is returned to the user profile management subsystem
5. In step 5, this answer is passed on to the user profile selection module
6. The result of the user profile selection process is returned to the user profile

management system in step 6.
7. Subsequently, the application core receives the user preferences to be applied for the

current user request in step 7
8. Finally, the customised service is provided to the user is step 8.

Application

Application
Core

User Context
Management

User Profile
Selection

1

3

8

4
6

2

User Profile
Management

7

5

28

Figure 5: Subscription / Notification Pattern for Stand-Alone Applications

Figure 5 shows the subscription / notification pattern for the same case. The sequence of

messages is exactly the same. The only difference is that the sequences are separated into two
parts as described below:

1. The subscription steps 1.1, 1.2 and 1.3 are done beforehand so that there is no need for
the user to permanently interact with the application. In contrast to this, the user is
notified about changes to the subscribed items.

2. The notification process starts with a notification by the user context management
system in step 2.1, which is about a change in the user context subscribed to.
Subsequently steps 2.2 to 2.5 are then carried out. Step 2.5 does not necessarily have
to be reached, as a change in the user’s context may not necessarily result in changing
user preferences.

An application example in which the subscription / notification pattern makes sense is a
news delivery service. By means of subscription, the user can be informed about incoming
news as soon as a new message about a particular news item is available. However, whereas
the user may want to be notified immediately of incoming news when she is at home, she may
want the incoming news to be postponed until after a meeting, in case she happens to be in a
business meeting. The approach depicted in Figure 5 aims to support this scenario.

In service platforms, user profile management systems are not application-specific
anymore. Besides the user profile management system, the user context management system
and user profile selection module could be also placed on service platform side. This makes
sense for several reasons. Firstly, application developers do not have to design and implement
own modules for user context management, user profile management and user profile
selection. This usually significantly decreases application complexity, especially should
complex reasoning mechanisms be used for context inference and user profile selection. As a
result, development time and development costs for applications can also be decreased.
Secondly, there may be a lot of user data that is not application-specific and hence could be
shared by many applications. If this user data was managed by each application
independently, the same user data would be requested from the user, managed by the
application, and would have to be updated by the user in case of modifications for each single
application. In case the user profile management system is placed on service platform side,
this system could support sharing user data by many applications.

Application

Application
Core

User Context
Management

User Profile
Selection

1.1

1.3

2.5

2.1
2.3

1.2

User Profile
Management

2.4

2.2

CHAPTER 2: FUNDAMENTALS AND RELATED WORK

29

Figure 6: Request / Response Pattern for Applications in Service Platforms

Figure 6 and Figure 7 show the corresponding request / response pattern and subscription /

notification pattern for applications that use service platform side user profile management.
The single sequence steps for Figure 6 are as follows:

1. In step 1, a user interfaces with the application core.
2. The application requests the user’s preferences from the user profile management in

step 2, in order to execute the user’s query. In this case, the user profile management
is located within the service platform.

3. In step 3, the current user’s context is requested from the user context management
system.

4. The answer in step 4 is returned to the user profile management subsystem
5. In step 5, this answer is passed on to the user profile selection module
6. The result of the user profile selection process is returned to the user profile

management system in step 6.
7. Subsequently, the application core receives the user preferences to be applied for the

current user request in step 7
8. Finally, the customised service is provided to the user is step 8.

Figure 7: Subscription / Notification Pattern for Applications in Service Platforms

The sequence of messages in Figure 7 is exactly the same as in Figure 6. The only

difference is that the sequences are separated into two parts as described below:

4

3

Application

User Profile
Selection

1

8
6

2

7
5

User Context
Management

Platform

User Profile
Management

Application
Core

2.1

1.3

Application

User Profile
Selection

1.1

2.5
2.3

1.2

2.4
2.2

User Context
Management

Platform

User Profile
Management

Application
Core

30

1. The subscription steps 1.1, 1.2 and 1.3 are done beforehand so that there is no need for
the user to permanently interact with the application. In contrast to this, the user is
notified about changes to the subscribed items.

2. The notification process starts with a notification by the user context management
system in step 2.1, which is about a change in the user context subscribed to.
Subsequently steps 2.2 to 2.5 are then carried out. Step 2.5 does not necessarily have
to be reached, as a change in the user’s context may not necessarily result in changing
user preferences.

The depicted approach for applications in service platforms could also vary. In some cases
it would make sense that at least some user context is managed within the application, e.g.
should very application-specific context be used that is not, or can not, be supported by the
service platform. Also for application-specific usage behaviour and user history it would
make sense to manage it in the application as other applications may not be able to process it
anyway. In these cases it would then also make sense to place user profile selection, parts
thereof or an additional selection or refinement functionality on the application side.

The platform side user profile management poses several requirements. Firstly, a user
profile structure and vocabulary is needed, which includes and structures multiple user data to
an overall user profile. This includes user data required by platform services, e.g. for
accounting and billing, and also user data required by end-user services such as innovative
messaging services or location-based services. There are different types of user data to be
included:

1. General user data such as user name, date of birth, address, credit card details, etc.
which may be required by all or many services

2. Service-specific user data and preferences such as ring tone preferences for telephony,
which is only required by a certain service or a certain group of services

3. Situation-dependent user data and preferences, which usually are also service-specific
At the same time, a query language is needed in order to request specific parts of the overall
user profiles.

In addition, the interaction between the user profile management and the user context
management requires a common context model within the service platform. As the high level
user context that is derived by the user context management system has to be processed by the
user profile selection mechanism in order to find matching user profiles or parts thereof, a
common representation and understanding of context is needed.

In service platforms, many other aspects related to user profile management may be of
interest, which are not addressed in this thesis, e.g. distribution and synchronisation of user
profiles to mobile devices. However, the main focus in this thesis is on the user profile
selection mechanism that is based upon a centralised user profile management system and
extensible user profile and context ontologies. In section 2.2, we have a closer look and a
discussion on the related work on user profile management systems and related challenges.

2.1.4 Semantic Web Technologies
In 2001, Berners-Lee, Hendler and Lassila presented the so-called Semantic Web [8]. The
Semantic Web could be described as an extension of the Web, in which information is given
well-defined meaning. Whereas information in the Web so far was targeted mainly at human
users, the Semantic Web was thought to make information in the Web usable by machines.
This idea was also summarised by means of the Semantic Web Architecture, also called
Semantic Web Stack, see Figure 8, which was introduced by Berners-Lee [9].

CHAPTER 2: FUNDAMENTALS AND RELATED WORK

31

Figure 8: Semantic Web Stack

The base of the Semantic Web Stack is Unicode [10] and URI (Uniform Resource

Identifier) [11]. Unicode provides a coding standard for data and an international universal
character set that unifies multiple individual character sets such as the Latin, Arabic and
Japanese one. URI on the other hand provides a standardised way of identifying Web
resources. In [12], this layer is also called Unique Identification Mechanism. The next layer
comprises XML (Extensible Markup Language) [13], NS (Namespaces) [14] and XML
Schema [15]. XML allows users to add arbitrary structure to documents. However, it does not
say anything about what the structure means. Contrary to HTML (Hypertext Markup
Language) [16], XML does not mix up the content of a document with the representation of
the content. This makes XML much easier to be machine processed than HTML. XML
Schema as well enables the definition of a schema, i.e. a vocabulary and structure for the
XML document that defines element and attribute names. Finally, NS enables the declaration
of namespaces and namespace prefixes. As a result, this layer enables so-called self-
describing documents. In [12], this layer is also called Syntax Description Language.

The next higher layer is the RDF (Resource Description Framework) [17] and RDF
Schema [18] layer, which could also be called Meta-Data Data Model following the
suggestion of [12]. RDF is basically about meta-data. That is, it offers a mechanism to say
something about the actual data, which is done by adding meta-data to the actual data. RDF
data is represented by an RDF graph in which everything is expressed as triples consisting of
a subject, a predicate and an object. RDF Schema on the other hand is RDF's vocabulary
description language, which provides a means to define the meaning of RDF data. It can be
seen as semantic extension of RDF. The RDF layer is followed by the Ontology Vocabulary
layer. An ontology could be defined as an explicit specification of a conceptualisation [19].
Today’s technology, which is used in this layer, is OWL (Web Ontology Language) [20].
This layer even adds additional meta-data on top of RDF Schema with the goal to enable
inference and extra functionality.

The Logic layer adds rules to the ontology layer and aims to provide additional inference
capabilities. This is the layer currently under development. So far, there is no final technology
available. Finally, the Proof layer aims to prove assumptions and the Trust layer aims to add
trust mechanisms for validating information. The verification that information has been
provided by a specific trusted source could be implemented by means of digital signatures.
However, the Proof and Trust layers are currently rather speculative as long as the Logic layer

XML + NS + XML Schema

Unicode URI

D
ig

ita
l S

ig
na

tu
re

RDF + RDF Schema

Ontology Vocabulary

Logic

Proof

Trust

Self-
desc.
doc.

Data

Data

Rules

XML + NS + XML Schema

Unicode URI

D
ig

ita
l S

ig
na

tu
re

RDF + RDF Schema

Ontology Vocabulary

Logic

Proof

Trust

Self-
desc.
doc.

Data

Data

Rules

32

is under development. A detailed discussion about these layers and advanced refined
Semantic Web Stacks can be found in [8] [12] [21] [22]. General information on Semantic
Web technologies can be found in e.g. [1] [2].

The layers we are interested in are the base Unicode and URI layer up to the Ontology
Vocabulary layer. On the one hand, we use Ontology Vocabulary layer technology, i.e. OWL,
for specifying a user profile ontology, user attribute vocabularies and context ontologies. On
the other hand, we use RDF for the exchange of instances of user profile data and user
context. In chapter 3, the use of RDF with regard to user profile and user context instances is
described in more detail. In addition, the query process for the selection of matching user
profiles and preferences is carried out by means of SPARQL queries [23], the standard RDF
query language.

By now, there are a variety of tools for generating and working with RDF and OWL.
While e.g. Jena2 [24] [25], KAON2 [26] [27], OWL API [28] and Sesame [29] provide
functionality for manipulating RDF and OWL documents, Pellet [30], FaCT++ [31] [32],
RacerPro [33] [34], Jena2 [24] [25], KAON2 [26] [27] and others provide ontology reasoning
functionality. Some of these libraries are used for our purposes as explained in more detail in
subsequent chapters.

2.2 Related Work
In this section, we present exiting work that is related to this thesis. This includes existing
work on user profile schemas and ontologies, user profile management systems, user profile
selection mechanisms, context-aware systems, and ontologies for user situations.

2.2.1 User Profile Schemas and Ontologies
This subsection lists industry standards and research on user profile schemas and ontologies.
As mentioned in section 2.1.3, existing work should support the following types of user
profile data:

1. General user data such as user name, date of birth, address, credit card details, etc.
which may be required by all or many services

2. Service-specific user data and preferences such as ring tone preferences for telephony,
which is only required by a certain service or a certain group of services

3. Situation-dependent user data and preferences, which usually are also service-specific.

The user profile schemas and ontologies are analysed based on their capability to support
the following goals as stated in section 1.3 and repeated here:

Goal 1:

• Design and implementation of a user profile management system that is capable of
managing the following kinds of user data

a. User data required by platform services such as accounting and billing services
b. User data required by end user services such as innovative messaging services

and location-based services
c. Service-specific user data that is only required by specific services such as ring

tone preferences for telephony services
d. Situation-dependent user data such as notification preferences for incoming

new messages that are related to different situations

Here, this means that the user profile schema or ontology should provide a user profile
structure for the four listed aspects of goal 1.

CHAPTER 2: FUNDAMENTALS AND RELATED WORK

33

Goal 2:

• Design and implementation of a user profile management system that is capable of
managing user data that adheres to different and extensible vocabularies for
expressing user attributes

a. It should be possible to manage user data that adheres to different user attribute
vocabularies

b. It should be possible to manage user data that adheres to extensions of user
attribute vocabularies

Here, goal 2 means that the user profile schema or ontology should enable a user profile
structure that can include or be extended with different user attribute vocabularies.

Goal 4:

• Design and implementation of a user profile management system that supports an
easily understandable way for the normal user to manage her situation-dependent user
data

a. It should be possible for the user to easily specify and edit situation-dependent
user preferences

b. It should be possible for the user to control user data and personalisation
features

Here, goal 4 means that the user profile schema or ontology should provide a means for
describing situational conditions in a way that they can easily be visualised to a usual non-
technical user to define or edit them.

2.2.1.1 Standards and Specifications
The User Profile Management specification [35] of the European Telecommunications
Standards Institute (ETSI) provides guidelines relevant to users’ needs to manage their
profiles for the personalisation of services and terminals in telecommunications environments.
The ETSI Technical Committee Human Factors, which produced the specification, considers
effective user profile management as critical to the uptake and success of new and advanced
communication services. Hence, it is seen as important to focus on the users’ requirements in
this area. The user profile concept depicted in this specification addresses different user
profile types such as base user profile, device and service user profiles, and situation-
dependent user profiles, as well as scenarios, requirements, set-up and maintenance of user
profiles, profile activation, and information sharing and privacy. Hence, this work includes
very interesting ideas and concepts for our work. However, the document only provides
guidelines. This means that it does not provide detailed suggestion on a formal user profile
structure, on what technologies to be used, and on how to implement these guidelines.

The 3rd Generation Partnership Project (3GPP) produced several documents for the
Generic User Profile (GUP) specification [36] [37]. These specifications address the fact that
having several domains within mobile systems (e.g. Circuit-Switched, Packet-Switched, and
IP Multimedia Subsystem) and access technologies (e.g. GERAN, UTRAN, and WLAN)
introduces a wide distribution of data associated with the user. In order to address the
challenge of harmonised usage of the user-related information located in different entities, on
the one hand, GUP proposes a reference architecture in specifying GUP functionalities,
functional entities, and procedures. On the other hand, GUP proposes a user profile structure
by means of a Data Description Method (DDM) and a Datatype Definition Method (DtDM).
The proposed user profile structure provides a top-level schema for user profiles, which could

34

consist of several user sub-profiles. However, it does not provide a specification of user
attributes, but it shows several examples for individual user attribute schemas that could be
used in connection with GUP. The proposed user profile structure is based on XML Schema
[15]. Unfortunately, the specification does not provide any specific means to manage
situation-dependent user preferences or sub-profiles. This means that this work fulfils goal 1
partially, not including the issue of situation-dependent user data, goal 2 is fulfilled, but goal 4
is not fulfilled for the same reasons as the missing issue in goal 1. Nevertheless, this work
provides an interesting approach about user sub-profiles, which we partly took over.

Also the World Wide Web Consortium (W3C) produced a specification, i.e. a W3C
recommendation, in the field of user preferences, the Composite Capabilities/Preference
Profiles (CC/PP) [38]. CC/PP profiles are descriptions of device capabilities and user
preferences. These descriptions are often referred to as a device's delivery context and can be
used to guide the adaptation of content presented to that device. The CC/PP specification
provides a top-level schema, which could be used for user profiles consisting of different sub-
profiles. The CC/PP schema is defined with RDF Schema [15]. The specification also
includes a CC/PP attribute vocabulary for print and display as an example for attribute
vocabularies. Another example attributes vocabulary is the User Agent Profile (UAProf)
specification [39] by the Open Mobile Alliance (OMA). UAProf includes hardware and
software characteristics of the device as well as information about the network to which the
device is connected, but is distinct from a user preference profile. An extended discussion on
CC/PP is also given in [40]. However, CC/PP does not include a concrete user attribute
vocabulary. Furthermore, it also does not provide any specific means for the specification of
situation-dependent sub-profiles or preferences. This means that this work fulfils goal 1
partially, not including the issue of situation-dependent user data, goal 2 is fulfilled, but goal 4
is not fulfilled for the same reasons as the missing issue in goal 1. Nevertheless, the ideas,
which are similar to that of GUP presented above, are partly taken over in this thesis, in
particular the approach of an overall user profile consisting of several sub-profiles.

Other well-known vocabularies are the Friend-Of-A-Friend (FOAF) vocabulary [41] and
the vCard vocabulary [42]. The FOAF project is based around the use of machine readable
Web homepages for people, groups, companies and other kinds of thing. To achieve this, the
project provides a collection of basic terms that can be used in these Web pages. The initial
focus of FOAF has been on the description of people, since people are the things that link
together most of the other kinds of things described in the Web. VCard on the other hand
defines a format for an electronic business card. The format aims to be an interchange format
between applications or systems and is defined independently of the particular method used to
transport it. Both FOAF as well as vCard provide user attributes but no user profile structure
for specifying application-specific or situation-specific sub-profiles. As result, they do not
cover goal 1, goal 2 and goal 4. As will be mentioned later, both these schemas will be
considered as possible user attribute schemas that could be used in combination with a user
profile structure for our approach.

2.2.1.2 User Model and User Profile Ontologies
In [43], Jon Orwant describes the Doppelgänger User Modeling System. This system gathers
data about users, performs inferences upon the data, and provides resulting information to
applications. This functionality is supported by heterogeneous learning techniques that are
implemented in an application-independent and sensor-independent environment. An
interesting part of this work is the definition of user models, which consist of so-called
domain submodels and conditional submodels. Domain submodels contain information about
a particular aspect of the user’s behaviour. This could e.g. be location information or his
preferences for personalised news-paper content. Conditional submodels on the other hand

CHAPTER 2: FUNDAMENTALS AND RELATED WORK

35

contain user information that supersedes information of domain submodels when a certain
condition exists such as a certain time of day or a particular activity. This approach is
interesting for the aims of this thesis as the intended user profile management system has to
manage user information of many different applications and for different situations. As a
result, domain submodels could be used as application-specific submodels, and conditional
submodels could be used for situation-dependent user information. Hence, goal 1 and goal 2
can be met. However, the idea of submodels is only expressed in an abstract way without
defining a formal structure, which is why we can take over the idea but not any concrete
solutions. Based on this, goal 4 cannot be met, as there is no concrete solution. The approach
for our user profile structure will take over this idea of domain submodels (application-
specific) and conditional submodels (situation-specific).

In [44], [45] and [46], Dominik Heckmann presents the General User Model Ontology
(GUMO). This ontology is used for the uniform interpretation of distributed user models in
intelligent Semantic Web enriched environments. For this purpose it aims to be a commonly
accepted top-level ontology for user models in order to simplify the exchange of user models
between different user-adaptive systems. The ontology includes the user’s dimensions that are
modelled within user-adaptive systems, i.e. general user data such as the user’s age and date
of birth, user context such as the user’s heart beat and current position, and user interests and
preferences such as reading poems and drinking certain French Bordeaux wines. However,
this user model ontology could be described as a user attribute vocabulary. That is, it is
possible to describe a user by means of a user model, but it does not provide any means to
describe a user profile structure where a user profile could consist of several sub-profiles or
several user submodels. As a result, it does not cover goal 1, goal 2 and goal 4, but this work
is consideres as one possible user attribute vocabulary, which can be used in our approach of
a service-specific vocabulary.

In [47], a user profile ontology is shown that aims to be a general, comprehensive and
extensible reference model to support personalisation, adaptivity and other user-centric
features. This ontology is basically similar as the General User Model Ontology above. It
provides a user attribute vocabulary, but no means of a user profile structure that could
include several user sub-profiles. Also this one does not cover goal 1, goal 2 and goal 4, but it
is also considered as possible user attribute vocabulary for our approach.

2.2.1.3 Discussion
Some of the depicted research work and user profile standards already fulfil the needed
requirements partially. GUP [36] as well as CC/PP [38] provide a top-level user profile
schema that could include several user sub-profiles. For each of the user sub-profiles a
different individual user attribute vocabulary could be used to express the actual user
information. This two-step mechanism could be used for specifying application-specific sub-
profiles. However, both schemas are not sufficient for our goal to specify situation-dependent
user sub-profiles or preferences. Indeed, situation-dependent user sub-profiles or preferences
with the corresponding situational conditions could be specified within the individual user
attribute vocabulary. However, this would lead to a situation in which the evaluation of
situational conditions could only be carried out by the corresponding application, as
situational conditions are described in an application-specific format. In contrast to this, our
goal is to make the evaluation of situational conditions application-independent, i.e. the
evaluation should be carried out by a platform service. In particular, this platform service is
the user profile management system or a subsystem thereof. Hence, situational conditions
have to be independent of a specific application and therefore part of the top-level user profile
schema. This means that these two works fulfil goal 1 partially, not including the issue of
situation-dependent user data, goal 2 is fulfilled, but goal 4 is not fulfilled for the same

36

reasons as the missing issue in goal 1. Nevertheless, they do provide a good base for
additional extensions or modifications as required in this thesis.

Other schemas such as FOAF [41], vCard [42] and GUMO [44] provide a user attribute
vocabulary, but no top-level user profile schema. Thus, they can be used to express the actual
user attributes but they do not provide any means in order to assemble different sets of user
attributes to an overall user profile consisting of several user sub-profiles. As result, they do
not cover goal 1, goal 2 and goal 4. However, assuming that a common top-level user profile
schema is available that can be extended with application-specific and situation-specific user
sub-profiles, these and other user attribute schemas could be used for the application-specific
part of a user sub-profile. Finally, this is the decision of the application developers and not of
the service platform or user profile management designers.

Furthermore, in order to easily exchange and share user profile information in service
platforms, the specification of the user profile schema and user attribute schemas should be
defined with a standardised representation language. As semi-automatic transformation of
profile instances should be taken into account to support service platform administrators, a
representation language has to be selected that supports this scenario. In this transformation
process, a user sub-profile instance that adheres to a particular user attribute schema has to be
transformed into a user sub-profile instance that adheres to another particular user attribute
schema. This scenario could arise should a service platform user subscribe to a new service,
which she has not used before. In this case there is no user information for this new service
available. However, the required user information could be translated at least in a semi-
automatic way from existing user information available for other services the user has already
subscribed to. For this purpose, schema matching algorithms for the creation of mappings
between different user attribute vocabularies could be applied [48] [49]. Comprehensive
surveys of matching algorithms are presented in [50] [51] [52].

Besides user profile information, a lot of other data is managed and exchanged within a
service platform. For example, there are context data, service descriptions, quality of service
(QoS) data, presence data and data about contents. As there are correlations between different
kinds of data, we should not consider the development of user profile related issues as an
independent domain. Instead user profile information should be seen as part of an overall data
model, which should enable interoperability, easy exchange, reasoning capabilities and
sharing capabilities. The most promising language to be used in order to support these goals
and the discussed semi-automatic schema transformation is OWL [20]. Hence, the extension
of existing user profile schemas such as GUP [36] seems not advisable, as the GUP schema is
specified with XML Schema [15].

Another important issue to be considered during the specification and structuring of user
profiles is the interfacing between the user and the user profile management system for
editing user data. It has to be ensured that user profile editors make user profiles editable in an
easy way. For this purpose, a user-friendly user profile representation is needed. Besides [35],
which addresses human factors related to this issue and which has been discussed above, for
example Pazzani [53] presents a user study on the representation of electronic mail filtering
profiles that addresses this issue. In [54] and [55] requirements for user-friendly user profile
management are discussed that are also related to user profile representation. In particular,
they discuss how users can be involved in setting up user profiles and improve user profile
content that has been learned from user behaviour. As a conclusion, a user-friendly
representation and structuring of user profile contents should be taken into consideration at
design time of user profiles.

CHAPTER 2: FUNDAMENTALS AND RELATED WORK

37

2.2.2 User Profile Management and Context-Aware Systems
This sub-section on the one hand includes related work on user profile management systems,
and on the other hand on context-aware systems. It is also closed with a discussion.

The user profile management system and context-awareness systems are analysed based
on their capability to support the following goals as stated in section 1.3 and repeated here:

Goal 1:

• Design and implementation of a user profile management system that is capable of
managing the following kinds of user data

a. User data required by platform services such as accounting and billing services
b. User data required by end user services such as innovative messaging services

and location-based services
c. Service-specific user data that is only required by specific services such as ring

tone preferences for telephony services
d. Situation-dependent user data such as notification preferences for incoming

new messages that are related to different situations

Here, this means that the user profile management system should provide a means for
managing user profiles and user profile structures that enable the four listed aspects of goal 1.

Goal 2:

• Design and implementation of a user profile management system that is capable of
managing user data that adheres to different and extensible vocabularies for
expressing user attributes

a. It should be possible to manage user data that adheres to different user attribute
vocabularies

b. It should be possible to manage user data that adheres to extensions of user
attribute vocabularies

Here, this means that the user profile management system should provide a means for
managing user profiles that enable the two listed aspects of goal 2.

Goal 3:

• Design and implementation of a user profile management system that supports
automatic service personalisation

a. Design and implementation of a user profile selection module as sub-module
of the user profile management system that enables automatic selection of
matching situation-dependent user preferences

b. Design and implementation of a module to receive and process context
parameters as input to the user profile selection module

2.2.2.1 User Profile Management and Selection
The Generic User Profile (GUP) specification, which was already introduced in sub-section
2.2.1.1, does not only specify a user profile structure by means of a Data Description Method
(DDM), but also a reference architecture [37] by specifying GUP functionalities, functional
entities, and procedures. GUP functionalities are e.g. authentication and synchronisation,
functional entities are e.g. GUP server and GUP data repository, procedures are e.g. create,
subscribe and notify procedures. However, neither the specified functional entities nor the
procedures address any means for querying and selecting situation-dependent user data.
Furthermore, the functional entities also do not address the translation and mapping between

38

different user attribute schemas. As a result, this work partially covers goal 1 and goal 2,
excluding the management of situation-dependent user data. It does not cover goal 3, but can
be used as starting point requiring several extensions to match our approach.

In [56], a profile management system for personalised services provisioning is presented.
In this system, the focus is on the management of user preferences for presentation and usage
of telecommunications services to which a user is subscribed. Furthermore, this system
assumes that user data are distributed. In this system, User Profile objects include interface
preferences on the one hand, and service preferences on the other hand. Interface preferences
are defined as terminal and network dependent user preferences that can include the user’s
preferred ring tone, colour, message encoding, settings such as language, size of characters,
etc. Service preferences on the other hand are defined as user preferences that are specific to
subscribed services. A user can have several such user profiles that altogether form a so-called
Personal Service Environment (PSE). Such PSEs are defined and explained in the Virtual
Home Environment (VHE) concept [57] of the 3rd Generation Partnership Project (3GPP).
According to VHE, a PSE is a combination of a list of subscriptions, preferences associated
with those services, terminal interface preferences and other information related to the user’s
experience of the system. Within the PSE, the user can also manage location and temporal
preferences. The VHE specification, as well as the approach in [56] that is based on the VHE
vision, also aims at static as well as dynamic selection of the appropriate user profile.
Whereas in static selection, the user explicitly selects a user profile, dynamic selection
functionality aims at automatically selecting the best matching user profile. However, both
VHE and [56] do not provide any concrete mechanism or proposal on how such automatic
selection functionality could be implemented. Furthermore, they both also do not address the
translation and mapping between different user attribute schemas. As a result, these works
partially cover goal 1 and goal 2, excluding the management of situation-dependent user data.
Goal 3 is not covered. Hence, similar as for the GUP architecture above, these works serve as
starting point, to which we will add a concrete automatic selection functionality.

In [58] and [59], van der Sluijs and Houben present the Generic User Model Component
(GUC). This component manages application-specific user model schemas and related
instances, and aims to support interoperability of user models between different applications.
For this purpose, it also provides a means to store schema mappings between different user
model schemas. These schema mappings can be used to create instance mappings. Finally, in
mapping different application-specific user model instances, the interoperability of user data
between different applications can be supported. The required mappings can either be created
manually by a system designer or semi-automatically with tool support. Example tools [48]
[49] [50] [51] [52] were already mentioned in sub-section 2.2.1.3. An example for a schema
mapping is shown in [59], which is based on the Semantic Web Rule Language (SWRL) [60].
SWRL can be seen as an extended OWL [20] that in addition provides support for rules.
Hence, on the one hand the GUC approach provides mechanisms for supporting
interoperability of user models. On the other hand, it does not focus on situation-dependent
user profiles and preferences and any related selection functionality. All in all, this work
follows a similar approach as ours. The difference is that our approach will focus on situation-
dependent personalisation, whereas this work provides concrete solutions for user data
interoperability, i.e. goal 2 is fully met, whereas goal 3 is not focused in this work. Goal 1 is
partially met, excluding the management of situation-dependent user data. Hence, this work
would be a good candidate to complement the work in this thesis, as it does not only support
different user attribute vocabularies, but also provides solutions to map these vocabularies for
reuse and interoperability of user data.

Groppe and Mueller [61] present a profile management technology for smart
customisations in private home applications. The aim of this work is a profile management
framework for situation-dependent customisation in smart home environments. However, the

CHAPTER 2: FUNDAMENTALS AND RELATED WORK

39

focus is on a textual explanation of profile descriptions and profile computation for the
creation and modification of profile instances. The automated environment customisation
includes different processing steps. First, the environment is monitored and a soft-context
profile is created that represents the state of the environment. Second, the soft-context profile
is matched with the user profiles. As a result, a customisation profile is created that is used for
the customisation of devices and applications. This matching step also covers preference and
device conflicts. This is, this work in principal covers the situation-dependent user
preferences aspect of goal 1 and goal 3. However, the presented description does not provide
any concrete mechanism or algorithm how the selection of matching user preferences is
carried out. Furthermore it also does not cover user profile schemas and user attribute
schemas, i.e. goal 2. Nevertheless, this work provides an interesting view on the required
processing steps.

In [62], an advanced adaptability and profile management framework for the support of
flexible mobile service provision is presented. This framework aims to fulfil requirements
towards the situation-aware provision of ubiquitous personalised multimedia services in
beyond 3G communication systems. The framework is described by means of class diagrams
and interfaces of the adaptation engine and profile representation objects. The proposed
mechanism is designed to be generic so that the actual adaptation algorithms can dynamically
be loaded at runtime. Furthermore, the proposed design also enables the use of arbitrary
semantics of adaptation algorithms and user profile data. However, the framework does not
include any concrete adaptation mechanisms, i.e. any algorithms for the selection of matching
user profile data, in order to realise the intended vision. Hence, goal 3 is met on a high level
by covering this functionality, but without concrete solutions. Goal 2 is not covered, and goal
1 is partly covered, but without showing a detailed user profile structure.

Another user profile management framework for context-aware services is given in [63].
In this framework, static user-related information such as user address book, service IDs,
schedule information, and dynamic user-related information such as the current user position
and situation, purchase history and usage of nearby computing are collected and can be
disseminated to other services. A user profile could be described as consisting of several
parts, such as a Location Profile and a Purchased Commodity Profile. In case an application
requires user profile data for the situation-dependent personalisation of services, it requests
the required user data from the user profile management framework and processes this data.
As a result, the actual processing, i.e. the selection of best matching user preferences for the
current user situation, does not take place in the user profile management framework. Instead,
this processing is application-specific. In contrast to this, we aim to include this selection
functionality in an application-independent way into the profile management system placed
within the service platform. Hence, this work follows another idea than we do and does not
cover goal 3. Besides, this framework also does not include any concrete selection mechanism
used by a particular profile management client.

Last but not least, Etter, Dockhorn Costa and Broens [64] present a rule-based approach
towards context-aware user notification services. This approach aims to rapidly develop
applications that provide context-aware notifications without the need to write programming
code to activate rules, nor to implement personalised notifications. Instead, the activation of
rules and implementation of personalised notifications is provided by an architecture, the so-
called Awareness and Notification System. In this system, a Controller module is responsible
for evaluating notification rules that follow the Event-Condition-Action pattern. Rules are
expressed in a rule language that has been developed specifically for this system with the aim
to enable complex event relations, convenient use for application developers and extensibility.
In order to manage the notification rules, the system has a Notification Profile Manager
module. However, this system is mainly about management and activation of user
notifications and not about general user profile management. That is, it does not address the

40

management of user profiles in general, i.e. goal 1, and the selection of matching user data. It
does address the selection and notification of matching user notifications. Furthermore,
different user profile schemas and interoperability of user profile information are also not
covered, i.e. goal 2. However, as it includes interesting ideas and approaches concerning
notification functionality, the ideas will be considered in this thesis, too.

2.2.2.2 Infrastructures for Context-Aware Systems
In [65] and [66], Roman et al. present a middleware infrastructure for active spaces, the so-
called Gaia meta-operating system. Gaia is designed to support the development and
execution of portable applications for active spaces. Active spaces are defined as
programmable ubiquitous computing environments in which users interact with several
devices and services simultaneously. Gaia offers the five basic services Event Manager,
Context Service, Presence Service, Space Repository and Context File System. The Event
Manager distributes events in the active space, for example when a user enters the active
space, and implements a communication model based on suppliers, consumers and channels.
The Context Service is an infrastructure that lets applications query and register for particular
context information used for adapting the application to user behaviours and activities. The
Presence Service maintains information about active space resources such as devices and
present people, and the Space Repository stores information about all software and hardware
entities in the space. Finally, the Context File System uses application-defined properties and
environmental context information to simplify tasks such as making personal data
automatically available to applications conditioned on user presence, organising data to
facilitate locating relevant material for applications and users, etc. Whereas the Gaia
architecture serves applications with relevant context information, the customisation of
applications based on Gaia provided context information is carried out within the client
applications. Hence, user profile management is not addressed within Gaia and is application-
specific.

An extension and a more detailed view on Gaia are presented in [67]. This system in
addition provides agents a choice of reasoning and learning mechanisms, which they can use
to understand and react to context. These mechanisms could e.g. be used to learn context-
dependent user preferences. However, these mechanisms are provided in the form of libraries
that the agents can use. That is, again the user preferences, user profiles and potential
selection mechanism takes place at application side instead of at platform side as intended in
this thesis.

Also the authors of [68], [69] and [70] present context-aware systems for pervasive
computing environments. The infrastructure in [68] is a proposal for an OSGi-Based
infrastructure. The proposed infrastructure aims to be independent of any particular hardware
platform. OSGi was formerly known as Open Services Gateway Initiative but nowadays is an
absolute name for an open standards organisation. In [69], a high-level programming model
for pervasive computing environments is presented, called Olympus. Also the Aura project
[70] aims to support environments that adapt to the user’s needs. All three projects have in
common that they aim to support applications with relevant context information so that
applications can adapt to the user’s situation. However, they also have in common that the
actual user preferences, profiles and related processing are carried out within the applications.
Solely the Aura project [70] addresses user intents in the infrastructure, but without giving
any details on how they are maintained and processed.

Henricksen et al. [71] [72] [73] [74] [75] also present work on middleware for distributed
context-aware systems. The work is based on a layered architecture for context-aware systems
that consists of a context sensor and actuator layer (layer 0), a context processing components
layer (layer 1), a context repositories layer (layer 2), a decision support tools layer (layer 3),

CHAPTER 2: FUNDAMENTALS AND RELATED WORK

41

and finally an application components layer (layer 4). The decision support tools layer is also
called adaptation layer and contains user preferences to be applied for adaptation. In this
middleware, the aim is not only to decouple the context management from applications, but
also to at least partially decouple user preference management from applications. This is done
in assisting context-aware applications with making context-based decisions on behalf of the
user. For this reason, the decision support tool layer (layer 3) provides preference repositories
where applications can store related preferences. In doing so, the system also aims to make
preferences sharable and exchangeable between applications. Besides a common context
model, the work also presents examples of a common preference model, which is used within
this middleware layer. However, the presentation of the user preference model and decision
support tool is on a very high level without going into detail how the preference model is
implemented and how the decision support is carried out. Furthermore, it is not clear how
different application-dependent user attribute vocabularies are taken into account and how an
overall user profile is structured that includes the addressed user preferences.

2.2.2.3 Discussion
Many of the referenced approaches on user profile management system aim to support
service-specific and situation-dependent user preferences, and hence fulfil goal 1. They also
partly identify the need to include an application-independent selection functionality that
evaluates the best matching user preferences concerning a certain user situation, e.g. [61] and
[62]. However, they do not show mechanisms or algorithms that are required for the actual
implementation of such selection functionality. Solely [64] describes a rule-based approach
that is restricted to notification preferences. Hence, goal 4 is fulfilled for some works, but for
many works it is difficult to find details on the actual functioning of this module.

Furthermore, many approaches do not consider the diversity of user attribute vocabularies.
This means that they usually enforce a central user attribute vocabulary without providing a
means for application-specific extensibility, sharing or interoperability of user data, which we
desire in this thesis with goal 2. In contrast to this, the requirements already mentioned for
this thesis are a concrete mechanism for the selection of matching situation-dependent user
preferences as well as a means to manage application-specific user data that adheres to
arbitrary individual user attribute vocabularies.

Existing research for context-aware systems in the area of ubiquitous computing usually
focuses on context gathering, processing, reasoning and provisioning steps. On the one hand a
common context model is used to decouple applications from context gathering and
subsequent steps. In doing so, the application-independent context-management infrastructure
serves arbitrary applications with meaningful context information. However, the user
preference model is usually application-specific. This means, applications usually request
required context information from the context-management infrastructure, afterwards process
this information together with user profile information, and finally customises its services. In
this case, the complexity of the selection of matching user preferences has to be addressed by
the application developer. Furthermore, this approach does not support sharing of user data
between different applications. Solely Henricksen et al. addresses this issue by adding a
decision support tool layer to the infrastructure that assists applications with context-based
decisions, i.e. selection functionality. However, concrete mechanisms are also not addressed
in this approach.

42

2.2.3 Ontologies for User Situations
This sub-section includes related work on ontologies for user situations such as user location
and user activity. Ontologies for user situations are needed in order to describe user situations,
receive these descriptions as input to the user profile selection mechanism and to process
them. This sub-section is also closed with a discussion.

The ontologies for expressing user context or user situations are analysed based on their
capability to support the following goals as stated in section 1.3 and repeated here:

Goal 1:

• Design and implementation of a user profile management system that is capable of
managing the following kinds of user data

d. Situation-dependent user data such as notification preferences for incoming
new messages related to different situations

Here, goal 1 means that the ontology for user context or user situation should be designed in a
way that a situational condition in the user profile can be expressed by using definitions from
this user context or user situation ontology. Hence, these user context and situation ontologies
need expressive high-level statements about the user’s context. E.g. it is not sufficient here to
have low-level expressions of GPS locations such as 15.23423 degrees but expressions such
as Room-12.

Goal 3:

• Design and implementation of a user profile management system that supports
automatic service personalisation

a. Design and implementation of a user profile selection module as sub-module
of the user profile management system that enables automatic selection of
matching situation-dependent user preferences

b. Design and implementation of a module to receive and process context
parameters as input to the user profile selection module

Here, goal 3 means that user context or user situation ontologies and the corresponding
context instances need to be made available to the user profile management system and usable
for reasoning purposes to select the matching situation-dependent user preferences.

2.2.3.1 Ontologies
In the course of the design of the Context Broker Architecture (CoBrA) [76], an ontology for
context-aware pervasive computing environments was created. This ontology contains among
others place related classes such as Campus, Building, Room and Stairway, agent related
classes such as Agent, Person and Role, agent related location context such as
ThingInBuilding and PersonInBuilding, and agent related activity context such as
PresentationSchedule, Event, and EventHappeningNow. Furthermore, this ontology also
specifies properties such as latitude and longitude for place related classes. This means, that
goal 1 and goal 3 is in principal met. However, this ontology only contains few high-level
user situation concepts, which are not sufficient but could be extended for our purposes.

The Upper Level Context Ontology (ULCO) [77] and the Standard Ontology for
Ubiquitous and Pervasive Applications (SOUPA) [78] also aim to provide context models for
pervasive computing environment. ULCO provides a set of basic space concepts common
across different environments. The focus is on three classes of real-world objects (user,
location, and computing entity) and one class of conceptual objects (activity) that characterise
smart spaces. These objects form a skeleton of a contextual environment when linked

CHAPTER 2: FUNDAMENTALS AND RELATED WORK

43

together. Application developers can use these high-level ULCO concepts and extend it with
detailed concepts and properties based on application requirements. SOUPA is designed in a
similar way. It consists of two sets of ontology documents, the SOUPA Core and the SOUPA
Extension. The core consists of vocabularies for expressing concepts that are associated with
person, agent, belief-desire-intention, action, policy, time, space, and event. The extension is
defined with two purposes. Firstly, an extended set of vocabularies for supporting specific
types of pervasive application domains can be defined. Secondly, the extension aims to
demonstrate how to define new ontologies by extending the core. Hence, this means, that goal
1 and goal 3 is in principal met. However, ULCO as well as SOUPA only provide high-level
user situation concepts. The definition of detailed concepts is the task of application
developers. In contrast to this, the context ontology needed for this thesis should provide
detailed yet application-independent concepts for a common understanding throughout the
service platform.

In [79], situational reasoning on ontological descriptions in context-aware applications is
studied. The work does not show the detailed modelling of the underlying ontology, but give
insight into logical foundations of the ontology language OWL [20] and examines how this
modelling language can be used to express user situations. It also addresses tool support for
OWL-based reasoning and illustrates ontology and reasoning support with a usage scenario.

2.2.3.2 Discussion
Many ontologies for pervasive computing environments such as [76] [77] [78] provide kind
of a core ontology with high-level concepts for different types of information that are relevant
for these environments. Modelling of detailed concepts, on the other hand is understood as
application-specific and should be done by application developers. This means, that goal 1
and goal 3 is in principal met. In service platforms, however, context processing is carried out
by a common context management framework that serves arbitrary applications. In order to
support these applications with precise context-awareness features, also detailed information
such as user situations have to be expressible, i.e. an ontology with detailed modelling
concepts is needed. The ontology should for example include space concepts down to single
rooms such as an office or a meeting room. Work in [80] and [81] already showed that
deriving indoor user locations down to a single room is feasible.

Furthermore, considering space ontologies, most of them focus on representing space
concepts from a pure spatial point of view. They e.g. define a room and a building concept.
Contrary to this, we think that for our purposes, space concepts should also be modelled
according to the function of individual spaces. That is, rooms should be modelled as meeting
rooms, offices, printer spaces, presentation spaces, etc., and buildings should be modelled as
office buildings, factory buildings and private homes. In addition, space concepts should be
distinguished between whether they are in a private, business or public environment. This is
because the user’s behaviour differs on whether she is in a private, business or public space,
and whether a room is an office, a meeting room, a laboratory or a lounge. Sophisticated
situation-dependent personalisation of applications can only be achieved in supporting such
features.In this regard , we could not find a matching context ontology.

2.3 Summary
In section 2.1, we have first depicted the fundamentals for this thesis. We have provided
definitions for important terms such as the terms user context and user profile, we have
depicted basics about service platforms for networks beyond 3G and user profile management
systems for service platforms. As our focus is on the selection of matching situation-
dependent user data, i.e. a sub-functionality of the user profile management system, we have

44

also provided an overview of Semantic Web technologies that provide the base for the
developed selection mechanism.

Section 2.2 contains related work on user profile schemas and ontologies, user profile
management systems, context-aware systems and ontologies for user situations. Work
published has been discussed and evaluated concerning the capability of fulfilling the
requirements for user profile management in service platforms. The corresponding sub-
sections have been closed with an overall discussion and have shown that existing approaches
are not sufficient in order to reach our intended goals.

In the forthcoming chapters, we first describe our approach for a user profile management
system and the related user profile structure. Subsequently, we introduce our ontology
specification for the used user profile structure. We then also present our ontology for user
situations that is aligned with the finally introduced user profile selection mechanism, which
represents the main objective of this thesis.

CHAPTER 3: FRAMEWORK FOR USER PROFILE MANAGEMENT

45

3 Framework for User Profile Management

In this chapter, we first depict our concept for a user profile structure. This structure enables
the definition of user sub-profiles that can be application-specific and optionally also
situation-specific. We also evaluate this user profile structure concerning runtime
performance for search tasks.

In the second part of this chapter we describe the user profile management framework that
handles the user profiles. This framework is depicted by means of its functional sub-modules
and their interaction. In addition, the communication with the context management
framework of the same service platform is also described that provides information on the
user’s situation.

3.1 User Profiles
In the motivation section 1.1, we have already described what kinds of user data have to be
considered for user profile management in service platforms. In particular, there are user data
required by platform services, e.g. for accounting and billing, and also user data required by
various end-user services such as innovative messaging services and location-based services.
All this user data can be divided into general user data such as user name, date of birth,
address, credit card details, etc. which may be required by all or many services, and into
service-specific user data and preferences such as ring tone preferences for telephony, which
are only required by a certain service or a certain group of services. Furthermore, user data
can also be divided into situation-dependent user data. For example, a user could have
different preferences for the notification of incoming news messages. While the user is at
home, she may want to be notified of incoming messages immediately, whereas in a business
meeting, she may want the notification to be postponed until after the meeting.

We also presented existing solutions to user profile standards and specifications in section
2.2.1.1, and we discussed these existing approaches in section 2.2.1.3 subsequently
concerning the ability to match the desired requirements for service platforms. As we
concluded that none of the existing approaches fully covers the desired requirements, we
depict in the following our approach on a user profile structure for user profiles in service
platforms. In addition, we also provide an analytic evaluation for search tasks concerning the
depicted user profile structure.

3.1.1 User Profile Structure
The conceptual approach for our user profile structure is shown in Figure 9. As already
mentioned in the definition of the term user profile in section 2.1.1, a user profile is the
collection of all user data about a particular user apart from context. Thus, there is exactly one
user profile for each user. This overall user profile contains application-specific parts.
However, the term application-specific does not necessarily mean that such a part is only
specific for exactly one application. It could also be specific to a group of applications. In
particular, such a group of applications would have to be identifiable by a certain common
application identifier and it would have to adhere to the same user attribute semantics to be
able to process the related user data. Hence, in case all developers of applications for a service
platform agreed on a common semantic for user attributes, only one application-specific part
could be sufficient, not considering any possibly required permission rights to query and
manipulate user data, which still may be different for different applications. As such an
agreement on a common semantic between service developers is usually not the case,

46

different application-specific parts are supported. This makes the use of the user profile
structure flexible, since this is an optional but no mandatory feature.

Figure 9: User Profile Structure

An application-specific part contains a mandatory default sub-profile with default user

data as well as one or more optional conditional sub-profiles with conditional user data.
Default user data is always valid except in those user situations, for which there is a
conditional sub-profile. In this case, default user data is superseded by conditional user data.
The default sub-profile, in particular the default user data of an application-specific part could
be compared to the domain submodel in the Doppelgänger User Modeling System [43]. The
conditional sub-profile, in particular the conditional user data could be compared to a
conditional submodel. The Doppelgänger User Modeling System has already been described
in section 2.2.1.2.

Our approach of defining default sub-profiles and conditional sub-profiles within an
application-specific part is for sure not the only possible approach for enabling situation-
dependent user data to be added to user profiles. A counter proposal could be to define only
one common sub-profile in an application-specific part. In this sub-profile, each single user
attribute would have to be specified as being conditional or not. However, there are two
reasons, why we prefer the distinction between default sub-profiles and conditional sub-
profiles. Firstly, this distinction adds some structure and order to the application-specific part
and related user data respectively. This is important for the visualisation of user profile
content to the user via a user editor, and in particular should the application-specific part
include a huge list of user data. Secondly, runtime performance for search tasks can be
improved in case user data are clustered in default and conditional sub-profiles, as described
in section [3.1.2].

User Profile

Application-Specific Part

Default
Sub-Profile

User Data

Conditional
Sub-Profile

Conditions

User Data

Conditional
Sub-Profile

Conditions

User Data

Application-Specific Part

Default
Sub-Profile

User Data

Conditional
Sub-Profile

Conditions

User Data

Conditional
Sub-Profile

Conditions

User Data

User Profile

Application-Specific Part

Default
Sub-Profile

User Data

Conditional
Sub-Profile

Conditions

User Data

Conditional
Sub-Profile

Conditions

User Data

Application-Specific Part

Default
Sub-Profile

User DataDefault
Sub-Profile

User Data

Conditional
Sub-Profile

Conditions

User Data

Conditional
Sub-Profile

Conditions

User Data

Conditional
Sub-Profile

Conditions

User Data

Conditional
Sub-Profile

Conditions

User Data

Application-Specific Part

Default
Sub-Profile

User Data

Conditional
Sub-Profile

Conditions

User Data

Conditional
Sub-Profile

Conditions

User Data

Application-Specific Part

Default
Sub-Profile

User DataDefault
Sub-Profile

User Data

Conditional
Sub-Profile

Conditions

User Data

Conditional
Sub-Profile

Conditions

User Data

Conditional
Sub-Profile

Conditions

User Data

Conditional
Sub-Profile

Conditions

User Data

CHAPTER 3: FRAMEWORK FOR USER PROFILE MANAGEMENT

47

Figure 10: User Profile Class Diagram

The implementation of the described user profile structure is shown in Figure 10 by means

of a programming language independent class diagram. The classes and relations between
classes are explained as follows:

User Profile Class: This class represents the user profile of a certain user. It is associated
with arbitrary many Profile Subsets. The type of association between a User Profile and a
Profile Subset is a composition, as a Profile Subset belongs to exactly one User Profile and as
the Profile Subset does not exist without the related User Profile.

Profile Subset Class: The term user profile subset has already been introduced as a synonym
for user sub-profile in section 2.1.1. This class is an abstract class that has the two
specialisations Default Profile Subset and Conditional Profile Subset. An own class for
application-specific parts is not implemented. Instead, the Profile Subset class has a 1 to 1
composition association with the Application class. Consequently, the Profile Subset must
always be associated with an application. Furthermore, the Profile Subset must also be
associated with a User Data object.

Application Class: This class primarily represents an application identifier. This identifier
could also be an identifier for a group of applications.

User Data Class: This class represents an object that includes the actual user data. It is
described in more detail below.

Default Profile Subset Class: This class represents the above introduced default sub-profile
of an application-specific part.

Conditional Profile Subset Class: This class represents the above introduced conditional
sub-profile of an application-specific part. It is associated with at least one condition. In case

UserProfile

ProfileSubset

DefaultProfileSubset ConditionalProfileSubset

UserData

Condition

1

*

1 1

1 1..*

Application 11

48

of several conditions, our implementation interprets these conditions as conjunct to each
other.

Condition Class: This class represents a situational condition. Such a condition could express
a user location, user activity, time of day or other types of user situations. It is described in
more detail below.

Figure 11: User Data Class Diagram

Figure 11 shows the User Data class in more detail. It basically comprises one attribute of

type String. This attribute contains the whole user data, i.e. an instance of a user model, for
the related profile subset. However, the content of the String object has to follow RDF [17]
syntax. In particular, this attribute contains an RDF/XML serialisation [82] of an RDF graph.
There are several formats for RDF serialisations, whereof the RDF/XML serialisation is one
of most often used ones, as it follows XML [13] syntax. This approach of encoding user data
is very flexible. There is no pre-defined list of user attributes, which can be added to a profile
subset. Instead, the RDF/XML serialisation enables the inclusion of arbitrary application-
specific user attributes. The underlying ontology, which defines the meaning of the
RDF/XML encoded user model instance, is not considered here. However, the related
ontology has to be accessible by the user profile management framework should
transformations of user model instances adhering to different user attribute ontologies be
enabled. This is explained in more detail in section 3.2.

Figure 12: Example for an RDF/XML Serialised User Model Instance

Figure 12 shows an example for an RDF/XML serialisation of a small user model

instance. The identifier of the user model instance is SandyUserModel. It includes the user
attributes firstname, lastname, age and e-mail address. In addition, the root element rdf:RDF
contains several XML namespace (XMLNS) definitions.

-userModel : String
UserData

<rdf:RDF
xmlns:upr="http://www.example.org/profile.owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#">

 <upr:UserModel rdf:about="http://www.example.org/profile.owl#SandyUserModel">
 <upr:firstname>Sandy</upr:firstname>
 <upr:lastname>Smith</upr:lastname>
 <upr:age>25</upr:age>
 <upr:email>Sandy.Smith@example.org</upr:email>

 </upr:UserModel>
</rdf:RDF>

CHAPTER 3: FRAMEWORK FOR USER PROFILE MANAGEMENT

49

Figure 13: Condition Class Diagram

Figure 13 depicts the Condition class consisting of four attributes. The entityID identifies

an entity such as a user, a group of users or another object the situational condition is related
to. The contextType identifies the type of context such as user location, user activity, time of
day, day of week, etc. The contextValue represents the value of a context type, such as a
particular room should the context type be location, a certain activity, a certain day of week,
etc. The operator relates the contextValue with the contextType. In case the context type is
location, the operator could e.g. be is-connected-to, is-adjacent-to, is-part-of, is-nearby,
equals, etc. Should the context type be temperature, the operator could e.g. be is-higher-than,
is-lower-than, equals, etc. A similar representation is used in the Gaia meta-operating system
[65], which has already been introduced in section 2.2.2.2. In Gaia, the structure
(<ContextType>, <Subject>, <Relater>, <Object>) is used for representing context in general
and is similar to a simple clause in the English language of the form <subject> <verb>
<object>.

The concrete entity identifiers, context types, operators and context values being available
depend on the system, i.e. the service platform, in which the user profiles are applied. In
particular, they depend on the modelling of the context representation, i.e. the context
ontologies in the related system. Such an example implementation of context representation
and related reasoning is shown in chapter 4 and 5. However, the combination of these four
attributes enables very expressive situational conditions.

Table 1: Examples for Situational Conditions

EntityID ContextType Operator ContextValue
Bob location is-connected-to Room-220
Room-15 temperature is-higher-than 30
Alice activity equals Watching-TV
Chris location is-within Premises-2

Some few examples are shown in Table 1. The depicted structure of situational conditions
is not only very expressive, but also easily understandable for non-technical users. In
combination with a profile editor, these four attributes that form a situational condition could
be shown to the user as select lists. That is, for each of the four attributes, the user does not
have to fill out a blank text field, but can select from a pre-defined list. For this purpose, the
meaning and the values for all four attributes have to be easily understandable. The biggest
challenge may be to provide easily understandable operators. However, the examples in Table
1 show that this is feasible.

-entityID : String
-contextType : String
-operator : String
-contextValue : String

Condition

50

3.1.2 Runtime Performance for Search Tasks
In this section, we show the advantage of clustering user data into profile subsets concerning
runtime performance for different search tasks. In particular, there are basically two different
search tasks:

Search Task 1 (Profile Subset Search): An application requests the complete set of
matching user data, i.e. a profile subset. This means that it requests all user data that matches
the current user’s situation. Alternatively, if the application has subscribed to the user profile
management system beforehand, the application is notified by the user profile management
system of the complete set of matching user data.

Search Task 2 (Single User Record Search): An application requests a single piece of
matching user data, i.e. a user record. This means that it requests a single piece of user data
that matches the current user’s situation. Alternatively, if the application has subscribed to the
user profile management system beforehand, the application is notified by the user profile
management system of the matching piece of user data.

The forthcoming analytic evaluation assumes that each user profile contains only one
application-specific part. In the evaluation we assume that all applications adhere to the same
semantics and hence can understand and share required user data by means of a common
application-specific part. However, the depicted evaluation can afterwards easily be adapted
to the case in which different application-specific parts are needed. In order to carry out the
analytic evaluation, we need some additional definitions beside the definitions in section
2.1.1.

User Record: A user record is a piece of information about a particular user. A user record
can either be a default user record or a conditional user record.

Default User Record: A default user record consists of a user attribute and the related value.

Non-Conditional User Record: Synonym for default user record.

Conditional User Record: A conditional user record consists of a situational condition, a
user attribute and the related value.

Situation-Dependent User Record: Synonym for conditional user record.

Finally, we also need several assumptions in order to carry out the analytic evaluation.

Assumption 1: The user attribute of a default user record and the combination of situational
condition and user attribute of a conditional user record is unique within a profile subset. That
is, each user attribute and combination of situational condition and user attribute respectively
only occurs once within a profile subset.

Assumption 2: If the application-specific part of a user profile is separated into different
profile subsets, then there is always exactly one default profile subset.

Assumption 3: If the application-specific part of a user profile is separated into different
profile subsets for different situational conditions, then there is always only one profile subset
for each distinct situational condition.

CHAPTER 3: FRAMEWORK FOR USER PROFILE MANAGEMENT

51

Assumption 4: If the application-specific part of a user profile is separated into different
profile subsets, then each profile subset (default and conditional ones) contains the same
number of user records.

As the forthcoming analytic evaluation contains a comparison of three different user
profile structures, these user profile structures are introduced now.

Figure 14: One Overall Profile Subset in Approach 1

Approach 1: In this user profile structure approach, an application-specific part of a user
profile consists of one overall homogeneous profile subset as shown in Figure 14. This profile
subset includes the whole set of user records, i.e. of condition-attribute-value triples. As not
all user records are conditional, i.e. as some user records represent default user records, the
condition could simply be empty. In this approach, the result of the profile subset search
(search task 1) provides a virtual profile subset, i.e. the subset of all user records with a
certain condition.

Figure 15: Two Profile Subsets in Approach 2

.........

OnSMS NotificationMeeting

OffCall ForwardHome

OnRing Tone-

OffSMS NotificationHome

OffCall Forward-

OffRing ToneMeeting

OnVibration Alert-

OnCall ForwardMeeting

OnRing ToneHome

12 Jan 1970Date of Birth-

BobFirst Name-

ValueAttributeCondition

.........

OnSMS NotificationMeeting

OffCall ForwardHome

OnRing Tone-

OffSMS NotificationHome

OffCall Forward-

OffRing ToneMeeting

OnVibration Alert-

OnCall ForwardMeeting

OnRing ToneHome

12 Jan 1970Date of Birth-

BobFirst Name-

ValueAttributeCondition

OffCall Forward

......

OnRing Tone

12 Jan 1970Date of Birth

BobFirst Name

ValueAttribute

OffCall Forward

......

OnRing Tone

12 Jan 1970Date of Birth

BobFirst Name

ValueAttribute

OffSMS NotificationHome

.........

OnCall ForwardMeeting

OffRing ToneMeeting

OnSMS NotificationOffice

OffCall ForwardHome

OnRing ToneHome

ValueAttributeCondition

OffSMS NotificationHome

.........

OnCall ForwardMeeting

OffRing ToneMeeting

OnSMS NotificationOffice

OffCall ForwardHome

OnRing ToneHome

ValueAttributeCondition

Conditional profile subset

Default profile subset

52

Approach 2: In the second user profile structuring approach, the application-specific part of a
user profile consists of two separate concrete profile subsets, see Figure 15. In particular, it
consists of a default profile subset and a conditional profile subset. The default profile subset
only contains default user records, and the conditional profile subset contains all conditional
user records. In this approach, the result of the profile subset search (search task 1) either
provides the concrete default profile subset as depicted in Figure 15 or a virtual conditional
profile subset consisting of all conditional user records with a certain condition. This virtual
conditional profile subset is a subset of the concrete existing conditional profile subset shown
in Figure 15.

Figure 16: One Profile Subset for Each Distinct Condition in Approach 3

Approach 3: In this approach, the application-specific part of a user profile is separated into a
default profile subset and in addition into one conditional profile subset for each distinct
situational condition, see Figure 16. In this approach, the result of the profile subset search
(search task 1) either provides the concrete default profile subset as depicted in Figure 16 or a
concrete conditional profile subset as shown in Figure 16. Thus, in this approach no virtual
profile subset has to be searched. This approach represents our approach that we have
introduced in section 3.1.1.

The analytic comparison of these three user profile structuring approaches is based on two
well-known example data structures, Sorted Linked List and AVL Tree [83] [84]. Linked
Lists are one of the fundamental data structures in computer science. They consist of a
sequence of nodes, each containing one link pointing to the next node. For the Sorted Linked
List, we assume that user records are not primarily sorted by conditions. AVL Trees, on the
other hand, are self-balancing binary search trees. In AVL Trees, the heights of the two child
sub-trees of any node differ by at most one. Therefore, an AVL Tree is also height-balanced.
For the AVL Tree, we also assume that the nodes are not primarily sorted by conditions, as
probably is the case in usual user profile management systems.

......

OffCall Forward

OnRing Tone

ValueAttribute

......

OffCall Forward

OnRing Tone

ValueAttribute

OnRing Tone

......

12 Jan 1970Date of Birth

BobFirst Name

ValueAttribute

OnRing Tone

......

12 Jan 1970Date of Birth

BobFirst Name

ValueAttribute

List of profile subsets

......

OnCall Forward

OffRing Tone

ValueAttribute

......

OnCall Forward

OffRing Tone

ValueAttribute

…

Driving

Meeting

Home

- (Default)

Condition

…

Driving

Meeting

Home

- (Default)

Condition

CHAPTER 3: FRAMEWORK FOR USER PROFILE MANAGEMENT

53

The results of the analytic comparison are expressed by means of the number of needed
comparison steps for finding the matching user records, which is distinct from the number of
comparison steps for fetching the matching user records. For this purpose, the Big O notation
is used, also known as the Landau notation [83] [84]. The Greek letter O (Omicron) is used to
describe the asymptotic upper bound for the magnitude of a function, Ω (Omega) is used to
describe the asymptotic lower bound and Θ (Theta) is used to describe the case in which the
magnitude of a function is in O and Ω at the same time.

The results for all three user profile structuring approaches, using both list structure-based
as well as tree structure-based data organisation, are depicted for both above introduced
search tasks. Furthermore, results are depicted for average-case and worst-case runtime. The
results for search task 1 (Profile Subset Search) are shown in Table 2, whereas the results for
search task 2 (Single User Record Search) are shown in Table 3. Both results are explained in
more detail below. In the following, the variables used in the tables are explained:

m: overall number of user records in an application-specific part of a user profile (m = p+q)
p: number of default user records (p = m/(r+1) <= m; see assumption 4)
q: number of conditional user records (q = p*r = m*r/(r+1) <= m; see assumption 4)
r: number of different conditions (r <= q <= m)

Table 2: Runtime Comparison for Profile Subset Search (Search Task 1)

Approach 1 Approach 2 Approach 3
Profile Subset Search

List Tree List Tree List Tree
Avg Θ(m) Θ(m) Θ(1) Θ(1) Θ(r)*))((log2 rΟ * Default

Profile Subset Worst Θ(m) Θ(m) Θ(1) Θ(1) Θ(r)*))((log2 rΟ *

Avg Θ(m) Θ(m) Θ(q) Θ(q) Θ(r)))((log2 rΟ Conditional
Profile Subset Worst Θ(m) Θ(m) Θ(q) Θ(q) Θ(r)))((log2 rΟ

Comparison for Profile Subset Search (Search Task 1): The results of the User Profile
Subset Search are shown in Table 2. In approach 1, independent of the used data organisation,
all user records have to be analysed whether they match the queried condition or not, hence
Θ(m) in all cases. This is because the user records are not sorted by their conditions and
because we do not know where the related user records can be found in the list and the tree
respectively.

In approach 2, searching for the default profile subset requires exactly one comparison
step, as we know after the first comparison step that we either found the concrete default
profile subset or the concrete conditional profile subset, hence Θ(1). Querying for the virtual
conditional profile subset requires one comparison step for finding the concrete conditional
profile subset, and afterwards Θ(q) comparison steps independent of the used data
organisation, because all conditional user records in the concrete conditional profile subset
have to be analysed. This is because the conditional user records are not sorted by their
conditions and because we do not know where the related conditional user records can be
found in the list and the tree respectively.

Approach 3 is slightly more complex. The average-case in the list-based data organisation
is in Θ(r). This is because the average case needs (1+2+…+r+(r+1))/(r+1) =
((r+1)*(r+2)/2)/(r+1) = (r+2)/2 comparison steps. The results for the tree-based search require
more complex computations, which can be found in [83] and [84]. The asterisk denotes that
the actual implementation could be done in Θ(1), because we could introduce a distinct data

54

type for the unique default profile subset as shown in Figure 10. Hence, one comparison step
would be enough should an appropriate organisation of profile subsets be considered.

Figure 17: Worst Case Search of Conditional Profile Subset with 9 Different Conditions

Figure 17 shows the quantitative results for the worst case analysis of searching for a

conditional profile subset in case nine different conditions exist. Considering the default
profile subset, there are ten profile subsets altogether. Approach 1 and approach 2 both are
valid for list-based as well as tree-based data organisation. Both depend on the overall number
of user records (m) as variable q = m*r/(r+1) = m*9/10. In comparison to this, the needed
comparison steps in approach 3 are constant for both, list-based and tree-based approach, as
they depend on the number of different conditions (r). As can be seen in Figure 17, approach
3 outperforms the other approaches concerning the needed comparison steps for finding a
conditional profile subset.

0

50

100

150

200

250

300

350

100 200 300

User Records (m)

C
om

pa
ris

on
 S

te
ps

Approach 1

Approach 2

Approach 3
List
Approach 3
Tree

Conditions (r) = 9

0

50

100

150

200

250

300

350

100 200 300

User Records (m)

C
om

pa
ris

on
 S

te
ps

Approach 1

Approach 2

Approach 3
List
Approach 3
Tree

Conditions (r) = 9

CHAPTER 3: FRAMEWORK FOR USER PROFILE MANAGEMENT

55

Figure 18: Worst Case Search of Conditional Profile Subset with 29 Different Conditions

Almost exactly the same result can be seen in Figure 18, which shows the results for 29

different conditions, i.e. 30 profile subsets altogether. The main difference is that the tree-
based data organisation clearly outperforms the list-based data organisation in approach 3.
The average case analysis also provides the same overall results. There are no differences for
approach 1 and 2 in the average case analysis. In comparison to this, approach 3 even requires
less comparison steps in average. The functions applied in the worst-case graphs in Figure 17
for m >= 10 and in Figure 18 for m >= 30 are as follows:

Approach 1: y = m
Approach 2: y = 1+q = 1+m*r/(r+1)
Approach 3 List: y = r+1
Approach 3 Tree: y =)1(log 2 +r

Table 3: Runtime Comparison for Single User Record Search (Search Task 2)

Approach 1 Approach 2 Approach 3 Single User
Record Search List Tree List Tree List Tree

Avg Θ(m)))((log2 mΟ Θ(p)))((log2 pΟ Θ(r+p)*))(log)((log 22 pr +Ο **Default
User
Record Worst Θ(m)))((log2 mΟ Θ(p)))((log2 pΟ Θ(r+p)*))(log)((log 22 pr +Ο **

Avg Θ(m)))((log2 mΟ Θ(q)))((log2 qΟ Θ(r+q/r)))/(log)((log 22 rqr +ΟCondi-
tional
User
Record

Worst Θ(m)))((log2 mΟ Θ(q)))((log2 qΟ Θ(r+q/r)))/(log)((log 22 rqr +Ο

0

50

100

150

200

250

300

350

100 200 300

User Records (m)

C
om

pa
ris

on
 S

te
ps

Approach 1

Approach 2

Approach 3
List
Approach 3
Tree

Conditions (r) = 29

0

50

100

150

200

250

300

350

100 200 300

User Records (m)

C
om

pa
ris

on
 S

te
ps

Approach 1

Approach 2

Approach 3
List
Approach 3
Tree

Conditions (r) = 29

56

Comparison for Single User Record Search (Search Task 2): The results of the Single
User Record Search are shown in Table 3. In approach 1, the average and worst-cases for the
list-based data organisation in both default and conditional case are in Θ(m). The average-
cases are already in Θ(m), because these cases need (1+2+…+(m-1)+m)/m = (m*(m+1)/2)/m
= (m+1)/2 comparison steps.

The same computation also holds for the list-based data organisation in approach 2, only
applying variable p and q respectively. In these cases one additional comparison step is
needed in order to first find the default profile subset and conditional profile subset
respectively. The average and worst-cases for the tree-based data organisation for both
approach 1 and 2 can be read in [83] and [84]. We assume in this case that we can take
advantage of the sorting of tree nodes. As assumed above, tree nodes are not primarily sorted
by conditions, but they may be primarily sorted by the attribute names of the user records. In
this search task, contrary to search task 1, we know the attribute name of the user record as we
search for a very specific user record.

The evaluation for approach 3 is again slightly more complex. For the list-based data
organisation, the number of comparison steps in average-case and worst-case is in Θ(r+p) and
Θ(r+q/r) respectively, where q/r is the number of conditional user records per condition based
on the above described assumption 4. The computations result from first finding the matching
profile subsets out of r+1 profile subsets, and afterwards finding the matching user record out
of p default user records for the default profile subset and q/r conditional user records for a
conditional profile subset respectively. Furthermore, the average-case computation follows
the same idea as for approach 1, but with other variables. The single asterisk denotes that the
actual implementation can be done in Θ(p) for the same reasons as explained in the results for
the profile subset search (search task 1).

The computation for the tree-based data organisation of approach 3 is similar to that for
list-based data organisation, only with logarithmic runtime. Details of the computation can
again be read in [83] and [84]. The double asterisk denotes that the actual implementation can
be done in))((log2 pΟ , again for the same reasons as explained in the results for the profile
subset search (search task 1).

CHAPTER 3: FRAMEWORK FOR USER PROFILE MANAGEMENT

57

Figure 19: Worst Case Search of Conditional User Record with 9 Different Conditions

Figure 19 shows the quantitative results for the worst case analysis of searching for a

conditional user record in case nine different conditions exist. This time, all functions depend
on the overall number of user records (m) as variable q depends on variable m. As can be seen
in Figure 19, approach 3 outperforms the other approaches concerning the number of needed
comparison steps for the list-based data organisation. For the tree-based data organisation on
the other hand, the performance of all approaches is almost the same, as

)1(log 2 +r +)/(log2 rq =)/*)1((log2 rqr + =))*)1/((**)1((log2 rrrmr ++ =)(log2 m .
The average case analysis would show slightly better quantitative results for the list-based
data organisation, but still be in the same magnitude of a function as depicted in Table 3. The
functions applied in the worst case graph in Figure 19 for m >= 10 are as follows:

Approach 1 List: y = m
Approach 1 Tree: y =)(log2 m
Approach 2 List: y = 1+q = 1+m*r/(r+1)
Approach 2 Tree: y = 1+)(log2 q = 1+))1/(*(log 2 +rrm
Approach 3 List: y = r+1+q/r = r+1+m/(r+1)
Approach 3 Tree: y =)1(log 2 +r +)/(log2 rq =)1(log 2 +r +))1/((log2 +rm =)(log2 m

Summary: The results show that the user profile structuring approach 3, which is the
approach we have introduced in section 3.1.1, outperforms the other user profile structuring
approaches concerning the needed comparison steps especially in the profile subset search
(search task 1). It is important to mention that we have only focused on the number of
comparison steps. We have not said anything about what is going on within the comparison
steps.

Whereas the overall result may not be interesting for single context-aware applications
with few user data, it may be important for user profile management systems in service

0

50

100

150

200

250

300

350

100 200 300

User Records (m)

C
om

pa
ris

on
 S

te
ps

Approach 1
List
Approach 1
Tree
Approach 2
List
Approach 2
Tree
Approach 3
List
Approach 3
Tree

Conditions (r) = 9

0

50

100

150

200

250

300

350

100 200 300

User Records (m)

C
om

pa
ris

on
 S

te
ps

Approach 1
List
Approach 1
Tree
Approach 2
List
Approach 2
Tree
Approach 3
List
Approach 3
Tree

Conditions (r) = 9

58

platforms that manage a huge conglomeration of user data. This is especially the case should
user profile management tasks be carried out on mobile devices with limited processing
power. Consider, for example, that the user profile management system manages user
preferences for 10 applications, each application requiring 10 preferences, and the user
distinguishing between 10 different situations. Hence, there may be up to 1000 user
preferences. Whereas the runtime performance for the required number of comparison steps
may still be fast for e.g. straightforward string comparisons, it may get unacceptably slow
should ontology processing and reasoning be involved in the comparison steps. As described
later in this thesis, our user profile selection mechanism takes advantage of ontology
reasoning in the user profile selection process, i.e. the user profile search process. Hence, the
introduced user profile structure is an important base for the development of a fast user profile
selection mechanism.

3.2 User Profile Management Framework
The user profile management framework is composed of several functional sub-modules,
which are easily exchangeable. This framework and the related sub-modules are introduced
next. Afterwards, the interaction between the user profile management framework and a
context management framework that is also part of the same service platform is explained.

3.2.1 User Profile Management
As shown in Figure 20, the user profile management framework consists of three layers. The
main layer is the Management Layer that consists of several modules, the User Profile
Management Core, the Profile Subset Management, the User Profile Selection Module, the
User Profile Sharing Module and the Context Client Module.

CHAPTER 3: FRAMEWORK FOR USER PROFILE MANAGEMENT

59

Figure 20: User Profile Management Framework

Second, there is the exchangeable Database Layer and finally the Exposure Layer. The

Management Layer communicates with the Database Layer for user profile storage and
retrieval and the Exposure Layer communicates with the Management Layer for processing
client requests. In the following the modules of the Management Layer are described in more
detail:

User Profile Management Core: This is the core module of the Management Layer, which
organises all processes. It communicates with the Exposure Layer as well as the Database
Layer and delegates tasks and client requests to other modules. For example, it delegates the
creation of profile subsets to the Profile Subset Management or it delegates user profile
queries to the User Profile Selection Module. However, some basic tasks such as profile
creation are also covered by this module.

Profile Subset Management: This module is responsible for the whole management related
to profile subsets. This includes creation, modification, deletion of profile subsets and profile
subset related information, i.e. situational conditions and user data.

User Profile Selection Module: This module processes client queries. It comprises an
evaluation functionality that returns the best matching profile subset and user data
respectively for the user’s current situation. Using this functionality, a client application does
not need an own potentially complex evaluation functionality. Instead, the user profile
management framework in service platforms covers this functionality for all client

Exposure Layer

Database Layer

Management Layer

Query and Management Interfaces

Database Management System

User Profile Management Core

User Profile Sharing ModuleUser Profile Selection Module

Profile Subset Management Context Client Module

60

applications, at least for those types of context that are processed within the service platform.
The user profile selection mechanism that is applied by this module is the central part of this
thesis. Details of the developed mechanism are provided in chapter 5.

Context Client Module: This module is also needed for user profile selection tasks. It
communicates with other external services, in particular the context management framework
of the same service platform, in order to request relevant user context needed for the user
profile selection task. For our purposes, we assume that the received user context is provided
as a high-level context description, e.g. a certain room or a certain user activity, instead of
low-level context descriptions such as GPS (Global Positioning System) information.
Furthermore, we assume that the description of the provided user context is provided as an
RDF [17] document, that it is based on the context ontology of section 4.3 and that the user
context is accurate. That is, we do not deal with probabilities related to user context. The
communication with the context management framework is explained in more detail in the
next section 3.2.2.

User Profile Sharing Module: This is the module that enables the reuse and sharing of user
data between different applications. It provides a means to transform a user model instance
that adheres to a particular user attribute schema to a user model instance that adheres to
another particular user attribute schema. After a successful transformation, the same user data
is available for different applications. Although we identified this functionality as a
requirement for user profile management in service platforms, we do not focus on this
functionality in this thesis. However, the developed user profile management framework
provides an interface for easily adding an implementation of this module. As mentioned in the
section on related work 2.2.1.1, the work by Sluijs and Houben [58] [59] could be used to
provide this functionality. It should be mentioned that additional data repositories are needed
for storing schemas and schema mappings, which is not shown in Figure 20.

The Management Layer is designed in such a way that the User Profile Selection Module,
the Context Client Module and the User Profile Sharing Module are easily exchangeable. This
makes the user profile management framework flexible as it can easily be adapted to different
requirements, e.g. for different service platforms. For example, as the representation of
context information could be different in different service platforms, the Context Client
Module could be exchanged with one that is adapted to the corresponding context
representation. Another example would be the exchange of the User Profile Selection Module
in order to apply a different search mechanism. Whereas our search mechanism is based on
ontology reasoning, we could also use a search mechanism that is based on rule-based
reasoning.

In the following, we provide an activity diagram, i.e. an algorithm, for the user profile
query case in order to explain the functioning of the user profile management framework. It
should be mentioned that privacy and data security related issues are not covered here.
However, in the SPICE (Service Platform for Innovative Communication Environment)
project [4] [5] [6], these issues are covered on a service platform level instead of on a
component level. In addition, the SPICE related work in [85] introduces a trust framework for
service platforms.

CHAPTER 3: FRAMEWORK FOR USER PROFILE MANAGEMENT

61

Figure 21: Activity Diagram for User Profile Query

Figure 21 shows the activity diagram for the user profile query case. In this use case, a

client application requests the best matching user data. In particular, the request includes an
additional query parameter in order not to get the complete matching profile subset, but
specific parts thereof. The activity diagram has one starting point and two end points. One end
point represents the success case, i.e. the successful response to the query, and the other end
point represents the non-success case, i.e. the query could not be processed e.g. because no
user profile existed for the corresponding user. In the following, the activities in Figure 21,
which are all numbered, are explained step by step.

User Profile Query

2: Check existence of Profile Subset for requesting application

[not ok]

3: Check existence of Conditional Profile Subsets for requesting application

[ok]

5: Request user context of identified context types

[not ok]

10: Fetch Default Profile Subset

8: Query Profile Subset

9: Return query result to requesting application

12: Check existence of Profile Subsets for other applications

1: Check existence of User Profile for corresponding user

[ok]

[not ok]

11: Return error message to requesting application

[ok]

13: Create Profile Subsets for requesting application

[ok]

[successful]

[not successful]

[not ok]

6: Find matching Conditional Profile Subset

[not ok]

[ok]

7: Fetch matching Conditional Profile Subset

4: Identify required context types for Conditional Profile Subsets

62

Activity 1 (Check existence of User Profile for corresponding user): In this first step, the
User Profile Management Core checks whether the corresponding user has a user profile. If
this is the case, the user profile query continues. Otherwise, this query ends up in the non-
success end point.

Activity 2 (Check existence of Profile Subset for requesting application): In this step, the
User Profile Management Core checks whether the user’s profile contains at least one profile
subset for the requesting application. If this is the case, the user profile query continues
directly and we already know that this query ends up in the success case. Otherwise, some
further processing is required first.

Activity 3 (Check existence of Conditional Profile Subset for requesting application): We
already know from activity 2 that there is at least a default profile subset. In this step, the User
Profile Management Core checks whether the user’s profile in addition contains at least one
conditional profile subset.

Activity 4 (Identify required context types for Conditional Profile Subsets): In this step,
we already know that there is at least one conditional profile subset. To be able to evaluate if
the situational conditions of the conditional profile subsets match the user’s current situation,
the Context Client Module has to request the user’s current context. For this purpose, the
situational conditions of the conditional profile subsets are analysed with regard to the context
types they depend on, so that only the context of those context types is requested by the
Context Client Module. This activity step is delegated to the Context Client Module by the
User Profile Management Core.

Activity 5 (Request user context of identified context types): Now, the Context Client
Module requests the user context of the identified context types from the external context
management framework.

Activity 6 (Find matching Conditional Profile Subset): This step is carried out by the User
Profile Selection Module. The Context Client Module passes the received user context back to
the User Profile Management Core, and the User Profile Management Core delegates the
selection task to the User Profile Selection Module.

Activity 7 (Fetch matching Conditional Profile Subset): This case assumes that the User
Profile Selection Module has identified a matching conditional profile subset in activity 6.
This matching conditional profile subset is now fetched by the User Profile Management
Core.

Activity 8 (Query Profile Subset): In this step, the user data within the resulting profile
subset is queried. The resulting profile subset can either be the matching conditional profile
subset from activity 7 or the default profile subset from activity 10. In our implementation,
the query is expressed with the SPARQL query language [23], which is the standard RDF
[17] query language from the World Wide Web Consortium (W3C).

Activity 9 (Return query result to requesting application): This is the final activity in the
success case. In this step, the query result, i.e. the best matching user data, is returned to the
requesting application.

CHAPTER 3: FRAMEWORK FOR USER PROFILE MANAGEMENT

63

Activity 10 (Fetch Default Profile Subset): In this step, the User Profile Management Core
fetches the default profile subset. This is either because the default profile subset is the only
profile subset or because no conditional profile subset matches the user’s current situation.

Activity 11 (Return error message to requesting application): This is the final activity in
the non-success case. In this step, the requesting application is notified that either there is no
profile for the corresponding user, or there is no profile subset for the corresponding user, or
no profile subset could be created for the requesting application.

Activity 12 (Check existence of Profile Subsets for other applications): In this step we
already know that there is no profile subset for the requesting application. Hence, the only
way to process the query successfully is to create a profile subset for this application based on
existing profile subsets for other applications. Hence, in this step, the User Profile
Management Core first has to check whether there are profile subsets in the user’s profile for
other applications. If this is the case, the query processing can continue, otherwise we end up
in the non-success end point.

Activity 13 (Create Profile Subsets for requesting application): In this step, the User
Profile Management core delegates the profile subset creation process to the User Profile
Sharing Modules. The User Profile Sharing Module carries out the profile subset creation
process based on existing profile subsets for other applications and based on existing schema
mappings that are required for the transformation. If the creation process is successful, the
query processing continues, otherwise we end up in the non-success end point.

An extract of the user profile management interface is shown in Appendix B: User Profile
Management Interface. The appendix also includes documentation for users of the user profile
management framework and developers of single modules. In the following we introduce the
two user profile query methods, which could initiate the sequence of activities depicted in
Figure 21:

getBestMatchingProfileSubset(in userID: String, in applicationID: String): ProfileSubset

Calling the getBestMatchingProfileSubset method, the best matching profile subset is
returned as a whole, if existing. Thus, activity 8 of Figure 21 is skipped.

getBestMatchingUserData(in userID: String, in applicationID: String, in query: String): String

Calling the getBestMatchingUserData method represents the exact sequence of activities
in Figure 21. The only difference to the getBestMatchingProfileSubset method is that the
additional input parameter query is given, that activity 8 of Figure 21 is carried out, and that
the returned result does not contain the matching profile subset as a whole but instead the
query results as an XML encoded string.

64

Figure 22: SPARQL Query

Figure 23: SPARQL Query Result

Figure 22 shows an example of a SPARQL query. In this example the variables firstname

and email are queried. Figure 23 depicts the query result if the SPARQL query of Figure 22 is
applied to the example user model instance of Figure 12. The head element of the query result
contains the queried variables firstname and email, the results element contains the value
Sandy for variable firstname and the value Sandy.Smith@example.org for variable email.

3.2.2 Context Management Framework
Service platforms aim to take over potentially complex context discovery and processing
steps from applications. For this reason, service platforms aim to provide distributed
middleware architectures for the discovery and exchange of context information and a
common context model. This context information can then be requested by applications or
other platform services to provide context-aware features. Hence, application developers do
not have to implement potentially complex context discovery and processing steps in an
application-specific way within the applications. Instead, they can use the functionality
provided by the service platform.

PREFIX upr:<http://www.example.org/profile.owl#>
SELECT ?firstname ?email
WHERE
{ ?x upr:firstname ?firstname ;
 upr:email ?email .
}

<?xml version="1.0"?>
<sparql

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xs="http://www.w3.org/2001/XMLSchema#"
xmlns="http://www.w3.org/2005/sparql-results#" >

 <head>
 <variable name="firstname"/>
 <variable name="email"/>

 </head>
 <results ordered="false" distinct="false">

 <result>
 <binding name="firstname">

 <literal>Sandy</literal>
 </binding>
 <binding name="email">

 <literal>Sandy.Smith@example.org</literal>
 </binding>

 </result>
 </results>
</sparql>

CHAPTER 3: FRAMEWORK FOR USER PROFILE MANAGEMENT

65

Figure 24: Context Management Framework

Such a context management framework is introduced in [86]. An enhancement of this

framework is introduced in [87] and is called Knowledge Management Framework. Both
versions follow the same concept, which us shown in Figure 24. Context Providers provide
context information to Context Consumers. For this reason, Context Providers can register
and publish their services and type of context they provide at the Context Broker. Context
Consumers can contact the Context Broker for getting information on which Context
Providers offer which kinds of context information. Afterwards, Context Consumers can
contact and query the corresponding Context Providers directly. The communication between
Context Consumer and Context Provider can follow both the request / response pattern and
the subscription / notification pattern.

The user profile management framework as depicted in the section above is integrated
into such a context management framework. In particular, it is integrated with the Knowledge
Management Framework of [87]. There are two reasons for this integration. Firstly, the user
profile management framework aims to provide the best matching user data concerning the
current user’s situation. For this purpose, information on the user’s current situation is
required. In particular, the User Profile Selection Module requires information about the
current user’s situation in order to select the best matching user data. The module, which is
concerned with the user context request, is the Context Client Module of the user profile
management framework. The Context Client Module is in fact a Context Consumer within the
context management framework shown in Figure 24. Hence, the Context Client Module has
to conform to the context management framework specific interfaces in order to discover,
request and subscribe to context information. In particular, it also has to implement the
context management framework specific call-back interface for receiving notifications by
subscribed Context Providers.

The second reason for the integration is that the user profile management framework can
take advantage of the subscription / notification pattern. As described in the section on
fundamentals for user profile management 2.1.3, the user profile management framework in
service platforms should follow the subscription / notification communication pattern. For this
purpose, the user profile management framework conforms to the Context Provider
specification. As a result, in addition to the implemented request / response interface

Context Management Framework

Context Broker

Context
Consumer

Context
Provider

Context
Provider

Context
Consumer

Context DiscoveryPublication

Context
Exchange

Context Management Framework

Context Broker

Context
Consumer

Context
Provider

Context
Provider

Context
Consumer

Context DiscoveryPublication

Context
Exchange

66

described in section 3.2.1, it also implements the context management framework specific
subscription interface. Hence, applications can subscribe to the user profile management
framework. The advantage of such a subscription is that an application is automatically
notified of changed user preferences as soon as the user profile management framework is
notified of a changed user situation.

3.3 Summary
In the first part of this chapter we have introduced our user profile structure for service
platforms. This user profile structure enables the specification of application-specific user
sub-profiles as required in service platforms to enable different application-specific user
attribute vocabularies. User attribute vocabularies are needed in order to give the user
attributes a meaning and hence to make user attributes reusable by different applications.
Different user attribute vocabularies need to be considered because different applications may
need different user attributes or need extensions of available user attributes. For instance, this
situation could occur in case a new application is deployed or in case an existing application
is upgraded or extended with additional functionality. In both cases, additional user attributes
may be required for these applications that are not yet covered by the vocabulary available
within the service platform environment.

However, the user profile structure still allows using only one overall user sub-profile,
should all application developers in a service platform agree on common semantics, i.e. on a
common user attribute vocabulary. In this regard, our concept is very similar with the Generic
User Profile (GUP) solution [36] [37] from the 3rd Generation Partnership Project (3GPP).

Besides application-specific user sub-profiles, the user profile structure also enables the
definition of situation-specific sub-profiles by adding several situational conditions. These
situational conditions have been designed with the aim to be easily understandable and
editable for the normal non-technical user on the one hand, but still being expressive enough
to enable useful and expressive conditions on the other hand. For this purpose, an approach
has been chosen that is similar to the approach in the Gaia meta-operating system [65], which
is similar to a simple clause in the English language of the form <subject> <verb> <object>.
In combination with a user profile editor, the definition of such situational conditions could be
carried out in just selecting items from select lists. That is, for each of the four attributes of a
situational condition, the user does not have to fill out a blank text field, but can select from a
pre-defined list. More on situational conditions is documented in chapter 5 together with the
user profile selection mechanism.

Furthermore, we have also provided an analytic evaluation of runtime performance
concerning two different search tasks for this user profile structure. The analytic evaluation
compares the required comparison steps for finding matching situation-dependent user data
between different user profile structures. The results show that clustering user profile data into
several user sub-profiles, such as in our user profile structuring approach, is beneficial with
regard to the runtime performance for search tasks.

In the second part of this chapter we have presented our user profile management
framework, which is a flexible modular framework. It consists of three layers and several sub-
modules, of which several sub-modules are easily exchangeable. As a result, the user profile
management framework is easily adaptable to different requirements as could arise in
different service platform environments. A detailed activity diagram has been provided that
depicts the inter-working of sub-modules and explains the steps carried out during user profile
request by clients of the user profile management framework.

In addition, the interaction with a context management framework has been documented.
Due to the integration into this framework the user profile management system can offer
subscription / notification functionality beside the request / response communication pattern.

CHAPTER 3: FRAMEWORK FOR USER PROFILE MANAGEMENT

67

The depicted user profile management framework and its interaction with and integration into
a context management framework has been implemented within the SPICE (Service Platform
for Innovative Communication Environment) project [4] [5] [6] and demonstrated at several
project reviews.

68

CHAPTER 4: USER PROFILE AND CONTEXT ONTOLOGY

69

4 User Profile and Context Ontology

In this chapter, we first describe our motivation for using ontologies in service platforms.
Subsequently, we define our user profile ontology and our context ontology that are both part
of the overall ontology model within the service platform.

Similar to the development of a software program by means of an object oriented
programming language, there is no single correct methodology for the design of an ontology
by means of an ontology language. In contrast to this, the development of a software program
as well as the modelling of an ontology should be oriented to the goals the software program
and the ontology strive for. However, in software programming, there are some programming
conventions, e.g. for naming classes and methods. Similar to this, there are ontology
modelling conventions. Noy and McGuinness [88], for example, present a guide to creating
ontologies that include guidelines and conventions for the ontology modelling. This includes
e.g. the definition of classes, class hierarchy and individuals. The forthcoming definition of
our user profile ontology and context ontology also follows these modelling conventions.

4.1 Ontologies in Service Platforms
There are basically two reasons for the use of ontologies in service platforms. Firstly, the use
of ontologies enables common semantics for different kinds of data throughout the whole
service platform. Secondly, the use of ontologies enables the inference of additional
information by means of ontology reasoning capabilities.

A service platform comprises multiple platform services as well as multiple end-user
services. These services exchange different kinds of data, e.g. user profile data, user location
data, service level agreements, device information etc. Hence, all these services should have a
common understanding about the exchanged data in order to process it. Ontologies can
provide an infrastructure to specify a vocabulary for arbitrary kind of data, and hence enable a
common understanding of the related data. Furthermore, ontology languages such as the Web
Ontology Language (OWL) [20] provide means to relate different ontologies, ontology
classes, individuals etc. to each other. Different ontologies can be related to each other with
the owl:import statement, ontology classes of different ontologies can be defined as
equivalent with the owl:equivalentClass property, individuals of different ontologies can be
defined identical with the owl:sameAs property, etc. This is also an important feature in case
the service platform interacts with external parties, e.g. a third party service provider or
another service platform in the domain of another operator. The latter one represents the
roaming use case, in which a user leaves the domain of his home service platform operator
and enters the domain of a foreign service platform operator. As different service platform
operators and different service platforms usually adhere to different semantics for data,
mappings between these different semantics are needed. Such mappings can be supported by
ontology languages such as OWL with the above mentioned properties.

Within service platforms, there are various use cases for reasoning over data. For
example, context management frameworks reason over low-level context information, i.e.
sensor data such as GPS data, in order to derive high-level context information, i.e.
meaningful data such as the room, in which the user is located. Another example could be the
reasoning over content information in case the user requests a movie of a certain movie genre.
In this case, classification information within ontologies could be applied to find all movies of
sub-categories of a certain movie genre. Furthermore, reasoning could be used for learning
user preferences from usage histories. Last but not least, reasoning could be used to find
matching user data concerning the user’s current situation in order to personalise services and
the user’s environment. The latter one is the main issue of this thesis and is explained in more

70

detail in chapter 5. The required reasoning capability are enabled by ontology languages such
as OWL, in particular OWL DL (OWL Description Logics), which is an OWL sub-language
that provides computational completeness (all entailments are guaranteed to be computed)
and decidability (all computations will finish in finite time).

Figure 25: Ontology Infrastructure in Service Platforms

Figure 25 shows how different kinds of vocabularies, i.e. ontologies, could be organised

in a service platform. The core ontology should include concepts and properties that are
relevant for all kinds of vocabularies. Specific kinds of data should in addition be defined in
sub-ontologies. For example, a concept for service platform users is required throughout the
service platform for many cases. One might like to exchange the information that a user is
located in a particular building (user location sub-ontology), one might like to exchange the
information that a user owns a particular device (device sub-ontology), or one might like to
exchange the information that a user is consuming certain content (content sub-ontology).
Hence, the user concept should be specified within the core ontology instead of specifying
three different concepts for the same thing within the sub-ontologies. Sub-ontologies should
then refer to these concepts if needed. Sub-ontologies can also refer to concepts of other sub-
ontologies if needed. One of the advantage of having a core ontology and different sub-
ontologies compared to having a single overall ontology is that we only have to load those
parts, which are needed for the processing of data. As a result, we do not have to load a
potentially huge amount of concept and property definitions a single overall ontology would
include.

The ontologies presented next in this chapter are our user profile ontology and our context
ontology. Both ontologies could be described as sub-ontologies within the ontology
infrastructure of a service platform.

4.2 User Profile Ontology
In this section, we describe our user profile ontology. We named this ontology UPOS (User
Profile Ontology with Situation-Dependent Preferences Support). UPOS provides a schema
for a user profile structure. It does not specify any user attributes. However, as described later,
individual and, hence, application-specific user attribute schemas can extend UPOS. In

Core
ontology

User Profile
sub-ontology

Service
sub-ontology

User Location
sub-ontology

Presence
sub-ontology

Content
sub-ontology

other
sub-ontologies

User Activity
sub-ontologies

Device
sub-ontologies

CHAPTER 4: USER PROFILE AND CONTEXT ONTOLOGY

71

UPOS, user profiles can consist of several application-specific sub-profiles. Optionally, these
sub-profiles can be conditional, i.e. they can depend on situational conditions such as a user
location or user activity. In doing so, UPOS follows the same goal as the user profile structure
presented in section 3.1.1. However, whereas the user profile structure has been presented by
means of a class diagram, UPOS provides the corresponding ontology specification.

UPOS has been specified with OWL [20], in particular the specification is in the sub-
language OWL DL, which provides computational completeness and decidability. The
complete specification is shown in Appendix C: Specification of the User Profile Ontology. In
the following, we present the ontology by means of visualisations, and explain classes,
properties and extensions. As mentioned above, the user profile ontology is a sub-ontology in
the service platform ontology infrastructure. However, for the clearness of presentation, we
introduce all classes and properties as if they were part of the user profile ontology. Some
classes and properties could in fact be part of the ontology core of the service platform
ontology infrastructure and hence be imported instead.

4.2.1 Classes and Properties
Figure 26 shows the class hierarchy of the user profile ontology. The introduced classes are
mostly the same as introduced in the user profile structure in section 3.1.1. In addition,
context related high-level classes are introduced in order to express situational conditions with
context parameters.

Figure 26: Class Hierarchy of the User Profile Ontology

The defined classes are as follows:

• User: A user of the service platform.
• Profile: A user profile.
• ProfileSubset: A service-specific and optionally situation-specific subset of a user

profile. DefaultProfileSubset and ConditionalProfileSubset are specialisations of
ProfileSubset.

• DefaultProfileSubset: A service-specific subset of a user profile that includes a default
user model. Related to each service, only one default profile subset is allowed.

• ConditionalProfileSubset: A service and situation-specific subset of a user profile that
includes a user model for a specific situation.

• UserModel: A user model.
• Service: A service associated with the service platform.

72

• Condition: A condition specifies the situation, in which a conditional profile subset is
valid, e.g. the home or the office location.

• Context: A context, e.g. a user activity or a user location. Location and Activity are
specialisations of Context.

• Location: A user location.
• Activity: A user activity.

Figure 27: Properties of the User Profile Ontology

Figure 27 shows the defined properties. Object properties, i.e. relations between instances

of classes, are coloured blue, whereas datatype properties, i.e. relations between instances of
classes and RDF literals and XML Schema datatypes, are coloured green. The defined object
properties are as follows:

• hasProfile: A user has a profile.
• hasProfileSubset: A user profile has a profile subset. HasDefaultProfileSubset and

hasConditionalProfileSubset are specialisations of hasProfileSubset.
• hasDefaultProfileSubset: A user profile has a default profile subset. Related to each

service, only one default profile subset is allowed.
• hasConditionalProfileSubset: A user profile has a conditional profile subset.
• hasUserModel: A profile subset has a user model.
• isSpecificTo: A profile subset is specific to a service.
• hasCondition: A conditional profile subset has a condition.
• hasEntity: A condition is linked to an entity, e.g. a user or a room.
• hasContextValue: A condition has a context value, e.g. a certain user location.
• hasContext: A user is in a certain context. HasLocation and hasActivity are

specialisations of hasContext.
• hasLocation: A user has a location.
• hasActivity: A user is engaged in an activity.

The defined datatype properties are as follows:

• hasName: A profile subset has a name. This name has to be unique within a user
profile.

• hasDescription: A profile subset has an optional description.

CHAPTER 4: USER PROFILE AND CONTEXT ONTOLOGY

73

• hasOperator: A condition has an operator, e.g. equal, notEqual, greaterThan,
greaterThanOrEqual, lessThan or lessThanOrEqual.

4.2.2 Ontology Visualisation
Figure 28 shows the defined classes and the relations between those. However, not all details
are shown in this figure. For example, cardinality restrictions are not shown in this figure. For
this purpose, please refer to the complete specification in Appendix C: Specification of the
User Profile Ontology.

Figure 28: Relations between Classes of the User Profile Ontology

The boxes in Figure 28 represent classes, with the class name in the first row of a box.

The subsequent rows within a box represent the properties of a class, also called slots. The
User class for example has the properties hasContext, hasActivity, hasLocation and
hasProfile. The arrows between boxes represent object properties. The asterisk of object
properties denotes that an instance of a class can have multiple relationships of this kind of
property to other instances. For example, whereas a User can have only one Profile, expressed
by the hasProfile property that is shown without an asterisk, a user can have multiple
Contexts, expressed by the hasContext property that is shown with an asterisk.

In comparison to the condition class defined in the user profile structure in section 3.1.1,
the condition class in the ontology does not contain an attribute for the type of context the

74

hasContextValue refers to. This is not required in the ontology definition for two reasons. On
the one hand, we can infer the type of context, e.g. user location or user activity, from the
class hierarchy of the context ontology applied on the hasContextValue attribute. On the other
hand, if we assume that there is a sub-ontology for each type of context, then the URI of the
sub-ontology is sufficient to identify the type of context.

Figure 29: User Profile Instance Example

Figure 29 shows an instance example. User Bob has a profile called BobProfile. This

profile includes two profile subsets, the default profile subset BobDefaultProfileSubset and
the conditional profile subset BobMeetingRoomProfileSubset. Both are related to the service
InstantMessagingService. Whereas the default profile subset contains the user model
BobDefaultUserModel, the conditional profile subset contains the user model
BobMeetingRoomUserModel and the situational condition MeetingRoomCondition.

4.2.3 Extensibility
As mentioned above, UPOS specifies a vocabulary for a user profile structure, but no user
attribute vocabulary. This is because the user profile structure is unique within the whole
service platform, whereas user attribute vocabularies have to be extensible to serve the
requirements of arbitrary services, and hence may be service-specific.

CHAPTER 4: USER PROFILE AND CONTEXT ONTOLOGY

75

Figure 30: Specialisations of the UserModel Class

Figure 30 shows how UPOS and individual user attribute ontologies are connected. The

UserModel class is defined in UPOS and aims at consisting the actual user attributes. These
user attributes can now be defined by individual user attribute ontologies. For example, the
FOAF schema [41] and the vCard schema [42], both already introduced in section 2.2.1.1,
provide vocabularies for user attributes. If using FOAF, user attributes are part of the top-
level class foaf:Person, if using vCard, user attributes are part of the top-level class
vcard:VCard. The connection between these top-level classes and UPOS can be done by
defining those top-level classes as specialisations of the UserModel class. Figure 30 depicts
this specialisation. Besides FOAF and vCard arbitrary other individual user attribute schemas
can be used as also shown in the figure. Ind1:UserModel represents the UserModel class of an
individual schema called ind1 (individual 1), and ind2:User represents the User class of an
individual schema called ind2 (individual 2).

Figure 31: Specialisations of the Context Class

Similar to the above shown specialisation of the UserModel class, UPOS can also be

extended with concrete context ontologies. Figure 31 shows this specialisation, in which the
prefix p1 represents the UPOS namespace. On the one hand, the existing classes Location and
Activity can be inherited to include specific vocabularies for user location and user activity.
On the other hand, additional context types, which are not specified in UPOS such as time of
day and weekday, as well as the related ontologies, can be added.

4.3 Context Ontology
In this section, we describe how to design context ontologies in such a way that we can
develop an advanced user profile selection mechanism that is based on ontology reasoning.
The approach we follow is not the development of a user profile selection mechanism based
on arbitrary context ontologies. Instead, both development steps are linked together. The
development of context ontologies is based on the goals we strive with our user profile
selection mechanism. Hence, we first decide on the use cases for user profile selection and
then develop the context ontologies in such a way that these use cases can be realised.

76

In the following subsections, we show the development for one such example context
ontology, particularly a user location ontology. We only focus on user locations. However,
the same modelling approach could be used for other kinds of context ontologies, such as user
activity ontologies. We first show the modelling goals for the user location ontology.
Afterwards, we show the actual realisation to reach these goals.

4.3.1 Modelling Goal for the Location Ontology
The user profile selection mechanism aims at selecting the matching sub-profile, i.e. the sub-
profile that matches the user’s current situation. For this purpose, the user profile selection
mechanism evaluates the situational conditions that are attached to conditional sub-profiles.
Examples for such situational conditions have been presented in Table 1, where the operator
attribute of situational conditions depends on the type of context that is expressed by the
situational condition. As explained in section 3.1.1, the structure of situational conditions
aims to be not only very expressive, but also easily understandable by non-technical users.
For this purpose, the meaning of the situational conditions has to be easily understandable. In
the following, we only concentrate on operators for the context type location. We now define
example operators, which aim to be expressive and which aim to be easily understandable by
non-technical users. Our example operators for the context type location are as follows:

1. equals
2. notEquals
3. isWithin
4. notIsWithin
5. isConnectedTo
6. notIsConnectedTo
7. isA
8. notIsA
9. isWithinA
10. notIsWithinA
11. isConnectedToA
12. notIsConnectedToA

In the following, we first depict one example situational condition for each of the depicted

operators in Table 4. Afterward, the operators are explained.

Table 4: Situational Conditions with Context Type Location

EntityID ContextType Operator ContextValue
Bob location equals MeetingRoom-1
Bob location notEquals Office-2
Bob location isWithin OfficeBuilding-3
Bob location notIsWithin Premises-A
Bob location isConnectedTo PrinterSpace-3
Bob location notIsConnectedTo PrinterSpace-2
Bob location isA MeetingRoom
Bob location notIsA VideoProjectorSpace
Bob location isWithinA UmtsAccessRange
Bob location notIsWithinA WlanAccessRange

CHAPTER 4: USER PROFILE AND CONTEXT ONTOLOGY

77

Bob location isConnectedToA PrinterSpace
Bob location notIsConnectedToA PrinterSpace

The operators and examples in Table 4 are explained in the following. However, the
depicted operators should be considered as examples in order to explain our ontology
modelling approach. Thus, if a developer wants to define other operators for the context type
location, i.e. other relationships between locations, then this can be done of course, but
usually leads to a different ontology at the end.

equals
The equals operator is an instance related operator. This means that it is only used in
combination with context values that are instances of ontology concepts, e.g. the room
instance MeetingRoom-1. The equals statement is true, if and only if the context value of the
current user’s situation represents the same location instance as the context value of the
situational condition. A user may e.g. specify such a situational condition for the
personalisation of applications in case she is in that meeting room. For instance, the
presentation and communication settings of the laptop could be adapted to the video projector
and network capabilities of MeetingRoom-1.

notEquals
The notEquals operator is interpreted as the opposite of the equals operator.

isWithin
The isWithin operator is an instance related operator, such as the equals operator. The
isWithin statement is true, if and only if the context value of the current user’s situation
represents a location instance that is located within the location instance represented by the
context value of the situational condition, e.g. within the office building instance
OfficeBuilding-3. This example could e.g. be used to personalise communication setting
within a specified location such as the premises the user works, a UMTS access range of a
certain network operator, or even a whole spatial region.

notIsWithin
The notIsWithin operator is interpreted as the opposite of the isWithin operator.

isConnectedTo
The isConnectedTo operator is again an instance related operator, such as the equals operator.
The isConnectedTo statement is true, if and only if the context value of the current user’s
situation represents a room instance that is connected to the room instance represented by the
context value of the situational condition, e.g. the room instance PrinterSpace-3. This example
could e.g. be used to personalise printer jobs in case one is spatially connected to a printer
space, i.e. a room with a certain printer.

notIsConnectedTo
The notIsConnectedTo operator is interpreted as the opposite of the isConnectedTo operator.

isA
The isA operator is a concept related operator. That is, it is only used in combination with
context values that are ontology concepts instead of ontology instances, e.g. the concept
MeetingRoom, OfficeBuilding, etc. The isA statement is true, if and only if the context value
of the current user’s situation represents an instance of the location concept represented by the
context value of the situational condition. This example could be used in a similar way as the

78

equals operator, but related to a specified location concept instead of a specified location
instance. One such example situational condition could be used to personalise communication
applications such as telephony, news, messages and firewall in case the user is in a certain
type of location, e.g. a meeting room or a laboratory.

notIsA
The notIsA operator is interpreted as the opposite of the isA operator.

isWithinA
The isWithinA operator is a concept related operator such as the isA operator. The isWithinA
statement is true, if and only if the context value of the current user’s situation represents a
location instance that is located within a location instance of the location concept represented
by the context value of the situational condition, e.g. the concept UmtsAccessRange. This
example could be used in a similar way as the isWithin operator, but related to a specified
location concept instead of a specified location instance. For example, it could be used to
personalise communication setting within a specific type of access range, e.g. a UMTS access
range for fast Internet access.

notIsWithinA
The notIsWithinA operator is interpreted as the opposite of the isWithinA operator.

isConnectedToA
The isConnectedToA operator is again a concept related operator such as the isA operator.
The isConnectedToA statement is true, if and only if the context value of the current user’s
situation represents a room instance that is connected to a room instance of the room concept
represented by the context value of the situational condition, e.g. the concept PrinterSpace.
This example could be used in a similar way as the isConnectedTo operator, but related to a
specified room concept instead of a specified individual room.

notIsConnectedToA
The notIsConnectedToA operator is interpreted as the opposite of the isConnectedToA
operator.

It should be mentioned that there is a challenge concerning some of the introduced
example operators in combination with the user profile ontology as defined above. The
example operators isA, notIsA, isWithinA, notIsWithinA, isConnectedToA and
notIsConnectedToA are operators that have a concept as context value instead of a concrete
individual. Expressing such situational conditions in the above defined user profile ontology
is not allowed as the context value of the situational condition is specified to be an individual.
However, this issue could be addressed with a corresponding change of the user profile
ontology, which would allow the context value to be a concept or an individual.
Unfortunately, this change would make the user profile ontology be in the OWL Full sub-
language of OWL [20] instead of the OWL DL sub-language. Hence, we would leave the
computationally complete and decidable part of OWL. However, this would not be
disadvantageous for our user profile selection mechanism, as we do not intend to carry out
ontology reasoning over the user profile ontology, but over the location ontology. The
corresponding change of the hasContextValue property of the user profile ontology is shown
in Appendix D: Additional Property Specification.

CHAPTER 4: USER PROFILE AND CONTEXT ONTOLOGY

79

4.3.2 Location Classes and Properties
In the above section, we have introduced our example operators for the context type location.
In this section, we now explain how the location ontology is designed so that these operators
can be realised. For this purpose, we describe class and property definitions. However, not all
details of the specification are shown in this section. The complete formal specification is
given in Appendix E: Specification of the Location Ontology.

As for the user profile ontology, the location ontology has also been specified with the
OWL DL sublanguage of OWL [20], which provides computational completeness and
decidability. These are two important features, as the user profile selection mechanism applies
ontology reasoning over the location ontology, and as we want to ensure that the user profile
selection mechanisms always provides a result. The user profile selection mechanism is
described in detail in chapter 5.

Figure 32: Properties of the Location Ontology

Figure 32 shows the object properties of the location ontology together with the object
properties of the user profile ontology. The object properties of the user profile ontology have
already been introduced in section 4.2.1 and can be identified with the prefix p1. They are still
shown in Figure 32, because the location ontology imports the user profile ontology in order
to reuse classes already specified in the user profile ontology. The newly introduced object
properties of the location ontology are described in the following:

• isPartOf: A location is part of another location. This property is defined as transitive.
It is also defined as the inverse of the hasPart property, which is depicted by means of
the arrow with the two arrowheads in Figure 32. The isPartOf property is used to
realise the isWithin, notIsWithin, isWithinA and notIsWithinA operators.

• isDirectPartOf: A location is direct part of another location. IsDirectPartOf is a
specialisation of isPartOf. It is also defined as the inverse of the hasDirectPart
property. The isDirectPartOf property is also used to realise the isWithin, notIsWithin,
isWithinA and notIsWithinA operators.

80

• hasPart: A location has another location as a part. This property is defined as
transitive. It is also defined as the inverse of the isPartOf property. The hasPart
property is also used to realise the isWithin, notIsWithin, isWithinA and notIsWithinA
operators.

• hasDirectPart: A location has another location as a direct part. HasDirectPart is a
specialisation of hasPart. It is also defined as the inverse of the isDirectPartOf
property. The hasDirectPart property is also used to realise the isWithin, notIsWithin,
isWithinA and notIsWithinA operators.

• isConnectedTo: A room is connected to another room. This property is defined as
symmetric and transitive. The isConnectedTo property is used to realise the
isConnectedTo, notIsConnectedTo, isConnectedToA and notIsConnectedToA
operators.

• isDirectlyConnectedTo: A room is directly connected to another room. This property
is defined as symmetric. IsDirectlyConnectedTo is a specialisation of isConnectedTo.
The isDirectlyConnectedTo property is also used to realise the isConnectedTo,
notIsConnectedTo, isConnectedToA and notIsConnectedToA operators.

• hasTimeOfDay: A user is related to a time of day, i.e. the time of day a user is situated
in. HasTimeOfDay is a specialisation of the hasContext property of the user profile
ontology.

• hasWeekDay: A user is related to a weekday, i.e. the weekday a user is situated in.
HasWeekDay is a specialisation of the hasContext property of the user profile
ontology.

So far, we have not created and added any individuals and relationships between

individuals to the location ontology. However, relationships between individuals, such as
individual rooms, office buildings or premises are always expressed with the isDirectPartOf,
hasDirectPart or isDirectlyConnectedTo properties. That is, if we consider a location
consisting of different smaller location entities, then relationships between these location
entities are always defined in such a way that a location entity is direct part of the next bigger
location entity. For example, if we consider an office building consisting of the entities floors
and rooms, then relationships between the building, its floors and rooms are always defined in
such a way that rooms are direct parts of the next bigger entity, i.e. floors, and floors are
direct parts of the next bigger entity, i.e. buildings, instead of defining rooms as parts of
buildings. Hence, relationships between individuals are not expressed with the isPartOf,
hasPart and isConnectedTo properties. These properties are only used within the ontology
reasoning step, in which inference over transitivity and symmetry and other ontology
language constructs is carried out. The reasoning step is explained later in chapter 5, also
showing ontology reasoning examples.

The reason for distinguishing between the above definitions of isDirectPartOf and
isPartOf, hasDirectPart and hasPart, and isDirectlyConnectedTo and isConnectedTo is that
the ontology is easier to administrate in case new individuals are added, or existing
individuals are removed or changed at a later stage. Just consider to add a new individual of
type building to the ontology. Then all relationships that have to be added to the ontology are
the single relationship that this building is direct part of the corresponding street. Everything
else, i.e. the information that the building is part of a quarter, is part of a city, is part of a
region, is part of a country and is part of a continent can be inferred over the transitive
isPartOf property from existing relationships in the ontology. In comparison to this, without
distinguishing between the definitions of isDirectPartOf, isPartOf and the related creation rule
for individuals, each of the above relationships would have to be added separately, which is a
time-consuming and erroneous procedure.

CHAPTER 4: USER PROFILE AND CONTEXT ONTOLOGY

81

Figure 33: Top-Level Class Hierarchy of the Location Ontology

As mentioned in section 2.2.3.2, our location ontology should not only represent location

concepts from a pure spatial point of view. Instead, location concepts should also be modelled
according to the function of individual spaces. Consequently, rooms should be modelled as
meeting rooms, offices, printer spaces, presentation spaces, etc., and buildings should be
modelled as office buildings, factory buildings, private homes, etc. In addition, space
concepts should be distinguished between whether they are in a private, business or public
environment, because the user’s behaviour differs on whether she is in a private, business or
public space, and whether a room is an office, a meeting room, a laboratory or a lounge.

Figure 33 shows the top-level specialisations PrivatePlace, PublicPlace, BusinessPlace,
GeopoliticalEntity and AccessRange of the Location class as the result of this approach. The
figure also shows some classes of the user profile ontology, which have already been
introduced in section 4.2.1 and can be identified with the prefix p1. They are still shown in
Figure 33 because the classes specified in the location ontology are specialisations of the
classes specified in the user profile ontology.

The PrivatePlace concept is inherited by location concepts addressing private places of a
user such as private rooms, homes, and private WLAN access ranges. The PublicPlace
concept is inherited by location concepts that describe public places such as tourist places,
airport lounges, cafes, hotels, shopping centres and places for entertainment. The
BusinessPlace concept on the other hand is inherited by location concepts describing a
business place, such as departments, office buildings, offices, meeting rooms and business
related WLAN access ranges. The GeopoliticalEntity concept has the specialisations City,
Region, Country and Continent. Finally, the AccessRange concept models GSM and UMTS
based access ranges.

82

Figure 34: Specialisation of the BusinessPlace Concept of the Location Ontology

Figure 34 shows the complete sub-hierarchy of the BusinessPlace concept as part of the

location hierarchy. This sub-hierarchy models buildings, parts of buildings and rooms based
on its function, such as a Laboratory, a Lounge_Business or a MeetingRoom. As already
mentioned in section 2.2.3.2, deriving indoor user locations down to a single room is feasible
[80] [81]. We also enabled the definition of different room types that represent the same
functionality. The MeetingRoom class, for instance, is defined as equivalent class to the
ConferenceRoom class as can be seen in Figure 34. This definition is done with the

CHAPTER 4: USER PROFILE AND CONTEXT ONTOLOGY

83

owl:equivalentClass property. Both modelling constructs, class hierarchy as well as
owl:equivalentClass, are used to realise the equals, notEquals, isA and notIsA operators.
Detailed reasoning examples concerning all the operators are explained later in section 5.2.
The specialisations of the PrivatePlace and PublicPlace concepts are not shown here.
However, they are modelled in the same way. The corresponding formal specification with all
details is given in Appendix E: Specification of the Location Ontology.

4.4 Summary
In the first part of this chapter, we have described the need to use ontologies in service
platforms and explained a potential approach for an ontology infrastructure for this
environment. There are two main reasons for the use of ontologies in service platforms.
Firstly, the use of ontologies enables common semantics for different kinds of data throughout
the whole service platform. This is particularly important for our user profile ontology.
Secondly, the use of ontologies enables the inference of additional information by means of
ontology reasoning capabilities. This is in particular important for our context ontology in
combination with our user profile selection mechanism that is described in chapter 5.

In the second part of this chapter we have introduced our user profile ontology as a sub-
ontology within the ontology infrastructure of a service platform. The specification of the user
profile ontology is based on the user profile structure introduced in chapter 3. Besides a
description of ontology classes and properties, we have also provided visualisations of the
ontology, and a discussion on how the ontology can be extended with individual user attribute
vocabularies such as FOAF [41] and vCard [42] on the one hand, and with individual context
ontologies on the other hand. The complete formal specification of the user profile ontology is
provided in Appendix C: Specification of the User Profile Ontology.

In the third part of this chapter our location ontology has been presented as an example of
a context ontology for service platforms. However, the same modelling approach as shown in
this section could also be used for other kinds of context ontologies, such as user activity
ontologies. We have described how to design context ontologies in such a way that we can
develop an advanced user profile selection mechanism that is based on ontology reasoning.
The approach we have followed is not the development of a user profile selection mechanism
based on arbitrary context ontologies. Instead, in the approach we have taken, both
development steps have been linked together. That is, the development of the example
location ontology is based on the goals we strive with our user profile selection mechanism.

The modelling goal for the location ontology is connected to the example operators for
expressing situational conditions. In the first step, we have identified and described useful
example operators. Afterwards, we have shown the actual realisation to reach these goals,
which led to the specification of our location ontology. The location ontology has been
presented by means of class and property descriptions, as well as visualisations and
descriptions of the class hierarchy. Again, the complete formal specification of the location
ontology is provided in Appendix E: Specification of the Location Ontology.

84

CHAPTER 5: AUTOMATIC SELECTION OF USER PROFILES

85

5 Automatic Selection of User Profiles

In this chapter we present the User Profile Selection Module that has already been introduced
briefly in section 3.2.1 as part of the overall user profile management framework. On the one
hand, it is described by means of its interaction with external components. On the other hand,
we show details of the internal ontology reasoning step, i.e. the reasoning over the location
ontology introduced in section 4.3, that takes place within the user profile selection process.
In doing so, we show reasoning examples for all the location-related operators introduced in
section 4.3, i.e. for various different situational conditions.

5.1 User Profile Selection Module
The User Profile Selection Module is the module that carries out the selection of the matching
profile subset for the user’s current situation. For this purpose, it comprises an evaluation
functionality that applies ontology reasoning in the selection process. This evaluation
functionality is the central part of this thesis and is explained in the following: First, the
general functioning of the module is explained by means of the included processing steps.
Afterwards, a detailed activity diagram is provided that depicts the actual algorithm that is
used for the user profile selection process. Finally, we show various examples of the ontology
reasoning step carried out within the User Profile Selection Module for different situational
conditions, i.e. different operators.

5.1.1 Functioning of the User Profile Selection Module
The user profile selection process can be described by means of two processing steps, the
query creation process and the condition evaluation process, see Figure 35. In the query
creation process, the actual query has to be prepared. Queries are implemented as SPARQL
queries [23], the standard query language for RDF [17] from the W3C. An example of a
SPARQL query has already been shown in Figure 22 and the corresponding query result in
Figure 23 in section 3.2.1.

Figure 35: User Profile Selection Module

Query
Result

Situational
Condition

Context
Ontology Individuals

User Profiles
Database

Schemas
Database

Individuals
Database

Context Client
Module

User
Situation

Query Condition
Evaluation

Query
CreationRequest

86

The actual query to be created depends on the situational condition, i.e. on the operator of

the situational condition. For example, if we want to know whether a certain person is within
a certain building, the query is different from that case, in which we want to know whether a
certain person is in a certain type of room. The former case represents the location operator
isWithin, the latter one represents the location operator isA. The forthcoming subsection 5.2
shows details of the created SPARQL queries and the corresponding ontology reasoning step.
However, this means that the query creation process has to be carried out for each situational
condition for all the Conditional Profile Subsets to be queried.

In the condition evaluation process, on the other hand, an ontology model is prepared that
consists of the corresponding context ontology, e.g. the location ontology, the corresponding
individuals and the actual user situation provided by the Context Client Module introduced in
section 3.2.1. As mentioned in section 3.2.1, we assume that the received user situation is
provided as a high-level context description, e.g. a certain room or a certain user activity,
instead of low-level context descriptions such as GPS (Global Positioning System)
information. Furthermore, we assume that the description of the provided user situation is
provided as an RDF document, that it is based on the context ontology of section 4.3 and that
the user situation is accurate.

Afterwards, this overall ontology model is queried by means of the corresponding
SPARQL query, particularly a SPARQL ASK query. The specification of the SPARQL query
language distinguishes between four different types of queries. The query type used in Figure
22 is the SELECT type, which returns all of the variables in a query. The ASK type, in
comparison to this, which is used within the User Profile Selection Module, is used to test
whether or not a query pattern has a solution. As a result, no information is returned about the
possible query solutions, just whether or not a solution exists. The result contains either the
Boolean value true or false. The other two query types are not used for our purposes, and
hence are not explained. However, they are also described in the corresponding SPARQL
specification [23].

The context ontology, i.e. the location ontology, user activity ontology or other ontologies
for describing user context, that is loaded from the Schemas Database for the condition
evaluation process in Figure 35 is the same for all users. However, the individuals such as
rooms and buildings that are loaded from the Individuals Database are specific to the
corresponding user. That is, we only load those individuals, e.g. rooms, buildings, etc. that are
related to the corresponding user. Hence, each user has an own Individuals Database that
models the user’s world, i.e. the locations the user often visits and stays at, such as her home,
the premises in which she works, and the environment in which she lives.

5.1.2 Selection Mechanism
Figure 36 shows the activity diagram, i.e. the algorithm, for the user profile selection
mechanism. The activity diagram is explained in detail below.

CHAPTER 5: AUTOMATIC SELECTION OF USER PROFILES

87

Figure 36: Activity Diagram for User Profile Selection Mechanism

Before describing the single activities, some assumptions have to be made for the depicted

algorithm. Firstly, we assume that there is only one matching Conditional Profile Subset for
each user situation at any time. Hence, we assume that already at the creation time of
Conditional Profile Subsets and the related situational conditions, conflicting and overlapping
situational conditions are detected so that the creation is refused in these cases. Secondly, in
entering the starting point of the activity diagram, we assume that there is at least one

Selection of Matching Profile Subset

2: Add context ontology 3: Add individuals

[context type = activity]

1: Create ontology model

5: Check existence of next Conditional Profile Subset

[context type = location]

[true; next situational condition]

7: Check existence of next situational condition

[operator = operator1]

[operator = equals]

4: Add user situation

[operator = operator2]

[else]

[else]

[operator = isWithin]

[operator = isConnectedTo]

[operator = isA]

9a: Create query for operator equals

11: Query ontology model

9b: Create query for operator isWithin

9c: Create query for operator isConnectedTo

9d: Create query for operator isA

10a: Create query for operator operator1

10b: Create query for operator operator2

[match]

[no match]

[false; no Conditional Profile Subset left]

[false; no situational condition left]

[true; next Conditional Profile Subset]

12: Return matching Conditional Profile Subset

13: Return Default Profile Subset

6: Fetch next Conditional Profile Subset

8: Fetch next situational condition

88

Conditional Profile Subset to be queried. The starting point of this activity diagram represents
the entering of activity 6 (Find matching Conditional Profile Subset) in the activity diagram of
Figure 21 in section 3.2.1, in which we already know that there is at least one Conditional
Profile Subset. Hence, this activity diagram is connected to the activity diagram of Figure 21
in providing the details of the activity 6 (Find matching Conditional Profile Subset) of Figure
21. Our third assumption is that a Conditional Profile Subset has at least one situational
condition. In the following, the activities in Figure 36 are explained:

Activity 1 (Create ontology model): In this step, an initially empty ontology model is
created. This is done with the Jena2 library [24] [25], particularly with the library version
2.5.4. All the subsequent ontology processing steps (except ontology reasoning steps) are also
carried out with this software library.

Activity 2 (Add context ontology): In this step, the required context ontologies, i.e. the
location ontology, user activity ontology or other ontologies for describing user context, is
added to the ontology model of activity 1.

Activity 3 (Add individuals): In this step, the corresponding individuals from the user-
specific Individuals Database, e.g. rooms, buildings, etc. are added to the resulting ontology
model of activity 2.

Activity 4 (Add user situation): In this step, the current user’s situation is added to the
ontology model of activity 3. For this purpose, the current user’s situation has been provided
by the Context Client Module, see section 3.2.1 and activity 5 (Request user context of
identified context types) of Figure 21. Now, the ontology model is complete.

Activity 5 (Check existence of next Conditional Profile Subset): In this step, the User
Profile Selection Module checks the existence of remaining Conditional Profile Subsets.
Based on one of the above assumptions, there is always at least one Conditional Profile
Subset at the beginning. If a Conditional Profile Subset is still left, the algorithm continues
with activity 6, otherwise with activity 13.

Activity 6 (Fetch next Conditional Profile Subset): In this step, the User Profile Selection
Module fetches the next of the remaining Conditional Profile Subsets and continues with
activity 7.

Activity 7 (Check existence of next situational condition): In this step, the User Profile
Selection Module checks the existence of remaining situational conditions within the current
Conditional Profile Subset object. Based on one of the above assumptions, there is always at
least one situational condition for each Conditional Profile Subset. If a situational condition is
left, the algorithm continues with activity 8, otherwise with activity 12.

Activity 8 (Fetch next situational condition): In this step, the User Profile Selection Module
fetches the next of the remaining situational conditions of a Conditional Profile Subset and
continues with activity 9a, b, c or d, or activity 10a or b, depending on the context type and
location operator of the situational condition. In fact, there could be more decision points for
distinguishing also between additional context types, which are not shown in Figure 36. The
reason for distinguishing between different context types is that the query to be created in
activity 9 or 10 is different for each context type.

CHAPTER 5: AUTOMATIC SELECTION OF USER PROFILES

89

Activity 9a-d (Create query for location operators): In these steps, the actual query, the
SPARQL ASK query as introduced above, is created for the context type location. As the
query depends on the context type of the situational condition, as well as the corresponding
operator, there is a single activity for each different operator. In fact, there could be additional
activities for additional operators for the context type location, which are not shown in Figure
36.

Activity 10a-b (Create query for activity operators): This step is comparable with activity
9a-d, but for the context type user activity.

Activity 11 (Query ontology model): Finally, the ontology model created in activity 4 is
queried with the SPARQL ASK query of activity 9a-d and 10a-b respectively. This is the
step, in which ontology reasoning takes place. For this purpose, an ontology reasoner is
required. In our implementation, we use different ontology reasoning libraries, which are
introduced in the evaluation chapter 6. If the query result is false, the algorithm continues
with activity 5, in which it checks whether there is another Conditional Profile Subset. If the
query result is true, the algorithm continues with activity 7. Now, the remaining situational
conditions of the current Conditional Profile Subset have to be evaluated as well. As
mentioned in section 3.1.1, our implementation interprets the existence of several situational
conditions within a Conditional Profile Subset as conjunct to each other. Hence, all situational
conditions of a Conditional Profile Subset have to be evaluated as true in order to identify a
Conditional Profile Subset to be true.

Activity 12 (Return matching Conditional Profile Subset): In this step, the matching
Conditional Profile Subset has been found and is returned. This activity is only entered in case
all situational conditions of a Conditional Profile Subset have been evaluated as true. It is
important here to refer to the above described assumptions that on the one hand a Conditional
Profile Subset always has at least one situational condition. On the other hand, we can finish
the prior evaluation loop as we know that there can not be another matching Conditional
Profile Subset.

Activity 13 (Return Default Profile Subset): In this step, the Default Profile Subset is
returned. This is because none of the evaluated Conditional Profile Subsets matches the user’s
current situation and because there is no further Conditional Profile Subset left for evaluation.

5.2 Ontology Reasoning Examples
In this section, we show details of the query process, i.e. details of activity 11 of the previous
section 5.1. For each of the introduced example operators, we show an example condition, the
corresponding SPARQL query [23], and the ontology reasoning steps, i.e. the inferred
ontology statements. It should be mentioned that the ontology reasoning examples shown in
the forthcoming subsections only cover a small subset of the ontology reasoning features
supported by OWL.

All forthcoming SPARQL queries have several items in common. Firstly, all SPARQL
queries are of the ASK query type, as already explained in the previous section 5.1. Secondly,
SPARQL queries are encoded as triple patterns. Triple patterns are like RDF triples [17]
except that each of the subject, predicate and object may be a variable. Thirdly, prefixes for
namespaces are introduced at the beginning of the queries. The prefix prof represents the
namespace for UPOS, i.e. the user profile ontology introduced in section 4.2. The prefix
context represents the namespace of the location ontology introduced in section 4.3. The
prefix ind represents the namespace for the individuals of the location ontology, and the

90

prefix rdf represents the namespace for the RDF vocabulary [18]. Fourthly, the entityID and
contextValue parameters delimited by quotation marks and plus signs in the depicted queries
have to be substituted with the actual entityID and contextValue parameters of the
corresponding situational condition during runtime. Fifthly, the parameters with a question
mark at the beginning represent variables.

5.2.1 Equals Operator
Example situational condition: If the location of user Bob equals MeetingRoom_Comtec.

Example user situation: The location of user Bob is MeetingRoom_Comtec.

Obviously, the example user situation matches the situational condition. As explained in
the previous section 5.1, the user situation is added to the overall ontology model that is then
queried with a SPARQL query.

Figure 37: SPARQL Query for the equals Operator

The SPARQL query for the equals operator is shown in Figure 37. Substituting the

entityID parameter with Bob and the contextValue parameter with MeetingRoom_Comtec, the
ASK construct asks for the validity of the statement:

ind:Bob prof:hasLocation ind:MeetingRoom_Comtec

In this example, the searched statement is already available within the created ontology
model, as the statement is exactly the user situation that has been added to the ontology model
beforehand. Hence, in this example, no ontology reasoning has to take place, as the
information is already available. Hence, the query result is true, which indicates a match
between the example user situation and the situational condition.

Whereas this example is straightforward, the following variation is a bit more complex.
Let us assume that there is a room called MeetingRoom_2413 in the ontology and that this
room represents the same room as MeetingRoom_Comtec, which could be specified by
means of the owl:sameAs statement. With this OWL [20] construct, we can refer to the same
room with different identifiers, such as an official room name used in a floor plan of a
building and an unofficially used room name like “our meeting room” that is related to its
functionality.

Example situational condition: If the location of user Bob equals MeetingRoom_Comtec.

Example user situation: The location of user Bob is MeetingRoom_2413.

At a first glance, there is no match between this example user situation and the situational
condition. However, the resulting match, i.e. the searched SPARQL ASK query, can be
inferred from the existing statements 1 and 2 shown below, as ind:MeetingRoom_2413 can be

PREFIX prof: <http://ws.comtec.e-technik.uni-kassel.de/upos.owl#>
PREFIX ind: <http://ws.comtec.e-technik.uni-kassel.de/context-kb.owl#>
ASK
{ ind:”+entityID+” prof:hasLocation ind:”+contextValue+”
}

CHAPTER 5: AUTOMATIC SELECTION OF USER PROFILES

91

substituted with ind:MeetingRoom_Comtec. Statement 1 is the user situation added to the
queried ontology model beforehand, and statement 2 is part of the Individuals Database
introduced in section 5.1:

1) ind:Bob prof:hasLocation ind:MeetingRoom_2413

2) ind:MeetingRoom_Comtec owl:sameAs ind:MeetingRoom_2413

=>

ind:Bob prof:hasLocation ind:MeetingRoom_Comtec (inferred from 1, 2)

5.2.2 IsWithin Operator
Example situational condition: If the location of user Bob isWithin Department_Comtec.

Example user situation: The location of user Bob is MeetingRoom_2413.

At a first glance, again, there is no match between this example user situation and the
situational condition.

Figure 38: SPARQL Query for the isWithin Operator

Figure 38 depicts the SPARQL query for the isWithin operator. The ASK construct

consists of a UNION construct that represents the disjunction of two queries. The first query
is the same as for the equals operator in order to check equality. The second one checks
whether a location is part of another location. In fact, the first query is only needed because
the current OWL standard [20] does not support reflexive relationships as would be needed
here for the context:isPartOf relationship. Substituting the entityID parameter of Figure 38
with Bob and the contextValue parameter with Department_Comtec, the second query for this
example is as follows:

ind:Bob prof:hasLocation ?userLocation

?userLocation context:isPartOf ind:Department_Comtec

This second query has a solution starting with the below initial ontology statements 1 to 5.

As the two queries are connected as a disjunction, the whole query has a solution. Statement 1
is the user situation added to the queried ontology model beforehand. Statements 2 to 3 are
part of the Individuals Database, and statements 4 and 5 are part of the specification of the

PREFIX prof: <http://ws.comtec.e-technik.uni-kassel.de/upos.owl#>
PREFIX context: <http://ws.comtec.e-technik.uni-kassel.de/context.owl#>
PREFIX ind: <http://ws.comtec.e-technik.uni-kassel.de/context-kb.owl#>
ASK
{ { ind:”+entityID+” prof:hasLocation ind:”+contextValue+” }
UNION
{ ind:”+entityID+” prof:hasLocation ?userLocation .
 ?userLocation context:isPartOf ind:”+contextValue+” }
}

92

location ontology as defined in section 4.3. The finally inferred statements can be inferred by
means of different inference steps.

In the first step, statements 6 to 7 can be inferred by applying the rdfs:subPropertyOf
relationship of statement 4. In the next step, the final statements can be inferred by applying
the transitivity of the context:isPartOf relationship of statement 5 to statements 6 and 7.

1) ind:Bob prof:hasLocation ind:MeetingRoom_2413

2) ind:MeetingRoom_2413 context:isDirectPartOf ind:Floor_A-3

3) ind:Floor_A-3 context:isDirectPartOf ind:Department_ComTec

4) context:isDirectPartOf rdfs:subPropertyOf context:isPartOf

5) context:isPartOf rdf:type owl:TransitiveProperty

=>

6) ind:MeetingRoom_2413 context:isPartOf ind:Floor_A-3 (inferred from 2, 4)

7) ind:Floor_A-3 context:isPartOf ind:Department_ComTec (inferred from 3, 4)

=>

ind:Bob prof:hasLocation ind:MeetingRoom_2413 (same as 1)

ind:MeetingRoom_2413 context:isPartOf ind:Department_Comtec (inferred from 5, 6,
7)

5.2.3 IsConnectedTo Operator
Example situational condition: If the location of user Bob isConnectedTo PrinterSpace_2419.

Example user situation: The location of user Bob is TwoPersonOffice_2414.

At a first glance, again, there is no match between this example user situation and the
situational condition.

Figure 39: SPARQL Query for the isConnectedTo Operator

PREFIX prof: <http://ws.comtec.e-technik.uni-kassel.de/upos.owl#>
PREFIX context: <http://ws.comtec.e-technik.uni-kassel.de/context.owl#>
PREFIX ind: <http://ws.comtec.e-technik.uni-kassel.de/context-kb.owl#>
ASK
{ { ind:”+entityID+” prof:hasLocation ind:”+contextValue+” }
UNION
{ ind:”+entityID+” prof:hasLocation ?userLocation .
 ?userLocation context:isConnectedTo ind:”+contextValue+” }
}

CHAPTER 5: AUTOMATIC SELECTION OF USER PROFILES

93

Figure 39 depicts the SPARQL query for the isConnectedTo operator. The ASK construct
consists of a UNION construct that represents the disjunction of two queries. The first query
is the same as for the equals operator in order to check equality. The second one checks
whether a room is connected to another room. In fact, the first query is again only needed
because the current OWL standard [20] does not support reflexive relationships as would be
needed here for the context:isConnectedTo relationship. Substituting the entityID parameter
of Figure 39 with Bob and the contextValue parameter with PrinterSpace_2419, the second
query for this example is as follows:

ind:Bob prof:hasLocation ?userLocation

?userLocation context:isConnectedTo ind:PrinterSpace_2419

This second query has a solution starting with the below initial ontology statements 1 to 8.

As the two queries are connected as a disjunction, the whole query has a solution. Statement 1
is the user situation added to the queried ontology model beforehand. Statements 2 to 5 are
part of the Individuals Database, and statements 6 to 8 are part of the specification of the
location ontology as defined in section 4.3. Again, the finally inferred statements can be
inferred by means of different inference steps.

In the first step, statements 9, 11 and 12 can be inferred by applying the
rdfs:subPropertyOf relationship of statement 6. Statement 10, on the other hand, can be
inferred by applying the symmetry of the context:isDirectlyConnectedTo relationship of
statement 7. In the next step, statement 13 can be inferred by again applying the
rdfs:subPropertyOf relationship of statement 6, and statement 14 can be inferred by applying
the transitivity of the context:isConnectedTo relationship of statement 8. In the next steps,
statement 15 and the final statements can be inferred by again applying the transitivity of the
context:isConnectedTo relationship.

1) ind:Bob prof:hasLocation ind:TwoPersonOffice_2414

2) ind:TwoPersonOffice_2414 context:isDirectlyConnectedTo ind:Corridor_Comtec

3) ind:MeetingRoom_2413 context:isDirectlyConnectedTo ind:Corridor_Comtec

4) ind:MeetingRoom_2413 context:isDirectlyConnectedTo ind:Kitchen_2415

5) ind:Kitchen_2415 context:isDirectlyConnectedTo ind:PrinterSpace_2419

6) context:isDirectlyConnectedTo rdfs:subPropertyOf context:isConnectedTo

7) context:isDirectlyConnectedTo rdf:type owl:SymmetricProperty

8) context:isConnectedTo rdf:type owl:TransitiveProperty

=>

9) ind:TwoPersonOffice_2414 context:isConnectedTo ind:Corridor_Comtec (inferred
from 2, 6)

10) ind:Corridor_Comtec context:isDirectlyConnectedTo ind:MeetingRoom_2413
(inferred from 3, 7)

94

11) ind:MeetingRoom_2413 context:isConnectedTo ind:Kitchen_2415 (inferred from
4, 6)

12) ind:Kitchen_2415 context:isConnectedTo ind:PrinterSpace_2419 (inferred from 5
and 6)

=>

13) ind:Corridor_Comtec context:isConnectedTo ind:MeetingRoom_2413 (inferred
from 6, 10)

14) ind:MeetingRoom_2413 context:isConnectedTo ind:PrinterSpace_2419 (inferred
from 8, 11, 12)

=>

15) ind:TwoPersonOffice_2414 context:isConnectedTo ind:MeetingRoom_2413
(inferred from 8, 9, 13)

=>

ind:Bob prof:hasLocation ind:TwoPersonOffice_2414 (same as 1)

ind:TwoPersonOffice_2414 context:isConnectedTo ind:PrinterSpace_2419 (inferred
from 8, 14, 15)

5.2.4 IsA Operator
Example situational condition: If the location of user Bob isA Workspace_Business.

Example user situation: The location of user Bob is SinglePersonOffice_30.

At a first glance, again, there is no match between this example user situation and the
situational condition.

Figure 40: SPARQL Query for the isA Operator

Figure 40 depicts the SPARQL query for the isA operator. Substituting the entityID

parameter with Bob and the contextValue parameter with Workspace_Business, the ASK
construct for this example is as follows:

PREFIX prof: <http://ws.comtec.e-technik.uni-kassel.de/upos.owl#>
PREFIX context: <http://ws.comtec.e-technik.uni-kassel.de/context.owl#>
PREFIX ind: <http://ws.comtec.e-technik.uni-kassel.de/context-kb.owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
ASK
{ ind:”+entityID+” prof:hasLocation ?userLocation .
 ?userLocation rdf:type context:”+contextValue+”
}

CHAPTER 5: AUTOMATIC SELECTION OF USER PROFILES

95

ind:Bob prof:hasLocation ?userLocation

?userLocation rdf:type context:Workspace_Business

This query has a solution starting with the below initial ontology statements 1 to 4.

Statement 1 is the user situation added to the queried ontology model beforehand. Statement 2
is part of the Individuals Database, and statements 3 to 4 are part of the specification of the
location ontology as defined in section 4.3. Again, the finally inferred statements can be
inferred by means of different inference steps.

In the first step, statement 5 can be inferred by applying the rdfs:subClassOf relationship
of statement 3. In the final step, the generalisation / specialisation relationship
rdfs:subClassOf can be applied again.

1) ind:Bob prof:hasLocation ind:SinglePersonOffice_30

2) ind:SinglePersonOffice_30 rdf:type context:SinglePersonOffice

3) context:SinglePersonOffice rdfs:subClassOf context:Office

4) context:Office rdfs:subClassOf context:Workspace_Business

=>

5) ind:SinglePersonOffice_30 rdf:type context:Office (inferred from 2, 3)

=>

ind:Bob prof:hasLocation ind:SinglePersonOffice_30 (same as 1)

ind:SinglePersonOffice_30 rdf:type context:Workspace_Business (inferred from 4, 5)

In the following, we also show a second ontology reasoning example. In this example, the

owl:equivalentClass construct is included. This construct is similar to the owl:sameAs
construct that was introduced above. However, whereas the owl:sameAs construct can be
used for defining two individuals as equal, the owl:equivalentClass can instead be used to
define two ontology concepts as equivalent. In the location ontology introduced in section 4.3,
e.g. the concepts PresentationSpace and VideoProjectorSpace have been defined equivalent as
both terms are usually used to describe the same kind of room.

Example situational condition: If the location of user Bob isA VideoProjectorSpace.

Example user situation: The location of Bob is MeetingRoom_Comtec.

At a first glance, there is again no match between this example user situation and the
situational condition. However, the corresponding query has a solution starting with the below
initial ontology statements 1 to 4. Statement 1 is the user situation added to the queried
ontology model beforehand. Statements 2 and 3 are part of the Individuals Database, and
statement 4 is part of the specification of the location ontology as defined in section 4.3.
Statement 5 can be inferred from statement 2 and 3 as MeetingRoom_2413 can be substituted
with MeetingRoom_Comtec. In the final step, the missing statement to satisfy the

96

corresponding SPARQL query can be inferred from statement 4 and 5 as PresentationSpace
can be substituted with VideoProjectorSpace.

1) ind:Bob prof:hasLocation ind:MeetingRoom_Comtec

2) ind:MeetingRoom_Comtec owl:sameAs ind:MeetingRoom_2413

3) ind:MeetingRoom_2413 rdf:type context:PresentationSpace

4) context:PresentationSpace owl:equivalentClass context:VideoProjectorSpace

=>

5) ind:MeetingRoom_Comtec rdf:type context:PresentationSpace (inferred from 2, 3)

=>

ind:Bob prof:hasLocation ind:MeetingRoom_Comtec (same as 1)

ind:MeetingRoom_Comtec rdf:type context:VideoProjectorSpace (inferred from 4, 5)

5.2.5 IsWithinA Operator
Example situational condition: If the location of user Bob isWithinA
WlanAccessRange_Business.

Example user situation: The location of user Bob is MeetingRoom_Comtec.

At a first glance, again, there is no match between this example user situation and the
situational condition.

Figure 41: SPARQL Query for the isWithinA Operator

Figure 41 depicts the SPARQL query for the isWithinA operator. The ASK construct

consists of a UNION construct that represents the disjunction of two queries. The first query
is the same as for the isA operator. The second one checks whether a location is part of
another location of a certain location type. In fact, the first query is again only needed because

PREFIX prof: <http://ws.comtec.e-technik.uni-kassel.de/upos.owl#>
PREFIX context: <http://ws.comtec.e-technik.uni-kassel.de/context.owl#>
PREFIX ind: <http://ws.comtec.e-technik.uni-kassel.de/context-kb.owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
ASK
{ { ind:”+entityID+” prof:hasLocation ?userLocation .
 ?userLocation rdf:type context:”+contextValue+” }
UNION
{ ind:”+entityID+” prof:hasLocation ?userLocation .
 ?userLocation context:isPartOf ?location2 .
 ?location2 rdf:type context:”+contextValue+” }
}

CHAPTER 5: AUTOMATIC SELECTION OF USER PROFILES

97

the current OWL standard [20] does not support reflexive relationships as would be needed
here for the context:isPartOf relationship. Substituting the entityID parameter of Figure 41
with Bob and the contextValue parameter with WlanAccessRange_Business, the second query
for this example is as follows, consisting of two variables this time:

ind:Bob prof:hasLocation ?userLocation

?userLocation context:isPartOf ?location2

?location2 rdf:type context:WlanAccessRange_Business

This second query has a solution starting with the below initial ontology statements 1 to 7.

As the two queries are connected as a disjunction, the whole query has a solution. Statement 1
is the user situation added to the queried ontology model beforehand. Statements 2 to 5 are
part of the Individuals Database, and statements 6 and 7 are part of the specification of the
location ontology as defined in section 4.3. The finally inferred statements can be inferred by
means of different inference steps.

In the first step, statements 8 and 9 can be inferred by applying the rdfs:subPropertyOf
relationship of statement 6. In the next step, statement 9 can be inferred by applying the
transitivity of the context:isPartOf relation of statement 7. In the final step, the owl:sameAs
relationship of statement 2 can be applied to statement 10.

1) ind:Bob prof:hasLocation ind:MeetingRoom_Comtec

2) ind:MeetingRoom_Comtec owl:sameAs ind:MeetingRoom_2413

3) ind:MeetingRoom_2413 context:isDirectPartOf ind:Floor_A-3

4) ind:Floor_A-3 context:isDirectPartOf ind:WlanAccessRange_Comtec

5) ind:WlanAccessRange_Comtec rdf:type context:WlanAccessRange_Business

6) context:isDirectPartOf rdfs:subPropertyOf context:isPartOf

7) context:isPartOf rdf:type owl:TransitiveProperty

=>

8) ind:MeetingRoom_2413 context:isPartOf ind:Floor_A-3 (inferred from 3, 6)

9) ind:Floor_A-3 context:isPartOf ind:WlanAccessRange_Comtec (inferred from 4, 6)

=>

10) ind:MeetingRoom_2413 context:isPartOf ind:WlanAccessRange_Comtec
(inferred from 7, 8, 9)

=>

ind:Bob prof:hasLocation ind:MeetingRoom_Comtec (same as 1)

98

ind:MeetingRoom_Comtec context:isPartOf ind:WlanAccessRange_Comtec (inferred
from 2, 10)

ind:WlanAccessRange_Comtec rdf:type context:WlanAccessRange_Business (same
as 5)

5.2.6 IsConnectedToA Operator
Example situational condition: If the location of user Bob isConnectedToA
PrinterSpace_Business.

Example user situation: The location of Bob is TwoPersonOffice_2414.

At a first glance, again, there is no match between this example user situation and the
situational condition.

Figure 42: SPARQL Query for the isConnectedToA Operator

Figure 42 depicts the SPARQL query for the isConnectedToA operator. The ASK

construct consists of a UNION construct that represents the disjunction of two queries. The
first query is the same as for the isA operator. The second one checks whether a room is
connected to another room of a certain type. In fact, the first query is again only needed
because the current OWL standard [20] does not support reflexive relationships as would be
needed here for the context:isConnectedTo relationship. Substituting the entityID parameter
of Figure 42 with Bob and the contextValue parameter with PrinterSpace_Business, the
second query for this example is as follows, again consisting of two variables this time:

ind:Bob prof:hasLocation ?userLocation

?userLocation context:isConnectedTo ?location2

?location2 rdf:type context:PrinterSpace_Business

This second query has a solution starting with the below initial ontology statements 1 to 9.

As the two queries are connected as a disjunction, the whole query has a solution. Statement 1
is the user situation added to the queried ontology model beforehand. Statements 2 to 6 are
part of the Individuals Database, and statements 7 to 9 are part of the specification of the

PREFIX prof: <http://ws.comtec.e-technik.uni-kassel.de/upos.owl#>
PREFIX context: <http://ws.comtec.e-technik.uni-kassel.de/context.owl#>
PREFIX ind: <http://ws.comtec.e-technik.uni-kassel.de/context-kb.owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
ASK
{ { ind:”+entityID+” prof:hasLocation ?userLocation .
 ?userLocation rdf:type context:”+contextValue+” }
UNION
{ ind:”+entityID+” prof:hasLocation ?userLocation .
 ?userLocation context:isConnectedTo ?location2 .
 ?location2 rdf:type context:”+contextValue+” }
}

CHAPTER 5: AUTOMATIC SELECTION OF USER PROFILES

99

location ontology as defined in section 4.3. Again, the finally inferred statements can be
inferred by means of different inference steps.

In the first step, statements 10, 12 and 13 can be inferred by applying the
rdfs:subPropertyOf relationship of statement 7. Statement 11, on the other hand, can be
inferred, by applying the symmetry of the context:isDirectlyConnectedTo relationship of
statement 8. In the next step, statement 14 can be inferred by again applying the
rdfs:subPropertyOf relationship of statement 7, and statement 15 can be inferred by applying
the transitivity of the context:isConnectedTo relationship of statement 9. In the next steps,
statement 16 and the final statements can be inferred by again applying the transitivity of the
context:isConnectedTo relationship.

1) ind:Bob prof:hasLocation ind:TwoPersonOffice_2414

2) ind:TwoPersonOffice_2414 context:isDirectlyConnectedTo ind:Corridor_Comtec

3) ind:MeetingRoom_2413 context:isDirectlyConnectedTo ind:Corridor_Comtec

4) ind:MeetingRoom_2413 context:isDirectlyConnectedTo ind:Kitchen_2415

5) ind:Kitchen_2415 context:isDirectlyConnectedTo ind:PrinterSpace_2419

6) ind:PrinterSpace_2419 rdf:type context:PrinterSpace_Business

7) context:isDirectlyConnectedTo rdfs:subPropertyOf context:isConnectedTo

8) context:isDirectlyConnectedTo rdf:type owl:SymmetricProperty

9) context:isConnectedTo rdf:type owl:TransitiveProperty

=>

10) ind:TwoPersonOffice_2414 context:isConnectedTo ind:Corridor_Comtec
(inferred from 2, 7)

11) ind:Corridor_Comtec context:isDirectlyConnectedTo ind:MeetingRoom_2413
(inferred from 3, 8)

12) ind:MeetingRoom_2413 context:isConnectedTo ind:Kitchen_2415 (inferred from
4, 7)

13) ind:Kitchen_2415 context:isConnectedTo ind:PrinterSpace_2419 (inferred from 5
and 7)

=>

14) ind:Corridor_Comtec context:isConnectedTo ind:MeetingRoom_2413 (inferred
from 7, 11)

15) ind:MeetingRoom_2413 context:isConnectedTo ind:PrinterSpace_2419 (inferred
from 9, 12, 13)

100

=>

16) ind:TwoPersonOffice_2414 context:isConnectedTo ind:MeetingRoom_2413
(inferred from 9, 10, 14)

=>

ind:Bob prof:hasLocation ind:TwoPersonOffice_2414 (same as 1)

ind:TwoPersonOffice_2414 context:isConnectedTo ind:PrinterSpace_2419 (inferred
from 9, 15, 16)

ind:PrinterSpace_2419 rdf:type context:PrinterSpace_Business (same as 6)

5.3 Summary
In the first part of this chapter, we have introduced our User Profile Selection Module, which
has already been mentioned in section 3.2.1 as part of our user profile management
framework. The User Profile Selection Module carries out the selection of the matching user
profile subset for the user’s current situation. This is done by applying ontology reasoning in
the selection process. First, we have explained the general functioning of the module by
means of its sub-modules and processing steps. Afterwards, we have depicted the actual
selection algorithm by means of a detailed activity diagram.

In the second part of this chapter, we have depicted the details of the query process. That
is, for each example operator introduced in section 4.3.1, we have shown one or two detailed
query processes. In particular, we have created example user situations and example
situational conditions as a starting point for the query process. Afterwards, the corresponding
SPARQL query has been introduced. Finally, possible solutions for the inference step have
been shown that satisfy the corresponding query. This has been done by explaining the
inferred ontology statements in a step by step process from the starting point until the final
success state.

CHAPTER 6: EVALUATION OF THE USER PROFILE SELECTION MECHANISM

101

6 Evaluation of the User Profile Selection Mechanism

In this chapter, we evaluate our user profile selection approach in terms of runtime
performance. For this purpose, the execution time is compared between different reasoning
libraries. Besides different reasoning libraries, we also compare the execution time concerning
other variables related to ontology processing such as the number of individuals in the
Individuals Database and different interrelations between individuals in the ontology. These
comparisons are carried out for various reasoning examples, which are also introduced in this
chapter. Furthermore, we compare the supported functionality of our user profile selection
approach with other approaches that are not based on ontology reasoning. In the first part, we
describe the setup of the measurements. In the second section, we then show the results of the
measurements.

6.1 Setup
This section describes the setup for our measurements. This includes the system environment
of the user profile management system, the characteristics of our Individuals Database as well
as the description of the measurement steps and measurement samples.

6.1.1 System Environment
All measurements have been carried out on the same system, i.e. the same hardware and
software environment. This system has the following characteristics:

Computer Type:

• IBM ThinkPad T43, Type 1871 – 4AG

Operating System:

• Microsoft Windows XP Professional, Version 2002, Service Pack 2

Central Processing Unit:

• Intel Pentium M, 1.86 GHz

Main Memory:

• 1 GB RAM

The implementation of our whole profile management system has been done with the Java
programming language from Sun Microsystems, version Standard Edition 1.5.0. The
maximum amount of memory that the Java virtual machine has attempted to use in the default
configuration has been 63.5625 MBytes, as the Runtime.getRuntime().maxMemory() method
call has revealed.

In addition, we have used the Java-based Jena2 library [24] [25], particularly version
2.5.4., for ontology processing steps such as read-in, parsing and querying. For the ontology
reasoning task, we have also used the Jena2 library, but also other libraries, which are
introduced in the forthcoming section 6.2. Finally, we have also used the Java-based log4j
library from the Apache Logging Services Project [89] [90], particularly version 1.2.12. This
library is also part of the Jena2 project and hence does not have to be imported separately
anymore. The log4j library has been used to log and, hence, to measure the execution time for
different execution steps.

102

There are two things, which should be mentioned with regard to logging with log4j.
Firstly, logging events require execution time themselves. However, the execution time for
logging events is an issue of few microseconds, as experimental results with the log4j version
1.1.3 on a system with Windows 2000 operating system, an AMD Duron central processing
unit clocked at 800 MHz, and Java version Standard Edition 1.3 from Sun Microsystems have
shown. This issue is documented in the Java documentation (JavaDoc) of log4j version 1.1.3
and on the Web page for the log4j version 1.2 of the Apache Logging Services Project [89].
As our measurement results, which are shown in the forthcoming section 5.2, are within
three-digit milliseconds and few seconds, few logging events do not influence our
measurement results.

Secondly, log4j-based logging of execution time returns the difference, measured in
milliseconds, between the current time and a certain point in time in the past, in particular
1970. However, while the unit of time of the return value is a millisecond, the granularity of
the value depends on the underlying operating system and may be larger. For example, some
operating systems measure time in units of tens of milliseconds. Some others measure time in
units of approximately 15 to 16 milliseconds. This is explained in detail in [91]. Our system
belongs to the latter group and measures time in units of approximately 15 to 16 milliseconds.
Consequently, all measurements shown in the subsequent section may have a deviation of
approximately 15 to 16 milliseconds. However, as mentioned above, our measurement results
are within three-digit milliseconds and few seconds. Hence, they are only slightly influenced
by this deviation.

6.1.2 Individuals Database
In section 4.2 and 4.3, we have introduced our user profile ontology and our location ontology
respectively. The corresponding specifications are provided in Appendix C: Specification of
the User Profile Ontology and Appendix E: Specification of the Location Ontology
respectively. However, these ontologies define schemas, but do not include any individuals.
The reason for this was that these two ontologies are independent of a particular user, whereas
the individuals of the ontology concepts are user-specific.

In section 5.1, we have also mentioned the user-specific Individuals Database that is
loaded by the user profile selection mechanism. For the forthcoming measurements, we have
created an Individuals Database that includes a model of our premises, i.e. rooms, corridors,
floors, wings, departments, buildings, WLAN access ranges, UMTS access ranges, and other
locations. We have not only created individual locations, but also defined relationships
between connected rooms and locations that include other locations. As described in section
4.3, our location ontology can be used for such definitions.

Table 5: Characteristics of the Ontologies

Ontology # Triples # Classes # Properties # Individuals
User Profile Ontology 135 11 15 0
Location Ontology 606 200 9 0
Individuals Database 749 88 3 247
Composed Ontology 1490 207 23 247

Table 5 shows the characteristics of the single ontologies and the combined ontology that

comprises all three single ontologies. The combined ontology is the ontology that exists after
carrying out activity 3 of the activity diagram in Figure 36. Hence, this is the ontology that is
used during the user profile selection process, i.e. the ontology that is queried.

CHAPTER 6: EVALUATION OF THE USER PROFILE SELECTION MECHANISM

103

The number of triples of the ontologies has been counted by the W3C RDF Validation
Service [94]. The number of classes, properties and individuals of the ontologies has been
checked by the Pellet library [30]. In addition, the Pellet library has also been used for
successfully checking the consistency of the ontologies. Whereas the number of triples for the
composed ontology in Table 5 is the sum of those ones for the single ontologies, this is not
the case for the number of classes and properties. The reason for this is that e.g. the 88 classes
shown in the row of the Individuals Database are not defined in the Individuals Database but
imported from the location ontology. Hence, the number of classes and properties depicted in
the row of the composed ontology is smaller than the sum of the other rows.

For the subsequent measurements, we use the composed ontology as characterised here.
However, we also carry out measurements with bigger Individuals Databases, which then lead
to bigger composed ontologies. This is explained in more detail in the result section 6.2.

6.1.3 Measurement Steps
We have carried out different measurements concerning the user profile selection mechanism
and the corresponding activity diagram introduced in section 5.1. There are basically two
measurement steps.

Step 1
Step 1 includes the activities 1 to 3 of the activity diagram in Figure 36. Hence, this step
represents the creation of the combined ontology model. In this step, first an empty Jena2 [24]
[25] DefaultModel is created with the method call ModelFactory.createDefaultModel().
Afterwards, the user profile ontology introduced in section 4.2, the context ontology
introduced in section 4.3 and the user-specific Individuals Database introduced in section 5.1
are separately read from the file system, i.e. from .owl files containing RDF/XML
serialisations [82] of the related ontologies, and separately added to the combined ontology
model. This is done with the method call model.read(inputStream, ""), in which the parameter
inputStream represents the input stream (Java InputStream) of an ontology file. For more
detailed documentation related to Jena2, please refer to the Jena2 Web page [92].

Whereas the user profile ontology and the context ontology can be applied for all users of
the service platform, the Individuals Database is specific for each user of the service platform,
as described in section 5.1. Hence, the resulting combined ontology model is also user-
specific. This ontology model could be loaded once and kept in memory or stored as a whole
as long as there are no changes either in the user profile ontology, the context ontology or the
Individuals Database. This means, that this measurement step is actually not very interesting,
as the required execution time does not have to be considered for each user profile selection
process, but only for the first one.

Step 2
Step 2 includes the activities 4 and 8 to 11 of the activity diagram in Figure 36. The execution
time of the activities 5 to 7 is insignificant in comparison to the execution time of the other
activities in Figure 36, as they basically only comprise some few if-then-else statements.
Furthermore, the execution time for these if-then-else statements is the same for all
measurements and, hence, do not influence the forthcoming comparisons of the measured
execution times.

The activities 8 to 11 represent the query creation and the actual query. In the query
creation process, the query is created based on the given situational condition, i.e. based on
the context type, the operator and the context value of the situational condition. Queries are
expressed with the SPARQL query language [23]. The creation of such example SPARQL
queries has been shown in section 5.2. Subsequently, the actual query is carried out. For this

104

execution steps, different SPARQL query engines are used, i.e. different ontology reasoners
are used that support SPARQL queries. The query process also includes some query
preparation or query configuration process beforehand, which is specific to the corresponding
ontology reasoners.

In order to ensure comparable measurement results for different reasoners, step 2 includes
another processing sub-step, particularly the first processing sub-step in step 2. In this sub-
step we assume that the combined ontology model created in step 1 above is buffered as a
String object containing the RDF/XML serialisation of the combined ontology model. First,
this String object is converted to the required internal model representation of the
corresponding ontology reasoner, which is different for different reasoners. Afterwards, the
activity 4, i.e. adding the current user situation to that model, and the activities 8 to 11, i.e.
query creation and query, are carried out. Details of the ontology reasoner specific ontology
model preparation are described in the subsequent section on ontology reasoners.

Each measurement depicted in the subsequent sections has been carried out 10 times. The
shown measurement results, i.e. the execution times, are the arithmetic mean x of all 10
independent runs, computed with the following equation:

∑
=

=
+++

=
n

i
i

n x
nn

xxx
x

1

21 1...

In order to give additional qualitative information on the distribution of the corresponding

measurement values, we also provide the corresponding range R between the maximum and
the minimum value, and the standard deviation s, which are computed with the following
equations [93]:

minmax xxR −=

∑
=

−
−

=
n

i
i xx

n
s

1

2)(
1

1

6.1.4 Measurement Samples
In the previous subsection, we have described different measurement steps. However, we
have not explained, which samples have been measured, instead this is done now. For each
operator introduced in section 4.3.1, we have selected three samples, whereof the third sample
is always a sample with no match, i.e. which represents the false case. Each sample gets a
short identifier, e.g. A1 and B2, which is used later on in the document to refer to the samples.
Some samples have already been introduced in section 5.2. If not already introduced, the
corresponding user situation and situational condition are shown below. For the satisfiable
samples, in addition, also the starting statements and one possible solution is shown that
satisfies the corresponding query introduced in section 5.2, by means of the finally inferred
statements. However, the intermediate steps of the inference process are not depicted. Details
of intermediate steps are also depicted in section 5.2.

Equals operator

A1: Identical to the first example in section 5.2.1.

A2: Identical to the second example in section 5.2.1.

CHAPTER 6: EVALUATION OF THE USER PROFILE SELECTION MECHANISM

105

A3: As follows:

Situational condition: If the location of user Bob equals TwoPersonOffice_2414

User situation: The location of user Bob is MeetingRoom_2413

IsWithin operator

B1: Identical to the example in section 5.2.2.

B2: As follows:

Situational condition: If the location of user Bob isWithin UmtsAccessRange_T-
Mobile

User situation: The location of user Bob is MeetingRoom_Comtec

Starting statements:

1) ind:Bob prof:hasLocation ind:MeetingRoom_Comtec

2) ind:MeetingRoom_Comtec owl:sameAs ind:MeetingRoom_2413

3) ind:MeetingRoom_2413 context:isDirectPartOf ind:Floor_A-3

4) ind:Floor_A-3 context:isDirectPartOf ind:Department_ComTec

5) ind:Department_ComTec context:isDirectPartOf ind:Premises_Eecs

6) ind:Premises_Eecs context:isDirectPartOf ind:Premises_University

7) ind:Premises_University context:isDirectPartOf ind:Kassel

8) ind:Kassel context:isDirectPartOf ind:UmtsAccessRange_T-Mobile

9) context:isDirectPartOf rdfs:subPropertyOf context:isPartOf

10) context:isPartOf rdf:type owl:TransitiveProperty

Finally inferred statements:

ind:Bob prof:hasLocation ind:MeetingRoom_Comtec

ind:MeetingRoom_Comtec context:isPartOf ind:UmtsAccessRange_T-Mobile

B3: As follows:

Situational condition: If the location of user Bob isWithin OfficeBuilding_WA66

User situation: The location of user Bob is MeetingRoom_Comtec

106

IsConnectedTo operator

C1: Identical to the example in section 5.2.3.

C2: As follows:

Situational condition: If the location of user Bob isConnectedTo PrinterSpace_2419

User situation: The location of user Bob is MeetingRoom_Comtec

Starting statements:

1) ind:Bob prof:hasLocation ind:MeetingRoom_Comtec

2) ind:MeetingRoom_Comtec owl:sameAs ind:MeetingRoom_2413

3) ind:MeetingRoom_2413 context:isDirectlyConnectedTo ind:Kitchen_2415

4) ind:Kitchen_2415 context:isDirectlyConnectedTo ind:PrinterSpace_2419

5) context:isDirectlyConnectedTo rdfs:subPropertyOf context:isConnectedTo

6) context:isConnectedTo rdf:type owl:TransitiveProperty

Finally inferred statements:

ind:Bob prof:hasLocation ind:MeetingRoom_Comtec

ind:MeetingRoom_Comtec context:isConnectedTo ind:PrinterSpace_2419

C3: As follows:

Situational condition: If the location of user Bob isConnectedTo Kitchen_28

User situation: The location of user Bob is MeetingRoom_Comtec

IsA operator

D1: Identical to the first example in section 5.2.4.

D2: Identical to the second example in section 5.2.4.

D3: As follows:

Situational condition: If the location of user Bob isA PrivatePlace

User situation: The location of user Bob is MeetingRoom_Comtec

CHAPTER 6: EVALUATION OF THE USER PROFILE SELECTION MECHANISM

107

IsWithinA operator

E1: As follows:

Situational condition: If the location of user Bob isWithinA OfficeBuilding

User situation: The location of user Bob is SinglePersonOffice_30

Starting statements:

1) ind:Bob prof:hasLocation ind:SinglePersonOffice_30

2) ind:SinglePersonOffice_30 context:isDirectPartOf ind:Floor_WA66-A-1

3) ind:Floor_WA66-A-1 context:isDirectPartOf ind:Wing_WA66-A

4) ind:Wing_WA66-A context:isDirectPartOf ind:OfficeBuilding_WA66

5) ind:OfficeBuilding_WA66 rdf:type context:OfficeBuilding

6) context:isDirectPartOf rdfs:subPropertyOf context:isPartOf

7) context:isPartOf rdf:type owl:TransitiveProperty

Finally inferred statements:

ind:Bob prof:hasLocation ind:SinglePersonOffice_30

ind:SinglePersonOffice_30 context:isPartOf ind:OfficeBuilding_WA66

ind:OfficeBuilding_WA66 rdf:type context:OfficeBuilding

E2: Identical to the example in section 5.2.5.

E3: As follows:

Situational condition: If the location of user Bob isWithinA BtAccessRange_Business

User situation: The location of user Bob is SinglePersonOffice_30

IsConnectedToA operator

F1: Identical to the example in section 5.2.6.

F2: As follows:

Situational condition: If the location of user Bob isConnectedToA Library_Business

User situation: The location of user Bob is SinglePersonOffice_2408

Starting statements:

108

1) ind:Bob prof:hasLocation ind:SinglePersonOffice_2408

2) ind:SinglePersonOffice_2408 context:isDirectlyConnectedTo
ind:Corridor_Comtec

3) ind: Corridor_Comtec context:isDirectlyConnectedTo
ind:MeetingRoom_2413

4) ind:Library_2413 owl:sameAs ind:MeetingRoom_2413

5) ind:Library_2413 rdf:type context:Library_Business

6) context:isDirectlyConnectedTo rdfs:subPropertyOf context:isConnectedTo

7) context:isConnectedTo rdf:type owl:TransitiveProperty

Finally inferred statements:

ind:Bob prof:hasLocation ind:SinglePersonOffice_2408

ind:SinglePersonOffice_2408 context:isConnectedTo ind:Library_2413

ind:Library_2413 rdf:type context:Library_Business

F3: As follows:

Situational condition: If the location of user Bob isConnectedToA
PrinterSpace_Private

User situation: The location of user Bob is SinglePersonOffice_2408

6.2 Results
In this section, we provide the results of our user profile selection approach in terms of
runtime performance. Our results are shown for different ontology reasoning libraries,
different reasoning samples, different numbers of individuals in the Individuals Database,
different interrelations between these individuals, and different user profile selection
approaches. Furthermore, we compare the supported functionality with other user profile
selection approaches that are not based on ontology reasoning.

In section 6.1.3, we have introduced two measurement steps. The first measurement step,
i.e. the creation of the combined ontology model, is the same for all measurements except that
different Individuals Databases are used, as will be explained below. In this step, no reasoner
libraries are needed, since the related ontology processing steps are all carried out with the
Jena2 library [24] [25]. The related measurement results are shown in detail in Appendix F:
Measurement Results. The arithmetic mean x of the runtime measurements are 1320.3
milliseconds. The arithmetic mean x has been introduced in section 6.1.3. However, as
mentioned in section 6.1.3, the ontology model created in this step could be loaded once and
kept in memory or stored as a whole as long as there are no changes either in the user profile
ontology, the context ontology or the Individuals Database. Hence, this measurement step is
not that important for the evaluation of our user profile selection mechanism.

CHAPTER 6: EVALUATION OF THE USER PROFILE SELECTION MECHANISM

109

From now on, we concentrate on the second measurement step. That is, the forthcoming
measurement results shown in this section represent the results for the measurement step 2 of
section 6.1.3. In the measurement step 2, first a String object containing the RDF/XML
serialisation [82] of the combined ontology model is converted to the required internal model
representation of the corresponding ontology reasoner. Afterwards, the current user situation
is added to that model, and finally, the corresponding query is created and executed.

6.2.1 Comparison of Reasoner Performance
The measurements for the measurement step 2 described above has been carried out for
different ontology reasoning libraries. In particular, we have used Jena2 [24], KAON2 [26],
Pellet [30], and FaCT++ [32]. The Pellet reasoner has even been used with three different
configurations. These reasoners and their configurations are explained in the following.

Jena2 Reasoner:
Primarily, the Jena2 library is a Java-based library for managing RDF [17] and OWL [20]
documents, i.e. for the creation, manipulation, storage and retrieval of RDF and OWL
documents. As explained in section 6.1.1, we, too, use this library for these purposes, in
particular version 2.5.4 of the Jena2 library. However, the Jena2 library also supports
SPARQL queries [23] and includes a rule-based inference engine. For the purpose of
reasoning, an inference model (Jena2 InfModel) has to be created that includes the ontology
to be queried. In addition, this inference model has to be configured with a reasoner. The
corresponding source code can be seen below.

Model model = ModelFactory.createDefaultModel();
Reasoner reasoner = ReasonerRegistry.getOWLReasoner();
InfModel infModel = ModelFactory.createInfModel(reasoner, model);

In this source code extract, first an empty DefaultModel is created. Afterwards a reasoner

is instantiated, in particular the Jena2 OWL Reasoner. Subsequently, an inference model is
instantiated and the reasoner and DefaultModel are assigned to the inference model. In the
next step, not shown here, first our combined ontology from measurement step 1 is added to
the inference model, second the user’s current situation is also added afterwards.

Jena2 also provides another possibility for configuring reasoners. In this second
possibility, an ontology model specification (Jena2 OntModelSpec) is assigned to the
ontology to be queried. Besides the ontology model specification OWL_MEM_RULE_INF
for the Jena2 OWL Reasoner introduced above, Jena2 also provides several other ontology
model specifications, e.g. the OWL_MEM_TRANS_INF specification for transitive class-
hierarchy inference, or the OWL_MEM_MINI_RULE_INF specification for a rule-based
reasoner with a subset of OWL rules. By means of this mechanism, also external ontology
model specifications can be used. One such example is the ontology model specification of
the Pellet reasoner, which is explained later.

Although these two possibilities for configuring a reasoner in Jena2 are documented to be
equivalent from a functional point of view, the former requires less execution time, as our
experiments have shown. Hence, our measurements are based on the implementation with the
source code extract above. Furthermore, our implementation continues with the source code
extract below, in which the actual query is executed, and the query result is returned in terms
of a Boolean value. The query parameter in the first source code line is a SPARQL ASK
query, as introduced in section 5.1.

Query sparqlQuery = QueryFactory.create(query);

110

QueryExecution queryExec = QueryExecutionFactory.create(sparqlQuery, infModel);
String result = Boolean.toString(queryExec.execAsk());

Pellet Reasoner (Configuration 1):
Pellet is an OWL DL (OWL Description Logics) reasoner in Java. It supports the full
expressivity of OWL DL. The Pellet version we have used is version 1.5.1. The Pellet library
uses the Jena2 library for managing ontologies, which is why we can create a Jena2
DefaultModel at the beginning, as shown below, and subsequently add our combined
ontology from measurement step 1, and the user’s current situation.

Model model = ModelFactory.createDefaultModel();

Subsequently, the Pellet reasoner is instantiated, the ontology model is loaded, and the
consistency of the model is checked:

OWLReasoner reasoner = new OWLReasoner();
reasoner.setDiscardJenaGraph(true);
reasoner.load(model);
KnowledgeBase kb = reasoner.getKB();
kb.isConsistent();

Finally, the query is executed, where the queryString parameter is a SPARQL ASK query.

If the final results parameter is empty, the result is equivalent to the Boolean value false,
otherwise to the Boolean value true. Unfortunately, the used Pellet version does not support
the UNION construct used in our SPARQL queries in section 5.2. However, this is not a
problem, as the UNION construct expresses a disjunction and hence can be substituted with
two SPARQL queries one after another.

QueryParser parser = QueryEngine.createParser();
org.mindswap.pellet.query.Query query = parser.parse(queryString, kb);
QueryResults results = QueryEngine.exec(query);

Pellet Reasoner (Configuration 2):
In this Pellet configuration, we use the mechanism described in the Jena2 Reasoner section
above, in which we assign the Pellet specific ontology model specification (Jena2
OntModelSpec) to the ontology to be queried. The instantiation of the related ontology model
looks as follows, where the PelletReasonerFactory.THE_SPEC is the Pellet specific ontology
model specification.

OntModel model =
ModelFactory.createOntologyModel(PelletReasonerFactory.THE_SPEC);

The subsequent processing steps are the same as for the Jena2 Reasoner:

Query sparqlQuery = QueryFactory.create(query);
QueryExecution queryExec = QueryExecutionFactory.create(sparqlQuery, model);
String result = Boolean.toString(queryExec.execAsk());

One advantage of this configuration is that one does not require detailed programming

skills of the Pellet library. Every line of source code is based on the Jena2 library, except that
the Pellet specific PelletReasonerFactory.THE_SPEC specification has to be added.

CHAPTER 6: EVALUATION OF THE USER PROFILE SELECTION MECHANISM

111

Pellet Reasoner (DIG Configuration):
In this third Pellet configuration, the Pellet reasoner is used via a DIG interface. The DIG
interface is an interface that has been specified by the Description Logic Implementation
Group (DIG). The DIG interface is a standard for providing access to description-logic
reasoning via an HTTP (Hypertext Transfer Protocol)-based interface to a separate reasoning
process. In this configuration, the Pellet reasoner is started as a DIG server beforehand and
can be accessed via the corresponding IP address and port. When starting the Pellet DIG
server in the default configuration, which we have not changed, the Java virtual machine is
started with the arguments -Xms30m -Xmx200m. The -Xms30m argument sets the initial
amount of memory for the Java virtual machine to 30 MBytes, and the -Xmx200m argument
sets the maximum amount of memory for the Java virtual machine to 200 MBytes, compared
to 63.5625 MBytes, which is the default configuration on our system as mentioned in section
6.1.1.

The request to the DIG server is done with the Jena2 library, which has to be configured
accordingly. In the below example, first a configuration resource is set up to connect to the
external reasoner that is accessible at the address localhost and port 8081.

Model cModel= ModelFactory.createDefaultModel();
Resource conf= cModel.createResource();
conf.addProperty(ReasonerVocabulary.EXT_REASONER_URL,

cModel.createResource("http://localhost:8081"));

In the following steps, a DIGReasoner object is created that can bind an ontology graph to
an external reasoner:

DIGReasonerFactory drf= (DIGReasonerFactory)ReasonerRegistry.theRegistry().
getFactory(DIGReasonerFactory.URI);

DIGReasoner r= (DIGReasoner)drf.create(conf);

Next, we create an ontology model specification that includes the DIG reasoner created
above:

OntModelSpec spec= new OntModelSpec(OntModelSpec.OWL_DL_MEM);
spec.setReasoner(r);
OntModel model= ModelFactory.createOntologyModel(spec);

In the next step, not shown here, our combined ontology from measurement step 1 and the

user’s current situation have to be added to the created ontology model. The subsequent
processing steps are the same as for the Jena2 Reasoner:

Query sparqlQuery = QueryFactory.create(query);
QueryExecution queryExec = QueryExecutionFactory.create(sparqlQuery, model);
String result = Boolean.toString(queryExec.execAsk());

KAON2 Reasoner:
Primarily, KAON2 is a Java-based infrastructure for managing OWL DL ontologies and other
kinds of ontologies. However, it also provides ontology reasoning support. The KAON2
version we have used is the version of January 14, 2008. In order to create the ontology, we
have to start by creating a connection and by registering a so-called resolver that provides a
physical URI for the ontology:

112

KAON2Connection connection=KAON2Manager.newConnection();
DefaultOntologyResolver resolver=new DefaultOntologyResolver();
connection.setOntologyResolver(resolver);

Afterwards, we read the ontology from an input stream (Java InputStream). This time, we

can not directly use objects, i.e. ontology models, from the Jena2 library, as the KAON2
library is independent from the Jena2 library. Hence, we first create the combined ontology
model with Jena2, add the user’s current situation with Jena2, and finally convert the Jena2
ontology model to an input stream (Java InputStream), which can then be processed from the
KAON2 library for reading the ontology. The modelStream parameter below represents the
ontology model as an input stream.

HashMap hm= new HashMap();
String key= KAON2Connection.LOAD_FROM_INPUT_STREAM;
InputStream value= modelStream;
hm.put(key, value);
Ontology ontology=connection.openOntology("http://www.ex.de/upos.owl", hm);

Subsequently, the reasoner is created, a query object is created, and the query is executed.

The queryString parameter represents the corresponding SPARQL ASK query.

Reasoner reasoner=ontology.createReasoner();
Query myQuery=reasoner.createQuery(new Namespaces(Namespaces.INSTANCE),

queryString);
myQuery.open();

FaCT++ Reasoner (DIG Configuration):
FaCT++ is an OWL DL reasoner, implemented using C++. As well as the Pellet reasoner, it
provides a DIG interface. We have used the FaCT++ DIG reasoner, in particular the version
1.1.10, in the same way as the Pellet DIG reasoner. Hence, the source code is the same as in
the section for the Pellet Reasoner with DIG configuration, except that it has to be adapted to
the appropriate IP address and port.

CHAPTER 6: EVALUATION OF THE USER PROFILE SELECTION MECHANISM

113

Figure 43: Execution Time for Different Reasoners

As can be seen in Figure 43, there are considerable differences in the execution time

between the different reasoners and reasoner configurations. As mentioned in section 6.1.2,
the combined ontology, which is queried here, consists of 1490 triples and 247 individuals.
The diagram shows the execution time in milliseconds for the complete measurement step 2,
see section 6.1.3, for six of the query samples introduced in section 6.1.4. As can be seen, the
Pellet reasoner with configuration 1 clearly outperforms all other reasoners and other Pellet
reasoner configurations. The second best performance is provided by the Pellet reasoner with
configuration 2.

Third is either the Jena2 or the Pellet reasoner with DIG configuration. The FaCT++ DIG
reasoner only successfully answers the query samples A1 and D1. This is not surprising, as
the FaCT++ reasoner in a first instance supports terminological reasoning [30] [32], also
called T-Box (Terminological Box) reasoning. Terminological reasoning asserts facts about
concepts (sets of objects) and roles (binary relations). Contrary to this, assertional reasoning,
also called A-Box (Assertional Box) reasoning asserts facts about individuals (single objects).
A-Box reasoning is neither required in the query sample A1, nor in the query sample D1. As
described in section 5.2.1, query sample A1 does not require any reasoning at all, and query
sample D1 requires reasoning over the class hierarchy, i.e. requires terminological reasoning.
By contract, the execution of the query samples B1, C1, E1 and F1 include reasoning over
individuals, i.e. assertional reasoning, and hence can not successfully be answered by
FaCT++. Finally, Figure 43 clearly shows that the KAON2 reasoner performs the worst for
these query samples.

0

500

1000

1500

2000

2500

3000

3500

Ex
ec

ut
io

n
Ti

m
e

(m
s)

A1 B1 C1 D1 E1 F1
Query Samples

Comparison of Reasoner Performance
(Ontology with 1490 Triples, 247 Individuals)

Pellet Config 1
Pellet Config 2
Jena2
KAON2
Pellet DIG
FaCT++ DIG

114

Figure 44: Query-Only Execution Time for Different Reasoners

Figure 44 shows the execution time for the query-only execution. The query-only

execution time shown in this diagram does not cover the whole measurement step 2, but only
the final query step, i.e. activity 11 (Query ontology model) of the activity diagram in section
5.1. Hence, the other steps of measurement step 2, i.e. activities 4 and 8 to 10 of the activity
diagram, as well as reasoner preparation time are not included.

As can be seen in Figure 44, the qualitative results are the same as for Figure 43, i.e. the
winner is Pellet with configuration 1, second is Pellet with configuration 2, third are either
Jena2 or Pellet with DIG configuration and worst is KAON2. However, the quantitative
results differ considerably from that ones in Figure 43. In particular, all reasoners require
several hundreds of milliseconds less. The highest performance gain can be documented for
the KAON2 reasoner and the Pellet reasoner with configuration 1.

This comparison is interesting in case we assume that several queries have to be carried
out one after another. This is usually the case, as we need one query for each situational
condition within a user profile, and as a user profile usually has multiple situational
conditions. In this case, we do not have to read in and configure the ontology model, include
the user’s current situation and instantiate and prepare the corresponding ontology reasoner
for each query again and again. These additional steps are only needed in case the user’s
situation changes. In this case, the underlying ontology model has to be changed. In
particular, the user’s current situation that has been added to the ontology model has to be
removed as it is outdated in this case, and the up-to-date user’s current situation has to be
added. In addition, already inferred statements may have to be removed from the ontology
model.

Hence, only in case the user’s situation changes, some additional execution time has to be
considered in addition to the query-only execution time in Figure 44. Obviously, the
maximum execution time in this case is the execution time in Figure 43, i.e. the execution
time for the complete measurement step 2. Consequently, we could carry out the whole
measurement step 2 including the activities 4 and 8 to 11 of the activity diagram in section 5.1
in case the user’s situation changes. For this purpose, we propose to use the Pellet reasoner

0
200
400
600
800

1000
1200
1400
1600
1800

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
(m

s)

A1 B1 C1 D1 E1 F1
Query Samples

Comparison of Reasoner Performance
(Ontology with 1490 Triples, 247 Individuals)

Pellet Config 1
Pellet Config 2
Jena2
KAON2
Pellet DIG
FaCT++ DIG

CHAPTER 6: EVALUATION OF THE USER PROFILE SELECTION MECHANISM

115

with configuration 1, based on the measurement results shown in Figure 43. Furthermore, we
could carry out the query-only step, i.e. activity 11 of the activity diagram in section 5.1, in
case several situational conditions, i.e. queries, have to be checked for the same user situation.
Based on the measurement results shown in Figure 44, we again propose to use the Pellet
reasoner with configuration 1.

In a realistic scenario, the Pellet reasoner with configuration 1 would need about 900
milliseconds for the preparation of the ontology model, the preparation of the reasoner and the
first query after a situation change of a user has been reported to the user profile selection
mechanism. Every subsequent query would in this case need about 100 milliseconds in
addition, where the number of needed queries is at most the overall number of situational
conditions in the corresponding user profile. This could be acceptable for many non-time
critical applications. However, the fact that one query needs about 100 milliseconds shows,
why it is important to cluster situation-dependent user data based on situational conditions, as
we have proposed it with our user profile structure and ontology. The clustering can avoid
redundant queries, and hence helps to reduce the overall execution time.

Detailed measurement results, for both Figure 43 and Figure 44, are provided in Table 11
in Appendix F: Measurement Results. These results show the arithmetic mean, the range and
the standard deviation as introduced in section 6.1.3. Another observation based on these
measurement results is, that the standard deviation and the range between maximum and
minimum values is considerably high for the Pellet DIG configuration in comparison to the
other reasoners.

The reasons for the differences in execution times between different reasoners can not be
answered completely in all cases. For the Pellet reasoner with configuration 1 and
configuration 2, exactly the same reasoner is used. As explained above, only the
configurations differ slightly. Unfortunately, neither the documentation of the Jena2 library
nor the documentation of the Pellet reasoner gives any hints on expected differences between
these two configurations.

The reasons for the differences in execution time between the Pellet reasoner and the
Jena2 reasoner could be explained as follows: The developers of the Jena2 reasoner in a first
instance focus on the management of RDF and OWL documents. Hence, the provided
reasoners within the Jena2 library are not in the main scope of developers, are still incomplete
and under development. The Pellet reasoner library on the other hand is a library dedicated to
ontology reasoning. The developers of the Pellet library are from one of the most experienced
and respected research groups in the world with regard to ontology reasoning. This research
group has also participated in the specification of the W3C OWL recommendation. For the
ontology reasoning tasks in the Pellet library, they use advanced tableaux algorithms [95] for
expressive Description Logics, which may not be used within the Jena2 library.

The reasons for the differences in execution time between the Pellet reasoner and the
KAON2 reasoner seem to be due to the used type of algorithms. An important focus of the
KAON2 reasoner is on scalable and efficient reasoning with ontologies. Contrary to most
other currently available reasoners, KAON2 does not implement the tableaux calculus.
Rather, reasoning in KAON2 is implemented by novel algorithms which reduce the
corresponding knowledge base to a disjunctive datalog program [96].

Finally, there are the differences in execution time between the Pellet reasoner as used
with configuration 1 or 2, and the DIG based variants of Pellet and FaCT++. As the
differences in execution time can not be caused by the Pellet reasoning process, it must have
to do with the fact that the DIG based reasoners communicate via an HTTP based interface.
This interface seems to require additional execution time.

Interesting reasoner performance measurements and detailed discussions on ontology
reasoning techniques are also presented in [27] and [30]. In [30], the performance for different
test cases is compared between different reasoners, particularly for Pellet, Racer Pro [33], and

116

FaCT++. The reason, why we have not included Racer Pro in our evaluation is that it is a
commercial reasoner. In this comparison, on the one hand, loading, consistency checking and
classification timings for some well-known OWL ontologies have been carried out for Pellet.
On the other hand, classification times for these three reasoners have been compared
concerning different ontologies, and query answering has been compared between Pellet and
Racer Pro. The related experiments have shown that Pellet is not as efficient as FaCT++ or
Racer Pro in T-Box reasoning tasks, but its performance is still competitive when reasoning
with large number of individuals. Furthermore, in [27], a comparison between KAON2, Pellet
and Racer is presented. The conclusion of this comparison is that KAON2 performs better
than or as good as Pellet and Racer for ontologies with rather simple T-Boxes, but large A-
Boxes, but worse for ontologies with large and complex T-Boxes.

However, it is difficult to compare the results of the work in [27] and [30] with ours, as
the results depend on the characteristics of the ontology, i.e. the used OWL constructs, the
number of classes, properties, individuals and triples, the type of reasoning, i.e. terminological
or assertional reasoning, as well as the actual query cases. Hence, all these results should be
considered collectively in case a reasoner has to be chosen to achieve a certain goal within a
certain system. In this sense, our comparison is specific for our user profile selection
mechanism, our corresponding ontologies and our approach of querying the ontology with
SPARQL queries of the ASK query type.

6.2.2 Comparison of Query Samples
In this section, we present differences concerning execution time between different query
samples. As mentioned in section 6.1.4, for each of the six operators equals, isWithin,
isConnectedTo, isA, isWithinA and isConnectedToA, we have created three query samples,
identifiable through the identifiers A1 to F3.

Figure 45: Query Samples for Pellet Reasoner with Configuration 1

0
100
200
300
400
500
600
700
800
900

1000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3 E1 E2 E3 F1 F2 F3

Query Samples

Comparison of Pellet (Config 1) Query Samples
(Ontology with 1490 Triples, 247 Individuals)

Query
All

CHAPTER 6: EVALUATION OF THE USER PROFILE SELECTION MECHANISM

117

Figure 46: Query Samples for Jena2 Reasoner

Figure 45 shows this comparison for the Pellet reasoner with configuration 1, whereas

Figure 46 shows the same comparison for the Jena2 reasoner. In both diagrams, the All bar
represents the measurement of the complete measurement step 2 as in Figure 43, and the
Query bar represents the query-only measurement as in Figure 44. As can be seen by
comparing both diagrams, the differences in execution times are much more stable for the
Pellet reasoner with configuration 1 as for the Jena2 reasoner. The differences in execution
time between the query samples of the Pellet reasoner are within 100 milliseconds for both
bars. By comparison, the differences in execution time between the query samples of the
Jena2 reasoner are up to approximately 1600 milliseconds.

Both diagrams have something in common. In particular, the A and D query samples in
both diagrams require less execution time than the B, C, E and F query samples. This may be
caused due to the computation of symmetric and transitive relations that do not have to be
inferred in the A and D query samples, but in the other query samples. Furthermore, the Jena2
reasoner seems to have a problem with the B2 query sample, in which it requires
approximately 1 second more than for most of the other query samples including the query
samples B1 and B3, which are similar to B2 in the nature of reasoning that takes place.

The comparisons for KAON2, FaCT++ DIG, Pellet DIG and Pellet with configuration 2
are not shown here. However, their behaviour can also be explained with the above examples.
The results for KAON2 are, from a qualitative view, similar to that ones for Pellet in Figure
45. There are only differences up to approximately 100 milliseconds in execution times
between all query samples. The same also holds for the FaCT++ DIG reasoner, having in
mind that it only supports the query samples A1 and D1 as discussed in the previous section
6.2.1. The Pellet DIG reasoner also shows the same behaviour, but the differences in
execution time between the query samples are up to 200 milliseconds, where especially the E
and F query samples require more execution time than the other query samples.

The Pellet reasoner with configuration 2 unfortunately reveals partly similar behaviour as
the Jena2 reasoner. In particular, the query samples E1, E3, F2 and F3 require up to
approximately 300 milliseconds more than all other query samples including E2 and F1,

0

500

1000

1500

2000

2500

3000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3 E1 E2 E3 F1 F2 F3

Query Samples

Comparison of Jena2 Query Samples
(Ontology with 1490 Triples, 247 Individuals)

Query
All

118

which are similar in the nature of reasoning that takes place. Based on these results, we also
propose to use the Pellet reasoner with configuration 1, as it is not only the fastest reasoner as
shown in section 6.2.1, but also seems to be very stable in terms of execution time for
different query samples.

6.2.3 Comparison of Numbers of Individuals
In this section, we show results of the same measurements as in section 6.2.1, but with bigger
Individual Databases, i.e. with more individuals in the Individual Database. In particular, we
have created Individuals Databases with about 10 times and with about 100 times as many
individuals, i.e. rooms, buildings, etc. as in the standard version in section 6.2.1.

Figure 47: Duplication of and Interrelation between Individuals (Version A)

Figure 47 shows how we have carried out the duplication of the individuals in order to

create bigger versions of the Individuals Database. Starting with the example at the top of
Figure 47, the same interrelation between individuals has been duplicated 10 times, and the
duplicated individuals have been renamed accordingly. Consequently, the resulting
Individuals Database contains about 10 times as many individuals. Furthermore, this kind of
duplications leads to the fact that each type of location has now 10 times as many instances as
before. The distribution of individuals over the location ontology remains the same as before.
The same also holds for the relations between individuals, i.e. there are now 10 times as many
relations as before. However, the Individuals Database contains 10 independent parts, as there
are no relations between individuals of different parts. For instance, there is no relation
between the individuals Department_2 and Floor_1. The same has been done for the creation
of the Individuals Database with about 100 times as many individuals accordingly. We have
called this kind of duplication method Version A, in order to distinguish it from and compare
it with another duplication method that is explained in the next section.

Department_1

Floor_1

Room_1A Room_1B

hasDirectPart

hasDirectParthasDirectPart

isDirectlyConnectedTo

Department_2

Floor_2

Room_2A Room_2B

hasDirectPart

hasDirectParthasDirectPart

isDirectlyConnectedTo

Department_10

Floor_10

Room_10A Room_10B

hasDirectPart

hasDirectParthasDirectPart

isDirectlyConnectedTo

2……10

Department_1

Floor_1

Room_1A Room_1B

hasDirectPart

hasDirectParthasDirectPart

isDirectlyConnectedTo

Department_1

Floor_1

Room_1A Room_1B

hasDirectPart

hasDirectParthasDirectPart

isDirectlyConnectedTo

Department_2

Floor_2

Room_2A Room_2B

hasDirectPart

hasDirectParthasDirectPart

isDirectlyConnectedTo

Department_2

Floor_2

Room_2A Room_2B

hasDirectPart

hasDirectParthasDirectPart

isDirectlyConnectedTo

Department_10

Floor_10

Room_10A Room_10B

hasDirectPart

hasDirectParthasDirectPart

isDirectlyConnectedTo

Department_10

Floor_10

Room_10A Room_10B

hasDirectPart

hasDirectParthasDirectPart

isDirectlyConnectedTo

2……10

CHAPTER 6: EVALUATION OF THE USER PROFILE SELECTION MECHANISM

119

Table 6: Characteristics of Individuals Databases (Version A)

Ontology # Triples # Classes # Properties # Individuals
Individuals
Database 749 88 3 247 Standard

Version
Composed
Ontology 1490 207 23 247

Individuals
Database 7117 88 3 2056 10x-A

Version
Composed
Ontology 7861 207 23 2056

Individuals
Database 70728 88 3 20146 100x-A

Version
Composed
Ontology 71472 207 23 20146

The characteristics of the created Individuals Databases with about 10 times (10x-A

Version) and with about 100 times (100x-A Version) as many individuals can be seen in
Table 6. The Standard Version in this table is the same version as in section 6.1.2, which we
have added for comparison purposes. We have counted the triples, classes, properties and
individuals in the same way as in section 6.1.2.

Figure 48: Execution Time for the 10x-A Version

As can be seen in Figure 48, there are also considerable differences in the execution time

for the 10x-A Version, similar to that ones in the Standard Version of the Individuals
Database in Figure 43. The diagram shows the execution time in milliseconds for the
complete measurement step 2 for six of the query samples introduced in section 6.1.4. As can
be seen, the Pellet reasoner with configuration 1 performs best, slightly better than the Pellet
reasoner with configuration 2 and the Jena2 reasoner. Forth are the two DIG reasoners.

0

1000

2000

3000

4000

5000

6000

7000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

A1 B1 C1 D1 E1 F1
Query Samples

Comparison of Reasoner Performance
(Ontology with 7861 Triples, 2056 Individuals)

Pellet Config 1
Pellet Config 2
Jena2
KAON2
Pellet DIG
FaCT++ DIG

120

Finally, the KAON2 reasoner performs the worst, as also in Figure 43. Furthermore, for the
same reasons as mentioned in section 6.1.4, the FaCT++ DIG reasoner only successfully
answers the query samples A1 and D1. The detailed measurement results are shown in Table
12 in Appendix F: Measurement Results.

Figure 49: Query-Only Execution Time for the 10x-A Version

Figure 49 shows the execution time for the query-only execution with the 10x-A Version.

As can be seen, the query-only execution time for the Pellet reasoner with configuration 1 is
only slightly higher than with the Standard Version in Figure 44. All other reasoners require
more execution time than with the Standard Version, especially the KAON2 reasoner and the
two DIG reasoners. This time, the two DIG reasoners provide the worst performance of all.

0

500
1000

1500
2000

2500

3000

3500

4000

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
(m

s)

A1 B1 C1 D1 E1 F1
Query Samples

Comparison of Reasoner Performance
(Ontology with 7861 Triples, 2056 Individuals)

Pellet Config 1
Pellet Config 2
Jena2
KAON2
Pellet DIG
FaCT++ DIG

CHAPTER 6: EVALUATION OF THE USER PROFILE SELECTION MECHANISM

121

Figure 50: Execution Time for the 100x-A Version

As can be seen in Figure 50, there are also considerable differences in the execution time

for the 100x-A Version. The Pellet reasoner with configuration 1, the Pellet reasoner with
configuration 2 and the Jena2 reasoner provide the best performance. KAON2 provides the
worst performance. The Pellet DIG reasoner on the other hand, has been very unstable.
Sometimes it has worked with execution times of about 30 seconds or more, but sometimes an
internal server error has been returned. However, there was no reasoner, which could provide
results with the default memory configuration for the Java virtual machine described in 6.1.1.
Just extending the main memory of our system to 1.5 or 2 GB RAM has not changed this
situation either. Hence, for all measurements with the 100x-A Version, we have started the
Java virtual machine with the argument -Xmx1600m that increases the available memory for
the Java virtual machine. The detailed measurement results are shown in Table 13 in
Appendix F: Measurement Results.

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

A1 D1
Query Samples

Comparison of Reasoner Performance
(Ontology with 71472 Triples, 20146 Individuals)

Pellet Config 1
Pellet Config 2
Jena2
KAON2
FaCT++ DIG

122

Figure 51: Query-Only Execution Time for the 100x-A Version

Figure 51 shows the execution time for the query-only execution with the 100x-A

Version. As can be seen, the query-only execution time for the Pellet reasoner with
configuration 1 is the best, followed by the Pellet reasoner with configuration 2, then by the
Jena2 reasoner, then by the KAON2 reasoner, and finally by the FaCT++ DIG reasoner.

In summary, we can observe that with more individuals, especially with the 100x-A
Version of the Individuals Database, the difference in terms of runtime performance between
the reasoners increases. Especially interesting is the query-only evaluation in Figure 49 and
Figure 51, which clearly shows the superiority of the Pellet reasoner with configuration 1. The
measurement differences between most reasoners for the measurements of the whole
measurement step 2 shown in Figure 48 and Figure 50 respectively, minus the query-only
measurements is quite small on the other hand. For instance, all reasoners require about 10
seconds or more for the preparation of the ontology model and the preparation of the reasoner
with the 100x-A Version. Figure 49 and Figure 51 show that at least for the Pellet reasoners
with configuration 1 and 2, the preparation time is a lot higher than the actual query execution
time, for both 10x-A Version and 100x-A Version.

For a realistic scenario, the Pellet reasoner with configuration 1 and the 10x-A Version
could still be acceptable for many non-time-critical applications. In this case, the preparation
of the ontology model, the preparation of the reasoner and the first query would be finished
2.2 seconds after a situation change of a user has been reported to the user profile selection
mechanism. Every subsequent query would in this case need about 200 milliseconds in
addition, where the number of needed queries is at most the overall number of situational
conditions in the corresponding user profile.

0

5000

10000

15000

20000

25000

30000

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
(m

s)

A1 D1
Query Samples

Comparison of Reasoner Performance
(Ontology with 71472 Triples, 20146 Individuals)

Pellet Config 1
Pellet Config 2
Jena2
KAON2
FaCT++ DIG

CHAPTER 6: EVALUATION OF THE USER PROFILE SELECTION MECHANISM

123

6.2.4 Comparison of Interrelations between Individuals
In this section, we show results of the same measurements as in section 6.2.1, but again with
different Individuals Databases. In particular, we have created Individuals Databases with
about 10 times and with about 100 times as many individuals as in the Standard Version in
section 6.2.1. Compared to the Individuals Databases in the previous section 6.2.3, the have
chosen another approach for duplicating the individuals, which has lead to a different
interrelation between the individuals in the ontology. We also compare the results of these
two different duplication approaches in this section. Our motivation for this comparison is to
investigate, if the performance of ontology reasoners depends on different interrelations
between individuals.

Figure 52: Duplication of and Interrelation between Individuals (Version B)

Figure 52 shows how we have carried out the duplication of the individuals this time in

order to create bigger versions of the Individuals Database. Starting with the example at the
top of the left-hand side of Figure 52, which is the same example as in the previous section
6.2.3, we have not created 10 independent parts this time. This time, the initial interrelation
between individuals has been duplicated in such a way that all resulting individuals are related
to the initial individuals. The rule we have applied for this purpose is that we have added 9
additional hasDirectPart relations with 9 additional individuals for each existing hasDirectPart
relation. For instance, as the initial Individuals Database contains the hasDirectPart relation
between Department_1 and Floor_1, we have added the 9 additional hasDirectPart relations
between Department_1 and Floor_2, to Department_1 and Floor_10, where this step also
includes the creation of the new individuals Floor_2 to Floor_10. As depicted in Figure 52,
the same has also been done for all existing isDirectlyConnectedTo relations. For the creation
of the Individuals Database with about 100 times as many individuals, we have done the same
accordingly.

As a result, this kind of duplication leads to the same fact as in the duplication approach in
section 6.2.3, that each type of location has now about 10 times as many instances as before.
That is, also this time, the distribution of individuals over the location ontology remains the
same as before. However, this time, as mentioned at the beginning, the individuals are

Department_1

Floor_1

Room_1A Room_1B

hasDirectPart

hasDirectParthasDirectPart

isDirectlyConnectedTo

Department_1

Floor_1

Room_1A Room_1B

hasDirectPart

isDirectlyConnectedTo

2……10 Floor_10Floor_2

hasDirectParthasDirectPart

Room_2A Room_2BRoom_10A Room_10B2…10 2…10

hasDirectPart hasDirectPart

isDirectlyConnectedTo

Department_1

Floor_1

Room_1A Room_1B

hasDirectPart

hasDirectParthasDirectPart

isDirectlyConnectedTo

Department_1

Floor_1

Room_1A Room_1B

hasDirectPart

hasDirectParthasDirectPart

isDirectlyConnectedTo

Department_1

Floor_1

Room_1A Room_1B

hasDirectPart

isDirectlyConnectedTo

2……10 Floor_10Floor_2

hasDirectParthasDirectPart

Room_2A Room_2BRoom_10A Room_10B2…10 2…10

hasDirectPart hasDirectPart

isDirectlyConnectedTo

Department_1

Floor_1

Room_1A Room_1B

hasDirectPart

isDirectlyConnectedTo

2……10 Floor_10Floor_2

hasDirectParthasDirectPart

Room_2A Room_2BRoom_10A Room_10B2…10 2…10

hasDirectPart hasDirectPart

isDirectlyConnectedTo

124

interrelated differently compared to the duplication approach in section 6.2.3. We have called
this kind of duplication method Version B, in order to distinguish it from and compare it with
the duplication method already introduced in the previous section.

Table 7: Characteristics of Individuals Databases (Version B)

Ontology # Triples # Classes # Properties # Individuals
Individuals
Database 749 88 3 247Standard

Version Composed
Ontology 1490 207 23 247

Individuals
Database 7013 88 3 205610x-B

Version Composed
Ontology 7757 207 23 2056

Individuals
Database 69316 88 8 20776100x-B

Version Composed
Ontology 70060 207 23 20776

The characteristics of the created Individuals Databases with about 10 times (10x-B

Version) and with about 100 times (100x-B Version) as many individuals can be seen in
Table 7. The Standard Version in this table is the same version as in section 6.1.2, which we
have added for comparison purposes. We have counted the triples, classes, properties and
individuals in the same way as in section 6.1.2. The number of individuals and triples for the
B Versions of the Individuals Databases is not exactly the same as for the A Versions, but
almost the same.

Figure 53: Execution Time for the 10x-B Version

0

5000

10000

15000

20000

25000

30000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

A1 B1 C1 D1 E1 F1
Query Samples

Comparison of Reasoner Performance
(Ontology with 7757 Triples, 2056 Individuals)

Pellet Config 1
Pellet Config 2
Jena2
KAON2
Pellet DIG
FaCT++ DIG

CHAPTER 6: EVALUATION OF THE USER PROFILE SELECTION MECHANISM

125

Figure 53 shows the execution time in milliseconds for the complete measurement step 2
for six of the query samples introduced in section 6.1.4. As can be seen in the diagram, there
are considerable differences in the execution time for the 10x-B Version. Whereas the Pellet
reasoner with configuration 1, the Pellet reasoner with configuration 2 and the Jena2 reasoner
have similar execution time and provide the best performance, the two DIG reasoners and the
KAON2 reasoner perform worse. The KAON2 reasoner even needs approximately 11 times
as much time as the best reasoners in this comparison. For the same reasons as mentioned in
section 6.1.4, the FaCT++ DIG reasoner only successfully answers the query samples A1 and
D1. The Jena2 reasoner on the other hand, is not able to successfully execute the query cases
C1 and F1 due to the Java exception java.lang.OutOfMemoryError. The detailed
measurement results are shown in Table 14 in Appendix F: Measurement Results.

Figure 54: Query-Only Execution Time for the 10x-B Version

Figure 54 shows the execution time for the query-only execution with the 10x-B Version.

As can be seen, the query-only execution time for the Pellet reasoner with configuration 1 is
only slightly higher than with the Standard Version in Figure 44. All other reasoners require
several 100 milliseconds or even several seconds more execution time than with the Standard
Version. The results for the KAON2 reasoner are not shown in the diagram for the purpose of
better readability. The query-only execution time for the KAON2 reasoner is about 3 to 4
seconds less than the complete execution time, i.e. about 24 seconds for all the query samples.

0

500

1000

1500

2000

2500

3000

3500

4000

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
(m

s)

A1 B1 C1 D1 E1 F1
Query Samples

Comparison of Reasoner Performance
(Ontology with 7757 Triples, 2056 Individuals)

Pellet Config 1
Pellet Config 2
Jena2
Pellet DIG
FaCT++ DIG

126

Figure 55: Execution Time for the 100x-B Version

As can be seen in Figure 55, there are also considerable differences in the execution time

for the 100x-B Version. The Pellet reasoner with configuration 1, the Pellet reasoner with
configuration 2 and the Jena2 reasoner provide the best performance. The Pellet DIG reasoner
has been very unstable, as for the 100x-A Version in the previous section. Sometimes it has
worked with execution times of about 30 seconds or more, but sometimes an internal server
error has been returned. The KAON2 reasoner on the other hand could not provide an answer
within 60 seconds, after which we cancelled the query. As for the 100x-A Version, there was
no reasoner, which could provide results with the default memory configuration for the Java
virtual machine described in 6.1.1. Hence, for all measurements with the 100x-B Version, we
have started the Java virtual machine with the argument -Xmx1600m, as for the 100x-A
Version. The detailed measurement results are shown in Table 15 in Appendix F:
Measurement Results.

0

5000

10000

15000

20000

25000
30000

35000

40000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

A1 D1
Query Samples

Comparison of Reasoner Performance
(Ontology with 70060 Triples, 20776 Individuals)

Pellet Config 1
Pellet Config 2
Jena2
FaCT++ DIG

CHAPTER 6: EVALUATION OF THE USER PROFILE SELECTION MECHANISM

127

Figure 56: Query-Only Execution Time for the 100x-B Version

Figure 56 shows the corresponding execution time for the query-only execution with the

100x-B Version. As can be seen, the query-only execution time for the Pellet reasoner with
configuration 1 is the best, followed by the Pellet reasoner with configuration 2, then by the
Jena2 reasoner, and finally by the FaCT++ DIG reasoner.

In summary, we can observe that most reasoners have the same or at least similar
behaviour for both duplication approaches. Hence, for these reasoners, the way how
individuals are interrelated with each other seems not so relevant for our query samples.
However, KAON2 does not show the same behaviour, as is shown later.

0

5000

10000

15000

20000

25000

30000

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
(m

s)

A1 D1
Query Samples

Comparison of Reasoner Performance
(Ontology with 70060 Triples, 20776 Individuals)

Pellet Config 1
Pellet Config 2
Jena2
FaCT++ DIG

128

Figure 57: Query Samples for Pellet Reasoner with Configuration 1

Figure 57 depicts the query-only performance of the Pellet reasoner with configuration 1

for the Standard Version, the 10x-A Version, and the 10x-B Version of the Individuals
Database. As can be seen, the difference in runtime is insignificant for the A and D query
samples. However, it also shows that for most other query samples, the execution time is
slightly higher for the 10x-B Version compared to the 10x-A Version. This behaviour is much
more pronounced for the KAON2 reasoner, as can be seen below.

0

50

100

150

200

250

300

350

400

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
(m

s)

A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3 E1 E2 E3 F1 F2 F3

Query Samples

Comparison of Pellet (Config 1) Query Samples

Standard Version
10x-A Version
10x-B Version

CHAPTER 6: EVALUATION OF THE USER PROFILE SELECTION MECHANISM

129

Figure 58: Query Samples for KAON2 Reasoner

Figure 58 depicts the same comparison as Figure 57, but for the KAON2 reasoner.

Obviously, there are huge runtime differences depending on the interrelation between the
individuals. Hence, we can not recommend this reasoner for our user profile selection
mechanism as the content of the Individuals Database is user-specific. As explained in section
5.1.1, the Individuals Database includes the locations the user often visits and stays at, such as
her home, the premises in which she works, and the environment in which she lives. Hence,
the user-specific Individuals Database could sometimes be similar to that one in the 10x-A
Version, and sometimes to that one in the 10x-B Version.

6.2.5 Comparison of User Profile Selection Approaches
In this section, we compare the results of our ontology-based user profile selection approach
shown in the previous section with results of other approaches. In particular, we wanted to
investigate, whether the use of classifications instead of ontologies decreases runtime. Hence,
we have created classifications by changing the ontologies already introduced in this
document. For this purpose, we have taken the user profile ontology, the context ontology and
the different version of the Individuals Databases and have removed all property
specifications and all properties between individuals. As a result, we have got the
classifications shown in Table 8. The number of classes is exactly the same as for the
ontology version, whereas the number of properties is zero now. The number of individuals is
almost the same as for the ontology versions, see Table 6 and Table 7. However, the number
of triples is considerably less than for the ontology versions, as all relations between
individuals have been dropped.

0

5000

10000

15000

20000

25000

30000

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
(m

s)

A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3 E1 E2 E3 F1 F2 F3

Query Samples

Comparison of KAON2 Query Samples

Standard Version
10x-A Version
10x-B Version

130

Table 8: Characteristics of Classifications

Classification # Triples # Individuals
Individuals
Database 259 247 Standard

Version
Composed
Classification 814 247

Individuals
Database 2131 2119 10x

Version
Composed
Classification 2687 2119

Individuals
Database 20851 20839 100x

Version
Composed
Classification 21407 20839

Figure 59: Execution Time for Classification Versions

Figure 59 depicts the results for the overall execution time with the standard (std)

classification version, and the 10x and 100x classification version. The use of classifications
and reasoning with classifications does not support the B, C, E and F query samples. This is
because these samples reason over transitive and symmetric properties, which are not
available anymore in the classifications. Hence, only the A and D query samples are
supported and shown in Figure 59. Again, the winner in terms of runtime performance is the
Pellet reasoner with configuration 1, except for the 100x Version. The worst performance is
provided by the KAON2 reasoner and the Pellet DIG reasoner. The detailed measurement
results are shown in Table 16, Table 17 and Table 18 in Appendix F: Measurement Results.
For the 100x Version, the Jena2 reasoner and the KAON2 reasoner worked with the default
memory configuration for the Java virtual machine as described in section 6.1.1. For the other

0
2000
4000
6000
8000

10000
12000
14000
16000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

A1
Std

D1
Std

A1
10x

D1
10x

A1
100x

D1
100x

Query Samples

Comparison of Reasoner Performance

Pellet Config 1
Pellet Config 2
Jena2
KAON2
Pellet DIG

CHAPTER 6: EVALUATION OF THE USER PROFILE SELECTION MECHANISM

131

reasoners, we have started the Java virtual machine with the parameter -Xmx1600m, as done
for the 100x-A and 100x-B ontology versions in section 6.2.3 and 6.2.4.

Figure 60: Query-Only Execution Time for Classification Versions

Figure 60 depicts the same comparison as in Figure 59, but for the query-only execution

time. This time, the Pellet reasoner with configuration 1 clearly outperforms the other
reasoners. For the purpose of readability we have not shown the runtime results for the Pellet
DIG reasoner for the query samples A1 and D1 with the classification 100x Version. The
results for these two measurements are 14.217 seconds and 14.420 seconds respectively.

Table 9: Comparison of Supported Functionality

 Approach
Operator Default Classification-

based
Ontology-

based
equals Yes Yes Yes
equals (extended) No Yes* Yes
isA No Yes Yes
isA (extended) No Yes* Yes
isWithin No No Yes
isWithinA No No Yes
isConnectedTo No No Yes
isConnectedToA No No Yes

Table 9 shows the comparison of three user profile selection approaches in terms of

supported functionality. As described in the previous sections, our ontology-based approach
supports all the introduced operators. The classification-based approach introduced in this
section does not support all operators. It only supports the equals operator for checking
equality between individuals and the isA operator for checking specialisation and

0

500

1000

1500

2000

2500

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
(m

s)

A1
Std

D1
Std

A1
10x

D1
10x

A1
100x

D1
100x

Query Samples

Comparison of Reasoner Performance

Pellet Config 1
Pellet Config 2
Jena2
KAON2
Pellet DIG

132

generalisation of classes. Depending on whether we enable the OWL constructs owl:sameAs
and owl:equivalentClass in the classification-based approach, the extended equals operator
and the extended isA operator are also supported.

The default approach represents the fastest way to process an RDF document. In this
approach, the user profile selection mechanism receives the user’s current situation as an RDF
document from the Context Client Module as is the case for the ontology-based and the
classification-based approach, and as is described in section 5.1.1. However, this time, no
other ontologies are loaded. That is, we do not load the user profile ontology, the context
ontology and the Individuals Database. Instead, we directly query the RDF document
including the user’s current situation with the corresponding SPARQL query. Obviously, the
processing step can not include any ontology reasoning this time, as there is no underlying
ontology, i.e. no underlying classification and no relationship information. Hence, the default
approach only supports the equals operator for checking equality of individuals. Our
motivation to compare it with our ontology-based approach and the classification-based
approach is to compare the runtime difference between the fastest way to process and query a
small RDF document and the more complex way to query and reason over an ontology.

Figure 61: Execution Time of User Profile Selection Approaches

Figure 61 shows the result for this comparison for the overall execution time, i.e. the

execution time for the whole measurement step 2 as described in section 6.1.3. As we have
expected, the execution time for the default approach is less than for the other approaches, but
still needs about 300 milliseconds. The other results shown in Figure 61 represent the fastest
reasoner in each case based on the results of the previous sections. In fact, the Pellet reasoner
with configuration 1 was the fastest reasoner for each case. Hence, this diagram shows the
comparison of the minimum execution times for each approach.

0

500

1000

1500

2000

2500

Ex
ec

ut
io

n
Ti

m
e

(m
s)

A1 B1 C1 D1 E1 F1
Query Samples

Comparison of Approaches

Default
Classification
Classification 10x
Ontology
Ontology 10x-A
Ontology 10x-B

CHAPTER 6: EVALUATION OF THE USER PROFILE SELECTION MECHANISM

133

Figure 62: Query-Only Execution Time of User Profile Selection Approaches

Figure 62 depicts the same comparison as Figure 61, but for the query-only execution

time. As can be seen, the query-only execution time for the ontology-based and the
classification-based approaches, even for the versions with 10 times as many individuals, are
almost as fast as for the default approach.

In summary, for the best performing reasoner, i.e. the Pellet reasoner with configuration 1,
we hence can observe that the query-only execution time for the ontology-based approach is
about as fast as for the query of a simple RDF document in the default approach. However, it
increases for some query samples, particularly for the B, C, E and F query samples, which are
not supported by the default approach on the other hand. Comparing the results of Figure 62
with those of Figure 61, it becomes clear that the predominant part of the execution time
concerns the preparation of the ontology model and the preparation of the reasoner. However,
whereas the query-only execution time has to be considered and added up for every
situational condition in the queried user profile, the preparation of the ontology model and the
preparation of the reasoner has to be done only once for each user profile selection process.
The preparation of the ontology model and the reasoner only has to be done at the beginning
of the user profile selection process, i.e. in case the user’s situation changes and a new user
profile selection process is started.

6.3 Summary
In this chapter the evaluation of our user profile selection approach in terms of runtime
performance and supported functionality has been shown. In the first part of this chapter, we
have described the setup for our user profile selection mechanism and the corresponding
runtime measurements. We have described the system environment of the user profile
management framework, the settings for the Java virtual machine, the software libraries used
for the management of RDF documents, and the software libraries used for ontology
reasoning tasks.

0

50

100

150

200

250

300

350

400

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
(m

s)

A1 B1 C1 D1 E1 F1
Query Samples

Comparison of Approaches

Default
Classification
Classification 10x
Ontology
Ontology 10x-A
Ontology 10x-B

134

Furthermore, we have depicted the characteristics of our user profile ontology, our context
ontology and our Individuals Database in terms of number of triples, number of classes,
number of properties, and number of individuals. Finally, we have also introduced the
different measurement steps, the measurement procedure and the measurement samples. For
each of the introduced operators in section 4.3.1, we have created and explained three
measurement samples. The detailed measurements results are provided in Appendix F:
Measurement Results, showing the arithmetic mean, the range between maximum and
minimum value, and the standard deviation.

It should be stressed that the results of the evaluation of the user profile selection
mechanism, summarised below, are biased due to all the mentioned reasons: choice of
hardware and software environment as described in section 6.1.1, implementation approach as
described in section 3.2.1 and 5.1.1, design of ontologies as described in chapter 4 and
dimension of database as described in section 6.1.2. The outcome of this is that there may me
a significant opportunity for improving the performance compared to the results described.

The second part of this chapter contains the actual measurement results for the following
runtime comparisons:

• Comparison of reasoner libraries
• Comparison of query samples
• Comparison of numbers of individuals
• Comparison of interrelations between individuals
• Comparison of user profile selection approaches

The comparison of reasoner libraries has shown that there are considerable differences in
execution time between different reasoners. For our user profile selection mechanism, the
Pellet reasoner with configuration 1 has clearly outperformed the other reasoner libraries for
both the query-only measurement, as well as the whole measurement step 2. The latter one in
addition includes the preparation of the ontology model and the reasoner. By comparison, the
KAON2 reasoner performed the worst for both cases.

The comparison of query samples has also shown that different reasoners display different
behaviour for different query samples. The range between the maximum and minimum value
for the execution time of all query samples has been about 100 milliseconds for the Pellet
reasoner with configuration 1. By comparison, this range has been about 1600 milliseconds
for the Jena2 reasoner. In summary, the Pellet reasoner with configuration 1 was the most
stable in terms of same execution times for different query samples.

For the comparison of numbers of individuals, we have created additional Individuals
Databases with 10 times and 100 times as many individuals as in the initial version of the
Individuals Database. Subsequently, we have carried out the same measurements for both
versions as for the initial version. The measurement results again have shown that the Pellet
reasoner with configuration 1 has performed best for the version with 10 times as many
individuals. For the version with 100 times as many individuals, the Pellet reasoner has also
performed best for the query-only execution time. Other reasoners could provide the same or
slightly better results only for the execution time of the whole measurement step 2.

In addition to the previous comparison, we have also carried out measurements with yet
other versions of the Individuals Database. In particular, we have created yet other Individuals
Databases with 10 times and 100 times as many individuals as in the initial version. This time
however, we have used another duplication approach, which has resulted in different
interrelations between the individuals within the Individuals Databases. The results of the
corresponding measurements and the comparison to the previous duplication approach again
have shown that the Pellet reasoner with configuration 1 has performed best. However, it has
also shown that for most query samples, the execution time has been slightly higher for the
latter version compared to the previous version. For the KAON2 reasoner, on the other hand,
there are huge runtime differences between these two versions. In particular, the KAON2

CHAPTER 6: EVALUATION OF THE USER PROFILE SELECTION MECHANISM

135

reasoner has needed up to 10 times as much query-only execution time for the latter version
compared to the previous one. As explained in section 5.1.1, the Individuals Database
includes the locations the user often visits and stays at, such as her home, the premises in
which she works, and the environment in which she lives. Hence, the Individuals Database is
user-specific, and could sometimes be similar to the one in the latter version, and sometimes
to the one in the previous version. Consequently, we can not recommend the KAON2
reasoner for our user profile selection mechanism.

Finally, the comparison of different user profile selection approaches has shown that for
the best performing reasoner, i.e. the Pellet reasoner with configuration 1, the query-only
execution time for our ontology-based approach is about as fast as for other approaches. In
particular, we have compared our ontology-based user profile selection mechanism with a
classification-based user profile selection mechanism. As well, we have compared our
approach with the fastest way to process a simple RDF document with the Jena2 library. In
this approach, the user profile selection mechanism has received the user’s current situation as
an RDF document and has directly queried it without loading the user profile ontology, the
context ontology and the Individuals Database.

The reverse conclusion for these comparison results is that the predominant part of the
overall execution time concerns the preparation of the ontology model and the preparation of
the reasoner. However, whereas the query-only execution time has to be considered and added
up for every situational condition in the queried user profile, the preparation of the ontology
model and the preparation of the reasoner has to be done only once for each user profile
selection process. Consequently, the preparation of the ontology model and the reasoner only
has to be done at the beginning of the user profile selection process, i.e. in case the user’s
situation changes and a new user profile selection process is started.

Besides the comparison of runtime performance, we have also compared the functionality
that is supported by these three user profile selection approaches. Whereas our ontology-
based user profile selection approach supports all operators introduced in section 4.3.1, the
classification-based approach only supports a small subset of these operators, and the third
approach explained above even supports less operators. Hence, the ontology-based approach
provides the most expressiveness. Consequently, the ontology-based approach is the best
approach for enabling expressive situational conditions for situation-dependent user
preferences as introduced in section 3.1.1.

From our point of view, the Pellet reasoner with configuration 1 provides acceptable
performance in realistic scenarios for many non-time-critical applications. With the initial
Individuals Database, the measurement step 2 described in section 6.1.3, i.e. the preparation
of the ontology model, the preparation of the reasoner and the first query, would be finished
about 900 milliseconds after a situation change of a user has been reported to the user profile
selection mechanism. Every subsequent query would in this case additionally need about 100
milliseconds, where the number of needed queries is at most the overall number of different
situational conditions in the corresponding user profile. This result also shows, why it is
important to cluster situation-dependent user data based on situational conditions, as we have
proposed it with our user profile structure and ontology. The clustering can avoid redundant
queries, and hence helps to reduce the overall execution time.

Even for the Individuals Databases with 10 times as many individuals as in the initial
version, the preparation of the ontology model, the preparation of the reasoner and the result
for the first query would be finished 2.2 seconds after a situation change of a user has been
reported to the user profile selection mechanism. Every subsequent query would in this case
additionally need about 200 milliseconds. Furthermore, other experiments have shown that
the runtime performance of ontology reasoners can be improved when extending the main
memory of the system and at the same time increasing the available memory for the Java
virtual machine with the corresponding start argument.

136

CHAPTER 7: CONCLUSION

137

7 Conclusion

In this closing chapter we first summarise the content and contribution of this thesis, which
consists of the following:

• Design of a suitable user profile structure
• Analytic evaluation of search tasks to show the benefits of our user profile structure
• Design and implementation of a suitable user profile management system
• Modelling of a user profile ontology
• Modelling of a location ontology
• Design and implementation of a user profile selection mechanism
• Evaluation of our user profile selection mechanism in terms of runtime performance

and supported functionality
• Experience report on using ontology reasoning capabilities

Second, the results of this doctoral thesis are evaluated against the requirements and goals
stated in the introduction chapter of this thesis. Third, the implications of the suggested user
profile management approach for service platforms for networks beyond 3G are discussed.
Again, it should be mentioned that the service platform model referred to and described in this
thesis is only a simplification of real-world service platforms. In reality, such service
platforms are much more complex, including numerous layers and enablers, which are not
addressed here.

Fourth, we discuss the results of our approach and the corresponding evaluation. Finally,
the outlook addresses future work and issues that are related to this thesis, but have not been
discussed in detail here.

7.1 Summary
As mentioned in the introduction chapter, the focus of this thesis is on the management and
automatic selection of situation-dependent user preferences in context-aware service
platforms for future mobile telecommunications systems. As the basic requirement, we have
identified the research and development of a user profile management system that manages
multiple user profile data required by different kinds of services. Furthermore, this user
profile management system was to consider the use of different vocabularies for expressing
user attributes. It was also intended to support automatic situation-dependent service
personalisation without the need for user interaction. And, last but not least, it was to provide
an easily understandable way for the normal non-technical user to specify situation-dependent
user preferences. However, the main focus of this thesis has been on the automatic selection
of matching situation-dependent user preferences combined with an easily understandable
way to define expressive situation-dependent user preferences. In doing so, the user should
not be faced with the complexity of the underlying user profile selection mechanism and
technology.

To reach this goal, we first discussed design issues related to user profile structures for
service platforms and introduced our user profile structure. This user profile structure enables
the specification of application-specific user sub-profiles as required in service platforms to
enable different application-specific user attribute vocabularies. Besides application-specific
user sub-profiles, the user profile structure also enables the definition of situation-specific
user preferences and situation-specific sub-profiles by adding situational conditions.
Situational conditions are conditions that describe the situation, in which situation-dependent
user preferences are relevant. These two properties are not fully covered with existing user
profile structures and user profile ontologies such as GUP [36] [37], CC/PP [38], FOAF [41],

138

vCard [42] or GUMO [44] [45] [46]. The situational conditions have been designed with the
aim to be easily understandable and editable for the normal non-technical user on the one
hand, but still being expressive enough to enable useful and detailed conditions on the other
hand. For this purpose, an approach has been chosen, which is similar to a simple clause in
the English language of the form <subject> <verb> <object>. In combination with a user
profile editor, the definition of such situational conditions can be carried out in just selecting
items from select lists. This means that for each of the attributes of a situational condition, the
user does not have to fill out a blank text field, but can select from a pre-defined list.

Furthermore, we have also provided an analytic evaluation of runtime performance
concerning two different search tasks for this user profile structure. The analytic evaluation
has compared the required comparison steps for finding matching situation-dependent user
data between different user profile structures. The results have shown that clustering user
profile data into several situation-specific user sub-profiles, as is done in our user profile
structuring approach, is beneficial with regard to the runtime performance for the targeted
search tasks.

Subsequently, we discussed design issues for user profile management and presented our
user profile management framework, which is a flexible modular framework that implements
the specific requirements for the targeted environment. Existing research approaches and
specifications such as GUP [37], GUC [58] [59] and others [61] [62] [63] [64] do not fully
cover the envisioned functionality for service platforms in the telecommunications
environment. For example, most of them do not include a mechanism for the automatic
selection of the matching situation-dependent user preferences.

Our user profile management framework consists of three layers and several sub-modules,
whereof several sub-modules are easily exchangeable. As a result, the user profile
management framework is easily adaptable to different requirements as could arise in
different service platform environments. A detailed activity diagram has been provided that
depicts the inter-working of sub-modules and explains the steps carried out during user profile
request by clients of the user profile management framework. In addition, also the interaction
with a context management framework as part of the same service platform has been shown.
Due to the integration into this context management framework the user profile management
system can offer subscription/notification functionality beside the request/response
communication pattern.

In the next chapter we addressed ontology modelling issues, showed the need to develop
ontologies in service platforms and explained a potential approach for an ontology
infrastructure for this environment. After this, we introduced our user profile ontology as a
sub-ontology within such an ontology infrastructure. The specification of the user profile
ontology is based on the user profile structure introduced before. Besides a description of
ontology classes and properties, we also provided visualisations of the ontology, and a
discussion on how the ontology can be extended with individual user attribute vocabularies on
the one hand, and with individual context ontologies on the other hand.

We also presented our location ontology as an example of a context ontology for service
platforms. However, the same modelling approach as shown in that section could also be used
for other kinds of context ontologies, such as ontologies for user activities. We described how
to design context ontologies in such a way that we can develop an advanced user profile
selection mechanism that is based on ontology reasoning. The approach we followed is not
the development of a user profile selection mechanism based on arbitrary context ontologies.
Instead, both development steps have been linked together. This means that the development
of the example location ontology is based on the goals we follow with our user profile
selection mechanism. The location ontology has also been presented by means of class and
property descriptions, as well as visualisations and descriptions of the class hierarchy.

CHAPTER 7: CONCLUSION

139

In the subsequent chapter, we have addressed design and implementation of our User
Profile Selection Module, which is part of our user profile management framework. The User
Profile Selection Module carries out the selection of the matching user sub-profile for the
user’s current situation. This is done by applying ontology reasoning in the selection process.
First, we explained the general functioning of the module by means of its sub-modules and
processing steps. Afterwards, we depicted the actual selection algorithm by means of a
detailed activity diagram. We have also depicted the details of several query processes. In
particular, we created example user situations and example situational conditions as a starting
point for the query process. Afterwards, the corresponding query was introduced and possible
solutions for the inference step were shown that satisfy the corresponding query.

Finally, the evaluation of our user profile selection approach in terms of runtime
performance and supported functionality was shown. For this purpose, the setup for our user
profile selection mechanism and the corresponding runtime measurements were described, the
characteristics of our user profile ontology, our context ontology and our database in terms of
number of triples, number of classes, number of properties, and number of individuals were
depicted, and also the different measurement steps, the measurement procedure and the
measurement samples were introduced.

Subsequently, we depicted the actual measurement results for several runtime
comparisons. In particular, we showed the results for the comparison of reasoner libraries,
query samples, numbers of database entries, and user profile selection approaches. The results
show that there are considerable differences in execution time between different reasoners. In
summary, the Pellet reasoner library [30] has clearly outperformed all other reasoner libraries
for most measurements. The comparison of user profile selection approaches has also shown
that for the best performing reasoner, i.e. the Pellet reasoner, the query-only execution time
for our ontology-based approach is about as fast as for other approaches that do not include
ontology reasoning steps. It should be mentioned that the query-only execution time does not
include the execution time needed for the preparation of the ontology model and the reasoner.

Beside the comparison of runtime performance, we also compared the functionality that is
supported by different user profile selection approaches. We clearly showed that the
ontology-based approach provides the most expressiveness. Hence, the ontology-based
approach has shown to be the best approach for enabling expressive situational conditions for
situation-dependent user preferences.

7.2 Evaluation
The evaluation in this section evaluates the results of this thesis against the requirements and
goals stated in section 1.3. For a better overview, first the goal stated in that section is
repeated, and afterwards evaluated:

Goal 1:

• Design and implementation of a user profile management system that is capable of
managing the following kinds of user data

a. User data required by platform services such as accounting and billing services
b. User data required by end user services such as innovative messaging services

and location-based services
c. Service-specific user data that is only required by specific services such as ring

tone preferences for telephony services
d. Situation-dependent user data such as notification preferences for incoming

new messages that are related to different situations

140

Evaluation of goal 1:
As described in the last subsection, the designed and implemented user profile management
system, in combination with the developed user profile structure, is flexible enough to fulfil
all the different aspects of goal 1. In particular, the user profile structure enables the
specification of service-specific sub-profiles within an overall user profile. These sub-profiles
can serve different kinds or services, such as platform services and end user services. In
addition, the different sub-profiles can be filled with arbitrary service-specific user attributes.
Last but not least, these sub-profiles can optionally be enhanced with situational conditions,
which enable the specification of single situation-dependent user preferences or clusters of
situation-dependent user data.

Goal 2:

• Design and implementation of a user profile management system that is capable of
managing user data that adheres to different and extensible vocabularies for
expressing user attributes

a. It should be possible to manage user data that adheres to different user attribute
vocabularies

b. It should be possible to manage user data that adheres to extensions of user
attribute vocabularies

Evaluation of goal 2:
The user profile management system is designed and implemented in a way that arbitrary user
information can be managed. That is, there is no restriction on a specific set of user attributes,
user attribute vocabulary or amount of user data. The only limitation is in the requirement on
how user data is encoded. In particular, the actual user data that is managed by the user profile
management system has to adhere to the RDF specification [17] and can reference arbitrary
user attribute vocabularies. It can also reference definitions from different user attribute
vocabularies or arbitrary extensions of those.

The actual user profile structure, enabling service and situation-dependent user sub-
profiles is managed independently from the user attribute vocabularies. In particular, the user
profile structure is an integral part of the user profile management system used in a service-
independent way, whereas the user attribute vocabularies can be service specific. The
situational conditions, however, are also part of this user profile structure. This is needed to
provide a service-independent user profile selection module that needs to process these
situational conditions.

In summary, user data can be expressed in a service-specific way adhering to arbitrary
user attribute vocabularies. Only the situational conditions of situation-dependent user data
need to be expressed in a predefined service-independent way. This actually makes sense, as
not the services, but the user profile management system evaluates these situational
conditions. Hence, all aspects of goal 2 are met with this solution.

Goal 3:

• Design and implementation of a user profile management system that supports
automatic service personalisation

a. Design and implementation of a user profile selection module as sub-module
of the user profile management system that enables automatic selection of
matching situation-dependent user preferences

b. Design and implementation of a module to receive and process context
parameters as input to the user profile selection module

CHAPTER 7: CONCLUSION

141

Evaluation of goal 3:
The user profile management system is designed and implemented in a modular way
consisting of several exchangeable sub-modules, whereof the user profile selection module
and the context client module are two of them. The context client module interacts with
external context providers to request and collect context information about the user’s
environment and to pass it on to the user profile selection module for further processing.

These context descriptions are also encoded in RDF, as is the user profile data, and adhere
to context vocabularies used throughout the whole service platform infrastructure. The user
profile selection module supports situation-dependent service personalisation in finding the
matching situation-dependent user data to be applied for service personalisation. This
selection functionality is implemented using ontology reasoning capabilities that enable
sophisticated evaluations as is described in various samples in this thesis. This thesis also
presents a runtime evaluation concerning different ontology reasoning libraries and input
parameters, which shows the current state of art, state of usability, advantages and
disadvantages concerning the young discipline of ontology reasoning. Besides meeting all
aspects of goal 3, the use and evaluation of ontology reasoning capabilities shows the
advantage of clustering situation-dependent user data for runtime improvements as is done
with the developed user profile structure of goal 1.

Goal 4:

• Design and implementation of a user profile management system that supports an
easily understandable way for the normal user to manage her situation-dependent user
data

a. It should be possible for the user to easily specify and edit situation-dependent
user preferences

b. It should be possible for the user to control user data and personalisation
features

Evaluation of goal 4:
This thesis does not include solutions for user profile editors. However, the user profile
management system, in combination with the developed user profile structure provides a base
for an easily understandable way for the normal user to manage her situation-dependent user
data. The situational conditions are similar to a simple clause in English language of the form
<subject> <verb> <object>. This can be visualised to a user in an easy way, using select lists
to fill these fields in order to create and edit such situational conditions.

Furthermore, as already mentioned, the user profile management system can also be used
by platform services for managing user data. This means that also user preferences about
general personalisation features within the service platform can be added to the user profile
management system and hence provided to the user for controlling purposes. Hence, the
aspects of goal 4 are not directly implemented by the user profile management system, but are
supported indirectly. It is now up to other functionality, e.g. user profile editors and general
service platform concepts to implement these features.

7.3 Implications and Suggestions
The suggested approach on a user profile management system, user profile structure and
related issues that are designed and implemented in this thesis leads to several implications
and suggestions. As our focus was on service platforms for networks beyond 3G, the
following implications and suggestions are directed to designers of services and service
platforms of this domain. The implications and suggestions are as follows:

142

Implication 1: Lifecycle management of the user profile management service
Usual end-user services in the addressed type of service platform are subject to a service
lifecycle management, usually including at least the steps install, deploy, start, stop,
undeploy, uninstall, clearly mentioning that these steps may be named differently or may be
extended or substituted by further or different steps. However, the user profile management as
suggested in this thesis must be considered as specific service that is essential for providing
personalised end-user services. That is, this service must be available, i.e. started, before end-
user services can be consumed by end-users to support intelligent service behaviour such as
customisation to the user’s situation. Consequently, it also cannot be stopped during operation
of the service platform, but the lifecycle management could e.g. provide a means to upgrade it
while running.

Implication 2: Lifecycle management of end-user services
End-user services cannot be supported with intelligent service behaviour provided by the user
profile management service before service-related user data and optional situational
conditions have been added to the user profile management service. Hence, it should be
thought about adding further service lifecycle management states. For instance, you could add
a state customisation support that can be reached from the start state in setting up the service-
specific user profile. This could happen via a user profile editor provided by the end-user
service.

Implication 3: Design of context ontologies used on service platform side
In order for the user profile management, in particular for the user profile selection module, to
provide intelligent service behaviour, some design requirements are given for the
representation of context parameters on service platform side. As shown in this thesis, we
suggest an ontology reasoning based approach for the selection of matching situation-
dependent user preferences. This ontology reasoning based approach assumes the context to
be represented and exchanged as RDF documents. However, in order to ensure computational
completeness (all entailments are guaranteed to be computed) and decidability (all
computations will finish in finite time) in the reasoning step, the context schemas need to
adhere to the OWL species OWL-DL (Description Language), see [20]. Hence, service
platform designers, in particular designers of context representations used within the service
platform should think about modelling context accordingly and supporting the mentioned
representation.

Implication 4: Design of user profiles for designers of end-user services
Designers of end-user services do not need to care about own user profile management.
However, in order to be supported with intelligent service behaviour by the service-side user
profile management service, they need to process user data in a specific manner, as already
described in the previous subsection. In particular, they need to encode user data as an RDF
document. Beforehand, they first need to decide on one or several user attribute vocabularies.
It is recommended to use user attribute vocabularies that are already available on service
platform side, as this will increase the reuse and sharing of user attributes with other services
served by the service platform. The advantage of reuse and sharing of user attributes for the
end-user means that she may not have to define user attributes once again that are already
available on platform side, e.g. because these user attributes have already been added for other
end-user services.

CHAPTER 7: CONCLUSION

143

Implication 5: Design of end-user services
Designers of end-user services should be aware of the intelligent functions the platform-side
user profile management provides. In particular, end-user service designers do not need to
design and implement own context gathering and processing functions, and they do not need
to design and implement a selection or reasoning function for customising the end-user
service to the user’s current situation. Both these function are usually considered as complex
functions because of the requirement of sophisticated reasoning means. This means that the
end-user service requires less complexity, less development time and finally may require less
development costs. However, end-user service designers should check, which types of context
are supported and processed on service platform side and which of them are taken into
account by the user profile management service. There may be specific kinds of context
information that is not supported by service platforms for two reasons. Firstly, some context
parameters could be very specific, e.g. context information in the domain of health
applications, which may be very specific for some end-user services. Secondly, there may be
end-user services, e.g. also in the area of health applications, which require time critical
behaviour. In this case, the end-user service designer should be aware of the runtime
evaluations shown in this thesis for the proposed ontology-based reasoning approach. As
already mentioned, the runtime performance may be sufficient for many non-time critical
application, but may be problematic for some time-critical application such as in the area of
health applications.

Although we focused on service platforms for networks beyond 3G, we believe that many
parts of the depicted approach in this thesis could also be used for service platforms in other
domains. For instance, we consider the user profile structure flexible enough to serve for
similar purposes in other kinds of service platforms or multi-application environments, in
which multiple services, service personalisation, user attribute vocabularies and sharing and
reuse of user data is desired.

7.4 Discussion
The research and development steps carried out in this thesis have been built on top of each
other. However, the user profile management framework has been designed with flexibility in
mind. Besides several sub-modules of the user profile management framework, also the user
profile structure and the corresponding user profile ontology could be substituted. In
particular, it might not always be desired to cluster user data and user preferences into
situation-specific user sub-profiles in the same way as we have done it. For this purpose, it is
also possible to substitute the user profile structure and the user profile ontology introduced
here with another user profile structure and user profile ontology. However, the presented
user profile selection mechanism can still be used for other user profile structures and user
profile ontologies as long as the situational conditions of situation-dependent user preferences
have the same structure as the ones we have introduced.

We would also like to add that the modelling of the location ontology and the
corresponding situational conditions should be seen as an example of how a user profile
selection mechanism can be realised based on ontology reasoning. Hence, the presented
solution is not the only way (and may not be the best way) how to model such an ontology-
based user profile selection mechanism. However, the runtime performance carried out could
still be representative for slightly different location ontologies as our evaluation has included
often recurring ontology reasoning tasks such as reasoning over symmetric and transitive
properties, and reasoning over class and property hierarchies.

From our point of view, the Pellet reasoner [30] provides acceptable performance in
realistic scenarios for many non-time-critical applications. By using the introduced

144

ontologies, the whole query process needs about 900 milliseconds plus about 100
milliseconds for each additional query, where the number of needed queries is at most the
overall number of different situational conditions in the corresponding user profile. The
mentioned query process includes the preparation of the ontology model, the preparation of
the reasoner and the execution of the first query for one of the situational conditions. The fact
that one query needs about 100 milliseconds shows, why it is important to cluster situation-
dependent user data based on situational conditions as we have proposed it with our user
profile structure and ontology. The clustering can avoid redundant queries, and hence helps to
reduce the overall execution time.

Using about 10 times as many individuals, e.g. rooms and buildings, in our database, the
whole query process needs about 2.2 seconds plus about 200 milliseconds for each additional
query. Some additional experiments have shown that the runtime performance of ontology
reasoners can be improved when extending the main memory of the system and at the same
time increasing the available memory for the Java virtual machine with the corresponding
start argument.

The results also show that there are considerable differences in execution time and in
behaviour between different reasoners. This is mainly caused by the fact that ontology
reasoning is a quite new discipline, standards for ontology languages and query languages are
still in progress, and different types of algorithms for ontology reasoning are still being
researched and developed. At the same time, unfortunately, the use and configuration of
reasoning libraries is not always well documented.

Anyway, it should be stressed that the results of the runtime evaluation in this thesis are
biased due to several reasons: choice of hardware and software environment as described in
section 6.1.1, implementation approach as described in section 3.2.1 and 5.1.1, design of
ontologies as described in chapter 4 and dimension of database as described in section 6.1.2.
The outcome of this is that there may me a significant opportunity for improving the
performance compared to the results described. For instance, the thesis showed that there are
significant runtime differences for different dimensions of databases, there may be significant
runtime improvements with faster and dedicated hardware and there may be significant
improvements in ontology reasoning libraries in future.

The results of this thesis can be used in two ways. Firstly, they can be used for the
targeted environment. The user profile management system, the user profile structure and
ontology, as well as the user profile selection functionality can be used for the objectives of
service platforms in telecommunications environments. In particular, they can be used to
enable sophisticated personalised services that adapt to the user’s current situation.

Secondly, the results of this thesis can be used by various application developers that aim
to use Semantic Web technologies and ontology reasoning capabilities in practical
applications. This is not necessarily limited to developers that work in the targeted service
platform environment, but also in other areas. They can use the findings of this thesis as
instruction on how to model ontologies, how to use ontology reasoning capabilities, and to
understand the advantages and disadvantages of using ontology reasoning capabilities.
Furthermore, they can also use it as experiences report. In doing so, they can estimate the
system properties in the sense of execution time with regard to used software environment,
hardware environment, size of database and other parameters of their systems. This can be
done based on the measurement results carried out in this thesis. With the resulting
estimation, they can then plan their system accordingly beforehand.

CHAPTER 7: CONCLUSION

145

7.5 Outlook
There are several issues related to our user profile management framework that have not been
covered in detail by this thesis. Firstly, we have not addressed the issue of user modeling, i.e.
we have not learned user models. In particular, we were not concerned about how user
attributes are added to a user profile. However, the user profile structure is not limited to a
certain user attribute vocabulary. Individual user attribute vocabularies could be used that are
designed to express learned user models as well as explicitly specified user attributes by users
of service platforms. Hence, the challenge for integrating learned user models into our user
profile management framework is the creation of the corresponding user attribute
vocabularies. In addition, user profile editors are needed for the visualisation of user attributes
to the user and for making user attributes editable by the user.

Secondly, privacy and security issues related to personal data are beyond the scope of this
thesis. However, within a service platform in telecommunications environments, privacy is
not only an issue for the user profile management framework. Instead, also user context such
as user location and user activity, user behaviour and other user-related data collected in a
service platform have to be addressed. Hence, a service platform spanning privacy and
security architecture is needed that also covers sensitive user profile data.

For our user profile selection mechanism, we have assumed that the received user
situation is accurate. That is, we have not dealt with probabilities. However, as low-level
sensor data is usually not 100 percent accurate, the resulting high-level user situation can only
be inferred with a certain probability. Hence, inaccuracy of information about user situations
should be taken into consideration. This could be done by extending our user profile selection
mechanism to a recommendation mechanism.

We have also assumed that a model of the user’s world is available for the user profile
selection mechanism that includes the locations the user often visits and stays at, such as her
home, the premises in which she works, and the environment in which she lives. Such a
model could be created by a system administrator or another expert at the time when the user
subscribes to the service platform. However, as this appears to be a quite time-consuming and
hence cost-intensive task, it should be aimed at supporting and automating this task. For
instance, this could be supported by means of learning mechanisms that learn the locations the
user often visits and stays at, and adds these locations to the user-specific location database.

Furthermore, we have assumed that there are no situation-specific user sub-profiles with
conflicting or overlapping situational conditions. However, in order to achieve this, situation-
specific user sub-profiles and the corresponding situational conditions have to be checked
during creation time. For this purpose, an algorithm is needed to detect conflicting and
overlapping situation-specific user sub-profiles.

As mentioned in the last section, standards for ontology languages and query languages
are still in progress, and algorithms and reasoning libraries for ontology reasoning are still
being researched and developed. Hence, we expect improvements in reasoning algorithms in
the coming years, which make ontology reasoners faster and more stable, and hence are also
beneficial for our user profile selection mechanism in terms of execution time.

Finally, the success and acceptability of personalised services, and hence of our user
profile selection mechanism, is decided by the user of the service platform. In order to
investigate its success and acceptability, and also to identify possible problems and develop
improvements, user evaluations have to be carried out in the future.

146

APPENDIX A: SPICE SERVICE PLATFORM

147

Appendix A: SPICE Service Platform

In this appendix, we show details of the service platform developed in the SPICE [4] [5] [6]
project. The details are provided on the level of functional blocks; see Figure 63, which is
taken from [97]. Most of these functional blocks are composed of many subcomponents
working together, which are not shown here. For even more details and the descriptions of the
functional blocks, please see the SPICE project deliverable on the final reference architecture
[97] of the SPICE service platform.

Figure 63: SPICE Functional Blocks (Source: [97])

 cmp SPICE Functional Model

Terminal Platform

Dynamic
Desktop Client

Content Guide

Terminal
Manager

Service Provider Platform

Service Creation Environment

Dynamic
Desktop Server

Content
Middleware

Multimodal
Delivery and

Control System

Knowledge
Manager

Profile Manager

Developer Studio End User Studio

Brokering,
Composition and

Orchestration
Middleware

Semantic
Publication and

Discovery Facility

Semantic
Component
Repository

Lifecycle
Manager

Identity
Management,
Authentication

and Authorization
Framework

Service Roaming
Manager

3rd Party Service
Provider

3rd Party
Content Provider

User Privacy
Manager

Service Level
Agreement

Manager

Knowledge
Acquisition and

Provisioning
System

Charging and
Mediation

Service

Service and
Knowledge Push
and Notification

Activator

Renderer
«serv ice
recommendation»

«service push»

«user/serv ice data»

«composition
context»

«inter-platform
deployment»

«content
recommendation»

«modality r.»
«user
input»

«component package»

*

1

«media
selection»

«user/serv ice
roaming profile»

«compositon»

«request»

«widget»

«content and
metadata»

«query»

«automatic contract»

«request»

«component package»

«semantic
metadata»

«SPICE-fied components»
«SPICE-fied components»

«media
stream»

«inter-platform
composition»

148

APPENDIX B: USER PROFILE MANAGEMENT INTERFACE

149

Appendix B: User Profile Management Interface

Figure 64 shows the most important methods of the user profile management interface. These
methods are explained below. The user profile management framework is implemented in the
Java programming language from Sun Microsystems. However, for the purpose of
interoperability, the implementation of the user profile management framework also provides
a Web service [98] [99] interface. Afterwards, documentation for users of the user profile
management framework and developers of single modules is added.

Figure 64: Extract of Profile Management Interface

CreateProfile(in userID: String)
This method is used to create a user profile. The userID is the identifier of the user within the
service platform.

GetProfile(in userID: String): ProfileSubset[]
This method is used to request the whole user profile of a particular user, i.e. the list of all
profile subsets of the corresponding user.

DeleteProfile(in userID: String)
This method is used to delete the whole user profile. In doing so, all related profile subsets
and user data are also deleted.

CreateProfileSubset(in userID: String, in applicationID: String, in profileSubsetType:
String): String
This method is used to create an application-specific profile subset for a specific user. The
profile subset type can have the values default for creating a Default Profile Subset or
conditional for creating a Conditional Profile Subset. A user profile can only include one
Default Profile Subset related to each application. Furthermore, Conditional Profile Subsets
can only be created after a Default Profile Subset for the related application has been created.
The return value includes the generated profile subset identifier, which is unique within a user
profile.

GetProfileSubset(in userID: String, in profileSubsetID: String): ProfileSubset
This method is used to request a certain profile subset of a particular user profile. For this
purpose, the profileSubsteID is unique within a user profile.

+createProfile(in userID : String)
+getProfile(in userID : String) : ProfileSubset[]
+deleteProfile(in userID : String)
+createProfileSubset(in userID : String, in applicationID : String, in profileSubsetType : String) : String
+getProfileSubset(in userID : String, in profileSubsetID : String) : ProfileSubset
+getBestMatchingProfileSubset(in userID : String, in applicationID : String) : ProfileSubset
+getProfileSubsets(in userID : String, in applicationID : String) : ProfileSubset[]
+deleteProfileSubset(in userID : String, in profileSubsetID : String)
+deleteProfileSubsets(in userID : String, in applicationID : String)
+setConditions(in userID : String, in profileSubsetID : String, in conditions : Condition[])
+setUserData(in userID : String, in profileSubsetID : String, in userData : String)
+getBestMatchingUserData(in userID : String, in applicationID : String, in query : String) : String

«interface»
IProfileManagement

150

GetBestMatchingProfileSubset(in userID: String, in applicationID: String):
ProfileSubset
This method is used to request the best matching profile subset of a particular user profile
concerning a certain application. That is, the profile subset that best matches the user’s current
situation is returned. This method is explained in more detail in section 3.2.1.

GetProfileSubsets(in userID: String, in applicationID: String): ProfileSubset[]
This method is used to request all profile subsets of a particular user profile that are related to
a certain application.

DeleteProfileSubset(in userID: String, in profileSubsetID: String)
This method is used to delete a certain profile subset of a particular user profile.

DeleteProfileSubsets(in userID: String, in applicationID: String)
This method is used to delete all profile subsets of a particular user profile that are related to a
certain application.

SetConditions(in userID: String, in profileSubsetID: String, in conditions: Condition[])
This method is used to set the conditions of a Conditional Profile Subset. If there are several
conditions, the conditions are interpreted as conjunct to each other.

SetUserData(in userID: String, in profileSubsetID: String, in userData: String)
This method is used to set the user data of a profile subset. User data is encoded as an
RDF/XML serialisation of an RDF graph as explained in section 3.1.1 and shown in Figure
12.

GetBestMatchingUserData(in userID: String, in applicationID: String, in query:
String): String
This method is used to request the best matching user data of a particular user profile
concerning a certain application. That is, the user data that best matches the user’s current
situation is returned. In comparison to the getBestMatchingProfileSubset method, this method
does not return the best matching profile subset as a whole. Instead, only parts thereof are
returned depending on the query parameter. The query is encoded as a SPARQL query as
explained in more detail in section 3.2.1 and shown in Figure 22. The result is encoded in
XML as shown in Figure 23.

In the following, we provide a small documentation for users of the user profile
management framework on how user profiles are created, how profile subsets are created and
how user data is requested.

APPENDIX B: USER PROFILE MANAGEMENT INTERFACE

151

Figure 65: Creation of User Profile and Default Profile Subset

Figure 65 shows the creation of a user profile, the creation of a Default Profile Subset and

the set-up of a Default Profile Subset.

//Use the User Profile Management interface
IProfileManagement pm= new CProfileManagement();

//Define a userID for user Tom
String userID= "tom";

//Create a user profile for user Tom in case it does not exist yet. In case a user
//profile with the same user ID already exists, an exception is returned.
pm.createProfile(userID);

//Define an application ID for the (group of) application(s) for
//which to create a Profile Subset
String appID= "myApp";

//Define the type of Profile Subset to be created.
//If Default Profile Subset: set “default”
//If Conditional Profile Subset: set “conditional”
String profileSubsetType= "default";

//Create a Default Profile Subset for user Tom
//The returned profile subset ID is unique within this user profile
String profileSubsetID= pm.createProfileSubset(userID, appID, profileSubsetType);

//Define and set default user data for user Tom
String userData= …//Tom’s default user data as RDF/XML serialisation
pm.setUserData(userID, profileSubsetID, userData);

152

Figure 66: Set-up of Conditional Profile Subset

Figure 66 shows the set-up of a Conditional Profile Subset. Details on conditions are

explained in chapter 5.

Figure 67: Request of Best Matching User Data

Figure 67 shows the request of best matching user data, i.e. the user data that best matches

the current user’s situation.

Developers of single modules for the user profile management framework can easily
exchange the User Profile Selection Module, the Context Client Module, the User Profile
Sharing Module and the Database Management System. The mechanism is the same for all
four modules. First, the corresponding interface has to be implemented. These interfaces are

//Create array of situational conditions
Condition[] conditions= new Condition[1];

//Set attributes of a situational condition
String entityID= “tom”;
String contextType= “location”;
String operator= “equals”;
String contextValue= “Room-25”;

//Instantiate the situational condition
conditions[0] = new Condition(entityID, contextType, operator, contextValue);

//Add situational conditions to Conditional Profile Subset
pm.setConditions(userID, profileSubsetID, conditions);

//Define and set conditional user data for user Tom
String userData= …//Tom’s conditional user data as RDF/XML serialisation
pm.setUserData(userID, profileSubsetID, userData);

//Use the User Profile Management interface
IProfileManagement pm= new CProfileManagement();

//Define the user ID of the related user
String userID= “tom”;

//Define the application ID of the querying application
String appID= “myApp”;

//Define the optional SPARQL query
//If not needed: set null
String query= …//SPARQL query

//Request best matching user data
String userData= pm.getBestMatchingUserData(userID, appID, query);

APPENDIX B: USER PROFILE MANAGEMENT INTERFACE

153

part of the User Profile Management Core. Second, the name of the implementation class of
the corresponding module has to be set as value of the corresponding key in a properties file.
This properties file is also part of the User Profile Management Core.

154

APPENDIX C: SPECIFICATION OF THE USER PROFILE ONTOLOGY

155

Appendix C: Specification of the User Profile Ontology

This appendix includes the specification of our User Profile Ontology introduced in section
4.2. The specification is done with OWL and is represented in Notation 3 (N3) format [100].
N3 is a serialisation format for RDF and OWL respectively:

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix daml: <http://www.daml.org/2001/03/daml+oil#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix : <http://ws.comtec.e-technik.uni-kassel.de/upos.owl#> .

<http://ws.comtec.e-technik.uni-kassel.de/upos.owl>
 a owl:Ontology ;
 rdfs:comment "The User Profile Ontology with Situation-Dependent Preferences Support
(UPOS) defines concepts and properties for a user profile that supports situation-dependent
sub-profiles. The ontology can be extended with various user attribute vocabularies such as
vCard and FOAF. Copyright 2007 Michael Sutterer, Kassel, Germany."^^xsd:string .

:User
 a owl:Class ;
 rdfs:comment "A user of the service platform."^^xsd:string .

:hasContext
 a owl:ObjectProperty ;
 rdfs:comment "A user is in a certain context."^^xsd:string ;
 rdfs:domain :User ;
 rdfs:range :Context .

:Context
 a owl:Class ;
 rdfs:comment "A context, e.g. a user activity or a user location."^^xsd:string .

:hasLocation
 a owl:ObjectProperty ;
 rdfs:comment "A user has a location."^^xsd:string ;
 rdfs:domain :User ;
 rdfs:range :Location ;
 rdfs:subPropertyOf :hasContext .

:Location
 a owl:Class ;
 rdfs:comment "A user location."^^xsd:string ;
 rdfs:subClassOf :Context .

:hasActivity
 a owl:ObjectProperty ;
 rdfs:comment "A user is engaged in an activity."^^xsd:string ;
 rdfs:domain :User ;

156

 rdfs:range :Activity ;
 rdfs:subPropertyOf :hasContext .

:Activity
 a owl:Class ;
 rdfs:comment "A user activity."^^xsd:string ;
 rdfs:subClassOf :Context .

:hasProfile
 a owl:ObjectProperty , owl:FunctionalProperty ;
 rdfs:comment "A user has a profile."^^xsd:string ;
 rdfs:domain :User ;
 rdfs:range :Profile .

:Profile
 a owl:Class ;
 rdfs:comment "A user profile."^^xsd:string .

:hasProfileSubset
 a owl:ObjectProperty ;
 rdfs:comment "A user profile has a profile subset."^^xsd:string ;
 rdfs:domain :Profile ;
 rdfs:range :ProfileSubset .

:ProfileSubset
 a owl:Class ;
 rdfs:comment "A service-specific and optionally situation-specific subset of a user
profile."^^xsd:string ;
 rdfs:subClassOf owl:Thing ;
 rdfs:subClassOf
 [a owl:Restriction ;
 owl:cardinality "1"^^xsd:int ;
 owl:onProperty :isSpecificTo
] ;
 rdfs:subClassOf
 [a owl:Restriction ;
 owl:cardinality "1"^^xsd:int ;
 owl:onProperty :hasName
] .

:hasDefaultProfileSubset
 a owl:ObjectProperty ;
 rdfs:comment "A user profile has a default profile subset. Related to each service, only
one default profile subset is allowed."^^xsd:string ;
 rdfs:domain :Profile ;
 rdfs:range :DefaultProfileSubset ;
 rdfs:subPropertyOf :hasProfileSubset .

:DefaultProfileSubset
 a owl:Class ;

APPENDIX C: SPECIFICATION OF THE USER PROFILE ONTOLOGY

157

 rdfs:comment "A service-specific subset of a user profile that includes a default user
model."^^xsd:string ;
 rdfs:subClassOf :ProfileSubset .

:hasConditionalProfileSubset
 a owl:ObjectProperty ;
 rdfs:comment "A user profile has a conditional profile subset."^^xsd:string ;
 rdfs:domain :Profile ;
 rdfs:range :ConditionalProfileSubset ;
 rdfs:subPropertyOf :hasProfileSubset .

:ConditionalProfileSubset
 a owl:Class ;
 rdfs:comment "A service and situation-specific subset of a user profile that includes a user
model for a specific situation."^^xsd:string ;
 rdfs:subClassOf :ProfileSubset ;
 rdfs:subClassOf
 [a owl:Restriction ;
 owl:minCardinality "1"^^xsd:int ;
 owl:onProperty :hasCondition
] .

:hasName
 a owl:DatatypeProperty , owl:FunctionalProperty ;
 rdfs:comment "A profile subset has a name. This name has to be unique within a user
profile."^^xsd:string ;
 rdfs:domain :ProfileSubset ;
 rdfs:range xsd:string .

:hasDescription
 a owl:DatatypeProperty , owl:FunctionalProperty ;
 rdfs:comment "A profile subset has an optional description."^^xsd:string ;
 rdfs:domain :ProfileSubset ;
 rdfs:range xsd:string .

:isSpecificTo
 a owl:ObjectProperty , owl:FunctionalProperty ;
 rdfs:comment "A profile subset is specific to a service."^^xsd:string ;
 rdfs:domain :ProfileSubset ;
 rdfs:range :Service .

:Service
 a owl:Class ;
 rdfs:comment "A service associated with the service platform."^^xsd:string .

:hasUserModel
 a owl:ObjectProperty , owl:FunctionalProperty ;
 rdfs:comment "A profile subset has a user model."^^xsd:string ;
 rdfs:domain :ProfileSubset ;
 rdfs:range :UserModel .

158

:UserModel
 a owl:Class ;
 rdfs:comment "A user model."^^xsd:string .

:hasCondition
 a owl:ObjectProperty ;
 rdfs:comment "A conditional profile subset has a condition."^^xsd:string ;
 rdfs:domain :ConditionalProfileSubset ;
 rdfs:range :Condition .

:Condition
 a owl:Class ;
 rdfs:comment "A condition specifies the situation, in which a conditional profile subset is
valid, e.g. the home or the office location."^^xsd:string ;
 rdfs:subClassOf owl:Thing ;
 rdfs:subClassOf
 [a owl:Restriction ;
 owl:cardinality "1"^^xsd:int ;
 owl:onProperty :hasEntity
] ;
 rdfs:subClassOf
 [a owl:Restriction ;
 owl:cardinality "1"^^xsd:int ;
 owl:onProperty :hasContextValue
] ;
 rdfs:subClassOf
 [a owl:Restriction ;
 owl:cardinality "1"^^xsd:int ;
 owl:onProperty :hasOperator
] .

:hasEntity
 a owl:ObjectProperty , owl:FunctionalProperty ;
 rdfs:comment "A condition is linked to an entity, e.g. a user or a room."^^xsd:string ;
 rdfs:domain :Condition ;
 rdfs:range :User .

:hasOperator
 a owl:DatatypeProperty , owl:FunctionalProperty ;
 rdfs:comment "A condition has an operator, e.g. equal, notEqual, greaterThan,
greaterThanOrEqual, lessThan or lessThanOrEqual."^^xsd:string ;
 rdfs:domain :Condition ;
 rdfs:range xsd:string .

:hasContextValue
 a owl:ObjectProperty , owl:FunctionalProperty ;
 rdfs:comment "A condition has a context value, e.g. a certain user location."^^xsd:string ;
 rdfs:domain :Condition ;
 rdfs:range :Context .

APPENDIX D: ADDITIONAL PROPERTY SPECIFICATION

159

Appendix D: Additional Property Specification

This appendix includes the alternative specification of the hasContextValue property of the
user profile ontology. The specification is done with OWL and is represented in Notation 3
(N3) format [100]. N3 is a serialisation format for RDF and OWL respectively. The first of
the following specifications is a repetition of the initial specification in Appendix C:
Specification of the User Profile Ontology, whereas the second specification is the alternative
specification to meet the requirements discussed in section 4.3.1. The difference between the
hasContextValue property in the initial and the alternative specification is the values allowed
in the range of the property. Whereas the initial specification only allows individuals of type
Context, e.g. the room MeetingRoom-1, the alternative specification allows either individuals
of type Context or OWL classes, e.g. the class MeetingRoom.

:hasContextValue
 a owl:ObjectProperty , owl:FunctionalProperty ;
 rdfs:comment "A condition has a context value, e.g. a certain user location."^^xsd:string ;
 rdfs:domain :Condition ;
 rdfs:range :Context .

:hasContextValue
 a owl:ObjectProperty , owl:FunctionalProperty ;
 rdfs:comment "A condition has a context value, e.g. a certain user location."^^xsd:string ;
 rdfs:domain :Condition ;
 rdfs:range
 [a owl:Class ;
 owl:unionOf (:Context owl:Class)
] .

160

APPENDIX E: SPECIFICATION OF THE LOCATION ONTOLOGY

161

Appendix E: Specification of the Location Ontology

This appendix includes the specification of our Location Ontology introduced in section 4.3.
The Location Ontology also contains some few concepts for user activities. The specification
is done with OWL and is represented in Notation 3 (N3) format [100]. N3 is a serialisation
format for RDF and OWL respectively:

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix daml: <http://www.daml.org/2001/03/daml+oil#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix : <http://ws.comtec.e-technik.uni-kassel.de/context.owl#> .

<http://ws.comtec.e-technik.uni-kassel.de/context.owl>
 a owl:Ontology ;
 rdfs:comment """The Context Ontology defines concepts and properties to describe the
situation of a user, in particular the location, activity, time of day and weekday. Copyright
2007 Michael Sutterer, Kassel, Germany."""^^xsd:string ;
 owl:imports <http://ws.comtec.e-technik.uni-kassel.de/upos.owl> .

:isPartOf
 a owl:ObjectProperty , owl:TransitiveProperty ;
 rdfs:domain <http://ws.comtec.e-technik.uni-kassel.de/upos.owl#Location> ;
 rdfs:range <http://ws.comtec.e-technik.uni-kassel.de/upos.owl#Location> ;
 owl:inverseOf :hasPart .

:hasPart
 a owl:ObjectProperty , owl:TransitiveProperty ;
 rdfs:domain <http://ws.comtec.e-technik.uni-kassel.de/upos.owl#Location> ;
 rdfs:range <http://ws.comtec.e-technik.uni-kassel.de/upos.owl#Location> ;
 owl:inverseOf :isPartOf .

:isDirectPartOf
 a owl:ObjectProperty ;
 rdfs:domain <http://ws.comtec.e-technik.uni-kassel.de/upos.owl#Location> ;
 rdfs:subPropertyOf :isPartOf ;
 owl:inverseOf :hasDirectPart .

:hasDirectPart
 a owl:ObjectProperty ;
 rdfs:range <http://ws.comtec.e-technik.uni-kassel.de/upos.owl#Location> ;
 rdfs:subPropertyOf :hasPart ;
 owl:inverseOf :isDirectPartOf .

:isConnectedTo
 a owl:ObjectProperty , owl:TransitiveProperty , owl:SymmetricProperty ;
 rdfs:domain
 [a owl:Class ;
 owl:unionOf (:Room_Business :Room_Private)

162

] ;
 rdfs:range
 [a owl:Class ;
 owl:unionOf (:Room_Business :Room_Private)
] ;
 owl:inverseOf :isConnectedTo .

:isDirectlyConnectedTo
 a owl:ObjectProperty , owl:SymmetricProperty ;
 rdfs:domain
 [a owl:Class ;
 owl:unionOf (:Room_Business :Room_Private)
] ;
 rdfs:range
 [a owl:Class ;
 owl:unionOf (:Room_Business :Room_Private)
] ;
 rdfs:subPropertyOf :isConnectedTo .

:hasTimeOfDay
 a owl:ObjectProperty ;
 rdfs:domain <http://ws.comtec.e-technik.uni-kassel.de/upos.owl#User> ;
 rdfs:range :TimeOfDay ;
 rdfs:subPropertyOf <http://ws.comtec.e-technik.uni-kassel.de/upos.owl#hasContext> .

:TimeOfDay
 a owl:Class ;
 rdfs:subClassOf <http://ws.comtec.e-technik.uni-kassel.de/upos.owl#Context> .

:hasWeekDay
 a owl:ObjectProperty ;
 rdfs:range :WeekDay ;
 rdfs:subPropertyOf <http://ws.comtec.e-technik.uni-kassel.de/upos.owl#hasContext> .

:WeekDay
 a owl:Class ;
 rdfs:subClassOf <http://ws.comtec.e-technik.uni-kassel.de/upos.owl#Context> .

:PrivatePlace
 a owl:Class ;
 rdfs:subClassOf <http://ws.comtec.e-technik.uni-kassel.de/upos.owl#Location> ;
 owl:disjointWith :BusinessPlace , :PublicPlace .

:PublicPlace
 a owl:Class ;
 rdfs:subClassOf <http://ws.comtec.e-technik.uni-kassel.de/upos.owl#Location> ;
 owl:disjointWith :BusinessPlace , :PrivatePlace .

:BusinessPlace
 a owl:Class ;
 rdfs:subClassOf <http://ws.comtec.e-technik.uni-kassel.de/upos.owl#Location> ;

APPENDIX E: SPECIFICATION OF THE LOCATION ONTOLOGY

163

 owl:disjointWith :PublicPlace , :PrivatePlace .

:GeopoliticalEntity
 a owl:Class ;
 rdfs:subClassOf <http://ws.comtec.e-technik.uni-kassel.de/upos.owl#Location> .

:AccessRange
 a owl:Class ;
 rdfs:subClassOf <http://ws.comtec.e-technik.uni-kassel.de/upos.owl#Location> .

:BtAccessRange_Business
 a owl:Class ;
 rdfs:subClassOf :AccessRange_Business .

:Plane
 a owl:Class ;
 rdfs:subClassOf :Vehicle_Public .

:PresentationSpace
 a owl:Class ;
 rdfs:subClassOf :Room_Business ;
 owl:equivalentClass :VideoProjectorSpace .

:Airport
 a owl:Class ;
 rdfs:subClassOf :TravelPoint .

:Store
 a owl:Class ;
 rdfs:subClassOf :ShoppingPlace .

:ClassRoom
 a owl:Class ;
 rdfs:subClassOf :Room_Educational .

:FootballGround
 a owl:Class ;
 rdfs:subClassOf :SportsField .

:Accommodation
 a owl:Class ;
 rdfs:subClassOf :PublicPlace .

:Church
 a owl:Class ;
 rdfs:subClassOf :ReligiousPlace .

:Bathroom_TravelPoint
 a owl:Class ;
 rdfs:subClassOf :Room_TravelPoint .

164

:Auditorium_Educational
 a owl:Class ;
 rdfs:subClassOf :Room_Educational .

:CarPark_Business
 a owl:Class ;
 rdfs:subClassOf :BusinessPlace .

:Home
 a owl:Class ;
 rdfs:subClassOf :PrivatePlace .

:Workroom
 a owl:Class ;
 rdfs:subClassOf :Room_Private .

:Storehouse
 a owl:Class ;
 rdfs:subClassOf :Building_Business .

:Nightclub
 a owl:Class ;
 rdfs:subClassOf :EntertainmentPlace .

:Floor_Business
 a owl:Class ;
 rdfs:subClassOf :BusinessPlace .

:Laboratory
 a owl:Class ;
 rdfs:subClassOf :Workspace_Business .

:SportsField
 a owl:Class ;
 rdfs:subClassOf :RecreationArea .

:SinglePersonOffice
 a owl:Class ;
 rdfs:subClassOf :Office .

:Camping
 a owl:Class ;
 rdfs:subClassOf :Accommodation .

:BtAccessRange_Public
 a owl:Class ;
 rdfs:subClassOf :AccessRange_Public .

:ThreePersonOffice
 a owl:Class ;
 rdfs:subClassOf :Office .

APPENDIX E: SPECIFICATION OF THE LOCATION ONTOLOGY

165

:Zoo
 a owl:Class ;
 rdfs:subClassOf :TouristPlace .

:Office
 a owl:Class ;
 rdfs:subClassOf :Workspace_Business .

:Bus
 a owl:Class ;
 rdfs:subClassOf :Vehicle_Public .

:Campus
 a owl:Class ;
 rdfs:subClassOf :EducationalPlace .

:Bedroom_Private
 a owl:Class ;
 rdfs:subClassOf :Room_Private .

:PrivateActivity
 a owl:Class ;
 rdfs:subClassOf <http://ws.comtec.e-technik.uni-kassel.de/upos.owl#Activity> ;
 owl:disjointWith :BusinessActivity .

:Chair
 a owl:Class ;
 rdfs:subClassOf :EducationalPlace .

:UniversityBuilding
 a owl:Class ;
 rdfs:subClassOf :Building_Educational .

:WlanAccessRange_Business
 a owl:Class ;
 rdfs:subClassOf :AccessRange_Business .

:Park
 a owl:Class ;
 rdfs:subClassOf :RecreationArea .

:Port
 a owl:Class ;
 rdfs:subClassOf :TravelPoint .

:Garden_Private
 a owl:Class ;
 rdfs:subClassOf :PrivatePlace .

:Cafe

166

 a owl:Class ;
 rdfs:subClassOf :GastronomyPlace .

:ConcertHall
 a owl:Class ;
 rdfs:subClassOf :EntertainmentPlace .

:Room_Accommodation
 a owl:Class ;
 rdfs:subClassOf :Accommodation .

:Theater
 a owl:Class ;
 rdfs:subClassOf :EntertainmentPlace .

:ConventionCenter
 a owl:Class ;
 rdfs:subClassOf :Building_Business .

:AccessRange_Public
 a owl:Class ;
 rdfs:subClassOf :PublicPlace .

:StoreRoom
 a owl:Class ;
 rdfs:subClassOf :Room_Private .

:Garden_Business
 a owl:Class ;
 rdfs:subClassOf :BusinessPlace .

:Auditorium_Business
 a owl:Class ;
 rdfs:subClassOf :Room_Business .

:Car_Private
 a owl:Class ;
 rdfs:subClassOf :Vehicle_Private .

:Ship
 a owl:Class ;
 rdfs:subClassOf :Vehicle_Public .

:WlanAccessRange_Private
 a owl:Class ;
 rdfs:subClassOf :AccessRange_Private .

:VideoProjectorSpace
 a owl:Class ;
 rdfs:subClassOf :Room_Business ;
 owl:equivalentClass :PresentationSpace .

APPENDIX E: SPECIFICATION OF THE LOCATION ONTOLOGY

167

:Building_Business
 a owl:Class ;
 rdfs:subClassOf :BusinessPlace .

:ReadingRoom_Private
 a owl:Class ;
 rdfs:subClassOf :Room_Private .

:Playroom_Educational
 a owl:Class ;
 rdfs:subClassOf :Room_Educational .

:HeavyGoodsVehicle
 a owl:Class ;
 rdfs:subClassOf :Vehicle_Business .

:Train
 a owl:Class ;
 rdfs:subClassOf :Vehicle_Public .

:Department
 a owl:Class ;
 rdfs:subClassOf :BusinessPlace .

:Room_Business
 a owl:Class ;
 rdfs:subClassOf :BusinessPlace .

:Basement_Private
 a owl:Class ;
 rdfs:subClassOf :Room_Private .

:HotelRoom
 a owl:Class ;
 rdfs:subClassOf :Room_Accommodation .

:FactoryBuilding
 a owl:Class ;
 rdfs:subClassOf :Building_Business .

:OfficeBuilding
 a owl:Class ;
 rdfs:subClassOf :Building_Business .

:Guesthouse
 a owl:Class ;
 rdfs:subClassOf :Accommodation .

:ChildrenBedroom
 a owl:Class ;

168

 rdfs:subClassOf :Bedroom_Private .

:Car_Business
 a owl:Class ;
 rdfs:subClassOf :Vehicle_Business .

:PublicAuthority
 a owl:Class ;
 rdfs:subClassOf :AdministerialPlace .

:Gym
 a owl:Class ;
 rdfs:subClassOf :RecreationArea .

:SchoolBuilding
 a owl:Class ;
 rdfs:subClassOf :Building_Educational .

:Room_TravelPoint
 a owl:Class ;
 rdfs:subClassOf :TravelPoint .

:Lounge_Business
 a owl:Class ;
 rdfs:subClassOf :Room_Business .

:Grocery
 a owl:Class ;
 rdfs:subClassOf :Store .

:Region
 a owl:Class ;
 rdfs:subClassOf :GeopoliticalEntity .

:UmtsAccessRange
 a owl:Class ;
 rdfs:subClassOf :UmtsBasedAccessRange .

:EducationalPlace
 a owl:Class ;
 rdfs:subClassOf :PublicPlace .

:Wing_Private
 a owl:Class ;
 rdfs:subClassOf :PrivatePlace .

:PrinterSpace_Private
 a owl:Class ;
 rdfs:subClassOf :Room_Private .

:ConferenceRoom

APPENDIX E: SPECIFICATION OF THE LOCATION ONTOLOGY

169

 a owl:Class ;
 rdfs:subClassOf :Workspace_Business ;
 owl:equivalentClass :MeetingRoom .

:SeminarRoom
 a owl:Class ;
 rdfs:subClassOf :Workspace_Business ;
 owl:equivalentClass :MeetingRoom .

:Foyer_TravelPoint
 a owl:Class ;
 rdfs:subClassOf :Room_TravelPoint .

:Bathroom_Business
 a owl:Class ;
 rdfs:subClassOf :Room_Business .

:HsdpaAccessRange
 a owl:Class ;
 rdfs:subClassOf :UmtsBasedAccessRange .

:RecreationArea
 a owl:Class ;
 rdfs:subClassOf :PublicPlace .

:Lounge_Educational
 a owl:Class ;
 rdfs:subClassOf :Room_Educational .

:Monument
 a owl:Class ;
 rdfs:subClassOf :TouristPlace .

:Guestroom
 a owl:Class ;
 rdfs:subClassOf :Room_Private ;
 owl:equivalentClass :GuestBedroom .

:GsmAccessRange
 a owl:Class ;
 rdfs:subClassOf :GsmBasedAccessRange .

:Wing_Business
 a owl:Class ;
 rdfs:subClassOf :BusinessPlace .

:TravelPoint
 a owl:Class ;
 rdfs:subClassOf :PublicPlace .

:AccessRange_Private

170

 a owl:Class ;
 rdfs:subClassOf :PrivatePlace .

:Bedroom_Accommodation
 a owl:Class ;
 rdfs:subClassOf :Room_Accommodation .

:Floor_Private
 a owl:Class ;
 rdfs:subClassOf :PrivatePlace .

:GsmBasedAccessRange
 a owl:Class ;
 rdfs:subClassOf :AccessRange .

:GprsAccessRange
 a owl:Class ;
 rdfs:subClassOf :GsmBasedAccessRange .

:SummerHouse
 a owl:Class ;
 rdfs:subClassOf :PrivatePlace .

:Continent
 a owl:Class ;
 rdfs:subClassOf :GeopoliticalEntity .

:CityHall
 a owl:Class ;
 rdfs:subClassOf :AdministerialPlace .

:Room_Educational
 a owl:Class ;
 rdfs:subClassOf :EducationalPlace .

:Country
 a owl:Class ;
 rdfs:subClassOf :GeopoliticalEntity .

:PostOffice
 a owl:Class ;
 rdfs:subClassOf :AdministerialPlace .

:Eating_Private
 a owl:Class ;
 rdfs:subClassOf :PrivateActivity .

:ShoppingMall
 a owl:Class ;
 rdfs:subClassOf :ShoppingPlace .

APPENDIX E: SPECIFICATION OF THE LOCATION ONTOLOGY

171

:Hotel
 a owl:Class ;
 rdfs:subClassOf :Accommodation .

:Working_Private
 a owl:Class ;
 rdfs:subClassOf :PrivateActivity .

:PoliceStation
 a owl:Class ;
 rdfs:subClassOf :AdministerialPlace .

:Motorbike_Private
 a owl:Class ;
 rdfs:subClassOf :Vehicle_Private .

:Garage_Private
 a owl:Class ;
 rdfs:subClassOf :PrivatePlace .

:Mosque
 a owl:Class ;
 rdfs:subClassOf :ReligiousPlace .

:MeetingRoom
 a owl:Class ;
 rdfs:subClassOf :Workspace_Business ;
 owl:equivalentClass :ConferenceRoom , :SeminarRoom .

:Vehicle_Business
 a owl:Class ;
 rdfs:subClassOf :BusinessPlace .

:Stairway_Private
 a owl:Class ;
 rdfs:subClassOf :PrivatePlace .

:Vehicle_Private
 a owl:Class ;
 rdfs:subClassOf :PrivatePlace .

:Vehicle_Public
 a owl:Class ;
 rdfs:subClassOf :PublicPlace .

:PublicLibrary
 a owl:Class ;
 rdfs:subClassOf :AdministerialPlace .

:Disco
 a owl:Class ;

172

 rdfs:subClassOf :EntertainmentPlace .

:GolfCourse
 a owl:Class ;
 rdfs:subClassOf :SportsField .

:Aquarium
 a owl:Class ;
 rdfs:subClassOf :TouristPlace .

:Bathroom_Private
 a owl:Class ;
 rdfs:subClassOf :Room_Private .

:PrinterSpace_Business
 a owl:Class ;
 rdfs:subClassOf :Room_Business .

:Restaurant
 a owl:Class ;
 rdfs:subClassOf :GastronomyPlace .

:AdministerialPlace
 a owl:Class ;
 rdfs:subClassOf :PublicPlace .

:Tram
 a owl:Class ;
 rdfs:subClassOf :Vehicle_Public .

:DoingSports
 a owl:Class ;
 rdfs:subClassOf :PrivateActivity .

:Market
 a owl:Class ;
 rdfs:subClassOf :ShoppingPlace .

:Room_Private
 a owl:Class ;
 rdfs:subClassOf :PrivatePlace .

:Premises
 a owl:Class ;
 rdfs:subClassOf :BusinessPlace .

:Exhibition
 a owl:Class ;
 rdfs:subClassOf :TouristPlace .

:EquipmentRoom_Business

APPENDIX E: SPECIFICATION OF THE LOCATION ONTOLOGY

173

 a owl:Class ;
 rdfs:subClassOf :Room_Business .

:Bicycle_Private
 a owl:Class ;
 rdfs:subClassOf :Vehicle_Private .

:Temple
 a owl:Class ;
 rdfs:subClassOf :ReligiousPlace .

:BusinessActivity
 a owl:Class ;
 rdfs:subClassOf <http://ws.comtec.e-technik.uni-kassel.de/upos.owl#Activity> ;
 owl:disjointWith :PrivateActivity .

:Workspace_Business
 a owl:Class ;
 rdfs:subClassOf :Room_Business .

:Library_Private
 a owl:Class ;
 rdfs:subClassOf :Room_Private .

:OpenPlanOffice
 a owl:Class ;
 rdfs:subClassOf :Office .

:Hospital
 a owl:Class ;
 rdfs:subClassOf :HealthCarePlace .

:Building_Educational
 a owl:Class ;
 rdfs:subClassOf :EducationalPlace .

:Motorbike_Business
 a owl:Class ;
 rdfs:subClassOf :Vehicle_Business .

:Cab
 a owl:Class ;
 rdfs:subClassOf :Vehicle_Public .

:SummerCottage
 a owl:Class ;
 rdfs:subClassOf :PrivatePlace .

:Bathroom_Educational
 a owl:Class ;
 rdfs:subClassOf :Room_Educational .

174

:DiningRoom_Private
 a owl:Class ;
 rdfs:subClassOf :Room_Private .

:SchoolCampus
 a owl:Class ;
 rdfs:subClassOf :Campus .

:ShoppingPlace
 a owl:Class ;
 rdfs:subClassOf :PublicPlace .

:GastronomyPlace
 a owl:Class ;
 rdfs:subClassOf :PublicPlace .

:Kitchen_Business
 a owl:Class ;
 rdfs:subClassOf :Room_Business .

:Lounge_TravelPoint
 a owl:Class ;
 rdfs:subClassOf :Room_TravelPoint .

:EdgeAccessRange
 a owl:Class ;
 rdfs:subClassOf :GsmBasedAccessRange .

:Foyer_Business
 a owl:Class ;
 rdfs:subClassOf :Room_Business .

:Metro
 a owl:Class ;
 rdfs:subClassOf :Vehicle_Public .

:ReligiousPlace
 a owl:Class ;
 rdfs:subClassOf :PublicPlace .

:Hostel
 a owl:Class ;
 rdfs:subClassOf :Accommodation .

:Library_Business
 a owl:Class ;
 rdfs:subClassOf :Room_Business .

:Kindergarten
 a owl:Class ;

APPENDIX E: SPECIFICATION OF THE LOCATION ONTOLOGY

175

 rdfs:subClassOf :EducationalPlace .

:WlanAccessRange_Public
 a owl:Class ;
 rdfs:subClassOf :AccessRange_Public .

:Stairway_Business
 a owl:Class ;
 rdfs:subClassOf :BusinessPlace .

:MasterBedroom
 a owl:Class ;
 rdfs:subClassOf :Bedroom_Private .

:Reception_Business
 a owl:Class ;
 rdfs:subClassOf :Room_Business .

:TennisCourt
 a owl:Class ;
 rdfs:subClassOf :SportsField .

:UniversityCampus
 a owl:Class ;
 rdfs:subClassOf :Campus .

:GuestBedroom
 a owl:Class ;
 rdfs:subClassOf :Bedroom_Private ;
 owl:equivalentClass :Guestroom .

:BtAccessRange_Private
 a owl:Class ;
 rdfs:subClassOf :AccessRange_Private .

:DiningRoom_Accommodation
 a owl:Class ;
 rdfs:subClassOf :Room_Accommodation .

:Opera
 a owl:Class ;
 rdfs:subClassOf :EntertainmentPlace .

:HighschoolBuilding
 a owl:Class ;
 rdfs:subClassOf :Building_Educational .

:AccessRange_Business
 a owl:Class ;
 rdfs:subClassOf :BusinessPlace .

176

:SportsCentre
 a owl:Class ;
 rdfs:subClassOf :RecreationArea .

:Pastime
 a owl:Class ;
 rdfs:subClassOf :PrivateActivity .

:EntertainmentPlace
 a owl:Class ;
 rdfs:subClassOf :PublicPlace .

:LectureRoom
 a owl:Class ;
 rdfs:subClassOf :Room_Educational .

:LivingRoom
 a owl:Class ;
 rdfs:subClassOf :Room_Private .

:Corridor_Private
 a owl:Class ;
 rdfs:subClassOf :Room_Private .

:Corridor_Business
 a owl:Class ;
 rdfs:subClassOf :Room_Business .

:Cinema
 a owl:Class ;
 rdfs:subClassOf :EntertainmentPlace .

:SwimmingPool
 a owl:Class ;
 rdfs:subClassOf :RecreationArea .

:TwoPersonOffice
 a owl:Class ;
 rdfs:subClassOf :Office .

:TouristPlace
 a owl:Class ;
 rdfs:subClassOf :PublicPlace .

:Museum
 a owl:Class ;
 rdfs:subClassOf :TouristPlace .

:UmtsBasedAccessRange
 a owl:Class ;
 rdfs:subClassOf :AccessRange .

APPENDIX E: SPECIFICATION OF THE LOCATION ONTOLOGY

177

:Bistro
 a owl:Class ;
 rdfs:subClassOf :GastronomyPlace .

:MedicalPractice
 a owl:Class ;
 rdfs:subClassOf :HealthCarePlace .

:HealthCarePlace
 a owl:Class ;
 rdfs:subClassOf :PublicPlace .

:Bar
 a owl:Class ;
 rdfs:subClassOf :GastronomyPlace .

:City
 a owl:Class ;
 rdfs:subClassOf :GeopoliticalEntity .

:HighschoolCampus
 a owl:Class ;
 rdfs:subClassOf :Campus .

:Station
 a owl:Class ;
 rdfs:subClassOf :TravelPoint .

:DepartmentStore
 a owl:Class ;
 rdfs:subClassOf :Store .

:Bathroom_Accommodation
 a owl:Class ;
 rdfs:subClassOf :Room_Accommodation .

:Faculty
 a owl:Class ;
 rdfs:subClassOf :EducationalPlace .

:ThemePark
 a owl:Class ;
 rdfs:subClassOf :TouristPlace .

:SportsArena
 a owl:Class ;
 rdfs:subClassOf :EntertainmentPlace .

:Secretariat_Business
 a owl:Class ;

178

 rdfs:subClassOf :Room_Business .

:Kitchen_Private
 a owl:Class ;
 rdfs:subClassOf :Room_Private .

:Playroom
 a owl:Class ;
 rdfs:subClassOf :Room_Private .

APPENDIX F: MEASUREMENT RESULTS

179

Appendix F: Measurement Results

Table 10 shows the results for the measurement step 1, i.e. the creation of the combined
ontology model. In this step, first an empty Jena2 [24] [25] DefaultModel is created.
Afterwards, the user profile ontology introduced in section 4.2, the context ontology
introduced in section 4.3 and the user-specific Individuals Database introduced in section 5.1
are separately read from the file system, and added to the combined ontology model. This
process, as well as the computations for the arithmetic mean x , the range R and the standard
deviation s, is described in more detail in section 6.1.3.

Table 10: Results for the Measurement Step 1 in Milliseconds

Ontology Loading Steps
(Arithmetic Means x in ms) Sum of Ontology Loading Steps

Measurement
Step

Approach

Creating
Jena2

Default
Model

and
Loading

User
Profile

Ontology

Loading
and

Adding
Location
Ontology

Loading
and

Adding
Individuals
Database

Arithmetic
Mean

x
in ms

Range
R

in ms

Standard
Deviation

s
in ms

Classification
– Standard
Version

873 140 92 1105 113 32.1

Ontology
– Standard
Version

990 135 197 1322 77 23.4

Classification
– 10x
Version

885 139 397 1421 108 32.3

Ontology
– 10x-A
Version

973 136 817 1926 94 27.6

Ontology
– 10x-B
Version

983 133 833 1949 296 81.5

Classification
– 100x
Version

860 147 2192 3199 156 45.9

Ontology
– 100x-A
Version

977 128 6614 7719 78 20.8

Ontology
– 100x-B
Version

983 130 6277 7390 93 33.0

Table 10 includes the results for the following variants of the user profile selection

mechanism:

180

Classification – Standard Version: User profile ontology as introduced in section 4.2
without any properties, i.e. only classification, location ontology as introduced in section 4.3
without any properties, i.e. only classification, and Individuals Database as introduced in
section 6.1.2 without any relationships between location instances as described in section
6.2.5.

Ontology – Standard Version: User profile ontology as introduced in section 4.2, location
ontology as introduced in section 4.3 and Individuals Database as introduced in section 6.1.2.

Classification – 10x Version: Unlike the Classification – Standard Version above, this
variation includes an Individuals Database with 10 times as many individuals as described in
section 6.2.5.

Ontology – 10x-A Version: Unlike the Ontology – Standard Version above, this variation
includes an Individuals Database with 10 times as many individuals. The interrelations
between these individuals is described by variant A in section 6.2.3 and 6.2.4.

Ontology – 10x-B Version: Unlike the Ontology – Standard Version above, this variation
includes an Individuals Database with 10 times as many individuals. The interrelations
between these individuals is described by variant B in section 6.2.3 and 6.2.4.

Classification – 100x Version: Unlike the Classification – Standard Version above, this
variation includes an Individuals Database with 100 times as many individuals as described in
section 6.2.5.

Ontology – 100x-A Version: Unlike the Ontology – Standard Version above, this variation
includes an Individuals Database with 100 times as many individuals. The interrelations
between these individuals is described by variant A in section 6.2.3 and 6.2.4.

Ontology – 100x-B Version: Unlike the Ontology – Standard Version above, this variation
includes an Individuals Database with 100 times as many individuals. The interrelations
between these individuals is described by variant B in section 6.2.3 and 6.2.4.

Table 11: Results for Figure 43 and Figure 44 in Milliseconds

 Reasoner

Query Sample

Pellet
Config 1

Pellet
Config 2

Jena2 KAON2 Pellet
DIG

FaCT++
DIG

x 110 456 886 1591 1180 1075
R 31 31 16 157 172 32

Query
Only

s 7.3 9.6 7.5 44.3 52.4 14.4
x 897 1142 1335 2941 1633 1523
R 63 77 32 125 157 47

A1

All

s 18.3 25.9 11.0 35.3 53.3 18.5
x 152 471 1472 1653 1273 n/a
R 32 32 32 156 219 n/a

Query
Only

s 10.8 11.5 10.0 54.9 77.3 n/a
x 943 1157 1921 3014 1727 n/a
R 62 95 31 170 219 n/a

B1

All

s 22.0 29.7 11.4 58.2 80.0 n/a

APPENDIX F: MEASUREMENT RESULTS

181

x 131 473 1306 1642 1246 n/a
R 32 17 32 156 188 n/a

Query
Only

s 11.1 7.7 10.9 57.6 67.1 n/a
x 919 1159 1755 2994 1700 n/a
R 63 61 32 140 204 n/a

C1

All

s 16.3 21.7 12.6 57.4 68.0 n/a
x 119 469 917 1639 1222 1100
R 16 47 32 125 202 47

Query
Only

s 8.0 16.3 10.8 50.4 74.8 16.7
x 908 1155 1366 2986 1675 1548
R 32 79 47 124 202 78

D1

All

s 15.3 27.1 15.2 40.6 76.5 23.6
x 187 784 1287 1603 1399 n/a
R 31 156 48 47 344 n/a

Query
Only

s 12.7 53.0 15.5 19.8 108.6 n/a
x 977 1470 1736 2951 1852 n/a
R 62 203 49 61 265 n/a

E1

All

s 25.3 65.1 14.1 24.9 104.6 n/a
x 180 536 1261 1552 1301 n/a
R 32 47 47 47 313 n/a

Query
Only

s 13.3 14.8 14.9 16.6 107.6 n/a
x 975 1222 1710 2900 1755 n/a
R 62 95 47 77 314 n/a

F1

All

s 19.7 35.2 13.2 24.7 108.5 n/a

Table 11 shows the detailed measurement results in milliseconds for the summary shown
in Figure 43 and Figure 44. The computations for the arithmetic mean x , the range R and the
standard deviation s are described in more detail in section 6.1.3.

Table 12: Results for Figure 48 and Figure 49 in Milliseconds

 Reasoner

Query Sample

Pellet
Config 1

Pellet
Config 2

Jena2 KAON2 Pellet
DIG

FaCT++
DIG

x 92 889 1223 2702 3502 3125
R 31 78 187 313 562 156

Query
Only

s 11.5 22.6 72.5 124.2 200.9 51.0
x 2183 2481 2572 6398 4775 4402
R 62 94 187 359 593 172

A1

All

s 25.3 28.5 67.5 126.2 205.8 50.5
x 206 896 1727 2731 3683 n/a
R 16 16 63 250 478 n/a

Query
Only

s 9.8 14.9 22.6 105.1 152.6 n/a
x 2300 2488 3075 6427 4957 n/a
R 125 48 79 328 494 n/a

B1

All

s 42.2 16.4 32.3 114.6 155.4 n/a
x 198 912 1611 2749 3668 n/a
R 31 63 32 250 649 n/a

Query
Only

s 12.7 23.4 13.9 82.7 242.8 n/a

C1

All x 2294 2505 2960 6442 4942 n/a

182

R 47 48 94 157 648 n/a
s 17.6 22.3 26.8 78.6 245.1 n/a
x 155 903 1347 2703 5344 3198
R 31 78 94 344 563 156

Query
Only

s 11.6 23.1 29.4 104.5 347.1 53.6
x 2250 2495 2696 6409 4817 4475
R 78 63 126 219 562 156

D1

All

s 26.6 21.1 37.8 105.9 346.9 58.2
x 261 2226 1591 2852 3666 n/a
R 31 140 147 313 468 n/a

Query
Only

s 10.5 41.1 41.6 109.3 197.5 n/a
x 2358 3819 2940 6552 4939 n/a
R 80 156 209 329 484 n/a

E1

All

s 24.1 43.7 58.2 111.7 200.3 n/a
x 250 1210 1591 2805 3719 n/a
R 31 220 94 329 500 n/a

Query
Only

s 10.5 82.6 33.5 120.7 155.5 n/a
x 2335 2802 2940 6509 4992 n/a
R 94 204 93 345 515 n/a

F1

All

s 28.6 77.9 36.4 123.1 159.5 n/a

Table 12 shows the detailed measurement results in milliseconds for the summary shown
in Figure 48 and Figure 49. The computations for the arithmetic mean x , the range R and the
standard deviation s are described in more detail in section 6.1.3.

Table 13: Results for Figure 50 and Figure 51 in Milliseconds

 Reasoner

Query Sample

Pellet
Config 1

Pellet
Config 2

Jena2 KAON2 FaCT++
DIG

x 1022 2830 4111 15689 23585
R 47 94 391 1328 4174

Query
Only

s 16.9 28.2 135.9 450.9 1920.0
x 14130 13203 14335 40030 34419
R 359 218 911 1359 6375

A1

All

s 113.2 58.2 272.2 464.2 1913.4
x 1100 2874 4109 13884 27090
R 47 64 421 1187 26402

Query
Only

s 15.2 22.8 147.3 363.3 8245.8
x 14234 13247 14354 38233 37924
R 249 204 882 905 26356

D1

All

s 81.9 58.1 290.9 371.3 8225.4

Table 13 shows the detailed measurement results in milliseconds for the summary shown
in Figure 50 and Figure 51. The computations for the arithmetic mean x , the range R and the
standard deviation s are described in more detail in section 6.1.3.

APPENDIX F: MEASUREMENT RESULTS

183

Table 14: Results for Figure 53 and Figure 54 in Milliseconds

 Reasoner

Query Sample

Pellet
Config 1

Pellet
Config 2

Jena2 KAON2 Pellet
DIG

FaCT++
DIG

x 100 894 1150 24008 3469 3135
R 32 47 17 4781 672 188

Query
Only

s 11.0 14.4 8.2 1616.2 243.3 62.6
x 2181 2484 2406 27694 4727 4403
R 64 110 33 3829 532 173

A1

All

s 23.7 40.4 12.8 1617.1 244.8 63.0
x 261 901 3717 23525 3659 n/a
R 48 63 94 3377 546 n/a

Query
Only

s 18.3 18.3 35.1 1553.6 199.6 n/a
x 2345 2491 4973 27210 4917 n/a
R 94 163 94 3298 578 n/a

B1

All

s 24.9 46.1 33.8 1558.5 205.1 n/a
x 331 909 Error 23580 3613 n/a
R 63 63 Error 3999 626 n/a

Query
Only

s 21.8 19.2 Error 1577.5 220.2 n/a
x 2407 2499 Error 27253 4871 n/a
R 94 116 Error 3936 657 n/a

C1

All

s 29.1 35.8 Error 1562.3 228.2 n/a
x 151 906 1192 24230 3592 3156
R 31 63 32 4906 594 62

Query
Only

s 10.5 24.6 12.9 1923.2 222.2 23.2
x 2239 2496 2449 27912 4850 4425
R 62 131 63 5001 579 109

D1

All

s 24.4 48.5 19.6 1918.1 226.0 32.6
x 323 2202 1581 24488 3686 n/a
R 47 125 78 5459 453 n/a

Query
Only

s 19.5 37.2 27.2 1527.8 199.6 n/a
x 2407 3791 2838 28178 4944 n/a
R 78 130 78 5538 484 n/a

E1

All

s 22.6 52.1 25.7 1553.4 206.1 n/a
x 392 1697 Error 25445 3672 n/a
R 78 188 Error 3469 642 n/a

Query
Only

s 24.0 60.2 Error 1163.2 224.1 n/a
x 2468 3287 Error 29124 4930 n/a
R 119 281 Error 3501 642 n/a

F1

All

s 39.5 87.6 Error 1171.8 226.6 n/a

Table 14 shows the detailed measurement results in milliseconds for the summary shown
in Figure 53 and Figure 54. The computations for the arithmetic mean x , the range R and the
standard deviation s are described in more detail in section 6.1.3.

184

Table 15: Results for Figure 55 and Figure 56 in Milliseconds

 Reasoner

Query Sample

Pellet
Config 1

Pellet
Config 2

Jena2 FaCT++
DIG

x 1163 4141 4407 25783
R 78 141 615 23000

Query
Only

s 23.55 42.3 176.1 7393.4
x 14706 14230 14274 35782
R 204 189 614 22922

A1

All

s 65.6 68.0 178.6 7441.6
x 1253 4148 4502 21817
R 16 78 500 12594

Query
Only

s 6.5 22.4 182.9 3863.5
x 14816 14237 14369 31817
R 140 265 484 12547

D1

All

s 61.6 75.0 180.0 3846.8

Table 15 shows the detailed measurement results in milliseconds for the summary shown
in Figure 55 and Figure 56. The computations for the arithmetic mean x , the range R and the
standard deviation s are described in more detail in section 6.1.3.

Table 16: Results for Figure 59 and Figure 60 (Classification Standard Version)

 Reasoner

Query Sample

Pellet
Config 1

Pellet
Config 2

Jena2 KAON2 Pellet
DIG

x 94 386 773 655 950
R 31 63 16 32 219

Query
Only

s 7.3 18.2 8.1 9.0 64.2
x 769 1109 1202 1644 1374
R 77 79 47 78 250

A1

All

s 25.0 31.3 18.6 24.2 73.0
x 119 388 802 667 976
R 16 62 47 32 186

Query
Only

s 8.3 17.6 12.9 10.6 63.5
x 789 1111 1230 1659 1400
R 78 93 63 62 186

D1

All

s 24.6 34.7 21.1 19.0 72.8

Table 16, Table 17 and Table 18 shows the detailed measurement results in milliseconds
for the summary shown in Figure 59 and Figure 60. The computations for the arithmetic mean
x , the range R and the standard deviation s are described in more detail in section 6.1.3.

APPENDIX F: MEASUREMENT RESULTS

185

Table 17: Results for Figure 59 and Figure 60 (Classification 10x Version)

 Reasoner

Query Sample

Pellet
Config 1

Pellet
Config 2

Jena2 KAON2 Pellet
DIG

x 102 811 839 689 2205
R 17 63 31 17 531

Query
Only

s 8.3 20.2 14.7 8.4 178.9
x 1347 1738 1520 2784 2898
R 48 62 62 32 532

A1

All

s 14.6 21.8 24.3 12.3 179.7
x 153 805 877 648 2242
R 32 17 32 17 531

Query
Only

s 10.1 8.6 8.9 8.3 191.4
x 1409 1731 1558 2793 2936
R 78 48 31 62 516

D1

All

s 25.6 14.6 10.4 19.1 191.6

Table 18: Results for Figure 59 and Figure 60 (Classification 100x Version)

 Reasoner

Query Sample

Pellet
Config 1

Pellet
Config 2

Jena2 KAON2 Pellet
DIG

x 664 2003 1997 1300 10505
R 32 62 48 78 1656

Query
Only

s 11.1 27.2 19.4 28.5 710.7
x 6381 5937 5909 11991 14217
R 130 141 95 125 1626

A1

All

s 37.6 50.4 36.2 40.4 710.9
x 741 2014 2010 1311 10708
R 32 31 31 47 1500

Query
Only

s 11.0 8.8 11.0 15.6 459.7
x 6534 5948 5922 11901 14420
R 126 111 125 1016 1516

D1

All

s 50.7 37.8 36.9 312.1 460.0

186

LIST OF FIGURES

187

List of Figures

Figure 1: Processing Steps for User Profile Selection ... 15
Figure 2: Service Platforms for Networks Beyond 3G .. 24
Figure 3: User Profile Management in Service Platforms ... 26
Figure 4: Request / Response Pattern for Stand-Alone Applications 27
Figure 5: Subscription / Notification Pattern for Stand-Alone Applications 28
Figure 6: Request / Response Pattern for Applications in Service Platforms.......................... 29
Figure 7: Subscription / Notification Pattern for Applications in Service Platforms............... 29
Figure 8: Semantic Web Stack ... 31
Figure 9: User Profile Structure ... 46
Figure 10: User Profile Class Diagram .. 47
Figure 11: User Data Class Diagram.. 48
Figure 12: Example for an RDF/XML Serialised User Model Instance.................................. 48
Figure 13: Condition Class Diagram.. 49
Figure 14: One Overall Profile Subset in Approach 1 ... 51
Figure 15: Two Profile Subsets in Approach 2 .. 51
Figure 16: One Profile Subset for Each Distinct Condition in Approach 3............................. 52
Figure 17: Worst Case Search of Conditional Profile Subset with 9 Different Conditions..... 54
Figure 18: Worst Case Search of Conditional Profile Subset with 29 Different Conditions... 55
Figure 19: Worst Case Search of Conditional User Record with 9 Different Conditions 57
Figure 20: User Profile Management Framework.. 59
Figure 21: Activity Diagram for User Profile Query ... 61
Figure 22: SPARQL Query .. 64
Figure 23: SPARQL Query Result... 64
Figure 24: Context Management Framework .. 65
Figure 25: Ontology Infrastructure in Service Platforms... 70
Figure 26: Class Hierarchy of the User Profile Ontology.. 71
Figure 27: Properties of the User Profile Ontology ... 72
Figure 28: Relations between Classes of the User Profile Ontology 73
Figure 29: User Profile Instance Example ... 74
Figure 30: Specialisations of the UserModel Class ... 75
Figure 31: Specialisations of the Context Class... 75
Figure 32: Properties of the Location Ontology... 79
Figure 33: Top-Level Class Hierarchy of the Location Ontology ... 81
Figure 34: Specialisation of the BusinessPlace Concept of the Location Ontology................ 82
Figure 35: User Profile Selection Module.. 85
Figure 36: Activity Diagram for User Profile Selection Mechanism....................................... 87
Figure 37: SPARQL Query for the equals Operator .. 90
Figure 38: SPARQL Query for the isWithin Operator .. 91
Figure 39: SPARQL Query for the isConnectedTo Operator .. 92
Figure 40: SPARQL Query for the isA Operator... 94
Figure 41: SPARQL Query for the isWithinA Operator.. 96
Figure 42: SPARQL Query for the isConnectedToA Operator ... 98
Figure 43: Execution Time for Different Reasoners.. 113
Figure 44: Query-Only Execution Time for Different Reasoners.. 114
Figure 45: Query Samples for Pellet Reasoner with Configuration 1.................................... 116
Figure 46: Query Samples for Jena2 Reasoner .. 117
Figure 47: Duplication of and Interrelation between Individuals (Version A) 118
Figure 48: Execution Time for the 10x-A Version .. 119

188

Figure 49: Query-Only Execution Time for the 10x-A Version.. 120
Figure 50: Execution Time for the 100x-A Version .. 121
Figure 51: Query-Only Execution Time for the 100x-A Version.. 122
Figure 52: Duplication of and Interrelation between Individuals (Version B) 123
Figure 53: Execution Time for the 10x-B Version .. 124
Figure 54: Query-Only Execution Time for the 10x-B Version .. 125
Figure 55: Execution Time for the 100x-B Version .. 126
Figure 56: Query-Only Execution Time for the 100x-B Version .. 127
Figure 57: Query Samples for Pellet Reasoner with Configuration 1.................................... 128
Figure 58: Query Samples for KAON2 Reasoner.. 129
Figure 59: Execution Time for Classification Versions... 130
Figure 60: Query-Only Execution Time for Classification Versions 131
Figure 61: Execution Time of User Profile Selection Approaches.. 132
Figure 62: Query-Only Execution Time of User Profile Selection Approaches.................... 133
Figure 63: SPICE Functional Blocks (Source: [97]).. 147
Figure 64: Extract of Profile Management Interface ... 149
Figure 65: Creation of User Profile and Default Profile Subset .. 151
Figure 66: Set-up of Conditional Profile Subset .. 152
Figure 67: Request of Best Matching User Data.. 152

LIST OF TABLES

189

List of Tables

Table 1: Examples for Situational Conditions ... 49
Table 2: Runtime Comparison for Profile Subset Search (Search Task 1) 53
Table 3: Runtime Comparison for Single User Record Search (Search Task 2) 55
Table 4: Situational Conditions with Context Type Location.. 76
Table 5: Characteristics of the Ontologies ... 102
Table 6: Characteristics of Individuals Databases (Version A) ... 119
Table 7: Characteristics of Individuals Databases (Version B) ... 124
Table 8: Characteristics of Classifications ... 130
Table 9: Comparison of Supported Functionality .. 131
Table 10: Results for the Measurement Step 1 in Milliseconds... 179
Table 11: Results for Figure 43 and Figure 44 in Milliseconds... 180
Table 12: Results for Figure 48 and Figure 49 in Milliseconds... 181
Table 13: Results for Figure 50 and Figure 51 in Milliseconds... 182
Table 14: Results for Figure 53 and Figure 54 in Milliseconds... 183
Table 15: Results for Figure 55 and Figure 56 in Milliseconds... 184
Table 16: Results for Figure 59 and Figure 60 (Classification Standard Version) 184
Table 17: Results for Figure 59 and Figure 60 (Classification 10x Version) 185
Table 18: Results for Figure 59 and Figure 60 (Classification 100x Version) 185

190

ACRONYMS

191

Acronyms

3G 3rd Generation

3GPP 3rd Generation Partnership Project

CC/PP Composite Capabilities/Preference Profiles

DAML DARPA Agent Markup Language

DARPA Defense Advanced Research Projects Agency

DIG Description Logic Implementation Group

EDGE Enhanced Data Rates for GSM Evolution

ETSI European Telecommunications Standards Institute

FOAF Friend of a Friend

GERAN GSM EDGE Radio Access Network

GPS Global Positioning System

GSM Global System for Mobile Communications

GUP Generic User Profile

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IP Internet Protocol

N3 Notation 3

NS Namespace

OMA Open Mobile Alliance

OWL Web Ontology Language

OWL DL OWL Description Logics

PSE Personal Service Environment

QoS Quality of Service

RDF Resource Description Framework

RDFS RDF Schema

SPICE Service Platform for Innovative Communication Environment

192

SWRL Semantic Web Rule Language

UAProf User Agent Profile

UMTS Universal Mobile Telecommunications System

UPOS User Profile Ontology with Situation-Dependent Preferences Support

URI Uniform Resource Identifier

UTRAN UMTS Terrestrial Radio Access Network

VHE Virtual Home Environment

W3C World Wide Web Consortium

WLAN Wireless Local Area Network

XML Extensible Markup Language

XMLNS XML Namespace

XSD XML Schema Definition

REFERENCES

193

References

[1] G. Antoniou, F. van Harmelen, “A Semantic Web Primer”, ISBN 0-262-01242-1,

MIT Press, 2008.

[2] J. Davies, “Semantic Web Technologies – Trends and Research in Ontology-
Based Systems”, ISBN 0470025964, Wiley & Sons, 2006.

[3] A.K. Dey, “Providing Architectural Support for Building Context-Aware
Applications”, PhD thesis, Georgia Institute of Technology, 2000.

[4] B. Mrohs, S. Steglich, M. Klemettinen, J.T. Salo, A. Aftelak, C. Cordier, F.
Carrez, “MobiLife Service Infrastructure and SPICE Architecture Principles”,
IEEE 64th VTC-2006 Fall, September 2006.

[5] C. Cordier, F. Carrez, H. van Kranenburg, C. Licciardi, J. Van Der Meer, A.
Spedalieri, J.-P. Le Rouzic, J. Zoric, “Addressing the Challenges of B3G Service
Delivery: the SPICE Service Platform”, 6th International Workshop on
Applications and Services in Wireless Networks (ASWN 2006), ISBN: 3-8167-
7111-4, Berlin, Germany, May 2006.

[6] H. Demeter, E. Kovacs, M. Shiaa, M. Boussard, A. Tarlano, R. Seidl, G. Marton,
R. Kernchen, J.Rovira Simon, “Service Platform B3G – SPICE”, ICT Mobile
Summit 2008, Stockholm, Sweden, June 2008.

[7] M. Klemettinen (Editor), “Enabling Technologies for Mobile Services: The
MobiLife Book”, John Wiley & Sons, ISBN 0-470-51290-3, September 2007.

[8] T. Berners-Lee, J. Hendler, O. Lassila, “The Semantic Web“, The Scientific
American, May 2001.

[9] T. Berners-Lee, “Semantic Web – XML 2000”, XML 2000 Conference,
Washingtom DC, USA, December 2000. Available:
http://www.w3.org/2000/Talks/1206-xml2k-tbl/, 9. June 2008.

[10] M. Dürst, A. Freytag, “Unicode in XML and other Markup Languages”,
http://www.w3.org/TR/unicode-xml/, W3C Working Group Note, 16 May 2007.

[11] URI Planning Interest Group W3C/IETF, “URIs, URLs, and URNs:
Clarifications and Recommendations 1.0”, http://www.w3.org/TR/uri-
clarification/, W3C Note, 21 September 2001.

[12] A.J. Gerber, A. Barnard, A.J. van der Merwe, “Towards a Semantic Web Layered
Architecture”, Proceedings of the 25th conference on IASTED International
Multi-Conference: Software Engineering, Innsbruck, Austria, 2007.

[13] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, F. Yergeau, J. Cowan
(Editors), “Extensible Markup Language (XML) 1.1 (Second Edition)”,
http://www.w3.org/TR/xml11/, W3C Recommendation, 16 August 2006.

[14] T. Bray, D. Hollander, A. Layman, R. Tobin (Editors), “Namespaces in XML 1.1

194

(Second Edition)”, http://www.w3.org/TR/xml-names11/, W3C
Recommendation, 16 August 2006.

[15] D.C. Fallside, P. Walmsley (Editors), “XML Schema Part 0: Primer Second
Edition”, http://www.w3.org/TR/xmlschema-0/, W3C Recommendation 28
October 2004.

[16] D. Raggett, A. Le Hors, I. Jacobs (Editors), “HTML 4.01 Specification”,
http://www.w3.org/TR/html401/, W3C Recommendation, 24 December 1999.

[17] G. Klyne, J.J. Carroll, B. McBride (Editors), “Resource Description Framework
(RDF): Concepts and Abstract Syntax”, http://www.w3.org/TR/rdf-concepts/,
W3C Recommendation, 10 February 2004.

[18] D. Brickley, R.V. Guha, B. McBride (Editors), “RDF Vocabulary Description
Language 1.0: RDF Schema”, http://www.w3.org/TR/rdf-schema/, W3C
Recommendation, 10 February 2004.

[19] T. Gruber, “Toward Principles for the Design of Ontologies Used for Knowledge
Sharing”, International Journal Human-Computer Studies Vol. 43, Issues 5-6,
November 1995.

[20] M.K. Smith, C. Welty, D.L. McGuinness (Editors), “OWL Web Ontology
Language Guide”, http://www.w3.org/TR/owl-guide/, W3C Recommendation, 10
February 2004.

[21] I. Horrocks, B. Parsia, P. Patel-Schneider, J. Hendler, “Semantic Web
Architecture: Stack or Two Towers?“, In Francois Fages and Sylvain Soliman,
editors, Principles and Practice of Semantic Web Reasoning (PPSWR 2005),
number 3703 in LNCS, pages 37-41. Springer, 2005.

[22] N. Shadbolt, W. Hall, T. Berners-Lee, “The Semantic Web Revisited”, IEEE
Intelligent Systems, pp. 96-101, June 2006.

[23] E. Prud'hommeaux, A. Seaborne (Editors), “SPARQL Query Language for
RDF”, http://www.w3.org/TR/rdf-sparql-query/, W3C Recommendation, 15
January 2008.

[24] B. McBride, “Jena: Implementing the RDF Model and Syntax Specification”,
Proceedings of the Second International Workshop on the Semantic Web,
Hongkong, China, 2001.

[25] K. Wilkinson, C. Sayers, H.A. Kuno, D. Reynolds, “Efficient RDF Storage and
Retrieval in Jena2”, Proceedings of SWDB'03, The first International Workshop
on Semantic Web and Databases, Berlin, Germany, September 2003.

[26] E. Bozsak et al., “KAON: Towards a large scale Semantic Web”, In proceedings
of the 3rd International Conference on E-Commerce and Web Technologies (EC-
Web), September 2002.

[27] B. Motik, and U. Sattler, “A Comparison of Reasoning Techniques for Querying
Large Description Logic ABoxes”, Proceedings of the 13th International
Conference on Logic for Programming Artificial Intelligence and Reasoning

REFERENCES

195

(LPAR 2006), 2006.

[28] S. Bechhofer, R. Volz and P. Lord, "Cooking the Semantic Web with the OWL
API", Proceedings of ISWC 2003, Sanibel Island, Florida, USA, October 2003.

[29] J. Broekstra, A. Kampman, F. van Harmelen, “Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema”, International Semantic Web
Conference 2002, Sardinia, Italy, 2002.

[30] E. Sirin, B. Parsia, B.C. Grau, A. Kalyanpur, Y. Katz, “Pellet: A Practical OWL-
DL Reasoner”, Journal of Web Semantics, Volume 5, Issue 2, June 2007.

[31] Ian Horrocks, “The FaCT System”, Proceedings of the 2nd Int. Conference on
Analytic Tableaux and Related Methods, pages 307-312, Springer, 1998.

[32] D. Tsarkov, I. Horrocks, “FaCT++ Description Logic Reasoner: System
Description”, In Proceedings of the Int. Joint Conference on Automated
Reasoning (IJCAR 2006), 2006.

[33] V. Haarslev, R. Möller: “Description of the RACER System and its
Applications”, In Proceedings of International Workshop on Description Logics
(DL-2001), Stanford, USA, 1.-3. August, pages 131–141, 2001.

[34] V. Haarslev, R. Möller: “Racer: An OWL Reasoning Agent for the Semantic
Web”, In Proceedings of the International Workshop on Applications, Products
and Services of Web-based Support Systems, pages 91–95, Halifax, Canada,
October, 2003.

[35] European Telecommunications Standards Institute (ETSI): “Human Factors (HF);
User Profile Management,” ETSI EG 202 325 v1.1.1, http://www.etsi.org/, Oct
2005.

[36] 3rd Generation Partnership Project (3GPP), “Generic User Profile (GUP), Data
Description Method (DDM)”, 3GPP TR 23 941 v6.0.0, http://www.3gpp.org/,
Dec 2004.

[37] 3rd Generation Partnership Project (3GPP), “Generic User Profile (GUP),
Architecture (Stage 2)”, 3GPP TR 23 240 v6.7.0, http://www.3gpp.org/, March
2005.

[38] G. Klyne, F. Reynolds, C. Woodrow, H. Ohto, J. Hjelm, M.H. Butler, L. Tran
(Editors), “Composite Capabilities/Preference Profiles (CC/PP): Structure and
Vocabularies 1.0”, http://www.w3.org/TR/CCPP-struct-vocab/, W3C
Recommendation, 15 January 2004.

[39] Open Mobile Alliance (OMA), “User Agent Profile (UAProf) v2.0”,
http://www.openmobilealliance.org/, May 2003.

[40] L. Suryanarayana, J. Hjelm, “Profiles for the Situated Web”, International World
Wide Web Conference, Honolulu, Hawaii, USA, 2002.

[41] D. Brickley, L. Miller, “FOAF Vocabulary Specification”,
http://xmlns.com/foaf/0.1/, July 2005.

196

[42] Internet Engineering Task Force (IETF), “vCard MIME Directory Profile,” RFC
2426, http://www.ietf.org/rfc/rfc2426.txt, September 1998.

[43] J. Orwant, “Heterogeneous Learning in the Doppelgänger User Modeling
System”, User Modeling and User-Adapted Interaction Journal, 4:107–130, 1994.

[44] D. Heckmann, T. Schwartz, B. Brandherm, M. Schmitz, and M. v. Wilamowitz-
Moellendorff, “GUMO – The General User Model Ontology”, Proceedings of the
10th International Conference on User Modeling (UM'2005), Edinburgh, UK,
2005.

[45] D. Heckmann, T. Schwartz, B. Brandherm, A. Kröner, “Decentralized User
Modeling with UserML and GUMO”, Proceedings of the Workshop on
Decentralized, Agent Based and Social Approaches to User Modelling (DASUM
2005), Edinburgh, UK, pp. 61-65, 2005.

[46] D. Heckmann, “Ubiquitous User Modeling”, Dissertations in Artificial
Intelligence-Infix, Volume 297, IOS Press, The Netherlands, October 2006.

[47] M. Golemati, A. Katifori, C. Vassilakis, G. Lepouras, C. Halatsis, “Creating an
Ontology for the User Profile: Method and Applications”, First IEEE
International Conference on Research Challenges in Information Science (RCIS),
Morocco 2007.

[48] S. Melnik, H. Garcia-Molina, E. Rahm, “Similarity Flooding: A Versatile Graph
Matching Algorithm and its Application to Schema Matching”, Proceedings of
the 18th ICDE Conf., 2002.

[49] A. Doan, J. Madhaven, P. Domingos, A. Halevy, “Ontology Matching: A
Machine Learning Approach”, Handbook on Ontologies in Information Systems,
S. Staab and R. Studer (eds.), Springer-Verlag, 2004, pages 397-416.

[50] E. Rahm, P.A. Bernstein, “A survey of approaches to automatic schema
matching”, The VLDB Journal 10 (2001), pp. 334–350.

[51] P. Shvaiko, J. Euzenat, “A Survey of Schema-Based Matching Approaches”,
Journal on Data Semantics IV, LNCS 3730, pp. 146-171, 2005.

[52] Y. Kalfoglou, M. Schorlemmer, “Ontology mapping: the state of the art”, The
Knowledge Engineering Review 18(1) pp. 1-31. 2003.

[53] M.J. Pazzani: “Representation of Electronic Mail Filtering Profiles: A User
Study”, Proceedings of the 5th International Conference on Intelligent User
Interfaces, pp. 202-206, New Orleans, USA, 2000.

[54] A.H.M. Cremers, J. Lindenberg and M.A. Neerincx, “Apples or Oranges?: A
User-centred Framework for Co-operative User Profile Management”, 7th
WWRF Meeting, Eindhoven, The Netherlands, December 2002.

[55] A. Waern and A. Rudstrom, “Can Readers Understand Their Profiles? A Study of
Human Involvement in Reader Profiling”, Proceedings of the 34th Annual
Hawaii International Conference on System Sciences, January 2001.

REFERENCES

197

[56] S. Caokim, S. Sedillot, “Profiles Management for Personalised Services
Provisioning”, 2nd European Conference on Universal Multiservice Networks,
ECUMN 2002, Page(s):315 – 321, 8-10 April 2002.

[57] 3rd Generation Partnership Project (3GPP), “The Virtual Home Environment
(Release 5)”, 3GPP TR 22.121 v5.3.1, http://www.3gpp.org/, June 2002.

[58] K. van der Sluijs, G.-J. Houben, “Towards a Generic User Model Component”,
Workshop on Personalization on the Semantic Web (PerSWeb05) at the 10th
International Conference on User Modeling (UM'2005), pp. 43-52, Edinburgh,
Scotland, 25-26 July 2005.

[59] K. van der Sluijs, G.-J. Houben, “A Generic Component for Exchanging User
Models between Web-based Systems”, International Journal of Continuing
Engineering Education and Life-Long Learning, Vol. 16, Nos. 1/2, pp. 64-76,
2006.

[60] I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean,
“SWRL: A Semantic Web Rule Language Combining OWL and RuleML”,
http://www.w3.org/Submission/SWRL/, W3C Member Submission, 21 May
2004.

[61] J. Groppe, W. Mueller, “Profile Management Technology for Smart
Customizations in Private Home Applications”, Sixteenth International
Workshop on Database and Expert Systems Applications, 2005.

[62] N. Houssos, A. Alonistioti, L. Merakos, M. Dillinger, M. Fahrmair, M.
Schoenmakers, “Advanced Adaptability and Profile Management Framework for
the Support of Flexible Mobile Service Provision”, IEEE Wireless
Communications, Volume 10, Issue 4, Page(s):52 – 61, Aug. 2003.

[63] D. Morikawa, M. Honjo, A. Yamaguchi, M. Ohashi, “A Proposal of User Profile
Management Framework for Context-Aware Service”, Symposium on
Applications and the Internet Workshops, SAINT 2005 Workshops, Page(s):184
– 187, 2005.

[64] R. Etter, P. Dockhorn Costa, T. Broens, “A Rule-Based Approach Towards
Context-Aware User Notification Services”, Proc. of the IEEE International
Conference on Pervasive Services 2006, Lyon, France, June 2006.

[65] M. Román, C.K. Hess, R. Cerqueira, A. Ranganathan, R.H. Campbell, and K.
Nahrstedt, “A Middleware Infrastructure to Enable Active Spaces”, In IEEE
Pervasive Computing, pp. 74-83, Oct-Dec 2002.

[66] E. Chan, J. Bresler, J. Al-Muhtadi, R.H. Campbell, “Gaia Microserver: An
Extendable Mobile Middleware Platform”, 3rd IEEE International Conference on
Pervasive Computing and Communications (PerCom 2005), Kauai Island, HI,
USA, 8-12 March, 2005.

[67] A. Ranganathan, R.H. Campbell, “A Middleware for Context-Aware Agents in
Ubiquitous Computing Environments”, In ACM/IFIP/USENIX International
Middleware Conference, 2003, Rio de Janeiro, Brazil, June 16-20, 2003.

198

[68] T. Gu, H. K. Pung, D. Q. Zhang, “Towards an OSGi-Based Infrastructure for
Context-Aware Applications”, IEEE Pervasive Computing, Vol. 3, Issue 4,
pages: 66 – 74, 2004.

[69] A. Ranganathan, S. Chetan, J. Al-Muhtadi, R.H. Campbell, M.D. Mickunas.
“Olympus: A High-Level Programming Model for Pervasive Computing
Environments”, In IEEE International Conference on Pervasive Computing and
Communications (PerCom 2005), Kauai Island, Hawaii, March 8-12, 2005.

[70] D. Garlan, D.P. Siewiorek, A. Smailagic, P. Steenkiste, “Project Aura: Toward
Distraction-Free Pervasive Computing”, IEEE Pervasive Computing, Vol.1,
No.2, pp. 22-32, 2002.

[71] K. Henricksen, J. Indulska, T. McFadden, and S. Balasubramaniam, “Middleware
for distributed context-aware systems”, In International Symposium on
Distributed Objects and Applications (DOA), volume 3760 of Lecture Notes in
Computer Science, pages 846-863, 2005.

[72] K. Henricksen, J. Indulska, “Personalising context-aware applications”, In OTM
Workshop on Context-Aware Mobile Systems (CAMS), 2005.

[73] K. Henricksen, J. Indulska, “A Software Engineering Framework for Context-
Aware Pervasive Computing”, Proceedings of the Second IEEE International
Conference on Pervasive Computing and Communications (PerCom'04),
Orlando, Florida, March 2004.

[74] J. Indulska, K. Henricksen, T. McFadden, P. Mascaro, “Towards a Common
Context Model for Virtual Community Applications”, The 2nd International
Conference On Smart Homes and Health Telematics (ICOST'2004), Singapore,
September 2004.

[75] T. McFadden, K. Henricksen, J. Indulska, P. Mascaro, “Applying a Disciplined
Approach to the Development of a Context-Aware Communication Application”,
Proc. of the 3rd IEEE International Conference on Pervasive Computing and
Communications (PerCom'05), Hawaii, March 2005.

[76] H. Chen, T. Finin, A. Joshi, “An Ontology for Context Aware Pervasive
Computing Environments,” The Knowledge Engineering Review, Volume 18,
Issue 3 (September 2003), pages 197-207, 2003.

[77] X. Wang, J.S. Dong, C.Y. Chin, S.R. Hettiarachchi, D. Zhang, “Semantic Space:
An Infrastructure for Smart Spaces,” IEEE Pervasive Computing, Volume 3,
Issue 3 (July 2004), pages 32-39, 2004.

[78] H. Chen, F. Perich, T. Finin, A. Joshi, “SOUPA: Standard Ontology for
Ubiquitous and Pervasive Applications”, International Conference on Mobile and
Ubiquitous Systems (MobiQuitous 2004), Boston, Massachusetts, USA, 2004.

[79] M. Luther, B. Mrohs, M. Wagner, S. Steglich, W. Kellerer, “Situational
Reasoning – A Practical OWL Use Case,” International Symposium on
Autonomous Decentralized Systems (ISADS), Chengdu, China, 2005.

[80] A. Harter, A. Hopper, “A Distributed Location System for the Active Office,”

REFERENCES

199

IEEE Network, Volume 8, pp. 62-70, 1994.

[81] A. Harter, A. Hopper, P. Steggles, A. Ward, P. Webster, “The Anatomy of a
Context-Aware Application,” Proceedings of the International Conference on
Mobile Computing and Networking, Seattle, USA, 1999.

[82] D. Beckett, B. McBride (Editors), “RDF/XML Syntax Specification (Revised)”,
http://www.w3.org/TR/rdf-syntax-grammar/, W3C Recommendation, 10
February 2004.

[83] T. Ottmann, P. Widmayer, “Algorithmen und Datenstrukturen,” Spektrum
Akademischer Verlag, ISBN 3827410290, 1996.

[84] A. Aho, J. Hopcraft and J. Ullman, “The Design and Analysis of Computer
Algorithms,” Addison-Wesley, ISBN 8131702057, 1974.

[85] H. Rajasekaran, P. Laitinen, G. Marton, R. Seidl, P. Weik, “Trust Framework and
Service Delivery in SPICE”, International Conference on Intelligence in Service
Delivery Networks (ICIN 2007), Bordeaux, France, October 2007.

[86] H. van Kranenburg, M. Bargh, S. Iacob and A. Peddemors, “A Context
Management Framework for Supporting Context Aware Distributed
Applications”, IEEE Communications Magazine 44[8], pp 67-74, 2006.

[87] C. Räck (Editor), “Specification of Pro-active Service Infrastructure for Attentive
Services”, SPICE project deliverable, http://www.ist-
spice.org/nav/deliverables.htm, December 2007.

[88] N.F. Noy, D.L. McGuinness, “Ontology Development 101: A Guide to Creating
Your First Ontology”, Stanford Knowledge Systems Laboratory Technical
Report KSL-01-05 and Stanford Medical Informatics Technical Report SMI-
2001-0880, March 2001.

[89] Apache Software Organisation, “Apache Logging Services Project”,
http://logging.apache.org, September 2007.

[90] S. Gupta, “Pro Apache Log4j”, Apress, ISBN 1590594991, June 2005.

[91] J. Grobler and D. Kourie, “Design of a High Resolution Soft Real-Time Timer
under a Win32 Operating”, Proceedings of SAICSIT 2005, White River, South
Africa, 2005.

[92] Brian McBride, “An Introduction to RDF and the Jena RDF API”, 2007.
Available: http://jena.sourceforge.net/tutorial/RDF_API /index.html, 3 August
2008.

[93] H. Stöcker (Editor), “Taschenbuch der Physik”, ISBN 3-8171-1556-3, Verlag
Harry Deutsch, 1998.

[94] E. Prud'hommeaux, “W3C RDF Validation Service”, 2007. Available:
http://www.w3.org/RDF/Validator/, 3 August 2008.

[95] F. Baader and U. Sattler, “Tableau Algorithms for Description Logics”,

200

International Conference TABLEAUX 2000, University of St Andrews,
Scotland, July 2000.

[96] U. Hustadt, B. Motik and U. Sattler, “Reducing SHIQ-Description Logic to
Disjunctive Datalog Programs”, Proc. of the 9th International Conference on
Knowledge Representation and Reasoning (KR2004), pp 152-162, Whistler,
Canada, June 2004.

[97] M.M. Shiaa and H. Demeter (Editors), “Final Reference Architecture”, SPICE
project deliverable, http://www.ist-spice.org/nav/deliverables.htm, June 2008.

[98] A.E. Walsh (Editor), “UDDI, SOAP and WSDL – The Web Services
Specification Reference Book”, ISBN 0-13-085726-2, Prentice Hall, 2002.

[99] E. Ceram, “Web Services Essentials”, ISBN 0596002246, O'Reilly, 2002.

[100] T. Berners-Lee, “Primer: Getting into RDF & Semantic Web using
N3“,http://www.w3.org/2000/10/swap/Primer.html, August 2005.

	1 Introduction
	2 Fundamentals and Related Work
	3 Framework for User Profile Management
	4 User Profile and Context Ontology
	5 Automatic Selection of User Profiles
	6 Evaluation of the User Profile Selection Mechanism
	7 Conclusion

