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Abstract

The present Thesis looks at the problem of protein folding using Monte Carlo and

Langevin simulations, three topics in protein folding have been studied: 1) the effect

of confining potential barriers, 2) the effect of a static external field and 3) the design

of amino acid sequences which fold in a short time and which have a stable native state

(global minimum).

Regarding the first topic, we studied the confinement of a small protein of 16 amino

acids known as 1NJ0 (PDB code) which has a beta-sheet structure as a native state. The

confinement of proteins occurs frequently in the cell environment. Some molecules called

Chaperones, present in the cytoplasm, capture the unfolded proteins in their interior and

avoid the formation of aggregates and misfolded proteins. This mechanism of confinement

mediated by Chaperones is not yet well understood. In the present work we considered

two kinds of potential barriers which try to mimic the confinement induced by a Chaperon

molecule. The first kind of potential was a purely repulsive barrier whose only effect is to

create a cavity where the protein folds up correctly. The second kind of potential was a

barrier which includes both attractive and repulsive effects. We performed Wang-Landau

simulations to calculate the thermodynamical properties of 1NJ0. From the free energy

landscape plot we found that 1NJ0 has two intermediate states in the bulk (without

confinement) which are clearly separated from the native and the unfolded states. For

the case of the purely repulsive barrier we found that the intermediate states get closer

to each other in the free energy landscape plot and eventually they collapse into a single

intermediate state. The unfolded state is more compact, compared to that in the bulk,

as the size of the barrier decreases. For an attractive barrier modifications of the states

(native, unfolded and intermediates) are observed depending on the degree of attraction

between the protein and the walls of the barrier. The strength of the attraction is
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measured by the parameter ε. A purely repulsive barrier is obtained for ε = 0 and a

purely attractive barrier for ε = 1. The states are changed slightly for magnitudes of the

attraction up to ε = 0.4. The disappearance of the intermediate states of 1NJ0 is already

observed for ε = 0.6. A very high attractive barrier (ε ∼ 1.0) produces a completely

denatured state.

In the second topic of this Thesis we dealt with the interaction of a protein with an

external electric field. We demonstrated by means of computer simulations, specifically

by using the Wang-Landau algorithm, that the folded, unfolded, and intermediate states

can be modified by means of a field. We have found that an external field can induce

several modifications in the thermodynamics of these states: for relatively low magnitudes

of the field (< 2.06×108 V/m) no major changes in the states are observed. However, for

higher magnitudes than (6.19 × 108 V/m) one observes the appearance of a new native

state which exhibits a helix-like structure. In contrast, the original native state is a

β-sheet structure. In the new native state all the dipoles in the backbone structure are

aligned parallel to the field.

The design of amino acid sequences constitutes the third topic of the present work.

We have tested the Rate of Convergence criterion proposed by D. Gridnev and M. Gar-

cia (work unpublished). We applied it to the study of off-lattice models. The Rate of

Convergence criterion is used to decide if a certain sequence will fold up correctly within

a relatively short time. Before the present work, the common way to decide if a certain

sequence was a good/bad folder was by performing the whole dynamics until the sequence

got its native state (if it existed), or by studying the curvature of the potential energy

surface. There are some difficulties in the last two approaches. In the first approach,

performing the complete dynamics for hundreds of sequences is a rather challenging task

because of the CPU time needed. In the second approach, calculating the curvature of

the potential energy surface is possible only for very smooth surfaces. The Rate of Con-
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vergence criterion seems to avoid the previous difficulties. With this criterion one does

not need to perform the complete dynamics to find the good and bad sequences. Also,

the criterion does not depend on the kind of force field used and therefore it can be used

even for very rugged energy surfaces.
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3.6 Plot of Eq. 3.15 without εXY . The σlocal = Rsmall + Rsmall = 5.20 Å, for
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Chapter 1: Introduction

Chapter 1

Introduction

Proteins are essential parts of organisms and participate in virtually every process

within cells, let us quote for instance:

• are passive building blocks of many biological structures, such as the coats of

viruses, the cellular cytoskeleton, the keratin in our skin or the collagen in our

bones and cartilages;

• transport and store other species, from oxygen or electrons to macromolecules;

• act as hormones, transmit information and signals between cells and organs;

• act as antibodies, defend the organism against intruders;

• are the essential components of muscles, converting chemical energy into mechanical

one, and allowing the animals to move and interact with the environment;

• control the passage of species through the membranes of cells and organelles, they

are doorkeepers;

• control gene expression;

• are the essential agents in the transcription of the genetic information into more

proteins;

• as chaperones, protect other proteins to help them to acquire their functional 3D

structure via the folding process that we will discuss later.
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Chapter 1: Introduction

Due to this participation in almost every task that is essential for life, protein science

constitutes a support of increasing importance for the development of modern medicine.

On one side, the lack or malfunction of particular proteins is behind many pathologies;

e.g., in most types of cancer, mutations are found in the tumor suppressor p53 pro-

tein [AVR02]. Also, abnormal protein aggregation characterizes many neurodegenerative

disorders, including Huntington, Alzheimer, Creutzfeld-Jakob (’mad cow’), or motor neu-

ron diseases [EAF+06, Kel98, LM00]. Finally, to attack the vital proteins of pathogens

(HIV, SARS, hepatitis, etc.) [BNO08], or to block the synthesis of proteins at the bac-

terial ribosome [BPZ+07], are common strategies to battle infections in the frenetic field

of rational drug design.

Apart from medicine, the rest of human technology may also benefit from the solutions

that Nature, after billions (109) of years of ”research”, has found to the typical practical

problems. And that solutions are often proteins: new materials of extraordinary me-

chanical properties could be designed from the basis of the spider silk, elastin or collagen

proteins. Also, some attempts are being made to integrate these new biomaterials with

living organic tissues and make them respond to stimuli from the patient. Even further

away on the road that goes from passive structural functions to active tasks, no engineer

who has ever tried to solve a difficult chemical problem can avoid to experience a feeling

of almost religious inferiority when faced to the speed, efficiency and specificity with

which proteins cut, bend, repair, carry, link or modify other chemical species. Hence, it

is normal that we play with the idea of learning to control that power and have, as a

result, nanoengines, nanogenerators, nanoscissors, nanomachines in general.

In the late 1950s Christian B. Anfinsen and his colleagues at the National Institutes

of Health made a remarkable discovery. They were exploring a long-standing puzzle in

biology: what causes newly made proteins which resemble loosely coiled strings and are

inactive to wind into specifically shaped balls able to perform crucial tasks in a living
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cell? Such a process of getting a specific 3D form is called protein folding. Anfinsen

found an interesting answer for this question during his experiments on ribonuclease

folding [Anf73]. The ribonuclease-A is a relatively small protein, with four distinct disul-

fide bridges. The first step, he made, was to denature the protein with the chaotropic

agent urea and the disulfide-reagent mercaptoethanol. Since it is not too complicated, it

was a wonderful opportunity to follow the changes in enzymatic activity of this protein.

Not surprisingly, after this treatment the enzymatic activity of native ribonuclease disap-

peared. After denaturation, he extracted the disulfide-reagent mercaptoethanol from the

solution, and measured the enzymatic properties. It did not change, but if he extracted

both the mercaptoethanol and urea from the system, the enzymatic activity reappeared.

This experiment gave proof for the following statement: that there are some proteins,

that are able to fold from an unfolded to a folded state within a relatively short time

range, in in vitro circumstances, without any helper molecules, such as chaperones. So

there is no need for a special coding mechanism for protein folding, the information for

folding is fully encoded in the primary structure (sequence of amino acids). It seemed the

amino acid sequence of a protein, a one-dimensional trait, was fully sufficient to specify

the molecule’s ultimate 3D shape and biological activity. (Proteins are built from a set of

just 20 amino acids, which are assembled into a chain according to directions embedded

in the genes.) Outside factors, such as enzymes that might catalyze folding, did not have

to be invoked as mandatory participants.

The discovery, which has since been confirmed many times at least for relatively small

proteins suggested that the forces most responsible for proper folding in the cell could,

in theory, be derived from the basic principles of chemistry and physics. That is, if one

knew the amino acid sequence of a protein, all that would have to be considered would be

the properties of the individual amino acids and their behavior in aqueous solution (the

interior of Most cells is 70 to 90 percent water). In actuality, predicting the conformation
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of a protein on the basis of its amino acid sequence is far from simple. More than 30

years after Anfinsen made his breakthrough, hundreds of investigators are still at work

on that challenge, which has come to be widely known as the protein folding problem.

The solution is of more than academic interest. Many major products of the developing

biotechnology industry are novel proteins. It is already possible to design genes to direct

the synthesis of such proteins. Yet failure to fold properly or ”misfolding” is a common

production concern. Therefore, the researchers are interested on the possible internal and

external factors which intervene in the folding and eventually on how to control them.

Not surprisingly when proteins do not fold correctly there can be serious effects, in-

cluding many well known diseases, such as Alzheimer’s, Mad Cow (BSE), and Parkinson’s

disease. That is one of the reasons of why the scientific community is interested on pro-

tein folding. One of the possible reasons for the misfolding of proteins is the existence

of stable intermediate states [FFC06]. Those are states different from the native one in

which the protein stays for a very long time because there is a energetic barrier diffi-

cult to overcome with thermal excitations. The intermediate states act as check-points

where a protein gets trapped and after some time it can continue the folding or even it

stays there for indefinite time. The problem arises when the intermediate states are very

stable, it means that a protein which reaches such a state cannot go out from this state

easily. The protein stays in this state and cannot reach the native state in an appropriate

time for its correct functioning inside the living organism. Then, a series of unexpected

chemical reactions occur inside the organism and the final result is the appearance of

several diseases. This fact makes the understanding of intermediate states of vital signif-

icance. In the present thesis we will study the presence of intermediate states in a certain

protein, the 1NJ0 peptide, which is a small segment of the HIV. We will examine how

those intermediate states can be modified and controlled by external factors such as an

electric field or the confinement by potential barriers.
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The understanding of protein folding was obtained from computer models in silico or

from experiments in the laboratory in vitro in which an individual protein was denatured

to observe it folding back into its original form. But, the situation is considerably more

complex in the living cell in vivo. Although the fundamental energy rules also apply here,

folding (at least of large proteins) rarely takes place spontaneously, as the ribosomes

do not synthesize only one protein at a time. Instead, cells contain a vast number of

proteins and other biomolecules at the extraordinarily high concentration of 340 grams

per liter. Ordered protein folding in this cramped chaos is only possible under the

supervision of specialized molecules, called chaperones, which accompany proteins and

make sure that those that are being formed at the ribosomes do not clump together

prematurely. Chaperones do not merely oversee the folding of the protein, they also

protect its tertiary structure (3D shape of the protein) in situations in which the cell

is under stress; for example, elevated body temperature, so these chaperones have also

been classified as heat-shock proteins (HSPs). The HSP70s, so called because they have

a molecular weight of 70 kilodaltons, are the most important class of chaperones. A

chaperone is a molecule shape like a double ring which fits round the protein chain like a

cylinder so that it can fold undisturbed inside. By confining the developing protein the

chaperone protect those parts of the protein that are particularly sensitive to premature

reaction with the environment and therefore to malformation. Although the cylindrical

folding cage opens every 10 seconds, the protein only leaves the chaperone when it has

achieved its required native structure. Even though several studies have been performed

regarding the chaperones[TKT03, TKL03, RKP05, NSC06, JBS04, FS06] many questions

remain open, for instance, what is the influence of the confinement on the folding?, what

is the influence of the degree of hydrophobicity inside the chaperon?. We will give new

insights into these questions along the present Thesis.
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Solving the folding problem has enormous implications: exact drugs can be designed

theoretically on a computer without a great deal of experimentation. Genetic engineering

experiments to improve the function of particular proteins will be possible. Simulating

protein folding can allow us to go forward with the modeling of the cell. We now under-

stand better than ever how protein folding both in vitro and in vivo takes place. And

this, in turn, has given us a better understanding of the origin and course of diseases

that are associated with defective protein folding. However several questions remain

open, for instance, given a certain amino acid sequence, how to know if it will fold into a

unique native state in a relatively short time (compare to random sequences). Computer

simulations cannot yet solve the folding code that is hidden in the primary structure by

simply calculating the molecular dynamics atom by atom, as to work through just 50

milliseconds of folding would take even the fastest computer around 30,000 years. Any

realistic hope of cracking the folding code, such as to produce special designed proteins

that evolution had not planned, is probably a very long way off. To perform the com-

plete dynamics (until the protein is folded) by the classical methods of just one sequence

would take a long time. If we want to perform the whole dynamics of hundreds or even

thousands of sequences to have more statistics, the required time for the simulations

would be unimaginable. Therefore, it would be very helpful if we had at hand a criterion

to decide if a protein will fold correctly to a native stable structure without performing

the complete dynamics, which could take a very long time. In the present Thesis, we

propose a new algorithm called the Rate of Convergence to decide if a protein is a good

or bad folder from the very beginning of the dynamics. With our algorithm we save a lot

of CPU time when trying to decide which amino acid sequence will fold correctly within

a short time.

It would be wonderful if researchers had an atomic-level microscope that could take

a movie of individual protein molecules folding up from their extended, unstable state to
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their final, or native, state, which is more stable. From a collection of movies, all aspects

of the reaction pathways could be seen directly. Unfortunately, no such instrument exists;

investigators must fallback on much less direct measurements and very careful reasoning.

One can gather helpful clues to the rules of folding by examining the three dimensional

structures of unfolded and fully folded proteins and by analyzing the properties of indi-

vidual amino acids and small peptides (linear chains of amino acids). Fortunately, the

architecture of hundreds of native proteins has been determined by such imaging tech-

niques as X-ray crystallography and, more recently, nuclear magnetic resonance (NMR).

Both techniques have advanced dramatically in the past decade, as has theoretical work

attempting to predict folding mathematically by computer. In particular the present

Thesis is oriented to the computer simulations in protein folding. We have made use of

Wang-Landau and Langevin algorithms of several proteins to give new insights into the

protein folding problem. We have dealt with topics of actuality such as the confinement

of proteins, the protein-electric field interaction and the sequence design.

Along this Thesis we will learn about the common models used to simulate proteins,

about two of the most important algorithms to solve the dynamics and thermodynamics of

proteins (Langevin and Wang-Landau algorithms respectively) and the essential features

of the folding process.
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Chapter 2

BASIC CONCEPTS ABOUT PROTEIN FOLDING

In this Chapter we explain the basic concepts behind protein folding. Section 2.1 is

devoted to the description of the protein structure. The Section 2.2 describes the ther-

modynamics of protein folding. The Section 2.3 is a brief overview of the protein models

commonly used in computer simulations. The Section 2.4 introduces the concept of inter-

mediate states and finally the Section 2.5 describes three of the open questions in protein

folding which we addressed in the present Thesis.

2.1 THE STRUCTURE OF A PROTEIN

An amino acid is a molecule containing both the amine and carboxyl functional groups,

they have the general formula H2NCHRCOOH where R is an organic substituent called

”Residue”, (see Fig. 2.1). Only 20 kind of amino acids exist in the nature and differ

among themselves just by the organic group R. The amino acids can bind to each other

by means of polymerization reactions and form chains, as displayed in Fig. 2.2. These

chains are known as Proteins.

Proteins play an essential role in all forms of life. Some of the functions of proteins

include control gene expression [RTG+07], intercellular signaling [Gre98], control of his-

tocompatibility [Con99] and transport of other proteins [RSS08]. Proteins show a high

degree of specifity: it means that the function of a certain protein is highly determined

by the 3D structure and the sequence of its amino acids. In general, one protein cannot

be replaced by another one without altering the activities of the living organism.

The size of a protein can run from less than 50 amino acids in the chain, up to more

8



Chapter 2: Theory

Figure 2.1: Structure of an amino acid showing the main atoms involved C, O, N and H,
as well as the residue R. The bond lengths and angles are taken from Ref. [SF00].

Figure 2.2: A sequence of 3 amino acids in a protein. The residues are displayed explicitly.

than 3000 amino acids. One of the largest amino acid chain is myosin, found in muscles,

which consists of 1,750 amino acids. In Fig. 2.3 we show the structure of the protein

Hemoglobin responsible for the transport of oxygen in the humans. Even for this middle-

size protein we can already observe the high degree of complexity in the arrangement of

the amino acids.

Much effort (about forty years worth) has been expended trying to understand how

proteins fold up in nature. The goal is to fold up proteins from amino acid sequences

which are easy to obtain (these days, the entire genome sequence for several organisms

is available) into correct 3D structures (which are very few in number compared to the
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number of amino acid sequences), theoretically (using a computer to do the actual folding

steps). We are not very close in completing this goal, and so the Protein Folding problem

remains one of the most basic unsolved problems in computational biology. With the

advent of the computers, the people started the simulations of proteins using different

kind of force fields between atoms. These simulations have the advantage that one can

manipulate as many parameters as one wishes and observe how the system behaves. The

goal of the computer simulations is to predict the real dynamics of the proteins and to see

why the proteins behave as they do in our body. Several technological and pharmaceutical

applications could be carry out using the results of protein studies. In spite of the fact

that computer simulations provide a deep insight into the field of proteins they are limited

by several factors. One of these factors is related to the CPU time needed because of

the the long timescales required for folding processes. Another factor is related to the

accuracy of the simulation: computer simulations make use of coarse-grained models,

empirical potentials for the protein or solvent which in fact affect the accuracy of the

simulation respect to the experimental results.

One can recognize different organization levels in Proteins. The lowest level corre-

sponds to the amino acid sequence itself which is called the primary structure, see Fig. 2.4

a). The next level is the secondary structure which consists of the regularly repeating lo-

cal structures stabilized by hydrogen bonds, the secondary structure is shown in Fig. 2.4

b). The most common examples are the α-helix and β-sheet, shown in Fig. 2.5. The

protein can exhibit different secondary structures. Following the organization scheme,

we distinguish the tertiary structure, which is the overall 3D shape of the protein, that

is the spatial relationship of the secondary structures to one another, see Fig. 2.4 c).

The tertiary structure is generally stabilized by nonlocal interactions, most commonly

the formation of a hydrophobic core, but also through salt bridges, hydrogen bonds, and

disulfide bonds. The term tertiary structure is often used as synonymous with the term
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Figure 2.3: Hemoglobin structure with 574 amino acids. This molecule has a two-fold
symmetry as revealed by X-ray diffraction.

”fold”. The tertiary structure is what controls the basic function of the protein. The last

level of organization is the quaternary structure, that is the structure formed by several

protein molecules (polypeptide chains), usually called protein subunits, which function

as a single protein complex. The quaternary structure is displayed in Fig. 2.4 d).

The structure of the protein is completely determined by the sequence of its tor-

sional angles displayed in Fig. 2.6 a). Proteins can be characterized in general by their

Ramachandran plots, this is a map which shows the possible torsional angles in the back-

bone structure. One can distinguish in the Ramachandran plot regions corresponding to

α-helix and β-sheet structures among other conformations, as shown in Fig. 2.6 b). In

this figure the white areas correspond to conformations where atoms in the polypeptide

come closer than the sum of their Van der Waals radii. These regions are sterically dis-

allowed for all amino acids except glycine which is unique in that it lacks a side chain.

The black (blue in color) regions correspond to conformations where there are no steric

clashes, i.e. these are the allowed regions namely the α-helix and β-sheet conformations.
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Figure 2.4: Organization levels of proteins: a) the primary structure, which is the lowest
level corresponds simply to the amino acid sequence. b) the secondary structure are the
features produced by the hydrogen bonding, mainly α-helices and β-sheets structures.
c) the tertiary structure is the resultant 3D shape of the protein resulting from the
interactions between the α-helices and β-sheets structures. d) the quaternary structure
is the arrangement of several protein chains.

The grey (green in color) areas show the allowed regions if slightly shorter overlap be-

tween the residues occurs. This brings out an additional region which corresponds to the

left-handed α-helix.

2.2 THERMODYNAMICS OF THE FOLDING

A long-standing problem in Biology has been the question of what makes proteins to fold,

i.e what causes linear amino acid sequences to get the complex 3D stable structures which

are vital for the function of a living organism. Proteins exhibit a particularly amazing
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Figure 2.5: Two of the most frequent protein structures: a) an α-helix where the torsional
angles φ ∼ −57o and ψ ∼ −47o and b) a β-sheet where φ ∼ −139o and ψ ∼ +135o.

behavior when they are introduced into an aqueous environment. In this environment

they tend to adopt a specific 3D form known as the Native State, this process is known

as Folding and it is illustrated in Fig. 2.7. Under certain conditions of pH or temperature

the native state can be unfolded and give place again to the random coil. Christian

Anfinsen demonstrated that the process folding-unfolding is reversible for which he was

awarded with the Nobel Prize in 1972 [Anf73].

The real problem with the folding of proteins is that, for a given sequence, we do not

know a priori which 3D structure it will adopt. Therefore, it would be very useful to be

able to predict the structure of a protein from its primary sequence for both scientific

and industrial interests. For instance, we could design an artificial sequence which could

acquire a determined native state and carry out a specific function. No less important is

the fact that the misfolding of proteins is believed to cause diseases such as Creuztfeld-

Jakobs and Alzheimer [EAF+06, Kel98, LM00]. Knowing the mechanisms of the folding

one could, in principle, avoid such misfoldings or replace a given sequence by any other

which could be less prone to misfolding.

The protein folding process can be compared to crystallization in the sense that a

protein ”condenses” in a unique stable structure. On the contrary, ordinary polymers
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Figure 2.6: a) Backbone structure of a protein showing the two degrees of freedom
handled in the model, better known in the literature as the Ramachandran angles φi and
ψi. b) Ramachandran plot for the protein PCNA, a human DNA clamp protein that is
composed of both α-helices and β-sheets (PDB code 1AXC). The Ramachandran angles
are Φ and Ψ.

typically freeze to form amorphous globules, i.e. poly-peptides with random sequences

which generally do not fold to unique structures.

A natural question which immediately arises is: what are the forces driving the folding

of proteins? It has been established that the main forces involved are the electrostatic

and hydrophobic interactions including the hydrogen bonds. There is consensus that the

hydrophobic interaction is the major contributor to the stability of the native state of the

protein. A way of understanding the hydrophobic effect is the example of a hydrophobic

substance in water. Pure water molecules adopt a structure which maximizes entropy

(S). A hydrophobic molecule will disrupt this structure and decrease entropy, and creates

a ”cavity” as it is unable to interact electrostatically with the water molecules. When

more than one ”cavity” is present, the surface area of disruptions is high, meaning that

there are fewer free water molecules. To counter this, the water molecules push the

hydrophobic molecules together and form a ”cage” structure around them which will

have a smaller surface area than the total surface area of the cavities. This maximizes

the amount of free water and thus the entropy. Therefore the hydrophobic effect might
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also be understood as the ”the lipophobicity of water”

As a remark, the hydrophobic interaction between exposed non-polar amino acid

residues on the surfaces of the protein molecule is, in general, attractive, short-range,

and orientation dependent. By using these forces the amino acids are able to get the

native state in a relative short time. The dynamics of this process was not clear till some

years ago. The current picture is that the secondary structure forms at the very beginning

of the folding. In an initial stage the protein collapse into a compact structure in whose

center the hydrophobic amino acids are localized, leaving the hydrophilic amino acids

exposed to the water. This condensed structure, called, molten globule in the literature,

evolves through an even smaller ensemble of structures to a thermally jittered final tightly

packed ”single” structure. The thermodynamic guiding forces of protein folding will be

most active in the early stages of folding because that is when the density of states is

quite large while in the last stages of folding, when entropy has been reduced, the glass

transition could well intervene.

Figure 2.7: The folding proceeds by minimizing the free energy at each step ∆F . The
final state called the Native State is very compact and also stable. The hydrophobic
residues (in black) are localized in the core of the Native State, while the hydrophilic
residues are exposed to the water environment.

Over a long time there was a dramatic discrepancy between the theoretical and exper-
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imental folding times. On the one hand, it was found in the laboratory that the average

folding time was between 10−3 and 1 sec. On the other hand, by using the random sam-

pling hypothesis, one would conclude that the average folding time must be of almost 4

times the age of our universe. This disagreement between theory and experiment was

called the Levinthal Paradox , after Cyrus Levinthal [Lev68].

In fact, such a paradox lacks of sense when we analyze carefully the details of the

folding process. The Levinthal paradox would have validity in the assumption of every

possible configuration sampled with uniform probability through the space of configura-

tions. Explained in an illustrative way, this would be similar to leave a blind man in

a landscape with many valleys and hills and wait until he finds the lowest place of the

surface. It would take a very long time in average until the man reaches such a place.

What happens in reality is that the folding process is not random but it follows

routes that minimize the Helmholtz free energy, F = E − TS. Along the folding path

the changes in F are expressed as,

∆F = ∆E − T∆S, (2.1)

where ∆E and ∆S are changes in the internal energy and entropy respectively and T is

the temperature of the environment. All this means that a compromise between energetic

and entropic changes must exist so that a spontaneous transition from a configuration

C1 to another configuration C2 can take place in such a way that F (C2) − F (C1) ≤ 0.

The presence of maxima and minima in the routes of folding allows us to introduce the

concept of an energy surface where the thermodynamics of the folding evolves. Such

a surface is called the Free Energy Landscape (FEL) in the literature [Wal03]. A very

closed concept to the FEL is that of the Potential Energy Surface (PES) which can be

observed as the FEL for a temperature T = 0 (without considering the electronic part of

the molecule). The FEL (PES) is in general described in terms of some conformational
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parameters or reaction coordinates which are supposed to captured the essential features

of the folding. The FEL (PES) of the proteins has in most cases numerous roughnesses

and entropic traps which make the global minimum (the native state) not attainable in

a reasonable time or make it unstable.

The FEL (PES) roughnesses owes to the incapability to satisfy all the possible inter-

actions in a single conformation or what is called frustration. In most of the proteins it

is observed nevertheless that there exists a stable native state that can be reached in a

relatively short time, which lead to the idea that the FEL (PES) of proteins should have

a funnel form [LO92]. This is illustrated in Fig. 2.8.

Figure 2.8: Schematic representation of the Free Energy Landscape (FEL) or the Po-
tential Energy Surface (PES) of a protein with a funnel form. The y-axis refers to the
internal energy E. The broadness of the funnel is a measure for the entropy. As the
protein comes closer to the native state (global minimum of the PES), the loss of entropy
(∆S) is compensated by the decrease of internal energy (∆E) whereupon the free energy
is negative (∆F < 0) making the spontaneous change possible.

The form of funnel of the FEL (PES) tends to diminish the degree of frustration of a

protein because the energetic traps present are small enough that they do not compete

with the global energetic minimum that defines the native structural ensemble. This
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has given place to the Principle of Minimal Frustration [BOSW95], which asserts that

evolution has selected the amino acid sequences of natural proteins so that interactions

between side chains largely favor the acquisition of the folded state. Interactions that

do not favor folding are selected against, although some residual frustration is expected

to exist. In general different kinds of funnels can exist depending on the amino acid

sequence [Dil99].

2.3 THEORETICAL PROTEIN FOLDING MODELS

In the literature we find two general ways to describe the proteins depending on how they

are allowed to move, that is, depending on whether they are confined or free to move in

space. We will describe in the following paragraphs the essential ideas behind these two

ways to describe the proteins in Computer Simulations.

2.3.1 Lattice Models

Lattice proteins are highly simplified computer models of proteins which were intensively

used in the 90’s to investigate protein folding. Actually, the first theoretical results in

the field of protein folding came from lattice models [LD89, SSK94a]. Because proteins

are such large molecules, containing hundreds or thousands of atoms, it is not possible

with current technology to simulate more than a few microseconds of their behavior in

all-atom detail. Hence real proteins cannot be folded on a computer. Lattice proteins,

however, are simplified in two ways: the amino acids are modeled as single ”beads”

rather than modeling every atom, and the beads are restricted to a rigid (usually cubic)

lattice. This simplification means that they can fold to their energy minima in a time

quick enough to be simulated, see Fig. 2.9.

Lattice proteins are made to resemble real proteins by introducing an energy function,

that is, a set of conditions which specify the energy of interaction between neighboring
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Figure 2.9: Lattice model of the native state of a protein with 27 amino acids. Adapted
from [SSK94a].

beads, usually taken to be those occupying adjacent lattice sites. The energy function

mimics the interactions between amino acids in real proteins, which include steric, hy-

drophobic and hydrogen bonding effects. The beads are divided into types, and the

energy function specifies the interactions depending on the bead type, just as different

types of amino acids interact differently. One of the most popular lattice models, the

HP model, features just two bead types - hydrophobic (H) and polar (P) - and mim-

ics the hydrophobic effect by specifying a negative (favorable) interaction between H

beads [LD89, SBJ07, SSK94a]. The energy of a single chain C in the lattice models is

given commonly as E(C) =
∑N
i,k=1 Vik∆ik(C), where the interaction matrix for monomers

Vik is determined by the Miyazawa-Jernigan matrix [MJ96]. This matrix, whose ele-

ments are statistically deduced pair-wise interaction potential energies among the twenty

types of amino acids in proteins of known structure, has been widely applied to protein

design and folding simulations [JB96, Sha94, PGT95]. ∆ik(C) is the so called contact

matrix, that is, ∆ik(C) = 1 if the amino acids i and k are in a distance less than 8 Å and
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∆ik(C) = 0 otherwise. We make use of this kind of energy in Chapter 4 where we study

the folding of proteins from the lattice-models point of view.

2.3.2 Off-lattice Models

The problems regarding the oversimplification of the lattice models are solved by using the

off-lattice models. These models are not restricted to a particular geometry of the grid,

and all the atoms can move freely in space. The potentials used to simulate the proteins

range from the Ab-initio [DWK98] to the so called Minimalist models [CSM06, SBJ07].

The Ab-initio models consider an all-atom potential and are very accurate. The problem

with the Ab-initio models is that they are very time consuming. The Minimalist models

consider an average of the forces over certain degrees of freedom in the protein structure

and treat therefore the potential in a mean field approximation. The simulation time of

these models is reduced considerably with respect to the Ab-initio approaches but these

models are obviously less accurate. The degree of accuracy can vary depending on the

type of approximation used for the forces. In the present work we employ only minimalist

potentials (see description of Model I and Model II in Chapter 3).

2.4 INTERMEDIATE STATES IN THE FEL OF PROTEINS

The free energy landscape of a protein at a certain temperature could have several min-

ima. Depending on the number of minima, we can have a two-state folding (with two

minima), a folding through intermediates (more than two minima) and a glass-like fold-

ing into metastable conformations (more than two minima with almost the same free

energy) [SBJ07]. The duration of the folding process varies dramatically depending on

the protein of interest because of the presence of the intermediates. When studied out-

side the cell, the slowest folding proteins require many minutes or hours to fold primarily

due to proline isomerization, and must pass through a number of intermediate states,
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like checkpoints, before the process is complete [KB90]. Time scales of milliseconds are

the norm and the very fastest known protein folding reactions are complete within a few

microseconds [KHE04].

Figure 2.10: Multicanonical histograms Hmuca(E,Q) of energy E and angular overlap
parameter Q and the free energy landscapes F (Q) at different temperatures for three se-
quences (a) S1, (b) S2 and (c) S3. Pseudo-phases are symbolized by D (denature states),
N (native folds), I (Intermediates), and M (metastable states). Taken from [SBJ07].

The intermediate states of proteins are important for the technological and medical

applications. Suppose, for example, that one designs a protein in the laboratory which

folds through intermediates. On the one hand it could be a problem the presence of

intermediates because it would take a long time to reach the native state if the protein gets

trapped in certain intermediates (local minima). In this case we would never reach the

native state in an appropriate time. On the other hand it could be an advantage whether
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Figure 2.11: Schematic view of the free energy landscape of the human prion as a function
of pressure. The molar free energy differences of the four main conformations N1, N2,
I1 and I2 are depicted as function of the pressure P at constant temperature T of 293K.
Taken from [KKZK06].

we want for a certain application that the protein stays in a determined intermediate

state for a long time.

The concept of Intermediates comes from the fact that from time to time the pro-

tein conformations arrive to a local minimum, and they are not able to scape unless one

gives them some external energy, by increasing the temperature for example. Because

of the roughness of the FEL (PES) for proteins we expect to have several intermediates.

However the folding mechanism was not always well understood in the early days of

protein folding research [PK74]. A that time it was believed that the process follows

a simple two-state transition. A two-state folding transition is explained simply as an

equilibrium between a single folded conformation and an unfolded state as described

above. This means that the transition involves only these two states with no accumu-

lation of stable intermediates. The reaction coordinate of such a process will consist

of two energy minima separated by a single energetic barrier. Nowadays we know that

the free energy landscape can have in fact some intermediates besides the minima cor-
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responding to the folded and unfolded states. Recent works confirm this hypothesis as

in Refs. [SBJ07, OLYG09] and demonstrate that one can find different kinds of folding.

For instance, Schnabel et. al, [SBJ07] could observe the three kinds of folding by using

a minimalist model. The important point to remark is that even with a simple model

of springs and Lennard-Jones potentials, as the one used by Schnabel, one can already

observe many features in the free energy landscape, see Fig. 2.10.

Intermediates in protein folding, such as those observed for Lysozyme and Barnase,

could result either from kinetic traps, which slow the folding process, or simply from addi-

tional free energy minima along the pathway, which could speed up the reaction [Kie95].

In either scenario folding is no longer a two-state, first-order-like transition. Evidence

that both types of intermediates may occur, depending on the protein is provided by

experimental results for Ubiquitin and Cytochrome−c [WBCJ04]. Changing the balance

between entropy and enthalpy can produce a change in behavior from rapid folding, with-

out an intermediate, to mechanisms involving collapsed intermediate states or traps. In

the laboratory such intermediates are achieved by creating mutants where the hydropho-

bic interaction is modified. These larger hydrophobic terms increase the chance that an

intermediate free energy minimum exists, corresponding to a relatively compact state or

molten globule.

Experimentally, the intermediate states are difficult to observe because there is no

available technique which allows directly to monitor the folding on real time (order of

microseconds). Techniques such as hydrogen exchange [KHLE04] and NMR [KKZK06]

monitor the folding indirectly by measuring the number of hydrogen bonds present at a

certain time. This give us an idea of how the 3D structure of the protein is, but, because

not each atom is monitored, the resultant structure is not the real one but only a guess-

average structure (since many structures satisfy the condition of having a certain number

of hydrogen bonds). Intermediate states have been detected experimentally by Kachel
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et. al.[KKZK06] using high pressure NMR spectroscopy, these intermediate states are

displayed in Fig. 2.11.

2.5 OPEN QUESTIONS:

In spite of the numerous efforts that have been done to understand the folding process,

many open questions remain. In the present thesis we addressed the following problems:

the effect of confinement potentials, the influence of an external electrical field, and

sequence design. In the following we describe the problems treated in our investigations.

Figure 2.12: Structure of the GroEL-GroES complex.

2.5.1 Effect of Confinement on Protein Folding

The confinement effect is an important issue when the proteins are in the cellular en-

vironment surrounded by thousands of biomolecules. It has been found that crowding

biomolecules make the folding process of a single protein sometimes almost impossible

to be carried out. To overcome this problem certain structures called Chaperones play

a major role. More than 50 families of Chaperones are known. The Groel-Groes found

in bacteria is shown in Fig. 2.12. These chaperones are in fact hollow cylindrical pro-

teins in whose interior smaller proteins can fold. The chaperones avoid the formation of

undesirable aggregates of proteins and can sometimes assist misfolded protein to acquire
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its correct native form [Ell06]. As a remark, aggregates of proteins are believed to be a

cause of diseases like Alzheimer [EAF+06, Kel98, LM00].

Considerable progress in understanding the mechanism of this nano-machine has be-

come possible due to a combination of an extraordinary body of experimental work [FH97,

XS99] and some contributions from theoretical studies [Thi94, GW94]. The function of

the chaperone can be described as follows [PRF02], (illustrated in Fig. 2.13): the sub-

strate (folding) protein is captured by the open cavity of the GroEl particle. To a first

approximation, the mouth of the cavity can be thought of as a continuous hydropho-

bic surface. The interaction between the substrate protein and the GroEl is due to the

attraction between the exposed hydrophobic residues of the substrate protein and the

hydrophobic surface of the frontiers of the GroEl complex. Upon binding of ATP and

GroEs significant chemical reactions occur in the GroEl particle.

The series of chemical reactions inside the Chaperone alter, in a fundamental way,

the nature of interaction between GroEl and the substrate protein. Whereas in the

process of capture the substrate protein-GroEl interaction is attractive, the interaction

is either neutral or even repulsive after encapsulation. The surface remains hydrophilic

until the restoration of GroEl to the initial state. This alternation between hydrophobic

and hydrophilic surface enables this system to function as an annealing machine. The

release of GroES and the protein occurs when the folding is finished.

The simplest form to model a Chaperon is by considering it as a potential barrier of

impenetrable walls. Nevertheless since the walls have some unbalanced charges [Ell06],

it is suitable to introduce an attractive potential which interacts with the residues of the

proteins. Studies using molecular dynamics simulations [TKT03, LLW06] and considering

confinement barriers whose size depend on the time, show that the size of the barrier is

an essential factor in the stability of the protein and that the barrier not only does the

folding more effective but also it collaborates in the correct folding of already misfolded
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Figure 2.13: A schematic sketch of the cycle in the GroEl-GroEs-mediated folding of
proteins. In step 1 the substrate protein is captured into the GroEl cavity. The ATPs
and GroEs are added in step 2, which results in doubling the volume, in which the
substrate protein is confined. The hydrolysis of the ATP in the cis-ring occurs in the
step 3. After binding ATP to the trans-ring, GroES and the substrate protein are released
that completes the cycle (step 4). Taken from [ME04].

proteins. In some way, the effect of a chaperon on the protein is the elimination of

undesirable local minima, making the folding time shorter.

One of the goals for this Thesis is to study the behavior of small peptides under dif-

ferent kinds of confinement potentials. In Chapter 4 we will see that the thermodynamics

of the folding is modified depending on the degree of confinement (induced by means of

the barrier size) and also on electrostatic effects (caused by the attractive walls of the

barrier).

2.5.2 Influence of an External Electric Field on Protein Folding

Due to the presence of electrical unbalanced charges in the structure of a protein (those

belonging to the C, N, H, O atoms), permanent dipoles are present. In Fig. 2.14 one can
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Figure 2.14: The dipoles of NH and OC in the amide plane give rise to a total dipole
moment for each amino acid which has the value 1.1× 10−29Cm.

see the dipoles lying on the amide-plane of one amino acid. Note, that both dipoles are

in the same direction and therefore there is a net dipole different from zero.

The dipoles in the plane of the amide can be lined up by means of an external field.

Hol [Hol85] gave an experimental value of the dipolar moment on the amide plane of

1.1×10−29Cm. As a remark the dipolar moment of a molecule of water is 6.1×10−30Cm.

In the same article, Hol mentioned that in structures such as α-helix, where all the dipolar

moments are aligned, the total dipolar moment cannot be neglected. On the contrary,

a structure such as the β-sheet where any two consecutive dipoles are antiparallel, the

total dipolar moment is almost zero, see Fig. 2.15.

The interaction of an electric field (EF) with a protein has been used recently to

align biomolecules in X-rays experiments [SSW+05, RCF+09]. The alignment is nec-

essary in biomolecules particularly when these cannot form crystals. The crystals of

the biomolecules are essential in order to conduct diffraction experiments to know the

internal structure.

The alignment of dipoles by means of an EF finds an analogon in the Ising model

of spins under an external magnetic field [Bin01]. Depending on the orientation of the

27



Chapter 2: Theory

Figure 2.15: Alignment of the amide-plane-dipoles in a α−helix structure. Taken from
Hol [Hol85].

EF, the total energy could decrease or increase if the dipoles are parallel or antiparallel

aligned to the EF.

Molecular Dynamics simulations of the folding in an external field have revealed that

only high enough fields can interfere on the dynamics of the folding. Histeresis and

relaxation effects have also been observed in big proteins [XPS96]. Fig. 2.16 displays one

of the results of Schulten et. al [XPS96]. Here one can observe in the part a) the short

time behavior of the Root Mean Square Deviation (RMSD) for a protein without any

field (broken lines) and for homogeneous fields (2×109 V/m) of different pulse durations.
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One observes that unless the duration of the pulse is grater than 1ps, the trajectory is not

modified appreciably. As for the part b) of the figure, Schulten performed a simulation

without a field (broken line) and with an static field (same magnitude as before) for

long times. In this case, one observes that the trajectories end at completely different

configurations even when they started with the same configuration and velocities. This

means that a permanent field can in principle modify the dynamics of a protein and

induce a different native state if the magnitude is high enough.

Figure 2.16: Root Mean Square Deviation (RMSD) from the structure at t = 0 for a
simulation without an external field (broken lines) and for a simulation with a static,
homogeneous field 2 × 109 V/m. T0 = 100K (solid lines). (a) shows the RMSD for a
simulation under the influence of an electric field of duration 1, 2, and 3 ps. (b) shows the
RMSD for a simulation with a static field in the long-time behavior. Taken from [XPS96].

We will discuss in Chapter 4 how a protein interacts with an external field and also

how the intermediate states of the protein are modified by the field. Our goal will be to

study the possibility of inducing a native state in a protein different as the original one.

2.5.3 Selection and Sequence Design

It is of fundamental importance in the field of proteins to know how long a particular

sequence would require to get its native structure and if this native structure would be

stable at all. In what follows we mean by a good folder a sequence which possesses a

very well defined native state and gets it in a relatively shorter time than the random
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sequences. The problem of classifying good and bad sequences is of interest for the

pharmaceutic industry where alternative sequences having a similar native structure and

a shorter folding time are needed.

One possible way to know if a given sequence is a good or bad folder is by doing an

exhaustive sampling of the PES using the Monte Carlo methods or Molecular Dynamics.

However, doing the complete dynamics just to know if the protein would reach the native

state in a short time could be a waste of time. It would be helpful if we had at hand

a criterion to know which sequence will fold in a short time and which not without

performing the whole dynamics.

Some work has been done in this direction, as an example we mentioned here the

widely used criterion to characterize a good folder by looking at the energy gap between

its global energy minimum and the minimum energy configurations, which are struc-

turally dissimilar to the configuration of the global minimum [SSK94b, SG93, Sha94].

This energy gap ensures the ”thermodynamic stability” and there is a strong correlation

between the energy gap and the ability to fold into the global minimum in a reasonable

time. Yet, without knowing the native state, there is still no good way to check whether

a given amino acid sequence is a good folder other than letting it dynamically evolve

from various initial conformations and checking if it does actually fold into a unique

native state. Due to an unknown folding time it may take very long before one could

identify some amino acid chain as a good/bad folder. A recent method [MC06b] for dis-

tinguishing proteins by their ability to fold suggests studying the curvature fluctuations

of the energy surface along dynamical trajectories. However, the method is feasible for

coarse-grained models with a smooth potential energy surface [MC06b]. Another impres-

sive idea to distinguish folders comes from the analysis of the Microcanonical and the

Canonical ensembles [HRL08], the main fact is that the features related to good and bad

folders can be appreciated in the caloric curves obtained by means of the Microcanonical

30



Chapter 2: Theory

ensemble. However, again to obtain the caloric curves one should perform before the

complete dynamics.

In this topic we will investigate, in Chapter 4, to which extent the convergence of

dynamical trajectories on the very initial stages could be a distinguishing feature for

a good folder. The dynamics used for the description of an amino acid will be the

Langevin dynamics, but other kinds of dynamics could be used for instance the Monte

Carlo dynamics. We will propose in Chapter 4 a criterion to decide if a given sequence is

a good or bad folder without doing the complete dynamics and even at the very beginning

of the dynamics. This will be accomplished by defining a ”distance” between structures

in the configurational space.

2.6 ORGANIZATION OF THIS THESIS

This thesis is organized as follows: in the Chapter 3 we describe the protein model

employed in our simulations, and we explain in detail the theoretical methods for both

Langevin and Monte Carlo dynamics. In the Chapter 4 we present the results of our

simulations and analyze them in detail and finally in Chapter 5 we give our conclusions

and perspectives for the future work.
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Chapter 3

THEORETICAL METHODS IN PROTEIN FOLDING

In this chapter we describe the two protein models employed in the present Thesis which

simulate a Protein and the Computational Algorithms to describe the thermodynamics

and the dynamics of the folding. The models are described in Section 3.1.

The Computational Algorithms are explained in Section 3.2. We used the Wang-

Landau Algorithm [WL01] to calculate the Density of States of proteins. We also solved

the Langevin equation to dynamical calculations.

Figure 3.1: Off-lattice model for proteins: backbone units are represented by spheres
with diameter 3.7842 Å. Each unit contains five atoms: C, O, N, H and Cα atoms. R
represents the side chain which is attached to the Cα-atom in a rigid way.

3.1 MODELS OF PROTEINS

In this Section we explain the two force fields considered in our Work which we call Model

I and II. Because the Model I includes more interactions than the Model II, it is expected

that the dynamics of the folding is better described by Model I. However, Model II is

much faster than Model I for computer simulations and allows to perform more statistics.

At the end of this Section a few lines are dedicated to the Reaction Coordinates which

allows us to describe the folding in terms of a few parameters.
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3.1.1 Model I

The structure of the protein is simulated using the reduced off-lattice model developed

in Ref. [CSM06]. The amino acids are represented by means of backbone units. Each

backbone unit contains the atoms N, Cα, C’, O and H. The residues are modeled as

spherical beads, R, attached to the Cα’s, see Fig. 3.1. The only remaining degrees of

freedom are the Ramachandran angles ψ and φ, see Fig. 3.2. The values for the bond

lengths and angles are given in Ref. [SF00].

The force field containing all relevant interactions in the protein is given by

EProtein = ESteric + EHB + EDD + EMJ + ELocalHP . (3.1)

Here, ESteric represents a hard-core interparticle-potential to avoid unphysical con-

tacts and is given by,

Figure 3.2: Backbone structure of a protein showing the two degrees of freedom handled
in the model, better known in the literature as the Ramachandran angles φi and ψi. For
a chain of N amino acids one has 2(N − 2) of such angles.
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ESteric = εst
∑
ij

(
σi + σj

rij

)
, (3.2)

where σi and σj are the global radii of backbone or side units. rij is the distance between

units.

Figure 3.3: Dipole-dipole interaction between a NH and CO pair.

The second term of Eq. (3.1), EHB, accounts for the hydrogen bonding. This interac-

tion is the most important one in our model and is the major interaction responsible for

stabilizing secondary structures [GT96, TSW99, ISW00, FIW02]. The hydrogen bonding

is illustrated in Figs. 3.3 and 3.4. EHB reads,

EHB = εst
∑
ij

u(rij)v1(θ1,ij, θ1,ave)v2(θ2,ij, θ2,ave)v3(θ3,ij, θ3,ave), (3.3)

with

u(rij) = εHB

5

(
σHB
rij

)12

− 6

(
σHB
rij

)10
 , (3.4)

and

v1(θ1,ij, θ1,ave) =


1
3

[4 cos2(θ1,ij − θ1,ave)] when θ1,ij < (θ1,ave + θr), l=1,2,3

0 otherwise
, (3.5)
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where i, j represent amino acids in which Oi and Hj atoms are belonging to, respectively.

εHB is the strength of the interaction. rij is the distance between Oi...Hj. θ1,ij are those

angles defined above and θ1,ave their average values.

Figure 3.4: Hydrogen bond interaction between a CO and a NH pair. σHB is the distance
between O and H’. The three angles θ1, θ2 and θ3 are defined as B̂OH’, angle between
CO and N’H’, and ÂH’O, respectively. Their average values are in the right of this
figure.

In Eq. (3.1), EDD describes the dipole-dipole interaction. This potential is one of

the features that makes this model different from others. It is known that both the

CO-NH groups on an amide-plane have partial charges; N and O atoms have an excess

of negative charge and H and C atoms have an excess of positive charge. Because of

this distribution, there is a dipole moment on the amide-plane as shown in Fig. 2.14 of

Chapter 1. In CO-NH group this dipole moment is almost parallel to the CO and NH

bonds and it has a value of p = 1.15× 10−29Cm [Hol85]. Moreover, when peptide chains

are organized into a regular structure such as alpha helices or beta sheets, the total sum

of small dipole moment may results in a net large moment. EDD is given by,

EDD = εDD
∑
ij

(
pi · pj
r3
ij

− 3(pi · rij)(pi · rij)
r5
ij

)
, (3.6)

where εDD is the global dipole-dipole interaction strength. pi and pj are any pair of

CO (NH) dipoles and rij is the distance between them. The sum runs over all non-

successive CO and NH dipoles. One simplification of EDD occurs when we have two
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dipoles located in consecutive amino acids. In this case the distance between dipoles is

almost constant and EDD is not more distance dependent. Therefore instead of using Eq.

(3.6) to calculate the dipole-dipole interaction it is more convenient to take the following

definition,

EDN = εDN
∑
i,i+1

(
pi · pi+1

|pi||pi+1|
− 1

)
, (3.7)

Figure 3.5: The water molecules prevent that the residues reach the global minimum at
r′ creating a local minimum at r′′. This effect is simulated by means of a potential LJ
with minimum at r′ and two Gaussians at r′+1.5 and r′+3. The size of a water molecule
is ∼ 3Å. Taken from [CGO02].

As the reader probably has observed, in this model the dipoles are treated as localized

spins on each amino acid. A similar situation occurs in an Ising model where spins are

localized on a lattice [Bin01]. The main difference between the two models is that in our

case the spins are free to move in space. We will make use of these localized dipoles in

Chapter 4 when we discuss the interaction of a protein with an external electric field.

EMJ is a distance-dependent version of the Miyazawa-Jernigan (MJ) matrix [MJ96],

which describes the interactions between residues. In principle, two residues separated

by a distance rij should be attracted until they are in contact. In our model we introduce

this interaction by means of a Lennard-Jones potential. Note that this potential describes
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the interaction in the absence of water. However this interaction is more complicated in

the presence of water molecules. A single water molecule could enter the space between

two residues and prevent them to reach the equilibrium distance, generating a potential

barrier. To simulate explicitly the water molecules demands a very long CPU time

because of the big number of water molecules required (∼ 100000). In fact, most of the

simulation time would be expended on the dynamics of these water molecules. Therefore

in our model we consider the effect of the water molecules on the interaction between

side chains using an effective potential that considers in addition to the Lennard-Jones

potential, two gaussians that take into consideration the potential barrier and the local

minimum caused by the presence of a water molecule, this kind of approximation was

used previously, see for instance Refs. [HGG+96, HGG+98, CGO02]. Thus, the general

expression for this interaction is,

EMJ = εMJ

∑
i,j

[VLJ(rij) + VGaussian1(rij) + VGaussian2(rij)] , (3.8)

VLJ(rij) = εij

( r1
rij

)12

− 2

(
r1
rij

)6
 , (3.9)

VGaussian1(rij) = εbe
−σw(rij−rb)2 , (3.10)

VGaussian2(rij) = ε2e
−σw(rij−r2)2 , (3.11)

εb = |5εij/9| − εij
[(
r1
rb

)12

− 2
(
r1
rb

)6
]
, (3.12)

ε2 = −|εij/3| − εij
[(
r1
r2

)12

− 2
(
r1
r2

)6
]
, (3.13)
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Here εMJ is the relative strength of global hydrophobic interaction. rij is the distance

between two Cβ-atoms. r1 = σi + σj, r2 = σ1 + 3 and rb = σ1 + 1.5.

It is important to point out that EMJ partially includes the effect of water polariza-

tion [WL00]. The values of the parameters of this potential are given in the original work

by Chen et al. [CSM06].

Figure 3.6: Plot of Eq. 3.15 without εXY . The σlocal = Rsmall + Rsmall = 5.20 Å, for
example. E(r) is -1.0 when r < σlocal and V (r) is zero when r > σlocal + 0.5. X and Y
are any two residues.

A further term in Eq. (3.1), ELocalHP accounts for local hydrophobic effects. This

interaction is also a sequence-dependent interaction. The idea of the local hydrophobic

interaction is originated from the so-called HP model and the classification of amino

acids. Amino acids are divided into two main classes as indicated in many textbooks.

Some residues that try to to get away from water molecules are classified into the hy-

drophobic class. The interaction force between these residues has not a physical origin

but a thermodynamic one. In fact the hydrophobic interaction is a consequence of the

maximization of the total entropy for the system protein-water. Other kind of residues

that interact with water favorably (are dissolved) are classified into the polar class.

The hydrophobic residues are located inside the 3D protein structure while the polar

ones face the aqueous environment. From the microscopic point of view, if two successive
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Figure 3.7: Plot of Eq. 3.16 without εXY . The arrows above are the vectors defined by
Cα to the Cβ-atom in the residues. X and Y are any two residues.

side chains belong to the same class, either they tend to bury themselves inside or expose

themselves on the surface of the protein. This result in an attractive interaction between

them. Hence, two residues in the same class tend to minimize the potential when getting

together. On the other hand, if two residues are not in the same class there is an

unfavorable contribution to the potential and a repulsive interaction between them arises.

We write the the local hydrophobic interaction as,

ELocalHP =
∑
i,i+1

VXY (ri,i+1) (3.14)

where the sum runs over all two successive side-chain units and ri,i+1 is the distance

between them. VXY varies depending on the side-chain properties, the curve of VXY is

displayed in Fig. 3.6. If the interactions are between two hydrophobic, two polar or two

different charged residues, the potential is written as,

ELocalHP =



−1 when r < σlocal

0.5
[
−1− cos

(
π r−σlocal

0.5

)]
when σlocal < r < σlocal + 0.5

0 when r > σlocal

(3.15)
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On the other hand if the interaction occurs between a hydrophobic and a polar residues

or between residues with the same electrical properties, the potential is given by,

ELocalHP =


0.5

[
cos

(
π θ−90

90

)]
when Si · Si+1 ≤ 0

0 when Si · Si+1 > 0
(3.16)

where the Si is the vector pointing from the Cα to the Cβ-atom in the ith residue. VXY

is depicted in Fig. 3.7. As the reader has probably observed, the local hydrophobic

interaction is given in two forms, Eqs. 19 and 20, depending on the kind of amino

acids involved. We can see that Eq. 19 shows a distance-dependent behavior while

Eq. 20 shows an orientation-dependent behavior, both terms for the local hydrophobic

interactions were obtained by fitting the experimental data over hundreds of structures.

In order to simulate the confinement of a protein moduled by, for instance, a chaperone

molecule, we add a further term to the potential. In the present work we use two different

kinds of spherically symmetric potentials depending on a radius Rc, which is a measure of

the size of the cage. In a first approach, we use an external potential V1(r) which allows

the protein to fold freely for distances r smaller than Rc, but has a strongly repulsive part

for larger distances, which simulates the presence of the walls of the cage. The potential

V1(r) reads [RKP05]

V1(r) =
0.01

Rc

[
er−Rc(r − 1)− r2

2

]
, (3.17)

where r = |~R| denotes the position of each residue.

Since V1(r) might represent a too simple description of the confining potential of a

chaperon, we also investigated the effect of an improved external potential V2(r) simu-

lating attractive walls [LLW06], which reads

V2 = 4εh
πRc

r

(
1

5

[(
σ

r −Rc

)10

−
(

σ

r +Rc

)10
]
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− ε
2

[(
σ

r −Rc

)4

−
(

σ

r +Rc

)4
])

. (3.18)

The physical meaning of the different parameters in Eq. (3.18) can be described as

follows. A uniform distribution of beads spreads out on the surface of the cage with

a number density 1/σ2. The parameter ε is used to simulate the degree of attraction

of the inner surface of the cage. A wall with a purely attractive lining has a value of

ε = 1 whereas a purely repulsive lining has a value ε = 0. In Eq. (3.18) we set εh = 1.25

kcal/mol and σ = 3.8 Å. The external potential V1(r) has the only effect of confining the

protein inside the cage whereas the external potential V2(r) not only confines but also

interacts with it by slightly reducing its energy as ε increases. As a consequence, the

residues tend to be far apart of each other in the region close to the walls of the cage.

The curves of V1(r) and V2(r) are presented in Fig. 3.8, we can observe that while V1(r)

is purely repulsive, V2(r) shows some attraction at the barrier surface (15 Å) and that

this attraction can be controlled with the parameter ε.

3.1.2 Model II

The second model used to describe the dynamics of protein folding considers less inter-

actions than the model I described in the previous section. Originally this model was

described by Clementi et. al [CMB98], and it has been demonstrated to yield a good qual-

itative description of the folding. Several works aimed at describing the folding of proteins

have used the Clementi potentials [Ark08, HRL08, CMB98, Cle08, SBJ07, MC06a].

Within the framework of the Clementi potential, a protein is modeled as a sequence

of N beads in the 3D space. Each bead represents a Cα in a real protein. The interaction

between amino acids is given by,

Uij = δi,j+1a(rij − r0)2 + (1− δi,j+1)4εij

(σij
rij

)12

−
(
σij
rij

)6
 , (3.19)
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Figure 3.8: Curve of V1(r) (solid line) and V2(r) for different values of the parameter ε.
ε = 0.0 means a purely repulsive barrier and ε = 1.0 a barrier highly attractive. The
minimum of the potential V2(r) is localized near the surface of the barrier. The radius
of the barrier is 15 Å.

where a = 50 Å−2 and equilibrium distance r0 = 3.8 Å. In the present work we study

chains with N = 30 monomers. Three different kinds of sequences were studied, which

differed in the value of the parameters εij and σij. In the first sequence, known in the

literature as Homopolymer (HMP) [HRL08], all the residues are equal, meaning that the

parameters εij = 10 and σij = 6.5 Å are chosen equal for all i and j. One expects

for this case that the Potential Energy Surface has many local minima very similar to

the global minimum and therefore that a protein with these characteristics should not

have the stable native state. Instead, it would jump from one minimum to another with

relative facility. This is the characteristic of a bad folder.

The second sequence studied was a Designed Heteropolymer (DHTP). This sequence

was originally designed to exhibit a global minimum much deeper than any other local

minimum. The DHTP should have a stable native state which is characteristic for a good

folder. The model parameters for the DHTP have values in the range 0.25 < εij < 10

42



Chapter 3: Results

and 5 < σij < 17 Å.

Both sequences, mentioned above have been studied previously [HRL08, CMB98].

It was found that the HMP possesses a very rough energy landscape with several local

minima which are not distinguishable from the global minimum. This can be observed

in the energy landscape as a function of the Root Mean Square Displacement in Fig. 3.9

a). In contrast to the energy surface for the HMP, the energy surface for the DHTP is

very smooth and exhibits a global minimum which is deeper as any other local minima.

Both factors make the global minimum stable and attainable in a relative short time.

The energy landscape of the DHTP can be observed in Fig. 3.9 b).

Finally, the third sequence treated in this work is the so-called Random Heteropolymer

(RHTP), in which σ = 6.5 Å is a constant value and the εij’s have the same range of

values as for the DHTP model. The values for εij are distributed randomly. The energy

landscape for the RHTP is very rough as in the case of the HMP and therefore these

sequences behave as bad folders.

3.1.3 Reaction Coordinates

In order to be able to understand the folding process and make the study computational

possible we need to find suitable parameters to reduce the description of the whole

dynamics in terms of a few variables. Many parameters have been proposed for such

purpose like, for instance the number of native contacts. However this parameter has the

disadvantage of being a discrete quantity. A continuous parameter would be more suitable

for our description in terms of the Density of States. One of the continuous parameters

commonly used in the literature is the end-to-end distance, which is calculated between

the initial and final Cα atoms in the protein structure,

Q = |rCα
inicial

− rCα
final
|. (3.20)
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Figure 3.9: The rugged energy landscape of the HMP a) compared to the smooth land-
scape of the DHTP b). Observe that the DHTP has a very deep global minimum which
corresponds to the native state. Pictures are derived from the conformations obtained
during numerous dynamical runs of slow cooling. The energy of each conformation is
plotted as a function of its distance from two fixed ”reference” conformations. Taken
from [CMB98].

Another parameter frequently used is the configurational energy E, which is the self-

energy of a certain structure. The calculation of this parameter does not represent an

additional CPU time because it is a by-product of the simulation.

Other reaction coordinates commonly used in the literature, but not treated in this

Thesis are the path variables, the normal modes, the helicity of the backbone, among

others. The reader is referred to Ref. [LG08] for more details about the different confor-

mational parameters commonly used in Biomolecules.
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3.2 COMPUTATIONAL ALGORITHMS

Because of the many-body character of proteins, the dynamics of the folding does not

have an analytical solution. Therefore, one is forced to used computer simulations in

order to study proteins and biomolecules in general. In the present Section we study two

algorithms which allow us to solve the dynamics and the thermodynamics of the folding.

Section 3.2.1 is dedicated to the Wang-Landau algorithm, which is a Monte Carlo method

that calculates the Density of States ”on the Fly” and it is suitable for complex PESs as

in the case of Proteins. The Wang-Landau algorithm belongs to the kind of Stochastic

Methods, because they are based on the sampling using random variables. The Markovian

and Non-Markovian processes are the basis of such methods. Section 3.2.2 describes the

Langevin Dynamics in the Overdamped limit, which is adequate for biomolecules because

of the mass and the velocities of the atoms. In contrast to the Wang-Landau algorithm,

the Langevin Dynamics is one of the so-called deterministic methods, because in this

case there exists an equation which guides the evolution of the system given a set of

initial conditions. Finally, the section 3.2.3 is devoted to the development of the Rate of

Convergence concept. This concept will help us to study the problem of sequence design

in Chapter 4.

3.2.1 Wang-Landau Algorithm

The problem that concerns us now is the determination of the thermodynamic properties

of a protein that could be measured in the laboratory. The simplest method to investigate

the Space of Configurations (SC) of a protein and then obtain the thermodynamic prop-

erties consists of using a canonical ensemble, where the configurations at temperature T

are weighted by the Boltzmann factor,

PB(E) = e−βE, β = 1/kBT. (3.21)
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where kB = 1.987× 10−3 Kcal/molK is the Boltzmann constant.

The resulting probability distribution is therefore,

ρ(E) ∝ g(E)PB(E), (3.22)

where g(E) is the Density of States (DOS). Because g(E) is a rapidly increasing function

of E and the Boltzmann factor PB(E) decreases exponentially ρ(E) has in general a

bell-like shape. At a finite temperature, the value of ρ(E) for low E is smaller by many

orders of magnitude than the maximum value of ρ(E), this fact makes the sampling of

the SC not uniform. Some regions are over-explored and other regions are not explored

at all. In systems with a complex potential energy surface, as in the case of proteins, the

weight factor PB(E) is practically incapable of sampling correctly the SC. Therefore, one

cannot obtain a good estimation of the thermodynamic properties. In order to avoid these

problems regarding the sampling of the SC, F. Wang and D. Landau [WL01] proposed to

use a probability distribution defined in such a way that a configuration with any energy

is accepted with a uniform probability:

ρ(E) ∝ g(E)PWL(E) = const. (3.23)

Then, it follows that the Wang-Landau weight factor should have the form, PWL(E) ∝

g−1(E). Choosing in this manner the weight factor, all the conformations are the equally

likely and therefore the SC is sampled in detail and the thermodynamic properties are

more trustable than in the classical canonical ensemble. So far, there would not be any

problem in using the exact DOS to perform the sampling because with it the examination

of the SC would be optimal. Nevertheless the real problem is that the exact DOS is not

known in general for many models of interest, let us quote the case of clusters, polymers,

proteins, spin systems among others.
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The novel contribution of Wang and Landau was the design of an algorithm that

allows us to calculate the DOS during the simulation process without having any previous

knowledge of it. The utility of this method has been observed in a variety of models which

study properties of molecules [RKP05, OLYG09, TPB09], magnetic systems [DCJP04],

quantum systems [CLST09] and numerical solutions of integrals [BMP08].

Other methods based on the philosophy of the Wang-Landau algorithm, have been

proposed to compute the thermodynamical properties of finite systems. They include, for

instance, multi-canonical simulations [BN91], simulated annealing [KGV83] and Parallel

Tempering (Replica Exchange) [SW86]. In contrast to alternative sampling methods,

the Wang-Landau almost seems to be a universal approach, because it does not rely on

working out a good range of energy or distribution function to sample in advance [ZS08].

One of the main advantages of Wang-Landau simulations is that they allow to obtain

directly the DOS of the system, which is, of course, independent of the simulation tem-

perature. Once the DOS is known, one can obtain all the thermodynamical properties

of the system at any temperature. As a remark, the convergence of the Wang-Landau

algorithm is guaranteed upto a factor proportional to
√
f , f being the modification factor

(see below).

Within the Wang-Landau framework, the transition probability between two confor-

mations before and after a MC trial move, X1 and X2 respectively, is calculated as

P (X1 → X2) = min

[
1,
g(X1)

g(X2)

]
, (3.24)

where g(X) is the DOS of the system and X is a generalized reaction coordinate, which

in our case is represented by a vector with many possible entries X = (K1, K2, ..., KN),

and Ki being a characteristic parameter of the system. In our case we employed only two

parameters: E, the configurational energy and Q, the end-to-end distance of the protein

structure. Then X = (E,Q).
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The original scheme developed by Wang and Landau can be briefly described as

follows: one sets the initial function g(X) together with an auxiliary histogram H(X) to

be equal to 1. Then, each time the bin X is visited, one updates the histogram H(X)

and modifies g(X) as g(X) → g(X) × f , with f = e = 2.718281... . This procedure

is continued until a ”flat” histogram is obtained, that is when the fluctuations in the

histogram are relatively small compared to the average of the histogram. The average

of the histogram is defined below. At this step the histogram H(X) is reset and the

factor f is reduced. The usual way to perform this reduction is by taking fi+1 =
√
fi.

The convergence of the algorithm is achieved when a value for fi+1 close enough to 1

is obtained. The last step must be compatible with the desired accuracy, for example

f = exp(10−7). As a remark, the Wang-Landau algorithm is a non-Markovian Monte

Carlo method, because the transition probabilities are changing during the simulation.

Therefore, we take as the DOS of the system, the function g(X) at the final run.

We use the modified Wang-Landau approach proposed in Ref. [BP07], which has been

shown to speed up simulations and to partially avoid the problem of saturation error.

According to the new scheme, one does not need to wait until the histogram H(X) is

”flat”, but it is enough to require that all the entries of H(X) are visited. Then H(X) is

set to zero and fi+1 =
√
fi is updated.

Following Ref. [BP07] we employ a second histogram H2(X) which is never reset

during the whole simulation and define the Monte Carlo time-step as t = j/N , N being

the number of points in the energy axis and j the number of trial moves performed. If

fi+1 ≤ t−1 then fi+1 = f(t) = t−1 and from this point on f(t) is updated at each Monte

Carlo time step. H(X) is not used during the rest of the calculation. The convergence

is achieved when f(t) < ffinal. In the present simulations we used ffinal = exp(10−7).
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Application to the 1D Harmonic Potential

Let us take a simple case to exemplify how the Wang-Landau algorithm works. We

consider for example the potential of the 1D harmonic oscillator V (x) = x2. The exact

density of states in this case is calculated easily and it is given by,

g(E) =
∫ ∞
−∞

δ(V (x)− E)dx =
∫ ∞
−∞

δ(x2 − E)dx =
∫ ∞
−∞

δ(y)dy

,
2(y + E)

1
2 (3.25)

where we have made the substitution y = x2 − E and dx = dy/2(y + E)
1
2 . Finally we

obtain,

g(E) =
1

2E
1
2

. (3.26)

In the present 1D case we have obtained that the DOS is proportional to E to the

power 1/2. The potential V (X) and the exact DOS are shown in Fig. 3.10. In the most

general case where we have a n-dimensional oscillator, the DOS changes with E according

to,

g(E) ∝ Eα. (3.27)

Now the problem that concerns us is the computational implementation of the Wang-

Landau algorithm. Essentially, one discretizes the parameter under consideration, for

instance the energy E, in bins up to a certain precision ∆E = (Emax − Emin)/N , where

Emax and Emin are respectively the maximum and minimum of the energy range consid-

ered and N is the required number of bins. The discretization of the energy is illustrated

in Fig. 3.11. Due to the rapid growth of g(E), the update criterion g(E) → g(E) × f

looses sense, since g(E) turn rapidly into not manageable numbers for the computer. This

small difficulty is solved by considering the logarithm of g(E) (ln g(E)) instead of g(E).

In this way the multiplications turn into sums. In what follows ˜g(E) will refer to ln g(E).
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Figure 3.10: Scheme of the Harmonic Oscillator potential (black-dashed line) V (X) and
its exact DOS (red-solid line).

Then, during the whole simulation, one stores number of visits to each energy bin En in

two arrangements ˜g(En) and H(En). If we have planned to use the 1/t-algorithm one

more histogram H2(E) will be necessary. ˜g(E) is updated with the same parameter f

until a certain criterion is reached. The most common one is to wait until de fluctuations

of the histogram are less than a threshold value, for instance

< H2(E)− < H(E) >2>

< H(E) >
≤ 0.3. (3.28)

here < H(E) > represents the average of the histogram. It is given by
∑
iH(Ei)/N ,

where H(Ei) is the number of visits to the energy bin Ei and N the total number of

bins considered in the simulation. In a similar way one can define < H2(E) >. After

this criterion is satisfied, the modification factor is updated by ln fi+1 → 0.5× ln fi and

the histogram H(E) is set to zero again. The whole simulation is stopped when ln f

is sufficiently small, say ln fi ∼ 1 × 10−8. The 1/t algorithm serves to reach a better

convergence, it uses an extra histogram H2(E) which is never rever reseted during the

simulation. Within this framework one waits until ln f is relatively small (say ln f ∼ 10−5)
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and then use the update criterion ˜g(E)→ ˜g(E) + 1/t, where t =< H2(E) > /N .

Figure 3.11: Discretization of the DOS in energy bins Ei. At each Monte Carlo Step

(MCS) the DOS is updated as ˜g(Ei)→ ˜g(Ei) + ln f .

By using the Wang-Landau scheme together with the 1/t-algorithm we obtain the

relation g(E) = 1/2E1/2 as in the analytical solution in Eq. 30 except for a normalization

constant. Both the analytical and simulated log[g(E)] are shown in Fig. 3.12 at different

stages of the simulation. We stopped the simulation when the modification factor was

∼ 10−6 and the average error < ε >= 10−5.

Once we have obtained the DOS of the system, we can calculate straightforwardly

the thermodynamical properties such as the free energy F (T ), internal energy U(T ),

entropy S(T ) and specific heat C(T ). For the specific case treated in this work, where

X = (E,Q) the corresponding definitions read

F (T ) = −kBT ln
(∫

dE
∫
dQ g(E,Q) e−βE

)
, (3.29)

U(T ) = 〈E〉T =

∫
dE

∫
dQEg(E,Q) e−βE∫

dE
∫
dQ g(E,Q) e−βE

, (3.30)
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Figure 3.12: Logarithm of the exact DOS (red-solid line) and the simulated DOS (black-
-dashed line) at different stages of the simulation. At the beginning of the simulation
(a-b) the simulated DOS shortly differ from the exact one but after 1× 109 Monte Carlo
Steps (MCS) the simulated DOS converges to the exact DOS (c). At 2 × 109 MCS the
simulated DOS has already converged (d).

S(T ) =
U(T )− F (T )

T
, (3.31)

C(T ) =
〈U2〉T − 〈U〉

2
T

kBT 2
, (3.32)

where β = 1/kBT and kB is the Boltzmann constant. The free energy landscape as a

function of E and Q can be computed as

F (E,Q) = −kBT ln

 g(E,Q) e−βE∫
dE

∫
dQ g(E,Q) e−βE

, (3.33)

and
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F (E) = −kBT ln


∫
dQg(E,Q) e−βE∫

dE
∫
dQ g(E,Q) e−βE

. (3.34)

It is important to notice that the free energy landscape described by F (E,Q) gives

us information not only about the native and the unfolded states but also about the

presence of metastable or intermediate states. These are important regarding the folding

because they can make the process faster or slower depending on the amino acid sequence

and the external factors such as the temperature. We will make use of the free energy

landscape in Chapter 4 when we discuss about the modifications in the intermediate

states of proteins.

3.2.2 Langevin Dynamics Algorithm

The Langevin Dynamics is an approach to describe the evolution in time of molecular

systems. It was originally developed by Paul Langevin. In this approach some degrees of

freedom are neglected by making use of stochastic differential equations [Sch02, Str05].

We explain the main facts in the Langevin Dynamics approach below.

At the microscopic level, the Reynold’s number plays a crucial role since the velocity

of the atoms becomes much more important than the acceleration [Wai07]. At this scale

of lengths the force acting on the atoms is proportional to the velocity and one is in

a regime known as overdamped. In addition to fact, there are forces of impact coming

from molecules in the environment. These forces exhibit a random behavior and they

give place to the so-called Brownian Motion. Langevin dynamics takes into account the

random character of the environment implicitly. In this way, one is able to simulate the

dynamics of proteins in solvent without requiring a long CPU time. Langevin dynamics

controls the temperature of the system like a thermostat, therefore it acts in the canonical

ensemble. Following this scheme the protein follows a dynamics guided by the Langevin’s
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equation

m~̈ri = ~fi − γ~̇ri + ~ηi, (3.35)

for each of theN residues. Here ~ri is the position of the residue i and ~fi is the deterministic

force acting on it, γ is the effective friction and ~ηi is a random force which simulates the

liquid environment and which has to fulfill two conditions,

< ~ηi >= 0, (3.36)

< ηi,α(t)ηj,β(t′) >= 2γkBTδi,jδα,βδ(t− t′), (3.37)

with cartesian coordinates {α, β} = {x, y, z}, t and t′ being to given times. The diffusion

equation is straightforwardly obtained as

< (~ri(t)− ~ri(0))2 >=
6kBT

γ
t = 6Dt, (3.38)

D being the diffusion coefficient.

For biomolecules in water solution the Langevin equation can be simplified. Because

the Reynolds number is of the order of 10−3 we are in the strongly damped or overdamped

regime. This value of the Reynolds number means that the viscous friction can stop a

protein in a distance of around 10−3nm, much shorter than the size of the atoms. The

Langevin equation can then be reduced to,

γ~̇ri = ~fi + ~ηi. (3.39)

This equation is integrated by means of the Euler algorithm in the following form,

~ri(t+ ∆t) = ~ri(t) +
1

γ

[
∆t
~fi +

√
2kBTγ∆tη̂i

]
, (3.40)
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kB = 1.987 × 10−3 Kcal/mol K. The units of the energy are given in Kcal/mol and the

units of time in picoseconds.

3.2.3 Distance between Configurations and Rate of Convergence

In the Chapter 4 we will make use of the concept of ”distance” between configurations,

therefore we will explain in the following lines what this concept refers to and why it is

important. We will also explain the concept of the Rate of Convergence, which will be

useful in order to classify good and bad folders.

We are interested now in defining a parameter which allow us to monitor the folding

process and also which could distinguish between the good and bad folders. To this aim

we developed in our group the concept of distance between structures [GG]. The distance

between two arbitrary structures C1 and C2, of a given amino acid sequence Si, is defined

as,

O(C1, C2) =
N∑

i,k=1

∆ik(C1)∆ik(C2), (3.41)

where the sum runs over all pairs of monomers i, k and ∆ik is an intrinsic property of

the protein. For lattice models ∆ik denotes the contact map of configuration C [VND99],

that is ∆ik = 1 if monomers i and k are in contact and ∆ik = 0 otherwise. Remember

that two monomers are said to be in contact if the distance between them is less than

a certain predefined value, in our calculations we take 8 Å. For off-lattice models where

the distance between consecutive monomers is not the same, as in the Model II of this

Chapter, the former definition of ∆ik lack of sense. We found that for off-lattice models

one possible way to define the ∆ik is by taking the negative part of the Lennard-Jones

potential between two non-consecutive monomers, that is,

∆ik(C) = −min [0, 4VLJ(ri, rk)] , (3.42)
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with VLJ(ri, rk) being the LJ potential between the monomers i and k which have the

coordinates ri and rk respectively. The factor 4 is just to normalize VLJ(ri, rk) to -1. In

fact, this is a generalization of the contact map for lattice models because ∆ik(C) is equal

to 1 only when the monomers i and k are in the equilibrium distance of the LJ potential,

otherwise when they are farther or closer we obtain in general 0 < ∆ik(C) < 1. Note

that the more compact and structurally similar two configurations are the larger is the

distance between them.

Having defined the concept of distance or overlap between configurations we introduce

the concept of Rate of Convergence. First of all we fix a time scale t0, which is longer than

the typical time required for the dynamically evolving chain to overcome local minima

on the energy surface. We then let a given amino chain start from two randomly chosen

configurations C1 and C2 and dynamically propagate it from these positions over the time

t0. We denote the resulting configurations as gt0C1 and gt0C2 and the overlap between

them as

R(t0, T ) = O(gt0C1, gt0C2), (3.43)

where T is the temperature (the dependence on T is hidden in the dynamical transfor-

mation). Note that R(t0, T ) gets a positive contribution from the terms in (3.41) if and

only if the monomers i and k find themselves in contact in both chains gt0C1 and gt0C2.

Sampling over several randomly chosen initial configurations C1 and C2 we calculate the

average 〈R(t0, T )〉, which we call it the Rate of Convergence for the amino acid sequence

S. The rate of convergence can be ascribed to any amino acid sequence and the larger

〈R(t0, T )〉 the better are the chances for this sequence to be a good folder. If one needs

to find the best candidates for being a good folder from a number of given amino acid

sequences one can sort all sequences by their rate of convergence. The degree to which

this sorting algorithm is effective depends on how t0, which is sufficient for sorting, relates

to the mean folding time. The algorithm consists in computing the rate of convergence
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at a given temperature for various amino acid sequences and then ordering the sequences

by this value.
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Chapter 4

SIMULATION RESULTS AND ANALYSIS

In this Chapter we present the results of our simulations. In Section 4.1 we discuss about

the confinement of proteins in potential barriers. Section 4.2 describes the effects of

electric fields on proteins. Finally, Section 4.3 is devoted to the sequence design problem.

4.1 EFFECT OF CONFINEMENT ON THE INTERMEDIATE STATES

OF A PROTEIN

In this Section we focus on the problem of protein folding assisted by Chaperones,

which is one of the mechanisms present in nature to avoid aggregation and misfold-

ing. Chaperones are molecules in the form of a cage inside which proteins fold cor-

rectly. Recently, some progress has been achieved in the understanding of the folding

of proteins inside chaperones. These studies have shown that stability and folding ki-

netics are strongly correlated with the geometry and the degree of confinement inside

the cage [TKT03, TKL03, RKP05, NSC06, JBS04, FS06]. However, many details of the

folding under confinement still remain uncovered.

Here we consider the folding of the peptide V3-loop, Protein Data Bank ID 1NJ0,

and analyze it under two kinds of time-independent confining potentials. The first poten-

tial simulates a cage being composed by rigid walls, while the second potential describes

a cage with an attractive inner surface. The influence of both potentials is reflected

in the thermodynamical properties, which we calculate using the Wang-Landau algo-

rithm [WL01, BP07] described in Section 3.1.

As one of the main results of this work we obtain that the folding process of V3-loop
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occurs through metastable intermediate states [SBJ07], and that the presence of those

states can be controlled by the confining potential.

For the description of the protein we use the force field of Model I (see Section 3.2)

which does not depend on the previous knowledge of the native structure and is also

able to describe folding of proteins into both helices and β-sheets with the same set of

parameters [CSM06].

Figure 4.1: Ground-state structure (β-sheet) of the peptide 1NJ0 (Eg ∼ −135 Kcal/mol).

We focused our attention on a peptide composed of 16 amino acids with PDB code

1NJ0 to study the folding mediated by confining potentials. This peptide conforms the

V3-loop of the exterior membrane glycoprotein (GP120) of the Human Immunodeficiency

Virus type 1 (HIV-1).

To explore the relevant part of the phase space of the protein we have chosen an

energy window between -135.0 kcal/mol and -30 kcal/mol and the end-to-end distance

Q ranging from 5 Å to 50 Å. This region is enough to cover both the highly ordered

structures (present at T ∼ 0) and the fully disordered random coils (stable for T ∼ ∞).

The MC search was generated by changing each pair of Ramachandran angles ψi and

φi at each MC step using cutoffs with values |∆ψc| ≤ 40o and |∆φc| ≤ 40o. In order to
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Temperature (K) Radius (Å)

329.2 15
323.4 20
323.2 25
321.0 ∞

Table 4.1: Transition temperatures Tf for different values of the radius Rc of the potential
V1(r) (see main text). Note that Tf decreases for increasing Rc. Tf is the temperature
at which the specific heat is a maximum.

reach ffinal = exp(10−7) 8× 109 trial moves were necessary.

We first analyze the properties of the peptide without confinement (bulk case). The

obtained ground state structure of the V3-loop is depicted in Fig. 4.1. It consists of a

β−sheet structure with energy ∼ −135.0 Kcal/mol and an end-to-end distance of ∼5.5 Å.

A new feature described by our force field is the presence of intermediate structures

between the native (N) and the unfolded (U) states as shown in Fig. 4.2. We obtain two

intermediate states in the free energy profile F (E,Q) at the transition temperature. The

intermediates, denoted as I1 and I2 in the figure, appear as local minima of F (E,Q). In

order to analyze the nature of the intermediate states we have split the energetic and

entropic parts of the free energy. Results indicate that the intermediates are mainly

stabilized by their energy, but that there is a non negligible entropic contribution.

The next problem to be addressed is the influence of confinement on the free energy

landscapes and folding behavior of the V3-loop. For this purpose, we calculated first

the DOS and the specific heat of the protein assuming the rigid-wall confining potential

V1(r) described above. We considered different cage-diameters (Rc = 15 Å, 20 Å, and

25 Å). In Fig. 4.3 we show influence of V1(r) on the behavior of the DOS. Note that,

due to confinement, log[g(E)] considerably decreases at high energies compared to the

bulk case (Rc → ∞). For energies close to the ground state, log[g(E)] does not exhibit

any noticeable change because the protein is almost folded. Since its gyration radius

in the ground state is Rg ∼ 13 Å, barriers of radii equal or larger than 15 Å do not
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Figure 4.2: Besides the Native State N and the Unfolded U states in the Free Energy
Landscape (F (E,Q)), there are other two states which are intermediates in the folding
process, in the picture they are denoted as I1 and I2. F (E,Q) is plotted in terms of the
configurational energy E and the End-to-End distance Q.

affect folded structures. This result is consistent with the intuitive picture that cages, for

instance chaperones, restrict the otherwise huge phase space for high energies, making

the number of available structures, and consequently the entropy, considerably smaller

than in absence of a cage.

The effect of confinement can be also observed in the specific heat of the V3-loop,

which we show in Fig. 4.4. Here, we plot the specific heat for different values of the cage

radius (15 Å, 20 Å, 25 Å) and for the bulk case (Rc →∞) as a function of T/T 0
f , where

T 0
f = 321 K is the transition (unfolding) temperature in absence of a cage. The transition

temperature T 0
f is the temperature at which the specific heat is a maximum. The effect

of the rigid-wall potential V1(r) is to increase the transition temperature (see Table 4.1)

and to make the curve of the specific heat broader as the radius of the cage decreases.

A broader curve means that there are more structures with energies close to the native

state than in the bulk-case where only the native state is the most important compact

structure. For radii larger than 25 Å the transition temperatures are equal to T 0
f within
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the statistical error of our simulations. We conclude that the protein is more stable as

the radius of the cage decreases. This results are in agreement with Ref. [RKP05], in

which Monte Carlo simulations were used, and with Refs. [TKT03] and [LLW06], where

Langevin simulations were performed. It is important to mention, however, that in those

cited simulations a simplified Go-type force field was used. Thirumalai [TKL06] made a

considerable improvement to the force field by introducing the effect of the non-native

interactions. However, important interactions such as dipole-dipole and hydrogen bonds

were not taken into account. The presence of intermediates was not reported either in

those studies.

The main goal of this Section is the study of the influence of confinement on the

potential landscape and, consequently, on the stability of the native and intermediate

states. Note that the intermediates can be better characterized by analyzing the free

energy F as a function of both the energy E and the order parameter Q. In Fig. 4.5 a)

we show the contour plot of F (E,Q) for the bulk case. Clearly, the two intermediate

structures, which we denote as I1 and I2 can be identified as local minima of F (E,Q). It is

important to point out that the values of the end-to-end distance Q in the intermediates

I1 and I2 are larger than in the native structure, but smaller than in the unfolded state.

Fig. 4.3 shows the importance of choosing the adequate order parameters to plot the free

energy.

In order to study the effect of a cage with purely repulsive walls (potential V1(r)) we

have determined F (E,Q) for different values of the cage-radius Rc. In Figs. 4.5(b)-(d)

we show the corresponding contour plots for Rc = 25 Å, Rc = 20 Å and Rc = 15 Å,

respectively. The different minima of F (E,Q) are shown together with representative

snapshots of the corresponding structures. The main effect of the cage of Rc = 25 Å is

to restrict the size of the unfolded states (U), which is reflected in a shift of the local

”U”-minimum to a smaller value of Q (see Fig. 4.5 (b)). Further decrease of Rc leads to a
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Temperature (K) Radius (Å)

321.0 BULK
324.2 ε = 0.0
324.1 ε = 0.2
314.5 ε = 0.4
292.1 ε = 0.6
253.5 ε = 0.8

– ε = 1.0

Table 4.2: Transition temperatures Tf for the confining potential V2(r) (see main text)
for different degrees of hydrophobicity, ε= 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 and for the bulk case.
Notice that in general Tf decreases as ε increases. For ε = 1.0 it is not possible to define
Tf because the specific heat is almost completely attenuated.

stronger reduction of the size of the unfolded states. For example, for Rc = 15 Å the local

”U”-minimum is situated at Q ∼ 20 Å, i.e., which means that the end-to-end distance

of the unfolded states has been halved in value with respect to the bulk case. This

can also be observed by the change in the form of the unfolded structures shown in the

figure. Interestingly, there is also a small shift of the ”U”-minimum to lower energies for

decreasing Rc. This is simply due to the fact that strong spatial confinement necessarily

leads to the formation of contacts which were not present in the bulk. The shift of the

”U”-minimum to lower energies also explains the reduction of the DOS upon confinement

shown in Fig. 4.3.

In contrast to the unfolded states, the native structure is practically not affected by

confinement, at least up to Rc = 15 Å, and the position of the ”N”-minimum remains

almost unchanged (see Fig. 4.5).

Different and interesting features are observed in the behavior of the intermediate

states I1 and I2 upon repulsive confinement. In the bulk, the minima corresponding to

the intermediates are well defined and separated by a potential barrier. Although both

the position of the minima and the structure of the intermediates remain unchanged

when the radius of the cage is reduced, the depth of the energy minima and the potential
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Figure 4.3: Logarithm of the density of states (DOS) g(E) of the protein inside the
confining potential V1(r) and for different values of Rc (15 Å, 20 Å, 25 Å) as well as for
the bulk case. One notices the remarkable decrease of the DOS for decreasing Rc.

barrier between them decrease. Already for Rc = 20 Å, both minima start to merge and

form an extended and shallow minimum. This effect is even stronger for Rc = 15 Å. Note

that this happens when the radius of the confining potential becomes comparable to the

end-to-end distance of the intermediate states in the bulk.

Now, we report on the influence of hydrophobic effects in the inner surface of the cage.

Attractive cage-walls were considered by using the confining potential V2(r) (Eq. 3.18 )

with radius Rc = 30 Å. The degree of attraction is described by the coefficient ε. A

completely attractive cage-wall is obtained when ε = 1.0, whereas ε = 0.0 corresponds

to a completely repulsive or neutral inner surface of the cage. The effect of ε can be

visualized in the following way: as ε increases from 0 to 1, the walls of the cage tend to

attract the residues because of the relative minimum generated by the potential V2(r).

The deepest minimum of V2(r, ε) is reached when ε = 1.0 and corresponds to V min
2 ∼ 5

Kcal/mol. This energy is comparable to the energy required to break one hydrogen

bond, ∆EHB ∼ 4.8 Kcal/mol. Therefore, for ε ∼ 1.0 the potential is able to destroy the

structure of the protein (denaturation).
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Figure 4.4: Specific heat for the bulk case and for confining potentials with radii 15 Å,
20 Åand 25 Å. Tf = 321 K is the transition temperature in the bulk case. Tf increases
as the radius Rc decreases. The confining potential in this case is purely repulsive.

The influence of the confining potential V2(r) on the DOS of the protein is shown

in Fig. 4.6, where different degrees of attraction and the bulk case are considered. Two

clear features can be distinguished. First, the DOS at energies close to the native state

increases for increasing ε. This means that the potential landscape is changed near the

global minimum. Furthermore, for large energies one can clearly observe a dramatic

reduction of g(E) by up to ∼ 13 orders of magnitude as ε goes from 0 to 1. However,

this remarkable reduction of the phase space in this case does not help the protein to fold

correctly but forces it to acquire a denatured conformation. This effect occurs because

the peptide decreases its energy by placing some of the residues close to the border of

the cage. Then, the number of accessible states at those energies decreases and residues

are no longer allowed to be far apart from the border, since it would cost much energy.

As a consequence, the peptide sticks to the wall of the cage.

The influence of the potential V2(r) on the specific heat C(T ) of the V3-loop is shown

in Fig. 4.7. As ε increases, the curve C(T ) becomes broader. The transition temperatures

for different values of ε and for the bulk case are presented in Table 4.2. Interestingly,
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Figure 4.5: Contour plots of the free energy landscape F (E,Q) as a function of the
configurational energy E and the end-to-end distance Q for a purely repulsive confining
potential. Plots a-d correspond to the bulk case and cages of radius 15 Å, 20 Åand
25 Å respectively. The unfolded state are strongly affected when the size of the cage
decreases. The native state and the intermediates are only slightly modified. The contour
lines represent the free energy difference with respect to the native state and are given
in Kcal/mol.

for ε = 0− 0.4 we obtain an increase of the transition temperature compared to the bulk

case. The range 0.3 ≤ ε ≤ 0.4 seems to be the optimal one regarding stability. For that

range of ε the protein is more stable than in the absence of a cage. For higher values of

ε the transition temperatures become lower. For ε = 1.0 the curve of the specific heat is

extremely broad and attenuated, reflecting the fact that the protein is almost denatured.

One of the main results of the present paper is illustrated in Fig. 4.8, where we show

the contour plots the free energy F (E,Q) for different values of ε. The radius of the cage

is equal to 30 Åin all cases.

For ε = 0 (Fig. 4.8 (a)) the presence of the native state (N), the intermediates (I1

and I2) and the unfolded states (U) can be clearly observed. The increase of ε leads to
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Figure 4.6: Logarithm of the DOS g(E) for different degrees of hydrophobicity (ε =0.0,
0.2, 0.4, 0.6, 0.8, and 1.0) and for the bulk case. Notice the abrupt decay of g(E) by ∼ 13
orders of magnitude as ε goes from 0.0 to 1.0. For high values of ε, the protein tends to
be in the unfolded state.

an effective increase of the confinement, and also to the presence of shallower minima

for the intermediate states. For ε = 0.4 (Fig. 4.8 (b)) the global minimum and the

three local minima can still be distinguished. However, the intermediates become almost

unstable and the energy landscape has practically only two well defined minima. A

further increase of ε completely changes the energy landscape. For ε = 0.6 (Fig. 4.8

(c)) the native state and the intermediates I1 and I2 are no longer present. Instead, a

new intermediate state N ′ appears, which has more native contacts than I1 and I2, but

less than N , and exhibits a much lower value of energy E. By looking at the structure

corresponding to the minimum denoted by N ′ it is clear that is very similar to N , but not

completely folded. We interprete that the N ′ state is a slight deformation of the native

state produced by the presence of attractive wall. Note that also the ”U”-minimum is

shifted to much lower energies. This clearly indicates that the protein sticks to the wall

of the cage. The net effect is that the potential landscape shows for this value of ε a

two-state situation. Finally, for ε = 0.8 (Fig. 4.8 (d)) only the unfolded states are present.

Shea and coworkers [JBS04] showed that for a particular protein one metastable state
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Figure 4.7: Specific heat of the protein for different values of ε = 0.0, 0.2, 0.4, 0.6, 0.8,
and 1.0, compared to the bulk case. Tf = 321 K is the transition temperature for the
bulk. Notice how Tf and the peak of the specific heat decrease as ε goes from 0.0 (purely
repulsive wall) to 1.0 (strongly attractive wall).

might exist in the presence a weakly hydrophobic barrier. In this work and for the

peptide V3-loop we obtain a different result, namely, that the protein shows a folding

behavior through intermediates in the bulk, but an attractive barrier with an optimum

degree of hydrophobicity can lead to weaken the intermediate states and to induce a

quasi two-state folding process.

Summarizing, we have studied the folding of the peptide 1NJ0 under different kinds of

confining potentials. We used a force field which is independent on the native structure

and includes relevant interactions such as the dipole-dipole and hydrogen bonds. We

demonstrated the presence of intermediate states not reported before. These intermedi-

ates are strongly affected by the confining potentials.

4.2 PROTEIN-FIELD INTERACTION

Misfolding of a protein occurs when it becomes trapped in a local minimum of the po-

tential energy surface (PES) where the conformation differs from the native-state struc-
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Figure 4.8: Contour plots of the free energy landscape F (E,Q) for a cage with an
attractive inner surface. Different degrees of hydrophobicity are displayed in plots a-d,
corresponding to ε =0.0, 0.4, 0.6 and 0.8. The native and the intermediate states are
slightly modified for 0.0 < ε < 0.4 but for larger values of ε the intermediate states
dissappear and the native structure is deformed. As a consequence F (E,Q) represents a
two-states landscape. The contour lines represent the free energy difference with respect
to the native state and are given in Kcal/mol.

ture. If the local minimum is stable enough, serious diseases may be caused, espe-

cially if the secondary structure of the misfolded conformation differs from the native-

one [EAF+06, Kel98, LM00].

In this work we demonstrate that an external constant electric field can directly

induce a dramatic conformational change in the secondary structure of proteins. Most

importantly, we show that a transition from a β-sheet to an α-helix-like structure can be

induced by field strengths which can be generated in a micro-electrode with an electrolyte

inside [EML06].

The external electric field couples to the dipoles in the peptide units, which are parallel

to the direction of the ~OC and ~NH bonds in the amide planes (see Fig. 4.9) and have a
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Figure 4.9: The dipoles of NH and OC in the amide plane give rise to a total dipole
moment for each amino acid which has the value 1.1× 10−29Cm.

magnitude equal to 1.1× 10−29Cm [Wad76], i.e., 20 times larger than the dipole moment

of a water molecule. This interaction can lead to structural changes. In the last years

the alignment of hydrated proteins and small molecules in the gas phase was achieved

experimentally using polarized light [SSW+05, RCF+09]. The alignment of the tertiary

structure of large macromolecules under static and oscillating electric fields has also been

described by molecular dynamics (MD) simulations [LBTY06, TLBZ09].

Here, we show that the folding dynamics in the presence of an electric field can be

analyzed in a similar way as classical spin systems under magnetic fields. For that we

generalize and implement a Monte Carlo approach used for spin glasses in order to be

able to describe structural changes of macromolecules in real space.

Note that the superposition of the individual dipoles in a protein gives rise to a total

dipole moment
∑
i pi ∼ N (N ≡ number of amino acids) when all the dipoles are aligned

ferroelectrically as in case of the α-helix [Wad76, Hol85]. In contrast, the total dipole of

a β−sheet should vanish because in this case the individual dipoles corresponding to the

i− th and i+ 1− th amino acids in the sequence are oriented antiparallel to each other.

Now, it is known for polymers in general that a rotation of local dipoles can occur

without any significant change in bond length and bonding angle [CWD+07]. Therefore,

a protein under an external electric field decreases its potential energy through dipole
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alignment. On the other hand, the dipole-dipole interactions lead to an interplay between

the conformation and the dipole arrangement in the peptide. Very high field strengths

will force the protein-structure to be aligned. However, for field intensities corresponding

to a coupling strength comparable to the energy of hydrogen bonds, we expect a more

complex and physically more interesting potential energy surface.

Figure 4.10: Free energy surface of the V3-loop as a function of the configurational energy
E and the end-to-end distance Q for different strengths of the external electric field:
χ = 0.0, 0.4, 0.8 and 1.2. Local minima labeled as I1 and I2 correspond to intermediates.
N1 refers to the native state in absence of field, which becomes metastable (I3) for
χ = 0.8. Note the formation of a new global minimum N2 for the field strength χ = 1.2.
U corresponds to the unfolded states. The temperature in all cases is T = Tf = 321 K.

In order to analyze the direct influence of external fields on the secondary structure

of proteins we study in this work the small peptide V3-loop, Protein Data Bank ID

1NJ0, which consists of a β-sheet structure in its native state. This peptide conforms

the V3-loop of the exterior membrane glycoprotein (GP120) of the Human Immunode-

ficiency Virus type 1 (HIV-1). We describe the protein by using an unbiased off-lattice
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model recently developed by Yow and coworkers [CSM06]. This coarse-grained model

contains the most important ingredients needed to describe folding. In particular, local

hydrophobic interactions between the residues i and i+ 1 and dipole-dipole interactions

are treated on the same footing.

In the following we briefly describe the model (for more details see Ref. [CSM06]).

Each amino acid is represented by a unit which contains the atoms N, Cα, C’, O and H.

The residues are modeled as spherical beads R attached to the Cα’s. The only remaining

degrees of freedom are the Ramachandran angles ψ and φ. Thus, the force field is given

by

VProtein(ψ, φ) = VSt + VHB + VDD + VMJ + VL−HP , (4.1)

where VSt represents hard-core potentials to avoid unphysical overlaps, VHB accounts

for the hydrogen bonding and VDD for the dipole-dipole interaction. VMJ is a distance

dependent version of the Miyazawa-Jernigan (MJ) matrix [MJ96], which describes the

interaction between residues. VL−HP represents the local hydrophobic effect. The role

of the presence of water molecules is taken into account both by the term VMJ and

VL−HP . Notice that VMJ partially includes the effect of water polarization [WL00]. The

dipole-dipole interactions VDD are divided into local and non-local terms. The latter

account for the interactions between dipoles belonging to amino acids which are not

nearest neighbors, and are described by the term

V nl
DD = χnlDD

∑
i,j 6=i±1,µ,ν

[
piµ · pjν
r3
iµjν

− 3
(piµ · riµjν)(pjν · riµjν)

r5
iµjν

]
, (4.2)

where µ and ν refer to OC or NH and piµ is the corresponding OC or NH dipole mo-

ment in the i-th amino acid of the sequence. The dipole-dipole interactions between

amino acids which are nearest neighbors (local terms) are approximated as V l
DD =

εlDD
∑
i (Pi ·Pi±1/|Pi||Pi±1| − 1), where Pi = piCO + piNH refer to the total dipole mo-

ment of the i-th amino acid. εnlDD and εlDD are coupling constants. Notice that the
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nonlocal interaction has a dependence on the distance between dipoles while the local

one is roughly independent of it, because the dipoles are localized in the center of the

amide plane and the distance between nearest neighbors remains unchanged upon con-

formational transformations.

Figure 4.11: For low field magnitudes one native (N1) a) and two intermediate (I1 and
I2) b)-c) states are displayed in the FEL of the peptide 1NJ0. For high field strengths the
peptide presents a new intermediate (I3) d) and native (N3) e) states. (The intermediate
states are schematic). The native state N3 is aligned to the field orientation given by the
black (red in color) line in e).

The term describing the coupling of the protein to the external electric field E reads

VFD = χ
∑
i Pi ·E, where the strength χ of the interaction term is dimensionless. To give

an idea of the order of magnitude of the field strengths analyzed here, χ = 1 corresponds

to 5.16 × 108V/m. We use the parameter χ instead of E to avoid the repetition of the

factor 108V/m in the text and plots.

We have determined the thermodynamic properties of the V3-loop under an external

electric field using the Wang-Landau algorithm [WL01]. Since the joint density of states
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g(E,Q) for biomolecules is difficult to obtain with the classical Wang-Landau algorithm,

we implemented here the 1/t convergence criterion, recently proposed by Belardinelli and

coworkers [BP07] in order to avoid saturation errors, which is essential for the appropriate

treatment of complex Potential Energy Surfaces (PES). This modified algorithm has not

been reported before for proteins.

More details of the implementation of the Wang-Landau algorithm can be found in

Refs. [WL01, BP07, OLYG09]. We calculated the joint density of states g(E,Q) as a

function of the configurational energy E (in Kcal/mol) and of the end-to-end distance

of the protein Q (in Å). With the help of the Wang-Landau simulation we explored the

volume [−160 < E < −90]× [4 < Q < 50] in the reduced phase space defined by E and

Q. At each Monte Carlo step we changed the Ramachandran angles φ and ψ. After

1 × 1010 Monte Carlo steps we obtained the unnormalized density of states (using the

convergence criterion ffinal ∼ exp(10−8)).

From the so computed g(E,Q) we obtained the free energy surface as a function of

E and Q for different values of χ, running from 0 to 2 Kcal/mol, which is shown in

Fig. 4.10. The temperature used for this calculation was T = Tf =321 K, which is the

optimal folding temperature of the V3-loop peptide. In the absence of an external field

(χ = 0.0) the free energy shows the typical funnel-like form around the native state N1.

In addition to the native- and the unfolded states, two characteristic local minima, I1 and

I2 can be distinguished, which correspond to intermediates [OLYG09]. In the presence of

an external field the whole free energy landscape is modified. For χ = 0.4 (see Fig. 4.10

b)) still no considerable changes occur. However, already for χ = 0.8 the native state N1,

which is strongly by the field, is no longer the global minimum of the free energy, but

it becomes degenerate with the intermediates. The protein exhibits no global minimum.

Therefore, we also consider N1 as a metastable state and label it as I3 (see Fig. 4.10c)).

For larger field strengths, dramatic qualitative changes in the potential landscape
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occur, which give rise to a new phenomenon, namely, a transition from a β− sheet to an

α-helix-like secondary structure. This effect can be directly observed in Fig. 4.10 (d): for

χ = 1.2 a conformation which does not correspond to any local minima in the absence

of the field, becomes the new native state (N2). The state N2 is characterized by the

coordinates (E = -145, Q = 30). Notice, for comparison, the native state in the absence

of the field N1 is located at the point (-135,5) in the plane (E,Q). The native states

N1−2 and the intermediate states I1−3 are shown in Fig. 4.11.

This result suggests that by increasing the magnitude of the external field one should

be able to control the conformation of the V3-loop and, in general, the secondary structure

of proteins.

In order to visualize the field induced transition from the native state N1 to the state

N2 we looked for the structure which yields the largest contribution to the partition

function Z(T, χ) =
∑
E,Q g(E,Q)e−E(χ)/kBT for each value of the temperature T and the

strength χ. Such conformation constitutes the observable structure, i.e., that having the

highest probability to be present. In Fig. 4.12 we show the coordinates (E,Q) of the

observable conformations for χ = 0, 0.4, 0.8 and 1.2 and for temperatures running from

10K up to 600K. In the absence of the field and for T < Tf the native state N1 (E =

-135, Q = 5) contributes most to Z(T, χ). At very high temperatures only the unfolded

state can be observed. The intermediates I1 and I2, although present as local minima

in the PES (see Fig. 2), do not provide the dominant contribution at any temperatures.

New features appear when the external field is switched on. For χ = 0.4 the intermediate

state I2 (E = −110, Q = 35) becomes observable for temperatures above Tf . At very

high temperatures again the unfolded states dominate. A peculiar situation occurs for

χ = 0.8, where both intermediates I1 and I2 can be observed and yield the dominant

contribution on a wide range of temperatures. Interestingly, I1 (E = −120, Q = 20) can

be observed even below Tf . The state N1 is only dominant at low temperatures.
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Figure 4.12: Coordinates in the (E,Q)-plane of the conformations yielding the max-
imal contribution to the partition function for χ = 0.0, 0.4, 0.8 and 1.2 and at dif-
ferent temperatures. Note that for χ = 0.0 the observable structures lie around the
point (E = −135, Q = 5) (β-sheet) while for χ = 1.2 they are located near the point
(E = −150, Q = 30) (helix). Dark (blue) and light (yellow) diamonds refer to low and
high temperatures, respectively (see temperature scale).

Finally, the conformation which yields the largest contribution to Z for χ = 1.2 and

T < Tf is the helix-like structure with coordinates (E = −150, Q = 30), corresponding

to the new native state N2. As the temperature is further increased, the intermediate

I2 starts to be the most probable structure. As in the case of smaller field strengths, at

high temperatures (T > 400 K) the unfolded state U yields the largest contribution to

the partition function.

A more graphical description of the transition and particularly of the structure of

the field-induced new native state N2 can be gained from the Ramachandran plots. In

Fig. 4.13 we show the Ramachandran plots for χ = 0.0, 0.4, 0.8 and 1.2 and at the folding

temperature T = Tf . In the absence of the external field most of the bond-angles of

the peptide lie in the upper left part of the Ramachandran plot, inside the region which
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characterizes the β-sheet of the state N1 (see the crosses in Fig. 4.13). There are, of

course, angles which lie outside this region. This dispersion is due to the bonds at the

ends and in the turn of the β-sheet.

As the magnitude of the field is increased, the local dipole moments of the amino acids

start to change their orientation. This leads to rearrangements in the structure and, in

particular, in the bond angles. As a consequence, for χ = 0.4 and 0.8 the dispersion

of the points in the Ramachandran plot increases. For χ = 0.8 a considerable fraction

of the angles lies not only outside the β-sheet region, but they are distributed over the

four panels of the plot. Now, if χ = 1.2 again a qualitative change can be observed. A

considerable fraction of the angles is concentrated inside and around the region which

characterizes α- and a 310-helices. This happens because for large fields all dipoles in

the peptide tend to be aligned in the direction opposite to the applied field in order to

minimize the interaction energy (note that χ > 0). The resulting helix-like structure has

a nonzero total dipole moment. This structure is shown in Fig. 4.11 e). One can observe

that the helix is aligned to the field orientation given by the black (red in color) line.

Figure 4.13: Ramachandran plot of the V3-loop for different strengths of the external
electric field at T = Tf = 321 K. The regions corresponding to helices and β-sheets are
indicated.
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The energy of the native state N1 undergoes slight changes with increasing χ with

respect to the the case without field (E(N1)|χ=0 = −137.5Kcal/mol). In particular,

∆E/|E| ∼ −0.009 for χ = 0.4 and ∆E/|E| ∼ −0.015 for χ = 0.8. The energy of the

state native state N2 for χ = 1.2 is equal to -150.0 Kcal/mol. The energy difference of

∼ 12.5 Kcal/mol between the native states χ = 0 and χ = 1.2 results from the balance

between the field-peptide interaction energy, i.e., the energy gained from the alignment

of the dipole moments, and the different number of hydrogen bonds in the configurations

N1 and N2.

From our calculations it is clear that an external electric field forces the peptide to

undergo a conformational change to a structure in which the dipoles are aligned parallel

to each other and antiparallel to the field. For χ = 1.2 this structure is a helix-like one.

If the field strength is further increased the native state displays more features related to

helices, and for a sufficiently high value of χ a perfect α-helix is formed. Note that the

situation is analogous to that of a classical spin system interacting with a magnetic field.

The paramagnetic state would represent the unfolded protein structure, in which dipoles

are oriented randomly in the absence of a field, the antiferromagnetic state would be the

analog of a β−sheet, where neighboring dipoles are antiparallel to each other, and the

ferromagnetic state would correspond to the α-helix. However, and in addition to the

case of spin systems, the protein is free to move in space and the Hamiltonian consists

of different competing many-body interaction terms.

At this stage it is important to mention that recent molecular dynamics simulations

performed to study the effect of static and oscillating electric fields on insulin [LBTY06]

and an β-Amyloid peptide [TLBZ09], yield a destabilization of α-helices and a change to

a β-sheet or to a random-coil structure. Note, however, that in both cases the studied

proteins are rather long and exhibit a tertiary structure consisting of subunits forming

different secondary structures, and that the most important effect of the field was the
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alignment of the tertiary structure. Therefore, the destabilization of a helix is only part

of this global alignment process and does not contradict our results, because the field

does not interact directly with the secondary structure, as is the case in our study.

Moreover, from the results of our calculations and the above discussion we can propose

the following alternative picture for externally assisted folding: a transition from a β-

sheet to a α-helix within a large protein can be induced by an electric field which directly

interacts with the secondary structure. This is only possible if the tertiary structure

of the protein cannot be aligned. A way to achieve a ”frozen” tertiary structure is just

through confinement. Therefore, assisted folding could result as the interplay between an

electric field and confinement. Nano-capacitors provide both requirements at the same

time.

Finally, it is important to point out that a much more efficient field induced transition

from a β-sheet to an α-helix should occur if both conformations are already present as

minima in the free energy in absence of the field. Research in this direction is in progress.

4.2.1 Electric Field produced by a Nano-electrode

We now show that the effect described throughout the letter might be induced in in vivo

experiments to repair misfolding or favor correct folding. We considered the cytoplasm

as a dielectric medium in which free ions are present (ionic solution) and assume that

a capacitor consisting of square (4 nm × 4nm) nano-electrodes is introduced into the

cell. The interior of the nano-capacitor has therefore a relative dielectric constant εcyto ∼

60, which corresponds to the dielectric constant of the cytoplasm. Assuming that the

separation between nano-electrodes is 5 nm, and in order to create an electric field of

the magnitude |Eext| = 6.2 × 108N/C, an external voltage of |V | = 3.79 V has to be

applied. This value is perfectly accessible in such experiments [Yua07]. The charge

density of electrolytes in the cytoplasm close to the surface of a nano-electrode is σ =
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4.59× 1017e/m2 [LBK+05]. Therefore, the cytoplasm inside the nano-capacitor produces

the usual response of an electrolyte and generates an induced electric field |Eind| =

1.38 × 108N/C (calculated using E = σ/Aεcyto). The magnitude of the electric field

inside the capacitor is given in Ref. [EML06] (with parameters adapted for our purposes)

by,

E(z) = (Eext − Eind) coth(
√
Az + φ) (4.3)

here
√
A = e(Eext − Eind)/(2KBT ) = 1.1/Å, coth(φ) = Eext/(Eext − Eind) = 1.22 (φ =

1.15) and z (in Å) denotes the distance from the capacitor plate. Substituting these

values in the expression of the electric field we obtain, E(z) = 6.2 × 108 coth(1.1z +

1.15)V/m. The dependence of E(z) on z is shown in Fig. 4.14. Note that at the plate (z =

0) the electric field is maximal (vacuum value). For distances z >> 0 the electric field

decreases due to the screening of the ions in the cytoplasm and reaches the asymptotic

magnitude E(z →∞) = 6.2×108V/m . This value is corresponds to χ = 1.2 in Fig. 4.10,

which we have shown to be enough to strongly affect the folding of a protein.

4.3 SELECTION AND SEQUENCE DESIGN

In this Section we will make use of the Model II described in Chapter2. The dynamics

employed will be the Langevin Dynamics but the main idea does not depend on the

method one uses to describe the dynamics. As we mentioned in Chapter 2, it would be of

crucial importance to have a simple test to know if a given sequence of amino acids will

fold in a short time in comparison to random sequences. We will investigate to which

extent the convergence of dynamical trajectories on the very initial stages could be a

distinguishing feature for a good folder.

It is well-known, that most proteins fold rapidly and reliably to a unique native
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Figure 4.14: Electric field inside the chaperon as a function of the distance to one end
of the cavity. The field decreases because of the screening of the electrolytes in the
cytoplasm medium.

state from any one of a vast number of initial unfolded conformations [Cre92, FP02].

Nowadays, the consented answer to Levinthal’s paradox is found in the specially designed

energy landscape of a foldable protein, which resembles a many-dimensional funnel, where

moving along the free-energy gradient narrows the accessible configuration space and

guides to the unique native structure lying at the bottom of the funnel [GLSW92, SSK94c,

BOSW95]. The funnel is also rough, giving rise to local minima, which can act as traps

during folding. Most random amino acid chains have numerous funnels to different low-

energy states but an evolutionary designed protein sequence has usually one. Typically

a random amino acid chain will not fold to its lowest free-energy minimum in times less

than that needed to explore completely the configuration space, thus making these times

astronomically large [GLSW92].

In the present work we shall call good folders those amino acid sequences, which

exhibit a protein behavior, i.e. those that fold into the unique native state within a rea-

sonable time. Characterizing good folders is of vital importance for scientific and techno-
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logical applications. One of the most accepted criteria to characterize a good folder is by

measuring the energy gap between its global energy minimum and the minimum energy

of configurations in the disordered ensemble. The disordered ensemble consist of con-

figurations which are structurally dissimilar to the configuration of the global minimum

(the native state) [SSK94c, SG93, Sha94]. The thermodynamic stability of the native

state is strongly correlated to the magnitude of the gap. The energy gap also indicates

the ability of the sequence to fold into the global minimum in a reasonable time. The

main problem of calculating the energy gap is that one needs to know a priori the native

state. Therefore, one should perform the complete folding dynamics at first. Due to an

unknown folding time it may take very long before one could identify some amino acid

chain as a bad folder. The situation is more complicated when we try to compute the

energy gap for hundreds or thousand of sequences. Recently, Cassetti et. al [MC06b] pro-

posed a method for distinguishing proteins by their ability to fold. This study suggests

monitoring the curvature fluctuations of the energy surface along dynamical trajectories.

However, the Cassetti’s method is feasible only for coarse-grained models with a smooth

potential energy surface [MC06b]. In the present Thesis we investigate a new method

to monitor the convergence of dynamical trajectories on the very initial stages. We will

show that the convergence of the trajectories is a distinguishing feature for a good folder.

Different kinds of dynamics can be used for the description of an amino acid chain,

for instance Langevin dynamics for atomistic models [Gil93] or Monte Carlo dynamics

for lattice models [HD75, Sha94]. Commonly, the time development of the configuration

can be written as C(t) = gtC(0), where C(0) is the initial configuration and gt denotes the

dynamical transformation, which strongly depends on temperature and has probabilistic

nature if it simulates how water molecules governed by chaotic motion affect the amino

acid chain.

The dynamical transformation approach can be used to explain the funnel form of
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the energy surface for proteins: if the dynamical transformation acts on two arbitrary

points in the configuration space then the “distance” between them becomes enlarged

d(C1(t), C2(t)) > d(C1(0), C2(0)), where d stands for “distance” between configurations.

The time t should be not less than a time required for overcoming typical local traps in

the folding funnel. The enlargement of the distance means that after a certain time t

there should emerge structural similarities between two propagated yet initially unrelated

chains. A short convergence time t of the distance is a characteristic for a good folder.

Now imagine the following problem being posed: out of N amino acid sequences

one has to sort out the best candidates for folding in some reasonable time. One of

the most radical solutions to this problem would be to perform the dynamics of each

sequence starting from various randomly chosen initial positions and to check whether

the dynamical trajectories reach the same native conformation. This would be, how-

ever, extremely time consuming (especially in the case of all-atom molecular dynamics

simulations with solvent molecules). Besides this fact, it is a priori unclear how long

the dynamical simulation must be run because the value of the folding time is initially

unknown.

D. Gridnev and M. Garcia proposed an alternative solution to this problem based on

comparing the amino acid sequence by a properly defined Rate of Convergence, discussed

in Chapter 3. They applied it successfully to the lattice model [GG].

In this Thesis we extend the method to off-lattice models. We just summarize the

results of [GG] on the lattice model. We tested our approach on both a standard lattice

and an off-lattice models of proteins [SSK94c, SG93, BTR+99]. Although geometrically

poor, the lattice model is protein-like in the sense that lattice proteins fold to a unique

native structure from an astronomically large number of possible initial conformations

and do so rapidly and reproducibly. The structure of the amino acid chain is repre-

sented as a self-avoiding walk on the cubic lattice. A random configuration is then a

83



Chapter 4: SIMULATION RESULTS AND ANALYSIS

self avoiding random walk. The sequences are composed of amino acids of 20 types and

the chain contains 36 monomers. Two monomers are considered “in contact” if they

occupy neighboring positions on the lattice but are not sequence neighbors. The energy

of two monomers in contact is calculated through the 20× 20 Miyazawa-Jernigan matrix

(Table VI of Ref. [MJ96]).

For example, the energy of the chain C having N monomers is expressed through

the contact map as E(C) =
∑N
i,k=1 Vik∆ik(C), where the interaction matrix for monomers

Vik is determined by the Miyazawa-Jernigan matrix. The similarity parameter Q, which

expresses on the scale from 0 to 1 the “closeness” of some conformation C to the native

state configuration CN , becomes in our notations Q = O(C, CN)/O(CN , CN). The dynamic

transformation gt is implemented through the Monte Carlo dynamics [BTR+99] with

move set including end moves, corner flips, and crankshaft moves.

To demonstrate the efficiency of the Rate of Convergence approach Gridnev and Gar-

cia [GG] have chosen a designed sequence [AGS94] of 36 monomers S0 = SQKWLER-

GATRIADGDLPVNGTYFSCKIMENVHPLA. The native state of S0 has the energy

EN = −16.5 in dimensionless kBTroom units, where Troom stands for the room tempera-

ture [MJ96]. At the folding temperature Tf = 0.25 (in Miyazawa-Jernigan dimensionless

units) the chain S0 always reaches its native state starting from any conformation and

the mean folding time (obtained by sampling 103 self-avoiding random walks in initial

configurations) is tf = 1.5 × 106 steps. As a remark, the folding time was calculated as

the average time (over many trajectories) required for the protein to get its native state.

The folding temperature was determined as the optimal temperature at which all the

structures get the native state.

Gridnev and Garcia generated 800 sequences with a random amino acid decomposition

and the designed sequence S0 was hidden among random sequences as “a needle in a

haystack”. For each amino acid sequence the Rate of Convergence was calculated and
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Figure 4.15: The place of the designed sequence S0 resulting after ordering the sequences
by the Rate of Convergence in descending order versus the time period t0. Taken from
[GG].

all sequences by the Rate of Convergence in descending order were sorted. The Rate

of Convergence, 〈R(t0, Tf )〉, was computed over 500 randomly chosen pairs of positions,

Tf = 0.25 is the folding temperature of S0. The Rate of Convergence was calculated each

50 time steps starting with t0 = 50.

It is important to notice that for each new time period the 800 random sequences were

generated anew. Fig. 4.15 shows the place of S0 after sorting the sequences by the Rate

of Convergence in descending order for each time period t0. For t0 = 200 the designed

sequence S0 took the 9-th place and for t0 = 700 even the first place. One can see that

for t0 ≤ 150 the designed sequence gets lost among other random sequences. The reason

for that is that the time t0 ≤ 150 is insufficient for overcoming local minima through

potential barriers. For t0 ≥ 200 the sequence S0 gets into to the top ten, which allows

to conclude that t0 ≥ 200 is sufficient for distinguishing the sequences by their ability to

fold.

The values of 〈R(t0 = 300, T = Tf )〉 are distributed among the first 15 places. The

85



Chapter 4: SIMULATION RESULTS AND ANALYSIS

place number three is occupied by the designed sequence S0. Though there are overall

800 sequences one can see that the gap in 〈R(t0 = 300, T = Tf )〉 values between the first

placed sequences is large. (The mean value of 〈R(t0 = 300, T = Tf )〉 for 800 sequences is

0.94).

One can check how the Rate of Convergence 〈R(t0, T )〉 depend on the number of

generated pairs. One founds that the square root of variance of R(t0 = 300, T = Tf )

values increases in the range from 1.2 to 1.4 as one increases t0 from 50 to 800. For

the number of initial pairs n ≥ 100 the distribution of 〈R(t0 = 300, T = Tf )〉n, where

the average is calculated over n pairs, is almost Gaussian (as it should be by the central

limit theorem). The calculations show that for 500 pairs the precision in determination

of 〈R(t0 = 300, T = Tf )〉 is sufficient for locating the first placed sequences, which is also

due to a large gap between 〈R(t0 = 300, T = Tf )〉 values of these sequences.

The Rate of Convergence at T = 300, 〈Rrandom(t0 = 300, T )〉, was computed by gen-

erating 1000 random sequences. Fig. 4.16 shows the normalized Rate of Convergence

for good folders S0 and S1 (see the definition of S1 below) and for a bad folder given

by the amino acid sequence Sbad = QACYDGVHWPMEANGYVTKWTVFRLSLWS-

FKLTKSW. It is remarkable that the normalized rate of S0 measuring the folding ability

peaks exactly at the folding temperature. On the contrary, the same dependence for

a bad folder does not show any pronounced peak, but rather a monotonous, almost

temperature independent behavior (see Fig. 4.16).

In order to show that the Rate of Convergence approach is also able to perform se-

quence design Gridnev and Garcia applied the algorithm to 5000 randomly generated

amino acid sequences having 36 monomers. The top 5 sequences turned out to be good

folders. The Rate of Convergence was calculated at t0 = 200 and the sampling was

done over 300 pairs of initial positions. The temperature was set to the folding tem-

perature of the designed sequence S0, namely T = Tf . By its Rate of Convergence the
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Figure 4.16: The normalized Rate of Convergence versus temperature for the designed
sequence S0 for the time period t0 = 300. Dash-dot: the same for the sequence S1.
Dashed line: the normalized Rate of Convergence of a bad folder. The vertical dotted line
corresponds to the folding temperature of S0. The temperature is given in dimensionless
Miyazawa-Jernigan units multiplied by 100. Taken from [GG].

designed sequence S0 occupied the position 33. The results for the top two sequences

S1 = KWEEHEWGKDNLSDLHMHENEERFAQEQHNRDPQTD and S2 = NALCD-

DCSTEWCIPSMCCMCFEFIDFYKKKQQWRQM are analyzed in the following lines.

The native states of both sequences are shown in Fig. 4.17. The energies of the native

states are EN(S1) = −16.88 and EN(S1) = −14.29 respectively. The energy of S1 in its

native state is even lower than that of the designed sequence S0, despite the fact that S1

has the number of native contacts by 6 less than S0 (note that the structure of S0 was

specifically designed to maximize the number of native contacts and 40 native contacts

is the maximal reachable number for the sequence length of 36 monomers).

Both sequences S1,2 have the folding temperature equal to Tf and their folding time

is approximately 50 times longer than the folding time of S0. This is the fact which

deserves a discussion: in spite of S1,2 having at all temperatures a better normalized

Rate of Convergence compared to S0, their folding time is substantially longer. This
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Figure 4.17: Native states for the sequences S1 (left) and S2 (right). Dotted lines connect
those monomers that are in contact. The energies in the native state are EN(S1) = −16.88
and EN(S2) = −14.29. The number of native contacts for S1 and S2 is 34 and 27
respectively. Taken from [GG].

Name Sequence Model
SEQ1 311114442344312212224434333334 DHTP
SEQ2 443234423233421321132243424311 DHTP
SEQ3 321224314333113213344411112243 RHTP
SEQ4 414124323443321423324242141441 RHTP
SEQ5 444444444444444444444444444444 HMP

Table 4.3: The five sequences studied in this paper and their corresponding models. The
folding time of the sequences is tf > 1× 107 time steps. All the sequences have N = 30
monomers.

supports the idea that for a good folder there are so-called “hot contacts”, which are

formed in the first place, and then the chain undergoes the process of fine tuning. The

discrepancy in the Rate of Convergence might be explained by the fact that though the

“hot contacts” are formed quicker in S1,2 compared to S0, the process of fine tuning for

S1,2 takes a longer time.

One can also calculate the energy gap for both sequences S1 and S2. This was done

by considering the bulk of dissimilar configurations satisfying Q < 0.3. For the designed

sequence S0 one obtains the energy gap δ = −2.0. For the sequences S1,2 the gap is -0.88

and -0.8 respectively. It is interesting to note how in this case the longer folding time is

correlated with the lower energy gap.

In order to demonstrate that the method of Rate of Convergence also works for more
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complicated protein models we tested it on a more sophisticated off-lattice model of

proteins proposed by Clementi et. al [CMB98], for sequences of N = 30 monomers.

An Overdamped Langevin Dynamics (OLD), studied in Chapter 3, described the time

evolution gt of the monomers. As a remark, OLD is suitable for Biomolecules because

of the number of atoms and the velocities. Also, the time required for the simulation of

the solvent is speed up because it is treated as an implicit random fluid

Figure 4.18: Specific heat vs. temperature for the five sequences shown in Table V.
SEQ1 and SEQ2 show a very well localized peak which is a consequence of the funnel
structure of their potential energy surfaces. These two sequences are known to be good
folders. SEQ3, SEQ4 and SEQ5 have not a defined peak but the curve is spread in the
whole interval of temperatures, they are known to be bad folders. The temperature axis
is normalized respect to the transition temperature of SEQ2, Tf2=15.3 in units of kBT .

As we did for the lattice model, the Rate of Convergence for the off-lattice model

is given at the time t0 and temperature T as an average of the Eq. 3.43 over several

independent trajectories, in our case 200.

Rojas et. al [HRL08] have already distinguished three possible models in the Clementi

potentials depending on how the parameters are fixed. The first model considered in

this Work is the designed heteropolymer (DHTP) which intends to represent a natural
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protein, i.e., a good folder. The second and third models corresponds to the random

heteropolymer (RHTP) and the homopolymer respectively, both are expected to be bad

folders because of their very rugged energy landscape.

Figure 4.19: Global minima of the five sequences studied in this Work called SEQ1-5.

Wang-Landau simulations were performed over five different sequences called SEQ1-5

(see Table 4.3) to test the folding ability reflected in the specific heat curve. A picture

of the global minima of these five sequences is displayed in Fig. 4.19. For the sequences

SEQ1 and SEQ2, which belong to the DHTP model, we observe a very sharp peak in the

heat capacity, see Fig. 4.18 (a) and (b). The sharp peak demonstrates that the transition

from the unfolded state to the native state is very abrupt (first order transition) because

there is a clear separation of the unfolded states respect to these states close to the native

one. This is also a consequence of the big energy gap between folded and unfolded states

of this designed model. In contrast to the SEQ1 and SEQ2, the SEQ3 and SEQ4, which

belong to the RHTP model, they do not exhibit a defined peak (see Fig. 4.18 (c) and

(d)) from which we can conclude that no real transition from an unfolded to a folded
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states exists at all. The last sequence SEQ5, or HMP, shown in Fig. 4.18 (e), displays

a peak which is not sharp but extended over a long range of temperatures. This means

that the first derivative of the free energy (which is proportional to the specific heat) is a

continuous function of the temperature. However, the second derivative of the free energy

is a discontinuous function because there is an inflection point at the temperature where

the specific heat has a maximum. Therefore, SEQ5 exhibits a second order transition.

One expects in this case a glass-like transition where local minima are at the same level

of the global minimum. The protein can be easily trapped in any of those local minima

and never reach the native state. This fact is a characteristic of a bad folder.

Figure 4.20: Main frame: short time behavior of the Rate of Convergence for T = 190K.
We observe that already after the time step 200 there is a clear separation of good (SEQ1
and 2) and bad folders (SEQ 3,4 and 5). Inset: for very long times one can distinguish
between good and bad folders, the top of the sequences is reached by SEQ2 after the
time step 1× 105.

The Rate of Convergence criterion for the sequences SEQ1-5 is shown in Fig. 4.20. In

the outset we present the short time behavior of the Rate of Convergence at T = 190K,

< R(t, T = 190K) >, for the five sequences displayed in Table 4.3. The temperature,

190K, was chosen arbitrarily. One can observe that already at the 200 time step, the

curves corresponding to the good folders SEQ1 an SEQ2 are separated from the rest of
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Figure 4.21: Rate of convergence for a wide range of temperatures. We observe that
the distinction between a good (SEQ1) and a bad (SEQ5) folders is independent on the
temperature.

the sequences which are known to be bad folders. In the inset of Fig. 4.20 we display

the long time behavior of the Rate of Convergence. One can see that even for very long

times, there exists a clear separation between good and bad folders. The rates of SEQ1

and SEQ2 are close to each other up to the time step 105. For longer times the rate

of SEQ2 reaches the top. The folding time of the sequences studied in this work was

> 107 time steps. This folding time is given as the time when the Rate of Convergence

reaches a constant value. It is important to notice that by using the Rate of Convergence

we reduced in five orders of magnitude (102/107) the simulation time required to know

whether a sequence is a good folder. However, to know which is the best in a collection

of random sequences we have only reduced in two orders of magnitude (105/107) the

simulation time.

The Rate of Convergence at different temperatures for a good sequence (SEQ1) and

a bad one (SEQ5) is shown in Fig. 4.21 with t = 5 × 105 time steps (time chosen ar-

bitrarily). One observes that at low temperatures the Rate of Convergence is high for

both sequences but it tends to decrease as the temperature increases. That is because
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the structures are more dissimilar to each other at high temperatures than at low tem-

peratures. The important point to notice from Fig. 4.21 is that the distinction between

good and bad folders is independent of the temperature at which one calculates the Rate

of Convergence.

In spite of the fact that we have distinguished the good and bad folders in both the

off-lattice and the lattice models by using the Rate of Convergence, we were not able to

compute the folding temperature for the off-lattice model as Gridnev and Garcia did for

the lattice model. The reason is probably the much smaller number of random sequences

considered to make the average of the Rate of Convergence in the off-lattice simulations.

In the off-lattice model only five sequences were considered while in the lattice model

800 sequences. For a future work we will make the simulations with a bigger number of

sequences.

Summarizing this Section, we extended the Rate of Convergence method proposed by

Gridnev and Garcia [GG] for sorting amino acid sequences by their ability to fold. The

idea is applicable in all model frameworks, including accurate atomistic descriptions. For

both the lattice and the off-lattice models the method showed the ability to select good

folders at the very beginning of the simulations. We need to point out that by using the

Rate of Convergence criterion we did not need to perform the complete dynamics but it

was clear at the initial stages of the simulations which were the good and which the bad

folders.
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Chapter 5

SUMMARY AND OUTLOOK

In the present work we have studied three important aspects concerning the properties

of proteins: 1) the confinement of a single chain inside a potential barrier which can be

repulsive or attractive, 2) the interaction of a protein with a static external field and

3) the design of amino acid sequences which have a stable native state reachable in a

relatively short time. In the following paragraphs we will summarize the most important

results derived from the present Thesis.

The first main result of the present work is the identification of intermediate states

in the folding process. These intermediates are of fundamental importance because they

can even speed up or slow down the folding. The presence of intermediate states has

been observed previously in simplified models of proteins [SBJ07]. However, a detailed

study of intermediate states in more sophisticated protein models and the modification

of these intermediates under external factors had not been done before. We have studied

the peptide 1NJ0, which is a part of the HIV virus. This peptide has a β-sheet structure

as the native state. We obtained the free energy landscape (FEL) of this peptide by

means of the Wang-Landau algorithm. The free energy landscape shows the presence of

two intermediates besides the native and the unfolded states.

The second important topic of this Thesis is regarding the influence of confinement

potentials on the protein folding behavior. The confinement potentials mimic the effects

of Chaperones on proteins. We found that the native, unfolded and intermediate states

are modified by the presence of a confinement barrier. We studied two kinds of potential

barriers, the first one which is purely repulsive and the second one which besides the

repulsive part has an attractive effect on the protein. In the case of the repulsive barrier,
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the intermediate states get closer to each other in the plot of the FEL as the radius of the

barrier decreases. Eventually, they tend to collapse to a single minimum when the radius

of the barrier is very small. Additionally, the unfolded state gets more compact in the

presence of confinement. In the case of the attractive barrier, the situation is different.

We observed the extinction of the intermediate and the native states when the degree

of attraction is comparable to the energy necessary to brake the hydrogen bonds. For a

sufficiently high magnitude of the field only the unfolded state is observed.

The third important result of the present work is related to the effects of an external

field on the protein folding. We demonstrated in this Thesis that the intermediates can

be modified by an external electric field. In fact, the magnitude of the electric fields

used in the present work can be reached in the laboratory. From our simulations one

can conclude that the presence of an external field can modify the intermediates and

that for a sufficiently high electric field we can induce a new native state. In the present

simulations we observed that the native state in the presence of a high field exhibits an

α-helix structure. In contrast, the native state in the absence of an external field is a

β-sheet structure. In our simulations the ionic contribution of the medium was neglected.

This contribution could be important because of the high magnitudes used for the electric

field. Some chemical reactions could occur which would modify the features in the native

and intermediate states.

The fourth result concerns to the problem of sequence design. We have tested the

Rate of Convergence criterion of Gridnev and Garcia [GG] on off-lattice models. The

criterion allows to identify the good and bad sequences without performing the complete

folding dynamics. In this way we save a lot of CPU time. We can analyze hundreds of

sequences in a reasonable time because the criterion is not very time consuming. The

Rate of Convergence criterion seems to be universal in the sense that it does not depend

on the kind of potential energy surface. For lattice models one is able to compute the
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folding temperature by means of the Rate of Convergence. This was not the case for the

off-lattice model in the present Thesis because of the relatively small number of sequences

considered. In a future work we will extend this number.

The present work is a contribution to the field of proteins. We have tried to make the

simulations as realistic as possible but as in any computer simulation, there are several

points where our work can be improve for future studies. Therefore, we consider necessary

to discuss briefly in the following lines how the present work could be extended.

So far, we have discussed the influence that a static electrical field would have on the

protein folding. An even more interesting case would be that of a time-dependent electric

field. For such an intention we would need to develop a code of molecular dynamics to

take into consideration the temporary dependency of the field. The implications derived

from this study would be very varied, for quoting an example, one could observe the

effects that oscillating fields proceeding from common electronic devices might generate

in proteins in our body (i.e. cellphones).

Another possible extension of our work could be the introduction of the water molecules

explicitly and the presence of ions in the aqueous environment to study the effects of

chemical reactions on the thermodynamics of protein folding.

It could be also interesting to explore the problem of the influence of an external field

with a protein which has a β-sheet structure as the native state and an α-helix as an

intermediate state. We could observe in this case the transitions between helix and sheet

using a suitable frequency for the field.
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