
On CD-Systems of Stateless Deterministic
R-Automata with Window Size One⋆

Benedek Nagy1 and Friedrich Otto2

1 Department of Computer Science, Faculty of Informatics
University of Debrecen

4032 Debrecen, Egyetem tér 1., Hungary
nagy.benedek@inf.unideb.hu

2 Fachbereich Elektrotechnik/Informatik
Universität Kassel

34109 Kassel, Germany
otto@theory.informatik.uni-kassel.de

Abstract. Here we study cooperating distributed systems (CD-sys-
tems) of restarting automata that are very restricted: they are deter-
ministic, they cannot rewrite, but only delete symbols, they restart im-
mediately after performing a delete operation, they are stateless, and
they have a read/write window of size 1 only, that is, these are stateless
deterministic R(1)-automata. We study the expressive power of these
systems by relating the class of languages that they accept by mode
= 1 computations to other well-studied language classes, showing in par-
ticular that this class only contains semi-linear languages, and that it
includes all rational trace languages. In addition, we investigate the clo-
sure and non-closure properties of this class of languages and some of its
algorithmic properties.

1 Introduction

Cooperating distributed systems (CD-systems) of restarting automata have been
defined in [18], and in [19, 20] various types of deterministic CD-systems of
restarting automata have been studied. As expected CD-systems are much more
expressive than their component automata themselves. For example, already the
marked copy language Lcopy = {wcw | w ∈ {a, b}∗ } is accepted by a CD-system
consisting of only two deterministic R-automata, although this language is not
even growing context-sensitive [3, 14], that is, it is not even accepted by any
deterministic RRWW-automaton. On the other hand, stateless restarting auto-
mata, that is, restarting automata with only a single state, have been introduced
and studied in [11, 12]. In the monotone case and in the deterministic case, they
are just as expressive as the corresponding restarting automata with states, pro-
vided that auxiliary symbols are available. Without the latter, however, stateless
⋆ This work was supported by grants from the Balassi Intézet Magyar Ösztönd́ıj Bi-

zottsága (MÖB) and the Deutsche Akademischer Austauschdienst (DAAD).

2 B. Nagy and F. Otto

restarting automata are in general much less expressive than their corresponding
counterparts with states.

Here we study deterministic restarting automata that are stateless and that
have a read/write window of a fixed size k > 0, and CD-systems of such auto-
mata. In fact, we mainly concentrate on CD-systems of stateless deterministic
R-automata with window size 1. The restarting automata of this type are really
very restricted, and accordingly their expressive power is very limited. However,
by combining several such automata into a CD-system we obtain a device that
is suprizingly expressive, as we will see.

We first consider stateless deterministic R-automata, showing that we obtain
an infinite hierarchy of language classes based on the window size. In fact, the
different levels of this hierarchy can be separated from one another by regular
languages. As already stateless deterministic R-automata of window size 2 can
accept the Dyck language D′∗

n for all n ≥ 1 (see, e.g., [1]), this shows that, for all
k ≥ 2, the class L(stl-det-R(k)) of languages accepted by stateless deterministic
R-automata of window size k is incomparable under inclusion to the class REG
of regular languages. However, all regular languages are accepted by stateless
deterministic R-automata. Further, each stateless deterministic R-automaton of
window size 2 is necessarily monotone, which implies that it accepts a determin-
istic context-free language. On the other hand, the class L(stl-det-R(9)) contains
a non-context-free language. Thus, for all k ≥ 9, the class L(stl-det-R(k)) is
incomparable under inclusion to the class CFL of context-free languages.

Then we restate the definition of CD-systems of restarting automata, and
turn to our main topic, the CD-systems of stateless deterministic R(1)-automata.
We compare the class of languages that are accepted by these systems through
mode = 1 computations to other well-known language classes. In particular, we
show that in mode = 1 these systems only accept languages with semi-linear
Parikh image, including all regular languages, but that they also accept some
languages that are not even context-free. In fact, these systems accept all ratio-
nal trace languages. Accordingly they can also be interpreted as a refinement of
the so-called multiset finite automata of [5], which accept all regular macrosets,
that is, the commutative closures of all regular languages. In addition, we present
a syntactic restriction for CD-systems of stateless deterministic R-automata of
window size 1 such that the corresponding systems characterize the class of
rational trace languages. These systems actually yield an effective calculus for
rational trace languages in that from systems of this form for rational trace
languages S1 and S2 we can effectively construct systems for the rational trace
language S1∪S2, S1 ·S2, and S∗

1 . Then we study closure and non-closure proper-
ties of the class of languages accepted by CD-systems of stateless deterministic
R(1)-automata. We prove that this class is closed under union, product, Kleene-
star, and inverse projections, but that it is neither closed under intersection with
regular languages nor under ε-free morphisms. Finally we address some algorith-
mic problems for CD-systems of stateless deterministic R(1)-automata like the
emptiness problem, the finiteness problem, and the equivalence problem. The
paper closes with a short summary and some open problems for future work.

CD-Systems of Stateless R(1)-Automata 3

2 Stateless R-Automata with Constant Window Size

We first describe in short the types of restarting automata we will be dealing
with. More details can be found in [24].

A one-way restarting automaton, abbreviated as RRWW-automaton, is a one-
tape machine that is described by an 8-tuple M = (Q,Σ, Γ, c, $, q0, k, δ), where
Q is a finite set of states, Σ is a finite input alphabet, Γ is a finite tape alphabet
containing Σ, the symbols c, $ ̸∈ Γ serve as markers for the left and right border
of the work space, respectively, q0 ∈ Q is the initial state, k ≥ 1 is the size of
the read/write window, and δ is the transition relation that associates a finite
set of transition steps to each pair (q, u) consisting of a state q ∈ Q and a
possible contents u of the read/write window. There are four types of transition
steps: move-right steps (MVR), which shift the window one position to the right
and change the internal state, rewrite steps, which replace the content u of the
read/write window by a shorter word, thereby also shortening the tape, and
change the internal state, restart steps (Restart), which place the read/write
window over the left end of the tape, and reset the internal state to the initial
state q0, and accept steps (Accept), which cause M to halt and accept.

A configuration of M is described by a string αqβ, where q ∈ Q, and either
α = ε (the empty word) and β ∈ {c} · Γ ∗ · {$} or α ∈ {c} · Γ ∗ and β ∈ Γ ∗ · {$};
here q represents the current state, αβ is the current content of the tape, and it is
understood that the head scans the first k symbols of β or all of β when |β| ≤ k.
A restarting configuration is of the form q0cw$, where w ∈ Γ ∗; if w ∈ Σ∗, then
q0cw$ is an initial configuration. By ⊢M we denote the single-step computation
relation that M induces on the set of its configurations, and ⊢∗

M denotes the
reflexive transitive closure of ⊢M .

The automaton M proceeds as follows. Starting from an initial configura-
tion q0cw$, the window moves right until a configuration of the form cxquy$
is reached such that δ(q, u) contains a rewrite step that rewrites u to v, that
is, (p, v) ∈ δ(q, u) for some state p ∈ Q and some word v ∈ Γ ∗ satisfying
|v| < |u|. If this particular transition is now chosen, then the latter configura-
tion is transformed into the configuration cxvpy$. Then M performs some more
move-right steps until a restart step is executed, which then yields the restarting
configuration q0cxvy$. This computation, which is called a cycle, is expressed as
w ⊢c

M xvy. A computation of M consists of a finite sequence of cycles that is
followed by a tail computation, which consists of a sequence of move-right oper-
ations that may include a single rewrite step, and that is completed by either an
accept step, or that reaches a configuration in which M cannot perform another
transition step. In the former case we say that M accepts, while in the latter it
rejects. A word w ∈ Γ ∗ is accepted by M , if there is a computation of M which
starts with the configuration q0cw$, and which finishes by executing an accept
step. By LC(M) we denote the language consisting of all words accepted by M .
It is called the characteristic language of M , and L(M) = LC(M) ∩ Σ∗ is the
(input) language of M .

4 B. Nagy and F. Otto

We are also interested in various restricted types of restarting automata.
They are obtained by combining two types of restrictions:

(a) Restrictions on the movement of the read/write window (expressed by the
first part of the class name): RR- denotes no restriction, and R- means that
each rewrite step is combined with a restart operation.

(b) Restrictions on the rewrite-instructions (expressed by the second part of
the class name): -WW denotes no restriction, -W means that no auxiliary
symbols are available (that is, Γ = Σ), and -ε means that no auxiliary
symbols are available and that each rewrite step is simply a deletion (that
is, if M contains the rewrite operation (p, v) ∈ δ(q, u), then v is obtained
from u by deleting some symbols).

In [11] the stateless variants of RWW-automata are studied, where an RWW-
automaton M = (Q,Σ, Γ, c, $, q0, k, δ) is called stateless if Q = {q0} holds. Thus,
in this case M can simply be described by the 6-tuple M = (Σ,Γ, c, $, k, δ). In
the original definition it was required that a stateless RWW-automaton may
execute an accept instruction only at the right end of the tape, that is, when it
sees the right delimiter $, but this is actually just a convenience, as shown by
the following proposition.

Proposition 1. [13] Given a stateless RWW-automaton M = (Σ,Γ, c, $, k, δ),
one can construct a stateless RWW-automaton M ′ = (Σ,Γ, c, $, k + 1, δ′) that
executes accept instructions only at the right end of the tape, and that accepts
the same characteristic language as M . If M is an RW-automaton or an R-
automaton, then so is M ′, and if M is deterministic, then so is M ′.

In [11] the following results were obtained. Here the prefix stl- is used to
denote stateless types of restarting automata, the prefix det- is used to denote
deterministic types of restarting automata, and the prefix mon- is used to denote
restarting automata that are monotone. Here a restarting automaton M is called
monotone, if the distance from the place of rewriting to the right end of the tape
does not increase from one cycle to the next in any computation of M . We use
the notation L(X) to denote the class of (input) languages that are accepted by
automata of type X.

Theorem 1. (a) L(stl-det-mon-RWW) = DCFL.
(b) L(stl-mon-RWW) = CFL.
(c) L(stl-det-RWW) = CRL.
(d) L(stl-det-mon-R)) REG.

Here CRL denotes the class of Church-Rosser languages of McNaughton
et. al. [16], DCFL is the class of deterministic context-free languages, and REG
denotes the class of regular languages.

We are interested in stateless R-automata with a fixed window size. For each
positive integer k, we denote by stl-det-R(k) the class of stateless deterministic

CD-Systems of Stateless R(1)-Automata 5

R-automata that have a read/write window of size k. We will see that there is
an infinite hierarchy of language classes L(stl-det-R(k)) based on the value of the
parameter k.

First we consider stateless deterministic R-automata with window size 1. For
these automata we introduce the following notions that we will repeatedly use
throughout the paper.

Definition 1. Assume that M = (Σ,Σ, c, $, 1, δ) is a stateless deterministic R-
automaton of window size 1. Then we can partition the alphabet Σ into four
disjoint subalphabets:

(1.) Σ1 = { a ∈ Σ | δ(a) = MVR },
(2.) Σ2 = { a ∈ Σ | δ(a) = ε },
(3.) Σ3 = { a ∈ Σ | δ(a) = Accept },
(4.) Σ4 = { a ∈ Σ | δ(a) = ∅ }.

Thus, Σ1 is the set of letters that M just moves across, Σ2 is the set of letters
that M deletes, Σ3 is the set of letters which cause M to accept, and Σ4 is the
set of letters on which M will get stuck.

Then the following characterization holds.

Proposition 2. Let M = (Σ,Σ, c, $, 1, δ) be a stateless deterministic R(1)-
automaton, and assume that the subalphabets Σ1, Σ2, Σ3, Σ4 are defined as above.
Then the simple language S(M) of words accepted by M in tail computations is
characterized as

S(M) =

Σ∗, if δ(c) = Accept,
Σ∗

1 ·Σ3 ·Σ∗, if δ(c) = MVR and δ($) ̸= Accept,
Σ∗

1 · ((Σ3 ·Σ∗) ∪ {ε}), if δ(c) = MVR and δ($) = Accept,

and the language L(M) is characterized as

L(M) =

Σ∗, if δ(c) = Accept,
(Σ1 ∪Σ2)∗ ·Σ3 ·Σ∗, if δ(c) = MVR and δ($) ̸= Accept,
(Σ1 ∪Σ2)∗ · ((Σ3 ·Σ∗) ∪ {ε}), if δ(c) = MVR and δ($) = Accept.

Proof. If δ(c) = Accept, then obviously M accepts each word w ∈ Σ∗ in a
tail computation. Thus, we can concentrate on the case that δ(c) = MVR holds.
Obviously, M will then accept each word from Σ∗

1 ·Σ3 ·Σ∗ in a tail computation,
and if δ($) = Accept, it will also accept each word from Σ∗

1 in a tail computation.
Further, each word w = uav, where u ∈ Σ∗

1 , a ∈ Σ2, and v ∈ Σ∗ will cause a
cycle of the form w = uav ⊢c

M uv. Hence, one by one those letters from Σ2 are
removed from w that in w are only preceded by letters from Σ1∪Σ2. This yields
the above description for the language L(M). 2

It is easily seen that a stateless finite-state acceptor with input alphabet Σ
accepts a language of the form Σ∗

0 , where Σ0 is a subalphabet of Σ. Thus, we
have the following easy consequence.

6 B. Nagy and F. Otto

Corollary 1. A language L is accepted by a stateless deterministic R(1)-auto-
maton that only accepts on reaching the right delimiter $, if and only if L is the
simple language of a stateless deterministic R(1)-automaton that only accepts on
reaching the right delimiter $, if and only if L is accepted by a stateless finite-
state acceptor.

Proof. Let M = (Σ,Σ, c, $, 1, δ) be a stateless deterministic R(1)-automaton
that only accepts on reaching the right delimiter $. Then Σ3 = ∅, and hence
we see from the above proposition that L(M) = Σ∗, if δ(c) = Accept, and that
L(M) = (Σ1 ∪ Σ2)∗, otherwise. On the other hand, if A is a stateless finite-
state acceptor on Σ that accepts the language Σ∗

0 , then we obtain a stateless
deterministic R(1)-automaton M = (Σ,Σ, c, $, 1, δ) by defining δ(c) = MVR,
δ(a) = MVR for all letters a ∈ Σ0, and δ($) = Accept. Then L(M) = S(M) =
Σ∗

0 . 2

Thus, stateless deterministic R(1)-automata can be seen as stateless deter-
ministic finite-state acceptors that are enabled to accept without having read
their input completely.

Next we turn to stateless deterministic R-automata of window size 2.

Lemma 1. The Dyck language D′∗
n is accepted by a stateless deterministic R(2)-

automaton for each integer n ≥ 1.

Proof. The Dyck language D′∗
1 is defined over the alphabet T1 = {a, b}. It

is generated by the context-free grammar G1 = ({S,A}, T1, P1, S), where P1

contains the following productions:

S → AS, S → ε, A→ aSb.

In fact, a word w ∈ T ∗
1 belongs to D′∗

1 if and only if |w|a = |w|b, and for each
proper prefix x of w we have |x|a ≥ |x|b. Thus, it is easily seen that D′∗

1 is
accepted by the stateless deterministic R(2)-automaton M1 that is defined by
the following transition function:

(1.) δ(c$) = Accept, (3.) δ(aa) = MVR,
(2.) δ(ca) = MVR, (4.) δ(ab) = ε.

Thus, we see that D′∗
1 ∈ L(stl-det-R(2)) holds. It can be shown analogously that

each Dyck language D′∗
n , n ≥ 2, is accepted by a stateless deterministic R(2)-

automaton. 2

If M = (Σ,Σ, c, $, 2, δ) is a stateless deterministic R(2)-automaton, then
each cycle w ⊢c

M w′ has the form w = uabv and w′ = ucv, where u, v ∈ Σ∗,
a, b ∈ Σ, and c ∈ Σ ∪ {ε}. As M is deterministic, it must scan the prefix uc of w′

completely before it can apply another delete step. Hence, we see that M is nec-
essarily monotone. As monotone deterministic R-automata accept deterministic
context-free languages only (see, e.g., [24]), this observation has the following
consequence.

CD-Systems of Stateless R(1)-Automata 7

Lemma 2. L(stl-det-R(2)) ⊆ DCFL.

Actually the above inclusion is a proper one. This follows immediately from
the following result.

Lemma 3. For each integer k ≥ 1, there exists a regular language Lk ⊆ {a, b}∗
such that Lk ∈ L(stl-det-R(k + 1)) rL(stl-det-R(k)), that is, Lk is accepted by a
stateless deterministic R-automaton of window size k + 1, but it is not accepted
by any stateless deterministic R-automaton of window size k.

Proof. For k ≥ 1, let Lk = { (abk)i | i ≥ 0 }. Then Lk is obviously regular.
Further, it is accepted by the stateless deterministic R-automaton of window
size k + 1 that is defined by the following transition function δk+1:

(1.) δk+1(c$) = Accept, (2.) δk+1(cabk−1) = MVR, (3.) δk+1(abk) = ε.

On the other hand, if M = (Σ,Σ, c, $, k, δ) is a stateless deterministic R-
automaton of window size k only that accepts the language Lk, then on input
abkabk, M will have to accept. However, δ(cabk−2) can neither be an accept nor a
delete operation, and so δ(cabk−2) = MVR. Thus, after the first step M reaches
the configuration cqabkabk$, where q symbolizes the unique state of M . Now
δ(abk−1) has to be applied. Again it can neither be an accept nor a delete oper-
ation, that is, δ(abk−1) = MVR, and so M reaches the configuration caqbkabk$.
Continuing in this way we see that M will just move across its tape inscription,
that is, δ(z) = MVR for all z ∈ {abk−1, bk, bk−1a, bk−2ab, . . . , babk−2}. Finally M
will reach the configuration cabkabqbk−1$, and it will have to accept. However, it
will then also accept the word abk+1abk that does not belong to the language Lk.
Hence, Lk is not accepted by any stateless deterministic R-automaton of window
size k. 2

This yields the following infinite hierarchy.

Corollary 2. The language classes (L(stl-det-R(k)))k≥1 form an infinite strictly
increasing sequence. For all k ≥ 2, the class L(stl-det-R(k)) is incomparable
under inclusion to the class REG of regular languages.

Stateless deterministic R-automata of window size 2 only accept certain de-
terministic context-free languages. Next we will see that with larger window size
these automata do even accept some languages that are not context-free.

Let Lexpo and L(φ)
expo be the following languages over {a, b}:

Lexpo = { ai0bai1b · · · ain−1bain | n ≥ 0, i0, . . . , in ≥ 0, and
∃m ≥ 0 :

∑n
j=0 2j · ij = 2m } ∪ b∗, and

L
(φ)
expo = φ(Lexpo),

where φ is the morphism induced by a 7→ ab and b 7→ b. These languages are not
context-free, as Lexpo∩a∗ = { a2n | n ≥ 0 } and L(φ)

expo∩(ab)∗ = { (ab)2
n | n ≥ 0 }.

8 B. Nagy and F. Otto

GCSL

L((stl-)mon-RWW) = CFL

OO

CRL

kkWWWWWWWWWWWWWWWW
= L((stl-)det-RWW)

L(det-R)

OO

L(stl-det-R)

OO

=
S

n≥1

L(stl-det-R(n))

L(det-mon-R) = DCFL

OO

;;wwwwwwwwwwwwwwwwwwwww
...

OO

REG

OO

L(stl-det-R(3))

OO

L(stl-det-R(2))

ffMMMMMMMMMMMMMMMMMM
OO

L(stl-det-R(1))

ffNNNNNNNNNNNNNNNNNN
OO

Figure 1. Taxonomy of language classes accepted by stateless deterministic
R-automata. Here an arrow indicates a proper inclusion, and GCSL denotes
the class of growing context-sensitive languages.

On the other hand, it is shown in [13] that the language L(φ)
expo is accepted by

a stateless determinsitic R-automaton. In fact, the particular R-automaton for
this language that is presented there has window size 9. This yields the following
consequence.

Corollary 3. For all k ≥ 9, the class L(stl-det-R(k)) is incomparable under
inclusion to the class CFL of context-free languages.

Open Problem 1. What is the smallest integer k such that the class
L(stl-det-R(k)) contains a non-context-free language? From our results above we
know that 3 ≤ k ≤ 9 holds, but it is open whether already the class L(stl-det-R(3))
contains a non-context-free language.

In [11] it is shown that the deterministic linear language

Ld = { canbn | n ≥ 0 } ∪ { danb2n | n ≥ 0 }

is not accepted by any stateless RW-automaton. This yields the following non-
inclusion result.

Corollary 4. DCFL ̸⊆ L(stl-det-R).

Hence, the class L(stl-det-R) is incomparable to the class of (deterministic)
context-free languages. The diagram in Figure 1 summarizes the inclusion re-

CD-Systems of Stateless R(1)-Automata 9

lations between the language classes that are accepted by the various types of
stateless deterministic R-automata and some classical language families.

3 CD-Systems of Restarting Automata

Here we restate the definition of a CD-system of restarting automata from [18]
in short.

A cooperating distributed system of RRWW-automata (or a CD-RRWW-sys-
tem, for short) consists of a finite collection M = ((Mi, σi)i∈I , I0) of RRWW-
automata Mi = (Qi, Σ, Γi, c, $, q

(i)
0 , k, δi) (i ∈ I), successor relations σi ⊆ I

(i ∈ I), and a subset I0 ⊆ I of initial indices. Here it is required that Qi∩Qj = ∅
for all i, j ∈ I, i ̸= j, that I0 ̸= ∅, that σi ̸= ∅ for all i ∈ I, and that i ̸∈ σi for
all i ∈ I.

Various modes of operation like = j, ≤ j, ≥ j for j ≥ 1 and t have been
introduced and studied, but here we are only interested in mode = 1 compu-
tations. The computation of M in mode = 1 on an input word w proceeds as
follows. First an index i0 ∈ I0 is chosen nondeterministically. Then the RRWW-
automaton Mi0 starts the computation with the initial configuration q

(i0)
0 cw$,

and executes one cycle. Thereafter an index i1 ∈ σi0 is chosen nondeterministi-
cally, and Mi1 continues the computation by executing one cycle. This continues
until, for some l ≥ 0, the machine Mil

accepts. Should at some stage the chosen
machine Mil

be unable to execute a cycle or to accept, then the computation
fails.

By L=1(M) we denote the language that the CD-RRWW-system M accepts
in mode = 1. It consists of all words w ∈ Σ∗ that are accepted by M in mode
= 1 as described above. If X is any of the above types of restarting automata,
then a CD-X-system is a CD-RRWW-system for which all component automata
are of type X.

A CD-system of restarting automata M = ((Mi, σi)i∈I , I0) is called stateless
if all component automata Mi (i ∈ I) are stateless. Here we are interested in
CD-systems of stateless deterministic R-automata. For these systems we use the
notation stl-det-local-CD-R in accordance with the notation introduced in [20].
Observe that the computations of such a CD-system are not completely deter-
ministic, as the starting component and the respective successor components are
still chosen nondeterministically from among all available component automata.
By L=1(stl-det-local-CD-R(i)) we denote the class of languages that are accepted
by mode = 1 computations of stl-det-local-CD-R-systems with window size i. The
following example illustrates the expressive power of these systems.

Example 1. We consider the marked copy language Lcopy = {wcw | w ∈ {a, b}∗ }
on Σ = {a, b, c}. It is well-known that this language is not even growing context-
sensitive (see, e.g., [24]), and so it is not accepted by any deterministic RRWW-
automaton. However, we will see that it is accepted by a stl-det-local-CD-R(2)-
system with four components working in mode = 1.

10 B. Nagy and F. Otto

Let M = ((Mi, σi)i∈I , I0), where I = {a, b,−,+}, I0 = {a, b,+}, σa =
{−} = σb, σ− = {a, b,+}, σ+ = {−}, and Ma, Mb, M−, and M+ are the
stateless deterministic R(2)-automata that are given by the following transition
functions:

Ma : (1.) δa(ca) = MVR,
(2.) δa(xy) = MVR for all x ∈ {a, b} and y ∈ Σ,
(3.) δa(ca) = c,

Mb : (4.) δb(cb) = MVR,
(5.) δb(xy) = MVR for all x ∈ {a, b} and y ∈ Σ,
(6.) δb(cb) = c,

M− : (7.) δ−(cx) = c for all x ∈ {a, b},
M+ : (8.) δ+(cc) = MVR,

(9.) δ+(c$) = Accept.

Obviously M accepts all words z ∈ Lcopy working in mode = 1. On the other
hand, if a word z ∈ Σ∗ is accepted by M in mode = 1, then z = wcw
for some w ∈ {a, b}∗. It follows that L=1(M) = Lcopy holds, which im-
plies that Lcopy ∈ L=1(stl-det-local-CD-R(2)). Thus, already the language class
L=1(stl-det-local-CD-R(2)) contains languages that are not even growing context-
sensitive.

4 CD-Systems of Stateless Deterministic R-Automata
with Window Size 1

As already CD-systems of stateless deterministic R-automata of window size 2
can accept some languages that are not even growing context-sensitive, we now
concentrate on a class of CD-systems of restarting automata that are still more
restricted: CD-systems of stateless deterministic R-automata of window size 1.
As shown by Proposition 2 stateless deterministic R-automata of window size 1
can only accept regular languages of a rather restricted form. So it is certainly
of interest to investigate the expressive power of CD-systems of restarting au-
tomata of this very restricted form. We start our investigation by presenting
two examples of non-regular languages that are accepted by CD-systems of this
form.

Proposition 3. The Dyck language D′∗
1 is accepted by a CD-system of stateless

deterministic R-automata of window size 1 working in mode = 1.

Proof. Let M = ((Mi, σi)i∈I , I0), where I = {a, b,+}, I0 = {a,+}, σa = {b},
σb = {a,+}, σ+ = {a}, and Ma, Mb, and M+ are the stateless deterministic R-
automata of window size 1 that are given by the following transition functions:

Ma : (1.) δa(c) = MVR,
(2.) δa(a) = ε,

CD-Systems of Stateless R(1)-Automata 11

Mb : (3.) δb(c) = MVR,
(4.) δb(a) = MVR,
(6.) δb(b) = ε,

M+ : (10.) δ+(c) = MVR,
(11.) δ+($) = Accept.

Let w ∈ {a, b}∗ be given as input. The automaton M+ accepts the empty
word and rejects (that is, gets stuck on) all other inputs. As + ∈ I0, we see that
the empty word is accepted by M working in mode = 1. If w ̸= ε, then the
computation starts with Ma. If w = aw1, then Ma simply deletes the first occur-
rence of a in w, otherwise, it gets stuck. Then Mb takes over, which deletes the
first occurrence of the letter b, provided |w1|b > 0. Now this sequence consisting
of two cycles is repeated until either the empty word is reached, and then the
computation finishes with M+ accepting, or until a non-empty word is reached
that does not start with the letter a, or that does not contain any occurrences of
the letter b, and then the computation gets stuck. It follows that L=1(M) = D′∗

1

holds. 2

Proposition 4. The language Labc = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c ≥ 0 }
is accepted by a CD-system of stateless deterministic R-automata of window
size 1 working in mode = 1.

Proof. Let M = ((Mi, σi)i∈I , I0), where I = {a, b, c,+}, I0 = {a,+}, σa = {b},
σb = {c}, σc = {a,+}, σ+ = {a}, and Ma, Mb, Mc, and M+ are the state-
less deterministic R-automata of window size 1 that are given by the following
transition functions:

Ma : (1.) δa(c) = MVR,
(2.) δa(x) = MVR for all x ∈ {b, c},
(3.) δa(a) = ε,

Mb : (4.) δb(c) = MVR,
(5.) δb(x) = MVR for all x ∈ {a, c},
(6.) δb(b) = ε,

Mc : (7.) δc(c) = MVR,
(8.) δc(x) = MVR for all x ∈ {a, b},
(9.) δc(c) = ε,

M+ : (10.) δ+(c) = MVR,
(11.) δ+($) = Accept.

Let w ∈ {a, b, c}∗ be given as input. The automaton M+ accepts the empty
word and rejects (that is, gets stuck on) all other inputs. As + ∈ I0, we see
that the empty word is accepted by M working in mode = 1. If w ̸= ε, then
the computation starts with Ma. If |w|a > 0, then Ma simply deletes the first
occurrence of a in w, otherwise, it gets stuck. Then Mb takes over, which deletes
the first occurrence of the letter b, provided |w|b > 0. Finally Mc deletes the first

12 B. Nagy and F. Otto

occurrence of the letter c, if |w|c > 0. Now this sequence consisting of three cycles
is repeated until either the empty word is reached, and then the computation
finishes with M+ accepting, or until a non-empty word is reached that does not
contain occurrences of all three letters, and then the computation gets stuck. It
follows that L=1(M) = Labc holds. 2

Observe that the CD-system above for accepting the language Labc consists
of only four R(1)-automata. As the language Labc is not context-free, we have
the following consequence.

Corollary 5. The language class L=1(stl-det-local-CD-R(1)) contains languages
that are not context-free.

On the other hand, all regular languages are accepted by stl-det-local-CD-
R(1)-systems working in mode = 1.

Proposition 5. REG (L=1(stl-det-local-CD-R(1)).

Proof. Let L ⊆ Σ∗ be a regular language, and let A = (Q,Σ, p0, F, δ) be a
complete deterministic finite-state acceptor for L. From A we construct a stl-
det-local-CD-R(1)-system M = ((Mi, σi)i∈I , I0) as follows:

– The set of indices is I = (Q×Σ)∪ (Q′×Σ)∪{+}, where Q′ = { q′ | q ∈ Q }
is a copy of Q such that Q ∩Q′ = ∅,

– the set of initial indices is I0 =
{
{ (p0, a) | a ∈ Σ }, if ε ̸∈ L,
{ (p0, a) | a ∈ Σ } ∪ {+}, if ε ∈ L,

– the successor relations are defined by

• σ(q,a) =


{ (δ(q, a), b) | b ∈ Σ } ∪ {+}, if δ(q, a) ̸= q and δ(q, a) ∈ F,
{ (δ(q, a), b) | b ∈ Σ }, if δ(q, a) ̸= q and δ(q, a) ̸∈ F,
{ (q′, b) | b ∈ Σ } ∪ {+}, if δ(q, a) = q and q ∈ F,
{ (q′, b) | b ∈ Σ }, if δ(q, a) = q and q ̸∈ F,

• σ(q′,a) =
{
{ (δ(q, a), b) | b ∈ Σ } ∪ {+}, if δ(q, a) ∈ F,
{ (δ(q, a), b) | b ∈ Σ }, if δ(q, a) ̸∈ F,

• σ+ = { (p0, a) | a ∈ Σ },
– and the stl-det-R(1)-automata M(q,a), M(q′,a), and M+ are defined by the

following transition functions:

M(q,a) : δ(q,a)(c) = MVR,
δ(q,a)(a) = ε,

M(q′,a) : δ(q′,a)(c) = MVR,
δ(q′,a)(a) = ε,

M+ : δ+(c) = MVR,
δ+($) = Accept.

CD-Systems of Stateless R(1)-Automata 13

Then it can be checked easily that the accepting mode = 1 computations of
M correspond one-to-one to the accepting computations of the finite-state ac-
ceptor A. In fact, if A executes the transition δ(q, a) = p, then the component
automaton M(q,a) (or M(q′,a)) must be active. It simply deletes the first let-
ter to the right of the left delimiter c (provided that is an a), and then the
component automaton M(p,b) (or M(p′,b), if p = q) becomes active, where it is
guessed that the next letter to be processed by A is a b. Thus, it follows that
L = L(A) = L=1(M) holds. 2

Observe that the proof above crucially depends on the fact that in a mode = 1
computation of a stl-det-local-CD-R(1)-system, the initial component automaton
and the successor automata are chosen nondeterministically from among the
corresponding sets.

Open Problem 2. Observe that the above simulation of a deterministic finite-
state acceptor by a stl-det-local-CD-R(1)-system is rather inefficient, as we have
used O(|Q| · |Σ|) many component automata. Is there a more efficient (that is,
more succinct) simulation?

Currently we have no answer to this question, but we can at least show that in
some instances stl-det-local-CD-R(1)-systems are much more succinct than even
nondeterministic finite-state acceptors. Here we take the number of component
automata of a CD-system as its (static) complexity measure.

Example 2. Let Σ = {a, b, c}, and let n ≥ 1. We define the language L=n ⊆ Σ∗

as follows:
L=n = {w ∈ Σ∗ | |w|a = n = |w|b }.

We can easily construct a stl-det-local-CD-R(1)-system M with 2n + 1 compo-
nents that accepts the language L=n in mode = 1. We just need n component
automata that each simple delete one occurrence of the letter a, while moving
right across occurrences of the letters b and c, we need another n component
automata that each simply delete one occurrence of the letter b, while moving
right across occurrences of the letter c, and we need a final component that
accepts all words from c∗.

Now assume that A = (Q,Σ, q0, F, δ) is a nondeterministic finite-state ac-
ceptor for L=n. We claim that A has at least (n + 1)2 many states. Just con-
sider the words xi,j = aibj and yi,j = an−ibn−j for all i, j = 0, 1, . . . , n. Then
xi,jyi,j = aibjan−ibn−j ∈ L=n for all i, j, while xi,jyi′,j′ ̸∈ L=n, whenever i′ ̸= i
or j′ ̸= j. Thus, the set of pairs (xi,j , yi,j)i,j=0,...,n is a fooling set for L=n.
Accordingly it follows that |Q| ≥ (n+ 1)2 [2].

Analogously for the finite language

L′
=n = {w ∈ Σ∗ | |w|a = |w|b = |w|c = n }

we have a stl-det-local-CD-R(1)-system consisting of 3n+1 component automata,
while an NFA for this language needs at least (n+ 1)3 many states.

14 B. Nagy and F. Otto

Open Problem 3. Can we realize an exponential trade-off between stl-det-local-
CD-R(1)-systems and nondeterministic finite-state acceptors?

Before continuing with the discussion of the properties of the language class
L=1(stl-det-local-CD-R(1)), we introduce a normal form for stl-det-local-CD-R(1)-
systems.

Definition 2. A stl-det-local-CD-R(1)-system M = ((Mi, σi)i∈i, I0) on alphabet
Σ is in normal form, if it satisfies the following three conditions for all i ∈ I,
where Σ(i)

1 , Σ(i)
2 , Σ(i)

3 , Σ(i)
4 is the partitioning of alphabet Σ from Definition 1

for automaton Mi:

1. For the component automaton Mi, we have |Σ(i)
2 | ≤ 1, that is, there is at

most one letter that Mi deletes.
2. All accept instructions are executed on the $-symbol only, that is, δi(c) =

MVR and Σ(i)
3 = ∅.

3. Mi does not have both, rewrite instructions and accept instructions, that is,
if δi($) = Accept, then Σ

(i)
2 = ∅.

If M is in normal form, and Σ
(2)
i = ∅ and δi($) ̸= Accept for some index i,

then Mi cannot be used in any accepting computation of M, that is, we could
simply drop Mi from M. Hence, we can assume that δi($) = Accept if and only
if Σ(2)

i = ∅.

Lemma 4. From a stl-det-local-CD-R(1)-system M one can construct a stl-det-
local-CD-R(1)-system M′ in normal form such that L=1(M′) = L=1(M).

Proof. Let M = ((Mi, σi)i∈I , I0) be a stl-det-local-CD-R(1)-system. First we
split every component automaton Mi into |Σ(i)

2 | + 1 many parts, M (a)
i for a ∈

Σ
(i)
2 , and M (+)

i , where the former is responsible for executing the cycles of Mi in
which an occurrence of the letter a is deleted, while the latter takes care of the
accepting tail computations of Mi. In detail, for each a ∈ Σ

(i)
2 , and all b, c ∈ Σ,

δ
(a)
i = ∅, if δi(c) = Accept, δ

(+)
i (c) = Accept, if δi(c) = Accept,

δ
(a)
i (c) = MVR, if δi(c) = MVR, δ

(+)
i (c) = MVR, if δi(c) = MVR,

δ
(a)
i (b) = MVR, if δi(b) = MVR, δ

(+)
i (b) = MVR, if δi(b) = MVR,

δ
(a)
i (a) = ε, δ

(+)
i (c) = Accept, if δi(c) = Accept,

δ
(+)
i ($) = Accept, if δi($) = Accept.

Then we adjust the successor relations σi (i ∈ I) as follows:

σ
(a)
i = σ

(+)
i = { j(b), j(+) | j ∈ σi, b ∈ Σ

(j)
2 }.

Observe, however, that the successor relations σ(+)
i are never used in any com-

putation. Finally, we take M̂ = ((M (a)
i , σ

(a)
i)

i∈I,a∈Σ
(i)
2

∪ (M (+)
i , σ

(+)
i)i∈I), Î0),

where Î0 = { i(a), i(+) | i ∈ I0, a ∈ Σ
(i)
2 }.

CD-Systems of Stateless R(1)-Automata 15

Then M̂ simply simulates the computations of M. Each time a successor au-
tomaton Mj is chosen in a computation of M, one has to guess whether another
cycle will be executed, and if so, which rewrite instruction will be applied, or
whether the next component automaton will accept in a tail computation. Then
in the simulating computation of M̂, one must simply choose the corresponding
component M (a)

j or M (+)
j . It follows easily that L=1(M̂) = L=1(M).

In order to obtain the intended system in normal form, we modify the accept-
ing component automata M

(+)
i (i ∈ I). Actually we need to distinguish three

cases.
If δ(+)

i (c) = Accept, then M
(+)
i will accept all words from Σ∗. Accordingly,

we define δ′i
(+) as follows:

δ′i
(+)(c) = MVR, δ′i

(+)(a) = MVR for all a ∈ Σ, δ′i
(+)($) = Accept.

Then M ′
i
(+) accepts all words from Σ∗, but it executes an accept instruction

only on the $-symbol.

If δ(+)
i (c) = MVR, and δ

(+)
i ($) is undefined, then M

(+)
i accepts all words

from Σ
(i)
1

∗
·Σ(i)

3 ·Σ∗. Accordingly, we define δ′i
(+) as follows:

δ′i
(+)(c) = MVR,

δ′i
(+)(a) = MVR for all a ∈ Σ

(i)
1 ,

δ′i
(+)(a) = ε for all a ∈ Σ

(i)
3 .

Also we define another component automaton M ′′
i

(+) as follows:

δ′′i
(+)(c) = MVR,

δ′′i
(+)(a) = MVR for all a ∈ Σ,

δ′i
(+)($) = Accept,

where M ′′
i

(+) is the only successor of M ′
i
(+). Then together they accept the same

words as M (+)
i , but an accept instruction is only executed on the $-symbol.

Finally, if δ(+)
i (c) = MVR, and δ(+)

i ($) = Accept, then M (+)
i accepts all words

from Σ
(i)
1

∗
·Σ(i)

3 ·Σ∗ ∪Σ(i)
1

∗
. Accordingly, we define M ′

i
(+) and M ′′

i
(+) as above,

but we define a third component M̂ (+)
i as follows:

δ̂
(+)
i (c) = MVR,

δ̂
(+)
i (a) = MVR for all a ∈ Σ

(i)
1 ,

δ̂
(+)
i ($) = Accept.

Then, in each successor set we replace M (+)
i by both, M ′

i
(+) and M̂ (+)

i , and take
M ′′

i
(+) as the only successor of M ′

i
(+). Then together these three components

accept the same words as M (+)
i , but an accept instruction is only executed on

the $-symbol.

16 B. Nagy and F. Otto

Finally we again split each component automaton M ′
i
(+) that contains more

than one rewrite instruction into several automata, one for each letter that is
deleted by a rewrite instruction. Then, the resulting stl-det-local-CD-R(1)-system
is in normal form, and in mode = 1 it accepts the same language as the original
system M. 2

Actually by again splitting the components M ′
i
(+), M ′′

i
(+), and M̂

(+)
i into

corresponding subcomponents, we can even obtain a stl-det-local-CD-R(1)-system
that reduces each word to the empty word, and that only has a single accepting
componentM+ that only accepts the empty word, that is, the transition function
of M+ is defined by δ+(c) = MVR and δ+($) = Accept.

We have seen that the language class L=1(stl-det-local-CD-R(1)) contains all
regular languages and some languages that are not even context-free. Our next
result implies that all languages from this class are semi-linear, that is, if L ⊆ Σ∗

belongs to this language class, and if |Σ| = n, then the Parikh image ψ(L) of L
is a semi-linear subset of Nn.

Theorem 2. Each language L ∈ L=1(stl-det-local-CD-R(1)) contains a regular
sublanguage E such that ψ(L) = ψ(E) holds. In fact, a finite-state acceptor for
E can be constructed effectively from a stl-det-local-CD-R(1)-system for L.

Proof. Let M = ((Mi, σi)i∈I , I0) be a stl-det-local-CD-R(1)-system over Σ, and
let L = L=1(M). By Lemma 4 we can assume that M is in normal form. From
M we construct a nondeterministic finite-state acceptor (NFA) A over Σ such
that the language L(A) is letter-equivalent to L.

For each index i ∈ I, let Mi = (Σ,Σ, c, $, 1, δi), and let Σ = Σ
(i)
1 ∪ Σ(i)

2 ∪
Σ

(i)
3 ∪Σ(i)

4 be the partitioning of Σ associated with Mi (see Definition 1). As M
is in normal form, we see that Σ(i)

3 = ∅ and |Σ(i)
2 | ≤ 1 for each i ∈ I. Further,

we know that δi(c) = MVR, and δi($) = Accept if and only if Σ(i)
2 = ∅.

We now define the announced NFA A = (Q,Σ, q0, F, δA) as follows:

– The set of states Q and the set of final states F are defined by

Q = I ∪ {q0} ∪ { q∆ | ∆ ⊆ Σ } and F = { q∆ | ∆ ⊆ Σ },

that is, for each component automaton Mi, A has a particular state i, it
has initial state q0, and for each subalphabet ∆ of Σ, it has an accepting
state q∆.

– The transition relation δA is defined by:

(1) δA(q0, ε) = I0,

(2) δA(i, a) = σi for all i ∈ I such that a ∈ Σ
(i)
2 ,

(3) δA(i, ε) = {q
Σ

(i)
1
} for all i ∈ I such that δi($) = Accept,

(4) δA(q∆, a) = {q∆} for all ∆ ⊆ Σ and a ∈ ∆.

Then A is an NFA with ε-transitions that is easily constructed from M.
Hence, L(A) is a regular language over Σ. It remains to prove that L(A) is a

CD-Systems of Stateless R(1)-Automata 17

sublanguage of the language L = L=1(M) that is letter-equivalent to L. We first
establish the following related technical result.

Claim 1. If w = w0 ⊢c
Mi1

w1 ⊢c
Mi2

· · · ⊢c
Mis

ws ⊢∗
Mis+1

Accept is a mode = 1
computation of M, then there exists a word z ∈ Σ∗ such that i1z ⊢∗

A q ∈ F
holds, and ψ(z) = ψ(w).

Proof. We proceed by induction on the number s of cycles in the above com-
putation. If s = 0, then w = ws is accepted by Mi1 through a tail computation.
Thus, w ∈ Σ

(i1)
1

∗
and δi1($) = Accept. Hence, A can perform the following

computation:
i1w ⊢(3)

A q
Σ

(i1)
1

w ⊢(4)
A

∗
q
Σ

(i1)
1

∈ F.

Thus, A accepts starting from i1w.

If w = xay ⊢c
Mi1

xy, then x ∈ Σ
(i1)
1

∗
, a ∈ Σ

(i1)
2 , and i2 ∈ σi1 . Thus, A can

perform the following step:
i1axy ⊢(2)

A i2xy.

From the induction hypothesis we see that there exists a word z1 ∈ Σ∗ that is
accepted by A starting from the configuation i2z1, and that is letter-equivalent
to w1 = xy. Hence, the word z = az1 is accepted by A starting from the con-
figuration i1az1, and az1 is letter-equivalent to axy and therewith to w = xay.
This completes the proof of Claim 1. 2

If w ∈ L=1(M), then there exists an accepting mode = 1 computation of M
of the following form:

w = w0 ⊢c
Mi1

w1 ⊢c
Mi2

· · · ⊢c
Mis

ws ⊢∗
Mis+1

Accept.

Then i1 ∈ I0, and from Claim 1 we see that there exists a word z ∈ Σ∗ such that
z is letter-equivalent to w, and A accepts starting from the configuration i1z.
But then i1 ∈ δA(q0, ε) implies that A accepts starting from the initial configu-
ration q0z. Thus, z ∈ L(A), that is, for each word w ∈ L=1(M), there exists a
word z ∈ L(A) such that z and w are letter-equivalent.

The proof of Theorem 2 is now completed by establishing the following claim.

Claim 2. If z ∈ Σ∗ and i ∈ I such that A accepts starting from the configura-
tion iz, then M has an accepting mode = 1 computation in which component
automaton Mi starts from the initial tape contents cz$.

Proof. We proceed by induction on the number of steps of group (2) that are
applied in the accepting computation of A.

If no such step is applied at all, then the accepting computation of A has the
following form:

iz ⊢(3)
A q

Σ
(i)
1
z ⊢(4)∗

A q
Σ

(i)
1

∈ F.

From the definition of A we see that δi($) = Accept, and hence, component
automaton Mi will accept starting from the tape contents cz$.

18 B. Nagy and F. Otto

Now assume that the accepting computation of A looks as follows:

iz = iav ⊢(2)
A jv ⊢∗

A q∆,

where a ∈ Σ, and ∆ ⊆ Σ. From the definition of A we see that δi(a) = ε,
and that j ∈ σi. Further, from the induction hypothesis we know that M has an
accepting mode = 1 computation in which Mj starts from the tape contents cv$.
It follows that there exists an accepting mode = 1 computation of M in which
Mi starts with tape contents cav$ = cz$. 2

It follows that each word z ∈ L(A) belongs to the language L=1(M). Thus,
L(A) is indeed a regular sublanguage of L that is letter-equivalent to L. 2

As all regular languages have semi-linear Parikh image, this yields the fol-
lowing important result.

Corollary 6. The language class L=1(stl-det-local-CD-R(1)) only contains semi-
linear languages, that is, if a language L over Σ = {a1, . . . , an} is accepted by
a CD-system of stateless deterministic R-automata of window size 1, then its
Parikh image ψ(L) is a semi-linear subset of Nn.

As the deterministic linear language L = { anbn | n ≥ 0 } does not contain
a regular sublanguage that is letter-equivalent to the language itself, we obtain
the following non-inclusion result.

Proposition 6. The language L = { anbn | n ≥ 0 } is not accepted by any
stl-det-local-CD-R(1)-system working in mode = 1.

It follows analogously that the language L3 = { anbncn | n ≥ 0 } is not
accepted by any stl-det-local-CD-R(1)-system working in mode = 1. As L3 =
Labc ∩ a∗ · b∗ · c∗, this implies the following in combination with Proposition 4.

Corollary 7. The language class L=1(stl-det-local-CD-R(1)) is not closed under
intersection with regular languages.

Corollary 8. The language class L=1(stl-det-local-CD-R(1)) is incomparable to
the classes DLIN, LIN, DCFL, and CFL with respect to inclusion.

Lemma 4 suggests to describe CD-systems of stateless deterministic R-
automata of window size 1 by a graphical representation.

Let M = ((Mi, σi)i∈I , I0) be a stl-det-local-CD-R(1)-system in normal form
on alphabet Σ, and for each i ∈ I, let Σ = Σ

(i)
1 ∪ Σ

(i)
2 ∪ Σ

(i)
3 ∪ Σ

(i)
4 be the

partitioning of Σ associated with Mi (see Definition 1). Then we can describe
M by a diagram that contains a vertex for each component automaton Mi and
a special vertex “Accept”. For all i ∈ I, if δi($) = Accept, then Mi accepts all
words from Σ

(i)
1

∗
, and accordingly, there only is an edge labelled c ·Σ(i)

1

∗
·$ from

vertex i to vertex “Accept” (see Figure 2). On the other hand, if δi(a) = ε, then
Mi deletes the leftmost occurrence of the letter a, provided it is preceded only

CD-Systems of Stateless R(1)-Automata 19

by a word from Σ
(i)
1

∗
. Accordingly, there is an edge labelled (c · Σ(i)

1

∗
, a) from

vertex i to vertex j for all j ∈ σi (see Figure 3). Finally, vertex i is specifically
marked for all initial indices i ∈ I0. We illustrate this way of describing stl-det-
local-CD-R(1)-systems by an example.

?>=<89:;i
c·Σ(i)

1
∗
·$ // Accept

Fig. 2.A stl-det-R(1)-automaton Mi satisfying δi($) = Accept

accepts all words over Σ
(i)
1 .

?>=<89:;i
(c·Σ(i)

1
∗

,a) //?>=<89:;j

Fig. 3.A stl-det-R(1)-automaton M satisfying δi(a) = ε deletes
the leftmost occurrence of the letter a, provided it is only
preceded by a word over Σ

(i)
1 . Further, it has an edge to

vertex j for all j ∈ σi.

Example 3. Let M = ((Mi, σi)i∈I , I0) be the following system, where I =
{1, 1′, 2, 3, 4,+}, I0 = {1}, σ1 = {1′, 2}, σ1′ = {1, 2}, σ2 = {3}, σ3 = {4},
σ4 = {2,+}, σ+ = {4}, and the various R-automata are given by the following
transition functions:

M1 : δ1(c) = MVR, M1′ : δ1′(c) = MVR, M+ : δ+(c) = MVR,
δ1(a) = ε, δ1′(a) = ε, δ+($) = Accept,

M2 : δ2(c) = MVR, M3 : δ3(c) = MVR, M4 : δ4(c) = MVR,
δ2(a) = ε, δ3(a) = MVR, δ4(a) = MVR,
δ2(b) = MVR, δ3(b) = ε, δ4(b) = MVR,
δ2(c) = MVR, δ3(c) = MVR, δ4(c) = ε.

Then using the component automata M1 and M ′
1, M deletes a positive number

of a’s, and then using component automata M2, M3, and M4 it deletes an equal
number of a’s, b’s, and c’s, before it accepts the empty word by component
automaton M+. Thus,

L=1(M) = { anw | n ≥ 1, w ∈ {a, b, c}+ satisfying |w|a = |w|b = |w|c }.

Now this CD-system of stateless R-automata of window size 1 can be described
more compactly by the diagram given in Figure 4.

As another example, we consider the language

L2 = {wan | n ≥ 1, w ∈ {a, b, c}+ satisfying |w|a = |w|b = |w|c }.

20 B. Nagy and F. Otto

//?>=<89:;1
(c,a) //

(c,a)

��

?>=<89:;2

(c·{b,c}∗,a)

��

?>=<89:;1′

(c,a)

XX

(c,a)

99tttttttttttttttttttt ?>=<89:;3
(c·{a,c}∗,b)

//?>=<89:;4
(c·{a,b}∗,c)

//

(c·{a,b}∗,c)

^^>>>>>>>>>>>>>> ?>=<89:;+
c·$

// Accept

Fig. 4. The stl-det-CD-R(1)-system M from Example 3.

//?>=<89:;1
(c·{b,c}∗,a) //?>=<89:;2

(c·{a,c}∗,b)

yyrrrrrrrrrrrrr

?>=<89:;3

(c·{a,b}∗,c)

eeLLLLLLLLLLLLL

(c·{a,b}∗,c)
����

��
��

��
�

vvmmmmmmmmmmmmmmmmmm

tthhhhhhhhhhhhhhhhhhhhhhhhhhh

��>
>>

>>
>>

>>

((QQQQQQQQQQQQQQQQQQ

**VVVVVVVVVVVVVVVVVVVVVVVVVVV

//?>=<89:;4

(c,a)

��

//?>=<89:;5

(c,a)

��

//?>=<89:;6

(c,b)

��

//?>=<89:;7

(c,b)

��

//?>=<89:;8

(c,c)

��

//?>=<89:;9

(c,c)

��?>=<89:;10

(c,b)

��

?>=<89:;11

(c,c)

��

?>=<89:;12

(c,a)

��

?>=<89:;13

(c,c)

��

?>=<89:;14

(c,a)

��

?>=<89:;15

(c,b)

��?>=<89:;16 ?>=<89:;17 ?>=<89:;18 ?>=<89:;19 ?>=<89:;20 ?>=<89:;21

?>=<89:;22

(c,a)

��

��

(c,c)

>>>>>>>>
((

(c,b)

QQQQQQQQQQQQQQQQQQ**
(c,c)

VVVVVVVVVVVVVVVVVVVVVVVVVV ��

(c,a)
��������vv

(c,b)

mmmmmmmmmmmmmmmmmmtt
(c,a)

hhhhhhhhhhhhhhhhhhhhhhhhhh

?>=<89:;23

c·a∗·$
��

Accept

Fig. 5. The stl-det-CD-R(1)-system M for the language L2.

CD-Systems of Stateless R(1)-Automata 21

Example 4. Let M be the CD-system of stateless deterministic R-automata of
window size 1 that is described by the diagram in Figure 5.

The system M consists of 23 component automata, 7 of which are initial
automata. Automaton M23 is the only one with an accept instruction. It accepts
the language a∗. Accordingly, computations that begin with the initial automa-
ton M4 accept the regular language abc · a+, those that begin with M5 accept
the language acb · a+, and analogously for those computations that begin with
M6, M7, M8 or M9. It follows that in combination these computations accept
the language

L′
2 = {wan | n ≥ 1, w ∈ {a, b, c}+ satisfying |w|a = |w|b = |w|c = 1 }.

An accepting computation that begins with the initial automatonM1 consists
of two parts: first it cycles through the automata M1, M2, and M3, in each
round deleting the first a, b, and c from the left, and then it continues with
a computation that accepts a word w1 · an from L′

2, where |w1|a = |w1|b =
|w1|c = 1. Since at that moment there is at most a single a to the left of the
last remaining letters b and c, it follows that all deletions in the first phase of
this computation where executed to the left of the suffix an. Hence, the input w
does indeed belong to the language L2, which implies that L=1(M) = L2 holds.

5 Rational Trace Languages

Let Σ be a finite alphabet, and let D be a binary relation on Σ that is reflexive
and symmetric, that is, (a, a) ∈ D for all a ∈ Σ, and (a, b) ∈ D implies that
(b, a) ∈ D, too. Then D is called a dependency relation on Σ, and the relation
ID = (Σ×Σ) rD is called the corresponding independence relation. Obviously,
the relation ID is irreflexive and symmetric. The dependency relation D (or
rather its associated independence relation ID) induces a binary relation ≡D

on Σ∗ that is defined as the smallest congruence relation containing the set of
pairs { (ab, ba) | (a, b) ∈ ID }. For w ∈ Σ∗, the congruence class of w mod ≡D is
denoted by [w]D, that is, [w]D = { z ∈ Σ∗ | w ≡D z }. These equivalence classes
are called traces, and the factor monoid M(D) = Σ∗/≡D is a trace monoid. In
fact, M(D) is the free partially commutative monoid presented by (Σ,D) (see,
e.g., [7]). By φD we denote the morphism φD : Σ∗ → M(D) that is defined by
w 7→ [w]D for all words w ∈ Σ∗.

To simplify the notation in what follows, we introduce the following notions.
For w ∈ Σ∗, we use Alph(w) to denote the set of all letters that occur in w, that
is,

Alph(w) = { a ∈ Σ | |w|a > 0 }.

Now we extend the independence relation from letters to words by defining, for
all words u, v ∈ Σ∗,

(u, v) ∈ ID if and only if Alph(u) × Alph(v) ⊆ ID.

22 B. Nagy and F. Otto

As Alph(ε) = ∅, we see that (ε, w) ∈ ID for every word w ∈ Σ∗. The following
technical result (see, e.g., [7] Claim A in the proof of Prop. 6.2.2) will be useful
in what follows.

Proposition 7. For all words x, y, u ∈ Σ∗ and all letters a ∈ Σ, if xay ≡D au
and |x|a = 0, then (a, x) ∈ ID, xay ≡D axy, and xy ≡D u.

A subset S of a trace monoid M(D) is called recognizable if there exist a
finite monoid N , a morphism α : M(D) → N , and a subset P of N such
that S = α−1(P) [1]. Accordingly, this property can be characterized as follows
(see [7] Prop. 6.1.10).

Proposition 8. Let M(D) be the trace monoid presented by (Σ,D), and let
φD : Σ∗ → M(D) be the corresponding morphism. Then a set S ⊆ M(D) is
recognizable if and only if the language φ−1

D (S) is a regular language over Σ.

By REC(M(D)) we denote the set of recognizable subsets of M(D).
A subset S of a trace monoid M(D) is called rational if it can be obtained

from singleton sets by a finite number of unions, products, and star operations [1].
This property can be characterized more conveniently as follows.

Proposition 9. Let M(D) be the trace monoid presented by (Σ,D), and let
φD : Σ∗ → M(D) be the corresponding morphism. Then a set S ⊆ M(D)
is rational if and only if there exists a regular language R over Σ such that
S = φD(R).

By RAT(M(D)) we denote the set of rational subsets of M(D). Concerning
the relationship between the recognizable subsets of M(D) and the rational
subsets of M(D) the following results are known (see, e.g., [7]).

Proposition 10. For each trace monoid M(D), REC(M(D)) ⊆ RAT(M(D)),
and these two sets are equal if and only if ID = ∅.

Thus, each recognizable subset of a trace monoid M(D) is necessarily ratio-
nal, but the converse only holds if ID is empty, that is, if D = Σ × Σ, which
means that the congruence ≡D is the identity. Thus, the free monoids are the
only trace monoids for which the recognizable subsets coincide with the rational
subsets.

We call a language L ⊆ Σ∗ a rational trace language, if there exists a de-
pendency relation D on Σ such that L = φ−1

D (S) for a rational subset S of the
trace monoid M(D) presented by (Σ,D). From Proposition 9 it follows that
L is a rational trace language if and only if there exist a trace monoid M(D)
and a regular language R ⊆ Σ∗ such that L = φ−1

D (φD(R)) =
∪

w∈R[w]D. By
LRAT (D) we denote the set of rational trace languages φ−1

D (RAT(M(D))), and
LRAT is the class of all rational trace languages. The next theorem states that
all these languages are accepted by stl-det-local-CD-R(1)-systems.

CD-Systems of Stateless R(1)-Automata 23

Theorem 3. Let M(D) be the trace monoid presented by (Σ,D), where D is a
dependency relation on the finite alphabet Σ. Then

LRAT (D) ⊆ L=1(stl-det-local-CD-R(1)),

that is, the language φ−1
D (S) is accepted by a stl-det-local-CD-R(1)-system work-

ing in mode = 1 for each rational set of traces S ⊆M(D).

Proof. Let S be a rational subset of M(D). Then there exists a regular language
R over Σ such that S = φD(R). As R ⊆ Σ∗ is a regular language, there exists a
complete deterministic finite-state acceptor A = (Q,Σ, p0, F, δ) for R. From A
we now construct a stl-det-local-CD-R(1)-system M = ((Mi, σi)i∈I , I0) as follows
(cf. the proof of Proposition 5):

– The set of indices is I = (Q×Σ)∪ (Q′×Σ)∪{+}, where Q′ = { q′ | q ∈ Q }
is a copy of Q such that Q ∩Q′ = ∅,

– the set of initial indices is I0 =
{
{ (p0, a) | a ∈ Σ }, if ε ̸∈ L,
{ (p0, a) | a ∈ Σ } ∪ {+}, if ε ∈ L,

– the successor relations are defined by

• σ(q,a) =


{ (δ(q, a), b) | b ∈ Σ } ∪ {+}, if δ(q, a) ̸= q and δ(q, a) ∈ F,
{ (δ(q, a), b) | b ∈ Σ }, if δ(q, a) ̸= q and δ(q, a) ̸∈ F,
{ (q′, b) | b ∈ Σ } ∪ {+}, if δ(q, a) = q and q ∈ F,
{ (q′, b) | b ∈ Σ }, if δ(q, a) = q and q ̸∈ F,

• σ(q′,a) =
{
{ (δ(q, a), b) | b ∈ Σ } ∪ {+}, if δ(q, a) ∈ F,
{ (δ(q, a), b) | b ∈ Σ }, if δ(q, a) ̸∈ F,

• σ+ = { (p0, a) | a ∈ Σ },

– and the stl-det-R(1)-automata M(q,a), M(q′,a), and M+ are defined by the
following transition functions:

M(q,a) : δ(q,a)(c) = MVR,
δ(q,a)(b) = MVR for all b ∈ Σ satisfying (b, a) ∈ ID,
δ(q,a)(a) = ε,

M(q′,a) : δ(q′,a)(c) = MVR,
δ(q′,a)(b) = MVR for all b ∈ Σ satisfying (b, a) ∈ ID,
δ(q′,a)(a) = ε,

M+ : δ+(c) = MVR,
δ+($) = Accept.

It remains to show that L=1(M) = φ−1
D (S) =

∪
u∈R[u]D.

Claim 1.
∪

u∈R[u]D ⊆ L=1(M).

Proof. Assume that w ∈
∪

u∈R[u]D. Then there exists a word u ∈ R such that
w ≡D u, and so there exists a sequence of words u = w0, w1, . . . , wn = w such
that, for each i = 1, . . . , n, wi is obtained from wi−1 by replacing a factor ab by

24 B. Nagy and F. Otto

ba for some pair of letters (a, b) ∈ ID. We now prove that wi ∈ L=1(M) for all
i by induction on i.

For i = 0 we have w0 = u ∈ R. Thus, w0 is accepted by the finite-state
acceptor A, and it follows from the proof of Proposition 5 that w0 is also accepted
by a mode = 1 computation of M.

Now assume that wi ∈ L=1(M) for some i ≥ 0, and that wi = xaby and
wi+1 = xbay for a pair of letters (a, b) ∈ ID. By our hypothesis M has an
accepting mode = 1 computation for wi = xaby, which is of one of the following
two forms:

wi = xaby ⊢cm

M x′aby′ ⊢c
M(q,a)

x′by′ ⊢c∗

M ε ⊢∗
M+

Accept,

or
wi = xaby ⊢cm

M x′aby′ ⊢c
M(q,b)

x′ay′ ⊢c∗

M ε ⊢∗
M+

Accept,

where in the first m cycles some letters from x and y are deleted, in this way
reducing these factors to x′ and y′, respectively, and q ∈ Q ∪Q′ is a state (or a
copy of a state) of A. However, as (a, b) ∈ I, the component automaton M(q,a)

(or M(q,b)) can read across the letter b (or a) when looking for the leftmost
occurrence of the letter a (or b). Thus, M also has an accepting mode = 1
computation for wi+1 = xbay, which is of one of the following two forms:

wi+1 = xbay ⊢cm

M x′bay′ ⊢c
M(q,a)

x′by′ ⊢c∗

M ε ⊢∗
M+

Accept,

or
wi+1 = xbay ⊢cm

M x′bay′ ⊢c
M(q,b)

x′ay′ ⊢c∗

M ε ⊢∗
M+

Accept,

implying that wi+1 ∈ L=1(M). This completes the proof of Claim 1. 2

Claim 2. L=1(M) ⊆
∪

u∈R[u]D.

Proof. Let w ∈ L=1(M), and let

w = wn ⊢c
M(qn,an)

wn−1 ⊢c
M(qn−1,an−1)

wn−2 ⊢c

· · · ⊢c
M(q2,a2)

w1 ⊢c
M(q1,a1)

w0 = ε ⊢∗
M+

Accept

be an accepting mode = 1 computation of M on input w, where qn, qn−1, . . . , q1
are states of A (or copies thereof) and (qn, an) ∈ I0. We claim that, for each i =
1, . . . , n, there exists a word ui ∈ Σ∗ such that ui ≡D wi and δ(qi, ui) ∈ F , that
is, the finite-state acceptor A accepts the word ui when starting from state qi.

We prove this claim by induction on i. For i = 1 we have wi = a1, and
M+ ∈ σM(q1,a1) . From the definition of M we conclude that δ(q1, a1) ∈ F ,
that is, we can simply take u1 = a1 = w1. Now assume that, for some i ≥ 1,
ui ≡D wi and δ(qi, ui) ∈ F hold. The above computation of M contains the cycle
wi+1 ⊢c

M(qi+1,ai+1)
wi, and (qi, ai) ∈ σ(qi+1,ai+1). Again from the definition of M

we see that δ(qi+1, ai+1) = qi, and that wi+1 = xai+1y and wi = xy for some
words x, y ∈ Σ∗ such that (x, ai+1) ∈ ID. Let ui+1 be the word ui+1 = ai+1ui.
Then

ui+1 = ai+1ui ≡D ai+1wi = ai+1xy ≡D xai+1y = wi+1,

CD-Systems of Stateless R(1)-Automata 25

and δ(qi+1, ui+1) = δ(qi+1, ai+1ui) = δ(δ(qi+1, ai+1), ui) = δ(qi, ui) ∈ F.

For i = n we obtain a word u ∈ Σ∗ such that u ≡D w, and A accepts
u starting from state qn = p0. Hence, u ∈ R, and it follows that L=1(M) ⊆∪

u∈R[u]D holds. 2

Now Claims 1 and 2 together show that L=1(M) =
∪

u∈R[u]D = φ−1
D (S),

which completes the proof of Theorem 3. 2

Observe that the Dyck language D′∗
1 is not a rational trace language. Thus,

the language class L=1(stl-det-local CD-R(1)) is a proper superclass of the class
of all rational trace languages.

Next we present a restricted class of stl-det-local-CD-R(1)-systems that accept
exactly the rational trace languages by mode = 1 computations.

Definition 3. Let M = ((Mi, σi)i∈I , I0) be a stl-det-local-CD-R(1)-system in
normal form on Σ that satisfies the following condition:

(∗) ∀i, j ∈ I : Σ(i)
2 = Σ

(j)
2 implies that Σ(i)

1 = Σ
(j)
1 ,

that is, if two component automata erase the same letter, then they also read
across the same subset of Σ. With M we associate a binary relation

IM =
∪
i∈I

(Σ(i)
1 ×Σ

(i)
2),

that is, (a, b) ∈ IM if and only if there exists a component automaton Mi such
that δi(a) = MVR and δi(b) = ε. Further, by DM we denote the relation DM =
(Σ ×Σ) r IM.

Observe that the relation IM defined above is necessarily irreflexive, but that
it will in general not be symmetric. For example, consider the system M from
the proof of Proposition 3. It is in normal form, but the corresponding relation
IM = {(a, b)} is not symmetric. And indeed, the language L=1(M) is the Dyck
language D′∗

1 , which is not a rational trace language.

Theorem 4. Let M be a stl-det-local-CD-R(1)-system over Σ satisfying condi-
tion (∗) above. If the associated relation IM is symmetric, then L=1(M) is a
rational trace language over Σ. In fact, from M one can construct a finite-state
acceptor B over Σ such that L=1(M) = φ−1

DM
(φDM(L(B))).

Proof. Let M = ((Mi, σi)i∈I , I0) be a stl-det-local-CD-R(1)-system in normal
form on Σ that satisfies condition (∗), and assume that the associated relation
IM =

∪
i∈I(Σ

(i)
1 ×Σ(i)

2) is symmetric. Then the relation DM = (Σ×Σ)r IM is
reflexive and symmetric, and so it is a dependency relation on Σ with associated
independence relation IM. Without loss of generality we may assume that all
letters from Σ do actually occur in some words of L=1(M), since otherwise we
could simply remove these letters from Σ. In addition, we can assume that M
has only a single accepting component automatonM+, and thatM+ only accepts
the empty word. From the properties of M we obtain the following consequences:

26 B. Nagy and F. Otto

1. As all words w ∈ L=1(M) are first reduced to the empty word, which is then
accepted by the accepting component automaton of M, we see that, for each
letter a ∈ Σ, there exists a component automaton Mi such that Σ(i)

2 = {a}.
2. If (a, b) ∈ IM, then a ∈ Σ

(i)
1 for all component automata Mi for which

Σ
(i)
2 = {b} holds.

3. If (a, b) ∈ IM, then (b, a) ∈ IM, too, and hence, b ∈ Σ
(j)
1 for all component

automata Mj for which Σ(j)
2 = {a} holds.

Let L = L=1(M). We claim that L is a rational trace language over the trace
monoid defined by (Σ,DM), that is, L ∈ LRAT (DM). To verify this claim we
present a regular language R ⊆ Σ∗ such that L =

∪
u∈R[u]DM .

The regular language R will be defined through a nondeterministic finite-
state acceptor (with ε-moves) B = (Q,Σ, p0, p+, δ), where Q is a finite set of
states, p0 ∈ Q is the initial state, p+ ∈ Q is the only final state, and δ ⊆
(Q×(Σ∪{ε})×Q) is the transition relation. This finite-state acceptor is obtained
from M as follows. Here Ir = Ir{+} is the subset of I containing all component
automata that perform a rewrite operation, i ∈ Ir, and a ∈ Σ:

Q = {p0, p+} ∪ { qi | i ∈ Ir },
δ(p0, ε) = { qi | i ∈ I0 }, if + ̸∈ I0,
δ(p0, ε) = { qi | i ∈ I0 ∩ Ir } ∪ {p+}, if + ∈ I0,

δ(qi, a) = { qj | j ∈ σi }, if {a} = Σ
(i)
2 and + ̸∈ σi,

δ(qi, a) = { qj | j ∈ σi ∩ Ir } ∪ {p+}, if {a} = Σ
(i)
2 and + ∈ σi,

δ(q, a) = ∅ for all other cases.

Now R = L(B) is the announced regular language over Σ. It remains to prove
that L =

∪
u∈R[u]DM holds.

Claim 1.
∪

u∈R[u]DM ⊆ L.

Proof. First we show that R ⊆ L holds. Indeed if we remove all MVR-operations
that read across letters of Σ from all the rewriting component automata of M,
then we obtain a stl-det-local-CD-R(1)-system M′ that deletes a word letter by
letter from the left to the right. Now the finite-state acceptor B simply simulates
the system M′, which implies that

R = L(B) = L=1(M′) ⊆ L=1(M) = L

holds.
Let w ≡DM u ∈ R, and let u = w0, w1, . . . , wn = w be a sequence of words

such that, for each i = 1, . . . , n, wi is obtained from wi−1 by replacing a factor
ab by ba for some pair of letters (a, b) ∈ IM. We now prove that wi ∈ L for all i
by induction on i.

For i = 0 we have w0 = u ∈ R, and so w0 ∈ L by the considerations in the
previous paragraph. Now assume that wi ∈ L for some i ≥ 0, and that wi = xaby
and wi+1 = xbay for a pair of letters (a, b) ∈ IM. By our hypothesis M has an

CD-Systems of Stateless R(1)-Automata 27

accepting mode = 1 computation for wi = xaby, which is of one of the following
two forms:

wi = xaby ⊢ck

M x1aby1 ⊢c
Mi

x1by1 ⊢cl

M x2by2 ⊢c
Mj

x2y2 ⊢∗
M Accept,

or

wi = xaby ⊢ck

M x1aby1 ⊢c
Mj′

x1ay1 ⊢cl

M x2ay2 ⊢c
Mi′

x2y2 ⊢∗
M Accept,

where in the first k cycles some letters from x and y are deleted, in this way
reducing these factors to x1 and y1, respectively, Σ(i)

2 = {a} = Σ
(i′)
2 and Σ(j)

2 =
{b} = Σ

(j′)
2 , and in the latter l cycles some letters from x1 and y1 are deleted,

reducing these factors to x2 and y2, respectively. As (a, b) ∈ IM, we see from
the above stated properties of M that b ∈ Σ

(i)
1 . Hence, in the former case we

obtain the mode = 1 computation

wi+1 = xbay ⊢ck

M x1bay1 ⊢c
Mi

x1by1 ⊢cl

M x2by2 ⊢c
Mj

x2y2 ⊢∗
M Accept,

while in the latter case we obtain the mode = 1 computation

wi+1 = xbay ⊢ck

M x1bay1 ⊢c
Mj′

x1ay1 ⊢cl

M x2ay2 ⊢c
Mi′

x2y2 ⊢∗
M Accept.

Thus, we see that w = wn is accepted by a mode = 1 computation of M, which
completes the proof of Claim 1. 2

Claim 2. L ⊆
∪

u∈R[u]DM .

Proof. Let w ∈ L, and let

w = wn ⊢c
Min

wn−1 ⊢c
Min−1

wn−2 ⊢c

· · · ⊢c
Mi2

w1 ⊢c
Mi1

w0 = ε ⊢∗
M+

Accept

be an accepting mode = 1 computation of M on input w. We claim that, for
each j = 1, . . . , n, there exists a word uj ∈ Σ∗ such that uj ≡DM wj and
p+ ∈ δ(qij , uj), that is, the finite-state acceptor B accepts the word uj when
starting from state qij .

We prove this claim by induction on j. For j = 1 we have wj = a1, where
Σ

(i1)
2 = {a1}, and + ∈ σi1 . From the definition of B we conclude that p+ ∈

δ(qi1 , a1), that is, we can simply take u1 = a1 = w1. Now assume that, for
some j ≥ 1, uj ≡DM wj and p+ ∈ δ(qij , uj) hold. The above computation of
M contains the cycle wj+1 ⊢c

Mij+1
wj , that is, wj+1 = xaj+1y and wj = xy

for some words x, y ∈ Σ∗ and the letter aj+1 satisfying Σ(ij+1)
2 = {aj+1}, and

ij ∈ σij+1 . Also we see that (x, aj+1) ∈ IM. Again from the definition of B it
follows that qij ∈ δ(qij+1 , aj+1). Now let uj+1 be the word uj+1 = aj+1uj . Then

uj+1 = aj+1uj ≡DM aj+1wj = aj+1xy ≡DM xaj+1y = wj+1,

28 B. Nagy and F. Otto

and δ(qij+1 , uj+1) = δ(qij+1 , aj+1uj) = δ(δ(qij+1 , aj+1), uj) ⊇ δ(qij , uj) ∋ p+.
Finally, for j = n we obtain a word u such that u ≡DM w and p+ ∈ δ(p0, u),
which means that u ∈ R. Thus, it follows that L ⊆

∪
u∈R[u]DM holds. 2

Now Claims 1 and 2 together show that L = L=1(M) =
∪

u∈R[u]DM , which
completes the proof of Theorem 4. 2

Observe that the system M constructed in the proof of Theorem 3 is in
normal form, that it satisfies property (∗), and that the associated relation IM
coincides with the relation ID, and hence, it is symmetric. Thus, Theorems 3
and 4 together yield the following characterization.

Corollary 9. A language L ⊆ Σ∗ is a rational trace language if and only if
there exists a stl-det-local-CD-R(1)-system M in accepting normal form satisfying
condition (∗) such that the relation IM is symmetric and L = L=1(M).

In the proof of Theorem 3 we effectively constructed a stl-det-local-CD-R(1)-
system for the rational trace language φ−1

D (φD(R)) from a finite-state acceptor
for the regular language R. Hence, if S1, S2 ⊆M(D) are rational subsets of the
trace monoidM(D), then we can construct finite-state acceptors B1 and B2 from
stl-det-local-CD-R(1)-systems M1 for L1 = φ−1

D (S1) and M2 for L2 = φ−1
D (S2)

such that S1 = φD(R1) and S2 = φD(R2), where Ri = L(Bi), i = 1, 2. It is easily
seen that S1∪S2 = φD(R1∪R2), S1 ·S2 = φD(R1 ·R2), and S∗

1 = φD(R∗
1). From

B1 and B2 we can construct finite-state acceptors for the languages R1 ∪ R2,
R1 ·R2, and R∗

1. Thus, Theorem 4 shows that we can construct stl-det-local-CD-
R(1)-systems for the languages φ−1

D (S1 ∪S2), φ−1
D (S1 ·S2), and φ−1

D (S∗
1). Hence,

the stl-det-local-CD-R(1)-systems of Corollary 9 form an effective calculus for
rational trace languages. However, a stl-det-local-CD-R(1)-system may accept a
rational trace language, even if it does not satisfy all the additional restrictions
above. Hence, the following problem remains.

Open Problem 4. Is there a syntactic characterization for those stl-det-local-
CD-R(1)-systems that accept rational trace languages by mode = 1 computations?

6 Closure Properties

In Corollary 7 we have seen that the language class L=1(stl-det-local-CD-R(1))
is not closed under intersection with regular languages. Here we derive further
non-closure properties, but also a number of closure properties for this class.

The commutative closure com(L) of a language L ⊆ Σ∗ is the set of all words
that are letter-equivalent to a word from L, that is,

com(L) = ψ−1(ψ(L)) = {w ∈ Σ∗ | ∃u ∈ L : ψ(w) = ψ(u) }.

If L is accepted by a stl-det-local-CD-R(1)-system M, then from M we can
construct a finite-state acceptor B for a regular sublanguage E of L that is

CD-Systems of Stateless R(1)-Automata 29

letter-equivalent to L (Theorem 2). Obviously, the commutative closure com(L)
of L coincides with the commutative closure com(E) of E. For the dependency
relation D = { (a, a) | a ∈ Σ }, the trace monoid M(D) presented by (Σ,D)
is the free commutative monoid generated by Σ. Thus, com(E) =

∪
w∈E [w]D

is simply the rational trace language φ−1
D (φD(E)). Hence, it follows from The-

orem 3 that this language is accepted by a stl-det-local-CD-R(1)-system M′. In
fact, the system M′ can effectively be constructed from the finite-state accep-
tor B, and therewith from the given stl-det-local-CD-R(1)-system M. This yields
the following effective closure property.

Corollary 10. The language class L=1(stl-det-local-CD-R(1)) is effectively
closed under the operation of taking the commutative closure.

A language L ⊆ Σ∗ is called commutative if com(L) = L holds, that is,
if it contains all permutations of all its elements. As each semi-linear language
is letter-equivalent to some regular language, it follows that each commutative
semi-linear language is the commutative closure of some regular language, and
therewith it is a rational trace language. Thus, Theorem 3 implies the following
result.

Corollary 11. All commutative semi-linear languages are contained in the lan-
guage class L=1(stl-det-local-CD-R(1)).

Next we consider the closure under Boolean operations.

Proposition 11.

(a) The language class L=1(stl-det-local-CD-R(1)) is closed under union.
(b) The language class L=1(stl-det-local-CD-R(1)) is neither closed under inter-

section nor under complementation.

Proof. (a) Let M = ((Mi, σi)i∈I , I0) and M′ = ((M ′
i , σ

′
i)i∈I′ , I ′0) be stl-det-

local-CD-R(1)-systems with disjoint sets of indices I and I ′. We define a new stl-
det-local-CD-R(1)-system M̃ = ((M̃i, σ̃i)i∈Ĩ , Ĩ0) by taking Ĩ = I∪I ′, Ĩ0 = I0∪I ′0,

M̃i =
{
Mi, for i ∈ I
M ′

i , for i ∈ I ′

}
, and σ̃i =

{
σi, for i ∈ I
σ′

i, for i ∈ I ′

}
.

Then M̃ is the disjoint union of the two given systems, and it follows im-
mediately that L=1(M̃) = L=1(M) ∪ L=1(M′). This proves that the class
L=1(stl-det-local-CD-R(1)) is closed under union.
(b) From Proposition 5 and Corollary 7 we see that this language class is not
closed under intersection. Now closure under union and non-closure under inter-
section imply that this class is not closed under complementation, either. 2

We now turn to the product operation. We will show that the language
class L=1(stl-det-local-CD-R(1)) is closed under product, that is, if L1 and L2

30 B. Nagy and F. Otto

are accepted by stl-det-local-CD-R(1)-systems, then so is the language L1 · L2 =
{uv | u ∈ L1, v ∈ L2 }.

Obviously we can assume that the stl-det-local-CD-R(1)-system M1 accepting
the language L1 is in normal form. In fact, we can even assume that it only has
a single accepting component M+, and that this component only accepts the
empty word. Thus, M1 reduces a given input word w ∈ L1 first to the empty
word by performing |w| many cycles, and then it accepts by activating M+.
Now it would appear that we obtain a stl-det-local-CD-R(1)-system M for the
language L1 · L2 by simply replacing the component M+ of M1 by the initial
components of the system M2 for the language L2. However, the situation is
not that easy as shown by the following example.

Example 5. Consider the following language L1 on Σ = {a, b, c, d}, where D′∗
1

denotes the Dyck language on {a, b}, D̂∗
1 denotes the Dyck language on {c, d},

and sh denotes the shuffle:

L1 = {w ∈ Σ+ | w ∈ sh(D′∗
1 , D̂

∗
1) such that

∀x, y, z : w = xcydz ∧ |x|c = |xy|d imply |x|a ≥ |xy|b },

and let M1 = ((Mi, σi)i∈I , I0) be the stl-det-local-CD-R(1)-system that is spec-
ified by I = {1, 2, 3, 4,+}, I0 = {1, 3}, σ1 = {2}, σ2 = {1, 3,+}, σ3 = {4},
σ4 = {1, 3,+}, σ+ = {1, 3}, and the R-automata M1, . . . ,M4,M+ are defined
through the following transition functions:

M1 : (1) δ1(c) = MVR,
(2) δ1(a) = ε,

M2 : (3) δ2(c) = MVR,
(4) δ2(x) = MVR for all x ∈ {a, c, d},
(5) δ2(b) = ε,

M3 : (6) δ3(c) = MVR,
(7) δ3(c) = ε,

M4 : (8) δ4(c) = MVR,
(9) δ4(x) = MVR for all x ∈ {a, c},

(10) δ4(d) = ε,

M+ : (11) δ+(c) = MVR,
(12) δ+($) = Accept.

Claim 1. L1 = L=1(M1).

Proof. Let w ∈ L1, w ̸= ε, be given as input. As L1 is contained in the shuffle
product of D′∗

1 and D̂∗
1 , each element of L starts with an occurrence of a letter

a or c. Accordingly, if w = aubv, where |u|b = 0, then the M1-computation
starts with component automaton M1, that is, it starts by executing the cycles
w = aubv ⊢c

M1
ubv ⊢c

M2
uv. On the other hand, if w = cu′dv′, where |u′|d = 0,

then the M1-computation starts with the component automaton M3, which
executes the cycle w = cu′dv′ ⊢c

M3
u′dv′, after which automaton M4 becomes

CD-Systems of Stateless R(1)-Automata 31

active. Now M4 can erase the leftmost occurrence of the letter d only if |u′|b = 0,
which, however, is satisfied if w ∈ L. It will then execute the cycle u′dv′ ⊢c

M4
u′v′.

Now by repeatedly cycling through these two cycles of length two, the word
w will be reduced to the empty word, if it is an element of the language L, and
then automaton M+ is called, which accepts.

Conversely, we see from the definition of M1 that all accepting computations
proceed as described above, which implies that only words from the language L1

are accepted. It follows that L=1(M1) = L1 holds. 2

Now let L2 be the language Labc = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c }
from Proposition 4. Then L2 is accepted by the stl-det-local-CD-R(1)-system

M2 = ((Ma, σa), (Mb, σb), (Mc, σc), (M+, σ+)), {a,+})

given in the proof of Proposition 4. If we construct a stl-det-local-CD-R(1)-system
M by combining the systems M1 and M2, replacing each occurrence of M+ in
the successor sets of M1 by Ma, then the resulting system will certainly accept
all words from the product L1 · L2. However, it will also execute the following
accepting computation:

acdcbba ⊢c
M1

cdcbba ⊢c
M2

cdcba ⊢c
M3

dcba ⊢c
M4

cba
⊢c

Ma
cb ⊢c

Mb
c ⊢c

Mc
ε ⊢∗

M+
Accept.

However, the word acdcbba does not belong to the product L1 ·L2, a contradic-
tion.

The problem in the above example results from the fact that, in computations
of the system M1, the component automaton M2 reads across occurrences of the
symbol d when looking for the leftmost occurrence of the symbol b. Accordingly,
it may delete an occurrence of b that does not belong to the first factor. Thus, we
need to modify the system M1 into an equivalent system M′

1 that completely
deletes the word u ∈ L1 in an accepting computation without deleting any letter
from v, given a word uv as input, where u ∈ L1 and v ∈ Σ+. That is, M′

1 must
guess the last letter, say x, of u and erase u completely, making sure that none
of its delete operations is executed to the right of the rightmost occurrence of x
in u.

So let M1 = ((Mi, σi)i∈I∪{+}, I0) be a stl-det-local-CD-R(1)-system in normal
form that accepts a language L1 ⊆ Σ∗. We assume that M+ is the only accepting
component automaton of M1, and that this component only accepts the empty
word, that is, δ+ is defined as δ+ = {(c,MVR), ($,Accept)}. Further, for each
i ∈ I, we use Σ(i)

1 and Σ(i)
2 to denote the subalphabets of Σ that correspond to

automaton Mi according to Definition 1. Finally we assume that the alphabet Σ
is ordered. For simplicity we write Σ = {a1, . . . , an}, and call ai the i-th letter
of Σ, 1 ≤ i ≤ n.

The stl-det-local-CD-R(1)-system M1 will now be modified into an equivalent
system M′

1 that meets the requirements stated above. This system will consist

32 B. Nagy and F. Otto

of a (large) number of subsystems each of which is a (slightly) revised version
of M1. These subsystems will be indexed by the set of n-tuples

IND = { (i1, . . . , in) | i1, . . . , in ∈ {2, 1, 0, d} }.

Below we will describe the necessary modifications for the various subsystems,
but as a first general rule we require that all those component automata of M1

are excluded from the subsystem M(i1,...,in)
1 that attempt to erase a letter as

for which is = 0 or is = d holds. With a word w ∈ Σ∗ we associate an index
IND(w) = (i1, . . . , in) by taking

ij =

2 , if |w|aj ≥ 2
1 , if |w|aj = 1
0 , if |w|aj = 0


for all j = 1, . . . , n.

Given a word w ∈ Σ∗ as input, M′
1 guesses a tuple IND′(w) = (i1, . . . , in) ∈

{2, 1, 0}n, and then one of the initial component automata M IND′(w)
k of subsys-

tem MIND′(w)
1 is activated. It attempts to erase the leftmost occurrence of a

letter as for some s such that is ̸= 0. If IND′(w) ̸= IND(w), then at some point
in the resulting computation this will be realized, causing M′

1 to halt and reject
(see the detailed description of M′

1 below).

If is = 2, then M
IND′(w)
k transforms the word w = w1asw2 into the

word w1w2, provided that w1 ∈ Σ
(k)
1

∗
. Now IND(w1w2) either coincides with

IND(w) or it is obtained from IND(w) by replacing is by the value i′s = 1.
Accordingly, if j ∈ σk, then j(i1,...,in), j(i1,...,i′s,...,in) ∈ σ

(i1,...,in)
k .

If is = 1, thenMk would transform the word w = w1asw2 into the word w1w2,
provided that w1 ∈ Σ

(k)
1

∗
. Here |w1w2|as = 0, if IND′(w) = IND(w), that is,

within this cycle Mk would delete the last occurrence of the letter as. This,
however, may cause problems (see the discussion above), and so we must be
very carefull when simulating this step. If w1w2 contains occurrences of letters
that do not belong to the subalphabet Σ(k)

1 , then either the above cycle will not
be completed successfully, if w1 contains such a letter, or these letters are all
contained in w2, implying that as is not the rightmost letter of w. Thus, if the
subalphabet

Alph(IND′(w)) = { aj ∈ Σ | j ∈ {1, . . . , n} such that ij ∈ {2, 1} }

is not contained in Σ
(k)
1 ∪ {as}, then M

IND′(w)
k just simulates the above cycle

of Mk, and j(i1,...,0,...,in) ∈ σ
(i1,...,in)
k for all j ∈ σk.

If, however, Alph(IND′(w)) ⊆ Σ
(k)
1 ∪ {as}, then instead of M IND′(w)

k a com-
ponent automaton M (i1,...,d,...,in)

j is activated for some j ∈ σk. Here the indicator
d in position s means that the current word w contains a single occurrence of
the letter as, but that in the corresponding computation of the system M1, this

CD-Systems of Stateless R(1)-Automata 33

letter has already been erased. Observe that the above property only depends
on the value IND′(w) guessed and on the component automaton M IND′(w)

k , and
hence, the set of initial components of M′

1 can be chosen accordingly.

The component M (i1,...,d,...,in)
j is obtained from Mj by applying the following

modifications, where we assume that Σ(j)
2 = {ar}. We see from the general rule

above that ir ∈ {2, 1} holds. Let D(i1, . . . , in) = { j ∈ {1, . . . , n} | ij = d }. Then
M

(i1,...,d,...,in)
j consists of |D(i1, . . . , in)| + 1 many subcomponents. For each l ∈

D(i1, . . . , in), there is a component M (i1,...,in)
j,l that deletes an occurrence of the

letter al if it is the first letter of the tape inscription, that is, the corresponding
transition function is defined by δ.(c) = MVR and δ.(al) = ε. Further, the only
successor system of M (i1,...,d,...,in)

j,l is the system M
(i1,...,0,...,in)
j , where il = d

is replaced by i′l = 0, indicating that the last occurrence of the letter al has
now been erased. Finally there is a subcomponent M (i1,...,in)

j,0 that simulates the
actual behaviour of Mj . Here we have to distinguish two cases.

If ir = 2, then M
(i1,...,d,...,in)
j,0 simply deletes the first occurrence of the let-

ter ar, and in doing so it may move across all letters from

(Σ(j)
1 ∩ Alph(i1, . . . , in)) ∪ { aµ | µ ∈ D(i1, . . . , in) },

that is, it may move across all letters in al ∈ Σ
(j)
1 for which the indi-

cator il is 1 or 2, and across all letters al, for which il = d. Further,
p(i1,...,2,...,d...,in), p(i1,...,1,...,d,...,in) ∈ σ

(i1,...,d,...,in)
j,0 for all p ∈ σj , where the in-

dex 2 or 1 is in position r.
If ir = 1, then the behaviour is similar, if there exists a letter

in Alph(i1, . . . , in) that is not contained in Σ
(j)
1 ∪ {ar}. In that case

p(i1,...,0,...,d...,in) ∈ σ
(i1,...,d,...,in)
j,0 for all p ∈ σj , where the index 0 is in position r.

Finally, if ir = 1 and Alph(i1, . . . , in) ⊆ Σ
(j)
1 ∪ {ar}, then instead of

M
(i1,...,d,...,in)
j,0 a component automaton M

(i1,...,d,...,d,...,in)
p is activated for some

p ∈ σj . Here the additional indicator d in position r means that the current word
contains a single occurrence of the letter ar, but that in the corresponding com-
putation of the system M1, this letter has already been erased. Observe that
the above property only depends on (i1, . . . , d, . . . , in) and on the component
automaton Mj , and hence, the set of successor components of M IND′(w)

k can be
chosen accordingly.

Finally the accepting component M+ is only called from a component
M

(i1,...,in)
q for which all but one of the indicators i1, . . . , in are 0, the only non-

zero indicator iν is 1 or d, and M (i1,...,in)
q deletes an occurrence of the letter aν .

These modifications are now applied to all component automata M (i1,...,in)
j ,

where (i1, . . . , in) ∈ IND and j ∈ I.
This completes the description of the system M′

1. Concerning the behaviour
of this system we observe the following:

34 B. Nagy and F. Otto

(1) For each word w ∈ L=1(M1), M′
1 has an accepting mode = 1 computation,

that is, L=1(M1) ⊆ L=1(M′
1).

(2) If during a computation of M′
1 a component automaton M

(i1,...,in)
r is acti-

vated such that, for some j, ij ∈ {2, 1, d}, but no symbol aj is on the tape,
then ij will never be set to 0, and accordingly, this computation fails.

(3) If during a computation of M′
1 a component automaton M

(i1,...,in)
r is acti-

vated such that, for some j, ij = 0, but there are still occurrences of the
symbol aj on the tape, then these occurrences will not be erased, and ac-
cordingly, the computation fails. Thus, during a computation of M′

1, if w is
the current tape inscription, then in an accepting computation the correct
value for IND(w) must be guessed.

(4) Each time the last occurrence of a letter aj is erased, it is ensured that this
occurrence is not the last letter of the given input word or that it is the
first letter currently on the tape. Thus, the very last letter of the given input
word can only be erased when it has become the very first letter on the tape,
that is, when the rest of the word has already been erased completely.

From (2) and (3) it follows that M′
1 can only accept words from the language

L=1(M1), which together with (1) implies that M1 and M′
1 are indeed equiva-

lent. From (4) it follows that on input a word of the form uv, where u ∈ L1 and
v ∈ Σ+, M′

1 has a computation that erases the prefix u completely and then
calls the final component automaton M+ without scanning any prefix of v. Con-
versely, if M′

1 has a computation that, starting with input uv, u, v ∈ Σ∗, erases
the prefix u completely and then calls the final component automaton M+, then
u ∈ L1, and during this computation M′

1 does not scan any prefix of v.
Thus, if we now replace every occurrence of M+ in the set of initial compo-

nents and in the sets of successor components of M′
1 by the initial components

of a stl-det-local-CD-R(1)-system M2 accepting a language L2, then we obtain
a stl-det-local-CD-R(1)-system M for the language L1 · L2. Hence, we have the
following closure property.

Theorem 5. The language class L=1(stl-det-local-CD-R(1)) is closed under
product.

As a consequence of the construction above also the following results are
immediate.

Corollary 12. The language class L=1(stl-det-local-CD-R(1)) is closed under
Kleene-star and Kleene-plus.

For showing that the class L=1(stl-det-local-CD-R(1)) is not closed under
morphisms, we need a variant of the language

Lab = {w ∈ {a, b}∗ | |w|a = |w|b }.

In analogy to Proposition 4 it can be shown that Lab is accepted by a CD-system
of stateless deterministic R-automata working in mode = 1. Now consider the

CD-Systems of Stateless R(1)-Automata 35

morphism φ : {a, b}∗ → {a, b}∗ that is induced by a 7→ ab and b 7→ b, and let
L′

ab denote the language φ(Lab). It is easily seen that w ∈ L′
ab if and only if

|w|b = 2 · |w|a, and each occurrence of a letter a in w is immediately followed by
an occurrence of the letter b.

Lemma 5. The language L′
ab is not accepted by any stl-det-local-CD-R(1)-

system working in mode = 1.

Proof. Assume that M = ((Mi, σi)i∈I , I0) is a stl-det-local-CD-R(1)-system in
normal form satisfying L=1(M) = L′

ab. If i0 ∈ I such that Mi0 executes accept
instructions, then we see from Proposition 2 that S(Mi0) = {ε} must hold. Thus,
any given non-empty word w ∈ L′

ab must first be reduced to the empty word by
executing |w| many cycles, and then a component Mi0 is called which accepts.

Consider the words w = bn(ab)n ∈ L′
ab and w′ = bnba(ab)n−1 ̸∈ L′

ab, where
n > 0 is sufficiently large. The system M has an accepting mode = 1 computa-
tion for input w. In this computation, if an occurrence of the letter a is deleted
before the prefix bn has been deleted completely, that is, if this accepting com-
putation can be written as

w = bn(ab)n ⊢c
Mi1

· · · ⊢c
Mij

bn−j(ab)n ⊢c
Mij+1

bn−jb(ab)n−1 ⊢∗
M Accept,

then M will also perform the following computation:

w′ = bnba(ab)n−1 ⊢c
Mi1

· · · ⊢c
Mij

bn−jba(ab)n−1 ⊢c
Mij+1

bn−jb(ab)n−1 ⊢∗
M Accept.

Thus, M will also accept the word w′, a contradiction.
Hence, in an accepting mode = 1 computation of M on input w, no occur-

rence of the letter a is deleted before the prefix bn has been deleted completely.
If n is sufficiently large, then this accepting computation can be written as

w = bn(ab)n ⊢ck

M bn−k(ab)n ⊢c
Mi

bn−k−1(ab)n

⊢cl

M bn−k−l−1(ab)n ⊢c
Mi

bn−k−l−2(ab)n

⊢cn−k−l−2

M (ab)n ⊢∗
M Accept

for some index i ∈ I and some numbers k, l ≤ |I|. But then M would also
perform the following accepting computation:

bn+l+1(ab)n ⊢ck

M bn−k+l+1(ab)n ⊢c
Mi

bn−k+l(ab)n

⊢cl

M bn−k(ab)n ⊢c
Mi

bn−k−1(ab)n

⊢cl

M bn−k−l−1(ab)n ⊢c
Mi

bn−k−l−2(ab)n

⊢cn−k−l−2

M (ab)n ⊢∗
M Accept.

As bn+l+1(ab)n ̸∈ L′
ab, this is again a contradiction. It follows that L′

ab is not
accepted by any stl-det-local-CD-R(1)-system working in mode = 1. 2

As Lab ∈ L=1(stl-det-local-CD-R(1)), Lemma 5 has the following consequence.

36 B. Nagy and F. Otto

Corollary 13. The language class L=1(stl-det-local-CD-R(1)) is not closed un-
der ε-free morphisms.

Concerning inverse morphisms we have the following preliminary result.

Proposition 12. The language class L=1(stl-det-local-CD-R(1)) is closed under
inverse projections.

Proof. Let M = ((Mi, σi)i∈I , I0) be a stl-det-local-CD-R(1)-system on Σ ac-
cepting a language L ⊆ Σ∗ in mode = 1, let Γ be an alphabet that is disjoint
from Σ, and let π : (Σ ∪ Γ)∗ → Σ∗ be the projection that is induced by a 7→ a
for all a ∈ Σ and b 7→ ε for all b ∈ Γ . By Lπ we denote the language

Lπ = π−1(L) = {w ∈ (Σ ∪ Γ)∗ | π(w) ∈ L }.

From M we construct a stl-det-local-CD-R(1)-system Mπ for Lπ as follows:

Mπ = ((D1, σD1), (D2, σD2), (Mi, σi)i∈I), I0 ∪ {D1}).

The R-automata D1 and D2 are defined as follows:

D1 : (1) δD1(c) = MVR,
(2) δD1(a) = MVR for all a ∈ Σ,
(3) δD1(b) = ε for all b ∈ Γ,

D2 : (4) δD2(c) = MVR,
(5) δD2(a) = MVR for all a ∈ Σ,
(6) δD2(b) = ε for all b ∈ Γ,

and σD1 = {D2} ∪ I0 and σD2 = {D1} ∪ I0.
Given an input w ∈ (Σ ∪ Γ)∗, Mπ first uses the component automata D1

and D2 to delete all occurrences of symbols from Γ , and then it checks whether
the word obtained is accepted by M. It follows that L=1(Mπ) = Lπ. 2

However, the following general closure property is still open.

Open Problem 5. In the language class L=1(stl-det-local-CD-R(1)) closed un-
der inverse morphisms?

The application of an inverse projection π−1 to a language L ⊆ Σ∗ results in
the shuffle of L with the free monoid Γ ∗, where Γ is the set of letters mapped to ε
by π. In fact, it can be shown that the language class L=1(stl-det-local-CD-R(1))
is closed under disjoint shuffle, that is, if L1 ⊆ Σ∗ and L2 ⊆ Γ ∗ are languages
in L=1(stl-det-local-CD-R(1)), where Σ ∩ Γ = ∅, then the shuffle of L1 and L2 is
also in this language class.

Open Problem 6. Derive further closure and non-closure results for the lan-
guage class L=1(stl-det-local-CD-R(1)). In particular, is this class closed under
reversal?

CD-Systems of Stateless R(1)-Automata 37

Let Σ be a finite alphabet, and let Σ = { a | a ∈ Σ } be a copy of Σ such
that Σ ∩ Σ = ∅. By : Σ∗ → Σ

∗
we denote the morphism that replaces each

letter a ∈ Σ by its copy a. Then the language LΣ := { sh(w,w) | w ∈ Σ∗ } is
called the twin shuffle language over Σ. These twin shuffle languages are quite
expressive as shown by the following classical result.

Proposition 13. [26] For each recursively enumerable language L ⊆ Σ∗
T , there

exist an alphabet Σ containing ΣT and a regular language R ⊆ (Σ ∪ Σ)∗ such
that L = PrΣT (LΣ ∩R).

Observe that the twin shuffle language LΣ is actually a rational trace lan-
guage. Indeed, consider the dependency relation DΣ on Σ ∪ Σ that is defined
by DΣ := { (a, b), (a, b) | a, b ∈ Σ }, and let RΣ := { aa | a ∈ Σ }∗. Then RΣ is
a regular language over Σ ∪Σ, and [RΣ]DΣ

= LΣ . Hence, there exists a stl-det-
local-CD-R(1)-system MΣ satisfying L=1(MΣ) = LΣ . Accordingly, we obtain
the following consequence.

Corollary 14. For each recursively enumerable language L ⊆ Σ∗
T , there exist

an alphabet Σ containing ΣT , a language L1 ∈ L=1(stl-det-local-CD-R(1)), and
a regular language R ⊆ (Σ ∪Σ)∗ such that L = PrΣT (L1 ∩R).

Thus, we see that the closure of the language class L=1(stl-det-local-CD-R(1))
under intersection with regular sets and projections already yields all recursively
enumerable languages.

7 Decision Problems

Each cycle of a deterministic restarting automaton can be simulated in linear
time by a Turing machine. As each cycle is strictly length-reducing, it follows that
a stl-det-local-CD-R(1)-system can be simulated by a nondeterministic Turing
machine in quadratic time using linear space. In fact, a stl-det-local-CD-R(1)-
system can be simulated by a nondeterministic shrinking RRWW-automaton,
which yields the following result (see [10] and [18]).

Proposition 14. L=1(stl-det-local-CD-R(1)) ⊆ NTIME(n2) ∩ DSPACE(n), that
is, the membership problem for the language L=1(M) of a stl-det-local-CD-R(1)-
system M can be solved nondeterministically in quadratic time and determinis-
tically in linear space.

Theorem 2 yields an effective construction of a finite-state acceptor B from a
stl-det-local-CD-R(1)-system M such that the language E = L(B) is a subset of
the language L = L=1(M) that is letter-equivalent to L. Hence, E is non-empty
if and only if L is non-empty, and E is infinite if and only if L is infinite. As
the emptiness problem and the finiteness problem are decidable for finite-state
acceptors, this immediately yields the following decidability results.

38 B. Nagy and F. Otto

Proposition 15. The following decision problems are effectively decidable:

Instance : A stl-det-local-CD-R(1)-system M.
Question 1 : Is the language L=1(M) empty?
Question 2 : Is the language L=1(M) finite?

Thus, the emptiness problem and the finiteness problem are effectively de-
cidable for stl-det-local-CD-R(1)-systems. On the other hand, it is undecidable
in general whether a rational trace language is recognizable (see, e.g., [7]). As a
rational subset S of a trace monoid M(D) is recognizable if and only if φ−1

D (S)
is a regular language, it follows from Corollary 9 that it is undecidable in general
whether a given stl-det-local-CD-R(1)-system accepts a regular language, that is,
the following decision problem is undecidable in general.

Proposition 16. The following decision problem is undecidable in general:

Instance : A stl-det-local-CD-R(1)-system M.
Question : Is the language L=1(M) regular?

Finally we consider the inclusion problem and the equivalence problem for stl-
det-local-CD-R(1)-systems. We will see that these problems are also undecidable.
For doing so we need the following notion.

A rational transducer is defined as T = (Q,Σ,∆, q0, F, E), where Q is a
finite set of internal states, Σ is a finite input alphabet, ∆ is a finite output
alphabet, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, and
E ⊂ Q×Σ∗ ×∆∗ ×Q is a finite set of transitions.

If e = (p1, u1, v1, q1)(p2, u2, v2, q2) · · · (pn, un, vn, qn) ∈ E∗ is a sequence of
transitions, then its label is the pair ℓ(e) = (u1u2 · · ·un, v1v2 · · · vn) ∈ Σ∗ ×∆∗.
By ℓin(e) we denote the first component u1u2 · · ·un ∈ Σ∗, and by ℓout(e) we
denote the second component v1v2 · · · vn ∈ ∆∗. The sequence e above is called a
path from p1 to qn, if pi+1 = qi for all i = 1, . . . , n − 1. It is called successful if
p1 is the initial state q0, and if qn is a final state. By Λ(p, q) we denote the set
of all paths from p ∈ Q to q ∈ Q, and we define Λ(p,Q′) =

∪
q∈Q′ Λ(p, q) for all

subsets Q′ ⊆ Q. Finally, T (p, q) = { ℓ(e) | e ∈ Λ(p, q) } and T (p,Q′) = { ℓ(e) |
e ∈ Λ(p,Q′) }. Thus, Λ(q0, F) is the set of all successful paths, and T (q0, F) is the
set of labels of all successful paths. Then Rel(T) = T (q0, F) is called the relation
defined by T . For u ∈ Σ∗ and v ∈ ∆∗, T (u) = { v ∈ ∆∗ | (u, v) ∈ T (q0, F) }, and
T−1(v) = {u ∈ Σ∗ | (u, v) ∈ T (q0, F) }. Obviously, the domain of Rel(T) is the
language L(T) = {u ∈ Σ∗ | T (u) ̸= ∅ }, which is the set of all input words for
which T has an accepting computation.

As shown in Theorem 6.1 of [1] the relations defined by rational transducers
are just the so-called rational relations, that is, the rational subsets of the monoid
Σ∗ × ∆∗. According to [8] Theorem 6.3 we have the following undecidability
result.

Proposition 17. The following version of the universality problem for rational
transducers is undecidable in general:

CD-Systems of Stateless R(1)-Automata 39

Instance : A rational transducer T = (Q, {a, b}, {c}, q0, F, E).
Question : Is the relation Rel(T) universal, that is, does the equality

Rel(T) = {a, b}∗ × {c}∗ hold?

The language L̂ = sh({a, b}∗, {c}∗) is the rational trace language that is
obtained from the regular languageR = {a, b}∗·{c}∗ and the dependency relation
D = {(a, a), (b, b), (c, c), (a, b), (b, a)} on the alphabet Σ = {a, b, c}. Hence, there
exists a stl-det-local-CD-R(1)-system M̂ such that L=1(M̂) = L̂ by Theorem 3.

Now let T = (Q, {a, b}, {c}, q0, F, E) be a rational transducer. By introducing
an intermediate state pt for each transition of the form t = (p, u, v, q) and by
replacing t by the two transitions ti = (p, u, ε, pt) and to = (pt, ε, v, q) we obtain
a transducer that, in each step, either consumes part of its input or produces
an output. Next we split each transition of the form ti = (p, u, ε, pt), where
|u| > 1, into |u| many transitions, each of which just consumes a single letter,
and we split each transition of the form to = (pt, ε, v, q), where |v| > 1, into |v|
many transitions that each produce just a single letter. The resulting transducer
T ′ can now be viewed as a nondeterministic finite-state acceptor A′ with ε-
transitions on the alphabet Σ = {a, b, c} by interpreting each transition of the
form (p, x, ε, p′) or (p, ε, x, p′) as a transition (p, x, p′). It follows immediately
from the above construction that the language L′ = L(A′) accepted by A′ has
the following properties:

1. L′ ⊆
∪

(u,v)∈Rel(T) sh(u, v), and

2. for all (u, v) ∈ Rel(T), there exists a word w ∈ L′ such that Pr{a,b}(w) = u

and Pr{c}(w) = v. Here Pr{a,b} : Σ∗ → {a, b}∗ denotes the projection onto
{a, b}∗, and Pr{c} : Σ∗ → {c}∗ denotes the projection onto {c}∗.

From A′ we can construct a deterministic finite-state acceptor A for the
language L′, and from A we obtain a stl-det-local-CD-R(1)-system M such that
L=1(M) =

∪
w∈L′ [w]D by the construction given in the proof of Theorem 3.

Now we have the following chain of equivalences:

L=1(M) = L=1(M̂) iff
∪

w∈L′ [w]D = sh({a, b}∗, {c}∗)
iff Rel(T) = {a, b}∗ × {c}∗.

As the system M is effectively constructed from the given transducer T , Propo-
sition 17 yields the following undecidability results.

Proposition 18. The following decision problems are undecidable in general:

Instance : Two stl-det-local-CD-R(1)-systems M1 and M2.
Question 1 : Is L=1(M1) contained in L=1(M2)?
Question 2 : Are M1 and M2 equivalent, that is, does L=1(M1) =

L=1(M2) hold?

40 B. Nagy and F. Otto

8 Concluding Remarks

We have seen that the stateless deterministic R-automata induce an infinite hier-
archy of language classes based on the size of their windows, and we have related
this hierarchy to the classical language families of regular and (deterministic)
context-free languages. In [12] stateless variants of deterministic RR-automata
have been introduced and studied. It remains to investigate the influence of the
size of the read/write window on the expressive power of these automata. This
also holds for the nondeterministic variants of stateless R- and RR-automata.

We have then seen that the stl-det-local-CD-R(1)-systems accept a subclass of
all semi-linear languages that contains all rational trace languages, but that this
subclass is incomparable to the (deterministic) linear languages and context-
free languages. However, it remains open whether this language class can be
characterized through other, more traditional, means. Also closure or non-closure
of the language class L=1(stl-det-local-CD-R(1)) under certain operations like
inverse morphisms or reversal are still open.

Further, it remains to determine the trade-off between stl-det-local-CD-R(1)-
systems on the one hand and (deterministic or nondeterministic) finite-state
acceptors on the other hand. Also it remains to study the exact degree of com-
plexity for those decision problems that we have shown to be solvable for stl-det-
local-CD-R(1)-systems. Finally, one could also study CD-systems of nondeter-
ministic stateless CD-R(1)-systems. Are they more expressive than their locally
deterministic counterparts considered in this paper?

References

1. J. Berstel. Transductions and Context-Free Languages, Leitfäden der angewandten
Mathematik und Mechanik, vol. 38 (Teubner Studienbücher: Informatik), Teubner,
Stuttgart, 1979.

2. J.-C. Birget. Intersection and union of regular languages and state complexity.
Inform. Proc. Letters 43 (1992) 185–190.

3. G. Buntrock. Wachsende kontext-sensitive Sprachen. Habilitationsschrift, Fakul-
tät für Mathematik und Informatik, Universität Würzburg, 1996.

4. E. Csuhaj-Varjú, J. Dassow, J. Kelemen, and G. Păun. Grammar Systems. A
Grammatical Approach to Distribution and Cooperation, Gordon and Breach, Lon-
don, 1994.

5. E. Csuhaj-Varjú, C. Mart́ın-Vide, and V. Mitrana. Multiset automata. In:
C.S. Calude, G. Păun, G. Rozenberg, and A. Salomaa (eds.), Multiset Process-
ing, Lect. Notes Comput. Sci. 2235, Springer, Berlin, 2001, 69-83.

6. J. Dassow, G. Păun, and G. Rozenberg. Grammar systems. In: G. Rozenberg and
A. Salomaa (eds.), Handbook of Formal Languages, Vol. 2, Springer, Berlin, 1997,
155–213.

7. V. Diekert and G. Rozenberg (eds.), The Book of Traces, World Scientific, Singa-
pore, 1995.

8. O. Ibarra. Reversal-bounded multicounter machines and their decision problems.
J. Assoc. Comput. Mach. 25 (1978) 116–133.

CD-Systems of Stateless R(1)-Automata 41

9. P. Jančar, F. Mráz, M. Plátek, and J. Vogel. Restarting automata. In: H. Reichel
(ed.), FCT 1995, Proc., Lect. Notes Comput. Sci. 965, Springer, Berlin, 1995, 283–
292.

10. T. Jurdziński and F. Otto. Shrinking restarting automata. Int. J. Found. Com-
put. Sci. 18 (2007) 361–385.

11. M. Kutrib, H. Messerschmidt, and F. Otto. On stateless two-pushdown automata
and restarting automata. In: E. Csuhaj-Varjú and Z. Ésik (eds.), Automata and
Formal Languages, AFL 2008, Proc., Computer and Automation Research Insti-
tute, Hungarian Academy of Sciences, 2008, 257–268.

12. M. Kutrib, H. Messerschmidt, and F. Otto. On stateless deterministic restarting
automata. In: M. Nielsen, A. Kučera, P.B. Miltersen, C. Palamidessi, P. Tuma,
and F. Valencia (eds.), SOFSEM 2009: Theory and Practice of Computer Science,
Proc., Lect. Notes Comput. Sci. 5404, Springer, Berlin, 2009, 353–364.

13. M. Kutrib, H. Messerschmidt and F. Otto. On stateless two-pushdown automata
and restarting automata. Extended version of [11]. Int. J. Found. Comput. Sci.,
to appear.

14. C. Lautemann. One pushdown and a small tape. In: K. Wagner (ed.), Dirk Siefkes
zum 50. Geburtstag, Technische Universität Berlin and Universität Augsburg, 1988,
42–47.

15. M. Lopatková, M. Plátek, and P. Sgall. Towards a formal model for functional
generative description, analysis by reduction and restarting automata. The Prague
Bulletin of Mathematical Linguistics 87 (2007) 1–20.

16. R. McNaughton, P. Narendran, and F. Otto. Church-Rosser Thue systems and
formal languages, Journal of the ACM 35 (1988) 324–344.

17. H. Messerschmidt and F. Otto. On nonforgetting restarting automata that are
deterministic and/or monotone. In: D. Grigoriev, J. Harrison, and E.A. Hirsch
(eds.), CSR 2006, Proc., Lect. Notes Comput. Sci. 3967, Springer, Berlin, 2006,
247–258.

18. H. Messerschmidt and F. Otto. Cooperating distributed systems of restarting au-
tomata. Int. J. Found. Comput. Sci. 18 (2007) 1333–1342.

19. H. Messerschmidt and F. Otto. Strictly deterministic CD-systems of restarting
automata. In: E. Csuhaj-Varjú and Z. Ésik (eds.), FCT 2007, Proc., Lect. Notes
Comput. Sci. 4639, Springer, Berlin, 2007, 424–434.

20. H. Messerschmidt and F. Otto. On deterministic CD-systems of restarting auto-
mata. Int. J. Found. Comput. Sci. 20 (2009) 185–209.

21. H. Messerschmidt and H. Stamer. Restart-Automaten mit mehreren Restart-
Zuständen. In: H. Bordihn (ed.), Workshop “Formale Methoden in der Linguis-
tik” und 14. Theorietag “Automaten und Formale Sprachen”, Proc., Institut für
Informatik, Universität Potsdam, 2004, 111–116.

22. K. Oliva, P. Kvĕton̆, and R. Ondrus̆ka. The computational complexity of rule-
based part-of-speech tagging. In: V. Matousek and P. Mautner (eds.), TSD 2003,
Proc., Lect. Notes Comput. Sci. 2807, Springer, Berlin, 2003, 82–89.

23. F. Otto. Restarting automata and their relations to the Chomsky hierarchy. In:
Z. Esik and Z. Fülöp (eds.), DLT 2003, Proc., Lect. Notes Comput. Sci. 2710,
Springer, Berlin, 2003, 55-74.

24. F. Otto. Restarting automata. In: Z. Ésik, C. Martin-Vide, and V. Mitrana (eds.),
Recent Advances in Formal Languages and Applications, Studies in Computational
Intelligence Vol. 25, Springer, Berlin, 2006, 269–303.

25. M. Plátek, M. Lopatková, and K. Oliva. Restarting automata: Motivations and
applications. In: M. Holzer (ed.), Workshop “Petrinets” und 13. Theorietag “Au-

42 B. Nagy and F. Otto

tomaten und Formale Sprachen”, Institut für Informatik, Technische Universität
München, Garching, 2003, 90–96.

26. A. Salomaa. Jewels of Formal Language Theory. Computer Science Press, Rock-
ville, Maryland, 1981.

