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Deutschsprachige Zusammenfassung

In dieser Arbeit werden mithilfe der Likelihood-Tiefen (ausreißer-)robuste Schätzfunk-
tionen und Tests für den unbekannten Parameter θ ∈ Θ ⊆ ℝq der stetigen Dichtefunk-
tion fθ einer Verteilung entwickelt. Die entwickelten Verfahren werden dann auf drei
verschiedene Verteilungen angewandt.

Werden Daten aufgenommen, zum Beispiel durch eine Messung, so muss immer damit
gerechnet werden, dass diese Daten zum Beispiel Messfehler enthalten oder dass extreme
Werte auftreten. Diese Ausreißer können einige Schätzfunktionen und Tests erheblich be-
einflussen. Beispielsweise kann das arithmetische Mittel schon durch eine extreme Beob-
achtung verfälscht werden. Daher gibt es Bestrebungen robuste Verfahren zu finden,
die durch Ausreißer nicht oder kaum beeinflusst werden. Mithilfe der von Müller und
Mizera in [MiMu 2004] und [Mue 2005] entwickelten Likelihood-Tiefen lassen sich solche
Verfahren herleiten. Die Likelihood-Tiefen bilden Verallgemeinerungen der Datentiefe
und erweitern Tukeys Halbraumtiefe, siehe [Tuk 1975], und die Simplex-Tiefe von Liu,
siehe [Liu 1988, Liu 1990], welche ausreißer-robuste Verallgemeinerungen des Medians für
multivariate Daten darstellen.

Die Größe der Likelihood-Tiefe soll ein Maß dafür sein, wie gut ein Parameter zum
Datensatz passt. Je größer die Tiefe ist, desto besser passt der Parameter zum Daten-
satz. Wählt man als Schätzfunktion diejenige, die jedem Datensatz den Parameter mit
der größten Tiefe zuordnet, stellt man jedoch fest, dass diese für einige Verteilungen ver-
fälschte Ergebnisse liefert. Im Mittel wird in diesen Fällen dadurch nicht der wahre zu
Grunde liegende Parameter geschätzt.

Für eindimensionale Parameter wird die Likelihood-Tiefe eines Parameters θ im Daten-
satz als das Minimum aus dem Anteil der Daten, für die die Ableitung der Loglikelihood-
Funktion nach dem Parameter θ, ∂

∂θ
ln fθ(z), nicht negativ ist, und dem Anteil der Daten,

für die diese Ableitung nicht positiv ist, berechnet. Damit hat der Parameter die größte
Tiefe, für den beide Anzahlen gleich groß sind. Asymptotisch hat der Parameter die
größte Tiefe, für den die Wahrscheinlichkeit, dass für eine Beobachtung ∂

∂θ
ln fθ(·) nicht

negativ ist, gleich 1
2

ist. Wenn dies für den zu Grunde liegenden Parameter nicht der Fall
ist, ist der Schätzer basierend auf der Likelihood-Tiefe verfälscht. In dieser Arbeit wird
gezeigt, wie diese Verfälschung bestimmt werden und unter welchen Voraussetzungen sie
korrigiert werden kann. Zudem wird die Korrektur berechnet. Des Weiteren wird für die
neu konstruierten Schätzfunktionen gezeigt, wann sie konsistente Schätzungen bilden.

Die Arbeit besteht aus zwei Teilen. Im ersten Teil der Arbeit wird die allgemeine Theorie
über die Schätzfunktionen und Tests dargestellt und zudem deren jeweiligen Konsistenz
gezeigt. Es werden zwei verschiedene Theoreme für den Nachweis der Konsistenz der
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Schätzfunktionen, unter unterschiedlichen Voraussetzungen an die zu Grunde liegende
Verteilung, gegeben. Hierfür werden unter anderem eine Verallgemeinerung des Glivenko-
Cantelli Lemmas und Vapnik-C̃ervonenkis Klassen benutzt.

Zur Entwicklung von Tests für den Parameter θ der Form H0 : θ ∈ Θ0 ⊂ Θ gegen
H1 : θ /∈ Θ0, wird die von Müller in [Mue 2005] entwickelte Simplex Likelihood-Tiefe, die
eine U-Statistik ist, benutzt. Es zeigt sich, dass für dieselben Verteilungen, für die die
Likelihood-Tiefe verfälschte Schätzer liefert, die Simplex Likelihood-Tiefe eine unverfäl-
schte U-Statistik ist. Damit ist insbesondere die asymptotische Verteilung bekannt und
es lassen sich Tests für verschiedene Hypothesen formulieren. Die Verschiebung in der
Tiefe führt aber für einige Hypothesen zu einer schlechten Güte des zugehörigen Tests. Es
werden daher korrigierte Tests eingeführt und Voraussetzungen angegeben, unter denen
diese dann konsistent sind.

Im zweiten Teil wird die Theorie auf drei verschiedene Verteilungen angewandt: Die
Weibull-Verteilung, die Gauß- und die Gumbel-Copula. Damit wird gezeigt, wie die Ver-
fahren des ersten Teils genutzt werden können, um (robuste) konsistente Schätzfunktionen
und Tests für den unbekannten Parameter der Verteilung herzuleiten.

Zunächst betrachten wir die zweiparametrige eindimensionale Weibull-Verteilung. Sie
findet ihre größte Anwendung im Bereich der Analyse von Lebenszeiten. Dies geschieht
insbesondere in den ingenieurwissenschaftlichen Anwendungen aber auch in klinischen
Studien oder ähnlichem. Ihre Verteilungsfunktion hat eine vergleichsweise einfache Form
und es lassen sich verschiedene Ausfallrisiko-Verläufe simulieren.
Es werden Schätzfunktionen und Test, sowohl für komplette Datensätze als auch für Typ-
I rechtszensierte Daten mit fester Zensurzeit, für beide Parameter der Weibull-Verteilung
entwickelt. Zensierte Daten entstehen dann, wenn Zeiten bis zu einem bestimmten Er-
eignis aufgenommen werden und für manche Daten nur festgehalten werden kann, dass
das interessierende Ereignis bis zum Zensurzeitpunkt noch nicht eingetreten ist (z.B. da
die Studie endet). Es wird für einen unbekannten Parameter als auch für die Situation,
dass beide Parameter unbekannt sind, gezeigt, dass die auf der Likelihood-Tiefe basierten
Schätzfunktionen konsistent sind, jeweils in der Situation von vollständig beobachteten
Daten und Typ-I rechtszensierten Daten. Im nächsten Schritt werden Tests für Hypothe-
sen über die Parameter hergeleitet. Dabei muss allerdings davon ausgegangen werden,
dass der jeweils andere, nicht getestete Parameter bekannt ist. In diesem Fall können
wir die Konsistenz der Tests für unzensierte Daten für die Tests bezüglich beider Para-
meter nachweisen. Für zensierte Daten kann die Konsistenz im Falle des sogenannten
Formparameters nicht in allen Situationen nachgewiesen werden, für den Skalenpara-
meter hingegen schon. In Simulationsstudien wird das Verhalten der Tests untersucht,
wenn auch der jeweils andere, nicht getestete Parameter unbekannt ist. Hier zeigt sich,
dass sich die Gütefunktionen genauso verhalten, wie in dem Fall, wenn der Parameter
bekannt ist. Die neu entwickelte Schätzer und die Tests werden mit bekannten - auch
mit robusten - Methoden verglichen. Es zeigt sich, dass die neue Methode, insbesondere
in Bezug auf Robustheit im Vergleich mit dem Maximum-Likelihood-Schätzer, in einigen
Fällen deutlich bessere Ergebnisse liefert als bestehende. Für zensierte Daten zeigt sich
auch die Überlegenheit der neuen Methode gegenüber der ebenfalls betrachteten robusten
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Methode basierend auf dem Median von He und Fung, siehe [HeFu 1999].

Im letzten Kapitel des zweiten Teils werden zwei spezielle Copula-Familien betrachtet:
Die Gauß- und die Gumbel-Copula. Mithilfe von Copulas lassen sich Abhängigkeits-
strukturen modellieren. Sie finden ihre Hauptanwendung im Bereich der Finanz- und
Versicherungsmathematik. Für zwei Zufallsvariablen mit Randverteilung gegeben durch
die Standardnormalverteilung, und gemeinsamer Verteilung gegeben durch die zweidim-
ensionale Normalverteilung, ist die zugehörige Copula die Gauß-Copula. Solche Variablen
werden im ersten Teil des vierten Kapitels betrachtet. Der unbekannte Parameter ist
hier der Korrelationskoeffizient. Die Techniken aus dem ersten Teil werden genutzt, um
Schätzer und Tests für den unbekannten Korrelationskoeffizienten von zweidimensional
normalverteilten Zufallsvariablen zu entwickeln. Für den Nachweis der Konsistenz der
Schätzfunktion werden die Vapnik-C̃ervonenkis Klassen genutzt. Die Konsistenz der Tests
für den Korrelationskoeffizienten kann mit den Methoden des ersten Teils nicht gezeigt
werden. Simulationsstudien zeigen die Robustheit gegen kontaminierte Daten.
Abschließend wird die Theorie genutzt, um Schätzer und Tests für den Parameter der
zweidimensionalen Gumbel-Copula herzuleiten. Hier gehen wir zunächst davon aus, dass
die Randverteilungen bekannt sind. Es wird plausibel gemacht, dass die Voraussetzungen
aus dem Theorie-Kapitel erfüllt sind, womit sich die Konsistenz der Schätzfunktion und
Tests ergibt. In Simulationsstudien wird untersucht, ob das Schätzen der Randverteilung
einen Einfluss auf den Schätzer bzw. die Güte der Tests hat. Dieses ist nicht der Fall.

Insgesamt zeigt sich, dass für die drei Verteilungen mithilfe der Likelihood-Tiefen robuste
Schätzfunktionen und Tests gefunden werden können. In unverfälschten Daten sind vor-
handene Standardmethoden zum Teil überlegen, jedoch zeigt sich der Vorteil der neuen
Methoden in kontaminierten Daten und Daten mit Ausreißern.
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1. Introduction

The subject of this thesis is to find robust estimators and tests for the unknown parameter
θ ∈ Θ ⊆ ℝq of the continuous density function fθ of identically independently distributed
(i.i.d.) variables Z1, . . . , ZN . These estimators and tests shall be based on the so-called
likelihood-depth.

If the data are contaminated with outliers, for example very high or very low values
(e.g. arising from measurement errors) or values coming from a different distribution,
some estimators and tests can be rather unreliable. This is the case for example for the
maximum likelihood estimator. The aim is to find (outlier) robust estimators and tests,
which are not or only slightly affected by outliers.

Likelihood-depth and simplicial likelihood-depth are general notions of data depth, first
used by Mizera and Müller [MiMu 2004] and Müller [Mue 2005]. They extend the half
space depth of Tukey [Tuk 1975] and the simplicial depth of Liu [Liu 1988, Liu 1990],
which lead to outlier robust generalizations of the median for multivariate data. The
likelihood-depths belong to a broad class of depth notions introduced and studied in the
last 20 years; see e.g. Rousseeuw and Hubert [RH 1999], Zuo and Serfling [ZoSe 2000a,
ZoSe 2000b], Mizera [Miz 2002], and the book of Mosler [Mos 2002]. Although the
likelihood-depth bases on a parametric approach, it can lead to distribution-free esti-
mators and tests as Mizera and Müller in [MiMu 2004] demonstrated for location-scale
estimation and Müller [Mue 2005] for regression. Müller [Mue 2005] also showed that the
simplicial likelihood-depth is in particular appropriate for testing since it is an U-statistic.
However, simplicial likelihood-depth is often a degenerated U-statistic so that the spectral
decomposition of conditional expectations are needed for deriving the asymptotic distri-
bution, which was done in Müller [Mue 2005], Wellman et. al. [WeHaMu 2009], and
Wellmann and Müller [WeMu 2010] for regression. In these cases, the likelihood-depth
estimator is asymptotically an unbiased estimator. In many other cases, the likelihood-
depth estimator is asymptotically a biased estimator. Then the simplicial likelihood-
depth is not a degenerated U-statistic and its asymptotic distribution is simply the nor-
mal distribution. Hence, asymptotic α-level tests can be easily derived. Thereby, rather
general hypotheses can be tested and the resulting tests are outlier robust. But these
tests have a bad power for some alternatives due to the bias. In particular, the power at
such alternatives is not converging to one with growing sample size as this should be for
consistent tests.

The Weibull distribution is often used in survival analysis, especially in life-testing and
reliability studies. It was introduced by Weibull in 1951; see [Wei 1951]. Moreover, the
distribution function is one-dimensional and depends on two parameters. The Weibull
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model is frequently used in engineering applications, but also in biology or other fields.
For an introduction see e.g. the textbooks of Rinne [Rin 2009], Murthy, Xie and Jiang
[MXJ 2004], Lee and Wang [LeWa 2003] or Lawless [Law 2003]. With the help of the
Weibull distribution constant as well as de- and increasing Hazard-functions can be mod-
eled. Because of this and the fact that the survival-function has a simple form it is used
in many applications as for instance the study of durability of materials in engineerings,
medical lifetime studies, etc.
Most times the maximum likelihood estimator is used for parametric estimation; it can
be found e.g. in Cohen [Coh 1965] or the textbook of Lee and Wang [LeWa 2003]. The
maximum likelihood estimator can also be defined for censored data. Other methods can
be found in the textbook of Rinne [Rin 2009], where a survey of estimation procedures
is given. In this textbook also exists a hint to a robust estimator for the parameters of
the Weibull distribution developed by He and Fung in [HeFu 1999], an estimator based
on the so-called method of medians. He and Fung propose that their estimator is not
infected by right censoring, but only if less than 16 % of the largest observations are
censored.
There exist also other methods to define robust estimators for the Weibull distribu-
tion, for example Dixit [Dix 1994] proposes a Bayesian approach, Shier and Lawrence
[ShLa 1984] estimate via regression, Marks [Ma 2005] gives an estimator based on quan-
tiles and Boudt, Caliskan and Croux [BCC 2009] present estimators like the quantile least
squares, repeated median and median/Qn estimator. Seki and Yokoyama [SeYo 1996]
state a bootstrap method and Cacciari et al. [CMMJ 2002] use a modified Thiel method.
However, all these robust procedures are proposed for complete data and not for censored
ones. Only Homan and Lachenbruch [HoLa 1986] introduce a robust estimator for the
parameter of the exponential distribution, which can also be used for censored data. Note
that the exponential distribution is a special Weibull distribution.
The textbook of Rinne [Rin 2009] gives a good overview of the developed test procedures
for the parameters of the Weibull distribution, for complete and for censored data. Tests
based on maximum likelihood procedures are presented there. Besides, many articles deal
with tests and confidence intervals for the parameters of the Weibull distribution in cen-
sored and uncensored data, see for example Balakrishnan and Stehlik [BaSt 2008], Chen
[Che 1997], Wong and Wong [WoWo 1982] or Kahle [Ka 1996]. But still these methods
are not robust against contamination. Only He and Fung [HeFu 1999] give an outlier
robust confidence interval for the shape parameter.

The copula model has a variety of applications because it models dependence structures.
For example in finance, in the analysis of credit risks, the insolvency of several debtors
at the same time or for insurances the risk of appearance of different claims at the same
time have to be modeled to insure solvency of the bank and insurance, respectively, all
the time. Copulas can also be used in the simulation of technical production processes
to model the occurrence of coupled failures. Some applications of copulas can be found
in Aas [Aas 2004], Andresen [And 2005], Cízek, Härdle and Weron [CHW 2005], Dobríc
and Schmid [DSch 2005] or Malvergne and Sornette [MaSo 2006]. For an introduction to
copulas see the textbook of Nelsen [Nel 2006] or Joe [Joe 1997].
Different estimation procedures for copulas were introduced. Parametric, semi-parametric
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and nonparametric methods are proposed. Most of the parametric and semi-parametric
methods are two-stage estimations, as presented in Andresen [And 2005], Durrleman,
Nikeghbali, and Roncalli [DNR 2000], Genest, Ghoudi and Rivest [GGR 1995], Hoff
[Hoff 2007] or Kim, Silvapulle and Silvapulle [KSS 2007] for example. Usually, a first
step is the estimation of the margins by parametric or non-parametric methods. After-
wards an estimation procedure for the parameter of the copula is presented. Genest and
Segers [GeSe 2009] present rank-based estimators in the situation of unknown margins.
An example for a nonparametric estimation model for the copula is the empirical copula,
see Durrleman, Nikeghbali and Roncalli [DNR 2000] or Capéraà, Fougères and Genest
[CFG 1997]. Some goodness-of-fit-tests can be found in Dobríc and Schmid [DSch 2005],
Fermian [Fer 2005] or Panchenko [Pan 2005]. But to the authors knowledge, nothing is
known about the robustness behavior, when contamination with data from other distri-
butions occurs.

This thesis is divided into two parts. The first part deals with the general theory about
estimators and tests based on likelihood-depth, while the second shows the application
of this general theory to three distributions, namely the one-dimensional Weibull distri-
bution, the two-dimensional Gumbel copula and the two-dimensional Gaussian copula
or more precisely the Gaussian copula with normal distributed margins, what is the
two-dimensional normal distribution.

We consider continuous density functions. In the first part we find outlier-robust esti-
mators and tests based on the likelihood-depth. In some cases the results of Mizera and
Müller [Mue 2005] and Müller [MiMu 2004] can not be used directly. More precisely, it
can happen that the maximum likelihood-depth estimator is biased. We determine the
bias, correct it and show that the resulting estimators are strongly consistent. There-
fore, we use among other things an extension of the Glivenko-Cantelli-Lemma; see van
der Vaart and Wellner [VaWe 1996]. To prove the assumptions of this lemma so-called
Vapnik-C̃ervonenkis classes are used; see also [VaWe 1996]. This is done in Chapter 2
after an introduction to likelihood-depth. The tests based on simplicial likelihood-depth
are established in Section 2.2. In situations, where the maximum likelihood-depth esti-
mator is biased the simplicial depth is a non degenerated U-statistic, so its distribution
is especially known. But for some hypotheses the tests must be corrected, too. We de-
termine this correction, examine the asymptotic power of the corrected tests and show
that the correction improves the power of the test. Furthermore, we prove consistency of
the tests.

In the second part of this work the results of Chapter 2 are used in three different situa-
tions. We start in Chapter 3 with the Weibull distribution and develop robust estimators
for uncensored and type-I right-censored data with fixed censor time. Especially, we con-
sider the cases, where one of the two parameters has to be estimated and where both
parameters are unknown. In all cases we prove that the resulting estimators are consis-
tent. The estimation of the two parameters of the Weibull distribution can be done one
after the other, so we can apply the results of Chapter 2. Further, we show in simulation
studies that the new estimators are superior to the maximum likelihood estimators for
contaminated data and that they receive better results than the estimators based on the
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method of medians by He and Fung for censored data, even for data without outliers.
Consistent tests for the shape and scale parameter are given for complete data for both
parameters, considering the other parameter to be known, and in case of the scale param-
eter also for censored data, again considering the shape parameter to be known. These
tests are also compared with different existing methods. Again, simulation studies show
that the new methods are robust and that they also work very well for censored data
unlike the tests based on the method of medians by He and Fung [HeFu 1999].
Copulas and in particular the Gaussian and the Gumbel copula are the matter of Chapter
4. A short introduction to copulas is given in Section 4.1 and the specific definition of
the Gaussian and the Gumbel copula are presented. In both cases we restrict ourselves
to the case of two-dimensional variables. The next two Subsections 4.2 and 4.3 deal with
estimation of and tests for the correlation coefficient, which is the unknown parameter in
case of the two-dimensional Gaussian copula with normal distributed margins. In Section
4.4 and 4.5 we give estimators and tests for the Gumbel copula. For both distributions
we examine in simulation studies the outlier robustness of the new methods and their
behavior for finite sample sizes and compare the new methods to existing procedures.
Moreover, for the Gumbel copula we consider also the case, where the margin distribu-
tions are unknown and have to be estimated first. We see that the estimation has no
influence on the estimator, respectively the power of the tests.

For all three distributions the new estimators and tests are little worse than standard
methods, concerning uncontaminated data. But considering contaminated data and data
with outliers, they are more robust than these standard methods like the maximum
likelihood estimator.

In the Appendix A one of the Glivenko-Cantelli theorems from van der Vaart and Well-
ner [VaWe 1996] and the definitions used there are given. Also we define the Vapnik-
C̃ervonenkis classes and cite the results that show that these classes fulfill the assump-
tions of the Glivenko-Cantelli theorem. Some of the methods are implemented in R, see
[R 2009], and the R source code can be found in the Appendix B.
The symbols used are explained in the List of Symbols on page 209.
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Part I.

General Theory
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2. Likelihood-Depth

We present the likelihood-depth that will be used to develop estimators and tests for an
unknown parameter θ of the density function fθ, known except for θ.

In his work, [Miz 2002], Mizera introduces general definitions of depth. He gives defini-
tions of global, local and tangent depth. The depth shall be a measure of data-analytic
admissibility and is based on the principle of Rousseeuw and Hubert [RH 1999], that says
“the depth of θ is the smallest number of observations that would need to be removed
to make θ a nonfit”. Mizera introduces for this so-called criterial functions for every
observation, such that the lower the value of the criterial function is at θ, the better
θ fits the observation. Müller and Mizera show in their work “Location-Scale Depth”,
[MiMu 2004], that these criterial functions can be based on likelihood-functions. They in-
troduce the likelihood-nonfit, the global and the tangential likelihood-depth. For testing
Müller introduces the simplicial likelihood-depth, see [Mue 2005].

To motivate the use of depth, we will introduce data depth and Tukey’s half space depth,
see [Tuk 1975]. Data depth is a concept to generalize the median to multivariate data.
The median of data x∗ := (x1, . . . , xN), xi ∈ ℝ, i = 1, . . . , N, is lying in the middle of the
data, i.e. for the ordered data x(1), . . . , x(N) the median is defined as

xmed :=





x(N+1
2 ), N odd

1
2

(
x(N2 ) + x(N2 +1)

)
, N even

.

Now for univariate data the data depth of a location parameter µ in the data is defined
as the minimum of the part of the data that is smaller than or equal to µ and the part
of the data that is greater than of equal to µ, i.e.

d(µ, x∗) :=
1

N
min (♯{n;xn ≤ µ}, ♯{n;xn ≥ µ}) .

The median is that parameter that maximizes the data depth. But what is the middle of
the data for multivariate data? To generalize the concept of data depth to multivariate
data, Tukey introduces in [Tuk 1975] the half space depth. For a location parameter
µ in multivariate data z∗ = (z1, . . . , zN) the half space depth is the minimum part of
observations that lie in a half space containing µ, i.e.

dH(µ, z∗) :=
1

N
min
H

♯ {n; zn lies in a half space H containing µ} .

The Tukey median are all parameter with maximum half space depth. To generalize the
half space depth to non-location parameters, the concept of nonfit by Rousseeuw and
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Hubert [RH 1999] is used. An equivalent definition of the half space depth is given as the
minimum part of observations that must be omitted so that µ becomes a nonfit in the
data left, i.e. we can find a parameter µ̃ that has a smaller distance to all observations left.
By generalizing the nonfit, respectively the “distance”, the half space depth is generalized
to non-location parameters. One generalization are the likelihood-depths.

Here in this work we will always consider identically and independently distributed (i.i.d.)
m-dimensional variables Z1, . . . , ZN . The density fθ of Zi shall be known except for the
parameter θ ∈ ℝq. We assume that fθ(·) is continuous, f(·)(z) uniformly continuous,
differentiable and that the partial derivatives are continuous.

Notations. We will use the following notations throughout the whole work: Variables are
always denoted with capital letters, their realizations with lower case, for (Z1, . . . , ZN) we
write Z∗,N or Z∗ (and z∗,N or z∗ for the data).

The density function of a variable Zn is called fθ, the likelihood-function L(θ, zn), and
h(θ, zn) = lnL(θ, zn) is the log-likelihood-function.

If θ ∈ ℝ, we will write h′(θ, z) instead of ∇θh(θ, z) = ( ∂
∂θ1
h(θ, z), . . . , ∂

∂θq
h(θ, z)).

We define a nonfit based on the likelihood-function, see e.g. Mizera [Miz 2002] or Mizera
and Müller [MiMu 2004]:

Definition 2.1. We call θ ∈ ℝq a likelihood-nonfit in z∗ = (z1, . . . , zN), if there exists
θ′ 6= θ such that

L(θ′, zn) > L(θ, zn) for all n = 1, . . . , N. (2.1)

We use an equivalent condition to (2.1):

h(θ′, zn) > h(θ, zn) for all n = 1, . . . , N. (2.2)

Now we define the global likelihood-depth of a parameter in a dataset, similar to Mizera
[Miz 2002] and Mizera and Müller [MiMu 2004]:

Definition 2.2. The global likelihood-depth of a parameter θ within observations z∗ =
(z1, . . . , zN) is the minimal number m of zi1 , . . . , zim that has to be removed so that θ
becomes a likelihood-nonfit in the remaining data, i.e. θ is a likelihood-nonfit within
{z1, . . . , zN} \ {zi1 , . . . , zim}.

In large datasets the calculation of the global likelihood-depth can be complicated. A
sufficient condition for θ being a likelihood-nonfit is, that there exists an u ∈ ℝq such that
∇θh(θ, zn)Tu > 0 for all n = 1, . . . , N , i.e. the gradients of the log-likelihood-function all
lie in one subspace with dimension ≤ q. This leads to the tangent likelihood-depth as in
Mizera and Müller [MiMu 2004] which is easier to handle. Müller, see [Mue 2005], also
introduces the simplicial likelihood-depth:
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Definition 2.3. (i) The (tangent) likelihood-depth of θ ∈ ℝq within z∗ = (z1, . . . , zN)
is

dT (θ, z∗) :=
1

N
inf

u6=0,u∈ℝq
♯{n;uT∇θh(θ, zn)

T ≤ 0}.

Recall that h(θ, z) = lnL(θ, z) = ln fθ(z).

(ii) The simplicial likelihood-depth of θ ∈ ℝq within observations z∗ := (z1, . . . , zN) is
defined as

dS(θ, z∗) :=

(
N

q + 1

)−1

♯{{n1, . . . , nq+1} ⊂ {1, . . . , N}; dT (θ, (zn1 , . . . , znq+1)) > 0},

i.e. the number of q + 1-subsets in which θ has a positive tangent likelihood-depth.

In the parameter-space Θ ⊂ ℝq, an estimator for the parameter θ can be chosen as the
one that has maximum (tangent) likelihood-depth.

We are going to treat especially one- and two-dimensional parameters θ, where the case
of two-dimensional parameters θ will be traced back to the one-dimensional case.

If θ ∈ ℝ, the depths are calculated by just counting the observations zn, n ∈ {1, . . . , N},
for which ∂

∂θ
h(θ, zn) = h′(θ, zn) is positive, negative and zero respectively. These numbers

will be denoted by

N θpos := ♯{n;h′(θ, zn) > 0}, N θneg := ♯{n;h′(θ, zn) < 0} and N θ0 := ♯{n;h′(θ, zn) = 0}.

In this notation we have the following lemma.

Lemma 2.4. The (tangent) likelihood-depth of θ ∈ ℝ in data z∗ is

dT (θ, z∗) =
1

N

(
min(N θpos, N

θ
neg) +N θ0

)
.

Proof: See the discussion above this lemma. □

Calculating the simplicial likelihood-depth means determining the tangent depth of each
pair of observations (zi1 , zi2), i1, i2 ∈ {1, . . . , N}, i1 6= i2, where the tangent likelihood-
depth of θ within two observations x, y is non-zero only if h′(θ, x)h′(θ, y) ≤ 0.

Lemma 2.5. The simplicial likelihood-depth of θ ∈ ℝ in data z∗ = (z1, . . . , zN)T , zi ∈
ℝm, i = 1, . . . , N , is

dS(θ, z∗) =
1(
N
2

)(N θposN
θ
neg +N θposN

θ
0 +N θnegN

θ
0 +

(
N θ0
2

)
)

=
2

N(N − 1)
(N θposN

θ
neg +N θposN

θ
0 +N θnegN

θ
0 +

(
N θ0
2

)
).

9



Proof: See the lines above this lemma. □

For simplification we assume N to be even in this work. With the last to lemmas it is
obvious that the likelihood-depth and the simplicial likelihood-depth are maximized by
the parameter θ for which the number of observations x ∈ {z1, . . . , zN} with h′(θ, x) ≥ 0
is equal to the number of observations y ∈ {z1, . . . , zN} with h′(θ, y) ≤ 0.

2.1. Estimators

Consider Z∗ = (Z1, . . . , Zn) i.i.d. with continuous fθ known except for θ ∈ ℝ, resp.
later also for θ ∈ ℝq, q ≥ 1, but we start with considering one-dimensional θ. We use
the likelihood-depth to define a “good” robust estimator for θ. As the depth shall be a
measure for how well a parameter fits the data, the first idea is to choose that parameter
θ ∈ Θ as an estimator, which has maximum depth.

Definition 2.6. The maximum likelihood-depth estimator is the parameter θ̃ which has
maximum depth , i.e.

θ̃ ∈ arg max dT (θ, z∗),

where x′ ∈ arg maxθ f(x) iff f(x′) = maxx∈D f(x), D being the domain of f.

We already discussed in the end of the last subsection that the likelihood-depth is maxi-
mized by the parameter θ with

♯{zn;h′(θ, zn) ≥ 0} = ♯{zn;h′(θ, zn) ≤ 0} =
N

2
,

when N is considered to be even. As the density function is continuous, the likelihood-
depth is (asymptotically, considering N θ0 = 0) maximized by that parameter θ̃ for which

N θ̃pos = N θ̃neg. The law of large numbers provides 1
N
N θ̃pos

θ→ Pθ(h′(θ̃, Z) > 0) and 1
N
N θ̃neg

θ→
Pθ(h′(θ̃, Z) < 0) as N →∞, if θ denotes the underlying parameter. Hence, the estimator
θ̃ is asymptotically unbiased, if Pθ̃(h

′(θ̃, Z) ≥ 0) = 1
2

holds. Unfortunately this is not
always the case.

To simplify the presentation we introduce some abbreviations.

Notations. The set, where h′(θ, z) = ∂
∂θ

lnL(θ, z) is positive or zero (negative or zero),
will be denoted by T θpos (T θneg), i.e.

T θpos := {z ∈ ℝm;h′(θ, z) ≥ 0} (T θneg = {z ∈ ℝm;h′(z, θ) ≤ 0}).

With this we can define

pθ,θ′ := Pθ(T
θ′

pos) := Pθ(Z ∈ T θ
′

pos) = 1− Pθ(T θneg) and pθ := pθ,θ.
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The asymptotic mean value for the depth of a parameter θ′ in data with underlying
distribution θ is the minimum of pθ,θ′ and 1 − pθ,θ′ . If pθ 6= 1

2
holds, then there exists

s(θ) 6= θ with

pθ,s(θ) = Pθ(T
s(θ)
pos ) =

1

2
. (2.3)

This s(θ) is the asymptotic value for the parameter with maximum depth in a dataset
with density fθ.

For one-dimensional θ the next proposition shows that the maximum likelihood-depth
estimator is a consistent estimator for s(θ). But before we note it, we arrange some more
abbreviations.

Notations. Let be θ0 the parameter of the underlying distribution. With λ±N we shorten
the part of observations for that h′(θ, z) is non-negative or non-positive respectively, i.e.

λ+
N(θ, z∗,N) := 1

N
♯{n;h′(θ, zn) ≥ 0}, λ−N(θ, z∗,N) := 1

N
♯{n;h′(θ, zn) ≤ 0}.

Furthermore λ±θ0 denotes the probability, that for one data h′(θ, ·) is non-negative or non-
positive respectively, i.e.

λ+
θ0

(θ) := Pθ0(h′(θ, Z) ≥ 0) = pθ0,θ, λ−θ0(θ) = Pθ0(h′(θ, Z) ≤ 0).

Because of the continuity of fθ, it is obvious that λ+
θ0

(θ) = 1− λ−θ0(θ).

Proposition 2.7. Let be

dT (θ, Z∗,N ) = min{λ+
N(θ, Z∗,N), λ−N(θ, Z∗,N)}

and θ̃N(Z∗,N) = arg maxθ dT (θ, Z∗,N ). If λ+
N(·, Z∗,N) is decreasing, λ+

θ0
(·) is strictly de-

creasing, λ−N(·, Z∗,N) is increasing and λ−θ0(·) is strictly increasing with

λ+
θ0

(s(θ0)) =
1

2
= λ−θ0(s(θ0)), (2.4)

then θ̃N(Z∗,N) tends to s(θ0) almost surely, as N tends to infinity.

Proof: The strong law of large numbers provides

lim
N→∞

λ±N(θ, Z∗,N ) = λ±θ0(θ) almost surely for all θ ∈ Θ. (2.5)

Let be ε > 0. Since λ+
θ0

and λ−θ0 are monotone functions satisfying (2.4), there exists δ > 0
with

λ+
θ0

(s(θ0) + ε) <
1

2
− δ,

λ+
θ0

(s(θ0)− ε) >
1

2
+ δ,

λ−θ0(s(θ0) + ε) >
1

2
+ δ,

λ−θ0(s(θ0)− ε) <
1

2
− δ.
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(2.5) implies that

Aε :=





|λ±N(s(θ0)± ε, Z∗,N(ω))− λ±θ0(s(θ0)± ε)| < δ
3

ω ∈ Ω;
and |λ±N(s(θ0), Z∗,N(ω))− λ±θ0(s(θ0))| < δ

3
for almost all N





has probability one.

Let ω ∈ Aε. Then there exists N0, such that for N ≥ N0:

λ+
N(s(θ0) + ε, Z∗,N(ω)) <

1

2
− 2

3
δ,

λ+
N(s(θ0), Z∗,N(ω)) ∈

(
1

2
− 1

3
δ,

1

2
+

1

3
δ
)
, (2.6)

λ+
N(s(θ0)− ε, Z∗,N(ω)) >

1

2
+

2

3
δ,

and

λ−N(s(θ0) + ε, Z∗,N(ω)) >
1

2
+

2

3
δ,

λ−N(s(θ0), Z∗,N(ω)) ∈
(

1

2
− 1

3
δ,

1

2
+

1

3
δ
)
, (2.7)

λ−N(s(θ0)− ε, Z∗,N(ω)) <
1

2
− 2

3
δ.

Since λ+
N(·, Z∗,N(ω)) and λ−N(·, Z∗,N(ω)) are monotone decreasing resp. increasing we have

λ+
N(θ, Z∗,N(ω)) <

1

2
− 2

3
δ for all θ > s(θ0) + ε,

λ−N(θ, Z∗,N(ω)) <
1

2
− 2

3
δ for all θ < s(θ0)− ε.

Thus,

min{λ+
N(θ, Z∗,N (ω)), λ−N(θ, Z∗,N(ω))} < 1

2
− 2

3
δ

for all θ /∈ [s(θ0)− ε, s(θ0) + ε]. On the other hand (2.6) and (2.7) imply

min{λ+
N(θ, Z∗,N (ω)), λ−N(θ, Z∗,N(ω))} > 1

2
− 1

3
δ

for θ = s(θ0). Therefore θ̃N(Z∗,N(ω)) ∈ [s(θ0)− ε, s(θ0) + ε] for N ≥ N0.

Let Bε :=
{
ω ∈ Ω; θ̃N(Z∗,N(ω)) ∈ [s(θ0)− ε, s(θ0) + ε] for almost all N

}
. Hence it fol-

lows that

1 = Pθ0(Aε) ≤ Pθ0(Bε)
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for all ε > 0. In particular, we have

1 = lim
k→∞

Pθ0
(
B 1
k

)
= Pθ0

( ∞⋂

k=1

B 1
k

)

= Pθ0

({
ω ∈ Ω;∀k ∈ ℕ ∃N0 ∀N ≥ N0 : |θ̃N(Z∗,N(ω))− s(θ0)| <

1

k

})

= Pθ0

({
ω ∈ Ω; lim

N→∞
θ̃N(Z∗,N(ω)) = s(θ0)

})
,

which completes the proof. □

Even if λ±N and λ±θ0 are not monotone, the next theorem yields the consistency of the
estimators. Here we use the definition of outer almost surely convergence, that can be
found in Definition A.4 on page 180, and the definition of outer probability, which is
given in Definition A.1 on page 179.

Proposition 2.8. Let be θ̃N := arg maxθ(dT (θ, z∗,N)) and

λ±N(·, Z∗,N) converge uniformly (outer) almost surely to λ±θ0(·)

as N →∞. Furthermore, let λ±θ0 be such that for all ε > 0 there exists δ > 0, such that

λ−θ0(θ) <
1

2
− δ for θ < s(θ0)− ε

and

λ+
θ0

(θ) <
1

2
− δ for θ > s(θ0) + ε

(or λ−θ0(θ) < 1
2
− δ for θ > s(θ0) + ε and λ+

θ0
(θ) < 1

2
− δ for θ < s(θ)− ε), where as before

s(θ0) is such that λ+
θ0

(s(θ0)) = 1
2

= λ−θ0(s(θ0)).

Then θ̃N converges to s(θ) (outer) almost surely, as N tends to infinity.

Proof: We assume λ−θ0(θ) < 1
2

for θ < s(θ0) and λ+
θ0

(θ) < 1
2

for θ > s(θ0). The proof of
the other case works analogously. Let be ε > 0 and δ > 0 such that λ+

θ0
(θ) < 1

2
− δ for

θ > s(θ0) + ε and λ−θ0(θ) < 1
2
− δ for θ < s(θ0)− ε. As λ±N converges (outer) uniformly to

λ±θ0 ,

A :=

{
ω ∈ Ω; sup

θ
|λ±N(θ, Z∗,N (ω))− λ±θ0(θ)| < δ

3
for almost all N

}

has outer probability one, i.e. P ∗θ0(A) = 1. Let ω ∈ A. There exists N0 such that we have
for N ≥ N0:

λ+
N(s(θ0), Z∗,N(ω)) ∈

(
1

2
− 1

3
δ,

1

2
+

1

3
δ
)
, (2.8)

λ−N(s(θ0), Z∗,N(ω)) ∈
(

1

2
− 1

3
δ,

1

2
+

1

3
δ
)
. (2.9)
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Further, there is N1 for every θ, such that for all N ≥ N1,

|λ+
N(θ, Z∗,N(ω))− λ+

θ0
(θ)| < δ

3
,

|λ−N(θ, Z∗,N(ω))− λ−θ0(θ)| < δ

3
.

Consequently, for N ≥ max(N0, N1), it holds

λ+
N(θ, Z∗,N(ω)) <

1

2
− δ +

1

3
δ for all θ > s(θ0) + ε

and

λ−N(θ, Z∗,N(ω)) <
1

2
− δ +

1

3
δ for all θ < s(θ0)− ε.

This leads to

min{λ+
N(θ, Z∗,N (ω)), λ−N(θ, Z∗,N(ω))} < 1

2
− 2

3
δ

for θ /∈ [s(θ0)− ε, s(θ0) + ε].

For θ = s(θ0), (2.8) and (2.9) show

min{λ+
N(θ, Z∗,N (ω)), λ−N(θ, Z∗,N(ω))} > 1

2
− 1

3
δ,

hence θ̃N ∈ [s(θ0)− ε, s(θ0) + ε] for N ≥ max(N0, N1). Let

Bε :=
{
ω ∈ Ω; θ̃N(Z∗,N(ω)) ∈ [s(θ0)− ε, s(θ0) + ε] for almost all N

}
.

Thus, it follows that

1 = P ∗θ0(A) ≤ P ∗θ0(Bε)

for all ε > 0. In particular, we have

1 = lim
k→∞

P ∗θ0

(
B 1
k

)
= P ∗θ0

( ∞⋂

k=1

B 1
k

)

= P ∗θ0

({
ω ∈ Ω;∀k ∈ ℕ ∃N0 ∀N ≥ N0 : |θ̃N(Z∗,N(ω))− s(θ0)| <

1

k

})

= P ∗θ0

({
ω ∈ Ω; lim

N→∞
θ̃N(Z∗,N(ω)) = s(θ0)

})
,

which completes the proof. □

To show uniform convergence of λ±N we can use a generalization of the Glivenko-Cantelli-
Lemma. This can be found in Appendix A. A special class that fulfills the condition of
this Theorem A.8 on page 181 are the Vapnik-C̃ervonenkis classes, or simply VC-classes,
see Definition A.11 on page 182 and Theorem A.14 in the Appendix A.

An example for a VC-class is given by C = {T θpos; θ ∈ Θ}, if T θpos ⊂ T θ
′

pos for θ′ < θ:
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Proposition 2.9. Let be T θpos ⊂ T θ
′

pos for θ′ < θ. C := {T θpos; θ ∈ Θ} is a VC-class. Thus,

λ±N(·, Z∗,N) converge uniformly outer almost surely to λ±θ0(·).

Proof: C shatters no set of two points {x1, x2}, i.e. V (C ) = 2: Let be without loss of
generality x1 ∈ T θ1pos, x2 ∈ T θ2pos with θ1 < θ2. Then x2 ∈ T θ2pos ⊂ T θ1pos. Therefore, there
exists no C ∈ C such that C ∩ {x1, x2} = {x1}. □

By this theory we have a method to prove uniform convergence of λ±N . It is used later on
in the case of the Gaussian copula.

When the density-function is not only depending on one but on more parameters, the
following lines show how we can prove consistency also in these cases, using the same
methods as before. If θ = (θ1, . . . , θq) is multivariate and the depth can be calculated
component wise and the parameter with maximum depth can also be found component
wise, i.e. θ̃N(z∗,N) = (θ̃1, . . . , θ̃q) with θ̃i the parameter with maximum likelihood-depth,
see Definition 2.6 on page 10, i = 1, . . . , q, we get the following

Proposition 2.10. Let be λi,+N (θ, z∗) the part of observations, such that ∂
∂θi

ln fθ(·) is

non-negative and λi,−N (θ, z∗) the part of observations, such that ∂
∂θi

ln fθ(·) is non-positive.
Further let be

diT (z∗,N) = min{λi,+N (θi, z∗,N), λi,−N (θi, z∗,N)}

the likelihood-depth of θi and

λi,+θ0 (θi) = Pθ0(T θipos) := Pθ0(
∂

∂θi
ln fθ(Z) ≥ 0),

λi,−θ0 (θi) := Pθ0(T θineg) = Pθ0(
∂

∂θi
ln fθ(Z) ≤ 0),

i = 1 . . . , q. If for all i = 1, . . . , q, λi,+N (·, Z∗,N) is decreasing, λi,+θ0 (·) is strictly decreasing

and λi,−N (·, Z∗,N) is increasing and λi,−θ0 (·) is strictly increasing or if λi,±N and λi,±θ0 fulfill

the assumptions of Proposition 2.8 and if λi,+θ0 (si(θ0)) = 1
2

= λi,−θ0 (si(θ0)) with s(θ0) =
(s1(θ0), . . . , sq(θ0))T , then θ̃iN(Z∗,N) converges to si(θ0) (outer) almost surely as N →∞
for all i = 1, . . . , q, i.e.

θ̃N(Z∗,N) = (θ̃1
N(Z∗,N), . . . , θ̃qN(Z∗,N))→ s(θ0), for N →∞,

(outer) almost surely.

Proof: With the strong law of large number we have for i = 1, . . . , q

lim
N→∞

λi,±N (θ, Z∗,N) = λi,±θ0 (θ)

almost surely for all θ ∈ Θ. Now use Proposition 2.7 resp. Proposition 2.8 component
wise. □
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If s(θ0) 6= θ0, we need a correction of the estimator. The next proposition shows, in which
cases such a correction exists so that the corrected estimator is still consistent. We use
the notations: θ0 = (θ0,1, . . . , θ0,q)T , θ = (θ1, . . . , θq)T and

Λ(θ0, θ) :=
(
λ1,+
θ0

(θ1)−
1

2
, . . . , λq,+θ0 (θq)−

1

2

)T
.

Proposition 2.11. Assume additionally to the assumptions of the Proposition 2.10 that
Λ is continuously differentiable in a neighborhood N of (θ0, s(θ0)) and that

∂

∂θ
Λ(θ, s(θ0))

∣∣∣∣∣
θ=θ0

and
∂

∂θ
Λ(θ0, θ)

∣∣∣∣∣
θ=s(θ0)

are regular. Then there exists a neighborhood U around s(θ0) and a neighborhood V around
θ0 and a continuous s−1 : U → V such that

s−1(θ̃N(Z∗,N)) −→
N→∞

θ0 almost surely.

Proof: Proposition 2.10 provides Λ(θ0, s(θ0)) = 0 and θ̃N(Z∗,N) → s(θ0) almost surely.
The implicit function theorem provides a neighborhood V of θ0 and a neighborhood
U of s(θ0) and unique continuous functions f : V → U and f−1 : U → V such that
f(θ0) = s(θ0), f−1(s(θ0)) = θ0, Λ(θ, f(θ)) = 0 for all θ ∈ V and Λ(f−1(θ), θ) = 0
for all θ ∈ U . In particular Λ(θ, f(θ)) = Λ(f−1(f(θ)), f(θ)) for all θ ∈ V, such that
f−1(f(θ)) = θ for all θ ∈ V . Since f(θ0) = s(θ0) we can set s = f on V and s−1 = f−1

on U . Hence, s−1 is the inverse function of s. Since s−1 is continuous we have with
θ̃N(Z∗,N)→ s(θ0), s−1(θ̃N(Z∗,N))→ s−1(s(θ0)) = θ0. □

We summarize the results in the following theorem.

Theorem 2.12. Let be s−1 : Θ → Θ, s−1(s(θ)) = θ and the conditions of Proposition
2.10 and Proposition 2.11 be satisfied. Then the estimator based on the likelihood-depth
given by θ̂ = s−1(arg max dT (θ, z∗)) is a consistent estimator for θ.

We call this new estimator likelihood-depth estimator (LDE).

2.2. Tests

Let still Z1, . . . , ZN be i.i.d. with (continuous) density function fθ, θ ∈ Θ ⊂ ℝ. The aim
of this section is to find tests for the one-dimensional parameter θ for hypotheses of type
H0 : θ ∈ Θ0 against H1 : θ /∈ Θ0.

The likelihood-depth of θ in {z1, z2} is asymptotically, assuming N θ0 =0, recall that N θ0
denotes the number of observations for that h′(θ, ·) = 0, according to Lemma 2.4

dT (θ, z∗ = (z1, z2)) = 1T θpos(z1)1T θneg(z2) + 1T θneg(z1)1T θpos(z2),
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where 1A denotes the indicator function of A, namely 1A(x) =

{
1 x ∈ A
0 x /∈ A . The simpli-

cial likelihood-depth can be written as

dS(θ, z∗) =
1(
N
2

)
∑

1≤n1<n2≤N
dT (θ, (zn1 , zn2)),

thus, it is the U-statistic belonging to the tangent likelihood-depth, which is the symmet-
ric kernel. The distribution of the U-statistic is especially known, if it is non-degenerated.
Then, the theorem of Hoeffding, see e.g. Witting, Mülller-Funk [WMF 1995], states:

Theorem 2.13 (Hoeffding). Let be X1, . . . , Xn i.i.d. with distribution P and Un the
U-statistic with a symmetric kernel ψ ∈ L2(P

(m) = ⊗P ) of length m. Then with γ :=
E(ψ(X1, . . . , Xm)), ψ1(x1) := E(ψ(X1, . . . , Xm)|X1 = x1) and σ2

1 := Var(ψ1(X1)) (all
dependent on F but not on n):

√
n(Un − γ)

D→ X ∼ N (0,m2σ2
1).

We apply this theorem to define new asymptotic tests with level α for all θ ∈ Θ with
pθ = Pθ(T

θ
pos) 6= 1

2
. First, we define a test statistic and show with the help of Hoeffding’s

theorem, that it is asymptotically normal distributed. Then, we define different tests.

Lemma 2.14. Let be θ ∈ Θ with pθ 6= 1
2

and

T (θ, z∗) :=
√
N

2
N(N−1)

∑
1≤n1<n2≤N dT (θ, (zn1 , zn2))− 2pθ(1− pθ)

2
√

(1− pθ)pθ(1− 2pθ)2
.

Then, it holds T (θ, Z∗,N)
D→ X ∼ N (0, 1).

Proof: Let θ ∈ Θ with pθ 6= 1
2
. It holds

Pθ(dT (θ, Z∗ = (Z1, Z2)) = 1) = 2pθ(1− pθ),
Pθ(dT (θ, Z∗ = (Z1, Z2) = 1|Z1 ∈ T θpos) = Pθ(Z2 ∈ T θneg) = (1− pθ) 6= 1

2
,

Pθ(dT (θ, Z∗ = (Z1, Z2) = 1|Z1 ∈ T θneg) = Pθ(Z2 ∈ T θpos) = pθ 6= 1
2
,

and therefore

Pθ(dT (θ, Z∗ = (Z1, Z2) = 1|Z1 = z1)) = (1− pθ)1T θpos(z1) + pθ1T θneg(z1) 6= 1
2

with probability one. To show that T (θ, Z∗,N) is asymptotically normal distributed, the
theorem of Hoeffding is used. As already mentioned, the simplicial depth is a U-statistic
with likelihood-depth as kernel. In this situation the emergent quantities are:

ψθ(z1, z2) := 1{dT (θ,z∗=(z1,z2))=1}(z1, z2) = dT (θ, z∗ = (z1, z2)),

γθ := E(ψθ(Z1, Z2)) = E(1T θpos(Z1)1T θneg(Z2) + 1T θneg(Z1)1T θpos(Z2))

= 2pθ(1− pθ),
ψ1(z1) := E(ψθ(Z1, Z2)|Z1 = z1) = (1− pθ)1T θpos(z1) + pθ1T θneg(z1)
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and

σ2
θ := Var(ψ1(Z1)) = Var((1− pθ)1T θpos(Z1) + pθ1T θneg(Z1))

= Var((1− pθ)1T θpos(Z1)) + Var(pθ1T θneg(Z1))

+2Cov((1− pθ)1T θpos(Z1), pθ1T θneg(Z1))

= (1− pθ)3pθ + p3
θ(1− pθ) + 2pθ(1− pθ)[

=0︷ ︸︸ ︷
E(1T θpos(Z1)1T θneg(Z1))

−E(1T θpos(Z1))E(1T θneg(Z1))]

= (1− pθ)3pθ + p3
θ(1− pθ)− 2pθ(1− pθ)pθ(1− pθ)

= (1− pθ)pθ((1− pθ)2 + p2
θ − 2pθ(1− pθ))

= (1− pθ)pθ(1− 2pθ)
2.

The requirements of the theorem of Hoeffding are fulfilled as the U-statistic is not degen-
erated, because ψ1(z1) is not independent of z1. We get

√
N

1(
N
2

)
∑

1≤n1<n2≤N
(dT (θ, (Zn1, Zn2))− γθ) L→ N (0, 4σ2

θ),

i.e. the test statistic defined as

T (θ, z∗) =
√
N

2
N(N−1)

∑
1≤n1<n2≤N dT (θ, (zn1, zn2))− γθ

2σθ

is approximately normal distributed with mean µ = 0 and variance σ2 = 1. □

Theorem 2.15. Let be the test statistic T (θ, z∗) as in Lemma 2.14 and pθ 6= 1
2

for θ ∈ Θ.
The test

ϕ(z∗) := 1{supθ∈Θ0
T (θ,z∗)<Φ−1(α)}(z∗)

is an asymptotic α-level test for H0 : θ ∈ Θ0 against H1 : θ /∈ Θ0.

Proof: Let be θ ∈ Θ0, then

Pθ(ϕ(Z∗,N) = 1) = Pθ( sup
θ̃∈Θ0

T (θ̃, Z∗,N) < Φ−1(α))

≤ Pθ(T (θ, Z∗,N) < Φ−1(α)) −→
N→∞

Φ(Φ−1(α)) = α,

what shows that ϕ has asymptotically level α. □

This theorem leads to various tests based on likelihood-depth, which are given in the next
two corollaries.
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Corollary 2.16. Let be pθ 6= 1
2
, then

ϕ0,=
θ0

(z∗) := 1{T (θ0,z∗)<Φ−1(α)}(z∗)

satisfies lim
N→∞

Pθ0
(
ϕ0,=
θ0

(Z∗,N) = 1
)
≤ α, i.e. is an asymptotic α-level test for H0 : θ = θ0

against H1 : θ 6= θ0.

Corollary 2.17. If pθ 6= 1
2

for θ ∈ Θ, it holds that

ϕ0,≥
θ0

(z∗) := 1{supθ≥θ0 T (θ,z∗)<Φ−1(α)}(z∗)

is a test with asymptotic level α for H0 : θ ≥ θ0 against H1 : θ < θ0. Also

ϕ0,≤
θ0

(z∗) := 1{supθ≤θ0 T (θ,z∗)<Φ−1(α)}(z∗)

is an asymptotic α-level test for H0 : θ ≤ θ0 against H1 : θ > θ0.

We obtain asymptotic α-level tests for hypotheses like H0 : θ = θ0 and H0 : θ ≤ θ0, if
pθ 6= 1

2
for θ ∈ Θ. But pθ 6= 1

2
also means that the simplicial depth and thereby the test

statistic reach their maximum for s(θ) 6= θ with Pθ(T
s(θ)
pos ) = 1

2
= Pθ(T

s(θ)
neg ); see Section

2.1. If s(θ) > θ, then we expect that the power of the test for H0 : θ ≤ θ0 is quite good,
but the test for H0 : θ ≥ θ0 may have bad power. Since in the asymptotic case the test
statistic is maximal for s(θ) > θ, it can happen that the hypothesis H0 : θ ≥ θ0 is falsely
not rejected for θ < θ0. For s(θ) < θ it is just the other way around, i.e. the power is
supposed to be good for H0 : θ ≥ θ0 and bad for H0 : θ ≤ θ0. A correction of the power,
if s(θ) > θ of the test for H0 : θ ≥ θ0 and if s(θ) < θ of the test for H0 : θ ≤ θ0 is needed.

The idea to improve the power is to find c1
α(θ0), resp. c2

α(θ0), as the maximum, resp.
the minimum, value θ, such that under θ0 the probability, that the test statistic takes a
value smaller than the α-quantile of the standard normal distribution, is asymptotically
smaller than α.

Definition 2.18. We define

c1
α(θ0) := max{θ; lim

N→∞
Pθ0

(
T (θ, Z∗,N) < Φ−1(α)

)
≤ α}

and

č1
α(θ0) := min{θ; lim

N→∞
Pθ
(
T (θ0, Z∗,N ) < Φ−1(α)

)
≤ α},

respectively

c2
α(θ0) := min{θ; lim

N→∞
Pθ0

(
T (θ, Z∗,N) < Φ−1(α)

)
≤ α}

and

č2
α(θ0) := max{θ; lim

N→∞
Pθ
(
T (θ0, Z∗,N) < Φ−1(α)

)
≤ α}.
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The next definition presents the new tests.

Definition 2.19. Let be pθ 6= 1
2

for all θ ∈ Θ and T (θ, z∗) as in Lemma 2.14. Recall

the definition of ϕ0,=
θ0

(z∗), ϕ
0,≥
θ0

(z∗) and ϕ0,≤
θ0

(z∗) of Corollary 2.16 and Corollary 2.17. If

s(θ) > θ, we use instead of ϕ0,=
θ0

and ϕ0,≥
θ0

the following two corrected tests:

ϕ=
θ0

:= max{1{T (θ0,z∗)<Φ−1(α2 )}(z∗), 1{T (c1α
2

(θ0),z∗)<Φ−1(α2 )}(z∗)}

and

ϕ≥θ0(z∗) := 1{sup
θ≥c1α(θ0)

T (θ,z∗)<Φ−1(α)}(z∗).

If s(θ) < θ, we use c2
α to define alternative corrected tests for ϕ0,=

θ0
and ϕ0,≤

θ0
:

ϕ=
θ0

:= max{1{T (θ0,z∗)<Φ−1(α2 )}(z∗), 1{T (c2α
2

(θ0),z∗)<Φ−1(α2 )}(z∗)}

and

ϕ≤θ0(z∗) := 1{sup
θ≤c2α(θ0)

T (θ,z∗)<Φ−1(α)}(z∗).

The remaining part of this section deals with the asymptotic power of the tests defined
above. We make some more assumptions and we start with showing that the corrected
tests are asymptotic α-level tests.

Theorem 2.20. If pθ 6= 1
2

for all θ ∈ Θ and c1
α(·) is increasing, then the test ϕ≥θ0 is an

asymptotic α-level test for H0 : θ ≥ θ0 against H1 : θ < θ0.

Proof: Let be θ ≥ θ0. We get

lim
N→∞

Pθ
(
ϕ≥θ0(Z∗,N) = 1

)
= lim

N→∞
Pθ


 sup
θ̃≥c1α(θ0)

T (θ̃, Z∗,N) < Φ−1(α)




≤ lim
N→∞

Pθ


 sup
θ̃≥c1α(θ)

T (θ̃, Z∗,N) < Φ−1(α)




≤ Pθ
(
T (c1

α(θ), Z∗,N) < Φ−1(α)
)

≤ α.

□

Theorem 2.21. If pθ 6= 1
2

for all θ ∈ Θ and c2
α(·) is increasing, then the test ϕ≤θ0 is an

asymptotic α-level test for H0 : θ ≤ θ0 against H1 : θ > θ0.
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Proof: Let be θ ≤ θ0. Then c2
α(θ) ≤ c2

α(θ0) and

lim
N→∞

Pθ
(
ϕ≤θ0(Z∗,N) = 1

)
= lim

N→∞
Pθ


 sup
θ̃≤c2α(θ0)

T (θ̃, Z∗,N) < Φ−1(α)




≤ lim
N→∞

Pθ


 sup
θ̃≤c2α(θ)

T (θ̃, Z∗,N) < Φ−1(α)




≤ lim
N→∞

Pθ
(
T (c2

α(θ), Z∗,N) < Φ−1(α)
)

≤ α.

□

Further we have

Theorem 2.22. If pθ 6= 1
2

for all θ ∈ Θ, then ϕ=
θ0

is a test with asymptotic level α.

Proof: Let be ϕ=
θ0

(z∗) = max{1{T (θ0,z∗)<Φ−1(α2 )}(z∗), 1{T (c1α
2

(θ0),z∗)<Φ−1(α2 )}(z∗)}. It holds

lim
N→∞

Pθ0
(
ϕ=
θ0

(Z∗,N) = 1
)

= lim
N→∞

Pθ0

(
T (θ0, Z∗,N) < Φ−1

(
α

2

)
∨ T (c1

α
2
(θ0), Z∗,N) < Φ−1

(
α

2

))

≤ lim
N→∞

Pθ0

(
T (θ0, Z∗,N) < Φ−1

(
α

2

))
+ lim
N→∞

Pθ0

(
T (c1

α
2
(θ0), Z∗,N) < Φ−1

(
α

2

))

≤ α

2
+
α

2
= α.

The proof works analogously for ϕ=
θ0

= max{1{T (θ0,z∗)<Φ−1(α2 )}(z∗), 1{T (c2α
2

(θ0),z∗)<Φ−1(α2 )}(z∗)}.

□

Next we show that the tests ϕ0,≥
θ0

for θ < s(θ), resp. ϕ0,≤
θ0

for θ > s(θ), and ϕ0,=
θ0

have a bad
asymptotic power and that the the asymptotic power of the alternative/corrected tests
ϕ≥θ0 , ϕ

≤
θ0
, ϕ=
θ0

is really improved in comparison to the old ones and that they are consistent.
We make use of the following three lemmas.

Lemma 2.23. For Z1, . . . , ZN i.i.d., Zi ∼ Fθ′, i = 1, . . . , N , pθ′,θ′′ = Pθ′(T
θ′′

pos) 6= 1
2
, it

holds

√
N
dS(θ

′′, Z∗,N)− 2pθ′,θ′′(1− pθ′,θ′′)
2
√
pθ′,θ′′(1− pθ′,θ′′)(1− 2pθ′,θ′′)2

D→ X ∼ N (0, 1).

Proof: The proof is a direct consequence of the theorem of Hoeffding and the proof of
Lemma 2.14. We just have to replace pθ = pθ,θ by pθ′,θ′′ . □

Lemma 2.24. Let 1
2
< p ≤ 1

2
+ 1√

8
≈ 0.85.
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(a) If 1− p ≤ q ≤ p, then

q(1− q) ≥ p(1− p)

and

q(1− q)(1− 2q)2 ≤ p(1− p)(1− 2p)2.

(b) If q /∈ [1− p, p], then q(1− q) < p(1− p).

Proof: (a) Let be f(x) := x(1 − x) for x ∈ [0, 1]. It is f a parabola that is opened
downwards with peak in (0.5, 0.25), see also Figure 2.1. Thus, f(q) = q(1−q) ≥ p(1−p) =
f(p) for all q ∈ {q; 1− p < q < p}, as p > 1

2
.
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Figure 2.1.: Plot of f and g.

Now let be g(x) := x(1 − x)(1 − 2x)2 = x − 5x2 + 8x3 − 4x4 for x ∈ [0, 1]. Then the
polynomial g of degree four has at most three extremal points. It reaches local maxima in
the points x1/2 = 1

2
±
√

1
8

and a local minimum in x3 = 0, see also Figure 2.1 on the right.

Henceforth, between 1
2
−
√

1
8

and 0, g is monotone decreasing and monotone increasing

between 0 and 1
2

+
√

1
8
. Thus, g(q) = q(1− q)(1− 2q)2 < p(1− p)(1− 2p)2 = g(p) for q,

such that 1− p < q < p, as 1
2
< p ≤ 1

2
+
√

1
8

(b) i) Let be q < 1 − p < 1
2
, f is monotone increasing for x < 0.5, hence, q(1 − q) <

(1− p)(1− 1 + p) = p(1− p).
ii) Let be q > p > 0.5, f is monotone decreasing for x > 0.5, thus, p(1− p) > q(1− q).

□

Under the conditions of the last lemma we can determine c1
α and č1

α, respectively c2
α and

č2
α.
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Lemma 2.25. If p(·),θ0 = P(·)(T
θ0
pos) is strictly increasing from 0 to 1, pθ0,(·) strictly de-

creasing and 1
2
< pθ0 ≤ 1

2
+ 1√

8
, then for α < 0.5, c1

α(θ0) is the value θ, such that

1− pθ = pθ0,θ,

and č1
α(θ0) is the value θ, such that

1− pθ0 = pθ,θ0 .

In particular we have c1
α(č

1
α(θ0)) = θ0 = č1

α(c
1
α(θ0)).

Proof: We start with determining c1
α. Therefore we transform Pθ0(T (θ, Z∗) < Φ−1(α))

such that Lemma 2.23 can be used, i.e.

Pθ0(T (θ, Z∗) < Φ−1(α)) = Pθ0



√
N
dS(θ, Z∗)− 2pθ(1− pθ)
2
√
pθ(1− pθ)(1− 2pθ)2

< Φ−1(α)




= Pθ0



√
N

dS(θ, Z∗)− 2pθ0,θ(1− pθ0,θ)
2
√
pθ0,θ(1− pθ0,θ)(1− 2pθ0,θ)

2

<
Φ−1(α)

√
pθ(1− pθ)(1− 2pθ)2

√
pθ0,θ(1− pθ0,θ)(1− 2pθ0,θ)

2
+
√
N
pθ(1− pθ)− pθ0,θ(1− pθ0,θ)√
pθ0,θ(1− pθ0,θ)(1− 2pθ0,θ)

2


 .

Since we are looking for θ, such that limN→∞ Pθ0(T (θ, Z∗) < Φ−1(α)) < α, we have to
ensure that

Φ−1(α)
√
pθ(1− pθ)(1− 2pθ)2

√
pθ0,θ(1− pθ0,θ)(1− 2pθ0,θ)

2
+
√
N
pθ(1− pθ)− pθ0,θ(1− pθ0,θ)√
pθ0,θ(1− pθ0,θ)(1− 2pθ0,θ)

2
6→ ∞

as N →∞. Hence,
pθ(1−pθ)−pθ0,θ(1−pθ0,θ)√
pθ0,θ(1−pθ0,θ)(1−2pθ0,θ)

2
should be smaller than or equal to zero, i.e.

pθ(1− pθ)− pθ0,θ(1− pθ0,θ) ≤ 0.

Lemma 2.24 states that this is true, if and only if 1− pθ ≤ pθ0,θ ≤ pθ. Let be θ such that
these inequalities hold, then using Lemma 2.23 on page 21, we get

Pθ0(T (θ, Z∗) < Φ−1(α))

≤ Pθ0



√
N

dS(θ, Z∗)− 2pθ0,θ(1− pθ0,θ)
2
√
pθ0,θ(1− pθ0,θ)(1− 2pθ0,θ)

2
<

Φ−1(α)
√
pθ(1− pθ)(1− 2pθ)2

√
pθ0,θ(1− pθ0,θ)(1− 2pθ0,θ)

2




N→∞→ Φ


Φ−1(α)

√
pθ(1− pθ)(1− 2pθ)2

√
pθ0,θ(1− pθ0,θ)(1− 2pθ0,θ)

2


 .
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As Φ−1(α) < 0 for α < 0.5 and since we Lemma 2.24 yields:
√
pθ(1− pθ)(1− 2pθ)2

√
pθ0,θ(1− pθ0,θ)(1− 2pθ0,θ)

2
≥ 1,

it is Φ
(

Φ−1(α)
√
pθ(1−pθ)(1−2pθ)2√

pθ0,θ(1−pθ0,θ)(1−2pθ0,θ)
2

)
≤ α. As c1

α(θ0) is the biggest value θ for that these

considerations are true, we have to determine the maximum value θ, such that

1− pθ ≤ pθ0,θ ≤ pθ.

Since pθ0,(·) is decreasing, we obtain c1
α(θ0) as the solution of pθ0,θ = 1− pθ for θ.

We use similar arguments to determine č1
α(θ0). It holds

Pθ(T (θ0, Z∗) < Φ−1(α))

= Pθ



√
N

dS(θ0, Z∗)− 2pθ,θ0(1− pθ,θ0)

2
√
pθ,θ0(1− pθ,θ0)(1− 2pθ,θ0)2

<
Φ−1(α)

√
pθ0(1− pθ0)(1− 2pθ0)2

√
pθ,θ0(1− pθ,θ0)(1− 2pθ,θ0)2

+
√
N
pθ0(1− pθ0)− pθ,θ0(1− pθ,θ0)√
pθ,θ0(1− pθ,θ0)(1− 2pθ,θ0)2


 .

We have to determine θ such that pθ0(1− pθ0) ≤ pθ,θ0(1− pθ,θ0). Lemma 2.24 states that
this is true, if

1− pθ0 ≤ pθ,θ0 ≤ pθ0 . (2.10)

In this case it is
√
pθ0 (1−pθ0 )(1−2pθ0 )2√
pθ,θ0 (1−pθ,θ0 )(1−2pθ,θ0 )2

≥ 1 and since Φ−1(α) < 0 for α < 0.5 we have

Pθ(T (θ0, Z∗) < Φ−1(α))

≤ Pθ


√
N

dS(θ0, Z∗)− 2pθ,θ0(1− pθ,θ0)

2
√
pθ,θ0(1− pθ,θ0)(1− 2pθ,θ0)2

<
Φ−1(α)

√
pθ0(1− pθ0)(1− 2pθ0)2

√
pθ,θ0(1− pθ,θ0)(1− 2pθ,θ0)2




N→∞→ Φ(Φ−1(α)

√
pθ0(1− pθ0)(1− 2pθ0)2

√
pθ,θ0(1− pθ,θ0)(1− 2pθ,θ0)2

)

≤ Φ(Φ−1(α)) = α.

As č1
α(θ0) = min{θ; limN→∞ Pθ(T (θ0, Z∗) < Φ−1(α)) ≤ α} and p(·),θ0 is strictly increasing,

č1
α is the value, such that pθ,θ0 = 1− pθ0 .

If θ̃ = č1
α(θ0), then we just showed 1− pθ0 = pθ̃,θ0 , i.e. θ0 = c1

α(θ̃). If it holds θ̄ = c1
α(θ0),

then we get 1− pθ̄ = pθ0,θ̄ and this is θ0 = č1
α(θ̄). □

Corollary 2.26. Under the assumptions of Lemma 2.25, c1
α(·) is strictly increasing if

and only if č1
α(·) is strictly increasing.
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Lemma 2.27. If p(·),θ0 is strictly increasing from 0 to 1, pθ0,(·) is strictly decreasing and
1
2
< 1− pθ0 ≤ 1

2
+ 1√

8
, then for α < 0.5 c2

α(θ0) is the value θ such that

pθ0,θ = 1− pθ,

and č2
α(θ0) is the value θ, for that holds

pθ,θ0 = 1− pθ0 .

In particular it is

c2
α(č

2
α(θ0)) = θ0 = č2

α(c
2
α(θ0)).

Proof: We use a similar proof to the one of Lemma 2.25 on page 23. It holds

Pθ0(T (θ, Z∗) < Φ−1(α))

= Pθ0



√
N
ds(θ, Z∗)− 2pθ0,θ(1− pθ0,θ)

2√pθ0,θ(1−pθ,θ0 )(1−2pθ0,θ)
2

< Φ−1(α)

√
pθ(1− pθ)(1− 2pθ)2

√
pθ0,θ(1− pθ0,θ)(1− 2pθ0,θ)

2
+
√
N
pθ(1− pθ)− pθ0,θ(1− pθ0,θ)√
pθ0,θ(1− pθ0,θ)(1− 2pθ0,θ)

2


 .

Lemma 2.24 on page 21 yields, by exchanging the roles of p0 and 1− p0,

p(1− p) ≥ p0(1− p0) and p(1− p)(1− 2p)2 ≤ (1− p0)p0(1− 2p0)
2,

for

1

2
< 1− p0 <

1

2
+

1√
8

only if p0 ≤ p ≤ 1− p0, as it is (1− 2(1− p0))
2 = (2p0 − 1)2 = (1− 2p0)

2. Hence,

lim
N→∞

Pθ0(T (θ, Z∗) < Φ−1(α)) ≤ α,

only if θ such that pθ ≤ pθ0,θ ≤ 1− pθ. As pθ0,· decreasing and

c2
α(θ0) = min{θ; lim

N→∞
Pθ0(T (θ, Z∗) < Φ−1(α)) < α},

it is c2
α(θ0) equal to that value θ, such that pθ0,θ = 1− pθ. Analog we show č2

α being that
value θ, such that pθ,θ0 = 1− pθ. □

Corollary 2.28. Under the assumptions of Lemma 2.27 we have c2
α(·) strictly increasing

if and only if č2
α(·) is strictly increasing.

Lemma 2.29. If ciα and čiα, i = 1, 2, exist for every θ ∈ I, I ⊂ Θ an interval, and are
strictly monotone functions, then ciα(·) and čiα(·), i = 1, 2, are continuous on I.
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Proof: We write cα and čα instead of ciα and čiα, i = 1, 2, because the proof is the same
in both cases. Without loss of generality, assume cα and čα to be strictly increasing.
Assume further cα being not continuous. Then there exists θ0 ∈ I and ε > 0, such
that for all δ > 0 there exists θ with |θ − θ0| < δ so that |cα(θ0) − cα(θ)| > ε, i.e.
there exists a jump in θ0. Without loss of generality we can assume that the jump is
left of θ0, i.e. limδց0 cα(θ0 − δ) < cα(θ0) − ε, as cα is increasing. Thus, there exists
θ̃ ∈ (limδց0 cα(θ0 − δ), cα(θ0)− ε) 6= ∅ for that no θ′ can be found, such that cα(θ′) = θ̃.
But as cα(čα(θ)) = θ for all θ ∈ I, it is cα(θ′) = θ̃, with θ′ = čα(θ̃), what contradicts the
assumption that cα is not continuous. The proof that čα is continuous works the same
way. □

We assume, when analyzing tests for H0 : θ ∈ Θ0, that c1
α and č1

α, respectively c2
α and č2

α

exist for all θ ∈ Θ0.

Now the power-functions of the various tests are studied more precisely. We start with
the situation where θ < s(θ).

Theorem 2.30. If s(θ0) > θ0 holds, p(·),θ0 is strictly increasing from 0 to 1, pθ0,(·) is
strictly decreasing and 1

2
< pθ0 ≤ 1

2
+ 1√

8
, if further c1

α(θ0) > θ0 and c1
α is increasing, it

holds

lim
N→∞

Pθ
(
ϕ0,=
θ0

(Z∗,N) = 1
)

= lim
N→∞

Pθ
(
T (θ0, Z∗,N) < Φ−1(α)

)

=





= 1, θ < č1
α(θ0)

= α, θ = č1
α(θ0)

= 0, č1
α(θ0) < θ < θ0

= α, θ = θ0

= 1, θ > θ0

.

Proof: We use the definition of č1
α, the proof of Lemma 2.25 and Corollary 2.16 on page

19: It is č1
α(θ0) the smallest value θ with

lim
N→∞

Pθ
(
ϕ0,=
θ0

(Z∗,N) = 1
)
≤ α.

If θ < č1
α(θ0) or θ > θ0, the proof of Lemma 2.25 shows pθ,θ0 /∈ [1 − pθ0 , pθ0 ] as p(·),θ0 is

strictly increasing, hence, it is with a glance at Lemma 2.24 (b)

pθ,θ0(1− pθ,θ0) < pθ0(1− pθ0).

Using the proof of Lemma 2.25 again we get for these θ

lim
N→∞

Pθ(ϕ
0,=
θ0

(Z∗,N) = 1) = lim
N→∞

Pθ(T (θ0, Z∗,N ) < Φ−1(α))

= lim
N→∞

Pθ



√
N
dS(θ0, Z∗,N )− 2pθ,θ0(1− pθ,θ0)

2
√
pθ,θ0(1− pθ,θ0)(1− 2pθ,θ0)2

<
Φ−1(α)

√
pθ0(1− pθ0)(1− 2pθ0)2

√
pθ,θ0(1− pθ,θ0)(1− 2pθ,θ0)2

+
√
N
pθ0(1− pθ0)− pθ,θ0(1− pθ,θ0)√
pθ,θ0(1− pθ,θ0)(1− 2pθ,θ0)2

︸ ︷︷ ︸
>0




26



−→
N→∞

Φ(∞) = 1.

If č1
α(θ0) < θ < θ0, it is pθ0(1− pθ0) < pθ,θ0(1− pθ,θ0) what leads to

√
N
pθ0(1− pθ0)− pθ,θ0(1− pθ,θ0)√
pθ,θ0(1− pθ,θ0)(1− 2pθ,θ0)2

−→
N→∞

−∞,

i.e. limN→∞ Pθ (T (θ0, Z∗,N) < Φ−1(α)) = 0. If θ = č1
α(θ0), then 1 − pθ0 = pθ,θ0 thus,

(1−2pθ0 )2

(1−pθ,θ0 )2 =
(1−2pθ0 )2

(2pθ0−1)2 = 1. Consequently, it holds for θ = č1
α(θ0) and for θ = θ0:

lim
N→∞

Pθ(ϕ
0,=
θ0

(Z∗,N) = 1) = Φ(Φ−1(α)) = α.

□

Hence the power of ϕ0,=
θ0

is bad for θ ∈ [č1
α(θ0), θ0). But it can be used as a test for

H0 : θ ∈ [č1
α(θ0), θ0].

Corollary 2.31. Under the assumptions of Theorem 2.30, the test
ϕ0,=
θ0

(z∗) = 1{T (θ0,z∗)<Φ−1(α)}(z∗) for H0 : θ ∈ [č1
α(θ0), θ0] against H1 : θ /∈ [č1

α(θ0), θ0] is a
consistent test with asymptotic level α.

The next theorem shows that the power really improves if we use ϕ=
θ0

instead of ϕ0,=
θ0

.

Theorem 2.32. Under the assumptions of Theorem 2.30, we have

lim
N→∞

Pθ

(
max{1{T (θ0,Z∗)<Φ−1(α2 )}(Z∗), 1{T (c1α

2
(θ0),Z∗)<Φ−1(α2 )}(Z∗)}

)

= lim
N→∞

Pθ
(
ϕ=
θ0

(Z∗,N) = 1
){ = 1, θ 6= θ0

≤ α, θ = θ0
,

i.e. ϕ=
θ0

is a consistent test for H0 : θ = θ0.

Proof: We already proved in Theorem 2.22 that limN→∞ Pθ0
(
ϕ=
θ0

(Z∗,N) = 1
)
≤ α. Now

let be θ 6= θ0, θ ∈ Θ. Using the results of Theorem 2.30 and the fact that č1
α
2
(c1
α
2
(θ0)) = θ0,

see Lemma 2.25, leads to the following lines:

lim
N→∞

Pθ
(
ϕ=
θ0

(Z∗,N) = 0
)

= lim
N→∞

Pθ

(
T (θ0, Z∗,N ) ≥ Φ−1

(
α

2

)
, T
(
c1
α
2
(θ0), Z∗,N

)
≥ Φ−1

(
α

2

))

≤ min{ lim
N→∞

Pθ

(
T (θ0, Z∗,N ) ≥ Φ−1

(
α

2

))
, lim
N→∞

Pθ

(
T
(
c1
α
2
(θ0), Z∗,N

)
≥ Φ−1

(
α

2

))
}

= min{ lim
N→∞

(1− Pθ
(
T (θ0, Z∗,N) < Φ−1

(
α

2

))
),

lim
N→∞

(1− Pθ
(
T
(
c1
α
2
(θ0), Z∗,N

)
< Φ−1

(
α

2

))
)}
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=





0, θ < č1
α
2
(θ0)

min{limN(1− Pθ
(
T (θ0, Z∗,N ) < Φ−1

(
α
2

))
), 0} = 0, θ = č1

α
2
(θ0)

min{1, 0} = 0, č1
α
2
(θ0) < θ < θ0

min{0, 1} = 0, θ0 < θ < c1
α
2
(θ0)

min{0, limN(1− Pθ
(
T
(
c1
α
2
(θ0), Z∗,N

)
< Φ−1

(
α
2

))
)} = 0, θ = c1

α
2
(θ0)

0, θ > c1
α
2
(θ0)

.

Thus, we have for θ 6= θ0

lim
N→∞

Pθ
(
ϕ=
θ0

(Z∗,N) = 1
)

= 1− lim
N→∞

Pθ
(
ϕ=
θ0

(Z∗,N) = 0
)
≥ 1− 0 = 1,

what proves the claim. □

Theorem 2.33. If s(θ0) > θ0 holds, p(·),θ is strictly increasing from 0 to 1, pθ,(·) strictly
decreasing, 1

2
< pθ <

1
2

+ 1√
8
, and c1

α(θ) > θ for all θ ≤ θ0, if further c1
α(·) is strictly

increasing, pθ 6= 1
2

and additionally pθ continuous for all θ ∈ Θ, then

lim
N→∞

Pθ
(
ϕ0,≤
θ0

(Z∗,N) = 1
)




= 0, θ < θ0

≤ α, θ = θ0

= 1, θ > θ0

.

Proof: Let be θ < θ0. As c1
α(·) is increasing, also č1

α(·) is increasing. Hence, we find with
the help of Lemma 2.29 θ ≤ θ0 such that č1

α(θ) < θ < θ as č1
α(θ̃) < θ̃ for all θ̃. Then we

know with Theorem 2.30 that limN→∞ Pθ
(
T (θ, Z∗,N) < Φ−1(α)

)
= 0, i.e. it holds

lim
N→∞

Pθ

(
sup
θ̃≤θ0

T (θ̃, Z∗,N) < Φ−1(α)

)
≤ lim
N→∞

Pθ
(
T (θ, Z∗,N) < Φ−1(α)

)
= 0.

For θ = θ0 we already showed in Theorem 2.21 limN→∞ Pθ
(
ϕ0,≤
θ0

(Z∗,N) = 1
)
≤ α. Now

let be θ > θ0. We prove limN→∞ Pθ
(
supθ̃≤θ0 T (θ̃, Z∗,N) ≥ Φ−1(α)

)
= 0, where we use

that for all z∗

sup
θ̃≤θ0

T (θ̃, z∗) = sup
θ̃∈{((−∞,θ0]∩Θ)∩ℚ}∪{θ0}

T (θ̃, z∗). (2.11)

Assume that

sup
θ̃≤θ0

T (θ̃, z∗) > sup
θ̃∈{((−∞,θ0]∩Θ)∩ℚ}∪{θ0}

T (θ̃, z∗).

Then there exists θ ∈ ((−∞, θ0] ∩Θ) \ℚ with

T (θ, z∗) = sup
θ̃≤θ0

T (θ̃, z∗).
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As h′(·, z) is continuous and dS(·, z∗) is a step function, there exists θ̃ ∈ ℚ near θ, such
that dS(θ, z∗) = dS(θ̃, z∗). Further we have pθ being continuous and as

T (θ, z∗) =
√
N
dS(θ, z∗)− 2pθ(1− pθ)
2
√

(1− pθ)pθ(1− 2pθ)2
,

we get for every ε > 0 a θ̃ ∈ ℚ near θ, as ℚ is dense in ℝ, such that |T (θ̃, z∗)− T (θ, z∗)| < ε.
This contradicts our assumption and consequently (2.11) holds. Now let θ > θ0. Then

lim
N→∞

Pθ
(
ϕ≤θ0(Z∗,N) = 0

)
= lim
N→∞

Pθ

(
sup
θ̃≤θ0

T (θ̃, Z∗,N) ≥ Φ−1(α)

)

= lim
N→∞

Pθ


 sup
θ̃∈{((−∞,θ0]∩Θ)∩ℚ}∪{θ0}

T (θ̃, z∗) ≥ Φ−1(α)




= lim
N→∞

Pθ


 ⋃

θ̃∈{((−∞,θ0]∩Θ)∩ℚ}∪{θ0}
{θ̃;T (θ̃, Z∗,N) ≥ Φ−1(α)}




≤
∑

θ̃∈{((−∞,θ0]∩Θ)∩ℚ}∪{θ0}
lim
N→∞

Pθ(T (θ̃, Z∗,N) ≥ Φ−1(α))
︸ ︷︷ ︸

=0, see Theorem 2.30

= 0.

Which leads directly to

lim
N→∞

Pθ
(
ϕ0,≤
θ0

(Z∗,N) = 1
)

= 1− lim
N→∞

Pθ
(
ϕ0,≤(Z∗,N) = 0

)
≥ 1.

□

Theorem 2.34. Let be s(θ0) > θ0, p(·),θ strictly increasing from 0 to 1, pθ,(·) strictly
decreasing, 1

2
< pθ <

1
2

+ 1√
8
, c1
α(·) strictly increasing and c1

α(θ) > θ for all θ ≥ θ0, let

further be pθ 6= 1
2

and additionally pθ continuous for all θ ∈ Θ.

(a) It holds

lim
N→∞

Pθ
(
ϕ0,≥
θ0

(Z∗,N) = 1
)

= lim
N→∞

Pθ

(
sup
θ̃≥θ0

T (θ̃, Z∗,N) < Φ−1(α)

)





= 1, θ < č1
α(θ0)

≤ α, θ = č1
α(θ0)

= 0, θ > č1
α(θ0)

.

(b) ϕ≥θ0 is a consistent test with asymptotic level α for H0 : θ ≥ θ0, i.e.

lim
N→∞

Pθ
(
ϕ≥θ0(Z∗,N) = 1

)
= lim
N→∞

Pθ


 sup
θ̃≥c1α(θ0)

T (θ̃, Z∗,N) < Φ−1(α)








= 1, θ < θ0

≤ α, θ = θ0

= 0, θ > θ0

.
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Proof: (a) For θ < č1
α(θ0) we prove limN→∞ Pθ

(
supθ̃≥θ0 T (θ̃, Z∗,N) ≥ Φ−1(α)

)
= 0, where

we use that for all z∗

sup
θ̃≥θ0

T (θ̃, z∗) = sup
θ̃∈{([θ0,∞)∩Θ)∩ℚ}∪{θ0}

T (θ̃, z∗).

The proof for this works analogously to the proof of (2.11). Let be θ < č1
α(θ0). Then

lim
N→∞

Pθ
(
ϕ0,≥
θ0

(Z∗,N) = 0
)

= lim
N→∞

Pθ

(
sup
θ̃≥θ0

T (θ̃, Z∗,N) ≥ Φ−1(α)

)

≤
∑

θ̃∈{([θ0,∞)∩Θ)∩ℚ}∪{θ0}
lim
N→∞

Pθ(T (θ̃, Z∗,N) ≥ Φ−1(α))
︸ ︷︷ ︸

=0, see Theorem 2.30

= 0

which yields

lim
N→∞

Pθ
(
ϕ0,≥
θ0

(Z∗,N) = 1
)

= 1− lim
N→∞

Pθ
(
ϕ0,≥(Z∗,N) = 0

)
≥ 1.

For θ = č1
α(θ0) we apply the definition of č1

α and get

lim
N→∞

Pθ
(
ϕ0,≥
θ0

(Z∗,N) = 1
)

= lim
N→∞

Pθ

(
sup
θ̃≥θ0

T (θ̃, ZN,∗) < Φ−1(α)

)

≤ lim
N→∞

Pθ
(
T (θ0, Z∗,N ) < Φ−1(α)

)
≤ α.

Now consider θ > č1
α(θ0). As č1

α is strictly increasing, we find θ ≥ θ0 such that č1
α(θ) < θ <

θ, where the continuity of č1
α for θ ∈ Θ0, see Lemma 2.29, is used. Thus, with Theorem

2.30 yields

lim
N→∞

Pθ

(
sup
θ̃≥θ0

T (θ̃, Z∗,N) < Φ−1(α)

)
≤ lim
N→∞

Pθ
(
T (θ, Z∗,N) < Φ−1(α)

)
= 0.

(b) We use the same arguments as above, as in the proof of Theorem 2.33, and the fact
that č1

α(c
1
α(θ0)) = θ0. □

Now we study the power-functions of the various tests in the situation where θ > s(θ).

Theorem 2.35. If θ0 > s(θ0) holds, p(·),θ0 is strictly increasing from 0 to 1, pθ0,(·) is
strictly decreasing, 1

2
< 1 − pθ0 < 1

2
+ 1√

8
and pθ 6= 1

2
for all θ ∈ Θ and further, if c2

α is

strictly increasing and c2
α(θ0) < θ0, then it holds

(a)

lim
N→∞

Pθ
(
ϕ0,=
θ0

(Z∗,N) = 1
)





= 1, θ < θ0

= α, θ = θ0

= 0, θ0 < θ < č2
α(θ0)

= α, θ = č2
α(θ0)

= 1, θ = č2
α(θ0)

and
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(b) ϕ=
θ0

is a consistent test with asymptotic level α, i.e.

lim
N→∞

Pθ
(
ϕ=
θ0

(Z∗,N) = 1
)

= lim
N→∞

Pθ

(
T (θ0, Z∗,N) < Φ−1

(
α

2

)
∨ T (c2

α
2
(θ0), Z∗,N) < Φ−1

(
α

2

))

{
= 1, θ 6= θ0

≤ α, θ = θ0
.

Proof: The proof works analogously to the proof of Theorem 2.30, see page 26, respec-
tively the proof of Theorem 2.32 on page 27. □

Corollary 2.36. ϕ0,=
θ0

is a consistent test with asymptotic level α for H0 : θ ∈ [θ0, č
2
α(θ0)].

Analog to the case s(θ) > θ we get that ϕ0,≥
θ0

is a consistent test with asymptotic level α.

Theorem 2.37. If s(θ0) < θ0 holds, p(·),θ is strictly increasing from 0 to 1, pθ,(·) strictly
decreasing, 1

2
< pθ <

1
2

+ 1√
8
, and c2

α(θ) < θ for all θ ≥ θ0, if further c2
α(·) is strictly

increasing, pθ 6= 1
2

and additionally pθ continuous for all θ ∈ Θ, it holds

lim
N→∞

Pθ
(
ϕ0,≥
θ0

(Z∗,N) = 1
)




= 1, θ < θ0

≤ α, θ = θ0

= 0, θ > θ0

.

Proof: The proof is carried through analogously to the proof of Theorem 2.33 on page
28. □

The next theorem shows that in the case of s(θ) < θ the power of the test for H0 : θ ≤ θ0

is also improved by the introduction of c2
α.

Theorem 2.38. If s(θ0) < θ0 holds, p(·),θ is strictly increasing from 0 to 1, pθ,(·) strictly
decreasing, 1

2
< pθ <

1
2

+ 1√
8
, c2
α(·) is strictly increasing and c2

α(θ) < θ for all θ ≤ θ0, if

further pθ 6= 1
2

and additionally pθ continuous for all θ ∈ Θ, then it holds

(a)

lim
N→∞

Pθ
(
ϕ0,≤
θ0

(Z∗,N) = 1
)




= 0, θ < č2
α(θ0)

≤ α, θ = č2
α(θ0)

= 1, θ > č2
α(θ0)

and

(b)

lim
N→∞

Pθ
(
ϕ≤θ0(Z∗,N) = 1

)
= lim
N→∞

Pθ


 sup
θ̃≤č2α(θ0)

T (θ̃, Z∗,N) < Φ−1(α)








= 0, θ < θ0

≤ α, θ = θ0

= 1, θ > θ0

.
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Proof: We use analog arguments as in the proof of Theorem 2.34 on page 29. □

In both of the cases s(θ) > θ and s(θ) < θ, we developed tests that have good asymptotic
power for different hypotheses.

2.3. Open problems

We introduced the likelihood-depth and estimators based on it. Under some assumptions
to λ±N(θ) = 1

N
♯{n; ∂

∂θ
ln fθ(zn) ⪌ 0} and λ±θ0(θ) = Pθ0( ∂

∂θ
ln fθ(Z) ⪌ 0), it was proven

that the resulting estimators are consistent. One question could be, if consistency could
also be proven under different conditions, which are chosen to be appropriate for other
applications.

In the next section, we also defined tests based on likelihood-depth for the parameter
of the underlying distribution, when the maximum likelihood-depth estimator is biased.
We gave a formula to calculate the correction of the tests by introducing ciα, i = 1, 2, but
only for the case that pθ,(·) = λθ(·) and p(·),θ = λ(·)(θ) are strictly monotone. Here an
open question is, if a rule to determine ciα, i = 1, 2 can also be found if p(·),θ and pθ,(·) are
not strictly monotone, as in the case of the two-dimensional normal distribution. As a
consequence, proofs for consistency of the tests without assuming monotonicity could be
of interest.
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Part II.

Application to special distributions
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3. Weibull distribution

3.1. Preliminaries

The Weibull distribution Wei(a, b), a, b > 0 is one of the most used distributions in the
analysis of lifetime data, where the lifetime describes the time until an event of interest
occurs. It is commonly used for the durability analysis of materials or manufactured
products and often applied in biological or medical studies.

Let be T1, . . . , TN i.i.d. lifetime-variables, Ti ∼ Wei(a, b), i = 1, . . . , N . The density of
Ti, i = 1, . . . , N , for t ≥ 0 is given by

fa,b(t) =
a

b

(
t

b

)a−1

exp
(
−
(
t

b

)a)
,

with a, b > 0. For a = 1 the Weibull distribution is equal to the exponential distribution.
The parameter a is called shape parameter and b is called the scale parameter. This can
easily be explained, if we take a look at the distribution function for different parameters.
In Figure 3.1, on the left we see that the density function changes its shape, if we change
the "shape" parameter a. If we consider changes in the "scale" parameter, we see in the
right graphic that only the scale on the horizontal axis changes. The survival-function,

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability density function

t

f(
t)

a=0.5, b=1
a=1, b=1
a=2, b=1

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

Probability density function

t

f(
t) a=2, b=0.5

a=2, b=1
a=2, b=2

Figure 3.1.: Various density functions of the Weibull distribution.

that gives the probability for one individual to survive time t is for Weibull distributed
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variables T given by

Sa,b(t) := Pa,b(T ≥ t) = 1− Pa,b(T < t) = 1− Fa,b(t) = exp
(
−
(
t

b

)a)
, t ≥ 0.

For the characterization of lifetime distributions the so-called hazard-function is an im-
portant tool. It displays the change in the risk of failure in dependence of the lifetime.
For continuous lifetimes it is defined as

λ(t) := lim
δց0

P (t ≤ T ≤ t+ δ|T ≥ t)
δ

=
f(t)

S(t)
, t ≥ 0.

For the last equality see for example Lawless [Law 2003], page 9. In case of the Weibull
distribution, the hazard function is just determined as

λa,b(t) =
a

b

(
t

b

)a−1

, t ≥ 0.

Figure 3.2 shows some hazard functions for the Weibull distribution with different shape
parameters.
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Figure 3.2.: Hazard rates for different shape parameter.

We can simulate increasing (a > 1), decreasing (a < 1) and constant (a = 1) risks
of failure with the help of the Weibull distribution, what makes the Weibull model very
flexible. This and the rather simple form of the density-, distribution- and hazard-function
are the main reasons, why the Weibull distribution is so important in the analysis of
survival data.

In studies of lifetimes, it can happen that the real lifetime can not be observed. For
example, the lifetime can exceed the study period or an object can not be observed
anymore for other reasons than the occurrence of the event of interest. This is called
“right-censoring”. E.g. people in a clinical study move away or machines can break down
for other causes than the studied ones. In this case we only know that the lifetime of this
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individual has exceeded a certain time, the so-called “censoring-time”. Here, we will only
consider type-I right-censoring with one fixed censoring-time. Type-I censoring means,
that each individual has a fixed potential censoring time ci, i = 1, . . . , N , and the real
lifetime is observed if Ti ≤ ci, otherwise we only know Ti > ci. As we will consider
one fixed censoring-time c0, it is c1 = . . . = cN = c0 in our case. That means c0 is the
maximum time of study for each individual and we do not consider individuals that fall
out of the study for other reasons than the interested ones.

For i = 1, . . . , N we introduce new variables Yi := min(Ti, c0) for the observed lifetime
and indicator variables

∆i :=

{
1, Ti ≤ c0

0, Ti > c0
,

that indicate, if Ti is censored or not. This leads to variables Zi = (Yi,∆i).

The likelihood-function for an observation z = (y, δ), realization of a variable Z = (Y,∆)
with distribution fθ (here θ = (a, b)), from a type-I right-censored sample with censoring-
time c0 is given by

L(θ, z) = fθ(y)δSθ(c0)
1−δ,

see for example Lawless [Law 2003], page 53. This is used in the next sections, when we
determine estimators and tests for censored data. In all these section we assume, that
less than half the data is censored.

3.2. Estimators for the parameters of the Weibull

distribution

We use the likelihood-depth in order to find estimators for the parameters of the Weibull
distribution. For the theoretical results see Section 2.1. We start with the estimation for
uncensored data and then use the results to find also estimators for type-I right-censored
data. Both estimations can be done step by step.

3.2.1. Uncensored data with known shape parameter

In the following let be T1, . . . , TN i.i.d. with Ti ∼ Wei(a, b), i = 1, . . . , N . With t∗ =
t∗,N = (t1, . . . , tN) the realizations of T1, . . . , TN are denoted. We start with estimating
b and suppose a = a0 to be fixed. In order to determine the likelihood-depth of b in
t∗ = (t1, . . . , tN), h′a0

(b, ·) = ∂
∂b

ln fa0,b(·) has to be specified.

Lemma 3.1. For t ≥ 0, a0, b > 0, it holds

h′a0
(b, t) = −a0

b
+ a0t

a0
1

ba0+1
.
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Proof: Using the definition of h′a0
(b, ·), we obtain

h′a0
(b, t) =

∂

∂b
ln fa0,b(t)

=
∂

∂b
ln

(
a0

b

(
t

b

)a0−1

exp{−
(
t

b

)a0

}
)

=
∂

∂b

(
ln a0 − ln b+ (a0 − 1) ln

t

b
−
(
t

b

)a0
)

= −1

b
− (a0 − 1)

b

t

t

b2
− a0

(
t

b

)a0−1 (
− t

b2

)

= −a0

b
+ a0t

a0
1

ba0+1
.

□

Henceforth, we can show that the likelihood-depth of b in t∗ = (t1, . . . , tN) has a simple
form and that it is independent of a0. Thus, the parameter with maximum depth for b
can be determined without knowing a0.

Theorem 3.2. The likelihood-depth of b in t∗ is the minimum of the number of observa-
tions that are smaller than or equal to b and the number of observations that are greater
than or equal to b, i.e.

dT (b, t∗) = 1
N

min(♯{n; tn ≤ b}, ♯{n; tn ≥ b}).

The likelihood-depth is maximized by b̃N = med(t1, . . . , tN), where med(t1, . . . , tN) denotes
the median of the data t1, . . . , tN .

Proof: The second claim is easy to see: If the likelihood-depth of b in t∗ is given by
1
N

min(♯{n; tn ≤ b}, ♯{n; tn ≥ b}), it is maximized by that parameter for that ♯{n; tn ≤
b} ≥ N

2
and ♯{n; tn ≥ b} ≥ N2 , what is the definition of the median.

To see that dT (b, t∗) = min(♯{n; tn ≤ b}, ♯{n; tn ≥ b}), we apply the definition of the
likelihood-depth, that is

dT (b, t∗) = min
(
♯{n;h′a0

(b, tn) ≤ 0}, ♯{n;h′a0
(b, tn) ≥ 0}

)
.

Using Lemma 3.1 and t, b > 0, we have

h′a0
(b, tn) ≥ 0⇔ −a0

b
+ a0t

a0
1

ba0+1
≥ 0⇔ ta0

1

ba0
≥ 1⇔ t ≥ b.

Thus, the likelihood-depth of b in t∗ is independent of a0 and maximized by the median
of the data. □

Remark 3.3. Analog to the notations in Section 2.1, it is T bpos = {t; t ≥ b}, T bneg =
{t; t ≤ b}.
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We can find an estimator for b based on likelihood-depth that is independent of a0.
Unfortunately this estimator is biased.

Lemma 3.4. The median is a biased estimator for the scale parameter of the Weibull
distribution.

Proof: We know from Proposition 2.7 on page 11 that the parameter with maximum
likelihood-depth is a consistent estimator, if s(b) = b, i.e. pb := Pa0,b(T

b
pos) = 1

2
. But it is

easy to show that in our case pb 6= 1
2
:

pb = Pa0,b(T
b
pos) = Pa0,b(T ≥ b) = Sa0,b(b) = exp

(
−
(
b

b

)a0
)

= exp(−1) ≈ 0.368. □

Notations. As pb = Pa0,b(T
b
pos) is independent of b, we denote it by pscale.

We apply Theorem 2.12 on page 16 to derive a consistent estimator for b. To find a
correction, we need to solve Pa0,b(T

s(b)
pos ) = 1

2
for b. This leads to the following estimator.

Theorem 3.5. Let b̃N denote the median of t∗ = (t1, . . . , tN). If a = a0 is known, then

b̂N =
b̃N

(ln 2)
1
a0

is a strong consistent estimator for the scale parameter of the Weibull distribution Wei(a0, b0).

Proof: Let λ+
N(b, t∗,N) = 1

N
♯{n; tn ≥ b}, λ−N(b, t∗,N) = 1

N
♯{tn ≤ b}, and

λ+
b0

(b) = Pa0,b0(T bpos) = exp

(
−
(
b

b0

)a0
)
, λ−b0(b) = Pa0,b0(T bneg) = 1− exp

(
−
(
b

b0

)a0
)
.

Then λ+
N(·, t∗,N) is decreasing, λ+

b0
(·) is strictly decreasing, λ−N(·, t∗,N) is increasing, and

λ−b0(·) is strictly increasing. The strong law of large numbers provides

lim
N→∞

λ±N(b, T∗,N) = λ±b0(b) almost surely for all b > 0.

Moreover,

λ+
b0

(s(b0)) =
1

2
⇔ exp

(
−
(
s(b0)

b0

)a0
)

=
1

2
⇔
(
s(b0)

b0

)a0

= ln 2⇔ s(b0) = b0(ln 2)
1
a0 .

Theorem 2.7 on page 11 provides b̃N = arg max dT (b, T∗,N) −→
N→∞

s(b0) almost surely. It is

obvious that s−1(b) = b

(ln 2)
1
a0

is continuous, which yields

b̃N

(ln 2)
1
a0

= s−1(b̃N) −→
N→∞

s−1(s(b0)) = b0 almost surely.

This holds for all b0 > 0, so that b̃N

(ln 2)
1
a0

is a strongly consistent estimator for b0. □
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Remark. The above evolved estimator for the scale parameter coincides with the estima-
tor of He and Fung [HeFu 1999]. They obtain a robust estimator by equating the sample
median of ∂

∂θ
ln(f(t, θ)), where θ = (a, b), with the population median. This procedure is

called the “method of medians”. It leads to estimators âN , b̂N as the solutions of the two
equations below

med




1−

(
t1

b̂N

)âN
 ln

(
t1

b̂N

)âN
, . . . ,


1−

(
tN

b̂N

)âN
 ln

(
tN

b̂N

)âN
 = c (3.1)

b̂N =
med(t1, . . . , tN)

(ln 2)
1
âN

, (3.2)

where c = med((1− Y ) ln Y ) ≈ −0.51 and Y has an exponential distribution.

The maximum likelihood-depth estimator for b is independent of a0, but the correction
function of the bias is not. If a and b are both unknown, we can base the estimation of
a only on the biased estimator for b, because, as the next section shows, the depth of a
is depending on b.

3.2.2. Uncensored data with known scale parameter

When we determine the estimator for a based on likelihood-depth, we start with consid-
ering b = b0 as to be known. In order to calculate the depth of a in t∗ = (t1, . . . , tN) we
need to determine h′b0(a, ·) = ∂

∂a
hb0(a, ·).

Lemma 3.6. The partial derivative of the log-likelihood-function with respect to a is

h′b0(a, t) =
1

a
+ ln

t

b0

− ln
(
t

b0

)(
t

b0

)a
.

Proof: To prove the claim, we have to differentiate the log-likelihood-function with
respect to a.

h′b0(a, t) =
∂

∂a
ln fa,b0(t)

=
∂

∂a

(
ln a− ln b0 + (a− 1) ln

(
t

b0

)
−
(
t

b0

)a)

=
1

a
+ ln

(
t

b0

)
−
(
t

b0

)a
ln
(
t

b0

)
.

□

In order to determine the depth, we identify for which t > 0 the function h′b0(a, t) is
positive or zero. It is shown that the depth of a in t∗ is not independent of b0. The
following lemma will is used to determine the zeros of h′b0 .
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Lemma 3.7. Let be f(c) = (c− 1) ln(c) for c > 0. Then it holds f(c) = 1 for exact two
points c1, c2 with 0.259 ≈ c1 < 1 < c2 ≈ 2.240.

Proof: The derivative of f , f ′(c) = ln c + c−1
c

, is positive for c > 1, zero for c = 1, and
negative for c < 1. Therefore, f is strictly decreasing for c < 1 and strictly increasing
for c > 1. As f( 1

exp(1)2 ) = 2(1 − 1
exp(1)2 ) > 1 and 1

exp(1)2 < 1, f(1) = 0, and f being
continuous (and strictly decreasing), there exists only one c1 < 1 with f(c1) = 1. On the
other hand, it is f(1) = 0 and f(exp(1)) = exp(1) − 1 > 1, exp(1) > 1. Hence, because
of the continuity and the monotonicity of f , there exists exactly one c2 > 1, such that
f(c2) = 1 holds. □

Lemma 3.8. For t ≥ 0, a > 0, it holds that h′b0(a, t) is positive or zero, if and only if

ta,b001 := c
1
a
1 b0 ≤ t ≤ c

1
a
2 b0 =: ta,b002 ,

where 0.259 ≈ c1 < 1 < c2 ≈ 2.240 and c1, c2 being the solutions of ln c = 1
c−1

.

Proof: Let be x := t
b0

. We have to solve

1

a
+ ln x− xa ln x = 0

for x > 0. This equation is equivalent to (1− xa) ln x = − 1
a
. Let be c > 0 the such that

ln c = 1
c−1

. Then we get:

ln c =
1

c− 1
⇔ (1− c) ln(c)

1

a
= −1

a
⇔ (1− c) ln(c

1
a ) = −1

a
.

x = c
1
a solves (1− xa) ln x = − 1

a
. Lemma 3.7 shows that there exist only two c1, c2 with

ln c = 1
c−1

. This leads to the zeros of h′b0(a, ·) = 1
a

+ ln
(
·
b0

) (
1−

(
·
b0

)a)
, which are the

points ta,b001 = c
1
a
1 b0 and ta,b002 = c

1
a
2 b0. Since c1 < 1 < c2, we obtain ta,b001 < b0 < ta,b002 .

Because h′b0(a, b0) = 1
a

is positive for all a > 0, we end up with

h′b0(a, t) ≥ 0⇔ ta,b001 ≤ t ≤ ta,b002 .

□

We determine the likelihood-depth of a in data t∗. The last lemma shows that it depends
on b0.

Corollary 3.9. The likelihood-depth of a in t∗ = (t1, . . . , tN) is calculated as

db0T (a, t∗) = 1
N

min
(
♯
{
n; ta,b001 ≤ tn ≤ ta,b002

}
, ♯
{
n; tn ≤ ta,b001 or tn ≥ ta,b002

})
.

Again we have to check, if the maximum likelihood-depth estimator for a is biased or
not. The next lemma shows, it is.
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Lemma 3.10. The maximum likelihood-depth estimator for the shape parameter of the
Weibull distribution is a biased estimator.

Proof: We have to show that pb0a := Pa,b0(T a,b0pos ) 6= 1
2
. Using the results from the last

corollary yields

Pa,b0(T a,b0pos ) =
∫ ta,b002

t
a,b0
01

a

b0

(
t

b0

)a−1

exp
(
−
(
t

b0

)a)
dt

= − exp

(
−
(
ta,b002

b0

)a)
+ exp

(
−
(
ta,b001

b0

)a)

= − exp


−


c

1
a
2 b0

b0



a
+ exp


−


c

1
a
1 b0

b0



a


= exp(−c1)− exp(−c2) 6=
1

2
.

The last inequality can be seen, if we plug in the numerical values for c1, c2, being c1 ≈
0.259 and c2 ≈ 2.240. □

The next step is to determine the correction function s−1 for the bias. This will be shown
to be independent of b. One has to consider two cases. The first one is b = b0 known and
the second one that b is unknown and can only be estimated by the biased median b̃N .
We also show that we obtain a consistent estimation procedure. In order to prepare the
next theorem, we proof

Lemma 3.11. If c1 < 1 < c2, b0 > 0, a1 < a2, then

{
t ∈ ℝ; c

1
a2
1 b0 ≤ t ≤ c

1
a2
2 b0

}
⊊

{
t ∈ ℝ; c

1
a1
1 b0 ≤ t ≤ c

1
a1
2 b0

}
.

Proof: Since a1 < a2 we have − 1
a1
< − 1

a2
. Thus,

c
1
a1
1 = exp




1

a1

ln(c1)︸ ︷︷ ︸
<0


 < exp

(
1

a2

ln(c1)
)

= c
1
a2
1

and

c
1
a1
2 = exp




1

a1

ln(c2)︸ ︷︷ ︸
>0


 > exp

(
1

a2

ln(c2)
)

= c
1
a2
2 .

This yields c
1
a1
1 b0 < c

1
a2
1 b0 < c

1
a2
2 b0 < c

1
a1
2 b0. □

We develop a new consistent estimator for the shape parameter.
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Theorem 3.12. If b = b0 is known, the correction of the bias for the maximum likelihood-
depth estimator for a is

s−1(a) = κ · a,

where κ is the unique solution of exp (−cκ1)− exp (−cκ2) = 1
2
. It is κ ≈ 0.691. We obtain

that

âN = arg max
a>0

dT (a, t∗,N) · κ

is a strong consistent estimator for a.

Proof: We define

λ+
N(a, t∗,N) :=

1

N
♯{n; c

1
a
1 b0 ≤ tn ≤ c

1
a
2 b0},

and

λ−N(a, t∗,N) :=
1

N
♯{n; tn ≤ c

1
a
1 b0 ∨ tn ≥ c

1
a
2 b0},

further let be

λ+
a0

(a) := Pa0,b0(T apos) = exp
(
−c

a0
a

1

)
− exp

(
−c

a0
a

2

)
.

Then λ−a0
(a) := Pa0,b0(T aneg) = 1 − λ+

a0
(a). According to Lemma 3.11 we have λ+

N(·, t∗,N)
decreasing, λ+

a0
(·) strictly decreasing, λ−N(·, t∗,N) increasing, and λ−a0

(·) strictly increasing.
The strong law of large numbers provides

lim
N→∞

λ±N(a, T∗,N) = λ±a0
(a) almost surely.

Solving λ+
a0

(s(a0)) = exp
(
−c

a0
s(a0)

1

)
− exp

(
−c

a0
s(a0)

2

)
= 1

2
, we receive a0

s(a0)
= κ, i.e. s(a0) =

a0

κ
and s−1(a0) = κ · a0. Theorem 2.7 on page 11 provides

ãN = arg max dT (a, T∗,N) −→
N→∞

s(a0) almost surely.

Since s−1 is continuous, we have immediately

âN = κ · ãN = κ arg max
a

dT (a, T∗,N) = s−1(ãN) −→
N→∞

s−1(s(a0)) = a0

almost surely. This holds for all a0 > 0 so that κ arg maxa dT (a, t∗,N) is a strongly
consistent estimator for a. □
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3.2.3. Uncensored data, shape and scale parameter unknown

Next we consider the case, when both parameters are unknown. It is possible to find
the maximum likelihood-depth estimator for b without knowing a but it can not be cor-
rected, if a is unknown. Hence, we base our estimation for a on the biased estimator
for b, the median b̃N . Thus, we have to calculate the correction of the bias of the maxi-
mum likelihood-depth estimator for a based on b̃N . In order to prove consistency of this
corrected estimator, the following lemma is used.

Lemma 3.13. If b̃N is the median of t∗,N , then 1
N
♯
{
n; c

1
a
1 b̃N ≤ tn ≤ c

1
a
2 b̃N

}
converges

almost surely under Wei(a0, b0) to 2

(
−c
a0
a

1

)

− 2

(
−c
a0
a

2

)

.

Proof: Let be ε > 0. Choose δ > 0 such that

∣∣∣∣exp
(
−c

a0
a

1 ln(2)(1− δ)a0

)
− exp

(
−c

a0
a

2 ln(2)(1 + δ)a0

)

−
(

exp
(
−c

a0
a

1 ln(2)
)
− exp

(
−c

a0
a

2 ln(2)
))∣∣∣∣ <

ε

2
(3.3)

and
∣∣∣∣exp

(
−c

a0
a

1 ln(2)
)
− exp

(
−c

a0
a

2 ln(2)
)

−
(

exp
(
−c

a0
a

1 ln(2)(1 + δ)a0

)
− exp

(
−c

a0
a

2 ln(2)(1− δ)a0

))∣∣∣∣ <
ε

2.
(3.4)

Since b̃N converges almost surely toward the median of the Weibull distribution b0(ln 2)
1
a0

according to Theorem 3.5, we have Pa0,b0(Aδ) = 1 for

Aδ := {ω; |b̃N(T∗,N(ω))− b0(ln 2)
1
a0 | < b0(ln 2)

1
a0 δ for almost all N}.

Let be ω ∈ Aδ, then there exists N0 such that for all N ≥ N0 it holds

−b0(ln 2)
1
a0 δ ≤ b̃N(T∗,N(ω))− b0(ln 2)

1
a0 ≤ b0(ln 2)

1
a0 δ,

i.e.

b0(ln 2)
1
a0 (1− δ) ≤ b̃N(T∗,N(ω)) ≤ b0(ln 2)

1
a0 (1 + δ).

Thus, we have for ω ∈ Aδ
1

N
♯{n; c

1
a
1 b̃N(T∗,N(ω)) ≤ TnN (ω) ≤ c

1
a
2 b̃N(T∗,N(ω))}

≤ 1

N
♯{n; c

1
a
1 b0(ln 2)

1
a0 (1− δ) ≤ TnN (ω) ≤ c

1
a
2 b0(ln 2)

1
a0 (1 + δ)}

=
1

N

N∑

n=1

1
[c

1
a
1 b0(ln 2)

1
a0 (1−δ),c

1
a
2 b0(ln 2)

1
a0 (1+δ)]

(TnN (ω)),
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and

1

N
♯{n; c

1
a
1 b̃N(T∗,N(ω)) ≤ TnN (ω) ≤ c

1
a
2 b̃N(T∗,N(ω))}

≥ 1

N
♯{n; c

1
a
1 b0(ln 2)

1
a0 (1 + δ) ≤ TnN (ω) ≤ c

1
a
2 b0(ln 2)

1
a0 (1− δ)}

=
1

N

N∑

n=1

1
[c

1
a
1 b0(ln 2)

1
a0 (1+δ),c

1
a
2 b0(ln 2)

1
a0 (1−δ)]

(TnN (ω)).

The strong law of large numbers provides that there exists N1 ≥ N0, such that
∣∣∣∣∣

1

N

N∑

n=1

1
[c

1
a
1 b0(ln 2)

1
a0 (1±δ),c

1
a
2 b0(ln 2)

1
a0 (1∓δ)]

(TnN (ω))

− Pa0,b0

(
c

1
a
1 b0(ln 2)

1
a0 (1± δ) ≤ T1 ≤ c

1
a
2 b0(ln 2)

1
a0 (1∓ δ)

)∣∣∣∣ <
ε

2

for N ≥ N1. Hence, for N ≥ N1 we obtain

1

N
♯
{
n; c

1
a
1 b̃N(T∗,N(ω)) ≤ TnN (ω) ≤ c

1
a
2 b̃N(T∗,N(ω))

}

≤ Pa0,b0

(
c

1
a
1 b0(ln 2)

1
a0 (1− δ) ≤ T1(ω) ≤ c

1
a
2 b0(ln 2)

1
a0 (1 + δ)

)
+
ε

2

= exp


−


c

1
a
1 b0(ln 2)

1
a0 (1− δ)
b0



a0
− exp


−


c

1
a
2 b0(ln 2)

1
a0 (1 + δ)

b0



a0
+

ε

2

≤ exp
(
−c

a0
a

1 ln 2
)
− exp

(
−c

a0
a

2 ln 2
)

+ ε,

where (3.3) is used. Analogously with (3.4) we obtain

1

N
♯
{
c

1
a
1 b̃N(T∗,N(ω)) ≤ TnN (ω) ≤ c

1
a
2 b̃N(T∗,N(ω))

}

≥ exp
(
−c

a0
a

1 ln(2)(1 + δ)a0

)
− exp

(
−c

a0
a

2 ln(2)(1− δ)a0

)
− ε

2

≥ exp
(
−c

a0
a

1 ln(2)
)
− exp

(
−c

a0
a

2 ln(2)
)
− ε.

This implies for N ≥ N1

∣∣∣∣∣
1

N
♯{n; c

1
a
1 b̃N(T∗,N(ω)) ≤ TnN (ω) ≤ c

1
a
2 b̃N(T∗,N(ω))} −

(
2−c

a0
a

1 − 2−c
a0
a

2

)∣∣∣∣∣ < ε,

so that, with

Bε :=
{
ω;
∣∣∣∣

1

N
♯{n; c

1
a
1 b̃N(T∗,N(ω)) ≤ TnN (ω) ≤ c

1
a
2 b̃N(T∗,N(ω))}

−
(

2−c
a0
a

1 − 2−c
a0
a

2

)∣∣∣∣∣ < ε for N large enough

}
,
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we have 1 = P (Aδ) ≤ P (Bε) and therefore

1 = lim
k→∞

Pa0,b0(B 1
k
) = Pa0,b0

( ∞⋂

k=1

B 1
k

)

= Pa0,b0

(
{ω; lim

N→∞

1

N
♯{n; c

1
a
1 b̃N(T∗,N) ≤ TnN (ω) ≤ c

1
a
2 b̃N(T∗,N(ω))} = 2−c

a0
a

1 − 2−c
a0
a

2

)
.

This proves the claim. □

Lemma 3.14. Similar to the last lemma, it holds that 1
N
♯
{
n; tn ≤ c

1
a
1 b̃N ∨ tn ≥ c

1
a
2 b̃N

}

converges almost surely under Wei(a0, b0) to 1− exp
(
−c

a0
a

1 ln 2
)

+ exp
(
−c

a0
a

2 ln 2
)

.

The last two lemmas are used to prove consistency of the estimators for the parameters a
and b of the Weibull distribution based on likelihood-depth. We can estimate the param-
eters one after the other. We start with estimating b as the maximum likelihood-depth
estimator which is equal to the median. Then we determine the maximum likelihood-
depth estimator for a based on the estimator for b. The correction of the bias of the
estimator for a is independent of b, so we can correct a. With this corrected estimator
we can correct the bias of the estimator for b. The correction formula for a, given in the
next procedure, will be proved to be the right one in Theorem 3.16.

Procedure 3.15. Let be t∗ = (t1, . . . , tN) realizations of i.i.d. T∗ = (T1, . . . , TN), Ti ∼
Wei(a, b), a and b unknown. We get unbiased estimators for the parameters of the Weibull
distribution based on likelihood-depth (LDE) by following the steps below:

1. Determine b̃N = med(t1, . . . , tN).

2. Identify ãN ∈ arg maxa>0 d
b̃N
T (a, t∗).

3. An estimator for a is âN = κ1ãN , where κ1 is, analog to the case when b0 is known,
the solution of 2−c

κ1
1 − 2−c

κ1
2 = 1

2
, κ1 ≈ 0.757.

4. An estimator for b is given by b̂N =
b̃N

(ln 2)
1
âN

.

The algorithm was implemented in R, [R 2009]. The source code can be found in Ap-
pendix B.1. This procedure yields a consistent estimator, as the next theorem shows.

Theorem 3.16. If (a, b) are both unknown, the estimator (âN , b̂N) given by Procedure
3.15 is a strongly consistent estimator for (a, b).

Proof: Set

λ1,+
N (a, t∗,N) := 1

N
♯
{
n; c

1
a
1 b̃N ≤ tn ≤ c

1
a
2 b̃N

}
,

λ2,+
N (b, t∗,N) := 1

N
♯ {n; tn ≥ b} ,

λ1,−
N (a, t∗,N) := 1

N
♯
{
n; tn ≤ c

1
a
1 b̃N ∨ tn ≥ c

1
a
2 b̃N

}
,
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and

λ2,−
N (b, t∗,N) := 1

N
♯ {n; tn ≤ b} ,

further, let be

λ1,+
a0,b0

(a) := 2−c
a0
a

1 − 2−c
a0
a

2 ,

λ1,−
a0,b0

(a) := 1− λ1,+
a0,b0

(a),

λ2,+
a0,b0

(b) := exp

(
−
(
b

b0

)a0
)
,

and

λ2,−
a0,b0

(b) := 1− λ2,+
a0,b0

(b).

Theorem 3.5 and its proof imply

λ2,±
N (b, T∗,N ) −→

N→∞
λ2,±
a0,b0

(b) almost surely

and Lemma 3.13 and Lemma 3.14 imply

λ1,±
N (a, T∗,N) −→

N→∞
λ1,±
a0,b0

(a) almost surely.

We showed in Theorem 3.5

λ2,+
a0,b0

(b) =
1

2
⇔ b = (ln 2)

1
a0 b0.

Hence, s2((a0, b0)) = (ln 2)
1
a0 b0. Moreover, denote the solution of

1

2
= λ1,+

a0,b0
(a) = 2−c

a0
a

1 − 2−c
a0
a

2

for a0

a
with κ1. It is κ1 ≈ 0.757 and s1((a0, b0)) = 1

κ1
a0.

Using the arguments of the proof of Theorem 2.7 componentwise, we get that

(ãN , b̃N) −→
N→∞

(s1(a0, b0), s2(a0, b0)) almost surely.

Set Λ((a0, b0), (a, b)) :=
(
λ1,+
a0,b0

(a)− 1
2
, λ2,+
a0,b0

(b)− 1
2

)
. We have

∂

∂a
λ1,+
a0,b0

(a) =
∂

∂a

(
exp

(
−c

a0
a

1 ln 2
)
− exp

(
−c

a0
a

2 ln 2
))

= exp
(
−c

a0
a

1 ln 2
)

(−c
a0
a

1 ln 2 ln c1)
(
−a0

a2

)
−

exp
(
−c

a0
a

2 ln 2
)

(−c
a0
a

2 ln 2 ln c2)
(
−a0

a2

)

= exp
(
−c

a0
a

1 ln 2
)
c
a0
a

1 ln 2 ln c1
a0

a2
− exp

(
−c

a0
a

2 ln 2
)
c
a0
a

2 ln 2 ln c2
a0

a2

< 0.
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Further, it holds

∂

∂b
λ1,+
a0,b0

(a) = 0,
∂

∂a
λ2,+
a0,b0

(b) = 0

and

∂

∂b
λ2,+
a0,b0

(b) =
∂

∂b
exp

(
−
(
b

b0

)a0
)

= exp

(
−
(
b

b0

)a0
)
−a0

(
b

b0

)a0−1
1

b0




< 0.

Hence, the matrix ∂
∂(a,b)

Λ((a0, b0), (a, b)) is regular. As

∂

∂a0

λ1,+
a0,b0

(a) =
∂

∂a0

(
exp

(
−c

a0
a

1 ln 2
)
− exp

(
−c

a0
a

2 ln 2
))

= exp
(
−c

a0
a

1 ln 2
)(
−c

a0
a

1 ln 2 ln c1

)
1

a
− exp

(
−c

a0
a

2 ln 2
)(
−c

a0
a

2 ln 2 ln c2

)
1

a

= − exp
(
−c

a0
a

1 ln 2
)
c
a0
a

1 ln 2 ln c1
1

a
+ exp

(
−c

a0
a

2 ln 2
)
c
a0
a

2 ln 2 ln c2
1

a
> 0,

besides

∂

∂b0

λ1,+
a0,b0

(a) = 0,
∂

∂a0

λ2,+
a0,b0

(b) = − exp

(
−
(
b

b0

)a0
)(

b

b0

)a0

ln

(
b

b0

)

and

∂

∂b0

λ2,+
a0,b0

(b) =
∂

∂b0

exp

(
−
(
b

b0

)a0
)

= exp

(
−
(
b

b0

)a0
)
−a0

(
b

b0

)a0−1


(
− b
b2

0

)

= exp

(
−
(
b

b0

)a0
)
a0

ba0

ba0+1
0

> 0,

we see that ∂
∂(a0,b0)

Λ((a0, b0), (a, b)) is regular, too. Consequently, the proof of Proposition

2.11 on page 16 gives the existence of continuous s−1, such that

s−1(ãN(T∗,N), b̃N(T∗,N)) −→
N→∞

(a0, b0)

almost surely. Since

s(a0, b0) =
(

1

κ1

a0, (ln(2))
1
a0 b0

)
,
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we have

s−1(a, b) = (κ1a,
b

(ln 2)
1
a0

),

as

s−1(s(a0, b0)) = (κ1
1

κ1

a0,
(ln 2)

1
a0

(ln 2)
1
a0

b0) = (a0, b0).

Thus, (κ1ãN(T∗,N),
b̃N (T∗,N )

(ln 2)
1
a0

) is a strongly consistent estimator for (a0, b0). □

The power of the LDE was compared to the maximum likelihood estimator (MLE) and the
estimator gained by the method of medians (MoM) of He and Fung in a simulation study.
The latter is for example proposed in the textbook of Rinne "The Weibull distribution",
[Rin 2009], as a robust estimator for the parameters of the Weibull distribution. The
maximum likelihood estimator is very sensitive to outliers or contamination. It can be
calculated in R, [R 2009], using the method mle of the package “stats4”. The MLE can
also be obtained by solving

∑N
i=1 t

a
i ln ti∑N

i=1 t
a
i

− 1

a
=

1

N

N∑

i=1

ln ti

for a and then calculating

θ̂ =
1

N

N∑

i=1

tâNi ,

where âN is the solution of the first equation and θ̂ the estimator for θ = ba. These
equations arise directly from the maximum likelihood estimation equations

∂

∂a
ln(L(t1, . . . , tN ; a, θ)) = 0,

∂

∂θ
ln(L(t1, . . . , tN ; a, θ)) = 0,

see Cohen ([Coh 1965]).

We start the simulation with data without contamination. Table 3.1 shows the mean
values of the estimators for Weibull distributed data with varying a and b. We simulate
1000 times 100 data each. Since the likelihood-depth estimator is not unique, there can
be more than one parameter with maximum depth, such that we get intervals for a
and b, the bounds are indicated with “lb” for lower bound and “ub” for upper bound.
These intervals are no confidence intervals. If we want to restrict ourselves to just one
point-estimator, we can take the middle of the interval or the upper (lower) bound of the
interval, for example. When calculating the mean squared error of the estimators, we
use the middle of the interval, when looking at the results we could also have used the

49



lower bound. In Table 3.2 we find the mean squared errors of the estimators for different
Weibull distributions, where the mean squared errors are MSE(â) = 1

M

∑M
i=1(âi − a)2

resp. MSE(b̂) = 1
M

∑M
i=1(b̂i − b)2 , while Table 3.3 gives the mean squared error of both

estimators, i.e. 1
M2

∑M
i=1(âi − a)2 + (b̂i − b)2, here M = 1000. The table is visualized

in Figure 3.3. Figure 3.4 gives the behavior of the logarithm of the roots of the mean
squared errors for growing sample sizes N and data with shape and scale equal to one.

Table 3.1.: MLE, MoM and LDE for different Weibull distributions, number of data N =
100 and 1000 repetitions for every parameter.

a b âMLE b̂MLE âMoM b̂MoM âlbLDE âubLDE b̂lbLDE b̂ubLDE
1 1 1.0153 1.005 1.0255 1.0061 1.0177 1.0434 1.0009 1.0100
1 0.5 1.0158 0.5007 1.0215 0.5009 1.0119 1.0361 0.4988 0.5030
1 10 1.0124 10.0100 1.0199 10.0208 1.0109 1.0347 9.9824 10.0664

0.5 1 0.5061 1.0121 0.5101 1.0102 0.5039 0.5159 1.0051 1.0220
0.5 0.5 0.5062 0.5049 0.5097 0.5085 0.5050 0.5172 0.5047 0.5131
0.5 10 0.5075 10.1104 0.5147 10.2370 0.5078 0.5198 10.1977 10.3663
10 1 10.1604 0.9995 10.2231 0.9997 10.1179 10.3622 0.9993 1.0001
10 10 10.1115 9.9881 10.1757 9.9858 10.0461 10.3018 9.9817 9.9908
10 0.5 10.1673 0.4999 10.278 0.4998 10.1669 10.4197 0.4996 0.5000

Table 3.2.: Mean squared errors of MLE, MoM and LDE for different Weibull samples,
number of data N = 100 and 1000 repetitions for every parameter.

Mean squared error

a b âMLE b̂MLE âMoM b̂MoM âLDE b̂LDE
1 1 0.0068 0.0113 0.0173 0.0173 0.0182 0.0187
1 0.5 0.0064 0.0028 0.0162 0.0044 0.017 0.0047
1 10 0.007 1.1346 0.0158 1.7983 0.0184 1.9195

0.5 1 0.0017 0.0439 0.0043 0.0675 0.005 0.0697
0.5 0.5 0.0017 0.0115 0.0038 0.0189 0.0043 0.0197
0.5 10 0.0017 4.6620 0.0042 7.3679 0.0044 7.9384
10 1 0.6904 0.0001 1.6574 0.0002 1.8165 0.0002
10 10 0.6944 0.0122 1.6656 0.0183 1.6783 0.0193
10 0.5 0.6724 < 10−4 1.7059 < 10−4 1.9816 < 10−4
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Table 3.3.: Mean squared errors of MLE, MoM and LDE for both parameters for different
Weibull samples, number of data N = 100 and 1000 repetitions for every
parameter.

Mean squared error
a b MLE MoM LDE

a) 1 1 1.81 · 10−5 3.46 · 10−5 3.69 · 10−5

b) 1 0.5 9.2 · 10−6 2.06 · 10−5 2.17 · 10−5

c) 1 10 0.00114 0.00181 0.00194
d) 0.5 1 4.56 · 10−5 7.18 · 10−5 7.47 · 10−5

e) 0.5 0.5 1.32 · 10−5 2.27 · 10−5 2.4 · 10−5

f) 0.5 10 0.00466 0.00737 0.00794
g) 10 1 0.00069 0.00166 0.00182
h) 10 10 0.00707 0.00168 0.00170
i) 10 0.5 0.00067 0.00171 0.00198
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Figure 3.3.: Root of the mean squared errors (MSE) for both parameters, N = 100, see
Table 3.3.

The tables and the figures show that, as expected, the MLE performs better for uncon-
taminated data than the LDE and the MoM, the latter ones seem not to differ very much.
Especially for smaller sample sizes the mean squared errors of the maximum likelihood
estimator are smaller than of the other two methods, see Figure 3.4. Mainly for the esti-
mation of the shape parameter, the differences in the errors of the three estimators, for
N = 10 and N = 20, are quite big. For larger datasets the LDE and the MoM perform
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Figure 3.4.: Logarithmic root of the mean squared errors (MSE) for the estimation pro-
cedures MLE, MoM and LDE for different sample sizes, a0 = b0 = 1, 1000
repetitions for every point.

almost as well as the MLE. The asymptotic behavior of the LDE seems to be quite well,
because the mean squared error tends to zero, almost as fast as for the MLE.

In the next step we simulate data with contamination. The contamination is given by
some data with Weibull distribution with different shape and scale parameters. The
ratio of contaminated data is 10% for all examples. We consider the examples from He
and Fung, [HeFu 1999], and additionally some more. Each time 1000 times 100 data are
simulated. Again, we table the mean squared errors of the estimator for θ = (a, b), see
Table 3.4. The columns a1 and b1 give the parameters of the contamination. In order
to get an insight into the behavior of the estimators, we depict the roots of the mean
squared errors of both estimators in Figure 3.5.

As expected, the MLE performs for some contamination really bad. Especially, when the
contaminated data has a small shape parameter, the error of estimation can be quite big.
The LDE and the MoM have very similar mean squared errors. Both are more robust
against contamination in the shape parameter than in the scale parameter, especially if
the contamination parameter is big. But all in all they are not really influenced by the
disturbed data.

For uncensored data the new estimator behaves quite similar as the estimator based on the
method of medians. For uncontaminated data it is worse than the maximum likelihood
estimator, but for contaminated data, where the MLE is very poor, it is robust.
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Figure 3.5.: Root of the mean squared errors (MSE) of both parameters for contaminated
Weibull data, N = 100, values from Table 3.4.

Table 3.4.: MSE of both parameters for contaminated Weibull data, N = 100.

Mean squared error
a b a1 b1 MLE MoM LDE

a) 2 1 0.5 1 0.000586 0.00008 0.00009
b) 2 1 10 1 0.00005 0.000228 0.000266
c) 0.7 1 0.2 1 0.000149 0.00005 0.00005
d) 1 1 0.1 0.1 0.000867 0.00004 0.00005
e) 2 0.5 0.5 2 0.001279 0.00008 0.00007
f) 1 0.7 0.2 0.7 0.000273 0.00003 0.00003
g) 1 1 0.2 1 0.000325 0.00004 0.00004
h) 1 3 0.2 3 0.001179 0.000198 0.000212
i) 1 10 0.2 10 0.010352 0.002085 0.002117
j) 1 0.7 1 0.2 0.00001 0.00003 0.00003
k) 1 3 1 0.5 0.000207 0.000247 0.000253
l) 1 10 1 0.5 0.003568 0.002585 0.00239
m) 10 10 1 0.5 0.055147 0.00252 0.004027
n) 10 1 1 0.5 0.029392 0.002177 0.00308
o) 2 1 0.2 0.5 0.001772 0.00009 0.00011
p) 2 1 0.2 2 0.002346 0.00009 0.0001
q) 2 1 1 2 0.000309 0.00007 0.00007
r) 0.5 1 1 1 0.00005 0.00007 0.00007
s) 0.5 1 0.5 0.5 0.00005 0.00007 0.00008
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3.2.4. Type-I right-censored data, shape or scale parameter known

In this subsection we will consider type-I right-censored data with fixed censor time
c0. As described in the beginning of this chapter, we examine variables Y1, . . . , YN ,
Yi = min(Ti, c0), where Ti is the real lifetime and c0 is the censor time, and the indicator
variables ∆i, i = 1, . . . , N . Assume

c0 > med(y1, . . . , yN), (3.5)

that means less than half the data is censored. This is not a very hard restriction, as
estimation for data, where more than half the data is censored, seems very difficult.

The likelihood-function of a data (yn, δn) was described in the beginning of this chapter,
namely

L(a, b, (yn, δn)) = fa,b(yn)
δnSa,b(yn)

1−δn , n = 1, . . . , N.

In the following we consider data zn = (yn, δn). The number of uncensored data shall be
denoted by k, where k ≤ N . Because of (3.5) it is k > N

2
.

We calculate the likelihood-depth for the parameters a and b of the Weibull distribution
as in the last section, starting, as before, with the calculation of the likelihood-depth
for the scale parameter b. The next theorem shows that, if b < c0, we get the same
likelihood-depth for censored data as for uncensored data. If b ≥ c0, the likelihood-depth
of b in z∗ is N−k

N
< 1

2
, since k > N

2
.

Theorem 3.17. The likelihood-depth of b > 0 in z∗ = ((y1, δ1), . . . , (yn, δn)) is

dT (b, z∗) = 1
N

min(♯{n; δn = 1 and yn ≥ b}+ (N − k), ♯{n; δn = 1 and yn ≤ b}).
Especially for b < c0 we have

dT (b, z∗) = 1
N

min(♯{n; yn ≥ b}, ♯{n; yn ≤ b})
and for b ≥ c0 the likelihood-depth is

dT (b, z∗) =
N − k
N

.

Proof: For z = (δ, y) we obtain

h′a(b, z) =
∂

∂b
lnL(a, b, z)

=
∂

∂b
(δ ln fa,b(y) + (1− δ) lnSa,b(y))

=
∂

∂b

(
δ
(

ln
(
a

b

)
+ (a− 1) ln

(
y

b

)
−
(
y

b

)a)
+ (1− δ)

(
−
(
y

b

)a))

= δ

(
−a
b
− a

(
y

b

)a−1

y
(
− 1

b2

))
+ (1− δ)

(
aya

1

ba+1

)

= δ
(
−a
b

)
+ aya

1

ba+1
.
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For uncensored data, i.e. δn = 1, we receive h′a(b, zn) ≥ 0 iff yn ≥ b. For censored data,
i.e. δn = 0, we have h′a(b, zn) = ayan

1
ba+1 > 0 for all a > 0. For instance, the first assertion

follows, as dT (b, z∗) = 1
N

min(♯{n;h′a(b, zn) ≥ 0}, ♯{n;h′a(b, zn) ≤ 0}).
For b < c0 the likelihood-depth is just

dT (b, z∗) =
1

N
min(♯{n; yn ≥ b}, ♯{n; yn ≤ b}),

as for censored data yn = c0 > b. If c0 ≤ b, then h′a(b, zn) ≥ 0 if δn = 0 or if δn = 1 and
yn ≥ b. But if δn = 1, then yn < c0 ≤ b, so the likelihood-depth is given by the minimum
of the number of censored data N−k and the number of uncensored data k. We assumed
N − k < k, so the minimum is N − k for all b ≥ c0. □

Hence, the likelihood-depth of b for censored data is also maximized by the median of
the data b̃N . That means, maximization of the likelihood-depth leads again to a biased
estimator. The correction is the same as in the case of uncensored data, as for b < c0 the
likelihood-depth is the same for uncensored and censored data and we assumed c0 > b̃N .
Otherwise the parameter with maximum depth would always be c0, independent of the
underlying distribution, so it would be impossible to find a correction for the estimator.

Corollary 3.18. Theorem 3.5 on page 39 is also true for type-I right-censored data with

fixed censor time, i.e. b̂N = b̃N

(ln 2)
1
a0

is a strong consistent estimator for the scale parameter

of the Weibull distribution.

Again the correction depends on the shape parameter. The next theorem gives the
likelihood-depth for the shape parameter in dependence of b = b0.

Theorem 3.19. If b = b0 < c0, the likelihood-depth of a in z∗ = ((y1, δ1), . . . , (yN , δN))
is

db0T (a, z∗) =
1

N
min

(
♯{n; δn = 1 and ta,b001 ≤ yn ≤ ta,b002 },

♯{n; δn = 1 and (yn ≥ ta,b002 or yn ≤ ta,b001 )}+ (N − k)
)
,

else if b0 ≥ c0 we obtain

db0T (a, z∗) =
1

N
min(♯{n; ta,b001 ≤ yn ≤ c0}, ♯{n; δn = 1 and yn ≤ ta,b001 )}.

Thereby ta,b001 and ta,b002 are given by Lemma 3.8 on page 41, ta,b0i = c
1
a

i b, i = 1, 2.

Proof: By definition it is h′b0(a, zn) = ∂
∂a

lnL(a, b0, zn), i.e.

h′b0(a, zn) = δn

(
1

a
+ ln

(
yn
b0

)
−
(
yn
b0

)a
ln
(
yn
b0

))
+ (1− δn)

(
−
(
yn
b0

)a
ln
(
yn
b0

))

= δn

(
1

a
+ ln

(
yn
b0

))
−
(
yn
b0

)a
ln
(
yn
b0

)
.
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For δn = 1, i.e. uncensored data, it is as before, see Lemma 3.8, h′b0(a, zn) ≥ 0 iff

ta,b001 ≤ yn ≤ ta,b002 . In the case of δn = 0 we have h′b0(a, zn) = −
(
yn
b0

)a
ln
(
yn
b0

)
. This is

negative, iff

yn = c0 > b0(< ta,b002 )

and positive or zero, iff yn = c0 ≤ b0. As

db0T (a, z∗) = 1
N

min(♯{n;h′b0(a, zn) ≤ 0}, ♯{n;h′b0(a, zn) ≥ 0}),

the claim is proved. □

We have to consider two cases, as we did in the last section for uncensored data. First
we assume b = b0 to be known and in the second step we suppose b to be unknown. Let
a be the real parameter and ãN ∈ arg maxa′>0 d

b
T (a′, z∗,N). The next procedure gives the

corrected estimator for a and the derivations of the corrections are given in the subsequent
theorem.

Procedure 3.20. With ãN we denote the parameter with maximum likelihood-depth.

(1) Let be b0 < c0.

(a) If tãN ,b002 < c0, the corrected likelihood-depth estimator for a is (as in the un-
censored case) âN = κ · ãN , with κ ≈ 0.691.

(b) If tãN ,b002 ≥ c0, the correction for the estimator is the solution for a of

− exp
(
−
(
c0

b0

)a)
+ exp(−c

a
ãN
1 ) =

1

2
.

(2) Let be b0 ≥ c0. Then the likelihood-depth estimator for a is given by âN = κ2 · ãN ,
where κ2 is the solution of exp (−cκ2

1 ) = 1
2
, κ2 ≈ 0.2715.

The consistence of this estimator is shown in the next theorem. Recall ta,b01 = c
1
a
1 b, t

a,b
02 =

c
1
a
2 b, let be c0 > b0 and define

λ+
N(a) =

1

N
♯{n; δn = 1, ta,b001 ≤ yn ≤ ta,b002 } =

1

N
♯{n; ta,b001 ≤ tn ≤ min(c0, t

a,b0
02 )},

λ−N(a) =
1

N
♯{n; ta,b001 ≥ tn or ta,b002 ≥ min(c0, tn)},

λ+
a0,b0

(a) = − exp


−


min(c

1
a
2 b0, c0)

b0



a0
+ exp

(
−c

a0
a

1

)
,

λ−a0,b0
(a) = 1− λ+

a0,b0
(a).

Further recall that with s(a) we denote the solution of λ+
a0,b0

(s(a)) = 1
2
.

Theorem 3.21. The estimator for the shape parameter of type-I-censored data from the

Weibull distribution given in Procedure 3.20 is strongly consistent, if c
1
s(a)

2 b0 6= c0.
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Proof: (1) Consider c0 > b0. With the strong law of large numbers we have λ±N(a)→N→∞
λ±(a0,b0)(a) almost surely under Wei(a0, b0). We already proved that λ+

N is decreasing and

that λ−N is increasing for uncensored data. As c
1
a
2 is decreasing, it is

− exp


−


min(c

1
a
2 b0, c0)

b0



a0


decreasing for a and as exp(−c
a0
a

1 ) is strictly decreasing for a, it is λ+
(a0,b0)(·) strictly

decreasing and λ−(a0,b0)(·) strictly increasing.

Therefore, ãN is, with Theorem 2.7 on page 11, a strong consistent estimator for s(a0),
the solution of λ+

(a0,b0)(s(a0)) = 1
2
.

Further, it holds

∂

∂a0

λ+
(a0,b0)(a) = − exp

(
−c

a0
a

1

)
ln(c1)c

a0
a

1

1

a

+





exp
(
−c

a0
a

2

)
ln(c2)c

a0
a

2
1
a
, c0 > c

1
a
2 b0

exp
(
−
(
c0
b0

)a0
)

ln
(
c0
b0

) (
c0
b0

)a0

, c0 < c
1
a
2 b0




> 0,

∂

∂a
λ+

(a0,b0)(a) = exp
(
−c

a0
a

1

)
ln(c1)c

a0
a

1

a0

a2

−





exp
(
−c

a0
a

2

)
ln(c2)c

a0
a

2
a0

a2 , c0 > c
1
a
2 b0

0, c0 < c
1
a
2 b0




< 0.

Hence, Proposition 2.11 on page 16 yields that s−1 exists and that it is continuous for

c
1
s(a)

2 b0 6= c0. The solutions for a0 of λ+
(a0,b0)(a) = 1

2
are given in Procedure 3.20.

(2) Now consider b0 ≥ c0. Then tãN ,b002 = c
s(a)
2 b0 > b0 and we already showed in the proof

of Theorem 3.19 that T ãN ,b0pos = {z = (δ, y); y ≥ tãN ,b001 }. This leads to

Pa,b0(T ãN ,b0pos ) = Pa,b0(Y ≥ tãN ,b001 )

= Pa,b0(Y ≥ c
1
ãN
1 b0)

= exp


−



c

1
ãN
1 b0

b0




a


= exp(−c
a
ãN
1 ).

Using this to solve Pa,b0(T s(a),b0pos ) = 1
2
, we arrive at

exp(−c
a
ãN
1 ) =

1

2
⇔ c

a
ãN
1 = ln 2

⇔ a

ãN
=

ln(ln 2)

ln c1

⇔ a =
ln(ln 2)

ln c1︸ ︷︷ ︸
:=κ2

ãN .
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κ2 is approximately 0.2715. With

λ+
N(a) =

1

N
♯{n; ta,b001 ≤ yn ≤ c0},

λ−N(a) =
1

N
♯{n; δn = 1, yn ≤ ta,b001 },

λ+
a0,b0

(a) = Pa0,b0(Y ≥ ta,b001 ) = exp
(
−c

a0
a

1

)
,

and

λ−a0,b0
(a) = 1− exp

(
−c

a0
a

1

)
,

it is λ+
N decreasing, λ−N increasing, λ+

a0,b0
(·) strictly decreasing, and λ−a0,b0

(·) strictly in-
creasing. Thus, Theorem 2.7 on page 11 provides ãN →N→∞ s(a0) almost surely and as
s−1(a) = κ2a is continuous, we also have s−1(ãN)→N→∞ a0 almost surely. □

3.2.5. Type-I right-censored data, shape and scale parameter

unknown

In the next case, when we assume the scale parameter b to be unknown and estimate
it by b̃N , we know b̃N < c0, see (3.5). Therefore, we only have to consider two cases
for the correction of the maximum depth estimator for the shape parameter. Before the
correction of the maximum depth estimator is determined, we state the following

Lemma 3.22. Let be b̃N the median of y∗,N , then

1

N
♯{n; c

1
a
1 b̃N ≤ tn ≤ min(c0, c

1
a
2 b̃N)}

converges almost surely to

− exp


−


min(c0, c

1
a
2 b0(ln 2)

1
a0 )

b0



a0
+ 2−c

a0
a

1

under Wei(a0, b0).

Proof: The proof works analog to the proof of Lemma 3.13. We will only discuss

1

N
♯{n;Tn ≤ min(c0, c

1
a
2 b̃N)} →N→∞ P(a0,b0)(T1 ≤ min(c0, c

1
a
2 b0(ln 2)

1
a0 )).

Since b̃N converges almost surely under Wei(a0, b0) to b0(ln 2)
1
a0 as N → ∞, and since

min(c0, c
1
a
2 b0(ln 2)

1
a0 ) is continuous in b0, also min(c0, c

1
a
2 b̃N) converges almost surely under

Wei(a0, b0) to min(c0, c
1
a
2 b0(ln 2)

1
a0 ) as N →∞.
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Let be ε > 0. Then choose δ such that

∣∣∣∣∣∣
exp


−


min(c0, c

1
a
2 (ln 2)

1
a0 b0)

b0



a0


− exp


−


min(c0, c

1
a
2 (ln 2)

1
a0 b0)(1± δ)

b0



a0

∣∣∣∣∣∣
<
ε

2
. (3.6)

As b̃N → b0(ln 2)
1
a0 almost surely as N →∞, it holds for

Aδ :=
{
ω; |min(c0, c

1
a
2 b̃N)−min(c0, c

1
a
2 b0(ln 2)

1
a0 )| < min(c0, c

1
a
2 b0(ln 2)

1
a0 )δ for almost all N

}
,

P (Aδ) = 1.

Hence, it holds for ω ∈ Aδ and almost all N

1
N
♯{n;TnN (ω) ≤ min(c0, c

1
a
2 b̃N(T∗,N(ω)))}

≤ 1
N
♯{n;TnN (ω) ≤ min(c0, c

1
a
2 b0(ln 2)

1
a0 )(1 + δ)}

= 1
N

N∑

n=1

1
(−∞,min(c0,c

1
a
2 b0(ln 2)

1
a0 )(1+δ)]

(TnN (ω))

and

1
N
♯{n;TnN (ω) ≤ min(c0, c

1
a
2 b̃N(T∗,N(ω)))}

≥ 1
N
♯{n;TnN (ω) ≤ min(c0, c

1
a
2 b0(ln 2)

1
a0 )(1− δ)}

= 1
N

N∑

n=1

1
(−∞,min(c0,c

1
a
2 b0(ln 2)

1
a0 )(1−δ)]

(TnN (ω)).

Now, the strong law of large numbers provides
∣∣∣∣∣

1
N

N∑

n=1

1
(−∞,min(c0,c

1
a
2 b0(ln 2)

1
a0 )(1±δ)]

(TnN (ω))

−Pa0,b0

(
T1 ≤ min(c0, c

1
a
2 b0(ln 2)

1
a0 )(1± δ)

)∣∣∣∣ <
ε

2
,

for almost all N . Thus, it holds

1
N
♯{n;TnN (ω) ≤ min(c0, c

1
a
2 b̃N(T∗,N(ω)))}

≤ P(a0,b0)(T1(ω) ≤ min(c0, c
1
a
2 b0(ln 2)

1
a0 )(1 + δ)) +

ε

2

= exp


−


min(c0, c

1
a
2 b0(ln 2)

1
a0 )(1 + δ)

b0



a0
+

ε

2

= exp


−


min(c0, c

1
a
2 b0(ln 2)

1
a0 )

b0



a0
+ ε,
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and

1
N
♯{n;TnN (ω) ≤ min(c0, c

1
a
2 b̃N(T∗,N(ω)))}

≥ P(a0,b0)(T1(ω) ≤ min(c0, c
1
a
2 b0(ln 2)

1
a0 )(1− δ))− ε

2

= exp


−


min(c0, c

1
a
2 b0(ln 2)

1
a0 )(1− δ)

b0



a0
− ε

2

= exp


−


min(c0, c

1
a
2 b0(ln 2)

1
a0 )

b0



a0
− ε,

where (3.6) is used. This implies for almost all N

| 1
N
♯{n;TnN (ω) ≤ min(c0, c

1
a
2 b̃N(T∗,N(ω)))} − exp


−


min(c0, c

1
a
2 b0(ln 2)

1
a0 )

b0




 | < ε.

Consequently, with

Bε :=
{
ω;
∣∣∣∣

1

N
♯{n; c

1
a
1 b̃N(T∗,N(ω)) ≤ TnN (ω) ≤ min(c0, c

1
a
2 b̃N(T∗,N(ω)))}

− exp


−


min(c0, c

1
a
2 b0(ln 2)

1
a0 )

b0





∣∣∣∣∣∣
< ε for N large enough



 ,

it holds 1 = P (Aδ) ≤ P (Bε) and therefore

1 = lim
k→∞

Pa0,b0(B 1
k
) = Pa0,b0

( ∞⋂

k=1

B 1
k

)
=

Pa0,b0

(
{ω; 1

N
♯{n;TnN (ω) ≤ min(c0, c

1
a
2 b̃N(T∗,N(ω)))} = exp(−(

min(c0,c
1
a
2 b0(ln 2)

1
a0 )

b0
))}
)
.

□

We are able to give an estimation procedure for the type-I right-censored data with
Weibull distribution for both scale and shape parameter.

Procedure 3.23. Let be Z1, . . . , ZN i.i.d., Zi = (Yi,∆i), and Yi = min(Ti, c0), i =
1, . . . , N . Suppose Ti ∼ Wei(a, b), i = 1, . . . , N , and let be z∗ = ((y1, δ1), . . . , (yN , δN))
with c0 > med(y1, . . . , yN). Then the two parameters a and b of the Weibull distribution
can be estimated with the help of the likelihood-depth as follows:

1. Calculate b̃N = med(y1, . . . , yN).

2. Determine ãN ∈ arg max db̃NT (a, z∗).

3.A If c
1
ãN
2 b̃N < c0, then we correct the estimator for a0 as in the uncensored case, i.e.

âN = κ1 · ãN
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and

b̂N =
b̃N

(ln 2)
1
âN

.

3.B If c
1
ãN
2 b̃N ≥ c0, then âN is the solution of

−2
−
(
c0
b̃N

)a
+ 2−c

a
ãN
1 =

1

2

for a and

b̂N =
b̃N

(ln 2)
1
âN

.

We define

λ1,+
N (a, z∗,N) := 1

N
♯
{
n; δn = 1 and c

1
a
1 b̃N ≤ yn ≤ c

1
a
2 b̃N

}
,

λ2,+
N (b, z∗,N) := 1

N
♯{n; yn ≥ b},

λ1,−
N (a, z∗,N) := 1

N
♯
{
n; yn ≤ c

1
a
1 b̃N ∨ yn ≥ min(c

1
a
2 b̃N , c0)

}
,

λ2,−
N (b, z∗,N) := 1

N
♯{n; yn ≤ b},

and further

λ1,+
a0,b0

(a) := exp
(
−c

a0
a

1 ln 2
)
− exp


−


min(c

1
a
2 b0(ln 2)

1
a0 , c0)

b0



a0
 ,

λ1,−
a0,b0

(a) := 1− λ1,+
a0,b0

(a),

λ2,+
a0,b0

(b) := exp

(
−
(
b

b0

)a0
)
,

λ2,−
a0,b0

(b) := 1− λ2,+
a0,b0

(b).

Let be s(a, b) = (s1(a0, b0), s2(a0, b0)) such that
{
λ1,+

(a0,b0)(s1(a0, b0)) = 1
2

λ2,+
(a0,b0)(s2(a0, b0)) = 1

2

,

we already discussed s2(a0, b0) = (ln 2)
1
a0 b0 =: b̃.

The consistence of the estimators in the censored case, shows

Theorem 3.24. If c0 > b0(ln 2)
1
a0 and c

1
s1(a0,b0)

2 (ln 2)
1
a0 b0 6= c0, then the estimator (âN , b̂N)

given by Procedure 3.23 is a strongly consistent estimator for (a0, b0).
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Proof: Using the results from before, we have λ1,+
N (·), λ2,+

N (·) being decreasing, λ1,−
N (·), λ2,−

N (·)
increasing, λ1,+

(a0,b0)(·), λ2,+
(a0,b0)(·) strictly decreasing and so λ1,−

(a0,b0)(·), λ2,−
(a0,b0)(·) strictly in-

creasing. Also we already discussed for the different cases that

lim
N→∞

λ1,±
N (a) = λ1,±

(a0,b0)(a),

and

lim
N→∞

λ2,±
N (b) = λ2,±

(a0,b0)(b)

almost surely. Hence, as it is s(a, b) = (s1(a0, b0), s2(a0, b0)) such that
{
λ1,+

(a0,b0)(s1(a0, b0)) = 1
2

λ2,+
(a0,b0)(s2(a0, b0)) = 1

2

,

Using the arguments of the proof of Theorem 2.7 on page 11 componentwise gives
(ãN(Z∗,N), b̃N(Z∗,N))→N→∞ s(a0, b0) almost surely.

Now we prove that the inverse s−1 exists and that it is continuous. Therefore, we use
arguments from the proof of Proposition 2.11 on page 16 and define

Λ((a0, b0), (a, b)) =
(
λ1,+

(a0,b0)(a)− 1

2
, λ2,+

(a0,b0)(b)−
1

2

)
.

It holds
∂

∂a0

λ1,+
(a0,b0)(a) = −2−c

a0
a

1 ln(2) ln(c1)c
a0
a

1

1

a

+





2−c
a0
a

2 ln(2) ln(c2)c
a0
a

2
1
a
, c0 > c

1
a
2 (ln 2)

1
a0 b0

exp
(
−
(
c0
b0

)a0
)

ln
(
c0
b0

) (
c0
b0

)a0

, c0 < c
1
a
2 (ln 2)

1
a0 b0




> 0,

∂

∂a
λ1,+

(a0,b0)(a) = 2−c
a0
a

1 ln(2) ln(c1)c
a0
a

1

a0

a2

−




2−c
a0
a

2 ln(2) ln(c2)c
a0
a

2
a0

a2 , c0 > c
1
a
2 (ln 2)

1
a0 b0

0, c0 < c
1
a
2 (ln 2)

1
a0 b0



 < 0,

∂

∂b0

λ1,+
(a0,b0)(a) =





0, c0 > c
1
a
2 (ln 2)

1
a0 b0

exp
(
−
(
c0
b0

)a0
)(
−a0

(
c0
b0

)a0−1
1
b0

)
< 0, c0 < c

1
a0
2 (ln 2)

1
a b0

,

∂

∂b
λ1,+

(a0,b0)(a) = 0,

∂

∂a0

λ2,+
(a0,b0)(b) = − exp

(
−
(
b

b0

)a0
)

ln

(
b

b0

)(
b

b0

)a0

,

∂

∂a
λ2,+

(a0,b0)(b) = 0,

∂

∂b0

λ2,+
(a0,b0)(b) = exp

(
−
(
b

b0

)a0
)
a0

ba0

ba0+1
0

> 0,

∂

∂b
λ2,+

(a0,b0)(b) = − exp

(
−
(
b

b0

)a0
)
a0
ba0−1

ba0
0

< 0.
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Thus, ∂
∂(a,b)

Λ((a, b), s(a, b))|(a,b)=(a0,b0) and ∂
∂(a,b)

Λ((a0, b0), (a, b))|(a,b)=s(a0,b0) are regular
matrices and with the same arguments as in the proof of Proposition 2.11 there exists
continuous s−1, such that

s−1((ãN(Z∗,N), b̃N(Z∗,N)))→N→∞ (a0, b0)

almost surely. For c
1
a
2 b0(ln 2)

1
a0 > c0, s−1(a, b) is the solution for (a0, b0) of





2−c
a0
a

1 − exp
(
−
(
c0
b0

)a0
)

= 1
2

exp
(
−
(
b
b0

)a0
)

= 1
2

. (3.7)

Since the second equation is only true, iff b0 = b

(ln 2)
1
a0

, (3.7) is equivalent to





2−c
a0
a

1 − exp
(
−
(
c0
b

)a0

ln 2
)

= 1
2

b0 = b

(ln 2)
1
a0

,

what completes the proof. □

Before we examine the behavior of this new estimator in simulations studies, the shift-
function is studied a little more precisely. In the uncensored case we showed that the
expected parameter with maximum depth for the shape parameter was always greater
than the real parameter, i.e. s(a) > a. But in the censored case this is not true for all a.

Lemma 3.25. If b0 is known and c0 > b0, t
s(a),b0
02 = c

1
s(a)

2 b0 ≥ c0 and

a ≤
ln
(
− ln

(
e−c1 − 1

2

))

ln
(
c0
b0

) ≈ 0.265

ln
(
c0
b0

) ,

then s(a) ≤ a (where s(a) = a, if a = 0.265

ln

(
c0
b0

)), else s(a) > a holds, where s(a) such that

λ1,+
(a,b0)(s(a)) = − exp


−




min(c
1
s(a)

2 b0, c0)

b0




a
+ exp

(
−c

a
s(a)

1

)
=

1

2
.

If b0 is unknown, then let be b̃ = (ln 2)
1
a b0, if b̃ < c0. If t

s(a),b̃
02 = c

1
s(a)

2 b̃ ≥ c0 and

a ≤
ln
(
− ln(2−c1− 1

2)
ln(2)

)

ln
(
c0
b̃

) ≈ 0.455

ln
(
c0
b̃

) ,

then s(a) ≤ a (where s(a) = a if a = 0.455

ln( c0
b̃
)
), else s(a) > a holds, where s(a) such that

λ1,+
(a,b0)(s(a)) = exp

(
−c

a
s(a)

1 ln 2
)
− exp


−




min(c
1
s(a)

2 b0(ln 2)
1
a , c0)

b0




a
 =

1

2
.

63



Proof: Consider b0 to be known.

• For b0 ≥ c0 we showed in the proof of Theorem 3.21 that s(a) = 1
κ2
a, with 1

κ2
≈

3.683, i.e. s(a) > a.

• For b0 < c0 and t
s(a),b0
02 < c0 we can use the results from the uncensored case, there

we proved s(a) > a.

• Now let be b0 < c0 and t
s(a),b0
02 ≥ c0 then s(a) is the solution of

− exp
(
−
(
c0

b0

)a)
+ exp

(
−c

a
s(a)

1

)
=

1

2
. (3.8)

If b0 is unknown we consider b̃ = b0(ln 2)
1
a0 . We assume b̃ < c0, as b̃ is the limit of the

median and this is supposed to be always smaller than the censoring time, see (3.5) on
page 54.

• For ta,b̃02 < c0 we can use the results from the uncensored case where we proved that
s(a) > a.

• For ta,b̃02 ≥ c0 (b̃ < c0) s(a) is the solution of

exp
(
−c

a
s(a)

1 ln 2
)
− exp

(
−
(
c0

b0

)a)
=

1

2

⇔ exp
(
−c

a
s(a)

1 ln 2
)
− exp


−




c0

b̃

(ln 2)
1
a




a
 =

1

2

⇔ 2−c
a
s(a)
1 − 2( c0

b̃
)
a

=
1

2
.

Thus, in both situations, b0 known and unknown, the only case where s(a) can be smaller
than a is

t
s(a),b
02 ≥ c0, while b < c0.

Here it is b = b0 if b0 is known and b = b̃ = b0(ln 2)
1
a , else. In order to consider both

cases b0 known and b0 unknown at once, we write x instead of exp(1) in the first case and
instead of 2 in the second case. Then s(a) is in both situations given by solving

−x−( c0b )
a

+ x−c
a
s(a)
1 =

1

2
. (3.9)

This yields

s(a) =
ln(c1)

ln


−

ln

(
1
2

+x
−( c0b )

a
)

ln(x)




· a, (3.10)
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as the next lines show:

−x−( c0b )
a

+ x−c
a
s(a)
1 =

1

2

⇔ ln(x)(−c
a
s(a)

1 ) = ln
(

1

2
+ x−( c0b )

a
)
< 0, as x−( c0b )

a

< x−1 ≤ 1

2

⇔ a

s(a)
= ln

(
− ln

(
1

2
+ x−( c0b )

a
))

1

ln(c1)

⇔ s(a) =
ln(c1)

ln


−

ln

(
1
2

+x
−( c0b )

a
)

ln(x)




· a.

It is ln(c1) < 0 and ln


−

ln

(
1
2

+x
−( c0b )

a
)

ln(x)


 < 0, so

ln(c1)


ln


−

ln
(

1
2

+ x−( c0b )
a
)

ln(x)







−1

> 0.

The second claim can be seen as follows:

ln
(

1

2

)
< ln




1

2
+ x

<−1︷ ︸︸ ︷
−
(
c0

b

)a


< ln(1) = 0, (3.11)

as x ≥ 2 it is ln
(

1
2

)
≥ − ln(x) and thus (3.11) is equivalent to

−1 ≤
ln
(

1
2

)

ln(x)
<

ln
(

1
2

+ x−( c0b )
a
)

ln(x)
< 0, as ln(x) > 0

⇔ 0 < −
ln
(

1
2

+ x−( c0b )
a
)

ln(x)
< 1

⇔ ln


−

ln
(

1
2

+ x−( c0b )
a
)

ln(x)


 < 0.
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Now we determine a, such that ln(c1) > ln


−

ln

(
1
2

+x
−( c0b )

a
)

ln(x)


, i.e. c1 > −

ln

(
1
2

+x
−( c0b )

a
)

ln(x)
.

This leads to

−c1 ln(x) < ln
(

1

2
+ x−( c0b )

a
)

⇔ exp (−c1 ln(x))− 1

2
< x−( c0b )

a

⇔ ln
(
x−c1 − 1

2

)
< ln(x)

(
−
(
c0

b

)a)

⇔
(
c0

b

)a
< −

ln
(
x−c1 − 1

2

)

ln(x)

⇔ a < ln


−

ln
(
x−c1 − 1

2

)

ln(x)


 1

ln
(
c0
b

) .

For b = b0, i.e. x = exp(1), it is ln
(
− ln(x−c1− 1

2)
ln(x)

)
≈ 0.265 and for b = b̃, i.e. x = 2, it is

ln
(
− ln(x−c1− 1

2)
ln(x)

)
≈ 0.455. □

When we construct tests, the conclusion of this lemma will be important.

We compare the LDE for censored data to the maximum likelihood estimator (MLE) for
censored data. The latter can be calculated by first solving

∑N
i=1 y

a
i ln yi∑N

i=1 y
a
i

− 1

a
=

1

k

k∑

i=1

ln yi,

and then determining θ = ba as

θ̂ =
1

k

N∑

i=1

yâi ,

where â is the solution of the first equation, i.e. the MLE for the shape parameter, and
k the number of uncensored data. These equations can be found in Cohen [Coh 1965].
Also, we compare our new estimator (LDE) again to the estimator based on the method
of median (MoM) for censored data as a robust estimator. In their paper [HeFu 1999]
He and Fung wrote, that the estimator is not affected by censoring, as far as less than 16
percent of the largest observations are right censored. The source code of the estimators
can be found in the Appendix B.

In the first study, every time 16% of the biggest data are censored. The sample size is
fixed at N = 100 and we repeat every simulation 1000 times. The mean squared errors
of the estimators can be found in Tables 3.5 and 3.6. We display Table 3.6 in Figure 3.6
on the left.
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Table 3.5.: Mean squared errors for censored Weibull data, with 16% right-censored data,
N = 100, 1000 repetitions each.

Mean squared errors
a b âMLE b̂MLE âMoM b̂MoM âLDE b̂LDE

a) 1 1 0.0082 0.0125 0.0257 0.0148 0.017 0.0182
b) 2 1 0.0363 0.0030 0.1089 0.0038 0.0685 0.0045
c) 1 2 0.0091 0.0546 0.0284 0.0637 0.0187 0.0775
d) 2 2 0.0372 0.0127 0.1163 0.0159 0.0644 0.0192
e) 0.5 1 0.0023 0.0500 0.0073 0.0579 0.8440 0.0745
f) 1 0.5 0.0090 0.0029 0.0273 0.0037 0.0178 0.0043
g) 0.5 0.5 0.0021 0.0142 0.0069 0.0155 0.5811 0.0212
h) 0.5 10 0.0023 4.8857 0.0067 6.0464 1.2506 7.9931
i) 0.5 100 0.0022 521.2956 0.0067 625.6615 1.1530 839.1851

Table 3.6.: Mean squared errors for both parameters for censored Weibull data, with 16%
right-censored data, N = 100, 1000 repetitions each.

MSE for both parameter
a b MLE MoM LDE

a) 1 1 2e-05 4e-05 4e-05
b) 2 1 4e-05 0.00011 7e-05
c) 1 2 6e-05 9e-05 1e-04
d) 2 2 5e-05 0.00013 8e-05
e) 0.5 1 5e-05 7e-05 9e-05
f) 1 0.5 1e-05 3e-05 2e-05
g) 0.5 0.5 2e-05 2e-05 2e-05
h) 0.5 10 0.0049 0.0060 0.0092
i) 0.5 100 0.5213 0.62567 0.68474

In order to consider heavier censoring we simulate, once more, various Weibull samples
and introduce a censoring, such that 40% of the data is censored. Table 3.7 gives the
mean errors for the comparison of all three estimators. Again, the sample size is fixed
at N = 100 and we simulated 1000 repetitions each. For a clearer view, we display the
values of Table 3.7 in Figure 3.6 on the right. In Figure 3.7, the evolution of the simulated
mean squared error for growing sample sizes is depicted. Here we simulated data with
a = b = 1 and censored 20% of the data.
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Table 3.7.: Mean squared errors for censored Weibull data, 40% of the data censored,
N = 100, 1000 repetitions each.

MSE for both parameter
a b MLE MoM LDE

a) 1 1 0.00003 0.01236 0.00116
b) 2 1 0.00006 0.04689 0.00414
c) 1 2 0.00009 0.01223 0.00126
d) 2 2 0.00008 0.04663 0.00407
e) 0.5 1 0.00008 0.00301 0.00038
f) 1 0.5 0.00002 0.01147 0.00109
g) 0.5 0.5 0.00003 0.00290 0.00028
h) 0.5 10 0.00841 0.02087 0.01111
i) 0.5 100 0.96366 1.78749 1.10283
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Figure 3.6.: Root of MSE of both estimators for the different procedures, see Table 3.6
and Table 3.7.

We see that for uncontaminated censored data in the first case, where 16% of the data
is censored, the MLE performs best, concerning the MSEs. In most cases the MoM and
the LDE are quite close. If we consider data where 40% is censored, the MoM behaves
worst, while MLE again has the smallest mean squared errors. For censored data the new
estimator seems to be better than the one based on the method of medians but worse
than the MLE. For small sample sizes the MLE has smaller mean squared errors than the
LDE but with N growing, the MSEs of the LDE are also shrinking. The mean squared
errors of the estimator based on the method of medians are for large sample sizes still
the biggest ones.
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Figure 3.7.: Development of the logarithmic root of MSE for censored data, a0 = b0 = 1,
20% censored, 1000 repetitions each.

We also simulate different ε-contaminated and censored data. Here a contamination of
10% with data from Wei(a1, b1) and 20% right-censoring is considered. The mean squared
errors of both estimators for the three different procedures are given in Table 3.8. We only
considered contamination distribution such that the probability that the contaminated
data is censored is quite small, i.e. the contamination distribution has smaller scale and/
or shape parameter.

Table 3.8.: Mean squared errors for contaminated and censored Weibull data, 10% con-
taminated and 20% of the data censored, N = 100, 1000 repetitions each.

MSE for both parameter
a b a1 b1 MLE MoM LDE

a) 10 10 0.1 0.1 0.08918 0.00471 0.00508
b) 2 2 0.5 1 0.00028 0.00022 0.00001
c) 2 100 0.5 10 0.06862 0.10058 0.06714
d) 2 100 1 10 0.08228 0.11017 0.06773
e) 5 1 1 0.1 0.00843 0.00102 0.00079
f) 5 1 2 1 5e-04 0.00139 0.00044

For contaminated data the MLE behaves worst, as expected. In most cases the likelihood-
depth estimator is quite robust and has the smallest mean squared errors. See also Figure
3.8.
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Figure 3.8.: Root of the mean squared errors of the estimators in contaminated (10%)
and censored data (20%).

As a last consideration we examine a real data example with very little data and some
modifications to analyze the robustness of the new estimator.

Example 3.26. In order to make predictions about the lifetime of some sort of steel,
specimens were taken from the material and loaded. The lifetime is given in load cycles
until the specimen broke. Let be y∗ the dataset of lifetimes of steel specimens,

y∗ = (4030, 4680, 4860, 5750, 7170, 34100, 51000).

We consider various artificial censoring, addition of some new fake specimen and replace-
ment of data by extreme values, to examine the robustness of the estimators. The first
column of Table 3.9 gives the data, the next columns show the values of the different
estimators. For the LDE we took the mean of the estimators, if there were more than
one.

For a better view we display the estimated values in Figures 3.9 and 3.10, where the first
value represents always the MLE, the second one the MoM, and the third one the LDE.
We see that the new estimator seems to be quite robust. It takes about the same values
as the estimator based on the method of medians. If the two or three largest values are
censored, the LDE and MoM do not really change in contrast to the MLE. Even if we only
censor two observations, the maximum likelihood estimator for b falls from about 16000
to 8000. Also in the estimation of a the MLE differs much more than the LDE. Especially
it changes from a < 1 to a > 1, if a censoring is included. The MoM also changes more
than the LDE. We observe, that the estimator of the shape parameter is smaller and
sometimes greater than one. Hence it changes from a decreasing to an increasing hazard
function. For the LDE we have almost every time an a > 1. The interpretation of the
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Table 3.9.: Estimated a and b for real data and artificially modified data of Example 3.26.

data âMLE b̂MLE âMoM b̂MoM âLDE b̂LDE
a) y∗ 0.98 15795.48 2.47 6670.44 3.86 6377.83

censoring
b) c0 = 7000 3.48 7088.82 4.96 6191.23 3.05 6485.44
c) c0 = 10000 2.28 8275.86 2.47 6670.45 3.86 6377.83

new fake specimen
d) (500, 500, y∗) 0.74 10212.88 2.51 5624.85 2.04 8180.28
e) (500, 500, 500, y∗) 0.69 8547.79 0.57 9074.21 0.98 8400.45
f) (50, 50, y∗) 0.58 8430.9 2.51 5624.88 1.97 10517.12
g) (50, 50, 50, y∗) 0.51 6386.8 0.57 9076.72 0.9 10796.48
h) (5, 5, y∗) 0.47 7153.81 2.51 5624.91 1.97 10517.12
i) (5, 5, 5, y∗) 0.4 4921.67 0.57 9075.51 0.9 10796.48
j) (y∗, 105, 105) 0.82 30970.88 0.88 10863.38 1.39 13310.11
k) (y∗, 105, 105, 105) 0.84 37629.94 0.58 38745.07 0.68 35336.45
l) (y∗, 106, 106) 0.44 82672.41 0.88 10863.38 1.39 13310.11
m) (y∗, 106, 106, 106) 0.45 125807.33 0.35 59342.81 0.68 35336.71

replacement
n) y1 = 5 0.59 11312.8 2.47 6670.45 2.65 11450.76
o) y1 = y2 = 5 0.4 6998.44 0.55 11229.15 1.52 13927.62
p) y1 = 500 0.82 13775.27 2.47 6670.45 2.69 9998.11
q) y1 = y2 = 500 0.69 11560.87 0.55 11226.96 1.59 10185.17
r) y7 = 105 0.79 19334.97 2.47 6670.44 3.86 6377.83
s) y6 = y7 = 105 0.71 24948.66 2.47 6670.44 3.86 6377.83
t) y7 = 106 0.44 41140.82 2.47 6670.44 3.86 6377.83
u) y6 = y7 = 106 0.4 84350.04 2.47 6670.44 3.86 6377.83
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Figure 3.9.: Estimation of the shape parameter for the data of Example 3.26, see also
Table 3.9.

b̂, original and censored data
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Figure 3.10.: Estimation of the scale parameter for the data of Example 3.26, see also
Table 3.9.

estimators would therefore be very different. If one ore two observations are adulterated
to a high value, the estimation of b by the MLE also seems to increase without limit.

Thus, the LDE is a robust estimator that can also be used in censored data.

3.3. Tests and confidence intervals for the shape

parameter

In this section the theory of Section 2.2 is used to give tests for the shape parameter a of
the Weibull distribution. We start with uncensored data and consider both cases, b = b0

to be known and b unknown and estimated with the help of the median.
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3.3.1. Uncensored data with known scale parameter

We stick to Lemma 2.14, see page 17, and define the test statistic to test hypotheses about
the shape parameter for the case of uncensored data t∗ with known scale parameter.

Definition 3.27. Let the test statistic be defined as

T (a, t∗) :=
√
N

db0S (a, t∗)− 2pshape(1− pshape)
2
√
pshape(1− pshape)(1− 2pshape)2

,

where pshape := exp(−c1)−exp(−c2) ≈ 0.665 and db0S (a, t∗) denotes the simplicial likelihood-
depth of a in t∗ depending on b0. Further, c1, c2 with c1 < 1 < c2, shall denote the solutions
of ln c = 1

c−1
.

We start with testing the null hypothesis H0 : a ≤ a0. Therefore, the theory of Chapter
2.2 to find tests with good asymptotic power functions will be adapted.

Theorem 3.28. The test

ϕ≤,0a0
(t∗) := 1{supa≤a0

T (a,t∗)<Φ−1(α)}(t∗)

is asymptotically an α-level test for H0 : a ≤ a0 against H1 : a > a0.

Proof: Using Corollary 2.17 on page 19, the only thing to prove is that pshape = Pa,b0(T a,b0pos ).
We already showed in the last section in Lemma 3.8 on page 41 and Corollary 3.9 on

page 41 that T a,b0pos = [c
1
a
1 b0, c

1
a
2 b0] and in the proof of Lemma 3.10 on page 42 we showed

Pa,b0(T a,b0pos ) = exp(−c1)− exp(−c2). □

We compare this new test based on likelihood-depth to a test based on the maxi-
mum likelihood estimator (MLE). It can be found in the textbook of Rinne, [Rin 2009].
There it is shown that the maximum likelihood estimator for a is asymptotically nor-
mal distributed with mean a and variance 0.6079a2

N
. So H0 : a ≤ a0 is rejected, if

âMLE > a0(1 + Φ−1(1 − α)
√

0.6079
N

), where âMLE is the maximum likelihood estimator
for the shape parameter of the Weibull distribution, see [Coh 1965] and the section about
estimators for the Weibull distribution, Section 3.2.

The graphics in Figure 3.11 show the estimated power functions for various a0. We
simulate data with Weibull distribution Wei(a, b0) and count how often H0 : a ≤ a0 is
rejected. Some of the results for N = 100 data and 1000 repetitions for every a are
displayed. We show the simulated power for a0 = 0.5, 1, 1.5 and 2, where b0 = 1. In the
last row the simulated power, if b0 is not 1 but 0.5 and 2 respectively, for H0 : a ≤ 1 is
depicted. The source code for the test can be found in the Appendix B.1.

We see in Figure 3.11 that the power does not change, if the scale is varying. Also we
note that for N = 100 data the level is not kept by both tests. The test based on the
MLE seems to be a little bit more powerful for these uncontaminated data.

73



0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

H0 : a ≤ 0.5, if b0=1 known

a

F
re

qu
en

cy
 o

f r
ej

ec
tio

ns

α=0.05

based on MLE
based on likelihood−depth

0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

H0 : a ≤ 1, if b0=1 known

a

F
re

qu
en

cy
 o

f r
ej

ec
tio

ns

α=0.05

based on MLE
based on likelihood−depth

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

H0 : a ≤ 1.5, if b0=1 known

a

F
re

qu
en

cy
 o

f r
ej

ec
tio

ns

α=0.05

based on MLE
based on likelihood−depth

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

H0 : a ≤ 2, if b0=1 known

a

F
re

qu
en

cy
 o

f r
ej

ec
tio

ns

α=0.05

based on MLE
based on likelihood−depth

0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

H0 : a ≤ 1, if b0=0.5 known

a

F
re

qu
en

cy
 o

f r
ej

ec
tio

ns

α=0.05

based on MLE
based on likelihood−depth

0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

H0 : a ≤ 1, if b0=2 known

a

F
re

qu
en

cy
 o

f r
ej

ec
tio

ns

α=0.05

based on MLE
based on likelihood−depth

Figure 3.11.: Simulated power of the tests for H0 : a ≤ a0, b0 the scale parameter known.
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We also consider contaminated data, as the new test is supposed to be robust against
contamination. In a next study we examine data where some part is given by another
distribution, here Wei(a1, b0). We simulate data with Weibull distribution Wei(a, b0) for
different a and mix with data coming from the contamination distribution Wei(a1, b0),
then count how oftenH0 : a ≤ a0 is rejected. In Figure 3.12 the simulated power-functions
for H0 : a ≤ 1, where the contaminated data has a shape parameter a1 = 0.5 (a1 = 10),
are pictured. The ratio of the contaminated data is 10%.
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Figure 3.12.: Simulated power of the tests for H0 : a ≤ a0, b0 known, for ε-contaminated
data with Wei(a1, b0), ε = 0.1.

For ε-contamination with a small shape parameter, the test based on the maximum
likelihood estimator has a very bad power in contrast to the test based on likelihood-
depth, that is not very much affected by the contamination with a1 = 0.5. Considering
contamination with a higher shape parameter, both tests do not keep the level.

To define the test for hypotheses of type H0 : a ≥ a0 against H1 : a < a0 and to prove
consistency of both tests, we have to work little more. Let the test statistic be defined as
in Definition 3.27. Since pshape > 0.5 and the parameter with maximum likelihood-depth
(s(a) ≈ 1.32 · a) is expected to be greater than the real parameter, we have to determine

c1
α(a0) := max{a; lim

N→∞
Pa0,b0(T (a, T∗) < Φ−1(α)) ≤ α},

see Definition 2.18 on page 19 to correct the test, see Definition 2.19 on page 20.

Before we do this, we state two lemmas, that will be used in the proof of the subsequent
theorems.

Lemma 3.29. The probability that for T ∼Wei(a0, b0) it holds T ∈ T a,b0pos , is determined
by

pa0,a := Pa0,b0(T a,b0pos ) = exp(−c
a0
a

1 )− exp
(
−c

a0
a

2

)
.
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Proof: It holds

pa0,a = Pa0,b0(T a,b0pos ) = Pa0,b0(c
1
a
1 b ≤ T ≤ c

1
a
2 b)

= exp


−


c

1
a
1 b

b0



a0
− exp


−


c

1
a
2 b

b0



a0


= exp(−c
a0
a

1 )− exp
(
−c

a0
a

2

)
. □

Lemma 3.30. It is pa0,(·) strictly decreasing and p(·),a0 is strictly increasing.

Proof: We showed in the last lemma pa0,a = exp
(
−c

a0
a

1

)
− exp

(
−c

a0
a

2

)
. Let be a1 < a2,

then a0

a1
> a0

a2
and therefore, since c1 < 1, c

a0
a1
1 < c

a0
a2
1 so −c

a0
a1
1 > −c

a0
a2
1 , i.e. e−c

a0
a1
1 > e−c

a0
a2
1 .

With the same arguments it is, since c2 > 1, c
a0
a1
2 > c

a0
a2
2 so −c

a0
a1
2 < −c

a0
a2
2 , i.e. −e−c

a0
a1
2 >

−e−c
a0
a2
2 . All in all we get

exp
(
−c

a0
a1
1

)
− exp

(
−c

a0
a1
2

)
> exp

(
−c

a0
a2
1

)
− exp

(
−c

a0
a1
2

)

> exp
(
−c

a0
a2
1

)
− exp

(
−c

a0
a2
2

)
.

With analog arguments we can show that p(·),a0 is strictly increasing. □

Now we use Lemma 2.25 on page 23 to determine c1
α(a0).

Lemma 3.31. Let be α < 0.5. It holds

c1
α(a0) = k0 · a0,

with k0 ≈ 2.275.

Especially c1
α(a0) exists for all a0 > 0, it is c1

α(a0) > a0 for all a0 > 0 and c1
α(·) strictly

increasing.

Proof: In Lemma 3.29 we showed pa0,a = exp
(
−c

a0
a

1

)
− exp

(
−c

a0
a

2

)
. It is 0.5 < pshape ≈

0.665 < 1
2

+ 1√
8
≈ 0.85 and Lemma 3.30 gives that pa0,(·) is strictly decreasing and p(·),a0

is strictly increasing. The assumptions of Lemma 2.25 are fulfilled and we obtain c1
α(a0)

as that value a, which fulfills 1 − pa,a = pa0,a. As pa,a = pa = pshape, this means we are

looking for a > a0 such that 1− pshape = exp(−c
a0
a

1 )− exp(−c
a0
a

2 ), i.e. 0.439 = a0

a
, so

a = 2.275a0.

This proves the claim. □

Using the last lemma and the theory of Section 2.2, we prove that ϕ0,≤ is a consistent
test.
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Theorem 3.32. Let be α < 0.5. The test ϕ0,≤
a0

is a consistent test with asymptotic level
α for H0 : a ≤ a0.

Proof: With Lemma 3.29, 3.30 and 3.31, the assumptions of Theorem 2.33 on page 28
are fulfilled, since also pshape = exp(−c1)− exp(−c2) is constant and thereby continuous.

□

Analogously we deduce from Theorem 2.34 on page 29 the following

Theorem 3.33. Let be α < 0.5. We use the test statistic T (a, t∗) given by Definition
3.27 and get a consistent test ϕ≥a0

for H0 : a ≥ a0 with asymptotic level α, by rejecting
H0, if sup

a≥c1α(a0)

T (a, t∗) < Φ−1(α), where c1
α is given by Lemma 3.31.

Proof: Use the same arguments as in the last proof in order to conclude that the
assumptions of Theorem 2.34 are fulfilled. □

To estimate the power of the new test for finite sample size, we simulate datasets with
various shape and scale parameters a and b0 and count for different a0 how often the
hypothesis H0 : a ≥ a0 is rejected. Again, this test is compared to the test based on
the maximum likelihood estimator (MLE). Here H0 : a ≥ a0 is rejected, if âMLE <

a0

(
1 + Φ−1(α)

√
0.6079
N

)
, see [Rin 2009].

The results can be found in Figure 3.13. For each point in each graphic we simulate 1000
times 100 data.

We see that compared to the case of testing H0 : a ≤ a0, the level is better kept for
N = 100 data. The power of the test based on the maximum likelihood estimator is
better than the power of the new test for uncontaminated data. Consider now data that
are contaminated with some data coming from another distribution with different shape
parameter a1. The simulated power for H0 : a ≥ 1, with a1 = 0.5 and a1 = 10, is
displayed in Figure 3.14. The ratio of contamination is 10%.

Figure 3.14 indicates that both tests are infected by the contamination with a small shape
parameter, as both do not keep the level anymore. The test based on the MLE behaves
worse than the test based on likelihood-depth. The contamination with shape parameter
a1 = 10 has only a little influence on the power of both tests.

Finally, we use Theorem 2.32 on page 27 and the results from above to construct a
consistent test for H0 : a = a0. Further, we give confidence intervals for the shape
parameter of the Weibull distribution.

Theorem 3.34. Let be α < 0.5, T1, . . . , TN i.i.d., Ti ∼ Wei(a, b0), i = 1, . . . , N . With
t∗ = (t1, . . . , tN) we denote the realizations of T1, . . . , TN . A consistent test with asymp-
totic level α for

H0 : a = a0
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Figure 3.13.: Simulated power of the tests for H0 : a ≥ a0, b0 known.
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Figure 3.14.: Simulated power of H0 : a ≥ 1, b0 known, with ε-contaminated data from
Wei(a1, b0), ε = 0.1.

against H1 : a 6= a0 is given by

ϕ=
a0

(t∗) = max
(

1{T (a0,t∗)<Φ−1(α
2

)}(t∗), 1{T (c1α
2

(a0),t∗)<Φ−1(α
2

)}(t∗)
)
.

A confidence interval with level γ = 1− α for the shape parameter a is given by

{a0 > 0;ϕ=
a0

(t∗) = 0}.

Proof: As the assumptions of Theorem 2.32 on page 27 are fulfilled, the claim is true. □

The estimated power-function for finite samples of the test for H0 : a = a0 based on
likelihood-depth is compared to the power of the test based on the MLE and the test
based on the method of medians (MoM) in a simulation study. There we use the results
from He and Fung in [HeFu 1999]. They give a confidence interval as

(âMoM exp

(
1.2 · Φ−1(α

2
)√

N

)
, âMoM exp

(
−1.2 · Φ−1(α

2
)√

N

)
),

where âMoM is the estimator based on the method of medians, see also the section about
estimation. In the mentioned article lower and upper bound are given the other way
around, but as Φ−1(α) is negative for α < 0.5, we think it is a typing error. Based on
this confidence interval we get a test for H0 : a = a0, by rejecting H0, if a0 is not lying in
the confidence interval with level γ = 1− α.

As before we consider various a0 and b0. The results are displayed in Figure 3.15. We see
that the new test, and sometimes also the other two tests, does not keep the level.

Here too, we also consider ε-contaminated data, the results are displayed in Figure 3.16
and show the robustness of the new test and the test based on the median. It is ε =

79



0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

H0 : a=0.5, if b0=1 known

a

F
re

qu
en

cy
 o

f r
ej

ec
tio

ns

α=0.05

MLE
MoM
likelihood−depth

0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

H0 : a=1, if b0=1 known

a

F
re

qu
en

cy
 o

f r
ej

ec
tio

ns

α=0.05

MLE
MoM
likelihood−depth

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

H0 : a=1.5, if b0=1 known

a

F
re

qu
en

cy
 o

f r
ej

ec
tio

ns

α=0.05

MLE
MoM
likelihood−depth

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

H0 : a=2, if b0=1 known

a

F
re

qu
en

cy
 o

f r
ej

ec
tio

ns

α=0.05

MLE
MoM
likelihood−depth

0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

H0 : a=1, if b0=0.5 known

a

F
re

qu
en

cy
 o

f r
ej

ec
tio

ns

α=0.05

MLE
MoM
likelihood−depth

0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

H0 : a=1, if b0=2 known

a

F
re

qu
en

cy
 o

f r
ej

ec
tio

ns

α=0.05

MLE
MoM
likelihood−depth

Figure 3.15.: Simulation of the power-function of the tests for H0 : a = a0, known scale.
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0.1, N = 100 and M = 100. In all cases, uncontaminated and contaminated data, the
power of the test based on likelihood-depth is better than the power of the test based on
the MoM for a > a0. For a < a0 it is the other way around. Both tests are more robust
against ε-contamination than the test based on the MLE.
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Figure 3.16.: Simulated power-function of the tests for H0 : a = a0, known scale, for
ε-contaminated data from Wei(a1, b1).

There are some more methods to determine confidence intervals for the shape param-
eter of the Weibull distribution. For example in Lawless’ textbook “Statistical Models
and Methods for Lifetime Data”, see [Law 2003] on page 211-229, the Wald-type and
likelihood-ratio procedures are described in Chapter 5 “Inference Procedures for Log-
Location-Scale Procedures”. As the accuracy of the likelihood-ratio procedure is superior
to that of Wald-type procedures, according to Lawless, we will consider them here. Let
be yn = ln tn, n = 1, . . . , N . Then the density function of Y = lnT becomes

fu,v(y) =
1

v
e
y−u

v exp
(
−e y−uv

)
,
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where u = ln b and v = a−1. The log-likelihood function of the sample y∗ = (y1, . . . , yN)
has the form

l(u, v) = −N ln b+
N∑

i=1

(zi − ezi),

where zi = yi−u
v

. The likelihood-ratio statistic is given by

Λ(v0) = 2l(û, v̂)− 2l(û(v0), v0),

where û, v̂ are the MLEs for u, v and û(v0) is the parameter that maximizes l(u, v0). The

latter is determined as û(v0) = v0 ln
(

1
N

∑N
i=1 e

yi
v0

)
. Under the hypothesis v = v0, the test

statistic is asymptotically χ2-distributed with one degree of freedom. Let χ2
1,q denote the

q-quantile of the χ2
1-distribution. Then a confidence interval with level q for v0 is given

by

{v > 0; Λ(v) ≤ χ2
1,q},

which can be transformed to receive a confidence interval for a = v−1.

We compare the confidence intervals for the shape parameter based on likelihood-depth
(lik-depth) to three other methods. The first is, as before, the method based on the MLE,
the second the above mentioned method based on likelihood-ratio statistics (LRS), and
as a robust method we consider confidence intervals based on the method of medians
(MoM), see [HeFu 1999].

Table 3.10 shows the mean length and the coverage rate of the confidence intervals of the
different methods for various Weibull distributions. We simulate 1000 times 100 data each
and calculate the confidence intervals with level 0.95. Figure 3.17 displays the coverage
rate and mean length.

Table 3.10.: Confidence intervals for the shape parameter, known scale parameter, N =
100, 1000 repetitions each.

MLE LRS MoM lik-depth
a b coverage length cov. length cov. length cov. length

a) 1 1 0.910 0.319 0.968 0.353 0.943 0.485 0.911 0.515
b) 1 0.5 0.936 0.318 0.979 0.347 0.959 0.485 0.939 0.512
c) 0.5 1 0.911 0.159 0.972 0.176 0.944 0.243 0.897 0.257
d) 0.5 0.5 0.915 0.159 0.966 0.174 0.947 0.243 0.897 0.259
e) 3 1 0.926 0.950 0.961 1.028 0.946 1.45 0.919 1.566
f) 1 3 0.920 0.317 0.963 0.345 0.945 0.484 0.909 0.509
g) 3 3 0.930 0.953 0.966 1.019 0.946 1.461 0.915 1.547
h) 3 0.5 0.944 0.95 0.964 1.019 0.957 1.451 0.916 1.517
i) 0.5 3 0.914 0.159 0.970 0.174 0.938 0.243 0.905 0.264
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Figure 3.17.: Diagrammed values of the simulated coverage rate and length of the confi-
dence intervals for the shape parameter, when the scale parameter is sup-
posed to be known. For the values see Table 3.10.

We see that for uncontaminated data the confidence intervals based on likelihood-depth
perform worst. The rate of coverage is twice even smaller than 0.9. The reason for this
is maybe that the test for H0 : a ≤ a0 does not keep the level.

If we consider contaminated data too, we see that the confidence intervals based on the
method of medians and the ones based on likelihood-depth are quite robust in contrast
to the ones based on the MLE. Table 3.11 shows some results for ε-contaminated data.
Again we simulate 1000 times 100 data, where 10% of the data come from another Weibull
distribution with parameters a1, b1. We also graph the results, see Figure 3.18.

Table 3.11.: Confidence intervals for the shape parameter for ε-contaminated data from
Wei(a1, b1), known scale parameter b0, N = 100, 1000 repetitions each.

MLE LRS MoM lik-depth
a b a1 b1 cov. length cov. l. cov. l. cov. l.

a) 2 0.1 0.5 10 < 10−2 0.14 < 10−2 0.28 0.85 0.85 0.85 1.04
b) 0.5 1 2 10 0.93 0.16 0.98 0.22 0.93 0.22 0.87 0.22
c) 0.5 1 2 1 0.76 0.17 0.93 0.18 0.78 0.27 0.80 0.40
d) 2 1 0.5 1 0.07 0.40 0.06 0.41 0.88 0.88 0.89 1.00
e) 1 102 1 106 0.05 0.23 0.13 0.34 0.88 0.44 0.90 0.52
f) 1 102 1 10 0.83 0.28 0.83 0.35 0.85 0.44 0.88 0.48

Table 3.11 and Figure 3.18 show that the method of medians and the method based on
likelihood-depth are quite robust, especially when the shape parameter of the contamina-
tion distribution is smaller than the main parameter. The confidence intervals based on
the maximum likelihood estimator are very bad. The method based on likelihood-depth
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Figure 3.18.: Diagrammed values of the simulated coverage rate and length of the con-
fidence intervals for the shape parameter in contaminated data, when the
scale parameter is supposed to be known. For the values see Table 3.11.

gives the best coverage rates in four of the cases regarded. Only in one case it is worse
than the method based on the method of medians.

In this subsection tests for the shape parameter, under the assumption that the scale
parameter is known, were given. It turns out that these have good asymptotic power, are
quite robust and also have a good power for finite sample size. The resulting confidence
intervals are also robust against contamination and most times in case of contaminated
data superior to the ones given by the other methods considered here.

3.3.2. Uncensored data with unknown scale parameter

If the scale parameter b0 is unknown and has to be estimated, the depth of a can only
be calculated based on the median of the data. To calculate the test statistic, we plug

b̃N into the simplicial depth instead of b0. Thus, db̃NS (T∗) is not a U-statistic any more.
We can not use the theorem of Hoeffding to get the asymptotic distribution of the test
statistic. Anyway, we develop how the quantities would look like, if we still could use
the same theory as before and show in simulations studies that the power is quite good
for these disturbed cases. We determine p̃shape as the asymptotic value for the part of
observations lying in T a0,b̃

pos , see also the section about estimation in the uncensored case,
Section 3.2.3.

Analog to the case, where the scale parameter is known, we define the test statistic as

T̃ (a, t∗) :=
√
N

db̃NS (a, t∗)− 2p̃shape(1− p̃shape)
2
√
p̃shape(1− p̃shape)(1− 2p̃shape)2

,
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where here p̃shape = 2−c1 − 2−c2 ≈ 0.624, since p̃shape := 1
N

limN→∞ ♯{n; yn ∈ T a,b̃Npos } and

with Lemma 3.8, page 41, we get that T a,b̃Npos = [c
1
a
1 b̃N , c

1
a
2 b̃N ] holds, and Lemma 3.13, page

44, shows limN→∞ ♯{n; yn ∈ T a, ˜bN
pos } = 2−c1 − 2−c2 .

Thus, we test H0 : a ≤ a0 with ϕ̃0,≤
a0

(t∗) = 1{supa≤a0
T (a,t∗)<Φ−1(α)}(t∗).

The power of this test is, as before, compared to the power of the test based on the
MLE. The graphics in Figure 3.19 show the estimated power-functions for various a0.
We simulate data with Weibull distribution Wei(a, b0) and count how often H0 : a ≤ a0

is rejected. Some of the results for N = 100 data and 1000 repetitions for every a can
be found in Figure 3.19. We see the estimated power for a0 = 0.5, 1 and 2, where b0 = 1.
In the last row on the right the estimated power, if b0 is not 1 but 0.5, for H0 : a ≤ 1, is
depicted.
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Figure 3.19.: Power of the tests for H0 : a ≤ a0, unknown scale parameter.

If we take a look at the plots of the estimated power-functions in Figure 3.19 and compare
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them to the ones in Figure 3.11, we realize that the power has not really changed compared
to the case, when b0 is supposed to be known. Still both tests do not keep the level, the
only difference is that for b0 known the ratio of rejections for a = a0 was smaller for the
test based on likelihood-depth than for the one based on MLE. For b0 unknown this fact
changes, but the differences are very small.

Once more we consider ε-contaminated data that has a shape parameter a1 = 0.5 and in
a second study a1 = 10. The resulting estimated power-functions are displayed in Figure
3.20. The ratio of contamination is 10%.
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Figure 3.20.: Simulated power of the tests for H0 : a ≤ a0 for ε-contaminated data
Wei(a1, b0), ε = 0.1, unknown scale parameter b0.

Here too, we get almost the same results as in the case, where the scale parameter is
known, see Figure 3.12. All in all we see that also when the scale parameter is unknown,
we do get a robust test with a good power for H0 : a ≤ a0.

As p̃shape ≈ 0.624 > 0.5, a correction for the test H0 : a ≥ a0 is needed. Determining
c̃1
α(a0) analog to the case of known scale parameter would lead to

c̃1
α(a0) = k̃0a0,

with k̃0 ≈ 1.835: It is c̃1
α(a0) that value a such that p̃a0,a = 1− p̃shape, i.e. 2−c

a0
a

1 −2−c
a0
a

2 =
0.376, what leads to a = 1.835a0. We test H0 : a ≥ a0 against H1 : a < a0 with

ϕ̃≥a0
:= 1{sup

a≥c̃1α(a0)
T (a,t∗)≤Φ−1(α)}(t∗).

The graphics of Figure 3.21 show the estimated power of this test for different a0. For
each point in each graphic we do 1000 repetitions with 100 data each.

We realize that the changes in the power of the test with b0 unknown are very small
compared to the test with known scale parameter, which can be found in Figure 3.13.
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Figure 3.21.: Power of the tests for H0 : a ≥ a0, unknown scale parameter b0.

We consider also contaminated data, the results of two simulations can be found in
Figure 3.22. Here 10% of the data is distributed with Wei(a1, b1). 1000 times 100 data
are simulated for each point in the graphics. Comparing this results to the results where
the scale parameter is supposed to be known, see Figure 3.14, we see that the test based
on likelihood-depth still seems to give the same results.

Using the tests for H0 : a ≤ a0 and H0 : a ≥ a0, we can also define a test for the
hypothesis H0 : a = a0 against H1 : a 6= a0 as

ϕ̃=
a0

(t∗) = max(1{T (a0,t∗)≤Φ−1(α
2

)}, 1{T (c̃1α
2

(a0),t∗)≤Φ−1(α
2

)}).

The simulated power for this test compared to the simulated power of the test based on
MLE and the test based on the method of medians is displayed in Figure 3.23.

The graphics suggest that the power does not really change compared to the case with
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Figure 3.22.: Power of the tests for H0 : a ≥ a0, b0 unknown, ε-contamination with
Wei(a1, b0), ε = 0.1.

known scale parameter in Figure 3.15. Also, when we consider contaminated data, see
Figure 3.24, the results do not seem to change in comparison to Figure 3.16.

Using ϕ̃=
a0

we can introduce confidence intervals. We consider them here only for an
example. As a real data example we take a look at the steel-lifetime data from Example
3.26.

Example 3.35. We test for the lifetime-data from Example 3.26,
y∗ = (4030, 4680, 4860, 5750, 7170, 34100, 51000) for exponential distribution, i.e. H0 :
a = 1. This is not rejected with level α = 0.05, neither for the test based on likelihood-
depth nor for the test based on the MLE, but the test based on the method of medians
by He and Fung does reject H0. The confidence intervals for the shape parameter we get
by the methods from above are given in Table 3.12.

Table 3.12.: 95%-confidence interval for the shape parameter for the steel data from Ex-
ample 3.26.

MLE LRS MoM lik-depth
[0.63,2.33] [0.513,1.587] [1.015,6.004] [0.46,4.38]

We see that only for the method of medians the confidence interval does not include 1.
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Figure 3.23.: Power of the test for H0 : a = a0, unknown scale parameter b0.

3.3.3. Type-I right-censored data with known scale parameter

We consider type-I right-censored data with fixed censor time c0. We use the notations
as described in the beginning of this chapter, i.e. we examine data z∗ = (z1, . . . , zN) =
((y1, δ1), . . . , (yN , δN)), where yi = min(ti, c0), i = 1, . . . , N , δi = 0, if yi = c0 and
δi = 1 if yi = ti. Before we define the test statistic for censored data, we determine
Pa0,b0(h′b0(a0, Y ) ≥ 0). In this subsection, we will assume b0 to be known.

Lemma 3.36. For Y = min(T, c0) and T ∼Wei(a0, b0), it holds:

(a)

pb0a0,c0
:= Pa0,b0(h′b0(a0, Y ) ≥ 0) =





exp(−c1)− exp(−c2), b0 < c0 ∧ ta0,b0
02 < c0

exp(−c1)− exp
(
−
(
c0
b0

)a0
)
, b0 < c0 ∧ ta0,b0

02 ≥ c0

exp(−c1), b0 ≥ c0

,
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Figure 3.24.: Power of the test for H0 : a = a0, b0 unknown, with ε-contamination from
Wei(a1, b0), ε = 0.1.

where c1 < c2 are the solutions of ln c = 1
c−1

and ta0,b0
02 = c

1
a0
2 b0.

(b) Especially, pb0a0,c0
is continuous.

Proof: We start with b0 such that c0 > b0 and ta0,b0
02 = c

1
a0
2 b0 < c0. Then the likelihood-

depth of a0 in (z1, z2) = ((y1, δ1), (y2, δ2)) is

dT (a0, (z1, z2)) = 1
T
a0,b0
pos

(y1)1Ta0,b0
neg

(y2) + 1
T
a0,b0
neg

(y1)1Ta0,b0
pos

(y2),

where

T a0,b0
pos = [ta0,b0

01 , ta0,b0
02 ]

as in the uncensored case and T a0,b0
neg = (0, ta0,b0

01 ]∪ [ta0,b0
02 , c0]. Thus, we can use the results

from the last subsection for uncensored data, see also Theorem 3.19 on page 55, and get

pb0a0,c0
= Pa0,b0(T a0,b0

pos ) = Pa0,b0(c
1
a0
1 b0 ≤ Y ≤ c

1
a0
2 b0) = pshape = exp(−c1)− exp(−c2).

Considering b0 such that ta0,b0
02 ≥ c0, we get for the likelihood-depth of a0 in (z1, z2),

dT (a0, (z1, z2)) = 1
T
a0,b0
pos

(y1)1Ta0,b0
neg

(y2) + 1
T
a0,b0
neg

(y1)1Ta0,b0
pos

(y2). Here it is

T a0,b0
pos = {z = (y, δ); δ = 1, ta0,b0

01 ≤ y ≤ c0} = {z = (y, δ); ta0,b0
01 ≤ y ≤ c0}

and

T a0,b0
neg = {z = (y, δ); δ = 0 ∨ y ≤ ta0,b0

01 },
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see Theorem 3.19. Hence,

pb0a0,c0
= Pa0,b0(T a0,b0

pos ) = Pa0,b0(ta0,b0
01 ≤ Y < c0)

= exp


−



c

1
a0
1 b0

b0




a0

− exp

(
−
(
c0

b0

)a0
)

= exp(−c1)− exp
(
−
(
c0

b0

)a0
)
.

Now only the case b0 ≥ c0 is left. Then the likelihood-depth of a0 in (z1, z2) is given by
dT (a0, (z1, z2)) = 1

T
a0,b0
pos

(y1)1Ta0,b0
neg

(y2) + 1
T
a0,b0
neg

(y1)1Ta0,b0
pos

(y2), where this time

T a0,b0
pos = [ta0,b0

01 , c0],

see Theorem 3.19. Therefore, the probability that one data lies inside T a0,b0
pos is given by

Pa0,b0(T a0,b0
pos ) = Pa0,b0(ta0,b0

01 ≤ Y ≤ c0) = P (T ≥ ta0,b0
01 )

= exp


−



c

1
a0
1 b0

b0




a0

 = exp(−c1).

□

Recall that ta0,b0
01 = c

1
a0
1 b0 < b0 and ta0,b0

02 = c
1
a0
2 b0 > b0 since c1 < 1 < c2. We analyze

for which a0 it is pb0a0,c0
> 0.5, for which pb0a0,c0

= 0.5 and for which a0 p
b0
a0,c0

< 0.5. This
is done in the next lemma, but see also the Section 3.2.5 about estimation for censored
data.

Lemma 3.37. It is pb0a0,c0
> 0.5, if

• b0 ≥ c0, or

• b0 < ta0,b0
02 < c0, or

• b0 < c0 ≤ ta0,b0
02 and a0 >

ln(− ln(exp(−c1)−0.5))

ln

(
c0
b0

) ≈ 0.265

ln

(
c0
b0

) .

It holds pb0a0,c0
< 0.5, if b0 < c0 ≤ ta0,b0

02 and a0 <
ln(− ln(exp(−c1)−0.5))

ln

(
c0
b0

) . And pb0a0,c0
= 0.5, if

b0 < c0 ≤ ta0,b0
02 and a0 = ln(− ln(exp(−c1)−0.5))

ln

(
c0
b0

) .

Proof: We already showed in Lemma 3.36 that

pb0a0,c0 = Pa0,b0(h′b(a0, Y ) ≥ 0) =





exp(−c1)− exp(−c2) ≈ 0.66, b0 < c0 and ta0,b0
02 < c0

exp(−c1)− exp
(
−
(
c0
b0

)a0
)
, b0 < c0 and ta0,b0

02 ≥ c0
exp(−c1) ≈ 0.77, b0 ≥ c0

.
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For b0 > c0 and b0 < ta0,b0
02 < c0 the claim is true. Now let be b0 < c0 ≤ ta0,b0

02 . Then it
holds pb0a0,c0

= exp(−c1)− exp
(
−
(
c0
b0

)a0
)
, i.e.

pb0a0,c0
> 0.5

⇔ exp(−c1)− 0.5︸ ︷︷ ︸
≈0.22<1

> exp
(
−
(
c0

b0

)a0
)

⇔ − ln(exp(−c1)− 0.5) <
(
c0

b0

)a0

⇔ ln(− ln(exp(−c1)− 0.5))︸ ︷︷ ︸
≈0.265

(ln
(
c0

b0

)
)−1 < a0.

With this we also get pb0a0,c0
= 0.5, if a0 = 0.265

ln

(
c0
b0

) , and pb0a0,c0
< 0.5, if a0 <

0.265

ln

(
c0
b0

) . □

Thus, in case of b0 < c0 ≤ ta0,b0
02 and a0 = ln(− ln(exp(−c1)−0.5))

ln

(
c0
b0

) , the simplicial likelihood

depth of a0 is a degenerated U-statistic, as pb0a0,c0
= 0.5. In these cases we can not give

α-level tests with the methods presented in Section 2.2.

Lemma 3.38. For Pa0,b0(T a,b0pos ) the following results hold: If c0 > b0,

pb0a0,a,c0
:= Pa0,b0(T a,b0pos ) = exp

(
−c

a0
a

1

)
− exp


−


min(c0, c

1
a
2 b0)

b0



a0
 ,

if b0 ≥ c0,

pb0a0,a,c0
= exp

(
−c

a0
a

1

)
.

Further, pb0a0,(·),c0 is strictly decreasing and pb0(·),a,c0 strictly increasing.

Proof: We already discussed in the proof of Theorem 3.19 on page 55 that

T a,b0,c0pos = {z = (y, δ); y ∈ [ta,b001 , ta,b002 ], δ = 1}, if b0 < ta,b002 < c0,

T a,b0,c0pos = {z = (y, δ); y ∈ [ta,b001 , c0], δ = 1}, if b0 < c0 ≤ ta,b002 ,

T a,b0,c0pos = {z = (y, δ); y ∈ [ta,b001 , c0], δ = 1 or y = c0, δ = 0}, if b0 ≥ c0.

Hence, we obtain pb0a0,a,c0
= Pa0,b0(T a,b0pos ) = exp

(
−c

a0
a

1

)
− exp

(
−
(

min(c0,c
1
a
2 b0)

b0

)a0
)

, if

b0 < c0, else pb0a0,a,c0
= exp

(
−c

a0
a

1

)
holds.

Now consider a′ > a, then 1
a′
< 1
a

and therefore exp
(
−c

a0
a′

1

)
< exp

(
−c

a0
a

1

)
. Further, for

b0 < c0, we have c
1
a′

2 < c
1
a
2 and therefore min(c

1
a′

2 b0,c0)

b0
≤ min(c

1
a
2 b0,c0)

b0
, consequently

− exp


−




min(c
1
a′

2 b0, c0)

b0




a0

 ≤ − exp


−


min(c

1
a
2 b0, c0)

b0



a0
 .
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Altogether, this means

exp(−c
a0
a′

1 )− exp(−




min(c
1
a′

2 b0, c0)

b0




a0

) < exp(−c
a0
a

1 )− exp(−

min(c

1
a
2 b0, c0)

b0



a0

).

What proves pb0a0,(·),c0 strictly decreasing.

If a1 < a2, it is exp
(
−c

a1
a

1

)
< exp

(
−c

a2
a

1

)
and if b0 < c0

− exp


−


min(c

1
a
2 b0, c0)

b0



a1
 < − exp


−


min(c

1
a
2 b0, c0)

b0



a2
 ,

so pb0(·),a,c0 is strictly increasing in both cases. □

Now we determine c1
α and c2

α for censored samples.

Lemma 3.39. (a) If b0 < ta0,b0
02 = c

1
a0
2 b0 < c0, it holds c1

α(a0) = k0 · a0, with k0 ≈ 2.275
as in the uncensored case.

(b) If b0 < c0 ≤ ta0,b0
02 = c

1
a0
2 b0 and a0 <

ln(− ln(exp(−c1)− 1
2

))

ln

(
c0
b0

) ≈ 0.265

ln

(
c0
b0

) , c2
α(a0) can be

determined as the solution of

exp
(
−c

a0
a

1

)
− exp

(
−
(
c0

b0

)a0
)

= 1− exp(−c1) + exp
(
−
(
c0

b0

)a)
,

for a < a0 (especially c2
α(a0) < a0).

(c) If b0 < c0 ≤ ta0,b0
02 and a0 >

ln(− ln(exp(−c1)− 1
2

))

ln

(
c0
b0

) ≈ 0.265

ln

(
c0
b0

) , it is c1
α(a0) the solution for

a of

exp
(
−c

a0
a

1

)
− exp


−


min(c0, c

1
a
2 b0)

b0



a0
 = 1− exp(−c1) + exp

(
−
(
c0

b0

)a)
.

Further, it holds c1
α(a0) > a0.

(d) If b0 ≥ c0, c
1
α(a0) does not exist.

Proof: (a) If b0 < ta0,b0
02 < c0, we can use the results from the uncensored case, see Lemma

3.31 on page 76.

(b) Let be b0 < c0 < ta0,b0
02 and a0 <

ln(− ln(exp(−c1)− 1
2

))

ln

(
c0
b0

) . According to Lemma 3.37, it holds

pb0a0,c0
< 0.5 and in Lemma 3.25 on page 63 we proved that in this situation s(a0) < a0.

Recall that s(a) is that value such that pb0a,s(a),c0 = 1
2
. So we have to determine c2

α
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to improve the power of the test for H0 : a ≤ a0. For the calculation of c2
α we use

Lemma 2.27, see page 25. Therefore we check the conditions of this Lemma: It holds
1
2
< 1− pb0a0,a0,c0

< 1
2

+ 1√
8
, since

1− pb0a0,a0,c0
= 1− exp(−c1) + exp

(
−
(
c0

b0

)a0
)

< 1− exp(−c1) + exp(−1) ≈ 0.596

<
1

2
+

1√
8
≈ 0.853

We proved in Lemma 3.38 that pb0a0,(·),c0 is strictly decreasing. According to Lemma 2.27,
c2
α(a0) is calculated as the value a for that

pb0a0,a,c0
= 1− pb0a,c0

holds. As pb0a0,a0,c0
< 0.5 and pb0a0,(·),c0 strictly decreasing, the solution a must be smaller

than a0. Solving pb0a0,a,c0
= 1− pb0a,c0 for a < a0 leads to solving

exp
(
−c

a0
a

1

)
− exp

(
−
(
c0

b0

)a0
)

= 1− exp(−c1) + exp
(
−
(
c0

b0

)a)
.

(c) Assume b0 < c0 ≤ ta,b002 and a0 >
ln(− ln(exp(−c1)− 1

2
))

ln

(
c0
b0

) ≈ 0.265

ln

(
c0
b0

) . We proved in Lemma

3.37 that pb0a0,c0
> 0.5 and in Lemma 3.38 we showed pb0a0,(·),c0 being strictly decreasing.

As pb0a0,c0
< exp(−c1) ≈ 0.78 < 0.85 ≈ 1

2
+ 1√

8
, we can use Lemma 2.25, see page 23, to

determine c1
α(a0) and get it as the value a, such that 1− pb0a,c0 = pb0a0,a,c0

. I.e., a = c1
α(a0)

is the solution of

1− exp(−c1) + exp
(
−
(
c0

b0

)a)
= exp

(
−c

a0
a

1

)
− exp


−


min(c0, c

1
a
2 b0)

b0



a0
 .

As pb0a0,(·),c0 is strictly decreasing and 1− pb0a0,a0,c0
< pb0a0,a0,c0

, we have c1
α(a0) > a0.

(d) If b0 ≥ c0 holds,

1− pb0a,c0 = 1− exp(−c1) = exp
(
−c

a0
a

1

)
= pb0a0,a,c0

has no solution a > 0, as 1− exp(−c1) = exp(−c
a0
a

1 ) is equivalent to

ln (1− exp(−c1)) = −c
a0
a

1 . (3.12)

Since − ln(1− exp(−c1)) ≈ 1.477 > 1 holds and c1 < 1, (3.12) is never true for a, a0 > 0.

□

94



The proof of consistency of the tests needs c1
α and c2

α being strictly increasing. But in case

of b0 < c0 < c
1
a0
2 b0 = ta0,b0

02 , this is not easy to see. We only give two examples here where

we fix b0 and c0 and determine c1
α(a0) for a0 >

ln(− ln(exp(−c1)− 1
2

))

ln

(
c0
b0

) ≈ 0.265

ln

(
c0
b0

) , resp. c2
α(a0)

for a0 <
ln(− ln(exp(−c1)− 1

2
))

ln

(
c0
b0

) ≈ 0.265

ln

(
c0
b0

) . The results for b0 = 1, c0 = 2 and b0 = 2, c0 = 3 are

displayed in Figure 3.25.
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Figure 3.25.: Development of c1
α (first row) and c2

α (second row) for b0 = 1, c0 = 2 (left)
and b0 = 2, c0 = 3 (right).

The graphics provide the assumption, that c1
α and c2

α are strictly increasing for a0 >
ln(− ln(exp(−c1)− 1

2
))

ln

(
c0
b0

) ≈ 0.265

ln

(
c0
b0

) resp. a0 <
ln(− ln(exp(−c1)− 1

2
))

ln

(
c0
b0

) ≈ 0.265

ln

(
c0
b0

) , at least for c0 = 2, b0 = 1

and c0 = 3, b0 = 2.

The remaining assumptions of Theorem 2.33 on page 28 resp. Theorem 2.38 on page 31
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are true, though, as pb0(·),a,c0 is strictly increasing, pb0a,(·),c0 strictly decreasing, 1
2
< pb0a0,c0

<
1
2

+ 1√
8

and c1
α(a0) > a0 resp. 1

2
< 1− pb0a0,c0

< 1
2

+ 1√
8

and c2
α(a0) < a0 hold.

We define a test statistic analog to Lemma 2.14, see page 17.

Definition 3.40. We define the test statistic as

T (a0, z∗) :=
√
N

db0S (a0, z∗)− 2pb0a0,c0
(1− pb0a0,c0

)

2
√
pb0a0,c0

(1− pb0a0,c0
)(1− 2pb0a0,c0

)2
,

with pb0a0,c0
given by Lemma 3.36.

We use the theory of the second chapter, especially Definition 2.19 on page 20, Corollary
2.17 on page 19 and Theorem 2.21 on page 20 to construct a test for the hypothesis
H0 : a ≤ a0. We already discussed that, as pb0a0,c0

can take values smaller than one-half
and greater than one-half, we have to distinguish these cases, when determining a test.

Theorem 3.41. Let be z∗ = (z1, . . . , zN) realizations of Z∗ = Z1, . . . , ZN with Zi =
(Yi,∆i), Yi = min(Ti, c0) and Ti ∼Wei(a, b0), i = 1, . . . , N .

(a) If b0 < ta0,b0
02 < c0, then the test

ϕ≤a0
(z∗) = 1{supa≤a0

T (a,z∗)<Φ−1(α)}(z∗)

is a consistent test with asymptotic level α for H0 : a ≤ a0 against H1 : a > a0.

(b) If b0 < c0 ≤ ta0,b0
02 and a0 >

ln(− ln(exp(−c1)−0.5))

ln

(
c0
b0

) ≈ 0.265

ln

(
c0
b0

) , then the test

ϕ≤a0
(z∗) = 1{supa≤a0

T (a,z∗)<Φ−1(α)}(z∗)

is a test with asymptotic level α for H0 : a ≤ a0 against H1 : a > a0.

(c) If b0 < c0 ≤ ta0,b0
02 and a0 <

ln(− ln(exp(−c1)−0.5))

ln

(
c0
b0

) ≈ 0.265

ln

(
c0
b0

) , then the test

ϕ≤a0
(z∗) = 1{sup

a≤c2α(a0)
T (a,z∗)<Φ−1(α)}(z∗),

with c2
α(a0) being the solution of

exp(−c
a0
a

1 )− exp
(
−
(
c0

b0

)a0
)

= 1− exp(−c1) + exp
(
−
(
c0

b0

)a)
,

for a < a0, is a test with asymptotic level α for H0 : a ≤ a0 against H1 : a > a0.

Proof: If b0 < ta0,b0
02 < c0, we can use the results from the uncensored case, see Theorem

3.32 on page 77, so (a) is proved. If b0 < c0 ≤ ta0,b0
02 , we have to distinguish the cases

a0 <
ln(− ln(exp(−c1)−0.5))

ln

(
c0
b0

) and a0 >
ln(− ln(exp(−c1)−0.5))

ln

(
c0
b0

) , as in the first case it holds s(a0) < a0
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and in the second s(a0) > a0, see Lemma 3.25 on page 63. Thus, according to the second
chapter, we have to correct the test for H0 : a ≤ a0, if a0 < ln(− ln(exp(−c1)−0.5))

ln

(
c0
b0

) . The

correction function c2
α is given in Lemma 3.39. □

For c2
α from Lemma 3.39 we could not prove that it is strictly increasing, hence, we could

not prove that the assumptions of Theorem 2.38 on page 31, resp. Theorem 2.33 on page
28, are fulfilled and thereby not prove consistency in both cases a0 <

ln(− ln(exp(−c1)−0.5))

ln

(
c0
b0

)

and a0 >
ln(− ln(exp(−c1)−0.5))

ln

(
c0
b0

) .

To analyze the behavior of the power-function for finite sample size (N = 100) we simulate
data with different shape parameter, censor the biggest 20% of the data in each simulation
and count how often H0 : a ≤ a0 is rejected for different a0. The power-function of this
new test is compared to the power-function of the test based on the maximum likelihood
estimator (MLE). We display the results in the graphics of Figure 3.26.

We see, if one fifth of the data is censored, the new test does not keep the level. The
differences between the new test and the test based on the maximum likelihood estimator
seem not to be very large for uncontaminated data. We consider later on also contami-
nated data, when simulating confidence intervals. There we will see that the new test is
robust in contrast to the test based on the MLE.

The next aim is to define a test for the hypothesis H0 : a ≥ a0 against H1 : a < a0. This
is given by the next theorem. Again we have to distinguish the cases when pb0a0,c0

> 0.5
and pb0a0,c0

< 0.5.

Theorem 3.42. Let be α < 0.5.

(a) If c0 > b0 and c0 > ta0,b0
02 , then we get the same correction for the power, c1

α, as in
the uncensored case, i.e.

c1
α(a0) = k0 · a0, with k0 ≈ 2.275

and a consistent asymptotic α-level test for H0 : a ≥ a0 is given by

ϕ≥a0
(z∗) := 1{sup

a≥c1α(a0)
T (a,z∗)<Φ−1(α)}(z∗).

(b) If b0 < c0 ≤ ta0,b0
02 and a0 <

ln(− ln(exp(−c1)−0.5))

ln

(
c0
b0

) ≈ 0.265

ln

(
c0
b0

) , then

ϕ≥a0
(z∗) := 1{supa≥a0

T (a,z∗)<Φ−1(α)}(z∗)

is a test with asymptotic level α for H0 : a ≥ a0.

(c) If b0 < c0 ≤ ta0,b0
02 and a0 >

ln(− ln(exp(−c1)−0.5))

ln

(
c0
b0

) ≈ 0.265

ln

(
c0
b0

) , then

ϕ≥a0
(z∗) = 1{sup

a≥c1α(a0)
T (a,z∗)<Φ−1(α)}(z∗),
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Figure 3.26.: Simulated power of the tests for H0 : a ≤ a0 for 20% right-censored data
with known scale parameter b0.

with c1
α(a0) being the solution for a > a0 of

exp
(
−c

a0
a

1

)
− exp


−


min(c0, c

1
a
2 b0)

b0



a0
 = 1− exp(−c1) + exp

(
−
(
c0

b0

)a)
,

is a test with asymptotic level α for H0 : a ≥ a0.

Proof: As we discussed in the proof of Theorem 3.41, we have to distinguish the cases
c0 > ta0,b0

02 , where we are in the same situation as for uncensored data and can use the
proofs from that section, and b0 < c0 ≤ ta0,b0

02 . In the second situation the test has to
be corrected by c1

α, if a0 >
0.265

ln

(
c0
b0

) . The correction was determined in Lemma 3.39. If

a0 <
0.265

ln

(
c0
b0

) , no correction is needed. □
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Again we can not proof consistency in case (b) and (c), because we can not show the
monotonicity of c1

α and c2
α.

We simulate the power-function of this new test for finite sample size (N = 100). As
before, we consider 20% of the data to be censored. Here too, we compare the new test
with the test based on the MLE. Figure 3.27 shows some of the results for different a0

and different scale parameter b0. We see that the test does almost keep the level and that
the power does not change as the scale parameter changes. The power of the test based
on the MLE seems to be a little better than the power of the new test.
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Figure 3.27.: Simulated power of the test for H0 : a ≥ a0 for 20%-right-censored data
with known scale parameter b0.

Up to now, we just censored the biggest 20% of the data. But to force the situation
a0 <

ln(− ln(exp(−c1)−0.5))

ln

(
c0
b0

) ≈ 0.265
ln(
c0
b0

)
resp. a0 >

ln(− ln(exp(−c1)−0.5))

ln

(
c0
b0

) ≈ 0.265
ln(
c0
b0

)
, we will now fix a

censor time and a0, b0, such that the inequalities are fulfilled. For the test H0 : a ≤ a0 we
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fix b0 = 10, c0 = 13 and choose a0 = 1, as 1 < 1.01 ≈ 0.265
ln(
c0
b0

)
and for H0 : a ≤ a0, we choose

a0 = 2 > 1.01 ≈ 0.265
ln(
c0
b0

)
, in both cases it holds c

1
a0
2 b0 > c0. The results of simulations are

displayed in Figure 3.28.
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Figure 3.28.: Simulated power of the one-sided tests if c
1
a0
2 b0 > c0 and a0 <

0.265

ln

(
c0
b0

) (left)

and a0 >
0.265

ln

(
c0
b0

) (right).

The graphics show that the new test and the test based on the MLE do not seem to
behave differently in this situation. So here too, the new test is nearly as good as the
test based on the MLE.

We use Theorem 2.32 on page 27 resp. Theorem 2.35 on page 30, Lemma 3.38 and Lemma
3.39 to give also a test for the hypothesis H0 : a = a0 against H1 : a 6= a0.

Theorem 3.43. Let be α < 0.5, Z∗ = (Z1, . . . , ZN), Zn = (Yn,∆n), with Yn = min(c0, Tn),
Tn ∼Wei(a, b0), n = 1, . . . , N .

(a) If c0 > b0 and c0 > ta0,b0
02 , then we can use the same test as in the uncensored case,

i.e.

ϕ=
a0

(z∗) := max(1{T (a0,z∗)<Φ−1(α
2

)}(z∗), 1{T (c1α
2

(a0),z∗)<Φ−1(α
2

)}(z∗)),

where

c1
α
2
(a0) = k0 · a0,with k0 ≈ 2.275.

ϕ=
a0

is a consistent asymptotic α-level test for H0 : a = a0 against H1 : a 6= a0.
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(b) If b0 < c0 < ta0,b0
02 and a0 <

ln(− ln(exp(−c1)−0.5))

ln

(
c0
b0

) ≈ 0.265

ln

(
c0
b0

) , then

ϕ=
a0

(z∗) := max(1{T (c2α
2

(a0),z∗)<Φ−1(α
2

)}(z∗), 1{T (a0,z∗)<Φ−1(α
2

)}(z∗)),

where c2
α
2
(a0) is the solution of

exp
(
−c

a0
a

1

)
− exp

(
−
(
c0

b0

)a0
)

= 1− exp(−c1) + exp
(
−
(
c0

b0

)a)
,

and ϕ=
a0

is an asymptotic α-level test for H0 : a = a0 against H1 : a 6= a0.

(c) If b0 < c0 < ta0,b0
02 and a0 >

ln(− ln(exp(−c1)−0.5))

ln

(
c0
b0

) ≈ 0.265

ln

(
c0
b0

) , then

ϕ=
a0

(z∗) := max(1{T (a0,z∗)<Φ−1(α
2

)}(z∗), 1{T (c1α
2

(a0),z∗)<Φ−1(α
2

)}(z∗)),

with c1
α(a0) being the solution for a > a0 of

exp
(
−c

a0
a

1

)
− exp


−


min(c0, c

1
a
2 b0)

b0



a0
 = 1− exp(−c1) + exp

(
−
(
c0

b0

)a)
,

and ϕ=
a0

is an asymptotic α-level test for H0 : a = a0 against H1 : a 6= a0.

Consequently, in all cases a confidence interval for a is given by

{a0;ϕ
=
a0

(z∗) = 0}.

Proof: Use analog arguments as in the proofs of Theorem 3.41 and Theorem 3.42. □

We examine the power-function of the test for H0 : a = a0 in comparison to the tests
based on the maximum likelihood estimator (MLE), see e.g. the textbook of Lawless
[Law 2003], and the test based on the method of medians (MoM), see He and Fung
[HeFu 1999], in a simulation study. Again the ratio of censored data is 20% and we
consider different shapes and scales.

The graphics in Figure 3.29 show that for a sample size of N = 100 the level is not kept
by the tests based on the MoM and the new test. The test based on the MoM behaves
worst, its power function seems to be shifted to the left. For the MLE the power function
takes very low values in a0, for a > a0 it is always below the power function of the new
test based on likelihood-depth. Again, we see that changes in the scale do not affect the
power of the new test and that it is good for all a0 considered here.

Also, we simulate 95%-confidence intervals for the shape parameter with the new test
(lik-depth) and compare the results to the confidence intervals we get by the method
based on the maximum likelihood estimator (MLE) and the one based on the method of
medians (MoM). For uncontaminated censored data (again the biggest 20% of the data
was censored), the method based on the MLE gives the highest coverage rates and the
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Figure 3.29.: Simulated power of the tests for H0 : a = a0 for censored data with known
scale b0, 20% of the data censored.

method based on the medians behaves worst. For a better view, we graph the results in
Figure 3.30. We notice that the confidence intervals based on likelihood-depth have the
smallest mean length in all cases.

In a second study we also consider ε-contaminated data, see Table 3.14. The contami-
nation distribution is Wei(a1, b) and ε = 0.1. In cases of contamination with a1 < 1 and
original a > 1, the confidence intervals based on likelihood-depth have the best covering
rate nearest to 95%. The coverage rate of the MoM goes down to less than 25 % for
censored data, so that this method seems not practical at all. The method of the MLE
produces for uncontaminated covering rates that are very close to one, for some contam-
inations this happens too. Thus, it seems very conservative. But the coverage rate also
goes down to less than five percent. We display the results in two graphics, that can be
found in Figure 3.31. They reveal, that only the coverage rates of the confidence intervals
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Table 3.13.: Confidence intervals for the shape parameter, censored data (20%), known
scale b0.

MLE MoM lik-depth
a) 1 1 0.997 0.568 0.657 0.578 0.866 0.503
b) 1 3 0.996 0.569 0.626 0.579 0.844 0.5
c) 1 0.2 0.996 0.565 0.655 0.575 0.868 0.504
d) 0.2 0.2 0.994 0.115 0.622 0.116 0.816 0.106
e) 0.2 3 0.998 0.115 0.629 0.116 0.837 0.104
f) 0.2 1 0.998 0.115 0.616 0.117 0.839 0.104
g) 3 3 0.994 1.675 0.635 1.746 0.868 1.561
h) 3 1 0.996 1.678 0.627 1.748 0.857 1.537
i) 3 0.2 0.997 1.674 0.632 1.733 0.879 1.519
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Figure 3.30.: Coverage rate and mean length of the confidence intervals for the shape
parameter in censored data, see also Table 3.13.
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based on likelihood-depth are stable.

Table 3.14.: Confidence intervals for the shape parameter, contaminated (10% with
Wei(a1, b1)) and censored (20%) data, known scale b0.

MLE MoM lik-depth
a b a1 cov. length cov. length cov. length

a) 1 1 0.2 0.427 0.437 0.819 0.527 0.844 0.472
b) 1 1 2 0.997 0.603 0.429 0.63 0.774 0.57
c) 0.5 1 0.2 0.92 0.256 0.736 0.273 0.883 0.246
d) 0.5 1 2 0.985 0.314 0.245 0.345 0.649 0.364
e) 5 1 0.2 0.005 1.086 0.824 2.595 0.805 2.383
f) 5 1 2 0.807 2.434 0.789 2.697 0.834 2.421
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Figure 3.31.: Coverage rate and length of the confidence intervals for the shape parameter
in censored and contaminated data, see also Table 3.14.

3.3.4. Type-I right-censored data with unknown scale parameter

If the scale parameter is unknown, the same problems as described in Section 3.3.2, see
page 84, occur. We can not use the same theory as in the case, where the scale b0 is
known.
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We plug b̃N = med(y∗) into the depth-function of a and calculate the latter as

db̃NT (a, z∗) =
1

N
min

(
♯{n; δn = 1 and ta,b̃N01 ≤ yn ≤ ta,b̃N02 },

♯{n; δn = 1 and (yn ≥ ta,b̃N02 or yn ≤ ta,b̃N01 )}+ (N − k)
)
,

see Theorem 3.19 on page 55, where ta,b̃N0i = c
1
a
i b̃N , i = 1, 2. It was already discussed in

Section 3.2.5 about estimation that

1

N
♯{n; δn = 1 and ta,b̃N01 ≤ yn ≤ ta,b̃N02 } → − exp


−


min(c0, c

1
a
2 b0(ln 2)

1
a )

b0



a0
+ 2−c

a0
a

1

as N tends to infinity. Because the limit is depending on the unknown parameter b0, we
use that it is approximated by b̃N

(ln 2)
1
a

and work with

pb̃Na,c0 :=





2−c1 − 2−c2 , c
1
a
2 b̃N < c0

2−c1 − 2
−
(
c0
b̃N

)a
, c

1
a
2 b̃N ≥ c0

.

Analog to Lemma 2.14, see page 17, the test statistic is defined as

T̃ (a, z∗) :=
√
N

db̃NS (a, z∗)− 2pb̃Na,c0(1− pb̃Na,c0)

2
√
pb̃Na,c0(1− pb̃Na,c0)(1− 2pb̃Na,c0)2

and we work with this, as if we could use the same theory as in the case of b0 known in
the last subsection.

We begin with checking for which a > 0 it is pb̃Na,c0 > 0.5, see also Lemma 3.25 on page 63.

If c0 < ta,b̃N02 = c
1
a
2 b̃N , it is pb̃Na,c0 = 2−c1 − 2−c2 ≈ 0.624 > 0.5. Now let be ta,b̃N02 > c0. Then

pb̃Na,c0 >
1

2
⇔ 2−c1 − 2

−
(
c0
b̃N

)a
>

1

2

⇔ −
ln

=0.335<1︷ ︸︸ ︷(
2−c1 − 2−1

)

ln(2)
<

(
c0

b̃N

)a

⇔ ln

(
− ln (2−c1 − 2−1)

ln(2)

)

︸ ︷︷ ︸
:=k1≈0.455

1

ln
(
c0
b̃N

) < a.

Thus, if c0 < c
1
a0
2 b̃N = ta0,b̃N

02 and a0 >
k1

ln

(
c0
b̃N

) or if c0 > ta0,b̃N
02 , it holds s(a0) > a0 (see

Lemma 3.25) and pb̃Na0,c0
> 1

2
. We can use

ϕ̃≤a0
(z∗) := 1{supa≤a0

T̃ (a,z∗)<Φ−1(α)}(z∗)
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as a test for H0 : a ≤ a0 against H1 : a > a0. But if c0 < ta0,b̃N
02 and a0 <

k1

ln

(
c0
b̃N

) ≈ 0.455

ln

(
c0
b̃N

) ,

we determine c̃2
α(a0) as an analogon to c2

α from the last subsection, to improve the power.
Therefore, we determine an approximation of Pa0,b0(T a,bpos) for b = (ln 2)

1
a b0, with the same

arguments as before and end up with

pb̃Na0,a,c0
:= 2−c

a0
a

1 − 2
−

(
min(c0,c

1
a
2
b̃N )

b̃N

)a0

.

Regard that, if c
1
a0
2 b̃N ≥ c0 and a ≤ a0, then c

1
a
2 b̃N ≥ c

1
a0
2 b̃N ≥ c0. Hence, it holds

pb̃Na0,a,c0
= 2−c

a0
a

1 − 2
−
(
c0
b̃N

)a0

, if c
1
a0
2 b̃N ≥ c0 and a ≤ a0. Analog to the calculations in

Lemma 3.39 on page 93 we determine c̃2
α(a0) as that value a that solves

pb̃Na0,a,c0
= 1− pb̃Na,a,c0 ,

as it is pb̃Na0,(·),c0 strictly decreasing and pb̃N(·),a,c0 strictly increasing. Solving pb̃Na0,a,c0
= 1 −

pb̃Na,a,c0 means solving

2−c
a0
a

1 − 2
−

(
min(c0,c

1
a
2
b̃N )

b̃N

)a0

= 1− 2−c1 + 2
−

(
min(c0,c

1
a
2

)

b̃N

)a

(3.13)

for a. As pb̃Na0,(·),c0 is strictly decreasing, pb̃Na0,a0,c0
< 0.5, the solution c̃2

α(a0) is smaller than
a0. Thus (3.13) is equivalent to

2−c
a0
a

1 − 2
−
(
c0
b̃N

)a0

= 1− 2−c1 + 2
−
(
c0
b̃N

)a
.

We define a test for H0 : a ≤ a0 against H1 : a > a0 for unknown scale parameter as

ϕ̃≤a0
(z∗) :=





1{sup
a≤c̃2α(a0)

T̃ (a,z∗)<Φ−1(α)}(z∗), c
1
a0
2 b̃N ≥ c0 and a0 <

k1

ln

(
c0
b̃N

)

1{supa≤a0
T̃ (a,z∗)<Φ−1(α)}(z∗), else

,

where k1 = ln
(
− ln(2−c1−2−1)

ln(2)

)
≈ 0.455.

The power-function of this new test is simulated for sample size N = 100, 20% right-
censored data and different shape and scale parameter. Figure 3.32 shows the power-
function in comparison to the power-function of the test where b0 is known.

We see that the power-functions do not really differ. It is even hard to distinguish the
dashed, blue line, the power-function of the test for known scale, and the solid, black one
that displays the simulated power-function of the test for unknown scale parameter.

Before we can also give a test for the hypothesis H0 : a ≥ a0, the quantity c̃1
α(a0), as an

analogon of c1
α(a0), has to be determined for the cases c

1
a0
2 b̃N < c0 as well as c

1
a0
2 b̃N ≥ c0
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Figure 3.32.: Simulated power of H0 : a ≤ a0 for 20% right-censored data, unknown scale
parameter compared to known scale.

and a0 >
k1

ln

(
c0
b̃N

) ≈ 0.455

ln

(
c0
b̃N

) , because in these situations it is s(a0) > a0 and pb̃Na0,c0
> 0.5

and we discussed in the second chapter that then the test for the hypothesis H0 : a ≥ a0

has to be corrected. As before, it holds pb̃Na0,(·),c0 strictly decreasing and pb̃N(·),a,c0 strictly

increasing. For c
1
a0
2 b̃N < c0 we use the results from the uncensored case, where the scale

parameter is unknown. Thus, we end up with

c̃1
α(a0) = k̃0a0, k̃0 ≈ 1.835.
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If c
1
a0
2 b̃N ≥ c0 and a0 >

k1

ln

(
c0
b̃N

) , it is c̃1
α(a0) the solution of 1− pb̃Na,a,c0 = pb̃Na0,a,c0

, i.e. of

1− 2−c1 + 2
−

(
min(c0,c

1
a
2
b̃N )

b̃N

)a

= 2−c
a0
a

1 − 2
−

(
min(c0,c

1
a
2
b̃N )

b̃N

)a0

for a > a0. Consequently, the test for H0 : a ≥ a0 against H1 : a < a0 is given by

ϕ̃≥a0
(z∗) =





1{supa≥k̃0a0
T̃ (a,z∗)<Φ−1(α)}(z∗), c

1
a0
2 b̃N < c0

1{supa≥a0
T̃ (a,z∗)<Φ−1(α)}(z∗), c

1
a0
2 b̃N ≥ c0 and a0 <

k1

ln
c0
b̃N

1{sup
a≥c̃1α(a0)

T̃ (a,z∗)<Φ−1(α)}(z∗), c
1
a0
2 b̃N ≥ c0 and a0 >

k1

ln
c0
b̃N

,

where k1 = ln
(
− ln(2−c1−2−1)

ln(2)

)
≈ 0.455.

The power-function of ϕ̃≥a0
is simulated for sample size N = 100, 20% censored data and

different shape and scale parameters. Figure 3.33 shows the results in comparsion to the
power-function of the test with known scale parameter.

Here too, it is hard to detect differences between the two power-functions. The estimation
of the scale parameter seems to have no influence on the power-function of the test for
the shape parameter.

Using the tests for H0 : a ≥ a0 and H0 : a ≤ a0, a test for H0 : a = a0 against H1 : a 6= a0

is defined as

ϕ̃=
a0

(z∗) := max(1{T̃ (a0,z∗)<Φ−1(α
2

)}(z∗), 1{T̃ (a,z∗)<Φ−1(α
2

)}(z∗)),

with

a =





k̃0a0, c
1
a0
2 b̃N < c0

c̃1
α(a0), c

1
a0
2 b̃N ≥ c0 and a0 >

k1

ln
c0
b̃N

c̃2
α(a0), c

1
a0
2 b̃N ≥ c0 and a0 <

k1

ln
c0
b̃N

and k̃0 ≈ 1.835, k1 = ln
(
− ln(2−c1−2−1)

ln(2)

)
≈ 0.455.

Hence, confidence intervals for the shape parameter of the Weibull distribution in type-I
right-censored data with unknown scale parameter are given by

{a0 > 0; ϕ̃=
a0

(z∗) = 0}.

Once more, we compare the simulated power-functions for the tests with known and
unknown scale parameter, see Figure 3.34, and once more the simulations indicate that
the estimation of the scale parameter has no influence on the power.
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Figure 3.33.: Testing H0 : a ≤ a0 for 20% right-censored data, compare unknown scale
and known scale.

We compare 95%-confidence intervals (lik-depth) to the ones we get by the likelihood-ratio
statistics (LRS) and the ones based on the method of medians (MoM) for the example
of steel lifetimes.

Example 3.44. We introduce for the lifetime-data from Example 3.26,
y∗ = (4030, 4680, 4860, 5750, 7170, 34100, 51000) two censorings, (a) c0 = 10000 and (b)
c0 = 7000, then determine 95%-confidence intervals with the help of the new method
based on likelihood-depth, the method based on MLE and the one based on MoM. The
confidence intervals for the shape parameter we get by the methods from above are given
in Table 3.15.
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Figure 3.34.: Simulated power of the tests for H0 : a = a0 for 20% right-censored data,
b0 unknown, compared with the test when b0 is supposed to be known.

Table 3.15.: 95%-confidence interval for the shape parameter for the steel data of Example
3.26.

c0 MLE MoM lik-depth
∞ [0.63,2.33] [1.01,6.00] [0.46,4.38]

10000 [ 0.94,4.17] [1.01,6.00] [0.00,4.37]
7000 [1.20,7.14] [2.04,12.06] [0.00,4.37]

We see that only the confidence intervals based on likelihood-depth do not change for the
heavier censoring, while the other two methods do.

110



3.4. Tests and confidence intervals for the scale

parameter

In this section we derive tests for the scale parameter of the Weibull distribution. The
results from Section 2.2 of the theory chapter and the considerations from Section 3.2
about estimators for the Weibull parameters are used.

3.4.1. Uncensored data with known shape parameter

Let be T∗ = (T1, . . . , TN) as before i.i.d., Ti ∼ Wei(a0, b). In the following we derive
tests for the null hypothesis H0 : b ≥ b0 against H1 : b < b0, H0 : b ≤ b0 against the
alternative H1 : b > b0, and match these two tests to a test for H0 : b = b0 against

H1 : b 6= b0. We already showed in Section 3.2 about estimation that s(b) = (ln 2)
1
a0 b < b

and Pa0,b(T
b
pos) < 0.5. All through this subsection we consider the shape parameter to be

known. For all tests we use the same test statistic, defined analog to Lemma 2.14, see
page 17.

Definition 3.45. For t∗ = (t1, . . . , tN) consider

T (b, t∗) :=
√
N

dS(b, t∗)− 2pscale(1− pscale)
2
√
pscale(1− pscale)(1− 2pscale)2

,

where pscale = exp(−1) as defined in the proof of Lemma 3.4 on page 39.

Using Corollary 2.17 on page 19 and Definition 2.19 on page 20, an asymptotic α-level
test for H0 : b ≥ b0 is easily defined.

Theorem 3.46. We get an asymptotic α-level test for H0 : b ≥ b0 by rejecting H0, if
supb≥b0 T (b, t∗) < Φ−1(α), i.e. we define

ϕ≥b0(t∗) := 1{supb≥b0 T (b,t∗)<Φ−1(α)}(t∗).

Remark. The test ϕ≥b0 is independent of the shape parameter. For this test we can also
assume that the shape parameter is unknown.

We compare the power of this new test in a simulation study with a test for the scale
parameter given in the textbook of Rinne, [Rin 2009], based on the maximum likelihood
estimator. The hypothesis H0 : b ≥ b0 is rejected, if b̂MLE < b0 exp

(
uα
âMLE

)
, where b̂MLE

and âMLE are the maximum likelihood estimates for the scale and shape parameter,
respectively, see e.g. Section 3.2 in this work, and uα are the percentage points of U =

âMLE ln
(
b̂MLE
b

)
, for a table see [Rin 2009]. For N = 100 and α = 0.05 it is uα =

−0.174. We simulate 1000 times 100 data with different scale parameter and test different
hypotheses of type H0 : b ≤ b0, see Figure 3.35.
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Figure 3.35.: Simulated power for H0 : b ≥ b0.

We observe in Figure 3.35 that the shape parameter has a big influence on the power
of the test. The test based on likelihood-depth and the test based on the MLE do not
really differ in their power for uncontaminated data. The test based on the maximum
likelihood estimator seems to give only slightly better results.

In a next step we consider data, for which some part is distributed with different scale
and/or shape, i.e. ε-contaminated data. Here ε = 0.1 and the contamination distribution
is Wei(a1, b1), see Figure 3.36. We suppose the shape parameter to be known as a0 for
the test based on MLE. For contamination with a small shape parameter the power of
the test based on likelihood-depth seems to be better than the power of the test based
on the MLE. For other contaminations we can not really find a difference in the behavior
of the power-functions.

To receive also a good power of the test for H0 : b ≤ b0 and prove consistency in both
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Figure 3.36.: Simulated power for H0 : b ≥ b0 for contaminated data, i.e. 10% of the data
is coming from Wei(a1, b1) (if b1 resp. a1 not given b1 := b0 resp. a1 := a0).

cases H0 : b ≥ b0 and H0 : b ≤ b0, we have to determine

c2
α,a0

(b0) := min{b; lim
N→∞

Pa0,b0

(
T (b, T∗) < Φ−1(α)

)
≤ α},

as described in Definition 2.18, see page 19 and Definition 2.19 on page 20. Therefore we
use Lemma 2.27 on page 25. Before we can do this we have to prove that the conditions
of Lemma 2.27 are fulfilled.

Lemma 3.47. It holds

pa0
b0,b

:= Pa0,b0(T bpos) = exp

(
−
(
b

b0

)a0
)
.

Further, it is pa0

b0,(·) strictly decreasing, pa0

(·),b0 is strictly increasing, and 1
2
< 1 − pscale =

1− pa0
b,b = 1− exp(−1) ≈ 0.623 < 1

2
+ 1√

8
.
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Proof: At once, we get pa0
b0,b

= Pa0,b0(T bpos) = Pa0,b0(T ≥ b) = exp
(
−
(
b
b0

)a0
)
. Hence, for

b1 < b2, i.e. − b1
b0
> − b2

b0
, it holds pa0

b0,b1
= exp

(
−
(
b1
b0

)a0
)
> exp

(
−
(
b2
b0

)a0
)

= pa0
b0,b2

. Thus,
pa0

b0,(·) is strictly decreasing for all b0 > 0. The same arguments also yield that pa0

(·),b0 is
strictly increasing. □

Application of Lemma 2.27 leads to

Lemma 3.48. The correction for the power of the test for H0 : b ≤ b0 is given by

c2
α,a0

(b0) = b0(− ln(1− exp(−1)))
1
a0 ≈ b0(0.4587)

1
a0 ,

if α < 0.5. Especially, it is c2
α,a0

(·) strictly increasing and as − ln(1−exp(−1)) ≈ 0.46 < 1,
it holds c2

α(b0) < b0 for all b0 > 0.

Proof: Using Lemma 2.27 in connection with the last lemma we only have to solve
pa0
b0,b

= 1− pscale for b. Hence, solving

exp

(
−
(
b

b0

)a0
)

= 1− exp(−1),

yields b = (− ln(1− exp(−1)))
1
a0 b0. We end up with

c2
α,a0

(b0) = (− ln(1− exp(−1)))
1
a0 b0.

□

The improvement function c2
α,a0

depends on a0, so here we really have to assume that
a0 is known. In the next section we also simulate the power of the test when a0 is not
known but has to be estimated.

Before defining the test for H0 : b ≤ b0, we state the following theorem about the
consistency of ϕ≥b0 .

Theorem 3.49. Let be α < 0.5. Then ϕ≥b0 is a consistent test with asymptotic level α
for H0 : b ≥ b0.

Proof: With Lemma 3.47, Lemma 3.48 and the fact that pscale is continuous, the as-
sumptions of Theorem 2.37 on page 31 are fulfilled, which yields the claim. □

Now we are able to give also a consistent test for H0 : b ≤ b0.

Theorem 3.50. Let be α < 0.5. The test

ϕ≤b0(t∗) := 1{sup
b≤b0(− ln(1−exp(−1)))

1
a0

T (b,t∗)<Φ−1(α)}(t∗)

is consistent with asymptotic level α for the hypothesis H0 : b ≤ b0 against the alternative
H1 : b > b0.
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Proof: Use analog arguments as in the proof of the last theorem and use Theorem 2.38
on page 31. □

We simulate the power of the new test and compare it to the test based on the MLE.
Results are pictured in Figure 3.37 for uncontaminated data and in Figure 3.38 for con-
taminated data.
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Figure 3.37.: Simulated power for H0 : b ≤ b0, known shape parameter a0.

We see that the power is depending on the shape parameter again. The power of the
test based on MLE is better than the power of the new test for uncontaminated data.
For contaminated data the new test is more robust, as expected. The test based on
the maximum likelihood estimator is very sensitive to contamination with a small shape
parameter in contrast to the new test, while it is not effected very much by contamination
with a small scale.

With these two tests for H0 : b ≥ b0 against H1 : b < b0 and H0 : b ≤ b0 against H1 : b > b0
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Figure 3.38.: Simulated power for H0 : b ≤ b0 with contaminated data, known shape
parameter, contamination distribution Wei(a1, b1), (if b1 resp. a1 not given
b1 := b0 resp. a1 := a0), ratio of contamination 10%.

we easily derive a consistent test for H0 : b = b0 against H1 : b 6= b0, see also Theorem
2.35 on page 30, and thereby we also get confidence intervals.

Theorem 3.51. Let be α < 0.5 and

ϕ=
b0

(t∗) := max(1{T (b,t∗)<Φ−1(α
2

)}(t∗), 1{T (c2α
2 ,a0

(b),t∗)<Φ−1(α
2

)}(t∗)).

Then ϕ=
b0

is a consistent test with asymptotic level α for H0 : b = b0 against H0 : b 6= b0.

A confidence interval with asymptotic level γ = 1− α for the scale parameter is given by

{b0 > 0;ϕ=
b0

(t∗) = 0}.
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Figure 3.39.: Simulated power for H0 : b = b0, known shape parameter.

A simulation study shows that the new test for H0 : b = b0 based on likelihood-depth
does not keep the level and that its power is worse than the power of the test based on
the maximum likelihood estimator for N = 100 uncontaminated data, 1000 repetitions
each, see Figure 3.39. We simulate tests with level α = 0.04, as the tables for the values
of uα for the test based on the MLE are only available for α = 0.02 (not α = 0.025).

For contaminated data the simulation studies displayed in Figure 3.40 show that the new
test is robust against ε-contamination in contrast to the test based on the MLE, where we
choose ε = 0.1 in all studies. Also the confidence intervals for the scale parameter based
on the method of likelihood-depth and confidence intervals based on the testing with the
maximum likelihood estimator, as described before, are compared. We calculate 96%-
confidence intervals for the same reasons that we considered tests with level α = 0.04.
The results for uncontaminated data are given in Table 3.16 and for contaminated data
in Table 3.17. We simulate 1000 times 100 data each.
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Figure 3.40.: Estimated power for H0 : b = b0 with contaminated data, known shape
parameter, contamination distribution Wei(a1, b1) (if b1 resp. a1 not given
b1 := b0 resp. a1 := a0).

Table 3.16.: 96%-confidence intervals for the scale parameter.

MLE likelihood-depth
a b coverage length coverage length
1 1 0.978 0.449 0.930 0.530
1 5 0.972 2.237 0.919 2.617

0.2 5 0.980 15.167 0.920 17.450
5 5 0.973 0.447 0.910 0.539
5 0.2 0.379 0.018 0.604 0.022
5 1 0.951 0.089 0.903 0.108

0.2 1 0.974 3.101 0.915 3.555
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Table 3.17.: 96%-confidence intervals for the scale parameter for 0.1-contaminated data,
with contamination distribution Wei(a1, b1).

MLE likelihood-depth
a b a1 b1 coverage length coverage length
1 1 0.5 1 0.796 0.496 0.941 0.592
1 1 5 1 0.976 0.445 0.805 0.360
1 1 1 10 0.008 0.847 0.857 0.683
5 5 1 10 0.005 1.120 0.952 0.650

We see that both methods give quite similar results. Most times the confidence intervals
based on maximum likelihood estimation have a better coverage rate and smaller mean
length. But in the case of a = 5 and b = 0.2, the coverage rate of the confidence intervals
based on MLE is less than 40%. Here the confidence intervals based on likelihood-depth
have a higher coverage rate at about 60%. If we consider contaminated data, the coverage
rate of the confidence intervals based on the MLE goes down to less than one percent in
some cases, while the new method is robust against contamination.

3.4.2. Uncensored data with unknown shape parameter

If the shape parameter is unknown, we can not use the theory of Section 2.2 anymore.
As a0 is unknown, we have to estimate it using Procedure 3.15 on page 46. We already
mentioned that the test ϕ≥b0 for H0 : b ≥ b0 against H1 : b < b0 is independent of a0.
Here we need not to do any extra work. For testing H0 : b ≤ b0 we use ϕ≤b0 . This test is
depending on a0, as the correction c2

α,a0
(b0) is, while the test statistic is independent of

a0. Considering a0 unknown and estimated by âLDE, we get a new plug-in test by using
âLDE =: â, the estimator based on likelihood-depth instead of a0. Then the correction
becomes

c̃2
α,â(b0) = (− ln(1− exp(−1)))

1
â b0.

We do some simulation studies to examine, if the estimation of the shape parameter has
an influence on the power of the tests developed in the last subsection. The results can
be found in Figure 3.41 and Figure 3.42. We compare the power of the test based on
likelihood-depth with unknown shape to the test based on the MLE. For the definition of
the latter test see Section 3.4.1, page 111. We set the sample size to N = 100 and repeat
every simulation 1000 times.

The pictures show that the power does not really change, if the shape parameter is
unknown and has to be estimated in case of uncontaminated data. We get the equal
results as in the case, where it is supposed to be known, see Figure 3.37 and Figure 3.38.
If we consider contaminated data, we see that the test based on the MLE becomes more
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Figure 3.41.: Simulated power for H0 : b ≤ b0, unknown shape parameter a0.

robust, if the shape parameter is estimated by the MLE and not supposed to be known,
see especially Figure 3.42 on the left and Figure 3.38, p. 116, in the second row on the
left. The new test based on likelihood-depth is not influenced by the estimation at all.

Also we simulate the power of the test ϕ̃=
b0

, when the shape parameter a0 is unknown. Once
more we compare this test to the test based on the MLE. The results for uncontaminated
data are displayed in Figure 3.43 and for contaminated data in Figure 3.44. We see
that for a0 = 2 the power-functions of both tests are very close, while for a0 = 0.5
the test based on the maximum likelihood estimator with estimated a0 by the MLE is
better. Again we see that for uncontaminated data the power is not really influenced
by the estimation of the shape parameter. For contaminated data the test based on the
MLE is more robust in some situations, when the shape is estimated. The test based on
likelihood-depth is not disturbed by the estimation of the shape parameter.
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Figure 3.42.: Simulated power for H0 : b ≤ b0 with contaminated data, unknown shape
parameter a0, contamination with Wei(a1, b1) samples, ratio of contamina-
tion 10% (if a1 resp. b1 not given, then a1 := a0 resp. b1 := b0).
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Figure 3.43.: Simulated power for H0 : b = b0, unknown shape parameter.

3.4.3. Type-I right-censored data with known shape parameter

Now consider type-I right-censored data and the shape parameter to be known. The
number of uncensored data is denoted with k, according to (3.5) it holds k > N

2
. In

Theorem 3.17 on page 54 we proved that

T bpos =

{
[b ,∞), b < c0

[c0 ,∞), b ≥ c0
.
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Figure 3.44.: Simulated power for H0 : b = b0 with contaminated data, unknown shape
parameter a0, contamination with Wei(a1, b1) samples, ratio of contamina-
tion 10% (if a1 resp. b1 not given, then a1 := a0 resp. b1 := b0).

Recall that T bpos = {t ∈ ℝ; ∂
∂b

ln fa,b(t) ≥ 0}. Thus, it is dS(b, z∗) = N bpos · N bneg with
probability one, where N bpos = ♯{zn = (δn, yn); yn > b} and N bneg = ♯{zn; yn < b}, if
c0 < b. If c0 ≥ b, it is Npos = N − k (number of censored data), Nneg = k (number of
uncensored data). Moreover, it holds

pb,c0 := Pa0,b(T
b
pos) =

{
exp(−1) = pscale, b ≤ c0

exp
(
−
(
c0
b

)a0
)
, b > c0

.

We define the test statistic analog to Lemma 2.14 on page 17:

Definition 3.52. T (b, z∗) :=
√
N

dS(b, z∗)− 2pb,c0(1− pb,c0)

2
√
pb,c0(1− pb,c0)(1− 2pb,c0)2

.

If b ≤ c0, this is just the same as in the case of uncensored data, see page 111. If b > c0,
the simplicial likelihood-depth is constant, but pb,c0 is growing with b up to exp(0) = 1.
Thus, the test statistic is growing to infinity. Hence, testing hypotheses for b0 > c0 does
not make sense. Moreover, when testing H0 : b ≥ b0 for b0 ≤ c0, we only consider the
supremum of the test statistics over b ∈ {b; b0 ≤ b ≤ c0}. As for b ≤ c0 the test statistic
is the same as in the uncensored case and also

Pa0,b0(T bpos) = Pa0,b0(T ≥ b) = exp

(
−
(
b

b0

)a0
)
,

for b ≤ b0 ≤ c0, is the same as in the uncensored case, we can use the results from there,
see page 114 to 116. This leads to the following

Theorem 3.53. Let be b0 ≤ c0 and α < 0.5.
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(a) A test for H0 : b ≥ b0 against H1 : b < b0 is given by

ϕ≥b0(z∗) := 1{supb0≤b≤c0 T (b,z∗)<Φ−1(α)}(z∗).

This is a consistent test with asymptotic level α.

(b) To test the hypothesis H0 : b ≤ b0 against H1 : b > b0 we use

ϕ≤b0(z∗) := 1{sup
b0≤c

2
α,a0

(b0)
T (b,z∗)<Φ−1(α)}(z∗),

where c2
α,a0

(b0) = b0(− ln(1− exp(−1)))
1
a0 , see Lemma 3.48 on page 114. This test

is consistent with asymptotic level α.

(c) For testing H0 : b = b0 against H1 : b 6= b0 we use

ϕ=
b0

(z∗) := max(1{T (b0,z∗)<Φ−1(
α
2

)}(z∗), 1{T (c2α
2 ,a0

(b0),z∗)<Φ−1(
α
2

)}(z∗)),

where c2
α,a0

(b0) = b0(− ln(1 − exp(−1)))
1
a0 . This test is consistent with asymptotic

level α.

Proof: As discussed right before the theorem, we use the same arguments as in the
case of uncensored data, see Theorem 3.49 on page 114, Theorem 3.50 on page 114 and
Theorem 3.51 on page 116. The claims follow immediately. □

The Figures 3.45, 3.46 and 3.47 show some simulation results for the estimation of the
power-function for the different hypotheses. As a comparison we consider the Wald test,
see e.g. the textbook of Lawless [Law 2003], Section 5.1.1. There it is shown that the
test statistic

ûMLE − u0

se(ûMLE)
,

is under H0 : u = u0 approximately standard normal distributed. Here u = exp(b) and
se(ûMLE) = (V̂11)

1
2 , the square root of the upper left element of the inverse of the observed

information matrix V̂ = I−1,

V̂ = (I(ûMLE, v̂MLE))−1 =
1

v̂2
MLE

(
r

∑N
i=1 ẑie

ẑi
∑N
i=1 ẑie

ẑi r +
∑N
i=1 ẑ

2
i e
ẑi

)−1

,

ẑi = ln(yi)−ûMLE
v̂MLE

, and ûMLE = exp(b̂MLE), b̂MLE is the maximum likelihood estimator for

the scale parameter b, v̂MLE = 1
âMLE

, âMLE is the maximum likelihood estimator for a.

In every simulation the largest 20% of the data are censored, the sample size is N = 100
and every simualtion is repeated 1000 times. We see that the level is nearly kept and
that the shape parameter has a great influence on the power of the test. A small shape
parameter causes a worse power than a shape greater than one.

For H0 : b ≥ b0 the power-functions of the new test and the Wald test do not really differ.
For H0 : b ≤ b0 and H0 : b = b0 the power of the Wald test is better.

We use the test for H0 : b = b0 to give confidence intervals for the scale parameter of the
Weibull distribution.

123



0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

H0 : b ≥ 1, if a0=0.5 

b

F
re

qu
en

cy
 o

f r
ej

ec
tio

ns

α=0.05

Wald−test
 test based on likelihood−depth

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

H0 : b ≥ 1, if a0=1 

b

F
re

qu
en

cy
 o

f r
ej

ec
tio

ns

α=0.05

Wald−test
 test based on likelihood−depth

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

H0 : b ≥ 1, if a0=2 

b

F
re

qu
en

cy
 o

f r
ej

ec
tio

ns

α=0.05

Wald−test
 test based on likelihood−depth

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

H0 : b ≥ 2, if a0=1 

b

F
re

qu
en

cy
 o

f r
ej

ec
tio

ns

α=0.05

Wald−test
 test based on likelihood−depth

Figure 3.45.: Simulated power-function of the tests for H0 : b ≥ b0 with 20% right-
censored data.

Theorem 3.54. A confidence interval for the scale parameter with asymptotic level γ =
1− α is given by

{b0 > 0;ϕ=
b0

(z∗) = 0},

where ϕ=
b0

denotes the test for H0 : b = b0.

We compare the confidence intervals based on likelihood-depth for censored data with
confidence intervals given by Wald-type confidence procedures, see for example Lawless
[Law 2003], Section 5.1.1. A confidence interval for the transformed scale parameter
u = exp(b) based on the Wald-type methods with level γ is

[ûMLE − Φ−1(γ)se(ûMLE), ûMLE + Φ−1(γ)se(ûMLE)],
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Figure 3.46.: Simulated power-function of the tests for H0 : b ≤ b0 with 20% right-
censored data.

where ûMLE denotes the MLE for u, se(ûMLE) = V̂
1
2

1,1. We simulate each 100 data with
various scale and shape parameter and censored the largest 20% of it. Then we determine
the confidence intervals with the methods described above. We repeat every simulation
1000 times. Table 3.18 shows the results.
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Figure 3.47.: Simulated power-function of the tests for H0 : b = b0 with 20% right-
censored data.

Table 3.18.: 95%-confidence intervals for the scale parameter for 20% right-censored data.

Wald-type likelihood-depth
a b coverage length coverage length
1 1 0.951 0.452 0.912 0.522

0.2 1 0.943 3.348 0.907 3.535
0.2 1000 0.958 3274.662 0.932 2874.491

1 10 0.947 4.517 0.918 2.553
1 0.2 0.956 0.09 0.917 0.104
2 0.5 0.956 0.111 0.928 0.131
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Table 3.18 shows that the confidence intervals based on the Wald test have higher covering
rates than the ones based on the new test. We also consider some simulation of confidence
intervals in ε-contaminated data, with contamination distribution Wei(a1, b1), ε = 0.1 and
20% right-censored data. The results for sample size 100 and 1000 repetitions each are
displayed in Table 3.19.

Table 3.19.: 95%-confidence intervals for the scale parameter for 20% right-censored and
ε-contaminated data, ε = 0.1.

Wald-type likelihood-depth
a b a1 b1 coverage length coverage length
1 1 1 0.1 0.8 0.4 0.844 0.614
1 1 1 10 0.586 0.543 0.844 0.687

0.2 1 0.2 10 0.926 3.996 0.923 4.161
0.2 1 0.2 0.1 0.941 2.653 0.904 2.843

1 1 0.2 0.1 0.903 0.429 0.915 0.617
1 1 0.2 5 0.911 0.471 0.956 0.639
1 5 0.2 0.5 0.909 2.134 0.918 3.086

In Table 3.19 we see that the covering rates of the confidence intervals based on the new
test are more stable than the ones based on the Wald test, which seem still quite robust.

3.4.4. Type-I right-censored data with unknown shape parameter

Up to know, for the type-I right-censored data, we only considered tests in the situation
of known shape parameter a0. If it is unknown, we use an estimation based on likelihood-
depth for it, see Procedure 3.23 on page 60, and plug it into the the correction, c2

α,a0
,

of the tests ϕ≤b0 and ϕ=
b0

instead of a0. As in the uncensored case, the test statistic is
independent of a0. For this “new” tests we can not prove the consistency as before. But
as in the Section 3.4.2 we will do some simulation studies to analyze the behavior of
the power-function when the shape parameter is not known. We consider the test for
H0 : b ≤ b0 and H0 : b = b0, where we estimate the shape parameter with the help of
Procedure 3.23. The results are displayed in Figure 3.48 and Figure 3.49. The sample
size is N = 100, 20% of the data are right-censored and every simulation is repeated 100
times. Again the power-function is compared to the power-function of the Wald test,
here we used for the estimation of the shape parameter the MLE.

If we compare the estimated power-functions of the test with known shape parameter in
Figure 3.46 resp. Figure 3.47 to the power-functions of the test with estimated shape
parameter in Figure 3.48 resp. Figure 3.49, the only difference we notice is that the level
is kept by the latter ones in more cases. Thus, also for censored data, the estimation of
the shape parameter seems not to (negatively) influence the power of the test.
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Figure 3.48.: Test for H0 : b ≤ b0 for 20% right-censored data and unknown shape.
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Figure 3.49.: Test for H0 : b = b0 for 20% right-censored data and unknown shape.

3.5. Open problems

In this chapter we developed estimation procedures and tests for the two parameters of
the Weibull distribution in uncensored and censored data and we proved consistency of
the estimators under the restriction, that less than half the data is censored. Also we
proved that the tests for the shape parameter, respectively for the scale parameter, are
consistent for uncensored data, if the scale, respectively the shape parameter is known.
For censored data we also proved consistency of the tests for the scale parameter.

But in some situations we have not proven consistency in case of the shape parameter
yet. This is the aim of ongoing analysis. Here we have to show the monotonicity of c1

α
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and c2
α. Further studies could also be concerned with the analysis of the behavior of the

power functions, when the parameter not tested is also unknown and has to be estimated
first.
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4. Copulas

4.1. Preliminaries

The copula model has a variety of applications, because it models dependence structures.
For example in finance, especially in the analysis of credit risks the insolvency of several
debtors at the same time, or for insurances, the risk of appearance of different claims at the
same time, have to be modeled to insure solvency of the bank and insurance respectively
all the time. Copulas are also used in the simulation of technical production processes to
model e.g. the occurrence of coupled failures. We consider the two-dimensional case only.
The following Definition 4.1 and the Theorems 4.2 and 4.3 are taken from the textbook
[Nel 2006].

Definition 4.1. [Nel 2006, Definition 2.2.2.] A function C : [0, 1] × [0, 1] → [0, 1] is
called a (2-dimensional) copula, if it has the following properties:

• For all u, v ∈ [0, 1] : C(u, 0) = 0 = C(0, v) and C(u, 1) = u, C(1, v) = v.

• For all u1, u2, v1, v2 ∈ [0, 1] with u1 ≤ u2 and v1 ≤ v2:

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

Copulas are special distribution functions. There is an upper and a lower bound for every
copula:

Theorem 4.2. [Nel 2006, Theorem 2.2.3.] Let C be a 2-dimensional copula, u, v ∈ [0, 1],
then we have:

max(u+ v − 1, 0) =: W (u, v) ≤ C(u, v) ≤M(u, v) := min(u, v).

W (u, v) and M(u, v) are both copulas (for dimension 2) and called the Fréchet-Hoeffding
lower bound and Fréchet-Hoeffding upper bound respectively.

A third important copula is the product copula Π(u, v) = uv, which models independence
of U and V . The graphics in Figure 4.1 show the contour plot of the Fréchet-Hoeffding
bounds and the independence copula.

One of the major properties of copulas is given in the theorem of Sklar. It is the foundation
for many of the applications of the copula theory. The theorem yields that copulas couple
the multivariate distribution function and the univariate margins.
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Figure 4.1.: Contour-plots of the Fréchet- Hoeffding bounds and the independence copula

Theorem 4.3 (Sklar). [Nel 2006, Theorem 2.3.3.] Let H be a 2-dimensional distribution
function with margins F and G. Then there exists a copula C such that for all x, y ∈
ℝ̄ := ℝ ∪ {−∞} ∪ {∞}:

H(x, y) = C(F (x), G(y)).

If F and G are continuous, C is unique. Then C can be determined with the help of the
quasi-inverses of F and G, F (−1) and G(−1) respectively, for all u, v ∈ [0, 1] as

C(u, v) = H(F (−1)(u), G(−1)(v)).

If F and G are not continuous, C is only unique on range(F )× range(G).

With a copula C and one-dimensional distribution functions F and G, we can define a
two-dimensional distribution function with margins F and G for all x, y ∈ ℝ̄ as

H(x, y) := C(F (x), G(y)).

With this theorem we are able to split a two-dimensional distribution function into the
margins and the copula, which models the dependence structure between the two vari-
ables. On the other hand we can combine arbitrary margins and dependence structures
and receive a two-dimensional distribution function.

In Section 4.2 and Section 4.3 we concern ourselves with a copula called the Gaussian
copula :

Definition 4.4. [Aas 2004] The Gaussian copula is defined as

Cρ(u, v) :=
∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π(1− ρ2)
1
2

exp

(
−(s2 − 2ρst+ t2)

2(1− ρ2)

)
ds dt,

u, v ∈ (0, 1) and −1 < ρ < 1.
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Figure 4.2.: Simulated data points for the Gauss distribution with varying ρ.

The parameter ρ is the correlation of U and V . We only consider the case 0 ≤ ρ, due
to the symmetry. If (X,Y ) has a two-dimensional normal distribution, X and Y having
standard normal distribution, then the copula is the Gaussian copula. These variables
X,Y shall be considered later. In Figure 4.2 data points with this distribution for various
ρ are depicted. We used the R-package “copula”, see [Yan 2007], for simulation.

Another special class of copulas are the Archimedean copulas, which are generated by
convex functions:

Definition 4.5. [Nel 2006] Let ϕ be a convex, continuous, strictly decreasing function
from [0, 1] to [0,∞] such that ϕ(1) = 0. Let ϕ[−1] denote the pseudo-inverse of ϕ, i.e.

ϕ[−1](t) =

{
ϕ−1(t), 0 ≤ t ≤ ϕ(0)
0, ϕ(0) ≤ t ≤ ∞ .
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Then the function

C : [0, 1]× [0, 1]→ [0, 1], (u, v) 7→ C(u, v) := ϕ[−1](ϕ(u) + ϕ(v))

is a copula with generator ϕ. These copulas are called Archimedean copulas.

In the following we mainly look at an one-parametric family of Archimedean copulas, the
Gumbel copulas:

Definition 4.6. [Nel 2006, Table 4.1] Let θ ≥ 1 and ϕθ : [0, 1] → [0,∞], t 7→ ϕθ(t) :=
(− ln t)θ. Then the generated copula

Cθ : [0, 1]× [0, 1]→ [0, 1], (u, v) 7→ Cθ(u, v) := exp
(
−((− ln u)θ + (− ln v)θ)

1
θ

)

is called Gumbel copula.

Theorem 4.7. For θ = 1 the Gumbel copula is equal to the product copula C(u, v) = uv,
which simulates independence. For θ →∞ the limit of the Gumbel copula is the Fréchet-
Hoeffding upper bound M(u, v), which simulates total positive dependency.

We proof this with the help of the following Lemma:

Lemma 4.8 (Theorem 4.4.8.). [Nel 2006] Let {Cθ; θ ∈ Θ} be a family of Archimedean
copulas with differentiable generators ϕθ. Then limCθ(u, v) = M(u, v), if and only if

lim
ϕθ(t)

ϕ′θ(t)
= 0 for all t ∈ (0, 1),

where "lim" denotes the appropriate one-sided limit as θ approaches an end point of the
parameter interval Θ.

Now we proof the above stated claims about the convergence of the copula.

Proof: (of Theorem 4.7) Clearly for θ = 1 it follows

Cθ(u, v) = exp
(
−((− ln u)θ + (− ln v)θ)

1
θ

)
= exp (−((− ln u) + (− ln v))) = u · v.

From

ϕθ(t)

ϕ′θ(t)
=

(− ln t)θ

− θ
t
(− ln t)θ−1

= −(− ln t)t

θ
=
t ln t

θ

we get lim
θ→∞

ϕθ(t)

ϕ′θ(t)
= 0, so that the second theorem implies lim

θ→∞
Cθ(u, v) = M(u, v). □

As an example for data zi = (xi, yi), i = 1, . . . , N , with joint distribution function given by
the Gumbel copula (margins are the uniform distribution-function on [0, 1]), the graphics
in Figure 4.3 show simulated data (N = 100 data points) for this copula with varying
parameter θ. Again we used the R-package “copula”, see [Yan 2007], for the simulation.

For θ = 1.1 the points are nearly independent distributed and for growing θ the conver-
gence to M(u, v) is reflected in the cumulation of the points along the line x = y. A
special effect of the Gumbel copula for θ > 1 is the concentration of points in (1, 1) and
(0, 0).
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Figure 4.3.: Simulated data points for the Gumbel copula with varying θ.

4.2. Estimator for the correlation coefficient

First we take a look at the already mentioned Gaussian copula or more precisely at
2-dimensional i.i.d. random variables Zi = (Xi, Yi), i = 1, . . . , N , with standard normal
variables Xi and Yi and dependence structure given by the Gaussian copula, see Definition
4.4. We want to find an estimator for the parameter ρ based on likelihood-depth. As
noted before, ρ is the correlation between X and Y .

To calculate the depth we make use of the function h′(ρ, (x, y)) = ln ∂
∂ρ
fρ(x, y), where fρ

denotes the density of the two-dimensional normal distribution with mean µ = (0, 0) and

covariance matrix

(
1 ρ
ρ 1

)
.
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Lemma 4.9. It holds

h′(ρ, (x, y)) =
−ρy2 + (x+ ρ2x)y + ρ− ρ3 − ρx2

(1− ρ2)2
.

Proof: Let be fρ the density function of the 2-dimensional normal distribution with mean
and covariance matrix as given above. We derive

ln(fρ(x, y)) = − ln(2π)− ln(
√

1− ρ2)− x2 − 2ρxy + y2

2(1− ρ2)

and

h′(ρ, (x, y)) =
∂

∂ρ
ln(fρ(x, y))

=
ρ

1− ρ2
− (−2xy)2(1− ρ2)− (x2 − 2ρxy + y2)2(−2ρ)

4(1− ρ2)2

=
4ρ− 4ρ3 + 4xy + 4ρ2xy − 4ρx2 − 4ρy2

4(1− ρ2)2

=
−ρy2 + (x+ ρ2x)y + ρ− ρ3 − ρx2

(1− ρ2)2
. □

Figure 4.4 shows the mean of the parameter with maximum depth and the standard
deviation for different underlying distributions with correlation coefficient ρ0. For every
ρ0 we simulated 1000 times N = 100 data and calculated the parameter with maximum
depth.

The parameter ρ̃ with maximum likelihood-depth is always greater than the real param-
eter ρ0, which means the maximum depth estimator is biased. We will see later on that
the only exception is ρ0 = 0. As in Chapter 2, we use the following shortcuts

T ρpos := {z = (x, y);h′(ρ, z) ≥ 0}, T ρneg := {z = (x, y);h′(ρ, z) ≤ 0}

and

pρ,ρ′ := Pρ(T
ρ′

pos) =
∫ ∫

1
T ρ
′

pos
(x, y)fρ(x, y) dx dy.

To determine pρ := pρ,ρ for a fixed ρ, we need the boundaries of T ρpos, which are given by
the zeros of h′(ρ, ·).
For ρ = 0 the probability that a data lies inside the region T ρpos is 1

2
, because

h′(ρ, (x, y)) = h′(0, (x, y)) =
−0 · y2 + (x+ 02 · x)y + 0− 03 − 0 · x2

(1− 02)2
= xy.
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Figure 4.4.: Mean and standard deviation of the parameters with maximum depth for the
2-dimensional normal distribution.

This means that h′(0, (x, y)) < 0 if and only if x and y have different sign. Thus, the
parameter with maximum depth is not an asymptotic biased estimator for ρ = 0. From
now on let be ρ > 0. Then we find algebraic terms for the zeros of h′(ρ, ·), i.e. we
determine v1/2(x, ρ) such that

h′(ρ, (x, v1/2(x, ρ))) = 0

for all x ∈ ℝ. Recall that h′(ρ, ·) : ℝ2 → ℝ.

Lemma 4.10. The zeros of h′(ρ, (x, y)) = ∂
∂ρ

ln fρ(x, y) are

v1(x, ρ) =
ρ2x+ x+

√
ρ4x2 − 2ρ2x2 + x2 − 4ρ4 + 4ρ2

2ρ

and

v2(x, ρ) =
ρ2x+ x−√ρ4x2 − 2ρ2x2 + x2 − 4ρ4 + 4ρ2

2ρ
.

Furthermore we have v2(x, ρ) < x < v1(x, ρ).
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Proof: To determine the zeros, we have to solve a quadratic equation:

∂

∂ρ
ln fρ(x, y) =

−ρy2 + (x+ ρ2x)y + ρ− ρ3 − ρx2

(1− ρ2)2
= 0

⇔ y2 − x+ρ2x
ρ

y − 1 + ρ2 + x2 = 0

⇔ y1,2 = x+ρ2x
2ρ
±
√
x2−2ρ2x2+ρ4x2+4ρ2−4ρ4

4ρ2
.

That v2(x, ρ) < x < v1(x, ρ) can be seen as follows, where especially the estimate against
x is important. In a first step let be x ≥ 0, then we obtain

v1(x, ρ) =
ρ2x+ x+

√
ρ4x2 − 2ρ2x2 + x2 − 4ρ4 + 4ρ2

2ρ

= x
1 + ρ2

2ρ
+

√
ρ4x2 − 2ρ2x2 + x2 − 4ρ4 + 4ρ2

2ρ︸ ︷︷ ︸
>0

> x
1 + ρ2

2ρ︸ ︷︷ ︸
>1

> x.

For x < 0 it is

v1(x, ρ) = x
1 + ρ2

2ρ
+

√
ρ4x2 − 2ρ2x2 + x2 − 4ρ4 + 4ρ2

2ρ

> x
1 + ρ2

2ρ
+
−x(1 + ρ2)

2ρ
= 0 > x.

Now we show the second inequality x < v2(x, ρ):

v2(x, ρ) =
ρ2x+ x−√ρ4x2 − 2ρ2x2 + x2 − 4ρ4 + 4ρ2

2ρ

= x
1 + ρ2

2ρ
−

√
x2(1− ρ2)2−4ρ2(ρ2 − 1)︸ ︷︷ ︸

>0

2ρ

< x
1 + ρ2

2ρ
−
√
x2(1− ρ2)2

2ρ
=: (⋆),

so x < 0 yields (⋆) = x
1 + ρ2

2ρ︸ ︷︷ ︸
>1

− −x(1− ρ2)

2ρ︸ ︷︷ ︸
>0

< x. If x ≥ 0 it is

(⋆) = x
1 + ρ2

2ρ
− x1− ρ2

2ρ
= xρ < x.
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The proof is complete. □

The next lemma gives T ρpos in terms of the zeros.

Lemma 4.11. For ρ > 0 it is T ρpos = {z = (x, y); v2(x, ρ) ≤ y ≤ v1(x, ρ)}.

Proof: It is easily shown, that h′(ρ, z) is positive for z = (x, x) and fixed ρ:

h′(ρ, (x, x)) =
−ρx2 + (x+ ρ2x)x+ ρ− ρ3 − ρx2

(1− ρ2)2

=
−2ρx2 + x2 + ρ2x2 + ρ(1− ρ2)

(1− ρ2)2

=
(1− ρ)2x2

(1− ρ)2(1 + ρ)2

ρ

1− ρ2

=
x2

(1 + ρ)2

ρ

1− ρ2
> 0,

since 0 < ρ < 1. Because of this and due to the fact that h′(ρ, ·) is continuous in (x, y)
for fixed ρ, we have T posρ = {zn = (x, y); v2(x, ρ) ≤ y ≤ v1(x, ρ)}. □

This consideration leads to the following

Lemma 4.12. We have

pρ =
1√
2π

∫ ∞

−∞
e−
x2

2

(
Φ

(
v1(x, ρ)− ρx√

1− ρ2

)
− Φ

(
v2(x, ρ)− ρx√

1− ρ2

))
dx,

where Φ denotes the one-dimensional standard normal distribution function.

Proof:

pρ = Pρ(T
ρ
pos) =

∫ ∞

−∞

∫ v1(x,ρ)

v2(x,ρ)
fρ(x, y)dydx

=
∫ ∞

−∞

∫ v1(x,ρ)

v2(x,ρ)

1

2π
√

1− ρ2
e
−x

2−2ρxy+y2

2(1−ρ2) dydx

=
∫ ∞

−∞

∫ v1(x,ρ)

v2(x,ρ)

1

2π
√

1− ρ2
e
−x

2(1−ρ2+ρ2)−2ρxy+y2

2(1−ρ2) dydx

=
∫ ∞

−∞
e−
x2

2
1√
2π

1√
2π
√

1− ρ2

∫ v1(x,ρ)

v2(x,ρ)
e
− (y−ρx)2

2(1−ρ2) dydx

=
1√
2π

∫ ∞

−∞
e−
x2

2

(
Φ

(
v1(x, ρ)− ρx√

1− ρ2

)
− Φ

(
v2(x, ρ)− ρx√

1− ρ2

))
dx. □

The last integral could not be determined analytically, so it was evaluated numerically
for values in [0, 1]. Some of the results are shown in Table 4.1, to give an insight of its
behavior.
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Table 4.1.: pρ for the correlation coefficient.
pρ 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0. 0.5000 0.5150 0.5256 0.5346 0.5425 0.5496 0.5561 0.5621 0.5677 0.5729
0.1 0.5777 0.5823 0.5866 0.5907 0.5945 0.5982 0.6017 0.6050 0.6082 0.6112
0.2 0.6141 0.6168 0.6195 0.6220 0.6244 0.6267 0.6290 0.6311 0.6332 0.6352
0.3 0.6371 0.6389 0.6407 0.6424 0.6441 0.6457 0.6472 0.6487 0.6501 0.6515
0.4 0.6528 0.6541 0.6553 0.6565 0.6576 0.6587 0.6598 0.6609 0.6619 0.6628
0.5 0.6638 0.6647 0.6655 0.6664 0.6672 0.6679 0.6687 0.6694 0.6701 0.6708
0.6 0.6714 0.6721 0.6727 0.6733 0.6738 0.6744 0.6749 0.6754 0.6758 0.6763
0.7 0.6767 0.6772 0.6775 0.6779 0.6783 0.6787 0.6790 0.6793 0.6796 0.6799
0.8 0.6802 0.6804 0.6806 0.6809 0.6811 0.6813 0.6815 0.6816 0.6818 0.6819
0.9 0.6821 0.6822 0.6823 0.6824 0.6825 0.6825 0.6826 0.6826 0.6827 0.6827

Here we see again that the maximum likelihood-depth estimator is biased. The probability
that a data, coming from the distribution with ρ0, lies inside T ρ0pos is clearly different from
0.5. So we have to determine the shift function s(ρ), resp. s−1, by solving the equation
Pρ(T

s(ρ)
pos ) = 0.5, as described in Section 2.1.

The function s−1 can be approximated by evaluating the shift between s(ρ) and ρ for
some points s(ρ) and compensate it with a polynomial of order three. For s(ρ) ∈
{0.47, 0.48, . . . , 0.99} ρ is numerically determined, such that |Pρ(T s(ρ)pos ) − 0.5| ≤ 10−4.
We start at s(ρ) = 0.47, because for s(ρ) = 0.46 we got a solution ρ < 0. The results are
displayed in Table 4.2 and Figure 4.5 shows the approximated s−1(·), where the points
(s(ρ), ρ) are emphasized.

In ρ = 0 there does not exist a deviation, because p0 = 0.5. But if we fix ρ and search
for solutions s(ρ) such that pρ,s(ρ) = 0.5, the question is, why there appears such a big
jump from the solution s(0) = 0 to the solution s(0.01) = 0.47. The reason for this jump
near ρ = 0.01 shows Figure 4.6. It displays that for ρ = 0 there exists two parameter ρ′,
namely ρ′ = 0 and ρ′ = 0.461, with p0,ρ′ = 1

2
. p0,ρ is larger than 1

2
for ρ ∈ (0, 0.461) and

then decreases for ρ > 0.461. Numerical calculations showed that only for ρ = 0 there
exist two solutions ρ′ with p0,ρ′ = 1

2
, but we have no proof for this. For small ρ > 0, like

ρ = 0.01 in Figure 4.6, the function pρ,· changes only a little bit.

For ρ > 0 it is Pρ(T 0
pos) > 0.5. This can be seen as follows:

Lemma 4.13. It is

lim
ρ→0

v1(x, ρ) =





∞, x > 0
1, x = 0
0, x < 0

and

lim
ρ→0

v2(x, ρ) =





0, x > 0
−1, x = 0
−∞, x < 0

.
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Table 4.2.: The shift s(ρ).

s(ρ) ρ s(ρ) ρ s(ρ) ρ
0.47 0.0101 0.65 0.2800 0.83 0.6317
0.48 0.0223 0.66 0.2980 0.84 0.6525
0.49 0.0348 0.67 0.3160 0.85 0.6740
0.50 0.0477 0.68 0.3340 0.86 0.6952
0.51 0.0612 0.69 0.3525 0.87 0.7165
0.52 0.0746 0.70 0.3712 0.88 0.7380
0.53 0.0886 0.71 0.3905 0.89 0.7597
0.54 0.1030 0.72 0.4090 0.90 0.7813
0.55 0.1175 0.73 0.4290 0.91 0.8030
0.56 0.1322 0.74 0.4485 0.92 0.8247
0.57 0.1475 0.75 0.4680 0.93 0.8465
0.58 0.1630 0.76 0.4878 0.94 0.8684
0.59 0.1790 0.77 0.5080 0.95 0.8902
0.60 0.1951 0.78 0.5280 0.96 0.9121
0.61 0.2115 0.79 0.5490 0.97 0.9341
0.62 0.2280 0.80 0.5690 0.98 0.9560
0.63 0.2455 0.81 0.5900 0.99 0.9780
0.64 0.2625 0.82 0.6107

0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
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0.
6

0.
8

1.
0

s(ρ)

ρ

Figure 4.5.: Points (s(ρ), ρ) and graph of the approximated s−1(·).
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Figure 4.6.: Evolution of pρ,ρ1 = Pρ(T
ρ1
pos) for ρ = 0 and ρ = 0.01.

Proof: We show the claim for v1(x, ρ). The proof for v2(x, ρ) works analogously. Let be
x 6= 0. Then we have

v1(x, ρ) =
1

2ρ

(
x(ρ2 + 1)2 +

√
x2(1− ρ2)− 4ρ2(ρ2 − 1)

)

and for ρ→ 0


x(ρ2 + 1)︸ ︷︷ ︸

→x

+
√√√√x

2(1− ρ2)2

︸ ︷︷ ︸
→x2

− 4ρ2(ρ2 − 1)︸ ︷︷ ︸
→0


→

{
2x, x ≥ 0
0, x < 0

.

This yields

lim
ρ→0

v1(x, ρ) = lim
ρ→0

1

2ρ

(
x(ρ2 + 1) +

√
x2(1− ρ2)2 − 4ρ2(ρ2 − 1)

)
=∞,

if x > 0. Further, with the rule of l’Hospital it is lim
ρ→0

v1(x, ρ) = 0 for x < 0:

lim
ρ→0

v1(x, ρ) = lim
ρ→0

x(ρ2 + 1) +
√
x2(1− ρ2)2 − 4ρ2(ρ2 − 1)

2ρ

= lim
ρ→0

2ρx+ (x2(1− ρ2)2 − 4ρ2(ρ2 − 1))−
1
2 (−2x2(1− ρ2)2ρ− 16ρ3 + 8ρ)

2

= lim
ρ→0

ρx︸︷︷︸
→0

+

→0︷ ︸︸ ︷
ρ(−x2 + ρ2x2 − 8ρ2 + 4)√
x2(1− ρ2)2 − 4ρ2(ρ2 − 1)

︸ ︷︷ ︸
→|x|

= 0
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For x = 0 we see

lim
ρ→0

v1(0, ρ) = lim
ρ→0

(
0 +

√−4ρ4 + 4ρ2

2ρ

)
= lim
ρ→0

2ρ
√

1− ρ2

2ρ
= lim
ρ→0

√
1− ρ2 = 1

and the claim is proved. □

Further, we obtain

Pρ(T
0
pos) =

1√
2π

∫ 0

−∞
e−
x2

2

(
Φ

(
− ρx√

1− ρ2

)
− 0

)
dx

+
1√
2π

∫ ∞

0
e−
x2

2

(
1− Φ

(
− ρx√

1− ρ2

))
dx

=
1√
2π

∫ ∞

0
e−
x2

2 dx+
1√
2π

∫ 0

−∞
e−
x2

2 Φ

(
− ρx√

1− ρ2

)
dx

− 1√
2π

∫ ∞

0
e−
x2

2 Φ

(
− ρx√

1− ρ2

)
dx

=
1

2
+

1√
2π

∫ ∞

0
e−
x2

2

(
Φ

(
ρx√

1− ρ2

)
− Φ

(
− ρx√

1− ρ2

))
dx

=
1

2
+

1√
2π

∫ ∞

0
e−
x2

2

(
Φ

(
ρx√

1− ρ2

)
− 1 + Φ

(
ρx√

1− ρ2

))
dx

=

√
2

π

∫ ∞

0
e−
x2

2 Φ

(
ρx√

1− ρ2

)

︸ ︷︷ ︸
> 1

2
, if ρ>0(x>0)

dx

>
1√
2π

∫ ∞

0
e−
x2

2 dx =
1

2
.

We have pρ,0 >
1
2

so that the solution ρ′ with pρ,ρ′ = 1
2

is unique, implying that s(ρ) = ρ′ is
well defined. We estimate the correlation as zero, if we receive maximal likelihood-depth
for a parameter ρ̃ < 0.461 and correct it with the inverse of the shift-function otherwise.

A least square fit of a polynomial of degree three to the points (s(ρ), ρ), see Table 4.2,
leads to

s−1(s(ρ)) = −1.24101 s(ρ)3 + 3.68702 s(ρ)2 − 1.4546 s(ρ) + 0.00857.

We decided for a polynomial of degree three, because the maximum absolute error for
compensation with a polynomial of degree two was 0.006, for compensation with degree
three 0.00041 and for degree four only little smaller (0.0004). A new estimator for the
correlation in a dataset can be defined by

ρ̂ = −1.24101(arg max
ρ
dT (ρ, z∗))

3 + 3.68702(arg max
ρ
dT (ρ, z∗))

2

−1.4546(arg max
ρ
dT (ρ, z∗)),+0.00857 (4.1)
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if arg maxρ dT (ρ, z∗) ≥ 0.461 and ρ̂ = 0 else. Recall that xm = arg max f(x) iff f(xm) =
maxx∈D f(x), D the domain of f .

In the following we show that this new estimator is strongly consistent. Therefore we
use Proposition 2.8 on page 13 and, to show that the assumptions of this theorem are
fulfilled, Theorem A.15 on page 182.

We start by proving that C := {T ρpos; 0 < ρ < 1} is a VC-class.

Theorem 4.14. The conjunction of the sets T ρpos, 0 < ρ < 1, is a VC-class and has a
VC-index V (C ) < 7.

Proof: We already elaborated in Lemma 4.11 that T ρpos = {(x, y) ∈ ℝ2; v2(x, ρ) ≤ y ≤
v1(x, ρ)}, where

v1,2(x, ρ) =
1

2ρ

(
x(ρ2 + 1)±

√
x2(1− ρ2)2 − 4ρ2(ρ2 − 1)

)
.

With (x, y) ∈ T ρpos we obtain (y, x) ∈ T ρpos and (−x,−y) ∈ T ρpos, and we also have
(−y,−x) ∈ T ρpos. Thus, if we check, if (x, y) ∈ T ρpos, we can transform (x, y) to (x̃, ỹ), such
that x̃ ≥ 0 and ỹ ≤ x̃. Then (x, y) ∈ T ρpos, iff ỹ ≥ v2(x̃, ρ), as ỹ ≤ v1(x̃, ρ) is always true
because ỹ ≤ x̃ ≤ v1(x̃, ρ). Because of this, it is sufficient to consider points (x, y) with
x ≥ 0 and y ≤ x.

The next step is to show that for every z = (x, y) there are only finitely many intervals
[ρi1 , ρi2 ], 0 < ρi1 < ρi2 < 1, such that z ∈ T ρpos for ρ ∈ [ρi1 , ρi2 ]. That is true, if v2(x, ·)
takes every value only a finite time, i.e. v2(x, ·) has only for a finite number of values the
slope zero. Therefore we regard the derivative of v2(x, ·). Since it is 0 < ρ < 1, it holds

∂

∂ρ
v2(x, ρ) =

∂

∂ρ

1

2ρ
(x(ρ2 + 1)−

√
x2(1− ρ2)2 − 4ρ2(ρ2 − 1))

= − 1

2ρ2
(x(ρ2 + 1)−

√
x2(1− ρ2)2 − 4ρ2(ρ2 − 1))

+
1

2ρ


u2ρ− −2x2ρ+ 2x2ρ3 − 8ρ3 + 4ρ

2ρ
√
x2(1− ρ2)2 − 4ρ2(ρ2 − 1)




=
x(ρ2 − 1)

√
x2(1− ρ2)2 − 4ρ2(ρ2 − 1) + x2(1− ρ2)2 − 4ρ2(ρ2 − 1)

2ρ2
√
x2(1− ρ2)2 − 4ρ2(ρ2 − 1)

+
2x2ρ2 − 2x2ρ4 + 8ρ4 − 4ρ2

2ρ2
√
x2(1− ρ2)2 − 4ρ2(ρ2 − 1)

.

∂
∂ρ
v2(x, ρ) = 0 is true, iff

x(ρ2 − 1)
√
x2(1− ρ2)2 − 4ρ2(ρ2 − 1) + x2 + 2x2ρ4 + 4ρ4 = 0,
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which is equivalent to

x2(1− ρ2)2 − 4ρ2(ρ2 − 1) =
(−x2 − 2x2ρ4 − 4ρ4)2

x2(ρ2 − 1)2

⇔ −4ρ2x4 + 2ρ4x4 − 4ρ6x4 − 3ρ8x4 − 12ρ4x2 + 12ρ6x2 − 8ρ8x2 + 4ρ2x2 + 16ρ8 = 0.

This is a polynomial with degree 8 for ρ, so it has at most 8 zeros, especially the number
of zeros is finite. That means for every z = (x, y), with x ≥ 0, y ≤ x there are at most
l = 9 intervals [ρi1 , ρi2 ] such that z ∈ T ρpos for ρ ∈ [ρi1 , ρi2 ].

Now we show that V (C ) < 7. Let be {z1, . . . , z7} with zk = (xk, yk), where it is enough
to consider xk ≥ 0, yk ≤ xk, k = 1, . . . , 7, as discussed above. We already stated that
for every z there are at most l = 9 intervals [ρi1 , ρi2 ] such that z ∈ T ρpos for ρ ∈ [ρi1 , ρi2 ],
1 ≤ i ≤ 9. Every interval has 2 endpoints so there are at most 2 · 9 endpoints for every
z. The first point z1 divides the interval [0, 1] into maximal 2 · 9 + 1 subsets. For every
point that is added, there will be at most 2 · 9 new subsets. All in all we get at most
7 · 2 · 9 + 1 = 127 subsets. To shatter the points there are 27 = 128 subsets needed.
Therefore not all possible subsets of {z1, . . . , z7} are picked out. This is V (C ) < 7. □

We prove that C = {T ρpos; 0 < ρ < 1} is a VC-class, which yields together with Theorem
A.15 on page 182, that λ+

N(·, Z∗,N = (Z1, . . . , ZN)) = 1
N
♯{Zn = (Xn, Yn); (Xn, Yn) ∈ T (·)

pos}
converges uniformly to λ+

ρ0
(·) = Pρ0(v2(X, ·) ≤ Y ≤ v1(X, ·)) and λ−N(·, Z∗,N) converges

uniformly to λ−ρ0(·).

Proposition 4.15. The corrected maximum likelihood-depth estimator ρ̂ given by (4.1)
is a strongly consistent estimator for ρ.

Proof: We use Theorem 2.8 on page 13, Theorem 2.12 on page 16 and the above proven
statements to show the claim. We can assume that λ+

ρ0
(ρ) = Pρ0(T ρpos) >

1
2

for ρ < s(ρ0).
To explain this see Figure 4.7, where the evolution of Pρ0(T ρpos) is displayed for different ρ0.
We see also that we can assume λ−ρ0(ρ) = 1−λ+

ρ0
< 1

2
for ρ < s(ρ0) and also λ+

ρ0
(ρ) < 1

2
for

ρ > s(ρ0), i.e. the conditions of Theorem 2.8 are true. So ρ̃N = arg max0<ρ<1 dT (ρ, Z∗,N)
is a consistent estimator for s(ρ0). As s−1 is continuous, we obtain ρ̂ = s−1(ρ̃N) being
also consistent. □
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Figure 4.7.: λ+
ρ0

(ρ) for ρ0 = 0.1, 0.5 and 0.9

The new estimator is compared to the correlation coefficient of Bravais-Pearson. This
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Table 4.3.: New estimator LDE compared to Pearson’s correlation coefficient in samples
with different ρ, N = 100, 1000 repetitions each.

ρ Pearson LDE
0.01 0.0647 0.0063
0.1 0.0946 0.1213
0.2 0.2032 0.2039
0.3 0.2935 0.2920
0.4 0.4017 0.3943
0.5 0.4984 0.4891
0.6 0.5993 0.5926
0.7 0.6987 0.6945
0.8 0.7999 0.7963
0.9 0.8999 0.8989

correlation coefficient is defined for data (x1, y1), . . . , (xN , yN) as

∑N
j=1(xj − x∗)(yj − y∗)√∑N

j=1(xj − x∗)2
∑N
j=1(yj − y∗)2

,

where w∗ denotes the mean of w∗ = (w1, . . . , wN).

For every ρ ∈ {0.1, 0.2, . . . , 0.9} 1000 datasets consisting of 100 data each were simulated.
Table 4.3 shows the means of the new estimator (LDE) in comparison to the means of
the correlation coefficient and Table 4.4 tables the mean squared errors (MSE) of the
estimators. If there is more than one parameter with maximum depth, the mean of the
arguments ρ̃ := mean(ρ̃1, ρ̃2, . . .), ρ̃1, ρ̃2 . . . ∈ arg maxρ dT (ρ, z∗), is calculated and the
estimator is given by ρ̂ = s−1(ρ̃).

This shows that Pearson’s correlation coefficient is most times slightly better than the
new estimator. If we look at datasets with ε-contamination, the new estimator achieves
some times better results than the correlation coefficient (especially for high correlation).
We compare again the means of both estimators, this time for ε-contaminated data from
(1− ε)Pρ0 + εPρ1 , with ε > 0 and Pρ the two-dimensional normal distribution with mean

µ = (0, 0) and covariance Σ =

(
1 ρ
ρ 1

)
. The ratio of contaminated data was ε = 0.1,

see Table 4.5.

Tables 4.5 and 4.6 show that in case of data with contamination with low correlation
the new estimator is better than the correlation coefficient of Bravais-Pearson for high
correlated data, even for a small ratio of contamination. The greater the correlation is, the
better are the results the new estimator achieves in comparison to Pearson’s coefficient.
If we construct contaminated data with high correlation, Pearson’s correlation coefficient
receives better results, especially for low correlation.
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Table 4.4.: MSE of the LDE and Pearson’s correlation coefficient in samples with different
ρ, N = 100, 1000 repetitions each.

Mean squared error
ρ Pearson LDE

0.1 0.01031 0.01543
0.2 0.00843 0.02083
0.3 0.00843 0.02076
0.4 0.00675 0.01739
0.5 0.00532 0.01278
0.6 0.00450 0.00839
0.7 0.00257 0.00502
0.8 0.00134 0.00229
0.9 0.00036 0.00079

Table 4.5.: Estimation for ε-contaminated data with contamination correlation ρ1, ε =
0.1.

ρ0 ρ1 Pearson LDE ρ1 Pearson LDE
0.10 0.01 0.0936 0.1276 0.99 0.1913 0.2877
0.20 0.01 0.1828 0.1891 0.99 0.2780 0.3729
0.30 0.01 0.2659 0.2741 0.99 0.3683 0.4494
0.40 0.01 0.3636 0.3653 0.99 0.4577 0.5221
0.50 0.01 0.4544 0.4606 0.99 0.5455 0.6011
0.60 0.01 0.5432 0.5603 0.99 0.7300 0.7657
0.70 0.01 0.6316 0.6608 0.99 0.8175 0.8392
0.80 0.01 0.7197 0.7645 0.99 0.8440 0.8180
0.90 0.01 0.8111 0.8796 0.99 0.9085 0.9167
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Table 4.6.: MSE for ε-contaminated data with correlation ρ1, ε = 0.1.

ρ0 ρ1 Pearson LDE ρ1 Pearson LDE
0.1 0.01 0.00975 0.01852 0.99 0.01847 0.06137
0.2 0.01 0.00946 0.02015 0.99 0.01578 0.05403
0.3 0.01 0.00986 0.02168 0.99 0.01296 0.04016
0.4 0.01 0.00891 0.01942 0.99 0.01037 0.02928
0.5 0.01 0.00901 0.01502 0.99 0.00742 0.02121
0.6 0.01 0.00832 0.01105 0.99 0.00510 0.01322
0.7 0.01 0.00922 0.00681 0.99 0.00318 0.00792
0.8 0.01 0.00972 0.00440 0.99 0.00146 0.00331
0.9 0.01 0.01026 0.00132 0.99 0.00041 0.00129

Table 4.7.: Estimation of ρ for data coming from (1− ε)Pρ + εδx0,x0

ρ x0 ε · 100 ρ̂ Pearson
0.1 101 10 0.26 0.91
0.1 102 10 0.27 1
0.1 103 10 0.27 1
0.1 104 10 0.26 1
0.1 106 10 0.26 1
0.1 103 20 0.43 1
0.5 103 10 0.59 1

To study the behavior of the new estimator in comparison to the correlation coefficient
of Pearson for growing sample size, we simulated data with correlation ρ = 0.5 and
calculated the mean squared error for different sizes. For each N 1000 samples were
constructed. The resulting roots of the means squared errors are displayed in Figure 4.8.
We observe, that the difference in the MSE between the estimators shrinks with growing
sample size. But Pearson’s correlation coefficient has smaller MSEs for all sample sizes in
uncontaminated data. We will show in a next simulation study that Pearson’s correlation
coefficient breaks down for contamination with real outliers, in contrast to the LDE.

As a last consideration we simulated outliers, i.e. we contaminated with a completely
different distribution and simulated data from (1 − ε)Pρ + εδx0,x0 , where δx0,x0 is the
Dirac measure on (x0, x0) and Pρ, as before, the two-dimensional normal distribution
with correlation ρ. Table 4.7 shows that the new estimator ρ̂ is much more robust. In
particular, there is no breaking down, i.e. it reaches not the upper bound 1 in contrast to
the correlation coefficient of Bravais-Pearson. This is clearly an advantage of the LDE.
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Figure 4.8.: MSE for growing sample size for the estimators of the correlation coefficient.

4.3. Tests and confidence intervals for the correlation

coefficient

We still consider Zi = (Xi, Yi), i = 1, . . . , N , i.i.d. Xi, Yi ∼ N (0, 1) with dependence
structure given by the Gaussian copula. Using the methods of Section 2.2 we construct
tests for the hypotheses H0 : ρ ≤ ρ0, H0 : ρ ≥ ρ0 and H0 : ρ = ρ0. We mentioned in
Section 2.2, the power of the test for H0 : ρ ≥ ρ0 is bad just using Corollary 2.17 on page
19. As we showed in the last section s(ρ) > ρ, and an improvement of the test has to be
made in this case using Definition 2.18 on page 19 and Definition 2.19 on page 20.

We start with constructing a test for the null hypothesis H0 : ρ ≤ ρ0 against H1 : ρ > ρ0.
The last section shows how the likelihood-depth can be calculated for the two-dimensional
normal distribution, so we can use this to determine the simplicial depth of ρ. We also
determined pρ in the section about estimation, see Table 4.1 on page 140. The test
statistic is defined according to Lemma 2.14 as

T (ρ, z∗) :=
√
N
dS(ρ, z∗)− 2pρ(1− pρ)
2
√
pρ(1− pρ)(1− 2pρ)2

.

A direct conclusion from Corollary 2.17 on page 19 leads to

Corollary 4.16. The test

ϕ≤ρ0(z∗) = 1{supρ≤ρ0
T (ρ,z∗)<Φ−1(α)}(z∗)

is an asymptotic α-level test for the hypothesis H0 : ρ ≤ ρ0 against H1 : ρ > ρ0, where
T (ρ, z∗) is defined as above and Φ−1(α) is the α-quantile of the standard normal distri-
bution.
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This test shall be compared to an already existing test, the Fisher(-Samiuddin)-test, in
a simulation study. The test statistic of the Fisher-test, see [Sac 2004] and [Sam 1970],
is defined as

t̂(Z) =
r(Z)− ρ0

√
N − 2√

(1− r2(Z))(1− ρ2
0)

with r(z) =

∑N
n=1(xn − x̄)(yn − ȳ)√∑N

n=1(xn − x̄)2
∑N
n=1(yn − ȳ)2

and has an asymptotic tN−2 distribution.

We compare the power-function of the tests by simulating each 1000 times 100 data with
distribution ρ, ρ ∈ {0.01, 0.02, . . . , 0.99} and count, how often H0 : ρ ≤ ρ0 is rejected.
The results can be found in Figure 4.9.

Before taking a closer look at the results of this study, the robustness of the new test
is compared to the robustness of the Fisher-(Samiuddin-)test. Therefore ε-contaminated
datasets are simulated. Contaminated data means that (1 − ε) · 100% (here 95% and
90%) of the data are constructed with correlation ρ and ε · 100% (here 5% and 10%) are
constructed with ρ1 = 0.01. The graphics in Figure 4.10 show the frequency of rejections
of H0 : ρ ≤ ρ0 for both tests with ε = 0.05 and Figure 4.11 shows the case with ε = 0.1.
Figure 4.12 displays the power for contamination with ρ1 = 0.99 ≥ ρ0.

For uncontaminated data the Fisher-Samiuddin-test has most times more power. For
ε-contaminated data the new test succeeds in the cases of contamination data with low
correlation in contrast to the Fisher-test. For the case of mixing with high correlated
data, both tests do not keep the level.

As for the estimators, we also consider a contamination with a completely different dis-
tribution, i.e. data coming from (1−ε)Pρ+εδ(x0,x0), with δ(x0,x0) being the Dirac measure
in (x0, x0) and Pρ being the two-dimensional normal distribution with correlation ρ as
before.

The new test is now much more robust than the Fisher-(Samiuddin-)test, see Figure 4.13.
In particular, the level of the new test is not breaking down for x0 tending to infinity
which is the case for the Fisher-test.

Now we consider the hypothesis H0 : ρ ≥ ρ0. Figure 4.14 shows the estimated power-
function of the test, if we would not improve the power, for the example ρ0 = 0.8.

So we will use Definition 2.18 on page 19 and Definition 2.19 on page 20 and try to
improve the power of the test with the quantity

c1
α(ρ) = max{ρ; lim

N→∞
Pρ0(T (ρ, Z∗) < Φ−1(α)) ≤ α}.

The results of estimation of c1
α for ρ = 0.05, . . . , 0.9 are printed in Table 4.8. They

were received by simulating datasets z∗ with correlation ρ, determining the value of the
teststatistic T (ρ1, z∗) for ρ1 = ρ, . . . , 0.999 and counting how often T (ρ1, z∗) < Φ−1(α).
The values in Table 4.8 were achieved for α = 0.05 and are the maximum values such
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Figure 4.9.: Comparison of the power of the tests for H0 : ρ ≤ ρ0.
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Figure 4.10.: Power of the tests for H0 : ρ ≤ ρ0 with 5% contamination (ρ1 = 0.01).
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Figure 4.11.: Power of the tests for H0 : ρ ≤ ρ0 with 10% contamination (ρ1 = 0.01).

that T (ρ1, z∗) < Φ−1(α) in maximum α · 100% of the cases. We made 1000 repetitions
for every ρ and considered datasets with 1000 data.
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Figure 4.12.: Power of the tests for H0 : ρ ≤ ρ0 with 5% contamination (ρ2 = 0.99).
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Figure 4.13.: Power-functions of H0 : ρ ≤ ρ0 for data with 10% outliers in (x0, x0) =
(104, 104), ρ0 = 0.5, 0.8.

Table 4.8.: Values of c1
α=0.05(ρ).

ρ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
ĉ1
α=0.05(ρ) 0.819 0.831 0.852 0.862 0.872 0.880 0.888 0.897 0.902

ρ 0.5 0.55 0.6 0.65 0.7 0.70 0.8 0.85 0.9
ĉ1
α=0.05(ρ) 0.917 0.923 0.935 0.939 0.948 0.957 0.959 0.976 0.983
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Figure 4.14.: Power of the new uncorrected test based on likelihood-depth for H0 : ρ ≥
0.8.

We see that ĉ1
α is increasing, so the assumptions to c1

α, approximated by ĉ1
α, of Theorem

2.20 on page 20 seem to be satisfied. Under this assumption, we state the following

Corollary 4.17. Assume c1
α to be increasing. The test

ϕ≥ρ0(z∗) = 1{sup
ρ≥ĉ1α(ρ0)

T (ρ,z∗)<Φ−1(α)}(z∗)

is an asymptotic α-level test for the hypothesis H0 : ρ ≥ ρ0 against H1 : ρ < ρ0, when
T (ρ, z∗) is defined as in the beginning of this section, ĉ1

α as above and Φ−1(α) is the
α-quantile of the standard normal distribution.

As pρ0,(·) is not strictly decreasing, see also Figure 4.7 on page 145, unfortunately we can
not prove consistency of the tests using the theorems of Section 2.2.

We could increase the accuracy and calculate ĉ1
α(ρ) for more ρ or compensate with a

polynomial to be able to get values for ĉ1
α not estimated. But here we just check, if the

power of the test for some ρ0 improved or not. The results can be found in the graphics
of Figure 4.15. We see is that the power has been really improved in comparison to
the power of the test without correction, although it is not as good as the power of the
Fisher-Samiuddin-test.

Now again we compare both tests for ε-contaminated data. In a first simulation every
time 5% of the data is simulated with ρ1 = 0.1, i.e. ε = 0.05. Here the Fisher(-
Samiuddin)-test does not keep the level, see Figure 4.16. In a second study 10% of the
data are simulated with ρ1 = 0.01, i.e. ε = 0.1. For the results see Figure 4.17. Again the
Fisher-(Samiuddin-)test does not keep the level, see especially the cases where ρ0 = 0.8
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Figure 4.15.: Power of the tests (corrected test based on likelihood-depth and Fisher-test)
for H0 : ρ ≥ ρ0.

and ρ0 = 0.9. For contamination with high correlation, ρ1 = 0.99, the Fisher-test has
more power, see Figure 4.18. But for contamination with nearly independent data the
new test succeeds.

We simulate also data with outliers, i.e. data coming from (1− ε)Pρ + εδ(x0,x0), with Pρ
and δ(x0,x0) defined as before. The comparisons of the power of both tests for x0 = 104,
ε = 0.1 and ρ0 = 0.5 resp. ρ = 0.8 are displayed in Figure 4.19. The Fisher test now
never rejects H0 : ρ ≥ ρ0 in contrast to the new test, which does not. Unfortunately, the
new test has a bad power.

We developed robust tests for the hypotheses H0 : ρ ≤ ρ0 and H0 : ρ ≥ ρ0 based on
likelihood depth. The next corollary gives the resulting test for H0 : ρ = ρ0.
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Figure 4.16.: Comparison of the tests of H0 : ρ ≥ ρ0 for ε-contaminated data (ρ1 = 0.1,
ε = 0.05).

Corollary 4.18. Assume c1
α to be increasing. The test

ϕ=
ρ0

(z∗) = max(1{T (ρ0,z∗)<Φ−1(α
2

)}(z∗), 1{T (ĉ1α
2

(ρ0),z∗)<Φ−1(α
2

)}(z∗)),

with ĉ1
α as in Table 4.8, resp. Table 4.9, is an asymptotic α-level test for the hypothesis

H0 : ρ = ρ0 against H1 : ρ 6= ρ0.

To test with level α = 0.05 we have to determine ĉ1
0.025(ρ). We do this the same way we

estimated c1
0.05(ρ) and receive the values given in Table 4.9.
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Figure 4.17.: Comparison of the tests of H0 : ρ ≥ ρ0 for ε-contaminated data (ρ1 = 0.01,
ε = 0.1).
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Figure 4.18.: Comparison of the tests of H0 : ρ ≥ ρ0 for ε-contaminated data (ρ1 = 0.99,
ε = 0.05).

Table 4.9.: Values of c1
α=0.025(ρ).

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.82 0.838 0.852 0.867 0.892 0.914 0.929 0.948 0.965 0.982

The estimated power function of the new test based on likelihood-depth compared to the
test by Fisher and Samiuddin is displayed in Figure 4.20. It shows that the power of the
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Figure 4.19.: Power-functions of H0 : ρ ≥ ρ0 for data with 10% outliers in (x0, x0) =
(104, 104).

Fisher(-Samiuddin)-test is better than the power of the new test.
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Figure 4.20.: Test for H0 : ρ = ρ0.

So far we only considered variables with mean µ = (0, 0) and variance Σ =

(
1 ρ
ρ 1

)
. If

µ = (µ1, µ2) and Σ =

(
σ2

1 ρ
ρ σ2

2

)
with µ1 6= 0 or µ2 6= 0 or σ1 6= 1 or σ2 6= 1, the test can

still be used, only the data has to be transformed before applying the test. Transform
Z = (X,Y ) to Z̃ = (X̃, Ỹ ), where X̃ = X−µ1

σ1
, Ỹ = Y−µ2

σ2
. For the data with unknown
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µ1, µ2, σ1, σ2, we transform z = (x, y) to z̃i = (x̃i, ỹi) with x̃i = xi−x∗
s(x∗)

and ỹi = yi−y∗
s(y∗)

,
where s(w∗) is the standard deviation of w∗. The power of the test is not really infected
by this transformation, see Figure 4.21. Still the power of the Fisher-test is better.
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Figure 4.21.: Test for H0 : ρ = ρ0 with µ 6= (0, 0) and σ1 6= 1 6= σ2.

Here too, we consider data with ε-contamination. A ratio of ε = 0.1 of the data is
distributed with ρ1 = 0.05. The resulting estimated power-functions are displayed in
Figure 4.22. Here the Fisher-test does not keep the level in contrast to the new test
based on likelihood-depth.
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Figure 4.22.: Test for H0 : ρ = ρ0 with ε-contaminated data (ε = 0.1, ρ1 = 0.05).

All in all we can say that the power of the new test is for the hypotheses H0 : ρ ≤ ρ0 com-
parable to the power of the Fisher-Samiuddin-test, for the hypotheses of type H0 : ρ ≥ ρ0
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it behaves worse, but in contaminated data it is more robust than the power of the
Fisher-Samiuddin-test.

4.4. Estimator for the parameter of the Gumbel copula

In this section we use the likelihood-depth to find an estimator for the parameter of the
Gumbel copula. Recall the definition of the Gumbel copula, Definition 4.6 on page 134 .
We start with Z1, . . . , ZN i.i.d., Zi ∼ Gum(θ), i = 1, . . . , N, that means the distribution
is given by the Gumbel copula and the margins are uniform on [0, 1]. First of all we need
to determine the density function of a Gumbel copula with parameter θ.

Lemma 4.19. The density function of the Gumbel copula is

fθ(z) =
(− ln v)θ−1(− ln u)θ−1

uv
e−((− lnu)θ+(− ln v)θ)

1
θ

(
θ − 1 + ((− ln u)θ + (− ln v)θ)

1
θ

)
((− ln u)θ + (− ln v)θ)

1
θ
−2

for z = (u, v) ∈ [0, 1]× [0, 1], θ ≥ 1.

Proof: We calculate fθ as fθ(z) =
∂

∂u

∂

∂v
Cθ(u, v) and start by determining the partial

derivative in v:

∂

∂v
Cθ(u, v) =

∂

∂v
exp{−((− ln u)θ + (− ln v)θ)

1
θ }

= −1

θ

(
(− ln u)θ + (− ln v)θ

) 1
θ
−1
θ(− ln v)θ−1(−1

v
)

exp{−((− ln u)θ + (− ln v)θ)
1
θ }

=
1

v
((− ln u)θ + (− ln v)θ)

1
θ
−1(− ln v)θ−1 exp{−((− ln u)θ + (− ln v)θ)

1
θ }.

Thus, the density function is

fθ(z) =
∂

∂u

(
1

v
((− ln u)θ + (− ln v)θ)

1
θ
−1(− ln v)θ−1 exp{−((− ln u)θ + (− ln v)θ)

1
θ }
)

=
1

v
(− ln v)θ−1[((− ln u)θ + (− ln v)θ)

1
θ
−2(

1

θ
− 1)θ(− ln u)θ−1

(
−1

u

)

· exp{−((− ln u)θ + (− ln v)θ)
1
θ }

+((− ln u)θ + (− ln v)θ)
1
θ
−1(

1

θ
((− ln u)θ + (− ln v)θ)

1
θ
−1θ(− ln u)θ−1 1

u
)

· exp{−((− ln u)θ + (− ln v)θ)
1
θ }]

=
1

v
(− ln v)θ−1 exp{−((− ln u)θ + (− ln v)θ)

1
θ }
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[((− ln u)θ + (− ln v)θ)
1
θ
−2(1− θ)(− ln u)θ−1

(
−1

u

)

+((− ln u)θ + (− ln v)θ)
1
θ
−2((− ln u)θ + (− ln v)θ)

1
θ (− ln u)θ−1 1

u
]

=
1

v

1

u
(− ln v)θ−1(− ln u)θ−1 exp{−((− ln u)θ + (− ln v)θ)

1
θ }

·((− ln u)θ + (− ln v)θ)
1
θ
−2
(
θ − 1 + ((− ln u)θ + (− ln v)θ)

1
θ

)
. □

For the likelihood-depth we also need h′(θ, z) = ∂
∂θ

ln fθ(z). Before we calculate this, we
introduce a notation for some clearer view. In the following let be x := − ln u (⇔ u = e−x)
and y := − ln v (⇔ v = e−y).

Lemma 4.20. With the previously defined shortcuts, we receive for z := (x, y)

h′(θ, z) = ln x+ ln y +
(
(xθ + yθ)

1
θ − 1

) 1

θ2
ln(xθ + yθ)

+


1

θ
− (xθ + yθ)

1
θ

θ
− 2


 xθ ln x+ yθ ln y

xθ + yθ

+
1 + (xθ + yθ)

1
θ

(
− ln(xθ+yθ)

θ2
+ xθ ln(x)+yθ ln(y)

θ(xθ+yθ)

)

θ − 1 + (xθ + yθ)
1
θ

.

Proof: According to definition, h′(θ, (u, v)) = ∂
∂θ

ln(fθ(u, v)) = ∂
∂θ

ln(fθ(e
−x, e−y)). Lemma

4.19 yields

∂

∂θ
ln(fθ(z)) =

∂

∂θ
ln
(
exeyxθ−1yθ−1 exp{−(xθ + yθ)

1
θ }(xθ + yθ)

1
θ
−2((θ − 1) + (xθ + yθ)

1
θ )
)

=
∂

∂θ
{x+ y + (θ − 1) ln(x) + (θ − 1) ln(y)− (xθ + yθ)

1
θ

+(
1

θ
− 2) ln(xθ + yθ) + ln(θ − 1 + (xθ + yθ)

1
θ )}.

We calculate the derivatives for the individual summands. Here we use that for a dif-
ferentiable function g, g > 0, ∂

∂t
(g(t)

1
t ) = g(t)

1
t

(
− ln g(t)

t2
+ g′(t)
tg(t)

)
holds. For the first four

summands we obtain

∂

∂θ
(x+ y + (θ − 1) ln(x) + (θ − 1) ln(y)) = 0 + ln(x) + ln(y),

for the next two

∂

∂θ
((xθ + yθ)

1
θ ) = (xθ + yθ)

1
θ

(
− ln(xθ + yθ)

θ2
+
xθ ln(x) + yθ ln(y)

θ(xθ + yθ)

)

=: T1(θ),

∂

∂θ

(
(
1

θ
− 2) ln(xθ + yθ)

)
= − 1

θ2
ln(xθ + yθ) +

(
1

θ
− 2

)
xθ ln(x) + yθ ln(y)

(xθ + yθ)
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and finally

∂

∂θ
ln(θ − 1 + (xθ + yθ)

1
θ ) =

1 + T1(θ)

θ − 1 + (xθ + yθ)
1
θ

.

In total we receive

h′(θ, (x, y)) = ln(x) + ln(y)

−(xθ + yθ)
1
θ

(
− ln(xθ + yθ)

θ2
+
xθ ln(x) + yθ ln(y)

θ(xθ + yθ)

)

− 1

θ2
ln(xθ + yθ) +

(
1

θ
− 2

)
xθ ln(x) + yθ ln(y)

(xθ + yθ)

+
1 + (xθ + yθ)

1
θ

(
− ln(xθ+yθ)

θ2
+ xθ ln(x)+yθ ln(y)

θ(xθ+yθ)

)

θ − 1 + (xθ + yθ)
1
θ

= ln x+ ln y +
(xθ + yθ)

1
θ ln(xθ + yθ)

θ2
+ (1− (xθ + yθ)

1
θ )
xθ ln x+ yθ ln y

θ(xθ + yθ)

−2
xθ ln(x) + yθ ln(y)

(xθ + yθ)
− 1

θ2
ln(xθ + yθ)

+
1 + (xθ + yθ)

1
θ

(
− ln(xθ+yθ)

θ2
+ xθ ln(x)+yθ ln(y)

θ(xθ+yθ)

)

θ − 1 + (xθ + yθ)
1
θ

= ln x+ ln y +
(
(xθ + yθ)

1
θ − 1

) 1

θ2
ln(xθ + yθ)

+


1

θ
− (xθ + yθ)

1
θ

θ
− 2


 xθ ln x+ yθ ln y

xθ + yθ

+
1 + (xθ + yθ)

1
θ

(
− ln(xθ+yθ)

θ2
+ xθ ln(x)+yθ ln(y)

θ(xθ+yθ)

)

θ − 1 + (xθ + yθ)
1
θ

. □

If we choose the estimator θ̃ of the parameter θ ∈ [1,∞) as the one with maximum
likelihood-depth in the data, then θ̃ is bigger than the real parameter. Here too, the
maximum likelihood-depth estimator is biased. We simulated data with different param-
eter θ, each 1000 times 100 data and determined the parameter with maximum depth.
The results are displayed in Figure 4.23, where the mean of the parameters with maximum
depth and the standard deviation in every situation is showed. The graphics suggests
that the relation between the parameter with maximum depth and the real parameter is
linear.

The probability is determined, that one data lies inside the region where h′(θ, ·) =
∂
∂θ

ln fθ(·) ≥ 0. With the same notations as in Section 2.1 we get

pθ := Pθ(T
θ
pos) =

∫ ∫
1T θpos(u, v)fθ(u, v)dudv.
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Figure 4.23.: Mean and standard deviation of the parameter with maximum depth for
the Gumbel copula with different θ.

To calculate pθ the zeros of h′(θ, ·) are needed (they are the boundaries of T θpos and thereby
the limits of the integral). We could not find explicit algebraic expressions for them, so
we had a look at the contour-plot of h′(θ, u, v) for fixed θ and variable u, v ∈ [0, 1]. We
are led to the assumption, that there exists at most 2 different zeros for each u and that
the roots are symmetric to the line u = v. The symmetry follows from the symmetry
of h′(θ, u, v) as seen in Lemma 4.20. The graphics in Figures 4.24 and 4.25 show the
contour-plots of h′(θ, u, v) for some values of θ.

Because of the complexity of h′(θ, u, v), the zeros were only evaluated numerically. As a
consequence the integral can also be numerically approximated, only. The points (0, 0)
and (1, 1) are singular points of the density function, thus the evaluation of the integral
is made with higher accuracy here. In the following let rθ(u) denote the function such
that h′(θ, (u, rθ(u))) = 0 for all u ∈ [0, 1]. We have

pθ = Pθ(T
θ
pos) =

∫ ∫
1T pos
θ

(u, v)fθ(u, v)dvdu = 2 ·
∫ 1

0

∫ u

rθ(u)
fθ(u, v)dvdu

= 2
∫ 1

0

∫ u

0
fθ(u, v)dvdu− 2

∫ 1

0

∫ rθ(u)

0
fθ(u, v)dvdu

= 2
1

2
− 2

∫ 1

0

∫ rθ(u)

0
fθ(u, v)dvdu

= 1− 2
∫ 1

0

∫ rθ(u)

0
fθ(u, v)dvdu,

where the second identity follows from the symmetry of fθ. Only the remaining integral
has to be calculated in the way described above. This leads to the results shown in Table
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Figure 4.24.: Contour plot of h′(θ, (u, v)) for the Gumbel copula, θ = 1.1 and θ = 2.
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Figure 4.25.: Contour plot of h′(θ, (u, v)) for the Gumbel copula, θ = 5 and θ = 10.

4.10. Alternatively, pθ could also be calculated by generating a large number of points
z = (u, v) from distribution with θ and then determining the part of points for that
∂
∂θ

ln fθ(u, v) ≥ 0 is satisfied.
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Table 4.10.: pθ for the Gumbel copula.
θ pθ θ pθ θ pθ θ pθ θ pθ
1 0.564399 1.1 0.591775 1.25 0.614965 1.5 0.632269 1.75 0.639433

2 0.642906 2.5 0.645838 3 0.646917 3.5 0.647388 4 0.647617

4.5 0.647738 5 0.647806 5.5 0.647845 6 0.647869 6.5 0.647884

7 0.647893 7.5 0.6479 8 0.647904 8.5 0.647906 9 0.647908

9.5 0.647909 10 0.64791 15 0.647911 20 0.64791 25 0.647909

30 0.647908 35 0.647908 40 0.647907 45 0.647906 50 0.647905

55 0.647904 60 0.647901 65 0.647894 70 0.647882 75 0.647859

80 0.647903 85 0.647766 90 0.647684 95 0.64757 100 0.647418

We see that pθ = Pθ(T
θ
pos) is clearly not one half, what shows the biasedness of the

maximum likelihood-depth estimator.

The next step is to calculate the shift s(θ) such that Pθ(T s(θ)pos ) = 0.5. Values are received
by first calculating the zeros of h′(s(θ), u, v) for s(θ) in equidistant points in (0, 1), then
interpolating the zeros to find that θ such that

Pθ(T
s(θ)
pos ) = 1− 2

∫ 1

0

∫ rθ(u)

0
fθ(u, v)dvdu ≈ 0.5,

what means solving

∫ 1

0
(e−((− lnu)θ+(− ln rs(θ)(u))θ)

1
θ (ln u)θ−1((− ln u)θ + (− ln rs(θ)(u))θ)

1
θ
−1 1

u
)du ≈ 0.25.

Here we used the bisection method. The results can be found in Table 4.11.

Table 4.11.: Alduration of the parameter with maximum depth.
s(θ) 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

θ 1.133 1.455 1.798 2.148 2.50 2.854 3.208 3.563 3.919 4.274

s(θ) 7.0 8.0 9.0 10.0 15.0 20.0 30.0 40.0 50.0

θ 4.985 5.696 6.408 7.119 10.677 14.232 21.351 28.467 35.583

A line of best fit through these points is 0.015 + 0.71s(θ). The graphic in Figure 4.26
shows the points (s(θ), θ) and the line of best fit.

Thus, a new estimator can be chosen as

θ̂(z) = arg max
θ>1

dT (θ, z) · 0.71 + 0.015. (4.2)

This new estimator was compared to the maximum likelihood estimator (MLE) for
datasets with different θ (1000 times, 100 data each). Table 4.12 shows the real pa-
rameter (θ), the mean of the new estimator (θ̂) and the mean of the MLE.
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Figure 4.26.: The points (s(θ), θ) and the line of best fit.

Table 4.12.: Comparison of θ̂ and MLE for samples with different θ, N = 100, 1000
repetitions each.

θ θ̂ MLE
1.1 1.050 1.137
1.5 1.497 1.504
2.0 2.041 2.020
3.0 3.030 3.023
4.0 4.050 4.031
5.0 5.048 5.028

10.0 10.104 10.109

The table indicates that for simulated datasets without contamination the new estimator
is nearly as good as the MLE. The next step is to compare the strength of both for datasets
with ε-contamination. Therefore two samples were mixed, a bigger one with parameter θ
and a smaller (the contaminated data) with parameter θ1. Again 1000 samples each were
created. For the results see Table 4.13. Here the column ε · 100% gives the percentage of
the data with parameter θ1.
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Table 4.13.: Comparison of θ̂ and MLE for ε-contaminated data with θ1, N = 100, 1000
repetitions each.

θ θ1 ε · 100% θ̂ MLE
1.1 10.0 5 1.14 1.15
1.1 10.0 10 1.19 1.18
1.1 100.0 5 1.13 1.64
1.1 100.0 10 1.25 37.78
2.0 10.0 5 2.15 2.07
2.0 1.1 5 1.97 1.94
5.0 1.1 5 4.87 4.28
5.0 20.0 5 5.39 5.23

10.0 1.1 5 9.54 7.17
10.0 1.1 10 9.02 5.47
10.0 2.0 10 9.16 7.14

We also get good results for datasets with contamination for the new estimator, most
times even better than for the MLE. Hence,

θ̂(z) = arg max
θ>1

dT (θ, z) · 0.71 + 0.015

can be used as an estimator for the parameter of the Gumbel copula.

To make statements about the asymptotic behavior of the estimator for the parameter
of the Gumbel copula, we table the simulated mean squared errors of the estimator for
growing sample size for data with θ = 2. The results are displayed in Figure 4.27 on the
left, in comparison to the MLE. They provide the assumption, that also for the Gumbel
copula we receive a consistent estimator, as the mean squared error is tending to zero.
To prove consistency, we take again a look on the contour-plot of the zeros of h′(θ, ·).
This time we display the zeros for growing θ, see Figure 4.27 on the right. Because the
region where h′(θ, ·) is positive is between the zeros, the graphic shows that λ+

N(θ, z∗) :=
♯{n;h′(θ, zn) ≥ 0} and λ+

θ0
(θ) := Pθ0(h′(θ, Z) ≥ 0) are (strictly) decreasing. This is

because for θ > θ′, they lead to the assumption that {z;h′(θ, z) ≥ 0} ⊂ {z;h′(θ′, z) ≥
0}. With the same arguments we can assume that λ−N(θ, z∗) := ♯{n;h′(θ, zn) ≤ 0}
and λ−θ0(θ) := Pθ0(h′(θ, Z) ≤ 0) are (strictly) increasing and with the strong law of
large numbers we also have λ±N(θ, Z∗) → λ±θ0(θ). The requirements of Proposition 2.7
on page 11 are fulfilled and we would get a strongly consistent estimator for s(θ) by
θ̃ = arg max dT (θ, Z∗). As we can further assume, that s−1 is continuous, we get that θ̂
given by (4.2) is a strongly consistent estimator for θ.
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Figure 4.27.: Asymptotic behavior of θ̂ (left-hand side) and zeros of h′(θ, ·) (on the right).

4.4.1. Data with unknown margins

So far we assumed that the data are coming from a distribution, where both marginal
distributions are uniform on the interval [0, 1]. In practice, however, the marginal distri-
bution must be estimated and the data have to be transformed, so that the distribution
of the transformed data is uniform on [0, 1]. The marginal distributions F and G can
be approximated for example by the cumulative empirical distribution function. The
estimated functions shall be denoted by F̂ and Ĝ. Then the data are transformed to
z̃i = (F̂ (xi), Ĝ(yi)) ∈ [0, 1] for i = 1, . . . , N . For this transformed dataset we can have
a look at the belonging copula. We have to decide for one family and then (in case we
have chosen the Gumbel copula) use the methods from above to estimate the parameter.
Table 4.14 shows some results for the estimation as comparison of the MLE and the new
estimator θ̂, where we simulated data with different margins and dependence structure
given by the Gumbel copula with θ = 2. Even for data without contamination the new
estimator achieves most times slightly better results than the MLE. We simulated 1000
datasets with 100 data each, tn denotes the t-distribution with df = n, N (0, 1) the nor-
mal distribution with mean 0 and variance 1, E(2) the exponential distribution with rate
2 and χ2

2 the χ2-distribution with df = 2. The graphics in Figure 4.28 show the original
data set for margins t8-distributed and the transformed data.

Thus, the estimation of the margins has no influence on the estimator based on likelihood-
depth.
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Table 4.14.: Estimation for unknown marginal distribution, N = 100, 1000 repetitions
each.

F G θ̂ MLE
t3 t3 2.012 1.977
t8 t8 2.027 1.974
t3 χ2

2 2.019 1.987
N (0, 1) N (0, 1) 2.016 1.974
N (0, 1) E(2) 2.007 1.971
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Figure 4.28.: Data with margins t8-distributed and Gumbel Copula with θ = 2.

4.5. Tests and confidence intervals for the parameter of

the Gumbel copula

In this section we construct tests for the hypotheses H0 : θ ≤ θ0, H0 : θ ≥ θ0 and
H0 : θ = θ0, based on likelihood-depth. Therefore we We already showed in the last
section about estimation for the Gumbel copula that pθ = Pθ(T

θ
pos) 6= 1

2
and s(θ) > θ,

see Table 4.10 on page 165 and Table 4.11 on page 165, respectively. We define the test
statistic as described in Lemma 2.14, page 17.

Definition 4.21. Let be θ > 1. The test statistic for testing hypotheses of the parameter
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θ of the Gumbel copula is defined as

T (θ, z∗) :=
√
N
dS(θ, z∗)− 2pθ(1− pθ)
2
√
pθ(1− pθ)(1− 2pθ)2

.

For values for pθ see Table 4.10 on page 165. We use Corollary 2.17 on page 19 directly
and receive

Corollary 4.22. The test

ϕ0,≤
θ0

= 1{supθ≤θ0 T (θ,·)<Φ−1(α)}

is an asymptotic α-level test for the hypothesis H0 : θ ≤ θ0 against H1 : θ > θ0.

The approximated power-function for finite sample-size is displayed in Figure 4.29 for the
examples θ0 = 1.5, 2, 5 and θ0 = 10. For each θ we simulate 1000 times 100 data each. In
the graphics we see, that the test does slightly not keep the level. This should become
better, if we increase the sample-size.

In a next step we want to study the robustness of this new test in ε-contaminated data.
The graphics in Figure 4.30 show the behavior of the power for datasets with θ0 = 2
and 5, when the data is contaminated (5% of each dataset are data with distribution
θ1 = 1.1). In Figure 4.31 contamination with a parameter θ1 ≥ θ0 is considered, again
5% of each dataset are data with distribution θ1 = 10. The graphics demonstrate that for
contaminated data with a distribution depending on θ1 > θ0, the test does not keep the
level for N = 100 data, but otherwise the power-function is not affected very much by
the contamination. What happens to the power of the test, if we increase the parameter
θ1 of the contaminated data (10%) to infinity? The graphics in Figure 4.32 show the
results for θ0 = 2 and θ1 = 103, 106 and 109. We see, if we fix the ratio of contamination
with distribution θ1 at 10%, then the frequency of rejections of H0 : θ ≤ θ0 does not tend
to 1 for θ1 →∞, which indicates that the test is quite robust. If the number of outliers
is increasing, the ratio of rejections is growing up to one in θ0. The graphics in Figure
4.33 show the case for θ0 = 2, θ1 = 106. We see that H0 : θ ≤ θ0 = 2 is always rejected
for a ratio of “contamination” of 50%.

Now we take a look at realizations of variables Zi = (Xi, Yi), i = 1, . . . , N , with margins F
and G (unknown) and dependence structure given by the copula Cθ, where the family of
the copula is supposed to be known. The margins are unknown and have to be estimated.
For notation and more explanation see the beginning of Section 4.4.1. We test H0 : θ ≤ θ0

for the transformed dataset z̃∗ = ((F̂ (x1), Ĝ(y1)), . . . , (F̂ (xN), Ĝ(yN))), where F̂ and Ĝ
shall denote the estimators of F and G. Figure 4.34 shows exemplary the results for data
with dependence given by the Gumbel copula with θ = 2 and different margins, again
for 1000 datasets with 100 data each. It indicates that the estimation of the marginal
distribution has almost no influence on the power-function. Compare it to Figure 4.29,
θ = 2.
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Figure 4.29.: Power of the test for H0 : θ ≤ θ0 for Gumbel copulas.

Since we showed in the last section about estimation that s(θ) > θ, we use Definition
2.18 on page 19 and Definition 2.19 on page 20, to construct a test for the hypothesis
H0 : θ ≥ θ0. Therefore, we are looking for an approximation of

c1
α(θ0) = max{θ ≥ 1; lim

N→∞
Pθ0(T (θ, Z∗) < Φ−1(α)) ≤ α}

in the following. As we have no explicit terms for p(·),θ and pθ,(·), we can not use Lemma
2.25 on page 23 here. How the power would look like, if we would not improve it, can be
seen in the two graphics in Figure 4.35, which show the estimated power-function of the
test for θ0 = 2 and θ0 = 5. As expected it is very bad.

Like we did in the case of the two-dimensional normal distribution, we simulate 1000
times 1000 data for every θ ∈ {1.25, 1.5, 2, 2.5, 3, . . . , 10} and determine the maximum
parameter θ′, such that T (θ′, z∗) < Φ−1(α) in maximum α · 100% of the cases. Table 4.15
illustrates the results of the estimation of c1

α.
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Figure 4.30.: Test for H0 : θ ≤ θ0 for data with ε-contamination (θ1 = 1.1, ε = 0.05).
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Figure 4.31.: Test for H0 : θ ≤ θ0 for data with ε-contamination (θ1 = 10, ε = 0.05).

Table 4.15.: Values of c1
α=0.05(θ).

θ0 1.25 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10
ĉ1
α=0.05(θ0) 2.5 3 4 5 6 7 8 9 10 12 14 16 18 20

This leads to

Proposition 4.23. For the Gumbel copula it holds c1
α=0.05(θ) = 2θ.
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Figure 4.32.: Power for H0 : θ ≤ θ0 for ε-contamination with increasing θ1 =
10, 103, 106, 109, ε = 0.1.

The proof of this Proposition is an open problem.

Hence for c1
α the assumptions of Theorem 2.20 on page 20 seem to hold for α = 0.05 and

it can be used to create a new test.

Corollary 4.24. Assume the conditions of Theorem 2.20 on page 20 to be true. The test

ϕ≥θ0 = 1{supθ≥2θ0
T (θ,·)<Φ−1(α)}

is an asymptotic 0.05-level test for the hypothesis H0 : θ ≥ θ0 against H1 : θ < θ0.

For a test with a different level, c1
α has to be computed.

The power-function for the new test is estimated and shown for some examples in the
graphics of Figure 4.36. They display the improvement of the power-function (compare
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Figure 4.33.: H0 : θ ≤ θ0, increasing ratio of contamination 20%− 50%, θ1 = 106.

with Figure 4.35). The power of the test is also estimated for data with contamination.
Figure 4.37 shows the results for θ0 = 2 and θ0 = 5 with 5% contaminated data with
distribution θ1 = 100 (first row) and θ1 = 1.1 (second row). We see that the power is
also good in case of the data with contamination.

Again we estimate the power-function for data z∗ = ((x1, y1), . . . , (xN , yN)) with unknown
margins. First the margins are estimated with the empirical distribution function (F̂ and
Ĝ), then the test is applied to the data (ui = F̂ (xi), vi = Ĝ(yi)). For more details and
notation see subsection 4.4.1. Some of the results for different margins and θ0 = 2 are
shown in Figure 4.38. As before the graphics indicate, when compared with the ones of
Figure 4.36 for known margins, that estimation of the margins has almost no influence
on the power-function of the improved test.

Using the tests for H0 : θ ≤ θ0 and H0 : θ ≥ θ0 we can easily give a test for H0 : θ = θ0

and confidence intervals.
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Figure 4.34.: Testing H0 : θ ≤ θ0 for data with estimated margins.
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Figure 4.35.: Power of the uncorrected test for H0 : θ ≥ θ0.

Corollary 4.25. Assume the conditions of Theorem 2.20 on page 20 to be true. An
asymptotic test with level α for the hypothesis H0 : θ = θ0 is given by

ϕ=
θ0

(z∗) = max(1{T (θ0,z∗)<Φ−1(α
2

)}(z∗), 1{T (cα
2 (θ0),z∗)<Φ−1(α

2
)}(z∗)).

Consequently, an asymptotic γ-confidence interval with γ = 1− α in data z∗ is

{θ ≥ 1;ϕ=
θ (z∗) = 0}.

For the Gumbel copula we can not prove consistency, as we do not have explicit terms
for pθ,θ′ . But analog to the considerations in the section about estimation, we take a look
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Figure 4.36.: Power of the improved test for θ ≥ θ0.

at the assumptions of Theorem 2.32, resp. Theorem 2.33. We already motivated in the
end of Section 4.4 that we assume pθ0,(·) to be strictly increasing. The graphics of Figure
4.39, showing the contours of different Gumbel densities and the plot of the zeros of h′

in Figure 4.27, suggest that p(·),θ is strictly decreasing.

Further it is c1
α(·) strictly increasing, cα(θ) > θ and 1

2
< pθ <

1
2

+ 1√
8
≈ 0.853, see Table

4.10. This leads to ϕ=
θ0
, ϕ≤θ0 and ϕ≤θ0 being consistent tests.

4.6. Open problems

We introduced the Gaussian and the Gumbel copula and developed estimators and tests
for the unknown parameters of these. In both cases the problem occurs that pρ resp.
pθ can not be determined explicitly. Therefore also some of the conditions to prove
consistency of the estimators could only be made reasonable and were not proven. The
proofs could be the topic of further studies. Considering the Gaussian copula, it would
be of interest to prove that only for ρ = 0 there exist two solutions ρ′ of pρ,ρ′ . If this is
the case, s−1 is unique for ρ > 0. Anyway we showed in simulations studies that the new
estimators are nearly as good as existing standard methods for uncontaminated data.
For contaminated and robust data we showed the robustness of the new estimators based
on likelihood-depth. We also showed that the estimation of the margins in case of the
Gumbel copula has no influence on the estimation of the parameter.

For the Gumbel copula we also made reasonable that the theorems for the consistency
of the tests can be used. But the problem of the unknown explicit forms of pθ, p·,θ, pθ,·
leads to the problem, that c1

α can only be estimated, the proof that it holds c1
α(θ) = 2θ

for α = 0.05 is an open problem, see Proposition 4.23. For the Gaussian copula we do
not have that p·,ρ and pρ,· are monotone functions, so here the proof that the tests based
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Figure 4.37.: Power of the improved test for θ ≥ θ0 with ε-contamination (θ1 = 100 in
the first row and θ2 = 1.1 in the second row, ε = 0.05 each).

on likelihood-depth are consistent is completely missing. This can also be a task for the
future. We showed in simulation studies that the tests for both copulas seem to have a
good power and are robust against ε-contamination and outliers.
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Figure 4.38.: Power of the improved test for unknown margins.
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Figure 4.39.: Contours of the density of the Gumbel copula for different θ.
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A. Weak convergence and empirical

processes

We recall a few definitions and basic statements from the textbook of van der Vaart
and Wellner “Weak Convergence and Empirical Processes”, [VaWe 1996], mainly from
Chapter 1.2 and 1.9. Then we give the Glivenko-Cantelli theorem from Section 2.4 in
[VaWe 1996] and we introduce the Vapnik-C̃ervonenkis classes and some relevant results
from Section 2.6 of [VaWe 1996], especially the statement that Vapnik-C̃ervonenkis classes
are Glivenko-Cantelli. This theory is used to proof consistency of the estimator for the
correlation coefficient based on likelihood-depth.

Let be (Ω,A, P ) a probability space, T : Ω→ ℝ ∪ {−∞,∞} an arbitrary map.

Definition A.1. [VaWe 1996, Section 1.2]

(i) The outer integral of T with respect to P is defined as

E∗T := inf{EU ;U ≥ T, U : Ω→ ℝ ∪ {−∞,∞} measurable and EU exists}.

(ii) The outer probability of a subset B of Ω is given by

P ∗(B) := inf{P (A);A ⊃ B,A ∈ A}.

(iii) The inner integral is given by E∗T = −E∗(−T ) and the inner probability by P∗(B) =
1− P ∗(Ω \B).

Some properties of the outer integral and outer probability are given by the following two
lemmas. Here ∨ denotes the maximum and ∧ the minimum.

Lemma A.2. [VaWe 1996, Lemma 1.2.2] Let be S, T : Ω→ ℝ ∪ {−∞,∞} maps. Then
it holds

(i) (S + T )∗ ≤ S∗ + T ∗, where “=” is true if S is measurable,

(ii) (S − T )∗ ≥ S∗ − T ∗,
(iii) |S∗ − T ∗| ≤ |S − T |∗,
(iv) if S is measurable, then (ST )∗ = S1S>0T

∗ + S1S<0T∗,

(v) (ST )∗ ≤ S∗T ∗1S∗>0,T ∗>0 + S∗T∗1S∗<0,T∗>0 + S∗T
∗1S∗>0,T∗<0 + S∗T∗1S∗<0,T∗<0,
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(vi) (1T>c)
∗ = 1T ∗>c for any c ∈ ℝ,

(vii) |T |∗ = T ∗ ∨ (−T )∗ = T ∗ ∨ (−T∗) = |T∗| ∨ |T∗|,
(viii) (S ∨ T )∗ = S∗ ∨ T ∗,

(ix) (S ∧ T )∗ = S∗ ∧ T ∗, with equality if S is measurable.

Moreover, P ∗(T > c) = P (T ∗ > c) for any c ∈ ℝ.

Lemma A.3. [VaWe 1996, Lemma 1.2.3] For any subset B of Ω it holds

(i) P ∗(B) = E∗1B, P∗(B) = E(1B)∗,

(ii) there exists a measurable set B∗ ⊃ B with P (B∗) = P ∗(B) for any such B∗, it holds
that 1B∗ = (1B)∗,

(iii) (1B)∗ + (1Ω−B)∗ = 1.

Now we give the definitions of the different types of convergence. The convergence in
[VaWe 1996] is defined for nets of processes {Xα}α∈A, with A a directed set, i.e. a set
with a partial order. For a sequence, the directed set is the set of natural numbers with
the usual ordering. See also [VaWe 1996].

Definition A.4. [VaWe 1996, Definition 1.9.1] Let be Xα, X : ω → D maps, with (D, d)
a metric space.

(i) Xα converges in outer probability to X, if d(Xα, X)∗ → 0 in probability,i.e.

P (d(Xα, X)∗ > ε) = P ∗(d(Xα, X) > ε)→ 0,

for all ε > 0.

(ii) Xα converges almost uniformly to X, if for all ε > 0 there exists a measurable A
with P (A) ≥ 1− ε and d(Xα, X)→ 0 uniformly on A.

(iii) Xα converges outer almost surely to X if d(Xα, X)∗ → 0 for some versions of
d(Xα, X)∗.

(iv) Xα converges almost surely to X if P∗(lim d(Xα, X) = 0) = 1.

Definition A.5. [VaWe 1996, Definition 2.1.5] The covering number N(ε,F , ‖ · ‖) is
the minimal number of balls {g; ‖g− f‖ < ε} of radius ε needed to cover the set F . The
centers of the balls need not belong to F , but they should have finite norms. The entropy
number is the logarithm of the covering number.

An envelope function of a class F is any function x 7→ F (x), such that |f(x)| ≤ F (x) for
every x and every f . The minimal envelope function is x 7→ supf |f(x)|.
Now we define Glivenko-Cantelli classes.
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Definition A.6. [VaWe 1996, Section 2.1] Let F be a collection of measurable functions
f : X → ℝ, where (X ,A ) is a measurable space. F is a Glivenko-Cantelli class, if

‖ℙN − P‖F → 0,

in outer probability or outer almost surely where ‖Q‖F = supf∈F |
∫
fdQ| and ℙN is

the empirical measure of a sample of random elements X1, . . . , XN of X , ℙN(C) =
1
N
♯{Xi;Xi ∈ C}.

The next theorem is one of the Glivenko-Cantelli theorems given in Section 2.4 of [VaWe 1996].
It shows the connection between the entropy of F and F being a Glivenko-Cantelli class.
This theorem is for measurable classes, these are defined as follows.

Definition A.7. [VaWe 1996, Definition 2.3.3] A class F of measurable functions f :
X → ℝ on a probability space (X ,A, P ) is called P -measurable class, if the function

(X1, . . . , Xn) 7→ ‖
n∑

i=1

eif(Xi)‖F

is measurable on the completion of (X n,An, P n) for every n and every vector (e1, . . . , en) ∈
ℝn.

Theorem A.8. [VaWe 1996, Theorem 2.4.3] Let F be a P-measurable class of measur-
able functions with envelope F such that P ∗F < ∞. Let FM be the class of functions
f1F≤M , when f ranges over F . Further ℙn shall denote the empirical measure. If
logN(ε,FM , L1(ℙN)) = oP ∗(N) for every ε and M > 0, then ‖ℙN−P‖∗ → 0 both almost
surely and in mean. In particular, F is Glivenko-Cantelli.

Remark A.9. [VaWe 1996, Example 2.1.4] Let C be a collection of measurable sets in
the sample space (X ,A ) and F the set of indicator functions in C . This leads to the
empirical distribution indexed by set

C 7→ ℙN(C) :=
1

N
♯{Xi;Xi ∈ C}.

In this case, it is convenient to make the identification C ↔ 1C, both in notation and in
terminology. Hence C is called a Glivenko-Cantelli class, if ‖ℙN −P‖C converges to zero
in outer probability or outer almost surely.

The one-dimensional Glivenko-Cantelli-Lemma shows the uniform convergence of the
empirical distribution function:

Example A.10. Let be (Xn)n∈ℕ i.i.d. a sequence of univariate variables with distribution
function Fn = F for all n ∈ ℕ, FN : Ω→ [0, 1], FN(x, ω) := 1

N

∑N
n=1 1(−∞,x](Xn(ω)) and

dN : Ω→ ℝ+, dN(ω) := sup
x∈ℝ
|FN(x, ω)− F (x)|.

Then dN → 0 almost surely as N →∞.
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One kind of classes that fulfill the hypothesis of this theorem are the so-called Vapnik-
C̃ervonenkis classes, or simply VC-classes. The theory can be found in Section 2.6 of
[VaWe 1996], we consider only the definition and relevant theorems.

Definition A.11. [VaWe 1996, Section 2.6] Let be C a collection of subsets of a set
X . An arbitrary set of n points {x1, . . . , xn} posses 2n subsets. C picks out a certain
subset from {x1, . . . , xn}, if this can be formed as a set of the form C ∩ {x1, . . . , xn} for
C ∈ C . C is said to shatter {x1, . . . , xn} if each of the 2n subsets can be picked out. The
VC-index V (C ) of a class C is the smallest n for which no set of size n is shattered by
C . Formally this means

∆n(C , x1, . . . , xn) := ♯{C ∩ {x1, . . . , xn};C ∈ C },
V (C ) := inf{n; max

x1,...,xn
∆n(C , x1, . . . , xn) < 2n}.

A collection C of measurable sets C is called VC-class, if its index is finite.

Example A.12. The class of the half-open intervals C := {(−∞, x];x ∈ ℝ} is a VC-class
with VC-index V (C ) = 2. C shatters no set {x1, x2}. Let be x1 < x2, then there exists
no interval C ∈ C such that C ∩ {x1, x2} = {x2}.

For these classes we have the following lemma and theorem, see van der Vaart and Wellner
[VaWe 1996].

Lemma A.13. [VaWe 1996, Corollary 2.6.3] For a VC-class of sets of index V (C ), one
has

max ∆n(C , x1, . . . , xn) ≤
V (C )−1∑

j=0

(
n

j

)
.

Consequently the numbers on the left side grow polynomially of order at most O(nV (C )−1)
as n→∞.

Theorem A.14. [VaWe 1996, Theorem 2.6.4] There exists a universal constant K such
that for any VC-class C of sets, any probability measure Q, any r ≥ 1 and 0 < ε < 1,

N(ε,C , Lr(Q)) ≤ KV (C )(4e)V (C )
(

1

ε

)r(V (C )−1)

.

Here the Lr(Q)-norm of a function f is ‖f‖Q,r = (
∫ |f |rdQ)

1
r . So VC-classes are polyno-

mial classes in the sense that their covering numbers are bounded by a polynomial in ε.
With this we end up in

Proposition A.15. Any appropriately measurable Vapnik-C̃ervonenkis class is Glivenko-
Cantelli (provided its envelope function is integrable).

This statement can be found in [VaWe 1996] in the beginning of Section 2.4.

Example A.16. With Proposition A.15 and Example A.12 we have the uniform conver-
gence of the empirical distribution function of Example A.10.
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B. R source code

All simulation studies were done in R, [R 2009].

B.1. Weibull distribution

The likelihood-depth and simplicial likelihood-depth of a parameter a in censored or
uncensored (c0=Inf) data data can be calculated using the following functions.

depth_a_cens<-function(a,data,c0=Inf)

{

sol<-numeric(length(a))

for (i in (1:length(a)))

{

ai<-a[i]

N<-length(data)

b<-median(data)

c1<-0.259246

c2<-2.23998

uS<-c1^(1/ai)*b

oS<-min(c2^(1/ai)*b,c0)

data1<-data[data>=uS]

data1<-data1[data1<=oS]

sol[i]<-min((length(data[data<=uS])+length(data[data>=oS])),length(data1))/N

}

sol

}

sim_depth_a_cens<-function(a,data,c0=Inf)

{

sol<-numeric(length(a))

data_cens<-data[data>=c0]

data_uncens<-data[data<c0]

N<-length(data)

k<-length(data_uncens)

b<-median(data)

c1<-0.259246

c2<-2.23998

for (i in (1:length(a)))
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{

ai<-a[i]

#calculating t01

uS<-c1^(1/ai)*b

#calculating t02

oS<-c2^(1/ai)*b

#data between t01 and t02

data1<-data_uncens[data_uncens>uS]

data1<-data1[data1<oS]

Npos<-length(data1)

Nneg<-length(data_uncens[data_uncens<uS])

+length(data_uncens[data_uncens>oS])+(N-k)

Nzero<-length(data[data==uS])+length(data[data==oS])

sol[i]<-2/(N*(N-1))*(Npos*Nneg+Npos*Nzero+Nneg*Nzero+Nzero*(Nzero-1)/2)

}

sol

}

The likelihood-depth of the scale parameter is just 1
N

min(♯{n; yn ≥ b}, ♯{n; yn ≤ b}),
therefore no new function is introduced. The simplicial depth can be calculated using
the following function, for censored and uncensored data.

#simplicial depth of b in censored data

sim_depth_b_cens<-function(b,data,c0=Inf)

{

sol<-numeric(length(b))

N<-length(data)

for (i in (1:length(b)))

{

bi<-b[i]

if (bi<c0)

{

Npos<-length(data[data>bi])

Nneg<-length(data[data<bi])

Nzero<-length(data[data==bi])

sol[i]<-2/(N*(N-1))*(Npos*Nneg+Npos*Nzero+Nneg*Nzero+Nzero*(Nzero-1)/2)

}

else

{

Npos<-length(data)-length(data[data<c0])

Nneg<-length(data[data<c0])

sol[i]<-2/(N*(N-1))*Npos*Nneg

}

}

sol

}
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B.1.1. Estimators

To find the estimators for the parameters of the Weibull distribution we use Theorem 3.15.
The next lines are the source code for the estimation of the parameters of the Weibull
distribution for uncensored (c0 = ∞) and type-I right-censored data. The first function
determines a parameter with maximum depth in the data. Here we used, that we know the
maximum value of the likelihood-depth and that the likelihood-depth is not a continuous
function, so we have to use discrete optimization. As a search region for the shape
parameter with maximum depth, one can for example start with [0, 10 · âMLE](=[lb,ub]),
where âMLE denotes the maximum likelihood estimator of a.

max_depth_cens<-function(data,c0=Inf,lb,ub,steps)

{

N<-length(data)

rek<<-0

rek2<<-0

rek3<<-0

success<-0

maxd<-floor(N/2)/N

maximize<-function(lb,ub,steps)

{

h<-(ub-lb)/steps

fm<-0

lbn<-lb

ubn<-ub

for (i in (1:steps))

{

f1<-depth_a_cens(lb+i*h,data,c0)

if (f1>fm){fm<-f1;lbn<-lb+i*h}

if (f1<fm){if ((lb+i*h)<ubn&(lb+i*h)>lbn){ubn<-lb+i*h}}

}

if(lbn==lb&ubn==ub&rek<20)

{

rek<<-rek+1

intn<-maximize(lb,ub,steps*10)

lb<-intn[1]

ub<-intn[2]

}

if (abs(fm-maxd)<10^(-5)|fm>maxd){success<-1}

else

{

if (rek<20)

{

rek<<-rek+1

if (lbn>lb)

{

lbn<-lbn-h
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}

if (lbn==lb&ubn==ub&rek<20)

{

rek<<-rek+1

intn<-maximize(lb,ub,steps*10)

lbn<-intn[1]

ubn<-intn[2]

}

intn<-maximize(lbn,ubn,steps)

lbn<-intn[1]

ubn<-intn[2]

}

}

c(lbn,ubn,success)

}

erg<-maximize(lb,ub,steps)

#return left bound, because right bound maybe has depth smaller than 1/2

#left bound on the plateau

c(erg[1])

}

We already considered, that there can be more than one parameter with maximum depth,
to find all parameters with maximum depth around the one, that was determined by the
function max_depth, we use the function plateau_detection_cens.

plateau_detection_cens<-function(data,maxa,c0=Inf,peps=0.001)

{

obj<-depth_a_cens(maxa,data,c0)

ps<-TRUE

count1<-0

amax_r<-maxa

while(ps & count1<100)

{

eps<-1

while (eps>peps)

{

eps<-peps #min. plateau-width

deps<-depth_a_cens(amax_r+eps,data,c0)

while (obj<=deps)

{

count1<-count1+1

if (obj<deps)

{

obj<-deps

maxa<-amax_r+eps

break

}
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amax_r<-amax_r+eps

eps<-eps*2

deps=depth_a_cens(amax_r+eps,data,c0)

}

}

ps=FALSE

}

if (count1>=99)

{

print("Warning: Plateau-detection stopped on the right")

}

ps<-TRUE

amax_l<-maxa

count1<-0

while(ps & count1<100)

{

eps<-1

while (eps>peps)

{

eps<-peps

deps<-depth_a_cens(amax_l-eps,data,c0)

while (obj<=deps)

{

count1<-count1+1

if (obj<deps)

{

obj<-deps

maxa<-amax_l-eps

break

}

amax_l<-amax_l-eps

eps<-eps*2

deps=depth_a_cens(amax_l-eps,data,c0)

}

}

ps=FALSE

}

if (count1>=99)

{print("Warning: Plateau-detection stopped on the left")}

c(amax_l,amax_r)

}

To estimate the shape and the scale parameter of the Weibull distribution as described
in Procedure 3.15 and 3.23, we use the three functions from above and the correction
functions for the shape and scale parameter. The function estimate_LDE_cens returns
the lower and the upper bound of the LDE for the shape and the scale parameter. The
interval that is returned is not a confidence interval.
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estimate_LDE_cens<-function(data,c0=Inf,lb=0,ub=100,steps=100)

{

c1<-0.259246

c2<-2.23998

#estimate b as the median

b1<-median(data)

#if more than half the data is censored this method is not applicable

if (b1>=c0){stop("Warning! c0<=median(data), method not applicable!")}

#maximum depth for a

maxa<-max_depth_cens(data,c0,lb,ub,steps)

amax<-plateau_detection_cens(data,maxa,c0)

amax_r<-amax[2]

amax_l<-amax[1]

#we have to distinguish two cases

#check if upper range of amax so that t02<c0 (then also for lower range)

if (c2^(1/amax_r)*b1<c0){

#correction is the same as in uncensored case

a<-c(0.756714*amax_l,0.756714*amax_r)}

else

{

#the correction for a can be found by solving

#-2^(-(c0/b1)^a)+2^(-c1^(a/am))=1/2

#therefore we use newtons-method, this is implemented in corr

corr<-function(am,a0)

{

f<-function(a){-2^(-(c0/b1)^a)+2^(-c1^(a/am))-1/2}

df<-function(a)

{

h<-0.001

erg<-(f(a+h)-f(a))/h

erg

}

x1<-a0

x2<-x1-f(x1)/df(x1)

count<-0

while(abs(x2-x1)>10^(-6)&count<50)

{

x1<-x2

x2<-x1-f(x1)/df(x1)

count<-count+1

}

if (count>=50){print("Iteration stopped")}

x2

}

if (c2^(1/amax_l)*b1>=c0)

{

am<-amax_l
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a_l<-corr(am,amax_r)

am<-amax_r

a_r<-corr(am,am)

a<-c(a_r,a_l)

}

#else the equation has only to be solved for amax_r and

#for amax_l we can use the same correction as before

else

{

am<-amax_r

a_r<-corr(am,am)

a_l<-0.756714*amax_l

a<-c(a_r,a_l)

}

}

b<-b1/(log(2)^(1/a))

theta<-c(a,sort(b))

theta

}

B.1.2. Tests

We start with the tests for the shape parameter. For the test statistic the simplicial
likelihood-depth is needed, the function is given in the beginning of this section.

#if b known, set b=b_0, else b=F, than med=median(dat) must be given

p_a<-function(a,c0=Inf,b=F,med=0)

{

pa<-numeric(length(a))

for (i in (1:length(a)))

{

ai<-a[i]

c1<-0.259246

c2<-2.23998

if (b)

{

#calculating t01

uS<-c1^(1/ai)*b

#calculating t02

oS<-c2^(1/ai)*b

if (b<c0 & oS<c0)

{

pa<-exp(-c1)-exp(-c2)

}

if (b<c0 & oS>=c0)
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{

pa<-exp(-c1)-exp(-(c0/b)^ai)

}

if (b>=c0)

{

pa[i]<-exp(-c1)

}

}

if (!b)

{

b<-med

#calculating t01

uS<-c1^(1/ai)*b

#calculating t02

oS<-c2^(1/ai)*b

if (b>=c0)

{

stop("Warning:Median of data should be smaller than censor time")

}

if (oS<c0)

{

pa[i]<-2^(-c1)-2^(-c2)

}

if (oS>=c0)

{

pa[i]<-2^(-c1)-2^(-(c0/b)^ai)

}

}

}

pa

}

#Test for a<=a_0

test_le_a_cens<-function(data,a0,b0=F,c0,level=0.05,lb=0,ub=100,steps=100)

{

#print(c0)

c1<-0.259246

c2<-2.23998

if (!b0)

{

beta<-median(data)

oS<-c2^(1/a0)*beta

if (oS>=c0 & a0<0.455/log(c0/beta))

{

f<-function(a){

t1<-1-2^(-c1)+2^(-(c0/beta)^a)

erg<-t1-2^(-c1^(a0/a))+2^(-(c0/beta)^a0)

190



erg}

if (f(a0)*f(a0/2)<0){a<-uniroot(f,int=c(a0/2,a0))$root}

else

{

if (f(a0)*f(a0/4)<0){a<-uniroot(f,int=c(a0/4,a0))$root}

else{a<-a0;print("Warning: No correction c_alpha^2 determined")}

}

}

testa<-seq(0.001,a0,0.001)

}

if(b0)

{

oS<-c2^(1/a0)*b0

if (b0<c0&oS>=c0)

{

if(a0<0.265/log(c0/b0))

{

f<-function(a)

{

t1<-1-exp(-c1)+exp(-(c0/b0)^a)

t1-exp(-c1^(a0/a))+exp(-(c0/b0)^a0)

}

if (f(a0)*f(a0/2)<0){a0<-uniroot(f,int=c(a0/2,a0))$root}

else

{

if (f(a0)*f(a0/4)<0){a0<-uniroot(f,int=c(a0/4,a0))$root}

else{print("Warning: No correction c_alpha^2 determined")}

}

#a0<-log(c1)/(log(-log(1-exp(-c1)+2*exp(-(c0/b0)^a0))))*a0

#print(a0)

}

}

testa<-seq(0.001,a0,0.001)

}

TS<-function(a,b0)

{

if (!b0)

{

pa<-p_a(a,c0,med=beta)

depth<-sim_depth_a_cens(a,b=F,data,c0)

ET<-2*pa*(1-pa)

VarT<-pa*(1-pa)*(1-2*pa)^2

TST<-sqrt(length(data))*(depth-ET)/(2*sqrt(VarT))

}

if(b0)

{

pa<-p_a(a,c0,b0)
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depth<-sim_depth_a_cens(a,b0,data,c0)

ET<-2*pa*(1-pa)

VarT<-pa*(1-pa)*(1-2*pa)^2

TST<-sqrt(length(data))*(depth-ET)/(2*sqrt(VarT))

}

TST

}

TST<-lapply(testa,TS,b0=b0)

TS<-max(unlist(TST))

if (TS<qnorm(level))

{H1<-T}

else {H1<-F}

H1

}

#Test for a>=a0

test_ge_a_cens<-function(data,a0,b0=F,c0,level=0.05,lb=0,ub=100,steps=100)

{

count<<-count+1

print(count)

#print(c0)

c1<-0.259246

c2<-2.23998

if (!b0)

{

beta<-median(data)

oS<-c2^(1/a0)*beta

if(length(data[data==c0])<1)

{

calpha<-function(a){1.835*a}

testa<-seq(calpha(a0),a0+100,0.01*a0)

}

else

{

if (c0>oS)

{

calpha<-function(a){1.835*a}

testa<-seq(calpha(a0),a0+100,0.01*a0)

}

else

{

if (a0>=0.455/log(c0/beta))

{

f<-function(a){

t1<-1-2^(-c1)+2^(-(min(c0,c2^(1/a)*beta)/beta)^a)

erg<-t1-2^(-c1^(a0/a))+2^(-(min(c0,c2^(1/a)*beta)/beta)^a0)

192



erg

}

if(f(a0)*f(a0*10)<0)

{

as<-uniroot(f,int=c(a0,a0*10))$root

}

else

{

as<-a0

}

testa<-seq(as,as+100,0.01*a0)

}

else

{

testa<-seq(a0,a0+10,a0)

}

}

}

}

else

{

oS<-c2^(1/a0)*b0

if(c0>b0 & c0>oS){a0<-2.275*a0}

if(c0>b0&c0<=oS)

{

if (a0>0.265/log(c0/b0))

{

f<-function(a)

{

t1<-1-exp(-c1)+exp(-(min(c0,b0*c2^(1/a))/b0)^a)

t1-exp(-c1^(a0/a))+exp(-(min(c0,c2^(1/a)*b0)/b0)^a0)

}

if (f(a0)*f(100*a0)<0){a0<-uniroot(f,int=c(a0,100*a0))$root}

}

}

testa<-seq(a0,a0+100,0.01*a0)

}

TS<-function(a,b0)

{

if (!b0)

{

pa<-p_a(a,c0,med=beta)

depth<-sim_depth_a_cens(a,b=F,data,c0)

ET<-2*pa*(1-pa)

VarT<-pa*(1-pa)*(1-2*pa)^2

TST<-sqrt(length(data))*(depth-ET)/(2*sqrt(VarT))

}
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if(b0)

{

pa<-p_a(a,c0,b0)

depth<-sim_depth_a_cens(a,b0,data,c0)

ET<-2*pa*(1-pa)

VarT<-pa*(1-pa)*(1-2*pa)^2

TST<-sqrt(length(data))*(depth-ET)/(2*sqrt(VarT))

}

TST

}

TST<-lapply(testa,TS,b0=b0)

TS<-max(unlist(TST))

if (TS<qnorm(level))

{H1<-T}

else {H1<-F}

H1

}

#Test for a=a0

test_eq_a_cens<-function(data,a0,b0=F,c0,level=0.05)

{

c1<-0.259246

c2<-2.23998

if (!b0)

{

beta<-median(data)

oS<-c2^(1/a0)*beta

#print(oS)

if(length(data[data==c0])<1)

{

calpha<-function(a){1.835*a}

a<-calpha(a0)

}

else

{

if (c0>oS)

{

calpha<-function(a){1.835*a}

a<-calpha(a0)

}

else

{

if (a0>=(0.455/log(c0/beta)))

{

f<-function(a){

t1<-1-2^(-c1)+2^(-(min(c0,c2^(1/a)*beta)/beta)^a)
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erg<-t1-2^(-c1^(a0/a))+2^(-(min(c0,c2^(1/a)*beta)/beta)^a0)

erg

}

if(f(a0)*f(a0*100)<0)

{

a<-uniroot(f,int=c(a0,a0*100))$root

}

else

{

a<-a0

}

}

else

{

f<-function(a){

t1<-1-2^(-c1)+2^(-(c0/beta)^a)

erg<-t1-2^(-c1^(a0/a))+2^(-(c0/beta)^a0)

erg

}

if (f(a0)*f(a0/2)<0){a<-uniroot(f,int=c(a0/2,a0))$root}

else

{

if (f(a0)*f(a0/4)<0){a<-uniroot(f,int=c(a0/4,a0))$root}

else{a<-a0;print("Warning: No correction c_alpha^2 determined")}

}

}

}

}

TS<-function(a)

{

pshape<-p_a(a,c0,med=beta)

ET<-2*pshape*(1-pshape)

VarT<-pshape*(1-pshape)*(1-2*pshape)^2

#print(sim_depth_a_cens(a,b0,data,c0))

TS<-sqrt(length(data))*(sim_depth_a_cens(a,b0,data,c0)-ET)/(2*sqrt(VarT))

TS

}

#print(c(a,a0))

#print(TS(a0))

#print(TS(a))

if (TS(a0)<qnorm(level/2)|TS(a)<qnorm(level/2)){H1<-T}

else{H1<-F}

}

if (b0)

{

oS<-c2^(1/a0)*b0
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#no censored data:

if(length(data[data==c0])<1)

{

calpha<-function(a){2.275*a}

a<-calpha(a0)

}

else

{

if(c0>oS)

{

calpha<-function(a){2.275*a}

a<-calpha(a0)

}

else

{

if(a0<(0.265/log(c0/b0)))

{

f<-function(a)

{

t1<-1-exp(-c1)+exp(-(c0/b0)^a)

t1-exp(-c1^(a0/a))+exp(-(c0/b0)^a0)

}

if (f(a0)*f(a0/2)<0){a<-uniroot(f,int=c(a0/2,a0))$root}

else

{

if (f(a0)*f(a0/4)<0){a<-uniroot(f,int=c(a0/4,a0))$root}

else{a<-a0;print("Warning: No correction c_alpha^2 determined")}

}

}

if(a0>(0.265/log(c0/b0)))

{

f<-function(a)

{

t1<-1-exp(-c1)+exp(-(min(c0,c2^(1/a)*b0)/b0)^a)

t1-exp(-c1^(a0/a))+exp(-(min(c0,c2^(1/a)*b0)/b0)^a0)

}

if (f(a0)*f(10*a0)<0){a<-uniroot(f,int=c(a0,10*a0))$root}

else{a<-a0}

}

}

}

TS<-function(a)

{

pshape<-p_a(a,c0,b=b0)

ET<-2*pshape*(1-pshape)

VarT<-pshape*(1-pshape)*(1-2*pshape)^2

196



sqrt(length(data))*(sim_depth_a_cens(a,b0,data,c0)-ET)/(2*sqrt(VarT))

}

if (TS(a0)<qnorm(level/2)|TS(a)<qnorm(level/2)){H1<-T}

else{H1<-F}

}

H1

}

#confidence-interval for a

ci_shape_cens<-function(dat,b0=F,c0,q=0.95,peps=0.01)

{

level<-1-q

at<-0.01

tst<-test_eq_a_cens(dat,at,b0,c0,level)

if (!tst){print("Warning: No lower bound")}

else

{

while(tst&at<100)

{

at<-at+peps

tst<-test_eq_a_cens(dat,at,b0,c0,level)

}

}

ar<-at

if(at>99.9){print("Warning:No confidence interval found!")}

else

{

while(!tst&at<100)

{

at<-at+peps

tst<-test_eq_a_cens(dat,at,b0,c0,level)

}

if (at>99.9){print("Warning:No upper bound!")}

}

al<-at

c(ar,al)

}

The tests for the scale parameter.

#Test for b>=b0

test_ge_b_cens<-function(dat,b0,c0,level=0.05)

{

TS<-function(b)

{

N<-length(dat)

ps<-exp(-1)
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TS<-sqrt(N)*(sim_depth_b_cens(b,dat,c0)-2*ps*(1-ps))

/(2*sqrt(ps*(1-ps)*(1-2*ps)^2))

TS

}

b<-seq(b0,b0+10,0.01)

TSb<-lapply(b,TS)

TSb_max<-max(unlist(TSb))

if (TSb_max<qnorm(level)){H1<-T}

else {H1<-F}

H1

}

#test for b<=b0

test_le_b_cens<-function(dat,b0,a0=F,c0,level=0.05)

{

if(!a0)

{

a0<-mean(estimate_LDE_cens(dat,c0)[1:2])

}

TS<-function(b)

{

N<-length(dat)

ps<-exp(-1)

TS<-sqrt(N)*(sim_depth_b_cens(b,dat,c0)-2*ps*(1-ps))

/(2*sqrt(ps*(1-ps)*(1-2*ps)^2))

TS

}

calpha_b0<-b0*(-log(1-exp(-1)))^(1/a0)

b<-seq(0.01,calpha_b0,0.01)

TSb<-lapply(b,TS)

TSb_max<-max(unlist(TSb))

if (TSb_max<qnorm(level)){H1<-T}

else {H1<-F}

H1

}

#test for b=b0

test_eq_b_cens<-function(dat,b0,a0=F,c0,level=0.05)

{

if(!a0)

{

a0<-mean(estimate_LDE_cens(dat,c0)[1:2])

}

TS<-function(b)

{

N<-length(dat)

ps<-exp(-1)
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TS<-sqrt(N)*(sim_depth_b_cens(b,dat)-2*ps*(1-ps))

/(2*sqrt(ps*(1-ps)*(1-2*ps)^2))

TS

}

calpha_b0<-b0*(-log(1-exp(-1)))^(1/a0)

if (TS(b0)<qnorm(level/2)|TS(calpha_b0)<qnorm(level/2)){H1<-T}

else{H1<-F}

H1

}

#confidence interval for b

ci_scale_LDE_cens<-function(dat,a0=F,c0,level=0.95,lb=0.01,ub=2000,peps=0.01)

{

alpha<-1-level

b<-lb

tst<-test_eq_b_cens(dat,b,a0,c0,alpha)

if (!tst){print("Warning:No lower bound!")}

else

{

while (tst&b<ub)

{

b<-b+peps

tst<-test_eq_b_cens(dat,b,a0,c0,alpha)

}

}

bli<-b

if (b>(ub-peps)){print("Warning: No confidence interval found!")}

else

{

while (!tst &b<ub)

{

b<-b+peps

tst<-test_eq_b_cens(dat,b,a0,c0,alpha)

}

if (b>(ub-peps)){print("Warning:No upper bound!")}

}

bri<-b

c(bli,bri)

}

B.2. Gaussian copula

Most of the needed procedures in case of the Gauss copula are conform to the ones given
for the Weibull distribution, so they can be just copied from there. Just a few changes
have to be made, and only the procedures that differ are given here.
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To simulate data with 2-dimensional normal distribution and parameters as given in the
section about the correlation coefficient, the package “copula”, see [Yan 2007], can be
used.

library(copula)

#the expectation value

mu1<-c(0,0)

#the covariance matrix with correlation r

sigma1<-matrix(c(1,r,r,1),2,2)

#dataset with 100 data and parameter as given above

rmnorm(100,mu1,sigma1)

For the calculation of the depth of a parameter p in a dataset data the function h′n(p) is
needed:

hn2<-function(r,z){

-((r^3-r^2*z[1]*z[2]+r*z[1]^2+r*z[2]^2-r-z[1]*z[2])/(-1+r^2)^2)}

The tangent depth of a parameter in 2-dim. normal distributed data can be calculated
with the function Tdepth and the simplicial depth with Sdepth.

Tdepth<-function(r,data)

{

gr<-0

kl<-0

hnr<-function(dat){h<-hn2(r,dat);h}

u<-apply(data,1,hnr)

gr<-sum(u>=0)

kl<-sum(u<=0)

if (kl<gr){kl/(length(data[,1]))}

else {gr/(length(data[,1]))}

}

Sdepth<-function(r,data)

{

gr<-0

kl<-0

l<-length(data[,1])

hnr<-function(dat){h<-hn2(r,dat);h}

u<-apply(Daten,1,hnr)

gr<-sum(u>=0)

kl<-sum(u<=0)

depth<-gr*kl*2/((l-1)*l)

depth

}
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B.2.1. Estimator

An estimator for the correlation of a dataset can be calculated with analogue functions as
for the Weibull distribution, only the depth-functions, the correction and the search-area
have to be exchanged.

B.2.2. Tests

The required procedure for the computing of the test (the function SimDepth is also
needed):

#the test statistic of "r" in "data"

Teststatistic <-function(r,data)

{

N<-length(data)/2

p_r<-p[r*1000]

gamma<-function(pr){2*pr*(1-pr)}

sigma<-function(pr){sqrt(pr*(1-pr)*(1-2*pr)^2)}

TS<-sqrt(N)*(Sdepth(r,data)-gamma(p_r))/(2*sigma(p_r))

TS

}

We did not display pρ for ρ = 0.001, . . . , 0.999 here, some values can be found in Table
4.1.

The following programs can be used to test the hypotheses H0 : ρ ≤ ρ0, H0 : ρ ≥ ρ0 and
H0 : ρ = ρ0. They return TRUE if the null-hypothesis is rejected. Give ρ0 as rh, the data
as dat and level as level. We start with the test for H0 : ρ ≤ ρ0.

gauss.test.le<-function(rh,dat,level=0.05)

{

rho<-seq(0.001,0.999,0.001)

rho<-rho[rho<=rh]

TS<-function(t){TS<-Teststatistic(t,dat)}

mTS<-max(unlist(lapply(rho,TS)))

if (mTS<qnorm(level))

{

text<-paste("H0 : rho <=",rh<-rh,"is rejected")

logi<-TRUE

}

else

{

text<-paste("H0 : rho <=",rh, "can not be rejected")

logi<-FALSE

}

return(list(maxTS=mTS,result=text,Logic=logi))

}
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The program for testing H0 : ρ ≤ ρ0.

gauss.test.ge<-function(rh,dat,level=0.05)

{

rho<-seq(0.001,0.999,0.001)

if (level!=0.05 & level!=0.1)

{

("Warning: Use level 0.05 or 0.1! Will go on with level=0.05.")

level<-0.05

}

if (mTS<qnorm(level))

{

text<-paste("H0 : rho >=",rh<-rh,"is rejected")

logi<-TRUE

}

if (level==0.1)

{

c_rho<-function(rh)

{

crho<-min(0.821217+ 0.182348*rh,0.99)

crho

}

if (level==0.05)

{

c_rho<-function(rh)

{

crho<-min(0.811156+0.19458*rh,0.99)

crho

}

}

rho<-rho[rho>=c_rho(rh)]

TS<-function(t){TS<-Teststatistic(t,dat)}

mTS<-max(unlist(lapply(rho,TS)))

else

{

text<-paste("H0 : rho >=",rh, "can not be rejected");logi<-FALSE}

return(list(maxTS=mTS,result=text,Logic=logi))

}

And finally the test for H0 : ρ = ρ0.

gauss.test.eq<-function(rh,ds,level=0.05)

{

ds[,1]<-(ds[,1]-mean(ds[,1]))/sd(ds[,1])

ds[,2]<-(ds[,2]-mean(ds[,2]))/sd(ds[,2])

TS<-Teststatistik(rh,ds)
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if (level!=0.05 & level!=0.1)

{

print("Warning: Use level 0.05 or 0.1! Will go on with level=0.05.")

level<-0.05

}

if (level==0.1)

{

c_rho<-function(rh)

{

crho<-min(0.821217+ 0.182348*rh,0.99)

crho

}

if (level==0.05)

{

c_rho<-function(rh)

{

crho<-min(0.811156+0.19458*rh,0.99)

crho

}

}

TS2<-Teststatistic(c_rho(rh),ds)

if (TS<qnorm(level/2))

{

text<-paste("H0 : rho =",rh<-rh,"is rejected")

logi<-TRUE

}

else

{

if (TS2<qnorm(level/2))

{

text<-paste("H0 : rho =",rh<-rh,"is rejected")

logi<-TRUE

}

else

{

text<-paste("H0 : rho =",rh, "can not be rejected");logi<-FALSE

}

}

return(list(TS=TS,TS2=TS2,result=text,Logic=logi))

}

B.3. The Gumbel copula

To simulate N Gumbel copula distributed data points with parameter θ, we use the
package “copula”, see [Yan 2007], and the enclosed function rcopula:
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library{copula}

r2Gumbel<-function(N,theta)

{

GuCopula<-archmCopula("gumbel",theta,dim=2)

GuDaten<-rcopula(GuCopula,N)

GuDaten

}

The following source code was used to calculate the likelihood-depth of a parameter r in
a dataset z∗ = data, which should be transferred as a n× 2- matrix:

#function h_n’(r)

hn2<-function(r,x)

{

xv<-x

sol<-numeric(length(xv))

for (i in (1:length(xv[,1])))

{

x<-xv[i,]

sol[i]<-

(-r*((-log(x[1]))^r*(1-3*((-log(x[1]))^r+(-log(x[2]))^r)^(1/r)+

((-log(x[1]))^r+(-log(x[2]))^r)^(2/r))+r^2*((-log(x[1]))^r-

(-log(x[2]))^r)+r*(-1+((-log(x[1]))^r+(-log(x[2]))^r)^(1/r))*

(2*(-log(x[1]))^r-(-log(x[2]))^r))*

log(-log(x[1]))+(1+r*(-1+((-log(x[1]))^r+(-log(x[2]))^r)^(1/r))-

3*((-log(x[1]))^r+(-log(x[2]))^r)^(1/r)

+((-log(x[1]))^r+(-log(x[2]))^r)^(2/r))*((-log(x[1]))^r+

(-log(x[2]))^r)*log((-log(x[1]))^r+(-log(x[2]))^r)+

r*(r*((-log(x[1]))^r+(-log(x[2]))^r)-

(-r*(-1+((-log(x[1]))^r+(-log(x[2]))^r)^(1/r))*((-log(x[1]))^r-

2*(-log(x[2]))^r) +r^2*(-(-log(x[1]))^r+(-log(x[2]))^r)+

(1-3*((-log(x[1]))^r+(-log(x[2]))^r)^(1/r) +

((-log(x[1]))^r+(-log(x[2]))^r)^(2/r))*(-log(x[2]))^r)*

log(-log(x[2]))))/(r^2*(-1+r+((-log(x[1]))^r+

(-log(x[2]))^r)^(1/r))*((-log(x[1]))^r+(-log(x[2]))^r))

}

sol

}

#simplicial depth of r in the data

SimDepth<-function(r,data)

{

gr<-0

kl<-0

l<-length(data[,1])

hnr<-function(dat){h<-hn2(r,dat);h}

u<-apply(data,1,hnr)
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gr<-sum(u>=0)

kl<-sum(u<=0)

depth<-gr*kl*2/((l-1)*l)

depth

}

#likelihood-depth of rs in the data

TDepth<-function(rs,data)

{

gr<-0

kl<-0

hnr<-function(dat){h<-hn2(rs,dat);h}

u<-apply(data,1,hnr)

gr<-sum(u>=0)

kl<-sum(u<=0)

if (kl<gr){kl/(length(data[,1]))}

else {gr/(length(data[,1]))}

}

B.3.1. Estimator

The procedure to determine an estimator, as described in this work, for the parameter θ
needs the function TDepth and therefore also hn2. For the estimation the same procedures
as for the Weibull distribution are used, only the depth functions, the correction of the
estimator and the search area (here we can use [1, 10 · θ̂MLE], with θ̂MLE the maximum
likelihood estimator) have to be exchanged.

B.3.2. Tests

The following procedures are needed to use the programs for the tests:

#The value of the test statistic for parameter "t" and dataset "dat"

Teststatistic<-function(t,dat)

{

N<-length(dat[,1])

sigma_theta<-function(t)

{

if (t==1.){sigma<-(1-2*p_theta[1])^2*p_theta[1]*(1-p_theta[1])}

if (t==1.1){sigma<-(1-2*p_theta[2])^2*p_theta[2]*(1-p_theta[2])}

if (t>1.1&&t<=2)

{

s<-seq(1.25,t,0.25)

sigma<-

(1-2*p_theta[2+length(s)])^2*p_theta[2+length(s)]*(1-p_theta[2+length(s)])

}
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if (t>2&&t<=10)

{

s<-seq(2.5,t,0.5)

sigma<-

(1-2*p_theta[6+length(s)])^2*p_theta[6+length(s)]*(1-p_theta[6+length(s)])

}

else

{

if (t>10)

{

s<-seq(10,t,5)

sigma<-

(1-2*p_theta[22+length(s)])^2*p_theta[22+length(s)]*(1-p_theta[22+length(s)])

}

}

sigma<-sqrt(sigma)

sigma

}

gamma_theta<-function(t)

{

if (t==1.){gamma<-2*p_theta[1]*(1-p_theta[1])}

if (t==1.1){gamma<-2*p_theta[2]*(1-p_theta[2])}

if (t>1.1&2>=t)

{

s<-seq(1.25,t,0.25)

gamma<-2*p_theta[2+length(s)]*(1-p_theta[2+length(s)])

}

if (t>2&&t<=10)

{

s<-seq(2.5,t,0.5)

gamma<-2*p_theta[6+length(s)]*(1-p_theta[6+length(s)])

}

else

{

if (t>10)

{

s<-seq(10,t,5)

gamma<-2*p_theta[22+length(s)]*(1-p_theta[22+length(s)])

}

}

gamma

}

TS<-sqrt(N)*(SimDepth(t,dat)-gamma_theta(t))/(2*sigma_theta(t))

TS

}

#the theta used
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theta<-

c(1, 1.1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6,

6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85,

90, 95, 100)

#the belonging p_theta

p_theta<-c(0.564399, 0.591775, 0.614965, 0.632269, 0.639433, 0.642906,

0.645838, 0.646917, 0.647388, 0.647617, 0.647738, 0.647806, 0.647845,

0.647869, 0.647884, 0.647893, 0.6479, 0.647904, 0.647906, 0.647908,

0.647909, 0.64791, 0.647911, 0.647911, 0.647911, 0.647911, 0.647911,

0.64791, 0.64791, 0.64791, 0.64791, 0.64791, 0.647909, 0.647908,

0.647908, 0.647907, 0.647906, 0.647905, 0.647904, 0.647901, 0.647894,

0.647882, 0.647859, 0.647903, 0.647766, 0.647684, 0.64757, 0.647418

)

For the computing of the test H0 : θ ≤ θ0 the next program can be used, θ0 is th, the data
dat should again be a n× 2-matrix. The function returns TRUE if the null-hypotheses is
rejected.

gumbel.test.le <-function(th,dat,level=0.05)

{

theta<-theta[theta<=th]

TS<-function(t){TS<-Teststatistic(t,dat)}

mTS<-max(unlist(lapply(theta,TS)))

if (mTS<qnorm(level))

{

text<-paste("H0 : theta <=",th<-th,"is rejected")

logi<-TRUE

}

else

{

text<-paste("H0 : theta <=",th, "can not be rejected")

logi<-FALSE

}

return(list(maxTS=mTS,result=text,Logic=logi))

}

And for the computing of the test for H0 : θ ≥ θ0 use the lines below, where oG gives the
biggest θ ≥ θ0 for that supθ≥c(θ0) T (θ, z∗) shall be calculated:

gumbel.test.ge<-function(th,dat,oG=20,level=0.05)

{

theta<-theta[theta>=2*th&theta<=oG]

TS<-function(t){TS<-Teststatistic(t,dat)}

mTS<-max(unlist(lapply(theta,TS)))
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if (mTS<qnorm(level))

{

text<-paste("H0 : theta >=",th<-th,"is rejected")

logi<-TRUE

}

else

{

text<-paste("H0 : theta >=",th, "can not be rejected")

logi<-FALSE

}

return(list(maxTS=mTS,result=text,Logic=logi))

}
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List of Symbols

ℝ, ℕ real numbers, positive integers

Zi, zi variable, its realization

Z∗, Z∗,N (Z1, . . . , ZN)

med(z1, . . . , zN) median of z1, . . . , zN

fθ density function, p. 7

L(θ, z), h(θ, z) likelihood, log-likelihood function of fθ

h′(θ, z) derivative of h(θ, z) with respect to θ, p. 7

E(X), EX expectation of X

dT (θ, z∗), dS(θ, z∗) (tangent) likelihood-depth, simplicial likelihood-depth of θ in z∗, p. 9

θ̃ parameter with maximum likelihood-depth, p.10

T θpos {z ∈ ℝ2;h′(θ, z) ≥ 0}, p. 10

pθ,θ′ Pθ(Z ∈ T θ′pos), p. 10

pθ pθ,θ

s(θ) solution of Pθ(T s(θ)pos ) = 1
2

λ+
N(θ, z∗,N ) 1

N
♯{n;h′(θ, zn) ≥ 0}

λ−N(θ, z∗,N ) 1
N
♯{n;h′(θ, zn) ≤ 0}

λ+
θ0

(θ) Pθ0(h′(θ, Z) ≥ 0)

λ−θ0(θ) Pθ0(h′(θ, Z) ≤ 0)

T (θ, z∗) test statistic, p. 17

ϕ(z∗) test for H0 : θ ∈ Θ0, p. 18

ϕ0,=
θ0

(z∗), ϕ=
θ0

(un)corrected test for H0 : θ = θ0, p. 20

ϕ0,≥
θ0

(z∗), ϕ
≥
θ0

(z∗) (un)corrected test for H0 : θ ≥ θ0, p. 20

ϕ0,≤
θ0

(z∗),ϕ
≤
θ0

(z∗) (un)corrected test for H0 : θ ≤ θ0, p. 20

c1
α(θ0), č1

α(·) correction and its inverse for the test H0 : θ ≥ θ0 if s(θ0) > θ0, p. 19

c2
α(θ0) ,č2

α(·) correction and its inverse for the test H0 : θ ≤ θ0 if s(θ0) < θ0, p. 19
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Wei(a, b) Weibull distribution with shape a and scale b, p. 35

c1,2 solutions of ln(c) = 1
c−1

ta,b01,02 zeros of h′b(a, ·), p. 41

κ solution of exp(−cκ1)− exp(−cκ2) = 1
2

κ1 solution of 2−c
κ1
1 − 2−c

κ1
2 = 1

2

κ2 solution of exp(−cκ2
1 ) = 1

2

pshape pa = exp(−c1)− exp(−c2)

k0 see p. 76

T̃ (a, t∗) teststatistic in the scale parameter is unknown

p̃shape 2−c1 − 2−c2

b̃N median

ϕ̃a0 tests when the scale parameter is not known

pb0a0,c0
Pa0,b0(h′b0(a0, Y ) ≥ 0)

pb0a0,a,c0
Pa0,b0(T a,b0pos )

pb̃Na,c0 Pa,b0(h′
b̃N

(a, Y ) ≥ 0)

pa0
b0,b

Pa0,b0(T bpos) = exp
(
−
(
b
b0

)a0
)

pb,c0 Pa0,b(T
b,c0
pos ), p.122

k1 ln
(
− ln(2−c1−2−1)

ln(2)

)
≈ 0.455

k2 ln(c1 + 1) ≈ 0.231

ρ correlation coefficient

210



Bibliography

[Aas 2004] Aas, K. (2004) Modeling the dependence structure of financial assets: A
survey of four copulas, SAMBA/22/04

[And 2005] Andersen, E.W. (2005) Two-stage estimation in copula models used in family
studies, Lifetime Data Analysis 11, 333-350

[BaSt 2008] Balakrishnan, N, Stehlík, M. (2008) Exact likelihood ratio test of the scale
for censored Weibull sample, IFAS Research Paper Series 35

[Bed 2006] Bedford, T. (2006) Copulas, degenerate distributions and quantile tests in
competing risks problems, J. Stat. Plann. Inference 136, 1572-1587

[BCC 2009] Boudt, K., Caliskan, D., Croux, C. (2009) Robust and explicit estimators
for Weibull parameters, Metrika, DOI: 10.1007/s00184-009-0272-1, Online

[CMMJ 2002] Cacciari, M, Mazzanti, G., Montanari, G-C., Jacquelin, J. (2002) A robust
technique for the estimation of the two-parameter Weibull function for complete
data sets, Metron - International Journal of Statistics 3-4, 64-92

[CFG 1997] Capéraà, P., Fougères,A.-L., Genest, C. (1997) A nonparametric estimation
procedure for bivariate extreme value copulas, Biometrika 84, No.3, 567-577

[ChCh 1990] Chandra, N.K., Chaudhuri, A. (1990) On testimating the Weibull shape
parameter, Comm. in Stat. B 19, 637-648

[CPZ 2009] Chen, J., Peng, L., Zhao, Y. (2009) Empirical likelihood based confidence
intervals for copulas, J. Multivariate Anal. 100, No.1, 137-151

[Che 1997] Chen, Z. (1997) Statistical inference about the shape parameter of the Weibull
distribution, Stat. & Prob. Letters 36, 85-90

[CHW 2005] Cízek, P., Härdle, W., Weron, R. (2005) Statistical tools for finance and
insurance, Springer 2005

[Coh 1965] Cohen, C. (1965) Maximum likelihood estimation in the Weibull distribution
based on complete and on censored samples, Technometrics 7, No. 4, 579-588

[dHNP 2008] de Haan, L., Neves, C., Peng, L. (2008) Parametric tail copula estimation
and model testing, J. Multivariate Anal. 99, 1260-1275

[Dix 1994] Dixit, U.J. (1994) Bayesian approach to prediction in the presence of outliers
for Weibull distribution, Metrika 41, 127-136

211



[DSch 2005] Dobrić, J., Schmid, F. (2005) Testing goodness of fit for parametric families
of copulas - Application to financial data, Commun.Stat., Simulation Comput. 34,
1053-1068

[Dub 1966] Dubey, S.D. (1966) Some test functions for the parameters of the Weibull
distribution, Nav. Res. Logist. Q. 13, 113-128

[DNR 2000] Durrleman, V., Nikeghbali,A., Roncalli,T. (2000) Which copula is the right
one?, Groupe de Recherche Opérationelle, Crédit Lyonnais, Working paper

[Fer 2005] Fermian, J.-D. (2005) Goodness-of-fit test for copulas, J. Multivariate Anal.
95, No.1, 119-152

[GGR 1995] Genest, C., Ghoudi, K., Rivest, L.-P. (1995) A semiparametric estimation
procedure in multivariate families of distribution, Biometrika 82, 543-552

[GeSe 2009] Genest, C., Segers, J. (2009) Rank-based inference for bivariate extreme-
value copulas, Ann. Statist. 37, 2990-3022

[HeFu 1999] He, X., Fung, W.K. (1999) Method of medians for lifetime data with Weibull
models, Statist. Med. 18, 1993-2009

[Hoff 2007] Hoff, P.D. (2007) Extending the rank likelihood for semiparametric copula
estimation, The Annals of Applied Statistics, Vol.1, No. 1, 265-283

[HoLa 1986] Homan, S.M., Lachenbruch, P.A. (1986) Robust estimation of the exponen-
tial mean parameter for small samples: Complete and censored data, Comm.Stat.,
Simulation Comput. 15, Issue 4, 1087-1108

[Joe 1997] Joe, H. (1997) Multivariate Models and Dependence Concepts, Monographs
on Statistics an Applied Probability 73, Chapman and Hall, London

[Ka 1996] Kahle, W. (1996) Estimation of the Parameters of the Weibull distribution for
censored samples, Metrika 44, 27-40

[KSS 2007] Kim, G., Silvapulle, M.J., Silvapulle, P. (2007) Comparison of semiparametric
and parametric methods for estimating copulas, Computational Statistics & Data
Analysis 51, 2836-2850

[Law 2003] Lawless, J.F. (2003) Statistical Models and Methods for Lifetime Data, Wiley
Series in Probability and Statistics, Second Ed.

[Lee 1990] Lee, A.J. (1990) U-Statistics. Theory and Practice, Marcel Dekker, New York

[LeWa 2003] Lee, E. T., Wang, J. W. (2003) Statistical Methods for survival data analysis,
Wiley 2003, New Jersey, Third Ed.

[Liu 1988] Liu, R.Y. (1988) On a notion of simplicial depth, Proc. Nat. Acad. Sci. USA
85, 1732-1734

[Liu 1990] Liu, R.Y. (1990) On a notion of data depth based on random simplices, Ann.
Statist. 18, 405-414

212



[MaSo 2006] Malvergne, Y., Sornette, D. (2006) Extreme finance risks. From dependence
to risk management, Springer

[Ma 2005] Marks, N. (2005) Estimation of Weibull parameters from common percentiles,
Journal of Applied Statistics 32, 17-24

[MiMu 2004] Mizera, I., Müller, Ch.H. (2004) Location-Scale Depth, J.Am.Stat.Assoc.
99, No. 468, 949-989

[Miz 2002] Mizera, I. (2002) On depth and deep points: a calculus, The Annals of Statis-
tics, Vol. 30, No. 6, 1681-1736

[Mos 2002] Mosler, K. (2002) Multivariate Dispersion, Central Regions and Depth, The
Lift Zonoid Approach, Lecture Notes in Statistics 165, Springer

[Mue 2005] Müller, Ch.H. (2005) Depth estimators and tests based on the likelihood
principle with applications to regression, J.Multivariate Anal. 95, No.1, 153-181

[MXJ 2004] Murhty, D.N.P., Xie, M., Jiang, R. (2004) Weibull Models, Wiley

[Nel 2006] Nelsen, R.B. (2006) An Introduction to Copulas, Springer Series in Statistics,
Springer, Second Ed.

[Pan 2005] Panchenko, V. (2005) Goodness-of-fit test for copulas, Physica A 355, 176-182

[R 2009] R Development Core Team (2009) R: A Language and Environment for Statis-
tical Computing, R Foundation for Statistical Computing, Vienna

[Rin 2009] Rinne, H. (2009) The Weibull Distribution- A Handbook, CRC Press

[RH 1999] Rousseeuw, P.J., Hubert, M. (1999 )Regression depth (with discussion), J.
Amer. Statist. Assoc. 94, 388-433.

[Sac 2004] Sachs, L. (2004) Angewandte Statistik. Anwendung statistischer Methoden,
Springer, 8. Aufl.

[SeYo 1996] Seki, T., Yokoyama, S. (1996) Robust parameter estimation using the boot-
strap method for the 2-parameter Weibull distribution, IEEE Transactions on
Reliability Vol. 45, No. 1, 34-41

[ShLa 1984] Shier, D.R., Lawrence, K.D. (1984) A comparison of robust regression tech-
niques for estimation of Weibull parameters, Comm. in Stat. B 13, 743-750

[Sam 1970] Samiuddin, M. (1970) On a test for assigned value of correlation in a bivariate
normal distribution, Biometrika 57, 461-464

[Tuk 1975] Tukey, J.W. (1975) Mathematics and the picturing of data, Proc. Interna-
tional Congress of Mathematicians 2, Canad.Math.Congress, Montreal, 523-531

[VaWe 1996] van der Vaart, A.W., Wellner, J.A. (1996) Weak Convergence and Empirical
Processes, With Applications to Statistics (Corrected second printing), Springer

213



[Wei 1951] Weibull, W. (1951) A statistical distribution function of wide applicability,
ASME Journal of Applied Mechanics, Transactions of the American Society of
Mechanical Engineers, 293-297

[WMF 1995] Witting, H., Müller-Funk, U. (1995) Mathematische Statistik II, Teubner,
Stuttgart

[WeHaMu 2009] Wellmann, R., Harmand, P., Müller, Ch.H. (2009) Distribution-free
tests for polynomial regression based on simplicial depth, J. Multivariate Anal.
100, 622-635

[WeMu 2010] Wellmann, R., Müller, Ch.H. (2010) Tests for multiple regression based on
simplicial depth, J. Multivariate Anal. 101, 824-838

[WoWo 1982] Wong, P.G., Wong, S.P. (1982) A curtailed test for the shape Parameter
of the Weibull distribution, Metrika 29, 203-209

[WuTs 2006] Wu, J.-W., Tseng, H.-C. (2006) Statistical inference about the shape pa-
rameter of the Weibull distribution by upper record values, Statistical Papers 48,
95-129

[Yan 2007] Yan, J. (2007) Enjoy the joy of copulas: with a package copula, Journal of
Statistical Software 21, No. 4, 1-21

[ZoSe 2000a] Zou, Y., Serfling, R. (2000) General notions of statistical depth functions,
Ann. Statist. 28, 461-482

[ZoSe 2000b] Zou, Y., Serfling, R. (2000) Structural properties and convergence results
for contours of sample statistical depth functions, Ann. Statist. 28, 483-499

214



Erklärung

Hiermit versichere ich, dass ich die vorliegende Dissertation selbstständig und ohne uner-
laubte Hilfe angefertigt und andere als die in der Dissertation angegebenen Hilfsmittel
nicht benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder
unveröffentlichten Schriften entnommen sind, habe ich als solche kenntlich gemacht. Kein
Teil dieser Arbeit ist in einem anderen Promotions- oder Habilitationsverfahren verwen-
det worden. Teile der Dissertation, Ausschnitte aus Kapitel 4, wurden im November 2009
zur Veröffentlichung bei der Zeitschrift Computiational Statistics & Data Analysis

eingereicht.

Dortmund, im März 2010
Liesa Denecke


	Introduction
	General Theory
	Likelihood-Depth
	Estimators
	Tests
	Open problems


	Application to special distributions
	Weibull distribution
	Preliminaries
	Estimators for the parameters of the Weibull distribution
	Uncensored data with known shape parameter
	Uncensored data with known scale parameter
	Uncensored data, shape and scale parameter unknown
	Type-I right-censored data, shape or scale parameter known
	Type-I right-censored data, shape and scale parameter unknown

	Tests and confidence intervals for the shape parameter
	Uncensored data with known scale parameter
	Uncensored data with unknown scale parameter
	Type-I right-censored data with known scale parameter
	Type-I right-censored data with unknown scale parameter

	Tests and confidence intervals for the scale parameter
	Uncensored data with known shape parameter
	Uncensored data with unknown shape parameter
	Type-I right-censored data with known shape parameter
	Type-I right-censored data with unknown shape parameter

	Open problems

	Copulas
	Preliminaries
	Estimator for the correlation coefficient
	Tests and confidence intervals for the correlation coefficient
	Estimator for the parameter of the Gumbel copula
	Data with unknown margins

	Tests and confidence intervals for the parameter of the Gumbel copula
	Open problems

	Weak convergence and empirical processes
	R source code
	Weibull distribution
	Estimators
	Tests

	Gaussian copula
	Estimator
	Tests

	The Gumbel copula
	Estimator
	Tests


	List of Symbols
	Bibliography
	Erklärung


