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Introduction

Differential Galois theory is the analog of classical Galois theory for linear differential
equations. Classical Galois theory considers polynomial equations with coefficients in
some field F' and studies the behavior of their solutions. For this purpose, one examines
the field generated by the roots over F, the splitting field £/F. The symmetries of these
roots are naturally described by the group Gal(E/F’) of automorphisms of E leaving the
base field F' fixed. The fundamental theorem of classical Galois theory establishes a cor-
respondence between the intermediate fields of E/F and the subgroups of Gal(E/F).
Differential Galois theory studies linear differential equations with coefficients in some
differential field F, i.e., a field equipped with a derivation, having an algebraically closed
field of constants C. The analog for the splitting field is the Picard-Vessiot extension E/F;
it is generated by the entries of a fundamental solution matrix for the defining equation.
Linear combinations of the solutions over the field of constants C clearly are also solu-
tions for the equation, and they generate the same Picard-Vessiot extension. The group
of differential automorphisms of E/F has the structure of a linear algebraic group over
the constants. This group, denoted by Galy(E/F), is called the differential Galois group.
As in classical Galois theory, there is a correspondence between intermediate differential
subfields of E/F and the closed subgroups of Galg(E/F).

The inverse problem in differential Galois theory is to determine which linear algebraic
groups can occur as differential Galois groups. An answer is known for some fields and
groups, for example, for differential fields of characteristic zero with algebraically closed
field of constants C' and connected differential Galois groups. For some specific fields, such
as C({z}) or C((#)), linear algebraic groups, which occur as differential Galois groups have
been completely classified. The general problem over the rational function field C(z) was
solved by J. Hartmann in [Hart02]. Further, Mitschi and Singer developed in [MS96] a
constructive method to realize connected groups over C(z). They applied upper and lower
bounds for the differential Galois group to the defining matrix. Therefore the task for
the realization of a linear algebraic group reduces to find a sufficiently general element
of the Lie algebra such that the upper and lower bound coincide. For the application of
the lower bound criterion it is important that the differential ground field is a C1-field. A
more detailed explanation of the bounds is presented below. Over the same differential
base field, Magid presented in [Mag94] a technique to realize some classes of connected
linear algebraic groups. Inspired by E. Noether’s work for algebraic equations, Goldmann
introduced the language of generic differential equations in [Gold57]. Here the differential
ground field is purely differential transcendental over the constants. More precisely, Gold-
mann takes the differential field of generic solutions as his extension field, i.e., he starts
with a differential field generated by n differential indeterminates over the constants, where
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n is equal to the dimension of the representation of the linear algebraic group. Then, by
his method, the differential ground field is the fixed field of the group and has there-
fore the same differential transcendence degree over the constants as the extension field.
Moreover, in [Juan08] Juan presented generic equations using an alternative approach to
Goldmann’s. For the group SO, Juan’s method is well applicable and yields a generic
equation, where the differential transcendence degree of the differential ground field is
equal to 3(n+2)(n+ 1). In the general case the differential transcendence degree equals
to the dimension of the linear algebraic group. Here the differential equation is generic in
an indirect sense. More precisely, the specialization of the coefficients takes place over a
finite extension. For more information on the history of the inverse problem in differential
Galois theory, we refer to [PS03, p. 292-293].

The present work concentrates on the realization of the classical groups as differential Ga-
lois groups. We introduce a method for a very general realization of these groups, i.e., we
present for the classical groups of Lie rank [ explicit linear differential equations where the
coefficients are differential polynomials in [ differential indeterminates over the constants.
At the same time we managed to do these realisations in terms of Abhyankar’s program,
Nice Equations for Nice Groups. Here the choice of the defining matrix is important. We
found out that an educated choice of [ negative roots for the parametrization together
with the positiv simple roots leads to a nice differential equation and at the same time
defines a sufficiently general element of the Lie algebra. At the end of [Elk99] Elkies pro-
posed that a particular subspace of the Lie algebra, which is conceptual very similar to
the choice of our parametrized element of the Lie algebra, yields an differential analogue
of a Deligne-Lusztig variety.

In the this thesis we compute explicit parametrized differential equations for the series
of types A;, By, C; and Dy, i.e., we realize the groups SL;1(C), SO941(C), SP%(C) and
SO9(C) as differential Galois groups over the differential ground field C(ty,...,%;) in [
differential indeterminates t1,...,t;. Additionally to the series we consider in detail the
exceptional groups of type Go, Fy and Eg. For the group of type G2 we obtain an easy
and nice explicit linear differential equation as in the case of the series. In [Kat90], Katz
computed a nice differential equation with group Gs. His equation is a specialization of
the equation presented in Theorem 1.5 below. Since the corresponding linear differential
equations for the groups of type Fy and Eg would be of enormous lenght, we present in-
stead matrix differential equations which have also a nice shape. Note that we leave out
the realisation of the exceptional groups of type E7 and Eg because the size of the root
system and the dimension of the representation is too enormous so that the corresponding
computations would make this thesis needlessly long.

More generally, let G be a connected semisimple linear algebraic group, and let ® de-
note the root system of G. Our method provides a parametrized differential equation
L(y,ti,....t;) =>1", ai(t)y® over C(ty, ...,t;) with differential Galois group G, where the
number of parameters t = (t1,...,t;) equals the rank of ®, and the coefficients a;(t) are
differential polynomials in ¢.

We sketch the main ideas. A differential module M over a differential field (F,0F) is a
finite dimensional vector space, together with a map 0 : M — M, which is additive and
satisfies O(f - m) = Op(f) -m + f-0(m) for f € F and m € M. Let ey, ..., e, be a basis
of M. Then the map 0 is written 0(e;) = > 7 Ajje;, where (A;;) = A € F™". The



matrix A is the defining matrix of the differential module M, and the resulting equation
0(y) = Ay is called a matrix differential equation. We can also start the other way around
by associating a module M to a matrix A € F™*™. In other words, we can start with
a vector space on which we define an appropriate differential structure by the choice of
A € F™™. In the literature (e.g., see [PS03]), there is a well-known upper bound cri-
terion for the differential Galois group. It states that if A lies in the Lie algebra Lie(G)
of G, then the differential Galois group H of d(y) = Ay is contained in (a conjugate
of) G. Thus we choose A € Lie(G)(F) so that it does not lie in any proper subalgebra
of Lie(G)(F). More work is needed to apply an appropriate lower bound criterion, and
to show that the two bounds coincide. As a lower bound criterion, we can regard a re-
sult presented in [PS03]. It says that if H(C) < G(C) is the differential Galois group of
Jd(y) = Ay over F, and A satisfies A € Lie(G)(F'), then there exists B € G(F') such that
BAB™'-9(B)B~! € Lie(H)(F). There is another important condition for the application
of the lower bound criterion. This condition is automatically satisfied if the differential
base field is a Cj-field (e.g., this holds for C'(z)). Since our differential base field is not a
(C'-field, we have here no information whether this condition is satisfied or not. Note that
our differential base field is purely differential transcendental over the constants. So we
can consider specializations o : C(t) — C(z) to a rational function field C'(z) and make
use of the lower bound criterion in an indirect way. We introduce the specialization bound.
It states that the differential Galois group H(C') of the specialized differential equation
d(y) = o(A)y over C(z) is contained in the differential Galois group G(C) of the original
equation 0(y) = Ay over C(t). The idea of the proof is to show that there exists a max-
imal differential ideal I in C{t}[X;;,det(X;;)~!] for the original equation and a maximal
differential ideal I in C[2][X;;, det(X;;) ] for the specialized equation satisfying (1) C I.
To find such ideals we use differential embeddings of the corresponding differential rings
into fields of power series. Then the specialization of the coefficients of the power series
yields the desired ideals. Finally, we can prove that the defining ideal of the group H(C)
contains the defining ideal of G(C).

Let B denote a Borel subgroup of G in upper triangular form, and B~ the opposite Borel
subgroup. Let A be a basis for the root system, and let {X,, Hy, |a € ®, 1 <i <[}
be a Chevalley basis for Lie(G), such that the structure is compatible with B. We
give [ roots fBi,...,0 of ®~, such that the parameterized matrix differential equation
0(y) = X pen Xa+22:1 ti- X, )y transforms in a natural way into a nice linear differential
equation. Furthermore, we observe that every element of the subspace ) . n Xo+Lie(B7)
is differentially equivalent to a specialization of the matrix ) A Xo + Zi‘:l ti- Xpg,. This
is the content of the transformation lemma and the proof uses the adjoint action of the
root subgroups on the Chevalley basis. In order to apply the specialization bound, and
to show that it coincides with the upper bound, we need a matrix differential equation
satisfying the condition of the transformation lemma. In [MS96], Mitschi and Singer devel-
oped a method to construct a matrix differential equation d(y) = Ay for every connected
semisimple group G over the rational function field C'(z), with differential Galois group G.
They use the information gathered in the application of the lower bound criterion to prove
that the differential Galois group is G. We use similar ideas to compute a matrix differen-
tial equation such that the defining matrix lies in the subspace . Xo + Lie(B7).

Theorem 1 is a summary of some of our results:
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Theorem 1. Let C be an algebraically closed field of characteristic zero, ti,...,t; differ-
ential indeterminates, and F = C (ty,...,t;) the corresponding differential field. Then the
homogeneous linear differential equation

1. L(y,ty, ... t;) =yt — Zé:l t; y=Y =0 has SLi41(C) as differential Galois group
over I,

2. L(y,t1,....,t;) = y@) — Zizl(—l)i_l(ti Y= =) = 0 has SPy(C) as differential
Galois group over F,

3. L(y,tl, ---»tl) _ y(QH-l) N Zézl(—l)i_l((ti y(l—i-l—z'))(l—i) + (ti y(l—i))(l-i-l—i)) — 0 has
SO94+1(C) as differential Galois group over F,

do Ly, tr, s ty) =y — 2375 (= 1) (i) U270 4 (110 (1)
—(tay =2 4 t1y) D — ((=1)'t1 21+ 2) —Zi;g(tg_2_z)zl)(i) has SO (C) as differential
Galois group over F, where the coefficients z1 and zo are

a = YW —toyl™? —tyy

_ l

(t5? + (=) 2™ 21—1) (40 (1=i) (L 1—)
z = Ay =2y (D)

-3
) — 12y )Y Z(tél‘?"“zn@) ,
=0

5. L(y,t1,t2) = y D +2t1y/ +2(t1y) +2(t2y™) + (tay)® — 2(ta(t2y/)') = 0 has G(C)
as differential Galois group over F = C' (t1,t2).

We conclude the introduction with a brief outline of the chapters. In the first chapter we
recall the basic notions of differential Galois theory. The second chapter starts with the
presentation of the classical bounds for the differential Galois group. We then develop our
alternative lower bound criterion which is based on the calculus of specializations, and will
be therefore called the specialization bound. For this reason we start with the study of
Picard-Vessiot extensions over rings. In the subsequent section, we focus on embeddings
of the corresponding differential rings in fields of power series to obtain a well behaving
specialization. The chapter ends with the proof of the specialization bound. In Chapter
3, we briefly outline the structure of the classical groups and their Lie algebras, establish
the key element for the proof of the transformation lemma, and give a small example. To
apply the alternative lower bound criterion, we modify the ideas developed by Mitschi and
Singer when they realized semisimple connected linear groups as differential Galois groups
over the differential field C'(z). In the last section of Chapter 3, we prove the existence of a
parametrized differential equation for every semisimple connected linear algebraic group.
In Chapter 4, we realize SL;;;(C) as a differential Galois group over C' (t1, ..., %;). In more
details, in the first section we compute a Chevalley basis, and present the root system
of type A;. We continue by collecting enough facts about the root system to prove the
transformation lemma for SL;;;. To complete this chapter, we construct an equation
which admits SL;; 1 as its differential Galois group.

In Chapter 5, 6 and 7 we consider the groups SPg;y1, SOg;41 and SOg;. We use the same



method as for SL;11, and the chapters are organized in a similar way as Chapter 4. In
Chapter 8, 9 and 10 we study the groups of type G2, Fy and Fg. Again we use the same
approach as in the previous chapters, but the root system computations are much easier
in these cases since we do not need inductive arguments for the proofs. For the same
reasons, the proof of the transformation lemma is also easier as in the cases of the series.
Chapters 4-10 can be read independently from each other.
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Notation

We use the following notation.

algebraically closed field of characteristic 0.

rational function field in a transcendental z whose field of constants
is C.

differential ring with derivation Og.

differential field with derivation Op.

differential field extension.

differential indeterminates.

the ring of differential polynomials in t1, ..., ¢, over F' (page 20/21).
the field of fractions of F' {¢1,...,t,} (page 20/21).

the differential R-subalgebra generated by the elements of a subset
X C Ry of a differential ring extension R; > R (page 21).
differential subfield of the differential field extension £ > F
generated by the elements of the set X C E (page 21).

differential module (page 16).

matrix differential equation (page 15).

linear algebraic group where G(F') means the F-rational points
(page 48).

Borel subgroup of G in upper triangular form (page 48).

Borel subgroup of G in lower triangular form (page 48).

maximal diagonal torus of G (page 48).

diagonal matrix with entries Ay, ..., A,.

unipotent subgroup of G in upper triangular form (page 48).
unipotent subgroup of G in lower triangular form (page 48).

root subgroup which corresponds to a root o € ® (page 49).

the Lie algebra of G where Lie(G)(F') means the F-rational points
(page 48).

Cartan subalgebra of Lie(G) (page 49).

root space corresponding to the root o € & (page 49).

basis element of the root space Lie(G), (page 49).

the co-root of a € & (page 49).

the co-root of a; € A (page 49).

root system of G resp. Lie(G) (page 47).

basis of ® with simple roots «; (page 47/48).

the integer defined by 2(5, a)/(a, o) (page 47).

reflection of @ for v defined by the formula o, (8) = 8 — (8, @) «
(page 47).

the height of a root a (page 48).

vector space spanned by the elements v1, ..., v, over a field F.



Zusammenfassung

Differentialgaloistheorie ist eine Verallgemeinerung der klassischen Galoistheorie fiir lineare
Differentialgleichungen. In der klassischen Galoistheorie betrachtet man Polynome mit
Koeffizienten aus einem Korper F' und untersucht das Verhalten ihrer Nullstellen. Zu die-
sem Zweck bildet man den von den Nullstellen iiber F' erzeugten Korper, den sogenannten
Zerfallungskorper E/F. Die Gruppe der Automorphismen Gal(FE/F') von E, welche den
Grundkorper F fest lassen, beschreibt dann auf natiirliche Weise die Symmetrien der Null-
stellen. Der Hauptsatz der klassischen Galoistheorie liefert eine Korrespondenz zwischen
den Zwischenkérpern von E/F und den Untergruppen von Gal(E/F).

Im Gegensatz zur klassischen Galoistheorie betrachtet man in der Differentialgaloistheorie
lineare Differentialgleichungen, deren Koeffizienten aus einem Differentialkdrper F mit
algebraisch abgeschlossenem Konstantenkorper C' stammen. Als Gegenstiick zum Zerfil-
lungskorper hat man hier die sogenannte Picard-Vessiot-Erweiterung. Diese wird von den
Eintréagen einer Fundamentalmatrix der definierenden Gleichung erzeugt. Linearkombina-
tionen von Losungen iiber den Konstantenkorper C' sind offensichtlich wieder Losungen
der Differentialgleichung und erzeugen die gleiche Picard-Vessiot-Erweiterung. Die Gruppe
der Differentialautomorphismen von E/F triagt die Struktur einer linearen algebraischen
Gruppe iiber den Konstantenkorper C. Diese Gruppe heifit Differentialgaloisgruppe und
wird mit Galg(E/F) bezeichnet. Wie in der klassischen Galoistheorie existiert auch hier
eine Korrespondenz zwischen den Differentialzwischenkérpern von E/F und den abge-
schlossenen Untergruppen von Galg(E/F).

Das inverse Problem in der Differentialgaloistheorie beschiéftigt sich mit der Frage, wel-
che linearen algebraischen Gruppen als Differentialgaloisgruppen vorkommen kénnen. Man
kennt eine Antwort auf dieses Problem fiir bestimmte Grundkorper und Gruppen, wie zum
Beispiel fiir Differentialkérper der Charakteristik Null mit algebraisch abgeschlossenen
Konstantenkoérper C' und zusammenhéngender Differentialgaloisgruppe. Fiir bestimmte
Differentialgrundkérper, wie C'({z}) oder C((2)), wurden die linearen algebraischen Grup-
pen, welche als Differnetialgaloisgruppen vorkommen kénnen, vollsténdig klassifiziert. Das
allgemeine Problem fiir den rationalen Funktionenkérper C'(z) wurde von J. Hartmann in
[Hart02] gelost. In [MS96] haben Mitschi und Singer eine fiir den hier spéter erldauterten
Ansatz wichtige konstruktive Methode entwickelt, um zusammenhéngende Gruppen iiber
C(z) zu realisieren. Fiir den gleichen Differentialgrundkorper veroffentlichte Magid in
[Mag94] eine Technik zur Realisierung einer Klasse von zusammenhéngenden linearen
algebraischen Gruppen. Angeregt von E. Noethers Arbeit fiir Polynomgleichungen fiithrte
Goldmann in [Gold57] die Sprache der generischen Differentialgleichungen ein. Auflerdem
stellte Goldmann in der gleichen Arbeit die Idee der analytischen Spezialisierungen vor.
In [JuanO8] verwendete Juan einen zu Goldmann alternativen Ansatz mittels diesem sie
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auch generische Gleichungen berechnen konnte.

In der vorliegenden Arbeit wird das inverse Problem in der Differentialgaloistheorie be-
handelt. Ziel ist es, die klassischen Gruppen vom Lie Typ als Differentialgaloisgruppen
zu realisieren. Hierfiir entwickeln wir eine Methode, die eine sehr allgemeine Realisierung
zulédsst, das heifit, wir berechnen explizite lineare Differentialgleichungen fiir die klassischen
Gruppen vom Lie Rang [, deren Koeffizienten Differentialpolynome in [ Differentialunbe-
stimmten iiber dem Konstantenkorper sind. Gleichzeitig gelingt es uns, fiir diese Gruppen
Differentialgleichungen im Sinne von Abhyankars beriihmter Reihe ,,Nice Equations for
Nice Groups® zu konstruieren. Hierbei ist die Wahl der definierenden Matrix aus der Lie
Algebra entscheidend. Wir haben herausgefunden, dass eine geschickte Wahl von [ nega-
tiven Wurzeln fiir die Parametrisierung zusammen mit den positiven einfachen Wurzeln
zu einer schénen und einfachen linearen Differentialgleichung fithrt und gleichzeitig eine
geniigend allgemeine Matrix in der Lie Algebra definiert. In [E1k99] vermutet Elkies, dass
ein gewisser Untervektorraum der Lie Algebra, der aufgrund seiner dhnlichen Konzeption
unsere parametrisierte Matrix aus der Lie Algebra enthélt, zu einem Differentialanalogon
der Deligne-Lusztig Varietét fiihrt.

Wir verwenden die hier entwickelte Methode zur Konstruktion von expliziten parametri-
sierten Differentialpolynomen fiir die Serien A;, B;, C; und D;, das heifit, wir realisieren
die Gruppen SL;;1(C), SOg4+1(C), SP9(C) und SO (C) iiber einem Differentialkérper
C(t1,...,t;) in den [ Differentialunbestimmten ¢1, ..., ¢;. Zusétzlich werden die Gruppen vom
Ausnahmetyp Go, Fy und Eg im Detail behandelt. Dabei gelingt es uns, fiir die Gruppe
vom Ausnahmetyp Go eine explizite und einfache Differentialgleichung, wie im Fall der
Serien, zu berechnen. In seiner Arbeit [Kat90] berechnet Katz eine schone und einfache Dif-
ferentialgleichung mit Gruppe Ga. Wir erhalten seine Gleichung durch eine Spezialisierung
der Parameter unserer Differentialgleichung. Da wir fiir die Ausnahmegruppen vom Typ
F, und FEjg riesige linearen Differentialgleichungen erhalten wiirden, geben wir fiir diese
nur Matrixdifferentialgleichungen an, deren Gestalt aber ebenso einfach ist. Wir méchten
darauf hinweisen, dass eine explizite Ausarbeitung fiir die Gruppen vom Ausnahmetyp Fr
und Eg nur deshalb weggelassen wurde, da die einzelnen Berechungen wegen der Grofle des
Wurzelsystems und der Dimension der Darstellung diese Arbeit nur unnétig verlangern
wiirden.

Allgemeiner sei G eine zusammenhéngende halbeinfache lineare algebraische Gruppe mit
einer Darstellung in einen n-dimensionalen Vektorraum und es bezeichne ® das zugehorige
Wurzelsystem von G. Dann liefert unsere Methode eine parametrisierte Differentialglei-
chung L(y,t) = Y7 ,a;(t)y) = 0 iiber C(ty,...t;) mit Differentialgaloisgruppe G(C),
wobei die Anzahl der Parameter t = (¢, ...,t;) dem Rang von ® entspricht und die Koef-
fizienten a;(t) Differentialpoylnome in ¢ sind.

Wir méchten nun die wichtigsten Ideen unserer Methode skizzieren. Ein Differentialmodul
M iiber einen Differentialkorper (F, O) ist ein endlich dimensionaler Vektorraum mit einer
additiven Abbildung 0 : M — M, welche zusitzlich die Regel 9(f-m) = dp(f)-m+ f-9(m)
fir f € F und m € M erfiillt. Sei ey, ..., e, eine Basis von M. Dann hat die Abbildung
0 die Gestalt d(e;) = > 7 Ajjej mit (A;;) = A € F™". Die Matrix A heifit die de-
finierende Matrix des Differentialmoduls M und die zugehorige Gleichung d(y) = Ay
heifit Matrixdifferentialgleichung. Man kann nun auch andersherum anfangen, indem man
einen Modul M zu einer Matrix A € F™*" assoziert. Genauer gesagt, man beginnt mit
einem Vektorraum und definiert auf diesem durch die Wahl von A € F™*™ eine geeignete

10
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Differentialstruktur. In der Literatur findet man ein wohlbekanntes oberes Schrankenkri-
terium fiir die Differentialgaloisgruppe. Es besagt, dass wenn A in der Lie Algebra Lie(G)
von G liegt, dann ist die Differentialgaloisgruppe H von d(y) = Ay bis auf Konjugation
in G enthalten. Die Aufgabe eine Gruppe zu realisieren reduziert sich somit darauf, eine
geeignete Differentialstruktur auf einem Modul zu definieren, indem man eine geniigend
allgemeine Matrix fiir die Differentialgleichung aus der Lie Algebra wihlt. Folglich wird
man A € Lie(G)(F') so wéhlen, dass A in keiner echten Unteralgebra von Lie(G)(F') liegt.
Um ein geeignetes unteres Schrankenkriterium anwenden zu kénnen und um zu zeigen,
dass die beiden Schranken iibereinstimmen, ist mehr Arbeit nétig. Als ein solches unteres
Schrankenkriterium kann man ein in der Literatur bekanntes Resultat ansehen. Unter
passender Voraussetung besagt es, dass wenn H(C) < G(C) die Differentialgaloisgrup-
pe von O(y) = Ay iiber F ist und A in Lie(G)(F) liegt, dann existiert ein B € G(F)
und BAB~! — 9(B)B~! € Lie(H)(F). Leider ist diese Voraussetzung nur im Fall von
C1-Korpern stets erfiillt wie zum Beispiel fiir den rationalen Funktionenkérper C(z). In
dieser Arbeit kann die klassische untere Schranke nur indirekt angewandt werden, da der
hier verwendete Differentialgrundképer im allgemeinen kein C1-Koérper ist und wir somit
nicht wissen, ob die fiir die Anwendung der unteren Schranke notwendige Voraussetzung
erfiillt ist. Es wird daher ein neues unteres Schrankenkriterium bené6tigt und entwickelt.
Da man den Differentialgrundkérper rein differentialtranszendent iiber den Konstanten
gewdhlt hat, basiert die Idee fiir das neue untere Schrankenkriterium auf Parameterspe-
zialisierung. Hier verwenden wir Spezialisierungen o : C'(t) — C(z) in den rationalen Funk-
tionenkorper C(z). Das so gewonnene untere Schrankenkriterium, welches in dieser Arbeit
als die Spezialisierungsschranke (The Specialization Bound) bezeichnet wird, besagt, dass
die Differentialgaloisgruppe H(C) der spezialisierten Differentialgleichung d(y) = o(A)y
iiber C'(z) in der Differentialgaloisgruppe G(C') der Ausgangsgleichung d(y) = Ay iiber
C(t) enthalten ist. Der Beweis verwendet die Spezialisierung eines maximalen Differen-
tialideals I des universellen Losungsrings C{t}[X;;, det(X;;) '] der Ausgangsgleichung. Es
ist daher notig Picard-Vessiot-Ringe iiber Differentialringen zu konstruieren und genauer
zu untersuchen. Die fiir Differentialkorper bekannten Resultate miissen fiir Differential-
ringe neu bewiesen werden. Um die Existenz eines maximalen Differentialideals I fiir die
Ausgangsgleichung in C{t}[X;;, det(X;;)™!] und eines maximalen Differentialideals I der
spezialisierten Gleichung in C[z][X;;, det(X;;) "] mit der Eigenschaft, dass die Speziali-
sierung o(I) in I enthalten ist, zu beweisen, werden die entsprechenden Differentialringe
via Taylorabbildungen in Potenzreihenringe eingebettet. So erhélt man genug Information
um zu beweisen, dass die beiden definierenden Ideale der Gruppen ineinander enthalten
sind.

Es bezeichne B eine Borelgruppe von G in oberer Dreiecksgestallt und B~ die entge-
gengesetzte Borelgruppe. Des Weiteren sei A eine Basis des Wurzelsystems und es sei
{Xa, Hy, | « € @, 1 <1 <1} eine Chavelley Basis fiir Lie(G), so dass ihre Struktur mit B
kompatibel ist. Wir kénnen nun [ Wurzeln 31, ..., 8; aus @~ wéhlen, so dass sich die para-
metrisierte Matrixdifferentialgleichung 0(y) = (3_,ca Xa + 2221 ti - X,)y auf natiirliche
Weise in eine schone Differentialgleichung transformieren lasst. Auflerdem beobachtet man,
dass jedes Element aus dem Unterraum A Xq+Lie(B87) differentialdquivalent zu einer
Spezialisierung der Matrix ) A Xo + Zﬁ:l ti - Xp, ist. Dies ist die Aussage des Trans-
formationslemmas ( Transformation Lemma) und der Beweis verwendet die Operation via
der adjungierten Darstellung der Wurzeluntergruppen auf der Chevalley Basis. Um nun
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12 Zusammenfassung

unsere Spezialisierungsschranke anwenden zu kénnen und um zu zeigen, dass sie mit dem
oberen Schrankenkriterium iibereinstimmt, bendtigen wir eine Matrixdifferentialgleichung
iiber C(z), welche die Bedingungen des Transformationslemmas erfiillt und die Gruppe
G als Differentialgaloisgruppe hat. In einer ihrer Arbeiten haben Mitschi und Singer eine
Methode entwickelt mit der man fiir jede zusammenhéngende halbeinfache Gruppe G eine
Matrixdifferentialgleichung d(y) = Ay iiber den rationalen Funktionenkorper C(z) kon-
struieren kann, so dass sie G als Differentialgaloisgruppe besitzt. Es ist ihnen gelungen
aus der Anwendung des klassischen unteren Schrankenkriteriums genug Information zu
ziehen um zu beweisen, dass G die Differentialgaloisgruppe ist. Anhand der gleichen Ideen
werden wir eine Matrixdifferentialgleichung berechnen, so dass die definierende Matrix im
Unterraum . Xo + Lie(B7) enthalten ist.

Die durch die Anwendung unserer Methode erzielten Ergebnisse fiir die Gruppen vom Typ
Ay, C;, By, D; und G5 sind in folgendem Theorem zusammengefasst.

Theorem 2. Sei C' ein algebraisch abgeschlossener Korper der Charakteristik Null und
F =C (t1,...,t;) der von den Differentialunbestimmten ty, ..., t; iber C erzeugte Differential-
kérper. Dann besitzt die homogene lineare Differentialgleichung

o L(y,ty,....t;) =yt — Zizl t; yO~Y = 0 die Gruppe SLi41(C) als Differential-
galoisgruppe tiber F',

o L(y,ty,....t;) =y — 3 (=Dt yEN =D = 0 die Gruppe SPy(C) als Dif-

1=
ferentialgaloisgruppe tber F,

o Ly, by, oty) = y @D — S (1)1 y D)0 4 (1, y@=D)0HI=DY — 0 gie
Gruppe SO941(C) als Differentialgaloisgruppe iber F,

o L(y,tr,ntr) =y — 2370 (=1 ((tiy D) 27D 4 (1910 (1))
~(tay D) + 1) — (—D)ty21 + 20) — X2t > 21)@ die Gruppe SOx(C) als
Differentialgaloisgruppe tber F. Hierbei sind

O] (1-2)

z21 = Yy =ty -ty

(I=2) | q\1—2, (1) !

t + (-1 t _ i —i —i
Zy = ( 2 ( ) 1) . (y(Zl 1) 2§ :(_1) ((tiy(l ))(l+1 )

tgl_z) + (1)1t i—3

-3
ey ™)) — 12y 1) Y Z(tél”zl)(i)) ,
=0

o L(y,t1,t2) =y +2t1y +2(t1y) +2(tay™) + (t2y") W — 2(t2(t2y/)") = 0 die Gruppe
G2(C) als Differentialgaloisgruppe iiber F = C (t1,t3).

AbschlieBend geben wir einen Uberblick iiber den Inhalt der einzelnen Kapitel. Zuniichst
fithrt die Arbeit in die Grundlagen der Differentialgaloistheorie ein, um auf diesen aufbau-
end unsere Methode zu entwickeln. Genauer werden hier die grundlegenden Begriffe der
Differentialgaloistheorie eingefiihrt und es werden die wichtigsten Ergebnisse der Picard-
Vessiot-Theorie préisentiert. Weiter enthélt der einfithrende Abschnitt eine Formulierung
des Hauptsatzes der Differentialgaloistheorie und des Torsor-Satzes. Das erste Kapitel
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schliefft mit dem ,,Cyclic Vector Theorem* zur Konstruktion von linearen Differentialglei-
chungen aus Matrixdifferentialgleichungen.

Zum Beginn des zweiten Kapitels werden die klassischen Schranken fiir die Differential-
galoisgruppe eingefiithrt und mit der Entwicklung des neuen unteren Schrankenkriteriums
begonnen. Dazu werden zunéchst Picard-Vessiot-Erweiterungen iiber Differentialringen
untersucht und die benétigten Ergebnisse bewiesen. In dem darauffolgenden Abschnitt
betten wir die entsprechenden Differentialringe in Potenzreihenkoérper ein, damit wir eine
wohlverhaltende Spezialisierung eines maximalen Differentialideals erhalten. Abschliefflend
wird die Spezialisierungsschranke bewiesen.

Das néchste Kapitel enthélt eine Zusammenfassung der Struktur der klassischen Gruppen
und ihrer Lie Algebren und fithrt somit die Grundlagen fiir den Beweis der Transforma-
tionslemmata ein. Um nun die Spezialisierungsschranke anwenden zu kénnen, modifizieren
wir die Ideen von Mitschi und Singer zur Realisierung von zusammenhéngenden halb-
einfachen Gruppen iiber C(z). Abschliefend beweisen wir allgemein die Existenz einer
parametrisierten Differentialgleichung fiir zusammenhéngende halbeinfache lineare alge-
braische Gruppen.

In den darauffolgenden Kapiteln wird die Methode auf die einzelnen Gruppen vom Typ A,
C), B;, Dy, Gy, F, und Eg angewandt. Die Ausarbeitungen hierzu enthalten eine Darstel-
lung der Lie Algebra und eine fiir den Beweis des Transformationslemmas vorbereitende
Analyse des Wurzelsystems. Diese wie auch der Beweis des Transformationslemmas ge-
staltet sich je nach Typ des Wurzelsystems unterschiedlich schwierig. Als néchstes wird
mit Hilfe des Transformationslemmas und Mitschis und Singers Diffferentialgleichung be-
wiesen, dass eine Differentialgleichung gewiinschter Gestalt mit vorgegebener Differential-
galoisgruppe iiber C(z) existiert. Im Fall der Serien und der Ausnahmegruppe vom Typ
G2 wird nun fir die jeweilige Matrixdifferentialgleichung ein zyklischer Vektor bestimmt,
so dass dieser zu einer einfachen parametrisierten linearen Differentialgleichung fiithrt. Fiir
die Gruppen vom Ausnahmetyp F4 und Eg geben wir nur die jeweiligen Matrixdifferen-
tialgleichungen an, um die Prisentation einer riesigen linearen Differentialgleichungen zu
vermeiden. Zuletzt wird mit Hilfe der Schranken und der zu Mitschi und Singer differen-
tialdquivalenten spezialisierten Gleichung bewiesen, dass unsere parametrisierte Differen-
tialgleichung die vorgegebene Gruppe als Differentialgaloisgruppe realisiert.
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Chapter 1

Basics on differential Galois theory

In this chapter, we present some basic definitions and results of differential Galois theory.
We refer to the books [PS03] and [Mag94] for more and detailed information. The reader
familiar with the basic properties of differential Galois theory may skip this chapter.

1.1 Matrix differential equations

Definition 1.1. 1. Let R be a commutative ring. We call the map 0 : R — R a
derivation if it is additive and satisfies

83(717“2) = 8R(r1)r2 + 7’183(7“2)

for all 1,79 € R. A ring (resp. field) together with such a map is called a differen-
tial ring (resp. field). The set of elements satisfying d(r) = 0 is called the set of
constants C of R. It is easy to see that they form a subring of R (resp. subfield of

2. Let Ry and Ry be differential rings, ¢ € Hom(R;, R2) a ring homomorphism, and
I < Ry an ideal. Then ¢ is called a differential homomorphism if it satisfies
¢ 0 0r, = Ogr, o, and [ is called a differential ideal if Og, (r) € I for all r € I.

3. We call a differential ring R a simple differential ring if its only differential ideals
are (0) and R.

For the rest of this work, we assume C' is an algebraically closed field of characteristic zero.
Let (F,0p) be a differential field with field of constants C. Let A be an n x n matrix (i.e.,
A € F™ ™) and denote by ¥ = (y1,...,yn)!" a vector of length n. Then an equation of
the form

is called a matrix differential equation, where 0(y) denotes the component-wise deriva-
tion of y (when applied to vectors or matrices, the symbol 0 always denotes the component-
wise derivation).

15



16 1 Basics on differential Galois theory

Lemma 1.2. Let 9(y) = Ay be a matriz differential equation of dimension n over F', and
let E > F be a differential field extension (i.e., E > F' is a field extension and Og|r = OF
holds). The solution space

Vi={y e E"|0(y) = Ay}
is a vector space of dimension dimc (V') < n over the field of constants C'.

Suppose we are in the situation of Lemma 1.2, and the solution space V' C E™ has
dimension n. Choose a basis yy,...,y,, of V, and write Y € GL,(F) for the matrix with
columns yq, ...,y,,. Then 9(Y) = AY holds. This leads to

Definition 1.3. A matrix Y € GL,(E) satisfying (Y) = AY is called a fundamental
solution matrix for the differential matrix equation defined by A.

Let B € GL,(F), and let y € V be a solution of d(y) = Ay. Then the derivative of By
is given by
9(By) = 0(B)y + Bo(y) = (0(B)B~' + BAB™")By.

In other words, By is a solution of the matrix differential equation
d(x) = (BAB™' 4+ 9(B)B YHx =: Ax.

We see that solutions of the first equation can be transformed into solutions of the second
one. This motivates

Definition 1.4. Two matrix differential equations d(y) = Ay and d(x) = Ax are called
equivalent if there exists a matrix B € GL,(F) such that

A=BAB™' +9(B)B~.

We now formalize the language of matrix differential equations by the introduction of
differential modules. A differential module M over the differential field (F,0) can be
considered as a finite dimensional F-vector space which is also a F'[0]-left module, where
F[9] denotes the ring of linear differential operators, that is the noncommutative ring of
polynomials in the variable 0 with coefficients in F', such that da = ad + Jp(a) for all
a € F. An equivalent definition is

Definition 1.5. Let (F,0r) be a differential field. A differential module M over
the differential field (F,0) is a finite dimensional F-vector space together with a map
0: M — M satistying for m1,ms € M and f € F

1. 8(m1 + mg) = 8(m1) + a(mg)
2. (fmy) = Op(f)m1 + fO(mq).

If M is a differential module over the differential field (F,dF), and ey, ..., e, is a basis of
M, then

8(62) = Z az-jej
7j=1

16



17 1.2 Picard-Vessiot extensions

for some A € F™*™. The matrix A is called a defining matrix for the differential module
M. Conversely, let M be an F-vector space with basis ey, ..., e, and let A € F™*™, Then
we can make M into a differential module by setting

n

8(2 fzez) = Z aF(fz)ez + fz Z aji€;j
i=1

i=1 j=1

In this situation we call the differential module M associated to the matrix differential
equation d(y) = Ay. Let éi, ..., &, be another basis for M with defining matrix A, and let
B € GL,(F) such that f; = }°7_, bj; fj. Denote by e (resp. €) the vector el" = (e1,...,en)""
(resp. & = (1, ...,&,)""). Then we obtain

d(e) = O(Be) = Op(B)e + BAe = ABe,
which is equivalent to ~
(0r(B)B™' + BAB™') Be = ABe.

Thus, we have )
Or(B)B™' + BAB™! = A.

As in Definition 1.4 we say that the two differential equations d(y) = Ay and d(y) = Ay
are equivalent.

Our approach involves differential conjugation, i.e., the transformation of a matrix equa-
tion into an equivalent one as in Definition 1.4. This motivates

Observation 1.6. Let A € F"*" and B; € GL,(F), where 1 <i < k41 for some k € N.
Set

A= (T2 Brer-d) ATy Brya—o) ™+ (I Bryr—i) ([Timy Bra—i) ™"
An easy inductive argument shows that
) k+1 k+1 k+1 k+1
By AB [ +0(Bin) B!y = (T Brvo-d) AL Bra—i) ' +0([ [ Brso-d) (] [ Brra-i) ™"
i=1 i=1 i=1 i=1

Throughout the text, we use Observation 1.6 without explicit reference.

1.2 Picard-Vessiot extensions

Assume that the dimension of the solution space V of d(y) = Ay over F is strictly less
than n or that a fundamental matrix Y € GL,,(F") does not exist. Then we have to enlarge
the differential field F' to guarantee enough solutions, i.e., one has to consider differential
field extensions E > F. What follows is the analogue of a splitting field for differential
equations.

Definition 1.7. A Picard-Vessiot ring over F' for the matrix differential equation
0(y) = Ay is a differential ring R over F' satisfying:

1. R is a simple differential ring.

17



18 1 Basics on differential Galois theory

2. There exists a fundamental matrix Y € GL,,(R), such that 9(Y') = AY.
3. R is generated as a ring by F, the entries of a fundamental matrix Y, and det(Y)~!.

Using the first condition, it is shown in [PS03, Lemma 1.17] that a Picard-Vessiot ring is
always an integral domain. Thus we can define the field of fractions of a PV-ring.

Definition 1.8. The field of fractions E of a Picard-Vessiot ring R for a differential
equation over F' is called a Picard-Vessiot field or a Picard-Vessiot extension of F'

Moreover, with the additional help of the third condition it can be shown (e.g., see [PS03,
Lemma 1.17]) that the set of constants of R coincides with C. This implies the third
statement of the next proposition, proving the existence and uniqueness up to isomorphism
of a Picard-Vessiot extension.

Proposition 1.9. Let d(y) = Ay be a matrix differential equation over F'.
1. There exists a Picard-Vessiot ring for the equation.
2. Any two Picard-Vessiot rings for O(y) = Ay are differential isomorphic.
3. The quotient field of a Picard-Vessiot extension does not contain new constants.

The idea of the proof is to construct a particular Picard-Vessiot ring R, which is called
the universal solution algebra. One proceeds in following way. Equip the coordinate ring
F[GL,) = F[Xj;,det(X;;)] of the general linear group with a derivation defined by the
rule 0(X;;) = A(Xjj). Then by construction, the matrix (Xj;) is a fundamental solution
matrix for the differential equation 0(y) = Ay. Hence, the second and third conditions
are trivially satisfied. For the first condition, we choose a maximal differential ideal I in
F[Xij, det(Xij)] and set R = F[Xij, det(Xij)]/I.

The following proposition gives an equivalent definition of a Picard-Vessiot extension:

Proposition 1.10. Let d(y) = Ay be a matriz differential equation over F', and let E > F
be a differential field extension. Then E > F is a Picard-Vessiot extension if and only if
E is generated over F by the entries of a fundamental solution matriz Y € GL,(E) of
J(y) = Ay and the field of constants of E is C.

For a proof see [PS03, Proposition 1.22].

1.3 The differential Galois group

We can now define the differential Galois group.

Definition 1.11. The differential Galois group of a differential equation over F' is
defined as the group Aut?(R/F) = Gal(R/F) of differential F-algebra automorphisms of
a Picard-Vessiot ring R for the equation.

Let Y € GL,(R) be a fundamental solution matrix with coefficients in the Picard-Vessiot
ring R for a differential equation d(y) = Ay. Since A € F™ " it is left fixed by all
o € Gal(R/F). Hence, o sends Y to another fundamental solution matrix. It can be
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19 1.4 Torsors

seen easily that two fundamental solution matrices only differ by a constant matrix. Thus
o(Y) =YC, with C, € GL,(C). So the above abstract definition becomes more concrete,
i.e., there is a faithful representation Gal(R/F) — GL,(C).

The above definition was made for Picard-Vessiot rings. It turns out that the group
of differential automorphisms Aut?(E/F) for a Picard-Vessiot field E coincides with the
group of differential automorphisms Aut?(R/F) for the corresponding Picard-Vessiot ring.
All of this can be read in [PS03, Section 1.4]. The most important facts are summarized
in

Proposition 1.12. Let E > F be a Picard-Vessiot field with differential Galois group
Aut®(E/F). Then

1. Awt®(E/F) is the group of C-points G(C) < GL,(C) of a linear algebraic group G
over C.

2. The field EAYE/F) of Auta(E/F)—mvam'ant elements of the Picard-Vessiot field E
is equal to F'.

3. The Lie algebra Lie(G)(C) of G(C) coincides with the Lie algebra of derivations of
E/F that commute with the derivation on E.

For a proof we refer to [PS03, Theorem 1.27].
We finish this paragraph with the differential Galois correspondence. It is cited here for
completeness.

Theorem 1.13. Let O(y) = Ay be a matriz differential equation over F and E/F a
Picard-Vessiot extension for the equation. Let G be a linear algebraic group over C' such
that Gal(E/F) = G.

1. There exists an anti-isomorphism between the lattice of closed subgroups H(C') and
the lattice of intermediate differential fields E > L > F given by

H(C) = E™MO) | L — Gal(E/L).

2. Let H(C) < G(C) be a normal closed subgroup. Then E™©)/F is a Picard-Vessiot
extension with Gal(E™(C) /F) = (G/H)(C).

3. Denote by G° the connected component of G. Then EQO(C)/F is a finite Galois
extension with Galois group isomorphic to (G/G°)(C).

A proof can be found in [PS03, Proposition].

1.4 Torsors

We start this section with

Definition 1.14. Let G be a linear algebraic group defined over the field ' > C. A
G-Torsor is an affine scheme Z over F' with a faithful G-action, i.e., a morphism

GxpZ— 2, (X,7) > 7ZX (1.1)
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20 1 Basics on differential Galois theory

such that the morphism
GxpZ—=ZxpZ, (X,2)— (ZX,2) (1.2)

is an isomorphism. A G-torsor Z is called trivial if Z = G holds and the G-action is given
by the multiplication on G.

Assume that Z is a trivial G-Torsor. Then Z has an F-rational point, i.e., Z(F) # () since
G has one. Conversely, let Z(F') be non empty. For Z € Z(F'), the morphism

Gx{Z} = Zx{Z}, (X,2)— (ZX,2)

is an isomorphism by Definition 1.14(2). Hence a G-torsor Z is trivial if and only if it has
an F-rational point.

Now we want to explain how this applies in differential Galois theory. Therefore let
J(y) = Ay be a matrix differential equation. Consider the universal solution algebra
R := F[X;;,det(X;;)71]/I with I a maximal differential ideal, i.e., a Picard-Vessiot ring
for the equation and denote by G(C) the differential Galois group for the corresponding
Picard-Vessiot extension Quot(R)/F. Define Z as the affine scheme Spec(R) over F. In
this situation we have

Theorem 1.15. Z is a G-Torsor over F.

For a proof see [PS03, Theorem 1.28].
A consequence of Theorem 1.15 is Kolchins Structure Theorem. It states that a G-Torsor
Z = Spec(R) for a Picard-Vessiot ring R over (F,d) with differential Galois group G(C)
becomes isomorphic to the trivial torsor Z = G after a finite field extension F /F. Equiv-
alently this can be expressed as

F@p R-5F @c C[G].

We will use Theorem 1.15 for the proof of the bounds for the differential Galois group
in the next chapter. Since the Picard-Vessiot rings R are G-Torsors, the correspondence
between the first cohomology set and torsor presented in Proposition 1.16 below is in some
situations useful.

Proposition 1.16. For a linear algebraic group defined over F' there is a bijection between
the G-torsors and H'(F/F,G(F)).

The proof of this goes back to Serre and can be found in [Ser97, I 5.2, Proposition 33].

1.5 Homogeneous linear differential equations

Let (R, 0g) be a differential ring. Then by the ring of differential polynomials in the
differential indeterminate y we mean the polynomial ring

R{y} := R0 (y) ==y |i=0,1,2,..]

in the countable number of indeterminates with the derivation 0 satisfying 0|r = dr and
a(y(i)) = 4+ Now let R be a differential integral domain and F be the field of fractions
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21 1.5 Homogeneous linear differential equations

of R. Then R{y} is also an integral differential domain. We write F'(y) for the field of
fractions of R {y}. If S > R is a differential ring extension (resp. E > F a differential field
extension) and X C R is a subset of R (resp. X C F is a subset of F'), then we mean by
R{X} the differential R-subalgebra of S generated by the elements of X (resp. by F (X)
the differential subfield of E generated by F' and the elements of X).

Let (F,0r) be a differential field and C' < F the field of constants of . Later, F' will be the
differential field C (t) generated by finitely many differential indeterminates t = (¢1, ..., ¢;)
over C. Let L(y) = y™ + an_19™ Y + ... + 19} + aoy € F{y} be a monic linear
homogenoues element of F' {y}. Then a homogeneous linear differential equation of
degree n over the differential field F' is defined as an equation of the form

L(y) = y™ + an_1y™ ™V + .+ ary + agy = 0.
To Lemma 1.2 in the case of matrix differential equations one has the following analogue.

Lemma 1.17. Consider a homogeneous linear differential equation L(y) = 0 of degree n
over F' and a differential field extension E > F. Then the solution space

Vi={ye E|L(y) =0}
of L(y) = 0 in E is a vector space over C of dimension dimg(V) < n.

A proof can be found in [PS03, Lemma 1.10].
Analogously to the fundamental matrix, one calls a set yi,...,y, of elements satisfying
L(y;) = 0 a fundamental set of solutions of L(y) = 0, if the y; are linear independent over
C. Again, motivated by the same aspects as in the case of matrix equations, one defines
Picard-Vessiot extensions as

Definition 1.18. Let L(y) = 0 be a homogeneous linear differential equation of degree n
over a differential field F. A differential extension field £ > F' is called a Picard-Vessiot
extension of F' for L(y) if:

1. FEis generated over F' as a differential field by a fundamental set of solutions y1, ..., yn
of L(y) =0in E (i.e., E=F(y1,...,Yn))-

2. Every constant of E lies in F'.

The next step is to explain the connection between matrix differential equations and
homogeneous linear differential equations. Later we will consider both. Again, let L(y) =
y™ + an_ 1y D+ a1y +agy = 0 be a homogeneous linear differential equation over
(F,0F) and let y1, ..., y, be the fundamental set of solutions of L(y) = 0 in a differential
extension field £ > F'. The matrix A, defined as

0 1 0 O 0
0 1 0 0
AL =
0 0 0 0 1
—ap —aq —Qp—-1
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22 1 Basics on differential Galois theory

is called the companion matrix of L. We will also denote the derivation dg of an element
a € E by @’ := 0g(a). Then the map

-1
Ly = i oy =yl

defines an isomorphism of the solution space of L(y) onto a solution space of the matrix
differential equation d(y) = Ary. The matrix

'l Y2 s Yn

vy Y5 o Yy

W<y17~--7yn) = : : :
—1 —1 —1
ygn ) yé” ) y7(ln )

is called the Wronskian matrix. One sees easily that W (y1, ..., y,) := Y is a fundamental
solution matrix for the matrix equation d(y) = Ary. Suppose E = F (y1,...,yn) /F is
a Picard-Vessiot extension for L(y) in the sense of Definition 1.18. Then the Wronskian
matrix satisfies the conditions of Proposition 1.10. Thus E over F' is a Picard-Vessiot
extension in the sense of Definition 1.8.

Above we have seen that one can convert a homogeneous linear differential equation L(y)
into a matrix differential equation d(y) = Ay. In many situations the converse is also true,
i.e., a matrix differential equation d(y) = Ay is equivalent to a matrix equation of type
d(y) = Ary. There are several proofs of the so called Cyclic Vector Theorem ( e.g., see
[Kat87] or [Kov96]). Let 0(y) = Ay be a matrix differential equation and denote by M4
the associated differential module with basis eq,...,e,. Let m € M4. By the differential
span (m) of m we mean the smallest vector space closed under 0 containing m.

Definition 1.19. Let M be a differential module over (F,dr). A vector m € M is called
a cyclic vector if (m) = M holds.

Suppose m is a cyclic vector of M4. Then the n+1 vectors m, d(m), ...,0"(m) are linearly
dependent. Let 1 < r < n such that 9"(m) can be written as a linear combination of
d'(m) with 0 < i < r. Without loss of generality we may assume r = n ( if not, one
differentiates the equation). Hence, there are a; € F such that

o"(m) = —a,_10""1(m) — ... — a19(m) — agm.

By an easy computation argument we see that the defining matrix with respect to the
basis m, d(m), ..., 0~ (m) is the companion matrix

0 1 0 0 - 0
0 0 1 0 -~ 0
Ap = :
0 0 0 0 1
Ly —ay e e e —ap

In other words, if (y) = Ay is the defining matrix differential equation for a differential
vector space M4 with respect to a basis ey, ..., e, which has a cyclic vector m, then A is
differentially equivalent to a companion matrix Ar.
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23 1.5 Homogeneous linear differential equations

Theorem 1.20. Let M be a finite dimensional differential module over a non trivial
differential field (F,0r) of characteristic zero with algebraically closed field of constants
C. Then M has a cyclic vector.

Since our approach includes matrix differential equations, we have to compute cyclic vec-
tors. Luckily, the shapes of our matrix equations are such that one can easily detect a
cyclic vector, which will lead to nice linear differential equations.

Let E over F be a Picard-Vessiot extension for a matrix differential equation d(y) = Ay in
the sense of Proposition 1.10 with fundamental solution matrix Y. Further, let F' satisfy
the conditions of Theorem 1.20. Then there exists B € GL,,(F') such that A is differen-
tially equivalent to a companion matrix Ay. The equation d(x) = Apx has fundamental
solution matrix BY = X. Thus, £ = F (X131, ..., X15) is a Picard-Vessiot extension in the
sense of Definition 1.18.
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Chapter 2

Bounds for the differential Galois
group

In this chapter we present upper and lower bounds for the differential Galois group.

2.1 The classical bounds

Everything described in this section is well known and can be found in [PS03, Section 1.4].
In the following, let (F, OF) be a differential field of characteristic zero over an algebraically
closed field of constants C. Proposition 2.1 below is known as an upper bound criterion
for the differential Galois group.

Proposition 2.1. Let H < GL,(C) be a connected linear algebraic group over C with
Lie algebra Lie(H) < C™*™. Suppose that the matriz equation 0(y) = Ay over F satisfies
A € Lie(H)(F). Then the differential Galois group G(C) of the equation is contained in (a
conjugate of ) H(C).

For a proof we refer to [PS03, Proposition 1.31.1].
The next theorem can be regarded as a lower bound criterion. In [MS96], Mitschi and
Singer used it to prove that every connected reductive group can be realized as a differential
Galois group over the differential field C(z) with standard derivation J¢(,) = %, where C
is an algebraically closed field of characteristic zero. Later, we combine this fact with the
results of the next section to develop another lower bound.

Theorem 2.2. Let R be a Picard-Vessiot ring for the equation 0(y) = Ay over F with
connected Galois group G(C) and let Z be the associated G-torsor. Let Lie(G)(C) be the
Lie algebra of G(C) and let H(C) > G(C) be a connected linear algebraic group with Lie
algebra Lie(H)(C). Suppose that A € Lie(H)(F). If Z is the trivial torsor then there
exists B € H(F) such that the equivalent equation d(x) = Az where y = Bx and A =
B~'AB — B'B~! satisfies A € Lie(G)(F).
A proof can be found in [PS03, Proposition 1.31.2].

In the following sections we will develop another lower bound criterion which is based on
the calculus of specializations. The main ingredient to obtain a well behaving specialization
is an embedding of the corresponding differential rings in a suitable field of power series.
We start with the study of differential rings and their Picard-Vessiot extensions.
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26 2 Bounds for the differential Galois group

2.2 Picard-Vessiot extensions over rings

Let (F,0) be a differential field with field of constants C' and d(y) = Ay a matrix dif-
ferential equation over F. Let F[Xj, det(X;;)~!] be the coordinate ring for GL, (F) and
choose a maximal differential ideal I of F[X;;,det(X;;)"!]. Denote by

L := F[X;;,det(X;;) /T

the Picard-Vessiot ring and by E := Quot(L) the corresponding Picard-Vessiot extension.
Now let R be an integral differential ring with field of constants C' such that Quot(R) = F,
and let R[X;;,det(X;;)"!] be the coordinate ring for GL,(R). Suppose the matrix A
satisfies

A e R,

Then R[X;;,det(X;;)™1] becomes a differential ring by d(y) = Ay. We can choose a
differential ideal I in R[X;j, det(X;;)~!] which satisfies I N R = (0) and is maximal with
this property. Then we can define a differential ring extension S/R by

S = R[Xij, det(Xij)_l]/I.

By construction S is an R-simple differential ring, i.e., S does not contain proper differ-
ential ideals I with I N R = (0). Further, S is generated over R by the entries of the
fundamental solution matrix

(ZZ]) = (XZJ mod I) S GLn(S)

and by the inverse of the determinant det(Z;;)~}, i.e., (Z;;) satisfies 9(Z;;) = A(Z;;) and
S = R[Z;j,det(Z;;)71]. Since S is an R-simple differential ring the field of constants of
S is C'. The maximality of the differential ideal I implies that the ideal (I) generated by
I over F[X;j,det(X;;)~"] is a maximal differential ideal. Say we choose the ideal I from

above such that I = (I). Thus we obtain an injection of differential rings
S — L.

Since in polynomial rings over rings one has more ideals than over fields, we will consider
ideals I C R[X;j,det(X;;)7!] (or ideals I C S[X;;,det(X;;)~t]) satisfying Condition 2.3
presented below.

Condition 2.3. Let R be an integral differential ring with field of constants C' and define
a differential structure on R[X;;,det(X;;)"!] by a matrix differential equation d(y) = Ay
where A € R™". Then we consider ideals I in R[X;;,det(X,;)"] satisfying I N R = (0),
and if for f € I there exists 7 € R such that (1/7)-f € R[X;;,det(X;;)~"], then (1/r)-f € I.

Lemma 2.4. Let R be an integral differential ring with field of constants C, and let the
field of comstants of Quot(f%) also be C. We extend the derivation O to a derivation
0 on R[Yij,det(Yi;)™'] by setting d(Yij) = 0 for 1 < i,j < n. Moreover, one considers
C[Yij,det(Y;;) '] as a subring of R[Yij,det(Y;;)™']. Then the map

60:1— (1)
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27 2.2 Picard-Vessiot extensions over rings

from the set of ideals of the ring C[Yi;,det(Y;;)™1] to the set of differential ideals of
R[Yl-j,det(Yij)_l] satisfying Condition 2.3 is a bijection. Furthermore, the inverse map
is defined by

5t J = JNCY).

Proof. Let {7;};es be a basis of R as a vector space over C' with 7, = 1. Then {F;}jes
is also a basis of the C[Y;;, det(Y;;) ~']-module R[Y;;, det(Y;;)~!]. The differential ideal (I)
consists of elements of the form

=Y 0

jeJ’

where J' C J is a finite subset of J and gi€lforall jeJ . Therefore we have
(I) N C[Yy5,det(Yyy) '] = 1.

We are going to show that the ideal (I) satisfies Condition 2.3. Therefore we extend the
basis {F;}jes of R over C to a basis {F;}jem of Quot(R) over C' where J C M. For
f € (I),let ¥ € R such that L - f € R[Y;;,det(Y;;)"!]. We compute

,F

'fZ%(qu'fj)Zqu'(%fj)zqu'( Yo=Y 6T

jeJ’ jeJ’ jeJ’ j’eM; JEM!

=<y =

where M’ = J;c 7» M’ and §j» = ¢jr-q; € I for all j' € M. Since L. f € R[Yy;, det(Y;;) ™Y,
we obtain M’ C J. Thus, % -fe).

We have to show that a differential ideal J C R[Y;;,det(Y;;) '] satisfying Condition 2.3 is
generated by I := J N C[Yj, det(Yij)_l]. Let {é;}icz be a basis of C’[Yij,det(Y;j)_l] over
C with é;, = 1. Then f € J can be written for a finite subset Z' C T as

f:Z?"i-éi.

€T’

We prove by induction on the length I(f) = card(Z’) that f € (I).

Let I(f) = 1. Then f reads as f = r;-é;. The condition on J implies that (1/r;)f = é; € J.
Hence, we obtain f € (I).

Now let I(f) > 1. If all 7, € C, then there is nothing to show. Also if f can be written as
[ =7 icp i€, where ¢; € C'and 7 € R \ C, since by Condition 2.3 we have

’f:ZCi'éiGJ

i€Z’

=< =

and so f € (I). We claim that for r; # 0, r9 € R, one has r19(r9) — 729(r1) = 0 if and
only if v and 79 are C-linearly dependent, i.e., it exists ¢ € C such that r; = cry. Let
r10(r2) — r20(r1) = 0. Since O(7L) = %ga(m)” = 0, we obtain that [ is a constant.
Thus, 1% is an element of C. Hence, r; and ro are C-linearly dependent. The other
direction is trivial. Thus the claim follows.

Without loss of generality let 1 € R \ C, and let 7 and ry be C-linearly disjoint in f.
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28 2 Bounds for the differential Galois group

Hence we obtain
no(f) = a(r)f = Y (md(r) —d(ri)r) - &
i€z’

= > (m0(r) — 0(r)ri) &= f A0,

ie€T\{1}

Since I(f) < I(f), the induction assumption implies f = Diezniy i - € € (I) where
7; = r10(r;) — r;0(r1). We compute

Fof —rof = T2 mibi—ry Y Tl

i€l ieT'\{1}
= 7;27'1 . él — E (7‘27’@ — 7“2%)@ 7é 0.
i€T\{1, 2}

Further, the length of #of — rof is less than I(f). Hence, of — 1o fe (I) and therefore
Fof € (I). Obviously, we have L - (fof) € R[Y;;, det(Yi;)~!]. Since the ideal (I) satisfies

2

Condition 2.3, we obtain f € (). O

Lemma 2.5. The map
v: I (1)

from the set of ideals in R[X;;,det(X;;)™] satisfying Condition 2.3 to the set of Gal(S/R)-
invariant ideals in S[X;;,det(X;;) ] satisfying Condition 2.3 is a bijection. Furthermore,
the inverse map is given by

PR ey g R[Xij,det(Xij)_l]-

Proof. The proof is very similar to the proof of Lemma 2.4.

Choose a basis {$;}je7 of S as a vector space over R with §;, = 1. Then {§;};c7 is also a
basis of the R[X;;,det(X;;)~!]-module S[X;;,det(X;;)"!]. The Gal(S/R)-invariant ideal
(I) consists of elements of the form

f=2 4%
jeJ’
where J' C J is a finite subset of J and gi€lforall jeJ ’. Hence, it holds
(I) N R[X;j,det(X;;) ] =1.

We are going to show that the ideal (I) satisfies Condition 2.3. For f € (I), let § € S
such that % f € S[X;;,det(X;;)~!]. Denote by {5;}jcam a basis of Quot(S) over Quot(R)
where {5;}jc7 C {5;}jem. Then we get

'fZ%(qu'éj)ZZ%'(ééj)zsz'(Z fir-8)= > 415

jed’ jeJ’ jeg  jeM, jeEM’

W =

where ¢; € I, f; € Quot(R) and M’ := |J;. - M is a finite subset of M. Since % -fe
S[Xij,det(X;;) "], we obtain M’ C J. Further, g; - f; € R[X;j,det(X;;)~!] and therefore
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29 2.2 Picard-Vessiot extensions over rings

we have by Condition 2.3 that 1 - f € (I).
We have to show that the ideal J C S[X;;,det(X;;)7!] is generated by

I=JnN R[Xz‘j,det(Xij)fl].

Let {e;}iez be a basis of R[X;;,det(X;;)"!] over R. Then any f € J can be written for a
finite subset 7/ C 7 and s; € S as

f:Zsi-ei.

€L’

We prove by induction on the length I(f) = card(Z’) that f € (I).

Let I(f) = 1. Then f reads as f = s;e;. Since the ideal J satisfies Condition 2.3, we get
that i - f =e; € J. Thus, it follows that f € (I).

Now let I(f) > 1. If for all s; it holds s; € R, then there is nothing to show. Also if f can
be written as f =5 - ZiEI’ r;6;, where r; € R and § € S, since by Condition 2.3 we have

. f = Z i€ € J

=
and thus f € (I). We claim that for all o € Gal(S/R) it holds o(s1)s2 —s10(s2) = 0 if and
only if s and sg are R-linearly dependent. Let o(s1)s2—s10(s2) = 0 for all o € Gal(S/R).
We obtain ZEZ;; = o(%) = 2. Since by Theorem 1.13 one has Quot(S)G2lS/R) = Quot(R),
we get 2—; € Quot(R). Hence, s; and sy are R-linearly dependent. The other direction is
trivial. Hence the claim follows.
Without loss of generality let s; € S\ R, and let s1, s2 be R-linearly disjoint. We choose
o € Gal(S/R) such that o(s1)s2 # s10(s2). Thus we obtain

sio(f) —o(s1)f = Y (s10(si) = o(s1)s:)é
=

= Z (s10(s;) — o (s1)8:)é; := f.

€T\ {1}

W] =

We have I(f) < I(f). So by the induction assumption f = Yiezn 1} Si - € € (I) where
3; = s10(s;) — o(s1)s;. We calculate

Sof —sof = 52'5 Si- € — 82+ E ;- &
ieT’ €T\ {1}
= §9-81 €1+ E (5281' — 5152) - é; 75 0.
i€T\{1, 2}

Since the length of §5f — sof is less than [(f), we obtain 8af — sof € (I). Further, we
have §3 - f € (I). Obviously it holds é - (32 f) € S[X,j,det(X;;)"1]. Since the ideal (1)
satisfies Condition 2.3, we get f € (I).

Let f € I = J N R[X;j,det(X;;)7!], and suppose that it exists r € R such that % -fe
R[X;;,det(X;;)"!]. Since the ideal J C S[X;;,det(X;;)~!] satisfies Condition 2.3, we
obtain % - f € J. Hence, we get % - f € I, and therefore the ideal I in R[X;;,det(X;;) "]
satisfies Condition 2.3. O
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30 2 Bounds for the differential Galois group

Let I C R[X;j,det(X;;)~!] be a differential ideal such that I N R = (0). Since I does not
necessarily satisfy Condition 2.3, we claim that the expanded ideal

Iy i= T - F[ Xy, det(X;;) 7' N R[X;5, det(Xi;) ]

is again a differential ideal and satisfies Condition 2.3. This can be seen as follows. Let
f= Ez fi-q €1- F[Xij,det(Xij)_l] with ¢; € I and f; € F[Xij,det(Xij)_l]. Then we
compute

of) = 5(2 fi- @) = Za(fi) “qi+ fi- 0(qi) € I - F[ X5, det(X5) ']

since d(g;) lies again in I. Hence, the ideal I - F[X;;,det(X;;)"!] is a differential ideal.
Thus, the intersection

I+ P[X;, det(Xi;) "] 0 R[Xij, det(X;5) "]

is again a differential ideal and satisfies Condition 2.3.

Further, if I C R[X;;,det(X;;)~!] is a maximal differential ideal satisfying I N R = (0),
then I automatically satisfies Condition 2.3. This is a consequence of the above and the
maximality of I.

2.3 Formal Taylor series

Now our differential fields become more specific. Let F' := C(t1, ..., t;) be the differential
field in the [ differential indeterminates t = (¢1, ..., ;) and denote by R := C{t1,...,t;} C F
the corresponding differential subring. Let F' := C(z) be a rational function field where the
derivation is defined by 0z = d%v and let R := C[z] C F be the corresponding differential
subring. Further, let d(y) = A(t)y be a matrix differential equation over F' such that
A € C{t}" ™. Moreover, let

o:t— f=(f1,.fi)
be a specialization to R such that C{f} = R. We are going to show that there exists
a maximal differential ideal I C U := R[X;j,det(X;;)7!] with I N R = (0) such that its
specialization o () is contained in a proper differential ideal I C U := R[X;;, det(X;;) "]
with I N R = (0) where the differential structure on U (resp. U) is defined by 9(X;;) =
A(t)(Xi;) (resp. 0(Xi;5) = A(o(t))(Xi5))-

Lemma 2.6. Let F' = C(2) be the rational function field over the algebraically closed field
field of constants C, and let the matriz A of 0(y) = Ay satisfy A € C[z]"*". Then there
exists a valuation ring O. D C[z] for F with valuation ideal P, such that the injective
differential homomorphism

7:C[] = O[T, f— D oW (NPT
keN
extends to a differential homomorphism

7 Cl2][Xij, det(Xi5) 1] = CITY], Xij— Y 0W(Xi5)(Pe)T*
keN
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31 2.3 Formal Taylor series

where the initial values (X;;)(P.) = D € GL,(C) can be chosen arbitrarily, and the kernel
I of T defines a mazimal differential ideal with I N C[z] = (0).

Proof. Since A € C[z]™*™, we can choose a local parameter (z — ¢) with ¢ # 0 € C such
that for all polynomial entries a;;(2) in A it holds a;;(c) # 0. Further, the valuation ring
for (z — ¢) is of shape

0, = {g | £,9€Cl] g P = (z - dop)

which obviously contains C[z]. Denote by P, := P - O, the maximal ideal of O, and by
f(Pc) € C the image of f € C[z] under the residue map

7:0.— O, /P.=C.
Then we define the Taylor map

7:Cle] = CTT), £ > 0 (f)(P)T*.

keN
We compute for f,g € C|z]
(fg) = Y W (fo)(P)T

keN

= keZNk!(g,M_k)! (f) (9))(Pe)

k

= > QNP (g)(P) T
keN =0

= O_0W(N(PTH(O oW (g)(P)T*) = 7(f)7(9)-
keN keN

Obviously, it holds 7(f + g) = 7(f) + 7(g). Hence, 7 is a homomorphism. From the
calculation

or(r(f)) = or(d_ oW (f)(P.)T")

we deduce that 7 is a differential homomorphism. Since R := C[z] is a d-simple differential
ring, 7 is a differential monomorphism. Then the image R := 7(C[z]) C C[[T]] becomes
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32 2 Bounds for the differential Galois group

an integral domain with field of constants C. Since Quot(R) C C((T')), we obtain that
its field of constants is equal to C. Thus, the differential monomorphism extends to an
injective differential homomorphism

fo Y ken O () (P)T*
9 ken 9W(g)(Pe)TH

Now we extend 7 to the differential ring U := C[2][X;;, det(X;;)"!]. One obtains recur-
sively all higher derivations

7:C(z) = C((T)),

O™ (Xij) = Ap(Xy5), k € N\ {0}

of (X;;) where A; = A. Since A € C[z]"*", it follows that A € C[z]™*" for all k € N\ {0}.
Hence the differential structure on U is well defined. We choose for X;; the initial values
(Xij)(Pe) = D € GL,(C) and obtain values

oW (X)) (P.) € C™*™,
This leads to an extension

71 C[2][Xij, det(Xi5) ™ = C[[T]], Xij — Y 0™ (Xy)(P)T".
keN

Since the ring U = C[2][X;j,det(X;;) 1] is generated by X;; over C[z], we have that the
image U of U under 7 is generated by 7(X;;) over R. We are going to show that

&= 1(C(2)[r(Xyj), det(T(X5)) Y

is a Op-simple differential ring. By construction 7(Xj;) is a fundamental solution matrix
for the differential module M, over F := 7(C(z)) with differential structure defined by
(y) = 7(A)y. Since & C C((T)), the ring £ is an integral domain. Further, its field
of fractions Quot(€) has C as its field of constants since Quot(€) C C((T)). By [Dyc08,
Corollary 2.7], € is a simple differential ring. Thus, U is a R-simple differential ring.
Hence, the kernel I of 7 defines a maximal differential ideal with I N C[z] = (0). O

Let E/F be a field extension. We call an element h € E transcendental over F' if there
exists no polynomial f(x) € F[z] such that f(h) = 0. Further, suppose E/F is a differen-
tial field extension. Then we call an element h € FE differentially transcendental over F,
if there exists no differential polynomial f(y) € F {y} such that f(h)=0.

We want to repeat the above discussion for the differential ring R, i.e., we look for an in-
jective embedding of R in a ring of power series. Since the extension R/C is differentially
transcendental, we need a field of power series containing differentially transcendental el-
ements over its ground field. Therefore, we will define power series with coefficients which
are transcendental over C.

Lemma 2.7. Let C(5;) be a rational function field in the infinitely many transcendentals
Bi (i € N) over C. Then f:= Y2 %B8,T" is differentially transcendental over C(B;)[T).

Proof. The proof will be done in three steps.
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2.3 Formal Taylor series

1. In the first step we are going to compute the shape of a certain coefficient ¢; of the

power series
RIS W
1=0

First we look at an arbitrary power of f. In the second step we handle a power of a
derivative ) (f) and then we consider the whole product.

For d € N, we denote the coefficients of f¢ by ¢;, i.e., let f¢ = Yo ¢;T*. Further, let
k := (k1,...,kq) € N% such that k; # k; for i # j and define the index if, := Z;l:l k;.

Then from -
Z =BT Z BT = ol
! ! i=0

we see that the coefficient ¢;, has shape

Ci

=d' . —. R . .
k d! ol o] /Bkl /Bkd +r,
where r € Q|[fo, ..., ;] and no monomial appearing in r is equal to a nonzero

multiply of B, - ... - Bx,-
For [ € N, denote by

— 1
fi=00(5) = 3 ST
i=0

the [-th derivative of f. As above take d € N and k = (k1, ..., kq) € N? such that
ki # kj; for i # j and k; > [. For iy := Zd,l k; —d -1, we obtain by shifting the
indices that the coefficient c;, of the d-th power of fi reads as

1 1
=d!- .
k G0 = Pt Pra T
where r € Q[f, ..., Bi, +4.1] and r does not contain the monomial g - B, - ... - B, for
any q € Q.
Now we consider the product Hjio fdl, where d; € N, and denote its coefficients by
ci. We take k = (ki,...,k;) € N¢ such that k; # kj for i # j and k; > m. We define

the integers d = > " d; and ig = Z?zl kj —> 1%y d; - I. Further, let

&)

KoUK U...UK,, ={1,..,d}

be a partition of {1,...,d}, where for 0 <1 < m the sets K; satisfy card(K;) = d;.
We claim that the coefficient ¢;, is

:(llj)dlg.( S (I o) (T g tags)) e

KoU..UKm  j€Ko JEKm
card(K;)=d;
with 7 € Q[B, ..., Bij+5~ 4,4] and no monomial of 7 is equal to a non-zero multiply of

/Bkl T /BkJ'

The proof is done by induction on m. Let m = 1. The coefficients ¢; calculate as
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=y, =i O by, where a; denotes the coefficients of fd0 and b; the coefficients

of f{i . Thus we have to consider the indices of the products a, - b,, which contain
the monomial S, - ... - Bx;.With the above results we deduce that for each partition
Ko UKy of {1,...,d} the product @iy, " bix, contains the monomial Sy, - ... - B,
where card(K;) = d; for 0 < I < 1. Note that the index ik, is defined as ix, =
> jek, ki — 1+ di. Thus, we obtain

Cip, = Z ailcobilcl = do'dl'( Z H H ) Bkl . -Bkd_—i—r.

i;co-i-i)clzik KoUK ]GICO ! ]G’C1
card(ICl) dl
Let m > 1. We denote now by «a; the coefficients of H?;Bl fld " and by b; the coefficients
of fdm. Motivated by the same ideas as above, we take a partition Ko U ... UK, =
{1,...,d} such that card(K;) = d; for 0 < I < m. Thus, if we apply the induction
assumption to all a;,, where K'=KoU...UK,_1, we obtain

= D bt = ) (d'H 5k+r>

o Tl =ik m +z‘,C/ =ik jGKm

m—1
(I a)-( > H(H >>) By
= ndieyat T

- Let g(y) = 225,95 - ydos - (y )i - .- (ym)dmi € C[B][T){y} be a differential

polynomial with d = Y, d;; for all 1 < j < w, satisfying

Zgﬂ Z ﬁlT% i Z /8z+1TZ )i Z 5z+mT7’ dmi = ZCiTi =0.

We write the coefficients of g(y) as g; = I;szo gj7hTh € C[Po, ..., B][T] with p; € N.
We are going to show that not all coefficients ¢; can vanish. In particular, we show
that there exists a term of some coefficient which is a non-zero multiply of B, -...- B,

for an appropriate k = (ki, ..., kg) € N¢.
For 1 < j < w and k € N with k; # k; for © # j and k; > m, we define the sum

:(gdl!>'< Z H<H k—l ))

ml—

Card(lCl)

and the polynomials in Q[ky, ..., kg]

VCRTTCR (R0 ORI IR 1 (01§01 (ORE)))

KoU..UKy, I=1 jekK; n=1
card(lCl):dl

where the sum is over all partitions Ko U . = {1,...,d} with K; satisfying
card(K;) = d; for 0 <1 < m. For each monomlal Hl o(yM)%5 and k € N as above,
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2.3 Formal Taylor series

we consider the coefficient ¢’/ with index

]

()

d m
Bji= kj— Y dij-l
j=1 1=0

of the power series [[}",(y)%i =3, cl(-j )T, Since these coefficients are shifted by
(4)

the polynomials g;(7"), we collect all indices %j of the coefficients e, which appear
J

inc ., ,in the set

To={ijlintpr =i+ h;, 0<h;<pj, g #0}.

We define the set of indices of all relevant monomials as J := { j | %j € Z }. Then
the set J stays equal for each choice of k € N with k; # k; for 1 # j and k; > m.

Since for all such k € N¥ the coefficient €41 has to vanish, we obtain the equations

+p

Zgj’h;' . Qj(k) . 5k1 Cat 5]% =0« Zgjﬁ; : Qj(k) = 0. (2.1)

jeTJ jeT

After a multiplication with Hglzl k;! we can consider the equations in (2.1) as a
single polynomial p(k) := 3 ;7 i, - q¢;(k) € ClBo, ..., Bi][k1, ..., kgl. Since for
j,j" € J with j # j' the leading monomials in ¢} and q;-, have different degrees in
the indeterminates ki, ..., kj, the polynomial p(k) is not the zero polynomial. We
consider

p(k) = plka, ... kg) (k1) = (Z gi.n, (k2 .y k) (k1)

jeT

as an element of the polynomial ring C[bo, ..., Bi][ke, ..., kj][k1] over the integral
domain C[fy, ..., Bi’][k2, ..., kz]. Since the nonzero polynomial p(ka,...,k7)(k1) has
finitely many zeros in C|Bo, ..., Bir][k2, ..., kg], we can choose k1 € N with k1 > m
such that p(k1, ks, ..., kg) # 0.
Hence, by induction we obtain that there exists ki, ...,l_fg € N with k; > m and
ki # k; for i # j such that p(ki,...,k;) # 0. Thus, f can not satisfy g(f) = 0.

- Now let g(y) = 252, g - y%07 - (y )M .- (y™))Pmi € C[B)[T]{y} be an arbitrary

differential polynomial satisfying g(f) = 0. Denote by d = max;{ > "qdi; }.
Since for all monomials with > /" d;; < d the coefficients of the resulting power
series are polynomials in the (; of degree lower than d, it is sufficient to consider
coefficients with index high enough of the resulting power series of the monomials
with >°/% d;; = d. Then the assumption follows from the above.

O]

Corollary 2.8. Let C(B;j) be a rational function field in the infinitely many transcenden-
tals B;j where 1 <i <1l and j € N. Then f; := ZjeN %ﬁijTj 1s differentially transcenden-
tal over C(ﬁlj)[fl) ceey fi—la fi+17 ceey fl]
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36 2 Bounds for the differential Galois group

Proof. First we define Z := {1,2,...,1}. Let ¢/ € Z and suppose that f; is differentially
algebraically dependent over Fy := C(B;;)[f1, ..., fir—1, fir+1, .-, fi], i.e., there exists a dif-
ferential polynomial h(y) € Fy{y} such that h(f;) = 0. The coefficients of h(y) are power
series with infinitely many coefficients in C[81;, ..., Bir—1,j, Bir+1,, ---, Bi;] and finitely many
in C(B;;). We define a specialization ¢ : C'(3;;) — C(Birj) by

Birj — Birj for j €N,
ﬁij%cij fOI‘iEI\{iI} andjeN

where we choose finitely many ¢;; € C* and all other ¢;; as zero such that ¢(h(y)) =
©(h)(y) has no pole and does not disappear. We obtain

p(h(fir)) = @(h)(fir) = 0.

We get a contradiction to Lemma 2.7 since p(h)(y) € C(By;)[T]{y} is a nonzero differential
polynomial which vanishes at f;. O

Lemma 2.9. Let Fﬂ = C(Bij)(t1,...t;) be a differential field in the differential indetermi-
nates t; with field of constants C(B;;) where Bi; with 1 < i <1, j € N are transcendental
over C. Moreover let the matriz A of 0(y) = Ay satisfy A € C{t1,...,t;}"*"™. Then there
exists a valuation ring Og > C(Bij){t1,....t1} for Fs with valuation ideal Py such that the
injective differential homomorphism

7 CBi){tr, i} = CBHITN, fr— > 0B (f)(Pe)T*

keN

extends to a differential homomorphism

72 C(Big) {trs oo i} [Xij, det(Xig) ™1 = C(Bip)[[TN], Xij — Y 0W(Xi)(Ps) T,
keN

where we can choose arbitrary initial values (X;)(Pg) = D € GL,(C(Bij)), and the kernel
I of 7 defines a mazimal differential ideal with I 0 C(Bi;){t1,...,t1} = (0).

Proof. Let Rﬁ = C(Bij){t1, ..., t1} = C(Bij)[tro, ti1, .-, tio, tin...] be the polynomial ring in

the infinitely many transcendental elements #;; := tgj ). We define linear polynomials
Dij = tij — Bij

and the ideal
P=(pyl1<i<l jeN), CRp.

Since R/g/ﬁ is an integral domain, we have that Pis a prime ideal. Then by [Eis95,
Exercise 11.2], there exists a valuation ring @5 D Rﬁ with valuation ideal 755 such that
755 N Rﬁ = P. Denote by 7 the residue map

VI @5 — @5/755 = C(ﬁm)
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37 2.3 Formal Taylor series

From the image of 7(p;;) = pij = tij — Bi; = 0 we see that ;; = (;;. Thus the image
of f € (’)g \735 is the evaluation at g = (510, Bi1, - Bio, B, ---). We denote the image of
fe Rﬂ C (95 under the residue map by f (735) € C(Bij). We define the Taylor map

i Rg = CEHITN, £r— Y 05 () (Pp)T".
keN

The same calculation as in Lemma 2.6 shows that 7 is a differential homomorphism. By
Corollary 2.8 the differential ring extension

e’} 1 ) 0 1 ]
OB D 5Bl o 2 58T }/C(By)
j=0" j=0""

is a differential transcendental extension. Hence, 7 defines a differential monomorphism.
The image R := 7(Rg) C C(By;)[[T]] is an integral domain with field of constants equal to
C(Bij). Since the field of fractions Quot(?%) is contained in C'(8;;)((7T')), it has also C(8;;)
as its field of constants. We extend 7 to the differential ring Ug ‘= Rg[Xij, det(X;) 1.
One computes recursively all higher derivations

8]“(le) = Ak(Xl])a keN

of (X;;) where A; = A. The fact that A € R”X" yields that A € Rgm for all kK € N.

Thus, the differential structure on U, 5 is well deﬁned. We choose for X;; the initial values
(Xij)(Pg) = D € GL,(C(Bi;)) and obtain therefore values

0™ (X5)(Pg) € C(Byj).

Thus we have an extension

T Rg[Xij,det(Xij)fl] — C(B’L])HT]L Xij — Za(k)(XU)(ﬁﬂ)Tk
keN

Since the ring Ug = ]A%g[Xij,det(Xij)*l] is generated by Xj;; over }?{5, we have that the
image Z]g of 05 under 7 is generated by 7(X;;) over 7@5. We are going to show that

€ := Quot(Rp)[7(Xij), det(F(Xi5)) ']

is a Op-simple differential ring. By construction j'(XZ-j) is a fundamental solution matrix
for the differential module M; over F3 := Quot(Rg) with differential structure defined by
d(y) = 7(A)y. Since £5 C C(B;)((T)), we obtain that the ring &5 is an integral domain.
The fact Quot(ég) C C(Bi;)((T')) yields that the field of constants of the field of fractions
of s is also C(B;;). Then by [Dyc08, Corollary 2.7], éﬁ is a simple differential ring. Thus
Z/lg is a ’Rﬁ snnple differential ring. Hence, the kernel I of 7 defines a maximal differential
ideal with I N Rg = (0). O

Corollary 2.10. Let Fj := C[B;j](t1,...t;) be a differential ring in the differential inde-
terminates t; with ring of constants C[B;;] and let the matriz A of 0(y) = Ay satisfy
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38 2 Bounds for the differential Galois group

A e C{t1,...,t;}"*™. Then there exists a valuation ring Og O C[B;;l{t1,...,t1} for Fg with
valuation ideal Pg such that the injective differential homomorphism

7 CBgl{t1, ot} — CLBHIIT, f— Y dW(f)(Ps)T*

keN

extends to a differential homomorphism

7 ClBilt, o i} [Xig, det(Xiy) ] = CIBIITI, Xij — Y 0% (Xy)(Pe) T,
keN

where we can choose arbitrary initial values (X;;)(Pg) = D € GL,(C[B;5]), and the kernel
I of T defines a mazimal differential ideal with I N C[B;;]{t1,...,t1} = (0).

Proof. We repeat the construction in Lemma 2.9 for the differential field C(3;;)(t) and the
initial values (X;;)(Pg) = D € GL,(C|[B;;]). Thus, we obtain a differential homomorphism

7 C(Bi) {8} [ Xy, det(Xyg) '] = CB)T), fr— D dW(f)(Ps)TY,
keN

where the kernel I defines a maximal differential ideal with N C(8;;){t} = (0). It is easy
to see that the restriction of 7 to C[B;;]{t}[Xi;, det(X;;)7!]

7 CByl{t}[ Xy, det(Xij) ] = CLBLIIT), £ — Y W (f)(Ps)T*
keN

is well defined by the choice of (X;;)(Ps) = D. Then the kernel I := kern(r) of 7 satisfies
I =1N0C[By{t}[Xy;, det(Xi;) "]
and therefore defines a maximal differential ideal with I N C[B;;]{t} = (0). O

Lemma 2.11. We keep the situation and notations as in Corollary 2.10. Then there exists
a matriz of initial values (X;;)(Pg) = D € GL,(C[Bi;]) such that the injective differential
homomorphism

7 C{ty, . til = CIBIIITI, f— > oW (f)(Ps)T*
keN

extends to a differential homomorphism

7o O{tr, ot} X, det(Xy) 7Y — CLBLIITN, Xig— Y 0W(X5)(Pe)T*,
keN

and the kernel I defines a mazimal differential ideal with I N C{t} = (0). Further, U :=
im(7) is a Picard-Vessiot ring with field of constants C.

Proof. We apply Corollary 2.10 with initial values (X,-j)(ﬁ’g) = 1,, obtaining the map

7 ClBisl{tr, ., i} [Xij, det(Xij) 71 = CIBIITN], £ — > 0™ (f)(P)T*.
keN
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39 2.3 Formal Taylor series

This implies the first part of the diagram

C[Bi;[{t} [ X5, det(Xi5) 1]

ClBi X, det(X ;) 1] /T —=2 im() C f[ﬁiﬂ [[T7]

L1

isomTLQ 7
|
(C{t}[Xyj, det(Xij) " @c CBi;]) /(I @c ClBy]) <— C{t}[ Xy, det(Xij) ]

where I = kern(7) with I N C[B;;]{t} = (0) and C[B;;]{t}[Xij, det(X;;)"]/I is a Picard-
Vessiot ring for d(y) = A(t)y over C|[B;;]{t}. Now the kernel I’ of the restriction

7o C{t}[Xij, det(X5) '] = im(7) € C[By][[T]]

is a differential ideal of C{t}[X;;, det(X;;) ™! with I’ N C{t} = (0). We choose a maximal
differential ideal I D I’ with I N C{t} = (0). Then the ring C{t}[Xij,det(Xij)_l]/f is
a Picard-Vessiot ring for the equation d(y) = A(t)y over C{t}. Further, by [Maul0,
Lemma 10.7], the differential ideal I ®¢ C[Bij] C C{t}[Xij,det(X;;)71] ®c C[By] is a
maximal differential ideal with (I ®@c C|[Bij]) N (C{t} ®@c C[Bi;]) = (0). Thus, the ring

C{t}[Xij, det(Xi;) ] ®c C[By;]/ (I ®c C[Byj))

is a Picard-Vessiot ring for 0(y) = A(t)y over C{t} @c C[B;;]. As in [PS03, Proposition
1.20.2], one proves that two Picard-Vessiot rings for the same equation over a differential
ring with constants C[f;;] are differentially isomorphic. More precisely, in the notations of
[PS03, Proposition 1.20.2], let By and Bs be the fundamental matrices of Picard-Vessiot
rings R and R» with constants C [Bi;] and denote by R; > R; (i = 1,2) the Picard-Vessiot

rings obtained from extending the constants of R; to the algebraically closed field C (Bij)-
If we imitate the proof we obtain from

$1(B1) = ¢p2(B2) - M

that the rings Ry and Ry are differentially isomorphic, where M € GL,(C(5;;)) and
¢; : Ri = (R1 ® Ry)/J denotes the differential ring morphism as in [PS03, Proposition
1.20.2]. Since ¢; : R; — ¢;(R;) is a differential ring isomorphism and ¢;(B;) € GLy(¢:(R;))
(1 =1,2), we have

M = ¢2(Ba) ™" - ¢1(B1) € GLo(C[By)).

Thus, the rings Ry and Ry become differentially isomorphic by M € GL,(C[8;;]). We
continue with the proof of the lemma.
Hence, we obtain an (C{t} ®c C|p;;])-differential isomorphism

v+ C{t}[ Xy, det(Xi)) ™) ®c ClByl/ (I @c C[By5)) “23 OBy, ){t}[ X, det(Xiy) ~1]/1.

Moreover, the Picard-Vessiot ring C{t}[Xij,det(Xij)_lA]/IA > (C{t}[X,j,det(Xi5) Y] ®@c
1)/(I ® 1) lies inside C{t}[X;;,det(X;;) 7] @c C[Bi;]/(I @c C[Bij]). Thus,

1 0 1o(C{t}[Xij, det(Xy;)~Y/I) C im(7)
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40 2 Bounds for the differential Galois group

is isomorphic to the Picard-Vessiot ring C'{t}[X;;,det(X;;)~']/I and has C as its field of
constants. Denote by Y] a fundamental solution matrix of C[8;;]{t}[Xi;,det(X;;)~1]/1.
The isomorphism ¢o maps a fundamental solution matrix Y5 of

C{t}[Xij, det(Xi) '] @ C[By)/1 © C[By]
to a fundamental solution matrix t2(Y2) = Y; - D of C[B;;]{t}[Xi;,det(X;;)~1]/I with
D € GL,(C[Bi;]). The C[B;;]-isomorphism ¢; is defined by
1 . .
L i — Z ﬁﬁijT] and ¢ : Xij +I+— Za(k) (XZJ)(Pﬁ)Tk
i k
Thus, we obtain a C[f;;]-differential isomorphism ¢ := ¢ o to defined by
1 : R = .
prti— Y ﬁﬁijTﬂ and ¢: Xy 41— > 0% (D" Dy - Xim)(Ps)T".
i 7 k m=1

This defines the differential homomorphism

7o O{ty, o 1} Xy, det(Xyg) '] — CLBGIITN, Xig— Y 0W (X)) (P)T*
keN

with initial values (X;;)(Pg) = D € GL,(C[8;;]) in the Picard-Vessiot ring U := im(7). O

2.4 The specialization bound

If not otherwise stated, the notation is as in the preceding sections.

Proposition 2.12. Let 9(y) = A(t1,...,t;)y be a matriz differential equation over the
differential field F' = C(ty,...,t;) with A € C{t1,....t;}"*", and let

o:R—=Clz], t— f=(f1,.., f1)

be a specialization of R = C{t1,...,t;} such that C{fi,..., fi} = C|z]. One applies Lemma
2.11 and Lemma 2.6 to the matriz equations d(y) = A(t)y and 9(y) = o(A(t))y =
A(f)y respectively, where the initial values for the Taylor extension of O(y) = A(t)y are
(Xij)(Pg) = D € GL,(C[Bi5]) and keeps their notations. Then there exists a surjective
differential homomorphism & and initial values (X;;)(P.) = D € GL,(C) such that the
following diagram commutes

C{t}[Xij, det(Xij) '] —T> O[2][ X5, det (Xi5) "]

Proof. The conditions on ¢ imply that ¢ is a surjective differential homomorphism. We
extend o to f§;; by

o : Bij v cij,
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41 2.4 The specialization bound

where we choose ¢;; € C' such that
o(ti; — Bij) = & (f:) - cij € (2 = Q)cpy-

This is possible since for every polynomial f(z) € C[z], the polynomial f(z) — f(c) ob-
viously has a zero at c¢. In the case when f(z) = ¢ is a constant, we obtain the zero
polynomial by f(z) — é Further, we set the initial values for the Taylor extension of
O(y) = o(A(t))y to (Xi;)(P.) :== D = o(D) € GL,(C). Thus we have that o(Pg) = P..
We define the map

o:U—U Yy IN()P)TH = Y 0 (a(f))(a(Ps)T*.
keN

We are going to show that & is well defined. Let § := 3., 8% (g)(Ps)T* and f :=
3L OB (£)(Ps)T* be elements of U. Then we have § = f if and only if 9% (g)(Ps) =
R (f)(Pg) for all k € N. Let g,f € C{t}[Xij,det(X;;)""] such that § = f. Since
o(Pg) = P. we obtain from the fundamental theorem of homomorphisms that there exists
a unique homomorphism 6 such that the diagram

ClBij){t}[ Xz, det(Xy5) 71 —= C[][Xij, det(Xi5) ']

: .

CLBI{E} X, det(Xyj) 7]/ P = = Cl=] (X, det(Xiy) 7]/ Pe
commutes. This yields 9*) (o (g))(P.) = 0¥ (a(f))(P,) for all k € N. Thus we get
(D> oM (9 (Pe)T*) = D 9W(0(9))(Pe)T"
k = ia(’“) (@ (NPT = 6> 0™ (f)(Ps)TY).

k

Hence, ¢ is well defined.
Since ¢ is induced by the differential homomorphism 7Too and is well defined, we obtain that
0 is a differential homomorphism. Then by the definition of & the diagram commutes. [

Note that the condition C{fi,..., fi} = C[z] in Proposition 2.12 was made to exclude the
trivial case. As a direct consequence we obtain

Corollary 2.13. There exist maximal differential ideals I C C{ty, ...,t;}[Xi;, det(X;;) 1]
and I C C[2][X;j,det(X;;) 7] such that I N C{t1,....t;} = (0), INC[z] = (0) and such
that the specialized ideal o(I) satisfies

o(l)cC .
In particular, it holds that o(I) N C[z] = (0).

Now we are ready to prove the specialization bound.
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42 2 Bounds for the differential Galois group

Theorem 2.14. Let C be an algebraically closed field of characteristic zero and F =
C(t1,....,t1) the differential field in the | differential indeterminates t = (t1,...,t;). Let
d(y) = A(t)y be a matriz differential equation with A € C{t}"*". Moreover, let

ot f=(f1,.., f1)

be a specialization in the integral differential ring R = C|z], and suppose that C{f} = R.
Then the differential Galois group H(C') of the specialized equation 0(y) = A(o(t))y over
F = C(2) is a subgroup of the differential Galois group G(C) of the original equation
d(y) = A(t)y over F.

Proof. Let R = C{t1,...,t;}. Since A(t) € R"*", we can define a differential structure on
R[Xij,det(X;)~"] by
9((Xi5)) = A(t)(Xij)- (2.2)

Furthermore, let I be a maximal differential ideal of R[X;;,det(X;;)~!] with I N R = (0)
as in Corollary 2.13 and denote by

S = R[X;j,det(X;;) /1
the differential ring extension S/R. We have an injection
S — F[Xij,det(X;;)""/(I)

in a Picard-Vessiot ring for 0(y) = A(t)y. Let Z;; be the images of X;; in S, i.e., the
matrix

(Zi5) € GLn(S)

is a fundamental solution matrix for d(y) = A(t)y. We define new variables Y;; via the
relation

(Xij) = (Zij)(Yij). (2.3)

We get the inclusion of rings
R[X;5,det(Xi;) "] € S[Xy5, det(Xi;) '] = S[Vy, det(Yi;) ']

and
C[Yij, det(Yi;) '] € S[Vij, det(Vi;) ']

The differentiations on R[X;;,det(X;;) ™! and S[X;;, det(X;;)~!] are given by the differ-
entiation on S and by equation (2.2). Since the matrix (Z;;) € GL,(S5) is a fundamental
solution matrix, it follows from the computation of

A(Xij) = 0((Xi5)) = 0((Zi5))(Yig) + (Zi) (Vi) = A(Zij) (Vi) + (Zi5)0((Yi))

that 9(Yi;) = 0. Thus, the derivation on C[Y;;,det(Y;;)!] is trivial and is defined on
S[Y;j,det(Y;;) 1] by the derivation on S. The Galois action of Galy(S/R) on the above
rings is induced by the action on S. Therefore, Galy(S/R) acts trivial on R[X;;, det(X;;) ™.
Since (Z;;) is a fundamental solution matrix, we get for v € Galy(S/R) the representive

M € G(C) < GLW(C) viay((Zy))) = (Zis) M.
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43 2.4 The specialization bound

Hence, the action of v € Gal(S/R) on Y;; is represented by v((Y;;)) = M ~1(Y;;). Further-
more, Lemma 2.5 induces a bijection between the differential ideals of R[X;;,det(X;;)!]
satisfying Condition 2.3 and the ideals of S[X;;,det(X;;)~!] which are differential and
Galp(S/R)-invariant ideals and satisfy Condition 2.3. Now Lemma 2.4 yields a bijec-
tion between these ideals and the Galy(S/R)-invariant ideals of C[Y;;,det(Y;;)"], ie.,
we consider the composition of maps 6 ' o ¢ where the notation is as in Lemma 2.4 and
Lemma 2.5.

R[X;j,det(Xy5) "] S[Xy5, det(Xy5) "] = S[Yij, det(Yiy) '] O[Yy, det(Yy;) ']
U U U U

N S ) S o

Thus, the maximal differential ideal I corresponds to a maximal Galy(S/R)-invariant ideal
Qr = 1N C[Yy, det(Yiy) ],

where I := (I) is the ideal in S[Y;;,det(Y;;)~!], and (I) is the ideal generated by I over
S[Xij,det(X;;)"'. Then Qg is a radical ideal. Its zero set W is minimal with respect
to Galp(S/R)-invariance. Hence, W is a left coset in GL,(C) for the differential Galois
group G(C) < GL,(C). We will show that the matrix 1, belongs to W. From the fact
that the matrix (Z;;) is a zero of I, we conclude that the ideal I lies in the ideal

J = < X — Zz’j ‘ 1<4,5<n > . S[Xij,det(Xij)_l].

The ideal J is also generated by the set { Yi; — d;; }i; over S[X;;, det(X;;)~1]. Hence, the
zero set of J N C[Yi;,det(Y;;)71] is {1,}. Therefore, 1, € W and so we have W = G(C).

By Corollary 2.13 the differential ideal I specializes to an ideal o(I) C I which is contained
in the maximal differential ideal I of R[X;;,det(X;;)~!] with I N R = (0). Since o is
a surjective differential homomorphism, o (1) is a differential ideal of R[X;;, det(X;;)™!].
Further, o(I) C o(I)e; is a differential ideal of R[X;;, det(X;;) '] satisfying Condition 2.3.
Now one repeats the above argumentation in the case for the specialized equation, the
differential ideal I and the corresponding rings and fields.

R[Xij,det(Xy5) 7] S[Xij, det(Xy;) 7] = S[Yiy, det(Yi;) ™' C[Vij, det(Yy) ']

U U U U
I v (I) — I ot Q;
& 5 id
P 6_1
0(1)ex — (0()ex) = () ex e Qa(I)egC
n n n - n
I — () = I +—— Q
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The ideals Q7 and Q(j),, are defined as Qj := I N CY;5,det(Yi;) 7Y and Qo(D)ew =
U(I)ex N C[Y;5,det(Yi;) 7. The zero set of the ideal Q7 is the differential Galois group
H(C) of d(y) = A(c(t))y. Moreover, the inclusion I O o(I)e, implies the inclusion
Q1 D Qu(1).,- We are going to show that Q; D Q.

From Lemma 2.12 we obtain that we can extend o to a surjective differential homomor-
phism

o S[Xij,det(Xij)_l} = S[Y;j, det(Yij)_l] — S[Xij, det(Xij)_l] = S[Yij,det(}/ij)_l}.
In particular, the specialization & is well defined for the relations
(Xij) = (Zij)(Yij) and (Yij) = (Zij) " (Xij).
Let f € Q1 be one of the generators of @), say

f=Y ey
1

where ¢; € C and © = (i11, ..., inn) € N*™. Then via the map J, f is an element of
(5(f) =fe I~ = (I) C S[}/ij,det(yvij)fl] = S[Xij,det(Xij)fl].

Further, Lemma 2.5 implies that for suitable elements p € S[X;;,det(X;;)7!] and g €
I C R[X;j,det(X;;)~!] we can write f as

F=> pe-ar
K

Then & maps f to

—_

G(f) =) Vi Y =" 6(pr) - 0(ar) € (0(ew) = 0(D)ea C (I) =

i k

~n

Hence, we obtain f € Qj —In N C[Yij,det(Y;;)71]. We conclude that Q; D Qr, and
therefore we have H(C) < G(O). O

As a consequence of Theorem 2.14 we get the specialization bound in the language of
homogeneous linear differential equations.

Corollary 2.15. Let C be an algebraically closed field of characteristic zero and F = C (t)
the differential field in the | differential indeterminates t = (t1,...,t;). Let E be a Picard-
Vessiot extension over F' for the differential equation

L(t1, oty y) = y™ + a0y + L+ an(t)y € C {t,y}

and denote by G(C) its differential Galois group.

Let ' = C(z) be the rational function field and let f = (f1,..., f;) € C[z]' such that
Clz] = C{f1,..., fi}. Moreover, let E be a Picard-Vessiot extension of F = C(z) for the
specialized differential equation

L(f17' 7flv ) - y ) + al(f)y(n_l) +ot a'fl( )y € C[ ]{y}
and denote by H(C') its differential Galois group. Then H(C) < G(C).
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45 2.4 The specialization bound

Let G(C) be one of the classical groups with root system ® and denote by [ = rank(®) the
rank of ®. Let ¢y, ..., t; be differential indeterminates over C. We are going to realize G(C)
as the differential Galois group for a parametrized differential equation L(t1,...,t;,y) €
C{ty,....,t;, y} over C (t1,...,t;). We will proceed in the following way.

The construction that we provide is based on Corollary 2.15 and Proposition 2.1. But to
apply Corollary 2.15 we need a specialization L(f1, ..., fi,y) € C[z] {y} over the differential
field FF = C(z) of the parametrized equation above. In [MS96] C. Mitschi and M.F.
Singer developed a method to construct matrix differential equations d(y) = Ag&sy
over the rational function field C(z) which has a given connected reductive group as its
differential Galois group. Using the structure of the classical groups, we will show that
d(y) = AY¥5y leads to a specialization L(f1, ..., fi,y) € C[z]{y} over C(z). We can now
apply Corollary 2.15. Since the differential equation L(t1,...,;,y) comes from a matrix
differential equation d(y) = Agy with Ag € Lie(G)(C (t1,...,t;)), we are able to complete
our approach by making use of Proposition 2.1.

In Section 3.4 the construction of a matrix differential equation 9(y) y with
differential Galois group G(C') over C(z) following the ideas of C. Mitschi and M.F. Singer
is presented.

— AM&S
= Ag
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Chapter 3

Reductive linear groups

We start by resuming shortly some results on the structure of reductive linear algebraic
groups, their Lie algebras and abstract root systems. For an introduction to algebraic
groups, we refer to the standard literature, e.g. Humphreys [Hum98|, Springer [Spr98]
and Borel [Bor91]. The basic facts about Lie algebras and root systems can be found
in [Hum72]. In Section 3.3, we present the method for the proofs of the transformation
lemma. Finally, we construct a matrix differential equation over C(z) for a connected
reductive group following the ideas of Mitschi and Singer, and prove in the subsequent
section that for every such a group there exists a parametric equation.

3.1 Abstract root systems

Let V be an euclidean space with positive definite symmetric bilinear form (-, -). For every
non zero « € V, one can define a reflection o, by the formula

2(8,0)

(o, @)

oa(B8) =8 —

Denote by (3, ) the expression 2(8, «)/(c, ). Obviously, (8, «) is only linear in the first
variable. A finite subset & C V of a euclidean space V is called a root system in V, if &
satisfies

1. ® spans V and does not contain 0.
2. If a € ®, then the only scalar multiples of a are +a.
3. If a € @, then the reflection o, leaves ® invariant.

4. If a, p € @, then (B, a) € Z.

The rank of a root system & is defined as rank(®) = dim(V'). Let o, € ® be non-
proportional roots (i.e., 8 # £a). One calls all roots 8 + sa with s € Z the a-string
through 8. It can be shown that the a-string through [ is unbroken and that there are
r,q € Z™ such that the a-string through 3 goes from 8 —ra to B+ qa. A subset A C @
is called a basis, if A is also a basis of V and each root 8 can be written as

Z koo (3.1)

a€A
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48 3 Reductive linear groups

with k, € Z all non-negative or non-positive. The elements of A are called the simple
roots. Since A is a basis of V, we have card(A) = rank(®) and the expression in (3.1)
is unique. For a chosen basis A = {a1,...,a;}, we define the height ht of a root 5 =
SO kiay as ht(B) = St ki Tf all k; > 0 (resp. all k; < 0), we call the root § positive
(resp. negative) and denote the set of all positive roots by ®* (resp. ®7).

3.2 The structure of reductive linear algebraic groups and
their Lie algebras

Let G be a reductive linear algebraic group defined over C' and fix an embedding G — GL,,.
Denote by Lie(G) the Lie algebra of G. An important type of subgroup of a reductive
algebraic group G are the Borel subgroups, the maximal closed connected solvable
subgroups of G. Denoted by B < G such a subgroup. Then all Borel subgroups are
conjugate, and the maximal tori of G are contained in the various Borel subgroups. If we
choose a Borel subgroup B containing a maximal torus 7, then there is a unique Borel
subgroup B~ such that BN B~ = 7. The group B~ is called the opposite Borel subgroup
to B. The subgroup formed by all unipotent elements of B (resp. B~) will be denoted by
U (resp. U7).

After a suitable conjugation of G, one is able to choose these groups in GL,, such that they
have a nice shape: Denote by 7y < G the maximal diagonal torus, i.e., the group of all
diagonal matrices of G and by By the Borel subgroup with 7y < By consisting of all upper
triangular matrices of G. For X € G, let

ntX:6-5G YV~ Xyx!

be the inner automorphism of G. The differential d(int X') will be denoted by Ad X, and
the induced action is called the adjoint action. In the case G < GL,,, the automorphism
Ad X of Lie(G) is just conjugation by X, i.e.,

Ad X(A) = XAX! (3.2)

for some A € Lie(G). Let Ty < G be the maximal diagonal torus of G, and let X (7j) be the
character group. Let Ty act on Lie(G) via the adjoint action. Then Lie(G) can be written
as the direct sum of weight spaces

Lie(G)a := Lo == {A € Lie(G)|Ad T(A) = o(T)A for all T € To}

for a € X(7p). The set of all non zero weights is called the root system ®(7p, G) of G relative
to 7o, and the elements are called the roots. More precisely, we have a decomposition

Lie(G) =Lie(G) © € La, (3.3)
ac®(T,9)

whereas we mean by Lie(g)76 the fix point space, i.e., the space corresponding to the zero

weight. Since G is reductive and 7Ty is maximal, we have Lie(7y) = Lie(G)70. The spaces
Lie(G), are called the root spaces and they are of dimension dim(Lie(G),)) = 1. For
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49 3.2 The structure of reductive linear algebraic groups and their Lie algebras

a € @, one defines 7, = (ker «)°. The 7, are the singular tori of codimension 1 in 7.
Their centralizers Z, = Cg(7,) are reductive groups of semisimple rank 1 with Lie algebra

Lie(Z,) = Lie(Ty) @ LieG), @ Lie(G)_q

Then Lie(G), is the Lie algebra of the unipotent part U, of one of the Borel subgroups of
Lie(Z4). The groups U, are the unique Tp-stable subgroups of G with Lie algebra Lie(G),
and are called the root subgroups of G. Later, we will make use of the root subgroups for
the proofs of the transformation lemma. In [Car72], Carter shows how the root subgroups
Uy of G can be constructed from the Lie algebra Lie(G).

A toral subalgebra H of Lie(G) is a subalgebra generated by semisimple elements of Lie(G).
Now fix a maximal toral subalgebra H. Then it can be shown that H is a abelian sub-
algebra. Hence, ad H consists of commuting semisimple endomorphisms of Lie(G) and is
therefore simultaneously diagonalizable. Thus, Lie(G) is the direct sum of subalgebras

Lie(G)o = {X € Lie(G)| [H, X] := ad(H)(X) = a(H)X for all H € H},

where o € H* is an element of the dual space H*. The nonzero a € H* with Lie(G), # 0
are called roots and form a root system ® which is isomorphic to the root system presented
above. Thus, we have a decomposition

Lie(G) = Clie(g)(H) & € Lie() (3.4)

acd

called the Cartan Decomposition. It can be shown that the centralizer Cpe(g)(H)
of H in Lie(G) equals H. Moreover, the decomposition (3.4) is isomorphic to the de-
composition (3.3), and if we choose H to consist only of diagonal matrices, then the
two decompositions coincide. Let X;, Xo € Lie(G). One defines the Killing form s by
k(X7, X2) = trace(adX1adX3). Then & is a symmetric bilinear form on Lie(G) which is
non degenerate if and only if Lie(G) is semisimple. Since the restriction of x to H is also
non degenerated, we can identify H* with H. Let « € H*. Then there is a unique element
H, € H such that a(H) = k(H,, H) for all H € H. One defines the so called co-root as
H, = NQ%.
k(Ha, Hy)

We fix this notation for the co-roots H,. For a € ®, we denote by X, a basis element
of Lie(G)o. Then there exists a unique X_, € Lie(G)_, such that [X,, X_o] = Ha.
The elements X,, X_, and H, span a three dimensional simple subalgebra isomorphic to
Lie(SL2). Moreover, for a basis A = {ay, ..., } of @, the set

{Ho | € A}
forms a basis of Lie(7p). If o, 5 € ® such that a + 8 € ®, then
[Lie(G)a; Lie(G)g] = Lie(G)a+s-
For each root a € ®, it is possible to choose the basis elements X, € Lie(G), such that

[Xa, X_o] = H,, (3.5)
[Xa, Xg] = £(r + 1) Xays, (3.6)
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50 3 Reductive linear groups

where r is the smallest integer for which 8 —ra is a root of ® (see [Car72, theorem 4.21]).
Then the set
{Xa, Hy, e ®, 1 <1 <1},

where X, satisfy (3.5) and (3.6) from above, is called a Chevalley basis of Lie(G).

Theorem 3.1. Let {X,, H; = Hy, | a« € ®, 1 < i <[} be a Chevalley basis of Lie(G).
Then the resulting structure constants lie in Z. More precisely:

1 [H, Hj)=0,1<i,j<lI,
2. [Hi, Xa] = (0, 0i) Xa, 1 <i <1, a €,
3. [Xa,X_o] = Hy is a Z-linear combination of Hy, ..., Hy,

4. If a, B are independent roots, B — ra, ..., B + qa the a-string through B, then
[(Xo, Xg] =0 if ¢ =0, while [Xq, Xg] = +(r+1)Xqqp ifa+ [ € .

Let X, € Lie(G)(C) be an element of a Chevalley basis. Then ¢ := ad(X,) is a nilpotent
derivation of Lie(G)(C). Say 6¥ = 0 for k € N\ {0}. The image of § under the exponential
map

(5k—1

_ 1 2 1 3

defines an automorphism of Lie(G)(C) by [Car72, Lemma 4.3.1]. Now let ( € C. Since the
same is also true for ¢ - ad(X,), we define the parametrized automorphism of Lie(G)(C)
by

Ua(¢) = exp(¢ ad(Xa)).

From the formula
Ua(€1)Ua(C2) = exp(¢1 ad(Xa)) exp(¢2 ad(Xa)) = exp((C1 + ¢2)ad(Xa)) = Ua(C + G2)

we see that the inverse of U, (¢) is Un(¢) ™ = Ua(—0Q).
We summarize the effect of the automorphism U, (¢) on the elements of a Chevalley basis
in Lemma 3.2 presented below.

Lemma 3.2. Let {X,, H; = H,, |a € ®, 1 <i <1} be a Chevalley basis and Ug(¢) an
as above defined parameterized automorphism of Lie(G(C)). Then

1. Us(¢). X5 = Xg.
2. Up(Q)-Xp = X_p+ (Hg — (Xp.
3. Us(C).Hg = Hg — 2(X 3.

4. Let 8, a be linearly independent and a—rp, ..., a+qB the B-string through o.. Define
mgao0 =0 and mgq; = :I:(T:.”). Then

q
Uﬁ (C)Xa = Z mﬁ,a,iCinﬁ-l—oz'
=0
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51 3.3 Transforming differential modules

5. If B, « are linearly independent, then we have Ug(().Ho = Ho — (o, B) (Xp.

The group generated by the U,(() is precisely the root subgroup U, of G in the above
discussion. The whole construction of U, ({) was done over the algebraically closed field
C of characteristic 0. But we want to apply these results to a non algebraically closed
differential field (F,0r) with C' as its field of constants. Carter shows in [Car72, Section
4.4] that the results are also valid over arbitrary fields. Furthermore, in Lemma 3.2 we
have written Ug(().X for the action of Ug(¢) on X € Lie(G). Since all the elements of G
and Lie(G) are represented by matrices, we have

Up(€)-X = Us(Q)XUs(—=() = Ad(Up(¢)) X.

3.3 Transforming differential modules

Let (F,0r) be a differential field, and 0(y) = Ay a matrix differential equation with
associated differential module M, and fundamental solution matrix Y. Suppose that Y
generates a Picard-Vessiot extension E over F. Then (Y)Y ! = A € F™ " This
motivates the following definition:

Definition 3.3. We call the map
16 : GL,(F) = F™", B 9(B)-B™!
the logarithmic derivative.

Observation 3.4. Let eq,...,e, be a basis of M. Then we can transform it to another
basis €1, ..., é, of M. Let this transformation be given by the matrix B € GL,(F). The
effect on the defining matrix A is

BAB™' +0p(B)B™! =: A.

In particular, the matrices A and A are differentially equivalent (see Definition 1.4). Using
Definition 3.3 and equation (3.2), we can write BAB~! + 0p(B)B~! as

A= Ad B(A) +15(B). (3.7)

Choose B as a parametrized root group element Ug(§) for some 5 € ® and write A as a
linear combination of elements of a Chevalley basis. Then Lemma 3.2 explains in which
root spaces the image of A under Ad(Ug)(§) lies. Thus, by a good grasp of the root system
and an educated choice of A, we can handle the first summand of the right hand side of
equation (3.7). The following proposition due to Kovacic in [Kov69] helps us to control
the second term.

Proposition 3.5. Let H < GL,(F) be a linear algebraic group. Then the restriction of
16 toH
lé’?—[ H— Lie(H)

maps H on its Lie algebra Lie(H).
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52 3 Reductive linear groups

Example 3.6. Let G = SL3 and F = C(z). The root system ® is of type Aa (see
[Hum72, Section 1.2]) and as a basis of ® we take A = {ay,a2}. Then & consists of the

vectors & = {fay,+a9, +(a; + a2)}. The following matrices form a Chevalley basis of
Lie(SLiy1):

Ho, = Enn — E, Ha, = Eyy — E33,  Xo, = Eng, Xay = Eas,
Xa1+a2 = E137 X*Oq = E217 X*O[g = E327 Xa1+a2 = E31'

All of this can be found in the next chapter. We are going to transform
A=Xoy, + Xop + 22Hoy + 2X 0.

In the first step we differentially conjugate A by the root group element U_,,(z?). By
linearity and Lemma 3.2, we get for the adjoint action of U_,,(2?) on A

Ad(U-a, (2))(A) = Ad(U-0,(2%))(Xay) + Ad(U-0,(2%))(Xa,)
+22Ad(U-0,(2%)) (Has) + 2Ad(U-a5(2%)) (X —ay)
= Xoy + Xoy — 2°Hoy — 22X 0y + 22Hoy + 224X 0, +2X o,
+Z3Xfa1fa2
= Xo +Xo +2X o, +2°X 0, ++25X 00

The logarithmic derivate I§(U_q,(2?)) can be computed as
0 0 0 1 0 0 0 0 0
0 0 O 01 0]=10 0 0]=2:X_,,.
0 2z 0 0 2z 0 0 2z 0

Hence, we obtain
A= Ad(U_0,y(Z2)A+16(U_0y(2%) = Xy + Xy +2X 0y + (22 4+22)X 0, + 22X 0y

We differentially conjugate A by U_ay—ay(2). Again, we begin with the computation of

Ad(U_p,—ay(2))A. We get

Ad(U*alfaz (2))"4 = Ad(U*alfaz (Z))Xal + Ad(U*CH*OlQ (Z))Xaz
+2Ad(U—g; 05 (2)) Xy + 2 Ad(U—0y -0 (2)) X019
+28Ad(U— 0y -5 (2) X 0y —an
= Xy +2X gy +Xay —2X 0, +2X o) + 21X 0, + 22X )
= Xoy +Xap + 24+ 2)X 0y + 28X 0,0

It is left to add the image (6(U_q,—a,(2)) of U_q,—a,(2) under the logarithmic derivate
to the above sum. It is easily calculated as

000 1 00 00 0
00 0 01 0]|=[000]=X0 0.
100 —z 0 1 100

Summing up by using Observation 1.6 we conclude that

A= Ad(U-a;-as(2)U-qy (22))(A) +16(U-a1-a(2)U—as (22))
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53 3.4 A modification of a result of Mitschi and Singer

is equal to
) 0 1 0
A=Xo +Xop + (2 + DX 0y ap + (2P +2)X 0, = 0 0 1
(24+1) (*+2) 0

3.4 A modification of a result of Mitschi and Singer

In this section, the differential field is (C'(z),d¢(z)), i-e., a rational function field in one
variable z over an algebraically closed field C' of characteristic 0 with standard derivation

0=41.

dz
In [MS96] C. Mitschi and M.F. Singer developed a solution of the inverse problem for
connected algebraic groups over C(z). If in addition the group is semisimple, one of their

results reads

Theorem 3.7. (C. Mitschi and M.F. Singer)

The field C is supposed to be algebraically closed and of characteristic 0. Every connected
semisimple linear algebraic group G is the differential Galois group of an equation 0(y) =
(Ao + A12)y over C(z) where Ay, A1 are constant matrices.

In the proof (see, for example, [PS03, Theorem 11.30]), the authors describe how to choose
the matrices Ag and A; in Lie(G)(C'). For our purpose, we need an equation of a special
shape, which is not given. Therefore, we have to use different matrices Ag and A; than
Mitschi and Singer. The proof of Corollary 3.12, which we obtain in this way, will be an
imitation of the proof of Theorem 3.7 along with some small modifications. At first we
provide the most important tools for the proof of the Corollary 3.12.

Note 3.8. Let K be a field of characteristic zero and G a connected linear group. Re-
member that there is a correspondence between torsors and the first cohomology sets
HY(K/K,G(K)). In some cases H'(K/K,G(K)) becomes trivial. In [Ser97, III 2.3 Theo-
rem 1’] it is shown that if the cohomological dimension cd(K) is at least one, then the first
cohomology set is trivial. A field K is called a Cj-field if every homogeneous polynomial
f(x1, ..y zp) € K [21,..., 2] of degree d > 1 has a nontrivial solution in K™ if n > d. If
K is a C;-field, then [Ser97, II 3.2 Corollary] yields cd(K) < 1. It can be also found in
[Ser97, 1T 3.3 b] that C(z) is a C-field.

We want to apply the lower bound criterion, i.e., Theorem 2.2. Thus, we have to ensure
the condition that Z is the trivial torsor. This is automatically satisfied if G is connected
and the differential ground field is a C;-field. To ensure the condition of connectness we
will apply

Observation 3.9. Let W be a finite dimensional C-vector space and let Ag, ..., A, be
elements of End(W). Then the differential Galois group G of the differential equation
Iy) = (Ao + A1z + ... + Ap2™)y over C(z) is connected.

Proof. Denote by E the Picard-Vessiot extension of d(y) = (31", Aiz")y over C(z). Then
Theorem 1.13 implies that F = E9" is a finite Galois extension of C(z) with Galois
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54 3 Reductive linear groups

group G/G°. This extension can be ramified only above the singular points of d(y) =
(>, AizY)y. Since the only singular point is co we get F = C(z). Thus G = G is
connected. O

The key of the proof is the following

Definition 3.10. Let p : G — GL(WW) be a faithful representation. Then the G-module
W will be called a Chevalley module if:

e G leaves no line in W invariant.
e Any proper connected closed subgroup of G has an invariant line.

The existence of a Chevalley module is guaranteed by

Lemma 3.11. (Mitschi and M.F. Singer)
Let G be a connected semisimple linear algebraic group. Then there exists a Chevalley
module for G.

For a proof we refer to [PS03, Lemma 11.34].

Corollary 3.12. Let G be a connected semisimple algebraic group, ® the root system, A
a base of ®. Denote by

Lie(G)(C) = H(C) & P Lie(G)a(C)

the oot space decomposition of Lie(G)(C'), where H(C') denotes the Cartan subalgebra, and
Lie(G)a(C) = (Xa) denote the one-dimensional root spaces spanned by a basis element
Xo. Set Ag = > en(Xa +X_y). Then there exists Ay € H(C) such that the equation
O(y) = (Ao + A122)y over C(2) has G(C) as differential Galois group.

Proof. Lemma 3.11 ensures the existence of a Chevalley module p : G — GL(W). We
fix such a module. Then there is a induced injective morphism of Lie algebras dp :
Lie(G)(C) — End(W). In the following we will omit the symbols p (resp. dp ) when the
action of G (resp. Lie(G)(C')) on W is meant. With respect to the action of H on W we
obtain a decomposition of W = @,., W) into finitely many weight spaces W) for a finite
number of weights A € A C H*. Now we choose A; € H satisfying:

e The (A1) are non-zero and distinct for the simple roots o € A of Lie(G)(C).

e The A(A;) are non-zero and distinct for the non-zero weights A of the representation
dp.

Note that the roots and the weights are linear combinations of basis elements of H*. Let
C > Q be the smallest field containing the coefficients of these linear combinations. Since
C algebraically closed and C is a finite extension of Q, the extension C / C is infinite.
Thus we can choose an infinite basis of C' over C. Now let the coefficients of A1 be
such basis elements. Hence, A; satisfying the above conditions exists. We fix such an
Aj. Observation 3.9 and Proposition 2.1 yield that the differential Galois group of the
equation d(y) = (Ag + A12%)y is a connected algebraic subgroup H < G of G.
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55 3.4 A modification of a result of Mitschi and Singer

Suppose that H # G. Then H leaves a line, say (w)c(,) with w € W, w # 0 in W
invariant, since W is a Chevalley module. Theorem 2.2 states the existence of B €
G(C(z)) C GL(W ® C(z)) such that

B YAy + A,2*)B — B_ld%B € Lie(H)(C(2)).

Thus, the vector w = Bw € C(z) ® W has the property

[d (4 +A1z2>] b€ (D)), (3.8)

dz
where d% on C(z) @ W is defined as dilz(f ®v) = (%f@v). Suppose @ € C[z] @ W, where
the coordinates of W with respect to a basis of W have 1 as its greatest common divisor.
Otherwise one multiplies @ with a non-zero element of C'(z). Then equation (3.8) reads
as

d
[dz — (Ao + Ale)] W = cw

with ¢ € C[z]. Comparing the degrees yields ¢ = ¢y + ¢12 + c222. Now write @ =

Wy 2™ 4+ ... + wiz + wo with w; € W and w,,, # 0. At first we handle the case when m is

supposed to be m > 3. Then by comparing the coefficients of 22, z™*1 2™ we get the
equations
Awy, = —cowpy
AWm—1 = —ClWy — CQWpm—1

Aowpm + Arwm—2 —COWm — ClWim—1 — C2Wyp—2

MWy, + AoWi—1 + AlWip—3 = —CoWm—1 — C1Wm—2 — C2Wpp—3.

The first equation implies that w,, # 0 is an eigenvector of A; corresponding to a weight
space W) with eigenvalue —co = A(Ap).
The second equation can be transformed into

(Al + Cg)wm_l = —C1Wm-

The left hand side has no component in the weight space W) to which w,, belongs. So we
deduce that ¢; = 0. Moreover, we get w,,—1 € W), since all A\(4;1) are non zero.
The third equation reads as

Ame + (Al + 02)wm72 = —CQWm.

As above (A; 4 c2)wp,—2 has no component in Wy. The same holds for Agw,, since
[Hum?72, p.107, Lemma] yields that

Apwp, = Z (Xo+ X _o)wm € @(WA-FQ @ Wx_a).
aEA acA

This shows that ¢p = 0. Now we can write the last equation as

Aowm—1 + (A1 + 2)Wim—3 = Mwyy,.
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Due to the same arguments as above, the left hand side terms have no component in W.
We conclude that m = 0.
Now we discuss the case m = 2. This leads as above to the reduced system of equations

Ajwy = —cows

Aiw; = —cjwg — cowq
Agwa + Ajwg = —cowa — crwi — cawy
—211)2 + A0w1 = —Cywi — C1wy.

Again, we # 0 is a eigenvector of A; corresponding to the weight space W with eigenvalue
—cg = A(A1). Then the left hand side of

(Al + Cg)wl = —Cclwsy

has no component in the weight space W). Hence, it must hold ¢; = 0. Furthermore, we
get wy; € Wy, since all A(A;) are non-zero. Therefore, the third equation can be written
as

Agqwg + (A1 + 02)w0 = —CowW2.

By the same arguments as above, the left hand side has no component in W). Therefore,
we have ¢g = 0. Then the last equation reads as Agw; = 2ws. Since wy and ws are
elements of W), [Hum72, p.107, Lemma] yields as above that the left hand side has no
component in Wy. We conclude that m = 0.

If we assume m = 1, then we get the following system of equations:

A1w1 = —CW1

A1w0 = —Clwi1 — CWy

A0w1 = —Cowi — C1wo
—wi1 + Aowg = —cowy.

As above w; # 0 is a eigenvector of A; lying in the eigenspace W) with eigenvalue —cs.
Again, the left hand side of

(Al + Cg)wo = —Ccjwy

has no component in W). We deduce as above that ¢; = 0 and wyg € W). Then the third
equation writes as Agw; = —cowy. Due to the same arguments, the left hand side has no
component in Wy. Thus, we obtain ¢y = 0. Then the last equation writes as Agwg = w1.
Again, for the same reasons as above, Agwg has no component in W). Therefore, it must
hold m = 0.

This leaves us with the equation —(Ag + 22A;)wy = caz?wg. Comparing the coefficients
yields wyg € Wy and Apwy = 0 . So (wp)¢ is invariant under Ap and A;. Hence, it is
also invariant under scalar multiples, sums and bracket products of Ay and Ay. The next
step is to see that Ay and A; generate Lie(G)(C). Therefore, we construct polynomials
P,(T),P_o(T) € C[T] for each a € A such that

Pia(adAl).Ao = Xia-

56



57 3.5 Parametrized equations for connected semisimple linear algebraic groups

Let rank(®) = [, and to simplify notation do number —a; = ajy1,...,—y = ag. For

i€ {l,..,2l}, we set
21

Xa; = ) pijad’ (A1)(Ap). (3.9)

j=1
We have to check that solutions p; ; € C exist such that equation (3.9) holds. Equa-
tion (3.9) is equivalent to

20 21 21

a1
Xog =YY pijon(A) X, = | Y pijan(Ar) | Xe,.

j=1k=1 k=1 \j=1

Thus, we have to solve

a1(A1)  ai(A)? o ap(A)? Di
I N A IO
ag (A1) ag(A1)? - ag(A)* Di 21

where e; denotes the i-th unit vector. Let M (a1(A41),...,a2(A1)) be the matrix in equa-
tion (3.10). The determinant of M (a1(A1), ..., a2 (A1)) is well known as the Vandermonde
determinant. We can calculate det(M (aq (A1), ..., a(A7))) as

21
det(M (o (A1), ..,am(A1) = [T ew(Ar) - J]  ((A1) — ai(Ar)).
k=1

1<i<j<2l

The assumptions on «;( A1) imply det(M (a1(A1),...,a(A1))) # 0. Since the root spaces
{X+a}aen generate Lie(G), we conclude that Lie(G) is generated as an algebra by Ay and
Aj.
But then (wp)c is an invariant line under Lie(G). Hence, G has also an invariant line,
since G is connected. This is a contradiction to our assumption on the Chavalley module
W . This completes the proof.
We want to give an alternative end where the assumption on the «(A;) is not needed.
The calculation
Aqwg = Z Xowy + X_qwy =10
—— ——
a€A EWria EWy_o

implies that X,wg = 0 and X_,wy = 0 for each o € A, since by [Hum?72, Section 20.1,
Lemma] W is the direct sum of the weight spaces Wj.

The Lie algebra Lie(G) is generated by the root spaces { X+a},ca- Thus, (wo)c is invariant
under Lie(G) and under G. But this is a contradiction to our assumption on the Chavalley

module W. n
3.5 Parametrized equations for connected semisimple linear
algebraic groups

Let G be a connected semisimple linear algebraic group with representation in an n-
dimensional vector space and denote by Lie(G) its Lie algebra. Let ® be the root system
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58 3 Reductive linear groups

of Lie(G) and let A = {a,...,aq} be a basis of ®. Further denote by
(Xo, Hi=Hy, |a€®, 1<i<l}

a Chevalley basis of Lie(G). Let C be algebraically closed field of characteristic zero
and define the differential field F' := C(ty,...,t;) in the [ differential indeterminates ¢t =

(t1y .y ty).

Theorem 3.13. There exists a parameterized differential equation
n .
L{y,t) =Y ai(t)y? =0
i=0

over F' with differential Galois group G(C).

Proof. We define the matrix A := > -\ Xo + X o + Zizl tiH; € Lie(G)(F). Then
by Proposition 2.1 we have that the differential Galois group H(C) of d(y) = Ay is
contained in G(C'). By Corollary 3.12 there exists A; € H(C) such that the equation
Iy) = (X pen Xa + X_o + 22A1)y has G(CO) as differential Galois group. Since the H;
generate H(C) over C, we obtain a specialization o : ¢ — (c1 2%,...,¢, 2%) with ¢; € C
such that Zé:l o(t;)H; = A;. Thus, the specialized equation 0(y) = o(A)y has G(C) as
differential Galois group over C(z). Then Theorem 2.14 yields G(C) < H(C). Thus it
holds G(C') = H(C'). The theorem follows from the application of Theorem 1.20. O
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Chapter 4

A parametrized equation for SL;,

4.1 The Lie algebra of SL;,; (type 4))

Let [ € N\ {0} and denote by €1, ..., ¢4 1 the standard orthonormal basis of R‘+!. Further,
let (-,-) denote the standard inner product on R*!. Then by [Hum?72, Section 12.1] the
set

O:={¢—¢|1<i,j<l+1}

forms the root system of type A;. We can take the set A, which consists of the [ linear
independent vectors
A={a;:=¢—¢€41|1<i1<1}

as a basis of ®. The Cartan Matrix of type A; has shape

2 -1 0 0
-1 2 -1 0 0
0o -1 2 -1 0 0
0 0 0 O 0 -1 2 -1
0O 0 0 0 o 0 -1 2

where the Cartan integer (o, a;) = 2(oy, a;)/(ej, a;) is given by the entry at position
(i.4).

Let V' be a vector space of dimension dim(V) = [+ 1 over C and denote by SL; 1 the
group of all automorphisms A € GL;; satisfying det(A) = 1. Then it is well known (see,
for example, [Hum?72, p.2]) that the Lie algebra of SL;; is defined as

Lie(SLy41)(C) = {M e CH DX | er(ar) = 0},
i.e., the set of all endomorphisms of V' with trace zero. Evidently, the matrices
Eij; with 1 <4, <Il+1,i#j, and H; = Ej; — Ei—l—l,i—i—l, with 1 < </,

where E;; € C1*HL g the matrix having 1 as entry at position (i, j) and 0 elsewhere, form
a basis of Lie(SL;11)(C). Now we determine a Cartan decomposition for Lie(SL;;1) from

59



60 4 A parametrized equation for SL;1

this basis. Therefore, let T' = diag(\1, ..., A\;+1) be an element of the standard maximal
torus 7o < SLj;y1. Then, for i # j, 1 <i,5 <1+ 1, we have
T'E;T = %EJ (4.1)
J
and, for 1 < i <, we obtain
T~ H;T = H;. (4.2)

Equation (4.2) implies that the elements H; belong to the weight space of the trivial
weight. Since the H; are linearly independent, they form a basis of the Cartan subalgebra
H=(H;|1<i<l),=Lie(T)(C). To see that Lie(SL;41) is of type A; let us denote
by

Xi - 76 —C s diag()\l, --~7)‘l+1> — )\z

the fundamental characters. Then by equation (4.1) the vectors E;; span the one dimen-
sional root spaces (Eij). which correspond to the weights x;/x;. Moreover, from the
symmetry it follows that (Ej;) is the root space corresponding to the weight x;/x; which
is the inverse of the weight x;/x;. Then the root system ® of Lie(SL;41) is of type A; and
the Cartan decomposition has shape

Lie(SLH-l) =H @ <E€i_5j>o @ <E*(€i*€j)>c
1<i<j<l

where we assigned the matrix E;; to the root €; — ¢; and defined EEFEJ. as Eei,ej = L.
We check that {Hy, E;; |1 <k <[, 1 <i,j <lI} forms a Chavalley basis. The following
computation can be found in [Car72, Section 11.2]. First, we determine the co-roots.
Therefore, we define the matrices H;j := [E;j, Eji] = Ej; — Ejj. Then the computation of

[Hij7 Eij] =2k;; = (€ — €5, € — ej> E;;

implies that the H;; are precisely the co-roots.
Now let us define the map

0 : Lie(SL;11) — Lie(SLj1) , X — —XT.
Evidently, 6 is an automorphism of Lie(SL;;1) and satisfies the identities
0(Eij) = —Eji, (4.3)
0(X,Y)]) = -[X, Y = xTy" —vTXx" = [-XT, -YT] = [9(X),0(Y)]. (4.4)

We denote in the following by X, the matrix F;; where « is the root ¢ — ¢;. Thus,
equation (4.3) becomes
0(Xa) = —X_a.

For o, 8 € ® the number n, g € Z is defined by [Xq, Xg] = nq,Xa+s. If we apply 6 on
both sides of [Xq, X3] = nq,gXa+s, then we obtain with the help of equation (4.4)

~NapX-a-p = ~[Xa, Xp]" = [-Xa,~X}] = [X-0, X_g] = N0, -pX_a—p.
Hence, we have —nq 3 = n_qo,—g. But [Car72, Theorem 4.1.2] yields the identity
N Neap=—(r+1)%
This implies nq 3 = £(r + 1). We conclude that the above basis is a Chevalley basis.

60



61 4.2 The transformation lemma for SL;4q

4.2 The transformation lemma for SL;

In this section we present the transformation lemma for SL;y;. The proof is based on
differential conjugation, i.e., on the adjoint action and the logarithmic derivative. Since
both can be described by the roots, we start this section with the analysis of the root
system of type A;. Denote by (F,0F) a differential field of characteristic 0.

Lemma 4.1. Forn € {1,...,l}, let ®,, = (ay,...,q141-n)g be the set of all Z-linear com-
binations of the roots oy, ..., aq11_, which lie in ®. Define ®g = () as the empty set.

1. Then ®,, C ®; = ® is an irreducible subsystem of ® with ®,, ~ A,.

2. Fork € {1,...,n} there exists a unique root o € ®;} \ ®F | with ht(a) = k and « has

shape
l—n+k

o = E a;.

i=l+1—n

3. Leta € ®F\{® U{vs1-n= Zé:lﬂfn a;}} and let ht(a) = k. Then there exists
a unique & € A such that B=a+a € ®\ &  andht(B)=k+1. fa€Aisa
simple root and B — & is a root, then either B —a =« or f — & € @:_1.

4. The root system ® consists of the roots
J
O={ta==%) op=*4(e—¢1)|1<i<j<I)
k=i

Proof. The first point is a consequence of the Dynkin diagram of type A; (e.g., see [Hum?72,
Section 11.4]).

We prove the second point. Since @, is a root system of type A,, [Hum72, Section 10.4,
Lemma A] implies that there is a unique maximal root 7 in ®, which we will denote
by Yi+1—n. From [Hum72, Section 12.2, Table 2] we know that the shape of ;41— is
> icii1_n i Hence, 741y, is an element of @, \ @ ;.

We prove the assumption by two inductions where the first one is on n € {1, ...,1} and the
second one on k € {1,....ht(y41-n) = n}.

Let n = 1. Then ®; = ()4 is the set of all Z-linear combinations of ¢y such that they
belong to ®. Since the only scalar multiples of a root « are +a, we get ®1 = {ay, —ay}.
Hence, o is the unique root in ®; with ht(a;) =1 = k.

Let 1 <n <I. Let k= 1. Then the unique root o € ®; \ ® | with ht(a) = 1 is
ap41-n. Let 1 <k <ht(v41-n). Then by the induction assumption on k there exists a
unique root o with ht(a) = k — 1 and shape

l—n+k—1

o = E a;.

i=l4+1—n

For the simple root a;_, 1 € A, we compute the integer (o, oy_p1k) with the help of the
Cartan matrix as

l—n+k—1 l—-n+k—1
() =( Y o)=Y (@ a ) =—1
i=l+1-n i=l+n—1
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62 4 A parametrized equation for SL;1

Then the image of o under the reflection oq,_, ., is

Tay_pin(@) = @ — (@, pik) A nik = @+ QU pyik-

This implies that a+ ;1 is a root of ht(a+a;_n1x) = k and lies in @7 \@:{_1. Suppose
there is another root 3 € ®;F \ @ | with ht(8) = k and different from o + oy, 14 . Then
[Hum72, Section 10.2, Corollary]| yields that we can write 3 as the sum 5 = &; + ...+ @y, of
simple roots &; € A, = {ay, ..., 11} where the @; are not necessarily distinct, in such a
way that for 1 < ¢ < m each partial sum a1 +...+@; is a root. In particular, a3 +...+ a1
is a root and ht(a; + ... + &,—1) = k — 1. We assume that a3 + ... + @n—1 # . Then the
uniqueness of « yields @1 + ... + a1 € (ID:LF_I. Therefore, we have

B - (@1 + ...+ @m—l) = Qy1-n (4_5)

where &; # aj41-p, for all i € {1,...,m — 1}. We denote by w the minimum of the indices
of the simple roots a,, = @; in @ + ... + &y,—1. Then equation (4.5) implies @ > [+ 1 —n.
Let n € N such that w =1+ 1—n. Weobtainl+1—n > [+ 1—n or equivalently
n < n. Hence, the induction assumption applied on n yields that the root & + ... + dupn—1
of height k£ — 1 has shape

I—A+k+1
a1+ ...+ am_1 = Z ;.
i=l+1-7
Assume [ +1—n > 1+ 2 —n. We compute
l—n+k-1
Braiin) = D (@i 1-n) + (U1, p1n) = 2.
i=l+1-7
Thus, the reflection o,,,, , maps 3 to
lI—A+k—1
Oorn(B) =B =241 0= D =01 n (4.6)
i=l+1-7

Since the right hand side of equation (4.6) is not a root, it holds [ +1 —n =142 — n.
Then S is the root
l—n+k
B = Z O+ Qy1—pn = O+ Q_ptk
1=l4+2—n
constructed above, which contradicts to the assumption that 8 # a 4+ aji1_p.
It is left to check that the sum

l—n+k—1
o+ Q= Z o; + Q;
i=l+1-n
for aj € {oy,...,u41-n} \ {y—pn4x} is not a root. This is done by comparing the root

lenght of o + a; with «;.
From [Hum?72, Section 12.2, Table 2] we obtain that the irreducible root system ®,, of type
A, contains only long roots, i.e., all roots of ®, are of equal length. Further, [Hum72,

62



63 4.2 The transformation lemma for SL;4q

Section 9.4, Table 1] implies that for two roots a, § of ®,, which are of equal length and
nonproportional it holds {(a, 8) = (8, o) = 1.
Now we check that o + o is not a root for some o € {oy,...,0041-n} \ {0y—p4i}. For
je{l+1—n,...,l—n+k— 1}, we compute

(a+aj,a) = (1= d111-ng)(aj-1,a5) + 2{aj, ;) + (1 = 6—nyr—1,5) {1, a5) > 2.

Further, for j € {{ —n+k+1,...,1}, we get (o + aj, ;) = (o, ;) = 2 where we have
to assume n > 3. Thus, the sum a + «; has a different length than the roots of ®, and
therefore can not be a root of ®@,,.

Hence, o + a4k is the unique root in @, \ @ | with ht(a + a_pn4x) = k and has the

proposed shape of
l—n+k

o+ Qpptk = Z Q.
i=l—n+1

Now we show the third assertion of the lemma.
Ifaec &\ {0, U{yni1 = St 1 @i}}, then ht(a) = k < ht(y_p41) and in
particular, by Lemma 4.1. 2, there exists a unique 8 € ®; \ ® , such that ht(8) =
k41 < ht(v;—pn+1). Hence, the simple root 5 —«a € A has the stated property. Let & € A
be different from 8 — o and let 8 — & be a root. From the uniqueness of @ we obtain
B—a¢®f\ & |. Therefore, 8 —a € ® | holds.
Finally, we prove the last point of the lemma.
Evidently, we have ® D [J'_,(®; \ ®;_1). Let a = S>'_, ki € ® and let j € {1,...,1} be
minimal with k; # 0. Thus, « is an element of ®; \ ®;_;. We obtain the disjoint union
@ = Uimy (i \ &i1). O
Lemma 4.2. Letn € {1,...,l} and denote by v; the root of mazimal height in @, ,_,. Let
Ag=" Xo, +3 " a, X, +2 gea- apXp with ay,,ag € F. Then there exists U € U~
such that

l l—n+1
UAU +oUU™ = Xo, 4+ > Xy + > agXp
=1 =1 ﬁe@;_l

with a-,;, ag € F.

Proof. We prove for each k € {1,...,n — 1} the following claim: For the matrix

l l—n
A1 = KXoy + > a, Xy + > asXp+ > aaXa
i=1 i=1

BeED, a€P,\®, | ht(a)>k

n—1

there exists U € U~ such that

l l—n
UA,_ U +oU)U™! = ZXO,Z. + Za%,X% + Z asXp + Z o Xy =: Ak
i=1 =1 Bed, aedy; ht(a)>k

where a.,, ag, a, and a,;, ag, a, are elements of F'. Note that in the following we will
sometimes write @, for ¢, \ ®, ;.
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64 4 A parametrized equation for SL;1

We want to remove the part of A;_1 which lies in the root space corresponding to the root
a € ®,\®, _, with ht(a) = k. Then Lemma 4.1.3 yields a unique simple root & € A such

that —a+a =4 € &\ @' | and ht(8) = k+ 1. In other words, for —3 =: € &\ &, _,
it holds that B 4+ @ = «a. Motivated by this we differentially conjugate Ap_1 by the
parametrized root group element U B(C ) € Z/{B' With the help of Observation 3.4 we obtain

l n—1

Us(O) AU + 05O " = 3 AdU(0)(Xa) + Y ay, Ad(U5(0))(X5,)
=1 i=1

+ 3 GAdUO) X+ Y aAdU(O)(Xa) + AU()U(O) 7

e, a€d,, ,ht(a)>k
(4.7)
For the first summand of the right hand side of equation (4.7) Lemma 3.2 yields
l q
D AU (Xa)) =D O my o, X 4ip)- (4.8)
i=1 i=1 j=0

We have to determine for which 1 < j < oo the sum oy —1—36 is a root of ®. If j = 1, then
Lemma 4.1.3 implies that a; + B is either a or o + 3 € ® .. Moreover, for all j > 1, the

sum «a; + j is not a root, since ht(8) = k + 1 and Lemma 4.1 implies that all coefficients
of all roots of ®* are equal to 1. Hence, we otain for equation (4.8)

l l
D AAUL(0))(Xar) €Y Koy +Cmyg o Xa+ Y Lie(SLia)s. (4.9)

i=1 =1 ped,

Again by Lemma 3.2 the second summand of the right hand side of equation (4.7) can be

written as
Za%Ad Z Zmﬁ LX), (4.10)

=1 7=0
41— fori€{l,...,l—n}and B €, \ P, |,
we conclude that ~v; + j B is not a root for j > 0. Hence, equation (4.10) reduces to

Since 7; is the root of maximal height in ®

l—n l—n
Z a, Ad(Us(Q))(Xy,) = Z Ay Xy (4.11)
i=1 i=1
The third summand is
q
D agAdU5(O)(Xp) = > O om0 X, 5). (4.12)
Beq)n 1 BE(I)TL 1 JZO

Obviously, if 8 +jﬁ is a root for j > 0, then —|—j5 € ®, \ @, , and ht(8 +jB) >k+1
since ht(3) = k + 1. Thus, equation (4.12) can be reformulated as

D apAdUg(O)(Xp) € D apXg+ Y Lie(SLip)s. (4.13)

Bed, Be®, BED,, ht(B)>k+1
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65 4.2 The transformation lemma for SL;4q

We get for the fourth summand of equation (4.7)

Z aaAd(UB(C))(Xa) = Z aa(z mB7a’jCan+j[})' (4.14)
=0

acd;, ht(a)>k acd;, ht(a)>k

Since a,@ € &\ &, the coefficient of a,, in o + jB is greater equal than 2 for j > 1.

n—1’
Hence, a + jf is not a root. Thus we can translate equation (4.14) into

Y aAdUHO))(Xa) = Y. aaXa (4.15)

a€d,, ,ht(a)>k a€d,, ,ht(a)>k

The last summand of equation (4.7) must still be checked. From Proposition 3.5 we know
that the logarithmic derivative [§ maps an element Uz(C) € Uy to Lie(Us) = Lie(SLyy1) 5.
Therefore,

A(U(0)U4(Q) " € Lie(SLis1), (4.16)

with ht(3) =k + 1 and 3 € ®;, \ @, ,. Putting the equations (4.9), (4.11), (4.13), (4.15)
and (4.16) together, we obtain

l—n

l
A € aaXa+mj01CXa+ Y Xa,+ > a3, Xy + Y Lie(SLiy1)s
=1 =1 BED

n—1
+ Z Lie(SLl+1)5.
BEDy ht(B)>k

Hence, with m B’d’lg = —a, the proof of the claim is complete.

Using the claim, one then proves by induction that for each k € {1,...,n — 1} there exists
U € U™ such that

l l—n
UAU ™ +0(U)U™ €Y Xo, + > Lie(SLis1)y, + » Lie(SLit1)s
i=1 i=1 Bed

n—1

+ ) Lie(SLiy1)p
BE®, ht(B)>k

In particular, we get for k = n — 1 the assertion of the lemma. ]

Lemma 4.3. Let A € Yt Xo, + H+ Y 54 Lie(SLip1)s = Yi_; Xa, + Lie(By) and
define M ={y; € &~ | i =1,...,1} as the set of roots of mazximal height of all subsystems

(I)l_+1—z" Then there exists U € U, such that

l
UAU '+ 000U €Y Xo, + Y Lie(SLit1)a
i=1 aeEM
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66 4 A parametrized equation for SL;1

Proof. We start by proving the following claim:
Define for k = 1, ..., 1 the matrix A as A, := 22:1 Xa, +Z§:k aiHi—FZﬁeq), Lie(SLj41)g-
Then there exists U € U, such that

l l
UAUT +0U)U € Xo,+ > aiHi+ Y Lie(SLi1)s.
i=1 i=k+1 BED~

One writes Ay = 22:1 Xa, + Zi:k aili+ ) scq- apXp with suitable ag € F. To remove
apHy, we differentially conjugate Ay by U_q,(¢) € U_n,. We use Observation 3.4 to
express this as

l

U0y, (Q) AU -0, ()71 4 O(U - (O, ()7 =D Ad(U-—0,, (€))(Xar,)
l = (4.17)

+ D aiAd(U—a (O)H:) + ) apAd(U—a, (0))(X5) +18(U—q, (C))-

i=k Bed-
Let us look at the first summand on the right hand side of equation (4.17). Then by
Lemma 3.2.2 and Lemma 3.2.4 we get for i # k

l

Z(Z m—akm,jCanz‘Jrj(*ak))

i=1 j>0

and for ¢ = k we have X,, + (H,, — CQX,O%. Since a; — jay is not a root for i # k and
7 > 0, we obtain

l l
> AAU-0,(O))(Xa,) €Y Xa, + CHi + Lie(SLiy1) —a. (4.18)
=1 =1

If : = k, then we get for the second summand with Lemma 3.2.3
akAd(U-q, (Q))(Hk) = ax(Hy — 2(X_q, ).
Moreover, with the help of Lemma 3.2.5 and the Cartan matrix we have for i = k + 1

a1 Ad(U_o, (€))(Hig1) = apy1(Hpp1 — (X o)

and for [ > i > k + 2 we obtain a;,Ad(U_,, (¢))(H;) = a;H;. We summarize our results.

This yields
l l

> aiAd(U_o, (Q)(Hi) € > aiH; + Lie(SLij1) - (4.19)
i=k 1=k

Let g € ®~. Obviously, if 5+ j(—ay) is a root of ® for j > 0, then f + j(—ay) € ¢~
Hence, the third summand of equation (4.17) lies in

Y agAd(U-a,(¢))(Xp) € Y Lie(SLiy1)s. (4.20)

Bed— BedD—
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67 4.3 The equation with group SL;4q

We handle the last summand with Proposition 3.5. It implies

16U, () = (U0 (O))U-0, ()" € Lie(SLi1)-a,. (4.21)

We put the equations (4.18), (4.19), (4.20) and (4.21) together and set ( = —ax. Hence,
the assumption of the claim is shown.

One uses then the claim to prove by induction that for each k € {1,...,1} there exists
U € U™ such that

UAU T +0(U) U e ZX% + Z aiH;+ > Lie(SLiy1)g
i=k+1 ped—

In particular, for k = [, it yields that there exists U € U~ such that

l
A =UTAU —U'U' € > Xo, + Y Lie(SLis1)s.
=1 Bed—

Again one proves by an inductive argument together with Lemma 4.2 that for each n €
{1,...,1} and Ag there exists U € U~ such that

UAU L +oUUu—t e ZX + ZLIG SLis1)y, + Y Lie(SLij1)g
pe®,
where the notations are as in Lemma 4.2. Note that ®; = {—a; = —y;}. Then the lemma
follows for n = 1. O

4.3 The equation with group SL; 4

The next step is to combine the results of Corollary 3.12 and Lemma 4.3 so that we can
apply later the specialization bound. We keep the notations of Lemma 4.3 and recall that
(C(z),0 = d%) denotes a rational function field with standard derivation as in Section 3.4.

Corollary 4.4. We apply Corollary 3.12 to the group SLi+1 and the above Cartan decom-

position. We denote by A]S\/i‘%s the matrix satisfying the stated conditions of Corollary 3.12.

Then there exists U € Uy C SLjy1 such that

Agr,,, = UARS U 1o U =) Xo+ Y fiXy, (4.22)
aEA YiEM

with at least one f; € C [2] \ C and the differential Galois group of the matriz equation
O(y) = Asr,,,y over C(z) is SLi11(C).

Proof. Lemma 4.3 proves the existence of an element U € U, C SL;;; such that equa-
tion (4.22) holds. Since differential conjugation defines a differential isomorphism, we
deduce with Corollary 3.12 that the differential Galois group of d(y) = Asr, 1Y is again
SLi+1(C) over C(z). We still need to show the existence of f; € C[z] \ C for some
i € M. Suppose Agr,,; = > en Xa+) et fiXy, € Lie(SLi41)(C). Then by Lemma 4.5
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68 4 A parametrized equation for SL;1

the corresponding differential equation L(y, f1, ..., fi) € C{y} has coefficients in C. But
then by [Mag94, Corollary 3.28] the differential Galois group is abelian. Thus Agy, o €
Lie(SL;41)(C(2)) \ Lie(SLy41)(C). Since 0 # A; € H(C) and A = (2241 + Ap) in Corol-
lary 3.12 we start our transformation with at least one coefficient lying in C'[z]\ C. In each
step the application of Ad(Us(()) generates at most new entries which are polynomials in
¢. Moreover, the logarithmic derivative is the product of the two matrices 9(Ug(()) and
Us(¢)~™' = Us(—(¢). In the proofs of Lemma 4.3 and Lemma 4.2 we choose the parameter
¢ to be one of the coefficients. Hence, it holds f; € C[z] \ C. O

Our goal is to produce parametric equations for the series SL;y1. Therefore, let 1, ...,
be differential indeterminates and define the differential field F' = C (t1, ..., t;). Moreover,

let us define
ASL;_H(tl,"-atl) = ZXa—l- Z t; X 5
aEA 'yZ-EM

with M as in Lemma 4.3. We are going to compute an operator for SL;;; from the matrix
differential equation d(y) = Asy,,, (t1, ..., t1)y.

Lemma 4.5. The matriz differential equation 0(y) = Asy,,, (t1,...,t1)y is differentially
equivalent to the homogeneous scalar linear differential equation

l
Lt = = St =0
i=1

Proof. Form the description of Lie(SL;y1) in Section 4.1 we otain the full shape of the
matrix differential equation d(y) = Asy,,, (1, ..., t)y. We have

A(y1) 0 1 (1

O(y2) . Y2

A(yr) 1 Y
O(Y1+1) tv t2 ... 4 O Yi+1

To simplify the notation we will write y, for d(y;). Then the above equation translates
into the system of equations

Y1 = v2 (1)
Yy = Y3 (2)
yl’ = Yi+1 (1)
!
Yig1 = thyz (141)
i=1

We will prove that y; is a cyclic vector. By an easy inductive argument we deduce for
subsystems formed by the first until the n-th equation, where n € {1, ...,1}, that

ygn) = Yn+1-
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69 4.3 The equation with group SL;4q

In particular, for n = [ it holds ygl) = y;11. We differentiate this equation and substitute

Y 41 by the last equation of the initial system and hence we obtain

!
YD = 37 D),
=1

O]

Theorem 4.6. Let C' be an algebraically closed field of characteristic zero, t1, ...,t; differ-
ential indeterminates and F' = C (t1,...,t;) the corresponding differential field. Then the
homogeneous linear differential equation

!
Ly, t1, ..., t;) =y — Zti yN =0

has SLj+1(C) as differential Galois group over F. Moreover, let Fbea differential field with
field of constants equal to C. Let E be a Picard-Vessiot extension over F with dzﬂerential
Galois group SLi11(C) and suppose the defining matriz differential equation d(y) = Ay
satisfies A € > wea Xa +Lie(By). Then there is a specialization L(y,t1, ..., 1;) with t; € F

such that L(y,t1,...,t;) gives rise to the extension E over F.

Proof. Let E be a Picard-Vessiot extension for the equation L(y,t1,...,t;) = 0 over F
and denote by G its differential Galois group. Since the operator comes from the ma-
trix differential equation 0(y) = Asy,,, (t1, ..., t1)y with Asp,,, (t1,.... ;) € Lie(SLj11)(F),
Proposition 2.1 yields G(C) < SLi+1(C). By Corollary 4.4 there exists a specialization
sty s t)) = (f1, . f1) with f1,.., fi € C[%} such that O-(ASLZ+1(t17"‘7tl)) = ASLZ+1
and the differential Galois group of d(y) = Asy,,,y is SLi;1(C). Moreover, we have
C{fi,..., fi} = C[z]. Thus we can apply Corollary 2.15. This yields SL;+1(C) < G(C).
Hence, it holds G(C) = SLi11(C).
Since the defining matrix A satisfies A € > aea Xa+Lie(By ), Lemma 4.3 provides that A
is differentially equivalent to a matrix A = 3 aeA Xa+ 27 e @i X, with suitable a; € E.
Obviously, the specialization

G (t1y . ty) = (a1, ..., 47)
has the required property. ]
From literature it is known that the general equation with trace zero

Y™ =t oy o, gy 4 4ty

has SL, as its differential Galois group. This equation yields an alternative proof for
Theorem 4.6. Furthermore, note that in case [ = 1 the equation of Theorem 4.6 is the
Airy equation y? = t;y. In the literature there are several proofs of the various types of
the Airy equation y(? = fy The differential Galois group depends on the choice of the
differential ground field (F,0: ) where the field of constants of F is equal to C' and of the
coefficient f € F. In each situation the differential Galois group G (C) is a subgroup of
SL2(C). Obviously, our equation specializes to all of these different types.
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Chapter 5

A parametrized equation for SPy;

5.1 The Lie algebra of SPy (type C))

As in Section 4.1 we introduce first the root system of type C;. Let [ € N\ {0} with [ > 3.
We write €1, ..., ¢ for the standard orthonormal basis of R! and (-, -) for the standard inner
product of R, In [Hum?72, Section 12.1], it is shown that the root system ® of type Cj is
formed by the set of vectors

D= {t(ei—¢;), £(ei+e5), T2 [1<i<j <1 1<k<I}.
As a basis we take the [ linear independent vectors
A:{Oéi:q—GH_h al:2q]1§i§l—1}

and we fix this ordering. The Cartan integers (a;, oj) = 2(oy, a;)/(ej, ;) are given at
position (7, ) in the Cartan matrix which has in the case of C; the following shape

2 -1 0 0
-1 2 -1 0
o -1 2 -1 0
0 0 O -1 2 -1
0 0 0 -2 2

Let V' = (v1,...,v9;)~ be a vector space over C of dimension 2. We define on V' a skew-
symmetric non degenerate bilinear form f with representing matrix

/= < (?] {)0 ) e C?*2l where the matrix Jy has shape Jy =
—Jo
1

The symplectic group SP9; is defined as the group of all invertible linear transformations
of V preserving a skew-symmetric non degenerated bilinear form. We are going to choose
this bilinear form to be f. Hence, with the representing matrix J of f the group SPy; can

be described as
SPy = {A € GLy | ATJA = J}.
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72 5 A parametrized equation for SPy;

Then the Lie Algebra Lie(SPy;) of SPy consists of all endomorphism X € C#*2l of V
satisfying for v,w € V the rule

f(Xv,w) = —f(v, Xw) & (Xw) Jw= - J(Xw) & JX = -XTJ.

Hence, the condition for X to be symplectic reads in matrix terms as —X7J = JX. Let
A, B, C, D be arbitrary elements of C**!. We write the 2 x 2l-matrix X as

_ A B 21 x 21
X_<CD>GC )

Then an explicit calculation of JX + X7.J = 0 leads us to

—CTJy ATJy N JoC  JoD 0
-DTJy, BTJ, —JA —JoD ) T

Equivalently, we get the system of equations

CTJy=JoC, ATJy=—JyD,
—-D"Jy=JyA, BTJy= JyB.

The third equation offers no new information and can be therefore omitted. It can be
checked by computation that the conjugation JoM J L of an element M € C™*! by Jy is
reversing M and then taking the transpose. Here we mean by the reversed matrix, the
matrix obtained by reflecting the entries at the second diagonal. Before we start to write
down a basis for Lie(SPy;) we renumber the rows and columns of X into 1,...,1,—1, ..., —[.
Furthermore, we denote by E;; € C?'*2l the matrix having 1 as entry at position (i, 5) and
0 elsewhere. Then it can be checked easily that the [ diagonal matrices Fy;—E_j_1; —1— 14
with 1 <7 <[ and the matrices

Eij — E 1 14j—i-1+i, Eji — E_—14i—1-145

with 1 <4 < j <[ have non-zero entries in the blocks A and D of X. We see that they
satisfy the above equations. Moreover, for 1 <i,j <, i + j <, the matrices

Ei—j—E1—j—1-1+i, E—ji— E14i141—5

and for 1 < i <[, the [ matrices

Ei 114, Eoj—144,

with non-zero entries in the blocks B and C of X also satisfy the conditions of the equa-
tions. Denote by B the collection of all these matrices. Then the elements of B are linearly
independent, since for an arbitrary chosen position above or on the secondary diagonal
there is exact one matrix in B with a non-zero entry at this position. Furthermore, the
number of elements in B can be easily computed as card(B) = 2[2 + [. This number
coincides with the dimension of Lie(SPy;) from literature (see for example [Hum72, p.3]).
Hence, the elements of B form a basis of Lie(SPy;).
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73 5.1 The Lie algebra of SPy; (type ()

The next step is to determine a Cartan Decomposition for Lie(SPo;) from this basis. There-
fore we compute the maximal diagonal torus 7 of SPy;. Let T' = diag(A1, ..., Ay;) € GLy
be a diagonal matrix of GLy;. Then the condition 77 JT = J calculates explicitly as

A1y 1

A1 1
=Nt -1

—Agi A1 -1

Hence, the condition for T to be an element of SPy; is satisfied if and only if for all
i€ {l1,..,1} we have
Aorr1—i = At

Thus, the diagonal torus 7 of SPy; is the set of matrices

1 1
T = {T = diag()\l, s ALy e 7) | Aly ey AL € CX}
Al A1

We calculate the conjugates of the elements of B by 7" = diag(Ay, ..., A, /\%, e /\i) eT:

1

T(En —E_ - 1+4,—1-1+44 T =
T(E - E_ I—147,—1—14+1
T(Ej’t - B l—141i,—1—147

) Eii — B 1 14i—1-1+4),
)
)
T(Ei—j — Eiy1—j,—1-1+i)
)
)
)

(
= (N/Nj) (Bij — E_jo14j,-1-144),
()‘ />‘) ( jZ—E l—144,—1— 1+])
= Aidgi—j (Bi—j — Ep—j—i-144),
= (1/Ng1—iN) (B—ji — E_im14ig41—j)s
V= MEi 1,
Vo= (1) Bosagag

)_l

)_l

,_A

H

T(E—],z E_ [—144,l41—3
T(Ei—1-14

T
T
T
T
T

T(E_i_1455)T~

Hence, the root system ® of Lie(SPq;) is of type C;. The above equations also show to
which root space the elements of B belong. Therefore, we define for 1 < i < j <[, the
matrices

Xei—e; = Eij — E_j1qj 1140y X (e;—¢;) = Eji — E_j—14i—1-14;
and for 1 <14,57 <lI, i+ j <, the matrices
Xeitepy = Ei—j — Eipi—j—1-14i, X (era-,) = E—ji — Eoim14i 1415
Moreover, for 1 < i <[, we have
Xoe, = E; 14 and X o, = FE 144,
Furthermore, we conclude that the Cartan subalgebra H is generated by the elements

H=(Ei—E_14i—i—1+: | 1 <i <)
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74 5 A parametrized equation for SPy;

Then, in these notations, the shape of the Cartan Decomposition is

Lie(SPx)(C) = H(C) @;; (Xe—¢;)c @ (X_(¢—p)c
@i,j <X€i+€l+1fj>c S <X—(Ei+61+1—j)>c
B (Xoq)o @ (Xaq)c-

The next step is to determine a Chevalley basis of Lie(SPy;) from the elements of B. We
begin with the co-roots. Therefore, we compute

(Xei—ejs X (ci—ep)] = Bii — Ejj+ Eio1j—1-145 — Eoi-14i—1-14i = He,—e,
Keiterin X (eitapy)) = ButEBuijin—j—Eoj—j— E 14 1-14
= Hei+ez+1,j7
[(Xoe,, X o,] = Eiji—E__14i—1-14i = Ho,.

These are precisely the co-roots, since

(He,—e;s Xei—e;] = Eij—E_14j1-14i— (—Eij+ B 145 1-115) = 2Xe,—;,
Heiter o Xeren ;) = Ei—j+ E—ji-1i — (= EBip—j -1+ — Ei—j)
= 2X€z‘+€l+17j’
(Hoe;, Xoe,] = Ei_j—14i + Ei —1—14i = 2Xo,.

To simplify the notation we number the [ co-roots corresponding to the simple roots by
Hy:=H¢ ), ..., H_1:=H ,—c and Hj := Ho,,.

Let 0 : Lie(SPy;) — Lie(SPg;) be a morphism of Lie(SPy;) defined by the rule X + —X7T.
Hence, 6 is an automorphism of Lie(SPg;). One verifies easily that the following equations
for 6 hold:

G(quej) = _X—(Ei—ej)’
O Xeirepny) = —X(etan,)
G(XQE,L-) = _X—26i‘

Additionally, we have the identity
(X, Y]) = —[X, V)" = [-XT, Y] = [0(X), 0(Y)]. (5.1)

We define the number n, g € Z by the rule [X,, Xg] = nq 3Xat+3. The next step is to
apply 0 to [Xa, X3| = na,gXatg. This yields with the help of equation (5.1)

~Na,sX—a-p = ~[Xa, Xp]" = [X-a, X_g] = n-a,—pX_a—p.
Thus, it holds —nq g = n_q,—g. From [Car72, Theorem 4.1.2] we have the identity
N pN—a—p=—(r+1)%
Hence, nq g has to be equal to £(r + 1). We conclude that the elements
{Hi, Xo|1<i<l, a€d}
from a Chevalley basis of Lie(SPq;).
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75 5.2 The transformation lemma for SPy;

5.2 The transformation lemma for SPy;

In this section we present and prove the transformation lemma for SPo;. This is done for a
differential field (F,0F) of characteristic zero. But firstly we need a good grasp of the root
system of type Cj, since the proof of the transformation lemma is based on the adjoint
action and the logarithmic derivate which can be both described by the roots.

Lemma 5.1. Forn € {1,....,1 — 1} let ®, = (o, ...,1_pn)g denote the set of all Z-linear
combinations of the roots ay, ..., ay_y, which lie in ® and let us define ®¢ := {+oy}.

1. The set @, C ®;_1 = @ is an irreducible subsystem of ® with ®, ~ Cpy1.

2. Fork € {1,...,2n + 1} there exists a unique root o € ®;7 \ @ | of ht(a) = k and «

has shape

l-n—1+k

o= Z o if 1<k<n+1,
i=l—n
l+n—k -1

o= Zai—l—Z Z a; + o if n+2<k<2n and
i=l-n i=l4n—k+1

-1

azQZai—i—al if k=2n+1.

i=l—n

3. Leta € ®F\{®} ,U{vn=cqy+2 Zé;ll_n a;}} with ht(a) = k. Then there exists
a unique & € A such that B=a+a € @\ & | andht(8) =k+1. fa€ Aisa
simple root and B — & s a root, then either § —a =« or 8§ —a € q);ll.

4. The root system ® consists of the roots

Jj—1
O = {£(e—¢) =% ap|1<i<j<IPU{E2g=+q)}
k=i
-1 -1
U {£26 = (o +2) on), H(ei+e) =*(ay+ Y op) [1<i<T—1}
k=i k=i
-1 j—1
U {f(e+eg)=x(@m+2> ap+ > ap|l<i<j<i-1)}
k=j k=i

Proof. The first point is a consequence of the Dynkin diagram of type C; (e.g., see [Hum72,
Section 11.4]).

We prove the second assertion of the lemma. We know that ®,, is a root system of type
Cpt1. Thus by [Hum72, Section 10.4, Lemma A] there is a unique root v;—,, of maximal
height in ®,,. Furthermore, from [Hum?72, Section 12.2, Table 2| we obtain that v;_,, has
shape v, = oy + 2 Zé;zl—n a;. We conclude that v;_,, is an element of ®; \ @:{_1.

We are going to prove the assumption by three inductions. We will have an outer induction
onn € {l1,...,1 — 1} and we need two inner inductions done on k1 € {1,...,n+ 1} and
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76 5 A parametrized equation for SPy;

ko € {TL +2, .., 2n}.
Let n = 1.  We are going to compute the root system ®; = (a;,_1)4 to check the
assumption. The Cartan matrix implies that the reflection o,, , maps the root a; to

Ouy_, (1) = g — {a, q-1) g1 = o + 20y 1.

Since root strings are unbroken we have computed the roots +(oy+ay—1) and +(oy+2a;_1).
Moreover, since ag+2q;_1 is the unique root of maximal height in ®; and the only multiples
of a root o are =« we conclude that ®; consists of the vectors

b, = {j:ozl, :tal_l, :I:(ozl =+ al_l), :i:(ozl + 2al_1)}.

Now it is easily seen that the assumption for n = 1 is satisfied.

Let 1 <n <1—1. We show by induction on k; € {1,...,n + 1} that there exists a unique
root a € & \ ®F | with ht(a) = k; and a has shape o = Y2/~ R,

Let ky = 1. Then the unique root a in ®;} \ @ | of ht(a) = 1 is the root a = ay_,,.
Let 1 < k1 < n+ 1. The induction assumption implies that there exists o € @; \ <I>;r_1

such that ht(a) = k; — 1 and « is of the form

l—n—2+k1

o = E (6788

i=l—n

We are going to construct from a a root of height k; which has the required shape.
Therefore, we calculate for the simple root a;_,_j1k, the integer < o, oy_p_14%, > with
the help of the Cartan matrix and the fact that if &5y =n+ 1, then [ — n — 2 + k1 is equal
tol—1, as
l—n—2+k1
(o, n—141y) = ( Z Qi U —p—14ky) = — 1.
i=l—n

Thus, the reflection o, , 1, APS to the root

l—n—2+k1 l—n—1+k1

Oap_ 14k, (a) = Z O — (O‘?an—l+k1> Ol—n—14+k; = Z Q.

i=l—n i=l—n

Evidently, this root satisfies the requirements. Suppose there exists another root § €
PP\, B # atay 14k, and ht(B) = k1. Then [Hum?72, Section 10.2 Corollary] implies
that we can write £ as the sum &; + ... + @, of simple roots a; € A,, = {«y, ..., y_p,} (here
the @; are not necessarily distinct) such that each partial sum @; + ... + @; is a root for
1 <i<m. Thus, a3 + ... + @p—1 is a root and of ht(a; + ... + @m-1) = k1 — 1. Let us
assume that a; + ... + &;n—1 # «. The uniqueness of « yields that a; + ... + a1 € <I>7J{_1.
Hence, it holds

—( 4+ ..+ am—1) + B = . (5.2)

Denote by w the minimum of the indices of the simple roots a, = &; in a3 + ... + Q1.
Then equation (5.2) yields w > [ — n. Take n € N such that w = [ — n. We obtain
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77 5.2 The transformation lemma for SPy;

n < n. Hence, the outer induction assumption applied on 7 yields the following shapes
for 1 + ... + Gup—1:

l—n—2+ky
me= Y o if 1<k —-1<n+1,
i=l—n
I+n—k1+1 -1
Ny 1= Z o; +2 Z o+ o it n4+2<k —-1<2n and
i=l—n i=l4+n—k1+2

-1
773::2ZO[Z'+OQ if k—1=2n+1.
i=l-n
Assume [ — n > [ —n+ 1. To simplify notation we denote the three possibilities for 5 by
Bi =1 + aj_p, with i = 1,2,3. Then we compute the integers (5;, ) as
(Bis i—n) = Mis —n) + (U—n, 1—n) = 2.

Hence, we obtain a contradiction, since the image of 3; under the reflection o, , is

Oaj_p, (B’L) = /B’L - <,8’La O‘l—n> Al—p = Bz =200 =M — (53)

and the right hand side of equation (5.3) is not a root. We conclude that [ — 7 = [ — n.
Thus we obtain the inequality k1 — 1 < n+ 1 = n + 2. Hence, the induction assumption
forces @i + ... + @1 to have the shape:

l—n—2+k1 l—n—1+k
A1+ et Ay = Z o = Z Q.
i=l—n i=l—n—+1
But then 8 would be the root
l—n—1+k1
ﬁ:@1+...+@m—1+al_n: Z o+ QY —p
i=l—n-+1

which we constructed above. This contradicts the assumption 5 # o + aj—p4, -

By [Hum?72, Section 10.4, Lemma C] the irreducible root system ®,, of type C),+1 contains
at most two root lengths. Further [Hum72, Section 9.4, Table 1] implies that for two roots
a, B of ®, which are of equal length and nonproportional, it holds (a, 8) = (f,a) = £1.
With the help of the Cartan matrix we conclude that the simple roots ag,...,a;_1 of ®
are of equal length. Since (oy_1,q;) = —1 and (a;,q;—1) = —2 we obtain that the roots
a1, ...,ap_1 are short and «; is long.

Now we check that the sum of a = Zé;?__nzﬂ“ a; and o € {oy, ...,0q_n} \{—n—14k, } is
not a root of ®;. This will complete the first inner induction. For j € {{l —n,...,l —n —
2 + k1 }, we obtain

(a4 aj,aj) = (1 = 61—nj)(aj-1,05) + 2(aj, o) + (1 = S1—n—2+k, ) (@41, 05) > 2.

Similarly we have (« + «aj, o) = (o, ) = 2 for j € {l —n+kq,...,l — 1} where we have
to assume n > ky. For j =1, we get

(a4 ag,0q-1) = (g, 00-1) + O1—21—n—2+k (-2, 00-1) = =2 — 02 |—p—24k < —2.
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78 5 A parametrized equation for SPy;

Thus the root o + a; has to be long. By [Hum72, Section 10.4, Lemma C] all roots of a
given length are conjugate under the Weyl group, i.e., it exists 05 with g € @, such that

UB:Oé+Oéj—<Oé+Oéj,B>B:Oél. (5.4)

Let j € {I-n,...,I-1} and § = Zé:lfn ki € @ This forces k; = 1 and (a+a;, ) = —1.
Thus, it can not hold equality in equation (5.4). Similarly we deduce for § € ®. Let
j = land k1 < n. Then the integer (o + oy, ) = 2 implies that a + oy is not long.
Since a + « is neither short nor long it can not be a root. This completes the first inner
induction.

We start the second inner induction: For ks € {n + 2,...,2n}, there exists a unique root
a € @\ @ | with ht(a) = k2 and « is of the form

I+n—ky -1
o= E oy + 2 E a; + q;.
i=l—n i=l+n—ko+1

Let ko = n + 2. The first inner induction hypothesis yields for k1 = n 4+ 1 that there is
a unique root a € ®;F \ &1 ;| with ht(a) = k; and « has shape o = Zizlfn «;. For the
construction of a root satisfying the proposed assertion, we compute for the simple root

aq—1 the integer (o, oq—1):

!
(o, q1) = Z (g, 00-1) = (9, 0q—1) + (—1,q—1) + (a;,ap—1) = —1.

i=l—n
Hence, the reflection o,, , maps « to the root

! 1-2
Taa (@)= D ai—(wa)a 1= Y ai+2a 1+

which satisfies the desired properties apart from the uniqueness. Therefore, let 8 € ®;F \
" | with 8 # o+ a;_1 and ht(8) = ka. As before, [Hum72, Section 10.2, Corollary]
yields the possibility to write 8 as &1 + ... + &, with a; € A, in such a way that each
partial sum a1 + ... + a&; with 1 <7 < m is a root. It follows at once that & + ... + @;p—1
is a root of ht(ay + ... + @ym—1) = ko — 1. Assume that « is different to @ + ... + Qp—1.
The uniqueness of « implies @1 + ... + apm_1 € 613:71. This allows us to deduce that
—(a1 4+ ... + @m-1) + B = a—p. Again, we denote by w the minimum of the indices of
the simple roots oy, = @; in &1 + ... + @&,—1. Then it has to hold w > —n. Let n € N
such that [ — n = w and suppose Il —n > [l —n + 1 or equivalent 7 +1 < n. We have
ko —1=n+1>n+ 2. We can apply the outer induction assumption to & + ... + Qp—1-
This yields for a1 + ... + @;,—1 the shapes

I+7a—ko+1 -1
m = Z o+ 2 Z o; + o if n+2<ky—1<2n and
i=l—n i=l—f—ko+2
-1
nQ::Zai+al if ke—1=2n+1
i=l—n
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79 5.2 The transformation lemma for SPy;

Thus, the integer (n; + a;—p, aj—p) wWith ¢ = 1,2 computes as (1; + aj—n, ®;—p,) = 2. Hence,
the reflection o, , sends n; + a;—y, to

Ooy_p (772 + al—n) =1+ a_n— <Th + Qj—n, al—n> Al—n =1 — Ol—n.

Since the right hand side is not a root, we get a contradiction. Hence, we have n+1 =mn
and so it holds k9 —1 = n+1 = n+ 2. We make use of this to deduce that & + ... + @;—1
has shape

l+n—ko+1 -1 -2
a1+ .+ Gy = Z i+ 2 Z i+ o = Z i + 201 + .
i=l—n I+w—ko+2 i=l—n-+1

Then 8 =a1 + ... + Qo1 +y—_p, = Zi;l{n o; + 201 + ¢y is the root constructed above.
But this contradicts the assumption 8 # a + ;1. It remains to check that the sum
a+oaj = Zizlfn a; + o with a; € {ag_p,...,oq} \ {oqy_1} is not a root. We compute for

je{l—mn,...,I1 —2} the integer
(a + Qaj, Olj> = (1 — 5l_n7j)(aj,1, Otj> + 2<O¢j, Oéj> =+ <Oéj+1, O[j> > 2

and (a+oy, aj—1) = (0g—2,00-1) +{(y—1, 1) +2(ay, oy—1) = 3. Hence the root a+«; has
to be long. By [Hum72, Section 10.4, Lemma D] all roots v = 2 Zi;,ln o; + ag of maximal
height in ®,,,_; with m € {l —n,...,l — 1} are long. Thus there exists a reflection o5 with

ﬁ € &, such that

-1
ozla+aj) =a+a;— (a+aj,B)5 =2 Z a; + a.

i=j+1
Let j # [ and B = Zi:l—n kia; € ®F. This forces the coefficient k;_; to be 1 and
(a+ o, B> = —1. But then k; has to be —2 what is impossible. Similarly we deduce for
B e ®,. For j =1, we compute (o + aj, q) = (oy_1, ;) + 2{ay, ;) = 3. Thus the sum
a + «; is neither short nor long and so can not be a root of ®,,.
Let n4+2 < ko < 2n. As in the steps before we construct a root satisfying the requirements
of the induction assertion. The induction hypothesis implies that there exists a root

l+n—ko+1 -1
o = Z oG + 2 Z o + o
i=l—n I+n—ko+2

in @7\ @ | with ht(a) = ka — 1. The integer (o, aj4pn—_k,+1) calculates as

(, Oél+n—k2+1> = <az+n_k2, al+n—k2+1> + <Oél+n—k2+1, al+n—k2+1>
+2 (O fn—kot2> Ugn—tot1) = —1 +2 -2 = —1.

Hence, the reflection o4, kpt1 APS v tO
O-Oél+n7k2+1 (a) =+ Qpn—kot1-
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80 5 A parametrized equation for SPy;

Obviously, the root o+ ajyp—k,+1 = Eii?_:i” o;+2 Zl In—kyt1 Qi+ has the proposed
properties apart from the uniqueness. Therefore, assume there is a 8 € ®; \ CID;L1 with
ht(8) = ko and 8 # a + ajyn—k,+1. Then [Hum72, Section 10.2, Corollary] states that
we can write 3 as the sum &; + ... + &,, of simple roots a; € A where the &; are not
necessarily distinct such that each partial sum &1 + ... + @; with 1 < j < m is a root.
In particular, this yields that a; + ... + @,—1 is a root of ht(ay + ... + &m—1) = ko — 1.
Suppose @1 + ... + &m—1 # a. Since « is the unique root in ®;} \ & | with ht(a) = ko — 1,
we have that & + ... + @&m—1 ¢ @, \ @ ;. Thus, it holds

—(@+ ..+ am-1) + 8 =ai_p. (5.5)

By w we mean the minimum of the indices of the simple roots a,, = @; € A in a; +
o+ @m—_1. Take n € N such that | — n = w. It follows | — 7 > [ — n. We make the
assumption that | —n > 1 —n+1, i.e., n + 1 < n. Moreover, we additional observe that
ko —1>n+2 > n+ 3. Hence, the outer induction assumption yields that &y + ... + @1
is the unique root in ®; \ CI);{_l of height k3 — 1 and by the above inequality the following
shapes for @y + ... + a;,_1 are possible:

I+n—ko+1 -1
N = Z o; + 2 Z a; + o if n+3<ky—1<2n and
i=l—n i=l+n—ko+2
172::2Za¢—|—al if ky—1=2n+1.
i=l—n

The reflection o, , maps 7; + aj_, for i = 1,2 to

oy, (i +0u—pn) =ni +0qp — (M + 0—p, Qp_p) Ay = 1 — Qp_p,

since the integer (n; + aj—n, aq—p) equals (aq_p, ;—p) = 2. Thus, we have a contradiction
to our assumption and so [—n = [—n+1. Easily, we check that the inequality ko —1 > n+3
holds. Hence, the induction assumption yields

l+n—ko+1 -1 l4+n—ko -1
a1+ ...+ apm—1 = E o; + 2 E o+ o = E o; + 2 E o; + o
i=l—n l+n—ko+2 i=l—n+1 2l—n—ko+1
l+n—ko

andso f = a1+..+@m_1+o_, =D ;7 ;42 Zl—i—n ko1 @ity is the oot constructed
above. It is left to check that the sum

m
oz+ozj:(z a; +2 Z a; + o) + o

i=l—n i=m+1

withm e {{+n—ky+1,....,1 —2} and o € {y—p, ..., 1} \ {1 4n—,+1} is nOt a root of
¢ . For j € {l —n,..,m— 1}, we compute

(a+aj,a5) = (1= 0—nj)(ej-1,0;5) + 2(aj, ) + (aji1,05) = —(1 = j) +4—12>2.
Thus o + «; has to be long. Then there exists a reflection 05 with 3 € ®,, such that

osla+aj) =a+a; - (a+aj,B)pB Zaz—i-al
i=j+1
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81 5.2 The transformation lemma for SPy;

Let 3 = Zﬁzlfn kio; € ®F. Then it has to hold kj4; = 1 and (o + ;j, 8) = —1. But we
get also k; = —2 which is impossible. Similarly we deduce for B e D .
For j € {m+1,...,1 — 1}, we obtain the integer

(a+aj,a5) = (2= 0m15){ey-1,05) + 3{ey, ) + (2 = di-1,5) {41, )
= (2= 0mi1j) +6-2>2,

since we have (2 — §;-1,;)(@j41,05) = =2 for all j € {m +1,...,1 — 1}. Hence, a + a; has
to be long. Then there exists a reflection o5 with 8 € ®,, such that

o5la+aj) =a+ao; — (a+aj,B)p 22041—1—04.

Let 8 = Zi-:l_n kio € ®F. Then it has to hold k; = 1 and (« + og,ﬁ) = 1. But this

forces k;_, = —1, which is impossible. Similarly we deduce for the case Be @ . Since the
sum « + a; for j # [ is neither short nor long, it can not be a root of ®,,.
Suppose a + oy is a root. Then the reflection o, - ... - 04,, maps o + o to the root

2 Zé:l—n o; which is higher than v;—,. Thus o + «; is not a root of .. This completes
the second inner induction.
Now let £ = 2n + 1. By the outer induction assumption there ex1sts a unique root « in

+F \ @}, with ht(a) = 2n — 1 and « is of the form o = 23707} n1 @i + ag. Since
[ —n <1—1, integer (o, a;_,) computes as (o, _p) = 2(Q—nt1,0-pn) = —2. Hence,
Oq,_, sends a to

-1
O, (@) =a—(a,q_p)aj_p =a+ 20—, =2 Z a; + .
i=l—n

Ev1dently, the root 2 ZZ I—n
2 Zl _,_, @i + oy is the root of maximal height in ®,, (see [Hum?72, Section 12.2, Table 2]),
[Hum72, Section 10.4, Lemma A] implies the uniqueness of a in € &, \ &,
Now we prove the third point of the lemma.
Ifa € ®f \{® | U{vint1 = 200, i1 @i + ar}}, then ht(a) = k < ht(y-n41). In
particular, Lemma 5.1.2 implies that there exists a unique 8 € ®; \ <I>jl'_1 such that
ht(8) = k+ 1 < ht(v;—n41). Hence, the simple root § — a € A has the stated property.
Let @ € A be different from 8 — « and let § — & be a root. By the uniqueness of a we
obtain 8 — & ¢ ®;} \ @1 . Therefore, it has to hold 3 — & € &,
Finally, we show the last assertion.
Obviously, we have ® D (Ulizl(@i\éi_l))uéo. Let a = Zﬁzl ki € ®andlet j € {1,...,1}
be minimal with k; # 0. Thus, « is an element of ®;\ ®;_; or o € @y if j = [. We obtain
the disjoint union ® = (Ul: (®; \ ©i—1)) U Do. O

«; + a has the required shape and is of height 2n + 1. Since

Lemma 5.2. Letn € {1,....,l — 1}. We denote by ; = al—|—2z ; aj the root of mazimal

height in ®,_.. Furthermore, we define ®g = {*aq}. Let Ag = S XA T 0, X+
> pea- apXp with ay,, ag € F. Then there exists U € U™ such that

UAU™ +0(U ZX +Za7X%+ > asXs

Bed,
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82 5 A parametrized equation for SPy;

with a.,, ag € F.

Proof. We are going to prove for each k € {1, ...,2n} the following claim:
For the matrix

l—n—1
Ay —ZXal-i- Z a, Xo + Y asXp+ > a0 Xo
Bed, a€®,\®,, | ht(a)>k
there exists U € U~ such that
l l—n—1
Ap =UAp U 0O =D KXo+ D @y Xoo+ Y @sXp+ >, GaXa
i=1 i=1 Bed,_, a€d, ht(a)>k

with a.,, ag, an € F and a,, ag, a, € F'. Note that in the following we will sometimes
write ®,, for &, \ &,

We want to delete the part of Ax_; which lies in the root space corresponding to the root
a€ ®,\ @, with ht(a) = k. Then by Lemma 5.1.3 there exists a root @ € A such that
—a+a=p¢€®f\ o | with ht(8) = k + 1. Thus, for —3 =: Bed;\ ¢, we get
the equation B + @ = «. Therefore, we are going to differentially conjugate Aj_1 by the
parametrized root group element U B(C ) € UB' We use Observation 3.4 to write this as

l l—n—1
Us(QAr1U3(Q) ™ + d(UZ(O)U(O) 7" = D" AdU3(O)(Xar) + Y ay, Ad(U5(0))(X5,)
=1 i=1
+ Y apAdUZO)(Xp) + Y aaAd(U5(0)(Xa) + O(U(C))U5(0) "
Bed, a€d;, ,ht(a)>k
(5.6)

For the first summand of the right hand side of equation (5.6), we compute with the help

of Lemma 3.2 l l
q
Z Ad(UB( Z Z “J aﬂrj/;" (5'7)
i=1

=1 j=

First we are interested in the case when 7 = 1. Then Lemma 5.1 yields that there exists a
unique & € A such that B+a = a. Moreover, if there is another simple root @ € A, & # &
such that B+5z is a root, then /3’—1—07 € ®, _,. Nowlet j > 1. Since ht(B) =k +1, it holds
that if a; + 5/ is a root, then oy 4 j3 € ®; \ ®,_, and ht(oy + jB) = j(k+1) — 1 > k.
Therefore, we translate equation (5.7) into

l
> AdU5(0))(X ZX% +mga1(Xa+ Y, Lie(SPu)s+ Y Lie(SPy)s.
i=1 Bed, Be®,, ht(8)>k
(5.8)
As before, the second summand of equation (5.6) can be written by Lemma 3.2 as
l—n—1 l—n—1 q
> anAdU(O)(X 2 DTG S (5.9)
i=1 i=1 §=0
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83 5.2 The transformation lemma for SPy;

Since 3 € &, \ ® _, and the v; are the roots of maximal height in ®, , with i €

{1,...,1 —n —1}, we conclude that for j > 4 the sum ~; + jﬁ is not a root. Hence,
we get for equation (5.9)

l—n—1 l—n—1

Y @ AdU(O) (X)) = Y ay Xy (5.10)
=1

i=1
Again, with the help of Lemma 3.2 we compute the third summand of equation (5.6) to
be

q
Y. apAdU(O)(Xp) = D ag)y my5,00X5, s (5.11)
e, pee, , =1
It is easily seen that if for j > 0 the sum /3 + jB is a root, then 3 + jB € ®,\®, ,and
ht(8 + jB) > k + 1. Thus, we reformulate equation (5.11) as
Y apAd(U(0))(Xp) € D azXz+ > Lie(SPy)s. (5.12)
Bed. | Bed | BED, ht(B)>k+1

The fourth summand of the right hand side of equation (5.6) reads as

q
Y aAdU0)(Xa) = > aay mg X s (5.13)

acd;, ht(a)>k a€d, ht(a)>k Jj=1

If a+jf3 is aroot for i > 1, then, obviously a+j3 € O\ @, ;. The fact that ht(B) =k+1
implies in addition that ht(a + j5) > k + 1. Hence, equation (5.13) translates into
Y aAdUz0)(Xa) € Y. aaXat > Lie(SPy)g. (5.14)
acd,, ht(a)>k acd,, ,ht(a)>k a€d;, ht(a)>k+1

We come to the last summand of equation (5.6). Proposition 3.5 says that the logarithmic
derivative [§ maps the element UB(O €Uy to Lie(Z/{ ) = Lle(SPQI) Therefore,

O(U5(C))U3(¢)~" € Lie(SPar) (5.15)

with ht(8) = k+ 1 and 8 € ®; \ ®,_,. Putting the equations (5.8), (5.10), (5.12), (5.14)
and (5.15) together yields
l—n—1
Us(Q)Ar1Ug(Q) 7" +(U4(0O))U5(¢) " € ZX +(mg a1 Xa+aaXa+ Y ay Xy,
=1 =1
+ ) Lie(SPy)s+ > Lie(SPy)s.
pe®, BED, ,ht(B)>k
Hence, if we set m ha 16 = —aq the claim follows.

Using the claim one proves then by induction that for each k € {1,...,2n} there exists
U € U™ such that

l—n—1
UAU ' +o(U) U e ZXaﬁ— Z Lie(SPy)y,+ Y Lie(SPy)g+ Y Lie(SPy)s.
ped, _, Beég,ht(ﬁbk
In particular, we get for kK = 2n the assertion of the lemma. O
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84 5 A parametrized equation for SPy;

Lemma 5.3. Let A € Y. Xo, + H+ Y50 Lie(SPy)s = i) Xo, + Lie(By). We
denote by {v; € &~ | 1 < i <[ — 1} the set of roots v; = —ay — 222;& a; of mazimal
height in the subsystems ®, .. Moreover, let M = {r; € @~ |1 <1 <[ —1}U{—} where
— = —ay. Then there exists U € U™ such that

l
UAU ' +0(U)U " € Xa, + > Lie(SPy)a-
=1 aeEM

Proof. First, we are going to prove the following claim: For each k € {1,...,1} let A =
St 1 X, + Y0 aiHi + Y geq- Lie(SPy)s with a; € F. Then there exists U € U~ such
that

l l
UAUT +0U)U " €Y Xo,+ > aiHi+ Y Lie(SPy)p.
i=1 i=k+1 BeD—
We write the matrix Ay, as Ay = 320 Xo, + 300, aiH;+3 " 5c - apXp for suitable ag € F.
To remove ayHy, we differentially conjugate Ay by U_q, (¢) € U_q,. More precisely, with
Observation 3.4 this reads as

l

U (Q)ARU-0, ()" 4+ 0U-0, (V-0 ()" = D Ad(U—0, (¢))(Xar)

i=1

l
+ Z aiAd(U—ak (C))(Hl) + Z aﬁAd(U—ak (C))(Xﬂ) + l(;(U—Olk (C))

i=k ped—

(5.16)

We start with the first summand of the right hand side of equation (5.16). Then Lemma 3.2
yields for i # k

AU, (O)(Xa) = Y map00iC Xasti(an)
7=>0
and if i = k£ we have Ad(U_, (€))(Xa,) = Xa, + (Ha, — C2X_ak. Since a; — jay is not a
root for i # k and j > 1, we get

l

l
D AU, (€)(Xa,) € > Xa, + CHy, + Lie(SPar) .- (5.17)
=1 =1

We handle the second summand of equation (5.16) with Lemma 3.2. Tt implies for [ > i >

k+1 that
! !

ST GAdU-_ o (O)H) = S ai(H; — (i ag) (X o)

i=k+1 i=k+1

and for i = k it yields ayAd(U—q, (¢))(Hk) = ar(Hr — 2(X_,, ). Hence, we can combine
these results to

l

l
> aiAd(U_q, (O)(H;) € > a;H; + Lie(SPy) _a, - (5.18)
i=k i=k
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85 5.3 The equation with group SPy

We use the fact that for 5 € &~ and j7 > 0 the sum 5+ j(—ay) € &~ to calculate the
third summand to lie in

Y apAd(U-a,(())(Xs) € ) Lie(SPy)s. (5.19)
ped— ped—

For the last summand of equation (5.16), Proposition 3.5 implies

16U, () = OU—0,(O))U—a, ()" € Lie(SP) . (5.20)

Hence, if we put the equations (5.17), (5.18), (5.19) and (5.20) together and set ( = —ay,
we get the assumption of the claim.

One uses then the claim to prove by induction that for each k& € {1,...,1} there exists
U € U™ such that

UAU '+ o) Ut e ZX% + Z a;H;+ Y Lie(SPy)g
i=k+1 BeEDP—

In particular, this yields for k¥ = [ that there exists U € U~ such that

Ag=UAU ' +o(UU ! ZX + Y Lie(SPy)g
BEDP™

Again, one proves by an inductive argument together with Lemma 5.2 that for each n €
{1,...,1 — 1} and A there exists U € U~ such that

l—n
U AU - U~ 1U’EZX%+ZL1e (SPa)y, + > Lie(SPy)g
=1 =1 ﬁeq)n L

Remember that ®q is defined as ®, = {—o; = —y;}. Then, the lemma follows for n =
1. O

5.3 The equation with group SPy;

The next step is to combine the results of Corollary 3.12 and Lemma 5.3, since we want
to apply later the specialization bound. Therefore, let C(z) be a rational function field
with standard derivation 0 = <= as in Section 3.4 and keep the notations of Lemma 5.3.

Corollary 5.4. Apply Corollary 3.12 to the group SPo; and the above Cartan Decompo-
sition. We denote by A]S\/{;iis the matriz satisfying the stated conditions of Corollary 3.12.

Then there exists U € U, C SPy such that

Agpy =UASSU +oU)U =Y X+ Y fiX,, (5.21)
acA YiEM
with at least one f; € C (2] \ C and the differential Galois group of the matriz equation
d(y) = Agp,,y is SPy(C) over C(z).
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Proof. Lemma 5.3 proves the existence of an element U € U, C SPy such that equa-
tion (5.21) holds. Since differential conjugation defines a differential isomorphism, we
deduce with Corollary 3.12 that the differential Galois group of d(y) = Agp,,y is again
SPy(C) over C(z). We still need to show the existence of f; € C'[z] \ C for some ~; € M.
Suppose Agp,, = > nen Xa + > ier fiXy, € Lie(SPy)(C). Then by Lemma 5.5 the
corresponding differential equation L(y, f1,..., fi) € C{y} has coefficients in C. But
then by [Mag94, Corollary 3.28] the differential Galois group is abelian. Thus Agp,, €
Lie(SPg)(C(2)) \ Lie(SP4)(C). Since 0 # A; € H(C) and A = (224; + Ap) in Corol-
lary 3.12 we start our transformation with at least one coefficient lying in C'[2]\ C. In each
step the application of Ad(Us(()) generates at most new entries which are polynomials in
¢. Moreover, the logarithmic derivative is the product of the two matrices d(Us(¢)) and
Us(¢)™! = Ug(—(¢). In the proofs of Lemma 5.3 and Lemma 5.2 we choose the parameter
¢ to be one of the coefficients. Hence, it holds f; € C[z] \ C. O

Our goal is to produce parametric equations for the series SPo;. Therefore, let t1,...,%;
be differential indeterminates and define the differential field F' = C' (t1, ..., t;). Moreover,
define the matrix Agp,,(t1,...,%;) as

Agpy (t1, o t) = Y X+ Y t5Xg
aEA pseM

where M is as in Lemma 5.3. The next step is to compute a linear differential equation
for SPy; from the matrix differential equation 0(y) = Asp,, (t1, ..., t1)y.

Lemma 5.5. The matriz differential equation 0(y) = Asp,,(t1,...,t1)y is differentially
equivalent to the homogeneous scalar linear differential equation

l
Lyt ooty) =y =3 (=1)1 71ty )0 = 0
=1

Proof. From the description of the Lie algebra Lie(SPy;) in Section 5.1 we see that the
matrix equation d(y) = Agp,,(t1, ..., t;)y has shape

d(y1) 0 1 Y1
Y2 R Y2
. ) :
B 01
- 0 -1
: 0 . . :
O(y2i-1) 0 -1 Y211
0(ya1) tt 0 0 Yau

To simplify notation we will write y, for d(y;). Equivalently to the above matrix equation,
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87 5.3 The equation with group SPy

we have the following system of equations

/

y = Y2
!
u = Y+
Y = tiu— Yo
Yoy_1 = ti—1Y2—yu
yy = tiy.

We want to show that we can transform the system in a single differential equation in
y1, i.e., y1 is a cyclic vector for the matrix differential equation 0(y) = Agp,, (t1, ... 11)y.
Therefore, we claim that for each n, with 2 < n <[, the corresponding subsystem

Yn = Yn+l
/
Y = Y41
yl'+1 = 1Y — Y2
Yol-nt1 = tintl Yn — Y2-ni2
yields the equation
l—n+1
y7(12l72n+2) _ Z (_1)171(“ ygfn+lfz))(lfn+1fz) + (—1)17"+1y21_n+2-
i=1

The proof of the claim will be done by backwards induction.
For n = [, we have the subsystem

yf = Y+
Yol = b1y — Yo

Differentiating the first equation and then substituting y; 41 by the second, we get

Y =Y =ty — Yo
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88 5 A parametrized equation for SPy;

Now let 2 < n < [. We obtain the following system of equations:

y?”L = Yn+1 (n)
Yni1 = Ynt2 (n+1)
!
Y = Yi+1

Yip1 = t1 Yl — Yis2

Yoi—n = tin Yn+1 = Y2l-nt1 (2l-n)
/
Yo1—n+1 = ti—n+1 Yn = Y2l—n+2 (21-n+1)

By the induction assumption the subsystem formed by equation (n+1) up to equation (21-
n) leads to

l—n
—2n i— l—n—i —n—1 —-n
Ty :Z(—l) Lt ?J7(L+1 N (1) E Dy, (I)
=1

We substitute y,1+1 by ¥/, in equation (I) and obtain

l—n
yP = Z(—Ui_l(tv:yg_nﬂ_i))(l_n_i) + (=), (II)
i=1

Differentiating equation (IT) and substituting y5,_, . ; by equation (2l-n+1 ) yields

l—n
y£L2l72n+2) _ Z(_l)ifl(tiygfn+lfi))(l7n+lfi))+(_1)(lfn)(tl_n+1yn_y2l_n+2)

=1
lin . . .

= > (1) ) Um0y 4 )y
i=1
+(_1)Z_n+1y217n+2

— Z (_1)171(tiy1(1l7n+171))(lfnJrlfl)) + (—1)17"+1y2z_n+2'
=1

Thus, the claim is shown.

Now we return to the proof of the lemma. We apply the claim to the subsystem of the
initial system, obtained by leaving out the first and last equation, i.e., we consider the
case n = 2, and get

7D = 31 D) 4 (1)

As in the induction step we substitute y by y}. This leads to the equation

-1

y? 7 = D) T )Y+ () (L)
i=1
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89 5.3 The equation with group SPy

At last we differentiate equation (III) and write ¢; y; for y5,. Hence, we obtain

-1

= S DT ) (1) )
=1
l

= >0 T ).

i=1

2l
=

This completes the proof of the lemma. O

Theorem 5.6. Let C' be an algebraically closed field of characteristic zero, t1, ..., t; differ-
ential indeterminates and F = C (t1,...,t;) the corresponding differential field. Then the
homogeneous linear differential equation

l
Ly, tr, ) = y®) =D (=)t g =)0 =0

=1

has SPoi(C) as differential Galois group over F. Moreover, let Fbea differential field with
field of constants equal to C'. Let E be a Picard-Vessiot extension over F' with differential
Galois group SPo(C) and suppose the defining matriz differential equation 0(y) = Ay
satisfies A € > aea Xa+Lie(By). Then there is a specialization L(y, t1, ..., 1) with t; € a
such that L(y,ty,...,1;) gives rise to the extension E over F.

Proof. Let E be a Picard-Vessiot extension for the equation L(y,ti,...,t;) = 0 over F
and denote by G its differential Galois group. Since the operator comes from the ma-
trix differential equation 0(y) = Agp,, (t1,...,t;)y with Agp,,(t1,...,t;) € Lie(SPy)(F),
Proposition 2.1 yields G(C) < SP9(C). By Corollary 5.4 there exists a specialization
g (tl,...,tl) — (fl;"'?fl) with fl,...,fl S C[%] such that U(Aspm(tl,...,tl» = Asp2l
and the differential Galois group of d(y) = Agp,y is SPy(C). Moreover, we have
C{f1,...., fi} = C[z]. Thus we can apply Corollary 2.15. This yields SPy(C) < G(C).
Hence, it holds G(C') = SP(C).

Since the defining matrix A satisfies A € 37 aen Xa+Lie(By ), Lemma 5.3 provides that A
is differentially equivalent to a matrix A = Y aea Xat+) a; X~; with suitable a; € F.
Obviously, the specialization

Y €T

o (tl,...,tl) — (dl, ...,al)

has the required property. O
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Chapter 6

A parametrized equation for SOy

6.1 The Lie algebra of SOy (type B))

We begin this chapter with the introduction of the root system of type B;. Take [ € N,
with { > 2, and write €q, ..., ¢ for the standard orthonormal basis of R!.. We denote by
(-,+) the standard inner product of R’. Following [Hum?72, Section 12.1], the root system
of type B; consists of the vectors

(I):{:tﬁk, :I:(ei—ej), :|:(6¢+6j) ’ 1<k<;1 <1<y Sl}
A basis of ® is given by the set of [ linear independent vectors
A={ai=¢—¢€41, q=¢|1<i<[—1}.

The Cartan integers (o, oj) = 2(ey, ¢j)/(ey, aj) can be taken from position (4, j) of the
Cartan Matrix. In case of B; it has the shape

2 -1 0 0
-1 2 -1 0 0
0 -1 2 -1 0 0
0 0 ©0 -1 2 =2
0 0 0 0 0o -1 2

Let V be a 2l + 1 dimensional C-vector space with basis vy, ...,v911 and let f be a
symmetric bilinear form on V' given by the representing matrix

Jo
J— 5 c CQ@IH1)x(2+1)
Jo

with respect to our basis. Here, the matrix Jy has shape Jy = e %X,
1

The group SOg; 41 is defined as the group of all automorphisms A € GL(V') leaving invari-

ant a non degenerated bilinear form. We choose this bilinear form to be defined by the
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92 6 A parametrized equation for SOg;4

representing matrix J. Hence, SOg;11 is the set of matrices
SOgH_l = {A € GL2[+1 | ATJA = J}

Then the Lie algebra Lie(SOg;41) of SOy is defined by all matrices X € C'2H1Dx(2+1)
leaving the symmetric bilinear form f invariant, i.e., for v,w € V the matrix X has to
satisfy

f(Xv,w) = —f(v, Xw) & (Xv)TJw = T J(Xw) & XTJ = -JX.

For i = 1,2, let Xg;, Xio € C' and for all other indices 1 < i,j < 2, take Xij € L,
Moreover, let X be an element of C. Then, we can write the matrix X as

X11 | Xy0 | X12
X =1 Xo1 | Xoo | Xo2
Xo1 | Xoo | Xoo
Furthermore, we renumber the rows and columns of X into 1,...,1,0,—1,...,—I. Hence,

the above condition for X to be an element of Lie(SO9;41) translates into

JoXudo = X5 JoX12Jo = —Xi JoXando = X5
2X01 = —-XLJo 2X02 = —XiyJo Xoo = —Xoo-

The last equation obviously implies Xg9 = 0. It is easy to see that the [ matrices
2Ej — Eo,—1—14; and FEg —2E 140,

with 1 < ¢ <, satisfy the conditions of the fourth and fifth equation. A computation shows
that the conjugation J()MJO_1 of an element M € C**! by .Jy is reversing M and then taking
its transpose. Here we mean by the reversed matrix, the matrix obtained by reflecting the
entries at the second diagonal. Then the [ diagonal matrices Fy; — E_j_14; _j—144, With
1 <i <[, and the matrices

Eij — E_ 1 1+vj—1-1+i, Eji — E_i—14i—1-1+,

with 1 < i < 7 <[, have only non-zero entries in the blocks X;; and X25. We get that
they satisfy the condition of the first equation. Moreover, for 1 < i,7 <[ with 7 + j </,
the matrices

Ei j—FE1j 11y, E—ji— FE 1y,

with non-zero entries in the blocks X1 and Xo1, satisfy the conditions of the second and
third equation. Denote by B the collection of all these matrices. Then the elements of B
are lineary independent, since for each position above the secondary diagonal there is a
unique matrix in B with a nonzero entry at this position. The number of elements in B is
equal to 212 —[. But this number coincides with the dimension of Lie(SOg;41) known from
literature (for example, see [Hum?72, p.3]). Hence, the set B is a basis for Lie(SOq;41).

The next step is to determine a Cartan Decomposition for Lie(SOg;11). Therefore, we
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93 6.1 The Lie algebra of SO9;11 (type By)

compute the standard maximal torus 7y of SOg;11. Let T = diag(A1, ..., Agjr1) € Gligjq
be a diagonal matrix of GLg;+;. Then an explicit calculation of TTJT = J leads to

A2141A1 1

T
THJT = A1 = 1

X241 A1 1
Thus, T € SOg4; if and only if Ay = /\—11,...,)\1+2 = /\% and \j;; = 1. Hence, the
elements of 7y are

1

1
To = {T = diag()\l, L ALL —, 7) ’ ALy ey A € CX}
Al A1

Then we obtain for the conjugates of the basis elements of Lie(SOg41) by T' € Ty

i

T(Eij — E_ioiyjm1+)T ™0 = 1 (Big = Eot-1aj—1-14i),
j
_ Y
T(Eji — E_i_11i-1-145)T"" = f(Eji —E - 14i-1-1+4);
A
T(Ei—j — Erpi—j—im1+0)T ™" = ANdgi—j(Bi—j — Eip1—j—i-144)
_ 1 1
T(E_ji — E_j1qigi—)T" = ~(E—ji — Em1tig+1—j),
Alr1-j Ai
T(2Eio — Eo,—1-14)T™" = X(2Ei0 — Eo—1-144),
_ 1
T(Eoi — 2E_1-14i0)T"" = ;(EOZ‘ —2E__14i0)-
1

We conclude that the root system ® of Lie(SOg;y1) is of type B;. We can assign the
elements of B to their root spaces. For 1 <1i < j <[, we define the matrices

Xei—e; = Eij — E_j_14j,—1-1+4iy X—(¢;—¢j) = Eji = E_i—14i,—1-14j5
and for 1 <14,7 <lI, i+ j <[, the matrices
Xeite1y = Fi—j = Eipi—j—1-14i, X (e;+e1-;) = E—ji = Eoimiqig41-5-
Furthermore, for 1 <i <[, we set
Xe, :=2F0—Eo1-14i and X_ = FEo; —2E_ 11;0-
Thus, the Cartan decomposition of Lie(SOg;41) has shape

Lie(SOQH-l) =H @i,j <X€i—5j>c @ <X—(Ei—€j)>c
GBM <X€i+el+1fj>c S <X_(€i+€l+1—j)>c
@i <XE¢>C 2] <Xfe¢>Ca
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94 6 A parametrized equation for SOg;4

where the Cartan subalgebra H is generated by
H=(E;—E_ 14111 |1 <i<)c.

Now we check if the above vectors form a Chevalley basis for SO9;y1. Therefore, we
compute

[(Xeimejs X (cimep)] = Bu+E1tj-1-145 — Ejj — E_i-14i,—1-1+i
=: He ;s
KXeiten 3 X (@rany)) = ButEgijim—j—Ejj— E i 1ti—1-14
=: H€i+5l+17j7
(X, X_o) = 2E;—2E_ 1414 = H,.
These are precisely the co-roots, since we have
[He,—ejs Xei—e;] = Bij—E_jaqj1-1vi— (—Ey+ Eo1qj1-144) = Xei—¢;
Heiter s Xeitan ;) = Ei—j— Eipi—j—i-14i — (= Bi—j + Eipi—j—1-144)
= 2X€i+€l+l—j’

[He,, X¢,] = 4Ej —2Ep_1—14+i = 2X,,.
We denote the [ co-roots corresponding to the simple roots by
Hy=H¢ _¢,...H1=H, ,_ and H := H,.
Now we define a morphism @ : Lie(SOq, 1) — Lie(SOg41) by X + —D~'XTD, where D

denotes diagonal matrix of shape

D= 2
1
It is easily seen that 6 is an automorphism of Lie(SOg;y1) which satisfies the following
equations:

G(Xﬁi—éj) = _X—(ei—ej-)
9(X€i+€l+1—j) = _X—(Ei-i‘EH_l_j)
G(sz) = —X,El..
In addition to these equations we have the identity
61X, Y]) = —[X,Y]" = [-X7,—Y7] = [0(x), 6(Y)]. (6.1)

We define the number n, g € Z for two roots a, 5 € ® by the rule [Xo, X3| = nq 3 Xa+3-
The next step is to apply 6 to [Xo, Xg] = nq,sXa+g. This can be calculated with the help
of equation (6.1) as

~NapX-a-p = ~[Xa, Xp]" = [X-a, X_p] = na,sX_ap.
Thus, it holds —nq g = n_q,—g. But [Car72, Theorem 4.1.2] yields the identity
N gN—a,_p=—(r+1)%
We conclude that n, g is equal to &(r + 1). Hence, the elements in
{Hi, Xo|1<i<l, a€d}
form a Chevalley basis of Lie(SOg;1).
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95 6.2 The transformation lemma for SOg;41

6.2 The transformation lemma for SO,

In this section we are going to prove the transformation lemma for SO9; 1 over a differential
field (F, Q) of characteristic zero. The proof is based on differential conjugation, i.e., on
the adjoint action and the logarithmic derivative which we can both describe by the root
system. Therefore we begin with the study of the root system of type B;.

Lemma 6.1. For n € {1,....,1 =1}, let ®,, := (q,...,aq_n)a be the set of all Z-linear
combinations of the roots oy, ...,cq_p, which lie in ® and define ®¢ := {£ay}.

1. The set ®, C & = ®;_1 is an irreducible subsystem of ® with ®,, ~ Bp41.

2. For k € {1,...,2n + 1}, there exists a unique root o € ®; \ ® | with ht(a) = k,
and o has shape

l—n—1+k

o= Z o if 1<k<n+1 and
i=l—n
l+n+1—k l

a= Z a; + 2 Z «; if n+2<k<2n+1.
i=l—n i=l+n+2—k

3. Leta € @ \{®F  U{y=qa;_,+2 Zé:lfnﬂ a;}} with ht(«) = k. Then there exists
a unique & € A such that B=a+a € ®\ &  andht(B)=k+1. fa€Aisa
simple root and B — & is a root, then either 6 —a =« or f — & € @:_1.

4. The root system ® consists of the roots

7j—1 !
O = {He—6)=%) aq|l<i<j<DU{te=%)> ap|1<i<l}

k=i k=i

Jj—1 l
U {fa+eg) =+ o +2) op[1<i<j<I)}
k=i k=j

Proof. The first assertion of the lemma is a consequence of the Dynkin diagram of type
By (e.g., see [Hum72, Section 11.4]).

We prove the second point. The fact that ®,, is a root system of type By1 together with
[Hum72, Section 10.4, Lemma A] yields that for n € {1,...,l — 1} there exists a unique
root 7, of maximal height in ®,,. Moreover, by [Hum?72, Section 12.2, Table 2] ;_,, has
shape v, = 2 Zi:l—n—i—l o+ _p.

We are going to prove the assumption by induction on n € {1,...,l — 1}. The induction
step will be done by two additional inductions and a single computation.

Let n = 1. We will compute the root system ®; = (o, a;_1)e. Since the integer
(aq_1, oq) can be read from the Cartan matrix as (oqy_1, oy) = —2, the reflection o, maps
aj_1 to

o (—1) = g1 — (1, )0 = 1 + 2y,

the root of maximal height. Since root strings are unbroken, a; + a;_1 again is a root.
Remember that the only scalar multiples of a root « are +«. Hence, ®; consists of the
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96 6 A parametrized equation for SOg;4

roots 1 = {£ay, a1, (1 + aq), £(2a; + oy—1)}. It is easy to see that these roots
satisfy the assumption.

Let 1 <n <l—1. We prove by induction on k; € {1,...,n} that there exists a unique
root a € ®;7 \ @1 | with ht(a) = k; and the shape of « is

l—n—1+k

a = Z (78
i=l—n
Let k1 = 1. Then a;_,, is the unique root of @\ CIJ;L'_I with ht(oy_p,) = 1.
Let 1 < k1 < n. Then, by the induction assumption there exists an o € @ \ &} |

such that ht(a) = k1 — 1 and « has shape a = 22;7_—”24%1 a;. We calculate the integer
(v, al—n—1+k1> to be

l—n—2+kq l—n—2+k1
(> avapamm) = Y, (Cain1mk)=-1
i=l—n i=l—n

Hence, the reflection Oay_p 145, MAPS & to

l—n—1+k1
Oaj n_11k (@) = a — (o, pn14ky)U-n-11k = Z ;.
i=l—n
Thus, we have constructed a root of ht(a + ay_p_11k,) = k1, which lies in &} \ &} ;.
Suppose there is a root 8 € ® \ ®F | with ht(8) = k; and 8 # a + —n_11k,. Then
[Hum72, Section 10.2, Corollary] implies that we can write 5 as the sum of simple roots,
ie., 8=a1+ ..+ a, with @; € A in such a way that each partial sum is a root. Hence,
a1+...+am_1is aroot of ht(ay +...+&m—1) = k1 —1. We assume that a1 +...+am—1 # a.
Then the uniqueness of o implies @1 + ... + @1 € <I>:Lr_1. Hence, we get the equation

—(0_61 + ...+ dm_l) + B8 =aai_p. (6.2)

Denote by w the minimum of the indices of the simple roots a,, = &; in a3 + ... + Qm_1.
Thus, equation (6.2) implies w > | — n. Let 7 € N such that w = [ — 7 holds. It follows
that n < n. The induction hypothesis yields that the shape of a; + ... + a1 is

l—n—2+k;
me= Y o if 1<ki—1<n+1 and
i=l—n
+n+2—k; l
= Y w2 Y o if n+2<k —1<2n+1.
i=l—n i=l+n+3—k1

Let us assume [ — n > [ — n 4+ 1. To simplify the notation we set 8; := n; + a;_,. We
compute the integers (51, aj—p) and (B2, ). They are

I—7—2+k,
</817al—n> = Z <ai7 al—n) + <al—n> O[l—n> =2 and
i=l-n
+n+2—kq l
Brroin) = D> Aonan)+2 > 00p) + (o, 0un) = 2.
i=l—7 i=l+7+3—k,
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97 6.2 The transformation lemma for SOg;41

Hence, the reflection o, , maps 3; to

Oy, (Bi) = Bi =204 = 1 — . (6.3)

Since the right hand side of equation (6.3) is not a root, we obtain a contradiction. This
forces | —n =1 —n+ 1. We observe that k1 — 1 < k1 < n =n+ 1. Hence, the induction
assumption implies

l—n—2+kq l—n+k1—1
a1+ ...+ a1 = Z o; = Z Q.
i=l—n i=l—n-+1
But then
l—n+k1—1 l—n+k1—1
B= > aita.= Y
i=l—n-+1 i=l—n

is the root a + «y_,, constructed above. We obtain a contradiction.
From the Cartan matrix we obtain for 1 < ¢ <[ — 2 the integers

(g, 1) = (g1, 04) = —1.

Hence, the roots aq,...,q;—1 are of equal length. The integers (o, y—1) = —1 and
(o—1, ;) = —2 imply together with [Hum72, Section 9.4, Table 1] that the roots aq, ..., a;_1
are long and ¢ is short.
It remains to check that the sum
l—n—2+k1
o+ Q; = Z oG + ay
i=l—n
with o € {oy_p,...,oq} \ {ay_pn—_14k, } is not a root. For j € {{ —n,....l —n—2+k}, we
obtain

(a+aj,a5) = (1= 0—nj){aj-1,05) + 2(aj, a5) + (1 = don—24k j) {41, 05) > 2.

Furthermore, for j € {{ —n+ky,...,l — 1} and n > ki, we get (@ + «;,a;) = 2. Thus
a+a; has a different length than «;, i.e., a«+a; is a short root. But this forces the integer
(a+aj, o) to be 0 or £1 by [Hum72, Section 9.4, Table 1], contradicting (o + a;, a5) > 2.
For j = [, we have (o + «ay, o) = 2. Thus, the reflection o,, maps a + a; to the sum

oo+ ap) — (a+ o, 0q)oq = a— .

But a — oy is not a root. Thus, for every a; € {ay_p, ..., q} \ {j—pn—1+k }, the sum a+ o
is not a root. Hence, the assumption follows and the first inner induction is done.

Now let k = n+1. We have shown right before that there exists a unique root a € @7\ @ |
with ht(a) = k — 1 and of shape a = S\ ;. We compute the integer (a,q;) as

i=l—n
(o, o) = 171 (o, 0q) = —2. Thus, the image of a under the reflection Oq, 18

i=l—n

-1
oo (@) = a— (o, o)y = o+ 2a; = Zai + 2.
l—n
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98 6 A parametrized equation for SOg;4

Since root strings are unbroken, we have computed two roots. Namely, the root o + oy of
ht(a 4+ o) = n+ 1 and the root a + 2aq of ht(a + 2a) = n + 2. We prove the uniqueness
assumption for o + oy. Let B € &} \ @ | with 8 # a + oy and ht(8) = n + 1. Write
B as @ + ... + a;, with a; € A in such a way that each partial sum is a root. Then, in
particular &1 + ... + Qyp—1 is a root. Let us assume that a; + ... + am—1 # a. Then the
uniqueness of o € ®; \ & | with ht(a) = k — 1 yields &; + ... + @&n—1 € @ ;. Hence,
we have —(@1 + ... + @m-1) + B = oy—p. Denote by w the minimum of the indices of
the simple roots oy, = &; in a; + ... + @,—1. We conclude that w > [ —n. Take n € N
such that w = ! — n holds and assume [ — n > [ —n + 1. The induction assumption for

k=n+1>n+4 2 yields that a; + ... + &;,—1 has shape

I4+a+2—k l
n = Z a; + 2 Z ;.
i=l—n i=l+n+3—k

We compute the integer (n + a;_p, @) to be (n + oy_p, a;—,) = 2. Hence, we obtain

Oay_p, (77 + al—n) =1 —0_n

as the image of n + o under o, ,. This forces | —n=1—-n+1. Fromk—-1=n=n+1
we conclude that a; + ... + @1 is of shape

l
a4+ ...+ am—1 = Z Q.
i=l—n—+1
We observe that 8 = a1+ ...+ am_1 + p_pn = Zi:lfn «; = o+ oy is the root constructed
above, in contrast to the assumption. It remains to check that 3 = o + «; is not a root
for some j € {l — n,...,l —1}. We compute

(a+aj,aj) = (1= 61—nj)(aj-1,05) + 2(j, a5) + (1 = §-1,5) {1, ) > 2.

This implies as above that o + «; is not a root.
We prove by induction on ks € {n+2,...,2n + 1} that there exists a unique root a €
@7\ @' | such that ht(a) = ko and « has shape

+n+1—ko !
o= E o; + 2 E ;.
i=l—n i=l4+n+2—ko

Let ko = n + 2. We have constructed above the root & + 2a; with ht(a@ + 2¢q) = n + 2
where @ was & = Zé;ll_n ;. We have also shown that a = Zé:l—n a; is the unique root
in @ \ ®' , with ht(a) = n + 1. Therefore, we write @ + 2y as the sum of « and oy.
Let 8 € ® \ @' | be another root with ht(8) = n+ 2 and 8 # a + oy. We write again 3
as a1 + ... + &y, with &; € A such that each partial sum is a root. Hence, a1 + ... + &pm—1
is a root. Assume that &y + ... + &y,_1 is different to . Then & + ... + &1 € <I>:[71 by

the uniqueness of a. Furthermore, we obtain
—(5&1 + ...+ @mfl) —B=ao_p.
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99 6.2 The transformation lemma for SOg;41

Denote by w the minimum of the indices of the simple roots a,, = &; € Ay in @1 +...4+Qpm—1.
It follows w > [ — n. Let n € N such that w =1 — n holds and assume [ —n > [ —n + 1.
Then ko9 — 1 =n+1=n+ 2 and therefore

m—1 l+n+2—ko l
Ya- Y a2 Y
i=1 i=l—n i=l4+n+3—kso

We observe that the integer (5, ;) is equal to (aq_n,a;—,) = 2. We get that the
reflection o, , maps 3 to

Oar,(B)=B— (B cu_n)y—n =01+ ... + Q-1 — Q_p.

Hence, | —7n =1 —n+1 holds. We compute ko —1 =n+1 =n+2. Applying the induction
hypothesis yields that the shape of @ + ... + a1 is

-1
AL+ o+ Qg = Z a; + 2qy.
1=l—n-+1

Thus, 8 =@ + ... + @m—1 + a;_,, is the root constructed above, which contradicts to the
assumption 3 # « + ;. It remains to check that the sum o + a; = Zi:lfn a; + o with
je{l—n,..,l —1} is not a root. We compute

(a+aj,a5) = (1= 01— j){aj—1,05) + 2{aj, o) + (@1, @) > 2.

Hence, the root o+ has to be short. But this forces (a+o, a;j) = 0 or (a+ay, ) = £1.
We conclude that a 4 «; is not a root. Therefore av + oy is the unique root of height
ht(a+ o) =n+2in & \ &} .

Now let n + 2 < ko < 2n + 1. By the induction assumption there exists o € (Iﬁ{ \ ‘Iﬁ{_l
with ht(a) = k2 — 1 and the shape of « is

l+n+2—ko [
o= Z a; + 2 Z ;.
i=l—-n i=l+n+3—ko

We compute the integer (o, j4ni2-k,). This reads as

I+n+2—ko !
(> wt+2 D iy Qgngo—ky) =
i=l—n i=l4+n+3—ko

(O fnt1—ko s Olpnt2—ko) + (MUnt2—ko» Vtnt2—ko) + 2(0Usnt3—ko> Vtnt2—ky) =
—-14+2-2=-1.

Hence, the reflection o4, , t2ky sends « to

I+n+1—ko l

Oarinia—ky (a) =0+ Qyni2—ky = Z a; + 2 Z Q;.
i=l—n i=l+n+2—ks

Thus, & 4+ Qpyni2-k, i a root of ht(a + ayinia—k,) = k2 and lies in & \ & ;. Assume
there exists 8 € @} \ @ | with ht(8) = ko and 8 # o + qini2—k,- We write 3 as the
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sum of simple roots, i.e., § = @ + ... + &, with a; € A,, in such a way that each partial
sum is a root. Suppose that the root aj + ... +a;,—1 # a. Since « is unique in ®; \ @:ﬁl,
it has to hold that &1 + ... + &m—1 € CI>:{_1 and therefore we obtain

—(1 4+ ...+ 1) + B = . (6.4)

Let w be the minimum of the indices of the simple roots a,, = &; in &1+ ...+ &y—1. Then,
we conclude from equation (6.4) that @ > n. Let 7 € N such that w = [ — 7 holds and
suppose [ —nn > 1l —n + 1. We deduce that ko — 1 >n+ 1 > n + 1. Thus, the induction
assumption yields that &1 + ... + &;,—1 is of the form

l+n+2—ko !
A1+ et A = Z a; +2 Z ;.
i=l—n i=l+n+3—ka

The integer (8, aj—pn) = (—n + @1 + ... + Qm—1, q—p) = 2 implies
Ual,n(ﬁ) = 5 —20_p =01+ .o. + Q1 — Q_p,.- (6.5)

Since the right hand side of equation (6.5) is not a root, we get a contradiction. It follows
l—n=10—n+1. Hence, we have ko —1 > n+1 = n+2 and so the induction assumption
yields for the shape of a; + ... + @—1 the following sum of simple roots:

l+n+2—ko l l+n+1—ko l
a1+ ...+ am—1 = E a; + 2 E o; = E a; + 2 E Q.
i=l—n i=l4+n+3—ko i=l—n-+1 i=l4+n+2—ko

But then 8 + a;_,, is the root constructed right before. It remains to check that the sum

l+n+2—kg l

i = i i T
a+a; = Z a; + 2 Z a; + o

i=l—n i=l4+n+3—k2

with j € {{—n,.., I} \ {{+n+2—ka} is not aroot. For j € {{ —n,...l+n+1—ke} we
obtain

(a+aj,a;) = (1= 0nj){aj-1,05) + 2, 05) + (@41, 05) > 2.
Further, for j € {l+n+3— ks, ...,l — 1}, where we have to assume n > 2 and ky > n + 4,
we get

(o + aj, ) = (2 = Sipnt3—ks ) (-1, a5) + 3y, @) + 2(jp1, o) > 2.

We conclude, as above, that the root o + «; is neither short nor long. For j = [, we
compute
(o +ay,a1) = (2 = Ogy nrs){au—1, 1) + 3, ap) > 2.

Thus, the root « + «; has to be long. By [Hum?72, Section 10.4, Lemma D] the root of
maximal height is long and by [Hum72, Section 10.4, Lemma C] all roots of a given length
are conjugate under the Weyl group. Hence there exists 05 with 8 € ®,, such that

l
oslata)=a+to—(at+a,B)B=an+2 Z ;.
i=l-n+1
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101 6.2 The transformation lemma for SOg;41

Let 8 = Zi:lfn kio; € ®F. Then we obtain k; = 1 and (o + oy, 5) = 1. This forces
kj_n+1 = —1 which is impossible. Similarly we deduce that a + «; is not long for 5 e, .
Hence o+ is not a root. We conclude that there is no possibility for the sum o+ a; with
jge{l—n,..,l}\{{+n+2—ks} to be aroot. This completes the second inner induction.
Hence, the outer induction is complete and the second point of the lemma follows.

Now we show the third point of the lemma.

Ifae @ \{® ; U{n_pn =23, 1o+ a_n}}, then ht(a) = k < ht(y_,). In
particular, Lemma 6.1.2 yields that there exists a unique root 8 € ®; \ ® ; such that
ht(8) = k+ 1 < ht(y,_,). Obviously, the simple root 8 — a € A satisfies the stated
property. Let & € A be different from 5 — « and let 5 — & be a root. By the uniqueness
of a we obtain 8 —a ¢ @, \ @' ,. Therefore, 3 — & € @, ; holds.

Finally, we prove the last assertion of the lemma.

Obviously, we have & D ({\_, (®;\®;_1))UPg. Let o = Y-, kioy; € ®and let 5 € {1,...,1}
be minimal with k; # 0. Thus, « is an element of ®;\ ®;_; or o € ® if j = [. We obtain
the disjoint union ® = ((J'_,(®; \ ®;_1)) U Po. O

Lemma 6.2. Let n € {1,....,1 —1}. We denote by v, = 222:#1 a; + «; the root of
maximal height in ®,_.. Moreover, as before we define the set ®q = {£oy}. Then for

Ay = 22:1 Xo, + " a, X, + Y pea apXp with ay, ag € F there exists U € U™
such that

l l—n
UAU T +oU)U ™ = KXo, + ) a4y, Xy, + Y asXp
i=1 =1

e, _,
Proof. Let k € {1,...,2n} and set
l l—n—1
Ap_q = ZXai + Z ay; Xy, + Z agXg + Z aaXa
=1 =1 Bed, | a€d, \®&,_,,ht(a)>k

with suitable a, ag, a,, € F. To simplify the notation we write sometimes o, for
¢\ @, ; and L for Lie(SOg;41). We will prove the following claim: For the matrix Ap_;

there exists U € U~ such that

l l—-n—1
U UM +0(0U T = XKoo+ Y @ Xy + > @sXg+ Y. GaXa
i=1 i=1 Bed, aed;, ht(a)>k

with a.,, ag, an € F.

We are going to remove the root o € ®, \ @, with ht(a) = k. Then by Lemma 6.1.3
there exists a root & € A such that —a+a =3¢ &, \ &, with ht(8) = k + 1. Thus,
for B = —p € d,\ .1, we have B + & = «a. Therefore, we are going to differentially
conjugate Aj_1 by the parametrized root group element U B(C yeu 5 With Observation 3.4
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102 6 A parametrized equation for SOg;4

this leads to

l l—n—1
Us(Q) Ak 1U5(Q) ™1+ 0U5(O)U(¢) 7 = Y AdU(0)(Xa) + Y, ay Ad(U5(0)(X5,)
— =1
+ 3 apAdU5(O)(Xp) + Y. aaAd(U5(0)(Xa) + A(U()U5(0)

Bed, a€d,, ,ht(a)>k
(6.6)

For the first summand of the right hand side of equation (6.6), we obtain with the help of

Lemma 3.2 l
q
> Ad(U(O)(X ZZ 00 Xajp (6.7)

7=0

First let 7 = 1. Then by the choice of B, i.e., the above discussion, and Lemma 6.1.3 there
exists a unique simple root @; € A such that B + @; = «, and if there is another simple
root &; € A with oz] = @; such that B+ oz] is a root, then 3+ a; € ;. Nowlet j > 1.

Note that if o; 4 73 is a root, then a; + jj3 € ¢\ & . Furthermore, since ht(B) =k+1,
it holds that ht(a; + jB3) = j(k +1) — 1 > k. Therefore, equation (6.7) translates into

l
> Ad(U;(0))( ZX +msalXa+ Y, Lg+ > Lg (68)
=1

Be®, BED, ,ht(B)>k
As above, the second summand can be written as

l—n—1 l—n—1 q

Z a%Ad(UB(C))(X - Z Z UL INPICo, SIPY T (6.9)

=1 i=1 j=

Since 3 € @, \®,_, and for i € {1,...,l —n — 1} the ~; are the roots of maximal height in
®,” ., we conclude that the sum v; + jB can not be a root for j > 0. Thus, equation (6.9)

leads to
l—n—1 l—n—1

3 4 AdUHO)X,) = S 4y X, (6.10)
=1

i=1
We compute the third summand of the right hand side of equation (6.6) with the help of
Lemma 3.2 and obtain

q
Y. apAdUO)Xp) = D ag) my5,00 X5, 5 (6.11)
pee, pee, , I=0

It is easily seen that if 3+ jf3 is a root, then 345 € @, \ @, and ht(B +iB8) > k+1.
Hence, equation (6.11) can be reformulated as

> asAd(U(Q)(Xp) € Y azXs+ > Ls. (6.12)

pe®, 4 pe®, BED, ht(B)>k+1
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103 6.2 The transformation lemma for SOg;41

For the fourth summand, we get by Lemma 3.2
q .
Y aAdUs(0)(Xa) = Y, aay my X, s (6.13)
a€d,, ht(a)>k acdy ht(a)>k  J=0

If o+ jB is a root for j > 0, then it obviously holds that o + j@ € &, \ ® . Moreover,
ht(5) = k + 1 implies ht(a + j3) > k + 1. This yields for equation (6.13)

Y aAdUz0)(Xa) € Y aaXat > L. (6.14)

aed, ht(a)>k aed,, ht(a)>k a€d;, ht(a)>k+1

Proposition 3.5 states that the logarithmic derivative [§ maps an element Ug(() € Up to
Lie(Ug) for a root B € ®. Therefore, we have

16(U5(0)) = U5 (O)U,(Q) " € L (6.15)

with ht(3) =k + 1 and 8 € ®; \ ®,_,. Putting the equations (6.8), (6.10), (6.12), (6.14)
and (6.15) together yields

l—n—1
Us(Q)Ak—1Ug(Q) 7 +0U()U5(¢) 7 € ZXOM + Z ay, Xyt
C)LI*‘aaXLJ+ E:: L5‘+ z{: Lg.
ped; Bed; ht(8)>k

Hence, if we set m r 16 = —aq the claim follows. Using the claim one proves by induction
that for each k € {1,...,2n} there exists U € U~ such that

l—n—1
UAU +0U)U! e ZX% + Z L,+ Y Lg+ > L
Bed, BED, ht(B)>k
In particular, for k = 2n, we get the assertion of the lemma. O

Lemma 6.3. Let A € Y| Xo, + H+ Y504 Lie(SOg41)s = Sty Xo, + Lie(B7) and
define M = {—v; = *222:“_1 aj —oy |ie{l,...,l =1}y U{—y = —a;}. Then there
exists U € U™ such that

UAU +o(U) U e ZX + ) Lie(SO241)a
aeEM

Proof. For k € {1,..,1}, let Ay = St ) Xo, + Y4 aiH; + ¥ geq- Lie(SOa41)5 with
suitable a; € F. First we will prove the following claim: For the matrix Ay there exists
U € U™ such that

UALU T +0(U)U € ZX% + Z a;H; + Y Lie(SOg1)s
i=k+1 BeEDP—
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104 6 A parametrized equation for SOg;4

We write A, = S0 X0, + 00, aiH; + > pea- apXp with suitable ag € F. To remove
aiHy, we differentially conjugate Ay by U_q, (¢) € U_q,. With Observation 3.4 we get

l

U (QARU-0, () + (U=, (())U-0, (O) 7" = D Ad(U-0, (¢))(Xa,
=1

l (6.16)

+>aAdU o, (O)(H:) + Y agAd(U—0,(¢))(X5).

i=k ped—

We begin with the first summand of the right hand side of equation (6.16). With the help
of Lemma 3.2, for i # k, we get

Ad(U—Oék (C))(Xaz) = Zm—ak,ai,jCanHrj(*ak)’
Jj=0
and for i = k, we have Ad(U_., (¢))(Xa,) € Xa, + (Hi + Lie(SOg4+1)—q,. Furthermore,
the sum «; — jayg, is not a root for ¢ # k£ and j > 1. This yields

! l
> AU, (O))(Xa,) €Y Xa, + CHi + Lie(SO241) —a. (6.17)

i=1 i=1
Now we investigate the second summand. Then Lemma 3.2 yields for I > i > k+ 1

l l

Y aiAd(U-a, (O)H:) = > ai(Hi — (i, ag)(X o),

i=k+1 i=k+1

and it implies for ¢ = k the equation apAd(U_q, (¢))(H;) = ax(Hp — 2(X_4,). These
results lead to

l

l
> 4 Ad(U_ (O)(H;) € > a;iH; + Lie(SOs141) —a,- (6.18)
i=k i=k

Since 5 € &, we get 8 — jag € &~ for j > 0. Hence, we conclude for the third summand

D agAd(U-0,(0)(Xp) € Y Lie(SOn41)s. (6.19)

Bed— ped—
We handle the last summand with Proposition 3.5. It implies
lé(U—Oék (C)) = a(U—ak (C))U—Oék (C)il € Lie(SOQlJrl)—ak‘ (620)

Thus, if we put the equations (6.17), (6.18), (6.19) and (6.20) together and set { = —ay,
the assumption of the claim follows. Using the claim one proves by induction that for each
ke {1,...,1} there exists U € U~ such that

UAU T +o(U) U € ZX% + Z a;H; + ) Lie(SOx41)p
i=k+1 BED—
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105 6.3 The equation with group SOg;41

In particular, for k = [, there exists U € U~ such that 49 = UAU ' +9(U)U~! €
22:1 Xa, + Zﬂe@* Lie(SOg;41)s. Again, using induction and Lemma 6.2, one shows that
for each n € {1,...,;1 — 1} and Ap there exists U € U~ such that

l l—n
UAU ' +0(U)U" € > Xa, + Y Lie(SOa1)y, + > Lie(SOg1)p.
i=1 i=1 sea—,

Since ®, is defined as &, = { —; } where —y; := —qy, the case n = 1 yields the assertion
of the lemma. O

6.3 The equation with group SOy

In the next step we combine the results of Corollary 3.12 and Lemma 6.3. Later, we make
use of Corollary 6.4, when we are going to apply the specialization bound. Denote by
(C(z),0 = d%) a rational function field with standard derivation as in Section 3.4 and
keep the notations of Lemma 6.3.

Corollary 6.4. We apply Corollary 3.12 to the group SOoqi11 and the above Cartan De-

composition. We denote by A]S\/é&;il the matriz satisfying the stated conditions of Corol-

lary 3.12. Then there exists U € U, C SOgi41 such that

As0,y,, =UALGE U +oU =Y Xa+ Y fiX,, (6.21)
aEA %EM

with at least one f; € C 2]\ C and the differential Galois group of the matriz equation
0(y) = As0y,,Y 15 SO241(C) over C(z).

Proof. Lemma 6.3 proves the existence of an element U € U; C SOg41 such that equa-
tion (6.21) holds. Since differential conjugation defines a differential isomorphism, we
deduce from Corollary 3.12 that the differential Galois group of d(y) = Aso,, .Y again is
SO9,41(C) over C(z). We still need to show the existence of f; € C [z]\ C for some ; € M.
Suppose As0,,1 = Doaea Xa + Doer fiXy, € Lie(SO241)(C). Then by Lemma 6.5
the corresponding differential equation L(y, f1, ..., fi) € C{y} has coefficients in C. But
then by [Mag94, Corollary 3.28] the differential Galois group has to be abelian. Thus,
A50,,,, € Lie(SO241)(C(2))\Lie(SOg141)(C). Since 0 # Ay € H(C) and A = (22 A1+ Ay)
in Corollary 3.12, we start our transformation with at least one coefficient lying in C [2]\C.
In each step the application of Ad(Ug({)) generates at most new entries which are poly-
nomials in . Moreover, the logarithmic derivative is the product of the two matrices
d(Us(¢)) and Us(¢)~! = Us(—¢). In the proofs of Lemma 6.3 and Lemma 6.2 we choose
the parameter ¢ to be one of the coefficients. Hence, it holds f; € C[z]. O

To obtain parametric equations for the series SOg;41 we change the differential ground
field. Therefore, let t1,...,t; be differential indeterminates and define the differential field
F = C(t1,...,t;). Furthermore, we define the matrix Aso,, ., (t1,...,1) as

1
ASO2Z+1(t17 -">tl) = Z Xa + Z 5755)(5
aEA BEM
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106 6 A parametrized equation for SOg;4

where M is as in Lemma 6.3. The next step is to compute an operator for SOg; 41 from
the matrix differential equation d(y) = Aso,,_, Y-

Lemma 6.5. The matriz differential equation 0(y) = Aso,,,, (t1, ..., 1)y is differentially
equivalent to the homogeneous scalar linear differential equation

l
L(y, trs sty =y =3 (1)1 (gD 4 (1)) =0,
i=1

Proof. The description of the Lie algebra of SOg;41 in Section 6.1 yields that the shape of
the matrix differential equation d(y) = Aso,,., (t1, ..., 1)y is

0 1
d(y1) A Y1
(y2) ' ' . Yo
0 2
— st | 0 | -1 (1)
5152 O —tl 0 —1
. 1 .
. 14 e
A(ya) » 2 . Y2
O(Ya141 2 ' - Y2141
(Ya141) 0 L 0 +

To simplify notation we will write y} for d(y;). Then equation (I) is equivalent to the
following system of equations

Y1 =92 (1)
Y1 =Y (1)
Yl = 2y (1)
1
Y1 = SRS (1+1)
1
Vs = §t2yz—1 —tYt1 — Yits (14+2)
1 1
Y3 = 5lsYi-2 = 5lay = Yita (1+3)
, 1 1
Yigk = thyl—k—&—l — itk—lyl—k+3 — Y1 3k <1 (14+k)
1 1
Yo = §tlyl - §tl—1y3 — Yai+1 (21)
1
Yoip1 = *§t1y2. (2141)
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107 6.3 The equation with group SOg;41

Let [ > 3. We are going to prove the following claim. For k € {3, ...,1}, the corresponding

subsystem
/
Ye—1 = Yk
311,71 =Y
Y = 2111

1
Y1 = 575191 — Yi42
1
Yo = itzqu —tYi+1 — Yi+3

. 1 1
Yiys = ?39172 — 51523/1 — Yl+4

1 1
yéz—k+3 = 5t17k+3yk72 - §tlfk+2yk — Y2U—k+4

leads to the differential equation

I+2—k
2(l—k)+5 i— +3—k—i —k—1i +2—k—i —k—i
yl(gjl )+5) _ Z (—1) 1(tiy](:1 ))(l+2 k )+(tiy,(:1 ))(z+3 k—i)

=1
(=D (3 kyk—2 — 2Y21ak)-

The proof will be done by backwards induction. Let k£ = [. Then the subsystem consists

of the five equations
Y1 =i
Y = 2141
, 1
Y41 = 5751?11 — Y42

1
Yo = §t2ylfl —tYi+1 — Yi+3

. 1 1
Y43 = ?33/172 - §t2yl — Yl+4-

(1)
0

(1+1)
(1+2)

(1+3)

The first two equations imply vy | = 2y;11. Now we differentiate again and substitute

Y;+1 by equation (1+1). This yields

Yl =ty — 2y = tiyp_1 — 2142

(IT)

If we repeat this process for equation (II), this time making use of equation (142) and

Y/ | = 2y;+1, we obtain

4
yl(,)l = (t1 yj_1) + tiy_1 — tayi—1 + Y143

We differentiate equation (IIT) and substitute y;, 5 by equation (14-3). Then we get

5
yl(,)l = (t1y_)" + (tiy2y)" = (bayi—1) — tayj_q + t3yi—2 — 2144
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108 6 A parametrized equation for SOg;4

Note that in the case [ = 2 we have to omit equation (14+-3) and to use instead yf = —%tgyg.
Then the differentiation of equation (III) and the substitution of y} by y§ = —3t2y; implies

5
v = (11 y)" + (1)) — (tamn) — tarf.

Now let k < I. Then the subsystem of equations is:

Yh-1 = Yk (k-1)
Yk = Yk+1 (k)
Y1 =W (1-1)
YL =2y (1)
1
Y1 = 5y = Y2 (1+1)
1
Yip2 = §t2y1—1 — Y1 — Y143 (1+2)
1 1
Yits = 5 t8YI—2 = Sty — Yita (14+-3)
1 1
Yol—kt2 = o li=kt2Yk—1 = SU—k+1Ykt1 — Y21-k+3 (214-2-k)
1 1
Yoi— ki3 = §t1—k+3yk—2 - itl—k—ﬂyk — Y2l—kt4- (214-3-k)

Then the induction assumption yields for k£ 4 1, i.e., for the subsystem formed by equa-
tion (k) up to equation (214-2-k), the differential equation

I+1—k
2(1—k)+3 1+2—k—i ki I+1—k—i —k—i
yl(c( )+3) _ Z (t: y£+ ))(z+1 k )+(tz’ y,(f ))(l+2 k—i)
=1
+ (=D R (o g yke1 — 2yoi43—k)- (IV)

We substitute in equation (IV) yi by y,._;. The result is

I+1-k
2(l—k)+4 i— +3—k—i " +2—k—i —k—i
yl(ff(l )+4) _ Z (_1)1 1((ti yzi: z))(H—l 7) +(ti yl(gj_l 7«))(l+2 k z))
i=1
+ (=D (o k Ye-1 — 2y243-k)- (V)
Now we differentiate equation (V) and use equation (2 + 3 — k) and (k — 1) to deduce
I—k g 1+3—k 1+2—k
2(1—k)+5 i 3—k—i ki 2—k—i ki
y’(gjl )+5) _ Z (—1)f l(ti y;(:l z))(l+2 k z)+(ti yl(:l z))(l+3 k—i)
i=1
+ (=D (ot Yk—1)’ = timkrs Yn—2 + k42U 1 + 2Y2i—k44)
14+2—k
— Z (_1)171(% y](clj-l?)—k—l))(l+2fkfz) + (ti yl(glj-f—k—z))(l+3,kfl)
i=1
+ (1) (s k2 — 2yo1—gta)-
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109 6.3 The equation with group SOg;41

Thus, the claim is shown. Now we return to the proof of the lemma. Therefore, we
consider the full system of equations. Then the claim yields for the subsystem, obtained
by leaving out the first and last equation (i.e., the case k = 3) the equation

-1
y A7) — S 1) gy )10 4 g0 (1) (g — 2y). (VD)
=1

With the help of the first equation of the full system, we obtain for equation (VI)

-1
2l i— l—i+1 —1—3 l—1 —
i = D T O (O
i=1
+ (=1 s — 2ya41). (VII)
Finally, we differentiate equation (VII) and use v}, 1= —%tlyg = —%tlyll to get an expres-

sion only in y;. This leads to

-1
y§2£+1) _ Z( 1)1 1( (l z+1))( )+(t¢ yy—z))(l_iﬂ)
=1
+ ( DNt + tiyh)
_ Z(_l)i_l(ti ygl—i—i-l))(l—i) T (t ygl—i))(l_iﬂ).
i=1

(2

O]

Theorem 6.6. Let C' be an algebraically closed field of characteristic zero, t1, ..., t; differ-
ential indeterminates and F = C (t1,...,t;) the corresponding differential field. Then the
homogeneous linear differential equation

l
L(y,tl, ...,t 2l+1 Z (l+1 z))(l—i) + (tz’ y(l—i))(l—‘rl—i)) -0

1=1

has SO911(C) as differential Galois group over F. Moreover, let F be a differential field
with field of constants equal to C. Let E be a Picard-Vessiot extension over E' with dif-
ferentza,l Galois group SO94+1(C) and suppose the defining matriz differential equation
d(y) = Ay satisfies A € Y aen Xo+Lie(By). Then there is a speczalzzatzon L(y,t1, ..., 1)

with t; € F such that L(y,t1,...,1;) gives rise to the extension E over F.

Proof. Let E be a Picard-Vessiot extension for the equation L(y,ti,...,t;) = 0 over F
and denote by G its differential Galois group. Since the operator comes from the matrix
differential equation d(y) = Aso,,,, (t1, .-, t))y with Aso,,, (t1,....1;) € Lie(SOg41)(F),
Proposition 2.1 yields G(C) < SOg4+1(C). By Corollary 6.4 there exists a specialization
o (ty,...,ty)) = (f1,..., fi) with f1,..., fi € C[%} such that O'(ASOQZH(th wnty)) = Asom+1
and the differential Galois group of d(y) = Aso,,,,y is SOg41(C). Moreover, we have
C{f1,.., fi} = C[z]. Thus we can apply Corollary 2.15. This yields SO41(C) < G(C).
Hence, it holds G(C') = SO941(C).
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110 6 A parametrized equation for SOg;4

Since the defining matrix A satisfies A € 37 aen Xa+Lie(B; ), Lemma 6.3 provides that A
is differentially equivalent to a matrix A =) -\ Xo+ Z% er @; X, with suitable a; € F.
Obviously the specialization

o (tl, ...,tl) — (al, ...,al)

does the required. O
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Chapter 7

A parametrized equation for 50,

7.1 The Lie algebra of SOy (type D)

We begin this paragraph with the abstract definition of the root system ® of type D;. Let
1 € N\ {0} with [ > 4. We denote by ey, ..., ¢; the standard orthonormal basis of R and
by (-,-) the standard inner product of R!. In [Hum72, Section 12.1] it is shown that the
root system ® of type D; consists of the vectors

q):{:i:(ei—ej), :I:(ei—l—ej) ‘ 1<i<y Sl}
The set A which is formed by the [ independent vectors
A={ai=€6—€n, q=ga1+tegll<i<i-—1}

defines a basis of ®. The Cartan matrix of type D; has shape

2 -1 0 . . 0
-1 2 -1 . . 0
0 0 -1 2 -1 0 O
0 0 -1 2 -1 -1
0 0 .o 0o -1 2 0
0 0 .o 0o -1 0 2

where the entry at position (7,j) gives the Cartan integer (o, ;) = 2(, o)/ (5, o).
In the next step we compute the Lie algebra Lie(SOq)(C) of SOg(C). Therefore denote
by V' := (v1,...,v9;)~ a vector space over C of dimension dim(V) = 2[ and let f be a
symmetric bilinear form on V defined by the representing matrix

— < 0 Jo ) € C?*2 where the matrix Jy € C**! has shape Jy =
1

Then the Lie algebra of SO (C) is defined as the set of all endomorphisms X € C?*2 on
V leaving the symmetric bilinear form f invariant, i.e., we have

Lie(SO)(C) = {X c 02X | xTJ = —JX}.

For the computation of the shapes of the matrices X € Lie(SOq)(C) we set
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112 7 A parametrized equation for SOy

My Mz 2Ax2 s Ixl .
= iq < < 2.
X <M21 MQQ)EC with M;; € C** for 1 <14,5 <2
Thus, the condition JX = —X7T.J for X to be an element of Lie(SO)(C) is

< MEJo M Ty ) N < JoMsy  JoMoso ) 0
My o MiyJo JoMi1  JoMio '

Equivalently, we obtain the three equations

M271J0 = —JoMyn <& Mg; = —JOM21Jal,
MlTl‘]O = —JOM22 = MlTl = —JOMQQJO_I,
M%;Jo = —JoMix & Mlg = —J()M12J0_1.

We call the matrix obtained by reflecting the entries at the secondary diagonal the reversed
matrix. It can be checked by computation that conjugation JoM J; Lof a matrix M e O
by Jp is reversing M and then taking its transposed. Hence, we can formulate the condition
for X to be an element of Lie(SOq)(C) as:

1. Mos is the negative reversed of M.
2. Mo is the negative reversed of Moy;.
3. Mo is the negative reversed of Mis.

Before we determine the elements of Lie(SOg;)(C'), we renumber the rows and columns of
My Mo > :

X = into 1, ..., [, =1, ..., —L[.
Mo My

Evidently, the | diagonal matrices F;; — E_j_14; —j—1+; with 1 <4 <[ and the matrices

Eij—FE 1 1yj1-1vi, B — Eo 1114

with 1 <4 < j < [ have non-zero entries in the blocks Mj; and Mj 2 and satisfy the
condition stated in 1. Furthermore, the matrices

Ei—j—E1—j—1-1+i, E—ji— E14i141—5

with 1 <+¢,7 <l and i+ 5 <1 satisfy the conditions 2 and 3.

Denote by B the set defined by these matrices. We are going to check that the set B is
a basis of Lie(SOq;)(C'). If we choose an arbitrary position above the secondary diagonal,
then there is exactly one matrix in B with a non-zero entry at this position. Hence, the
elements of B are linearly independent. It is easily seen that card(B) = 2I?> — [. But the
dimension of Lie(SO9;)(C) which we know from literature (e.g., see [Hum72, Section 1.2])
is also 212 — I. Thus, B is a basis of Lie(SOq)(C).

The next technical step is to compute a Cartan decomposion from B. To achieve this de-
composition we need to determine the shape of the maximal diagonal torus 7y of SOg/(C).
The group SO (C) is the set of all elements of SLg;(C) leaving the bilinear form f invari-
ant, i.e., SO9(C) is defined as

SO(C) = {A € SLy(C) | ATJA=J} .
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113 7.1 The Lie algebra of SOy (type Dy)

Let T = diag(\1, ..., Ay;) be a diagonal matrix of GLy;(C). Then the equation T7JT = J
calculates as

A1 A 1

AL A1 1
AL A 1

A - Aoy 1

Thus, the condition for T" = diag(A1, ..., A2;) to be an element of SO9(C) translates into
the [ equations

>\2l+17i = )\1_1 for i = 1, ,l

We conjugate the elements of B by T' = diag(\q, ..., A, /\%’ ey )%1) € To. We obtain

(Eii — E_1-14i—1-144)
= (Ni/Nj) (Bij = Eoim14j—1-1+i)s
(

T(Esi — E-j-14i—1-144)T7"
71
T = (N/N) (Bji — B_ii1gi—1-145)
71
71

T(Eij — E_j_14j,-1-1+i
T(Eji — E_j—14i,—1-1+j
T(Ei—j — Eiy1—j—1-14 = ANy (Bi—j — Epi—j—1-144),

T(E-ji— E_i—14ii+1-j = 1/(Np1—5M) (B—ji — Eoimitigt1—)-

We conclude that the Lie algebra Lie(SOq9)(C) is of type D;. With the help of the
above equations we are able to assign the roots to the corresponding root vectors. For
1 <14 < j <1 we have the assignments

)
)
)
)

Xejme; = Lij — E_j_14j 1140 and X ()= Eji — E_j_14i 1145
For 1 <4,j <, i+j <[ we get
Xeovay; = Ei—j— Epi—j—i—14i and X _(qyq,, ) = Eji — Eojmiqigq1—5-
The above equations also yield that the Cartan subalgebra H(C') is generated by
H(C) = (Eii — E_j-14i-1-1+i | 1 <i < I)c.
Hence, the Cartan decomposition has in the above notations the shape

Lie(SOx)(C) =H(C) ©;; (Xe—¢;)c @ (X (¢—e))C
®’L,j <X€i+€l+1,j>c @ <X_(Ei+€l+17j)>c'

The next step is to compute a Chevalley basis for Lie(SOq9;)(C). We start with the deter-
mination of the co-roots. We compute

(Xeimejy X (ci—ep)) = EBii — Ejj+ Eicitj—i-145 — Boi-14i—i-144
= Hez-—ej-a
Xeiterinjs X—(etrary)) = Bii+ Ea—jivi—j— Eoj—j — Eoio1yi 114
= H€i+€l+17j‘
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114 7 A parametrized equation for SOy

From the bracket products

He,—e;s Xei—e;] = Bij—E_ 1 1-1vi— (—Eij + B 14, 1-144)
= 2X5i_5j and
Heverpn o Xeiten ;] = Bi—j+Eqj 11— (=Eraj -1 — Ei—j)
= 2X€i+€l+1—j

we deduce that the matrices He,—, and H, 4 41, are already the co-roots. We denote
the [ co-roots which correspond to the [ simple roots a; € A with 1 < <[ of ® by

Hy:=H¢ ¢, ..., H1:=H ,—, and Hj:=H. 1.
Hence, H(C) is spanned by H(C) = (H; | 1 <i <l)c. We define the map
6 : Lie(SOy)(C) — Lie(SOg)(C) by 6(X)=—-XT.
Then 6 is an automorphism of Lie(SOq;)(C') satisfying the identities

0(Xe o) = —X__
1 g (ez
9(X€i+€l+1fj) 7X—(€

For the root vectors X, Xg with a, 3 € ® we obtain for the automorphism ¢ the additional
identity

ite1—j)"

(X X5)) = —[Xar, Xg]” = [~XT, —XT] = [0(Xa), 6(X5)]. (7.1)
Let nq g € Z be the number defined by
na,sXats = [Xa, X5 (7.2)

We apply 6 to both sides of equation (7.2). This computes with the help of equation (7.1)
as
—Na X —a-p = 0([Xa, Xg]) = [X—a, X gl =n_q_pX_a_5

Hence, n_q, g is equal to —nq g. From [Car72, Theorem 4.1.2] we know the identity
Mg Nap=—(r+1)2

Thus, ngg = £(r + 1) holds. We conclude that
{Hiy, Xo|1<i<l, a€d}

is a Chevalley basis of Lie(SOg)(C).

7.2 The transformation lemma for SOy,

In this section we present the transformation lemma for SO9; and its proof. Let (F,dr) be
a differential field of characteristic 0. Since the proof is based on differential conjugation,
i.e., on the adjoint action and the logarithmic derivate which can be both described by
the roots, we start with the study of the root system ® of type D;. We keep the notations
done in the previous section.
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115 7.2 The transformation lemma for SOy

Lemma 7.1. Forl > 4 and n € {1,...,1 — 3} let ®,, = (ay,...,y—2-n)a be the set of all
Z-linear combinations of the roots «y, ..., ;_o_y, which ly in ®. Furthermore, we define
Qg = {Far2, Tay1, Ty, (2 + 1), F(a2 + ), F(layo2+ a1+ )}

1. Then ®, C ®;_35 = @ is an irreducible subsystem of ® with ®,, ~ D3p,.

2. Fork € {1,...,n+ 1} there exists a unique root o € &7 \ & | of ht(a) = k and «
has shape

If k € {1,...,n} then there exists a unique simple root & € A such that f = a+ a €
O\ @ | and ht(B) = k+ 1. Ifa € A is a simple root and 8 — & is a root, then
either f—a=a or B—a € ®f |.

3. For k = n+2 there exist two roots .y and o in ®,; \ @, of ht(cy) =n+2. These
two roots have shape

-1 -2
ap = Z a; and oy = Z o; + q.

i=l—2—n i=l—2—n

4. For k € {n+3,...,2n+ 3} there exists a unique root o € &} \ ®F | of ht(a) = k
and o has shape

o= Z a; ifk=n+3and

i=l—2—n
IHnt+l—k 1-2
a= Z a; + 2 Z +ai1+op ifk>n+4.
i=l—2—n i=l+n+2—k

There exists a unique simple root & € A such that f = a+ a € &\ @j{_l and
ht(8) =k+ 1. If & € A is a simple root and B — & is a root, then either f — & = «
orB—aed .

Proof. The first point follows from the Dynkin diagram. We will prove the remaining
assertions of the lemma by an outer induction on n € {1, ...,I — 3} and two inner inductions
which we will specify later.

Let n = 1. We are going to compute the root system ®1 = (oy, oq_1, oq_2, a;—3)g. The
images of o;_3, ;_; and «; under the reflection o,, , are calculated with the help of the
Cartan matrix presented in the previous paragraph as

Oy o) = ap— (o, qp_2)0q_9 = a; + a2,
Oap_o(u1) = o1 — {1, q_2)y_9 = o1 + a2,
Oay_y(—3) = ay_3— (_3,q_2)q_9 = j_3 + .
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116 7 A parametrized equation for SOy

Hence, we computed the roots +(oy + ay—2), £(y—1 + ay—2) and £(ay—3 + a;—2). The
reflections oy, ,, 0, , and o,, map the roots a; + oy—2, oy—3 + o9 and a;_; + ;o to

Oz +a12) = ap+ oo — (o, q-3) + (—2,-3))a3
= ar+ o2+ -3,
Ooy_y (3 +ai2) = o 3+a2— ({3, 1)+ (u2,q-1))
= Q3+ a2+ a1,
oo (u—1+a—2) = o1+ o—o — (-1, 1) + {—2,0q)) 0y

= o +o_1+a_9.

Thus, we obtain the roots +(a;+a;_o+a;_3), £(y_3+a;_o+a;_1) and +(oy+a;_1+_9)
of ®;. The reflection o4, , maps a; + oq—1 + ag—2 to

O s+ o1 4+a-2) = ap+ai—1+o—2— (o, a1-3) + (0q_1,0q-3)
+(a—2,01-3) )03
= o to-1+o-—2+a-3.

At last we are interested in the image of the root a;+ay_14+a;_9+a;_3 under the reflection
Oa,_,- This image computes as

O olu+o_1+aio+o-3) = oq+o_1+a2+o-3— (o, a-2) + (ag_1,00-2)
+(a—2,00-2) + (q—3,q—2)) 2
= ot+o-1+o-—2+a-3.

Since the number of positive roots in @ is twelve (e.g., see [Hum72, Section 12.2, Table
1]), we conclude that

Q) = {*ay, Ty 1, Ty 2, fa; 3, (g +ap2), F(a_3+ a;2),
(1 +ar2), Hly-1+ a2+ a-3) £ (a1 + o2+ ay),
+(ay + oo + oy_3), oy + a1 + a2 + ay_3),

(o + 201+ a2+ a;_3)}.

It is easily seen that the roots in ®; \ ®¢ satisfy the requirements of the lemma.
Let 1 < n <1—3. We prove by induction on k; € {1,...,n+ 1} that there is a unique
root a € ®;7 \ @1 | of ht(a) = k1 and « has shape

[—3—n+k

o = E (678

i=l—2—n

Let k; = 1. Obviously, ay_s_,, is the unique root in ®;} \ &1 | of ht(a) = 1.

Let 1 < k1 < n+ 1. Then the induction hypothesis implies that there is a unique root
a € &, \ &,_1 such that ht(ar) = k; — 1 and this « has shape a = Eij__;‘f:l a;. We
are going to construct a root of height ki lying in ®; \ <I>f{_1 with the required shape.
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117 7.2 The transformation lemma for SOy

Therefore, we compute the image of o under the reflection oo, , +x, - First, we make use
of the Cartan matrix to deduce that the integer (o, aj_3_pn+k,) is

l—4—n+kq1

( Z Qg al—3—n+k1> - _1

i=l—2—n

This is true since if k&y =n+ 1, then l —4 —n + k; =1 — 3. Hence, we have

l—4—n+kq1 l—4—n+kq1 |—3—n+kq
Corgnin ()= D> 0i={( > 003 nik)03niky = Y O
i=l—2—n i=l—2—n i=l—-2—n

Evidently, this root satisfies the requirements. Suppose there is another root g € (Iﬁ{\q):_l
with ht(8) = k1 and S # o + qj—3_p+k,- By [Hum?72, Section 10.2, Corollary| we are
able to write 5 as the sum &; + ... + @y, of simple roots a&; € A such that each partial
sum &g + ... + &, with 1 < m < k; is a root. Hence, &1 + ... + ag,—1 is a root of
ht(a; + ... + @g,—1) = k1 — 1. Assume &3 + ... + ag,—1 # «. Thus, the uniqueness of «
implies that a1 + ... + &, —1 ¢ ®;7 \ @ |. Hence, we have the identity

(@14 .4 —1) F =y

Denote by w the minimum of the indices of the simple roots au, = @; in &1 + ... + ayg, 1.
Then the above identity implies @ > [ — 2 —n. Let n € N such that [ — 2 — n = w.
Equivalently, we have n < n. Hence, the outer induction assumption implies that the
shape of the root o + ... + a1 is

l—4—n+kq1
m,1 = Z Qo forl<ki—1<n+1,

i=l—2—n

-1 -2
M1 1= Z Qj Or 19 i= Z a; + o forki —1=n+2 and

i=l—-2—n i=l—2—n
l I+2+n—k1 -2
n3,1 = E Q; Or mn32 = E oG+ 2 E o + o1+ o
i=l—2—n i=l—2—n i=l+3+n—k1+1

for ki —1>n+3. If @1 + ... + ag,—1 is a root of @g, then we denote the six possibilities
for it by n4,; with 1 < ¢ < 6. Note that the smallest index of the simple roots in 7, is
equal or greater then | — 2.

Assume [ —2 —n > [ — 1 —n. To simplify notation we define 3; ; = 1; j + oq—2—,. Then it
is easily seen that in each case the integer (5;;, a;_2_,) computes as

(Bij, 1—2—n) = (Mij, —2—n) + (Q1—2—n, A—2—pn) = (U—2-p, V—2_p) = 2.
Hence, we compute the image of §; ; under o4, , , as
Taryn(Bij) = Bij— (Bijs M—2—n)i—2—p = Mi j+—2_n—20q_2_p = Nij ——2_p. (7.3)
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118 7 A parametrized equation for SOy

Since the right hand side of equation (7.3) is not a root, we obtain a contradiction. Thus,
we have | — 2 —n =1 —n — 1. Note that in addition it holds k1 —1 <n+1=n+ 1.
Therefore, the induction assumption forces & + ... + ag,—1 to have shape

l—4—n+kq 1—3—n-+kq
ap+ ..o+ a1 = Z o = Z ;.
1= i=l—-n—1

Then B =a1+ ...+ Q1 + —2-p = Eij__gffl «; is the root constructed above. Again
we obtain a contradiction. Thus, we can conclude & + ... + &y, -1 = «. To complete
the first inner induction we have to check that 5 is not the sum of a and a simple root
aj € {og_o_p,...,0q} \ {oy_3_pntk, }. From [Hum?72, Section 12.2, Table 2] we obtain that
the irreducible root system of type D3, contains only long roots, i.e., all roots of ®,, are
of equal length. For two roots «, 8 of equal length which are not proportional [Hum72,

Section 9.4, Table 1] yields that
(0, ) = +1.

We check that o + o = Zi;?‘:;_tf a; + «; is not a root of . For j € {l -2 —mn,...,l —
4 —n + k1 } we compute

(a+aj,a5) = (1 =09 nj)aj1,a5) +2(aj, aj) + (1 = 6—g—nij){Qj1,05) > 2
and for j € {{ —2 —n+ky,...,l} we have
(a+aj,a5) = (o), a5) = 2.

Thus, o+ o for o € {og_2_p,...,0q} \ {@1—3_n4k, } has a different length than «; and is
therefore not a root of ®. This completes the first inner induction.

Let k = n + 2. The first inner induction yields that there exists a root o € ®; \ @ | of
ht(o) = n + 1 and « has shape Zé;lz—%n a;. We construct the two roots of the desired
height. We compute the integers (a, a;—1) and (o, oy) as (o, ;1) = (@, ) = —1. Hence,
the reflections o,, , and o,, maps « to

-1
g, (0) =a— < a,qi_1 > a1 = Zai and

i=n

-2
oo (@) =a— <o a1 >0 = Zai + a.
=n

We have to show that these two roots are unique with the described properties. Assume
there is another root 8 € @ \ &1 | of ht(8) =n+2 and 8 # a+ o1 and B # a + ay.
With the help of [Hum?72, Section 10.2, Corollary] we can write § as the sum &; + ...+ &y, of
simple roots such that each partial sum is a root. Thus, we obtain the root & + ... + ayp_1
of ht(an + ... + ax_1) = k — 1. Assume &3 + ... + @x_1 # «. Then the uniqueness of «
implies that &y + ... + ag_1 ¢ @7\ @:_1. We conclude that 8 and &g + ... + a1 differ
by a;_9_p, i.e., the equation

—(@1+ ... +ap)+B =02y
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119 7.2 The transformation lemma for SOy

holds. By w we mean the minimum of the indices of the simple roots v, = «; in @1 + ... +
ag—1. The above equation yields w > [ —2 —n. Let n € N such that [ — 2 — n = w holds.
Thus, we have n <nand k—1=n+1>n+1. Then by the outer induction assumption
the shape of @1 + ...+ ap_jisfork—1=n+2

-1 1—2
m,1 = E a; Oor Mo =0a1+..+ap1= Z o + oy
i=l—2—7 i=l—2—7
and for k—1>n+3
! I+7i42—k 1-2
2,1 = Z Qj Or 129 := Z a; +2 Z a;t a1+
i=l—2—n i=l—2—n i=l+n+3—k

Assume | —2 —n > [ — 1 —n and define §;; := n; + oqy_2—y,. Since (B;j,a1_2_p) =
(Mij> C—2—n) + (_2_pn, —2_p) = 2, we conclude that the reflection o, , , maps f; ; to

oy o n(Bij) = Bij— (Bijs Cl—o—n)U—2_p = Nij — Q_2_p.

This implies a contradiction since 7; ; — a;_2_, is not a root. We conclude w =1 —1 —n.
But then K — 1 =n+ 1 = n + 2. Hence, the induction assumption offers two possible
shapes for @1 + ... + a;_1. However, we have

-1

-1
ar + ...+ apq :Zai = Z «; and

=W i=l—1-n
-2 -2
071—1—...4—6%,1:2@,-—1—041: Z o; + Q.
1= i=l—1-n

But in each case &1 + ... + @g_1 + aj_o_,, is one of the roots constructed before. We get a
contradiction. It is left to check that 8 = a + «; is not a root for a; € {oq_2_p,..., oy} \
{aj—1,a;}. We compute for j € {{ —2—n,....,l — 2}

(a+aj,a5) = (1 =09 nj)aj1,a5) +2(aj, a;) + (1 = §-2;){ajr1,05) > 2

and obtain that o+ a; has a different length than o;. Thus, for all a; € {ag_2_p, ..., a1} \
{oy—1,q} the sum a + «a; is not a root of ®.

Now let k = n+3. We know that there are two roots &1, g € ®,7\ @, | of ht(&;) = n+2
and they have the shapes

-1

-2
dl = E (67 and dg = E o; + Q.

i=l—2—n i=l—2—n

We will construct a root with the desired properties. Therefore, we compute the integer

<Z§;ll_2_n a;, ) = —1. Thus, the reflection o,, maps @; to
-1 -1 l
Oay (A1) a—( Y, aaa= Y a
i=l—2—n i=l—-2—n i=l—2—n



120 7 A parametrized equation for SOy

It is left to show the uniqueness of Zi:n a; € &\ @ | with the claimed characteristics.
Let 3 € &\ @1 | with the properties 3 # Zi:l—Q—n a; and ht(8) = n + 3. We write
B = @1 + ... + Qpt+3 as the sum of simple roots such that each partial sum is a root.
Suppose a1 + ... + @Qpao # &1 and @1 + ... + @pyo F Gg. Since &1 and &y are the only
roots in ;7 \ @ | of ht(&;) = n + 2, we have a1 + ... + @nq2 ¢ ® \ @1 ;. This forces
—(a1 + ... + @pt2) + B = aj_2_,,. We denote by w the smallest index of the simple roots
Qy = @; in @1 + ... + Gpgo. Wededuce w >1—2—n. Let n € Nsuch that | —2 —n=w
and assume [ —2—7n>1—1—n. Then k —1=n+2 > n+ 3. Thus, the outer induction
assumption yields that &; + ... + &,+2 has shape

I+2+n—k1 -2
a1+ oo+ Ao = Z a; +2 Z a;+ a1+ .
i=l—2—n i=l+3+n—k;

We compute (@1 + ... + ant2 + Q—2-pn, a—2_p) = 2. Then the reflection o,, , , maps j
to

Oaj_o9_p (6) = B - </87 a1727n>041727n =01+ ...+ 0Qpy2 —Q_2-n. (7.4)
Since the right hand side of equation (7.4) is not a root of @, it holds | —2—n=1—1—n
or equivalently n + 1 = n. This forces k — 1 = n 4+ 2 = n + 3 and thus the shape of

a1+ ...+ apyo 18
l

l
]+ ...+ Qpio = Z o; = Z Q.

i=l-2-n i=l—1-n
But then a3 + ... + apyo + o = 2221_2_71 «; is the root constructed above. Hence

we obtain a contradiction to the assumption that 8 # Zé:l—Q—n a;. It is left to show that
a1+ o for oy € {oy_o2—p, ..., q—1} and & + o for a; € {y—9—p, ...,y } \ {oy_1} is not a
root. We check the lengths of &; + o for i = 1,2. We compute for j € {{-2—mn,...,[ -1}

(a1 + o, a5) = (1= 01—2—nj){j—1,a5) + 2(0j, a5) + (1 — 0—1,j) (01, ) > 2.
For j € {l—2—mn,...,l — 2} we obtain
(G2 taj, aj) = (1=012-n;){0j-1,05) +2{ag, aj) + (1 =02 5) (@)1, ;) + 019 5(aj, u) > 2
and for j = [ we have
(a2 + o, aq) = (o, ap) + 2{ay, oy) = 3.

Thus in each case the root &; + a; has length different to the length of o; and therefore
&; + o is not a root of P.

Now we start the second inner induction: For ko € {n + 4, ...,2n + 3} there exists a unique
root a € ®;7 \ @1 | of ht(a) = ko and « has shape

I4+n+1—ko -2
o= Z a; + 2 Z o + oy + o
i=l—2—n i=l+n+2—ko
Let ko = n+4. We construct a root satisfying the assertion using the root a = Zé:l—2—n Q;

of ht(a) = n + 3 of the previous step. The integer (o, ay_2) computes as

(o, q—9) = (ay—3,a1-2) + (0q—2,01-2) + (q—1,q—2) + (oq, y_2) = —1.
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121 7.2 The transformation lemma for SOy

Hence, the reflection o, , maps o to

-3
Oay_o(@) = a—(a,0q_2)ay_o = Z a; + 202+ o1+ o (7.5)

i=l—2—n

Evidently, this root satisfies the proposed properties unless the uniqueness. Suppose there
is another root 8 € ®;7 \ @ | of ht(8) = n + 4 and

-3
B # Z a; + 202+ o1+ ay.

i=l—2—n

We write 8 as the sum aj + ... + appq of simple roots in such a way that each partial
sum is a root. We assume in addition that the root &; + ... + &py3 # a. Then, by the
uniqueness of a € ®;7 \ ® | it holds &y + ... + ayps ¢ P \ @7 ;. Hence, we have
—(aj + ... + @n43) + B = a;_2_y,. Denote by w the minimum of the indices of the simple
roots o = @; in a1 + ... + dpas. Form the last equation we get w > 1 — 2 —n. Assume
w >1—1—mn. Then the coefficients ¢;_o5_, and ¢;_1_,, of &1 + ... + &pt3 = 22:1 c;qu; are
Cl—2—n = ¢i—1—n, = 0. This forces (53, a,) = 2. Hence, the image of $ under the reflection
Oa;_,_, is not a root. However, the reflection o4, ,  maps 3 to

Oaj_o_p, (/8) = B - <Ba al—?—n) Qo p =01+ ... + Qpy3 — Q9 p ¢ .

Let n € N such that w =1 — 2 — n. Then the above yields | -2 —-n =1—1—n or
equivalently 7 + 1 = n. Consequently ko — 1 =n+ 3 = n + 4. Thus, a; + ... + @py3 has
shape

I+2+n—ko -2
A 4 o+ Gpgy = Z a; + 2 Z i+ a1 + .
i=l—1—n 1=l+2+n—ko

Hence, 8 = @1 + ... + Qny3 + oy is the root constructed in equation (7.5) what
contradicts to the assumption that

-3
B # Z a; + 202 + o+

i=l—2—n

It is left to check that 8 # o + «; for some a; € {j_2_p,...,oq} \ {y—2}. This will be
done by comparing the length of a 4+ a; with ;. For j € {l =2 —n,...,l — 3} we obtain

(a+ oy, 05) = (1= di—2-nj) (-1, 05) + 2(y, o) + (@1, 05) = 2.
Further, for j =1 — 1 we compute
(a4 a—1,00-1) = (-2, 0q-1) +2(q—1,0q—1) =3

and for j =1 we get
(a4 ap, ap) = (g9, q) + 2{ay, ) = 3.
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122 7 A parametrized equation for SOy

This forces in each case the root length of a+ «; to be different to the length of ;. Hence
a + o is not a root of ®. Thus, the induction assertion is shown for ko = n + 4.
Let n+4 < ks < 2n + 3. The induction assumption yields the root

1+24+n—ko -2
_ 19 , of N\ dF
o o; + a; o1t € n\ n—1
i=l—2—n i=l+3+n—ko?7+1

of ht(a) = ko — 1. To construct a root with the proposed characteristics we compute

(0 QU 2tn—ks) = (QUt14n—kas Ut 24n—ks) + (QUt24n—ko> Ut 24n—ks)
+2(U 43 4n—kas Ut 24n—ky) = — 1.

Hence, the reflection Oayioyn_k, MAPS a to

I+1+n—ko 1-2
orpain iy (@) = @ = (0,02 pn k)0 2pn by = Y, Qi+2 Y o + o1+ ay.
i=l—2—n i=l+2+n—ko
Evidently,
I+1+n—ks 1-2
Z a; + 2 g a; a1+ o
i=l—2—n i=l+2+n—ko

satisfies the stated properties. It is left to show the uniqueness. We assume that there is
Bedf\ @ | of ht(8) = ko and B # o + ayy24n—k,- We write 8 as in [Hum72, Section
10.2, Corollary], i.e., as the sum of simple roots 5 = a;j + ... + ax, such that each partial
sum is a root. We assume that the root &y + ... + ag,—1 of ht(ag + ... + ag,—1) = ko — 1
is different to o. The uniqueness of « implies that &y + ... + ag,—1 ¢ @7 \ @, ;. This
forces —(a1 + ... + @gy—1) + B = ag—9—y. It follows w > | — 2 — n where we denote by w
the smallest index w of the simple roots a,, = &; in &1 + ... + @k,—1. Let n € N such that
l—2—n=w. Assume [ —2—7 > [—1—n or equivalently that 7+ 1 < n holds. Since the

coefficients ¢;_o_p, and ¢;_1_p, of &1 + ... + Qg1 = Zizl c;a; are zero, we conclude that
(B, 01—2—n) = (@1 + . + Qpy—1 + V2, Y—2_p) = (M_2_p, Y _2_p) = 2.
Since the image of 8 under the reflection o4, ,
Oayon(B)=B—201_2_p =014 ... + Qg1 — 24,

is not a root of ®, we obtain a contradiction. This forces | —2—n = [—1—n or equivalently
n+1=n. We are able to apply the outer induction assumption ton+4 =n+5 < ko — 1.
We gain that & + ... + @,—1 has the shape

l+n+1—ko -2
A+ gy = Z a; + 2 Z i+ a1 + .
i=l—1-n i=l+2+n—ko

But then 8 = &1 + ... + &g,—1 + oq—2—p, is the root constructed right before. To finish
the proof we need to check that 8 is not a root of type a + a; for oj € {2y, ..., 1} \
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123 7.2 The transformation lemma for SOy

{out24n—k,}. We check the root lengths of a4« and ;. For j € {I—-2—n, ..., l+1—n—ks}
we compute

(a+aj,05) = (1= d1—z—nj)(aj-1,05) + 2(a;, a;) + (@41, ;) > 2
and for j € {{+3 —n —ko,...,l — 2} we obtain
(ataj, a5) = (2=0143-n—ks ) (-1, ) +3{j, o)+ (2=01—2,5) (@1, @) +01—2,5(u, aj) > 2.
If j=1—1or j =1, then we have
(a4 o, a5) = 2(q—2, o) + 2(aj, o) = 2.

Since in each case the length of a + «; is different to the length of a;, we conclude that
a+a; is not a root. This completes the second inner induction. Hence, the outer induction
is also completed and the lemma is shown. ]

For the proof of the transformation lemma we decompose the set of the positive roots ®*
into subsets Q,,, A,,,©, C ®*. For n € {1,...,1 — 3} we define the sets Q,,A,,0, C &+
as follows. The set €2,, is defined as

n
Q, = U {a € &, \ ),—1 | @ as in Lemma 7.1.2 of ht(a) = 1,...,m}
m=1
n 1—-3—-m+k

= U{ Z a; |1 <k<m}.

m=1 i=l-2—m
Note that Qy, \ Q2,1 is
Qo \ Qo1 ={a € ®,\ ?,—1 | @asin Lemma 7.1.2 of ht(a) = 1,...,n}.

The set
-2 -1 -2
Ani={ D> o, > o, > it
i=l—2—n i=l—1—n i=l—1—n

contains the root a € &, \ ®,,_1 as in Lemma 7.1.2 of ht = n + 1 and the roots a €
®,,_1 \ ¢,—2 as in Lemma 7.1.3 of ht = n + 1. In the case n = 1 the set A; contains the
roots oj_o9 — ay_1 and ay_o — g of ®g. The set ©,, is

n
O, = U {a € &, \ ®p,—1 | @ as in Lemma 7.1.4 of ht(a) = m + 3, ...,2m + 3}
m=1
l

n l+m+1—k -2
:U{ Z i, Z i+ 2 Z i +ai_+a|m+4<k<2m+3}.
m=1 i=[-2—m i=l—2—m i=l4+m+2—k

Here we have

O, \Op_1 ={a€®,\ P,_1 | aasin Lemma 7.1.4 of ht(a) = n + 3, ...,2n + 3}.
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124 7 A parametrized equation for SOy

Finally we define
A ={oy, 1, g, + oo+ g, a1t ooy, g+ g+ o)

Since a1 + ... + ay—1 and ag + ... + a;_2 + oy are not contained in Ul 3 A; and the roots
o_9 + ay_1 and aj_o + oy of ®g are in A’ we conclude that

-3 -3 -3 -3
+:Ql—3U(UAj)UA/U@Z—3:(UQj\ijl)U(UA UA, U@]\@] 1
j=1 j=1 j=1

where the union of the last equation is disjoint.

The transformation lemma for SO9; will be proved in 3 steps. First we will transform the
root spaces which correspond to the roots of £;_3. In the second step we handle the roots
of A = (Ul > Aj)UA’. In the last step the roots of ©;_3 are processed.

Before we start we recall some facts about the adoint action.

In the previous section we computed a Cartan subalgebra H and a Cartan decomposition
L = H® @, cq Lo of Lie(SOy)(F). Further, we showed that the set {X,, Hy | a €
¢} forms a Chevalley basis where the notation is as in the previous section. Then the
Chevalley construction yields a representation of the group SO9;. Let us denote for each
B € ® the corresponding root subgroups by s and a parametrized element of Ug by Us(()
with ¢ € F. Let o and 3 be two roots of ®. Then the adjoint action of Ug(() on X, is
determined (see also Section 3.2) by

Ad(Us(O))(Xa) = Y mayig - ¢+ Xatip: (7.6)
>0

For 8, a linearly independent let o — r3, ... ,a + g8 be the B-string through . Then the
values for mg . ; are determined by mgq; = :l:(rﬂ) and mg a0 = 0.

Lemma 7.2. For I > 4 let1 <n <1—3andlet A = Y\ | Xo, + Y cq, ay Xy +
> ovew—\q,_5 WX~ Then there exists U € U™ such that

UAU' +a(U ZXQZJr Y oaXy+ > e X,

YEQ—1 YELT\Q 3

Proof. First remember that tﬁhe roots in Q, \ Q,_; are of height £ with 1 < k < n. We
will sometimes write shortly ,, for Q,, \ Q,—1. We show for a fixed n the following claim:
For 1 <k <n and

A = ZX% + Z ay X + Z ay X, + Z ay X
VEQn—1 YEPT\Q—3 YEQ\Qn—1;ht(7) >k
there exists U € U~ such that
UAU +oU ZX% + Z ay Xy + Z ay Xy + Z ayX5.
YEQn—1 YED\Q_3 ~EQn;ht(v)>k+1
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125 7.2 The transformation lemma for SOy

In other words we have to delete the unique root o € 2, \ Q,,—1 C ¢\ @, of ht(ar) = k.
By Lemma 7.1.2 there exists a unique & € A such that —a +a = 3 € &} \ & | and
ht(5) = k + 1. Hence, for 3 := —3 € & \ ®_ | we obtain f + a = a.

We differentially conjugate Ay by Ug(¢). This yields

l
Us(¢)AUs(¢) ™"+ 0(Us(C)Us(¢) " = Y Ad(Us(¢)) (Xa,)
1=1

+ Y aAdUO)X) + D a AdU())(X,) (7.7)

YEQn—_1 YEPT\Q 3
+ Y e Ad(U(0)(X) + OUs(O))U(C)
EQnsht(7)>k

Note that for v € &7, v # 0 we have ht(y + i) > ht(8) = k + 1 for ¢ > 0. Thus, by
equation (7.6) the second summand of the right hand side of equation (7.7) is

Y aAdUs(O)X) € D a X+ Y X,
VEQn—1 YEQn—1 yED, ht(y)>k+1

It is easily seen that for v € &~ \ ;_3 and 7 > 0 the sum 7 + i3 is not an element of
;_3. Hence, for the third summand of the right hand side of equation (7.7) we obtain
with equation (7.6)
Y aAdUQO)(X,) € Y Lie(SOg)(F),.
YEPT\Q 3 YELT\Q—3
The fourth summand of equation (7.7) is by the same arguments an element of the subspace
Z a,Ad(Us(C))(Xy) € Z ay Xy + Z Lie(SOq),(F)
YEQht(v) >k YE€Qnht(v) >k ED, \ P ;ht(7)>k+1
and Proposition 3.5 yields for the last summand of equation (7.7)
A(Up(¢))Us(¢)™! = 16(Up(¢)) € Lie(SO2)g-

Note that /5 is an element of &, \ &7 of ht(8) =k + 1.
Now we analyse the first summand of equation (7.7). With the help of Lemma 7.1 we
deduce

l l
> AdUB(0))(Xa,) € Y Xa, +mpa1(Xa + > Lie(SOg) (F)
=1

i=1 YED, sht(y)>k+1
+ > Lie(SOu)(F).
ve®, 4
If we define ¢ = m_ﬁa_o‘l, then we obtain from our results for equation (7.7)

Us(O)ARUS(C) T +0Us(O)U(O7 =D Koy + D @y Xyt Y. ayX,

i=1 FED\Q_3 YEQn -1

+ Z ay X

YEQR\Qn—1;ht(7) >k+1
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126 7 A parametrized equation for SOy

with suitable a, € F'.

Now it can be shown by the claim and induction on height 1 < k < n that for A there
exists U € U~ such that UAU ! + 9(U)U~! = Aj,,. This yields for K = n an element
U € U™ such that A is differentially equivalent to

UAUY +0(U) U = Apyy.

Since the set {y € Q, \ Q,—1 | ht(y) > n + 1} is empty, we obtain

l
UAUT + 00U =D KXoy + >, aXy+ D ayX,
=1 "/Eanl ’YG‘D*\Ql,g

Thus, the lemma follows. ]

For the transformation of the roots of the set A we need some additional information of
some specific roots since the root system of type D; is more improving than the other root
systems of the series.

Observation 7.3. Let 71 = oy_o + a;_1 and v9 = a;_9 + ;. Then for ~; there are two
unique simple roots &; € A such that 7; — &; is a root. We have

Mm—q-1 = o2 and Y1 -2 = a1,
Y2—q2 = o and P -—o = apo.

For 1 <n <1 — 3 let us define the set

l

-1 -2
T, ={ Z i, Z i, Z ai} = {B1, Ba, B3}

i=l—2—n i=l—2—n i=l—1-n
and let us denote the roots of A,, by A,, = {a1, &g, as}.

Observation 7.4. There are two unique simple roots a1, as € A such that 8; — a; is a
root for ¢ = 1,2. We have

fi—ag-1 = a1 and B —a, = ag,
Bo—ay = o1 and fo—o, = 03

For n = 1 there are two unique simple roots &; € A such that 83 — &; is a root. We have

Bg—aop = a2 and f[3—o_1 = as.

For 2 <mn <[ — 3 there are three unique simple roots &; € A such that 3 — &; is a root.
We have

l
Bs—or=as, Pz—a1=dz and Bz—1n= » o

i=l—n

where Zl a; € N for n =2 and Zl o; € ©,,_9 for n > 3.

i=l—n i=l—n
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127 7.2 The transformation lemma for SOy

Observation 7.5. For the root v = Zﬁzl «; there are three unique simple roots a; € A
such that v — &; is a root. We have

-2

y—a1 € Oy, fy—al:Zai € A and fy—al,lzz:ai—i—al e A
= i=1

Lemma 7.6. Forl>4let A=Y X, + doen Xy + 30 co, , 04Xy and denote by

IV the setT" = {—ay, —ay—ay_1— 9, — Zij a; —ay}. Then there exists U € U™ such
that

UAU™' + (U ZXQZJF Y e Xy + ) aX,

vEO; 3 ~yELY

Proof. The definition of the sets A, and A’ implies that we can decompose A into

A= ZX + Z Z(LYX +Za7X+ Zav

1<n<l-3~€A, yEN YEO;_3

In the first step we delete the root spaces which correspond to the two simple roots
—q;_o and —ay_1 of A’. Therefore, we analyse the roots —(a;_s + ay_1) =: (1 and
—(aq—g + aq) =: B2. Let a be a root of AU©O;_3. If o+ if3; is a root for i > 1, then i =1
and o+ fj € ©;_3U{—(a;—2 + oy—1 + oy)}. This follows from the fact that one of the two
coefficients ¢;_1 or ¢; in the sum o +i3; = Zézl cray, with ¢, € Z is equal to 1 and so
both coefficients of o +i3; have to be 1. The roots with ¢;_1 =1 and ¢; = 1 are precisely
the roots of ©;_3 U {—(ay_2 + oy—1 + oy) }.

We start with the differential conjugation of A by Ug, (¢1) € Ua,. This yields

l

U, (C1) AU, (G1) ™+ 0(Us, (€1))Up, (C1) ™' = D Ad(Up, (1))(Xa,)

=1
+ 3 Y aAdU (G (X)) + Y ayAd(Up, (G1))(X5) (7.8)
1<n<l-3~v€A, YEO;_3
+ > ayAd(Ug (G))(Xy) + 0(Us, (G1)Us, (1)

YEA2, 2
For the first summand of the right hand side of equation (7.8) we get by Oberservation 7.3

l l

Z Ad(Uﬁ1 () (Xa,) = Z Xoy +mp1 001 10X 0y + M85 01510 X 0y
i=1 =1
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128 7 A parametrized equation for SOy

The above discussion yields that the second, third and fourth summand are elements of

> aAdU G, € > Y ax

1<n<l-3~v€EA, 1<n<l-3~v€A,
¥ ) Lie(SOu) (F).
V€O 3U{—a;_2—a_1—a;}
Y. AU (G)(X) € Y a X+ > Lie(SOg) (F) and
~YEO;_3 YEO;_3 v€O_3U{—a;_2—i_1—a}
Yo AU (G)(X,) € D a X, + > Lie(SOx) (F).
yeN yeN YEO_sU{—aq_o2—aq_1—y}

The last summand is by Proposition 3.5 an element of

0(Us, (61)Up, (C1) 71 € D Lie(SOq) (F).

vyeN’

We define ¢ := ——“1=L_ Thus, for suitable ay € F we get

Mpy,a;_q.,1

U, (G1) AU, (G1) ™! + 8(U, (¢1)Us, (G1) ™ ZXanL Yo D akX,

1<n<Il-3~v€A,

+ Y aX+ > aX, = A

VEO; 3 YEA\{—ay_1}

Now we differentially conjugate A by Ug,(¢2) € Up,. We obtain

l
Us, (CQ)AUﬁz (<2)71 + a(Uﬁ2 (C2>)U52 (CQ)il = ZAd(Uﬁ2 ((2))(Xa,)
=1
+ D D BAAULG)) + DD aAdULG)(X)  (1.9)

1<n<I-3~v€EA, YEO_3
+ > ayAd(Upy(62))(Xy) + 0(Us, (G2))Upy (G2)
YEAM\{—ay_1}

Then Observation 7.3 yields for the first summand of the right hand side of equation (7.9)

l l
Z Ad(Uﬁz ((2))(Xa;) = Z Xog +mpy 015162 Xa; +Mpy0162X 0y
=1 =1

If we define (o = % and use the same arguments as above for the computation of

the second, third, fourth and fifth summand of equation (7.9), then we get

Upy (C2) AU, (C2) ™1 + 8(Up, (G2)) U, (C2) ™ ZXM > Y ax,

1<n<l-3v€A,

+ ) a X, + > iy Xy = Aj_3.

YEO_3 YEAM\{—ay_1, —(ay_2)}
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129 7.2 The transformation lemma for SOy

This completes the first step. To simplify notation for the rest of the proof we define
A =: AN\ {—a;_1, —(oy_2)}. In the second step we delete the parts of A;_3 lying in the
root spaces which correspond to the roots of Uij A;. We prove the following claim:
For1<n<[-—3let

n—ZXalJr S X+ Y aX, +ZZ%

YEO_3 vyeN! i=n yEA;

Then there exists U € &~ such that

UA U +0(U ZX%JFZ“VX —l—Z(LyX—I—ZZa,Y

VEOI_3 yeA! i=n+1~vy€EA;
In other words we delete the parts of A, which are elements of the root spaces corre-
sponding to the roots of A,, = {a&i1,da2,as}. This will be done by stepwise differential
conjugation with the elements Ug,(¢;) where f3; is one of the roots of T,, = {f1, B2, B3}.
Note that
1. if for o € Uij A; and B; € T) = {f1,P2,B3} (for 1 <n <1—3) a+ f; is a root,
then o + 8 € ©;_3.
2. for a € Uﬁin and §; € T} = {1, P2, 83} (for 1 <n <1—3) a+j-F; is not a root
for j > 2.

3. for a € ©1_3 and B; € T} = {p1,02,83} (for 1 <n <1—3) a+j-f; is not a root
for j > 1.

We start with the differential conjugation of A, by the root group element Ug, ((1) € Up, .
This yields

Up, (¢1)AnUg, (Cl) + 0(Up, (G1))Up, (C1) ™ Z Ad(Ug, (C1))(Xa,)

+Z%M%@>—QMM%&M> (7.10)

7691 3 yEA!

+ZZ%M%QX%W%@MM)

i=n yEN;

For the first summand of the right hand side of equation (7.10) we obtain with the help
of Observation 7.4
l

l
ZAd(U51 (1) (Xa,) = Z Xa; +mpy 0110 Xa + My 0,10 Xa,-
=1 =1

The above note implies for the third and fourth summand of equation (7.10)

> Ad(Us, (0)(X0) € Y ay Xy + Y Lie(SOy),(F),
~eA! 'yEA’ Y€OI_3
Z > a,Ad(Us, (G1)) Z Y ay Xy + ) Lie(SOx),(F)
i=n yEA; i=n yEA; YEOI—3
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130 7 A parametrized equation for SOy

and for the second summand

Z ayAd(Ug, (C1)) Z ay X

YEO_3 YEO_3

Since B € Ap+1, we get for the last summand

O(Up, (C))Up, (C1) ™ € Y Lie(SOu) (F).

’YGAn+1

Thus, equation (7.10) is equivalent to

A = Up, (C1) AnUp, (G1) ™ + U, (G1)Up, (1)~ ZXm Yoo X+ Y aX,

YEO_3 ~EA!
-3
+ Y0 Y ay X+ (a6 + Mgy an11G) Xay + (@ay + My 0,1G) Xy + da; Xas-
i=n+1 ’yEAi

Now we differentially conjugate A, 1 by Ug,(¢2). We obtain

Uﬁz(@)AmlU@(@) + 0(Ug, (€2))Up, (C2) ™ ZAd (Up, (62))(Xa,)

=1
+ ) @ Ad(Up, (G2))(X5) + ) ayAd(Up, ((2))(X5)
V€O 3 ~eA!

1-3 (7.11)
+ 3> a Ad(Us, (62))(Xy) + (a, + M, 001,161 Ad(Us, (G2))(Xa,)

i=n+1yeN;
+(a&2 + mﬁlyan,lcl)Ad(U& (C2))<X5t2) + adsAd<UﬁQ (@)) X&3)

(
+8(U52 (CQ))U/BQ (CQ)_I'

Observation 7.4 yields for the first summand of the right hand side of equation (7.11)

l

Z Ad(Us, (¢2))(Xa,) = ZX%' + M8y ,00,162X a1 + 1M85,0,,162 X a5
=1 =1

For the computation of the remaining summands we use the same arguments as in the
step before and obtain similar results. However, we have

(ag, +mpya_1,161)Ad(Up, (G2))(Xa,) + (aay + Mgy an,,161) Ad(Up, (C2))(Xas)
+ad3Ad(Uﬁ2 (CQ))(Xd3) €

(aay + my0p1161) Xa, + (@ay + My 0,16) Xa, + aay Xay + » Lie(SOg),(F).
YEO_3
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131 7.2 The transformation lemma for SOy

Since B2 € Apy1, the last summand is d(Ug, (£2))Us, (651) € D venn s Lie(SO), (F). We
conclude

Apo = Ug, (G2)An1Up,y (&)™ + (U, (C2))Up, (G2)~ ZXw > @, X

v€O-3
-3
+ > a X+ DY Xy + (aay + M0G0+ My 00100) Xay+
yeA! 1=n+1yeN;

(agy + Mgy an,161) Xay + (@as + Mpy 0,,102) Xag

In the next step we differentially conjugate A, 2 by Ug,((3) € Us,. This computes as

U53(C3)An,2Uﬂ3(<3) + a(Uﬁs(@))Uﬁs G)~ ZAd Us, (G3))(Xas)

=1
b Y e AdUs ) + Y a AU, (G) ()
VEO—3 yel!

I—3 (7.12)
+ ) > ayAd(Us, (63))(Xy) + 0(Up, (C3))Up, (G3) ™
i=n+1~y€eA;
+(aa1 + mgy,a;_ 1,1C1 + megs, 04171<2)Ad(U53 (C3))( 1)
+(aay + M8y 00,1C1)Ad(Ug, (G3))(Xay) + (aas + My a,162) Ad(Up, (C3) (Xa,)-

We deduce with Observation 7.4 that for n = 1 the first summand of the right hand side
of equation (7.12) is

l

I
> Ad(Us, (3)(Xay) = Y Xay + My 00163 Xas +May00_ 1,163 X a
=1 =1

and that for 2 <n <[ — 3 we have

l

l
ZAd(Uﬂs (¢3))(Xa;) € ZXOCi + MB300,163 X ay + Mpya,_1,163Xa; + Lie(SOg), (F)
i=1 =1

where v = Zﬁ:nw a;. If 1 > 5 and n = 2, then v is an element of A’ and if [ > 6 and
3 <n <[—3, then we have v € ©;_3. The same arguments as in the previous steps yield
similar results for the remaining terms. For the last summand we obtain

O(Up,((3))Us,(¢3) ™" € > Lie(SOx)y(F) if n=1and
yeN

O(Us,(C3))Us, (3)™" € > Lie(SOy)(F) if2<n<1-3.
YEO_3
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132 7 A parametrized equation for SOy

Thus, we obtain for equation (7.12)

Upy (C3)An2Up, (G3) ™" + 0(Us, (G3)) U, (C3)™ me Y aX,+ ) aX,

VEO—3 ~eEN
-3
) D Ay Xy F (aa + Mgy e 1,160  Mpa00162) Xa,
1=n+1 76/\1-

+(aay + Mgy 0,161 + Mp3.0,,103) Xay + (aas + My 00,162 + M5 0,_1,163) X,

It can be checked by computation or with [How01, Theorem 2.2] that the integers mg; ;1
have all the same signs. Thus, the determinant

mMp,op_1,1 MBa,ay,1 0
det mMpBy,an,1 0 mMB3,a;,1 #0
0 MBy,am, 1 MBza;_q,1

is not zero. Hence, the system of equations

Mgy o116 + Mgy 0,1C2 = —aay,
MB, 0,161+ MBy 0,163 = —Gay,
MBy 0162+ MBg 0,116 = —aag

has a solution ({1, (s, (3) € F3. Thus, for U := Ug, ((1)Us, ((2)Us, ((3) we get that

UA U+ (U ZX%+ YA X+ > a X, + Z > a, X,

Y€EO_3 ~veA’ i=n+1~€eA;

This completes the proof of the claim. Now it can be shown by the claim and induction
on 1 <n <[-— 3 that for A; there exists U € U~ such that

UA1U71—|—8 ZX%—F Z ay X, —|—Za7X + Z Z:aW

VEO_3 yeN i=n+1vy€EA;

This yields for n = [ — 3 that there exists U € U~ such that A; is differentially equivalent
to

UAU™ +0(U ZX%JF S oax, + > a X, = A,
YEO_3 ~EA!

In the last step we differentially conjugate A;_3 by Ug({) € Uz where j is the root
B = Eé:l a;. We obtain

l
Us(Q)Ai-sUs(0) ™ + 0(Us(O))Up(¢) " =D Ad(Up(¢))(Xay)
= (7.13)
+ Z a'yAd(UB(C))(XV) + Z avAd(Uﬁ(C))(XV)-

v€OI—3 ~eA!
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133 7.2 The transformation lemma for SOy

Observation 7.5 yields for the first summand of the right hand side of equation (7.13)

l

l
ZAd(UB(C))(XQi) € ZXai M0y 16Xy M0y ,16 X5, + Z Lie(SOg)(F)
; i=1 Y€01-3

where v, = Zi;i a; and vy = Zij a; + . Since for every root a of ©;_5 or A’ one of the
coefficients ¢;_1 or ¢; of a+if with ¢ > 1 is greater than 2, the second and third summand
computes as

Z a,Ad(Us(C) Z ayX, and

~EOQ;_3 €O _3
Y aAd(UB(Q)(X) = D ay X
~EA! ~EA!
We define ¢ = —%. Then the assertion of the lemma follows, i.e., we have
Qs
Us(¢) " A1Us(¢) +0(Up(C)) ZXQZ + ) A Xy Y anX

Y€O_3 yer’

O]

In the next step we transform the roots of the set ©;_3. Since it is not possible to delete
all roots of ©;_3 we define for 0 < n <[ — 4 the set

-2
Tp=T"U{oi+2 > aito+o|1<i<l—3-n}
j=i+1

and I'j_3 as I';_3 := IV where I"” is as in Lemma 7.6. However, the transformation is done
in Lemma 7.7 below.

Lemma 7.7. Forl>4letl1 <n<l-3 and
A=Yt Yt Tk,
YEO, vl
Then there exists U € U™ such that
UAU 4 oW ZX%JF Y Xt Y X
’)’Een 1 Wern 1

Proof. First remember thz}t the roots in ©,,\ ©,,_1 are of height k with n+3 < k < 2n+2.
We will sometimes write 0, for 0, \ ©,_1.
We prove the following claim: For n +3 < k < 2n + 2 let

Ak_ZXaﬁ— Y oa X+ Y a X+ > ay X,

~vE€Th YEO,_1 YEOR\On_1;ht(y)>k
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134 7 A parametrized equation for SOy

Then there exists U € U~ such that

l
UAUT +0UUT =) KXo+ D anXot Y aXyt D X
i=1 Y€l YEOp-1 YEO;ht(y)>k+1

By Lemma 7.1 there is unique root a € ©, \ 0,1 C ®,; \ ®,,_; of ht(a) = k. To prove
the claim we have to delete the term of A; which corresponds to this root a. Lemma 7.1
yields that there exists a unique root @ € A such that —a+a& = 3 € ®} \ &1, of height
ht(3) = k + 1. Thus, for 3:= -3 € ®, \ ®,,_, it holds 8+ & = a. From the shape of

I+n—k -2
B=—=( > a+2 > 4ot
i=l—2—n i=l+n+1-k

we obtain the following note:

1. If @ € A is one of the roots of Lemma 7.1.3, then & + i is not a root for ¢ > 2.
2. If y €Ty, then v+ 44 is not a root for i > 1.

3. If v € ©,,, then v+ i/ is not a root for i > 1.
We differentially conjugate Ay by Ug(¢) € Ug. This yields

l
Us(QAUs(Q) ™ + OUs(OIUs(O) ™" = 3 Ad(Us(C))(Xa)

+ ) a Ad(Us(O))(X) + Y ayAd(Us(0))(X,) (7.14)
yel'y YEOR_1
+ > a, Ad(U3(0))(X) + (Us(C))Us(C) .

YEOR\On—1;ht(7)>k+1

With the help of Lemma 7.1.3 and the above note we conclude that the first summand of
the right hand side of equation (7.14) is

l l
D AAU(O) X = 3 Koy + 5 51Xk 51 CX,
1

l+n—k -2
where = —( Z o; + 2 Z o+ o1+ qp) €O,
i=l—1-n i=l+n+1—k

The note yields for the second summand of the right hand side of equation (7.14)
Z ayAd(Us(())(Xy) = Z ay Xy
v€Eln v€ln

and for the third and fourth summand

Z ayAd(Us(Q))(Xy) = Z ay Xy and

'Y€®n—1 'Y€®n—l
> a Ad(Up(€))(X5) = > @y Xy
Y€OR\On—1;ht(7)>k+1 YE€OR\On—_1;ht(v)>k+1
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135 7.2 The transformation lemma for SOy

Proposition 3.5 implies for the last summand

O(Us(¢))Us(Q)™" = 16(U3(Q)) € Lie(SOa)s(F).
We define ¢ := ——%—. Then we obtain for equation (7.14)

mg,a,1

Us(¢)AxUps(¢) ™" + 0(U())Us(¢) " =
ZX%Jr e Xyt D a X+ > ay X .
v€ls YEOn—1 YE€OR\On_1;ht(y)>k+1

Thus the claim follows.
An inductive argument together with the claim shows that for n +3 < k < 2n + 2 and
A = A, 3 there exists U € U~ such that

UAU + (U ZX + Y a X+ Y e X+ > aX,

vels YEOR—1 YEO,;ht(v) >k
Thus, for &k = 2n + 2 we have
UAU +0(U ZX + Y X+ Y Xyt > ayX,. (7.15)
v€l'n YEOn_1 vE€O;ht(v)>2n+3

Note that the root s

Y=q-2-nt2 Z o+ o1+ o

i=l—1-n
is the only root in O, \ ©,_1 of ht(y) > 2n + 3 and the only element of I',_; \ I';,. Hence,
we obtain for equation (7.15)

UAU™ +0(U ZX%+ dYooa X+ > aX

Y€l -1 YEOR-1

O

Now we are ready to prove the transformation lemma. Its proof splits into two parts. In
the first part we delete the terms of A which correspond to the elements of the Cartan
subalgebra H(F'). In the second part we put the results of Lemma 7.2 , 7.6 and 7.7
together and obtain so the transformation of the roots of the sets €;_3, A and ©;_s.

Lemma 7.8. (Transformation Lemma)
Let

AGZX +H(F) + ) Lie(SOg)s( ZX + Lie(B™)(F)

=1 BED—
and denote by ' the set I'g of Lemma 7.7. Then there exists U € U™ such that

UAU '+ 9(U) U e ZX + Z Lie(SO9)a

acT
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136 7 A parametrized equation for SOy

Proof. First, we prove the following claim:
For 1 <k <[let

Ak—ZX —|—Z(IZH + Z Lie(SO9)s

Bed—
ZXMZ%H + D asXs.
Bed—
Then, there exists U € U~ such that
!
UAUT +0U)U " e ZX > aiH;i+ ) Lie(SOq)s(F).
i=k+1 BEDP—

To delete the term ayHy of Ay we differentially conjugate A by U_,, () € U_q,. This
yields

U (O AU, ()7 + AU, () Uy (C Z Ad(U_g, (O))(Xa,)
! (7.16)
+ ) GAdU—a (O)H:) + Y agAd(U-a, (O))(Xp) + (U (()U-a, ()"

i=k Bed—

For the first summand of the right hand side of equation (7.16) we get by Lemma 3.2

l l
ZAd(U*ak (O)(Xa,) € ZXai + Moy, 1CHay, — Lie(SOQl)*ak (F).
) =1

The second summand in equation (7.16) computes with the help of Lemma 3.2 as

l

l
> aAd(U_o, () (H:) =Y aiHi + ¢ [X_a,, Hi]
i=k i=k
l
€ a;iH; + Lie(SO)a, (F) + Lie(SOx)ay ,, (F).
i=k

It is easy to see that for 5 € @7, a; € A and i > 0 the sum 8 — iay is an element of ¢~
Thus the third summand of equation (7.16) lies in

Y agAd(U-a,(¢))(Xp) € Y Lie(SOu)s(F).

Bed— Bed—

The last summand is an element of the root space
O(U=0 (¢))U=, (€)™ € Lie(SOa21) —a, (F).
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137 7.3 The equation with group SO

If we define ¢ := —ay then the assertion of the claim follows.
Now it can be proved by the claim and induction on k € {1, ..., 1} that there exists U € U~
such that

UAU™ +o(U GZX + ZaZH—FZCLgXB
i=k+1 BeEDP—

In particular, this yields for k = [ that there exists U € U~ such that

A1 —UAU +6 ZXQZ—}— Z CLBXg
Bed—

For n =1 — 3 we write A; as in Lemma 7.2. We have
l
A=) Xo 4+ D a Xy Y a X
1=1 YEQ 3 YED\Q_3

One proves by an inductive argument on 1 < m < [ — 3 together with Lemma 7.2 that
there exists U € U™ such that A; is differentially equivalent to

UAU ! +0(U ZXM + Y X+ ) X,

YEQ_3-m YEPT\Q 3

This yields for m = [ — 3 that there exists U € U~ such that

Ay = UA U +OU ZXML Yo oa, 7_ZX A e Xt D anX

yEP\Q_3 YEA YEO;_3
Now we can apply Lemma 7.6 to Ay. This yields
UAU + (U ZXQZJr Y a Xyt ) a X, =4

Y€O;—3 yel”

where T is as in Lemma 7.6. Again, it can be shown by an inductive argument on
1 <m <1 -3 and Lemma 7.7 that for A3 there exists U € U~ such that

UAsU™ +o(U ZX%JF YooaX+ )

VEOI_3-m YEL I —3-m

Then for m = [ — 3 the assertion of the lemma follows. O

7.3 The equation with group SOy

The next step is to combine the result of Corollary 3.12 and Lemma 7.8, since we want to
apply later the specialization bound. This is done in Corollary 7.9 below.

Before we start, recall that F' := (C(2),0 = d%) denotes a rational function field with
standard derivation.
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138 7 A parametrized equation for SOy

Corollary 7.9. Apply Corollary 3.12 to the group SO and the Cartan Decomposition of
Lie(SOg;). Denote by A%‘%ZS € Lie(SOg)(F') the matriz which satisfies the stated condi-

tions of Corollary 3.12. Then there exists U € U, C SO (F') such that

Agoy = UAZLU T +oU " =Y Xa+ > fiX,, (7.17)
€A Y€l

with at least one f; € C'[z]\ C and the differential Galois group of the matriz differential
equation 0(y) = Ago,,y over C(z) is SOg/(C).

Proof. Lemma 7.8 implies the existence of an U € U, C SOy such that equation (7.17)
holds. Since differential conjugation defines a differential isomorphism, we deduce with
Corollary 3.12 that the differential Galois group of d(y) = Aso,,y is also SOg(C) over
C(z). We still need to show the existence of f; € C'[z]\C for some v; € T'. Suppose Aso,, =
> oen Xa T2 cr fiXy, € Lie(SO)(C). Then by Lemma 7.10 below the corresponding
differential equation L(y, fi,..., fi) € C{y} has coefficients in C. But then by [Mag94,
Corollary 3.28] the differential Galois group is abelian. Thus Agp,, € Lie(SOq)(C(2)) \
Lie(SO9)(C). Since 0 # A; € H(C) and A = (224; + Ap) in Corollary 3.12, we start our
transformation with at least one coefficient lying in C'[z] \ C'. In each step the application
of Ad(Us(¢)) generates at most new entries which are polynomials in {. Moreover, the
logarithmic derivative is the product of the two matrices d(U(¢)) and Ug(¢) ™ = Ug(—().
In the proofs of Lemma 7.2, 7.6, 7.7 and 7.8 we choose the parameter  to be one of the
coefficients. Hence, we have f; € C[z]\ C. O

Since our goal is to compute a parametrized differential equation for the series SOy, we
denote by F' = C (t1,...,t;) the differential field generated by the [ differential indetermi-
nates ti,...,t; over C' and define the matrix differential equation d(y) = Aso,,(t1,....,t1)y
by

A0y (1, t) = > X+ Y X,

a€A i€l

where the set I' is as in Lemma 7.8.
We compute now the linear differential equation for SO9; from the matrix differential

equation d(y) = Aso,, (t1, ..., t1)y.

Lemma 7.10. The matriz differential equation 0(y) = Aso,,(t1,...,t1)y is differentially
equivalent to the homogeneous scalar linear differential equation

l
L(y,tr, 1) = y® =2 Z(—l)i((tiy(lfi))(lﬂfi) + (L)1)
=3
[— ) '
—(tay D 4 1) — (—D)y2 + 29) — S (T2 )@

i

N

Il
=)
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139 7.3 The equation with group SO

where the coefficients z1 and zy are

a = gty — 11y

(ty ¥+ (=1)"t)® ( |

zZ9 =

(20-1) ig(q. (I—i)\(I+1—1) (1 1—i)\ (=)
- Y =2 (=) ((ty"?) + (tiy )
t5 2+ (-1 i=3

1-3
— (t2y"? + tay) 7Y - Z(tél_g_z)zl)(i)> :
i=0

Proof. The matrix differential equation 0(y) = Aso,, (t1, ..., t;)y has by the representation
of the Lie algebra Lie(SOq;) in Section 7.1 the shape

(1) 0 1 Y1
A(y2) . Y2
1 1
_ -1
1 t1 0 ta 0 |0 —1
0 —t9
0(yai-1) t 0 -1 Ya1—1

(ya1) 0 —t 0 —t 0 Yoi

Note that we write sometimes y, for d(y;). This matrix differential equation is equivalent
to the following system of equations:

Y= 12 (1)
Y2 = Y1 (1-2)
Vi1 =Y+ Y (-1)

Yl = Y2 ()
Yip1 = tyn + byt — Yigo (1+1)
Yiro = t3Y1-2 — tayi — Yit3 (14+2)
Yips = tayi—3 — t3Y1-1 — Yi4 (1+3)
yf+k =t 1Y—k — tkYi—k+2 — Yi+k+1 forda<k<l-2 (1+k)

Yor—1 = tiyt — ti—1y3 — Y (21-1)
Yo = —liy2 — iy (21)

We show that y; is a cyclic vector. With the help of an easy inductive argument it follows
from the Equations (1) - (1-2) that

ygi_l):yi for1 <¢<Il—1.
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140 7 A parametrized equation for SOy

In particular, we have ygl_z) = y;_1. Differentiating the expression ygl_Q) = y;—1 and
substituting y;_, by the right hand side of equation (I-1) yields ygl_l) =y + yi+1. We

differentiate again and obtain from equation (1) and (I-1) the equation

(@)
1

Y1’ =ty + tayi—1 — 2y
Thus we have
y§” =tiy1 + tzyﬁl_z) —2yp2 & 240 = yY) —tiy1 — t2y£l_2) =:21.
Now we differentiate yy) =ty + tgygld) — 2y;4+2 and substitute y{+2 by the right hand
side of equation (14-2). This yields
yilﬂ) = (tiy1 + t2y¥72))/ — 2t3y1—2 + 2tay; + 2y143

1—2 -3
= (tiy1 + t2y§ ))/ - 2t3y§ ) 4 2ty + 2y14 3.

We prove the following claim: For 1 < k <[ — 3 the system

Yips = tayi—3 — t3Y1—1 — Y44 (1)

Yirorn = thrsYi—k—2 — thr2Yi—k — Yith+3 (k)
together with the equations

(1-2)

l —
Y =ty + tayt D) = 2ty + 2ty + 2145 (A)
I for 1—k—-2<i<l—1 (B)
Y = —Yi2 (©)
l -
2y =y — tiyr — tayl Y = 2 (D)
yields the differential equation
k+2
I+k+1 -2 ; 1—i i I—i+1 i
ngr +1)  _ (t1y1+t2y§ ))(k+1)_’_22(_1)1((tiy§ 1))(k+3 l)‘f‘(tiyi i+ ))(k+2 z))
i=3
k—1
I-k—3 k—i—1 ;
2((— D) syt (1) s + ) + (V) @,
i=0
The proof is done by induction on 1 < k <[ — 3.
Let & = 1. We differentiate yglﬂ) = (tiy1 + tng‘Q))’ - 2t3y§l_3) + 2toy; + 2y;43 and

substitute y;_ 5 by the right hand side of equation (1). We obtain
1+2 1—2 1-3
W = (st )@ = 2ty D < 2ty + 2ty
+2thy + 2toy] — 2y144-
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141 7.3 The equation with group SO

Now we use Equations (B), (C) and (D) for the substitution of y;_1, y;—3 and y;. This is

(1+2)
1

(tiyn + tzyild))@) - 2(t3y§173))(1) - 2t3y¥72) + 27543/5174)

+2thy; — 2tayiro — 2yi44
1—2 -3 1—2 1—4
= (tiy1 + t2y§ ))(2) - 2(t3y§ )>(1) - 2t3y§ )+ 2t4y§ )
—|—2t’2yl + toz1 — 2yl+4-

Now let 1 < k <1 — 3. For kK — 1 we obtain a subsystem of the above system formed by

Yips = tayi—3 — t3yi—1 — Yi4a (17)

Y1k = tht2¥i—k—1 — k1 Yi—k+1 — Yitk+2 (k')

and by the equations

Y = (tyn + tayt D) — 2ty + 20y + 215 (A7)
ygz D=y for 1—k—-1<i<l-1 (B’)
yf = —Yi+2 (©)
~2y42 =y — tiyr — tayl Y =2 1. (D)

Then the induction assumption yields for k£ — 1 the differential equation

k41
I+k - I—i —i
v = ()™ (o) +zz 2 LR N i )
ho @
+2((_1)ktk+2y§lfkf2)+(_1)k yz+k+2+t2 -1) +Z t(k 2—4) i'
1=0
We differentiate equation (I) and substitute y;,, ., by equation (k’). We get
I4+k+1 -2 - ; 1—i ; I—i+1 ;
YD = gy 4 gy 0HD 22(—1)1((%3/% TS (gD (2
=3
P21 trrayy ) (D rsyioker — 2yt — Yikes)
k—2
0+ 18 )+ 0@,
1=0

Now we use equation (B’) for the substitution of y;_r_o and y;_x. It is easily seen that
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142 7 A parametrized equation for SOy

Equations (C’) and (D’) imply 2y; = —2y;42 = z1. Hence, we have

k+1
y§l+k+1) — (tlyl_’_t2y§l*2))(k+1)+2Z(_l)l((tiyY*Z))(kJriifl)+(tiy§l*1+1))(k+2fz))
1=3
F2((= 1) (o T DY 4 (1) o)) 2= 1R gy

k—
+2( 1) yl+k‘+3 + 2t(2 )yl + t(k 1 Z t(k 2— l) ’L+1)
i=0
-2 s ; l—i i l—i+1 i
= (tayr Ftoyy )ED 1230 (1) (tayt I 4 (g D) 20
i=3
i k—1 . ‘
F2((~ ) syt (D) s 1 ) + Y (T )@,
i=0
Thus the induction is completed and the claim follows.
The claim yields for £ = [ — 3 the differential equation
2[—2 l—i l—i+1 —1—4
y% ) = (t1y1+t2y l 2)4—22 ( )( )—l—(tzy( + ))(l 1 ))
-4

1-3)

+2((—1)l_2t1y1 + (—l)l_gyzl + té y) + (tgl_4_i)zl)(i).

i

Il
o

We differentiate it and use equation (21) for the substitution of y5,. However, we obtain

y? Y = (el )Y 22 it ) (g D) 00
=3

+2((=D"2 () + (=)' (=t — ) + tg—

-4
YD)

Dy 5y (1)

i=0
Using the same ideas as above equation (II) simplifies to
4 = -+ ) 1 2 3D 4 ()
=5 . (I11)
+2((—1)l_2t1 + tglf2))yl + Z(tglf?)fz)zl)(i)'
i=0

We solve equation (III) for 2y; and multiply it by ((—1)"=2t; + tgl_Q))’, ie. we get

-1 l_2t +t(l_2) !/ _ _ B
2((—1)2ty + 102y = )1_21 2(,,2)) (Y = (g + gy )Y
(—1)1-2t + £

(IV)

w

l —
—2 3 (=D ((ta )Y (g I) =3 ) D) =,

=3 7

Il
=)
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143 7.3 The equation with group SO

Differentiating equation (IV) leads us to

y§2l) _ (t1y1+t2y§l 2) Z)+2Z tly(l z))(z z+2)_|_( (l zJrl))(z H—l))
1=3

+2((—1)l_2t1 + tgl_2)),yl + 2(—1)l 2t yl + Qt(l 2) /_|_ Z t(l 3— l) H—l)

= (t1y1+t2y§l 2) l)+22 ((tiy! (- z))(l—i+2)+(tiy§l—i+1))(l_i+1))
=3

-3
PR M S S R
1=0

l
= (t1y1+t2y§l—2))(l)_|_2Z(_l)i((tiygl—z))(lfwrm+(tiy§l—z+l))(l,¢+1))
=3
-2

+(—1)lt121 + 29 + Z(téliQii)Zl)(i).
=0

Theorem 7.11. The homogeneous linear differential equation

l

Ly tret) = ™ =237 (=1 ()2 4 (1 H1-0) 0410
=3

—(tay ™ + t1y) D — (~D)'tr21 +22) = Y (857 Ve

where the coefficients z1 and zo are

=2 —t1y

(1=2) | (_1\=25\(1) !
ty ~+(=1)"t - Z i —i —i —i)\(—i
Y = (2(172) (=1)"*t) .<y(2z D o ST ()i (D)) (1 (=000

a = gV —ty

-3
— (b 4 tay) Y = ST ) )
1=0

has SO9(C) as differential Galois group over F = C(t). Moreover, let F be a differential
field with field of constants equal to C. Let E be a Picard-Vessiot extension over F with
dzﬁerentml Galois group SO9(C) and suppose the defining matriz differential equation
d(y) = Ay satisfies A € 3, ca Xo+Lie(By). Then there is a speczalzzatzon L(y,t1, ..., 1)

with t; € F such that L(y,t1,...,t;) gives rise to the extension E over F.

Proof. Let E be a Picard-Vessiot extension for the differential equation L(y,t1,...,t;) =
0 over F' and denote by G its differential Galois group. Since the linear differential
equation is equivalent to the matrix differential equation 0(y) = Aso,, (t1,...,t;)y with
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144 7 A parametrized equation for SOy

Ago,, (t1, ..., 1) € Lie(SOg)(F), Proposition 2.1 yields G(C') < SO9/(C). By Corollary 7.9
there exists a specialization o : (t1,....,t;) — (f1,..., fi) with fi1,..., fi € C[z] such that
0(As0y (t1, -, 1)) = Aso,, and the differential Galois group of d(y) = Aso,,y is SOg(C).
Moreover, we have C{fi,..., fi} = C[z]. Thus we can apply Corollary 2.15. This yields
SO9(C) < G(C). Hence, it holds G(C) = SO (C).

Since the defining matrix A satisfies A € 3 acA Xo+Lie(B; ), Lemma 7.8 provides that A
is differentially equivalent to a matrix A = aer Xa+ a; X, with suitable a; € F.
Evidently, the specialization

Y€l

G (tl, ...,tl) — (dl, ...,al)

does the required. O
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Chapter 8

A parametrized equation for G

8.1 A Lie algebra representation of G-

The below discussion can be found in [Hum72, Section 12.1]. Denote by €, €2, €3 the
standard orthonormal basis of R? and let (a, 3) be the usual inner product of o, 3 € R3.
Then, the vectors

O =+{e; —€, €2—€3, €1 —€3, 261 — € — €3, 269 — €2 — €3, 2€3 — €] — €2}
form the root system ® of type GG3. As a basis we take the set
A={eg—€e =11, —2€1 +€e2+€e3=:a}.

The Cartan integers (o, ;) = 2(ov, a;)/(j, o) are given by the entry at position (3, j)
in the Cartan matrix

2 -1

-3 2 '

With respect to this basis the roots of ® can be expressed uniquely as

t(a1+az) = £(—€ +e3)
+(2a1 +a2) = £(—€2+¢€3)
+(Ba; +az) = £(—2€e2+ €1+ €3)

+(Bar +2a2) = +£(2e3 — €1 — €2).

We are going to construct the Lie algebra L of type G2 as a subalgebra of Lie(SOr),
the Lie algebra of type Bs, where we take the representation of Lie(SO7) as presented in
[Hum?72, Section 1.2]. We will follow the ideas presented in [Hum?72, Section 19.3]. From
the root system we see directly that L has dimension 14 and the Cartan subalgebra H is
of dimension 2. Denote by E,; with 1 < r s < 7 the matrices having 1 as entry at position
(r,5) and 0 elsewhere. The Cartan subalgebra H of Lie(SO~7) has the set

H={D;=FEit1,+1 — Eita,44 | 1 <i <3}

as a basis. For the Cartan subalgebra of G2 we take
3 3
= {Z%Di | Zai =0 with a; € C} .
i=1 i=1
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146 8 A parametrized equation for Go

Obviously the dimension of H is dim(H) = 2. Following Humphreys we choose the root
vectors G ; (i # j) of Lie(O7) relative to H, which correspond to the six long roots in Gg,
as follows:

Gi—2 = G4 | =Ey— Egs
Gi—3 = Gg,q = Foy — FEr5
Ga—3 = G4 _o=E3 — Erg.

)

Furthermore, for the six short roots G; (i = 1,2,3) of G2 relative to H, we take the
matrices

Gi = -G'\=V2E;— Es) — (B3 — Eg)
Gy = —G'y=V2(E3— Eg1) — (Bar — Eus)
Gy = —Gt_3 = \/§(E14 — En) — (B — Es5).

Then, the span of H together with these twelve vectors is the irreducible representation
L of G2 in Lie(SO7). The next step is to determine how these twelve matrices can be
assigned to the roots of G3. The relations of the root vectors under the bracket product
are described by the following equations:

Gi—j: Gr—1) = 0juGi—1 — 0uGr—j
Gi,G—i] = 3D;— (D1 + D2+ D3)
[Gi—j, Gkl = —0aG,
GijiG_i] = 615G
Gi,G—;] = 3Gj_; 1#£j
[Gl, G| = 2G4 1, 7, k distinct

]
] = £2Gg i, j, k distinct

where 9; ; denotes the Kronecker delta. It is useful to distinguish between the long and
the short roots. The set

T = {+a9, +3a; + az, £3a; + 205}
contains all long roots of ®. Moreover,
% = {+ay, fa1 £ az, £2a;1 £ v}

is the set of all short roots of ®. The long roots of G5 form a root system of type As (see,
for example, [Hum72, Section 12.2, Exercise 4]). Therefore, the computation of

[G1,—2,G2, 3] Gi,—3
[Go,—1,G3 2] = —G3_1
[G1,-2,G3,—2] = 0
[G2,—3,G2—1] = 0

implies that we can define the root vectors corresponding to the long roots of maximal
height as
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147 8.2 The transformation lemma for Go

X3a43as = G1,-3 and X 34, 24, := G31.
Hence, we obtain
X3artas = G1,-2, Xay 1= G2 3, X 30;-a, = G2,1 and X 4, := G3, 2

respectively. Note that there are other choices for the assignments of the root vectors to
the root system As in ®;, possible. The bracket products

[G1,-3,Gi] = —01,,Gz3#0<i=1
(G1,-3,G] = 03,G1#0s1=3
G3,-1,G;] = —03,G1#0&i=3
G3-1,G—i] = 01, G3#0&i=1

yield G1, G_3 € &5 \ {—a1} and G3, G_1 € ¢ \ {a1}. Thus, with the help of the Lie

products

[G1,—2,G1,] = —011Go
[le_g, G_3] = 0
G2,—1,G-1,] = —611G—2

[G2,—1,G3,] = 0

we are able to define

Xay 1= G, X 2a1-ay i= Gy, X ai—ay 1= G_3
and
Xﬁal = G72’ X2a1+a2 = G*la Xa1+a2 = G3.

From a short calculation we get Hy := [G2,—3,G3 2] = Dy — D3 and Hy = [Gg,G_2] =
—D1 + 2Dy — D3. Obviously the Cartan algebra H is spanned by H; and Hs. Summing
up the Lie Algebra L consists of the 14 elements

Hy=—-D1+2Dy— D3 Hy= Dy — D3

Xy = Gy X_a, = G_s

Xay = G2, 3 X o, =G3, 2
Xa1+a2 =G3 X—al—ag =G_3
X2a1+a2 = Gfl Xf2a17a2 = Gl
X3a1+ar = G1,-2 X 301-ay = G2,1
X3a+3a; = G1,-3 X 3a;-2a, = G3,-1-

8.2 The transformation lemma for G

In this section we prove the transformation lemma for Ga. Let (F,0F) be a differential
field of characteristic 0.

Lemma 8.1. Let A € Xo,+Xay,+D_geq- Lp(F). Then there exists U € U™ (F) C GL7(F)
such that
UAU ' + (U U™ € X0y + Xa, + L_vy + L_30, 20,
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148 8 A parametrized equation for Go

Proof. We write A with respect to the basis given in the previous section as

Ag = Xo, + Xop +a0,1H1 +ap2Ha + Z ag,3Xg-
Bed—

Let a € ®. Then (ad(X,) is a nilpotent derivation of L. Let X € L. Thus, as in Sec-
tion 3.2, the map exp(Cad(X,)) is an automorphism of L. The application of exp({ad(X4,))
to X reads as

exp(Cad(X,)). X = Z =¢'ad(X0) (X) = Ual(Q)XUa(() ™" = Ad(Ua(¢)(X) (8.1

z>0 !

where Uy (¢) equals exp((X,). For § € ® we rewrite equation (8.1) with suitable m,g; €
Q* as
Ad(Ua(0))(Xp) = X5+ D> MapiC Xstia- (8:2)
i>1

In the first step we want to remove the part Hy := ag,1 H1 + ap,2H2 of Ag. Therefore, we
differentially conjugate Ag with Uy, (¢1). Observation 3.4 and the linearity of Ad yield

Ad(U-a,(€1))(Ao) +16(U-a, (G2 )))ZAd(U—al(Cl))( Xay) + Ad(U-0,(C1))(Xas)

+AA(U—a, (C1))(Ho) + > Ad(U—a, (C1))(a0,5X5) +16(U—a, (¢1).  (8:3)
BedP—

Since the only multiples of a root o € ® are +« and the coefficients k; of a root a =
> a,es kiai are all positive or negative, we obtain with formula (8.2) for the first three
summands of equation (8.3)

Ad(U*Oq (Cl))(XOq) = XOé1 + Zm*aLOALZ’ GXOél-‘ri(—Otl)

i>1
Xa1 + mfal,al,lngl + Lfal

Ad(U-a,(C1))(Xay) = Xap + Zm—oq,oaz,i G'Xa2+i(fa1) = Xay
i>1
Ad(U—-n,(1))(Ho) = Ho+ (i [X—qa,,Ho) € ap1H1 +ap2H2 + L, .

Obviously, the sum of —ay + g with § € &~ again lies in . Hence, the fourth summand
is

A(U-a, ()Y aopXp) = Y aos(Xp+ > 1i_aypi G Xpri—an) € Y L.

The last summand is calculated by Proposition 3.5, which gives us
a(U*al (Cl))Ufoa (Cl)_l € Lfal .

We set m_q;,0,,1 (1 = —ap,1 and summarize the above results. We have

Ay 1= AU, (1)) (A0) + U0, (C))U-y (1)) = Xay + Xy +a02Ho + 3 a1,5Xp
BedP—
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149 8.2 The transformation lemma for Go

with suitable a; g € F. Now we differentially conjugate A; by U_q,(¢2). This gives

Ad(U-a,(C2)) (A1) + l6(U,a2((2)))
+a0,2Ad(U—a,(C2)) (H

= Ad(U—0,(¢2))(Xay) + Ad(U-a,(C2))(Xa,)

+ Y a1 gAd(U-0,((2))(Xp) + 16(U-03((2))-
ped—

(8.4)

By the same arguments as above we get for the summands of the right hand side of
equation (8.4)

Ad(U—Oé2 (CQ))(XOH) = Xoy + Zm—amal,i C;Xaﬁ-i(—az) = Xa;

i>1
o) = Xay+ Z M—ay,a0,i C;Xaz-i-i(—w)

i>1

S Xag + m*QQ,QQ,l <2H2 + L*OLQ
Ad(U_a,(¢2))(a02H2) = aooH2 + (2002 [X—a,, Ha] € agpHz + L_q,

Ad(U-0, () D a18X5) = > a18(Xa+ Y 10y i GXpri(—az) €

BED— BED— i>1

O(U—a,(2))U—a, (C2)_1 € L_g,.

Ad(Ufaz (C2)) (Xa

> Ls

ped—

If we set M_qy.00,1 (2 = —ap,2, then we obtain for equation (8.4)

Ay = Ad(U—y (C2))(A1) + OV (C))VUoty (€2) ™ = Xy + Xag + 3 azpX
BEDP—

with suitable as g € F.

The next step is to delete the parts of Ay which lie in the root spaces L_n, L_n,—as,
L_20,—a, and L_34,_4,. The candidates for these transformations are the root group
elements U—Oél—a2 (O? U—2a1—a2 (4)7 U—3a1—az (4) and U—3a1—2a2 (C)

But before we can start with the transformation we need to understand better the ad-
joint action on several root spaces. The tables (8.1), (8.2), (8.3) and (8.4) give the
images Lgyrq of the root spaces Lg with § € &~ U {aj, a2} under Ad(U,) for o €
{—041 — (g, —20&1 — 9, —30[1 — (g, —30(1 — 20&2}.
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—Q1 — (9 kzl k:2 k:3 —3041 — (9 kIl
aq —Q9 — — (03] —2a1 — Q9
(6] —Qq —20(1 — (9 —30&1 - 20&2 (%) -

—Qq —2041 — (9 —3041 — (9 - —Qq -

—Q - - - —Q2 —30&1 - 20&2
—a1 — ag - - - —a1 — g -
—20[1 — Q9 —30&1 - 20&2 - - —20[1 — (9 -
—30&1 — Q3 — — — —3041 — (9 —

=301 — 209 - - - =301 — 20 -
Table (8.1) Table (8.3)
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—2aq — o k=1 k=2 —3a1 — 2a k=1
(6751 —Q1] — Q9 —30[1 - 20&2 a1 -
a9 — — (6] —30&1 — Q9
- —3a1 — as — - —
—ay _ — —Qo —
-1 —ay | —3a1 — 20 - -0 — -
—2&1 — Q9 — — —20&1 — Q9 —
—3041 — Q9 - — —3a1 — Q9 —
—30&1 — 20&2 — - —30(1 — 20&2 —
Table (8.2) Table (8.4)

Table (8.1) yields that X,, is send by Ad(U_q4,—q,) to the root space L_,,. Thus, we can
use this to remove the part of Ay which lies in the root space L_,,. Hence, with the help
of table (8.1) we obtain that the summands of the right hand side of

Ad(U-a, -5 (€))(A2) + O(U-a1-05(¢))U-a1-as () = Ad(U—a;-a5(¢))(Xa,)

+AA(U-ay-0a5(¢))(Xas) + Z a2,5Ad(U*Ot1*a2 (C))(Xﬁ) +10(U—ay-a5(Q))
Bed-

(8.5)

are equal to

Ad(U*alfoéz (C))(Xal) = Xao + Zm*alfamam CiXm-i-i(—al—az)

i>1
= Xal + m_al—a27a171 CX—OQ
Ad(U*Otl*Oéz (C))(Xaz) = Xa2 + Z mfalfozg,ag,i CiXaz-H'(_al_az)
i>1
€ Xaz + m*a1*a2,a2,l CXfoq + L72a17a2 + L73a172a2

Ad(U—ai—ae(O)( D az6Xp) = D a25(X5 Y Moai—a08i C Xppi(-on—az)

Bed- Bed- i>1
S Z GQ,BXB + L72a17a2 + L73o¢17a2 + L73a172a2
Bed—
8(Ur_()él_oﬁ (C))U_al_oQ (C)il € L_OCI_OCQ‘
We define ©1 := {—a1} and set Mm_q,—ay,a0,1 { = —@2,—q,. Then equation (8.5) becomes

Az = Ad(Ufmfaz (C))(A2)+8(Ufaraz (C))Ufaraz (C)_l = Xa1 +Xa2 + Z a3,ﬂXﬂ'
BeEP—\O1

To delete the part of A3 which lies in the root space L_,,_o, we differentially conjugate
A3 by U_24,-0a,(¢). Note that by table (8.2) this conjugation sends no vector of the root
spaces, which form the subspace containing As, to L_,,. More precisely, the conjugation
yields

Ad(U—2a1—a2 (C))(A?)) + a(U—2a1—a2 (C))U—Qm—az (C)_l = Ad(U—2a1—a2 (C))(Xm)"‘

AU 20,0 (Q)) (Xax) + D a3 5AdU 20, -05(O))(Xp) + 10(U-20, 05 (C))). (8:6)
BEPL\O1
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151 8.2 The transformation lemma for Go

With the help of table (8.2) we get for the summands of the right hand side of equation (8.6)

Ad(U—2a1—a2 (C))(Xm) = onl + Zm—2a1—a2,a1,i CiXa1+i(f2ara2)
i>1

S qu + Th—Zal—az,ahl gX—Oq—O!Q + L—3a1—2a2
Ad(U-201-a2(¢))(Xay) = Xap + Zm—%u—az,o%i CiXa2+i(—2a1—042)

i>1
= X@Q
Z a37,3Ad(U*2a1*a2 (C))(Xﬁ) = Z as.g (X/B + Z m—2o¢1—a2,ﬂ,i
ﬂG‘b*\@l [‘36@7\@1 i>1

Ci Xﬁ+i(—2a1—a2)>
€ Z a3 3Xg + L_30; 20,
BEP—\O1
8(U—2O¢1—Ot2(C))U—2a1—a2<o_l € L—Qal—OéQ'

We set Mm_24,—a9,01,1 ¢ = —03 —a;—a and Oz := O U {—a; — az}. We obtain for equa-
tion (8.6)

Ay = Ad(U-2a,-a5(0))(A3) + 16(U-201-a5(C)) = Xay + Xap + Z a4,5Xp-
BEP—\O2

Now we want to delete the term a4 24, —ayX—2a;—a,- For this we differentially conjugate
Ay with U_34,-0,(¢). We get
Ad(U-3a;-a2(¢))(A4) + O(U-3a,-0:(C))U-3a1—as (Oil = Ad(U-3a,-0a:(¢))(Xa, )+

Ad(U-30,-0,(0))(Xan) + Y aapAdU 30, -0,(0))(Xp) + 10(U-30, -0, (C)). (87)
BEP—\O2

For the summands of the right hand side of equation (8.7), table (8.3) yields

Ad(U—3O<1—a2 (C))(xal) = Xal + Zm—3&1—a2,a1,i CiXal-H'(—Sm—az)
i>1

- qu + Th—3a1—a2,o¢1,1 CX—QOél—OZQ
Ad(U-301-a2(¢))(Xaz) = Xa, + Z M 301 —as,az,i Cion2+i(—3a1—az)

i>1
= X,
AdWUgay-ap(O) Y. a1Xs) = > aas(Xo+ D sasass
BEP™\O2 BEDP\O2 i>1

é-i Xﬁ+i(73a17a2)>

S Z as,8Xp + L_30, 20,
BED—\O2

a(U,;),m —Q (O)Ufi’)ogfaz (C)_l € L*3a1*a2 .
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152 8 A parametrized equation for Go

With m_30, —as,a1,1 ¢ = —4,—24,—ay and O3 := Q2 U {—2a7 — az} we obtain
As := Ad(U-30,-0a5(¢)) (A1) + 16(U-3a,-a5(C)) = Xa, + Xa, + Z as,5Xp-
BEP—\O3

Finally, we want to eliminate the part of As lying in L_34,-4,. A look at table (8.4)
implies that we can get rid of a5 34, -0y X —30;—a, by a differential conjugation with the
root group element U_s,,—24,(¢) without creating a new vector lying in the just above
deleted root spaces. We obtain

Ad(U-30; 20 (€))(A5) + O(U-30; 205 ({))U 30, 202 () ™" = Ad(U—30;-205(¢))(Xay )+
Ad(U-30,-202(¢))(Xa,) + Z a5,8Ad(U-3a; 205 (€))(Xp)

BEP—\O3
- Xal + Xag + m—3a1—2a27a2,1 CX—3a1—o¢2 + Z a5,BXﬁ~
BEP—\O3
Hence, with M _34,—2as,a,1 { = —05,—3a;—a, the lemma follows. ]

8.3 The equation with group G-

We combine now the results of Lemma 8.1 and Corollary 3.12 in Corollary 8.2 below.
Denote by G, the group of type G2 with the Lie algebra L presented in Section 8.1.
Moreover, let

Q:={m = —3a1 — 29, 72 := —aa, }
and let C'(z) be as in Section 3.4. Further, we keep all notations of Lemma 8.1.

Corollary 8.2. We apply Corollary 3.12 to the group Gg, and the above Cartan Decompo-
sition. We denote by A]\G/[Q&S the matriz satisfying the stated conditions of Corollary 3.12.
Then there exists U € U= (C(z)) C G, (C(2)) such that

Ag, =UAYSSUT +o(U)U =D Xa+ Y fiXy, (8.8)
aEA Y €82

with at least one f; € C[z]\ C and the differential Galois group of the matriz equation
Iy) = Ag,y is Ga,(C) over C(z).

Proof. Lemma 8.1 implies the existence of an element U € U, C Gg, such that equa-
tion (8.8) holds. Since differential conjugation defines a differential isomorphism, we
deduce with Corollary 3.12 that the differential Galois group of d(y) = Ag,y is again
G, (C) over C(z). We still need to show the existence of f; € C'[z] \ C for some ~; € Q.
Suppose Ag, = > en Xa + > er [iXy, € Lie(Gg,)(C). Then by Lemma 8.3 below
the corresponding differential equation L(y, f1,..., fi) € C'{y} has coefficients in C. But
then by [Mag94, Corollary 3.28] the differential Galois group is abelian. Thus, we obtain
Ag, € Lie(Gg,)(C(2)) \ Lie(Gg,)(C). Since 0 # A; € H(C) and A = (22A; + 4) in
Corollary 3.12, we start our transformation with at least one coefficient lying in C'[z] \ C.
In each step application of Ad(Ug(()) generates at most new entries which are polynomials
in (. Moreover, the logarithmic derivative is the product of the two matrices 9(Us(())
and Ug(¢)™! = Ug(—¢). In the proof of Lemma 8.1 we choose the parameter  to be one
of the coefficients. Hence, we get f; € C[z] \ C. O
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153 8.3 The equation with group Go

Lemma 8.3. Let C be an algebraically closed field of characteristic zero and F = C (ty,t2)
the differential field generated by the differential indeterminates t1,to. Then the matrix

Ag,(ti,t2) = Xay + Xao + 81X 30,200 + 12X 0,

has the shape

0 |0 v20[0 0 0
0 0 0 0,0 O 1
0 0O 0 1,0 O 0
Ag, (t1,t2) = 0 |tn to O|—-1 0 O

0 0O 0 00 0 -

—V2{0 0 0/ 0 0 —t
0O |0 0 0|0 -1 0

and the matriz differential equation 0(y) = Ag,(t1,t2)y is equivalent to the differential

equation
YD =2t1y’ + 2(t1y) + 2(t2y™) + (t2) Y — 2(t2(t21/)') .

Proof. The matrix equation

A(y1) Y1
L | = Acy(ty,t2) -
A(yr) Y7
is equivalent to the system of equations defined by

Vo= V2

Yo = yr

yé = Y4

vy = tiya +tays —ys

ys = —tiyr

Yo = —V2y —tayr

yr = —Ye

where we use the notation y, for d(y;). We can take y as a cyclic vector. We compute
the derivatives of ys:

Ys = Y7

v =~y

v = 2y + tay)

?/54) = (t2y§1))(1)+2y3

y£5) . (tzyél))(2)+2y4

U = (tayi® 1 2ty + 295 — 2o (ol D — 2y

us = (b)) 4 2(t10) V) + 2(t255) V) = 2t (tays) D)D) 201y,
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154 8 A parametrized equation for Go

Theorem 8.4. Let F' = C (t1,t2) be as in Lemma 8.3. The differential equation
L(ti,tz,y) = y'7 — 201y’ — 2(t1y)’ — 2(t2y ™)' — (b)Y + 2(ta(t2y)')'.

has G as differential Galois group over C (t1,ts). Moreover, let F be a differential field
with field of constants equal to C'. Let E be a Picard- Vessiot extension over E with differen-
tial Galois group Ga,(C) and suppose the defining matriz differential equation 0(y) = Ay
satisfies Ae Xoy +Xas +2_pea— La. Then there is a specialization L(y, ty,to) with t; € F
such that L(y,t,,12) gives rise to the extension E over F.

Proof. Let E be a Picard-Vessiot extension for the equation L(y,t1,t2) = 0 over F and
denote by G the differential Galois group. Since the operator comes from the matrix
differential equation d(y) = Ag, (t1,t2)y with Ag,(t1,t2) € Lie(Gg,)(F'), Proposition 2.1
yields G(C) < Gg,(C). By Corollary 8.2 there exists a specialization o : (t1,...,;) —
(f1, fo) with f1, fo € C[2] such that o(Ag,(t1,....t;)) = Ag, and the differential Galois
group of d(y) = Ag,y is Gg,(C). Moreover, we have C{f1, fa} = C[z]. Thus we can
apply Corollary 2.15. This yields G, (C) < G(C). Hence, it holds G(C) = Gg,(C).

Since the defining matrix A satisfies A € X,, + Xa, + Y aco- Lie(Gay)a, Lemma 8.1
provides that Ais differentially equivalent to a matrix A= KXoy +Xoy + 01X _30,-20y +
G2 X _q, with suitable a; € F. Obviously the specialization

o (tl,tg) — (dl,dg)
does the required. I

In [Kat90, Theorem 2.10.6] Katz presented an equation for G2 which has a nice and easy
shape. His result is cited in Theorem 8.5 below.

Theorem 8.5. For any polynomial f in C[z] of degree k prime to 6, the differential Galois
group of
7 1 /
o' — fo— 3 f (8.9)

on Al is Gs.

Now the question arises if we can specialize L(t1,t2,y) to equation (8.9). Obviously the
specialization o : (t1,t2) — (1 f,0) satisfies

L(o(t1),o(t2),y) =40 — fy — %f’y.
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Chapter 9

A parametrized equation for Fj)

9.1 The root system of type F}

The following construction of the root system of type Fj is taken from [Hum?72, Section
12.1]. Let eg,...,e4 denote the standard orthonormal unit vectors of R* and let (o, 3)
denote the usual inner product for o, 8 € R%. Denote by I the Z-span of this basis. Then
by definition I is a lattice. Moreover, let I’ = I +7Z((e1 +€e2+€3+€4)/2). Then by [Hum72,
Section 12.1] the set ® = {a € I' | (o, @) = 1 or 2} defines the root system of type Fj.
It consists of all elements +e;, +(€; — €;) (here we need i # j) and +1 (e £ e + €3 + €4)
where the signs may be chosen independently. We can take the vectors

1
Qa1 =€ —€3, g = €3 — €4, a3 = ¢4 and ag = 5(€1 — €2 — €3 — €4)

as a basis of ® which we denote by A. Then the roots are Z-linear combinations of this
basis vectors. In particular, for the 24 positive roots of ® (for this number see [Hum72,
Section 12.2, Table 1]) we have

€1 = a1 + 2a2 + 3as + 2ay, €1+ €4 = a1 + 200 + dag + 20y,
€2 = a1 + a2 + as, €2 + €3 = a1 + 22 + 2as,

€3 = a2 + ag, €2+ €4 = a1 + ag + 2as,

€4 = Qs, €3+ €4 = ag + 2a3,

1(e1+ €+ €3+ €a) = a1 + 202 + 3ag + au,

€1 — €2 + €3+ €4) = a + 2a3 + ay,
€1 +€—€e3+€4) = a1 +as+ 2a3 + ay,
€1 + €2 + €3 — €4) = a1 + 2a + 203 + y,

)
( )
( )
( )
(61—62—63+64):a3+a4,
( )
( )
( )

€1 — €2 = a9 + 203 + 2014,

€1 — €3 = a1 + ag + 2a3 + 2ay,
€1 — €4 = a1 + 2a0 + 203 + 204,
€2 — €3 = Qq,

€2 — €4 = 01 + a2,

€3 — €4 = Q2,

€1 + €2 = 201 + 3ag + das + 20,
€1 + €3 = a1 + 3ag + 4das + 20y,

€1 +€3 —€3—€4) =1 + a9+ a3+ ay,
€1 — €2+ €3 —€4) = a9+ az + ay,
€] — €2 — €3 — €4) = Q4.

ISIEESIEESIEENIERSIEE NS SIEE

Suppose a representation of the Lie algebra of type Fy to Lie(GL(V)) is given and denote
its image by L < Lie(GL(V')). Further let H denote a Cartan subalgebra and L =
Ho P, o La be a Cartan decomposition of L. Then for each o € ® we are able to choose
X, together with H, = [X,, X_s] such that the set {X,, H, | @ € ®} forms a Chevalley
basis. The Chevalley construction yields a representation of the group of type Fy which
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156 9 A parametrized equation for Fj

we denote by G. Further, we denote for each 8 € ® the corresponding root subgroups by
Up and a parametrized element of Uz by Ug(¢) with ¢ € F. Let o and /8 be two roots of
®. Then the adjoint action of Ug(¢) on X, is determined (see also Section 3.2) by

AA(U(Q)(Xa) = 3 Masis - ¢+ Xain: (9.1)
i>0

For 3, « linearly independent let oo — rg3, ... ,a + g8 be the p-string through «. Then the
values for mpg,; are determined by mgq; = i(”{i) and mg a0 = 0. Since the proof of
the transformation lemma is based on differential conjugation, it is useful to study more
detailed the adjoint action for some specific roots. Let o be one of the simple roots o;; € A
and let 5 € ® be the h-th positive root of height ht(5) = k > 2 which we indicate by 5, 4.
Note that the numbering of the roots of a given height is arbitrarily defined by us below.
We determine for each —fy,, € ®~ and a; € A if

Bin = oj + (—Bu) (9.2)

is a root of ® or not, i.e., we analyse if the term mqz3 - ¢t - Xo+ip of equation (9.1) is for
¢ = 1 zero or not.

We start with the negative roots of height 2. Those are the roots —f12 = —a1 — ao,
—fB22 = —ay — a3, and —f332 = —a3 — ay. From the list which contains all positive roots
on the previous page we obtain the Bj,h for h = 1,2,3. The root Bj/,h/ can be found at
position j', k' of table (9.1).

—B12 | —B22 | —Ps2
aq —Q3
Qy | —Oq —Q3
a3 —Q2 —Qy
Oy —ag3
Table (9.1)

Note that if Bj,h is not a root then the position j, h is empty.

The next step is to analyse the negative roots of height 3. There are the three negative
roots, namely —f13 = —a1 — as — a3, =323 = —ag — 23 and —f333 = —v2 — 3 — Q4.
For those roots we determine the Bj,h- This is presented in table (9.2).

—bi3 —Pa23 —Bs,3
a1 —Q9 — Q3
a2 —Q3 — 0y
a3 —1 — (9 —Qo — Q3
21 —Qg — Qa3
Table (9.2)

Now we come to the negative roots of height 4. Then the —f, 4 are the roots —f14 =
—o1 — g —2a3, =y = —op —ag — a3z —ag and —f34 = —a — 203 — ag. The result of
the analysis of those roots is given in table (9.3).
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157 9.1 The root system of type Fy

—B14 —B2.4 —B3,4
oq —ag — 203 —ig — (3 — Oy
Q2
az | —op —ag — Qs —rg — (g — Oy
a4 —Q] — Qg — Q3 —Qg — 2043
Table (9.3)

If ht(B) = 5, then we obtain for the root —f; 5 = —a1 — ag — 2ci3 — o the roots 5’171, ,5’371
and f41, i.e., we have

P11 =—az —2a3 —ay, 31 =—a1 —az—az—ag and f41=—01 — oz — 203.
Moreover, for the remaining roots S, 5 (h # 1) of height 5 we get from the list

6272 = —01 — Q9 — 2043 for 52’5 = —01 — 2042 — 20&3 and

ﬁ473 = —Q9 — 20[3 — Oy for ,3375 = —Q9 — 20[3 — 2a4.

This is summarized in table (9.4).

—Bis —PB25 —B35
oq —Qq9 — 203 — oy
(6] -] — Qg — 2a3
a3 —Q] — (g — (g — 04
QY -] — Qg — 2@3 —Qp — 2043 — QY
Table (9.4)

Now we consider the negative roots of height 6. There are two negative roots of height six,
namely —f316 = —a1 — 202 —2a3—oy and —f2 6 = —a1 — g —2a3—20y. The computation
of the Bj,h for —f16 and —f26 shows that they have the root —a; — ag — 2a3 — a4 in
common. However, the results for the negative roots of height 6 can be found in table (9.5).

—B16 —B26
oq —q9 — 23 — 20
(65)] -1 — g — 2@3 — Oy
Qs
QY —Q] — 2042 — 2043 -1 — Qg — 2043 — Y
Table (9.5)
The negative roots of height seven are —f317 = —a1 — 2a0 — 3a3 — a4 and —f27 =

- — 2aig — 23 — 2a4. From the list which contains all positiv roots we determine the
Bjn for h =1,2 and k = 7. The result is given in table (9.6).

—PB17 —Bar
aq
le%) —a1] — g — 203 — 204
Qa3 -1 — 20&2 — 2@3 — Oy
oy —o1 — 209 — 23 — oy
Table (9.6)
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158 9 A parametrized equation for Fj

The root —f1 8 = —a1 —2a — 33 — 2014 is the only root of height eight. Only for the two
simple roots a3 and ay we obtain roots of the root system in the sense of equation (9.2),
i.e., we obtain table (9.7).

—fB18
aq
g | —ap — 2009 — 23 — 2004
ag
a4 | —ap —3as — 2a3 — oy
Table (9.7)

The analysis for the negative roots of height 9, 10 and 11 can be found in table (9.8) below.
We have —f319 = —a1 — 209 — 4oz — 2a4 of height 9, —31,10 = —a1 — 3o — 4ag — 2a4 of
height 10 and —f1,11 = =201 — 32 — 4a3 — 2a4 the root of maximal height.

—B19 —B1,10 —B1,11
aq —aq — 3a9 — 4as — 204
(%) —Q1 — 2042 — 4043 — 2054
ag | —ap — 209 — 3ag — 20y
671
Table (9.8)

9.2 The transformation lemma for F}

Let (F,0) be a differential field of characteristic 0. We are going to prove the transforma-
tion lemma for the group of type Fjy. In the proof we make use of the study of the root
system ® of type Fy done in the previous section. Therefore we keep the notations done
there.

Lemma 9.1. Let A € Xo, + Xa, + Xag + Xay + 2 gco- Lg(F) + H(F). Then there exists
U € U™ such that
UAU?l + 8(U)U71 S Xa1 + Xaz + Xa3 + Xoc4 + L—a1 (F) + L—a1—2a2—2a3 (F)
+ L—a1—2a2—2a3—2a4(F> + L—2a1—3a2—4a3—2a4 (F)

Proof. With respect to a Chevalley basis {X,, H;} an element of X,, + X, + X, +
Xoy + 2 pea- Lp(F) + H(F) is given by

4
Ao = ZXai +aoiH; + Z ao,3Xg-
i=1 Bed-

In the first step we get rid of the part of A lying in the Cartan subalgebra, i.e., we delete
the vectors of the subspace (H; | i =1,...,1). Let —«; be the negative of a simple root «;.
We differentially conjugate Ag with U_,,(¢). We have

4
Ad(U-a;(0))(A0) + 16(U-a,(Q)) = Y Ad(U-a,()))(Xa,) + a0,jAd(U—q, () (H;)
j=1

+ Z a()ﬁAd(Ufai(C))(Xﬁ) + l(S(U,aZ(C))
ped—
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159 9.2 The transformation lemma for Fj

Proposition 3.5 yields 16(U_q,(¢)) € (Xa,). From the signs of the roots we deduce that
> pea— @0,8Ad(U—q,(())(Xp) is an element of 3 54— L. The elements Ad(U—q, (¢))(Xa,)
for j # ¢ are

Ad(Ufai (Cz))(Xa]) = Xaj + Z M—q;, aj, kC’LkXOCjJFkJ(—Oéi) = Xaj'
k>1

Further, for j = i we have

AU 0, (6))(Xey) = Xy + D> Meay, ar, k6 Xy h(—an)
E>1

S Xai + M_q;, a;, ICsz + L_ai_

Let Hy denote Hy = S+ agiH;. We obtain Ad(U_,(¢;))(Ho) = Ho + G[X _a,, Ho] €
Hy+ L_,,. We put now our results together. We conclude

Ad(U—a4 (<4) Teeet U—Oq (Cl))(AO) + lé(U—azx (§4) Teeet U—Oq (Cl)) =
4
Z XOli + (ao,i + M_q;, o, 1<Z)HZ
=1
=+ Z a175X5 = A1
BedP—

where the new coefficients a; g are elements of F'. If we define the parameter (; as ¢; =
—ag,q . 4
Al, then it follows Ay = ;| Xo, + D gcq- a1,8X5.

M_ay,a,
In the next step we delete all parts of Ay lying in the subspaces (X B> of all negative roots
B € ® except of —ay, —aq — 20 — 203, —a1 — 200 — 2003 — 204 and —20; — 3oy —
4as — 2a4. Since we will do this for each height k, there are some repeating arguments
and facts. If we want to delete a vector which corresponds to a root Bj,h of height k,
we differentially conjugate with a parametrized root group element U_g, , +1(¢) which
corresponds to one of the roots — 3}, ;41 of height k+1. By Proposition 3.5 the logarithmic
derivate I6(U_p, ,.,(C)) of U_p, ., (C) is an element of L_g, , , i.e., it is a vector lying
in a root space which corresponds to a negative root of height k£ + 1. If v is any negative
root, then Ad(U_p, ., (())(a,X;) is an element of the space

Ad(U_/Bh,k-H (O)(a’yX'y) = a, Xy + Z Ls.
F€®~, ht(7) >ht(y+(—Bh,k+1))

We will not refer to this arguments in each step of the argumentation, since it would make
the proof needlessly long.
We start with the negative roots of height one. Let 31 2, 822 and 33 2 be as in the previous
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160 9 A parametrized equation for Fj

section. Then we deduce with the help of the table (9.1)
Ad(Uﬁs,z (43)Uﬁ2,2 (CQ)UBLZ (Cl))(Al) + l(s(UBSQ (CS)Uﬁz,Q (CQ)U51,2 (Cl)) =

4
Z Ad(Uﬂs,z (C3)Uﬁ2,2 (CQ)UBLQ (Cl) (Xai)

i=1

+ Z al»’YAd(Uﬁs,z (C3)Uﬂ2,2 (CQ)U51,2 (Cl))(X“/) + Z(S(Uﬁs,z (C3)Uﬂ2,2 (CQ)U51,2 (Cl))
yed—

=> Xo,+ Y. ap,X,

i=1 yED—, ht(y)>2
+<a1,—a1 + m51,2,a2<1)X—a1 + (al,—az + m51,2,a1C1 + mﬁz,z,a3C2)X—a2
+(a1,—043 + m62,27012C2 + mﬁs,z,a4C3)X—a3 + (al,—cm + mﬁ3,27a3C3)X—a4 =: Ay
with new elements as, € F. If we define
1 1

G =- (al,—az + m,32,2,a3<2)7 G =— (al,—% + mﬂ3,2,a4C1)
Mgy 5,01 MpBy 2,00
1
and Q‘ZZ_ aL—aM
MpB3 2,03

then A; contains no vector lying in the root subspaces of the negative simple roots except
of y1 := —aq, i.e., we have

4
Ay = ZX%‘ + a2,*011X*011 + Z a2,'YX’Y‘
i=1 y€®~, ht(y)>2

Now we delete the roots of height 2. Since there are three negative roots of height 3,
we have three parameters available for the transformation of the three roots of height 2.
However, table (9.2) yields

Ad(UﬁS,s (C3)U,32,3 (CQ)Uﬁl,s (Cl))(AQ) + ld(UﬁS,s (43)U52,3 (42)[]51,3 (Cl)) -
4

Z Ad(Uﬁ3,3 (43)U52,3 (C2)Uﬁ1,3 (gl) (Xai)al—oq Ad(U53,3 (€3)U52,3 (CZ)Uﬂl,a (Cl)(X—Oq)
=1

+ ) a2, Ad(Up, 4(G3)Us, 4 (C2)Us, 4 (C1)(Xy) +16(Up, 4 (C3)Up, 5 (G2)Up, 4 (G1))
YE€P~,ht(y)>2
4

= ZX%' +a3—a; X—a; + Z a3 Xy
i=1 y€P™, ht(y)>3

+X*a1*a2 (a2,*041*042 + mﬁl,:s,oésgl) + X*OKS*CM (aQ,*OKS*CM + M3 3,00 C3)

+ X ar—a3(a2,—as—as + Mgy 50.C1 + My 5,0562 + mﬁ3,37a4C3) =: A3
1 1

with new coefficients a3z, € F. We set (1 = — a2, —a1—ags (3 = — a2 —asz—ay

Mgy 3,03 Mp3 3,000
and (o = —mﬁ;&% (a2,—as—as +Mp; 5,0:C1 + M3 3.04¢3)- Thus we obtain
4
Az = ZXQZ. + a3’,a1X,a1 + Z a3’7X7.
i=1 ~€D—, ht(v)>3
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161 9.2 The transformation lemma for Fj

The transformation of the negative roots of height 3 is more complicated. However, we
conclude with table (9.3)

Ad(U53,4 (C3)U,32,4 (CZ)U&A (Cl))(A?)) + M(Uﬁ:m (CS)U,BQA (CQ)U&A (Cl)) -

4
> Ad(Us, ,(3)Us, , ((2)Us, 4 (G1)(Xa,) + a3, -0y Ad(Ug, , (63)Us, 4 (G2)Up, 4 (C1)(X—a)
=1

+ > a3, Ad(Us, (G)Us, L (G2)Us, 4 (C)(Xy) + 16(Up, 4 (C3)Us, 4 (G2) U, 4 (G1))
YE€P~,ht(7)>3
4

= ZX%’ + 04,0, X—a; + Z a4y Xy
i=1 ~ED— ht(y)>4

+X*alfa2*a3 (a3,*a1*a2*as + mﬁ1,47043C1 + m52,4,044<2)
"‘Xfangag (a3,fa272a3 + m6174,o¢1<1 + MpB3 4,04 CB)
+X _ar—az—as (a37704270137044 My 4,01 G+ m53,4,a3g3) 1= Ay

with new coefficients a4, and a4, —o, € F.. We have to determine values (C1,(2,C3) € 3
such that the coefficients of X_, —as—a3: X—ao—2a3 and X_4,_a;—a, become zero. This
problem is equivalent to the system of equations

MBy a0 MBas04 0 G a3, —o1—az—as
Mpy 4,01 0 MpBs 4,04 ’ G2 = a3, —az—2as . (9'3)
0 MpBy 4,01 MPs 4,03 € a3,—az—asz—ay

Denote the matrix of equation (9.3) by B. Then equation (9.3) has a solution if and only
if

det(B) = mﬂ1,4,a3(_mﬁ3,4,a4mﬁ2,4,a1) = MBy 4,04 (mﬂ1,4,a1mﬁ3,4,as) # 0.

From equation (9.1) we obtain the values of the mg; o; up to their signs, i.e., we have
det(B) = (£1) - (F2) - (1) — (£1) - (£1) - (£1) = £2 — (£1) # 0.

Thus there exists a triple ({1, (2,(3) € F® such that

4

Ay = ZX%‘ +a4,—a; X—a; + Z gy Xy
i=1 YEDT ht(v)>4
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162 9 A parametrized equation for Fj

In the next step we delete all roots of height 4. Table (9.4) yields
Ad(U53,5 (<3)Uﬁ2,5 (CQ)Uﬁl,.% (Cl))(A4) + l(s(Uﬁs,E) (43)Uﬁ2,5 (CQ)U51,5 (Cl)) =

4
Z Ad(U53,5 (C3)Uﬁ2,5 (CQ)UBLS (Cl)(Xai)

=1
+a4,—aq Ad(UB:s,s (C3)U52,5 (C2)U51,5 (Cl)(X*al)

+ Z a4,’7Ad(U53,5 (C3)U52,5 (C2)Uﬂ1,5 (Cl)(X’Y) + M(U/B&s (<3)U,32,5 (CQ)U/BI,E) (Cl»
yE€P ™, ht(y)>4

4
= ZX% +as5,—a; X—a; + Z a5,y Xy
i—1 ~ED— ht(7)>5

+X—a1—a2—2a3 <a4,—a1—a2—2043 + mﬁl,s,fucl + m52,570¢2C2)
+X—a1—a2—a3—a4 (a47—a1—012—043—064 + Mg, 5,a3 Cl)

+X7042720137a4 (a4,7012720437a4 + mﬂ17570¢1 Cl + m,8375,a4 C3) = A5

If we define the parameters (1, (3 and (3 as

1 1
Cl = - A4 —oy—ap—az—ays CQ = - (a47*a1*a2*203 + m51757a4<1)
Mg 5,a3 MBy 5,02
1
and <3 = - (a4,—042—2043—a4 + mﬂ1,5,algl)a
MB3 5,04
then we obtain A
As = § :Xai +as5,—a; X—a; + § : a5,y Xy
i=1 ~ED— ht(y)>5

From table (9.5) we see that we are only able to delete two of the three negative roots of
height five, i.e., we have

Ad(Uﬁ2,6 (CQ)Uﬂl,es (Cl))(A4) + lé(UﬁQ,G (CQ)Uﬁl,(s (Cl)) =
4

Z Ad(Uﬁz,ﬁ (CZ)Uﬁl,ﬁ (Cl)) (Xai) +as5,—a; Ad(Uﬂ2,6 (Cz)Uﬁl,G (Cl) (X—Oq )
=1

+ > a5,Ad(Us, o (G)Up, 4 (G)(Xy) +10(Us, 4 (G2)Us, 4(G1))
YE€P~,ht(7)>5
4

= ZX%‘ + a6,—a; X—a; + Z a6,y X
=1 ~yEP— ht(y)>6

+X—a1—2a2—2a3 (a5,—a1—2a2—2a3 + m,Bl’G,ou;Cl)
+X*041*a2*2043*044 (a5,*a1*&2*2a3*a4 + m51,67a2C1 + m52,67a4<2)
+Xfa272a372a4(a5,fa272a372a4 + Mg, 6,01 CQ) = A6
If we define (1 and (s as
1 1

Cl = - (a5,7a17a272a37a4 + m62767a4c2) and <2 = —
Mg, 6,02 Mgy 6,01

a5, —as—203—2004 5
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163 9.2 The transformation lemma for Fj

then the coefficient of X,, where v2 := —a1 — 202 — 23 will not necessarily be zero, i.e.,

we have ) ,
Ag = ZX%‘ + Za&%‘X%‘ + Z QGWXW'
i=1 i=1 €D~ ht(y)>6

In the next step we are again able to delete all roots of height 6. However, we differentially
conjugate Ag by Ug, ,(C2)Up, ,(¢1). With the help of table (9.6) this differential conjugation
computes as

Ad(U52,7(C2)Uﬁ1,7 (Cl))(Aﬁ) + 16(U52,7(<2)U51,7 (Cl)) -

4 2
Z Ad(U52,7 (CQ)U51,7 (Cl)(XOCi) + Z aG,%Ad(Uﬁzj (C2)Uﬁ1,7 (Cl) (X%)

=1 i=1

+ > a5, Ad(Us,, (Q)Us, . (C)(Xy) + 16(Us,, (62)Up, ,(G1)) =
v€P~,ht(7)>6

4 2
DX+ Y ar Xyt Y argX,
i=1 i=1 ~YEDP— ht(y)>7

+X*a1*2a2*2a3*a4 (a6,7a1*2042*20437044 + mﬁl,%asgl + m52,7,a4C2)

+X a1 —as—203-2a4 (a6,7a17a272a372a4 + m52777042<'2) =: As7.

Obviously, we can choose ((1,(2) € F? such that A7 becomes

4 2
A7 = Z Xai =+ Z CL77%.X%. =+ Z a77,YX7.
i=1 i=1 ~ED— ht(y)>T7

Since 18 = —a1 — 2ax — 33 — 20y is the only negative root of height 8, we can only
delete one of the two negative roots of height 7. We compute with the help of table (9.7)

4
Ad(Ug, 4 (C))(A7) +18(Ug, o (G1)) = D Ad(Up, (1)) (Xa,)
=1
2

+Za777iAd(U51,8(C1))(X’Yi) + Z a7,7Ad(Uﬁ1,8(<l))(X’Y) + l5(Uﬂ1,8 (Cl)) =
=1 ~YEP~,ht(y)>7

4 2
E :Xai + E ag,; Xy; + E agy Xy
i=1 i=1 €D~ hit(7)>8
+X—a1—3a2—2o¢3—a4 (a7,—a1—30¢2—20¢3—a4 + Mg, s,04 Cl)
+X—a1—2a2—203—2a4 (a7,—041—2042—2043—2044 + mﬂlyg,az Cl)

4 3
SN XY X Y as X = A
i=1 i=1 €D~ ht(v)>8

where v3 := —a1 — 29 — 2a3 — 2a4. Here we obtained the last equation by defining (i as

G=-

a7 —o1—303—203—0g
1 2—2003 =04
Mpy g.ag
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We use table (9.8) to delete the roots of height 8, 9 and 10. The first column of table (9.8)

together with ( := s 1 ag 4, implies
1,9-03

4
Ad(Uﬁl,g (C))(AEE) + 15(U51,9 (C)) = Z Ad<U51,9(C)>(Xai)

i=1

3
+3 asy Ad(Us, o (O) X))+ Y. assAd(Us, o(0))(X5) +16(Us, 4(€)) =
i=1 vED~ ,ht(v)>8

4 3
Z Xa; + Z a9y, X~; + Z ag Xy + XA3 (a&Ba + m/Bl,aniSC)
i=1 i=1 ~yEP—,ht(y)>9

4 3
S SE RS ST SR S RS
i=1 i=1 ~yEP— ht(y)>9

With the help of second column of table (9.8) we delete the part of Ag which lies in the
root space corresponding to the root 819 = —a1 — 2an — 43 — 2a4 of height 9. We obtain

4 3
Ad(Uﬁl,lo (C))(A9) =+ M(Uﬁl,m (C)) = Z Ad(UﬂLlo (C))(Xaz) + Z ag,; Ad(UﬁLlo (C))(X’Yz)

i=1 i=1

+ Z agy’YAd(Uﬁl,lo (C))(X’Y) + M<U,31,10 (C)) =
v€®~,ht(v)>9

4 3
Z Xa; + Z 10,7, X; + Z a10, Xy + XBQ (a9,/3’2 + mﬁ1,1o,a2g)
i=1 i=1 ~ED— ht(7)>10

4 3
= Z Xa; + Z 10,7, X~; + Z 104Xy =: A1o
=1 i=1 ~€P~ ,ht(y)>10

where the definition of { := —ﬁag fa implies the last equation. With the last column
1,10:02 9

of table (9.8) the last transformation, i.e., the transformation of the root of height 10, is

4
Ad(U/BLn (C))(AIO) + Z(S(Uﬁl,u(C)) = ZAd(UﬁLu (C))(Xaz)+
=1

3
Z alOv'YiAd(Uﬁl,ll (C))(X%) + Z alO,WAd(UﬁLn (C))(XW) + lé(Uﬁl,n (C)) =

i=1 YED~ ht(+)>10

4 3
E Xa; + E 11,; X,
i=1 =1

+X5, (‘110,B1 + Mg, 11,01C) + A11,-201 —302— 403204 X —201 30z —das—2as = A11-

o 1 A . .
We define ¢ := R Q10 4, - This yields
4
An = ZX%' 0114y Xy + 0117, Xy + 01143 X5 + G117, Xy
i=1
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165 9.3 The equation with group Fjy

where we denote by v4 = —2a1 — 3ag — 4az — 24 the negative root of maximal height.
This completes the proof. O

9.3 The equation with group F}

In [HowO01] the authors R. B. Howlett, L. J. Rylands and D. E. Taylor computed a 26-
dimensional representation of the Lie algebra of type Fy. They present explicit matrices
for the positive and negative simple roots, i.e., generators for the Lie algebra of type Fj.
More precisely, their results are

Xoy = Eu5+ Egr+ Egio+ Eig20 + E19.21 + Eo2 23,
Xay = FEsa+ Erg+ Ero12 + Eig18 + E17,19 + 23,24,
Xoay = FEoz+ Eue+ Es7+ Eg11+ Ei2.13 + 21214 + E1a.16
+E15,17 + E19,22 + E21 23 + Fog 95,
Xoa, = FEip+FEsg+ Eri0+ Egi2+ 2E1113 + Ei1,14 + E13.15
+F16,17 + Eig19 + E20.21 + E25.26,
X_o, = X1,
X 0, = XL,
X a3 = Ezo+ Esua+ Ers5+ Er19+ E1412 + E1613 + 2E16,14
+FE17,15 + E22,19 + E23 21 + o524,
X-oy = FEo1+ Esg+ Ero7+ Ei29 + E1311 + 21513 + E1514

+E17.16 + F19,18 + E21,20 + Fog 25.

Then the elements { X4, | & € A} generate the Lie algebra of type F;. We denote this
representation of the Lie algebra of type Fy by Lp,. With the help of a computer algebra
system we compute the shape of the additional elements

X _a1-2a0-2035 = —Fgo— FEi113— Eigg — E20,10 — Eo4,15 — Eos 17,
X _o1—2a0—2a3—204 = FE121 — Fi53+ Eige + Fo17 — Eas11 + Fog 16 and
X _201—3as—das—20q4 = F201 4+ Fo12+ Ea33 4+ Foga + Ease + Fogs.

Now let F' = C(t1, ..., t4) be the differential field generated by the 4 differential indetermi-
nates t = (t1,1o,13,t4) over C. Denote by y the vector y = (y1,y2,¥3, ..., Y25, Y26) " . We
define the matrix differential equation

I(y) = Ap,(t)y
for the group of type Fj over F' by
4
AF4 (t) = Z Xai+t1X—a1 +t2X—a1—20¢2—2a3+t3X—oz1—2042—2043—2044+t4X—2a1—30¢2—4a3—2a4-
i=1

The shape of the matrix A, (t), which we obtain from the above representation, can be
found on the next page.
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166 9 A parametrized equation for Fj
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167 9.3 The equation with group Fjy

For the computation of a linear differential equation from the matrix equation d(y) =
AFr,(t)y we can choose, as in the cases of the other groups, y; as a cyclic vector. Unfor-
tunately, y; does not lead to a nice and short differential equation. We tried also other
cyclic vectors. Simular to the case of y;, we obtained non printable equations. However,
we guess that y; is the most easiest cyclic vector. The matrix A, (t) has already a nice
and easy shape. Thus we do not compute an enormous linear differential equation and
continue with the matrix differential equation.

Denote by Gp, the group of type Fy with Lie algebra Lp,. Before we prove that the dif-
ferential equation d(y) = Ap,(t)y over I has Gp, as its differential Galois group we are
going to combine the results of Lemma 9.1 and Corollary 3.12 in Corollary 9.2. Therefore
we define 2 as the set of the 4 negative roots

Qi={m=—-o, 12=—a1 —2a2 — 2a3, 73 = —1 — 202 — 23 — 20,

Y4 = —2041 — 3042 — 40(3 — 20(4 }

and we denote by F := (C(z), 0 = L) the rational function field with standard derivation.

Corollary 9.2. Let AJ\Fi&S € Lg,(F) be the matriz satisfying the conditions of Corol-
lary 3.12 which we applied to the group G, and the above Cartan decomposition. Then
there exists U €e U™ (C(z)) C G, (C(2)) such that

Ap, =UARSSU 10U =D X+ > fiXy, (9.4)
aEA %‘EQ

with at least one f; € C [z] \ C and the differential Galois group of the matriz equation
0(y) = A,y over F is G, (C).

Proof. Lemma 9.1 implies the existence of an element U € U, C Gg, such that equa-
tion (9.4) holds. Since differential conjugation defines a differential isomorphism, we
deduce with Corollary 3.12 that the differential Galois group of d(y) = Ag,y is again
Gr,(C) over F. We still need to show the existence of f; € C'[z] \ C for some ~; € Q.
Suppose Ap, = > cn Xa + > ieq fiXy, € Lie(Gr,)(C). Then the corresponding differ-
ential equation L(y) € C {y} has coefficients in C. But then by [Mag94, Corollary 3.28]
the differential Galois group is abelian. Thus, we obtain Ag, € Lie(Gg,)(F)\ Lie(Gg,)(C).
Since 0 # A; € H(C) and A = (2241 + Ap) in Corollary 3.12, we start our transformation
with at least one coefficient lying in C'[2] \ C. In each step the application of Ad(Us(())
generates at most new entries which are polynomials in (. Moreover, the logarithmic
derivative is the product of the two matrices 9(Us(¢)) and Us(¢)™' = Us(—¢). In the
proof of Lemma 9.1 we choose the parameter ¢ to be one of the coefficients. Hence, we
get f; € Clz]\ C. O

Theorem 9.3. The matrix differential equation
a(y) = AF4(t)y

has Fy as differential Galois group over C (ti,...,ts4). Moreover, let F be a differential
field with field of constants equal to C. Let E be a Picard-Vessiot extension over F
with differential Galois group Gr,(C) and suppose the defining matriz differential equa-
tion 8(y) = Ay satisfies A € Yaier Xa; + 2 aea- La- Then there is a specialization
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168 9 A parametrized equation for Fj

o(y) = AE4(tAl,...,f4)y with ; € F such that d(y) = Ap,(t1,...,t1)y gives rise to the
extension B over F.

Proof. Let E be a Picard-Vessiot extension for the equation d(y) = Ap,(t)y over F
and denote by G the differential Galois group. Since for our matrix differential equation
d(y) = Ap,(t)y holds Ap,(t) € Lie(Gr,)(F), Proposition 2.1 yields G(C) < Gg,(C). By
Corollary 9.2 there exists a specialization o : (t1,...,t4) = (f1, ..., f4) with f; € C[z] such
that o(Ap,(t1,...,t4)) = A, and the differential Galois group of d(y) = Ag,y is Gr,(C).
Moreover, we have C{f1, ..., f1} = C|z]. Thus we can apply Corollary 2.15. This yields
Gr,(C) < G(C). Hence, it holds G(C) = G, (C).

Since the defining matrix A satisfies A € Y aier Xai T 2aca- Lie(Gr,)a, Lemma 9.1
provides that A is differentially equivalent to a matrix A = 3 ovea Xoy T 2 e0 04Xy,
with suitable a; € F. Obviously the specialization

G: (t1, ...,t4) — (dl, ...,a4)

does the required. O

168



Chapter 10

A parametrized equation for Ej

10.1 The root system of type FEj

The below discussion for the construction of the root system of type Eg is taken from
[Hum72, Section 12.1]. Since the root system of type Eg can be identified canonically
with a subsystem of Eg we construct first the root system of type Fs. Therefore let
€1,...,€s be the standard orthonormal basis of R® and let (o, 3) denote the usual inner
product of a, B € R®. The Z-span of €1, ..., g is a lattice which we denote by I. Further
let I' = I+ Z(eg + ... + €g)/2 and I” be the subgroup of I’ consisting of all elements
Zle cici + 5(e1 + ... + eg) for which ¢ + Z?Zl ¢; is an even integer. Then following
[Hum?72, Section 12.1] the root system ®p, of type Eg consists of the vectors

bp, = {ael”|(a,a)=2}
8 8
— (st te), %Z(—nk% i, k(i) =0,1and S k(i) € 22}
i=1 i=1

As a basis of @, we can take the 8 vectors

1
AEg = {a1 = 5(61 + €8 — (62 + ...+ 67)), Q9 = €] + €2, 13 = €9 — €1, Q4 = €3 — €2,

Q5 = €4 — €3, Qg = €5 — €4, Q7 = €6 — €5, Ay = €7 — €6}
where the ordering is chosen such that we can identify canonically a base of Fg with a
subset of Ag,. Thus a basis of the root system of type Eg consists of the vectors
1
Ap, ={a1 = 5(61 +es—(€2+ ...+ ¢€7)), ma=€1+e€2, a3 =e2— €1, ag = €3 — €2,
5 = €4 — €3, (g = €5 — 64}.

We use reflections to construct all remaining positive roots of ®. Therefore let o; € A
and let g = Z?:1 c;a; be a positive root of ®. The image of the reflection

6

0a;(B) = B = (B )y = B — (Y cilai, aj))a;

i=1
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170 10 A parametrized equation for Fg

is a root of ® and is determined by the Cartan integers (o, oj) = 2(av, ) /(vj, oj). Note
that (a, ) is only linear in the first variable for o, 8 € ®. The Cartan integers (o, o)
are give at position 4, j in the Cartan matrix which has in the case of Eg the shape

2 0 -1 0 O
0o 2 0 -1 0
-1 0 2 -1 0
0o -1 -1 2 -1

o o o0 -1 2 -1
o o o0 o0 -1 2

0
0
0
0

We start our construction with the simple roots, i.e., we apply reflections o, (aj € A)
to the simple roots a; € A. We obtain roots where we are only interested in the not yet
known positive roots of height greater one. We continue our construction by applying the
reflections o, to those roots. From [HumT72, Section 12.2, Table 1] we know that the
number of positive roots of ® is 36. We repeat this process until we get all 36 positive
roots. The result of this computation is presented below where we numbered the positive
roots of a given height k£ by 3, , with h € N:

Oy (O3 1+ a3 =: B2,

o
=2 + ag =: B2,
«

)
)
Oas(a4) = az +ayg =: B32,
)
)

Oy (04

Oaylas) = oq + a5 =: By 2,

Oas(a6) = a5 + ag =: B52,

Q

alar +a3) =a1 + oz +ag =: fi3,

Q

az(ao +ag) =+ oz +ag =: a3,

Q

Q

)

as (@2 +aq) = o + g + a5 =: 33,

as(3 + ) = as + ou + as =: fu3,
)

Oag (4 + a5) = ag + a5 + ag =: 353,
o
Oas(01 + a3+ ) = a1 + a3z +ayg + a5 =: B24,

S

as(0o + a3+ as) = o+ a3+ as+ as =: B34,

Q

agla2 +as+a5) =g + ag + as + ag =: Baa,

Q

~— — ~— —

a0+ o+ as) =a3+og + a5+ ag =: P54,

Q

a1 +as+az+ o) =01 +as+az+ o+ as =: P,

Q

aglal +asg +ag + as :a1+a3+a4+a5+a6::ﬁ2,5,

Q

)
aglaa +az+ g+ a5) =as+az+ s+ a5 + ag =: B35,
)

Q

g2+ oz +as+ a5) = ag + a3 + 204 + a5 =: By,

Q

as(0n Fas+azs+ o+ as) =a1 + a2+ oz +oq + as + ag =: Pig,

(
(
(
(
(
(
(
(
(
(
(a1 +az3+ o) =ar+as+ oz +ag=: fra,
(
(
(
(
(
(
(
(
(
Oas(01 + a2+ a3 +ag 4+ as) = a1 + a2 + a3 + 204 + a5 =: Pag,
(

Tag(02 + a3 + 204 + a5) = g + a3 + 204 + a5 + a =: f36,
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171 10.1 The root system of type Fg

Oas(on +ar+az3+ou+as+as) =1 +as+ a3+ 20+ as +as =: Bi7,
Oas a1+a2+a3+2a4—|—a5) = a1+ as + 2a3 + 204 + a5 =: 62,7,

Oas (2 + a3 + 204 + a5 + ap) = ag + oz + 204 + 2a5 + ag =: Ba.7,
o
Oas a1—|—a2+a3+2a4+a5—|—a6):a1+a2+2a3—|—2a4—|—a5+a6 ::52,8,

S

as (@1 + a2 + 203 + 204 + a5 + ag) = a1 + g + 203 + 204 + 205 + ag =: B,
Oay(@1 + o + 203 + 204 + 205 + ) = a1 + g + 2a3 + 3ay + 2a5 + o =: B1,105

(
(
(
as (@1 + a2 + a3 + 204 + a5 + o) = a1 + az + ag + 204 + 205 + ag =: P8,
(
(
(
Oas (1 + 2 + 203 + 204 + 205 + 06) = o + 2a2 + 203 + 204 + 205 + a =: P11

Now suppose we have a representation of the Lie algebra of type Eg to Lie(GLy,(F')). Let
us denote the image of this representation by L < Lie(GL,(F)). Let a Cartan subalgebra
H of L be given and let L = H @® @4 Lo be the Cartan decomposition respective
H. Then we can choose for each @ € ® a nonzero element X, of L, together with
H, = [X4, Xa] such that the set {X,, H, | @ € ®} is a Chevalley basis. Then from the
Chevalley construction we obtain a representation of the group Gg, of type Es and the
root subgroups Ug. We denote a parametrized element of Uz by Ug(() where ¢ € F. For
a root o € ® the adjoint action of Ug(() on X, is

Ad(U(0)(Xa) = 3 Masis - ¢+ Xaip: (10.1)

120

For the proof of the transformation lemma it is necessary to know the image of the adjoint
action for some specific roots o and f3, since it is based on differential conjugation. In the
case of interested, « is a simple positive root and [ is a negative root of height greater
than or equal to 2, i.e., 8 is by the above notation one of the roots —f  with £ > 2. We
analyse for each —f;, 1, € ®~ and o € A if

Bj = aj + (—Bx) (10.2)

is aroot of @, i.e., we determine if the term m,; (g, ,) (! "X, +i(—py ) of equation (10.1)
for i = 1 is zero or not. The results can be found in the tables (10.1)-(10.9). In the first
row the roots — /3y, ;. of a given height k are listed and in the first column we find the simple

roots aq, ...,ag. Then at position j’, ' the root ﬁj/ for —By 1 is given. If this position is
empty then 8j = ajr + (=B 1) is not a root.

—B12 | —Bo2 | —B32 | —Ba2 | —Bs52
aq —Qs
Q2 —Qy
a3 —Q1 —Qy
(e7) —a2 | —a3 | —as
as —0y —Qpg
Q6 —Qs

Table (10.1)
In table (10.1) and (10.2) we handle the roots of height 2 and 3 respectively. In table (10.3)
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10 A parametrized equation for Fg

—B13 —B23 —B333 —B43 —B5,3
(65) —Q3 — Oy
a9 —Q3 — 0y —Qy — Q5
a3 —Qg — Oy —0y — Of
(7)) —Q1] — Q3 —Q5 — Qg
as —Qp — Qg4 | —ag3 — oy
(67 —Qy4 — Q5

Table (10.2)

and (10.4) we find the analysis of the roots of height 4 and 5. Note that there are 5 roots
of height 4 and only 4 roots of height 5. The results for the roots of height 6 and 7 can be

—bia —Pa2u —B3,4 —Baa —B5,4
(65} —Qg — (3 — Oy —Q3 — Oy — Qg
Qo | —ap — a3 —Qy —Q3 — 0y — Q5 —Qy — Q5 — Qg
(6%} —Qg — Oy — Qg —0y — Q5 — Qg
o1
Qs —Q1 — Q3 — Qg | —Q2 — Q3 —Qy
Qg —Qig — Oy — Qi —Qig3 — Oy — Qi
Table (10.3)
—B1,5 —B25 —B35 —Bas
aq —Q2 — Q3 — Q4 — Q5 —Q3 — 04— 05— Qg
Q2 | —0p —Q3— g —Q5p —a3 Qg4 — 5 — Qg
Qs —Qg — Oy — Q5 — Qg
(7)) —Q2 — (O3 —0yg — Q5
a5 | —p —Oog—Q3—a0y
(673 —Q1] — 03— 04— Q5 —QQ — (3 — 0y — Q5

Table (10.4)

found in the table (10.5) and (10.6). Note that there are four roots of height 5 and three
roots of height 6. There are also three roots of height 7, i.e., the number of roots of height

—Pie —Ba26 —Bs.6
(€3] —Qp — Q3 — 04 — 5 — Op —Oé2—Ck3—2044—045
Qg | —p — a3 — oy — Qs — Qg
asg
oy —] — Qg — Q3 — Qg — Q5 | —Q9g — Qg3 — Oy — Q5 — Qg
Qs
(675 —Q] — g — Q3 — Oy — Of —052—043—2014—045
Table (10.5)
—B17 —B27 —B3,7
oy | —ag —ag — 204 — a5 — Qg
(63
a3 | —ap—ag—az—oyu—as—aoag | —op — g — g — 204 — Qs
Qg
(6759 —ag—a3—2a4—a5—a6
Qg —041—042—(13—2044—045

Table (10.6)
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173 10.2 The transformation lemma for Ejg

7 is equal to the number of roots of height 6. In table (10.7) we find the analysis of the two
roots of height 8. Note that the number of roots of height 8 is less one than the number
of roots of height 7.

—bis —Pas
(&3] —Q — Q3 — 2a4 — 2a5 — Qg
a2
Qs —al—ag—a3—2a4—a5—a6
o7}
(073 —041—042—043—2044—045—046
o6 —o] — g — 23 — 2004 — Qi

Table (10.7)
The results for the roots of height 9 and 10 are listed together in table (10.8).

—PB1,9 —B1,10
a1
a
Qs —al—ag—a3—2a4—2a5—a6
oy —a1 — ag — 203 — 204 — 205 — Qg
(07%:3 —al—a2—2a3—2a4—a5—a6
Q6

Table (10.8)

In table (10.9) we analysed the negative root of maximal height —3; ;1. This root has
shape —f1 11 = —a1 — 200 — 203 — 3as — 205 — 0.

—B1,11

aq
(%) -] — Qg — 20[3 - 3044 - 2&5 — Qg
a
o7}
Qa5
Qg

Table (10.9)

10.2 The transformation lemma for FEj

We are going to prove the transformation lemma for the group of type Eg. We make use
of the elaboration of the adjoint action and the root system done in the previous section.
Therefore we keep all the notations done there. Further let (F,J) denote a differential
field with field of constants C' and let us define 2 as the set of the 6 negative roots

Q={n=—a1, 2=—— g —as—ap, 73=—02 — a3 — Q4 — Q5 — Qg,
’74:—052—(13—2044—2&5—056, ’75:—061—062—(13—2044—2065—066,
76:—041—2a2—2a3—3a4—2a5—a6 }
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174 10 A parametrized equation for Fg

Lemma 10.1. Let A € Z?:l Xo; + H(F) + 3 gcq- Lp(F). Then there exists U € U™
such that

UAUT' +o(U) U™ € ZXQ1+ZL%
i €Q

Proof. The element A can be written with respect to a Chevalley basis {X,, H; | a €
®, 1 <i <6} and for suitable elements ag;, a0 s € F as

6
A= ZXai + ap;H; + Z ap,3Xg-
i=1 BED-

In the first step we delete the terms ag; - H; for ¢ = 1,...,6, i.e., we delete the part of A
lying in the Cartan subalgebra H. To achieve this, we differentially conjugate A by the
root group elements U_,, (¢;) where a; € A for i =1,...,6. We have

Ad(U—a; (Gi))(A) +10(U-a,(Gi)) ZAd U-a;(€i))(Xa;) + a;Ad(U-—a, (Gi)) (H;)

j=1

+ > a1, pAd(U-0,(G)(X5) +16(U-—a, (G))-

Bed—

The term 16(U_q,(¢;)) lies by Proposition 3.5 in the root space L_,,. Since the signs of the
roots —a; and B € @~ are negative, we deduce that the term > 54— a1 sAd(U—q,(G:))(Xp)
is an element of the subspace } 54— Lg. Now we analyse the terms Ad(U—q, (G))(Xa;)-
For j # i we obtain

Ad(U*ai(Ci))(XOéj) = Xaj + Zm*ai,aj ClXocj-‘rl(—ai) =X
1>1
In the case j =i the term Ad(U_q,(¢))(Xa,) is
Ad(U—Oéi (CZ))(X%) = Xao; + Z m—ai,aiCloniJrl(fai)
>1
€ oni + m—ai,oc,-,ICiHi =+ L—ai-
Moreover, for Hy := Z?:l apH; we have that Ad(U_q,(G))(Ho) = Ho + (i [X—a,, Hol is

an element of the subspace Hy + L_,,.
We put now all of those results together. This yields

Ad(U-—ag(C6) - - - Uma (€1))(A) + 10U (G6) - - U (G1)) =

6
> Xy + (a0 + Moa01G)Hi + > a15Xp = Ay
=1 Bed—
We define ¢; = ——2*— for 4 = 1,...,6. Then the matrix A; becomes

mfai,ai,l

ZXQZ+ Z al'y

yeP—

174



175 10.2 The transformation lemma for Ejg

The next step is to delete all terms aq X, of Ay which correspond to the negative roots
v € &~ except to the roots of

92{712*041, Y2 = —Q2 — Q4 — 05 — Qp, V3= —02 — Q3 — Q4 — Q5 — Og,
V4= — — a3 — 204 — 205 — g, Y5 = —Qp — Qg — Q3 — 204 — 205 — Qg
Y6 = —a1 — 209 — 23 — 3oy — 205 — g }e

This transformation will be done for all negative roots of a given height k& where k =
1,...,10. Thus, in each step there are some repeating arguments. To get rid of terms in
the decomposition of the matrix Ay in step k& which correspond to negative roots of height
k, we differentially conjugate Ay with root subgroup elements U_g, , +1(Cn) belonging to
the roots — B3}, ;41 of height k+1. Then Proposition 3.5 yields that the logarithmic derivate
lé(U_/gh,kH) lies in the root space L_g, , ., i.e., in a root space corresponding to a root of
height k+1. Similarly, for any negative root v € ®~ the element Ad(U_g, , ., (Cn))(ax,X5)
has shape

AUy o () (arr X)) = g, Xy + > Ly,
7€~ bt (¥) 2ht(v+(=Bh,k+1))

i.e., we generate new entries in root spaces of height greater than k+ 1. To avoid that the
proof becomes needlessly long we do not refer in each step of the transformation to those
arguments.

In the first step we delete five of the six negative roots of height one. Note that there are
five roots of height 2. Hence we have five parameters available for the first transformation.
However, for the differential conjugation of A; by the element U_g, ,((5) - ... - U, ,(¢1)
we obtain with the help of table (10.1)

Ad(U—,Bs,Q (C5) Teeet U—B1,2 (Cl))(Al) + lé(U_BS,Q (C5) Tt U—51,2 (gl)) =

6
Z Xo; + Z a2y Xy + X (a1,-a; + m—ﬂ1,27a3cl)
i=1 YED— ht(y)>2

+X*Oé2 (al,*cm + m—ﬁz,z,azx@) + X*Oés (al,*as + M—pB 5,01 G+ m—53,2,014<3)
+X oy (alﬁoul + m—ﬁz,mazC? + m—33,27043<3 + m—,34,2,065C4)
+X a5 (al,*% + Mg, 50464 + m—55,2,a6<5) + X_ag (al,*% + m—ﬂs,zasg’))

6
i=1 ¥€2~ ht(v)>2

where v1 = —a1 and ap, € F for v € &~ with ht(y) > 2. The last equation is obtained
by defining

1 —a1,—as
G = —7(a17_ . +Fm_ (3), (gi=—7-—2,
M—p sy “ P20 M—By 204
1
(3= — (al,—a4 + m*ﬂ2,2a242 + m*ﬁ4,2a5<‘4)7
M—B3 203
1 —a1,—«
Ci=—————(a1,—a5 + M_p; 506C5) and (5:= ——2.
M—By 204 o P20 M—gs 2as
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176 10 A parametrized equation for Fg

We use table (10.2) to delete all negative roots of height two. More precisely, we get

Ad(U—ﬁ5,3 (C5) EEXE U—ﬁl,s (Cl))(AQ) + lé(U—Bs,s (C5) Tt U—51,3 (Cl)) =

6
Z XOéi + a3,€1X61 + Z a37’YX’Y+
i=1 vE€® ht(7)>3

X—Ocl—as (a2,—a1—013 + m—51,31a4<1)+
X—O¢2—O¢4 (a27_062_044 + m—52,3,a3g2 + m—ﬁ3,3,a5C3)+
X—Oé3—oc4 (a2,—043—044 + m—ﬂz,s,OézCQ + m—ﬁ4,3,a5C4)+
X—Oé4—a5 (a2,—044—065 + m*53,37a2<3 + m*ﬁ4,3,0¢3€4 + m*55,3,a6C5)+
X—Oés—as (al—as—ae + m*ﬁ5,3,a445) =: A3

with az, € F for v € &~ with ht(y) > 3. If we set

—a2 —a;—« 1
gl = ¥7 <2 = _7(a2,*062*044 + m—53,3a5§3)7
M—p; 304 M—p 3a3
1
(3= — (a2,—0¢4—045 + m—ﬂ4,3a3C4 + m—55,3046<5)7
M—pg3 30
1 — Qa2 —or—
G4 1= _7(6127—063—044 + m*ﬁzsaz@) and (5:= M7
M—pB, 3as M—B5 304

then A3 becomes A3 = Z?:1 Xo; + a3~ Xy, + Zwe<b*,ht(v)23 az X, .
In the next step we get rid of all roots of height three. The definition of

1 1
1= _7(‘137*,31,3 + m*52,4,015<2)7 (3= _7(@3,*,32,3 + m*BlAaal(l)’
M—_p1 4,00 M—B3 4,05
1
G2 = _7@3,—,34,3 + m—63,47a2<3 + m_/85,470¢6<—5)?
M—pBy 4,01
1 1
CG=-— (a3,—53,3 + m—53,4,043C3) and (5= 7(a3,—55,3 + m—ﬁ4,47azg4)
M—B4 4,06 M—Bs5 4,03

together with table (10.3) yields
Ad(U—,35,4 (<5) Tt U—B1,4 (Cl))(A?)) + lé(U—ﬁsA(Cf)) EETTI U—51,4(C1)) =

6
Z Xo; + a4, Xy, + Z a4y Xqyt
i=1 €D~ ht(y)>4

X*ﬁl,s (a3ﬁ/51,3 + m*ﬁl,zx,azcl + m*,32,4,015<2)+
X_p,5(a3,-p, 5 + Mg, 401G+ My 4.05C3)+
X B33 (a37_53,3 +m_g; 40503 + m_,34’4,a6C4)+

X—ﬁ4,3 (a3,—ﬁ4,3 T My 4,01 G+ m—ﬁ3,4,a2€3 T M_g5 4,06 C5)+
X—55,3 (a3,—,35,3 + m—ﬁ4,47a2<4 + m—ﬁs,zx,aag’)) =

6
Z Xa, + a4, Xy, + Z agy Xy = Ay
i=1 Ye®- hi(y)>4
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177 10.2 The transformation lemma for Ejg

There are five negative roots of height 4 and four negative roots of height 5. Thus we have
only four parameters available to delete the coefficients in A4 corresponding to those five
negative roots. We choose the parameters (3, ...,(4 as

—Q4,—B1 4 1
_ TM-pa = (as_ m_
G mfﬂ1,5,a57 G2 M—B, 5,06 ( b " BL&O@CI)?
1
(3=———(a4, g5, + M_3y5.0:C2),
M—B3 5,00
1

G4 = _7(654,*53,4 + m*ﬂ1,57041<1 + m*53,570¢6C3)

M— By 5,04

and obtain with the help of table (10.4)
Ad(U—p, 5(Ca) = oo - Uy 5(C1))(Aa) 10U, 5(Ca) o - Uy 5(G1)) =

6
=1 ~€®~,ht(y)>5

X B4 (a47_51,4 + Mg 5,05 C1)+
X pgyalas, gy, +M_p 5 0:C1 + Mgy 5 06G2)+
X pyalas,ps, +m_p 50:C1+ Mgy 5 0603 + Mgy 50,Ca)+
X B4 (a47_54’4 + m—ﬂ3,5,a3C3)+
X 854 (a47_g574 +m_g, 50, G2+ m_g3y5,a2g3)+

6
ZXai + a5 X5 + as55, X5, + Z a5y Xy = As
i=1 €D ht(y)>4

where 75 = —as — oy — a5 — ag and as,, € F for v € &~ with ht(y) > 4.

Since there are only three negative roots of height 6 we have three parameters available
for the transformation of the four negative roots of height 5, which can be calculated with
the help of table (10.5) as

Ad(U—ﬁs,G (<3)U_,82,6 (CQ)U_ﬁl,S (Cl))(AE)) + l(s(U—ﬂg,a (C3)U—ﬁ2,6 (CQ)U—BLG (Cl)) =

6
ZXCH + 6,7, Xy + 06,7, Xy + Z ag,y X+
i=1 ~yEP— ,ht(y)>6

X—,B1,5 (a5,—51,5 + Mg 60661 + m—ﬁz,ﬁ,a2<2)+
X p,5(a5,— 55 + M) 5,0,C1)+
X pysas g5 +M_p 601G +M_gy60,G3)+
X 64500515 + Mg, 6,01C2 + Mgy 6.06(3) =t Ag

with suitable new coefficients ag , € F'. We define

—a5,—f5 1
G=——"">, @=—-—"—"""—" as,— +m_ 7 G and
M—p; 6,02 M_By 60 ( B1,5 B1,6,06 )
1
CS - _7(a57_ﬁ4,5 + m_52,6,011<.2)-
M—B3 6,06
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178 10 A parametrized equation for Fg

This leads to Ag = Y27 Xa, + iy a6 X, + e hi(y)26 467Xy
In the next step we delete all roots of height 6. Therefore we define the three parameters

C1, ¢2 and (3 as

_a67_51 6 1
Cl = 7’7 CQ = —7(a67_ +m_ 7 Cl) and
M—_p; 7,03 M_By 7,03 B2.6 B1,7,06
1
C3 = _7(a6’7ﬁ3,6 + m*ﬂ1777a1<—1).
M—g3 7,a5

Then we obtain together with table (10.6)

Ad(U—53,7 (43)U—,32,7(C2)U—51,7 (Cl))(A6) + lé(U—ﬂ3,7(C3)U—B2,7 (C2)U—ﬂ1,7(C1)) =
6 3
S XA YKt X X
i=1 i=1 ~YEP— ht(y)>7
X_/Bl,(i (aﬁ,—ﬁm + m—51,7,a3<1)+
X_/32,6 (aﬁ,—ﬁz,e + m—51,770¢6C1 + m—ﬁ2,7,a3<2)+
X—,33,6 (a’67_53,6 + m_51,77a1<1 + m—53,7,a5C3) =

6 3
S XetYara Xt Y X =4
i=1 i=1 ~YEP— ht(y)>7

with suitable new elements a7, € F. Since the number of roots of height 8 decreases
on 2 from the number of roots of height 7, we are not able to delete all terms in the
decomposition of A7 which belong to those roots of height 7. With the help of table (10.7)

we compute

Ad(U*ﬁz,s (CQ)Ufﬁl,s (Cl))(A7) + ld(U*ﬁz,s (CZ)Ufﬁl,s (Cl)) =

6
)IENED SRAPE IR SN
i=1 i=1 yED— ht(y)>8

X*ﬁlj (a7,*51,7 + m*ﬁl,s,asgl + m*52,8,03C2)+
X*52,7(a7,*52,7 + m*ﬁ2,87a6<2) + X*ﬁ3,7(a77*f33,7 + m*51,8:a1<1) =: As.

We choose for {; and (o the values

1 —Q7,—Bs 7
(1=———(ar g, +M_pyg0a:¢2) and (o =—"—"".
mM—_p; s,05 pLr Pa,8.08 M—_p, 5,06

Then Ag becomes Ag = 2?21 Xo, + Z?:l a8 Xv; + 2 co- ni(y)>s 98,7 X~ For the trans-
formation of the roots of height 8 we have only one parameter (; available. We define
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179 10.3 The equation for the group of type Eg

() = —==%25 Then the first column of table (10.8) yields

M—p1 9,05
Ad(U—ﬁl,S) (Cl))(AES) + M(U—ﬁl,g (Cl)) =

6 4
Z Xo; + Z a9,y X; + Z a9 5 X+
i=1 i=1 vED— ht(7)>9

X*ﬁlﬁs (a&*ﬁl,g + m*51,97ascl) + X*ﬁQ,S (a&*ﬁz,s + m*51,9,015<1> =

6 5
ZXai + Zang% + Z a9 Xy =1 Ag.
i=1 i=1 ~EP~ ,ht(7)>9

We are going to delete the term ag g, , X_g, , of Ag. Therefore let (; := # We
, ) —B1,10,24
deduce with the help of the second column of table (10.8)

Ad(U—Bl,m (Cl))(A9) + l(s(U_ﬂl,IO (Cl)) =

6 5
Z Xai + Z a’lo,’in'yi + Z a1077X7+
=1 =1 ~yEP— ,ht(y)>10

6 5
X Bio (a9ﬁf31,9 + m*51,10,a4cl) = Z Xa; + Z 10,7, X; + Z a10, Xy =: Aio.
=1 i=1 ~E€P—,ht(v)>10

In the last step we differentially conjugate Ajg with the root group element U_g, ,,(¢1)
which corresponds to the negative root of maximal height —f3; 1. By table (10.9) this is

Ad(U*ﬁl,u (Cl))(Alo) + l(s(Ufﬁl,u (Cl)) =

6 5
Z Xa; + Z a11,y, Xy, + CL117/6’1,11‘X51,117L
=1 =1

X—51,10 (a107—51,10 + m—ﬂ1,11,a2C1) =: Aq1.

Thus, if we define {; = —M07A10 phep Ai1 becomes A1 = Z?zl Xa, + Z?:l a11,~; X, -

M—B1 11,22
Hence, the lemma follows. ]

10.3 The equation for the group of type Ej

In [How01] the authors R. Howlett, L. Rylands and D Taylor present a method to con-
struct matrix generators for the exceptional groups of Lie type. Moreover, they computed
in the same paper explicit matrix generators for the Lie algebras of exceptional type.
For the Lie algebra of type Eg the matrices representing the simple roots a; € A =

179



180 10 A parametrized equation for Fg

{ala 2, 3,04, 05, Oéﬁ} are

Xo, = Ei2+ Ei,13+ Eigie + Eiris + Eig20 + 21,22,
Xoay = Eus+ Eer+ Egi0+ Fig9o1 + Ea022 + Ea3 24,

Xay = Ea3+ Eg11+ Fi214 + E1517 + E20.23 + E22 24,

Xoy = Eza+ Erg+ Fi012 + Ei719 + E1s 20 + Eaa,25,

Xos = Eu6+ Es7+ E1215 + E1417 + Er618 + Eos 26 and
Xog = FEes+ Erio+ Eg 12 + E11,14 + E13,16 + F26 27

The matrix representing the negative simple root —a; for a; € A is the transpose of the
matrix X,, and the elements {X4,, | a; € A} generate the Lie algebra of type Eg which
we denote by L. In addition to the representation of the matrices for the positive and
negative simple roots we compute with the help of an computer algebra system the shape
of the matrices which represent the roots

Q={1n1=—a1, 2=—a2 —ag— a5 —ag, 13=—Q2 — Q3 — Q4 — Q5 — A,
V4= —Qg — a3z — 204 — 205 — @, Y5 = —Q1 — Qg — a3 — 204 — 205 — O,
Y6 = —a1 — 209 — 23 — 3oy — 205 — g }e

Those matrices are

Xy, = —Xi3— Xi24— Xi56 — Xo1,11 — Xo213 + Xor,23,

Xy, = —Xio2+ Xiaa+ Xi76 — Xo1,9 + Xoa13 + Xo7,20,

Xy, = —Xis2— X7z — Xiga — Xo15 + Xog 13 + Xor16,

Xys = —Xis1+ Xigs + Xooa+ Xoos + Xog 11 + Xor14  and
Xye = Xo11+ Xooo+ Xoasz+ Xosa + Xoge + Xors.

Now denote by F' := C(t1,...,ts) the differential field generated by the differential inde-
terminates t = (t1,...,tg) over C. Let y be the vector y := (y1,...,427)" and define the
matrix differential equation 0(y) = Ag,(t) - y over F by

6
Apy(t) := ZX%, + Z X,
=1

Y €Q

The shape of the matrix Ag,(¢t) which is determined by the above representation is pre-
sented on the next page.

The next step is the computation of a linear differential equation for the matrix equation
0(y) = Agy(t) -y. As in the cases of the other groups we can choose y; as a cyclic vector.
Unfortunatley, y; does not lead to a nice differential equation which can be written down.
Trying other cyclic vectors yield simular results. However, we guess that y; is the most
easiest cyclic vector. Since the matrix differential equation 0(y) = Ag,(t) - y already has
an easy and nice shape, it does not make sense to compute an enormous linear differen-
tial equation for the group of type Eg. We continue our proof with the matrix equation

Oy) = Ag(t) - y.
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181 10.3 The equation for the group of type Eg
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182 10 A parametrized equation for Fg

From the usual Chevalley construction for {X, | @ € ®} we obtain the group Gg, of
type Eg with Lie algebra Lg,. The next step to prove that the differential Galois group
of the matrix differential equation 0(y) = Ag,y over F' is Gg, is to combine the results
of Lemma 10.1 and Corollary 3.12 in Corollary 10.2. Therefore let us denote by F :=
(C(z),0 = d%) the rational function field with standard derivation as in Section 3.4.

Corollary 10.2. Apply Corollary 3.12 to the group Gp,; and the Cartan decomposition
of Lgg and let us denote by AJ‘E/Q&S € L, (F) the matriz satisfying the stated conditions.
Then there exists U € U™ (F') C Ggy(F') such that

Apy =UARSSUT +oU)U™ =D Xa+ Y fiX,, (10.3)
aEA ’yiEQ

with at least one f; € C'[z] \ C and the differential Galois group of the matriz equation
O(y) = Ag,y over F is Gg, (C).

Proof. Lemma 10.1 implies the existence of an element U € U, C Gg, such that equa-
tion (10.3) holds. Since differential conjugation defines a differential isomorphism, we
deduce with Corollary 3.12 that the differential Galois group of d(y) = Agy is again
G, (C) over F. We still need to show the existence of f; € C'[z] \ C for some ~; € Q.
Suppose Agy = > cn Xa + > ieq fiXy, € Lie(Gg,)(C). Then the corresponding differ-
ential equation L(y) € C {y} has coefficients in C. But then by [Mag94, Corollary 3.28]
the differential Galois group is abelian. Thus, we obtain Ag, € Lie(Gg,)(F)\ Lie(Gg, ) (C).
Since 0 # A; € H(C) and A = (2241 + Ap) in Corollary 3.12, we start our transformation
with at least one coefficient lying in C'[2] \ C. In each step the application of Ad(Us(())
generates at most new entries which are polynomials in (. Moreover, the logarithmic
derivative is the product of the two matrices (Us(¢)) and Ug(¢)™' = Us(—¢). In the
proof of Lemma 10.1 we choose the parameter ¢ to be one of the coefficients. Hence, we
get f; € Clz]\ C. O

Theorem 10.3. The matriz differential equation

y) = Aps(D)y

has Eg as differential Galois group over C (t, ...,t6>. Moreover, let F be a dzﬁerentzal
field with field of constants equal to C. Let E be a Picard-Vessiot extension over F
with dzﬁer@ntzal Galois group Grs(C) and suppose the defining matriz differential equa-
tion d(y) = Ay satisfies A € >, en Xa; + D wco- La. Then there is a specialization
y) = Ap,(t1,....16)y with t; € F such that d(y) = AEG(fl,...,fg)y gives rise to the
extension E over F'.

Proof. Let E be a Picard-Vessiot extension for the equation 0(y) = Ag,(t)y over F
and denote by G the differential Galois group. Since for our matrix differential equation
0(y) = Ag,(t)y holds Ag,(t) € Lie(Gg,)(F), Proposition 2.1 yields G(C) < Gg,(C). By
Corollary 10.2 there exists a specialization o : (t1,...,tg) — (f1,..., f6) with f; € C[z] such
that o(Ag,(t1,....ts)) = Ag, and the differential Ga101s group of A(y) = Agy is Gg, (O).
Moreover, we have C{fi,.., fe} = C[z]. Thus we can apply Corollary 2.15. This yields
Gr, (C) < G(C). Hence, it holds G(C) = Gg,(C).
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183 10.3 The equation for the group of type Eg

Since the defining matrix A satisfies A € > aien Xa; + Zaeq)_ Lie(Ggg)a, Lemma 10.1
provides that A is differentially equivalent to a matrix A = Y aien Xa; + Zv cn Xy,
with suitable a; € E. Obviously the specialization

6 (tl, ...,tﬁ) — (al, ...,CLG)

does the required. ]
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