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Introduction

Differential Galois theory is the analog of classical Galois theory for linear differential
equations. Classical Galois theory considers polynomial equations with coefficients in
some field F and studies the behavior of their solutions. For this purpose, one examines
the field generated by the roots over F , the splitting field E/F . The symmetries of these
roots are naturally described by the group Gal(E/F ) of automorphisms of E leaving the
base field F fixed. The fundamental theorem of classical Galois theory establishes a cor-
respondence between the intermediate fields of E/F and the subgroups of Gal(E/F ).
Differential Galois theory studies linear differential equations with coefficients in some
differential field F , i.e., a field equipped with a derivation, having an algebraically closed
field of constants C. The analog for the splitting field is the Picard-Vessiot extension E/F ;
it is generated by the entries of a fundamental solution matrix for the defining equation.
Linear combinations of the solutions over the field of constants C clearly are also solu-
tions for the equation, and they generate the same Picard-Vessiot extension. The group
of differential automorphisms of E/F has the structure of a linear algebraic group over
the constants. This group, denoted by Gal∂(E/F ), is called the differential Galois group.
As in classical Galois theory, there is a correspondence between intermediate differential
subfields of E/F and the closed subgroups of Gal∂(E/F ).

The inverse problem in differential Galois theory is to determine which linear algebraic
groups can occur as differential Galois groups. An answer is known for some fields and
groups, for example, for differential fields of characteristic zero with algebraically closed
field of constants C and connected differential Galois groups. For some specific fields, such
as C({z}) or C((z)), linear algebraic groups, which occur as differential Galois groups have
been completely classified. The general problem over the rational function field C(z) was
solved by J. Hartmann in [Hart02]. Further, Mitschi and Singer developed in [MS96] a
constructive method to realize connected groups over C(z). They applied upper and lower
bounds for the differential Galois group to the defining matrix. Therefore the task for
the realization of a linear algebraic group reduces to find a sufficiently general element
of the Lie algebra such that the upper and lower bound coincide. For the application of
the lower bound criterion it is important that the differential ground field is a C1-field. A
more detailed explanation of the bounds is presented below. Over the same differential
base field, Magid presented in [Mag94] a technique to realize some classes of connected
linear algebraic groups. Inspired by E. Noether’s work for algebraic equations, Goldmann
introduced the language of generic differential equations in [Gold57]. Here the differential
ground field is purely differential transcendental over the constants. More precisely, Gold-
mann takes the differential field of generic solutions as his extension field, i.e., he starts
with a differential field generated by n differential indeterminates over the constants, where
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4 Introduction

n is equal to the dimension of the representation of the linear algebraic group. Then, by
his method, the differential ground field is the fixed field of the group and has there-
fore the same differential transcendence degree over the constants as the extension field.
Moreover, in [Juan08] Juan presented generic equations using an alternative approach to
Goldmann’s. For the group SOn Juan’s method is well applicable and yields a generic
equation, where the differential transcendence degree of the differential ground field is
equal to 1

2(n+ 2)(n+ 1). In the general case the differential transcendence degree equals
to the dimension of the linear algebraic group. Here the differential equation is generic in
an indirect sense. More precisely, the specialization of the coefficients takes place over a
finite extension. For more information on the history of the inverse problem in differential
Galois theory, we refer to [PS03, p. 292-293].

The present work concentrates on the realization of the classical groups as differential Ga-
lois groups. We introduce a method for a very general realization of these groups, i.e., we
present for the classical groups of Lie rank l explicit linear differential equations where the
coefficients are differential polynomials in l differential indeterminates over the constants.
At the same time we managed to do these realisations in terms of Abhyankar’s program,
Nice Equations for Nice Groups. Here the choice of the defining matrix is important. We
found out that an educated choice of l negative roots for the parametrization together
with the positiv simple roots leads to a nice differential equation and at the same time
defines a sufficiently general element of the Lie algebra. At the end of [Elk99] Elkies pro-
posed that a particular subspace of the Lie algebra, which is conceptual very similar to
the choice of our parametrized element of the Lie algebra, yields an differential analogue
of a Deligne-Lusztig variety.
In the this thesis we compute explicit parametrized differential equations for the series
of types Al, Bl, Cl and Dl, i.e., we realize the groups SLl+1(C), SO2l+1(C), SP2l(C) and
SO2l(C) as differential Galois groups over the differential ground field C〈t1, ..., tl〉 in l
differential indeterminates t1, ..., tl. Additionally to the series we consider in detail the
exceptional groups of type G2, F4 and E6. For the group of type G2 we obtain an easy
and nice explicit linear differential equation as in the case of the series. In [Kat90], Katz
computed a nice differential equation with group G2. His equation is a specialization of
the equation presented in Theorem 1.5 below. Since the corresponding linear differential
equations for the groups of type F4 and E6 would be of enormous lenght, we present in-
stead matrix differential equations which have also a nice shape. Note that we leave out
the realisation of the exceptional groups of type E7 and E8 because the size of the root
system and the dimension of the representation is too enormous so that the corresponding
computations would make this thesis needlessly long.
More generally, let G be a connected semisimple linear algebraic group, and let Φ de-
note the root system of G. Our method provides a parametrized differential equation
L(y, t1, ..., tl) =

∑n
i=0 ai(t)y

(i) over C〈t1, ..., tl〉 with differential Galois group G, where the
number of parameters t = (t1, ..., tl) equals the rank of Φ, and the coefficients ai(t) are
differential polynomials in t.

We sketch the main ideas. A differential module M over a differential field (F, ∂F ) is a
finite dimensional vector space, together with a map ∂ : M → M , which is additive and
satisfies ∂(f ·m) = ∂F (f) ·m + f · ∂(m) for f ∈ F and m ∈ M . Let e1, ..., en be a basis
of M . Then the map ∂ is written ∂(ei) =

∑n
j=1Aijej , where (Aij) = A ∈ Fn×n. The
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5

matrix A is the defining matrix of the differential module M , and the resulting equation
∂(y) = Ay is called a matrix differential equation. We can also start the other way around
by associating a module M to a matrix A ∈ Fn×n. In other words, we can start with
a vector space on which we define an appropriate differential structure by the choice of
A ∈ Fn×n. In the literature (e.g., see [PS03]), there is a well-known upper bound cri-
terion for the differential Galois group. It states that if A lies in the Lie algebra Lie(G)
of G, then the differential Galois group H of ∂(y) = Ay is contained in (a conjugate
of) G. Thus we choose A ∈ Lie(G)(F ) so that it does not lie in any proper subalgebra
of Lie(G)(F ). More work is needed to apply an appropriate lower bound criterion, and
to show that the two bounds coincide. As a lower bound criterion, we can regard a re-
sult presented in [PS03]. It says that if H(C) ≤ G(C) is the differential Galois group of
∂(y) = Ay over F , and A satisfies A ∈ Lie(G)(F ), then there exists B ∈ G(F ) such that
BAB−1−∂(B)B−1 ∈ Lie(H)(F ). There is another important condition for the application
of the lower bound criterion. This condition is automatically satisfied if the differential
base field is a C1-field (e.g., this holds for C(z)). Since our differential base field is not a
C1-field, we have here no information whether this condition is satisfied or not. Note that
our differential base field is purely differential transcendental over the constants. So we
can consider specializations σ : C〈t〉 → C(z) to a rational function field C(z) and make
use of the lower bound criterion in an indirect way. We introduce the specialization bound.
It states that the differential Galois group H(C) of the specialized differential equation
∂(y) = σ(A)y over C(z) is contained in the differential Galois group G(C) of the original
equation ∂(y) = Ay over C〈t〉. The idea of the proof is to show that there exists a max-
imal differential ideal I in C{t}[Xij , det(Xij)

−1] for the original equation and a maximal
differential ideal Ī in C[z][Xij ,det(Xij)

−1] for the specialized equation satisfying σ(I) ⊂ Ī.
To find such ideals we use differential embeddings of the corresponding differential rings
into fields of power series. Then the specialization of the coefficients of the power series
yields the desired ideals. Finally, we can prove that the defining ideal of the group H(C)
contains the defining ideal of G(C).
Let B denote a Borel subgroup of G in upper triangular form, and B− the opposite Borel
subgroup. Let ∆ be a basis for the root system, and let {Xα, Hαi | α ∈ Φ, 1 ≤ i ≤ l}
be a Chevalley basis for Lie(G), such that the structure is compatible with B. We
give l roots β1, ..., βl of Φ−, such that the parameterized matrix differential equation
∂(y) = (

∑
α∈∆Xα+

∑l
i=1 ti·Xβl)y transforms in a natural way into a nice linear differential

equation. Furthermore, we observe that every element of the subspace
∑

α∈∆Xα+Lie(B−)

is differentially equivalent to a specialization of the matrix
∑

α∈∆Xα+
∑l

i=1 ti ·Xβi . This
is the content of the transformation lemma and the proof uses the adjoint action of the
root subgroups on the Chevalley basis. In order to apply the specialization bound, and
to show that it coincides with the upper bound, we need a matrix differential equation
satisfying the condition of the transformation lemma. In [MS96], Mitschi and Singer devel-
oped a method to construct a matrix differential equation ∂(y) = Āy for every connected
semisimple group G over the rational function field C(z), with differential Galois group G.
They use the information gathered in the application of the lower bound criterion to prove
that the differential Galois group is G. We use similar ideas to compute a matrix differen-
tial equation such that the defining matrix lies in the subspace

∑
α∈∆Xα + Lie(B−).

Theorem 1 is a summary of some of our results:
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6 Introduction

Theorem 1. Let C be an algebraically closed field of characteristic zero, t1, ..., tl differ-
ential indeterminates, and F = C 〈t1, ..., tl〉 the corresponding differential field. Then the
homogeneous linear differential equation

1. L(y, t1, ..., tl) = y(l+1)−
∑l

i=1 ti y
(i−1) = 0 has SLl+1(C) as differential Galois group

over F ,

2. L(y, t1, ..., tl) = y(2l) −
∑l

i=1(−1)i−1(ti y
(l−i))(l−i) = 0 has SP2l(C) as differential

Galois group over F ,

3. L(y, t1, ..., tl) = y(2l+1) −
∑l

i=1(−1)i−1((ti y
(l+1−i))(l−i) + (ti y

(l−i))(l+1−i)) = 0 has
SO2l+1(C) as differential Galois group over F ,

4. L(y, t1, ..., tl) = y(2l) − 2
∑l

i=3(−1)i((tiy
(l−i))(l+2−i) + (tiy

(l+1−i))(l+1−i))

−(t2y
(l−2) +t1y)(l)−((−1)lt1z1 +z2)−

∑l−2
i=0(t

(l−2−i)
2 z1)(i) has SO2l(C) as differential

Galois group over F , where the coefficients z1 and z2 are

z1 = y(l) − t2y(l−2) − t1y

z2 =
(t

(l−2)
2 + (−1)l−2t1)(1)

t
(l−2)
2 + (−1)l−2t1

·

(
y(2l−1) − 2

l∑
i=3

(−1)i((tiy
(l−i))(l+1−i)

+(tiy
(l+1−i))(l−i))− (t2y

(l−2) + t1y)(l−1) −
l−3∑
i=0

(t
(l−3−i)
2 z1)(i)

)
,

5. L(y, t1, t2) = y(7) +2t1y
′+2(t1y)′+2(t2y

(4))′+(t2y
′)(4)−2(t2(t2y

′)′)′ = 0 has G2(C)
as differential Galois group over F = C 〈t1, t2〉.

We conclude the introduction with a brief outline of the chapters. In the first chapter we
recall the basic notions of differential Galois theory. The second chapter starts with the
presentation of the classical bounds for the differential Galois group. We then develop our
alternative lower bound criterion which is based on the calculus of specializations, and will
be therefore called the specialization bound. For this reason we start with the study of
Picard-Vessiot extensions over rings. In the subsequent section, we focus on embeddings
of the corresponding differential rings in fields of power series to obtain a well behaving
specialization. The chapter ends with the proof of the specialization bound. In Chapter
3, we briefly outline the structure of the classical groups and their Lie algebras, establish
the key element for the proof of the transformation lemma, and give a small example. To
apply the alternative lower bound criterion, we modify the ideas developed by Mitschi and
Singer when they realized semisimple connected linear groups as differential Galois groups
over the differential field C(z). In the last section of Chapter 3, we prove the existence of a
parametrized differential equation for every semisimple connected linear algebraic group.
In Chapter 4, we realize SLl+1(C) as a differential Galois group over C 〈t1, ..., tl〉. In more
details, in the first section we compute a Chevalley basis, and present the root system
of type Al. We continue by collecting enough facts about the root system to prove the
transformation lemma for SLl+1. To complete this chapter, we construct an equation
which admits SLl+1 as its differential Galois group.
In Chapter 5, 6 and 7 we consider the groups SP2l+1, SO2l+1 and SO2l. We use the same
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method as for SLl+1, and the chapters are organized in a similar way as Chapter 4. In
Chapter 8, 9 and 10 we study the groups of type G2, F4 and E6. Again we use the same
approach as in the previous chapters, but the root system computations are much easier
in these cases since we do not need inductive arguments for the proofs. For the same
reasons, the proof of the transformation lemma is also easier as in the cases of the series.
Chapters 4-10 can be read independently from each other.

7



8 Introduction

Notation

We use the following notation.

C algebraically closed field of characteristic 0.
C(z) rational function field in a transcendental z whose field of constants

is C.
(R, ∂R) differential ring with derivation ∂R.
(F, ∂F ) differential field with derivation ∂F .
E ≥ F differential field extension.
t1, ..., tl differential indeterminates.
F {t1, ..., tn} the ring of differential polynomials in t1, ..., tn over F (page 20/21).
F 〈t1, ..., tn〉 the field of fractions of F {t1, ..., tn} (page 20/21).
R{X} the differential R-subalgebra generated by the elements of a subset

X ⊆ R1 of a differential ring extension R1 ≥ R (page 21).
F 〈X〉 differential subfield of the differential field extension E ≥ F

generated by the elements of the set X ⊆ E (page 21).
M differential module (page 16).
∂(y) = Ay matrix differential equation (page 15).
G linear algebraic group where G(F ) means the F -rational points

(page 48).
B0 Borel subgroup of G in upper triangular form (page 48).
B−0 Borel subgroup of G in lower triangular form (page 48).
T0 maximal diagonal torus of G (page 48).
diag(λ1, ..., λn) diagonal matrix with entries λ1, ..., λn.
U unipotent subgroup of G in upper triangular form (page 48).
U− unipotent subgroup of G in lower triangular form (page 48).
Uα root subgroup which corresponds to a root α ∈ Φ (page 49).
Lie(G), L the Lie algebra of G where Lie(G)(F ) means the F -rational points

(page 48).
H Cartan subalgebra of Lie(G) (page 49).
Lie(G)α root space corresponding to the root α ∈ Φ (page 49).
Xα basis element of the root space Lie(G)α (page 49).
Hα the co-root of α ∈ Φ (page 49).
Hi the co-root of αi ∈ ∆ (page 49).
Φ root system of G resp. Lie(G) (page 47).
∆ = {α1, ..., αl} basis of Φ with simple roots αi (page 47/48).
〈β, α〉 the integer defined by 2(β, α)/(α, α) (page 47).
σα(β) reflection of Φ for α defined by the formula σα(β) = β − 〈β, α〉α

(page 47).
ht(α) the height of a root α (page 48).
〈v1, ..., vn〉F vector space spanned by the elements v1, ..., vn over a field F .
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Zusammenfassung

Differentialgaloistheorie ist eine Verallgemeinerung der klassischen Galoistheorie für lineare
Differentialgleichungen. In der klassischen Galoistheorie betrachtet man Polynome mit
Koeffizienten aus einem Körper F und untersucht das Verhalten ihrer Nullstellen. Zu die-
sem Zweck bildet man den von den Nullstellen über F erzeugten Körper, den sogenannten
Zerfällungskörper E/F . Die Gruppe der Automorphismen Gal(E/F ) von E, welche den
Grundkörper F fest lassen, beschreibt dann auf natürliche Weise die Symmetrien der Null-
stellen. Der Hauptsatz der klassischen Galoistheorie liefert eine Korrespondenz zwischen
den Zwischenkörpern von E/F und den Untergruppen von Gal(E/F ).
Im Gegensatz zur klassischen Galoistheorie betrachtet man in der Differentialgaloistheorie
lineare Differentialgleichungen, deren Koeffizienten aus einem Differentialkörper F mit
algebraisch abgeschlossenem Konstantenkörper C stammen. Als Gegenstück zum Zerfäl-
lungskörper hat man hier die sogenannte Picard-Vessiot-Erweiterung. Diese wird von den
Einträgen einer Fundamentalmatrix der definierenden Gleichung erzeugt. Linearkombina-
tionen von Lösungen über den Konstantenkörper C sind offensichtlich wieder Lösungen
der Differentialgleichung und erzeugen die gleiche Picard-Vessiot-Erweiterung. Die Gruppe
der Differentialautomorphismen von E/F trägt die Struktur einer linearen algebraischen
Gruppe über den Konstantenkörper C. Diese Gruppe heißt Differentialgaloisgruppe und
wird mit Gal∂(E/F ) bezeichnet. Wie in der klassischen Galoistheorie existiert auch hier
eine Korrespondenz zwischen den Differentialzwischenkörpern von E/F und den abge-
schlossenen Untergruppen von Gal∂(E/F ).
Das inverse Problem in der Differentialgaloistheorie beschäftigt sich mit der Frage, wel-
che linearen algebraischen Gruppen als Differentialgaloisgruppen vorkommen können. Man
kennt eine Antwort auf dieses Problem für bestimmte Grundkörper und Gruppen, wie zum
Beispiel für Differentialkörper der Charakteristik Null mit algebraisch abgeschlossenen
Konstantenkörper C und zusammenhängender Differentialgaloisgruppe. Für bestimmte
Differentialgrundkörper, wie C({z}) oder C((z)), wurden die linearen algebraischen Grup-
pen, welche als Differnetialgaloisgruppen vorkommen können, vollständig klassifiziert. Das
allgemeine Problem für den rationalen Funktionenkörper C(z) wurde von J. Hartmann in
[Hart02] gelöst. In [MS96] haben Mitschi und Singer eine für den hier später erläuterten
Ansatz wichtige konstruktive Methode entwickelt, um zusammenhängende Gruppen über
C(z) zu realisieren. Für den gleichen Differentialgrundkörper veröffentlichte Magid in
[Mag94] eine Technik zur Realisierung einer Klasse von zusammenhängenden linearen
algebraischen Gruppen. Angeregt von E. Noethers Arbeit für Polynomgleichungen führte
Goldmann in [Gold57] die Sprache der generischen Differentialgleichungen ein. Außerdem
stellte Goldmann in der gleichen Arbeit die Idee der analytischen Spezialisierungen vor.
In [Juan08] verwendete Juan einen zu Goldmann alternativen Ansatz mittels diesem sie
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10 Zusammenfassung

auch generische Gleichungen berechnen konnte.
In der vorliegenden Arbeit wird das inverse Problem in der Differentialgaloistheorie be-
handelt. Ziel ist es, die klassischen Gruppen vom Lie Typ als Differentialgaloisgruppen
zu realisieren. Hierfür entwickeln wir eine Methode, die eine sehr allgemeine Realisierung
zulässt, das heißt, wir berechnen explizite lineare Differentialgleichungen für die klassischen
Gruppen vom Lie Rang l, deren Koeffizienten Differentialpolynome in l Differentialunbe-
stimmten über dem Konstantenkörper sind. Gleichzeitig gelingt es uns, für diese Gruppen
Differentialgleichungen im Sinne von Abhyankars berühmter Reihe

”
Nice Equations for

Nice Groups“ zu konstruieren. Hierbei ist die Wahl der definierenden Matrix aus der Lie
Algebra entscheidend. Wir haben herausgefunden, dass eine geschickte Wahl von l nega-
tiven Wurzeln für die Parametrisierung zusammen mit den positiven einfachen Wurzeln
zu einer schönen und einfachen linearen Differentialgleichung führt und gleichzeitig eine
genügend allgemeine Matrix in der Lie Algebra definiert. In [Elk99] vermutet Elkies, dass
ein gewisser Untervektorraum der Lie Algebra, der aufgrund seiner ähnlichen Konzeption
unsere parametrisierte Matrix aus der Lie Algebra enthält, zu einem Differentialanalogon
der Deligne-Lusztig Varietät führt.
Wir verwenden die hier entwickelte Methode zur Konstruktion von expliziten parametri-
sierten Differentialpolynomen für die Serien Al, Bl, Cl und Dl, das heißt, wir realisieren
die Gruppen SLl+1(C), SO2l+1(C), SP2l(C) und SO2l(C) über einem Differentialkörper
C〈t1, ..., tl〉 in den l Differentialunbestimmten t1, ..., tl. Zusätzlich werden die Gruppen vom
Ausnahmetyp G2, F4 und E6 im Detail behandelt. Dabei gelingt es uns, für die Gruppe
vom Ausnahmetyp G2 eine explizite und einfache Differentialgleichung, wie im Fall der
Serien, zu berechnen. In seiner Arbeit [Kat90] berechnet Katz eine schöne und einfache Dif-
ferentialgleichung mit Gruppe G2. Wir erhalten seine Gleichung durch eine Spezialisierung
der Parameter unserer Differentialgleichung. Da wir für die Ausnahmegruppen vom Typ
F4 und E6 riesige linearen Differentialgleichungen erhalten würden, geben wir für diese
nur Matrixdifferentialgleichungen an, deren Gestalt aber ebenso einfach ist. Wir möchten
darauf hinweisen, dass eine explizite Ausarbeitung für die Gruppen vom Ausnahmetyp E7

und E8 nur deshalb weggelassen wurde, da die einzelnen Berechungen wegen der Größe des
Wurzelsystems und der Dimension der Darstellung diese Arbeit nur unnötig verlängern
würden.
Allgemeiner sei G eine zusammenhängende halbeinfache lineare algebraische Gruppe mit
einer Darstellung in einen n-dimensionalen Vektorraum und es bezeichne Φ das zugehörige
Wurzelsystem von G. Dann liefert unsere Methode eine parametrisierte Differentialglei-
chung L(y, t) =

∑n
i=0 ai(t)y

(i) = 0 über C〈t1, ...tl〉 mit Differentialgaloisgruppe G(C),
wobei die Anzahl der Parameter t = (t1, ..., tl) dem Rang von Φ entspricht und die Koef-
fizienten ai(t) Differentialpoylnome in t sind.
Wir möchten nun die wichtigsten Ideen unserer Methode skizzieren. Ein Differentialmodul
M über einen Differentialkörper (F, ∂F ) ist ein endlich dimensionaler Vektorraum mit einer
additiven Abbildung ∂ : M →M , welche zusätzlich die Regel ∂(f ·m) = ∂F (f)·m+f ·∂(m)
für f ∈ F und m ∈ M erfüllt. Sei e1, ..., en eine Basis von M . Dann hat die Abbildung
∂ die Gestalt ∂(ei) =

∑n
j=1Aijej mit (Aij) = A ∈ Fn×n. Die Matrix A heißt die de-

finierende Matrix des Differentialmoduls M und die zugehörige Gleichung ∂(y) = Ay
heißt Matrixdifferentialgleichung. Man kann nun auch andersherum anfangen, indem man
einen Modul M zu einer Matrix A ∈ Fn×n assoziert. Genauer gesagt, man beginnt mit
einem Vektorraum und definiert auf diesem durch die Wahl von A ∈ Fn×n eine geeignete
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Differentialstruktur. In der Literatur findet man ein wohlbekanntes oberes Schrankenkri-
terium für die Differentialgaloisgruppe. Es besagt, dass wenn A in der Lie Algebra Lie(G)
von G liegt, dann ist die Differentialgaloisgruppe H von ∂(y) = Ay bis auf Konjugation
in G enthalten. Die Aufgabe eine Gruppe zu realisieren reduziert sich somit darauf, eine
geeignete Differentialstruktur auf einem Modul zu definieren, indem man eine genügend
allgemeine Matrix für die Differentialgleichung aus der Lie Algebra wählt. Folglich wird
man A ∈ Lie(G)(F ) so wählen, dass A in keiner echten Unteralgebra von Lie(G)(F ) liegt.
Um ein geeignetes unteres Schrankenkriterium anwenden zu können und um zu zeigen,
dass die beiden Schranken übereinstimmen, ist mehr Arbeit nötig. Als ein solches unteres
Schrankenkriterium kann man ein in der Literatur bekanntes Resultat ansehen. Unter
passender Voraussetung besagt es, dass wenn H(C) ≤ G(C) die Differentialgaloisgrup-
pe von ∂(y) = Ay über F ist und A in Lie(G)(F ) liegt, dann existiert ein B ∈ G(F )
und BAB−1 − ∂(B)B−1 ∈ Lie(H)(F ). Leider ist diese Voraussetzung nur im Fall von
C1-Körpern stets erfüllt wie zum Beispiel für den rationalen Funktionenkörper C(z). In
dieser Arbeit kann die klassische untere Schranke nur indirekt angewandt werden, da der
hier verwendete Differentialgrundköper im allgemeinen kein C1-Körper ist und wir somit
nicht wissen, ob die für die Anwendung der unteren Schranke notwendige Voraussetzung
erfüllt ist. Es wird daher ein neues unteres Schrankenkriterium benötigt und entwickelt.
Da man den Differentialgrundkörper rein differentialtranszendent über den Konstanten
gewählt hat, basiert die Idee für das neue untere Schrankenkriterium auf Parameterspe-
zialisierung. Hier verwenden wir Spezialisierungen σ : C〈t〉 → C(z) in den rationalen Funk-
tionenkörper C(z). Das so gewonnene untere Schrankenkriterium, welches in dieser Arbeit
als die Spezialisierungsschranke (The Specialization Bound) bezeichnet wird, besagt, dass
die Differentialgaloisgruppe H(C) der spezialisierten Differentialgleichung ∂(y) = σ(A)y
über C(z) in der Differentialgaloisgruppe G(C) der Ausgangsgleichung ∂(y) = Ay über
C〈t〉 enthalten ist. Der Beweis verwendet die Spezialisierung eines maximalen Differen-
tialideals I des universellen Lösungsrings C{t}[Xij , det(Xij)

−1] der Ausgangsgleichung. Es
ist daher nötig Picard-Vessiot-Ringe über Differentialringen zu konstruieren und genauer
zu untersuchen. Die für Differentialkörper bekannten Resultate müssen für Differential-
ringe neu bewiesen werden. Um die Existenz eines maximalen Differentialideals I für die
Ausgangsgleichung in C{t}[Xij , det(Xij)

−1] und eines maximalen Differentialideals Ī der
spezialisierten Gleichung in C[z][Xij , det(Xij)

−1] mit der Eigenschaft, dass die Speziali-
sierung σ(I) in Ī enthalten ist, zu beweisen, werden die entsprechenden Differentialringe
via Taylorabbildungen in Potenzreihenringe eingebettet. So erhält man genug Information
um zu beweisen, dass die beiden definierenden Ideale der Gruppen ineinander enthalten
sind.
Es bezeichne B eine Borelgruppe von G in oberer Dreiecksgestallt und B− die entge-
gengesetzte Borelgruppe. Des Weiteren sei ∆ eine Basis des Wurzelsystems und es sei
{Xα, Hαi | α ∈ Φ, 1 ≤ i ≤ l} eine Chavelley Basis für Lie(G), so dass ihre Struktur mit B
kompatibel ist. Wir können nun l Wurzeln β1, ..., βl aus Φ− wählen, so dass sich die para-
metrisierte Matrixdifferentialgleichung ∂(y) = (

∑
α∈∆Xα +

∑l
i=1 ti ·Xβl)y auf natürliche

Weise in eine schöne Differentialgleichung transformieren lässt. Außerdem beobachtet man,
dass jedes Element aus dem Unterraum

∑
α∈∆Xα+Lie(B−) differentialäquivalent zu einer

Spezialisierung der Matrix
∑

α∈∆Xα +
∑l

i=1 ti ·Xβi ist. Dies ist die Aussage des Trans-
formationslemmas (Transformation Lemma) und der Beweis verwendet die Operation via
der adjungierten Darstellung der Wurzeluntergruppen auf der Chevalley Basis. Um nun
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12 Zusammenfassung

unsere Spezialisierungsschranke anwenden zu können und um zu zeigen, dass sie mit dem
oberen Schrankenkriterium übereinstimmt, benötigen wir eine Matrixdifferentialgleichung
über C(z), welche die Bedingungen des Transformationslemmas erfüllt und die Gruppe
G als Differentialgaloisgruppe hat. In einer ihrer Arbeiten haben Mitschi und Singer eine
Methode entwickelt mit der man für jede zusammenhängende halbeinfache Gruppe G eine
Matrixdifferentialgleichung ∂(y) = Āy über den rationalen Funktionenkörper C(z) kon-
struieren kann, so dass sie G als Differentialgaloisgruppe besitzt. Es ist ihnen gelungen
aus der Anwendung des klassischen unteren Schrankenkriteriums genug Information zu
ziehen um zu beweisen, dass G die Differentialgaloisgruppe ist. Anhand der gleichen Ideen
werden wir eine Matrixdifferentialgleichung berechnen, so dass die definierende Matrix im
Unterraum

∑
α∈∆Xα + Lie(B−) enthalten ist.

Die durch die Anwendung unserer Methode erzielten Ergebnisse für die Gruppen vom Typ
Al, Cl, Bl, Dl und G2 sind in folgendem Theorem zusammengefasst.

Theorem 2. Sei C ein algebraisch abgeschlossener Körper der Charakteristik Null und
F = C 〈t1, ..., tl〉 der von den Differentialunbestimmten t1, ..., tl über C erzeugte Differential-
körper. Dann besitzt die homogene lineare Differentialgleichung

• L(y, t1, ..., tl) = y(l+1) −
∑l

i=1 ti y
(i−1) = 0 die Gruppe SLl+1(C) als Differential-

galoisgruppe über F ,

• L(y, t1, ..., tl) = y(2l) −
∑l

i=1(−1)i−1(ti y
(l−i))(l−i) = 0 die Gruppe SP2l(C) als Dif-

ferentialgaloisgruppe über F ,

• L(y, t1, ..., tl) = y(2l+1) −
∑l

i=1(−1)i−1((ti y
(l+1−i))(l−i) + (ti y

(l−i))(l+1−i)) = 0 die
Gruppe SO2l+1(C) als Differentialgaloisgruppe über F ,

• L(y, t1, ..., tl) = y(2l) − 2
∑l

i=3(−1)i((tiy
(l−i))(l+2−i) + (tiy

(l+1−i))(l+1−i))

−(t2y
(l−2) + t1y)(l) − ((−1)lt1z1 + z2) −

∑l−2
i=0(t

(l−2−i)
2 z1)(i) die Gruppe SO2l(C) als

Differentialgaloisgruppe über F . Hierbei sind

z1 = y(l) − t2y(l−2) − t1y

z2 =
(t

(l−2)
2 + (−1)l−2t1)(1)

t
(l−2)
2 + (−1)l−2t1

·

(
y(2l−1) − 2

l∑
i=3

(−1)i((tiy
(l−i))(l+1−i)

+(tiy
(l+1−i))(l−i))− (t2y

(l−2) + t1y)(l−1) −
l−3∑
i=0

(t
(l−3−i)
2 z1)(i)

)
,

• L(y, t1, t2) = y(7) +2t1y
′+2(t1y)′+2(t2y

(4))′+(t2y
′)(4)−2(t2(t2y

′)′)′ = 0 die Gruppe
G2(C) als Differentialgaloisgruppe über F = C 〈t1, t2〉.

Abschließend geben wir einen Überblick über den Inhalt der einzelnen Kapitel. Zunächst
führt die Arbeit in die Grundlagen der Differentialgaloistheorie ein, um auf diesen aufbau-
end unsere Methode zu entwickeln. Genauer werden hier die grundlegenden Begriffe der
Differentialgaloistheorie eingeführt und es werden die wichtigsten Ergebnisse der Picard-
Vessiot-Theorie präsentiert. Weiter enthält der einführende Abschnitt eine Formulierung
des Hauptsatzes der Differentialgaloistheorie und des Torsor-Satzes. Das erste Kapitel
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schließt mit dem
”
Cyclic Vector Theorem“ zur Konstruktion von linearen Differentialglei-

chungen aus Matrixdifferentialgleichungen.
Zum Beginn des zweiten Kapitels werden die klassischen Schranken für die Differential-
galoisgruppe eingeführt und mit der Entwicklung des neuen unteren Schrankenkriteriums
begonnen. Dazu werden zunächst Picard-Vessiot-Erweiterungen über Differentialringen
untersucht und die benötigten Ergebnisse bewiesen. In dem darauffolgenden Abschnitt
betten wir die entsprechenden Differentialringe in Potenzreihenkörper ein, damit wir eine
wohlverhaltende Spezialisierung eines maximalen Differentialideals erhalten. Abschließend
wird die Spezialisierungsschranke bewiesen.
Das nächste Kapitel enthält eine Zusammenfassung der Struktur der klassischen Gruppen
und ihrer Lie Algebren und führt somit die Grundlagen für den Beweis der Transforma-
tionslemmata ein. Um nun die Spezialisierungsschranke anwenden zu können, modifizieren
wir die Ideen von Mitschi und Singer zur Realisierung von zusammenhängenden halb-
einfachen Gruppen über C(z). Abschließend beweisen wir allgemein die Existenz einer
parametrisierten Differentialgleichung für zusammenhängende halbeinfache lineare alge-
braische Gruppen.
In den darauffolgenden Kapiteln wird die Methode auf die einzelnen Gruppen vom Typ Al,
Cl, Bl, Dl, G2, F4 und E6 angewandt. Die Ausarbeitungen hierzu enthalten eine Darstel-
lung der Lie Algebra und eine für den Beweis des Transformationslemmas vorbereitende
Analyse des Wurzelsystems. Diese wie auch der Beweis des Transformationslemmas ge-
staltet sich je nach Typ des Wurzelsystems unterschiedlich schwierig. Als nächstes wird
mit Hilfe des Transformationslemmas und Mitschis und Singers Diffferentialgleichung be-
wiesen, dass eine Differentialgleichung gewünschter Gestalt mit vorgegebener Differential-
galoisgruppe über C(z) existiert. Im Fall der Serien und der Ausnahmegruppe vom Typ
G2 wird nun für die jeweilige Matrixdifferentialgleichung ein zyklischer Vektor bestimmt,
so dass dieser zu einer einfachen parametrisierten linearen Differentialgleichung führt. Für
die Gruppen vom Ausnahmetyp F4 und E6 geben wir nur die jeweiligen Matrixdifferen-
tialgleichungen an, um die Präsentation einer riesigen linearen Differentialgleichungen zu
vermeiden. Zuletzt wird mit Hilfe der Schranken und der zu Mitschi und Singer differen-
tialäquivalenten spezialisierten Gleichung bewiesen, dass unsere parametrisierte Differen-
tialgleichung die vorgegebene Gruppe als Differentialgaloisgruppe realisiert.
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Chapter 1

Basics on differential Galois theory

In this chapter, we present some basic definitions and results of differential Galois theory.
We refer to the books [PS03] and [Mag94] for more and detailed information. The reader
familiar with the basic properties of differential Galois theory may skip this chapter.

1.1 Matrix differential equations

Definition 1.1. 1. Let R be a commutative ring. We call the map ∂R : R → R a
derivation if it is additive and satisfies

∂R(r1r2) = ∂R(r1)r2 + r1∂R(r2)

for all r1, r2 ∈ R. A ring (resp. field) together with such a map is called a differen-
tial ring (resp. field). The set of elements satisfying ∂(r) = 0 is called the set of
constants C of R. It is easy to see that they form a subring of R (resp. subfield of
F ).

2. Let R1 and R2 be differential rings, φ ∈ Hom(R1, R2) a ring homomorphism, and
I / R1 an ideal. Then φ is called a differential homomorphism if it satisfies
φ ◦ ∂R1 = ∂R2 ◦ φ, and I is called a differential ideal if ∂R1(r) ∈ I for all r ∈ I.

3. We call a differential ring R a simple differential ring if its only differential ideals
are (0) and R.

For the rest of this work, we assume C is an algebraically closed field of characteristic zero.
Let (F, ∂F ) be a differential field with field of constants C. Let A be an n×n matrix (i.e.,
A ∈ Fn×n), and denote by ytr = (y1, ..., yn)tr a vector of length n. Then an equation of
the form

∂(y) = Ay

is called a matrix differential equation, where ∂(y) denotes the component-wise deriva-
tion of y (when applied to vectors or matrices, the symbol ∂ always denotes the component-
wise derivation).

15



16 1 Basics on differential Galois theory

Lemma 1.2. Let ∂(y) = Ay be a matrix differential equation of dimension n over F , and
let E ≥ F be a differential field extension (i.e., E ≥ F is a field extension and ∂E |F = ∂F
holds). The solution space

V := {y ∈ En | ∂(y) = Ay}

is a vector space of dimension dimC(V ) ≤ n over the field of constants C.

Suppose we are in the situation of Lemma 1.2, and the solution space V ⊂ En has
dimension n. Choose a basis y1, ...,yn of V , and write Y ∈ GLn(E) for the matrix with
columns y1, ...,yn. Then ∂(Y ) = AY holds. This leads to

Definition 1.3. A matrix Y ∈ GLn(E) satisfying ∂(Y ) = AY is called a fundamental
solution matrix for the differential matrix equation defined by A.

Let B ∈ GLn(F ), and let y ∈ V be a solution of ∂(y) = Ay. Then the derivative of By
is given by

∂(By) = ∂(B)y +B∂(y) = (∂(B)B−1 +BAB−1)By.

In other words, By is a solution of the matrix differential equation

∂(x) = (BAB−1 + ∂(B)B−1)x =: Ãx.

We see that solutions of the first equation can be transformed into solutions of the second
one. This motivates

Definition 1.4. Two matrix differential equations ∂(y) = Ay and ∂(x) = Ãx are called
equivalent if there exists a matrix B ∈ GLn(F ) such that

Ã = BAB−1 + ∂(B)B−1.

We now formalize the language of matrix differential equations by the introduction of
differential modules. A differential module M over the differential field (F, ∂) can be
considered as a finite dimensional F -vector space which is also a F [∂]-left module, where
F [∂] denotes the ring of linear differential operators, that is the noncommutative ring of
polynomials in the variable ∂ with coefficients in F , such that ∂a = a∂ + ∂F (a) for all
a ∈ F . An equivalent definition is

Definition 1.5. Let (F, ∂F ) be a differential field. A differential module M over
the differential field (F, ∂) is a finite dimensional F -vector space together with a map
∂ : M →M satisfying for m1,m2 ∈M and f ∈ F :

1. ∂(m1 +m2) = ∂(m1) + ∂(m2)

2. ∂(fm1) = ∂F (f)m1 + f∂(m1).

If M is a differential module over the differential field (F, ∂F ), and e1, ..., en is a basis of
M , then

∂(ei) =
n∑
j=1

aijej

16



17 1.2 Picard-Vessiot extensions

for some A ∈ Fn×n. The matrix A is called a defining matrix for the differential module
M . Conversely, let M be an F -vector space with basis e1, ..., en, and let A ∈ Fn×n. Then
we can make M into a differential module by setting

∂(
n∑
i=1

fiei) :=
n∑
i=1

∂F (fi)ei + fi

n∑
j=1

ajiej

 .

In this situation we call the differential module M associated to the matrix differential
equation ∂(y) = Ay. Let ẽ1, ..., ẽn be another basis for M with defining matrix Ã, and let
B ∈ GLn(F ) such that f̃i =

∑n
j=1 bijfj . Denote by e (resp. ẽ) the vector etr = (e1, ..., en)tr

(resp. ẽtr = (ẽ1, ..., ẽn)tr). Then we obtain

∂(ẽ) = ∂(Be) = ∂F (B)e+BAe = ÃBe,

which is equivalent to (
∂F (B)B−1 +BAB−1

)
Be = ÃBe.

Thus, we have
∂F (B)B−1 +BAB−1 = Ã.

As in Definition 1.4 we say that the two differential equations ∂(y) = Ay and ∂(y) = Ãy
are equivalent.
Our approach involves differential conjugation, i.e., the transformation of a matrix equa-
tion into an equivalent one as in Definition 1.4. This motivates

Observation 1.6. Let A ∈ Fn×n, and Bi ∈ GLn(F ), where 1 ≤ i ≤ k+1 for some k ∈ N.
Set

Ã = (
∏k
i=1Bk+1−i)A(

∏k
i=1Bk+1−i)

−1 + ∂(
∏k
i=1Bk+1−i)(

∏k
i=1Bk+1−i)

−1.

An easy inductive argument shows that

Bk+1ÃB
−1
k+1+∂(Bk+1)B−1

k+1 = (

k+1∏
i=1

Bk+2−i)A(

k+1∏
i=1

Bk+2−i)
−1+∂(

k+1∏
i=1

Bk+2−i)(

k+1∏
i=1

Bk+2−i)
−1.

Throughout the text, we use Observation 1.6 without explicit reference.

1.2 Picard-Vessiot extensions

Assume that the dimension of the solution space V of ∂(y) = Ay over F is strictly less
than n or that a fundamental matrix Y ∈ GLn(F ) does not exist. Then we have to enlarge
the differential field F to guarantee enough solutions, i.e., one has to consider differential
field extensions E ≥ F . What follows is the analogue of a splitting field for differential
equations.

Definition 1.7. A Picard-Vessiot ring over F for the matrix differential equation
∂(y) = Ay is a differential ring R over F satisfying:

1. R is a simple differential ring.

17



18 1 Basics on differential Galois theory

2. There exists a fundamental matrix Y ∈ GLn(R), such that ∂(Y ) = AY .

3. R is generated as a ring by F , the entries of a fundamental matrix Y , and det(Y )−1.

Using the first condition, it is shown in [PS03, Lemma 1.17] that a Picard-Vessiot ring is
always an integral domain. Thus we can define the field of fractions of a PV-ring.

Definition 1.8. The field of fractions E of a Picard-Vessiot ring R for a differential
equation over F is called a Picard-Vessiot field or a Picard-Vessiot extension of F .

Moreover, with the additional help of the third condition it can be shown (e.g., see [PS03,
Lemma 1.17]) that the set of constants of R coincides with C. This implies the third
statement of the next proposition, proving the existence and uniqueness up to isomorphism
of a Picard-Vessiot extension.

Proposition 1.9. Let ∂(y) = Ay be a matrix differential equation over F .

1. There exists a Picard-Vessiot ring for the equation.

2. Any two Picard-Vessiot rings for ∂(y) = Ay are differential isomorphic.

3. The quotient field of a Picard-Vessiot extension does not contain new constants.

The idea of the proof is to construct a particular Picard-Vessiot ring R, which is called
the universal solution algebra. One proceeds in following way. Equip the coordinate ring
F [GLn] = F [Xij ,det(Xij)] of the general linear group with a derivation defined by the
rule ∂(Xij) = A(Xij). Then by construction, the matrix (Xij) is a fundamental solution
matrix for the differential equation ∂(y) = Ay. Hence, the second and third conditions
are trivially satisfied. For the first condition, we choose a maximal differential ideal I in
F [Xij ,det(Xij)] and set R = F [Xij ,det(Xij)]/I.
The following proposition gives an equivalent definition of a Picard-Vessiot extension:

Proposition 1.10. Let ∂(y) = Ay be a matrix differential equation over F , and let E ≥ F
be a differential field extension. Then E ≥ F is a Picard-Vessiot extension if and only if
E is generated over F by the entries of a fundamental solution matrix Y ∈ GLn(E) of
∂(y) = Ay and the field of constants of E is C.

For a proof see [PS03, Proposition 1.22].

1.3 The differential Galois group

We can now define the differential Galois group.

Definition 1.11. The differential Galois group of a differential equation over F is
defined as the group Aut∂(R/F ) = Gal(R/F ) of differential F -algebra automorphisms of
a Picard-Vessiot ring R for the equation.

Let Y ∈ GLn(R) be a fundamental solution matrix with coefficients in the Picard-Vessiot
ring R for a differential equation ∂(y) = Ay. Since A ∈ Fn×n, it is left fixed by all
σ ∈ Gal(R/F ). Hence, σ sends Y to another fundamental solution matrix. It can be

18



19 1.4 Torsors

seen easily that two fundamental solution matrices only differ by a constant matrix. Thus
σ(Y ) = Y Cσ with Cσ ∈ GLn(C). So the above abstract definition becomes more concrete,
i.e., there is a faithful representation Gal(R/F ) ↪→ GLn(C).
The above definition was made for Picard-Vessiot rings. It turns out that the group
of differential automorphisms Aut∂(E/F ) for a Picard-Vessiot field E coincides with the
group of differential automorphisms Aut∂(R/F ) for the corresponding Picard-Vessiot ring.
All of this can be read in [PS03, Section 1.4]. The most important facts are summarized
in

Proposition 1.12. Let E ≥ F be a Picard-Vessiot field with differential Galois group
Aut∂(E/F ). Then

1. Aut∂(E/F ) is the group of C-points G(C) ≤ GLn(C) of a linear algebraic group G
over C.

2. The field EAut(E/F ) of Aut∂(E/F )-invariant elements of the Picard-Vessiot field E
is equal to F .

3. The Lie algebra Lie(G)(C) of G(C) coincides with the Lie algebra of derivations of
E/F that commute with the derivation on E.

For a proof we refer to [PS03, Theorem 1.27].
We finish this paragraph with the differential Galois correspondence. It is cited here for
completeness.

Theorem 1.13. Let ∂(y) = Ay be a matrix differential equation over F and E/F a
Picard-Vessiot extension for the equation. Let G be a linear algebraic group over C such
that Gal(E/F ) ∼= G.

1. There exists an anti-isomorphism between the lattice of closed subgroups H(C) and
the lattice of intermediate differential fields E ≥ L ≥ F given by

H(C) 7→ EH(C), L 7→ Gal(E/L).

2. Let H(C) / G(C) be a normal closed subgroup. Then EH(C)/F is a Picard-Vessiot
extension with Gal(EH(C)/F ) ∼= (G/H)(C).

3. Denote by G0 the connected component of G. Then EG
0(C)/F is a finite Galois

extension with Galois group isomorphic to (G/G0)(C).

A proof can be found in [PS03, Proposition].

1.4 Torsors

We start this section with

Definition 1.14. Let G be a linear algebraic group defined over the field F ≥ C. A
G-Torsor is an affine scheme Z over F with a faithful G-action, i.e., a morphism

G ×F Z → Z, (X,Z)→ ZX (1.1)
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20 1 Basics on differential Galois theory

such that the morphism

G ×F Z → Z ×F Z, (X,Z)→ (ZX,Z) (1.2)

is an isomorphism. A G-torsor Z is called trivial if Z ∼= G holds and the G-action is given
by the multiplication on G.

Assume that Z is a trivial G-Torsor. Then Z has an F -rational point, i.e., Z(F ) 6= ∅ since
G has one. Conversely, let Z(F ) be non empty. For Z ∈ Z(F ), the morphism

G × {Z} → Z × {Z} , (X,Z) 7→ (ZX,Z)

is an isomorphism by Definition 1.14(2). Hence a G-torsor Z is trivial if and only if it has
an F -rational point.
Now we want to explain how this applies in differential Galois theory. Therefore let
∂(y) = Ay be a matrix differential equation. Consider the universal solution algebra
R := F [Xij , det(Xij)

−1]/I with I a maximal differential ideal, i.e., a Picard-Vessiot ring
for the equation and denote by G(C) the differential Galois group for the corresponding
Picard-Vessiot extension Quot(R)/F . Define Z as the affine scheme Spec(R) over F . In
this situation we have

Theorem 1.15. Z is a G-Torsor over F .

For a proof see [PS03, Theorem 1.28].
A consequence of Theorem 1.15 is Kolchins Structure Theorem. It states that a G-Torsor
Z = Spec(R) for a Picard-Vessiot ring R over (F, ∂) with differential Galois group G(C)
becomes isomorphic to the trivial torsor Z ∼= G after a finite field extension F̃ /F . Equiv-
alently this can be expressed as

F̃ ⊗F R−̃→F̃ ⊗C C [G] .

We will use Theorem 1.15 for the proof of the bounds for the differential Galois group
in the next chapter. Since the Picard-Vessiot rings R are G-Torsors, the correspondence
between the first cohomology set and torsor presented in Proposition 1.16 below is in some
situations useful.

Proposition 1.16. For a linear algebraic group defined over F there is a bijection between
the G-torsors and H1(F̄ /F,G(F̄ )).

The proof of this goes back to Serre and can be found in [Ser97, I 5.2, Proposition 33].

1.5 Homogeneous linear differential equations

Let (R, ∂R) be a differential ring. Then by the ring of differential polynomials in the
differential indeterminate y we mean the polynomial ring

R {y} := R[∂i(y) := y(i) | i = 0, 1, 2, ...]

in the countable number of indeterminates with the derivation ∂ satisfying ∂|R = ∂R and
∂(y(i)) = y(i+1). Now let R be a differential integral domain and F be the field of fractions

20



21 1.5 Homogeneous linear differential equations

of R. Then R {y} is also an integral differential domain. We write F 〈y〉 for the field of
fractions of R {y}. If S ≥ R is a differential ring extension (resp. E ≥ F a differential field
extension) and X ⊂ R is a subset of R (resp. X ⊂ F is a subset of F ), then we mean by
R {X} the differential R-subalgebra of S generated by the elements of X (resp. by F 〈X〉
the differential subfield of E generated by F and the elements of X).
Let (F, ∂F ) be a differential field and C ≤ F the field of constants of F . Later, F will be the
differential field C 〈t〉 generated by finitely many differential indeterminates t = (t1, ..., tl)
over C. Let L(y) = y(n) + an−1y

(n−1) + ... + a1y
′
1 + a0y ∈ F {y} be a monic linear

homogenoues element of F {y}. Then a homogeneous linear differential equation of
degree n over the differential field F is defined as an equation of the form

L(y) = y(n) + an−1y
(n−1) + ...+ a1y

′ + a0y = 0.

To Lemma 1.2 in the case of matrix differential equations one has the following analogue.

Lemma 1.17. Consider a homogeneous linear differential equation L(y) = 0 of degree n
over F and a differential field extension E ≥ F . Then the solution space

V := {y ∈ E | L(y) = 0}

of L(y) = 0 in E is a vector space over C of dimension dimC(V ) ≤ n.

A proof can be found in [PS03, Lemma 1.10].
Analogously to the fundamental matrix, one calls a set y1, ..., yn of elements satisfying
L(yi) = 0 a fundamental set of solutions of L(y) = 0, if the yi are linear independent over
C. Again, motivated by the same aspects as in the case of matrix equations, one defines
Picard-Vessiot extensions as

Definition 1.18. Let L(y) = 0 be a homogeneous linear differential equation of degree n
over a differential field F . A differential extension field E ≥ F is called a Picard-Vessiot
extension of F for L(y) if:

1. E is generated over F as a differential field by a fundamental set of solutions y1, ..., yn
of L(y) = 0 in E (i.e., E = F 〈y1, ..., yn〉).

2. Every constant of E lies in F .

The next step is to explain the connection between matrix differential equations and
homogeneous linear differential equations. Later we will consider both. Again, let L(y) =
y(n) + an−1y

(n−1) + ...+ a1y
′+ a0y = 0 be a homogeneous linear differential equation over

(F, ∂F ) and let y1, ..., yn be the fundamental set of solutions of L(y) = 0 in a differential
extension field E ≥ F . The matrix AL defined as

AL =


0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

... · · ·
...

0 0 0 0 · · · 1
−a0 −a1 · · · · · · · · · −an−1


21



22 1 Basics on differential Galois theory

is called the companion matrix of L. We will also denote the derivation ∂E of an element
a ∈ E by a′ := ∂E(a). Then the map

ι : yi → (yi, y
′
i, ..., y

(n−1)
i )tr =: ytri

defines an isomorphism of the solution space of L(y) onto a solution space of the matrix
differential equation ∂(y) = ALy. The matrix

W (y1, ..., yn) =


y1 y2 · · · yn
y′1 y′2 · · · y′n
...

... · · ·
...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n


is called the Wronskian matrix. One sees easily that W (y1, ..., yn) := Y is a fundamental
solution matrix for the matrix equation ∂(y) = ALy. Suppose E = F 〈y1, ..., yn〉 /F is
a Picard-Vessiot extension for L(y) in the sense of Definition 1.18. Then the Wronskian
matrix satisfies the conditions of Proposition 1.10. Thus E over F is a Picard-Vessiot
extension in the sense of Definition 1.8.
Above we have seen that one can convert a homogeneous linear differential equation L(y)
into a matrix differential equation ∂(y) = Ay. In many situations the converse is also true,
i.e., a matrix differential equation ∂(y) = Ay is equivalent to a matrix equation of type
∂(y) = ALy. There are several proofs of the so called Cyclic Vector Theorem ( e.g., see
[Kat87] or [Kov96]). Let ∂(y) = Ay be a matrix differential equation and denote by MA

the associated differential module with basis e1, ..., en. Let m ∈ MA. By the differential
span 〈m〉 of m we mean the smallest vector space closed under ∂ containing m.

Definition 1.19. Let M be a differential module over (F, ∂F ). A vector m ∈M is called
a cyclic vector if 〈m〉 = M holds.

Suppose m is a cyclic vector of MA. Then the n+1 vectors m, ∂(m), ..., ∂n(m) are linearly
dependent. Let 1 ≤ r ≤ n such that ∂r(m) can be written as a linear combination of
∂i(m) with 0 ≤ i ≤ r. Without loss of generality we may assume r = n ( if not, one
differentiates the equation). Hence, there are ai ∈ F such that

∂n(m) = −an−1∂
n−1(m)− ...− a1∂(m)− a0m.

By an easy computation argument we see that the defining matrix with respect to the
basis m, ∂(m), ..., ∂n−1(m) is the companion matrix

AL =


0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

... · · ·
...

0 0 0 0 · · · 1
−a0 −a1 · · · · · · · · · −an−1

 .

In other words, if ∂(y) = Ay is the defining matrix differential equation for a differential
vector space MA with respect to a basis e1, ..., en which has a cyclic vector m, then A is
differentially equivalent to a companion matrix AL.
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23 1.5 Homogeneous linear differential equations

Theorem 1.20. Let M be a finite dimensional differential module over a non trivial
differential field (F, ∂F ) of characteristic zero with algebraically closed field of constants
C. Then M has a cyclic vector.

Since our approach includes matrix differential equations, we have to compute cyclic vec-
tors. Luckily, the shapes of our matrix equations are such that one can easily detect a
cyclic vector, which will lead to nice linear differential equations.
Let E over F be a Picard-Vessiot extension for a matrix differential equation ∂(y) = Ay in
the sense of Proposition 1.10 with fundamental solution matrix Y . Further, let F satisfy
the conditions of Theorem 1.20. Then there exists B ∈ GLn(F ) such that A is differen-
tially equivalent to a companion matrix AL. The equation ∂(x) = ALx has fundamental
solution matrix BY = X. Thus, E = F 〈X11, ..., X1n〉 is a Picard-Vessiot extension in the
sense of Definition 1.18.
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Chapter 2

Bounds for the differential Galois
group

In this chapter we present upper and lower bounds for the differential Galois group.

2.1 The classical bounds

Everything described in this section is well known and can be found in [PS03, Section 1.4].
In the following, let (F, ∂F ) be a differential field of characteristic zero over an algebraically
closed field of constants C. Proposition 2.1 below is known as an upper bound criterion
for the differential Galois group.

Proposition 2.1. Let H ≤ GLn(C) be a connected linear algebraic group over C with
Lie algebra Lie(H) ≤ Cn×n. Suppose that the matrix equation ∂(y) = Ay over F satisfies
A ∈ Lie(H)(F ). Then the differential Galois group G(C) of the equation is contained in (a
conjugate of) H(C).

For a proof we refer to [PS03, Proposition 1.31.1].
The next theorem can be regarded as a lower bound criterion. In [MS96], Mitschi and
Singer used it to prove that every connected reductive group can be realized as a differential
Galois group over the differential field C(z) with standard derivation ∂C(z) = d

dz , where C
is an algebraically closed field of characteristic zero. Later, we combine this fact with the
results of the next section to develop another lower bound.

Theorem 2.2. Let R be a Picard-Vessiot ring for the equation ∂(y) = Ay over F with
connected Galois group G(C) and let Z be the associated G-torsor. Let Lie(G)(C) be the
Lie algebra of G(C) and let H(C) ≥ G(C) be a connected linear algebraic group with Lie
algebra Lie(H)(C). Suppose that A ∈ Lie(H)(F ). If Z is the trivial torsor then there
exists B ∈ H(F) such that the equivalent equation ∂(x) = Ãx where y = Bx and Ã =
B−1AB −B′B−1 satisfies Ã ∈ Lie(G)(F ).

A proof can be found in [PS03, Proposition 1.31.2].
In the following sections we will develop another lower bound criterion which is based on
the calculus of specializations. The main ingredient to obtain a well behaving specialization
is an embedding of the corresponding differential rings in a suitable field of power series.
We start with the study of differential rings and their Picard-Vessiot extensions.
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26 2 Bounds for the differential Galois group

2.2 Picard-Vessiot extensions over rings

Let (F, ∂) be a differential field with field of constants C and ∂(y) = Ay a matrix dif-
ferential equation over F . Let F [Xij , det(Xij)

−1] be the coordinate ring for GLn(F ) and
choose a maximal differential ideal Ĩ of F [Xij ,det(Xij)

−1]. Denote by

L := F [Xij ,det(Xij)
−1]/Ĩ

the Picard-Vessiot ring and by E := Quot(L) the corresponding Picard-Vessiot extension.
Now let R be an integral differential ring with field of constants C such that Quot(R) = F ,
and let R[Xij ,det(Xij)

−1] be the coordinate ring for GLn(R). Suppose the matrix A
satisfies

A ∈ Rn×n.

Then R[Xij , det(Xij)
−1] becomes a differential ring by ∂(y) = Ay. We can choose a

differential ideal I in R[Xij , det(Xij)
−1] which satisfies I ∩ R = (0) and is maximal with

this property. Then we can define a differential ring extension S/R by

S := R[Xij , det(Xij)
−1]/I.

By construction S is an R-simple differential ring, i.e., S does not contain proper differ-
ential ideals I with I ∩ R = (0). Further, S is generated over R by the entries of the
fundamental solution matrix

(Zij) := (Xij mod I) ∈ GLn(S)

and by the inverse of the determinant det(Zij)
−1, i.e., (Zij) satisfies ∂(Zij) = A(Zij) and

S = R[Zij ,det(Zij)
−1]. Since S is an R-simple differential ring the field of constants of

S is C. The maximality of the differential ideal I implies that the ideal (I) generated by
I over F [Xij , det(Xij)

−1] is a maximal differential ideal. Say we choose the ideal Ĩ from
above such that Ĩ = (I). Thus we obtain an injection of differential rings

S ↪→ L.

Since in polynomial rings over rings one has more ideals than over fields, we will consider
ideals I ⊂ R[Xij ,det(Xij)

−1] (or ideals I ⊂ S[Xij ,det(Xij)
−1]) satisfying Condition 2.3

presented below.

Condition 2.3. Let R̃ be an integral differential ring with field of constants C and define
a differential structure on R̃[Xij ,det(Xij)

−1] by a matrix differential equation ∂(y) = Ay
where A ∈ R̃n×n. Then we consider ideals I in R̃[Xij , det(Xij)

−1] satisfying I ∩ R̃ = (0),
and if for f ∈ I there exists r ∈ R̃ such that (1/r)·f ∈ R̃[Xij ,det(Xij)

−1], then (1/r)·f ∈ I.

Lemma 2.4. Let R̃ be an integral differential ring with field of constants C, and let the
field of constants of Quot(R̃) also be C. We extend the derivation ∂R̃ to a derivation

∂ on R̃[Yij , det(Yij)
−1] by setting ∂(Yij) = 0 for 1 ≤ i, j ≤ n. Moreover, one considers

C[Yij , det(Yij)
−1] as a subring of R̃[Yij , det(Yij)

−1]. Then the map

δ : I 7→ (I)
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27 2.2 Picard-Vessiot extensions over rings

from the set of ideals of the ring C[Yij ,det(Yij)
−1] to the set of differential ideals of

R̃[Yij ,det(Yij)
−1] satisfying Condition 2.3 is a bijection. Furthermore, the inverse map

is defined by

δ−1 : J 7→ J ∩ C[Yij ].

Proof. Let {r̃j}j∈J be a basis of R̃ as a vector space over C with r̃j0 = 1. Then {r̃j}j∈J
is also a basis of the C[Yij , det(Yij)

−1]-module R̃[Yij ,det(Yij)
−1]. The differential ideal (I)

consists of elements of the form

f =
∑
j∈J ′

qj · r̃j

where J ′ ⊂ J is a finite subset of J and qj ∈ I for all j ∈ J ′. Therefore we have

(I) ∩ C[Yij ,det(Yij)
−1] = I.

We are going to show that the ideal (I) satisfies Condition 2.3. Therefore we extend the
basis {r̃j}j∈J of R̃ over C to a basis {r̃j}j∈M of Quot(R̃) over C where J ⊂ M. For
f ∈ (I), let r̃ ∈ R̃ such that 1

r̃ · f ∈ R̃[Yij , det(Yij)
−1]. We compute

1

r̃
· f =

1

r̃
(
∑
j∈J ′

qj · r̃j) =
∑
j∈J ′

qj · (
1

r̃
· r̃j) =

∑
j∈J ′

qj · (
∑
j′∈M′j

cj′ · r̃j′) =
∑
j∈M′

q̃j · r̃j ,

whereM′ =
⋃
j∈J ′M′j and q̃j′ = cj′ ·qj ∈ I for all j′ ∈M′j . Since 1

r̃ ·f ∈ R̃[Yij , det(Yij)
−1],

we obtain M′ ⊂ J . Thus, 1
r̃ · f ∈ (I).

We have to show that a differential ideal J ⊂ R̃[Yij ,det(Yij)
−1] satisfying Condition 2.3 is

generated by I := J ∩ C[Yij ,det(Yij)
−1]. Let {êi}i∈I be a basis of C[Yij ,det(Yij)

−1] over
C with êi0 = 1. Then f ∈ J can be written for a finite subset I ′ ⊂ I as

f =
∑
i∈I′

ri · êi.

We prove by induction on the length l(f) = card(I ′) that f ∈ (I).
Let l(f) = 1. Then f reads as f = ri · êi. The condition on J implies that (1/ri)f = êi ∈ J .
Hence, we obtain f ∈ (I).
Now let l(f) > 1. If all ri ∈ C, then there is nothing to show. Also if f can be written as
f = r̃ ·

∑
i∈I′ ci · êi, where ci ∈ C and r̃ ∈ R̃ \ C, since by Condition 2.3 we have

1

r̃
· f =

∑
i∈I′

ci · êi ∈ J

and so f ∈ (I). We claim that for r1 6= 0, r2 ∈ R̃, one has r1∂(r2) − r2∂(r1) = 0 if and
only if r1 and r2 are C-linearly dependent, i.e., it exists c ∈ C such that r1 = cr2. Let
r1∂(r2) − r2∂(r1) = 0. Since ∂( r1r2 ) = ∂(r1)r2−∂(r2)r1

r2
2

= 0, we obtain that r1
r2

is a constant.

Thus, r1
r2

is an element of C. Hence, r1 and r2 are C-linearly dependent. The other
direction is trivial. Thus the claim follows.
Without loss of generality let r1 ∈ R̃ \ C, and let r1 and r2 be C-linearly disjoint in f .
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28 2 Bounds for the differential Galois group

Hence we obtain

r1∂(f)− ∂(r1)f =
∑
i∈I′

(r1∂(ri)− ∂(r1)ri) · êi

=
∑

i∈I′\{1}

(r1∂(ri)− ∂(r1)ri) · êi := f̃ 6= 0.

Since l(f̃) < l(f), the induction assumption implies f̃ =
∑

i∈I′\{1} ři · êi ∈ (I) where
r̂i = r1∂(ri)− ri∂(r1). We compute

ř2f − r2f̃ = ř2

∑
i∈I′

riêi − r2

∑
i∈I′\{1}

řiêi

= ř2r1 · ê1 −
∑

i∈I′\{1, 2}

(ř2ri − r2ři)êi 6= 0.

Further, the length of ř2f − r2f̃ is less than l(f). Hence, ř2f − r2f̃ ∈ (I) and therefore
ř2f ∈ (I). Obviously, we have 1

ř2
· (ř2f) ∈ R̃[Yij , det(Yij)

−1]. Since the ideal (I) satisfies
Condition 2.3, we obtain f ∈ (I).

Lemma 2.5. The map
ι : I 7→ (I)

from the set of ideals in R[Xij ,det(Xij)
−1] satisfying Condition 2.3 to the set of Gal(S/R)-

invariant ideals in S[Xij , det(Xij)
−1] satisfying Condition 2.3 is a bijection. Furthermore,

the inverse map is given by

ι−1 : J 7→ J ∩R[Xij , det(Xij)
−1].

Proof. The proof is very similar to the proof of Lemma 2.4.
Choose a basis {ŝj}j∈J of S as a vector space over R with ŝj0 = 1. Then {ŝj}j∈J is also a
basis of the R[Xij ,det(Xij)

−1]-module S[Xij , det(Xij)
−1]. The Gal(S/R)-invariant ideal

(I) consists of elements of the form

f =
∑
j∈J ′

qj · ŝj

where J ′ ⊂ J is a finite subset of J and qj ∈ I for all j ∈ J ′. Hence, it holds

(I) ∩R[Xij ,det(Xij)
−1] = I.

We are going to show that the ideal (I) satisfies Condition 2.3. For f ∈ (I), let s̃ ∈ S
such that 1

s̃ · f ∈ S[Xij ,det(Xij)
−1]. Denote by {ŝj}j∈M a basis of Quot(S) over Quot(R)

where {ŝj}j∈J ⊂ {ŝj}j∈M. Then we get

1

s̃
· f =

1

s̃
· (
∑
j∈J ′

qj · ŝj) =
∑
j∈J ′

qj · (
1

s̃
· ŝj) =

∑
j∈J ′

qj · (
∑
j′∈M′j

fj′ · ŝj′) =
∑
j∈M′

qj · fj · ŝj ,

where qj ∈ I, fj ∈ Quot(R) and M′ :=
⋃
j∈J ′M′j is a finite subset of M. Since 1

s̃ · f ∈
S[Xij ,det(Xij)

−1], we obtainM′ ⊂ J . Further, qj · fj ∈ R[Xij , det(Xij)
−1] and therefore
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29 2.2 Picard-Vessiot extensions over rings

we have by Condition 2.3 that 1
s̃ · f ∈ (I).

We have to show that the ideal J ⊂ S[Xij ,det(Xij)
−1] is generated by

I = J ∩R[Xij ,det(Xij)
−1].

Let {ei}i∈I be a basis of R[Xij ,det(Xij)
−1] over R. Then any f ∈ J can be written for a

finite subset I ′ ⊂ I and si ∈ S as

f =
∑
i∈I′

si · ei.

We prove by induction on the length l(f) = card(I ′) that f ∈ (I).
Let l(f) = 1. Then f reads as f = siei. Since the ideal J satisfies Condition 2.3, we get
that 1

si
· f = ei ∈ J . Thus, it follows that f ∈ (I).

Now let l(f) > 1. If for all si it holds si ∈ R, then there is nothing to show. Also if f can
be written as f = s̃ ·

∑
i∈I′ riêi, where ri ∈ R and s̃ ∈ S, since by Condition 2.3 we have

1

s̃
· f =

∑
i∈I′

riêi ∈ J

and thus f ∈ (I). We claim that for all σ ∈ Gal(S/R) it holds σ(s1)s2−s1σ(s2) = 0 if and
only if s1 and s2 are R-linearly dependent. Let σ(s1)s2−s1σ(s2) = 0 for all σ ∈ Gal(S/R).

We obtain σ(s1)
σ(s2) = σ( s1s2 ) = s1

s2
. Since by Theorem 1.13 one has Quot(S)Gal(S/R) = Quot(R),

we get s1
s2
∈ Quot(R). Hence, s1 and s2 are R-linearly dependent. The other direction is

trivial. Hence the claim follows.
Without loss of generality let s1 ∈ S \ R, and let s1, s2 be R-linearly disjoint. We choose
σ ∈ Gal(S/R) such that σ(s1)s2 6= s1σ(s2). Thus we obtain

s1σ(f)− σ(s1)f =
∑
i∈I′

(s1σ(si)− σ(s1)si)êi

=
∑

i∈I′\{1}

(s1σ(si)− σ(s1)si)êi := f̃ .

We have l(f̃) < l(f). So by the induction assumption f̃ =
∑

i∈I′\{1} s̃i · êi ∈ (I) where
s̃i = s1σ(si)− σ(s1)si. We calculate

s̃2f − s2f̃ = s̃2 ·
∑
i∈I′

si · êi − s2 ·
∑

i∈I′\{1}

s̃i · êi

= s̃2 · s1 · ê1 +
∑

i∈I′\{1, 2}

(s̃2si − s̃is2) · êi 6= 0.

Since the length of s̃2f − s2f̃ is less than l(f), we obtain s̃2f − s2f̃ ∈ (I). Further, we
have s̃2 · f ∈ (I). Obviously it holds 1

s̃2
· (s̃2 · f) ∈ S[Xij , det(Xij)

−1]. Since the ideal (I)
satisfies Condition 2.3, we get f ∈ (I).
Let f ∈ I = J ∩ R[Xij ,det(Xij)

−1], and suppose that it exists r ∈ R such that 1
r · f ∈

R[Xij , det(Xij)
−1]. Since the ideal J ⊂ S[Xij , det(Xij)

−1] satisfies Condition 2.3, we
obtain 1

r · f ∈ J . Hence, we get 1
r · f ∈ I, and therefore the ideal I in R[Xij ,det(Xij)

−1]
satisfies Condition 2.3.
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30 2 Bounds for the differential Galois group

Let I ⊂ R[Xij ,det(Xij)
−1] be a differential ideal such that I ∩R = (0). Since I does not

necessarily satisfy Condition 2.3, we claim that the expanded ideal

Iex := I · F [Xij ,det(Xij)
−1] ∩R[Xij ,det(Xij)

−1]

is again a differential ideal and satisfies Condition 2.3. This can be seen as follows. Let
f =

∑
i fi · qi ∈ I · F [Xij ,det(Xij)

−1] with qi ∈ I and fi ∈ F [Xij , det(Xij)
−1]. Then we

compute

∂(f) = ∂(
∑
i

fi · qi) =
∑
i

∂(fi) · qi + fi · ∂(qi) ∈ I · F [Xij , det(Xij)
−1]

since ∂(qi) lies again in I. Hence, the ideal I · F [Xij ,det(Xij)
−1] is a differential ideal.

Thus, the intersection

I · F [Xij , det(Xij)
−1] ∩R[Xij , det(Xij)

−1]

is again a differential ideal and satisfies Condition 2.3.
Further, if I ⊂ R[Xij ,det(Xij)

−1] is a maximal differential ideal satisfying I ∩ R = (0),
then I automatically satisfies Condition 2.3. This is a consequence of the above and the
maximality of I.

2.3 Formal Taylor series

Now our differential fields become more specific. Let F := C〈t1, ..., tl〉 be the differential
field in the l differential indeterminates t = (t1, ..., tl) and denote by R := C{t1, ..., tl} ⊂ F
the corresponding differential subring. Let F̄ := C(z) be a rational function field where the
derivation is defined by ∂F̄ = d

dz , and let R̄ := C[z] ⊂ F̄ be the corresponding differential
subring. Further, let ∂(y) = A(t)y be a matrix differential equation over F such that
A ∈ C{t}n×n. Moreover, let

σ : t 7→ f = (f1, ..., fl)

be a specialization to R̄ such that C{f} = R̄. We are going to show that there exists
a maximal differential ideal I ⊂ U := R[Xij ,det(Xij)

−1] with I ∩ R = (0) such that its
specialization σ(I) is contained in a proper differential ideal Ī ⊂ Ū := R̄[Xij ,det(Xij)

−1]
with Ī ∩ R̄ = (0) where the differential structure on U (resp. Ū) is defined by ∂(Xij) =
A(t)(Xij) (resp. ∂(Xij) = A(σ(t))(Xij)).

Lemma 2.6. Let F̄ = C(z) be the rational function field over the algebraically closed field
field of constants C, and let the matrix A of ∂(y) = Ay satisfy A ∈ C[z]n×n. Then there
exists a valuation ring Oc ⊃ C[z] for F̄ with valuation ideal Pc such that the injective
differential homomorphism

τ : C[z] → C[[T ]], f 7−→
∑
k∈N

∂(k)(f)(Pc)T k

extends to a differential homomorphism

τ : C[z][Xij ,det(Xij)
−1] → C[[T ]], Xij 7−→

∑
k∈N

∂(k)(Xij)(Pc)T k
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31 2.3 Formal Taylor series

where the initial values (Xij)(Pc) = D̄ ∈ GLn(C) can be chosen arbitrarily, and the kernel
Ī of τ defines a maximal differential ideal with Ī ∩ C[z] = (0).

Proof. Since A ∈ C[z]n×n, we can choose a local parameter (z − c) with c 6= 0 ∈ C such
that for all polynomial entries aij(z) in A it holds aij(c) 6= 0. Further, the valuation ring
for (z − c) is of shape

Oc = {f
g
| f, g ∈ C[z], g /∈ P := 〈z − c〉C[z]}

which obviously contains C[z]. Denote by Pc := P · Oc the maximal ideal of Oc and by
f(Pc) ∈ C the image of f ∈ C[z] under the residue map

π : Oc → Oc/Pc = C.

Then we define the Taylor map

τ : C[z]→ C[[T ]], f 7→
∑
k∈N

∂(k)(f)(Pc)T k.

We compute for f, g ∈ C[z]

τ(fg) =
∑
k∈N

∂(k)(fg)(Pc)T k

=
∑
k∈N

1

k!
(

k∑
i=0

k!

i!(i− k)!
∂i(f)∂k−i(g))(Pc)T k

=
∑
k∈N

(
k∑
i=0

∂(i)(f)(Pc)∂(k−i)(g)(Pc))T k

= (
∑
k∈N

∂(k)(f)(Pc)T k)(
∑
k∈N

∂(k)(g)(Pc)T k) = τ(f)τ(g).

Obviously, it holds τ(f + g) = τ(f) + τ(g). Hence, τ is a homomorphism. From the
calculation

∂T (τ(f)) = ∂T (
∞∑
k=0

∂(k)(f)(Pc)T k)

=
∞∑
k=1

k · ∂(k)(f)(Pc)T k−1

=

∞∑
k=1

k

k!
∂k−1(∂(f))(Pc)T k−1

=
∞∑
k=0

∂(k)(∂(f))(Pc)T k = τ(∂(f))

we deduce that τ is a differential homomorphism. Since R̄ := C[z] is a ∂-simple differential
ring, τ is a differential monomorphism. Then the image R̄ := τ(C[z]) ⊂ C[[T ]] becomes
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32 2 Bounds for the differential Galois group

an integral domain with field of constants C. Since Quot(R̄) ⊂ C((T )), we obtain that
its field of constants is equal to C. Thus, the differential monomorphism extends to an
injective differential homomorphism

τ : C(z)→ C((T )),
f

g
7→
∑

k∈N ∂
(k)(f)(Pc)T k∑

k∈N ∂
(k)(g)(Pc)T k

.

Now we extend τ to the differential ring Ū := C[z][Xij ,det(Xij)
−1]. One obtains recur-

sively all higher derivations

∂k(Xij) = Ak(Xij), k ∈ N \ {0}

of (Xij) where A1 = A. Since A ∈ C[z]n×n, it follows that Ak ∈ C[z]n×n for all k ∈ N\{0}.
Hence the differential structure on Ū is well defined. We choose for Xij the initial values
(Xij)(Pc) = D̄ ∈ GLn(C) and obtain values

∂(k)(Xij)(Pc) ∈ Cn×n.

This leads to an extension

τ : C[z][Xij , det(Xij)
−1]→ C[[T ]], Xij 7→

∑
k∈N

∂(k)(Xij)(Pc)T k.

Since the ring Ū = C[z][Xij , det(Xij)
−1] is generated by Xij over C[z], we have that the

image Ū of Ū under τ is generated by τ(Xij) over R̄. We are going to show that

Ē := τ(C(z))[τ(Xij),det(τ(Xij))
−1]

is a ∂T -simple differential ring. By construction τ(Xij) is a fundamental solution matrix
for the differential module Mτ over F̄ := τ(C(z)) with differential structure defined by
∂(y) = τ(A)y. Since Ē ⊂ C((T )), the ring Ē is an integral domain. Further, its field
of fractions Quot(Ē) has C as its field of constants since Quot(Ē) ⊂ C((T )). By [Dyc08,
Corollary 2.7], Ē is a simple differential ring. Thus, Ū is a R̄-simple differential ring.
Hence, the kernel Ī of τ defines a maximal differential ideal with Ī ∩ C[z] = (0).

Let Ẽ/F̃ be a field extension. We call an element h ∈ Ẽ transcendental over F̃ if there
exists no polynomial f(x) ∈ F̃ [x] such that f(h) = 0. Further, suppose Ẽ/F̃ is a differen-
tial field extension. Then we call an element h ∈ Ẽ differentially transcendental over F̃ ,
if there exists no differential polynomial f(y) ∈ F̃{y} such that f(h) = 0.
We want to repeat the above discussion for the differential ring R, i.e., we look for an in-
jective embedding of R in a ring of power series. Since the extension R/C is differentially
transcendental, we need a field of power series containing differentially transcendental el-
ements over its ground field. Therefore, we will define power series with coefficients which
are transcendental over C.

Lemma 2.7. Let C(βi) be a rational function field in the infinitely many transcendentals
βi (i ∈ N) over C. Then f :=

∑∞
i=0

1
i!βiT

i is differentially transcendental over C(βi)[T ].

Proof. The proof will be done in three steps.
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33 2.3 Formal Taylor series

1. In the first step we are going to compute the shape of a certain coefficient ci of the
power series

m∏
l=0

(∂
(l)
T (f))dl =

∞∑
i=0

ciT
i.

First we look at an arbitrary power of f . In the second step we handle a power of a
derivative ∂(l)(f) and then we consider the whole product.
For d ∈ N, we denote the coefficients of fd by ci, i.e., let fd =

∑∞
i=0 ciT

i. Further, let

k := (k1, ..., kd) ∈ Nd such that ki 6= kj for i 6= j and define the index ik :=
∑d

j=1 kj .
Then from

fd = (

∞∑
i=0

1

i!
βiT

i) · ... · (
∞∑
i=0

1

i!
βiT

i) =

∞∑
i=0

ciT
i

we see that the coefficient cik has shape

cik = d! · 1

k1!
· ... · 1

kd!
· βk1 · ... · βkd + r,

where r ∈ Q[β0, ..., βik ] and no monomial appearing in r is equal to a nonzero
multiply of βk1 · ... · βkd .
For l ∈ N, denote by

fl := ∂
(l)
T (f) =

∞∑
i=0

1

i!
βi+lT

i

the l-th derivative of f . As above take d ∈ N and k = (k1, ..., kd) ∈ Nd such that
ki 6= kj for i 6= j and ki � l. For ik :=

∑d
j=1 kj − d · l, we obtain by shifting the

indices that the coefficient cik of the d-th power of fl reads as

cik = d! · 1

(k1 − l)!
· ... · 1

(kd − l)!
· βk1 · ... · βkd + r,

where r ∈ Q[βl, ..., βik+d·l] and r does not contain the monomial q · βk1 · ... · βkd for
any q ∈ Q.
Now we consider the product

∏m
l=0 f

dl
l , where dl ∈ N, and denote its coefficients by

ci. We take k = (k1, ..., kd̄) ∈ Nd̄ such that ki 6= kj for i 6= j and ki � m. We define

the integers d̄ =
∑m

l=0 dl and ik =
∑d̄

j=1 kj −
∑m

l=0 dl · l. Further, let

K0 ∪ K1 ∪ ... ∪ Km = {1, ..., d̄}

be a partition of {1, ..., d̄}, where for 0 ≤ l ≤ m the sets Kl satisfy card(Kl) = dl.
We claim that the coefficient cik is

cik =
( m∏
l=0

dl!
)
·
( ∑
K0∪...∪Km
card(Kl)=dl

( ∏
j∈K0

1

(kj)!

)
· ... ·

( ∏
j∈Km

1

(kj −m)!

))
· βk1 · ... · βkd̄ + r,

with r ∈ Q[βl, ..., βik+
∑
dl·l] and no monomial of r is equal to a non-zero multiply of

βk1 · ... · βkd̄ .
The proof is done by induction on m. Let m = 1. The coefficients ci calculate as
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34 2 Bounds for the differential Galois group

ci =
∑

µ+ν=i aµ · bν , where ai denotes the coefficients of fd0 and bi the coefficients

of fd1
1 . Thus we have to consider the indices of the products aµ · bν , which contain

the monomial βk1 · ... · βkd̄ .With the above results we deduce that for each partition
K0 ∪ K1 of {1, ..., d̄} the product aiK0

· biK1
contains the monomial βk1 · ... · βkd̄ ,

where card(Kl) = dl for 0 ≤ l ≤ 1. Note that the index iKl is defined as iKl =∑
j∈Kl kj − l · dl. Thus, we obtain

cik =
∑

iK0
+iK1

=ik

aiK0
biK1

= d0!·d1!
( ∑

K0∪K1
card(Kl)=dl

∏
j∈K0

1

kj !
·
∏
j∈K1

1

(kj − 1)!

)
·βk1 ·...·βkd̄+r.

Letm > 1. We denote now by ai the coefficients of
∏m−1
l=0 fdll and by bi the coefficients

of fdmm . Motivated by the same ideas as above, we take a partition K0 ∪ ... ∪ Km =
{1, ..., d̄} such that card(Kl) = dl for 0 ≤ l ≤ m. Thus, if we apply the induction
assumption to all aiK′ , where K′ = K0 ∪ ... ∪ Km−1, we obtain

cik =
∑

iKm+iK′=ik

biKm · aiK′ =
∑

iKm+iK′=ik

(
dm!

∏
j∈Km

1

(kj −m)!
· βkj + r

)
·

(m−1∏
l=0

dl!
)
·
( ∑
K0∪...∪Km−1

card(Kl)=dl

m−1∏
l=0

( ∏
j∈Kl

1

(kj − l)!

))
· βkj + r.

2. Let g(y) =
∑w

j=1 gj · yd0,j · (y′)d1,j · ... · (y(m))dm,j ∈ C[βi][T ]{y} be a differential

polynomial with d̄ =
∑m

l=0 dl,j for all 1 ≤ j ≤ w, satisfying

g(f) =
w∑
j=1

gj(
∑ 1

i!
βiT

i)d0,j ·(
∑ 1

i!
βi+1T

i)d1,j ·...·(
∑ 1

i!
βi+mT

i)dm,j =
∑

ciT
i = 0.

We write the coefficients of g(y) as gj =
∑pj

h=0 gj,hT
h ∈ C[β0, ..., βi′ ][T ] with pj ∈ N.

We are going to show that not all coefficients ci can vanish. In particular, we show
that there exists a term of some coefficient which is a non-zero multiply of βk1 ·...·βkd̄
for an appropriate k = (k1, ..., kd̄) ∈ Nd̄.
For 1 ≤ j ≤ w and k ∈ Nd̄ with ki 6= kj for i 6= j and ki � m, we define the sum

qj(k) =
( m∏
l=0

dl!
)
·
( ∑
K0∪...∪Km
card(Kl)=dl

m∏
l=0

( ∏
j∈Kl

1

(ki − l)!

))

and the polynomials in Q[k1, ..., kd̄]

q′j(k) = qj(k) ·
d̄∏
i=1

ki! =
( m∏
l=0

dl!
)
·
( ∑
K0∪...∪Km
card(Kl)=dl

m∏
l=1

( ∏
j∈Kl

( l∏
n=1

(kj − l + n)
)))

where the sum is over all partitions K0 ∪ ... ∪ Km = {1, ..., d̄} with Kl satisfying
card(Kl) = dl for 0 ≤ l ≤ m. For each monomial

∏m
l=0(y(l))dl,j and k ∈ Nd̄ as above,
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35 2.3 Formal Taylor series

we consider the coefficient c
(j)

îj
with index

îj :=

d̄∑
j=1

kj −
m∑
l=0

dl,j · l

of the power series
∏m
l=0(y(l))dl,j =

∑
i c

(j)
i T i. Since these coefficients are shifted by

the polynomials gj(T ), we collect all indices îj of the coefficients c
(j)

îj
, which appear

in cîj+p1
, in the set

I := { îj | î1 + p1 = îj + h′j , 0 ≤ h′j ≤ pj , gj,h′j 6= 0 }.

We define the set of indices of all relevant monomials as J := { j | îj ∈ I }. Then

the set J stays equal for each choice of k ∈ Nd̄ with ki 6= kj for i 6= j and ki � m.

Since for all such k ∈ Nd̄ the coefficient cîj+p1
has to vanish, we obtain the equations∑

j∈J
gj,h′j · qj(k) · βk1 · ... · βkd̄ = 0⇔

∑
j∈J

gj,h′j · qj(k) = 0. (2.1)

After a multiplication with
∏d̄
i=1 ki! we can consider the equations in (2.1) as a

single polynomial p(k) :=
∑

j∈J gj,h′j · q
′
j(k) ∈ C[β0, ..., βi′ ][k1, ..., kd̄]. Since for

j, j′ ∈ J with j 6= j′ the leading monomials in q′j and q′j′ have different degrees in
the indeterminates k1, ..., kd̄, the polynomial p(k) is not the zero polynomial. We
consider

p(k) = p(k2, ..., kd̄)(k1) = (
∑
j∈J

gj,h′j · q
′
j(k2, ..., kd̄))(k1)

as an element of the polynomial ring C[β0, ..., βi′ ][k2, ..., kd̄][k1] over the integral
domain C[β0, ..., βi′ ][k2, ..., kd̄]. Since the nonzero polynomial p(k2, ..., kd̄)(k1) has
finitely many zeros in C[β0, ..., βi′ ][k2, ..., kd̄], we can choose k̄1 ∈ N with k̄1 � m
such that p(k̄1, k2, ..., kd̄) 6= 0.
Hence, by induction we obtain that there exists k̄1, ..., k̄d̄ ∈ N with k̄i � m and
k̄i 6= k̄j for i 6= j such that p(k̄1, ..., k̄d̄) 6= 0. Thus, f can not satisfy g(f) = 0.

3. Now let g(y) =
∑w

j=1 gj · yd0,j · (y′)d1,j · .. · (y(m))dm,j ∈ C[βi][T ]{y} be an arbitrary

differential polynomial satisfying g(f) = 0. Denote by d̄ = maxj{
∑m

l=0 dl,j }.
Since for all monomials with

∑m
l=0 dl,j < d̄ the coefficients of the resulting power

series are polynomials in the βi of degree lower than d̄, it is sufficient to consider
coefficients with index high enough of the resulting power series of the monomials
with

∑m
l=0 dl,j = d̄. Then the assumption follows from the above.

Corollary 2.8. Let C(βij) be a rational function field in the infinitely many transcenden-
tals βij where 1 ≤ i ≤ l and j ∈ N. Then fi :=

∑
j∈N

1
j!βijT

j is differentially transcenden-
tal over C(βij)[f1, ..., fi−1, fi+1, ..., fl].
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36 2 Bounds for the differential Galois group

Proof. First we define I := {1, 2, ..., l}. Let i′ ∈ I and suppose that fi′ is differentially
algebraically dependent over Fi′ := C(βij)[f1, ..., fi′−1, fi′+1, ..., fl], i.e., there exists a dif-
ferential polynomial h(y) ∈ Fi′{y} such that h(fi′) = 0. The coefficients of h(y) are power
series with infinitely many coefficients in C[β1j , ..., βi′−1,j , βi′+1,j , ..., βlj ] and finitely many
in C(βij). We define a specialization ϕ : C(βij)→ C(βi′j) by

βi′j → βi′j for j ∈ N,
βij → cij for i ∈ I \ {i′} and j ∈ N

where we choose finitely many cij ∈ C× and all other cij as zero such that ϕ(h(y)) =
ϕ(h)(y) has no pole and does not disappear. We obtain

ϕ(h(fi′)) = ϕ(h)(fi′) = 0.

We get a contradiction to Lemma 2.7 since ϕ(h)(y) ∈ C(βi′j)[T ]{y} is a nonzero differential
polynomial which vanishes at fi′ .

Lemma 2.9. Let F̂β := C(βij)〈t1, ...tl〉 be a differential field in the differential indetermi-
nates ti with field of constants C(βij) where βij with 1 ≤ i ≤ l, j ∈ N are transcendental
over C. Moreover let the matrix A of ∂(y) = Ay satisfy A ∈ C{t1, ..., tl}n×n. Then there
exists a valuation ring Ôβ ⊃ C(βij){t1, ..., tl} for F̂β with valuation ideal P̂β such that the
injective differential homomorphism

τ̂ : C(βij){t1, ..., tl} → C(βij)[[T ]], f 7−→
∑
k∈N

∂(k)(f)(P̂β)T k

extends to a differential homomorphism

τ̂ : C(βij){t1, ..., tl}[Xij ,det(Xij)
−1] → C(βij)[[T ]], Xij 7−→

∑
k∈N

∂(k)(Xij)(P̂β)T k,

where we can choose arbitrary initial values (Xij)(P̂β) = D ∈ GLn(C(βij)), and the kernel

Î of τ̂ defines a maximal differential ideal with Î ∩ C(βij){t1, ..., tl} = (0).

Proof. Let R̂β := C(βij){t1, ..., tl} = C(βij)[t10, t11, ..., tl0, tl1...] be the polynomial ring in

the infinitely many transcendental elements tij := t
(j)
i . We define linear polynomials

pij = tij − βij

and the ideal

P̂ = 〈 pij | 1 ≤ i ≤ l, j ∈ N 〉R̂β ⊂ R̂β.

Since R̂β/P̂ is an integral domain, we have that P̂ is a prime ideal. Then by [Eis95,

Exercise 11.2], there exists a valuation ring Ôβ ⊃ R̂β with valuation ideal P̂β such that

P̂β ∩ R̂β = P̂. Denote by π the residue map

π : Ôβ → Ôβ/P̂β = C(βij).
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37 2.3 Formal Taylor series

From the image of π(pij) = pij = tij − βij = 0̄ we see that tij = βij . Thus the image
of f ∈ Ôβ \ P̂β is the evaluation at β = (β10, β11, ..., βl0, βl1, ...). We denote the image of

f ∈ R̂β ⊂ Ôβ under the residue map by f(P̂β) ∈ C(βij). We define the Taylor map

τ̂ : R̂β → C(βij)[[T ]], f 7−→
∑
k∈N

∂
(k)
Rβ

(f)(P̂β)T k.

The same calculation as in Lemma 2.6 shows that τ̂ is a differential homomorphism. By
Corollary 2.8 the differential ring extension

C(βij){
∞∑
j=0

1

j!
β1jT

j , ...,

∞∑
j=0

1

j!
βljT

j }/C(βij)

is a differential transcendental extension. Hence, τ̂ defines a differential monomorphism.
The image R̂β := τ̂(R̂β) ⊂ C(βij)[[T ]] is an integral domain with field of constants equal to

C(βij). Since the field of fractions Quot(R̂β) is contained in C(βij)((T )), it has also C(βij)

as its field of constants. We extend τ̂ to the differential ring Ûβ := R̂β[Xij , det(Xij)
−1].

One computes recursively all higher derivations

∂k(Xij) = Ak(Xij), k ∈ N

of (Xij) where A1 = A. The fact that A ∈ R̂n×nβ yields that Ak ∈ R̂n×nβ for all k ∈ N.

Thus, the differential structure on Ûβ is well defined. We choose for Xij the initial values

(Xij)(P̂β) = D ∈ GLn(C(βij)) and obtain therefore values

∂(k)(Xij)(P̂β) ∈ C(βij).

Thus we have an extension

τ̂ : R̂β[Xij ,det(Xij)
−1]→ C(βij)[[T ]], Xij 7−→

∑
k∈N

∂(k)(Xij)(P̂β)T k.

Since the ring Ûβ = R̂β[Xij ,det(Xij)
−1] is generated by Xij over R̂β, we have that the

image Ûβ of Ûβ under τ̂ is generated by τ̂(Xij) over R̂β. We are going to show that

Êβ := Quot(R̂β)[τ̂(Xij),det(τ̂(Xij))
−1]

is a ∂T -simple differential ring. By construction τ̂(Xij) is a fundamental solution matrix
for the differential module Mτ̂ over F̂β := Quot(R̂β) with differential structure defined by

∂(y) = τ(A)y. Since Êβ ⊂ C(βij)((T )), we obtain that the ring Êβ is an integral domain.

The fact Quot(Êβ) ⊂ C(βij)((T )) yields that the field of constants of the field of fractions

of Êβ is also C(βij). Then by [Dyc08, Corollary 2.7], Êβ is a simple differential ring. Thus

Ûβ is a R̂β-simple differential ring. Hence, the kernel Î of τ̂ defines a maximal differential

ideal with Î ∩ R̂β = (0).

Corollary 2.10. Let Fβ := C[βij ]〈t1, ...tl〉 be a differential ring in the differential inde-
terminates ti with ring of constants C[βij ] and let the matrix A of ∂(y) = Ay satisfy
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38 2 Bounds for the differential Galois group

A ∈ C{t1, ..., tl}n×n. Then there exists a valuation ring Oβ ⊃ C[βij ]{t1, ..., tl} for Fβ with
valuation ideal Pβ such that the injective differential homomorphism

τ : C[βij ]{t1, ..., tl} → C[βij ][[T ]], f 7−→
∑
k∈N

∂(k)(f)(Pβ)T k

extends to a differential homomorphism

τ : C[βij ]{t1, ..., tl}[Xij , det(Xij)
−1] → C[βij ][[T ]], Xij 7−→

∑
k∈N

∂(k)(Xij)(Pβ)T k,

where we can choose arbitrary initial values (Xij)(Pβ) = D ∈ GLn(C[βij ]), and the kernel
I of τ defines a maximal differential ideal with I ∩ C[βij ]{t1, ..., tl} = (0).

Proof. We repeat the construction in Lemma 2.9 for the differential field C(βij)〈t〉 and the
initial values (Xij)(Pβ) = D ∈ GLn(C[βij ]). Thus, we obtain a differential homomorphism

τ̌ : C(βij){t}[Xij ,det(Xij)
−1]→ C(βij)[[T ]], f 7−→

∑
k∈N

∂(k)(f)(Pβ)T k,

where the kernel Ǐ defines a maximal differential ideal with Ǐ ∩C(βij){t} = (0). It is easy
to see that the restriction of τ̌ to C[βij ]{t}[Xij ,det(Xij)

−1]

τ : C[βij ]{t}[Xij ,det(Xij)
−1]→ C[βij ][[T ]], f 7−→

∑
k∈N

∂(k)(f)(Pβ)T k

is well defined by the choice of (Xij)(Pβ) = D. Then the kernel I := kern(τ) of τ satisfies

I = Ǐ ∩ C[βij ]{t}[Xij ,det(Xij)
−1]

and therefore defines a maximal differential ideal with I ∩ C[βij ]{t} = (0).

Lemma 2.11. We keep the situation and notations as in Corollary 2.10. Then there exists
a matrix of initial values (Xij)(Pβ) = D ∈ GLn(C[βij ]) such that the injective differential
homomorphism

τ̃ : C{t1, ..., tl} → C[βij ][[T ]], f 7−→
∑
k∈N

∂(k)(f)(Pβ)T k

extends to a differential homomorphism

τ̃ : C{t1, ..., tl}[Xij ,det(Xij)
−1] → C[βij ][[T ]], Xij 7−→

∑
k∈N

∂(k)(Xij)(Pβ)T k,

and the kernel Î defines a maximal differential ideal with Î ∩ C{t} = (0). Further, Ũ :=
im(τ̃) is a Picard-Vessiot ring with field of constants C.

Proof. We apply Corollary 2.10 with initial values (Xij)(P̃β) = 1n, obtaining the map

τ : C[βij ]{t1, ..., tl}[Xij , det(Xij)
−1] → C[βij ][[T ]], f 7−→

∑
k∈N

∂(k)(f)(Pβ)T k.
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39 2.3 Formal Taylor series

This implies the first part of the diagram

C[βij ]{t}[Xij ,det(Xij)
−1]

τ

,,
π1

��
C[βij ]{t}[Xij ,det(Xij)

−1]/I
isom
ι1

// im(τ) ⊂ C[βij ][[T ]]

(C{t}[Xij , det(Xij)
−1]⊗C C[βij ])/(Î ⊗C C[βij ])

isom ι2

OO

C{t}[Xij , det(Xij)
−1]

τ̃

OO

π2oo

where I = kern(τ) with I ∩ C[βij ]{t} = (0) and C[βij ]{t}[Xij ,det(Xij)
−1]/I is a Picard-

Vessiot ring for ∂(y) = A(t)y over C[βij ]{t}. Now the kernel I ′ of the restriction

τ ′ : C{t}[Xij , det(Xij)
−1]→ im(τ) ⊂ C[βij ][[T ]]

is a differential ideal of C{t}[Xij ,det(Xij)
−1] with I ′ ∩C{t} = (0). We choose a maximal

differential ideal Î ⊇ I ′ with Î ∩ C{t} = (0). Then the ring C{t}[Xij , det(Xij)
−1]/Î is

a Picard-Vessiot ring for the equation ∂(y) = A(t)y over C{t}. Further, by [Mau10,
Lemma 10.7], the differential ideal Î ⊗C C[βij ] ⊂ C{t}[Xij ,det(Xij)

−1] ⊗C C[βij ] is a
maximal differential ideal with (Î ⊗C C[βij ]) ∩ (C{t} ⊗C C[βij ]) = (0). Thus, the ring

C{t}[Xij ,det(Xij)
−1]⊗C C[βij ]/(Î ⊗C C[βij ])

is a Picard-Vessiot ring for ∂(y) = A(t)y over C{t} ⊗C C[βij ]. As in [PS03, Proposition
1.20.2], one proves that two Picard-Vessiot rings for the same equation over a differential
ring with constants C[βij ] are differentially isomorphic. More precisely, in the notations of
[PS03, Proposition 1.20.2], let B1 and B2 be the fundamental matrices of Picard-Vessiot
rings R̄1 and R̄2 with constants C[βij ] and denote by Ri ≥ R̄i (i = 1, 2) the Picard-Vessiot

rings obtained from extending the constants of R̄i to the algebraically closed field C(βij).
If we imitate the proof we obtain from

φ1(B1) = φ2(B2) ·M

that the rings R1 and R2 are differentially isomorphic, where M ∈ GLn(C(βij)) and
φi : Ri → (R1 ⊗ R2)/J denotes the differential ring morphism as in [PS03, Proposition
1.20.2]. Since φi : Ri → φi(Ri) is a differential ring isomorphism and φi(Bi) ∈ GLn(φi(R̄i))
(i = 1, 2), we have

M = φ2(B2)−1 · φ1(B1) ∈ GLn(C[βij ]).

Thus, the rings R̄1 and R̄2 become differentially isomorphic by M ∈ GLn(C[βij ]). We
continue with the proof of the lemma.
Hence, we obtain an (C{t} ⊗C C[βij ])-differential isomorphism

ι2 : C{t}[Xij , det(Xij)
−1]⊗C C[βij ]/(Î ⊗C C[βij ])

isom−→ C[βij ]{t}[Xij ,det(Xij)
−1]/I.

Moreover, the Picard-Vessiot ring C{t}[Xij , det(Xij)
−1]/Î ∼= (C{t}[Xij ,det(Xij)

−1] ⊗C
1)/(Î ⊗ 1) lies inside C{t}[Xij , det(Xij)

−1]⊗C C[βij ]/(Î ⊗C C[βij ]). Thus,

ι1 ◦ ι2(C{t}[Xij , det(Xij)
−1]/Î) ⊂ im(τ)
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40 2 Bounds for the differential Galois group

is isomorphic to the Picard-Vessiot ring C{t}[Xij ,det(Xij)
−1]/Î and has C as its field of

constants. Denote by Y1 a fundamental solution matrix of C[βij ]{t}[Xij , det(Xij)
−1]/I.

The isomorphism ι2 maps a fundamental solution matrix Y2 of

C{t}[Xij ,det(Xij)
−1]⊗ C[βij ]/Î ⊗ C[βij ]

to a fundamental solution matrix ι2(Y2) = Y1 · D of C[βij ]{t}[Xij ,det(Xij)
−1]/I with

D ∈ GLn(C[βij ]). The C[βij ]-isomorphism ι1 is defined by

ι1 : ti 7−→
∑
j

1

j!
βijT

j and ι1 : Xij + I 7−→
∑
k

∂(k)(Xij)(P̃β)T k.

Thus, we obtain a C[βij ]-differential isomorphism ϕ := ι1 ◦ ι2 defined by

ϕ : ti 7−→
∑
j

1

j!
βijT

j and ϕ : Xij + Î 7−→
∑
k

∂(k)(

n∑
m=1

Dmj ·Xim)(P̃β)T k.

This defines the differential homomorphism

τ̃ : C{t1, ..., tl}[Xij , det(Xij)
−1] → C[βij ][[T ]], Xij 7−→

∑
k∈N

∂(k)(Xij)(Pβ)T k

with initial values (Xij)(Pβ) = D ∈ GLn(C[βij ]) in the Picard-Vessiot ring Ũ := im(τ̃).

2.4 The specialization bound

If not otherwise stated, the notation is as in the preceding sections.

Proposition 2.12. Let ∂(y) = A(t1, ..., tl)y be a matrix differential equation over the
differential field F = C〈t1, ..., tl〉 with A ∈ C{t1, ..., tl}n×n, and let

σ : R→ C[z], t 7→ f = (f1, ..., fl)

be a specialization of R = C{t1, ..., tl} such that C{f1, ..., fl} = C[z]. One applies Lemma
2.11 and Lemma 2.6 to the matrix equations ∂(y) = A(t)y and ∂(y) = σ(A(t))y =
A(f)y respectively, where the initial values for the Taylor extension of ∂(y) = A(t)y are
(Xij)(Pβ) = D ∈ GLn(C[βij ]) and keeps their notations. Then there exists a surjective
differential homomorphism σ̂ and initial values (Xij)(Pc) = D̄ ∈ GLn(C) such that the
following diagram commutes

C{t}[Xij , det(Xij)
−1]

τ̃����

σ // // C[z][Xij ,det(Xij)
−1]

τ̄
����

Ũ σ̂ // // Ū

Proof. The conditions on σ imply that σ is a surjective differential homomorphism. We
extend σ to βij by

σ : βij 7→ cij ,
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41 2.4 The specialization bound

where we choose cij ∈ C such that

σ(tij − βij) = ∂j(fi)− cij ∈ 〈z − c〉C[z].

This is possible since for every polynomial f(z) ∈ C[z], the polynomial f(z) − f(c) ob-
viously has a zero at c. In the case when f(z) = c̃ is a constant, we obtain the zero
polynomial by f(z) − c̃. Further, we set the initial values for the Taylor extension of
∂(y) = σ(A(t))y to (Xij)(Pc) := D̄ = σ(D) ∈ GLn(C). Thus we have that σ(Pβ) = Pc.
We define the map

σ̂ : Ũ → Ū ,
∑
k∈N

∂(k)(f)(Pβ)T k 7→
∑
k∈N

∂(k)(σ(f))(σ(Pβ))T k.

We are going to show that σ̂ is well defined. Let g̃ :=
∑

k ∂
(k)(g)(Pβ)T k and f̃ :=∑

k ∂
(k)(f)(Pβ)T k be elements of Ũ . Then we have g̃ = f̃ if and only if ∂(k)(g)(Pβ) =

∂(k)(f)(Pβ) for all k ∈ N. Let g, f ∈ C{t}[Xij , det(Xij)
−1] such that g̃ = f̃ . Since

σ(Pβ) = Pc we obtain from the fundamental theorem of homomorphisms that there exists
a unique homomorphism θ such that the diagram

C[βij ]{t}[Xij , det(Xij)
−1]

π1
����

σ // // C[z][Xij ,det(Xij)
−1]

π2
����

C[βij ]{t}[Xij , det(Xij)
−1]/Pβ

θ // // C[z][Xij ,det(Xij)
−1]/Pc

commutes. This yields ∂(k)(σ(g))(Pc) = ∂(k)(σ(f))(Pc) for all k ∈ N. Thus we get

σ̂(
∑
k

∂(k)(g)(Pβ)T k) =
∑
k

∂(k)(σ(g))(Pc)T k

=
∑
k

∂(k)(σ(f))(Pc)T k = σ̂(
∑
k

∂(k)(f)(Pβ)T k).

Hence, σ̂ is well defined.
Since σ̂ is induced by the differential homomorphism τ̄◦σ and is well defined, we obtain that
σ̂ is a differential homomorphism. Then by the definition of σ̂ the diagram commutes.

Note that the condition C{f1, ..., fl} = C[z] in Proposition 2.12 was made to exclude the
trivial case. As a direct consequence we obtain

Corollary 2.13. There exist maximal differential ideals I ⊂ C{t1, ..., tl}[Xij ,det(Xij)
−1]

and Ī ⊂ C[z][Xij ,det(Xij)
−1] such that I ∩ C{t1, ..., tl} = (0), Ī ∩ C[z] = (0) and such

that the specialized ideal σ(I) satisfies

σ(I) ⊂ Ī .

In particular, it holds that σ(I) ∩ C[z] = (0).

Now we are ready to prove the specialization bound.
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42 2 Bounds for the differential Galois group

Theorem 2.14. Let C be an algebraically closed field of characteristic zero and F =
C〈t1, ..., tl〉 the differential field in the l differential indeterminates t = (t1, ..., tl). Let
∂(y) = A(t)y be a matrix differential equation with A ∈ C{t}n×n. Moreover, let

σ : t 7→ f = (f1, ..., fl)

be a specialization in the integral differential ring R̄ = C[z], and suppose that C{f} = R̄.
Then the differential Galois group H(C) of the specialized equation ∂(y) = A(σ(t))y over
F̄ = C(z) is a subgroup of the differential Galois group G(C) of the original equation
∂(y) = A(t)y over F .

Proof. Let R = C{t1, ..., tl}. Since A(t) ∈ Rn×n, we can define a differential structure on
R[Xij ,det(Xij)

−1] by
∂((Xij)) = A(t)(Xij). (2.2)

Furthermore, let I be a maximal differential ideal of R[Xij ,det(Xij)
−1] with I ∩ R = (0)

as in Corollary 2.13 and denote by

S := R[Xij , det(Xij)
−1]/I

the differential ring extension S/R. We have an injection

S ↪→ F [Xij , det(Xij)
−1]/(I)

in a Picard-Vessiot ring for ∂(y) = A(t)y. Let Zij be the images of Xij in S, i.e., the
matrix

(Zij) ∈ GLn(S)

is a fundamental solution matrix for ∂(y) = A(t)y. We define new variables Yij via the
relation

(Xij) = (Zij)(Yij). (2.3)

We get the inclusion of rings

R[Xij ,det(Xij)
−1] ⊂ S[Xij ,det(Xij)

−1] = S[Yij , det(Yij)
−1]

and
C[Yij ,det(Yij)

−1] ⊂ S[Yij ,det(Yij)
−1].

The differentiations on R[Xij , det(Xij)
−1] and S[Xij ,det(Xij)

−1] are given by the differ-
entiation on S and by equation (2.2). Since the matrix (Zij) ∈ GLn(S) is a fundamental
solution matrix, it follows from the computation of

A(Xij) = ∂((Xij)) = ∂((Zij))(Yij) + (Zij)∂((Yij)) = A(Zij)(Yij) + (Zij)∂((Yij))

that ∂(Yij) = 0. Thus, the derivation on C[Yij ,det(Yij)
−1] is trivial and is defined on

S[Yij , det(Yij)
−1] by the derivation on S. The Galois action of Gal∂(S/R) on the above

rings is induced by the action on S. Therefore, Gal∂(S/R) acts trivial onR[Xij ,det(Xij)
−1].

Since (Zij) is a fundamental solution matrix, we get for γ ∈ Gal∂(S/R) the representive

M ∈ G(C) < GLn(C) via γ((Zij)) = (Zij)M.
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43 2.4 The specialization bound

Hence, the action of γ ∈ Gal(S/R) on Yij is represented by γ((Yij)) = M−1(Yij). Further-
more, Lemma 2.5 induces a bijection between the differential ideals of R[Xij ,det(Xij)

−1]
satisfying Condition 2.3 and the ideals of S[Xij ,det(Xij)

−1] which are differential and
Gal∂(S/R)-invariant ideals and satisfy Condition 2.3. Now Lemma 2.4 yields a bijec-
tion between these ideals and the Gal∂(S/R)-invariant ideals of C[Yij ,det(Yij)

−1], i.e.,
we consider the composition of maps δ−1 ◦ ι where the notation is as in Lemma 2.4 and
Lemma 2.5.

R[Xij , det(Xij)
−1] S[Xij ,det(Xij)

−1] = S[Yij ,det(Yij)
−1] C[Yij , det(Yij)

−1]

⊂ ⊂ ⊂ ⊂

I � ι // (I) = Ĩ � δ−1
// QI

Thus, the maximal differential ideal I corresponds to a maximal Gal∂(S/R)-invariant ideal

QI := Ĩ ∩ C[Yij , det(Yij)
−1],

where Ĩ := (I) is the ideal in S[Yij , det(Yij)
−1], and (I) is the ideal generated by I over

S[Xij ,det(Xij)
−1]. Then QI is a radical ideal. Its zero set W is minimal with respect

to Gal∂(S/R)-invariance. Hence, W is a left coset in GLn(C) for the differential Galois
group G(C) < GLn(C). We will show that the matrix 1n belongs to W. From the fact
that the matrix (Zij) is a zero of I, we conclude that the ideal I lies in the ideal

J := 〈 Xij − Zij | 1 ≤ i, j ≤ n 〉 · S[Xij , det(Xij)
−1].

The ideal J is also generated by the set { Yij − δij }ij over S[Xij , det(Xij)
−1]. Hence, the

zero set of J ∩ C[Yij , det(Yij)
−1] is {1n}. Therefore, 1n ∈ W and so we have W = G(C).

By Corollary 2.13 the differential ideal I specializes to an ideal σ(I) ⊂ Ī which is contained
in the maximal differential ideal Ī of R̄[Xij ,det(Xij)

−1] with Ī ∩ R̄ = (0). Since σ is
a surjective differential homomorphism, σ(I) is a differential ideal of R̄[Xij ,det(Xij)

−1].
Further, σ(I) ⊂ σ(I)ex is a differential ideal of R̄[Xij , det(Xij)

−1] satisfying Condition 2.3.
Now one repeats the above argumentation in the case for the specialized equation, the
differential ideal Ī and the corresponding rings and fields.

R[Xij , det(Xij)
−1] S[Xij ,det(Xij)

−1] = S[Yij ,det(Yij)
−1] C[Yij , det(Yij)

−1]

⊂ ⊂ ⊂ ⊂

I � ι //

σ̂

��

(I) = Ĩ � δ−1
//

σ̌

��

QI

id

��
σ(I)ex

� ι // (σ(I)ex) = σ̃(I)ex
� δ−1

// Qσ(I)ex

⊂ ⊂ ⊂ ⊂

Ī � ι // (Ī) = ˜̄I � δ−1
// QĪ

⊂ ⊂ ⊂ ⊂

R̄[Xij , det(Xij)
−1] S̄[Xij ,det(Xij)

−1] = S̄[Yij ,det(Yij)
−1] C[Yij , det(Yij)

−1]
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44 2 Bounds for the differential Galois group

The ideals QĪ and Qσ(I)ex are defined as QĪ := ˜̄I ∩ C[Yij ,det(Yij)
−1] and Qσ(I)ex :=

˜σ(I)ex ∩ C[Yij ,det(Yij)
−1]. The zero set of the ideal QĪ is the differential Galois group

H(C) of ∂(y) = A(σ(t))y. Moreover, the inclusion Ī ⊃ σ(I)ex implies the inclusion
QĪ ⊃ Qσ(I)ex . We are going to show that QĪ ⊃ QI .
From Lemma 2.12 we obtain that we can extend σ to a surjective differential homomor-
phism

σ̌ : S[Xij ,det(Xij)
−1] = S[Yij , det(Yij)

−1] −→ S̄[Xij , det(Xij)
−1] = S̄[Yij ,det(Yij)

−1].

In particular, the specialization σ̌ is well defined for the relations

(Xij) = (Zij)(Yij) and (Yij) = (Zij)
−1(Xij).

Let f ∈ QI be one of the generators of QI , say

f =
∑
i

ci Y
i11

11 · ... · Y
inn
nn ,

where ci ∈ C and i = (i11, ..., inn) ∈ Nn·n. Then via the map δ, f is an element of

δ(f) = f ∈ Ĩ = (I) ⊂ S[Yij , det(Yij)
−1] = S[Xij , det(Xij)

−1].

Further, Lemma 2.5 implies that for suitable elements pk ∈ S[Xij ,det(Xij)
−1] and qk ∈

I ⊂ R[Xij ,det(Xij)
−1] we can write f as

f =
∑
k

pk · qk.

Then σ̌ maps f to

σ̌(f) =
∑
i

ciY
i11

11 · ... · Y
inn
nn =

∑
k

σ̌(pk) · σ̌(qk) ∈ (σ(I)ex) = σ̃(I)ex ⊂ (Ī) = ˜̄I.

Hence, we obtain f ∈ QĪ = ˜̄I ∩ C[Yij ,det(Yij)
−1]. We conclude that QĪ ⊃ QI , and

therefore we have H(C) ≤ G(C).

As a consequence of Theorem 2.14 we get the specialization bound in the language of
homogeneous linear differential equations.

Corollary 2.15. Let C be an algebraically closed field of characteristic zero and F = C 〈t〉
the differential field in the l differential indeterminates t = (t1, ..., tl). Let E be a Picard-
Vessiot extension over F for the differential equation

L(t1, ..., tl, y) = y(n) + a1(t)y(n−1) + ...+ an(t)y ∈ C {t, y}

and denote by G(C) its differential Galois group.
Let F̄ = C(z) be the rational function field and let f = (f1, ..., fl) ∈ C[z]l such that
C[z] = C{f1, ..., fl}. Moreover, let Ē be a Picard-Vessiot extension of F̄ = C(z) for the
specialized differential equation

L(f1, ..., fl, y) = y(n) + a1(f)y(n−1) + ...+ an(f)y ∈ C[z] {y}

and denote by H(C) its differential Galois group. Then H(C) ≤ G(C).

44



45 2.4 The specialization bound

Let G(C) be one of the classical groups with root system Φ and denote by l = rank(Φ) the
rank of Φ. Let t1, ..., tl be differential indeterminates over C. We are going to realize G(C)
as the differential Galois group for a parametrized differential equation L(t1, ..., tl, y) ∈
C {t1, ..., tl, y} over C 〈t1, ..., tl〉. We will proceed in the following way.
The construction that we provide is based on Corollary 2.15 and Proposition 2.1. But to
apply Corollary 2.15 we need a specialization L(f1, ..., fl, y) ∈ C[z] {y} over the differential
field F̄ = C(z) of the parametrized equation above. In [MS96] C. Mitschi and M.F.
Singer developed a method to construct matrix differential equations ∂(y) = AM&S

G y
over the rational function field C(z) which has a given connected reductive group as its
differential Galois group. Using the structure of the classical groups, we will show that
∂(y) = AM&S

G y leads to a specialization L(f1, ..., fl, y) ∈ C[z] {y} over C(z). We can now
apply Corollary 2.15. Since the differential equation L(t1, ..., tl, y) comes from a matrix
differential equation ∂(y) = AGy with AG ∈ Lie(G)(C 〈t1, ..., tl〉), we are able to complete
our approach by making use of Proposition 2.1.
In Section 3.4 the construction of a matrix differential equation ∂(y) = AM&S

G y with
differential Galois group G(C) over C(z) following the ideas of C. Mitschi and M.F. Singer
is presented.
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Chapter 3

Reductive linear groups

We start by resuming shortly some results on the structure of reductive linear algebraic
groups, their Lie algebras and abstract root systems. For an introduction to algebraic
groups, we refer to the standard literature, e.g. Humphreys [Hum98], Springer [Spr98]
and Borel [Bor91]. The basic facts about Lie algebras and root systems can be found
in [Hum72]. In Section 3.3, we present the method for the proofs of the transformation
lemma. Finally, we construct a matrix differential equation over C(z) for a connected
reductive group following the ideas of Mitschi and Singer, and prove in the subsequent
section that for every such a group there exists a parametric equation.

3.1 Abstract root systems

Let V be an euclidean space with positive definite symmetric bilinear form (·, ·). For every
non zero α ∈ V , one can define a reflection σα by the formula

σα(β) = β − 2(β, α)

(α, α)
α.

Denote by 〈β, α〉 the expression 2(β, α)/(α, α). Obviously, 〈β, α〉 is only linear in the first
variable. A finite subset Φ ⊂ V of a euclidean space V is called a root system in V , if Φ
satisfies

1. Φ spans V and does not contain 0.

2. If α ∈ Φ, then the only scalar multiples of α are ±α.

3. If α ∈ Φ, then the reflection σα leaves Φ invariant.

4. If α, β ∈ Φ, then 〈β, α〉 ∈ Z.

The rank of a root system Φ is defined as rank(Φ) = dim(V ). Let α, β ∈ Φ be non-
proportional roots (i.e., β 6= ±α). One calls all roots β + sα with s ∈ Z the α-string
through β. It can be shown that the α-string through β is unbroken and that there are
r, q ∈ Z+ such that the α-string through β goes from β − rα to β + qα. A subset ∆ ⊂ Φ
is called a basis, if ∆ is also a basis of V and each root β can be written as∑

α∈∆

kαα (3.1)
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48 3 Reductive linear groups

with kα ∈ Z all non-negative or non-positive. The elements of ∆ are called the simple
roots. Since ∆ is a basis of V , we have card(∆) = rank(Φ) and the expression in (3.1)
is unique. For a chosen basis ∆ = {α1, ..., αl}, we define the height ht of a root β =∑l

i=1 kiαi as ht(β) =
∑l

i=1 ki. If all ki ≥ 0 (resp. all ki ≤ 0), we call the root β positive
(resp. negative) and denote the set of all positive roots by Φ+ (resp. Φ−).

3.2 The structure of reductive linear algebraic groups and
their Lie algebras

Let G be a reductive linear algebraic group defined over C and fix an embedding G ↪→ GLn.
Denote by Lie(G) the Lie algebra of G. An important type of subgroup of a reductive
algebraic group G are the Borel subgroups, the maximal closed connected solvable
subgroups of G. Denoted by B ≤ G such a subgroup. Then all Borel subgroups are
conjugate, and the maximal tori of G are contained in the various Borel subgroups. If we
choose a Borel subgroup B containing a maximal torus T , then there is a unique Borel
subgroup B− such that B ∩B− = T . The group B− is called the opposite Borel subgroup
to B. The subgroup formed by all unipotent elements of B (resp. B−) will be denoted by
U (resp. U−).
After a suitable conjugation of G, one is able to choose these groups in GLn such that they
have a nice shape: Denote by T0 ≤ G the maximal diagonal torus, i.e., the group of all
diagonal matrices of G and by B0 the Borel subgroup with T0 ≤ B0 consisting of all upper
triangular matrices of G. For X ∈ G, let

int X : G → G; Y 7→ XYX−1

be the inner automorphism of G. The differential d(int X) will be denoted by Ad X, and
the induced action is called the adjoint action. In the case G ≤ GLn, the automorphism
Ad X of Lie(G) is just conjugation by X, i.e.,

Ad X(A) = XAX−1 (3.2)

for some A ∈ Lie(G). Let T0 ≤ G be the maximal diagonal torus of G, and let X (T0) be the
character group. Let T0 act on Lie(G) via the adjoint action. Then Lie(G) can be written
as the direct sum of weight spaces

Lie(G)α := Lα := {A ∈ Lie(G)|Ad T (A) = α(T )A for all T ∈ T0}

for α ∈ X (T0). The set of all non zero weights is called the root system Φ(T0,G) of G relative
to T0, and the elements are called the roots. More precisely, we have a decomposition

Lie(G) = Lie(G)T0 ⊕
⊕

α∈Φ(T ,G)

Lα, (3.3)

whereas we mean by Lie(G)T0 the fix point space, i.e., the space corresponding to the zero
weight. Since G is reductive and T0 is maximal, we have Lie(T0) = Lie(G)T0 . The spaces
Lie(G)α are called the root spaces and they are of dimension dim(Lie(G)α)) = 1. For
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49 3.2 The structure of reductive linear algebraic groups and their Lie algebras

α ∈ Φ, one defines Tα = (ker α)◦. The Tα are the singular tori of codimension 1 in T0.
Their centralizers Zα = CG(Tα) are reductive groups of semisimple rank 1 with Lie algebra

Lie(Zα) = Lie(T0)⊕ LieG)α ⊕ Lie(G)−α.

Then Lie(G)α is the Lie algebra of the unipotent part Uα of one of the Borel subgroups of
Lie(Zα). The groups Uα are the unique T0-stable subgroups of G with Lie algebra Lie(G)α
and are called the root subgroups of G. Later, we will make use of the root subgroups for
the proofs of the transformation lemma. In [Car72], Carter shows how the root subgroups
Uα of G can be constructed from the Lie algebra Lie(G).
A toral subalgebra H of Lie(G) is a subalgebra generated by semisimple elements of Lie(G).
Now fix a maximal toral subalgebra H. Then it can be shown that H is a abelian sub-
algebra. Hence, ad H consists of commuting semisimple endomorphisms of Lie(G) and is
therefore simultaneously diagonalizable. Thus, Lie(G) is the direct sum of subalgebras

Lie(G)α = {X ∈ Lie(G)| [H,X] := ad(H)(X) = α(H)X for all H ∈ H} ,

where α ∈ H∗ is an element of the dual space H∗. The nonzero α ∈ H∗ with Lie(G)α 6= 0
are called roots and form a root system Φ which is isomorphic to the root system presented
above. Thus, we have a decomposition

Lie(G) = CLie(G)(H)⊕
⊕
α∈Φ

Lie(G)α, (3.4)

called the Cartan Decomposition. It can be shown that the centralizer CLie(G)(H)
of H in Lie(G) equals H. Moreover, the decomposition (3.4) is isomorphic to the de-
composition (3.3), and if we choose H to consist only of diagonal matrices, then the
two decompositions coincide. Let X1, X2 ∈ Lie(G). One defines the Killing form κ by
κ(X1, X2) = trace(adX1adX2). Then κ is a symmetric bilinear form on Lie(G) which is
non degenerate if and only if Lie(G) is semisimple. Since the restriction of κ to H is also
non degenerated, we can identify H∗ with H. Let α ∈ H∗. Then there is a unique element
H̃α ∈ H such that α(H) = κ(H̃α, H) for all H ∈ H. One defines the so called co-root as

Hα = H̃α
2

κ(H̃α, H̃α)
.

We fix this notation for the co-roots Hα. For α ∈ Φ, we denote by Xα a basis element
of Lie(G)α. Then there exists a unique X−α ∈ Lie(G)−α such that [Xα, X−α] = Hα.
The elements Xα, X−α and Hα span a three dimensional simple subalgebra isomorphic to
Lie(SL2). Moreover, for a basis ∆ = {α1, ..., αl} of Φ, the set

{Hα | α ∈ ∆}

forms a basis of Lie(T0). If α, β ∈ Φ such that α+ β ∈ Φ, then

[Lie(G)α,Lie(G)β] = Lie(G)α+β.

For each root α ∈ Φ, it is possible to choose the basis elements Xα ∈ Lie(G)α such that

[Xα, X−α] = Hα, (3.5)

[Xα, Xβ] = ±(r + 1)Xα+β, (3.6)
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50 3 Reductive linear groups

where r is the smallest integer for which β− rα is a root of Φ (see [Car72, theorem 4.21]).
Then the set

{Xα, Hαi | α ∈ Φ, 1 ≤ i ≤ l},

where Xα satisfy (3.5) and (3.6) from above, is called a Chevalley basis of Lie(G).

Theorem 3.1. Let {Xα, Hi = Hαi | α ∈ Φ, 1 ≤ i ≤ l} be a Chevalley basis of Lie(G).
Then the resulting structure constants lie in Z. More precisely:

1. [Hi, Hj ] = 0, 1 ≤ i, j ≤ l,

2. [Hi, Xα] = 〈α, αi〉Xα, 1 ≤ i ≤ l, α ∈ Φ,

3. [Xα, X−α] = Hα is a Z-linear combination of H1, ...,Hl,

4. If α, β are independent roots, β − rα, ..., β + qα the α-string through β, then
[Xα, Xβ] = 0 if q = 0, while [Xα, Xβ] = ±(r + 1)Xα+β if α+ β ∈ Φ.

Let Xα ∈ Lie(G)(C) be an element of a Chevalley basis. Then δ := ad(Xα) is a nilpotent
derivation of Lie(G)(C). Say δk = 0 for k ∈ N\{0}. The image of δ under the exponential
map

exp(δ) = 1 + δ +
1

2!
δ2 +

1

3!
δ3 + ...+

1

(k − 1)!
δk−1

defines an automorphism of Lie(G)(C) by [Car72, Lemma 4.3.1]. Now let ζ ∈ C. Since the
same is also true for ζ · ad(Xα), we define the parametrized automorphism of Lie(G)(C)
by

Uα(ζ) = exp(ζ ad(Xα)).

From the formula

Uα(ζ1)Uα(ζ2) = exp(ζ1 ad(Xα)) exp(ζ2 ad(Xα)) = exp((ζ1 + ζ2)ad(Xα)) = Uα(ζ1 + ζ2)

we see that the inverse of Uα(ζ) is Uα(ζ)−1 = Uα(−ζ).
We summarize the effect of the automorphism Uα(ζ) on the elements of a Chevalley basis
in Lemma 3.2 presented below.

Lemma 3.2. Let {Xα, Hi = Hαi | α ∈ Φ, 1 ≤ i ≤ l} be a Chevalley basis and Uβ(ζ) an
as above defined parameterized automorphism of Lie(G(C)). Then

1. Uβ(ζ).Xβ = Xβ.

2. Uβ(ζ).X−β = X−β + ζHβ − ζ2Xβ.

3. Uβ(ζ).Hβ = Hβ − 2ζXβ.

4. Let β, α be linearly independent and α−rβ, ..., α+qβ the β-string through α. Define
mβ,α,0 = 0 and mβ,α,i = ±

(
r+i
i

)
. Then

Uβ(ζ).Xα =

q∑
i=0

mβ,α,iζ
iXiβ+α.
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51 3.3 Transforming differential modules

5. If β, α are linearly independent, then we have Uβ(ζ).Hα = Hα − 〈α, β〉 ζXβ.

The group generated by the Uα(ζ) is precisely the root subgroup Uα of G in the above
discussion. The whole construction of Uα(ζ) was done over the algebraically closed field
C of characteristic 0. But we want to apply these results to a non algebraically closed
differential field (F, ∂F ) with C as its field of constants. Carter shows in [Car72, Section
4.4] that the results are also valid over arbitrary fields. Furthermore, in Lemma 3.2 we
have written Uβ(ζ).X for the action of Uβ(ζ) on X ∈ Lie(G). Since all the elements of G
and Lie(G) are represented by matrices, we have

Uβ(ζ).X = Uβ(ζ)XUβ(−ζ) = Ad(Uβ(ζ))X.

3.3 Transforming differential modules

Let (F, ∂F ) be a differential field, and ∂(y) = Ay a matrix differential equation with
associated differential module M , and fundamental solution matrix Y . Suppose that Y
generates a Picard-Vessiot extension E over F . Then ∂(Y )Y −1 = A ∈ Fn×n. This
motivates the following definition:

Definition 3.3. We call the map

lδ : GLn(F )→ Fn×n, B 7→ ∂(B) ·B−1

the logarithmic derivative.

Observation 3.4. Let e1, ..., en be a basis of M . Then we can transform it to another
basis ẽ1, ..., ẽn of M . Let this transformation be given by the matrix B ∈ GLn(F ). The
effect on the defining matrix A is

BAB−1 + ∂F (B)B−1 =: Ã.

In particular, the matrices A and Ã are differentially equivalent (see Definition 1.4). Using
Definition 3.3 and equation (3.2), we can write BAB−1 + ∂F (B)B−1 as

Ã = Ad B(A) + lδ(B). (3.7)

Choose B as a parametrized root group element Uβ(ξ) for some β ∈ Φ and write A as a
linear combination of elements of a Chevalley basis. Then Lemma 3.2 explains in which
root spaces the image of A under Ad(Uβ)(ξ) lies. Thus, by a good grasp of the root system
and an educated choice of A, we can handle the first summand of the right hand side of
equation (3.7). The following proposition due to Kovacic in [Kov69] helps us to control
the second term.

Proposition 3.5. Let H ≤ GLn(F ) be a linear algebraic group. Then the restriction of
lδ to H

lδ|H : H → Lie(H)

maps H on its Lie algebra Lie(H).
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52 3 Reductive linear groups

Example 3.6. Let G = SL3 and F = C(z). The root system Φ is of type A2 (see
[Hum72, Section 1.2]) and as a basis of Φ we take ∆ = {α1, α2}. Then Φ consists of the
vectors Φ = {±α1,±α2,±(α1 + α2)}. The following matrices form a Chevalley basis of
Lie(SLl+1):

Hα1 = E11 − E22, Hα2 = E22 − E33, Xα1 = E12, Xα2 = E23,
Xα1+α2 = E13, X−α1 = E21, X−α2 = E32, Xα1+α2 = E31.

All of this can be found in the next chapter. We are going to transform

A = Xα1 +Xα2 + z2Hα2 + zX−α1 .

In the first step we differentially conjugate A by the root group element U−α2(z2). By
linearity and Lemma 3.2, we get for the adjoint action of U−α2(z2) on A

Ad(U−α2(z2))(A) = Ad(U−α2(z2))(Xα1) + Ad(U−α2(z2))(Xα2)

+z2Ad(U−α2(z2))(Hα2) + zAd(U−α2(z2))(X−α1)

= Xα1 +Xα2 − z2Hα2 − z4X−α2 + z2Hα2 + 2z4X−α2 + zX−α1

+z3X−α1−α2

= Xα1 +Xα2 + zX−α1 + z4X−α2 + +z3X−α1−α2 .

The logarithmic derivate lδ(U−α2(z2)) can be computed as 0 0 0
0 0 0
0 2z 0

 1 0 0
0 1 0
0 2z 0

 =

 0 0 0
0 0 0
0 2z 0

 = 2zX−α2 .

Hence, we obtain

Ã := Ad(U−α2(z2)A+ lδ(U−α2(z2)) = Xα1 +Xα2 + zX−α1 + (z4 + 2z)X−α2 + z3X−α1−α2 .

We differentially conjugate Ã by U−α1−α2(z). Again, we begin with the computation of
Ad(U−α1−α2(z))Ã. We get

Ad(U−α1−α2(z))Ã = Ad(U−α1−α2(z))Xα1 + Ad(U−α1−α2(z))Xα2

+zAd(U−α1−α2(z))X−α1 + z4Ad(U−α1−α2(z))X−α2

+z3Ad(U−α1−α2(z))X−α1−α2

= Xα1 + zX−α2 +Xα2 − zX−α1 + zX−α1 + z4X−α2 + z3X−α1−α2

= Xα1 +Xα2 + (z + z4)X−α2 + z3X−α1−α2 .

It is left to add the image lδ(U−α1−α2(z)) of U−α1−α2(z) under the logarithmic derivate
to the above sum. It is easily calculated as 0 0 0

0 0 0
1 0 0

 1 0 0
0 1 0
−z 0 1

 =

 0 0 0
0 0 0
1 0 0

 = X−α1−α2 .

Summing up by using Observation 1.6 we conclude that

Ā := Ad(U−α1−α2(z)U−α2(z2))(A) + lδ(U−α1−α2(z)U−α2(z2))
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53 3.4 A modification of a result of Mitschi and Singer

is equal to

Ā = Xα1 +Xα2 + (z3 + 1)X−α1−α2 + (z4 + z)X−α2 =

 0 1 0
0 0 1

(z3 + 1) (z4 + z) 0

 .

3.4 A modification of a result of Mitschi and Singer

In this section, the differential field is (C(z), ∂C(z)), i.e., a rational function field in one
variable z over an algebraically closed field C of characteristic 0 with standard derivation
∂ = d

dz .
In [MS96] C. Mitschi and M.F. Singer developed a solution of the inverse problem for
connected algebraic groups over C(z). If in addition the group is semisimple, one of their
results reads

Theorem 3.7. (C. Mitschi and M.F. Singer)
The field C is supposed to be algebraically closed and of characteristic 0. Every connected
semisimple linear algebraic group G is the differential Galois group of an equation ∂(y) =
(A0 +A1z)y over C(z) where A0, A1 are constant matrices.

In the proof (see, for example, [PS03, Theorem 11.30]), the authors describe how to choose
the matrices A0 and A1 in Lie(G)(C). For our purpose, we need an equation of a special
shape, which is not given. Therefore, we have to use different matrices A0 and A1 than
Mitschi and Singer. The proof of Corollary 3.12, which we obtain in this way, will be an
imitation of the proof of Theorem 3.7 along with some small modifications. At first we
provide the most important tools for the proof of the Corollary 3.12.

Note 3.8. Let K be a field of characteristic zero and G a connected linear group. Re-
member that there is a correspondence between torsors and the first cohomology sets
H1(K̄/K,G(K̄)). In some cases H1(K̄/K,G(K̄)) becomes trivial. In [Ser97, III 2.3 Theo-
rem 1’] it is shown that if the cohomological dimension cd(K) is at least one, then the first
cohomology set is trivial. A field K̃ is called a C1-field if every homogeneous polynomial
f(x1, ..., xn) ∈ K̃ [x1, ..., xn] of degree d ≥ 1 has a nontrivial solution in K̃n if n > d. If
K is a C1-field, then [Ser97, II 3.2 Corollary] yields cd(K) ≤ 1. It can be also found in
[Ser97, II 3.3 b] that C(z) is a C1-field.

We want to apply the lower bound criterion, i.e., Theorem 2.2. Thus, we have to ensure
the condition that Z is the trivial torsor. This is automatically satisfied if G is connected
and the differential ground field is a C1-field. To ensure the condition of connectness we
will apply

Observation 3.9. Let W be a finite dimensional C-vector space and let A0, ..., Am be
elements of End(W ). Then the differential Galois group G of the differential equation
∂(y) = (A0 +A1z + ...+Amz

m)y over C(z) is connected.

Proof. Denote by E the Picard-Vessiot extension of ∂(y) = (
∑m

i=0Aiz
i)y over C(z). Then

Theorem 1.13 implies that F = EG
0

is a finite Galois extension of C(z) with Galois
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54 3 Reductive linear groups

group G/G0. This extension can be ramified only above the singular points of ∂(y) =
(
∑m

i=0Aiz
i)y. Since the only singular point is ∞ we get F = C(z). Thus G = G0 is

connected.

The key of the proof is the following

Definition 3.10. Let ρ : G → GL(W ) be a faithful representation. Then the G-module
W will be called a Chevalley module if:

• G leaves no line in W invariant.

• Any proper connected closed subgroup of G has an invariant line.

The existence of a Chevalley module is guaranteed by

Lemma 3.11. (Mitschi and M.F. Singer)
Let G be a connected semisimple linear algebraic group. Then there exists a Chevalley
module for G.

For a proof we refer to [PS03, Lemma 11.34].

Corollary 3.12. Let G be a connected semisimple algebraic group, Φ the root system, ∆
a base of Φ. Denote by

Lie(G)(C) = H(C)⊕
⊕
α∈Φ

Lie(G)α(C)

the root space decomposition of Lie(G)(C), where H(C) denotes the Cartan subalgebra, and
Lie(G)α(C) = 〈Xα〉C denote the one-dimensional root spaces spanned by a basis element
Xα. Set A0 =

∑
α∈∆(Xα + X−α). Then there exists A1 ∈ H(C) such that the equation

∂(y) = (A0 +A1z
2)y over C(z) has G(C) as differential Galois group.

Proof. Lemma 3.11 ensures the existence of a Chevalley module ρ : G → GL(W ). We
fix such a module. Then there is a induced injective morphism of Lie algebras dρ :
Lie(G)(C) → End(W ). In the following we will omit the symbols ρ (resp. dρ ) when the
action of G (resp. Lie(G)(C)) on W is meant. With respect to the action of H on W we
obtain a decomposition of W =

⊕
λ∈ΛWλ into finitely many weight spaces Wλ for a finite

number of weights λ ∈ Λ ⊂ H∗. Now we choose A1 ∈ H satisfying:

• The α(A1) are non-zero and distinct for the simple roots α ∈ ∆ of Lie(G)(C).

• The λ(A1) are non-zero and distinct for the non-zero weights λ of the representation
dρ.

Note that the roots and the weights are linear combinations of basis elements of H∗. Let
Ĉ ⊃ Q be the smallest field containing the coefficients of these linear combinations. Since
C algebraically closed and Ĉ is a finite extension of Q, the extension C/Ĉ is infinite.
Thus we can choose an infinite basis of C over Ĉ. Now let the coefficients of A1 be
such basis elements. Hence, A1 satisfying the above conditions exists. We fix such an
A1. Observation 3.9 and Proposition 2.1 yield that the differential Galois group of the
equation ∂(y) = (A0 +A1z

2)y is a connected algebraic subgroup H ≤ G of G.
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Suppose that H 6= G. Then H leaves a line, say 〈w〉C(z) with w ∈ W , w 6= 0 in W
invariant, since W is a Chevalley module. Theorem 2.2 states the existence of B ∈
G(C(z)) ⊂ GL(W ⊗ C(z)) such that

B−1(A0 +A1z
2)B −B−1 d

dz
B ∈ Lie(H)(C(z)).

Thus, the vector w̃ = Bw ∈ C(z)⊗W has the property[
d

dz
− (A0 +A1z

2)

]
w̃ ∈ 〈w̃〉C(z), (3.8)

where d
dz on C(z)⊗W is defined as d

dz (f ⊗ v) = ( ddzf ⊗ v). Suppose w̃ ∈ C[z]⊗W , where
the coordinates of w̃ with respect to a basis of W have 1 as its greatest common divisor.
Otherwise one multiplies w̃ with a non-zero element of C(z). Then equation (3.8) reads
as [

d

dz
− (A0 +A1z

2)

]
w̃ = cw̃

with c ∈ C[z]. Comparing the degrees yields c = c0 + c1z + c2z
2. Now write w̃ =

wmz
m + ...+ w1z + w0 with wi ∈ W and wm 6= 0. At first we handle the case when m is

supposed to be m ≥ 3. Then by comparing the coefficients of zm+2, zm+1, zm we get the
equations

A1wm = −c2wm

A1wm−1 = −c1wm − c2wm−1

A0wm +A1wm−2 = −c0wm − c1wm−1 − c2wm−2

−mwm +A0wm−1 +A1wm−3 = −c0wm−1 − c1wm−2 − c2wm−3.

The first equation implies that wm 6= 0 is an eigenvector of A1 corresponding to a weight
space Wλ with eigenvalue −c2 = λ(A1).
The second equation can be transformed into

(A1 + c2)wm−1 = −c1wm.

The left hand side has no component in the weight space Wλ to which wm belongs. So we
deduce that c1 = 0. Moreover, we get wm−1 ∈Wλ, since all λ(A1) are non zero.
The third equation reads as

A0wm + (A1 + c2)wm−2 = −c0wm.

As above (A1 + c2)wm−2 has no component in Wλ. The same holds for A0wm, since
[Hum72, p.107, Lemma] yields that

A0wm =
∑
α∈∆

(Xα +X−α)wm ∈
⊕
α∈∆

(Wλ+α ⊕Wλ−α).

This shows that c0 = 0. Now we can write the last equation as

A0wm−1 + (A1 + c2)wm−3 = mwm.
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Due to the same arguments as above, the left hand side terms have no component in Wλ.
We conclude that m = 0.
Now we discuss the case m = 2. This leads as above to the reduced system of equations

A1w2 = −c2w2

A1w1 = −c1w2 − c2w1

A0w2 +A1w0 = −c0w2 − c1w1 − c2w0

−2w2 +A0w1 = −c0w1 − c1w0.

Again, w2 6= 0 is a eigenvector of A1 corresponding to the weight space Wλ with eigenvalue
−c2 = λ(A1). Then the left hand side of

(A1 + c2)w1 = −c1w2

has no component in the weight space Wλ. Hence, it must hold c1 = 0. Furthermore, we
get w1 ∈ Wλ, since all λ(A1) are non-zero. Therefore, the third equation can be written
as

A0w2 + (A1 + c2)w0 = −c0w2.

By the same arguments as above, the left hand side has no component in Wλ. Therefore,
we have c0 = 0. Then the last equation reads as A0w1 = 2w2. Since w1 and w2 are
elements of Wλ, [Hum72, p.107, Lemma] yields as above that the left hand side has no
component in Wλ. We conclude that m = 0.
If we assume m = 1, then we get the following system of equations:

A1w1 = −c2w1

A1w0 = −c1w1 − c2w0

A0w1 = −c0w1 − c1w0

−w1 +A0w0 = −c0w0.

As above w1 6= 0 is a eigenvector of A1 lying in the eigenspace Wλ with eigenvalue −c2.
Again, the left hand side of

(A1 + c2)w0 = −c1w1

has no component in Wλ. We deduce as above that c1 = 0 and w0 ∈Wλ. Then the third
equation writes as A0w1 = −c0w1. Due to the same arguments, the left hand side has no
component in Wλ. Thus, we obtain c0 = 0. Then the last equation writes as A0w0 = w1.
Again, for the same reasons as above, A0w0 has no component in Wλ. Therefore, it must
hold m = 0.
This leaves us with the equation −(A0 + z2A1)w0 = c2z

2w0. Comparing the coefficients
yields w0 ∈ Wλ and A0w0 = 0 . So 〈w0〉C is invariant under A0 and A1. Hence, it is
also invariant under scalar multiples, sums and bracket products of A0 and A1. The next
step is to see that A0 and A1 generate Lie(G)(C). Therefore, we construct polynomials
Pα(T ), P−α(T ) ∈ C[T ] for each α ∈ ∆ such that

P±α(adA1).A0 = X±α.
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Let rank(Φ) = l, and to simplify notation do number −α1 = αl+1, ...,−αl = α2l. For
i ∈ {1, ..., 2l}, we set

Xαi =

2l∑
j=1

pi,jadj(A1)(A0). (3.9)

We have to check that solutions pi,j ∈ C exist such that equation (3.9) holds. Equa-
tion (3.9) is equivalent to

Xαi =

2l∑
j=1

2l∑
k=1

pi,jαk(A1)jXαk =

2l∑
k=1

 2l∑
j=1

pi,jαk(A1)j

Xαk .

Thus, we have to solve
α1(A1) α1(A1)2 · · · α1(A1)2l

α2(A1) α2(A1)2 · · · α2(A1)2l

...
...

α2l(A1) α2l(A1)2 · · · α2l(A1)2l

 ·

pi,1
pi,2

...
pi,2l

 = ei (3.10)

where ei denotes the i-th unit vector. Let M(α1(A1), ..., α2l(A1)) be the matrix in equa-
tion (3.10). The determinant of M(α1(A1), ..., α2l(A1)) is well known as the Vandermonde
determinant. We can calculate det(M(α1(A1), ..., α2l(A1))) as

det(M(α1(A1), ..., α2l(A1))) =

2l∏
k=1

αk(A1) ·
∏

1≤i<j≤2l

(αj(A1)− αi(A1)).

The assumptions on αi(A1) imply det(M(α1(A1), ..., α2l(A1))) 6= 0. Since the root spaces
{X±α}α∈∆ generate Lie(G), we conclude that Lie(G) is generated as an algebra by A0 and
A1.
But then 〈w0〉C is an invariant line under Lie(G). Hence, G has also an invariant line,
since G is connected. This is a contradiction to our assumption on the Chavalley module
W . This completes the proof.
We want to give an alternative end where the assumption on the α(A1) is not needed.
The calculation

A0w0 =
∑
α∈∆

Xαw0︸ ︷︷ ︸
∈Wλ+α

+X−αw0︸ ︷︷ ︸
∈Wλ−α

= 0

implies that Xαw0 = 0 and X−αw0 = 0 for each α ∈ ∆, since by [Hum72, Section 20.1,
Lemma] W is the direct sum of the weight spaces Wλ.
The Lie algebra Lie(G) is generated by the root spaces {X±α}α∈∆. Thus, 〈w0〉C is invariant
under Lie(G) and under G. But this is a contradiction to our assumption on the Chavalley
module W .

3.5 Parametrized equations for connected semisimple linear
algebraic groups

Let G be a connected semisimple linear algebraic group with representation in an n-
dimensional vector space and denote by Lie(G) its Lie algebra. Let Φ be the root system
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58 3 Reductive linear groups

of Lie(G) and let ∆ = {α1, ..., αl} be a basis of Φ. Further denote by

{Xα, Hi = Hαi | α ∈ Φ, 1 ≤ i ≤ l}

a Chevalley basis of Lie(G). Let C be algebraically closed field of characteristic zero
and define the differential field F := C〈t1, ..., tl〉 in the l differential indeterminates t =
(t1, ..., tl).

Theorem 3.13. There exists a parameterized differential equation

L(y, t) =
n∑
i=0

ai(t)Y
(i) = 0

over F with differential Galois group G(C).

Proof. We define the matrix A :=
∑

α∈∆Xα + X−α +
∑l

i=1 tiHi ∈ Lie(G)(F ). Then
by Proposition 2.1 we have that the differential Galois group H(C) of ∂(y) = Ay is
contained in G(C). By Corollary 3.12 there exists A1 ∈ H(C) such that the equation
∂(y) = (

∑
α∈∆Xα + X−α + z2A1)y has G(C) as differential Galois group. Since the Hi

generate H(C) over C, we obtain a specialization σ : t → (c1 z
2, ..., cn z

2) with ci ∈ C
such that

∑l
i=1 σ(ti)Hi = A1. Thus, the specialized equation ∂(y) = σ(A)y has G(C) as

differential Galois group over C(z). Then Theorem 2.14 yields G(C) ≤ H(C). Thus it
holds G(C) = H(C). The theorem follows from the application of Theorem 1.20.
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Chapter 4

A parametrized equation for SLl+1

4.1 The Lie algebra of SLl+1 (type Al)

Let l ∈ N \ {0} and denote by ε1, ..., εl+1 the standard orthonormal basis of Rl+1. Further,
let (·, ·) denote the standard inner product on Rl+1. Then by [Hum72, Section 12.1] the
set

Φ := {εi − εj | 1 ≤ i, j ≤ l + 1}

forms the root system of type Al. We can take the set ∆, which consists of the l linear
independent vectors

∆ := {αi := εi − εi+1 | 1 ≤ i ≤ l}

as a basis of Φ. The Cartan Matrix of type Al has shape

2 −1 0 . . . . . 0
−1 2 −1 0 . . . . . 0
0 −1 2 −1 0 . . . . . 0
. . . . . . . . . . . .
0 0 0 0 . . . . 0 −1 2 −1
0 0 0 0 . . . 0 0 −1 2

 ,

where the Cartan integer 〈αi, αj〉 = 2(αi, αj)/(αj , αj) is given by the entry at position
(i, j).
Let V be a vector space of dimension dim(V ) = l + 1 over C and denote by SLl+1 the
group of all automorphisms A ∈ GLl+1 satisfying det(A) = 1. Then it is well known (see,
for example, [Hum72, p.2]) that the Lie algebra of SLl+1 is defined as

Lie(SLl+1)(C) =
{
M ∈ C(l+1)×(l+1) | tr(M) = 0

}
,

i.e., the set of all endomorphisms of V with trace zero. Evidently, the matrices

Eij , with 1 ≤ i, j ≤ l + 1, i 6= j, and Hi = Eii − Ei+1,i+1, with 1 ≤ i ≤ l,

where Eij ∈ C l+1×l+1 is the matrix having 1 as entry at position (i, j) and 0 elsewhere, form
a basis of Lie(SLl+1)(C). Now we determine a Cartan decomposition for Lie(SLl+1) from
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60 4 A parametrized equation for SLl+1

this basis. Therefore, let T = diag(λ1, ..., λl+1) be an element of the standard maximal
torus T0 ≤ SLl+1. Then, for i 6= j, 1 ≤ i, j ≤ l + 1, we have

T−1EijT =
λi
λj
Eij (4.1)

and, for 1 ≤ i ≤ l, we obtain
T−1HiT = Hi. (4.2)

Equation (4.2) implies that the elements Hi belong to the weight space of the trivial
weight. Since the Hi are linearly independent, they form a basis of the Cartan subalgebra
H = 〈 Hi | 1 ≤ i ≤ l 〉C = Lie(T0)(C). To see that Lie(SLl+1) is of type Al let us denote
by

χi : T0 → C , diag(λ1, ..., λl+1) 7→ λi

the fundamental characters. Then by equation (4.1) the vectors Eij span the one dimen-
sional root spaces 〈Eij〉C which correspond to the weights χi/χj . Moreover, from the
symmetry it follows that 〈Eji〉C is the root space corresponding to the weight χj/χi which
is the inverse of the weight χi/χj . Then the root system Φ of Lie(SLl+1) is of type Al and
the Cartan decomposition has shape

Lie(SLl+1) = H
⊕

1≤i<j≤l
〈Eεi−εj 〉C ⊕ 〈E−(εi−εj)〉C

where we assigned the matrix Eij to the root εi − εj and defined Eεi−εj as Eεi−εj := Eij .
We check that {Hk, Eij | 1 ≤ k ≤ l, 1 ≤ i, j ≤ l} forms a Chavalley basis. The following
computation can be found in [Car72, Section 11.2]. First, we determine the co-roots.
Therefore, we define the matrices Hij := [Eij , Eji] = Eii − Ejj . Then the computation of

[Hij , Eij ] = 2Eij = 〈εi − εj , εi − εj〉Eij

implies that the Hij are precisely the co-roots.
Now let us define the map

θ : Lie(SLl+1)→ Lie(SLl+1) , X 7→ −XT .

Evidently, θ is an automorphism of Lie(SLl+1) and satisfies the identities

θ(Eij) = −Eji, (4.3)

θ([X,Y ]) = −[X,Y ]T = XTY T − Y TXT =
[
−XT ,−Y T

]
= [θ(X), θ(Y )] . (4.4)

We denote in the following by Xα the matrix Eij where α is the root εi − εj . Thus,
equation (4.3) becomes

θ(Xα) = −X−α.
For α, β ∈ Φ the number nα,β ∈ Z is defined by [Xα, Xβ] = nα,βXα+β. If we apply θ on
both sides of [Xα, Xβ] = nα,βXα+β, then we obtain with the help of equation (4.4)

−nα,βX−α−β = −[Xα, Xβ]T = [−XT
α ,−XT

β ] = [X−α, X−β] = n−α,−βX−α−β.

Hence, we have −nα,β = n−α,−β. But [Car72, Theorem 4.1.2] yields the identity

nα,β · n−α,−β = −(r + 1)2.

This implies nα,β = ±(r + 1). We conclude that the above basis is a Chevalley basis.
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61 4.2 The transformation lemma for SLl+1

4.2 The transformation lemma for SLl+1

In this section we present the transformation lemma for SLl+1. The proof is based on
differential conjugation, i.e., on the adjoint action and the logarithmic derivative. Since
both can be described by the roots, we start this section with the analysis of the root
system of type Al. Denote by (F, ∂F ) a differential field of characteristic 0.

Lemma 4.1. For n ∈ {1, ..., l}, let Φn = 〈αl, ..., αl+1−n〉Φ be the set of all Z-linear com-
binations of the roots αl, ..., αl+1−n which lie in Φ. Define Φ0 = ∅ as the empty set.

1. Then Φn ⊆ Φl = Φ is an irreducible subsystem of Φ with Φn ∼ An.

2. For k ∈ {1, ..., n} there exists a unique root α ∈ Φ+
n \Φ+

n−1 with ht(α) = k and α has
shape

α =

l−n+k∑
i=l+1−n

αi.

3. Let α ∈ Φ+
n \{Φ+

n−1∪{γl+1−n =
∑l

i=l+1−n αi}} and let ht(α) = k. Then there exists
a unique ᾱ ∈ ∆ such that β = α+ ᾱ ∈ Φ+

n \ Φ+
n−1 and ht(β) = k + 1. If α̃ ∈ ∆ is a

simple root and β − α̃ is a root, then either β − α̃ = α or β − α̃ ∈ Φ+
n−1.

4. The root system Φ consists of the roots

Φ = {±α = ±
j∑
k=i

αk = ±(εi − εj+1) | 1 ≤ i ≤ j ≤ l}.

Proof. The first point is a consequence of the Dynkin diagram of type Al (e.g., see [Hum72,
Section 11.4]).
We prove the second point. Since Φn is a root system of type An, [Hum72, Section 10.4,
Lemma A] implies that there is a unique maximal root γ in Φn which we will denote
by γl+1−n. From [Hum72, Section 12.2, Table 2] we know that the shape of γl+1−n is∑l

i=l+1−n αi. Hence, γl+1−n is an element of Φ+
n \ Φ+

n−1.
We prove the assumption by two inductions where the first one is on n ∈ {1, ..., l} and the
second one on k ∈ {1, ...,ht(γl+1−n) = n}.
Let n = 1. Then Φ1 = 〈αl〉Φ is the set of all Z-linear combinations of αl such that they
belong to Φ. Since the only scalar multiples of a root α are ±α, we get Φ1 = {αl,−αl}.
Hence, αl is the unique root in Φ+

1 with ht(αl) = 1 = k.
Let 1 < n ≤ l. Let k = 1. Then the unique root α ∈ Φ+

n \ Φ+
n−1 with ht(α) = 1 is

αl+1−n. Let 1 < k ≤ ht(γl+1−n). Then by the induction assumption on k there exists a
unique root α with ht(α) = k − 1 and shape

α =
l−n+k−1∑
i=l+1−n

αi.

For the simple root αl−n+k ∈ ∆, we compute the integer 〈α, αl−n+k〉 with the help of the
Cartan matrix as

〈α, αl−n+k〉 = 〈
l−n+k−1∑
i=l+1−n

αi, αl−n+k〉 =
l−n+k−1∑
i=l+n−1

〈αi, αl−n+k〉 = −1.
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62 4 A parametrized equation for SLl+1

Then the image of α under the reflection σαl−n+k
is

σαl−n+k
(α) = α− 〈α, αl−n+k〉αl−n+k = α+ αl−n+k.

This implies that α+αl−n+k is a root of ht(α+αl−n+k) = k and lies in Φ+
n \Φ+

n−1. Suppose
there is another root β ∈ Φ+

n \Φ+
n−1 with ht(β) = k and different from α+αl−n+k . Then

[Hum72, Section 10.2, Corollary] yields that we can write β as the sum β = ᾱ1 + ...+ ᾱm of
simple roots ᾱi ∈ ∆n = {αl, ..., αl+1−n} where the ᾱi are not necessarily distinct, in such a
way that for 1 ≤ i ≤ m each partial sum ᾱ1 + ...+ᾱi is a root. In particular, ᾱ1 + ...+ᾱm−1

is a root and ht(ᾱ1 + ...+ ᾱm−1) = k− 1. We assume that ᾱ1 + ...+ ᾱm−1 6= α. Then the
uniqueness of α yields ᾱ1 + ...+ ᾱm−1 ∈ Φ+

n−1. Therefore, we have

β − (ᾱ1 + ...+ ᾱm−1) = αl+1−n (4.5)

where ᾱi 6= αl+1−n for all i ∈ {1, ...,m− 1}. We denote by w̄ the minimum of the indices
of the simple roots αw = ᾱi in ᾱ1 + ...+ ᾱm−1. Then equation (4.5) implies w̄ > l+ 1−n.
Let n̄ ∈ N such that w̄ = l + 1 − n̄. We obtain l + 1 − n̄ > l + 1 − n or equivalently
n̄ < n. Hence, the induction assumption applied on n̄ yields that the root ᾱ1 + ...+ ᾱm−1

of height k − 1 has shape

ᾱ1 + ...+ ᾱm−1 =
l−n̄+k+1∑
i=l+1−n̄

αi.

Assume l + 1− n̄ > l + 2− n. We compute

〈β, αl+1−n〉 =

l−n̄+k−1∑
i=l+1−n̄

〈αi, αl+1−n〉+ 〈αl+1−n, αl+1−n〉 = 2.

Thus, the reflection σαl+1−n maps β to

σαl+1−n(β) = β − 2αl+1−n =

l−n̄+k−1∑
i=l+1−n̄

αi − αl+1−n. (4.6)

Since the right hand side of equation (4.6) is not a root, it holds l + 1 − n̄ = l + 2 − n.
Then β is the root

β =
l−n+k∑
i=l+2−n

αi + αl+1−n = α+ αl−n+k

constructed above, which contradicts to the assumption that β 6= α+ αl+1−n.
It is left to check that the sum

α+ αj =

l−n+k−1∑
i=l+1−n

αi + αj

for αj ∈ {αl, ..., αl+1−n} \ {αl−n+k} is not a root. This is done by comparing the root
lenght of α+ αj with αj .
From [Hum72, Section 12.2, Table 2] we obtain that the irreducible root system Φn of type
An contains only long roots, i.e., all roots of Φn are of equal length. Further, [Hum72,
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63 4.2 The transformation lemma for SLl+1

Section 9.4, Table 1] implies that for two roots α, β of Φn which are of equal length and
nonproportional it holds 〈α, β〉 = 〈β, α〉 = ±1.
Now we check that α + αj is not a root for some αj ∈ {αl, ..., αl+1−n} \ {αl−n+k}. For
j ∈ {l + 1− n, ..., l − n+ k − 1}, we compute

〈α+ αj , αj〉 = (1− δl+1−n,j)〈αj−1, αj〉+ 2〈αj , αj〉+ (1− δl−n+k−1,j)〈αj+1, αj〉 ≥ 2.

Further, for j ∈ {l − n + k + 1, ..., l}, we get 〈α + αj , αj〉 = 〈αj , αj〉 = 2 where we have
to assume n ≥ 3. Thus, the sum α + αj has a different length than the roots of Φn and
therefore can not be a root of Φn.
Hence, α+ αl−n+k is the unique root in Φ+

n \ Φ+
n−1 with ht(α+ αl−n+k) = k and has the

proposed shape of

α+ αl−n+k =
l−n+k∑
i=l−n+1

αi.

Now we show the third assertion of the lemma.
If α ∈ Φ+

n \ {Φ+
n−1 ∪ {γl−n+1 =

∑l
i=l−n+1 αi}}, then ht(α) = k < ht(γl−n+1) and in

particular, by Lemma 4.1. 2, there exists a unique β ∈ Φ+
n \ Φ+

n−1 such that ht(β) =
k+ 1 ≤ ht(γl−n+1). Hence, the simple root β−α ∈ ∆ has the stated property. Let α̃ ∈ ∆
be different from β − α and let β − α̃ be a root. From the uniqueness of α we obtain
β − α̃ /∈ Φ+

n \ Φ+
n−1. Therefore, β − α̃ ∈ Φ+

n−1 holds.
Finally, we prove the last point of the lemma.
Evidently, we have Φ ⊇

⋃l
i=1(Φi \ Φi−1). Let α =

∑l
i=1 kiαi ∈ Φ and let j ∈ {1, ..., l} be

minimal with kj 6= 0. Thus, α is an element of Φj \ Φj−1. We obtain the disjoint union

Φ =
⋃l
i=1(Φi \ Φi−1).

Lemma 4.2. Let n ∈ {1, ..., l} and denote by γi the root of maximal height in Φ−l+1−i. Let

A0 =
∑l

i=1Xαi +
∑l−n

i=1 aγiXγi +
∑

β∈Φ−n
aβXβ with aγi , aβ ∈ F . Then there exists U ∈ U−

such that

UA0U
−1 + ∂(U)U−1 =

l∑
i=1

Xαi +
l−n+1∑
i=1

āγiXγi +
∑

β∈Φ−n−1

āβXβ

with āγi , āβ ∈ F .

Proof. We prove for each k ∈ {1, ..., n− 1} the following claim: For the matrix

Ak−1 =

l∑
i=1

Xαi +

l−n∑
i=1

aγiXγi +
∑

β∈Φ−n−1

aβXβ +
∑

α∈Φ−n \Φ−n−1,ht(α)≥k

aαXα

there exists U ∈ U− such that

UAk−1U
−1 + ∂(U)U−1 =

l∑
i=1

Xαi +

l−n∑
i=1

āγiXγi +
∑

β∈Φ−n−1

āβXβ +
∑

α∈Φ̄−n ,ht(α)>k

āαXα =: Ak

where aγi , aβ, aα and āγi , āβ, āα are elements of F . Note that in the following we will
sometimes write Φ̄−n for Φ−n \ Φ−n−1.
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64 4 A parametrized equation for SLl+1

We want to remove the part of Ak−1 which lies in the root space corresponding to the root
α ∈ Φ−n \Φ−n−1 with ht(α) = k. Then Lemma 4.1.3 yields a unique simple root ᾱ ∈ ∆ such

that −α+ ᾱ = β̄ ∈ Φ+
n \Φ+

n−1 and ht(β̄) = k+1. In other words, for −β̄ =: β̂ ∈ Φ−n \Φ−n−1

it holds that β̂ + ᾱ = α. Motivated by this we differentially conjugate Ak−1 by the
parametrized root group element Uβ̂(ζ) ∈ Uβ̂. With the help of Observation 3.4 we obtain

Uβ̂(ζ)Ak−1Uβ̂(ζ)−1 + ∂(Uβ̂(ζ))Uβ̂(ζ)−1 =

l∑
i=1

Ad(Uβ̂(ζ))(Xαi) +

n−1∑
i=1

aγiAd(Uβ̂(ζ))(Xγi)

+
∑

β∈Φ−n+1

aβAd(Uβ̂(ζ))(Xβ) +
∑

α∈Φ̄−n ,ht(α)≥k

aαAd(Uβ̂(ζ))(Xα) + ∂(Uβ̂(ζ))Uβ̂(ζ)−1.

(4.7)

For the first summand of the right hand side of equation (4.7) Lemma 3.2 yields

l∑
i=1

Ad(Uβ̂(ζ))(Xαi) =
l∑

i=1

(

q∑
j=0

mβ̂,αi,j
ζjXαi+jβ̂

). (4.8)

We have to determine for which 1 ≤ j ≤ ∞ the sum αi + jβ̂ is a root of Φ. If j = 1, then
Lemma 4.1.3 implies that αi + β̂ is either α or αi + β̂ ∈ Φ−n−1. Moreover, for all j > 1, the

sum αi + jβ̂ is not a root, since ht(β̂) = k+ 1 and Lemma 4.1 implies that all coefficients
of all roots of Φ+ are equal to 1. Hence, we otain for equation (4.8)

l∑
i=1

Ad(Uβ̂(ζ))(Xαi) ∈
l∑

i=1

Xαi + ζmβ̂,ᾱ,1Xα +
∑

β∈Φ−n−1

Lie(SLl+1)β. (4.9)

Again by Lemma 3.2 the second summand of the right hand side of equation (4.7) can be
written as

l−n∑
i=1

aγiAd(Uβ̂(ζ))(Xγi) =
l−n∑
i=1

(

q∑
j=0

mβ̂,γi,j
ζjXγi+jβ̂

). (4.10)

Since γi is the root of maximal height in Φ−l+1−i for i ∈ {1, ..., l − n} and β ∈ Φ−n \ Φ−n−1,

we conclude that γi + jβ̂ is not a root for j > 0. Hence, equation (4.10) reduces to

l−n∑
i=1

aγiAd(Uβ(ζ))(Xγi) =

l−n∑
i=1

aγiXγi . (4.11)

The third summand is∑
β∈Φ−n−1

aβAd(Uβ̂(ζ))(Xβ) =
∑

β∈Φ−n−1

(

q∑
j=0

mβ̂,β,jζ
jXβ+jβ̂). (4.12)

Obviously, if β + jβ̂ is a root for j > 0, then β + jβ̂ ∈ Φ−n \ Φ−n−1 and ht(β + jβ̂) > k + 1

since ht(β̂) = k + 1. Thus, equation (4.12) can be reformulated as∑
β∈Φ−n−1

aβAd(Uβ̂(ζ))(Xβ) ∈
∑

β∈Φ−n−1

aβXβ +
∑

β∈Φ̄−n ,ht(β)>k+1

Lie(SLl+1)β. (4.13)
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65 4.2 The transformation lemma for SLl+1

We get for the fourth summand of equation (4.7)

∑
α∈Φ̄−n ,ht(α)≥k

aαAd(Uβ̂(ζ))(Xα) =
∑

α∈Φ̄−n ,ht(α)≥k

aα(

q∑
j=0

mβ̂,α,jζ
jXα+jβ̂). (4.14)

Since α, β̂ ∈ Φ−n \ Φ−n−1, the coefficient of αn in α + jβ̂ is greater equal than 2 for j ≥ 1.

Hence, α+ jβ̂ is not a root. Thus we can translate equation (4.14) into∑
α∈Φ̄−n ,ht(α)≥k

aαAd(Uβ̂(ζ))(Xα) =
∑

α∈Φ̄−n ,ht(α)≥k

aαXα. (4.15)

The last summand of equation (4.7) must still be checked. From Proposition 3.5 we know
that the logarithmic derivative lδ maps an element Uβ̂(ζ) ∈ Uβ̂ to Lie(Uβ̂) = Lie(SLl+1)β̂.
Therefore,

∂(Uβ̂(ζ))Uβ̂(ζ)−1 ∈ Lie(SLl+1)β̂ (4.16)

with ht(β̂) = k + 1 and β̂ ∈ Φ−n \ Φ−n−1. Putting the equations (4.9), (4.11), (4.13), (4.15)
and (4.16) together, we obtain

Ak ∈ aαXα +mβ̂,ᾱ,1ζXα +
l∑

i=1

Xαi +
l−n∑
i=1

aγiXγi +
∑

β∈Φ−n−1

Lie(SLl+1)β

+
∑

β∈Φ̄−n ,ht(β)>k

Lie(SLl+1)β.

Hence, with mβ̂,ᾱ,1ζ = −aα the proof of the claim is complete.

Using the claim, one then proves by induction that for each k ∈ {1, ..., n− 1} there exists
U ∈ U− such that

UA0U
−1 + ∂(U)U−1 ∈

l∑
i=1

Xαi +

l−n∑
i=1

Lie(SLl+1)γi +
∑

β∈Φ−n−1

Lie(SLl+1)β

+
∑

β∈Φ̄−n ,ht(β)>k

Lie(SLl+1)β.

In particular, we get for k = n− 1 the assertion of the lemma.

Lemma 4.3. Let A ∈
∑l

i=1Xαi + H +
∑

β∈Φ− Lie(SLl+1)β =
∑l

i=1Xαi + Lie(B−0 ) and

define M = {γi ∈ Φ− | i = 1, ..., l} as the set of roots of maximal height of all subsystems
Φ−l+1−i. Then there exists U ∈ U−0 such that

UAU−1 + ∂(U)U−1 ∈
l∑

i=1

Xαi +
∑
α∈M

Lie(SLl+1)α.
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Proof. We start by proving the following claim:
Define for k = 1, ..., l the matrix Ak as Ak :=

∑l
i=1Xαi +

∑l
i=k aiHi+

∑
β∈Φ− Lie(SLl+1)β.

Then there exists U ∈ U−0 such that

UAkU
−1 + ∂(U)U−1 ∈

l∑
i=1

Xαi +

l∑
i=k+1

aiHi +
∑
β∈Φ−

Lie(SLl+1)β.

One writes Ak =
∑l

i=1Xαi +
∑l

i=k aiHi +
∑

β∈Φ− aβXβ with suitable aβ ∈ F . To remove
akHk we differentially conjugate Ak by U−αk(ζ) ∈ U−αk . We use Observation 3.4 to
express this as

U−αk(ζ)AkU−αk(ζ)−1 + ∂(U−αk(ζ))U−αk(ζ)−1 =

l∑
i=1

Ad(U−αk(ζ))(Xαi)

+
l∑

i=k

aiAd(U−αk(ζ))(Hi) +
∑
β∈Φ−

aβAd(U−αk(ζ))(Xβ) + lδ(U−αk(ζ)).

(4.17)

Let us look at the first summand on the right hand side of equation (4.17). Then by
Lemma 3.2.2 and Lemma 3.2.4 we get for i 6= k

l∑
i=1

(
∑
j≥0

m−αk,αi,jζ
jXαi+j(−αk))

and for i = k we have Xαk + ζHαk − ζ2X−αk . Since αi − jαk is not a root for i 6= k and
j > 0, we obtain

l∑
i=1

Ad(U−αk(ζ))(Xαi) ∈
l∑

i=1

Xαi + ζHk + Lie(SLl+1)−αk . (4.18)

If i = k, then we get for the second summand with Lemma 3.2.3

akAd(U−αk(ζ))(Hk) = ak(Hk − 2ζX−αk).

Moreover, with the help of Lemma 3.2.5 and the Cartan matrix we have for i = k + 1

ak+1Ad(U−αk(ζ))(Hk+1) = ak+1(Hk+1 − ζX−αk)

and for l ≥ i ≥ k + 2 we obtain aiAd(U−αk(ζ))(Hi) = aiHi. We summarize our results.
This yields

l∑
i=k

aiAd(U−αk(ζ))(Hi) ∈
l∑

i=k

aiHi + Lie(SLl+1)−αk . (4.19)

Let β ∈ Φ−. Obviously, if β + j(−αk) is a root of Φ for j ≥ 0, then β + j(−αk) ∈ Φ−.
Hence, the third summand of equation (4.17) lies in∑

β∈Φ−

aβAd(U−αk(ζ))(Xβ) ∈
∑
β∈Φ−

Lie(SLl+1)β. (4.20)
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We handle the last summand with Proposition 3.5. It implies

lδ(U−αk(ζ)) = ∂(U−αk(ζ))U−αk(ζ)−1 ∈ Lie(SLl+1)−αk . (4.21)

We put the equations (4.18), (4.19), (4.20) and (4.21) together and set ζ = −ak. Hence,
the assumption of the claim is shown.
One uses then the claim to prove by induction that for each k ∈ {1, ..., l} there exists
U ∈ U− such that

UAU−1 + ∂(U)U−1 ∈
l∑

i=1

Xαi +

l∑
i=k+1

aiHi +
∑
β∈Φ−

Lie(SLl+1)β.

In particular, for k = l, it yields that there exists U ∈ U− such that

A0 = U−1AU − U−1U ′ ∈
l∑

i=1

Xαi +
∑
β∈Φ−

Lie(SLl+1)β.

Again one proves by an inductive argument together with Lemma 4.2 that for each n ∈
{1, ..., l} and A0 there exists U ∈ U− such that

UA0U
−1 + ∂(U)U−1 ∈

l∑
i=1

Xαi +
l−n∑
i=1

Lie(SLl+1)γi +
∑
β∈Φ−n

Lie(SLl+1)β

where the notations are as in Lemma 4.2. Note that Φ−1 = {−αl = −γl}. Then the lemma
follows for n = 1.

4.3 The equation with group SLl+1

The next step is to combine the results of Corollary 3.12 and Lemma 4.3 so that we can
apply later the specialization bound. We keep the notations of Lemma 4.3 and recall that
(C(z), ∂ = d

dz ) denotes a rational function field with standard derivation as in Section 3.4.

Corollary 4.4. We apply Corollary 3.12 to the group SLl+1 and the above Cartan decom-
position. We denote by AM&S

SLl+1
the matrix satisfying the stated conditions of Corollary 3.12.

Then there exists U ∈ U−0 ⊂ SLl+1 such that

ĀSLl+1
:= UAM&S

SLl+1
U−1 + ∂(U)U−1 =

∑
α∈∆

Xα +
∑
γi∈M

fiXγi (4.22)

with at least one fi ∈ C [z] \ C and the differential Galois group of the matrix equation
∂(y) = ĀSLl+1

y over C(z) is SLl+1(C).

Proof. Lemma 4.3 proves the existence of an element U ∈ U−0 ⊂ SLl+1 such that equa-
tion (4.22) holds. Since differential conjugation defines a differential isomorphism, we
deduce with Corollary 3.12 that the differential Galois group of ∂(y) = ĀSLl+1

y is again
SLl+1(C) over C(z). We still need to show the existence of fi ∈ C [z] \ C for some
γi ∈M. Suppose ĀSLl+1

=
∑

α∈∆Xα+
∑

γi∈T fiXγi ∈ Lie(SLl+1)(C). Then by Lemma 4.5
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68 4 A parametrized equation for SLl+1

the corresponding differential equation L(y, f1, ..., fl) ∈ C {y} has coefficients in C. But
then by [Mag94, Corollary 3.28] the differential Galois group is abelian. Thus ĀSLl+1

∈
Lie(SLl+1)(C(z)) \ Lie(SLl+1)(C). Since 0 6= A1 ∈ H(C) and A = (z2A1 + A0) in Corol-
lary 3.12 we start our transformation with at least one coefficient lying in C [z]\C. In each
step the application of Ad(Uβ(ζ)) generates at most new entries which are polynomials in
ζ. Moreover, the logarithmic derivative is the product of the two matrices ∂(Uβ(ζ)) and
Uβ(ζ)−1 = Uβ(−ζ). In the proofs of Lemma 4.3 and Lemma 4.2 we choose the parameter
ζ to be one of the coefficients. Hence, it holds fi ∈ C[z] \ C.

Our goal is to produce parametric equations for the series SLl+1. Therefore, let t1, ..., tl
be differential indeterminates and define the differential field F = C 〈t1, ..., tl〉. Moreover,
let us define

ASLl+1
(t1, ..., tl) =

∑
α∈∆

Xα +
∑
γi∈M

tiXγi

withM as in Lemma 4.3. We are going to compute an operator for SLl+1 from the matrix
differential equation ∂(y) = ASLl+1

(t1, ..., tl)y.

Lemma 4.5. The matrix differential equation ∂(y) = ASLl+1
(t1, ..., tl)y is differentially

equivalent to the homogeneous scalar linear differential equation

L(y, t1, ..., tl) = y(l+1) −
l∑

i=1

ti y
(i−1) = 0

Proof. Form the description of Lie(SLl+1) in Section 4.1 we otain the full shape of the
matrix differential equation ∂(y) = ASLl+1

(t1, ..., tl)y. We have

∂(y1)
∂(y2)

...

∂(yl)
∂(yl+1)


=



0 1
. . .

. . .

1
t1 t2 . . . tl 0


·



y1

y2
...

yl
yl+1


.

To simplify the notation we will write y′i for ∂(yi). Then the above equation translates
into the system of equations

y′1 = y2 (1)

y′2 = y3 (2)

...

y′l = yl+1 (l)

y′l+1 =
l∑

i=1

tiyi. (l+1)

We will prove that y1 is a cyclic vector. By an easy inductive argument we deduce for
subsystems formed by the first until the n-th equation, where n ∈ {1, ..., l}, that

y
(n)
1 = yn+1.
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69 4.3 The equation with group SLl+1

In particular, for n = l it holds y
(l)
1 = yl+1. We differentiate this equation and substitute

y′l+1 by the last equation of the initial system and hence we obtain

y(l+1) =
l∑

i=1

ti y
(i−1).

Theorem 4.6. Let C be an algebraically closed field of characteristic zero, t1, ..., tl differ-
ential indeterminates and F = C 〈t1, ..., tl〉 the corresponding differential field. Then the
homogeneous linear differential equation

L(y, t1, ..., tl) = y(l+1) −
l∑

i=1

ti y
(i−1) = 0

has SLl+1(C) as differential Galois group over F. Moreover, let F̂ be a differential field with
field of constants equal to C. Let Ê be a Picard-Vessiot extension over F̂ with differential
Galois group SLl+1(C) and suppose the defining matrix differential equation ∂(y) = Ây
satisfies Â ∈

∑
α∈∆Xα+ Lie(B−0 ). Then there is a specialization L(y, t̂1, ..., t̂l) with t̂i ∈ F̂

such that L(y, t̂1, ..., t̂l) gives rise to the extension Ê over F̂ .

Proof. Let E be a Picard-Vessiot extension for the equation L(y, t1, ..., tl) = 0 over F
and denote by G its differential Galois group. Since the operator comes from the ma-
trix differential equation ∂(y) = ASLl+1

(t1, ..., tl)y with ASLl+1
(t1, ..., tl) ∈ Lie(SLl+1)(F ),

Proposition 2.1 yields G(C) ≤ SLl+1(C). By Corollary 4.4 there exists a specialization
σ : (t1, ..., tl) → (f1, ..., fl) with f1, ..., fl ∈ C[z] such that σ(ASLl+1

(t1, ..., tl)) = ĀSLl+1

and the differential Galois group of ∂(y) = ĀSLl+1
y is SLl+1(C). Moreover, we have

C{f1, ..., fl} = C[z]. Thus we can apply Corollary 2.15. This yields SLl+1(C) ≤ G(C).
Hence, it holds G(C) = SLl+1(C).
Since the defining matrix Â satisfies Â ∈

∑
α∈∆Xα+Lie(B−0 ), Lemma 4.3 provides that Â

is differentially equivalent to a matrix Ã =
∑

α∈∆Xα +
∑

γi∈T âiXγi with suitable âi ∈ F̂ .
Obviously, the specialization

σ̂ : (t1, ..., tl) 7→ (â1, ..., âl)

has the required property.

From literature it is known that the general equation with trace zero

y(n) = tn−2y
(n−2) + tn−3y

(n−3) + ...+ t0y

has SLn as its differential Galois group. This equation yields an alternative proof for
Theorem 4.6. Furthermore, note that in case l = 1 the equation of Theorem 4.6 is the
Airy equation y(2) = t1y. In the literature there are several proofs of the various types of
the Airy equation y(2) = f̃y. The differential Galois group depends on the choice of the
differential ground field (F̃ , ∂F̃ ) where the field of constants of F̃ is equal to C and of the

coefficient f̃ ∈ F̃ . In each situation the differential Galois group G(C) is a subgroup of
SL2(C). Obviously, our equation specializes to all of these different types.
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Chapter 5

A parametrized equation for SP2l

5.1 The Lie algebra of SP2l (type Cl)

As in Section 4.1 we introduce first the root system of type Cl. Let l ∈ N \ {0} with l ≥ 3.
We write ε1, ..., εl for the standard orthonormal basis of Rl and (·, ·) for the standard inner
product of Rl. In [Hum72, Section 12.1], it is shown that the root system Φ of type Cl is
formed by the set of vectors

Φ = {±(εi − εj), ±(εi + εj), ±2εk | 1 ≤ i < j ≤ l, 1 ≤ k ≤ l} .

As a basis we take the l linear independent vectors

∆ = {αi = εi − εi+1, αl = 2εl | 1 ≤ i ≤ l − 1}

and we fix this ordering. The Cartan integers 〈αi, αj〉 = 2(αi, αj)/(αj , αj) are given at
position (i, j) in the Cartan matrix which has in the case of Cl the following shape

2 −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 −1 . . . 0
. . . . . . . . . .
0 0 0 . . . −1 2 −1
0 0 . . . 0 −2 2

 .

Let V = 〈v1, ..., v2l〉C be a vector space over C of dimension 2l. We define on V a skew-
symmetric non degenerate bilinear form f with representing matrix

J =

(
0 J0

−J0 0

)
∈ C2l×2l where the matrix J0 has shape J0 =

 1

· · ·

1

 .

The symplectic group SP2l is defined as the group of all invertible linear transformations
of V preserving a skew-symmetric non degenerated bilinear form. We are going to choose
this bilinear form to be f . Hence, with the representing matrix J of f the group SP2l can
be described as

SP2l = {A ∈ GL2l | ATJA = J}.
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72 5 A parametrized equation for SP2l

Then the Lie Algebra Lie(SP2l) of SP2l consists of all endomorphism X ∈ C2l×2l of V
satisfying for v, w ∈ V the rule

f(Xv,w) = −f(v,Xw)⇔ (Xw)TJw = −vTJ(Xw)⇔ JX = −XTJ.

Hence, the condition for X to be symplectic reads in matrix terms as −XTJ = JX. Let
A, B, C, D be arbitrary elements of C l×l. We write the 2l × 2l-matrix X as

X =

(
A B
C D

)
∈ C2l×2l.

Then an explicit calculation of JX +XTJ = 0 leads us to(
−CTJ0 ATJ0

−DTJ0 BTJ0

)
+

(
J0C J0D
−J0A −J0D

)
= 0.

Equivalently, we get the system of equations

CTJ0 = J0C, ATJ0 = −J0D,
−DTJ0 = J0A, BTJ0 = J0B.

The third equation offers no new information and can be therefore omitted. It can be
checked by computation that the conjugation J0MJ−1

0 of an element M ∈ C l×l by J0 is
reversing M and then taking the transpose. Here we mean by the reversed matrix, the
matrix obtained by reflecting the entries at the second diagonal. Before we start to write
down a basis for Lie(SP2l) we renumber the rows and columns of X into 1, ..., l,−1, ...,−l.
Furthermore, we denote by Eij ∈ C2l×2l the matrix having 1 as entry at position (i, j) and
0 elsewhere. Then it can be checked easily that the l diagonal matrices Eii−E−l−1+i,−l−1+i

with 1 ≤ i ≤ l and the matrices

Eij − E−l−1+j,−l−1+i, Eji − E−l−1+i,−l−1+j

with 1 ≤ i < j ≤ l have non-zero entries in the blocks A and D of X. We see that they
satisfy the above equations. Moreover, for 1 ≤ i, j ≤ l, i+ j ≤ l, the matrices

Ei,−j − El+1−j,−l−1+i, E−j,i − E−l−1+i,l+1−j

and for 1 ≤ i ≤ l, the l matrices

Ei,−l−1+i, E−l−1+i,i

with non-zero entries in the blocks B and C of X also satisfy the conditions of the equa-
tions. Denote by B the collection of all these matrices. Then the elements of B are linearly
independent, since for an arbitrary chosen position above or on the secondary diagonal
there is exact one matrix in B with a non-zero entry at this position. Furthermore, the
number of elements in B can be easily computed as card(B) = 2l2 + l. This number
coincides with the dimension of Lie(SP2l) from literature (see for example [Hum72, p.3]).
Hence, the elements of B form a basis of Lie(SP2l).
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73 5.1 The Lie algebra of SP2l (type Cl)

The next step is to determine a Cartan Decomposition for Lie(SP2l) from this basis. There-
fore we compute the maximal diagonal torus T of SP2l. Let T = diag(λ1, ..., λ2l) ∈ GL2l

be a diagonal matrix of GL2l. Then the condition T TJT = J calculates explicitly as

λ1λ2l

λlλl+1

−λlλl+1

−λ2lλ1

 =



1

1

−1

−1

 .

Hence, the condition for T to be an element of SP2l is satisfied if and only if for all
i ∈ {1, ..., l} we have

λ2l+1−i = λ−1
i .

Thus, the diagonal torus T of SP2l is the set of matrices

T = {T = diag(λ1, ..., λl,
1

λl
, ...,

1

λ1
) | λ1, ..., λl ∈ C×}.

We calculate the conjugates of the elements of B by T = diag(λ1, ..., λl,
1
λl
, ..., 1

λ1
) ∈ T :

T (Eii − E−l−1+i,−l−1+i)T
−1 = (Eii − E−l−1+i,−l−1+i),

T (Eij − E−l−1+j,−l−1+i)T
−1 = (λi/λj) (Eij − E−l−1+j,−l−1+i),

T (Eji − E−l−1+i,−l−1+j)T
−1 = (λj/λi) (Eji − E−l−1+i,−l−1+j),

T (Ei,−j − El+1−j,−l−1+i)T
−1 = λiλl+1−j (Ei,−j − El+1−j,−l−1+i),

T (E−j,i − E−l−1+i,l+1−j)T
−1 = (1/λl+1−jλi) (E−j,i − E−l−1+i,l+1−j),

T (Ei,−l−1+i)T
−1 = λ2

i Ei,−l−1+i,

T (E−l−1+i,i)T
−1 = (1/λ2

i ) E−l−1+i,i.

Hence, the root system Φ of Lie(SP2l) is of type Cl. The above equations also show to
which root space the elements of B belong. Therefore, we define for 1 ≤ i < j ≤ l, the
matrices

Xεi−εj := Eij − E−l−1+j,−l−1+i, X−(εi−εj) := Eji − E−l−1+i,−l−1+j

and for 1 ≤ i, j ≤ l, i+ j ≤ l, the matrices

Xεi+εl+1−j := Ei,−j − El+1−j,−l−1+i, X−(εi+εl+1−j) := E−j,i − E−l−1+i,l+1−j .

Moreover, for 1 ≤ i ≤ l, we have

X2εi := Ei,−l−1+i and X−2εi := E−l−1+i,i.

Furthermore, we conclude that the Cartan subalgebra H is generated by the elements

H = 〈Eii − E−l−1+i,−l−1+i | 1 ≤ i ≤ l〉C .
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Then, in these notations, the shape of the Cartan Decomposition is

Lie(SP2l)(C) = H(C)
⊕

i,j 〈Xεi−εj 〉C ⊕ 〈X−(εi−εj)〉C⊕
i,j 〈Xεi+εl+1−j 〉C ⊕ 〈X−(εi+εl+1−j)〉C⊕
i 〈X2εi〉C ⊕ 〈X−2εi〉C .

The next step is to determine a Chevalley basis of Lie(SP2l) from the elements of B. We
begin with the co-roots. Therefore, we compute

[Xεi−εj , X−(εi−εj)] = Eii − Ejj + El−1+j,−l−1+j − E−l−1+i,−l−1+i =: Hεi−εj ,

[Xεi+εl+1−j , X−(εi+εl+1−j)] = Eii + El+1−j,l+1−j − E−j,−j − E−l−1+i,−l−1+i

=: Hεi+εl+1−j ,

[X2εi , X−2εi ] = Eii − E−l−1+i,−l−1+i =: H2εi .

These are precisely the co-roots, since

[Hεi−εj , Xεi−εj ] = Eij − E−l−1+j,−l−1+i − (−Ei,j + E−l−1+j,−l−1+j) = 2Xεi−εj ,

[Hεi+εl+1−j , Xεi+εl+1−j ] = Ei,−j + El+1−j,−l−1+i − (−El+1−j,−l−1+i − Ei,−j)
= 2Xεi+εl+1−j ,

[H2εi , X2εi ] = Ei,−l−1+i + Ei,−l−1+i = 2X2εi .

To simplify the notation we number the l co-roots corresponding to the simple roots by

H1 := Hε1−ε2 , ..., Hl−1 := Hεl−1−ε− and Hl := H2εl .

Let θ : Lie(SP2l)→ Lie(SP2l) be a morphism of Lie(SP2l) defined by the rule X 7→ −XT .
Hence, θ is an automorphism of Lie(SP2l). One verifies easily that the following equations
for θ hold:

θ(Xεi−εj ) = −X−(εi−εj),

θ(Xεi+εl+1−j ) = −X−(εi+εl+1−j),

θ(X2εi) = −X−2εi .

Additionally, we have the identity

θ([X,Y ]) = −[X,Y ]T = [−XT ,−Y T ] = [θ(X), θ(Y )]. (5.1)

We define the number nα,β ∈ Z by the rule [Xα, Xβ] = nα,βXα+β. The next step is to
apply θ to [Xα, Xβ] = nα,βXα+β. This yields with the help of equation (5.1)

−nα,βX−α−β = −[Xα, Xβ]T = [X−α, X−β] = n−α,−βX−α−β.

Thus, it holds −nα,β = n−α,−β. From [Car72, Theorem 4.1.2] we have the identity

nα,βn−α,−β = −(r + 1)2.

Hence, nα,β has to be equal to ±(r + 1). We conclude that the elements

{Hi, Xα | 1 ≤ i ≤ l, α ∈ Φ}

from a Chevalley basis of Lie(SP2l).
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5.2 The transformation lemma for SP2l

In this section we present and prove the transformation lemma for SP2l. This is done for a
differential field (F, ∂F ) of characteristic zero. But firstly we need a good grasp of the root
system of type Cl, since the proof of the transformation lemma is based on the adjoint
action and the logarithmic derivate which can be both described by the roots.

Lemma 5.1. For n ∈ {1, ..., l − 1} let Φn = 〈αl, ..., αl−n〉Φ denote the set of all Z-linear
combinations of the roots αl, ..., αl−n which lie in Φ and let us define Φ0 := {±αl}.

1. The set Φn ⊆ Φl−1 = Φ is an irreducible subsystem of Φ with Φn ∼ Cn+1.

2. For k ∈ {1, ..., 2n+ 1} there exists a unique root α ∈ Φ+
n \ Φ+

n−1 of ht(α) = k and α
has shape

α =

l−n−1+k∑
i=l−n

αi if 1 ≤ k ≤ n+ 1,

α =
l+n−k∑
i=l−n

αi + 2
l−1∑

i=l+n−k+1

αi + αl if n+ 2 ≤ k ≤ 2n and

α = 2
l−1∑
i=l−n

αi + αl if k = 2n+ 1.

3. Let α ∈ Φ+
n \ {Φ+

n−1 ∪ {γl−n = αl + 2
∑l−1

i=l−n αi}} with ht(α) = k. Then there exists
a unique ᾱ ∈ ∆ such that β = α+ ᾱ ∈ Φ+

n \ Φ+
n−1 and ht(β) = k + 1. If α̃ ∈ ∆ is a

simple root and β − α̃ is a root, then either β − α̃ = α or β − α̃ ∈ Φ+
n−1.

4. The root system Φ consists of the roots

Φ = {±(εi − εj) = ±
j−1∑
k=i

αk | 1 ≤ i < j ≤ l} ∪ {±2εl = ±αl}

∪ {±2εi = ±(αl + 2

l−1∑
k=i

αk), ±(εi + εl) = ±(αl +

l−1∑
k=i

αk) | 1 ≤ i ≤ l − 1}

∪ {±(εi + εj) = ±(αl + 2
l−1∑
k=j

αk +

j−1∑
k=i

αk | 1 ≤ i < j ≤ l − 1)}.

Proof. The first point is a consequence of the Dynkin diagram of type Cl (e.g., see [Hum72,
Section 11.4]).
We prove the second assertion of the lemma. We know that Φn is a root system of type
Cn+1. Thus by [Hum72, Section 10.4, Lemma A] there is a unique root γl−n of maximal
height in Φn. Furthermore, from [Hum72, Section 12.2, Table 2] we obtain that γl−n has
shape γl−n = αl + 2

∑l−1
i=l−n αi. We conclude that γl−n is an element of Φ+

n \ Φ+
n−1.

We are going to prove the assumption by three inductions. We will have an outer induction
on n ∈ {1, ..., l − 1} and we need two inner inductions done on k1 ∈ {1, ..., n+ 1} and
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76 5 A parametrized equation for SP2l

k2 ∈ {n+ 2, ..., 2n}.
Let n = 1. We are going to compute the root system Φ1 = 〈αl, αl−1〉Φ to check the
assumption. The Cartan matrix implies that the reflection σαl−1

maps the root αl to

σαl−1
(αl) = αl − 〈αl, αl−1〉αl−1 = αl + 2αl−1.

Since root strings are unbroken we have computed the roots ±(αl+αl−1) and ±(αl+2αl−1).
Moreover, since αl+2αl−1 is the unique root of maximal height in Φ1 and the only multiples
of a root α are ±α we conclude that Φ1 consists of the vectors

Φ1 = {±αl,±αl−1,±(αl + αl−1),±(αl + 2αl−1)}.

Now it is easily seen that the assumption for n = 1 is satisfied.
Let 1 < n ≤ l − 1. We show by induction on k1 ∈ {1, ..., n+ 1} that there exists a unique
root α ∈ Φ+

n \ Φ+
n−1 with ht(α) = k1 and α has shape α =

∑l−n−1+k1
i=l−n αi.

Let k1 = 1. Then the unique root α in Φ+
n \ Φ+

n−1 of ht(α) = 1 is the root α = αl−n.
Let 1 < k1 ≤ n + 1. The induction assumption implies that there exists α ∈ Φ+

n \ Φ+
n−1

such that ht(α) = k1 − 1 and α is of the form

α =

l−n−2+k1∑
i=l−n

αi.

We are going to construct from α a root of height k1 which has the required shape.
Therefore, we calculate for the simple root αl−n−1+k1 the integer < α,αl−n−1+k1 > with
the help of the Cartan matrix and the fact that if k1 = n+ 1, then l− n− 2 + k1 is equal
to l − 1, as

〈α, αl−n−1+k1〉 = 〈
l−n−2+k1∑
i=l−n

αi, αl−n−1+k1〉 = −1.

Thus, the reflection σαn−1+k1
maps α to the root

σαn−1+k1
(α) =

l−n−2+k1∑
i=l−n

αi − 〈α, αn−1+k1〉αl−n−1+k1 =

l−n−1+k1∑
i=l−n

αi.

Evidently, this root satisfies the requirements. Suppose there exists another root β ∈
Φ+
n \Φ+

n+1, β 6= α+αn−1+k1 and ht(β) = k1. Then [Hum72, Section 10.2 Corollary] implies
that we can write β as the sum ᾱ1 + ...+ ᾱm of simple roots ᾱi ∈ ∆n = {αl, ..., αl−n} (here
the ᾱi are not necessarily distinct) such that each partial sum ᾱ1 + ... + ᾱi is a root for
1 ≤ i ≤ m. Thus, ᾱ1 + ... + ᾱm−1 is a root and of ht(ᾱ1 + ... + ᾱm−1) = k1 − 1. Let us
assume that ᾱ1 + ...+ ᾱm−1 6= α. The uniqueness of α yields that ᾱ1 + ...+ ᾱm−1 ∈ Φ+

n−1.
Hence, it holds

−(ᾱ1 + ...+ ᾱm−1) + β = αl−n. (5.2)

Denote by w̄ the minimum of the indices of the simple roots αw = ᾱi in ᾱ1 + ...+ ᾱm−1.
Then equation (5.2) yields w̄ > l − n. Take n̄ ∈ N such that w̄ = l − n̄. We obtain
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77 5.2 The transformation lemma for SP2l

n̄ < n. Hence, the outer induction assumption applied on n̄ yields the following shapes
for ᾱ1 + ...+ ᾱm−1:

η1 :=

l−n̄−2+k1∑
i=l−n̄

αi if 1 ≤ k1 − 1 ≤ n̄+ 1,

η2 :=

l+n̄−k1+1∑
i=l−n̄

αi + 2

l−1∑
i=l+n̄−k1+2

αi + αl if n̄+ 2 ≤ k1 − 1 ≤ 2n̄ and

η3 := 2

l−1∑
i=l−n̄

αi + αl if k1 − 1 = 2n̄+ 1.

Assume l − n̄ > l − n+ 1. To simplify notation we denote the three possibilities for β by
βi := ηi + αl−n with i = 1, 2, 3. Then we compute the integers 〈βi, αl−n〉 as

〈βi, αl−n〉 = 〈ηi, αl−n〉+ 〈αl−n, αl−n〉 = 2.

Hence, we obtain a contradiction, since the image of βi under the reflection σαl−n is

σαl−n(βi) = βi − 〈βi, αl−n〉αl−n = βi − 2αl−n = ηi − αl−n (5.3)

and the right hand side of equation (5.3) is not a root. We conclude that l − n̄ = l − n.
Thus we obtain the inequality k1 − 1 < n + 1 = n̄ + 2. Hence, the induction assumption
forces ᾱ1 + ...+ ᾱm−1 to have the shape:

ᾱ1 + ...+ ᾱm−1 =

l−n̄−2+k1∑
i=l−n̄

αi =

l−n−1+k1∑
i=l−n+1

αi.

But then β would be the root

β = ᾱ1 + ...+ ᾱm−1 + αl−n =

l−n−1+k1∑
i=l−n+1

αi + αl−n

which we constructed above. This contradicts the assumption β 6= α+ αl−n+k1 .
By [Hum72, Section 10.4, Lemma C] the irreducible root system Φn of type Cn+1 contains
at most two root lengths. Further [Hum72, Section 9.4, Table 1] implies that for two roots
α, β of Φn which are of equal length and nonproportional, it holds 〈α, β〉 = 〈β, α〉 = ±1.
With the help of the Cartan matrix we conclude that the simple roots α1, ..., αl−1 of Φ
are of equal length. Since 〈αl−1, αl〉 = −1 and 〈αl, αl−1〉 = −2 we obtain that the roots
α1, ..., αl−1 are short and αl is long.
Now we check that the sum of α =

∑l−n−2+k1
i=l−n αi and αj ∈ {αl, ..., αl−n} \ {αl−n−1+k1} is

not a root of Φ+
n . This will complete the first inner induction. For j ∈ {l − n, ..., l − n −

2 + k1}, we obtain

〈α+ αj , αj〉 = (1− δl−n,j)〈αj−1, αj〉+ 2〈αj , αj〉+ (1− δl−n−2+k1,j)〈αj+1, αj〉 ≥ 2.

Similarly we have 〈α+ αj , αj〉 = 〈αj , αj〉 = 2 for j ∈ {l − n+ k1, ..., l − 1} where we have
to assume n > k1. For j = l, we get

〈α+ αl, αl−1〉 = 〈αl, αl−1〉+ δl−2,l−n−2+k1〈αl−2, αl−1〉 = −2− δl−2,l−n−2+k1 ≤ −2.
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Thus the root α + αj has to be long. By [Hum72, Section 10.4, Lemma C] all roots of a
given length are conjugate under the Weyl group, i.e., it exists σβ̃ with β̃ ∈ Φn such that

σβ̃ = α+ αj − 〈α+ αj , β̃〉β̃ = αl. (5.4)

Let j ∈ {l−n, ..., l−1} and β̃ =
∑l

i=l−n kiαi ∈ Φ+
n . This forces kl = 1 and 〈α+αj , β̃〉 = −1.

Thus, it can not hold equality in equation (5.4). Similarly we deduce for β̃ ∈ Φ−n . Let
j = l and k1 ≤ n. Then the integer 〈α + αl, αl〉 = 2 implies that α + αl is not long.
Since α+ αj is neither short nor long it can not be a root. This completes the first inner
induction.
We start the second inner induction: For k2 ∈ {n + 2, ..., 2n}, there exists a unique root
α ∈ Φ+

n \ Φ+
n−1 with ht(α) = k2 and α is of the form

α =

l+n−k2∑
i=l−n

αi + 2
l−1∑

i=l+n−k2+1

αi + αl.

Let k2 = n + 2. The first inner induction hypothesis yields for k1 = n + 1 that there is
a unique root α ∈ Φ+

n \ Φ+
n−1 with ht(α) = k1 and α has shape α =

∑l
i=l−n αi. For the

construction of a root satisfying the proposed assertion, we compute for the simple root
αl−1 the integer 〈α, αl−1〉:

〈α, αl−1〉 =

l∑
i=l−n

〈αi, αl−1〉 = 〈αl−2, αl−1〉+ 〈αl−1, αl−1〉+ 〈αl, αl−1〉 = −1.

Hence, the reflection σαl−1
maps α to the root

σαl−1
(α) =

l∑
i=l−n

αi − 〈α, αl−1〉αl−1 =

l−2∑
i=l−n

αi + 2αl−1 + αl

which satisfies the desired properties apart from the uniqueness. Therefore, let β ∈ Φ+
n \

Φ+
n−1 with β 6= α + αl−1 and ht(β) = k2. As before, [Hum72, Section 10.2, Corollary]

yields the possibility to write β as ᾱ1 + ... + ᾱm with ᾱi ∈ ∆n in such a way that each
partial sum ᾱ1 + ...+ ᾱi with 1 ≤ i ≤ m is a root. It follows at once that ᾱ1 + ...+ ᾱm−1

is a root of ht(ᾱ1 + ... + ᾱm−1) = k2 − 1. Assume that α is different to ᾱ1 + ... + ᾱm−1.
The uniqueness of α implies ᾱ1 + ... + ᾱm−1 ∈ Φ+

n−1. This allows us to deduce that
−(ᾱ1 + ... + ᾱm−1) + β = αl−n. Again, we denote by w̄ the minimum of the indices of
the simple roots αw = ᾱi in ᾱ1 + ... + ᾱm−1. Then it has to hold w̄ > l − n. Let n̄ ∈ N
such that l − n̄ = w̄ and suppose l − n̄ > l − n + 1 or equivalent n̄ + 1 < n. We have
k2 − 1 = n+ 1 > n̄+ 2. We can apply the outer induction assumption to ᾱ1 + ...+ ᾱm−1.
This yields for ᾱ1 + ...+ ᾱm−1 the shapes

η1 :=

l+n̄−k2+1∑
i=l−n̄

αi + 2

l−1∑
i=l−n̄−k2+2

αi + αl if n̄+ 2 ≤ k2 − 1 ≤ 2n̄ and

η2 :=

l−1∑
i=l−n̄

αi + αl if k2 − 1 = 2n̄+ 1.
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79 5.2 The transformation lemma for SP2l

Thus, the integer 〈ηi + αl−n, αl−n〉 with i = 1, 2 computes as 〈ηi + αl−n, αl−n〉 = 2. Hence,
the reflection σαl−n sends ηi + αl−n to

σαl−n(ηi + αl−n) = ηi + αl−n − 〈ηi + αl−n, αl−n〉αl−n = ηi − αl−n.

Since the right hand side is not a root, we get a contradiction. Hence, we have n̄+ 1 = n
and so it holds k2− 1 = n+ 1 = n̄+ 2. We make use of this to deduce that ᾱ1 + ...+ ᾱm−1

has shape

ᾱ1 + ...+ ᾱm−1 =

l+n̄−k2+1∑
i=l−n̄

αi + 2
l−1∑

l+w̄−k2+2

αi + αl =
l−2∑

i=l−n+1

αi + 2αl−1 + αl.

Then β = ᾱ1 + ...+ ᾱm−1 +αl−n =
∑l−2

i=l−n αi + 2αl−1 +αl is the root constructed above.
But this contradicts the assumption β 6= α + αl−1. It remains to check that the sum
α + αj =

∑l
i=l−n αi + αj with αj ∈ {αl−n, ..., αl} \ {αl−1} is not a root. We compute for

j ∈ {l − n, ..., l − 2} the integer

〈α+ αj , αj〉 = (1− δl−n,j)〈αj−1, αj〉+ 2〈αj , αj〉+ 〈αj+1, αj〉 ≥ 2

and 〈α+αl, αl−1〉 = 〈αl−2, αl−1〉+〈αl−1, αl−1〉+2〈αl, αl−1〉 = 3. Hence the root α+αj has

to be long. By [Hum72, Section 10.4, Lemma D] all roots γ = 2
∑l−1

i=m αi + αl of maximal
height in Φm−l with m ∈ {l − n, ..., l − 1} are long. Thus there exists a reflection σβ̃ with

β̃ ∈ Φn such that

σβ̃(α+ αj) = α+ αj − 〈α+ αj , β̃〉β̃ = 2
l−1∑
i=j+1

αi + αl.

Let j 6= l and β̃ =
∑l

i=l−n kiαi ∈ Φ+
n . This forces the coefficient kl−1 to be 1 and

〈α + αj , β̃〉 = −1. But then kj has to be −2 what is impossible. Similarly we deduce for
β̃ ∈ Φ−n . For j = l, we compute 〈α + αl, αl〉 = 〈αl−1, αl〉 + 2〈αl, αl〉 = 3. Thus the sum
α+ αj is neither short nor long and so can not be a root of Φn.
Let n+2 < k2 ≤ 2n. As in the steps before we construct a root satisfying the requirements
of the induction assertion. The induction hypothesis implies that there exists a root

α =

l+n−k2+1∑
i=l−n

αi + 2
l−1∑

l+n−k2+2

αi + αl

in Φ+
n \ Φ+

n−1 with ht(α) = k2 − 1. The integer 〈α, αl+n−k2+1〉 calculates as

〈α, αl+n−k2+1〉 = 〈αl+n−k2 , αl+n−k2+1〉+ 〈αl+n−k2+1, αl+n−k2+1〉
+2 〈αl+n−k2+2, αl+n−k2+1〉 = −1 + 2− 2 = −1.

Hence, the reflection σαl+n−k2+1
maps α to

σαl+n−k2+1
(α) = α+ αl+n−k2+1.
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Obviously, the root α+αl+n−k2+1 =
∑l+n−k2

i=l−n αi+2
∑l−1

i=l+n−k2+1 αi+αl has the proposed

properties apart from the uniqueness. Therefore, assume there is a β ∈ Φ+
n \ Φ+

n−1 with
ht(β) = k2 and β 6= α + αl+n−k2+1. Then [Hum72, Section 10.2, Corollary] states that
we can write β as the sum ᾱ1 + ... + ᾱm of simple roots ᾱi ∈ ∆ where the ᾱi are not
necessarily distinct such that each partial sum ᾱ1 + ... + ᾱj with 1 ≤ j ≤ m is a root.
In particular, this yields that ᾱ1 + ... + ᾱm−1 is a root of ht(ᾱ1 + ... + ᾱm−1) = k2 − 1.
Suppose ᾱ1 + ...+ ᾱm−1 6= α. Since α is the unique root in Φ+

n \Φ+
n−1 with ht(α) = k2−1,

we have that ᾱ1 + ...+ ᾱm−1 /∈ Φ+
n \ Φ+

n−1. Thus, it holds

−(ᾱ1 + ...+ ᾱm−1) + β = αl−n. (5.5)

By w̄ we mean the minimum of the indices of the simple roots αw = ᾱi ∈ ∆ in ᾱ1 +
... + ᾱm−1. Take n̄ ∈ N such that l − n̄ = w̄. It follows l − n̄ > l − n. We make the
assumption that l − n̄ > l − n + 1, i.e., n̄ + 1 < n. Moreover, we additional observe that
k2− 1 ≥ n+ 2 > n̄+ 3. Hence, the outer induction assumption yields that ᾱ1 + ...+ ᾱm−1

is the unique root in Φ+
n̄ \Φ+

n̄−1 of height k2− 1 and by the above inequality the following
shapes for ᾱ1 + ...+ ᾱm−1 are possible:

η1 :=

l+n̄−k2+1∑
i=l−n̄

αi + 2

l−1∑
i=l+n̄−k2+2

αi + αl if n̄+ 3 ≤ k2 − 1 ≤ 2n̄ and

η2 := 2

l−1∑
i=l−n̄

αi + αl if k2 − 1 = 2n̄+ 1.

The reflection σαl−n maps ηi + αl−n for i = 1, 2 to

σαl−n(ηi + αl−n) = ηi + αl−n − 〈ηi + αl−n, αl−n〉αl−n = ηi − αl−n,

since the integer 〈ηi + αl−n, αl−n〉 equals 〈αl−n, αl−n〉 = 2. Thus, we have a contradiction
to our assumption and so l−n̄ = l−n+1. Easily, we check that the inequality k2−1 ≥ n̄+3
holds. Hence, the induction assumption yields

ᾱ1 + ...+ ᾱm−1 =

l+n̄−k2+1∑
i=l−n̄

αi + 2

l−1∑
l+n̄−k2+2

αi + αl =

l+n−k2∑
i=l−n+1

αi + 2

l−1∑
2l−n−k2+1

αi + αl

and so β = ᾱ1+...+ᾱm−1+αl−n =
∑l+n−k2

i=l−n αi+2
∑l−1

l+n−k2+1 αi+αl is the root constructed
above. It is left to check that the sum

α+ αj = (

m∑
i=l−n

αi + 2

l−1∑
i=m+1

αi + αl) + αj

with m ∈ {l + n − k2 + 1, ..., l − 2} and αj ∈ {αl−n, ..., αl} \ {αl+n−k2+1} is not a root of
Φ−n . For j ∈ {l − n, ...,m− 1}, we compute

〈α+ αj , αj〉 = (1− δl−n,j)〈αj−1, αj〉+ 2〈αj , αj〉+ 〈αj+1, αj〉 = −(1− δl−n,j) + 4− 1 ≥ 2.

Thus α+ αj has to be long. Then there exists a reflection σβ̃ with β̃ ∈ Φn such that

σβ̃(α+ αj) = α+ αj − 〈α+ αj , β̃〉β̃ = 2

l−1∑
i=j+1

αi + αl.
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Let β̃ =
∑l

i=l−n kiαi ∈ Φ+
n . Then it has to hold kj+1 = 1 and 〈α + αj , β̃〉 = −1. But we

get also kj = −2 which is impossible. Similarly we deduce for β̃ ∈ Φ−n .
For j ∈ {m+ 1, ..., l − 1}, we obtain the integer

〈α+ αj , αj〉 = (2− δm+1,j)〈αj−1, αj〉+ 3〈αj , αj〉+ (2− δl−1,j)〈αj+1, αj〉
= −(2− δm+1,j) + 6− 2 ≥ 2,

since we have (2− δl−1,j)〈αj+1, αj〉 = −2 for all j ∈ {m+ 1, ..., l − 1}. Hence, α+ αj has
to be long. Then there exists a reflection σβ̃ with β̃ ∈ Φn such that

σβ̃(α+ αj) = α+ αj − 〈α+ αj , β̃〉β̃ = 2

l−1∑
i=l−n

αi + αl.

Let β̃ =
∑l

i=l−n kiαi ∈ Φ+
n . Then it has to hold kj = 1 and 〈α + αj , β̃〉 = 1. But this

forces kl−n = −1, which is impossible. Similarly we deduce for the case β̃ ∈ Φ−n . Since the
sum α+ αj for j 6= l is neither short nor long, it can not be a root of Φn.
Suppose α + αl is a root. Then the reflection σαl−n · ... · σαm maps α + αl to the root

2
∑l

i=l−n αi which is higher than γl−n. Thus α + αl is not a root of Φ−n . This completes
the second inner induction.
Now let k = 2n + 1. By the outer induction assumption there exists a unique root α in
Φ+
n−1 \ Φ+

n−2 with ht(α) = 2n − 1 and α is of the form α = 2
∑l−1

i=l−n+1 αi + αl. Since
l − n < l − 1, integer 〈α, αl−n〉 computes as 〈α, αl−n〉 = 2 〈αl−n+1, αl−n〉 = −2. Hence,
σαl−n sends α to

σαl−n(α) = α− 〈α, αl−n〉αl−n = α+ 2αl−n = 2
l−1∑
i=l−n

αi + αl.

Evidently, the root 2
∑l−1

i=l−n αi +αl has the required shape and is of height 2n+ 1. Since

2
∑l−1

i=l−n αi +αl is the root of maximal height in Φn (see [Hum72, Section 12.2, Table 2]),
[Hum72, Section 10.4, Lemma A] implies the uniqueness of α in ∈ Φ+

n \ Φ+
n−1.

Now we prove the third point of the lemma.
If α ∈ Φ+

n \ {Φ+
n−1 ∪ {γl−n+1 =

∑l−1
i=l−n+1 αi + αl}}, then ht(α) = k < ht(γl−n+1). In

particular, Lemma 5.1.2 implies that there exists a unique β ∈ Φ+
n \ Φ+

n−1 such that
ht(β) = k + 1 ≤ ht(γl−n+1). Hence, the simple root β − α ∈ ∆ has the stated property.
Let α̃ ∈ ∆ be different from β − α and let β − α̃ be a root. By the uniqueness of α we
obtain β − α̃ /∈ Φ+

n \ Φ+
n−1. Therefore, it has to hold β − α̃ ∈ Φ+

n−1.
Finally, we show the last assertion.
Obviously, we have Φ ⊇ (

⋃l
i=1(Φi\Φi−1))∪Φ0. Let α =

∑l
i=1 kiαi ∈ Φ and let j ∈ {1, ..., l}

be minimal with kj 6= 0. Thus, α is an element of Φj \Φj−1 or α ∈ Φ0 if j = l. We obtain

the disjoint union Φ = (
⋃l
i=1(Φi \ Φi−1)) ∪ Φ0.

Lemma 5.2. Let n ∈ {1, ..., l − 1}. We denote by γi = αl+2
∑l−1

j=i αj the root of maximal

height in Φ−l−i. Furthermore, we define Φ0 = {±αl}. Let A0 =
∑l

i=1Xαi+
∑l−1−n

i=1 aγiXγi+∑
β∈Φ−n

aβXβ with aγi, aβ ∈ F . Then there exists U ∈ U− such that

UA0U
−1 + ∂(U)U−1 =

l∑
i=1

Xαi +

l−n∑
i=1

āγiXγi +
∑

β∈Φ−n−1

āβXβ
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with āγi , āβ ∈ F .

Proof. We are going to prove for each k ∈ {1, ..., 2n} the following claim:
For the matrix

Ak−1 =

l∑
i=1

Xαi +

l−n−1∑
i=1

aγiXγi +
∑

β∈Φ−n−1

aβXβ +
∑

α∈Φ−n \Φ−n−1,ht(α)≥k

aαXα

there exists U ∈ U− such that

Ak = UAk−1U
−1 + ∂(U)U−1 =

l∑
i=1

Xαi +
l−n−1∑
i=1

āγiXγi +
∑

β∈Φ−n−1

āβXβ +
∑

α∈Φ̄−n ,ht(α)>k

āαXα

with aγi , aβ, aα ∈ F and āγi , āβ, āα ∈ F . Note that in the following we will sometimes
write Φ̄−n for Φ−n \ Φ−n−1.
We want to delete the part of Ak−1 which lies in the root space corresponding to the root
α ∈ Φ−n \Φ−n−1 with ht(α) = k. Then by Lemma 5.1.3 there exists a root ᾱ ∈ ∆ such that

−α + ᾱ = β̄ ∈ Φ+
n \ Φ+

n−1 with ht(β̄) = k + 1. Thus, for −β̄ =: β̂ ∈ Φ−n \ Φ−n−1 we get

the equation β̂ + ᾱ = α. Therefore, we are going to differentially conjugate Ak−1 by the
parametrized root group element Uβ̂(ζ) ∈ Uβ̂. We use Observation 3.4 to write this as

Uβ̂(ζ)Ak−1Uβ̂(ζ)−1 + ∂(Uβ̂(ζ))Uβ̂(ζ)−1 =
l∑

i=1

Ad(Uβ̂(ζ))(Xαi) +
l−n−1∑
i=1

aγiAd(Uβ̂(ζ))(Xγi)

+
∑

β∈Φ−n−1

aβAd(Uβ̂(ζ))(Xβ) +
∑

α∈Φ̄−n ,ht(α)≥k

aαAd(Uβ̂(ζ))(Xα) + ∂(Uβ̂(ζ))Uβ̂(ζ)−1.

(5.6)

For the first summand of the right hand side of equation (5.6), we compute with the help
of Lemma 3.2

l∑
i=1

Ad(Uβ̂(ζ))(Xαi) =
l∑

i=1

q∑
j=0

mβ̂,αi,j
ζjXαi+jβ̂

. (5.7)

First we are interested in the case when j = 1. Then Lemma 5.1 yields that there exists a
unique ᾱ ∈ ∆ such that β̂+ ᾱ = α. Moreover, if there is another simple root α̃ ∈ ∆, α̃ 6= ᾱ
such that β̂+ α̃ is a root, then β̂+ α̃ ∈ Φ−n−1. Now let j > 1. Since ht(β̂) = k+ 1, it holds

that if αi + jβ̂ is a root, then αi + jβ̂ ∈ Φ−n \ Φ−n−1 and ht(αi + jβ̂) = j(k + 1) − 1 > k.
Therefore, we translate equation (5.7) into

l∑
i=1

Ad(Uβ̂(ζ))(Xαi) ∈
l∑

i=1

Xαi +mβ̂,ᾱ,1ζXα +
∑

β∈Φ−n−1

Lie(SP2l)β +
∑

β∈Φ̄−n ,ht(β)>k

Lie(SP2l)β.

(5.8)
As before, the second summand of equation (5.6) can be written by Lemma 3.2 as

l−n−1∑
i=1

aγiAd(Uβ̂(ζ))(Xγi) =

l−n−1∑
i=1

aγi

q∑
j=0

mβ̂,γi,j
ζjXγi+jβ̂

. (5.9)

82



83 5.2 The transformation lemma for SP2l

Since β̂ ∈ Φ−n \ Φ−n−1 and the γi are the roots of maximal height in Φ−l−i with i ∈
{1, ..., l − n− 1}, we conclude that for j ≥ i the sum γi + jβ̂ is not a root. Hence,
we get for equation (5.9)

l−n−1∑
i=1

aγiAd(Uβ̂(ζ))(Xγi) =

l−n−1∑
i=1

aγiXγi . (5.10)

Again, with the help of Lemma 3.2 we compute the third summand of equation (5.6) to
be ∑

β̄∈Φ−n−1

aβ̄Ad(Uβ̂(ζ))(Xβ̄) =
∑

β̄∈Φ−n−1

aβ̄

q∑
j=1

mβ̂,β̄,jζ
jXβ̄+jβ̂. (5.11)

It is easily seen that if for j ≥ 0 the sum β̄ + jβ̂ is a root, then β̄ + jβ̂ ∈ Φ−n \ Φ−n−1 and

ht(β̄ + jβ̂) > k + 1. Thus, we reformulate equation (5.11) as∑
β̄∈Φ−n−1

aβ̄Ad(Uβ̂(ζ))(Xβ̄) ∈
∑

β̄∈Φ−n−1

aβ̄Xβ̄ +
∑

β∈Φ̄−n ,ht(β)>k+1

Lie(SP2l)β. (5.12)

The fourth summand of the right hand side of equation (5.6) reads as∑
α∈Φ̄−n ,ht(α)≥k

aαAd(Uβ̂(ζ))(Xα) =
∑

α∈Φ̄−n ,ht(α)≥k

aα

q∑
j=1

mβ̂,α,jζ
jXα+jβ̂. (5.13)

If α+jβ̂ is a root for i ≥ 1, then, obviously α+jβ̂ ∈ Φ−n \Φ−n−1. The fact that ht(β̂) = k+1
implies in addition that ht(α+ jβ) > k + 1. Hence, equation (5.13) translates into∑
α∈Φ̄−n ,ht(α)≥k

aαAd(Uβ̂(ζ))(Xα) ∈
∑

α∈Φ̄−n ,ht(α)≥k

aαXα +
∑

α∈Φ̄−n ,ht(α)>k+1

Lie(SP2l)β. (5.14)

We come to the last summand of equation (5.6). Proposition 3.5 says that the logarithmic
derivative lδ maps the element Uβ̂(ζ) ∈ Uβ̂ to Lie(Uβ̂) = Lie(SP2l)β̂. Therefore,

∂(Uβ̂(ζ))Uβ̂(ζ)−1 ∈ Lie(SP2l)β̂ (5.15)

with ht(β̂) = k + 1 and β̂ ∈ Φ−n \ Φ−n−1. Putting the equations (5.8), (5.10), (5.12), (5.14)
and (5.15) together yields

Uβ̂(ζ)Ak−1Uβ̂(ζ)−1 + ∂(Uβ̂(ζ))Uβ̂(ζ)−1 ∈
l∑

i=1

Xαi + ζmβ̂,ᾱ,1Xα + aαXα +
l−n−1∑
i=1

aγiXγi

+
∑

β∈Φ−n−1

Lie(SP2l)β +
∑

β∈Φ̄−n ,ht(β)>k

Lie(SP2l)β.

Hence, if we set mβ̂,ᾱ,1ζ = −aα the claim follows.

Using the claim one proves then by induction that for each k ∈ {1, ..., 2n} there exists
U ∈ U− such that

UA0U
−1+∂(U)U−1 ∈

l∑
i=1

Xαi+
l−n−1∑
i=1

Lie(SP2l)γi+
∑

β∈Φ−n−1

Lie(SP2l)β+
∑

β∈Φ̄−n ,ht(β)>k

Lie(SP2l)β.

In particular, we get for k = 2n the assertion of the lemma.
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84 5 A parametrized equation for SP2l

Lemma 5.3. Let A ∈
∑l

i=1Xαi + H +
∑

β∈Φ− Lie(SP2l)β =
∑l

i=1Xαi + Lie(B−0 ). We

denote by {γi ∈ Φ− | 1 ≤ i ≤ l − 1} the set of roots γi = −αl − 2
∑l−1

j=i αj of maximal

height in the subsystems Φ−l−i. Moreover, let M = {γi ∈ Φ− | 1 ≤ i ≤ l−1}∪{−γl} where
−γl := −αl. Then there exists U ∈ U− such that

UAU−1 + ∂(U)U−1 ∈
l∑

i=1

Xαi +
∑
α∈M

Lie(SP2l)α.

Proof. First, we are going to prove the following claim: For each k ∈ {1, ..., l} let Ak =∑l
i=1Xαi +

∑l
i=k aiHi +

∑
β∈Φ− Lie(SP2l)β with ai ∈ F . Then there exists U ∈ U− such

that

UAkU
−1 + ∂(U)U−1 ∈

l∑
i=1

Xαi +
l∑

i=k+1

āiHi +
∑
β∈Φ−

Lie(SP2l)β.

We write the matrix Ak as Ak =
∑l

i=1Xαi+
∑l

i=k aiHi+
∑

β∈Φ− aβXβ for suitable aβ ∈ F .
To remove akHk we differentially conjugate Ak by U−αk(ζ) ∈ U−αk . More precisely, with
Observation 3.4 this reads as

U−αk(ζ)AkU−αk(ζ)−1 + ∂(U−αk(ζ))U−αk(ζ)−1 =

l∑
i=1

Ad(U−αk(ζ))(Xαi)

+
l∑

i=k

aiAd(U−αk(ζ))(Hi) +
∑
β∈Φ−

aβAd(U−αk(ζ))(Xβ) + lδ(U−αk(ζ)).

(5.16)

We start with the first summand of the right hand side of equation (5.16). Then Lemma 3.2
yields for i 6= k

Ad(U−αk(ζ))(Xαi) =
∑
j≥0

m−αk,αi,jζ
jXαi+j(−αk)

and if i = k we have Ad(U−αk(ζ))(Xαk) = Xαk + ζHαk − ζ2X−αk . Since αi − jαk is not a
root for i 6= k and j ≥ 1, we get

l∑
i=1

Ad(U−αk(ζ))(Xαi) ∈
l∑

i=1

Xαi + ζHk + Lie(SP2l)−αk . (5.17)

We handle the second summand of equation (5.16) with Lemma 3.2. It implies for l ≥ i ≥
k + 1 that

l∑
i=k+1

aiAd(U−αk(ζ))(Hi) =
l∑

i=k+1

ai(Hi − 〈αi, αk〉 ζX−αk)

and for i = k it yields akAd(U−αk(ζ))(Hk) = ak(Hk − 2ζX−αk). Hence, we can combine
these results to

l∑
i=k

aiAd(U−αk(ζ))(Hi) ∈
l∑

i=k

aiHi + Lie(SP2l)−αk . (5.18)
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85 5.3 The equation with group SP2l

We use the fact that for β ∈ Φ− and j ≥ 0 the sum β + j(−αk) ∈ Φ− to calculate the
third summand to lie in∑

β∈Φ−

aβAd(U−αk(ζ))(Xβ) ∈
∑
β∈Φ−

Lie(SP2l)β. (5.19)

For the last summand of equation (5.16), Proposition 3.5 implies

lδ(U−αk(ζ)) = ∂(U−αk(ζ))U−αk(ζ)−1 ∈ Lie(SP2l)−αk . (5.20)

Hence, if we put the equations (5.17), (5.18), (5.19) and (5.20) together and set ζ = −ak
we get the assumption of the claim.
One uses then the claim to prove by induction that for each k ∈ {1, ..., l} there exists
U ∈ U− such that

UAU−1 + ∂(U)U−1 ∈
l∑

i=1

Xαi +
l∑

i=k+1

aiHi +
∑
β∈Φ−

Lie(SP2l)β.

In particular, this yields for k = l that there exists U ∈ U− such that

A0 = UAU−1 + ∂(U)U−1 ∈
l∑

i=1

Xαi +
∑
β∈Φ−

Lie(SP2l)β.

Again, one proves by an inductive argument together with Lemma 5.2 that for each n ∈
{1, ..., l − 1} and A0 there exists U ∈ U− such that

U−1A0U − U−1U ′ ∈
l∑

i=1

Xαi +
l−n∑
i=1

Lie(SP2l)γi +
∑

β∈Φ−n−1

Lie(SP2l)β.

Remember that Φ0 is defined as Φ−0 = {−αl = −γl}. Then, the lemma follows for n =
1.

5.3 The equation with group SP2l

The next step is to combine the results of Corollary 3.12 and Lemma 5.3, since we want
to apply later the specialization bound. Therefore, let C(z) be a rational function field
with standard derivation ∂ = d

dz as in Section 3.4 and keep the notations of Lemma 5.3.

Corollary 5.4. Apply Corollary 3.12 to the group SP2l and the above Cartan Decompo-
sition. We denote by AM&S

SP2l
the matrix satisfying the stated conditions of Corollary 3.12.

Then there exists U ∈ U−0 ⊂ SP2l such that

ĀSp2l
:= UAM&S

SP2l
U−1 + ∂(U)U−1 =

∑
α∈∆

Xα +
∑
γi∈M

fiXγi (5.21)

with at least one fi ∈ C [z] \ C and the differential Galois group of the matrix equation
∂(y) = ĀSP2l

y is SP2l(C) over C(z).
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86 5 A parametrized equation for SP2l

Proof. Lemma 5.3 proves the existence of an element U ∈ U−0 ⊂ SP2l such that equa-
tion (5.21) holds. Since differential conjugation defines a differential isomorphism, we
deduce with Corollary 3.12 that the differential Galois group of ∂(y) = ĀSP2l

y is again
SP2l(C) over C(z). We still need to show the existence of fi ∈ C [z] \C for some γi ∈M.
Suppose ĀSP2l

=
∑

α∈∆Xα +
∑

γi∈T fiXγi ∈ Lie(SP2l)(C). Then by Lemma 5.5 the
corresponding differential equation L(y, f1, ..., fl) ∈ C {y} has coefficients in C. But
then by [Mag94, Corollary 3.28] the differential Galois group is abelian. Thus ĀSP2l

∈
Lie(SP2l)(C(z)) \ Lie(SP2l)(C). Since 0 6= A1 ∈ H(C) and A = (z2A1 + A0) in Corol-
lary 3.12 we start our transformation with at least one coefficient lying in C [z]\C. In each
step the application of Ad(Uβ(ζ)) generates at most new entries which are polynomials in
ζ. Moreover, the logarithmic derivative is the product of the two matrices ∂(Uβ(ζ)) and
Uβ(ζ)−1 = Uβ(−ζ). In the proofs of Lemma 5.3 and Lemma 5.2 we choose the parameter
ζ to be one of the coefficients. Hence, it holds fi ∈ C[z] \ C.

Our goal is to produce parametric equations for the series SP2l. Therefore, let t1, ..., tl
be differential indeterminates and define the differential field F = C 〈t1, ..., tl〉. Moreover,
define the matrix ASP2l

(t1, ..., tl) as

ASp2l
(t1, ..., tl) =

∑
α∈∆

Xα +
∑
β∈M

tβXβ

where M is as in Lemma 5.3. The next step is to compute a linear differential equation
for SP2l from the matrix differential equation ∂(y) = ASP2l

(t1, ..., tl)y.

Lemma 5.5. The matrix differential equation ∂(y) = ASP2l
(t1, ..., tl)y is differentially

equivalent to the homogeneous scalar linear differential equation

L(y, t1, ..., tl) = y(2l) −
l∑

i=1

(−1)i−1(ti y
(l−i))(l−i) = 0

Proof. From the description of the Lie algebra Lie(SP2l) in Section 5.1 we see that the
matrix equation ∂(y) = ASP2l

(t1, ..., tl)y has shape



∂(y1)
y2
...

...
∂(y2l−1)
∂(y2l)


=



0 1
. . .

. . .

1
0 1

0 t1 0 −1

0
. . .

. . .

0 −1
tl 0 0


·



y1

y2
...

...
y2l−1

y2l


.

To simplify notation we will write y′i for ∂(yi). Equivalently to the above matrix equation,
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87 5.3 The equation with group SP2l

we have the following system of equations

y′1 = y2

...

y′l = yl+1

y′l+1 = t1 yl − yl+2

...

y′2l−1 = tl−1 y2 − y2l

y′2l = tl y1.

We want to show that we can transform the system in a single differential equation in
y1, i.e., y1 is a cyclic vector for the matrix differential equation ∂(y) = ASP2l

(t1, ..., tl)y.
Therefore, we claim that for each n, with 2 ≤ n ≤ l, the corresponding subsystem

y′n = yn+1

...

y′l = yl+1

y′l+1 = t1 yl − yl+2

...

y′2l−n+1 = tl−n+1 yn − y2l−n+2

yields the equation

y(2l−2n+2)
n =

l−n+1∑
i=1

(−1)i−1(ti y
(l−n+1−i)
n )(l−n+1−i) + (−1)l−n+1y2l−n+2.

The proof of the claim will be done by backwards induction.
For n = l, we have the subsystem

y′l = yl+1

y′l+1 = t1 yl − yl+2.

Differentiating the first equation and then substituting y′l+1 by the second, we get

y′′l = y′l+1 = t1 yl − yl+2.
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88 5 A parametrized equation for SP2l

Now let 2 ≤ n < l. We obtain the following system of equations:

y′n = yn+1 (n)

y′n+1 = yn+2 (n+1)

...

y′l = yl+1

y′l+1 = t1 yl − yl+2

...

y′2l−n = tl−n yn+1 − y2l−n+1 (2l-n)

y′2l−n+1 = tl−n+1 yn − y2l−n+2 (2l-n+1)

By the induction assumption the subsystem formed by equation (n+1) up to equation (2l-
n) leads to

y2l−2n
n+1 =

l−n∑
i=1

(−1)i−1(ti y
(l−n−i)
n+1 )(l−n−i) + (−1)(l−n)y2l−n+1. (I)

We substitute yn+1 by y′n in equation (I) and obtain

y(2l−2n+1)
n =

l−n∑
i=1

(−1)i−1(tiy
(l−n+1−i)
n )(l−n−i) + (−1)(l−n)y2l−n+1. (II)

Differentiating equation (II) and substituting y′2l−n+1 by equation (2l-n+1 ) yields

y(2l−2n+2)
n =

l−n∑
i=1

(−1)i−1(tiy
(l−n+1−i)
n )(l−n+1−i)) + (−1)(l−n)(tl−n+1yn − y2l−n+2)

=

l−n∑
i=1

(−1)i−1(tiy
(l−n+1−i)
n )(l−n+1−i)) + (−1)(l−n)tl−n+1yn

+(−1)l−n+1y2l−n+2

=

l−n+1∑
i=1

(−1)i−1(tiy
(l−n+1−i)
n )(l−n+1−i)) + (−1)l−n+1y2l−n+2.

Thus, the claim is shown.
Now we return to the proof of the lemma. We apply the claim to the subsystem of the
initial system, obtained by leaving out the first and last equation, i.e., we consider the
case n = 2, and get

y
(2l−2)
2 =

l−1∑
i=1

(−1)i−1(tiy
(l−i−1)
2 )(l−i−1)) + (−1)l−1y2l.

As in the induction step we substitute y2 by y′1. This leads to the equation

y
(2l−1)
1 =

l−1∑
i=1

(−1)i−1(tiy
(l−i)
1 )(l−i−1) + (−1)l−1y2l. (III)
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89 5.3 The equation with group SP2l

At last we differentiate equation (III) and write tl y1 for y′2l. Hence, we obtain

y
(2l)
1 =

l−1∑
i=1

(−1)i−1(tiy
(l−i)
1 )(l−i)) + (−1)l−1tl yl)

=

l∑
i=1

(−1)i−1(tiy
(l−i)
1 )(l−i)).

This completes the proof of the lemma.

Theorem 5.6. Let C be an algebraically closed field of characteristic zero, t1, ..., tl differ-
ential indeterminates and F = C 〈t1, ..., tl〉 the corresponding differential field. Then the
homogeneous linear differential equation

L(y, t1, ..., tl) = y(2l) −
l∑

i=1

(−1)i−1(ti y
(l−i))(l−i) = 0

has SP2l(C) as differential Galois group over F. Moreover, let F̂ be a differential field with
field of constants equal to C. Let Ê be a Picard-Vessiot extension over F̂ with differential
Galois group SP2l(C) and suppose the defining matrix differential equation ∂(y) = Ây
satisfies Â ∈

∑
α∈∆Xα+ Lie(B−0 ). Then there is a specialization L(y, t̂1, ..., t̂l) with t̂i ∈ F̂

such that L(y, t̂1, ..., t̂l) gives rise to the extension Ê over F̂ .

Proof. Let E be a Picard-Vessiot extension for the equation L(y, t1, ..., tl) = 0 over F
and denote by G its differential Galois group. Since the operator comes from the ma-
trix differential equation ∂(y) = ASp2l

(t1, ..., tl)y with ASP2l
(t1, ..., tl) ∈ Lie(SP2l)(F ),

Proposition 2.1 yields G(C) ≤ SP2l(C). By Corollary 5.4 there exists a specialization
σ : (t1, ..., tl) → (f1, ..., fl) with f1, ..., fl ∈ C[z] such that σ(ASP2l

(t1, ..., tl)) = ĀSP2l

and the differential Galois group of ∂(y) = ĀSP2l
y is SP2l(C). Moreover, we have

C{f1, ..., fl} = C[z]. Thus we can apply Corollary 2.15. This yields SP2l(C) ≤ G(C).
Hence, it holds G(C) = SP2l(C).
Since the defining matrix Â satisfies Â ∈

∑
α∈∆Xα+Lie(B−0 ), Lemma 5.3 provides that Â

is differentially equivalent to a matrix Ã =
∑

α∈∆Xα +
∑

γi∈T âiXγi with suitable âi ∈ F̂ .
Obviously, the specialization

σ̂ : (t1, ..., tl) 7→ (â1, ..., âl)

has the required property.
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Chapter 6

A parametrized equation for SO2l+1

6.1 The Lie algebra of SO2l+1 (type Bl)

We begin this chapter with the introduction of the root system of type Bl. Take l ∈ N,
with l ≥ 2, and write ε1, ..., εl for the standard orthonormal basis of Rl. We denote by
(·, ·) the standard inner product of Rl. Following [Hum72, Section 12.1], the root system
of type Bl consists of the vectors

Φ = {±εk, ±(εi − εj), ±(εi + εj) | 1 ≤ k ≤ l; 1 ≤ i ≤ j ≤ l} .

A basis of Φ is given by the set of l linear independent vectors

∆ = {αi = εi − εi+1, αl = εl | 1 ≤ i ≤ l − 1} .

The Cartan integers 〈αi, αj〉 = 2(αi, αj)/(αj , αj) can be taken from position (i, j) of the
Cartan Matrix. In case of Bl it has the shape

2 −1 0 . . . 0
−1 2 −1 0 . . . 0
0 −1 2 −1 0 . . . 0
. . . . . . . . . .
0 0 0 . . . −1 2 −2
0 0 0 0 . . 0 −1 2

 .

Let V be a 2l + 1 dimensional C-vector space with basis v1, ..., v2l+1 and let f be a
symmetric bilinear form on V given by the representing matrix

J =

 J0

2

J0

 ∈ C(2l+1)×(2l+1)

with respect to our basis. Here, the matrix J0 has shape J0 =

 1

· · ·

1

 ∈ C2l×2l.

The group SO2l+1 is defined as the group of all automorphisms A ∈ GL(V ) leaving invari-
ant a non degenerated bilinear form. We choose this bilinear form to be defined by the
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92 6 A parametrized equation for SO2l+1

representing matrix J . Hence, SO2l+1 is the set of matrices

SO2l+1 = {A ∈ GL2l+1 | ATJA = J}.

Then the Lie algebra Lie(SO2l+1) of SO2l+1 is defined by all matrices X ∈ C(2l+1)×(2l+1)

leaving the symmetric bilinear form f invariant, i.e., for v, w ∈ V the matrix X has to
satisfy

f(Xv,w) = −f(v,Xw)⇔ (Xv)TJw = −vTJ(Xw)⇔ XTJ = −JX.

For i = 1, 2, let XT
0i, Xi0 ∈ C l and for all other indices 1 ≤ i, j ≤ 2, take Xij ∈ C l×l.

Moreover, let X00 be an element of C. Then, we can write the matrix X as

X =

 X11 X10 X12

X01 X00 X02

X21 X20 X22

 .

Furthermore, we renumber the rows and columns of X into 1, ..., l, 0,−1, ...,−l. Hence,
the above condition for X to be an element of Lie(SO2l+1) translates into

J0X11J0 = −XT
22

2X01 = −XT
20J0

J0X12J0 = −XT
12

2X02 = −XT
10J0

J0X21J0 = −XT
21

X00 = −X00.

The last equation obviously implies X00 = 0. It is easy to see that the l matrices

2Ei0 − E0,−l−1+i and E0i − 2E−l−1+i,0,

with 1 ≤ i ≤ l, satisfy the conditions of the fourth and fifth equation. A computation shows
that the conjugation J0MJ−1

0 of an elementM ∈ C l×l by J0 is reversingM and then taking
its transpose. Here we mean by the reversed matrix, the matrix obtained by reflecting the
entries at the second diagonal. Then the l diagonal matrices Eii − E−l−1+i,−l−1+i, with
1 ≤ i ≤ l, and the matrices

Eij − E−l−1+j,−l−1+i, Eji − E−l−1+i,−l−1+j ,

with 1 ≤ i < j ≤ l, have only non-zero entries in the blocks X11 and X22. We get that
they satisfy the condition of the first equation. Moreover, for 1 ≤ i, j ≤ l with i + j ≤ l,
the matrices

Ei,−j − El+1−j,−l−1+i, E−j,i − E−l−1+i,l+1−j ,

with non-zero entries in the blocks X12 and X21, satisfy the conditions of the second and
third equation. Denote by B the collection of all these matrices. Then the elements of B
are lineary independent, since for each position above the secondary diagonal there is a
unique matrix in B with a nonzero entry at this position. The number of elements in B is
equal to 2l2− l. But this number coincides with the dimension of Lie(SO2l+1) known from
literature (for example, see [Hum72, p.3]). Hence, the set B is a basis for Lie(SO2l+1).
The next step is to determine a Cartan Decomposition for Lie(SO2l+1). Therefore, we
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93 6.1 The Lie algebra of SO2l+1 (type Bl)

compute the standard maximal torus T0 of SO2l+1. Let T = diag(λ1, ..., λ2l+1) ∈ GL2l+1

be a diagonal matrix of GL2l+1. Then an explicit calculation of T TJT = J leads to

T TJT =



λ2l+1λ1

λ2
l+1

λ2l+1λ1


=



1

1

1


.

Thus, T ∈ SO2l+1 if and only if λ2l+1 = 1
λ1
, ..., λl+2 = 1

λl
and λl+1 = 1. Hence, the

elements of T0 are

T0 = {T = diag(λ1, ..., λl, 1,
1

λl
, ...,

1

λ1
) | λ1, ..., λl ∈ C×}.

Then we obtain for the conjugates of the basis elements of Lie(SO2l+1) by T ∈ T0

T (Eij − E−l−1+j,−l−1+i)T
−1 =

λi
λj

(Eij − E−l−1+j,−l−1+i),

T (Eji − E−l−1+i,−l−1+j)T
−1 =

λj
λi

(Eji − E−l−1+i,−l−1+j),

T (Ei,−j − El+1−j,−l−1+i)T
−1 = λiλl+1−j(Ei,−j − El+1−j,−l−1+i),

T (E−j,i − E−l−1+i,l+1−j)T
−1 =

1

λl+1−j

1

λi
(E−j,i − E−l−1+i,l+1−j),

T (2Ei0 − E0,−l−1+i)T
−1 = λi(2Ei0 − E0,−l−1+i),

T (E0i − 2E−l−1+i,0)T−1 =
1

λi
(E0i − 2E−l−1+i,0).

We conclude that the root system Φ of Lie(SO2l+1) is of type Bl. We can assign the
elements of B to their root spaces. For 1 ≤ i < j ≤ l, we define the matrices

Xεi−εj := Eij − E−l−1+j,−l−1+i, X−(εi−εj) := Eji − E−l−1+i,−l−1+j ,

and for 1 ≤ i, j ≤ l, i+ j ≤ l, the matrices

Xεi+εl+1−j := Ei,−j − El+1−j,−l−1+i, X−(εi+εl+1−j) := E−j,i − E−l−1+i,l+1−j .

Furthermore, for 1 ≤ i ≤ l, we set

Xεi := 2Ei0 − E0,−l−1+i and X−εi := E0i − 2E−l−1+i,0.

Thus, the Cartan decomposition of Lie(SO2l+1) has shape

Lie(SO2l+1) = H
⊕

i,j 〈Xεi−εj 〉C ⊕ 〈X−(εi−εj)〉C⊕
i,j 〈Xεi+εl+1−j 〉C ⊕ 〈X−(εi+εl+1−j)〉C⊕
i 〈Xεi〉C ⊕ 〈X−εi〉C ,
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94 6 A parametrized equation for SO2l+1

where the Cartan subalgebra H is generated by

H = 〈Eii − E−l−1+i,−l−1+i | 1 ≤ i ≤ l〉C .
Now we check if the above vectors form a Chevalley basis for SO2l+1. Therefore, we
compute

[Xεi−εj , X−(εi−εj)] = Eii + E−l−1+j,−l−1+j − Ejj − E−l−1+i,−l−1+i

=: Hεi−εj ,

[Xεi+εl+1−j , X−(εi+εl+1−j)] = Eii + El+1−j,l+1−j − E−j,−j − E−l−1+i,−l−1+i

=: Hεi+εl+1−j ,

[Xεi , X−εi ] = 2Eii − 2E−l−1+i,−l−1+i =: Hεi .

These are precisely the co-roots, since we have

[Hεi−εj , Xεi−εj ] = Eij − E−l−1+j,−l−1+i − (−Eij + E−l−1+j,−l−1+i) = Xεi−εj ,

[Hεi+εl+1−j , Xεi+εl+1−j ] = Ei,−j − El+1−j,−l−1+i − (−Ei,−j + El+1−j,−l−1+i)

= 2Xεi+εl+1−j ,

[Hεi , Xεi ] = 4Ei0 − 2E0,−l−1+i = 2Xεi .

We denote the l co-roots corresponding to the simple roots by

H1 = Hε1−ε2 , ...,Hl−1 = Hεl−1−εl and Hl := Hεl .

Now we define a morphism θ : Lie(SO2l+1)→ Lie(SO2l+1) by X 7→ −D−1XTD, where D
denotes diagonal matrix of shape

D =

 1l
2

1l

.

It is easily seen that θ is an automorphism of Lie(SO2l+1) which satisfies the following
equations:

θ(Xεi−εj ) = −X−(εi−εj)

θ(Xεi+εl+1−j ) = −X−(εi+εl+1−j)

θ(Xεi) = −X−εi .
In addition to these equations we have the identity

θ([X,Y ]) = −[X,Y ]T = [−XT ,−Y T ] = [θ(X), θ(Y )]. (6.1)

We define the number nα,β ∈ Z for two roots α, β ∈ Φ by the rule [Xα, Xβ] = nα,βXα+β.
The next step is to apply θ to [Xα, Xβ] = nα,βXα+β. This can be calculated with the help
of equation (6.1) as

−nα,βX−α−β = −[Xα, Xβ]T = [X−α, X−β] = n−α,−βX−α−β.

Thus, it holds −nα,β = n−α,−β. But [Car72, Theorem 4.1.2] yields the identity

nα,βn−α,−β = −(r + 1)2.

We conclude that nα,β is equal to ±(r + 1). Hence, the elements in

{Hi, Xα | 1 ≤ i ≤ l, α ∈ Φ}
form a Chevalley basis of Lie(SO2l+1).

94



95 6.2 The transformation lemma for SO2l+1

6.2 The transformation lemma for SO2l+1

In this section we are going to prove the transformation lemma for SO2l+1 over a differential
field (F, ∂) of characteristic zero. The proof is based on differential conjugation, i.e., on
the adjoint action and the logarithmic derivative which we can both describe by the root
system. Therefore we begin with the study of the root system of type Bl.

Lemma 6.1. For n ∈ {1, ..., l − 1}, let Φn := 〈αl, ..., αl−n〉Φ be the set of all Z-linear
combinations of the roots αl, ..., αl−n which lie in Φ and define Φ0 := {±αl}.

1. The set Φn ⊆ Φ = Φl−1 is an irreducible subsystem of Φ with Φn ∼ Bn+1.

2. For k ∈ {1, ..., 2n+ 1}, there exists a unique root α ∈ Φ+
n \ Φ+

n−1 with ht(α) = k,
and α has shape

α =
l−n−1+k∑
i=l−n

αi if 1 ≤ k ≤ n+ 1 and

α =

l+n+1−k∑
i=l−n

αi + 2

l∑
i=l+n+2−k

αi if n+ 2 ≤ k ≤ 2n+ 1.

3. Let α ∈ Φ+
n \{Φ+

n−1∪{γ = αl−n+2
∑l

i=l−n+1 αi}} with ht(α) = k. Then there exists
a unique ᾱ ∈ ∆ such that β = α+ ᾱ ∈ Φ+

n \ Φ+
n−1 and ht(β) = k + 1. If α̃ ∈ ∆ is a

simple root and β − α̃ is a root, then either β − α̃ = α or β − α̃ ∈ Φ+
n−1.

4. The root system Φ consists of the roots

Φ = {±(εi − εj) = ±
j−1∑
k=i

αk | 1 ≤ i < j ≤ l} ∪ {±εi = ±
l∑

k=i

αk | 1 ≤ i ≤ l}

∪ {±(εi + εj) = ±(

j−1∑
k=i

αk + 2
l∑

k=j

αk | 1 ≤ i < j ≤ l)}

Proof. The first assertion of the lemma is a consequence of the Dynkin diagram of type
Bl (e.g., see [Hum72, Section 11.4]).
We prove the second point. The fact that Φn is a root system of type Bn+1 together with
[Hum72, Section 10.4, Lemma A] yields that for n ∈ {1, ..., l − 1} there exists a unique
root γl−n of maximal height in Φn. Moreover, by [Hum72, Section 12.2, Table 2] γl−n has
shape γl−n = 2

∑l
i=l−n+1 αi + αl−n.

We are going to prove the assumption by induction on n ∈ {1, ..., l − 1}. The induction
step will be done by two additional inductions and a single computation.
Let n = 1. We will compute the root system Φ1 = 〈αl, αl−1〉Φ. Since the integer
〈αl−1, αl〉 can be read from the Cartan matrix as 〈αl−1, αl〉 = −2, the reflection σαl maps
αl−1 to

σαl(αl−1) = αl−1 − 〈αl−1, αl〉αl = αl−1 + 2αl,

the root of maximal height. Since root strings are unbroken, αl + αl−1 again is a root.
Remember that the only scalar multiples of a root α are ±α. Hence, Φ1 consists of the
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96 6 A parametrized equation for SO2l+1

roots Φ1 = {±αl,±αl−1,±(αl−1 + αl),±(2αl + αl−1)}. It is easy to see that these roots
satisfy the assumption.
Let 1 < n ≤ l − 1. We prove by induction on k1 ∈ {1, ..., n} that there exists a unique
root α ∈ Φ+

n \ Φ+
n−1 with ht(α) = k1 and the shape of α is

α =
l−n−1+k∑
i=l−n

αi.

Let k1 = 1. Then αl−n is the unique root of Φ+
n \ Φ+

n−1 with ht(αl−n) = 1.
Let 1 < k1 ≤ n. Then, by the induction assumption there exists an α ∈ Φ+

n \ Φ+
n−1

such that ht(α) = k1 − 1 and α has shape α =
∑l−n−2+k1

i=l−n αi. We calculate the integer
〈α, αl−n−1+k1〉 to be

〈
l−n−2+k1∑
i=l−n

αi, αl−n−1+k1〉 =

l−n−2+k1∑
i=l−n

〈αi, αl−n−1+k1〉 = −1.

Hence, the reflection σαl−n−1+k1
maps α to

σαl−n−1+k1
(α) = α− 〈α, αl−n−1+k1〉αl−n−1+k1 =

l−n−1+k1∑
i=l−n

αi.

Thus, we have constructed a root of ht(α + αl−n−1+k1) = k1, which lies in Φ+
n \ Φ+

n−1.
Suppose there is a root β ∈ Φ+

n \ Φ+
n−1 with ht(β) = k1 and β 6= α + αl−n−1+k1 . Then

[Hum72, Section 10.2, Corollary] implies that we can write β as the sum of simple roots,
i.e., β = ᾱ1 + ...+ ᾱm with ᾱi ∈ ∆ in such a way that each partial sum is a root. Hence,
ᾱ1+...+ᾱm−1 is a root of ht(ᾱ1+...+ᾱm−1) = k1−1. We assume that ᾱ1+...+ᾱm−1 6= α.
Then the uniqueness of α implies ᾱ1 + ...+ ᾱm−1 ∈ Φ+

n−1. Hence, we get the equation

−(ᾱ1 + ...+ ᾱm−1) + β = αl−n. (6.2)

Denote by w̄ the minimum of the indices of the simple roots αw = ᾱi in ᾱ1 + ...+ ᾱm−1.
Thus, equation (6.2) implies w̄ > l − n. Let n̄ ∈ N such that w̄ = l − n̄ holds. It follows
that n̄ < n. The induction hypothesis yields that the shape of ᾱ1 + ...+ ᾱm−1 is

η1 :=

l−n̄−2+k1∑
i=l−n̄

αi if 1 ≤ k1 − 1 ≤ n̄+ 1 and

η2 :=

l+n̄+2−k1∑
i=l−n̄

αi + 2
l∑

i=l+n̄+3−k1

αi if n̄+ 2 ≤ k1 − 1 ≤ 2n̄+ 1.

Let us assume l − n̄ > l − n + 1. To simplify the notation we set βi := ηi + αl−n. We
compute the integers 〈β1, αl−n〉 and 〈β2, αl−n〉. They are

〈β1, αl−n〉 =

l−n̄−2+k1∑
i=l−n̄

〈αi, αl−n〉+ 〈αl−n, αl−n〉 = 2 and

〈β2, αl−n〉 =

l+n̄+2−k1∑
i=l−n̄

〈αi, αl−n〉+ 2
l∑

i=l+n̄+3−k1

〈αi, αl−n〉+ 〈αl−n, αl−n〉 = 2.
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97 6.2 The transformation lemma for SO2l+1

Hence, the reflection σαl−n maps βi to

σαl−n(βi) = βi − 2αl−n = ηi − αl−n. (6.3)

Since the right hand side of equation (6.3) is not a root, we obtain a contradiction. This
forces l − n̄ = l − n+ 1. We observe that k1 − 1 < k1 ≤ n = n̄+ 1. Hence, the induction
assumption implies

ᾱ1 + ...+ ᾱm−1 =

l−n̄−2+k1∑
i=l−n̄

αi =

l−n+k1−1∑
i=l−n+1

αi.

But then

β =

l−n+k1−1∑
i=l−n+1

αi + αl−n =

l−n+k1−1∑
i=l−n

αi

is the root α+ αl−n constructed above. We obtain a contradiction.
From the Cartan matrix we obtain for 1 ≤ i ≤ l − 2 the integers

〈αi, αi+1〉 = 〈αi+1, αi〉 = −1.

Hence, the roots α1, ..., αl−1 are of equal length. The integers 〈αl, αl−1〉 = −1 and
〈αl−1, αl〉 = −2 imply together with [Hum72, Section 9.4, Table 1] that the roots α1, ..., αl−1

are long and αl is short.
It remains to check that the sum

α+ αj =

l−n−2+k1∑
i=l−n

αi + αj

with αj ∈ {αl−n, ..., αl} \ {αl−n−1+k1} is not a root. For j ∈ {l− n, ..., l− n− 2 + k1}, we
obtain

〈α+ αj , αj〉 = (1− δl−n,j)〈αj−1, αj〉+ 2〈αj , αj〉+ (1− δl−n−2+k1,j)〈αj+1, αj〉 ≥ 2.

Furthermore, for j ∈ {l − n + k1, ..., l − 1} and n > k1, we get 〈α + αj , αj〉 = 2. Thus
α+αj has a different length than αj , i.e., α+αj is a short root. But this forces the integer
〈α+αj , αj〉 to be 0 or ±1 by [Hum72, Section 9.4, Table 1], contradicting 〈α+αj , αj〉 ≥ 2.
For j = l, we have 〈α+ αl, αl〉 = 2. Thus, the reflection σαl maps α+ αl to the sum

σαl(α+ αl)− 〈α+ αl, αl〉αl = α− αl.

But α−αl is not a root. Thus, for every αj ∈ {αl−n, ..., αl}\{αl−n−1+k1}, the sum α+αj
is not a root. Hence, the assumption follows and the first inner induction is done.
Now let k = n+1. We have shown right before that there exists a unique root α ∈ Φ+

n \Φ+
n−1

with ht(α) = k − 1 and of shape α =
∑l−1

i=l−n αi. We compute the integer 〈α, αl〉 as

〈α, αl〉 =
∑l−1

i=l−n〈αi, αl〉 = −2. Thus, the image of α under the reflection σαl is

σαl(α) = α− 〈α, αl〉αl = α+ 2αl =
l−1∑
l−n

αi + 2αl.
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98 6 A parametrized equation for SO2l+1

Since root strings are unbroken, we have computed two roots. Namely, the root α+ αl of
ht(α+ αl) = n+ 1 and the root α+ 2αl of ht(α+ 2αl) = n+ 2. We prove the uniqueness
assumption for α + αl. Let β ∈ Φ+

n \ Φ+
n−1 with β 6= α + αl and ht(β) = n + 1. Write

β as ᾱ1 + ... + ᾱm with ᾱi ∈ ∆ in such a way that each partial sum is a root. Then, in
particular ᾱ1 + ... + ᾱm−1 is a root. Let us assume that ᾱ1 + ... + ᾱm−1 6= α. Then the
uniqueness of α ∈ Φ+

n \ Φ+
n−1 with ht(α) = k − 1 yields ᾱ1 + ... + ᾱm−1 ∈ Φ+

n−1. Hence,
we have −(ᾱ1 + ... + ᾱm−1) + β = αl−n. Denote by w̄ the minimum of the indices of
the simple roots αw = ᾱi in ᾱ1 + ... + ᾱm−1. We conclude that w̄ > l − n. Take n̄ ∈ N
such that w̄ = l − n̄ holds and assume l − n̄ > l − n + 1. The induction assumption for
k = n+ 1 > n̄+ 2 yields that ᾱ1 + ...+ ᾱm−1 has shape

η :=
l+n̄+2−k∑
i=l−n̄

αi + 2
l∑

i=l+n̄+3−k
αi.

We compute the integer 〈η + αl−n, αl−n〉 to be 〈η + αl−n, αl−n〉 = 2. Hence, we obtain

σαl−n(η + αl−n) = η − αl−n

as the image of η + α under σαl−n . This forces l− n̄ = l− n+ 1. From k − 1 = n = n̄+ 1
we conclude that ᾱ1 + ...+ ᾱm−1 is of shape

ᾱ1 + ...+ ᾱm−1 =
l∑

i=l−n+1

αi.

We observe that β = ᾱ1 + ...+ ᾱm−1 +αl−n =
∑l

i=l−n αi = α+αl is the root constructed
above, in contrast to the assumption. It remains to check that β = α + αj is not a root
for some j ∈ {l − n, ..., l − 1}. We compute

〈α+ αj , αj〉 = (1− δl−n,j)〈αj−1, αj〉+ 2〈αj , αj〉+ (1− δl−1,j)〈αj+1, αj〉 ≥ 2.

This implies as above that α+ αj is not a root.
We prove by induction on k2 ∈ {n+ 2, ..., 2n+ 1} that there exists a unique root α ∈
Φ+
n \ Φ+

n−1 such that ht(α) = k2 and α has shape

α =

l+n+1−k2∑
i=l−n

αi + 2

l∑
i=l+n+2−k2

αi.

Let k2 = n + 2. We have constructed above the root ᾱ + 2αl with ht(ᾱ + 2αl) = n + 2
where ᾱ was ᾱ =

∑l−1
i=l−n αi. We have also shown that α =

∑l
i=l−n αi is the unique root

in Φ+
n \ Φ+

n−1 with ht(α) = n + 1. Therefore, we write ᾱ + 2αl as the sum of α and αl.
Let β ∈ Φ+

n \Φ+
n−1 be another root with ht(β) = n+ 2 and β 6= α+ αl. We write again β

as ᾱ1 + ...+ ᾱm with ᾱj ∈ ∆ such that each partial sum is a root. Hence, ᾱ1 + ...+ ᾱm−1

is a root. Assume that ᾱ1 + ...+ ᾱm−1 is different to α. Then ᾱ1 + ...+ ᾱm−1 ∈ Φ+
n−1 by

the uniqueness of α. Furthermore, we obtain

−(ᾱ1 + ...+ ᾱm−1)− β = αl−n.
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Denote by w̄ the minimum of the indices of the simple roots αw = ᾱi ∈ ∆n in ᾱ1+...+ᾱm−1.
It follows w̄ > l − n. Let n ∈ N such that w̄ = l − n̄ holds and assume l − n̄ > l − n+ 1.
Then k2 − 1 = n+ 1 = n̄+ 2 and therefore

m−1∑
i=1

ᾱi =

l+n̄+2−k2∑
i=l−n̄

αi + 2

l∑
i=l+n̄+3−k2

αi.

We observe that the integer 〈β, αl−n〉 is equal to 〈αl−n, αl−n〉 = 2. We get that the
reflection σαl−n maps β to

σαl−n(β) = β − 〈β, αl−n〉αl−n = ᾱ1 + ...+ ᾱm−1 − αl−n.

Hence, l− n̄ = l−n+1 holds. We compute k2−1 = n+1 = n̄+2. Applying the induction
hypothesis yields that the shape of ᾱ1 + ...+ ᾱm−1 is

ᾱ1 + ...+ ᾱm−1 =

l−1∑
i=l−n+1

αi + 2αl.

Thus, β = ᾱ1 + ...+ ᾱm−1 + αl−n is the root constructed above, which contradicts to the
assumption β 6= α + αl. It remains to check that the sum α + αj =

∑l
i=l−n αi + αj with

j ∈ {l − n, ..., l − 1} is not a root. We compute

〈α+ αj , αj〉 = (1− δl−n,j)〈αj−1, αj〉+ 2〈αj , αj〉+ 〈αj+1, αj〉 ≥ 2.

Hence, the root α+αj has to be short. But this forces 〈α+αj , αj〉 = 0 or 〈α+αj , αj〉 = ±1.
We conclude that α + αj is not a root. Therefore α + αl is the unique root of height
ht(α+ αl) = n+ 2 in Φ+

n \ Φ+
n−1.

Now let n + 2 < k2 ≤ 2n + 1. By the induction assumption there exists α ∈ Φ+
n \ Φ+

n−1

with ht(α) = k2 − 1 and the shape of α is

α =

l+n+2−k2∑
i=l−n

αi + 2

l∑
i=l+n+3−k2

αi.

We compute the integer 〈α, αl+n+2−k2〉. This reads as

〈
l+n+2−k2∑
i=l−n

αi + 2
l∑

i=l+n+3−k2

αi, αl+n+2−k2〉 =

〈αl+n+1−k2 , αl+n+2−k2〉+ 〈αl+n+2−k2 , αl+n+2−k2〉+ 2〈αl+n+3−k2 , αl+n+2−k2〉 =

−1 + 2− 2 = −1.

Hence, the reflection σαl+n+2−k2
sends α to

σαl+n+2−k2
(α) = α+ αl+n+2−k2 =

l+n+1−k2∑
i=l−n

αi + 2

l∑
i=l+n+2−k2

αi.

Thus, α + αl+n+2−k2 is a root of ht(α + αl+n+2−k2) = k2 and lies in Φ+
n \ Φ+

n−1. Assume
there exists β ∈ Φ+

n \ Φ+
n−1 with ht(β) = k2 and β 6= α + αl+n+2−k2 . We write β as the
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100 6 A parametrized equation for SO2l+1

sum of simple roots, i.e., β = ᾱ1 + ...+ ᾱm with ᾱi ∈ ∆n in such a way that each partial
sum is a root. Suppose that the root ᾱ1 + ...+ ᾱm−1 6= α. Since α is unique in Φ+

n \Φ+
n−1,

it has to hold that ᾱ1 + ...+ ᾱm−1 ∈ Φ+
n−1 and therefore we obtain

−(ᾱ1 + ...+ ᾱm−1) + β = αl−n. (6.4)

Let w̄ be the minimum of the indices of the simple roots αw = ᾱi in ᾱ1 + ...+ ᾱm−1. Then,
we conclude from equation (6.4) that w̄ > n. Let n̄ ∈ N such that w̄ = l − n̄ holds and
suppose l − n̄ > l − n + 1. We deduce that k2 − 1 > n + 1 > n̄ + 1. Thus, the induction
assumption yields that ᾱ1 + ...+ ᾱm−1 is of the form

ᾱ1 + ...+ ᾱm−1 =

l+n̄+2−k2∑
i=l−n̄

αi + 2

l∑
i=l+n̄+3−k2

αi.

The integer 〈β, αl−n〉 = 〈αl−n + ᾱ1 + ...+ ᾱm−1, αl−n〉 = 2 implies

σαl−n(β) = β − 2αl−n = ᾱ1 + ...+ ᾱm−1 − αl−n. (6.5)

Since the right hand side of equation (6.5) is not a root, we get a contradiction. It follows
l− n̄ = l−n+ 1. Hence, we have k2− 1 > n+ 1 = n̄+ 2 and so the induction assumption
yields for the shape of ᾱ1 + ...+ ᾱm−1 the following sum of simple roots:

ᾱ1 + ...+ ᾱm−1 =

l+n̄+2−k2∑
i=l−n̄

αi + 2
l∑

i=l+n̄+3−k2

αi =

l+n+1−k2∑
i=l−n+1

αi + 2
l∑

i=l+n+2−k2

αi.

But then β + αl−n is the root constructed right before. It remains to check that the sum

α+ αj =

l+n+2−k2∑
i=l−n

αi + 2

l∑
i=l+n+3−k2

αi + αj

with j ∈ {l− n, ..., l} \ {l+ n+ 2− k2} is not a root. For j ∈ {l− n, ..., l+ n+ 1− k2} we
obtain

〈α+ αj , αj〉 = (1− δl−n,j)〈αj−1, αj〉+ 2〈αj , αj〉+ 〈αj+1, αj〉 ≥ 2.

Further, for j ∈ {l+ n+ 3− k2, ..., l− 1}, where we have to assume n > 2 and k2 ≥ n+ 4,
we get

〈α+ αj , αj〉 = (2− δl+n+3−k2,j)〈αj−1, αj〉+ 3〈αj , αj〉+ 2〈αj+1, αj〉 ≥ 2.

We conclude, as above, that the root α + αj is neither short nor long. For j = l, we
compute

〈α+ αl, αl〉 = (2− δk2,n+3)〈αl−1, αl〉+ 3〈αl, αl〉 ≥ 2.

Thus, the root α + αl has to be long. By [Hum72, Section 10.4, Lemma D] the root of
maximal height is long and by [Hum72, Section 10.4, Lemma C] all roots of a given length
are conjugate under the Weyl group. Hence there exists σβ̃ with β̃ ∈ Φn such that

σβ̃(α+ αl) = α+ αl − 〈α+ αl, β̃〉β̃ = αl−n + 2
l∑

i=l−n+1

αi.
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101 6.2 The transformation lemma for SO2l+1

Let β̃ =
∑l

i=l−n kiαi ∈ Φ+
n . Then we obtain kl = 1 and 〈α + αl, β̃〉 = 1. This forces

kl−n+1 = −1 which is impossible. Similarly we deduce that α+αl is not long for β̃ ∈ Φ−n .
Hence α+αl is not a root. We conclude that there is no possibility for the sum α+αj with
j ∈ {l−n, ..., l} \ {l+n+ 2− k2} to be a root. This completes the second inner induction.
Hence, the outer induction is complete and the second point of the lemma follows.
Now we show the third point of the lemma.
If α ∈ Φ+

n \ {Φ+
n−1 ∪ {γl−n = 2

∑l
i=l−n+1 αi + αl−n}}, then ht(α) = k < ht(γl−n). In

particular, Lemma 6.1.2 yields that there exists a unique root β ∈ Φ+
n \ Φ+

n−1 such that
ht(β) = k + 1 ≤ ht(γl−n). Obviously, the simple root β − α ∈ ∆ satisfies the stated
property. Let α̃ ∈ ∆ be different from β − α and let β − α̃ be a root. By the uniqueness
of α we obtain β − α̃ /∈ Φ+

n \ Φ+
n−1. Therefore, β − α̃ ∈ Φ+

n−1 holds.
Finally, we prove the last assertion of the lemma.
Obviously, we have Φ ⊇ (

⋃l
i=1(Φi\Φi−1))∪Φ0. Let α =

∑l
i=1 kiαi ∈ Φ and let j ∈ {1, ..., l}

be minimal with kj 6= 0. Thus, α is an element of Φj \Φj−1 or α ∈ Φ0 if j = l. We obtain

the disjoint union Φ = (
⋃l
i=1(Φi \ Φi−1)) ∪ Φ0.

Lemma 6.2. Let n ∈ {1, ..., l − 1}. We denote by γi = 2
∑l

j=i+1 αj + αi the root of

maximal height in Φ−l−i. Moreover, as before we define the set Φ0 = {±αl}. Then for

A0 =
∑l

i=1Xαi +
∑l−n−1

i=1 aγiXγi +
∑

β∈Φ−n
aβXβ with aγ , aβ ∈ F there exists U ∈ U−

such that

UA0U
−1 + ∂(U)U−1 =

l∑
i=1

Xαi +

l−n∑
i=1

āγiXγi +
∑

β∈Φ−n−1

āβXβ.

Proof. Let k ∈ {1, ..., 2n} and set

Ak−1 :=

l∑
i=1

Xαi +

l−n−1∑
i=1

aγiXγi +
∑

β∈Φ−n−1

aβXβ +
∑

α∈Φ−n \Φ−n−1,ht(α)≥k

aαXα

with suitable aα, aβ, aγi ∈ F . To simplify the notation we write sometimes Φ̄−n for
Φ−n \Φ−n−1 and L for Lie(SO2l+1). We will prove the following claim: For the matrix Ak−1

there exists U ∈ U− such that

UAk−1U
−1 + ∂(U)U−1 =

l∑
i=1

Xαi +
l−n−1∑
i=1

āγiXγi +
∑

β∈Φ−n−1

āβXβ +
∑

α∈Φ̄−n ,ht(α)>k

āαXα

with āγi , āβ, āα ∈ F .
We are going to remove the root α ∈ Φ−n \ Φ−n+1 with ht(α) = k. Then by Lemma 6.1.3
there exists a root ᾱ ∈ ∆ such that −α + ᾱ = β̄ ∈ Φ−n \ Φ−n+1 with ht(β̄) = k + 1. Thus,

for β̂ := −β̄ ∈ Φ−n \ Φ−n+1, we have β̂ + ᾱ = α. Therefore, we are going to differentially
conjugate Ak−1 by the parametrized root group element Uβ̂(ζ) ∈ Uβ̂. With Observation 3.4
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102 6 A parametrized equation for SO2l+1

this leads to

Uβ̂(ζ)Ak−1Uβ̂(ζ)−1 + ∂(Uβ̂(ζ))Uβ̂(ζ)−1 =
l∑

i=1

Ad(Uβ̂(ζ))(Xαi) +

l−n−1∑
i=1

aγiAd(Uβ̂(ζ))(Xγi)

+
∑

β∈Φ−n−1

aβAd(Uβ̂(ζ))(Xβ) +
∑

α∈Φ̄−n ,ht(α)≥k

aαAd(Uβ̂(ζ))(Xα) + ∂(Uβ̂(ζ))Uβ̂(ζ)−1.

(6.6)

For the first summand of the right hand side of equation (6.6), we obtain with the help of
Lemma 3.2

l∑
i=1

Ad(Uβ̂(ζ))(Xαi) =
l∑

i=1

q∑
j=0

mβ̂,αi,j
ζjXαi+jβ̂

. (6.7)

First let j = 1. Then by the choice of β̂, i.e., the above discussion, and Lemma 6.1.3 there
exists a unique simple root ᾱi ∈ ∆ such that β̂ + ᾱi = α, and if there is another simple
root α̃j ∈ ∆ with α̃j 6= ᾱi such that β̂ + α̃j is a root, then β̂ + α̃j ∈ Φ−n−1. Now let j > 1.

Note that if αi+ jβ̂ is a root, then αi+ jβ̂ ∈ Φ−n \Φ−n−1. Furthermore, since ht(β̂) = k+1,

it holds that ht(αi + jβ̂) = j(k + 1)− 1 > k. Therefore, equation (6.7) translates into

l∑
i=1

Ad(Uβ̂(ζ))(Xαi) ∈
l∑

i=1

Xαi +mβ̂,ᾱ,1ζXα +
∑

β∈Φ−n−1

Lβ +
∑

β∈Φ̄−n ,ht(β)>k

Lβ. (6.8)

As above, the second summand can be written as

l−n−1∑
i=1

aγiAd(Uβ̂(ζ))(Xγi) =
l−n−1∑
i=1

aγi

q∑
j=0

mβ̂,γi,j
ζjXγi+jβ̂

. (6.9)

Since β̂ ∈ Φ−n \Φ−n−1 and for i ∈ {1, ..., l − n− 1} the γi are the roots of maximal height in

Φ−l−i, we conclude that the sum γi + jβ̂ can not be a root for j > 0. Thus, equation (6.9)
leads to

l−n−1∑
i=1

aγiAd(Uβ̂(ζ))(Xγi) =
l−n−1∑
i=1

aγiXγi . (6.10)

We compute the third summand of the right hand side of equation (6.6) with the help of
Lemma 3.2 and obtain

∑
β̄∈Φ−n−1

aβ̄Ad(Uβ̂(ζ))(Xβ̄) =
∑

β̄∈Φ−n−1

aβ̄

q∑
j=0

mβ̂,β̄,jζ
jXβ̄+jβ̂. (6.11)

It is easily seen that if β̄ + jβ̂ is a root, then β̄ + jβ̂ ∈ Φ−n \Φ−n−1 and ht(β̄ + jβ̂) > k+ 1.
Hence, equation (6.11) can be reformulated as∑

β̄∈Φ−n−1

aβ̄Ad(Uβ̂(ζ))(Xβ̄) ∈
∑

β̄∈Φ−n−1

aβ̄Xβ̄ +
∑

β∈Φ̄−n ,ht(β)>k+1

Lβ. (6.12)
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103 6.2 The transformation lemma for SO2l+1

For the fourth summand, we get by Lemma 3.2

∑
α∈Φ̄−n ,ht(α)≥k

aαAd(Uβ̂(ζ))(Xα) =
∑

α∈Φ̄−n ,ht(α)≥k

aα

q∑
j=0

mβ̂,α,jζ
jXα+jβ̂. (6.13)

If α+ jβ̂ is a root for j > 0, then it obviously holds that α+ jβ̂ ∈ Φ−n \ Φ−n−1. Moreover,

ht(β̂) = k + 1 implies ht(α+ jβ̂) > k + 1. This yields for equation (6.13)∑
α∈Φ̄−n ,ht(α)≥k

aαAd(Uβ̂(ζ))(Xα) ∈
∑

α∈Φ̄−n ,ht(α)≥k

aαXα +
∑

α∈Φ̄−n ,ht(α)>k+1

Lα. (6.14)

Proposition 3.5 states that the logarithmic derivative lδ maps an element Uβ(ζ) ∈ Uβ to
Lie(Uβ) for a root β ∈ Φ. Therefore, we have

lδ(Uβ̂(ζ)) = ∂(Uβ̂(ζ))Uβ̂(ζ)−1 ∈ Lβ̂ (6.15)

with ht(β̂) = k + 1 and β̂ ∈ Φ−n \ Φ−n−1. Putting the equations (6.8), (6.10), (6.12), (6.14)
and (6.15) together yields

Uβ̂(ζ)Ak−1Uβ̂(ζ)−1 + ∂(Uβ̂(ζ))Uβ̂(ζ)−1 ∈
l∑

i=1

Xαi +
l−n−1∑
i=1

aγiXγi+

ζXα + aαXα +
∑

β∈Φ−n−1

Lβ +
∑

β∈Φ̄−n ,ht(β)>k

Lβ.

Hence, if we set mβ̂,ᾱ,1ζ = −aα the claim follows. Using the claim one proves by induction

that for each k ∈ {1, ..., 2n} there exists U ∈ U− such that

UA0U
−1 + ∂(U)U−1 ∈

l∑
i=1

Xαi +

l−n−1∑
i=1

Lγi +
∑

β∈Φ−n−1

Lβ +
∑

β∈Φ̄−n ,ht(β)>k

Lβ.

In particular, for k = 2n, we get the assertion of the lemma.

Lemma 6.3. Let A ∈
∑l

i=1Xαi + H +
∑

β∈Φ− Lie(SO2l+1)β =
∑l

i=1Xαi + Lie(B−) and

define M = {−γi = −2
∑l

j=i+1 αj − αi | i ∈ {1, ..., l − 1}} ∪ {−γl := −αl}. Then there

exists U ∈ U− such that

UAU−1 + ∂(U)U−1 ∈
l∑

i=1

Xαi +
∑
α∈M

Lie(SO2l+1)α.

Proof. For k ∈ {1, ..., l}, let Ak =
∑l

i=1Xαi +
∑l

i=k aiHi +
∑

β∈Φ− Lie(SO2l+1)β with
suitable ai ∈ F . First we will prove the following claim: For the matrix Ak there exists
U ∈ U− such that

UAkU
−1 + ∂(U)U−1 ∈

l∑
i=1

Xαi +
l∑

i=k+1

aiHi +
∑
β∈Φ−

Lie(SO2l+1)β.

103



104 6 A parametrized equation for SO2l+1

We write Ak =
∑l

i=1Xαi +
∑l

i=k aiHi +
∑

β∈Φ− aβXβ with suitable aβ ∈ F . To remove
akHk, we differentially conjugate Ak by U−αk(ζ) ∈ U−αk . With Observation 3.4 we get

U−αk(ζ)AkU−αk(ζ)−1 + ∂(U−αk(ζ))U−αk(ζ)−1 =
l∑

i=1

Ad(U−αk(ζ))(Xαi

+

l∑
i=k

aiAd(U−αk(ζ))(Hi) +
∑
β∈Φ−

aβAd(U−αk(ζ))(Xβ).

(6.16)

We begin with the first summand of the right hand side of equation (6.16). With the help
of Lemma 3.2, for i 6= k, we get

Ad(U−αk(ζ))(Xαi) =
∑
j≥0

m−αk,αi,jζ
jXαi+j(−αk),

and for i = k, we have Ad(U−αk(ζ))(Xαk) ∈ Xαk + ζHk + Lie(SO2l+1)−αk . Furthermore,
the sum αi − jαk is not a root for i 6= k and j ≥ 1. This yields

l∑
i=1

Ad(U−αk(ζ))(Xαi) ∈
l∑

i=1

Xαi + ζHk + Lie(SO2l+1)−αk . (6.17)

Now we investigate the second summand. Then Lemma 3.2 yields for l ≥ i ≥ k + 1

l∑
i=k+1

aiAd(U−αk(ζ))(Hi) =
l∑

i=k+1

ai(Hi − 〈αi, αk〉ζX−αk),

and it implies for i = k the equation akAd(U−αk(ζ))(Hi) = ak(Hk − 2ζX−αk). These
results lead to

l∑
i=k

aiAd(U−αk(ζ))(Hi) ∈
l∑

i=k

aiHi + Lie(SO2l+1)−αk . (6.18)

Since β ∈ Φ−, we get β − jαk ∈ Φ− for j ≥ 0. Hence, we conclude for the third summand∑
β∈Φ−

aβAd(U−αk(ζ))(Xβ) ∈
∑
β∈Φ−

Lie(SO2l+1)β. (6.19)

We handle the last summand with Proposition 3.5. It implies

lδ(U−αk(ζ)) = ∂(U−αk(ζ))U−αk(ζ)−1 ∈ Lie(SO2l+1)−αk . (6.20)

Thus, if we put the equations (6.17), (6.18), (6.19) and (6.20) together and set ζ = −ak,
the assumption of the claim follows. Using the claim one proves by induction that for each
k ∈ {1, ..., l} there exists U ∈ U− such that

UAU−1 + ∂(U)U−1 ∈
l∑

i=1

Xαi +

l∑
i=k+1

aiHi +
∑
β∈Φ−

Lie(SO2l+1)β.
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105 6.3 The equation with group SO2l+1

In particular, for k = l, there exists U ∈ U− such that A0 = UAU−1 + ∂(U)U−1 ∈∑l
i=1Xαi +

∑
β∈Φ− Lie(SO2l+1)β. Again, using induction and Lemma 6.2, one shows that

for each n ∈ {1, ..., l − 1} and A0 there exists U ∈ U− such that

UA0U
−1 + ∂(U)U−1 ∈

l∑
i=1

Xαi +
l−n∑
i=1

Lie(SO2l+1)γi +
∑

β∈Φ−n−1

Lie(SO2l+1)β.

Since Φ−0 is defined as Φ−0 = { −γl } where −γl := −αl, the case n = 1 yields the assertion
of the lemma.

6.3 The equation with group SO2l+1

In the next step we combine the results of Corollary 3.12 and Lemma 6.3. Later, we make
use of Corollary 6.4, when we are going to apply the specialization bound. Denote by
(C(z), ∂ = d

dz ) a rational function field with standard derivation as in Section 3.4 and
keep the notations of Lemma 6.3.

Corollary 6.4. We apply Corollary 3.12 to the group SO2l+1 and the above Cartan De-
composition. We denote by AM&S

SO2l+1
the matrix satisfying the stated conditions of Corol-

lary 3.12. Then there exists U ∈ U−0 ⊂ SO2l+1 such that

ĀSO2l+1
:= UAM&S

SO2l+1
U−1 + ∂(U)U−1 =

∑
α∈∆

Xα +
∑
γi∈M

fiXγi (6.21)

with at least one fi ∈ C [z] \ C and the differential Galois group of the matrix equation
∂(y) = ĀSO2l+1

y is SO2l+1(C) over C(z).

Proof. Lemma 6.3 proves the existence of an element U ∈ U−0 ⊂ SO2l+1 such that equa-
tion (6.21) holds. Since differential conjugation defines a differential isomorphism, we
deduce from Corollary 3.12 that the differential Galois group of ∂(y) = ĀSO2l+1

y again is
SO2l+1(C) over C(z). We still need to show the existence of fi ∈ C [z]\C for some γi ∈M.
Suppose ĀSO2l+1

=
∑

α∈∆Xα +
∑

γi∈T fiXγi ∈ Lie(SO2l+1)(C). Then by Lemma 6.5
the corresponding differential equation L(y, f1, ..., fl) ∈ C {y} has coefficients in C. But
then by [Mag94, Corollary 3.28] the differential Galois group has to be abelian. Thus,
ĀSO2l+1

∈ Lie(SO2l+1)(C(z))\Lie(SO2l+1)(C). Since 0 6= A1 ∈ H(C) and A = (z2A1+A0)
in Corollary 3.12, we start our transformation with at least one coefficient lying in C [z]\C.
In each step the application of Ad(Uβ(ζ)) generates at most new entries which are poly-
nomials in ζ. Moreover, the logarithmic derivative is the product of the two matrices
∂(Uβ(ζ)) and Uβ(ζ)−1 = Uβ(−ζ). In the proofs of Lemma 6.3 and Lemma 6.2 we choose
the parameter ζ to be one of the coefficients. Hence, it holds fi ∈ C[z].

To obtain parametric equations for the series SO2l+1 we change the differential ground
field. Therefore, let t1, ..., tl be differential indeterminates and define the differential field
F = C 〈t1, ..., tl〉. Furthermore, we define the matrix ASO2l+1

(t1, ..., tl) as

ASO2l+1
(t1, ..., tl) =

∑
α∈∆

Xα +
∑
β∈M

1

2
tβXβ
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106 6 A parametrized equation for SO2l+1

where M is as in Lemma 6.3. The next step is to compute an operator for SO2l+1 from
the matrix differential equation ∂(y) = ASO2l+1

y.

Lemma 6.5. The matrix differential equation ∂(y) = ASO2l+1
(t1, ..., tl)y is differentially

equivalent to the homogeneous scalar linear differential equation

L(y, t1, ..., tl) = y(2l+1) −
l∑

i=1

(−1)i−1((ti y
(l+1−i))(l−i) + (ti y

(l−i))(l+1−i)) = 0.

Proof. The description of the Lie algebra of SO2l+1 in Section 6.1 yields that the shape of
the matrix differential equation ∂(y) = ASO2l+1

(t1, ..., tl)y is



∂(y1)
∂(y2)

...

...
∂(y2l)
∂(y2l+1)


=



0 1
. . .

. . .

1
0 2

1
2 t1 0 −1

1
2 t2 0 −t1 0 −1

· · · −1
2 t2

. . .
. . .

1
2 tl · · · −1
0 −1

2 tl 0


·



y1

y2
...

...
y2l

y2l+1


. (I)

To simplify notation we will write y′i for ∂(yi). Then equation (I) is equivalent to the
following system of equations

y′1 = y2 (1)

...

y′l−1 = yl (l-1)

y′l = 2yl+1 (l)

y′l+1 =
1

2
t1yl − yl+2 (l+1)

y′l+2 =
1

2
t2yl−1 − t1yl+1 − yl+3 (l+2)

yl+3 =
1

2
t3yl−2 −

1

2
t2yl − yl+4 (l+3)

...

y′l+k =
1

2
tkyl−k+1 −

1

2
tk−1yl−k+3 − yl+k+1 3 ≤ k ≤ l (l+k)

...

y′2l =
1

2
tly1 −

1

2
tl−1y3 − y2l+1 (2l)

y′2l+1 = −1

2
tly2. (2l+1)
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107 6.3 The equation with group SO2l+1

Let l ≥ 3. We are going to prove the following claim. For k ∈ {3, ..., l}, the corresponding
subsystem

y′k−1 = yk
...

y′l−1 = yl

y′l = 2yl+1

y′l+1 =
1

2
t1yl − yl+2

y′l+2 =
1

2
t2yl−1 − t1yl+1 − yl+3

y′l+3 =
1

2
t3yl−2 −

1

2
t2yl − yl+4

...

y′2l−k+3 =
1

2
tl−k+3yk−2 −

1

2
tl−k+2yk − y2l−k+4

leads to the differential equation

y
(2(l−k)+5)
k−1 =

l+2−k∑
i=1

(−1)i−1(tiy
(l+3−k−i)
k−1 )(l+2−k−i) + (tiy

(l+2−k−i)
k−1 )(l+3−k−i)

+(−1)l+2−k(tl+3−kyk−2 − 2y2l+4−k).

The proof will be done by backwards induction. Let k = l. Then the subsystem consists
of the five equations

y′l−1 = yl (l-1)

y′l = 2yl+1 (l)

y′l+1 =
1

2
t1yl − yl+2 (l+1)

y′l+2 =
1

2
t2yl−1 − t1yl+1 − yl+3 (l+2)

y′l+3 =
1

2
t3yl−2 −

1

2
t2yl − yl+4. (l+3)

The first two equations imply y′′l−1 = 2yl+1. Now we differentiate again and substitute
y′l+1 by equation (l+1). This yields

y′′′l−1 = t1yl − 2yl+2 = t1y
′
l−1 − 2yl+2. (II)

If we repeat this process for equation (II), this time making use of equation (l+2) and
y′′l−1 = 2yl+1, we obtain

y
(4)
l−1 = (t1 y

′
l−1)′ + t1y

′′
l−1 − t2yl−1 + 2yl+3. (III)

We differentiate equation (III) and substitute y′l+3 by equation (l+3). Then we get

y
(5)
l−1 = (t1 y

′
l−1)′′ + (t1y

′′
l−1)′ − (t2yl−1)′ − t2y′l−1 + t3yl−2 − 2yl+4.
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108 6 A parametrized equation for SO2l+1

Note that in the case l = 2 we have to omit equation (l+3) and to use instead y′5 = −1
2 t2y2.

Then the differentiation of equation (III) and the substitution of y′5 by y′5 = −1
2 t2y1 implies

y
(5)
1 = (t1 y

′
1)′′ + (t1y

′′
1)′ − (t2y1)′ − t2y′1.

Now let k < l. Then the subsystem of equations is:

y′k−1 = yk (k-1)

y′k = yk+1 (k)

...

y′l−1 = yl (l-1)

y′l = 2yl+1 (l)

y′l+1 =
1

2
t1yl − yl+2 (l+1)

y′l+2 =
1

2
t2yl−1 − t1yl+1 − yl+3 (l+2)

y′l+3 =
1

2
t3yl−2 −

1

2
t2yl − yl+4 (l+3)

...

y′2l−k+2 =
1

2
tl−k+2yk−1 −

1

2
tl−k+1yk+1 − y2l−k+3 (2l+2-k)

y′2l−k+3 =
1

2
tl−k+3yk−2 −

1

2
tl−k+2yk − y2l−k+4. (2l+3-k)

Then the induction assumption yields for k + 1, i.e., for the subsystem formed by equa-
tion (k) up to equation (2l+2-k), the differential equation

y
(2(l−k)+3)
k =

l+1−k∑
i=1

(ti y
(l+2−k−i)
k )(l+1−k−i) + (ti y

(l+1−k−i)
k )(l+2−k−i)

+ (−1)l+1−k(tl+2−k yk−1 − 2y2l+3−k). (IV)

We substitute in equation (IV) yk by y′k−1. The result is

y
(2(l−k)+4)
k−1 =

l+1−k∑
i=1

(−1)i−1((ti y
(l+3−k−i)
k−1 )(l+1−−i) + (ti y

(l+2−k−i)
k−1 )(l+2−k−i))

+ (−1)l+1−k(tl+2−k yk−1 − 2y2l+3−k). (V)

Now we differentiate equation (V) and use equation (2l + 3− k) and (k − 1) to deduce

y
(2(l−k)+5)
k−1 =

l+1−k∑
i=1

(−1)i−1(ti y
(l+3−k−i)
k−1 )(l+2−k−i) + (ti y

(l+2−k−i)
k−1 )(l+3−k−i)

+ (−1)l+1−k((tl+2−k yk−1)′ − tl−k+3 yk−2 + tl−k+2y
′
k−1 + 2y2l−k+4)

=

l+2−k∑
i=1

(−1)i−1(ti y
(l+3−k−i)
k−1 )(l+2−k−i) + (ti y

(l+2−k−i)
k−1 )(l+3−k−i)

+ (−1)l+2−k(tl+3−kyk−2 − 2y2l−k+4).
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109 6.3 The equation with group SO2l+1

Thus, the claim is shown. Now we return to the proof of the lemma. Therefore, we
consider the full system of equations. Then the claim yields for the subsystem, obtained
by leaving out the first and last equation (i.e., the case k = 3) the equation

y
(2(l−k)+5)
k−1 =

l−1∑
i=1

(−1)i−1(ti y
(l−i)
2 )(l−1−i) + (ti y

(l−1−i)
2 )(l−i) + (−1)l−1(tly1− 2y2l+1). (VI)

With the help of the first equation of the full system, we obtain for equation (VI)

y
(2l)
1 =

l−1∑
i=1

(−1)i−1(ti y
(l−i+1)
1 )(l−1−i) + (ti y

(l−i)
1 )(l−i)

+ (−1)l−1(tly1 − 2y2l+1). (VII)

Finally, we differentiate equation (VII) and use y′2l+1 = −1
2 tly2 = −1

2 tly
′
1 to get an expres-

sion only in y1. This leads to

y
(2l+1)
1 =

l−1∑
i=1

(−1)i−1(ti y
(l−i+1)
1 )(l−i) + (ti y

(l−i)
1 )(l−i+1)

+ (−1)l−1((tly1)′ + tly
′
1)

=

l∑
i=1

(−1)i−1(ti y
(l−i+1)
1 )(l−i) + (ti y

(l−i)
1 )(l−i+1).

Theorem 6.6. Let C be an algebraically closed field of characteristic zero, t1, ..., tl differ-
ential indeterminates and F = C 〈t1, ..., tl〉 the corresponding differential field. Then the
homogeneous linear differential equation

L(y, t1, ..., tl) = y(2l+1) −
l∑

i=1

(−1)i−1((ti y
(l+1−i))(l−i) + (ti y

(l−i))(l+1−i)) = 0

has SO2l+1(C) as differential Galois group over F. Moreover, let F̂ be a differential field
with field of constants equal to C. Let Ê be a Picard-Vessiot extension over F̂ with dif-
ferential Galois group SO2l+1(C) and suppose the defining matrix differential equation
∂(y) = Ây satisfies Â ∈

∑
α∈∆Xα + Lie(B−0 ). Then there is a specialization L(y, t̂1, ..., t̂l)

with t̂i ∈ F̂ such that L(y, t̂1, ..., t̂l) gives rise to the extension Ê over F̂ .

Proof. Let E be a Picard-Vessiot extension for the equation L(y, t1, ..., tl) = 0 over F
and denote by G its differential Galois group. Since the operator comes from the matrix
differential equation ∂(y) = ASO2l+1

(t1, ..., tl)y with ASO2l+1
(t1, ..., tl) ∈ Lie(SO2l+1)(F ),

Proposition 2.1 yields G(C) ≤ SO2l+1(C). By Corollary 6.4 there exists a specialization
σ : (t1, ..., tl) → (f1, ..., fl) with f1, ..., fl ∈ C[z] such that σ(ASO2l+1

(t1, ..., tl)) = ĀSO2l+1

and the differential Galois group of ∂(y) = ĀSO2l+1
y is SO2l+1(C). Moreover, we have

C{f1, ..., fl} = C[z]. Thus we can apply Corollary 2.15. This yields SO2l+1(C) ≤ G(C).
Hence, it holds G(C) = SO2l+1(C).
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110 6 A parametrized equation for SO2l+1

Since the defining matrix Â satisfies Â ∈
∑

α∈∆Xα+Lie(B−0 ), Lemma 6.3 provides that Â

is differentially equivalent to a matrix Ã =
∑

α∈∆Xα +
∑

γi∈T âiXγi with suitable âi ∈ F̂ .
Obviously the specialization

σ̂ : (t1, ..., tl) 7→ (â1, ..., âl)

does the required.
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Chapter 7

A parametrized equation for SO2l

7.1 The Lie algebra of SO2l (type Dl)

We begin this paragraph with the abstract definition of the root system Φ of type Dl. Let
l ∈ N \ {0} with l ≥ 4. We denote by ε1, ..., εl the standard orthonormal basis of Rl and
by (·, ·) the standard inner product of Rl. In [Hum72, Section 12.1] it is shown that the
root system Φ of type Dl consists of the vectors

Φ = {±(εi − εj), ±(εi + εj) | 1 ≤ i < j ≤ l} .

The set ∆ which is formed by the l independent vectors

∆ := { αi := εi − εi+1, αl := εl−1 + εl | 1 ≤ i ≤ l − 1}

defines a basis of Φ. The Cartan matrix of type Dl has shape

2 −1 0 . . . 0
−1 2 −1 . . . 0
. . . . . . . . . .
0 0 . . −1 2 −1 0 0
0 0 . . −1 2 −1 −1
0 0 . . 0 −1 2 0
0 0 . . 0 −1 0 2


where the entry at position (i, j) gives the Cartan integer 〈αi, αj〉 = 2(αi, αj)/(αj , αj).
In the next step we compute the Lie algebra Lie(SO2l)(C) of SO2l(C). Therefore denote
by V := 〈v1, ..., v2l〉C a vector space over C of dimension dim(V ) = 2l and let f be a
symmetric bilinear form on V defined by the representing matrix

J =

(
0 J0

J0 0

)
∈ C2l×2l where the matrix J0 ∈ C l×l has shape J0 =

 1

· · ·

1

.

Then the Lie algebra of SO2l(C) is defined as the set of all endomorphisms X ∈ C2l×2l on
V leaving the symmetric bilinear form f invariant, i.e., we have

Lie(SO2l)(C) =
{
X ∈ C2l×2l | XTJ = −JX

}
.

For the computation of the shapes of the matrices X ∈ Lie(SO2l)(C) we set
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112 7 A parametrized equation for SO2l

X =

(
M11 M12

M21 M22

)
∈ C2l×2l with Mij ∈ C l×l for 1 ≤ i, j ≤ 2.

Thus, the condition JX = −XTJ for X to be an element of Lie(SO2l)(C) is(
MT

21J0 MT
11J0

MT
22J0 MT

12J0

)
+

(
J0M21 J0M22

J0M11 J0M12

)
= 0.

Equivalently, we obtain the three equations

MT
21J0 = −J0M21 ⇔ MT

21 = −J0M21J
−1
0 ,

MT
11J0 = −J0M22 ⇔ MT

11 = −J0M22J
−1
0 ,

MT
12J0 = −J0M12 ⇔ MT

12 = −J0M12J
−1
0 .

We call the matrix obtained by reflecting the entries at the secondary diagonal the reversed
matrix. It can be checked by computation that conjugation J0MJ−1

0 of a matrix M ∈ C l×l
by J0 is reversing M and then taking its transposed. Hence, we can formulate the condition
for X to be an element of Lie(SO2l)(C) as:

1. M22 is the negative reversed of M11.

2. M21 is the negative reversed of M21.

3. M12 is the negative reversed of M12.

Before we determine the elements of Lie(SO2l)(C), we renumber the rows and columns of

X =

(
M11 M12

M21 M22

)
into 1, ..., l, −1, ..., −l.

Evidently, the l diagonal matrices Eii − E−l−1+i,−l−1+i with 1 ≤ i ≤ l and the matrices

Ei,j − E−l−1+j,−l−1+i, Ej,i − E−l−1+i,−l−1+j

with 1 ≤ i < j ≤ l have non-zero entries in the blocks M1,1 and M2,2 and satisfy the
condition stated in 1. Furthermore, the matrices

Ei,−j − El+1−j,−l−1+i, E−j,i − E−l−1+i,l+1−j

with 1 ≤ i, j ≤ l and i+ j ≤ l satisfy the conditions 2 and 3.
Denote by B the set defined by these matrices. We are going to check that the set B is
a basis of Lie(SO2l)(C). If we choose an arbitrary position above the secondary diagonal,
then there is exactly one matrix in B with a non-zero entry at this position. Hence, the
elements of B are linearly independent. It is easily seen that card(B) = 2l2 − l. But the
dimension of Lie(SO2l)(C) which we know from literature (e.g., see [Hum72, Section 1.2])
is also 2l2 − l. Thus, B is a basis of Lie(SO2l)(C).
The next technical step is to compute a Cartan decomposion from B. To achieve this de-
composition we need to determine the shape of the maximal diagonal torus T0 of SO2l(C).
The group SO2l(C) is the set of all elements of SL2l(C) leaving the bilinear form f invari-
ant, i.e., SO2l(C) is defined as

SO2l(C) =
{
A ∈ SL2l(C) | ATJA = J

}
.
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113 7.1 The Lie algebra of SO2l (type Dl)

Let T = diag(λ1, ..., λ2l) be a diagonal matrix of GL2l(C). Then the equation T TJT = J
calculates as

λ1 · λ2l

λl · λl+1

λl · λl+1

λ1 · λ2l

 =



1

1

1

1

 .

Thus, the condition for T = diag(λ1, ..., λ2l) to be an element of SO2l(C) translates into
the l equations

λ2l+1−i = λ−1
i for i = 1, ..., l.

We conjugate the elements of B by T = diag(λ1, ..., λl,
1
λl
, ..., 1

λ1
) ∈ T0. We obtain

T (Eii − E−l−1+i,−l−1+i)T
−1 = (Eii − E−l−1+i,−l−1+i)

T (Eij − E−l−1+j,−l−1+i)T
−1 = (λi/λj) (Eij − E−l−1+j,−l−1+i),

T (Eji − E−l−1+i,−l−1+j)T
−1 = (λj/λi) (Eji − E−l−1+i,−l−1+j),

T (Ei,−j − El+1−j,−l−1+i)T
−1 = λiλl+1−j (Ei,−j − El+1−j,−l−1+i),

T (E−j,i − E−l−1+i,l+1−j)T
−1 = 1/(λl+1−jλi) (E−j,i − E−l−1+i,l+1−j).

We conclude that the Lie algebra Lie(SO2l)(C) is of type Dl. With the help of the
above equations we are able to assign the roots to the corresponding root vectors. For
1 ≤ i < j ≤ l we have the assignments

Xεi−εj := Eij − E−l−1+j,−l−1+i and X−(εi−εj) := Eji − E−l−1+i,−l−1+j .

For 1 ≤ i, j ≤ l, i+ j ≤ l we get

Xεi+εl+1−j := Ei,−j − El+1−j,−l−1+i and X−(εi+εl+1−j) := E−j,i − E−l−1+i,l+1−j .

The above equations also yield that the Cartan subalgebra H(C) is generated by

H(C) = 〈Eii − E−l−1+i,−l−1+i | 1 ≤ i ≤ l〉C .

Hence, the Cartan decomposition has in the above notations the shape

Lie(SO2l)(C) = H(C)
⊕

i,j 〈Xεi−εj 〉C ⊕ 〈X−(εi−εj)〉C⊕
i,j 〈Xεi+εl+1−j 〉C ⊕ 〈X−(εi+εl+1−j)〉C .

The next step is to compute a Chevalley basis for Lie(SO2l)(C). We start with the deter-
mination of the co-roots. We compute

[Xεi−εj , X−(εi−εj)] = Ei,i − Ej,j + El−1+j,−l−1+j − E−l−1+i,−l−1+i

=: Hεi−εj ,

[Xεi+εl+1−j , X−(εi+εl+1−j)] = Ei,i + El+1−j,l+1−j − E−j,−j − E−l−1+i,−l−1+i

=: Hεi+εl+1−j .
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114 7 A parametrized equation for SO2l

From the bracket products

[Hεi−εj , Xεi−εj ] = Eij − E−l−1+j,−l−1+i − (−Ei,j + E−l−1+j,−l−1+j)

= 2Xεi−εj and

[Hεi+εl+1−j , Xεi+εl+1−j ] = Ei,−j + El+1−j,−l−1+i − (−El+1−j,−l−1+i − Ei,−j)
= 2Xεi+εl+1−j

we deduce that the matrices Hεi−εj and Hεi+εl+1−j are already the co-roots. We denote
the l co-roots which correspond to the l simple roots αi ∈ ∆ with 1 ≤ i ≤ l of Φ by

H1 := Hε1−ε2 , ... , Hl−1 := Hεl−1−εl and Hl := Hεl−1+εl .

Hence, H(C) is spanned by H(C) = 〈Hi | 1 ≤ i ≤ l〉C . We define the map

θ : Lie(SO2l)(C)→ Lie(SO2l)(C) by θ(X) = −XT .

Then θ is an automorphism of Lie(SO2l)(C) satisfying the identities

θ(Xεi−εj ) = −X−(εi−εj),

θ(Xεi+εl+1−j ) = −X−(εi+εl+1−j).

For the root vectors Xα, Xβ with α, β ∈ Φ we obtain for the automorphism θ the additional
identity

θ([Xα, Xβ]) = −[Xα, Xβ]T = [−XT
α ,−XT

β ] = [θ(Xα), θ(Xβ)]. (7.1)

Let nα,β ∈ Z be the number defined by

nα,βXα+β = [Xα, Xβ]. (7.2)

We apply θ to both sides of equation (7.2). This computes with the help of equation (7.1)
as

−nα,βX−α−β = θ([Xα, Xβ]) = [X−α, X−β] = n−α,−βX−α−β.

Hence, n−α,−β is equal to −nα,β. From [Car72, Theorem 4.1.2] we know the identity

n−α,−β · nα,β = −(r + 1)2.

Thus, nα,β = ±(r + 1) holds. We conclude that

{Hi, Xα | 1 ≤ i ≤ l, α ∈ Φ}

is a Chevalley basis of Lie(SO2l)(C).

7.2 The transformation lemma for SO2l

In this section we present the transformation lemma for SO2l and its proof. Let (F, ∂F ) be
a differential field of characteristic 0. Since the proof is based on differential conjugation,
i.e., on the adjoint action and the logarithmic derivate which can be both described by
the roots, we start with the study of the root system Φ of type Dl. We keep the notations
done in the previous section.
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115 7.2 The transformation lemma for SO2l

Lemma 7.1. For l ≥ 4 and n ∈ {1, ..., l − 3} let Φn = 〈αl, ..., αl−2−n〉Φ be the set of all
Z-linear combinations of the roots αl, ..., αl−2−n which ly in Φ. Furthermore, we define
Φ0 = {±αl−2, ±αl−1, ±αl, ±(αl−2 + αl−1), ±(αl−2 + αl), ±(αl−2 + αl−1 + αl)}.

1. Then Φn ⊆ Φl−3 = Φ is an irreducible subsystem of Φ with Φn ∼ D3+n.

2. For k ∈ {1, ..., n+ 1} there exists a unique root α ∈ Φ+
n \ Φ+

n−1 of ht(α) = k and α
has shape

α =
l−3−n+k∑
i=l−2−n

αi.

If k ∈ {1, ..., n} then there exists a unique simple root ᾱ ∈ ∆ such that β = α+ ᾱ ∈
Φ+
n \ Φ+

n−1 and ht(β) = k + 1. If α̃ ∈ ∆ is a simple root and β − α̃ is a root, then
either β − α̃ = α or β − α̃ ∈ Φ+

n−1.

3. For k = n+ 2 there exist two roots α1 and α2 in Φ−n \Φ−n−1 of ht(αi) = n+ 2. These
two roots have shape

α1 =
l−1∑

i=l−2−n
αi and α2 =

l−2∑
i=l−2−n

αi + αl.

4. For k ∈ {n+ 3, ..., 2n+ 3} there exists a unique root α ∈ Φ+
n \ Φ+

n−1 of ht(α) = k
and α has shape

α =
l∑

i=l−2−n
αi if k = n+ 3 and

α =

l+n+1−k∑
i=l−2−n

αi + 2

l−2∑
i=l+n+2−k

+αl−1 + αl if k ≥ n+ 4.

There exists a unique simple root ᾱ ∈ ∆ such that β = α + ᾱ ∈ Φ+
n \ Φ+

n−1 and
ht(β) = k + 1. If α̃ ∈ ∆ is a simple root and β − α̃ is a root, then either β − α̃ = α
or β − α̃ ∈ Φ+

n−1.

Proof. The first point follows from the Dynkin diagram. We will prove the remaining
assertions of the lemma by an outer induction on n ∈ {1, ..., l − 3} and two inner inductions
which we will specify later.
Let n = 1. We are going to compute the root system Φ1 = 〈αl, αl−1, αl−2, αl−3〉Φ. The
images of αl−3, αl−1 and αl under the reflection σαl−2

are calculated with the help of the
Cartan matrix presented in the previous paragraph as

σαl−2
(αl) = αl − 〈αl, αl−2〉αl−2 = αl + αl−2,

σαl−2
(αl−1) = αl−1 − 〈αl−1, αl−2〉αl−2 = αl−1 + αl−2,

σαl−2
(αl−3) = αl−3 − 〈αl−3, αl−2〉αl−2 = αl−3 + αl−2.
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Hence, we computed the roots ±(αl + αl−2), ±(αl−1 + αl−2) and ±(αl−3 + αl−2). The
reflections σαl−3

, σαl−1
and σαl map the roots αl + αl−2, αl−3 + αl−2 and αl−1 + αl−2 to

σαl−3
(αl + αl−2) = αl + αl−2 − (〈αl, αl−3〉+ 〈αl−2, αl−3〉)αl−3

= αl + αl−2 + αl−3,

σαl−1
(αl−3 + αl−2) = αl−3 + αl−2 − (〈αl−3, αl−1〉+ 〈αl−2, αl−1〉)αl

= αl−3 + αl−2 + αl−1,

σαl(αl−1 + αl−2) = αl−1 + αl−2 − (〈αl−1, αl〉+ 〈αl−2, αl〉)αl
= αl + αl−1 + αl−2.

Thus, we obtain the roots ±(αl+αl−2+αl−3), ±(αl−3+αl−2+αl−1) and ±(αl+αl−1+αl−2)
of Φ1. The reflection σαl−3

maps αl + αl−1 + αl−2 to

σαl−3
(αl + αl−1 + αl−2) = αl + αl−1 + αl−2 − (〈αl, αl−3〉+ 〈αl−1, αl−3〉

+〈αl−2, αl−3〉)αl−3

= αl + αl−1 + αl−2 + αl−3.

At last we are interested in the image of the root αl+αl−1+αl−2+αl−3 under the reflection
σαl−2

. This image computes as

σαl−2
(αl + αl−1 + αl−2 + αl−3) = αl + αl−1 + αl−2 + αl−3 − (〈αl, αl−2〉+ 〈αl−1, αl−2〉

+〈αl−2, αl−2〉+ 〈αl−3, αl−2〉)αl−2

= αl + αl−1 + αl−2 + αl−3.

Since the number of positive roots in Φ1 is twelve (e.g., see [Hum72, Section 12.2, Table
1]), we conclude that

Φ1 = {±αl, ±αl−1, ±αl−2, ±αl−3, ±(αl + αl−2), ±(αl−3 + αl−2),

±(αl−1 + αl−2), ±(αl−1 + αl−2 + αl−3) ± (αl−1 + αl−2 + αl),

±(αl + αl−2 + αl−3), ±(αl + αl−1 + αl−2 + αl−3),

±(αl + 2αl−1 + αl−2 + αl−3)} .

It is easily seen that the roots in Φ1 \ Φ0 satisfy the requirements of the lemma.
Let 1 < n ≤ l − 3. We prove by induction on k1 ∈ {1, ..., n+ 1} that there is a unique
root α ∈ Φ+

n \ Φ+
n−1 of ht(α) = k1 and α has shape

α =

l−3−n+k1∑
i=l−2−n

αi.

Let k1 = 1. Obviously, αl−2−n is the unique root in Φ+
n \ Φ+

n−1 of ht(α) = 1.
Let 1 < k1 ≤ n + 1. Then the induction hypothesis implies that there is a unique root
α ∈ Φn \ Φn−1 such that ht(α) = k1 − 1 and this α has shape α =

∑l−4−n+k1
i=l−2−n αi. We

are going to construct a root of height k1 lying in Φ+
n \ Φ+

n−1 with the required shape.
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Therefore, we compute the image of α under the reflection σαl−3−n+k1
. First, we make use

of the Cartan matrix to deduce that the integer 〈α, αl−3−n+k1〉 is

〈
l−4−n+k1∑
i=l−2−n

αi, αl−3−n+k1〉 = −1.

This is true since if k1 = n+ 1, then l − 4− n+ k1 = l − 3. Hence, we have

σαl−3−n+k1
(α) =

l−4−n+k1∑
i=l−2−n

αi − 〈
l−4−n+k1∑
i=l−2−n

αi, αl−3−n+k1〉αl−3−n+k1 =

l−3−n+k1∑
i=l−2−n

αi.

Evidently, this root satisfies the requirements. Suppose there is another root β ∈ Φ+
n \Φ+

n−1

with ht(β) = k1 and β 6= α + αl−3−n+k1 . By [Hum72, Section 10.2, Corollary] we are
able to write β as the sum ᾱ1 + ... + ᾱk1 of simple roots ᾱi ∈ ∆ such that each partial
sum ᾱ1 + ... + ᾱm with 1 ≤ m ≤ k1 is a root. Hence, ᾱ1 + ... + ᾱk1−1 is a root of
ht(ᾱ1 + ... + ᾱk1−1) = k1 − 1. Assume ᾱ1 + ... + ᾱk1−1 6= α. Thus, the uniqueness of α
implies that ᾱ1 + ...+ ᾱk1−1 /∈ Φ+

n \ Φ+
n−1. Hence, we have the identity

−(ᾱ1 + ...+ ᾱk1−1) + β = αl−2−n.

Denote by w̄ the minimum of the indices of the simple roots αw = ᾱi in ᾱ1 + ...+ ᾱk1−1.
Then the above identity implies w̄ > l − 2 − n. Let n̄ ∈ N such that l − 2 − n̄ = w̄.
Equivalently, we have n̄ < n. Hence, the outer induction assumption implies that the
shape of the root ᾱ1 + ...+ ᾱk1−1 is

η1,1 :=

l−4−n̄+k1∑
i=l−2−n̄

αi for 1 ≤ k1 − 1 ≤ n̄+ 1,

η2,1 :=
l−1∑

i=l−2−n̄
αi or η2,2 :=

l−2∑
i=l−2−n̄

αi + αl for k1 − 1 = n̄+ 2 and

η3,1 :=
l∑

i=l−2−n̄
αi or η3,2 :=

l+2+n̄−k1∑
i=l−2−n̄

αi + 2
l−2∑

i=l+3+n̄−k1+1

αi + αl−1 + αl

for k1 − 1 ≥ n̄+ 3. If ᾱ1 + ...+ ᾱk1−1 is a root of Φ+
0 , then we denote the six possibilities

for it by η4,i with 1 ≤ i ≤ 6. Note that the smallest index of the simple roots in η4,i is
equal or greater then l − 2.
Assume l− 2− n̄ > l− 1− n. To simplify notation we define βi,j = ηi,j +αl−2−n. Then it
is easily seen that in each case the integer 〈βij , αl−2−n〉 computes as

〈βi,j , αl−2−n〉 = 〈ηi,j , αl−2−n〉+ 〈αl−2−n, αl−2−n〉 = 〈αl−2−n, αl−2−n〉 = 2.

Hence, we compute the image of βi,j under σαl−2−n as

σαl−2−n(βi,j) = βi,j−〈βi,j , αl−2−n〉αl−2−n = ηi,j+αl−2−n−2αl−2−n = ηi,j−αl−2−n. (7.3)
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118 7 A parametrized equation for SO2l

Since the right hand side of equation (7.3) is not a root, we obtain a contradiction. Thus,
we have l − 2 − n̄ = l − n − 1. Note that in addition it holds k1 − 1 < n + 1 = n̄ + 1.
Therefore, the induction assumption forces ᾱ1 + ...+ ᾱk1−1 to have shape

ᾱ1 + ...+ ᾱk1−1 =

l−4−n̄+k1∑
i=w̄

αi =

l−3−n+k1∑
i=l−n−1

αi.

Then β = ᾱ1 + ...+ ᾱk1−1 + αl−2−n =
∑l−3−n+k1

i=l−2−n αi is the root constructed above. Again
we obtain a contradiction. Thus, we can conclude ᾱ1 + ... + ᾱk1−1 = α. To complete
the first inner induction we have to check that β is not the sum of α and a simple root
αj ∈ {αl−2−n, ..., αl} \ {αl−3−n+k1}. From [Hum72, Section 12.2, Table 2] we obtain that
the irreducible root system of type D3+n contains only long roots, i.e., all roots of Φn are
of equal length. For two roots α, β of equal length which are not proportional [Hum72,
Section 9.4, Table 1] yields that

〈α, β〉 = ±1.

We check that α + αj =
∑l−4−n+k

i=l−2−n αi + αj is not a root of Φ. For j ∈ {l − 2 − n, ..., l −
4− n+ k1} we compute

〈α+ αj , αj〉 = (1− δl−2−n,j)〈αj−1, αj〉+ 2〈αj , αj〉+ (1− δl−4−n+k1,j)〈αj+1, αj〉 ≥ 2

and for j ∈ {l − 2− n+ k1, ..., l} we have

〈α+ αj , αj〉 = 〈αj , αj〉 = 2.

Thus, α+ αj for αj ∈ {αl−2−n, ..., αl} \ {αl−3−n+k1} has a different length than αj and is
therefore not a root of Φ. This completes the first inner induction.
Let k = n+ 2. The first inner induction yields that there exists a root α ∈ Φ+

n \ Φ+
n−1 of

ht(α) = n + 1 and α has shape
∑l−2

i=l−2−n αi. We construct the two roots of the desired
height. We compute the integers 〈α, αl−1〉 and 〈α, αl〉 as 〈α, αl−1〉 = 〈α, αl〉 = −1. Hence,
the reflections σαl−1

and σαl maps α to

σαl−1
(α) = α− < α,αl−1 > αl−1 =

l−1∑
i=n

αi and

σαl(α) = α− < α,αl−1 > αl =
l−2∑
i=n

αi + αl.

We have to show that these two roots are unique with the described properties. Assume
there is another root β ∈ Φ+

n \ Φ+
n−1 of ht(β) = n + 2 and β 6= α + αl−1 and β 6= α + αl.

With the help of [Hum72, Section 10.2, Corollary] we can write β as the sum ᾱ1+...+ᾱk of
simple roots such that each partial sum is a root. Thus, we obtain the root ᾱ1 + ...+ ᾱk−1

of ht(ᾱ1 + ... + ᾱk−1) = k − 1. Assume ᾱ1 + ... + ᾱk−1 6= α. Then the uniqueness of α
implies that ᾱ1 + ... + ᾱk−1 /∈ Φ+

n \ Φ+
n−1. We conclude that β and ᾱ1 + ... + ᾱk−1 differ

by αl−2−n, i.e., the equation

−(ᾱ1 + ...+ ᾱk−1) + β = αl−2−n
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119 7.2 The transformation lemma for SO2l

holds. By w̄ we mean the minimum of the indices of the simple roots αw = αi in ᾱ1 + ...+
ᾱk−1. The above equation yields w̄ > l− 2− n. Let n̄ ∈ N such that l− 2− n̄ = w̄ holds.
Thus, we have n̄ < n and k− 1 = n+ 1 > n̄+ 1. Then by the outer induction assumption
the shape of ᾱ1 + ...+ ᾱk−1 is for k − 1 = n̄+ 2

η1,1 :=
l−1∑

i=l−2−n̄
αi or η1,2 := ᾱ1 + ...+ ᾱk−1 =

l−2∑
i=l−2−n̄

αi + αl

and for k − 1 ≥ n̄+ 3

η2,1 :=

l∑
i=l−2−n̄

αi or η2,2 :=

l+n̄+2−k∑
i=l−2−n̄

αi + 2

l−2∑
i=l+n̄+3−k

αi + αl−1 + αl.

Assume l − 2 − n̄ > l − 1 − n and define βi,j := ηi,j + αl−2−n. Since 〈βi,j , αl−2−n〉 =
〈ηi,j , αl−2−n〉+ 〈αl−2−n, αl−2−n〉 = 2, we conclude that the reflection σαl−2−n maps βi,j to

σαl−2−n(βi,j) = βi,j − 〈βi,j , αl−2−n〉αl−2−n = ηi,j − αl−2−n.

This implies a contradiction since ηi,j − αl−2−n is not a root. We conclude w̄ = l− 1− n.
But then k − 1 = n + 1 = n̄ + 2. Hence, the induction assumption offers two possible
shapes for ᾱ1 + ...+ ᾱk−1. However, we have

ᾱ1 + ...+ ᾱk−1 =
l−1∑
i=w̄

αi =
l−1∑

i=l−1−n
αi and

ᾱ1 + ...+ ᾱk−1 =
l−2∑
i=w̄

αi + αl =
l−2∑

i=l−1−n
αi + αl.

But in each case ᾱ1 + ...+ ᾱk−1 +αl−2−n is one of the roots constructed before. We get a
contradiction. It is left to check that β = α + αj is not a root for αj ∈ {αl−2−n, ..., αl} \
{αl−1, αl}. We compute for j ∈ {l − 2− n, ..., l − 2}

〈α+ αj , αj〉 = (1− δl−2−n,j)〈αj−1, αj〉+ 2〈αj , αj〉+ (1− δl−2,j)〈αj+1, αj〉 ≥ 2

and obtain that α+αj has a different length than αj . Thus, for all αj ∈ {αl−2−n, ..., αl} \
{αl−1, αl} the sum α+ αj is not a root of Φ.
Now let k = n+3. We know that there are two roots α̃1, α̃2 ∈ Φ+

n \Φ+
n−1 of ht(α̃i) = n+2

and they have the shapes

α̃1 =

l−1∑
i=l−2−n

αi and α̃2 =

l−2∑
i=l−2−n

αi + αl.

We will construct a root with the desired properties. Therefore, we compute the integer
〈
∑l−1

i=l−2−n αi, αl〉 = −1. Thus, the reflection σαl maps α̃1 to

σαl(α̃1) =

l−1∑
i=l−2−n

αi − 〈
l−1∑

i=l−2−n
αi, αl〉αl =

l∑
i=l−2−n

αi.
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It is left to show the uniqueness of
∑l

i=n αi ∈ Φ+
n \Φ+

n−1 with the claimed characteristics.

Let β ∈ Φ+
n \ Φ+

n−1 with the properties β 6=
∑l

i=l−2−n αi and ht(β) = n + 3. We write
β = ᾱ1 + ... + ᾱn+3 as the sum of simple roots such that each partial sum is a root.
Suppose ᾱ1 + ... + ᾱn+2 6= α̃1 and ᾱ1 + ... + ᾱn+2 6= α̃2. Since α̃1 and α̃2 are the only
roots in Φ+

n \ Φ+
n−1 of ht(α̃i) = n + 2, we have ᾱ1 + ... + ᾱn+2 /∈ Φ+

n \ Φ+
n−1. This forces

−(ᾱ1 + ...+ ᾱn+2) + β = αl−2−n. We denote by w̄ the smallest index of the simple roots
αw = ᾱi in ᾱ1 + ...+ ᾱn+2. We deduce w̄ > l − 2− n. Let n̄ ∈ N such that l − 2− n̄ = w̄
and assume l− 2− n̄ > l− 1− n. Then k− 1 = n+ 2 > n̄+ 3. Thus, the outer induction
assumption yields that ᾱ1 + ...+ ᾱn+2 has shape

ᾱ1 + ...+ ᾱn+2 =

l+2+n̄−k1∑
i=l−2−n̄

αi + 2

l−2∑
i=l+3+n̄−k1

αi + αl−1 + αl.

We compute 〈ᾱ1 + ... + ᾱn+2 + αl−2−n, αl−2−n〉 = 2. Then the reflection σαl−2−n maps β
to

σαl−2−n(β) = β − 〈β, αl−2−n〉αl−2−n = ᾱ1 + ...+ ᾱn+2 − αl−2−n. (7.4)

Since the right hand side of equation (7.4) is not a root of Φ, it holds l− 2− n̄ = l− 1−n
or equivalently n̄ + 1 = n. This forces k − 1 = n + 2 = n̄ + 3 and thus the shape of
ᾱ1 + ...+ ᾱn+2 is

ᾱ1 + ...+ ᾱn+2 =

l∑
i=l−2−n̄

αi =

l∑
i=l−1−n

αi.

But then ᾱ1 + ... + ᾱn+2 + αl−2−n =
∑l

i=l−2−n αi is the root constructed above. Hence

we obtain a contradiction to the assumption that β 6=
∑l

i=l−2−n αi. It is left to show that
α̃1 + αj for αj ∈ {αl−2−n, ..., αl−1} and α̃2 + αj for αj ∈ {αl−2−n, ..., αl} \ {αl−1} is not a
root. We check the lengths of α̃i +αj for i = 1, 2. We compute for j ∈ {l− 2−n, ..., l− 1}

〈α̃1 + αj , αj〉 = (1− δl−2−n,j)〈αj−1, αj〉+ 2〈αj , αj〉+ (1− δl−1,j)〈αj+1, αj〉 ≥ 2.

For j ∈ {l − 2− n, ..., l − 2} we obtain

〈α̃2+αj , αj〉 = (1−δl−2−n,j)〈αj−1, αj〉+2〈αj , αj〉+(1−δl−2,j)〈αj+1, αj〉+δl−2,j〈αj , αl〉 ≥ 2

and for j = l we have

〈α̃2 + αl, αl〉 = 〈αl−2, αl〉+ 2〈αl, αl〉 = 3.

Thus in each case the root α̃i + αj has length different to the length of αj and therefore
α̃i + αj is not a root of Φ.
Now we start the second inner induction: For k2 ∈ {n+ 4, ..., 2n+ 3} there exists a unique
root α ∈ Φ+

n \ Φ+
n−1 of ht(α) = k2 and α has shape

α =

l+n+1−k2∑
i=l−2−n

αi + 2

l−2∑
i=l+n+2−k2

αi + αl−1 + αl.

Let k2 = n+4. We construct a root satisfying the assertion using the root α =
∑l

i=l−2−n αi
of ht(α) = n+ 3 of the previous step. The integer 〈α, αl−2〉 computes as

〈α, αl−2〉 = 〈αl−3, αl−2〉+ 〈αl−2, αl−2〉+ 〈αl−1, αl−2〉+ 〈αl, αl−2〉 = −1.
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Hence, the reflection σαl−2
maps α to

σαl−2
(α) = α− 〈α, αl−2〉αl−2 =

l−3∑
i=l−2−n

αi + 2αl−2 + αl−1 + αl. (7.5)

Evidently, this root satisfies the proposed properties unless the uniqueness. Suppose there
is another root β ∈ Φ+

n \ Φ+
n−1 of ht(β) = n+ 4 and

β 6=
l−3∑

i=l−2−n
αi + 2αl−2 + αl−1 + αl.

We write β as the sum ᾱ1 + ... + ᾱn+4 of simple roots in such a way that each partial
sum is a root. We assume in addition that the root ᾱ1 + ... + ᾱn+3 6= α. Then, by the
uniqueness of α ∈ Φ+

n \ Φ+
n−1 it holds ᾱ1 + ... + ᾱn+3 /∈ Φ+

n \ Φ+
n−1. Hence, we have

−(ᾱ1 + ...+ ᾱn+3) + β = αl−2−n. Denote by w̄ the minimum of the indices of the simple
roots αw = ᾱi in ᾱ1 + ... + ᾱn+3. Form the last equation we get w̄ > l − 2 − n. Assume
w̄ > l− 1− n. Then the coefficients cl−2−n and cl−1−n of ᾱ1 + ...+ ᾱn+3 =

∑l
i=1 ciαi are

cl−2−n = cl−1−n = 0. This forces 〈β, αn〉 = 2. Hence, the image of β under the reflection
σαl−2−n is not a root. However, the reflection σαl−2−n maps β to

σαl−2−n(β) = β − 〈β, αl−2−n〉 αl−2−n = ᾱ1 + ...+ ᾱn+3 − αl−2−n /∈ Φ.

Let n̄ ∈ N such that w̄ = l − 2 − n̄. Then the above yields l − 2 − n̄ = l − 1 − n or
equivalently n̄ + 1 = n. Consequently k2 − 1 = n + 3 = n̄ + 4. Thus, ᾱ1 + ... + ᾱn+3 has
shape

ᾱ1 + ...+ ᾱn+3 =

l+2+n−k2∑
i=l−1−n

αi + 2

l−2∑
i=l+2+n−k2

αi + αl−1 + αl.

Hence, β = ᾱ1 + ... + ᾱn+3 + αl−2−n is the root constructed in equation (7.5) what
contradicts to the assumption that

β 6=
l−3∑

i=l−2−n
αi + 2αl−2 + αl−1 + αl.

It is left to check that β 6= α + αj for some αj ∈ {αl−2−n, ..., αl} \ {αl−2}. This will be
done by comparing the length of α+ αj with αj . For j ∈ {l − 2− n, ..., l − 3} we obtain

〈α+ αj , αj〉 = (1− δl−2−n,j)〈αj−1, αj〉+ 2〈αj , αj〉+ 〈αj+1, αj〉 ≥ 2.

Further, for j = l − 1 we compute

〈α+ αl−1, αl−1〉 = 〈αl−2, αl−1〉+ 2〈αl−1, αl−1〉 = 3

and for j = l we get

〈α+ αl, αl〉 = 〈αl−2, αl〉+ 2〈αl, αl〉 = 3.
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This forces in each case the root length of α+αj to be different to the length of αj . Hence
α+ αj is not a root of Φ. Thus, the induction assertion is shown for k2 = n+ 4.
Let n+ 4 < k2 ≤ 2n+ 3. The induction assumption yields the root

α =

l+2+n−k2∑
i=l−2−n

αi + 2
l−2∑

i=l+3+n−k2?+1

αi + αl−1 + αl ∈ Φ+
n \ Φ+

n−1

of ht(α) = k2 − 1. To construct a root with the proposed characteristics we compute

〈α, αl+2+n−k2〉 = 〈αl+1+n−k2 , αl+2+n−k2〉+ 〈αl+2+n−k2 , αl+2+n−k2〉
+2〈αl+3+n−k2 , αl+2+n−k2〉 = −1.

Hence, the reflection σαl+2+n−k2
maps α to

σαl+2+n−k2
(α) = α− 〈α, αl+2+n−k2〉αl+2+n−k2 =

l+1+n−k2∑
i=l−2−n

αi + 2

l−2∑
i=l+2+n−k2

αi + αl−1 + αl.

Evidently,
l+1+n−k2∑
i=l−2−n

αi + 2

l−2∑
i=l+2+n−k2

αi + αl−1 + αl

satisfies the stated properties. It is left to show the uniqueness. We assume that there is
β ∈ Φ+

n \ Φ+
n−1 of ht(β) = k2 and β 6= α + αl+2+n−k2 . We write β as in [Hum72, Section

10.2, Corollary], i.e., as the sum of simple roots β = ᾱ1 + ...+ ᾱk2 such that each partial
sum is a root. We assume that the root ᾱ1 + ... + ᾱk2−1 of ht(ᾱ1 + ... + ᾱk2−1) = k2 − 1
is different to α. The uniqueness of α implies that ᾱ1 + ... + ᾱk2−1 /∈ Φ+

n \ Φ+
n−1. This

forces −(ᾱ1 + ... + ᾱk2−1) + β = αl−2−n. It follows w̄ > l − 2 − n where we denote by w̄
the smallest index w of the simple roots αw = ᾱi in ᾱ1 + ...+ ᾱk2−1. Let n̄ ∈ N such that
l−2− n̄ = w̄. Assume l−2− n̄ > l−1−n or equivalently that n̄+ 1 < n holds. Since the
coefficients cl−2−n and cl−1−n of ᾱ1 + ...+ ᾱk2−1 =

∑l
i=1 ciαi are zero, we conclude that

〈β, αl−2−n〉 = 〈ᾱ1 + ...+ ᾱk2−1 + αl−2−n, αl−2−n〉 = 〈αl−2−n, αl−2−n〉 = 2.

Since the image of β under the reflection σαl−2−n

σαl−2−n(β) = β − 2αl−2−n = ᾱ1 + ...+ ᾱk2−1 − αl−2−n

is not a root of Φ, we obtain a contradiction. This forces l−2−n̄ = l−1−n or equivalently
n̄+ 1 = n. We are able to apply the outer induction assumption to n+ 4 = n̄+ 5 ≤ k2−1.
We gain that ᾱ1 + ...+ ᾱk2−1 has the shape

ᾱ1 + ...+ ᾱk2−1 =

l+n+1−k2∑
i=l−1−n

αi + 2

l−2∑
i=l+2+n−k2

αi + αl−1 + αl.

But then β = ᾱ1 + ... + ᾱk2−1 + αl−2−n is the root constructed right before. To finish
the proof we need to check that β is not a root of type α + αj for αj ∈ {αl−2−n, ..., αl} \
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123 7.2 The transformation lemma for SO2l

{αl+2+n−k2}. We check the root lengths of α+αj and αj . For j ∈ {l−2−n, ..., l+1−n−k2}
we compute

〈α+ αj , αj〉 = (1− δl−2−n,j)〈αj−1, αj〉+ 2〈αj , αj〉+ 〈αj+1, αj〉 ≥ 2

and for j ∈ {l + 3− n− k2, ..., l − 2} we obtain

〈α+αj , αj〉 = (2−δl+3−n−k2,j)〈αj−1, αj〉+3〈αj , αj〉+(2−δl−2,j)〈αj+1, αj〉+δl−2,j〈αl, αj〉 ≥ 2.

If j = l − 1 or j = l, then we have

〈α+ αj , αj〉 = 2〈αl−2, αj〉+ 2〈αj , αj〉 = 2.

Since in each case the length of α + αj is different to the length of αj , we conclude that
α+αj is not a root. This completes the second inner induction. Hence, the outer induction
is also completed and the lemma is shown.

For the proof of the transformation lemma we decompose the set of the positive roots Φ+

into subsets Ωn,Λn,Θn ⊂ Φ+. For n ∈ {1, ..., l − 3} we define the sets Ωn,Λn,Θn ⊂ Φ+

as follows. The set Ωn is defined as

Ωn :=

n⋃
m=1

{α ∈ Φm \ Φm−1 | α as in Lemma 7.1.2 of ht(α) = 1, ...,m}

=
n⋃

m=1

{
l−3−m+k∑
i=l−2−m

αi | 1 ≤ k ≤ m}.

Note that Ωn \ Ωn−1 is

Ωn \ Ωn−1 = {α ∈ Φn \ Φn−1 | α as in Lemma 7.1.2 of ht(α) = 1, ..., n}.

The set

Λn := {
l−2∑

i=l−2−n
αi,

l−1∑
i=l−1−n

αi,
l−2∑

i=l−1−n
αi + αl}

contains the root α ∈ Φn \ Φn−1 as in Lemma 7.1.2 of ht = n + 1 and the roots α ∈
Φn−1 \ Φn−2 as in Lemma 7.1.3 of ht = n + 1. In the case n = 1 the set Λ1 contains the
roots αl−2 − αl−1 and αl−2 − αl of Φ0. The set Θn is

Θn :=
n⋃

m=1

{α ∈ Φm \ Φm−1 | α as in Lemma 7.1.4 of ht(α) = m+ 3, ..., 2m+ 3}

=
n⋃

m=1

{
l∑

i=l−2−m
αi,

l+m+1−k∑
i=l−2−m

αi + 2
l−2∑

i=l+m+2−k
αi + αl−1 + αl | m+ 4 ≤ k ≤ 2m+ 3}.

Here we have

Θn \Θn−1 = {α ∈ Φn \ Φn−1 | α as in Lemma 7.1.4 of ht(α) = n+ 3, ..., 2n+ 3}.
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124 7 A parametrized equation for SO2l

Finally we define

Λ′ := {αl, αl−1, αl−2, αl + αl−1 + αl−2, α1 + ...+ αl−1, α1 + ...+ αl−2 + αl} .

Since α1 + ...+ αl−1 and α1 + ...+ αl−2 + αl are not contained in
⋃l−3
j=1 Λj and the roots

αl−2 + αl−1 and αl−2 + αl of Φ0 are in Λ′ we conclude that

Φ+ = Ωl−3 ∪ (
l−3⋃
j=1

Λj) ∪ Λ′ ∪Θl−3 = (
l−3⋃
j=1

Ωj \ Ωj−1) ∪ (
l−3⋃
j=1

Λj) ∪ Λ′ ∪ (
l−3⋃
j=1

Θj \Θj−1)

where the union of the last equation is disjoint.
The transformation lemma for SO2l will be proved in 3 steps. First we will transform the
root spaces which correspond to the roots of Ωl−3. In the second step we handle the roots
of Λ = (

⋃l−3
j=1 Λj) ∪ Λ′. In the last step the roots of Θl−3 are processed.

Before we start we recall some facts about the adoint action.
In the previous section we computed a Cartan subalgebra H and a Cartan decomposition
L = H ⊕

⊕
α∈Φ Lα of Lie(SO2l)(F ). Further, we showed that the set {Xα, Hα | α ∈

Φ} forms a Chevalley basis where the notation is as in the previous section. Then the
Chevalley construction yields a representation of the group SO2l. Let us denote for each
β ∈ Φ the corresponding root subgroups by Uβ and a parametrized element of Uβ by Uβ(ζ)
with ζ ∈ F . Let α and β be two roots of Φ. Then the adjoint action of Uβ(ζ) on Xα is
determined (see also Section 3.2) by

Ad(Uβ(ζ))(Xα) =
∑
i≥0

mα+iβ · ζi ·Xα+iβ. (7.6)

For β, α linearly independent let α− rβ, ... , α+ qβ be the β-string through α. Then the
values for mβ,α,i are determined by mβ,α,i = ±

(
r+i
i

)
and mβ,α,0 = 0.

Lemma 7.2. For l ≥ 4 let 1 ≤ n ≤ l − 3 and let A =
∑l

i=1Xαi +
∑

γ∈Ωn
aγXγ +∑

γ∈Φ−\Ωl−3
aγXγ. Then there exists U ∈ U− such that

UAU−1 + ∂(U)U−1 =
l∑

i=1

Xαi +
∑

γ∈Ωn−1

aγXγ +
∑

γ∈Φ−\Ωl−3

aγXγ .

Proof. First remember that the roots in Ωn \ Ωn−1 are of height k with 1 ≤ k ≤ n. We
will sometimes write shortly Ω̄n for Ωn \Ωn−1. We show for a fixed n the following claim:
For 1 ≤ k ≤ n and

Ak =

l∑
i=1

Xαi +
∑

γ∈Ωn−1

aγXγ +
∑

γ∈Φ−\Ωl−3

aγXγ +
∑

γ∈Ωn\Ωn−1;ht(γ)≥k

aγXγ

there exists U ∈ U− such that

UAkU
−1 + ∂(U)U−1 =

l∑
i=1

Xαi +
∑

γ∈Ωn−1

aγXγ +
∑

γ∈Φ−\Ωl−3

aγXγ +
∑

γ∈Ω̄n;ht(γ)≥k+1

aγXγ .
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125 7.2 The transformation lemma for SO2l

In other words we have to delete the unique root α ∈ Ωn \Ωn−1 ⊂ Φ−n \Φ−n−1 of ht(α) = k.
By Lemma 7.1.2 there exists a unique ᾱ ∈ ∆ such that −α + ᾱ = β̄ ∈ Φ+

n \ Φ+
n−1 and

ht(β̄) = k + 1. Hence, for β := −β̄ ∈ Φ−n \ Φ−n−1 we obtain β + ᾱ = α.
We differentially conjugate Ak by Uβ(ζ). This yields

Uβ(ζ)AkUβ(ζ)−1 + ∂(Uβ(ζ))Uβ(ζ)−1 =

l∑
i=1

Ad(Uβ(ζ))(Xαi)

+
∑

γ∈Ωn−1

aγAd(Uβ(ζ))(Xγ) +
∑

γ∈Φ−\Ωl−3

aγAd(Uβ(ζ))(Xγ)

+
∑

γ∈Ω̄n;ht(γ)≥k

aγAd(Uβ(ζ))(Xγ) + ∂(Uβ(ζ))Uβ(ζ)−1.

(7.7)

Note that for γ ∈ Φ−, γ 6= 0 we have ht(γ + iβ) > ht(β) = k + 1 for i > 0. Thus, by
equation (7.6) the second summand of the right hand side of equation (7.7) is∑

γ∈Ωn−1

aγAd(Uβ(ζ))(Xγ) ∈
∑

γ∈Ωn−1

aγXγ +
∑

γ∈Φ−n ,ht(γ)>k+1

aγXγ .

It is easily seen that for γ ∈ Φ− \ Ωl−3 and i ≥ 0 the sum γ + iβ is not an element of
Ωl−3. Hence, for the third summand of the right hand side of equation (7.7) we obtain
with equation (7.6) ∑

γ∈Φ−\Ωl−3

aγAd(Uβ(ζ))(Xγ) ∈
∑

γ∈Φ−\Ωl−3

Lie(SO2l)(F )γ .

The fourth summand of equation (7.7) is by the same arguments an element of the subspace∑
γ∈Ω̄n;ht(γ)≥k

aγAd(Uβ(ζ))(Xγ) ∈
∑

γ∈Ω̄n;ht(γ)≥k

aγXγ +
∑

γ∈Φ−n \Φ−n−1;ht(γ)≥k+1

Lie(SO2l)γ(F )

and Proposition 3.5 yields for the last summand of equation (7.7)

∂(Uβ(ζ))Uβ(ζ)−1 = lδ(Uβ(ζ)) ∈ Lie(SO2l)β.

Note that β is an element of Φ−n \ Φ−n−1? of ht(β̂) = k + 1.
Now we analyse the first summand of equation (7.7). With the help of Lemma 7.1 we
deduce

l∑
i=1

Ad(Uβ(ζ))(Xαi) ∈
l∑

i=1

Xαi +mβ,ᾱ,1ζXα +
∑

γ∈Φ−n ;ht(γ)>k+1

Lie(SO2l)γ(F )

+
∑

γ∈Φ−n−1

Lie(SO2l)γ(F ).

If we define ζ = −aα
mβ,ᾱ,1

, then we obtain from our results for equation (7.7)

Uβ(ζ)AkUβ(ζ)−1 + ∂(Uβ(ζ))Uβ(ζ)−1 =

l∑
i=1

Xαi +
∑

γ∈Φ−\Ωl−3

āγXγ +
∑

γ∈Ωn−1

āγXγ

+
∑

γ∈Ωn\Ωn−1;ht(γ)≥k+1

āγXγ
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126 7 A parametrized equation for SO2l

with suitable āγ ∈ F .
Now it can be shown by the claim and induction on height 1 ≤ k ≤ n that for A there
exists U ∈ U− such that UAU−1 + ∂(U)U−1 = Ak+1. This yields for k = n an element
U ∈ U− such that A is differentially equivalent to

UAU−1 + ∂(U)U−1 = An̄+1.

Since the set {γ ∈ Ωn \ Ωn−1 | ht(γ) ≥ n+ 1} is empty, we obtain

UAU−1 + ∂(U)U−1 =
l∑

i=1

Xαi +
∑

γ∈Ωn−1

aγXγ +
∑

γ∈Φ−\Ωl−3

aγXγ .

Thus, the lemma follows.

For the transformation of the roots of the set Λ we need some additional information of
some specific roots since the root system of type Dl is more improving than the other root
systems of the series.

Observation 7.3. Let γ1 = αl−2 + αl−1 and γ2 = αl−2 + αl. Then for γi there are two
unique simple roots ᾱj ∈ ∆ such that γi − ᾱj is a root. We have

γ1 − αl−1 = αl−2 and γ1 − αl−2 = αl−1,
γ2 − αl−2 = αl and γ2 − αl = αl−2.

For 1 ≤ n ≤ l − 3 let us define the set

T ′n = {
l−1∑

i=l−2−n
αi,

l−2∑
i=l−2−n

αi,
l∑

i=l−1−n
αi} = {β1, β2, β3}

and let us denote the roots of Λn by Λn = {α̃1, α̃2, α̃3}.

Observation 7.4. There are two unique simple roots ᾱ1, ᾱ2 ∈ ∆ such that βi − ᾱj is a
root for i = 1, 2. We have

β1 − αl−1 = α̃1 and β1 − αn = α̃2,
β2 − αl = α̃1 and β2 − αn = α̃3.

For n = 1 there are two unique simple roots ᾱj ∈ ∆ such that β3 − ᾱj is a root. We have

β3 − αl = α̃2 and β3 − αl−1 = α̃3.

For 2 ≤ n ≤ l − 3 there are three unique simple roots ᾱj ∈ ∆ such that β3 − ᾱj is a root.
We have

β3 − αl = α̃2, β3 − αl−1 = α̃3 and β3 − αl−1−n =

l∑
i=l−n

αi

where
∑l

i=l−n αi ∈ Λ′ for n = 2 and
∑l

i=l−n αi ∈ Θn−2 for n ≥ 3.

126



127 7.2 The transformation lemma for SO2l

Observation 7.5. For the root γ =
∑l

i=1 αi there are three unique simple roots ᾱj ∈ ∆
such that γ − ᾱj is a root. We have

γ − α1 ∈ Θl−4, γ − αl =
l−1∑
i=1

αi ∈ Λ′ and γ − αl−1 =
l−2∑
i=1

αi + αl ∈ Λ′.

Lemma 7.6. For l ≥ 4 let A =
∑l

i=1Xαi +
∑

γ∈Λ aγXγ +
∑

γ∈Θl−3
aγXγ and denote by

Γ′ the set Γ′ = {−αl, −αl−αl−1−αl−2, −
∑l−2

i=1 αi−αl}. Then there exists U ∈ U− such
that

UAU−1 + ∂(U)U−1 =

l∑
i=1

Xαi +
∑

γ∈Θl−3

aγXγ +
∑
γ∈Γ′

aγXγ .

Proof. The definition of the sets Λn and Λ′ implies that we can decompose A into

A =
l∑

i=1

Xαi +
∑

1≤n≤l−3

∑
γ∈Λn

aγXγ +
∑
γ∈Λ′

aγXγ +
∑

γ∈Θl−3

aγXγ .

In the first step we delete the root spaces which correspond to the two simple roots
−αl−2 and −αl−1 of Λ′. Therefore, we analyse the roots −(αl−2 + αl−1) =: β1 and
−(αl−2 + αl) =: β2. Let α be a root of Λ ∪Θl−3. If α+ iβj is a root for i ≥ 1, then i = 1
and α+βj ∈ Θl−3∪{−(αl−2 + αl−1 + αl)}. This follows from the fact that one of the two

coefficients cl−1 or cl in the sum α + iβj =
∑l

k=1 ckαk with ck ∈ Z is equal to 1 and so
both coefficients of α+ iβj have to be 1. The roots with cl−1 = 1 and cl = 1 are precisely
the roots of Θl−3 ∪ {−(αl−2 + αl−1 + αl)}.
We start with the differential conjugation of A by Uβ1(ζ1) ∈ Uβ1 . This yields

Uβ1(ζ1)AUβ1(ζ1)−1 + ∂(Uβ1(ζ1))Uβ1(ζ1)−1 =
l∑

i=1

Ad(Uβ1(ζ1))(Xαi)

+
∑

1≤n≤l−3

∑
γ∈Λn

aγAd(Uβ1(ζ1))(Xγ) +
∑

γ∈Θl−3

aγAd(Uβ1(ζ1))(Xγ)

+
∑

γ∈Λ2,l−2

aγAd(Uβ′1(ζ1))(Xγ) + ∂(Uβ1(ζ1))Uβ1(ζ1)−1.

(7.8)

For the first summand of the right hand side of equation (7.8) we get by Oberservation 7.3

l∑
i=1

Ad(Uβ1(ζ1))(Xαi) =

l∑
i=1

Xαi +mβ1,αl−1,1ζ1X−αl−2
+mβ1,αl−2,1ζ1X−αl−1

.
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128 7 A parametrized equation for SO2l

The above discussion yields that the second, third and fourth summand are elements of∑
1≤n≤l−3

∑
γ∈Λn

aγAd(Uβ1(ζ1))(Xγ) ∈
∑

1≤n≤l−3

∑
γ∈Λn

aγXγ

+
∑

γ∈Θl−3∪{−αl−2−αl−1−αl}

Lie(SO2l)γ(F ),

∑
γ∈Θl−3

aγAd(Uβ1(ζ1))(Xγ) ∈
∑

γ∈Θl−3

aγXγ +
∑

γ∈Θl−3∪{−αl−2−αl−1−αl}

Lie(SO2l)γ(F ) and

∑
γ∈Λ′

aγAd(Uβ1(ζ1))(Xγ) ∈
∑
γ∈Λ′

aγXγ +
∑

γ∈Θl−3∪{−αl−2−αl−1−αl}

Lie(SO2l)γ(F ).

The last summand is by Proposition 3.5 an element of

∂(Uβ1(ζ1))Uβ1(ζ1)−1 ∈
∑
γ∈Λ′

Lie(SO2l)γ(F ).

We define ζ1 :=
−a−αl−1

mβ1,αl−1,1
. Thus, for suitable āγ ∈ F we get

Uβ1(ζ1)AUβ1(ζ1)−1 + ∂(Uβ1(ζ1))Uβ1(ζ1)−1 =
l∑

i=1

Xαi +
∑

1≤n≤l−3

∑
γ∈Λn

āγXγ

+
∑

γ∈Θl−3

āγXγ +
∑

γ∈Λ′\{−αl−1}

āγXγ =: Ā.

Now we differentially conjugate Ā by Uβ2(ζ2) ∈ Uβ2 . We obtain

Uβ2(ζ2)ĀUβ2(ζ2)−1 + ∂(Uβ2(ζ2))Uβ2(ζ2)−1 =

l∑
i=1

Ad(Uβ2(ζ2))(Xαi)

+
∑

1≤n≤l−3

∑
γ∈Λn

aγAd(Uβ2(ζ2))(Xγ) +
∑

γ∈Θl−3

aγAd(Uβ2(ζ2))(Xγ)

+
∑

γ∈Λ′\{−αl−1}

aγAd(Uβ2(ζ2))(Xγ) + ∂(Uβ2(ζ2))Uβ2(ζ2)−1.

(7.9)

Then Observation 7.3 yields for the first summand of the right hand side of equation (7.9)

l∑
i=1

Ad(Uβ2(ζ2))(Xαi) =

l∑
i=1

Xαi +mβ2,αl−2,1ζ2Xαl +mβ2,αl,1ζ2Xαl−2
.

If we define ζ2 =
−a−αl−2

mβ2,αl,1
and use the same arguments as above for the computation of

the second, third, fourth and fifth summand of equation (7.9), then we get

Uβ2(ζ2)ĀUβ2(ζ2)−1 + ∂(Uβ2(ζ2))Uβ2(ζ2)−1 =
l∑

i=1

Xαi +
∑

1≤n≤l−3

∑
γ∈Λn

āγXγ

+
∑

γ∈Θl−3

āγXγ +
∑

γ∈Λ′\{−αl−1, −(αl−2)}

āγXγ = Al−3.
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129 7.2 The transformation lemma for SO2l

This completes the first step. To simplify notation for the rest of the proof we define
Λ̄′ =: Λ′ \ {−αl−1, −(αl−2)}. In the second step we delete the parts of Al−3 lying in the
root spaces which correspond to the roots of

⋃l−3
i=1 Λi. We prove the following claim:

For 1 ≤ n ≤ l − 3 let

An =

l∑
i=1

Xαi +
∑

γ∈Θl−3

aγXγ +
∑
γ∈Λ′

aγXγ +

l−3∑
i=n

∑
γ∈Λi

aγXγ .

Then there exists U ∈ U− such that

UAnU
−1 + ∂(U)U−1 =

l∑
i=1

Xαi +
∑

γ∈Θl−3

aγXγ +
∑
γ∈Λ̄′

aγXγ +
l−3∑

i=n+1

∑
γ∈Λi

aγXγ .

In other words we delete the parts of An which are elements of the root spaces corre-
sponding to the roots of Λn = {α̃1, α̃2, α̃3}. This will be done by stepwise differential
conjugation with the elements Uβi(ζi) where βi is one of the roots of Tn = {β1, β2, β3}.
Note that

1. if for α ∈
⋃l−2
i=1 Λi and βi ∈ T ′n = {β1, β2, β3} (for 1 ≤ n ≤ l − 3) α + βi is a root,

then α+ β ∈ Θl−3.

2. for α ∈
⋃l−2
i=1 Λi and βi ∈ T ′n = {β1, β2, β3} (for 1 ≤ n ≤ l− 3) α+ j · βi is not a root

for j ≥ 2.

3. for α ∈ Θl−3 and βi ∈ T ′n = {β1, β2, β3} (for 1 ≤ n ≤ l − 3) α + j · βi is not a root
for j ≥ 1.

We start with the differential conjugation of An by the root group element Uβ1(ζ1) ∈ Uβ1 .
This yields

Uβ1(ζ1)AnUβ1(ζ1)−1 + ∂(Uβ1(ζ1))Uβ1(ζ1)−1 =
l∑

i=1

Ad(Uβ1(ζ1))(Xαi)

+
∑

γ∈Θl−3

aγAd(Uβ1(ζ1))(Xγ) +
∑
γ∈Λ̄′

aγAd(Uβ1(ζ1))(Xγ)

+
l−3∑
i=n

∑
γ∈Λi

aγAd(Uβ1(ζ1))(Xγ) + ∂(Uβ1(ζ1))Uβ1(ζ1)−1.

(7.10)

For the first summand of the right hand side of equation (7.10) we obtain with the help
of Observation 7.4

l∑
i=1

Ad(Uβ1(ζ1))(Xαi) =

l∑
i=1

Xαi +mβ1,αl−1,1ζ1Xα̃1 +mβ1,αn,1ζ1Xα̃2 .

The above note implies for the third and fourth summand of equation (7.10)∑
γ∈Λ̄′

aγAd(Uβ1(ζ1))(Xγ) ∈
∑
γ∈Λ̄′

aγXγ +
∑

γ∈Θl−3

Lie(SO2l)γ(F ),

l−3∑
i=n

∑
γ∈Λi

aγAd(Uβ1(ζ1))(Xγ) ∈
l−3∑
i=n

∑
γ∈Λi

aγXγ +
∑

γ∈Θl−3

Lie(SO2l)γ(F )
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and for the second summand∑
γ∈Θl−3

aγAd(Uβ1(ζ1))(Xγ) =
∑

γ∈Θl−3

aγXγ .

Since β1 ∈ Λn+1, we get for the last summand

∂(Uβ1(ζ1))Uβ1(ζ1)−1 ∈
∑

γ∈Λn+1

Lie(SO2l)γ(F ).

Thus, equation (7.10) is equivalent to

An,1 := Uβ1(ζ1)AnUβ1(ζ1)−1 + Uβ1(ζ1)Uβ1(ζ1)−1 =
l∑

i=1

Xαi +
∑

γ∈Θl−3

āγXγ +
∑
γ∈Λ̄′

aγXγ

+
l−3∑

i=n+1

∑
γ∈Λi

aγXγ + (aα̃1 +mβ1,αl−1,1ζ1)Xα̃1 + (aα̃2 +mβ1,αn,1ζ1)Xα̃2 + aα̃3Xα̃3 .

Now we differentially conjugate An,1 by Uβ2(ζ2). We obtain

Uβ2(ζ2)An,1Uβ2(ζ2)−1 + ∂(Uβ2(ζ2))Uβ2(ζ2)−1 =
l∑

i=1

Ad(Uβ2(ζ2))(Xαi)

+
∑

γ∈Θl−3

aγAd(Uβ2(ζ2))(Xγ) +
∑
γ∈Λ̄′

aγAd(Uβ2(ζ2))(Xγ)

+
l−3∑

i=n+1

∑
γ∈Λi

aγAd(Uβ2(ζ2))(Xγ) + (aα̃1 +mβ1,αl−1,1ζ1)Ad(Uβ2(ζ2))(Xα̃1)

+(aα̃2 +mβ1,αn,1ζ1)Ad(Uβ2(ζ2))(Xα̃2) + aα̃3Ad(Uβ2(ζ2))(Xα̃3)

+∂(Uβ2(ζ2))Uβ2(ζ2)−1.

(7.11)

Observation 7.4 yields for the first summand of the right hand side of equation (7.11)

l∑
i=1

Ad(Uβ2(ζ2))(Xαi) =

l∑
i=1

Xαi +mβ2,αl,1ζ2Xα̃1 +mβ2,αn,1ζ2Xα̃3 .

For the computation of the remaining summands we use the same arguments as in the
step before and obtain similar results. However, we have

(aα̃1 +mβ1,αl−1,1ζ1)Ad(Uβ2(ζ2))(Xα̃1) + (aα̃2 +mβ1,αn,1ζ1)Ad(Uβ2(ζ2))(Xα̃2)

+aα̃3Ad(Uβ2(ζ2))(Xα̃3) ∈

(aα̃1 +mβ1,αl−1,1ζ1)Xα̃1 + (aα̃2 +mβ1,αn,1ζ1)Xα̃2 + aα̃3Xα̃3 +
∑

γ∈Θl−3

Lie(SO2l)γ(F ).
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Since β2 ∈ Λn+1, the last summand is ∂(Uβ2(ξ2))Uβ2(ξ−1
2 ) ∈

∑
γ∈Λn+1

Lie(SO2l)γ(F ). We
conclude

An,2 := Uβ2(ζ2)An,1Uβ2(ζ2)−1 + ∂(Uβ2(ζ2))Uβ2(ζ2)−1 =
l∑

i=1

Xαi +
∑

γ∈Θl−3

āγXγ

+
∑
γ∈Λ̄′

aγXγ +

l−3∑
i=n+1

∑
γ∈Λi

āγXγ + (aα̃1 +mβ1,αl−1,1ζ1 +mβ2,αl,1ζ2)Xα̃1+

(aα̃2 +mβ1,αn,1ζ1)Xα̃2 + (aα̃3 +mβ2,αn,1ζ2)Xα̃3 .

In the next step we differentially conjugate An,2 by Uβ3(ζ3) ∈ Uβ3 . This computes as

Uβ3(ζ3)An,2Uβ3(ζ3)−1 + ∂(Uβ3(ζ3))Uβ3(ζ3)−1 =

l∑
i=1

Ad(Uβ3(ζ3))(Xαi)

+
∑

γ∈Θl−3

aγAd(Uβ3(ζ3))(Xγ) +
∑
γ∈Λ̄′

aγAd(Uβ3(ζ3))(Xγ)

+
l−3∑

i=n+1

∑
γ∈Λi

aγAd(Uβ3(ζ3))(Xγ) + ∂(Uβ3(ζ3))Uβ3(ζ3)−1

+(aα̃1 +mβ1,αl−1,1ζ1 +mβ2,αl,1ζ2)Ad(Uβ3(ζ3))(Xα̃1)

+(aα̃2 +mβ1,αn,1ζ1)Ad(Uβ3(ζ3))(Xα̃2) + (aα̃3 +mβ2,αn,1ζ2)Ad(Uβ3(ζ3))(Xα̃3).

(7.12)

We deduce with Observation 7.4 that for n = 1 the first summand of the right hand side
of equation (7.12) is

l∑
i=1

Ad(Uβ3(ζ3))(Xαi) =

l∑
i=1

Xαi +mβ3,αl,1ζ3Xα̃2 +mβ3,αl−1,1ζ3Xα̃3

and that for 2 ≤ n ≤ l − 3 we have

l∑
i=1

Ad(Uβ3(ζ3))(Xαi) ∈
l∑

i=1

Xαi +mβ3,αl,1ζ3Xα̃2 +mβ3,αl−1,1ζ3Xα̃3 + Lie(SO2l)γ(F )

where γ =
∑l

i=n+2 αi. If l ≥ 5 and n = 2, then γ is an element of Λ̄′ and if l ≥ 6 and
3 ≤ n ≤ l− 3, then we have γ ∈ Θl−3. The same arguments as in the previous steps yield
similar results for the remaining terms. For the last summand we obtain

∂(Uβ3(ζ3))Uβ3(ζ3)−1 ∈
∑
γ∈Λ̄′

Lie(SO2l)γ(F ) if n = 1 and

∂(Uβ3(ζ3))Uβ3(ζ3)−1 ∈
∑

γ∈Θl−3

Lie(SO2l)γ(F ) if 2 ≤ n ≤ l − 3.
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Thus, we obtain for equation (7.12)

Uβ3(ζ3)An,2Uβ3(ζ3)−1 + ∂(Uβ3(ζ3))Uβ3(ζ3)−1 =

l∑
i=1

Xαi +
∑

γ∈Θl−3

āγXγ +
∑
γ∈Λ̄′

āγXγ

+
l−3∑

i=n+1

∑
γ∈Λi

āγXγ + (aα̃1 +mβ1,αl−1,1ζ1 +mβ2,αl,1ζ2)Xα̃1

+(aα̃2 +mβ1,αn,1ζ1 +mβ3,αl,1ζ3)Xα̃2 + (aα̃3 +mβ2,αn,1ζ2 +mβ3,αl−1,1ζ3)Xα̃3 .

It can be checked by computation or with [How01, Theorem 2.2] that the integers mβj ,αi,1

have all the same signs. Thus, the determinant

det

 mβ1,αl−1,1 mβ2,αl,1 0
mβ1,αn,1 0 mβ3,αl,1

0 mβ2,αn,1 mβ3,αl−1,1

 6= 0

is not zero. Hence, the system of equations

mβ1,αl−1,1ζ1 +mβ2,αl,1ζ2 = −aα̃1 ,

mβ1,αn,1ζ1 +mβ3,αl,1ζ3 = −aα̃2 ,

mβ2,αn,1ζ2 +mβ3,αl−1,1ζ3 = −aα̃3

has a solution (ζ̄1, ζ̄2, ζ̄3) ∈ F 3. Thus, for U := Uβ1(ζ̄1)Uβ2(ζ̄2)Uβ3(ζ̄3) we get that

UAnU
−1 + ∂(U)U−1 =

l∑
i=1

Xαi +
∑

γ∈Θl−3

āγXγ +
∑
γ∈Λ̄′

āγXγ +
l−3∑

i=n+1

∑
γ∈Λi

āγXγ .

This completes the proof of the claim. Now it can be shown by the claim and induction
on 1 ≤ n ≤ l − 3 that for A1 there exists U ∈ U− such that

UA1U
−1 + ∂(U)U−1 =

l∑
i=1

Xαi +
∑

γ∈Θl−3

āγXγ +
∑
γ∈Λ̄′

āγXγ +
l−3∑

i=n+1

∑
γ∈Λi

āγXγ .

This yields for n = l− 3 that there exists U ∈ U− such that A1 is differentially equivalent
to

UA1U
−1 + ∂(U)U−1 =

l∑
i=1

Xαi +
∑

γ∈Θl−3

āγXγ +
∑
γ∈Λ̄′

āγXγ =: Al−3.

In the last step we differentially conjugate Al−3 by Uβ(ζ) ∈ Uβ where β is the root

β =
∑l

i=1 αi. We obtain

Uβ(ζ)Al−3Uβ(ζ)−1 + ∂(Uβ(ζ))Uβ(ζ)−1 =
l∑

i=1

Ad(Uβ(ζ))(Xαi)

+
∑

γ∈Θl−3

āγAd(Uβ(ζ))(Xγ) +
∑
γ∈Λ̄′

āγAd(Uβ(ζ))(Xγ).

(7.13)
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Observation 7.5 yields for the first summand of the right hand side of equation (7.13)

l∑
i=1

Ad(Uβ(ζ))(Xαi) ∈
l∑

i=1

Xαi +mβ,αl,1ζXγ1 +mβ,αl−1,1ζXγ2 +
∑

γ∈Θl−3

Lie(SO2l)γ(F )

where γ1 =
∑l−1

i=1 αi and γ2 =
∑l−2

i=1 αi+αl. Since for every root α of Θl−3 or Λ̄′ one of the
coefficients cl−1 or cl of α+ iβ with i ≥ 1 is greater than 2, the second and third summand
computes as ∑

γ∈Θl−3

aγAd(Uβ(ζ))(Xγ) =
∑

γ∈Θl−3

aγXγ and

∑
γ∈Λ̄′

aγAd(Uβ(ζ))(Xγ) =
∑
γ∈Λ̄′

aγXγ .

We define ζ = − aγ1
mβ,αl,1

. Then the assertion of the lemma follows, i.e., we have

Uβ(ζ)−1A1Uβ(ζ) + ∂(Uβ(ζ))Uβ(ζ)−1 =
l∑

i=1

Xαi +
∑

γ∈Θl−3

āγXγ +
∑
γ∈Γ′

āγXγ .

In the next step we transform the roots of the set Θl−3. Since it is not possible to delete
all roots of Θl−3 we define for 0 ≤ n ≤ l − 4 the set

Γn = Γ′ ∪ {αi + 2
l−2∑
j=i+1

αi + αl−1 + αl | 1 ≤ i ≤ l − 3− n}

and Γl−3 as Γl−3 := Γ′ where Γ′ is as in Lemma 7.6. However, the transformation is done
in Lemma 7.7 below.

Lemma 7.7. For l ≥ 4 let 1 ≤ n ≤ l − 3 and

A =

l∑
i=1

Xαi +
∑
γ∈Θn

aγXγ +
∑
γ∈Γn

aγXγ .

Then there exists U ∈ U− such that

UAU−1 + ∂(U)U−1 =
l∑

i=1

Xαi +
∑

γ∈Θn−1

aγXγ +
∑

γ∈Γn−1

aγXγ .

Proof. First remember that the roots in Θn \Θn−1 are of height k with n+3 ≤ k ≤ 2n+2.
We will sometimes write Θ̄n for Θn \Θn−1.
We prove the following claim: For n+ 3 ≤ k ≤ 2n+ 2 let

Ak =
l∑

i=1

Xαi +
∑
γ∈Γn

aγXγ +
∑

γ∈Θn−1

aγXγ +
∑

γ∈Θn\Θn−1;ht(γ)≥k

aγXγ .
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Then there exists U ∈ U− such that

UAkU
−1 + ∂(U)U−1 =

l∑
i=1

Xαi +
∑
γ∈Γn

aγXγ +
∑

γ∈Θn−1

aγXγ +
∑

γ∈Θ̄n;ht(γ)≥k+1

aγXγ .

By Lemma 7.1 there is unique root α ∈ Θn \ Θn−1 ⊂ Φ−n \ Φ−n−1 of ht(α) = k. To prove
the claim we have to delete the term of Ak which corresponds to this root α. Lemma 7.1
yields that there exists a unique root ᾱ ∈ ∆ such that −α+ ᾱ = β̄ ∈ Φ+

n \Φ+
n−1 of height

ht(β̄) = k + 1. Thus, for β := −β̄ ∈ Φ−n \ Φ−n−1 it holds β + ᾱ = α. From the shape of

β = −(
l+n−k∑
i=l−2−n

αi + 2
l−2∑

i=l+n+1−k
+αl−1 + αl)

we obtain the following note:

1. If ᾱ ∈ ∆ is one of the roots of Lemma 7.1.3, then ᾱ+ iβ is not a root for i ≥ 2.

2. If γ ∈ Γn, then γ + iβ is not a root for i ≥ 1.

3. If γ ∈ Θn, then γ + iβ is not a root for i ≥ 1.

We differentially conjugate Ak by Uβ(ζ) ∈ Uβ. This yields

Uβ(ζ)AkUβ(ζ)−1 + ∂(Uβ(ζ))Uβ(ζ)−1 =
l∑

i=1

Ad(Uβ(ζ))(Xαi)

+
∑
γ∈Γn

aγAd(Uβ(ζ))(Xγ) +
∑

γ∈Θn−1

aγAd(Uβ(ζ))(Xγ)

+
∑

γ∈Θn\Θn−1;ht(γ)≥k+1

aγAd(Uβ(ζ))(Xγ) + ∂(Uβ(ζ))Uβ(ζ)−1.

(7.14)

With the help of Lemma 7.1.3 and the above note we conclude that the first summand of
the right hand side of equation (7.14) is

l∑
1

Ad(Uβ̂(ζ))Xαi =

l∑
1

Xαi +mβ̂,ᾱ,1ζXα +mβ̂,α̃,1ζXγ

where γ = −(
l+n−k∑
i=l−1−n

αi + 2
l−2∑

i=l+n+1−k
αi + αl−1 + αl) ∈ Θn−1

The note yields for the second summand of the right hand side of equation (7.14)∑
γ∈Γn

aγAd(Uβ(ζ))(Xγ) =
∑
γ∈Γn

aγXγ

and for the third and fourth summand∑
γ∈Θn−1

aγAd(Uβ(ζ))(Xγ) =
∑

γ∈Θn−1

aγXγ and

∑
γ∈Θn\Θn−1;ht(γ)≥k+1

aγAd(Uβ(ζ))(Xγ) =
∑

γ∈Θn\Θn−1;ht(γ)≥k+1

aγXγ .
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Proposition 3.5 implies for the last summand

∂(Uβ(ζ))Uβ(ζ)−1 = lδ(Uβ(ζ)) ∈ Lie(SO2l)β(F ).

We define ζ := − aα
mβ,ᾱ,1

. Then we obtain for equation (7.14)

Uβ(ζ)AkUβ(ζ)−1 + ∂(Uβ(ζ))Uβ(ζ)−1 =

l∑
i=1

Xαi +
∑
γ∈Γn

aγXγ +
∑

γ∈Θn−1

āγXγ +
∑

γ∈Θn\Θn−1;ht(γ)≥k+1

āγXγ .

Thus the claim follows.
An inductive argument together with the claim shows that for n + 3 ≤ k ≤ 2n + 2 and
A = An+3 there exists U ∈ U− such that

UAU−1 + ∂(U)U−1 =
l∑

i=1

Xαi +
∑
γ∈Γn

aγXγ +
∑

γ∈Θn−1

aγXγ +
∑

γ∈Θ̄n;ht(γ)≥k

aγXγ .

Thus, for k = 2n+ 2 we have

UAU−1 + ∂(U)U−1 =

l∑
i=1

Xαi +
∑
γ∈Γn

aγXγ +
∑

γ∈Θn−1

aγXγ +
∑

γ∈Θ̄n;ht(γ)≥2n+3

aγXγ . (7.15)

Note that the root

γ = αl−2−n + 2

l−2∑
i=l−1−n

αi + αl−1 + αl

is the only root in Θn \Θn−1 of ht(γ) ≥ 2n+ 3 and the only element of Γn−1 \Γn. Hence,
we obtain for equation (7.15)

UAU−1 + ∂(U)U−1 =
l∑

i=1

Xαi +
∑

γ∈Γn−1

aγXγ +
∑

γ∈Θn−1

aγXγ .

Now we are ready to prove the transformation lemma. Its proof splits into two parts. In
the first part we delete the terms of A which correspond to the elements of the Cartan
subalgebra H(F ). In the second part we put the results of Lemma 7.2 , 7.6 and 7.7
together and obtain so the transformation of the roots of the sets Ωl−3, Λ and Θl−3.

Lemma 7.8. (Transformation Lemma)
Let

A ∈
l∑

i=1

Xαi + H(F ) +
∑
β∈Φ−

Lie(SO2l)β(F ) =
l∑

i=1

Xαi + Lie(B−)(F )

and denote by Γ the set Γ0 of Lemma 7.7. Then there exists U ∈ U− such that

UAU−1 + ∂(U)U−1 ∈
l∑

i=1

Xαi +
∑
α∈T

Lie(SO2l)α.
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Proof. First, we prove the following claim:
For 1 ≤ k ≤ l let

Ak =
l∑

i=1

Xαi +
l∑

i=k

aiHi +
∑
β∈Φ−

Lie(SO2l)β =

l∑
i=1

Xαi +
l∑

i=k

aiHi +
∑
β∈Φ−

aβXβ.

Then, there exists U ∈ U− such that

UAkU
−1 + ∂(U)U−1 ∈

l∑
i=1

Xαi

l∑
i=k+1

aiHi +
∑
β∈Φ−

Lie(SO2l)β(F ).

To delete the term akHk of Ak we differentially conjugate Ak by U−αk(ζ) ∈ U−αk . This
yields

U−αk(ζ)AkU−αk(ζ)−1 + ∂(U−αk(ζ))U−αk(ζ)−1 =
l∑

i=1

Ad(U−αk(ζ))(Xαi)

+
l∑

i=k

aiAd(U−αk(ζ))(Hi) +
∑
β∈Φ−

aβAd(U−αk(ζ))(Xβ) + ∂(U−αk(ζ))U−αk(ζ)−1.

(7.16)

For the first summand of the right hand side of equation (7.16) we get by Lemma 3.2

l∑
i=1

Ad(U−αk(ζ))(Xαi) ∈
l∑

i=1

Xαi +m−αk,αk,1ζHαk − Lie(SO2l)−αk(F ).

The second summand in equation (7.16) computes with the help of Lemma 3.2 as

l∑
i=k

aiAd(U−αk(ζ))(Hi) =
l∑

i=k

aiHi + ζ [X−αk , Hi]

∈
l∑

i=k

aiHi + Lie(SO2l)αk(F ) + Lie(SO2l)αk+1
(F ).

It is easy to see that for β ∈ Φ−, αk ∈ ∆ and i ≥ 0 the sum β − iαk is an element of Φ−.
Thus the third summand of equation (7.16) lies in∑

β∈Φ−

aβAd(U−αk(ζ))(Xβ) ∈
∑
β∈Φ−

Lie(SO2l)β(F ).

The last summand is an element of the root space

∂(U−αk(ζ))U−αk(ζ)−1 ∈ Lie(SO2l)−αk(F ).
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If we define ζ := −ak then the assertion of the claim follows.
Now it can be proved by the claim and induction on k ∈ {1, ..., l} that there exists U ∈ U−
such that

UAU−1 + ∂(U)U−1 ∈
l∑

i=1

Xαi +

l∑
i=k+1

aiHi +
∑
β∈Φ−

aβXβ.

In particular, this yields for k = l that there exists U ∈ U− such that

Ā1 := UAU−1 + ∂(U)U−1 =
l∑

i=1

Xαi +
∑
β∈Φ−

aβXβ.

For n = l − 3 we write Ā1 as in Lemma 7.2. We have

Ā1 =

l∑
i=1

Xαi +
∑

γ∈Ωl−3

aγXγ +
∑

γ∈Φ−\Ωl−3

aγXγ .

One proves by an inductive argument on 1 ≤ m ≤ l − 3 together with Lemma 7.2 that
there exists U ∈ U− such that Ā1 is differentially equivalent to

UĀ1U
−1 + ∂(U)U−1 =

l∑
i=1

Xαi +
∑

γ∈Ωl−3−m

aγXγ +
∑

γ∈Φ−\Ωl−3

aγXγ

This yields for m = l − 3 that there exists U ∈ U− such that

Ā2 := UĀ1U
−1+∂(U)U−1 =

l∑
i=1

Xαi+
∑

γ∈Φ−\Ωl−3

aγXγ =
l∑

i=1

Xαi+
∑
γ∈Λ

aγXγ+
∑

γ∈Θl−3

aγXγ .

Now we can apply Lemma 7.6 to Ā2. This yields

UĀ2U
−1 + ∂(U)U−1 =

l∑
i=1

Xαi +
∑

γ∈Θl−3

aγXγ +
∑
γ∈Γ′

aγXγ = Ā3

where Γ′ is as in Lemma 7.6. Again, it can be shown by an inductive argument on
1 ≤ m ≤ l − 3 and Lemma 7.7 that for Ā3 there exists U ∈ U− such that

UĀ3U
−1 + ∂(U)U−1 =

l∑
i=1

Xαi +
∑

γ∈Θl−3−m

aγXγ +
∑

γ∈Γl−3−m

aγXγ .

Then for m = l − 3 the assertion of the lemma follows.

7.3 The equation with group SO2l

The next step is to combine the result of Corollary 3.12 and Lemma 7.8, since we want to
apply later the specialization bound. This is done in Corollary 7.9 below.
Before we start, recall that F̄ := (C(z), ∂ = d

dz ) denotes a rational function field with
standard derivation.
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Corollary 7.9. Apply Corollary 3.12 to the group SO2l and the Cartan Decomposition of
Lie(SO2l). Denote by AM&S

SO2l
∈ Lie(SO2l)(F̄ ) the matrix which satisfies the stated condi-

tions of Corollary 3.12. Then there exists U ∈ U−0 ⊂ SO2l(F̄ ) such that

ĀSO2l
:= UAM&S

SO2l
U−1 + ∂(U)U−1 =

∑
α∈∆

Xα +
∑
γi∈Γ

fiXγi (7.17)

with at least one fi ∈ C [z] \ C and the differential Galois group of the matrix differential
equation ∂(y) = ĀSO2l

y over C(z) is SO2l(C).

Proof. Lemma 7.8 implies the existence of an U ∈ U−0 ⊂ SO2l such that equation (7.17)
holds. Since differential conjugation defines a differential isomorphism, we deduce with
Corollary 3.12 that the differential Galois group of ∂(y) = ĀSO2l

y is also SO2l(C) over
C(z). We still need to show the existence of fi ∈ C [z]\C for some γi ∈ Γ. Suppose ĀSO2l

=∑
α∈∆Xα +

∑
γi∈Γ fiXγi ∈ Lie(SO2l)(C). Then by Lemma 7.10 below the corresponding

differential equation L(y, f1, ..., fl) ∈ C {y} has coefficients in C. But then by [Mag94,
Corollary 3.28] the differential Galois group is abelian. Thus ĀSO2l

∈ Lie(SO2l)(C(z)) \
Lie(SO2l)(C). Since 0 6= A1 ∈ H(C) and A = (z2A1 +A0) in Corollary 3.12, we start our
transformation with at least one coefficient lying in C [z] \C. In each step the application
of Ad(Uβ(ζ)) generates at most new entries which are polynomials in ζ. Moreover, the
logarithmic derivative is the product of the two matrices ∂(Uβ(ζ)) and Uβ(ζ)−1 = Uβ(−ζ).
In the proofs of Lemma 7.2, 7.6, 7.7 and 7.8 we choose the parameter ζ to be one of the
coefficients. Hence, we have fi ∈ C[z] \ C.

Since our goal is to compute a parametrized differential equation for the series SO2l, we
denote by F = C 〈t1, ..., tl〉 the differential field generated by the l differential indetermi-
nates t1, ..., tl over C and define the matrix differential equation ∂(y) = ASO2l

(t1, ..., tl)y
by

ASO2l
(t1, ..., tl) =

∑
α∈∆

Xα +
∑
γi∈Γ

tiXγi

where the set Γ is as in Lemma 7.8.
We compute now the linear differential equation for SO2l from the matrix differential
equation ∂(y) = ASO2l

(t1, ..., tl)y.

Lemma 7.10. The matrix differential equation ∂(y) = ASO2l
(t1, ..., tl)y is differentially

equivalent to the homogeneous scalar linear differential equation

L(y, t1, ..., tl) = y(2l) − 2
l∑

i=3

(−1)i((tiy
(l−i))(l+2−i) + (tiy

(l+1−i))(l+1−i))

−(t2y
(l−2) + t1y)(l) − ((−1)lt1z1 + z2)−

l−2∑
i=0

(t
(l−2−i)
2 z1)(i)
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139 7.3 The equation with group SO2l

where the coefficients z1 and z2 are

z1 = y(l) − t2y(l−2) − t1y

z2 =
(t

(l−2)
2 + (−1)l−2t1)(1)

t
(l−2)
2 + (−1)l−2t1

·

(
y(2l−1) − 2

l∑
i=3

(−1)i((tiy
(l−i))(l+1−i) + (tiy

(l+1−i))(l−i))

− (t2y
(l−2) + t1y)(l−1) −

l−3∑
i=0

(t
(l−3−i)
2 z1)(i)

)
.

Proof. The matrix differential equation ∂(y) = ASO2l
(t1, ..., tl)y has by the representation

of the Lie algebra Lie(SO2l) in Section 7.1 the shape

∂(y1)
∂(y2)

...

...
∂(y2l−1)
∂(y2l)


=



0 1
. . .

1 1
−1

t1 0 t2 0 0 −1

0 −t2
. . .

tl 0 −1
0 −tl 0 −t1 0


·



y1

y2
...

...
y2l−1

y2l


.

Note that we write sometimes y′i for ∂(yi). This matrix differential equation is equivalent
to the following system of equations:

y′1 = y2 (1)

...

y′l−2 = yl−1 (l-2)

y′l−1 = yl + yl+1 (l-1)

y′l = −yl+2 (l)

y′l+1 = t1y1 + t2yl−1 − yl+2 (l+1)

y′l+2 = t3yl−2 − t2yl − yl+3 (l+2)

y′l+3 = t4yl−3 − t3yl−1 − yl+4 (l+3)

...

y′l+k = tk+1yl−k − tkyl−k+2 − yl+k+1 for 4 ≤ k ≤ l − 2 (l+k)

...

y′2l−1 = tly1 − tl−1y3 − y2l (2l-1)

y′2l = −tly2 − t1yl. (2l)

We show that y1 is a cyclic vector. With the help of an easy inductive argument it follows
from the Equations (1) - (l-2) that

y
(i−1)
1 = yi for 1 ≤ i ≤ l − 1.
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140 7 A parametrized equation for SO2l

In particular, we have y
(l−2)
1 = yl−1. Differentiating the expression y

(l−2)
1 = yl−1 and

substituting y′l−1 by the right hand side of equation (l-1) yields y
(l−1)
1 = yl + yl+1. We

differentiate again and obtain from equation (l) and (l-1) the equation

y
(l)
1 = t1y1 + t2yl−1 − 2yl+2.

Thus we have

y
(l)
1 = t1y1 + t2y

(l−2)
1 − 2yl+2 ⇔ −2yl+2 = y

(l)
1 − t1y1 − t2y(l−2)

1 =: z1.

Now we differentiate y
(l)
1 = t1y1 + t2y

(l−2)
1 − 2yl+2 and substitute y′l+2 by the right hand

side of equation (l+2). This yields

y
(l+1)
1 = (t1y1 + t2y

(l−2)
1 )′ − 2t3yl−2 + 2t2yl + 2yl+3

= (t1y1 + t2y
(l−2)
1 )′ − 2t3y

(l−3)
1 + 2t2yl + 2yl+3.

We prove the following claim: For 1 ≤ k ≤ l − 3 the system

y′l+3 = t4yl−3 − t3yl−1 − yl+4 (1)

...

y′l+2+k = tk+3yl−k−2 − tk+2yl−k − yl+k+3 (k)

together with the equations

y
(l+1)
1 = (t1y1 + t2y

(l−2)
1 )′ − 2t3y

(l−3)
1 + 2t2yl + 2yl+3 (A)

y
(i−1)
1 = yi for l − k − 2 ≤ i ≤ l − 1 (B)

y′l = −yl+2 (C)

−2yl+2 = y
(l)
1 − t1y1 − t2y(l−2)

1 =: z1 (D)

yields the differential equation

y
(l+k+1)
1 = (t1y1 + t2y

(l−2)
1 )(k+1) + 2

k+2∑
i=3

(−1)i((tiy
(l−i)
1 )(k+3−i) + (tiy

(l−i+1)
1 )(k+2−i))

+2((−1)k+1tk+3y
(l−k−3)
1 + (−1)kyl+k+3 + tk2yl) +

k−1∑
i=0

(t
(k−i−1)
2 z1)(i).

The proof is done by induction on 1 ≤ k ≤ l − 3.

Let k = 1. We differentiate y
(l+1)
1 = (t1y1 + t2y

(l−2)
1 )′ − 2t3y

(l−3)
1 + 2t2yl + 2yl+3 and

substitute y′l+3 by the right hand side of equation (1). We obtain

y
(l+2)
1 = (t1y1 + t2y

(l−2)
1 )(2) − 2(t3y

(l−3)
1 )(1) − 2t3yl−1 + 2t4yl−3

+2t′2yl + 2t2y
′
l − 2yl+4.
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141 7.3 The equation with group SO2l

Now we use Equations (B), (C) and (D) for the substitution of yl−1, yl−3 and y′l. This is

y
(l+2)
1 = (t1y1 + t2y

(l−2)
1 )(2) − 2(t3y

(l−3)
1 )(1) − 2t3y

(l−2)
1 + 2t4y

(l−4)
1

+2t′2yl − 2t2yl+2 − 2yl+4

= (t1y1 + t2y
(l−2)
1 )(2) − 2(t3y

(l−3)
1 )(1) − 2t3y

(l−2)
1 + 2t4y

(l−4)
1

+2t′2yl + t2z1 − 2yl+4.

Now let 1 < k ≤ l − 3. For k − 1 we obtain a subsystem of the above system formed by

y′l+3 = t4yl−3 − t3yl−1 − yl+4 (1’)

...

y′l+1+k = tk+2yl−k−1 − tk+1yl−k+1 − yl+k+2 (k’)

and by the equations

y
(l+1)
1 = (t1y1 + t2y

(l−2)
1 )′ − 2t3y

(l−3)
1 + 2t2yl + 2yl+3 (A’)

y
(i−1)
1 = yi for l − k − 1 ≤ i ≤ l − 1 (B’)

y′l = −yl+2 (C’)

−2yl+2 = y
(l)
1 − t1y1 − t2y(l−2)

1 =: z1. (D’)

Then the induction assumption yields for k − 1 the differential equation

y
(l+k)
1 = (t1y1)(k) + (t2y

(l−2)
1 )(k) + 2

k+1∑
i=3

(−1)i((tiy
(l−i)
1 )(k+2−i) + (tiy

(l−i+1)
1 )(k+1−i))

+2((−1)ktk+2y
(l−k−2)
1 + (−1)k−1yl+k+2 + t

(k−1)
2 yl) +

k−2∑
i=0

(t
(k−2−i)
2 z1)(i).

(I)

We differentiate equation (I) and substitute y′l+k+2 by equation (k’). We get

y
(l+k+1)
1 = (t1y1 + t2y

(l−2)
1 )(k+1) + 2

k+1∑
i=3

(−1)i((tiy
(l−i)
1 )(k+3−i) + (tiy

(l−i+1)
1 )(k+2−i))

+2((−1)k(tk+2y
(l−k−2)
1 )′ + (−1)k−1(tk+3yl−k−2 − tk+2yl−k − yl+k+3)

+t
(k)
2 yl + t

(k−1)
2 y′l) +

k−2∑
i=0

(t
(k−2−i)
2 z1)(i+1).

Now we use equation (B’) for the substitution of yl−k−2 and yl−k. It is easily seen that
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142 7 A parametrized equation for SO2l

Equations (C’) and (D’) imply 2y′l = −2yl+2 = z1. Hence, we have

y
(l+k+1)
1 = (t1y1 + t2y

(l−2)
1 )(k+1) + 2

k+1∑
i=3

(−1)i((tiy
(l−i)
1 )(k+3−i) + (tiy

(l−i+1)
1 )(k+2−i))

+2((−1)k(tk+2y
(l−k−2)
1 )′ + (−1)ktk+2y

(l−k−1)
1 )) + 2(−1)k−1tk+3y

l−k−3
1

+2(−1)kyl+k+3 + 2t
(k)
2 yl + t

(k−1)
2 z1) +

k−2∑
i=0

(t
(k−2−i)
2 z1)(i+1)

= (t1y1 + t2y
(l−2)
1 )(k+1) + 2

k+2∑
i=3

(−1)i((tiy
(l−i)
1 )(k+3−i) + (tiy

(l−i+1)
1 )(k+2−i))

+2((−1)k+1tk+3y
l−k−3
1 + (−1)kyl+k+3 + t

(k)
2 yl) +

k−1∑
i=0

(t
(k−1−i)
2 z1)(i).

Thus the induction is completed and the claim follows.
The claim yields for k = l − 3 the differential equation

y
(2l−2)
1 = (t1y1 + t2y

(l−2)
1 )(l−2) + 2

l−1∑
i=3

(−1)i((tiy
(l−i)
1 )(l−i) + (tiy

(l−i+1)
1 )(l−1−i))

+2((−1)l−2tly1 + (−1)l−3y2l + t
(l−3)
2 yl) +

l−4∑
i=0

(t
(l−4−i)
2 z1)(i).

We differentiate it and use equation (2l) for the substitution of y′2l. However, we obtain

y
(2l−1)
1 = (t1y1 + t2y

(l−2)
1 )(l−1) + 2

l−1∑
i=3

(−1)i((tiy
(l−i)
1 )(l−i+1) + (tiy

(l−i+1)
1 )(l−i))

+2((−1)l−2(tly1)′ + (−1)l−3(−tly′1 − t1yl) + t
(l−2)
2 yl + t

(l−3)
2 y′l)

+
l−4∑
i=0

(t
(l−4−i)
2 z1)(i+1).

(II)

Using the same ideas as above equation (II) simplifies to

y
(2l−1)
1 = (t1y1 + t2y

(l−2)
1 )(l−1) + 2

l∑
i=3

(−1)i((tiy
(l−i)
1 )(l−i+1) + (tiy

(l−i+1)
1 )(l−i))

+2((−1)l−2t1 + t
(l−2)
2 )yl +

l−3∑
i=0

(t
(l−3−i)
2 z1)(i).

(III)

We solve equation (III) for 2yl and multiply it by ((−1)l−2t1 + t
(l−2)
2 )′, i.e. we get

2((−1)l−2t1 + t
(l−2)
2 )′yl =

((−1)l−2t1 + t
(l−2)
2 )′

(−1)l−2t1 + t
(l−2)
2

·
(
y

(2l−1)
1 − (t1y1 + t2y

(l−2)
1 )(l−1)

−2

l∑
i=3

(−1)i((tiy
(l−i)
1 )(l−i+1) + (tiy

(l−i+1)
1 )(l−i))− l−3∑

i=0

(t
(l−3−i)
2 z1)(i)) =: z2.

(IV)
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143 7.3 The equation with group SO2l

Differentiating equation (IV) leads us to

y
(2l)
1 = (t1y1 + t2y

(l−2)
1 )(l) + 2

l∑
i=3

(−1)i((tiy
(l−i)
1 )(l−i+2) + (tiy

(l−i+1)
1 )(l−i+1))

+2((−1)l−2t1 + t
(l−2)
2 )′yl + 2(−1)l−2t1y

′
l + 2t

(l−2)
2 y′l +

l−3∑
i=0

(t
(l−3−i)
2 z1)(i+1)

= (t1y1 + t2y
(l−2)
1 )(l) + 2

l∑
i=3

(−1)i((tiy
(l−i)
1 )(l−i+2) + (tiy

(l−i+1)
1 )(l−i+1))

+2((−1)l−2t1 + t
(l−2)
2 )′yl + (−1)lt1z1 + t

(l−2)
2 z1 +

l−3∑
i=0

(t
(l−3−i)
2 z1)(i+1)

= (t1y1 + t2y
(l−2)
1 )(l) + 2

l∑
i=3

(−1)i((tiy
(l−i)
1 )(l−i+2) + (tiy

(l−i+1)
1 )(l−i+1))

+(−1)lt1z1 + z2 +
l−2∑
i=0

(t
(l−2−i)
2 z1)(i).

Theorem 7.11. The homogeneous linear differential equation

L(y, t1, ..., tl) = y(2l) − 2
l∑

i=3

(−1)i((tiy
(l−i))(l+2−i) + (tiy

(l+1−i))(l+1−i))

−(t2y
(l−2) + t1y)(l) − ((−1)lt1z1 + z2)−

l−2∑
i=0

(t
(l−2−i)
2 z1)(i)

where the coefficients z1 and z2 are

z1 = y(l) − t2y(l−2) − t1y

z2 =
(t

(l−2)
2 + (−1)l−2t1)(1)

t
(l−2)
2 + (−1)l−2t1

·

(
y(2l−1) − 2

l∑
i=3

(−1)i((tiy
(l−i))(l+1−i) + (tiy

(l+1−i))(l−i))

− (t2y
(l−2) + t1y)(l−1) −

l−3∑
i=0

(t
(l−3−i)
2 z1)(i)

)

has SO2l(C) as differential Galois group over F = C〈t〉. Moreover, let F̂ be a differential
field with field of constants equal to C. Let Ê be a Picard-Vessiot extension over F̂ with
differential Galois group SO2l(C) and suppose the defining matrix differential equation
∂(y) = Ây satisfies Â ∈

∑
α∈∆Xα + Lie(B−0 ). Then there is a specialization L(y, t̂1, ..., t̂l)

with t̂i ∈ F̂ such that L(y, t̂1, ..., t̂l) gives rise to the extension Ê over F̂ .

Proof. Let E be a Picard-Vessiot extension for the differential equation L(y, t1, ..., tl) =
0 over F and denote by G its differential Galois group. Since the linear differential
equation is equivalent to the matrix differential equation ∂(y) = ASO2l

(t1, ..., tl)y with
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144 7 A parametrized equation for SO2l

ASO2l
(t1, ..., tl) ∈ Lie(SO2l)(F ), Proposition 2.1 yields G(C) ≤ SO2l(C). By Corollary 7.9

there exists a specialization σ : (t1, ..., tl) → (f1, ..., fl) with f1, ..., fl ∈ C[z] such that
σ(ASO2l

(t1, ..., tl)) = ĀSO2l
and the differential Galois group of ∂(y) = ĀSO2l

y is SO2l(C).
Moreover, we have C{f1, ..., fl} = C[z]. Thus we can apply Corollary 2.15. This yields
SO2l(C) ≤ G(C). Hence, it holds G(C) = SO2l(C).
Since the defining matrix Â satisfies Â ∈

∑
α∈∆Xα+Lie(B−0 ), Lemma 7.8 provides that Â

is differentially equivalent to a matrix Ã =
∑

α∈∆Xα +
∑

γi∈Γ âiXγi with suitable âi ∈ F̂ .
Evidently, the specialization

σ̂ : (t1, ..., tl) 7→ (â1, ..., âl)

does the required.
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Chapter 8

A parametrized equation for G2

8.1 A Lie algebra representation of G2

The below discussion can be found in [Hum72, Section 12.1]. Denote by ε1, ε2, ε3 the
standard orthonormal basis of R3 and let (α, β) be the usual inner product of α, β ∈ R3.
Then, the vectors

Φ = ±{ε1 − ε2, ε2 − ε3, ε1 − ε3, 2ε1 − ε2 − ε3, 2ε2 − ε2 − ε3, 2ε3 − ε1 − ε2}

form the root system Φ of type G2. As a basis we take the set

∆ = {ε1 − ε2 =: α1, −2ε1 + ε2 + ε3 =: α2} .

The Cartan integers 〈αi, αj〉 = 2(αi, αj)/(αj , αj) are given by the entry at position (i, j)
in the Cartan matrix (

2 −1
−3 2

)
.

With respect to this basis the roots of Φ can be expressed uniquely as

±(α1 + α2) = ±(−ε1 + ε3)

±(2α1 + α2) = ±(−ε2 + ε3)

±(3α1 + α2) = ±(−2ε2 + ε1 + ε3)

±(3α1 + 2α2) = ±(2ε3 − ε1 − ε2).

We are going to construct the Lie algebra L of type G2 as a subalgebra of Lie(SO7),
the Lie algebra of type B3, where we take the representation of Lie(SO7) as presented in
[Hum72, Section 1.2]. We will follow the ideas presented in [Hum72, Section 19.3]. From
the root system we see directly that L has dimension 14 and the Cartan subalgebra H is
of dimension 2. Denote by Ers with 1 ≤ r, s ≤ 7 the matrices having 1 as entry at position
(r, s) and 0 elsewhere. The Cartan subalgebra H̄ of Lie(SO7) has the set

H̄ = {Di = Ei+1,i+1 − Ei+4,i+4 | 1 ≤ i ≤ 3}

as a basis. For the Cartan subalgebra of G2 we take

H =

{
3∑
i=1

aiDi |
3∑
i=1

ai = 0 with ai ∈ C

}
.
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146 8 A parametrized equation for G2

Obviously the dimension of H is dim(H) = 2. Following Humphreys we choose the root
vectors Gi,j (i 6= j) of Lie(O7) relative to H̄, which correspond to the six long roots in G2,
as follows:

G1,−2 = Gt2,−1 = E23 − E65

G1,−3 = Gt3,−1 = E24 − E75

G2,−3 = Gt3,−2 = E34 − E76.

Furthermore, for the six short roots G±i (i = 1, 2, 3) of G2 relative to H, we take the
matrices

G1 = −Gt−1 =
√

2(E12 − E51)− (E37 − E46)

G2 = −Gt−2 =
√

2(E13 − E61)− (E27 − E45)

G3 = −Gt−3 =
√

2(E14 − E71)− (E26 − E35).

Then, the span of H together with these twelve vectors is the irreducible representation
L of G2 in Lie(SO7). The next step is to determine how these twelve matrices can be
assigned to the roots of G2. The relations of the root vectors under the bracket product
are described by the following equations:

[Gi,−j , Gk,−l] = δjkGi,−l − δilGk,−j
[Gi, G−i] = 3Di − (D1 +D2 +D3)

[Gi,−j , Gk] = −δikGj
[Gi,−j , G−k] = δjkG−i

[Gi, G−j ] = 3Gj,−i i 6= j

[Gi, Gj ] = ±2G−k i, j, k distinct

[G−i, G−j ] = ±2Gk i, j, k distinct

where δi,j denotes the Kronecker delta. It is useful to distinguish between the long and
the short roots. The set

Φ±L = {±α2,±3α1 ± α2,±3α1 ± 2α2}

contains all long roots of Φ. Moreover,

Φ±S = {±α1,±α1 ± α2,±2α1 ± α2}

is the set of all short roots of Φ. The long roots of G2 form a root system of type A2 (see,
for example, [Hum72, Section 12.2, Exercise 4]). Therefore, the computation of

[G1,−2, G2,−3] = G1,−3

[G2,−1, G3,−2] = −G3,−1

[G1,−2, G3,−2] = 0

[G2,−3, G2,−1] = 0

implies that we can define the root vectors corresponding to the long roots of maximal
height as
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147 8.2 The transformation lemma for G2

X3α+3α2 := G1,−3 and X−3α1−2α2 := G3,−1.

Hence, we obtain

X3α1+α2 := G1,−2, Xα2 := G2,−3, X−3α1−α2 := G2,−1 and X−α2 := G3,−2

respectively. Note that there are other choices for the assignments of the root vectors to
the root system A2 in ΦL possible. The bracket products

[G1,−3, Gi] = −δ1,iG3 6= 0⇔ i = 1

[G1,−3, G−i] = δ3,iG−1 6= 0⇔ i = 3

[G3,−1, Gi] = −δ3,iG1 6= 0⇔ i = 3

[G3,−1, G−i] = δ1,iG−3 6= 0⇔ i = 1

yield G1, G−3 ∈ Φ−S \ {−α1} and G3, G−1 ∈ Φ+
S \ {α1}. Thus, with the help of the Lie

products

[G1,−2, G1, ] = −δ11G2

[G1,−2, G−3, ] = 0

[G2,−1, G−1, ] = −δ11G−2

[G2,−1, G3, ] = 0

we are able to define

Xα1 := G2, X−2α1−α2 := G1, X−α1−α2 := G−3

and

X−α1 := G−2, X2α1+α2 := G−1, Xα1+α2 := G3.

From a short calculation we get H2 := [G2,−3, G3,−2] = D2 − D3 and H1 = [G2, G−2] =
−D1 + 2D2 −D3. Obviously the Cartan algebra H is spanned by H1 and H2. Summing
up the Lie Algebra L consists of the 14 elements

H1 = −D1 + 2D2 −D3 H2 = D2 −D3

Xα1 = G2 X−α1 = G−2

Xα2 = G2,−3 X−α2 = G3,−2

Xα1+α2 = G3 X−α1−α2 = G−3

X2α1+α2 = G−1 X−2α1−α2 = G1

X3α1+α2 = G1,−2 X−3α1−α2 = G2,−1

X3α+3α2 = G1,−3 X−3α1−2α2 = G3,−1.

8.2 The transformation lemma for G2

In this section we prove the transformation lemma for G2. Let (F, ∂F ) be a differential
field of characteristic 0.

Lemma 8.1. Let A ∈ Xα1+Xα2+
∑

β∈Φ− Lβ(F ). Then there exists U ∈ U−(F ) ⊂ GL7(F )
such that

UAU−1 + ∂(U)U−1 ∈ Xα1 +Xα2 + L−α2 + L−3α1−2α2 .
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148 8 A parametrized equation for G2

Proof. We write A with respect to the basis given in the previous section as

A0 = Xα1 +Xα2 + a0,1H1 + a0,2H2 +
∑
β∈Φ−

a0,βXβ.

Let α ∈ Φ. Then ζad(Xα) is a nilpotent derivation of L. Let X ∈ L. Thus, as in Sec-
tion 3.2, the map exp(ζad(Xα)) is an automorphism of L. The application of exp(ζad(Xα))
to X reads as

exp(ζad(Xα)).X =
∑
i≥0

1

i!
ζiad(Xα)i(X) = Uα(ζ)XUα(ζ)−1 = Ad(Uα(ζ))(X) (8.1)

where Uα(ζ) equals exp(ζXα). For β ∈ Φ we rewrite equation (8.1) with suitable m̃α,β,i ∈
Q∗ as

Ad(Uα(ζ))(Xβ) = Xβ +
∑
i≥1

m̃α,β,iζ
iXβ+iα. (8.2)

In the first step we want to remove the part H0 := a0,1H1 + a0,2H2 of A0. Therefore, we
differentially conjugate A0 with Uα1(ζ1). Observation 3.4 and the linearity of Ad yield

Ad(U−α1(ζ1))(A0) + lδ(U−α1(ζ1))) = Ad(U−α1(ζ1))(Xα1) + Ad(U−α1(ζ1))(Xα2)

+Ad(U−α1(ζ1))(H0) +
∑
β∈Φ−

Ad(U−α1(ζ1))(a0,βXβ) + lδ(U−α1(ζ1)). (8.3)

Since the only multiples of a root α ∈ Φ are ±α and the coefficients ki of a root α =∑
αi∈δ kiαi are all positive or negative, we obtain with formula (8.2) for the first three

summands of equation (8.3)

Ad(U−α1(ζ1))(Xα1) = Xα1 +
∑
i≥1

m̃−α1,α1,i ζ
i
1Xα1+i(−α1)

∈ Xα1 + m̃−α1,α1,1ζ1H1 + L−α1

Ad(U−α1(ζ1))(Xα2) = Xα2 +
∑
i≥1

m̃−α1,α2,i ζ
i
1Xα2+i(−α1) = Xα2

Ad(U−α1(ζ1))(H0) = H0 + ζ1 [X−α1 , H0] ∈ a0,1H1 + a0,2H2 + L−α1 .

Obviously, the sum of −α1 +β with β ∈ Φ− again lies in Φ−. Hence, the fourth summand
is

Ad(U−α1(ζ1))(
∑
β∈Φ−

a0,βXβ) =
∑
β∈Φ−

a0,β(Xβ +
∑
i≥1

m̃−α1,β,i ζ
i
1Xβ+i(−α1)) ∈

∑
β∈Φ−

Lβ.

The last summand is calculated by Proposition 3.5, which gives us

∂(U−α1(ζ1))U−α1(ζ1)−1 ∈ L−α1 .

We set m̃−α1,α1,1 ζ1 = −a0,1 and summarize the above results. We have

A1 := Ad(U−α1(ζ1))(A0) + ∂(U−α1(ζ1)))U−α1(ζ1))−1 = Xα1 +Xα2 + a0,2H2 +
∑
β∈Φ−

a1,βXβ
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149 8.2 The transformation lemma for G2

with suitable a1,β ∈ F . Now we differentially conjugate A1 by U−α2(ζ2). This gives

Ad(U−α2(ζ2))(A1) + lδ(U−α2(ζ2))) = Ad(U−α2(ζ2))(Xα1) + Ad(U−α2(ζ2))(Xα2)

+a0,2Ad(U−α2(ζ2))(H2) +
∑
β∈Φ−

a1,βAd(U−α2(ζ2))(Xβ) + lδ(U−α2(ζ2)). (8.4)

By the same arguments as above we get for the summands of the right hand side of
equation (8.4)

Ad(U−α2(ζ2))(Xα1) = Xα1 +
∑
i≥1

m̃−α2,α1,i ζ
i
2Xα1+i(−α2) = Xα1

Ad(U−α2(ζ2))(Xα2) = Xα2 +
∑
i≥1

m̃−α2,α2,i ζ
i
2Xα2+i(−α2)

∈ Xα2 + m̃−α2,α2,1 ζ2H2 + L−α2

Ad(U−α2(ζ2))(a0,2H2) = a0,2H2 + ζ2a0,2 [X−α2 , H2] ∈ a0,2H2 + L−α2

Ad(U−α2(ζ2))(
∑
β∈Φ−

a1,βXβ) =
∑
β∈Φ−

a1,β(Xβ +
∑
i≥1

m̃−α2,β,i ζ
i
2Xβ+i(−α2)) ∈

∑
β∈Φ−

Lβ

∂(U−α2(ζ2))U−α2(ζ2)−1 ∈ L−α2 .

If we set m̃−α2,α2,1 ζ2 = −a0,2, then we obtain for equation (8.4)

A2 := Ad(U−α2(ζ2))(A1) + ∂(U−α2(ζ2)))U−α2(ζ2))−1 = Xα1 +Xα2 +
∑
β∈Φ−

a2,βXβ

with suitable a2,β ∈ F .

The next step is to delete the parts of A2 which lie in the root spaces L−α, L−α1−α2 ,
L−2α1−α2 and L−3α1−α2 . The candidates for these transformations are the root group
elements U−α1−α2(ζ), U−2α1−α2(ζ), U−3α1−α2(ζ) and U−3α1−2α2(ζ).
But before we can start with the transformation we need to understand better the ad-
joint action on several root spaces. The tables (8.1), (8.2), (8.3) and (8.4) give the
images Lβ+kα of the root spaces Lβ with β ∈ Φ− ∪ {α1, α2} under Ad(Uα) for α ∈
{−α1 − α2,−2α1 − α2,−3α1 − α2,−3α1 − 2α2}.

−α1 − α2 k=1 k=2 k=3

α1 −α2 − −
α2 −α1 −2α1 − α2 −3α1 − 2α2

−α1 −2α1 − α2 −3α1 − α2 −
−α2 − − −

−α1 − α2 − − −
−2α1 − α2 −3α1 − 2α2 − −
−3α1 − α2 − − −
−3α1 − 2α2 − − −

−3α1 − α2 k=1

α1 −2α1 − α2

α2 −
−α1 −
−α2 −3α1 − 2α2

−α1 − α2 −
−2α1 − α2 −
−3α1 − α2 −
−3α1 − 2α2 −

Table (8.1) Table (8.3)
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150 8 A parametrized equation for G2

−2α1 − α2 k=1 k=2

α1 −α1 − α2 −3α1 − 2α2

α2 − −
−α1 −3α1 − α2 −
−α2 − −

−α1 − α2 −3α1 − 2α2 −
−2α1 − α2 − −
−3α1 − α2 − −
−3α1 − 2α2 − −

−3α1 − 2α2 k=1

α1 −
α2 −3α1 − α2

−α1 −
−α2 −

−α1 − α2 −
−2α1 − α2 −
−3α1 − α2 −
−3α1 − 2α2 −

Table (8.2) Table (8.4)

Table (8.1) yields that Xα2 is send by Ad(U−α1−α2) to the root space L−α1 . Thus, we can
use this to remove the part of A2 which lies in the root space L−α1 . Hence, with the help
of table (8.1) we obtain that the summands of the right hand side of

Ad(U−α1−α2(ζ))(A2) + ∂(U−α1−α2(ζ))U−α1−α2(ζ)−1 = Ad(U−α1−α2(ζ))(Xα1)

+Ad(U−α1−α2(ζ))(Xα2) +
∑
β∈Φ−

a2,βAd(U−α1−α2(ζ))(Xβ) + lδ(U−α1−α2(ζ)) (8.5)

are equal to

Ad(U−α1−α2(ζ))(Xα1) = Xα1 +
∑
i≥1

m̃−α1−α2,α1,i ζ
iXα1+i(−α1−α2)

= Xα1 + m̃−α1−α2,α1,1 ζX−α2

Ad(U−α1−α2(ζ))(Xα2) = Xα2 +
∑
i≥1

m̃−α1−α2,α2,i ζ
iXα2+i(−α1−α2)

∈ Xα2 + m̃−α1−α2,α2,1 ζX−α1 + L−2α1−α2 + L−3α1−2α2

Ad(U−α1−α2(ζ))(
∑
β∈Φ−

a2,βXβ) =
∑
β∈Φ−

a2,β(Xβ

∑
i≥1

m̃−α1−α2,β,i ζ
iXβ+i(−α1−α2))

∈
∑
β∈Φ−

a2,βXβ + L−2α1−α2 + L−3α1−α2 + L−3α1−2α2

∂(U−α1−α2(ζ))U−α1−α2(ζ)−1 ∈ L−α1−α2 .

We define Θ1 := {−α1} and set m̃−α1−α2,α2,1 ζ = −a2,−α1 . Then equation (8.5) becomes

A3 := Ad(U−α1−α2(ζ))(A2)+∂(U−α1−α2(ζ))U−α1−α2(ζ)−1 = Xα1 +Xα2 +
∑

β∈Φ−\Θ1

a3,βXβ.

To delete the part of A3 which lies in the root space L−α1−α2 we differentially conjugate
A3 by U−2α1−α2(ζ). Note that by table (8.2) this conjugation sends no vector of the root
spaces, which form the subspace containing A3, to L−α1 . More precisely, the conjugation
yields

Ad(U−2α1−α2(ζ))(A3) + ∂(U−2α1−α2(ζ))U−2α1−α2(ζ)−1 = Ad(U−2α1−α2(ζ))(Xα1)+

Ad(U−2α1−α2(ζ))(Xα2) +
∑

β∈Φ−\Θ1

a3,βAd(U−2α1−α2(ζ))(Xβ) + lδ(U−2α1−α2(ζ))). (8.6)
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151 8.2 The transformation lemma for G2

With the help of table (8.2) we get for the summands of the right hand side of equation (8.6)

Ad(U−2α1−α2(ζ))(Xα1) = Xα1 +
∑
i≥1

m̃−2α1−α2,α1,i ζ
iXα1+i(−2α1−α2)

∈ Xα1 + m̃−2α1−α2,α1,1 ζX−α1−α2 + L−3α1−2α2

Ad(U−2α1−α2(ζ))(Xα2) = Xα2 +
∑
i≥1

m̃−2α1−α2,α2,i ζ
iXα2+i(−2α1−α2)

= Xα2∑
β∈Φ−\Θ1

a3,βAd(U−2α1−α2(ζ))(Xβ) =
∑

β∈Φ−\Θ1

a3,β

(
Xβ +

∑
i≥1

m̃−2α1−α2,β,i

ζi Xβ+i(−2α1−α2)

)
∈

∑
β∈Φ−\Θ1

a3,βXβ + L−3α1−2α2

∂(U−2α1−α2(ζ))U−2α1−α2(ζ)−1 ∈ L−2α1−α2 .

We set m̃−2α1−α2,α1,1 ζ = −a3,−α1−α2 and Θ2 := Θ1 ∪ {−α1 − α2}. We obtain for equa-
tion (8.6)

A4 := Ad(U−2α1−α2(ζ))(A3) + lδ(U−2α1−α2(ζ)) = Xα1 +Xα2 +
∑

β∈Φ−\Θ2

a4,βXβ.

Now we want to delete the term a4,−2α1−α2X−2α1−α2 . For this we differentially conjugate
A4 with U−3α1−α2(ζ). We get

Ad(U−3α1−α2(ζ))(A4) + ∂(U−3α1−α2(ζ))U−3α1−α2(ζ)−1 = Ad(U−3α1−α2(ζ))(Xα1)+

Ad(U−3α1−α2(ζ))(Xα2) +
∑

β∈Φ−\Θ2

a4,βAd(U−3α1−α2(ζ))(Xβ) + lδ(U−3α1−α2(ζ)). (8.7)

For the summands of the right hand side of equation (8.7), table (8.3) yields

Ad(U−3α1−α2(ζ))(xα1) = Xα1 +
∑
i≥1

m̃−3α1−α2,α1,i ζ
iXα1+i(−3α1−α2)

= Xα1 + m̃−3α1−α2,α1,1 ζX−2α1−α2

Ad(U−3α1−α2(ζ))(Xα2) = Xα2 +
∑
i≥1

m̃−3α1−α2,α2,i ζ
iXα2+i(−3α1−α2)

= Xα2

Ad(U−3α1−α2(ζ))(
∑

β∈Φ−\Θ2

a4,βXβ) =
∑

β∈Φ−\Θ2

a4,β

(
Xβ +

∑
i≥1

m̃−3α1−α2,β,i

ζi Xβ+i(−3α1−α2)

)
∈

∑
β∈Φ−\Θ2

a4,βXβ + L−3α1−2α2

∂(U−3α1−α2(ζ))U−3α1−α2(ζ)−1 ∈ L−3α1−α2 .
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152 8 A parametrized equation for G2

With m̃−3α1−α2,α1,1 ζ = −a4,−2α1−α2 and Θ3 := Θ2 ∪ {−2α1 − α2} we obtain

A5 := Ad(U−3α1−α2(ζ))(A4) + lδ(U−3α1−α2(ζ)) = Xα1 +Xα2 +
∑

β∈Φ−\Θ3

a5,βXβ.

Finally, we want to eliminate the part of A5 lying in L−3α1−α2 . A look at table (8.4)
implies that we can get rid of a5,−3α1−α2X−3α1−α2 by a differential conjugation with the
root group element U−3α1−2α2(ζ) without creating a new vector lying in the just above
deleted root spaces. We obtain

Ad(U−3α1−2α2(ζ))(A5) + ∂(U−3α1−2α2(ζ))U−3α1−2α2(ζ)−1 = Ad(U−3α1−2α2(ζ))(Xα1)+

Ad(U−3α1−2α2(ζ))(Xα2) +
∑

β∈Φ−\Θ3

a5,βAd(U−3α1−2α2(ζ))(Xβ)

= Xα1 +Xα2 + m̃−3α1−2α2,α2,1 ζX−3α1−α2 +
∑

β∈Φ−\Θ3

a5,βXβ.

Hence, with m̃−3α1−2α2,α2,1 ζ = −a5,−3α1−α2 the lemma follows.

8.3 The equation with group G2

We combine now the results of Lemma 8.1 and Corollary 3.12 in Corollary 8.2 below.
Denote by GG2 the group of type G2 with the Lie algebra L presented in Section 8.1.
Moreover, let

Ω := {γ1 := −3α1 − 2α2, γ2 := −α2, }
and let C(z) be as in Section 3.4. Further, we keep all notations of Lemma 8.1.

Corollary 8.2. We apply Corollary 3.12 to the group GG2 and the above Cartan Decompo-
sition. We denote by AM&S

G2
the matrix satisfying the stated conditions of Corollary 3.12.

Then there exists U ∈ U−(C(z)) ⊂ GG2(C(z)) such that

ĀG2 := UAM&S
G2

U−1 + ∂(U)U−1 =
∑
α∈∆

Xα +
∑
γi∈Ω

fiXγi (8.8)

with at least one fi ∈ C [z] \ C and the differential Galois group of the matrix equation
∂(y) = ĀG2y is GG2(C) over C(z).

Proof. Lemma 8.1 implies the existence of an element U ∈ U−0 ⊂ GG2 such that equa-
tion (8.8) holds. Since differential conjugation defines a differential isomorphism, we
deduce with Corollary 3.12 that the differential Galois group of ∂(y) = ĀG2y is again
GG2(C) over C(z). We still need to show the existence of fi ∈ C [z] \ C for some γi ∈ Ω.
Suppose ĀG2 =

∑
α∈∆Xα +

∑
γi∈T fiXγi ∈ Lie(GG2)(C). Then by Lemma 8.3 below

the corresponding differential equation L(y, f1, ..., fl) ∈ C {y} has coefficients in C. But
then by [Mag94, Corollary 3.28] the differential Galois group is abelian. Thus, we obtain
ĀG2 ∈ Lie(GG2)(C(z)) \ Lie(GG2)(C). Since 0 6= A1 ∈ H(C) and A = (z2A1 + A0) in
Corollary 3.12, we start our transformation with at least one coefficient lying in C [z] \C.
In each step application of Ad(Uβ(ζ)) generates at most new entries which are polynomials
in ζ. Moreover, the logarithmic derivative is the product of the two matrices ∂(Uβ(ζ))
and Uβ(ζ)−1 = Uβ(−ζ). In the proof of Lemma 8.1 we choose the parameter ζ to be one
of the coefficients. Hence, we get fi ∈ C[z] \ C.
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153 8.3 The equation with group G2

Lemma 8.3. Let C be an algebraically closed field of characteristic zero and F = C 〈t1, t2〉
the differential field generated by the differential indeterminates t1, t2. Then the matrix

AG2(t1, t2) = Xα1 +Xα2 + t1X−3α1−2α2 + t2X−α2

has the shape

AG2(t1, t2) =



0 0
√

2 0 0 0 0

0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 t1 t2 0 −1 0 0

0 0 0 0 0 0 −t1
−
√

2 0 0 0 0 0 −t2
0 0 0 0 0 −1 0


and the matrix differential equation ∂(y) = AG2(t1, t2)y is equivalent to the differential
equation

y(7) = 2t1y
′ + 2(t1y)′ + 2(t2y

(4))′ + (t2y
′)(4) − 2(t2(t2y

′)′)′.

Proof. The matrix equation ∂(y1)
...

∂(y7)

 = AG2(t1, t2) ·

y1
...
y7


is equivalent to the system of equations defined by

y′1 =
√

2y3

y′2 = y7

y′3 = y4

y′4 = t1y2 + t2y3 − y5

y′5 = −t1y7

y′6 = −
√

2y1 − t2y7

y′7 = −y6

where we use the notation y′i for ∂(yi). We can take y2 as a cyclic vector. We compute
the derivatives of y2:

y
(1)
2 = y7

y
(2)
2 = −y6

y
(3)
2 =

√
2y1 + t2y

(1)
2

y
(4)
2 = (t2y

(1)
2 )(1) + 2y3

y
(5)
2 = (t2y

(1)
2 )(2) + 2y4

y
(6)
2 = (t2y

(1)
2 )(3) + 2t1y2 + 2t2y

(4)
2 − 2t2(t2y

(1)
2 )(1) − 2y5

y
(7)
2 = (t2y

(1)
2 )(4) + 2(t1y2)(1) + 2(t2y

(4)
2 )(1) − 2(t2(t2y

(1)
2 )(1))(1) + 2t1y

(1)
2 .
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154 8 A parametrized equation for G2

Theorem 8.4. Let F = C 〈t1, t2〉 be as in Lemma 8.3. The differential equation

L(t1, t2, y) = y(7) − 2t1y
′ − 2(t1y)′ − 2(t2y

(4))′ − (t2y
′)(4) + 2(t2(t2y

′)′)′.

has G2 as differential Galois group over C 〈t1, t2〉. Moreover, let F̂ be a differential field
with field of constants equal to C. Let Ê be a Picard-Vessiot extension over F̂ with differen-
tial Galois group GG2(C) and suppose the defining matrix differential equation ∂(y) = Ây
satisfies Â ∈ Xα1 +Xα2 +

∑
α∈Φ− Lα. Then there is a specialization L(y, t̂1, t̂2) with t̂i ∈ F̂

such that L(y, t̂1, t̂2) gives rise to the extension Ê over F̂ .

Proof. Let E be a Picard-Vessiot extension for the equation L(y, t1, t2) = 0 over F and
denote by G the differential Galois group. Since the operator comes from the matrix
differential equation ∂(y) = AG2(t1, t2)y with AG2(t1, t2) ∈ Lie(GG2)(F ), Proposition 2.1
yields G(C) ≤ GG2(C). By Corollary 8.2 there exists a specialization σ : (t1, ..., tl) →
(f1, f2) with f1, f2 ∈ C[z] such that σ(AG2(t1, ..., tl)) = ĀG2 and the differential Galois
group of ∂(y) = ĀG2y is GG2(C). Moreover, we have C{f1, f2} = C[z]. Thus we can
apply Corollary 2.15. This yields GG2(C) ≤ G(C). Hence, it holds G(C) = GG2(C).
Since the defining matrix Â satisfies Â ∈ Xα1 + Xα2 +

∑
α∈Φ− Lie(GG2)α, Lemma 8.1

provides that Â is differentially equivalent to a matrix Ã = Xα1 + Xα2 + â1X−3α1−2α2 +
â2X−α2 with suitable âi ∈ F̂ . Obviously the specialization

σ̂ : (t1, t2) 7→ (â1, â2)

does the required.

In [Kat90, Theorem 2.10.6] Katz presented an equation for G2 which has a nice and easy
shape. His result is cited in Theorem 8.5 below.

Theorem 8.5. For any polynomial f in C[z] of degree k prime to 6, the differential Galois
group of

∂7 − f∂ − 1

2
f ′ (8.9)

on A1 is G2.

Now the question arises if we can specialize L(t1, t2, y) to equation (8.9). Obviously the
specialization σ : (t1, t2)→ (1

4f, 0) satisfies

L(σ(t1), σ(t2), y) = y(7) − fy′ − 1

2
f ′y.
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Chapter 9

A parametrized equation for F4

9.1 The root system of type F4

The following construction of the root system of type F4 is taken from [Hum72, Section
12.1]. Let ε1, ..., ε4 denote the standard orthonormal unit vectors of R4 and let (α, β)
denote the usual inner product for α, β ∈ R4. Denote by I the Z-span of this basis. Then
by definition I is a lattice. Moreover, let I ′ = I+Z((ε1 +ε2 +ε3 +ε4)/2). Then by [Hum72,
Section 12.1] the set Φ = {α ∈ I ′ | (α, α) = 1 or 2} defines the root system of type F4.
It consists of all elements ±εi, ±(εi − εj) (here we need i 6= j) and ±1

2(ε1 ± ε2 ± ε3 ± ε4)
where the signs may be chosen independently. We can take the vectors

α1 = ε2 − ε3, α2 = ε3 − ε4, α3 = ε4 and α4 = 1
2(ε1 − ε2 − ε3 − ε4)

as a basis of Φ which we denote by ∆. Then the roots are Z-linear combinations of this
basis vectors. In particular, for the 24 positive roots of Φ (for this number see [Hum72,
Section 12.2, Table 1]) we have

ε1 = α1 + 2α2 + 3α3 + 2α4, ε1 + ε4 = α1 + 2α2 + 4α3 + 2α4,
ε2 = α1 + α2 + α3, ε2 + ε3 = α1 + 2α2 + 2α3,
ε3 = α2 + α3, ε2 + ε4 = α1 + α2 + 2α3,
ε4 = α3, ε3 + ε4 = α2 + 2α3,
ε1 − ε2 = α2 + 2α3 + 2α4, 1

2(ε1 + ε2 + ε3 + ε4) = α1 + 2α2 + 3α3 + α4,
ε1 − ε3 = α1 + α2 + 2α3 + 2α4, 1

2(ε1 − ε2 + ε3 + ε4) = α2 + 2α3 + α4,
ε1 − ε4 = α1 + 2α2 + 2α3 + 2α4, 1

2(ε1 + ε2 − ε3 + ε4) = α1 + α2 + 2α3 + α4,
ε2 − ε3 = α1, 1

2(ε1 + ε2 + ε3 − ε4) = α1 + 2α2 + 2α3 + α4,
ε2 − ε4 = α1 + α2, 1

2(ε1 − ε2 − ε3 + ε4) = α3 + α4,
ε3 − ε4 = α2, 1

2(ε1 + ε2 − ε3 − ε4) = α1 + α2 + α3 + α4,
ε1 + ε2 = 2α1 + 3α2 + 4α3 + 2α4, 1

2(ε1 − ε2 + ε3 − ε4) = α2 + α3 + α4,
ε1 + ε3 = α1 + 3α2 + 4α3 + 2α4, 1

2(ε1 − ε2 − ε3 − ε4) = α4.

Suppose a representation of the Lie algebra of type F4 to Lie(GL(V )) is given and denote
its image by L ≤ Lie(GL(V )). Further let H denote a Cartan subalgebra and L =
H⊕

⊕
α∈Φ Lα be a Cartan decomposition of L. Then for each α ∈ Φ we are able to choose

Xα together with Hα = [Xα, X−α] such that the set {Xα, Hα | α ∈ Φ} forms a Chevalley
basis. The Chevalley construction yields a representation of the group of type F4 which
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156 9 A parametrized equation for F4

we denote by G. Further, we denote for each β ∈ Φ the corresponding root subgroups by
Uβ and a parametrized element of Uβ by Uβ(ζ) with ζ ∈ F . Let α and β be two roots of
Φ. Then the adjoint action of Uβ(ζ) on Xα is determined (see also Section 3.2) by

Ad(Uβ(ζ))(Xα) =
∑
i≥0

mα+iβ · ζi ·Xα+iβ. (9.1)

For β, α linearly independent let α− rβ, ... , α+ qβ be the β-string through α. Then the
values for mβ,α,i are determined by mβ,α,i = ±

(
r+i
i

)
and mβ,α,0 = 0. Since the proof of

the transformation lemma is based on differential conjugation, it is useful to study more
detailed the adjoint action for some specific roots. Let α be one of the simple roots αj ∈ ∆
and let β ∈ Φ be the h-th positive root of height ht(β) = k ≥ 2 which we indicate by βh,k.
Note that the numbering of the roots of a given height is arbitrarily defined by us below.
We determine for each −βh,k ∈ Φ− and αj ∈ ∆ if

β̂j,h := αj + (−βh,k) (9.2)

is a root of Φ or not, i.e., we analyse if the term mα+iβ · ζi ·Xα+iβ of equation (9.1) is for
i = 1 zero or not.
We start with the negative roots of height 2. Those are the roots −β1,2 = −α1 − α2,
−β2,2 = −α2 − α3, and −β3,2 = −α3 − α4. From the list which contains all positive roots

on the previous page we obtain the β̂j,h for h = 1, 2, 3. The root β̂j′,h′ can be found at
position j′, h′ of table (9.1).

−β1,2 −β2,2 −β3,2

α1 −α2

α2 −α1 −α3

α3 −α2 −α4

α4 −α3

Table (9.1)

Note that if β̂j,h is not a root then the position j, h is empty.
The next step is to analyse the negative roots of height 3. There are the three negative
roots, namely −β1,3 = −α1 − α2 − α3, −β2,3 = −α2 − 2α3 and −β3,3 = −α2 − α3 − α4.

For those roots we determine the β̂j,h. This is presented in table (9.2).

−β1,3 −β2,3 −β3,3

α1 −α2 − α3

α2 −α3 − α4

α3 −α1 − α2 −α2 − α3

α4 −α2 − α3

Table (9.2)

Now we come to the negative roots of height 4. Then the −βh,4 are the roots −β1,4 =
−α1 − α2 − 2α3, −β2,4 = −α1 − α2 − α3 − α4 and −β3,4 = −α2 − 2α3 − α4. The result of
the analysis of those roots is given in table (9.3).
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157 9.1 The root system of type F4

−β1,4 −β2,4 −β3,4

α1 −α2 − 2α3 −α2 − α3 − α4

α2

α3 −α1 − α2 − α3 −α2 − α3 − α4

α4 −α1 − α2 − α3 −α2 − 2α3

Table (9.3)

If ht(β) = 5, then we obtain for the root −β1,5 = −α1 −α2 − 2α3 −α4 the roots β̂1,1, β̂3,1

and β̂4,1, i.e., we have

β̂1,1 = −α2 − 2α3 − α4, β̂3,1 = −α1 − α2 − α3 − α4 and β̂4,1 = −α1 − α2 − 2α3.

Moreover, for the remaining roots βh,5 (h 6= 1) of height 5 we get from the list

β̂2,2 = −α1 − α2 − 2α3 for β2,5 = −α1 − 2α2 − 2α3 and

β̂4,3 = −α2 − 2α3 − α4 for β3,5 = −α2 − 2α3 − 2α4.

This is summarized in table (9.4).

−β1,5 −β2,5 −β3,5

α1 −α2 − 2α3 − α4

α2 −α1 − α2 − 2α3

α3 −α1 − α2 − α3 − α4

α4 −α1 − α2 − 2α3 −α2 − 2α3 − α4

Table (9.4)

Now we consider the negative roots of height 6. There are two negative roots of height six,
namely −β1,6 = −α1−2α2−2α3−α4 and −β2,6 = −α1−α2−2α3−2α4. The computation

of the β̂j,h for −β1,6 and −β2,6 shows that they have the root −α1 − α2 − 2α3 − α4 in
common. However, the results for the negative roots of height 6 can be found in table (9.5).

−β1,6 −β2,6

α1 −α2 − 2α3 − 2α4

α2 −α1 − α2 − 2α3 − α4

α3

α4 −α1 − 2α2 − 2α3 −α1 − α2 − 2α3 − α4

Table (9.5)

The negative roots of height seven are −β1,7 = −α1 − 2α2 − 3α3 − α4 and −β2,7 =
−α1 − 2α2 − 2α3 − 2α4. From the list which contains all positiv roots we determine the
β̂j,h for h = 1, 2 and k = 7. The result is given in table (9.6).

−β1,7 −β2,7

α1

α2 −α1 − α2 − 2α3 − 2α4

α3 −α1 − 2α2 − 2α3 − α4

α4 −α1 − 2α2 − 2α3 − α4

Table (9.6)
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158 9 A parametrized equation for F4

The root −β1,8 = −α1−2α2−3α3−2α4 is the only root of height eight. Only for the two
simple roots α3 and α4 we obtain roots of the root system in the sense of equation (9.2),
i.e., we obtain table (9.7).

−β1,8

α1

α2 −α1 − 2α2 − 2α3 − 2α4

α3

α4 −α1 − 3α2 − 2α3 − α4

Table (9.7)

The analysis for the negative roots of height 9, 10 and 11 can be found in table (9.8) below.
We have −β1,9 = −α1 − 2α2 − 4α3 − 2α4 of height 9, −β1,10 = −α1 − 3α2 − 4α3 − 2α4 of
height 10 and −β1,11 = −2α1 − 3α2 − 4α3 − 2α4 the root of maximal height.

−β1,9 −β1,10 −β1,11

α1 −α1 − 3α2 − 4α3 − 2α4

α2 −α1 − 2α2 − 4α3 − 2α4

α3 −α1 − 2α2 − 3α3 − 2α4

α4

Table (9.8)

9.2 The transformation lemma for F4

Let (F, ∂) be a differential field of characteristic 0. We are going to prove the transforma-
tion lemma for the group of type F4. In the proof we make use of the study of the root
system Φ of type F4 done in the previous section. Therefore we keep the notations done
there.

Lemma 9.1. Let A ∈ Xα1 +Xα2 +Xα3 +Xα4 +
∑

β∈Φ− Lβ(F ) +H(F ). Then there exists

U ∈ U− such that

UAU−1 + ∂(U)U−1 ∈ Xα1 +Xα2 +Xα3 +Xα4 + L−α1(F ) + L−α1−2α2−2α3(F )

+ L−α1−2α2−2α3−2α4(F ) + L−2α1−3α2−4α3−2α4(F ).

Proof. With respect to a Chevalley basis {Xα, Hi} an element of Xα1 + Xα2 + Xα3 +
Xα4 +

∑
β∈Φ− Lβ(F ) + H(F ) is given by

A0 =

4∑
i=1

Xαi + a0,iHi +
∑
β∈Φ−

a0,βXβ.

In the first step we get rid of the part of A lying in the Cartan subalgebra, i.e., we delete
the vectors of the subspace 〈Hi | i = 1, ..., l〉. Let −αi be the negative of a simple root αi.
We differentially conjugate A0 with U−αi(ζ). We have

Ad(U−αi(ζ))(A0) + lδ(U−αi(ζ)) =

4∑
j=1

Ad(U−αi(ζ))(Xαj ) + a0,jAd(U−αi(ζ))(Hj)

+
∑
β∈Φ−

a0,βAd(U−αi(ζ))(Xβ) + lδ(U−αi(ζ)).
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159 9.2 The transformation lemma for F4

Proposition 3.5 yields lδ(U−αi(ζ)) ∈ 〈Xαi〉. From the signs of the roots we deduce that∑
β∈Φ− a0,βAd(U−αi(ζ))(Xβ) is an element of

∑
β∈Φ− Lβ. The elements Ad(U−αi(ζ))(Xαj )

for j 6= i are

Ad(U−αi(ζi))(Xαj ) = Xαj +
∑
k≥1

m−αi, αj , kζ
k
i Xαj+k(−αi) = Xαj .

Further, for j = i we have

Ad(U−αi(ζi))(Xαi) = Xαi +
∑
k≥1

m−αi, αi, kζ
k
i Xαi+k(−αi)

∈ Xαi +m−αi, αi, 1ζiHi + L−αi .

Let H0 denote H0 =
∑4

i=1 a0,iHi. We obtain Ad(U−αi(ζi))(H0) = H0 + ζi[X−αi , H0] ∈
H0 + L−αi . We put now our results together. We conclude

Ad(U−α4(ζ4) · ... · U−α1(ζ1))(A0) + lδ(U−α4(ζ4) · ... · U−α1(ζ1)) =

4∑
i=1

Xαi + (a0,i +m−αi, αi, 1ζi)Hi

+
∑
β∈Φ−

a1,βXβ := A1

where the new coefficients a1,β are elements of F . If we define the parameter ζi as ζi =
−a0,i

m−αi,αi,1
, then it follows A1 =

∑4
i=1Xαi +

∑
β∈Φ− a1,βXβ.

In the next step we delete all parts of A0 lying in the subspaces 〈Xβ̂〉 of all negative roots

β̂ ∈ Φ− except of −α1, −α1 − 2α2 − 2α3, −α1 − 2α2 − 2α3 − 2α4 and −2α1 − 3α2 −
4α3 − 2α4. Since we will do this for each height k, there are some repeating arguments
and facts. If we want to delete a vector which corresponds to a root β̂j,h of height k,
we differentially conjugate with a parametrized root group element U−βh,k+1

(ζ) which
corresponds to one of the roots −βh,k+1 of height k+1. By Proposition 3.5 the logarithmic
derivate lδ(U−βh,k+1

(ζ)) of U−βh,k+1
(ζ) is an element of L−βh,k+1

, i.e., it is a vector lying
in a root space which corresponds to a negative root of height k + 1. If γ is any negative
root, then Ad(U−βh,k+1

(ζ))(aγXγ) is an element of the space

Ad(U−βh,k+1
(ζ))(aγXγ) = aγXγ +

∑
γ̄∈Φ−, ht(γ̄)≥ht(γ+(−βh,k+1))

Lγ̄ .

We will not refer to this arguments in each step of the argumentation, since it would make
the proof needlessly long.
We start with the negative roots of height one. Let β1,2, β2,2 and β3,2 be as in the previous
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160 9 A parametrized equation for F4

section. Then we deduce with the help of the table (9.1)

Ad(Uβ3,2(ζ3)Uβ2,2(ζ2)Uβ1,2(ζ1))(A1) + lδ(Uβ3,2(ζ3)Uβ2,2(ζ2)Uβ1,2(ζ1)) =

4∑
i=1

Ad(Uβ3,2(ζ3)Uβ2,2(ζ2)Uβ1,2(ζ1)(Xαi)

+
∑
γ∈Φ−

a1,γAd(Uβ3,2(ζ3)Uβ2,2(ζ2)Uβ1,2(ζ1))(Xγ) + lδ(Uβ3,2(ζ3)Uβ2,2(ζ2)Uβ1,2(ζ1))

=

4∑
i=1

Xαi +
∑

γ∈Φ−, ht(γ)≥2

a2,γXγ

+(a1,−α1 +mβ1,2,α2ζ1)X−α1 + (a1,−α2 +mβ1,2,α1ζ1 +mβ2,2,α3ζ2)X−α2

+(a1,−α3 +mβ2,2,α2ζ2 +mβ3,2,α4ζ3)X−α3 + (a1,−α4 +mβ3,2,α3ζ3)X−α4 =: A2

with new elements a2,γ ∈ F . If we define

ζ1 = − 1

mβ1,2,α1

(a1,−α2 +mβ2,2,α3ζ2), ζ2 = − 1

mβ2,2,α2

(a1,−α3 +mβ3,2,α4ζ1)

and ζ3 = − 1

mβ3,2,α3

a1,−α4 ,

then A1 contains no vector lying in the root subspaces of the negative simple roots except
of γ1 := −α1, i.e., we have

A2 =
4∑
i=1

Xαi + a2,−α1X−α1 +
∑

γ∈Φ−, ht(γ)≥2

a2,γXγ .

Now we delete the roots of height 2. Since there are three negative roots of height 3,
we have three parameters available for the transformation of the three roots of height 2.
However, table (9.2) yields

Ad(Uβ3,3(ζ3)Uβ2,3(ζ2)Uβ1,3(ζ1))(A2) + lδ(Uβ3,3(ζ3)Uβ2,3(ζ2)Uβ1,3(ζ1)) =

4∑
i=1

Ad(Uβ3,3(ζ3)Uβ2,3(ζ2)Uβ1,3(ζ1)(Xαi)a2,−α1Ad(Uβ3,3(ζ3)Uβ2,3(ζ2)Uβ1,3(ζ1)(X−α1)

+
∑

γ∈Φ−,ht(γ)≥2

a2,γAd(Uβ3,3(ζ3)Uβ2,3(ζ2)Uβ1,3(ζ1)(Xγ) + lδ(Uβ3,3(ζ3)Uβ2,3(ζ2)Uβ1,3(ζ1))

=
4∑
i=1

Xαi + a3,−α1X−α1 +
∑

γ∈Φ−, ht(γ)≥3

a3,γXγ

+X−α1−α2(a2,−α1−α2 +mβ1,3,α3ζ1) +X−α3−α4(a2,−α3−α4 +mβ3,3,α2ζ3)

+X−α2−α3(a2,−α2−α3 +mβ1,3,α1ζ1 +mβ2,3,α3ζ2 +mβ3,3,α4ζ3) =: A3

with new coefficients a3,γ ∈ F . We set ζ1 = − 1
mβ1,3,α3

a2,−α1−α2 , ζ3 = − 1
mβ3,3,α2

a2,−α3−α4

and ζ2 = − 1
mβ2,3,α3

(a2,−α2−α3 +mβ1,3,α1ζ1 +mβ3,3,α4ζ3). Thus we obtain

A3 =

4∑
i=1

Xαi + a3,−α1X−α1 +
∑

γ∈Φ−, ht(γ)≥3

a3,γXγ .
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161 9.2 The transformation lemma for F4

The transformation of the negative roots of height 3 is more complicated. However, we
conclude with table (9.3)

Ad(Uβ3,4(ζ3)Uβ2,4(ζ2)Uβ1,4(ζ1))(A3) + lδ(Uβ3,4(ζ3)Uβ2,4(ζ2)Uβ1,4(ζ1)) =

4∑
i=1

Ad(Uβ3,4(ζ3)Uβ2,4(ζ2)Uβ1,4(ζ1)(Xαi) + a3,−α1Ad(Uβ3,4(ζ3)Uβ2,4(ζ2)Uβ1,4(ζ1)(X−α1)

+
∑

γ∈Φ−,ht(γ)≥3

a3,γAd(Uβ3,4(ζ3)Uβ2,4(ζ2)Uβ1,4(ζ1)(Xγ) + lδ(Uβ3,4(ζ3)Uβ2,4(ζ2)Uβ1,4(ζ1))

=
4∑
i=1

Xαi + a4,−α1X−α1 +
∑

γ∈Φ−,ht(γ)≥4

a4,γXγ

+X−α1−α2−α3(a3,−α1−α2−α3 +mβ1,4,α3ζ1 +mβ2,4,α4ζ2)

+X−α2−2α3(a3,−α2−2α3 +mβ1,4,α1ζ1 +mβ3,4,α4ζ3)

+X−α2−α3−α4(a3,−α2−α3−α4 +mβ2,4,α1ζ2 +mβ3,4,α3ζ3) := A4

with new coefficients a4,γ and a4,−α1 ∈ F . We have to determine values (ζ1, ζ2, ζ3) ∈ F 3

such that the coefficients of X−α1−α2−α3 , X−α2−2α3 and X−α2−α3−α4 become zero. This
problem is equivalent to the system of equations

 mβ1,4,α3 mβ2,4,α4 0
mβ1,4,α1 0 mβ3,4,α4

0 mβ2,4,α1 mβ3,4,α3

 ·
 ζ1

ζ2

ζ3

 =

 a3,−α1−α2−α3

a3,−α2−2α3

a3,−α2−α3−α4

 . (9.3)

Denote the matrix of equation (9.3) by B. Then equation (9.3) has a solution if and only
if

det(B) = mβ1,4,α3(−mβ3,4,α4mβ2,4,α1)−mβ2,4,α4(mβ1,4,α1mβ3,4,α3) 6= 0.

From equation (9.1) we obtain the values of the mβi,αj up to their signs, i.e., we have

det(B) = (±1) · (∓2) · (±1)− (±1) · (±1) · (±1) = ±2− (±1) 6= 0.

Thus there exists a triple (ζ1, ζ2, ζ3) ∈ F 3 such that

A4 =

4∑
i=1

Xαi + a4,−α1X−α1 +
∑

γ∈Φ−,ht(γ)≥4

a4,γXγ .
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In the next step we delete all roots of height 4. Table (9.4) yields

Ad(Uβ3,5(ζ3)Uβ2,5(ζ2)Uβ1,5(ζ1))(A4) + lδ(Uβ3,5(ζ3)Uβ2,5(ζ2)Uβ1,5(ζ1)) =

4∑
i=1

Ad(Uβ3,5(ζ3)Uβ2,5(ζ2)Uβ1,5(ζ1)(Xαi)

+a4,−α1Ad(Uβ3,5(ζ3)Uβ2,5(ζ2)Uβ1,5(ζ1)(X−α1)

+
∑

γ∈Φ−,ht(γ)≥4

a4,γAd(Uβ3,5(ζ3)Uβ2,5(ζ2)Uβ1,5(ζ1)(Xγ) + lδ(Uβ3,5(ζ3)Uβ2,5(ζ2)Uβ1,5(ζ1))

=
4∑
i=1

Xαi + a5,−α1X−α1 +
∑

γ∈Φ−,ht(γ)≥5

a5,γXγ

+X−α1−α2−2α3(a4,−α1−α2−2α3 +mβ1,5,α4ζ1 +mβ2,5,α2ζ2)

+X−α1−α2−α3−α4(a4,−α1−α2−α3−α4 +mβ1,5,α3ζ1)

+X−α2−2α3−α4(a4,−α2−2α3−α4 +mβ1,5,α1ζ1 +mβ3,5,α4ζ3) := A5

If we define the parameters ζ1, ζ2 and ζ3 as

ζ1 = − 1

mβ1,5,α3

a4,−α1−α2−α3−α4 , ζ2 = − 1

mβ2,5,α2

(a4,−α1−α2−2α3 +mβ1,5,α4ζ1)

and ζ3 = − 1

mβ3,5,α4

(a4,−α2−2α3−α4 +mβ1,5,α1ζ1),

then we obtain

A5 =

4∑
i=1

Xαi + a5,−α1X−α1 +
∑

γ∈Φ−,ht(γ)≥5

a5,γXγ .

From table (9.5) we see that we are only able to delete two of the three negative roots of
height five, i.e., we have

Ad(Uβ2,6(ζ2)Uβ1,6(ζ1))(A4) + lδ(Uβ2,6(ζ2)Uβ1,6(ζ1)) =

4∑
i=1

Ad(Uβ2,6(ζ2)Uβ1,6(ζ1))(Xαi) + a5,−α1Ad(Uβ2,6(ζ2)Uβ1,6(ζ1)(X−α1)

+
∑

γ∈Φ−,ht(γ)≥5

a5,γAd(Uβ2,6(ζ2)Uβ1,6(ζ1)(Xγ) + lδ(Uβ2,6(ζ2)Uβ1,6(ζ1))

=
4∑
i=1

Xαi + a6,−α1X−α1 +
∑

γ∈Φ−,ht(γ)≥6

a6,γXγ

+X−α1−2α2−2α3(a5,−α1−2α2−2α3 +mβ1,6,α4ζ1)

+X−α1−α2−2α3−α4(a5,−α1−α2−2α3−α4 +mβ1,6,α2ζ1 +mβ2,6,α4ζ2)

+X−α2−2α3−2α4(a5,−α2−2α3−2α4 +mβ2,6,α1ζ2) := A6

If we define ζ1 and ζ2 as

ζ1 = − 1

mβ1,6,α2

(a5,−α1−α2−2α3−α4 +mβ2,6,α4ζ2) and ζ2 = − 1

mβ2,6,α1

a5,−α2−2α3−2α4 ,

162



163 9.2 The transformation lemma for F4

then the coefficient of Xγ2 where γ2 := −α1 − 2α2 − 2α3 will not necessarily be zero, i.e.,
we have

A6 =
4∑
i=1

Xαi +
2∑
i=1

a6,γiXγi +
∑

γ∈Φ−,ht(γ)≥6

a6,γXγ .

In the next step we are again able to delete all roots of height 6. However, we differentially
conjugate A6 by Uβ2,7(ζ2)Uβ1,7(ζ1). With the help of table (9.6) this differential conjugation
computes as

Ad(Uβ2,7(ζ2)Uβ1,7(ζ1))(A6) + lδ(Uβ2,7(ζ2)Uβ1,7(ζ1)) =

4∑
i=1

Ad(Uβ2,7(ζ2)Uβ1,7(ζ1)(Xαi) +
2∑
i=1

a6,γiAd(Uβ2,7(ζ2)Uβ1,7(ζ1)(Xγi)

+
∑

γ∈Φ−,ht(γ)≥6

a6,γAd(Uβ2,7(ζ2)Uβ1,7(ζ1)(Xγ) + lδ(Uβ2,7(ζ2)Uβ1,7(ζ1)) =

4∑
i=1

Xαi +
2∑
i=1

a7,γiXγi +
∑

γ∈Φ−,ht(γ)≥7

a7,γXγ

+X−α1−2α2−2α3−α4(a6,−α1−2α2−2α3−α4 +mβ1,7,α3ζ1 +mβ2,7,α4ζ2)

+X−α1−α2−2α3−2α4(a6,−α1−α2−2α3−2α4 +mβ2,7,α2ζ2) =: A7.

Obviously, we can choose (ζ1, ζ2) ∈ F 2 such that A7 becomes

A7 =

4∑
i=1

Xαi +

2∑
i=1

a7,γiXγi +
∑

γ∈Φ−,ht(γ)≥7

a7,γXγ .

Since β1,8 = −α1 − 2α2 − 3α3 − 2α4 is the only negative root of height 8, we can only
delete one of the two negative roots of height 7. We compute with the help of table (9.7)

Ad(Uβ1,8(ζ1))(A7) + lδ(Uβ1,8(ζ1)) =
4∑
i=1

Ad(Uβ1,8(ζ1))(Xαi)

+
2∑
i=1

a7,γiAd(Uβ1,8(ζ1))(Xγi) +
∑

γ∈Φ−,ht(γ)≥7

a7,γAd(Uβ1,8(ζ1))(Xγ) + lδ(Uβ1,8(ζ1)) =

4∑
i=1

Xαi +

2∑
i=1

a8,γiXγi +
∑

γ∈Φ−,ht(γ)≥8

a8,γXγ

+X−α1−3α2−2α3−α4(a7,−α1−3α2−2α3−α4 +mβ1,8,α4ζ1)

+X−α1−2α2−2α3−2α4(a7,−α1−2α2−2α3−2α4 +mβ1,8,α2ζ1)

=
4∑
i=1

Xαi +
3∑
i=1

a8,γiXγi +
∑

γ∈Φ−,ht(γ)≥8

a8,γXγ =: A8

where γ3 := −α1 − 2α2 − 2α3 − 2α4. Here we obtained the last equation by defining ζ1 as
ζ1 = − 1

mβ1,8,α4
a7,−α1−3α2−2α3−α4 .
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164 9 A parametrized equation for F4

We use table (9.8) to delete the roots of height 8, 9 and 10. The first column of table (9.8)
together with ζ := − 1

mβ1,9,α3
a8,β̂3

implies

Ad(Uβ1,9(ζ))(A8) + lδ(Uβ1,9(ζ)) =

4∑
i=1

Ad(Uβ1,9(ζ))(Xαi)

+

3∑
i=1

a8,γiAd(Uβ1,9(ζ))(Xγi) +
∑

γ∈Φ−,ht(γ)≥8

a8,γAd(Uβ1,9(ζ))(Xγ) + lδ(Uβ1,9(ζ)) =

4∑
i=1

Xαi +
3∑
i=1

a9,γiXγi +
∑

γ∈Φ−,ht(γ)≥9

a9,γXγ +Xβ̂3
(a8,β̂3

+mβ1,9,α3ζ)

=
4∑
i=1

Xαi +
3∑
i=1

a9,γiXγi +
∑

γ∈Φ−,ht(γ)≥9

a9,γXγ =: A9.

With the help of second column of table (9.8) we delete the part of A9 which lies in the
root space corresponding to the root β1,9 = −α1− 2α2− 4α3− 2α4 of height 9. We obtain

Ad(Uβ1,10(ζ))(A9) + lδ(Uβ1,10(ζ)) =
4∑
i=1

Ad(Uβ1,10(ζ))(Xαi) +

3∑
i=1

a9,γiAd(Uβ1,10(ζ))(Xγi)

+
∑

γ∈Φ−,ht(γ)≥9

a9,γAd(Uβ1,10(ζ))(Xγ) + lδ(Uβ1,10(ζ)) =

4∑
i=1

Xαi +
3∑
i=1

a10,γiXγi +
∑

γ∈Φ−,ht(γ)≥10

a10,γXγ +Xβ̂2
(a9,β̂2

+mβ1,10,α2ζ)

=

4∑
i=1

Xαi +

3∑
i=1

a10,γiXγi +
∑

γ∈Φ−,ht(γ)≥10

a10,γXγ =: A10

where the definition of ζ := − 1
mβ1,10,α2

a9,β̂2
implies the last equation. With the last column

of table (9.8) the last transformation, i.e., the transformation of the root of height 10, is

Ad(Uβ1,11(ζ))(A10) + lδ(Uβ1,11(ζ)) =

4∑
i=1

Ad(Uβ1,11(ζ))(Xαi)+

3∑
i=1

a10,γiAd(Uβ1,11(ζ))(Xγi) +
∑

γ∈Φ−,ht(γ)≥10

a10,γAd(Uβ1,11(ζ))(Xγ) + lδ(Uβ1,11(ζ)) =

4∑
i=1

Xαi +
3∑
i=1

a11,γiXγi

+Xβ̂1
(a10,β̂1

+mβ1,11,α1ζ) + a11,−2α1−3α2−4α3−2α4X−2α1−3α2−4α3−2α4 =: A11.

We define ζ := − 1
mβ1,11,α1

a10,β̂1
. This yields

A11 =
4∑
i=1

Xαi + a11,γ1Xγ1 + a11,γ2Xγ2 + a11,γ3Xγ3 + a11,γ4Xγ4
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165 9.3 The equation with group F4

where we denote by γ4 = −2α1 − 3α2 − 4α3 − 2α4 the negative root of maximal height.
This completes the proof.

9.3 The equation with group F4

In [How01] the authors R. B. Howlett, L. J. Rylands and D. E. Taylor computed a 26-
dimensional representation of the Lie algebra of type F4. They present explicit matrices
for the positive and negative simple roots, i.e., generators for the Lie algebra of type F4.
More precisely, their results are

Xα1 = E4,5 + E6,7 + E8,10 + E18,20 + E19,21 + E22,23,

Xα2 = E3,4 + E7,9 + E10,12 + E16,18 + E17,19 + E23,24,

Xα3 = E2,3 + E4,6 + E5,7 + E9,11 + E12,13 + 2E12,14 + E14,16

+E15,17 + E19,22 + E21,23 + E24,25,

Xα4 = E1,2 + E6,8 + E7,10 + E9,12 + 2E11,13 + E11,14 + E13,15

+E16,17 + E18,19 + E20,21 + E25,26,

X−α1 = XT
α1
,

X−α2 = XT
α2
,

X−α3 = E3,2 + E6,4 + E7,5 + E11,9 + E14,12 + E16,13 + 2E16,14

+E17,15 + E22,19 + E23,21 + E25,24,

X−α4 = E2,1 + E8,6 + E10,7 + E12,9 + E13,11 + 2E15,13 + E15,14

+E17,16 + E19,18 + E21,20 + E26,25.

Then the elements { X±αi | αi ∈ ∆} generate the Lie algebra of type F4. We denote this
representation of the Lie algebra of type F4 by LF4 . With the help of a computer algebra
system we compute the shape of the additional elements

X−α1−2α2−2α3 = −E9,2 − E11,3 − E18,8 − E20,10 − E24,15 − E25,17,

X−α1−2α2−2α3−2α4 = E12,1 − E15,3 + E19,6 + E21,7 − E24,11 + E26,16 and

X−2α1−3α2−4α3−2α4 = E20,1 + E21,2 + E23,3 + E24,4 + E25,6 + E26,8.

Now let F = C〈t1, ..., t4〉 be the differential field generated by the 4 differential indetermi-
nates t = (t1, t2, t3, t4) over C. Denote by y the vector y = (y1, y2, y3, ..., y25, y26)T . We
define the matrix differential equation

∂(y) = AF4(t)y

for the group of type F4 over F by

AF4(t) :=

4∑
i=1

Xαi+t1X−α1+t2X−α1−2α2−2α3+t3X−α1−2α2−2α3−2α4+t4X−2α1−3α2−4α3−2α4 .

The shape of the matrix AF4(t), which we obtain from the above representation, can be
found on the next page.
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167 9.3 The equation with group F4

For the computation of a linear differential equation from the matrix equation ∂(y) =
AF4(t)y we can choose, as in the cases of the other groups, y1 as a cyclic vector. Unfor-
tunately, y1 does not lead to a nice and short differential equation. We tried also other
cyclic vectors. Simular to the case of y1, we obtained non printable equations. However,
we guess that y1 is the most easiest cyclic vector. The matrix AF4(t) has already a nice
and easy shape. Thus we do not compute an enormous linear differential equation and
continue with the matrix differential equation.
Denote by GF4 the group of type F4 with Lie algebra LF4 . Before we prove that the dif-
ferential equation ∂(y) = AF4(t)y over F has GF4 as its differential Galois group we are
going to combine the results of Lemma 9.1 and Corollary 3.12 in Corollary 9.2. Therefore
we define Ω as the set of the 4 negative roots

Ω := {γ1 = −α1, γ2 = −α1 − 2α2 − 2α3, γ3 = −α1 − 2α2 − 2α3 − 2α4,

γ4 = −2α1 − 3α2 − 4α3 − 2α4 }

and we denote by F̄ := (C(z), ∂ = d
dz ) the rational function field with standard derivation.

Corollary 9.2. Let AM&S
F4

∈ LF4(F̄ ) be the matrix satisfying the conditions of Corol-
lary 3.12 which we applied to the group GF4 and the above Cartan decomposition. Then
there exists U ∈ U−(C(z)) ⊂ GF4(C(z)) such that

ĀF4 := UAM&S
F4

U−1 + ∂(U)U−1 =
∑
α∈∆

Xα +
∑
γi∈Ω

fiXγi (9.4)

with at least one fi ∈ C [z] \ C and the differential Galois group of the matrix equation
∂(y) = ĀF4y over F̄ is GF4(C).

Proof. Lemma 9.1 implies the existence of an element U ∈ U−0 ⊂ GF4 such that equa-
tion (9.4) holds. Since differential conjugation defines a differential isomorphism, we
deduce with Corollary 3.12 that the differential Galois group of ∂(y) = ĀF4y is again
GF4(C) over F̄ . We still need to show the existence of fi ∈ C [z] \ C for some γi ∈ Ω.
Suppose ĀF4 =

∑
α∈∆Xα +

∑
γi∈Ω fiXγi ∈ Lie(GF4)(C). Then the corresponding differ-

ential equation L(y) ∈ C {y} has coefficients in C. But then by [Mag94, Corollary 3.28]
the differential Galois group is abelian. Thus, we obtain ĀF4 ∈ Lie(GF4)(F̄ ) \Lie(GF4)(C).
Since 0 6= A1 ∈ H(C) and A = (z2A1 +A0) in Corollary 3.12, we start our transformation
with at least one coefficient lying in C [z] \ C. In each step the application of Ad(Uβ(ζ))
generates at most new entries which are polynomials in ζ. Moreover, the logarithmic
derivative is the product of the two matrices ∂(Uβ(ζ)) and Uβ(ζ)−1 = Uβ(−ζ). In the
proof of Lemma 9.1 we choose the parameter ζ to be one of the coefficients. Hence, we
get fi ∈ C[z] \ C.

Theorem 9.3. The matrix differential equation

∂(y) = AF4(t)y

has F4 as differential Galois group over C 〈t1, ..., t4〉. Moreover, let F̂ be a differential
field with field of constants equal to C. Let Ê be a Picard-Vessiot extension over F̂
with differential Galois group GF4(C) and suppose the defining matrix differential equa-
tion ∂(y) = Ây satisfies Â ∈

∑
αi∈∆Xαi +

∑
α∈Φ− Lα. Then there is a specialization
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168 9 A parametrized equation for F4

∂(y) = AF4(t̂1, ..., t̂4)y with t̂i ∈ F̂ such that ∂(y) = AF4(t̂1, ..., t̂4)y gives rise to the
extension Ê over F̂ .

Proof. Let E be a Picard-Vessiot extension for the equation ∂(y) = AF4(t)y over F
and denote by G the differential Galois group. Since for our matrix differential equation
∂(y) = AF4(t)y holds AF4(t) ∈ Lie(GF4)(F ), Proposition 2.1 yields G(C) ≤ GF4(C). By
Corollary 9.2 there exists a specialization σ : (t1, ..., t4) → (f1, ..., f4) with fi ∈ C[z] such
that σ(AF4(t1, ..., t4)) = ĀF4 and the differential Galois group of ∂(y) = ĀF4y is GF4(C).
Moreover, we have C{f1, ..., f4} = C[z]. Thus we can apply Corollary 2.15. This yields
GF4(C) ≤ G(C). Hence, it holds G(C) = GF4(C).
Since the defining matrix Â satisfies Â ∈

∑
αi∈∆Xαi +

∑
α∈Φ− Lie(GF4)α, Lemma 9.1

provides that Â is differentially equivalent to a matrix Ã =
∑

αi∈∆Xαi +
∑

γi∈Ω âiXγi

with suitable âi ∈ F̂ . Obviously the specialization

σ̂ : (t1, ..., t4) 7→ (â1, ..., â4)

does the required.
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Chapter 10

A parametrized equation for E6

10.1 The root system of type E6

The below discussion for the construction of the root system of type E6 is taken from
[Hum72, Section 12.1]. Since the root system of type E6 can be identified canonically
with a subsystem of E8 we construct first the root system of type E8. Therefore let
ε1, ..., ε8 be the standard orthonormal basis of R8 and let (α, β) denote the usual inner
product of α, β ∈ R8. The Z-span of ε1, ..., ε8 is a lattice which we denote by I. Further
let I ′ = I + Z(ε1 + ... + ε8)/2 and I ′′ be the subgroup of I ′ consisting of all elements∑8

i=1 ciεi + c
2(ε1 + ... + ε8) for which c +

∑8
i=1 ci is an even integer. Then following

[Hum72, Section 12.1] the root system ΦE8 of type E8 consists of the vectors

ΦE8 = {α ∈ I ′′ | (α, α) = 2}

= {±(εi ± εj),
1

2

8∑
i=1

(−1)k(i)εi | i 6= j, k(i) = 0, 1 and

8∑
i=1

k(i) ∈ 2Z}.

As a basis of ΦE8 we can take the 8 vectors

∆E8 = {α1 =
1

2
(ε1 + ε8 − (ε2 + ...+ ε7)), α2 = ε1 + ε2, α3 = ε2 − ε1, α4 = ε3 − ε2,

α5 = ε4 − ε3, α6 = ε5 − ε4, α7 = ε6 − ε5, α8 = ε7 − ε6}

where the ordering is chosen such that we can identify canonically a base of E6 with a
subset of ∆E8 . Thus a basis of the root system of type E6 consists of the vectors

∆E6 = {α1 =
1

2
(ε1 + ε8 − (ε2 + ...+ ε7)), α2 = ε1 + ε2, α3 = ε2 − ε1, α4 = ε3 − ε2,

α5 = ε4 − ε3, α6 = ε5 − ε4}.

We use reflections to construct all remaining positive roots of Φ. Therefore let αj ∈ ∆
and let β =

∑6
i=1 ciαi be a positive root of Φ. The image of the reflection

σαj (β) = β − 〈β, αj〉αj = β − (
6∑
i=1

ci〈αi, αj〉)αj
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170 10 A parametrized equation for E6

is a root of Φ and is determined by the Cartan integers 〈αi, αj〉 = 2(αi, αj)/(αj , αj). Note
that 〈α, β〉 is only linear in the first variable for α, β ∈ Φ. The Cartan integers 〈αi, αj〉
are give at position i, j in the Cartan matrix which has in the case of E6 the shape

2 0 −1 0 0 0
0 2 0 −1 0 0
−1 0 2 −1 0 0
0 −1 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2

 .

We start our construction with the simple roots, i.e., we apply reflections σαj (αj ∈ ∆)
to the simple roots αi ∈ ∆. We obtain roots where we are only interested in the not yet
known positive roots of height greater one. We continue our construction by applying the
reflections σαj to those roots. From [Hum72, Section 12.2, Table 1] we know that the
number of positive roots of Φ is 36. We repeat this process until we get all 36 positive
roots. The result of this computation is presented below where we numbered the positive
roots of a given height k by βh,k with h ∈ N:

σα1(α3) = α1 + α3 =: β1,2,

σα2(α4) = α2 + α4 =: β2,2,

σα3(α4) = α3 + α4 =: β3,2,

σα4(α5) = α4 + α5 =: β4,2,

σα5(α6) = α5 + α6 =: β5,2,

σα4(α1 + α3) = α1 + α3 + α4 =: β1,3,

σα3(α2 + α4) = α2 + α3 + α4 =: β2,3,

σα5(α2 + α4) = α2 + α4 + α5 =: β3,3,

σα5(α3 + α4) = α3 + α4 + α5 =: β4,3,

σα6(α4 + α5) = α4 + α5 + α6 =: β5,3,

σα2(α1 + α3 + α4) = α1 + α2 + α3 + α4 =: β1,4,

σα5(α1 + α3 + α4) = α1 + α3 + α4 + α5 =: β2,4,

σα5(α2 + α3 + α4) = α2 + α3 + α4 + α5 =: β3,4,

σα6(α2 + α4 + α5) = α2 + α4 + α5 + α6 =: β4,4,

σα6(α3 + α4 + α5) = α3 + α4 + α5 + α6 =: β5,4,

σα5(α1 + α2 + α3 + α4) = α1 + α2 + α3 + α4 + α5 =: β1,5,

σα6(α1 + α3 + α4 + α5) = α1 + α3 + α4 + α5 + α6 =: β2,5,

σα6(α2 + α3 + α4 + α5) = α2 + α3 + α4 + α5 + α6 =: β3,5,

σα4(α2 + α3 + α4 + α5) = α2 + α3 + 2α4 + α5 =: β4,5,

σα6(α1 + α2 + α3 + α4 + α5) = α1 + α2 + α3 + α4 + α5 + α6 =: β1,6,

σα4(α1 + α2 + α3 + α4 + α5) = α1 + α2 + α3 + 2α4 + α5 =: β2,6,

σα6(α2 + α3 + 2α4 + α5) = α2 + α3 + 2α4 + α5 + α6 =: β3,6,
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171 10.1 The root system of type E6

σα4(α1 + α2 + α3 + α4 + α5 + α6) = α1 + α2 + α3 + 2α4 + α5 + α6 =: β1,7,

σα3(α1 + α2 + α3 + 2α4 + α5) = α1 + α2 + 2α3 + 2α4 + α5 =: β2,7,

σα5(α2 + α3 + 2α4 + α5 + α6) = α2 + α3 + 2α4 + 2α5 + α6 =: β3,7,

σα5(α1 + α2 + α3 + 2α4 + α5 + α6) = α1 + α2 + α3 + 2α4 + 2α5 + α6 =: β1,8,

σα3(α1 + α2 + α3 + 2α4 + α5 + α6) = α1 + α2 + 2α3 + 2α4 + α5 + α6 =: β2,8,

σα5(α1 + α2 + 2α3 + 2α4 + α5 + α6) = α1 + α2 + 2α3 + 2α4 + 2α5 + α6 =: β1,9,

σα4(α1 + α2 + 2α3 + 2α4 + 2α5 + α6) = α1 + α2 + 2α3 + 3α4 + 2α5 + α6 =: β1,10,

σα2(α1 + α2 + 2α3 + 2α4 + 2α5 + α6) = α1 + 2α2 + 2α3 + 2α4 + 2α5 + α6 =: β1,11.

Now suppose we have a representation of the Lie algebra of type E6 to Lie(GLn(F )). Let
us denote the image of this representation by L < Lie(GLn(F )). Let a Cartan subalgebra
H of L be given and let L = H ⊕

⊕
α∈Φ Lα be the Cartan decomposition respective

H. Then we can choose for each α ∈ Φ a nonzero element Xα of Lα together with
Hα = [Xα, Xα] such that the set {Xα, Hα | α ∈ Φ} is a Chevalley basis. Then from the
Chevalley construction we obtain a representation of the group GE6 of type E6 and the
root subgroups Uβ. We denote a parametrized element of Uβ by Uβ(ζ) where ζ ∈ F . For
a root α ∈ Φ the adjoint action of Uβ(ζ) on Xα is

Ad(Uβ(ζ))(Xα) =
∑
i≥0

mα+iβ · ζi ·Xα+iβ. (10.1)

For the proof of the transformation lemma it is necessary to know the image of the adjoint
action for some specific roots α and β, since it is based on differential conjugation. In the
case of interested, α is a simple positive root and β is a negative root of height greater
than or equal to 2, i.e., β is by the above notation one of the roots −βh,k with k ≥ 2. We
analyse for each −βh,k ∈ Φ− and αj ∈ ∆ if

β̂j := αj + (−βh,k) (10.2)

is a root of Φ, i.e., we determine if the term mαj+i(−βh,k) ·ζi ·Xαj+i(−βh,k) of equation (10.1)
for i = 1 is zero or not. The results can be found in the tables (10.1)-(10.9). In the first
row the roots −βh,k of a given height k are listed and in the first column we find the simple

roots α1, ..., α6. Then at position j′, h′ the root β̂j′ for −βh′,k is given. If this position is

empty then β̂j′ = αj′ + (−βh′,k) is not a root.

−β1,2 −β2,2 −β3,2 −β4,2 −β5,2

α1 −α3

α2 −α4

α3 −α1 −α4

α4 −α2 −α3 −α5

α5 −α4 −α6

α6 −α5

Table (10.1)
In table (10.1) and (10.2) we handle the roots of height 2 and 3 respectively. In table (10.3)
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172 10 A parametrized equation for E6

−β1,3 −β2,3 −β3,3 −β4,3 −β5,3

α1 −α3 − α4

α2 −α3 − α4 −α4 − α5

α3 −α2 − α4 −α4 − α5

α4 −α1 − α3 −α5 − α6

α5 −α2 − α4 −α3 − α4

α6 −α4 − α5

Table (10.2)

and (10.4) we find the analysis of the roots of height 4 and 5. Note that there are 5 roots
of height 4 and only 4 roots of height 5. The results for the roots of height 6 and 7 can be

−β1,4 −β2,4 −β3,4 −β4,4 −β5,4

α1 −α2 − α3 − α4 −α3 − α4 − α5

α2 −α1 − α3 − α4 −α3 − α4 − α5 −α4 − α5 − α6

α3 −α2 − α4 − α5 −α4 − α5 − α6

α4

α5 −α1 − α3 − α4 −α2 − α3 − α4

α6 −α2 − α4 − α5 −α3 − α4 − α5

Table (10.3)

−β1,5 −β2,5 −β3,5 −β4,5

α1 −α2−α3−α4−α5 −α3−α4−α5−α6

α2 −α1−α3−α4−α5 −α3−α4−α5−α6

α3 −α2−α4−α5−α6

α4 −α2−α3−α4−α5

α5 −α1−α2−α3−α4

α6 −α1−α3−α4−α5 −α2−α3−α4−α5

Table (10.4)

found in the table (10.5) and (10.6). Note that there are four roots of height 5 and three
roots of height 6. There are also three roots of height 7, i.e., the number of roots of height

−β1,6 −β2,6 −β3,6

α1 −α2 − α3 − α4 − α5 − α6 −α2 − α3 − 2α4 − α5

α2 −α1 − α3 − α4 − α5 − α6

α3

α4 −α1 − α2 − α3 − α4 − α5 −α2 − α3 − α4 − α5 − α6

α5

α6 −α1 − α2 − α3 − α4 − α5 −α2 − α3 − 2α4 − α5

Table (10.5)

−β1,7 −β2,7 −β3,7

α1 −α2−α3− 2α4−α5−α6

α2

α3 −α1−α2−α3−α4−α5−α6 −α1−α2−α3− 2α4−α5

α4

α5 −α2−α3− 2α4−α5−α6

α6 −α1−α2−α3− 2α4−α5

Table (10.6)
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7 is equal to the number of roots of height 6. In table (10.7) we find the analysis of the two
roots of height 8. Note that the number of roots of height 8 is less one than the number
of roots of height 7.

−β1,8 −β2,8

α1 −α2 − α3 − 2α4 − 2α5 − α6

α2

α3 −α1 − α2 − α3 − 2α4 − α5 − α6

α4

α5 −α1 − α2 − α3 − 2α4 − α5 − α6

α6 −α1 − α2 − 2α3 − 2α4 − α5

Table (10.7)

The results for the roots of height 9 and 10 are listed together in table (10.8).

−β1,9 −β1,10

α1

α2

α3 −α1 − α2 − α3 − 2α4 − 2α5 − α6

α4 −α1 − α2 − 2α3 − 2α4 − 2α5 − α6

α5 −α1 − α2 − 2α3 − 2α4 − α5 − α6

α6

Table (10.8)

In table (10.9) we analysed the negative root of maximal height −β1,11. This root has
shape −β1,11 = −α1 − 2α2 − 2α3 − 3α4 − 2α5 − α6.

−β1,11

α1

α2 −α1 − α2 − 2α3 − 3α4 − 2α5 − α6

α3

α4

α5

α6

Table (10.9)

10.2 The transformation lemma for E6

We are going to prove the transformation lemma for the group of type E6. We make use
of the elaboration of the adjoint action and the root system done in the previous section.
Therefore we keep all the notations done there. Further let (F, ∂) denote a differential
field with field of constants C and let us define Ω as the set of the 6 negative roots

Ω = {γ1 = −α1, γ2 = −α2 − α4 − α5 − α6, γ3 = −α2 − α3 − α4 − α5 − α6,

γ4 = −α2 − α3 − 2α4 − 2α5 − α6, γ5 = −α1 − α2 − α3 − 2α4 − 2α5 − α6,

γ6 = −α1 − 2α2 − 2α3 − 3α4 − 2α5 − α6 }.
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174 10 A parametrized equation for E6

Lemma 10.1. Let A ∈
∑6

i=1Xαi + H(F ) +
∑

β∈Φ− Lβ(F ). Then there exists U ∈ U−
such that

UAU−1 + ∂(U)U−1 ∈
6∑
i=1

Xαi +
∑
γi∈Ω

Lγi(F ).

Proof. The element A can be written with respect to a Chevalley basis {Xα, Hi | α ∈
Φ, 1 ≤ i ≤ 6} and for suitable elements a0,i, a0,β ∈ F as

A =
6∑
i=1

Xαi + a0,iHi +
∑
β∈Φ−

a0,βXβ.

In the first step we delete the terms a0,i ·Hi for i = 1, ..., 6, i.e., we delete the part of A
lying in the Cartan subalgebra H. To achieve this, we differentially conjugate A by the
root group elements U−αi(ζi) where αi ∈ ∆ for i = 1, ..., 6. We have

Ad(U−αi(ζi))(A) + lδ(U−αi(ζi)) =

6∑
j=1

Ad(U−αi(ζi))(Xαj ) + ajAd(U−αi(ζi))(Hj)

+
∑
β∈Φ−

a1,βAd(U−αi(ζi))(Xβ) + lδ(U−αi(ζi)).

The term lδ(U−αi(ζi)) lies by Proposition 3.5 in the root space L−αi . Since the signs of the
roots −αi and β ∈ Φ− are negative, we deduce that the term

∑
β∈Φ− a1,βAd(U−αi(ζi))(Xβ)

is an element of the subspace
∑

β∈Φ− Lβ. Now we analyse the terms Ad(U−αi(ζi))(Xαj ).
For j 6= i we obtain

Ad(U−αi(ζi))(Xαj ) = Xαj +
∑
l≥1

m−αi,αjζ
lXαj+l(−αi) = Xαj .

In the case j = i the term Ad(U−αi(ζi))(Xαj ) is

Ad(U−αi(ζi))(Xαj ) = Xαi +
∑
l≥1

m−αi,αiζ
lXαi+l(−αi)

∈ Xαi +m−αi,αi,1ζiHi + L−αi .

Moreover, for H0 :=
∑6

i=1 a0,iHi we have that Ad(U−αi(ζi))(H0) = H0 + ζi [X−αi , H0] is
an element of the subspace H0 + L−αi .
We put now all of those results together. This yields

Ad(U−α6(ζ6) · ... · U−α1(ζ1))(A) + lδ(U−α6(ζ6) · ... · U−α1(ζ1)) =

6∑
i=1

Xαi + (a0,i +m−αi,αi,1ζi)Hi +
∑
β∈Φ−

a1,βXβ =: A1.

We define ζi = − a0,i

m−αi,αi,1
for i = 1, ..., 6. Then the matrix A1 becomes

A1 =
6∑
i=1

Xαi +
∑
γ∈Φ−

a1,γXγ .
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175 10.2 The transformation lemma for E6

The next step is to delete all terms a1,γXγ of A1 which correspond to the negative roots
γ ∈ Φ− except to the roots of

Ω = {γ1 = −α1, γ2 = −α2 − α4 − α5 − α6, γ3 = −α2 − α3 − α4 − α5 − α6,

γ4 = −α2 − α3 − 2α4 − 2α5 − α6, γ5 = −α1 − α2 − α3 − 2α4 − 2α5 − α6,

γ6 = −α1 − 2α2 − 2α3 − 3α4 − 2α5 − α6 }.

This transformation will be done for all negative roots of a given height k where k =
1, ..., 10. Thus, in each step there are some repeating arguments. To get rid of terms in
the decomposition of the matrix Ak in step k which correspond to negative roots of height
k, we differentially conjugate Ak with root subgroup elements U−βh,k+1

(ζh) belonging to
the roots −βh,k+1 of height k+1. Then Proposition 3.5 yields that the logarithmic derivate
lδ(U−βh,k+1

) lies in the root space L−βh,k+1
, i.e., in a root space corresponding to a root of

height k+1. Similarly, for any negative root γ ∈ Φ− the element Ad(U−βh,k+1
(ζh))(ak,γXγ)

has shape

Ad(U−βh,k+1
(ζh))(ak,γXγ) = ak,γXγ +

∑
γ̄∈Φ−,ht(γ̄)≥ht(γ+(−βh,k+1))

Lγ̄ ,

i.e., we generate new entries in root spaces of height greater than k+ 1. To avoid that the
proof becomes needlessly long we do not refer in each step of the transformation to those
arguments.
In the first step we delete five of the six negative roots of height one. Note that there are
five roots of height 2. Hence we have five parameters available for the first transformation.
However, for the differential conjugation of A1 by the element U−β5,2(ζ5) · ... · U−β1,2(ζ1)
we obtain with the help of table (10.1)

Ad(U−β5,2(ζ5) · ... · U−β1,2(ζ1))(A1) + lδ(U−β5,2(ζ5) · ... · U−β1,2(ζ1)) =

6∑
i=1

Xαi +
∑

γ∈Φ−,ht(γ)≥2

a2,γXγ +X−α1(a1,−α1 +m−β1,2,α3ζ1)

+X−α2(a1,−α2 +m−β2,2,α4ζ2) +X−α3(a1,−α3 +m−β1,2,α1ζ1 +m−β3,2,α4ζ3)

+X−α4(a1,−α4 +m−β2,2,α2ζ2 +m−β3,2,α3ζ3 +m−β4,2,α5ζ4)

+X−α5(a1,−α5 +m−β4,2,α4ζ4 +m−β5,2,α6ζ5) +X−α6(a1,−α6 +m−β5,2,α5ζ5)

=
6∑
i=1

Xαi + a2,γ1Xγ1 +
∑

γ∈Φ−,ht(γ)≥2

a2,γXγ =: A2

where γ1 = −α1 and a2,γ ∈ F for γ ∈ Φ− with ht(γ) ≥ 2. The last equation is obtained
by defining

ζ1 := − 1

m−β1,2α1

(a1,−α3 +m−β3,2α4ζ3), ζ2 :=
−a1,−α2

m−β2,2α4

,

ζ3 := − 1

m−β3,2α3

(a1,−α4 +m−β2,2α2ζ2 +m−β4,2α5ζ4),

ζ4 := − 1

m−β4,2α4

(a1,−α5 +m−β5,2α6ζ5) and ζ5 :=
−a1,−α6

m−β5,2α5

.
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We use table (10.2) to delete all negative roots of height two. More precisely, we get

Ad(U−β5,3(ζ5) · ... · U−β1,3(ζ1))(A2) + lδ(U−β5,3(ζ5) · ... · U−β1,3(ζ1)) =

6∑
i=1

Xαi + a3,ε1Xε1 +
∑

γ∈Φ−,ht(γ)≥3

a3,γXγ+

X−α1−α3(a2,−α1−α3 +m−β1,3,α4ζ1)+

X−α2−α4(a2,−α2−α4 +m−β2,3,α3ζ2 +m−β3,3,α5ζ3)+

X−α3−α4(a2,−α3−α4 +m−β2,3,α2ζ2 +m−β4,3,α5ζ4)+

X−α4−α5(a2,−α4−α5 +m−β3,3,α2ζ3 +m−β4,3,α3ζ4 +m−β5,3,α6ζ5)+

X−α5−α6(a2,−α5−α6 +m−β5,3,α4ζ5) =: A3

with a3,γ ∈ F for γ ∈ Φ− with ht(γ) ≥ 3. If we set

ζ1 :=
−a2,−α1−α3

m−β1,3α4

, ζ2 := − 1

m−β2,3α3

(a2,−α2−α4 +m−β3,3α5ζ3),

ζ3 := − 1

m−β3,3α2

(a2,−α4−α5 +m−β4,3α3ζ4 +m−β5,3α6ζ5),

ζ4 := − 1

m−β4,3α5

(a2,−α3−α4 +m−β2,3α2ζ2) and ζ5 :=
−a2,−α5−α6

m−β5,3α4

,

then A3 becomes A3 =
∑6

i=1Xαi + a3,γ1Xγ1 +
∑

γ∈Φ−,ht(γ)≥3 a3,γXγ .
In the next step we get rid of all roots of height three. The definition of

ζ1 = − 1

m−β1,4,α2

(a3,−β1,3 +m−β2,4,α5ζ2), ζ3 = − 1

m−β3,4,α5

(a3,−β2,3 +m−β1,4,α1ζ1),

ζ2 = − 1

m−β2,4,α1

(a3,−β4,3 +m−β3,4,α2ζ3 +m−β5,4,α6ζ5),

ζ4 = − 1

m−β4,4,α6

(a3,−β3,3 +m−β3,4,α3ζ3) and ζ5 =
1

m−β5,4,α3

(a3,−β5,3 +m−β4,4,α2ζ4)

together with table (10.3) yields

Ad(U−β5,4(ζ5) · ... · U−β1,4(ζ1))(A3) + lδ(U−β5,4(ζ5) · ... · U−β1,4(ζ1)) =

6∑
i=1

Xαi + a4,γ1Xγ1 +
∑

γ∈Φ−,ht(γ)≥4

a4,γXγ+

X−β1,3(a3,−β1,3 +m−β1,4,α2ζ1 +m−β2,4,α5ζ2)+

X−β2,3(a3,−β2,3 +m−β1,4,α1ζ1 +m−β3,4,α5ζ3)+

X−β3,3(a3,−β3,3 +m−β3,4,α3ζ3 +m−β4,4,α6ζ4)+

X−β4,3(a3,−β4,3 +m−β2,4,α1ζ2 +m−β3,4,α2ζ3 +m−β5,4,α6ζ5)+

X−β5,3(a3,−β5,3 +m−β4,4,α2ζ4 +m−β5,4,α3ζ5) =

6∑
i=1

Xαi + a4,γ1Xγ1 +
∑

γ∈Φ−,ht(γ)≥4

a4,γXγ := A4.
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There are five negative roots of height 4 and four negative roots of height 5. Thus we have
only four parameters available to delete the coefficients in A4 corresponding to those five
negative roots. We choose the parameters ζ1, ..., ζ4 as

ζ1 =
−a4,−β1,4

m−β1,5,α5

, ζ2 = − 1

m−β2,5,α6

(a4,−β2,4 +m−β1,5,α2ζ1),

ζ3 = − 1

m−β3,5,α2

(a4,−β5,4 +m−β2,5,α1ζ2),

ζ4 = − 1

m−β4,5,α4

(a4,−β3,4 +m−β1,5,α1ζ1 +m−β3,5,α6ζ3)

and obtain with the help of table (10.4)

Ad(U−β4,5(ζ4) · ... · U−β1,5(ζ1))(A4) + lδ(U−β4,5(ζ4) · ... · U−β1,5(ζ1)) =

6∑
i=1

Xαi + a5,γ1Xγ1 +
∑

γ∈Φ−,ht(γ)≥5

a5,γXγ+

X−β1,4(a4,−β1,4 +m−β1,5,α5ζ1)+

X−β2,4(a4,−β2,4 +m−β1,5,α2ζ1 +m−β2,5,α6ζ2)+

X−β3,4(a4,−β3,4 +m−β1,5,α1ζ1 +m−β3,5,α6ζ3 +m−β4,5,α4ζ4)+

X−β4,4(a4,−β4,4 +m−β3,5,α3ζ3)+

X−β5,4(a4,−β5,4 +m−β2,5,α1ζ2 +m−β3,5,α2ζ3)+

6∑
i=1

Xαi + a5,γ1Xγ1 + a5,γ2Xγ2 +
∑

γ∈Φ−,ht(γ)≥4

a5,γXγ =: A5

where γ2 = −α2 − α4 − α5 − α6 and a5,γ ∈ F for γ ∈ Φ− with ht(γ) ≥ 4.
Since there are only three negative roots of height 6 we have three parameters available
for the transformation of the four negative roots of height 5, which can be calculated with
the help of table (10.5) as

Ad(U−β3,6(ζ3)U−β2,6(ζ2)U−β1,6(ζ1))(A5) + lδ(U−β3,6(ζ3)U−β2,6(ζ2)U−β1,6(ζ1)) =

6∑
i=1

Xαi + a6,γ1Xγ1 + a6,γ2Xγ2 +
∑

γ∈Φ−,ht(γ)≥6

a6,γXγ+

X−β1,5(a5,−β1,5 +m−β1,6,α6ζ1 +m−β2,6,α2ζ2)+

X−β2,5(a5,−β2,5 +m−β1,6,α2ζ1)+

X−β3,5(a5,−β3,5 +m−β1,6,α1ζ1 +m−β3,6,α4ζ3)+

X−β4,5(a5,−β4,5 +m−β2,6,α1ζ2 +m−β3,6,α6ζ3) =: A6

with suitable new coefficients a6,γ ∈ F . We define

ζ1 =
−a5,−β2,5

m−β1,6,α2

, ζ2 = − 1

m−β2,6,α2

(a5,−β1,5 +m−β1,6,α6ζ1) and

ζ3 = − 1

m−β3,6,α6

(a5,−β4,5 +m−β2,6,α1ζ2).
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This leads to A6 =
∑6

i=1Xαi +
∑3

i=1 a6,γiXγi +
∑

γ∈Φ−,ht(γ)≥6 a6,γXγ .
In the next step we delete all roots of height 6. Therefore we define the three parameters
ζ1, ζ2 and ζ3 as

ζ1 :=
−a6,−β1,6

m−β1,7,α3

, ζ2 := − 1

m−β2,7,α3

(a6,−β2,6 +m−β1,7,α6ζ1) and

ζ3 := − 1

m−β3,7,α5

(a6,−β3,6 +m−β1,7,α1ζ1).

Then we obtain together with table (10.6)

Ad(U−β3,7(ζ3)U−β2,7(ζ2)U−β1,7(ζ1))(A6) + lδ(U−β3,7(ζ3)U−β2,7(ζ2)U−β1,7(ζ1)) =

6∑
i=1

Xαi +
3∑
i=1

a7,γiXγi +
∑

γ∈Φ−,ht(γ)≥7

a7,γXγ+

X−β1,6(a6,−β1,6 +m−β1,7,α3ζ1)+

X−β2,6(a6,−β2,6 +m−β1,7,α6ζ1 +m−β2,7,α3ζ2)+

X−β3,6(a6,−β3,6 +m−β1,7,α1ζ1 +m−β3,7,α5ζ3) =

6∑
i=1

Xαi +
3∑
i=1

a7,γiXγi +
∑

γ∈Φ−,ht(γ)≥7

a7,γXγ =: A7

with suitable new elements a7,γ ∈ F . Since the number of roots of height 8 decreases
on 2 from the number of roots of height 7, we are not able to delete all terms in the
decomposition of A7 which belong to those roots of height 7. With the help of table (10.7)
we compute

Ad(U−β2,8(ζ2)U−β1,8(ζ1))(A7) + lδ(U−β2,8(ζ2)U−β1,8(ζ1)) =

6∑
i=1

Xαi +
∑
i=1

sa8,εiXεi +
∑

γ∈Φ−,ht(γ)≥8

a8,γXγ+

X−β1,7(a7,−β1,7 +m−β1,8,α5ζ1 +m−β2,8,α3ζ2)+

X−β2,7(a7,−β2,7 +m−β2,8,α6ζ2) +X−β3,7(a7,−β3,7 +m−β1,8,α1ζ1) =: A8.

We choose for ζ1 and ζ2 the values

ζ1 = − 1

m−β1,8,α5

(a7,−β1,7 +m−β2,8,α3ζ2) and ζ2 =
−a7,−β2,7

m−β2,8,α6

.

Then A8 becomes A8 =
∑6

i=1Xαi +
∑4

i=1 a8,γiXγi +
∑

γ∈Φ−,ht(γ)≥8 a8,γXγ . For the trans-
formation of the roots of height 8 we have only one parameter ζ1 available. We define
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179 10.3 The equation for the group of type E6

ζ1 =
−a8,−β2,8

m−β1,9,α5
. Then the first column of table (10.8) yields

Ad(U−β1,9(ζ1))(A8) + lδ(U−β1,9(ζ1)) =

6∑
i=1

Xαi +
4∑
i=1

a9,γiXγi +
∑

γ∈Φ−,ht(γ)≥9

a9,γXγ+

X−β1,8(a8,−β1,8 +m−β1,9,α3ζ1) +X−β2,8(a8,−β2,8 +m−β1,9,α5ζ1) =

6∑
i=1

Xαi +
5∑
i=1

a9,γiXγi +
∑

γ∈Φ−,ht(γ)≥9

a9,γXγ =: A9.

We are going to delete the term a9,−β1,9X−β1,9 of A9. Therefore let ζ1 :=
−a9,−β1,9

m−β1,10,α4
. We

deduce with the help of the second column of table (10.8)

Ad(U−β1,10(ζ1))(A9) + lδ(U−β1,10(ζ1)) =

6∑
i=1

Xαi +
5∑
i=1

a10,γiXγi +
∑

γ∈Φ−,ht(γ)≥10

a10,γXγ+

X−β1,9(a9,−β1,9 +m−β1,10,α4ζ1) =

6∑
i=1

Xαi +

5∑
i=1

a10,γiXγi +
∑

γ∈Φ−,ht(γ)≥10

a10,γXγ =: A10.

In the last step we differentially conjugate A10 with the root group element U−β1,11(ζ1)
which corresponds to the negative root of maximal height −β1,11. By table (10.9) this is

Ad(U−β1,11(ζ1))(A10) + lδ(U−β1,11(ζ1)) =

6∑
i=1

Xαi +

5∑
i=1

a11,γiXγi + a11,β1,11Xβ1,11+

X−β1,10(a10,−β1,10 +m−β1,11,α2ζ1) =: A11.

Thus, if we define ζ1 =
−a10,−β1,10

m−β1,11,α2
then A11 becomes A11 =

∑6
i=1Xαi +

∑6
i=1 a11,γiXγi .

Hence, the lemma follows.

10.3 The equation for the group of type E6

In [How01] the authors R. Howlett, L. Rylands and D Taylor present a method to con-
struct matrix generators for the exceptional groups of Lie type. Moreover, they computed
in the same paper explicit matrix generators for the Lie algebras of exceptional type.
For the Lie algebra of type E6 the matrices representing the simple roots αi ∈ ∆ =
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180 10 A parametrized equation for E6

{α1, α2, α3, α4, α5, α6} are

Xα1 = E1,2 + E11,13 + E14,16 + E17,18 + E19,20 + E21,22,

Xα2 = E4,5 + E6,7 + E8,10 + E19,21 + E20,22 + E23,24,

Xα3 = E2,3 + E9,11 + E12,14 + E15,17 + E20,23 + E22,24,

Xα4 = E3,4 + E7,9 + E10,12 + E17,19 + E18,20 + E24,25,

Xα5 = E4,6 + E5,7 + E12,15 + E14,17 + E16,18 + E25,26 and

Xα6 = E6,8 + E7,10 + E9,12 + E11,14 + E13,16 + E26,27.

The matrix representing the negative simple root −αi for αi ∈ ∆ is the transpose of the
matrix Xαi and the elements {X±αi | αi ∈ ∆} generate the Lie algebra of type E6 which
we denote by LE6 . In addition to the representation of the matrices for the positive and
negative simple roots we compute with the help of an computer algebra system the shape
of the matrices which represent the roots

Ω = {γ1 = −α1, γ2 = −α2 − α4 − α5 − α6, γ3 = −α2 − α3 − α4 − α5 − α6,

γ4 = −α2 − α3 − 2α4 − 2α5 − α6, γ5 = −α1 − α2 − α3 − 2α4 − 2α5 − α6,

γ6 = −α1 − 2α2 − 2α3 − 3α4 − 2α5 − α6 }.

Those matrices are

Xγ2 = −X10,3 −X12,4 −X15,6 −X21,11 −X22,13 +X27,23,

Xγ3 = −X10,2 +X14,4 +X17,6 −X21,9 +X24,13 +X27,20,

Xγ4 = −X15,2 −X17,3 −X19,4 −X21,5 +X26,13 +X27,16,

Xγ5 = −X15,1 +X18,3 +X20,4 +X22,5 +X26,11 +X27,14 and

Xγ6 = X21,1 +X22,2 +X24,3 +X25,4 +X26,6 +X27,8.

Now denote by F := C〈t1, ..., t6〉 the differential field generated by the differential inde-
terminates t = (t1, ..., t6) over C. Let y be the vector y := (y1, ..., y27)T and define the
matrix differential equation ∂(y) = AE6(t) · y over F by

AE6(t) :=

6∑
i=1

Xαi +
∑
γi∈Ω

tiXγi .

The shape of the matrix AE6(t) which is determined by the above representation is pre-
sented on the next page.
The next step is the computation of a linear differential equation for the matrix equation
∂(y) = AE6(t) · y. As in the cases of the other groups we can choose y1 as a cyclic vector.
Unfortunatley, y1 does not lead to a nice differential equation which can be written down.
Trying other cyclic vectors yield simular results. However, we guess that y1 is the most
easiest cyclic vector. Since the matrix differential equation ∂(y) = AE6(t) · y already has
an easy and nice shape, it does not make sense to compute an enormous linear differen-
tial equation for the group of type E6. We continue our proof with the matrix equation
∂(y) = AE6(t) · y.

180



181 10.3 The equation for the group of type E6

A
E

6
(t

)
=

                                                   

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
t 1

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
−
t 3
−
t 2

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
−
t 2

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
t 1

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
t 3

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
−
t 5
−
t 4

0
0

0
−
t 2

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

t 1
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0
−
t 4

0
0

t 3
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

t 5
0

0
0

0
0

0
0

0
0

0
0

0
0

t 1
0

0
1

0
0

0
0

0
0

0
0

0
0
−
t 4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

t 5
0

0
0

0
0

0
0

0
0

0
0

0
0

0
t 1

0
0

1
1

0
0

0
0

t 6
0

0
0
−
t 4

0
0

0
−
t 3

0
−
t 2

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
t 6

0
0

t 5
0

0
0

0
0

0
0
−
t 2

0
0

0
0

0
0

0
t 1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
t 6

0
0

0
0

0
0

0
0

0
t 3

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
t 6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

t 6
0

0
0

0
t 5

0
t 4

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
t 6

0
0

0
0

0
t 5

0
t 4

0
0

0
t 3

0
0

t 2
0

0
0

0

                                                   
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182 10 A parametrized equation for E6

From the usual Chevalley construction for {Xα | α ∈ Φ} we obtain the group GE6 of
type E6 with Lie algebra LE6 . The next step to prove that the differential Galois group
of the matrix differential equation ∂(y) = AE6y over F is GE6 is to combine the results
of Lemma 10.1 and Corollary 3.12 in Corollary 10.2. Therefore let us denote by F̄ :=
(C(z), ∂ = d

dz ) the rational function field with standard derivation as in Section 3.4.

Corollary 10.2. Apply Corollary 3.12 to the group GE6 and the Cartan decomposition
of LE6 and let us denote by AM&S

E6
∈ LE6(F̄ ) the matrix satisfying the stated conditions.

Then there exists U ∈ U−(F̄ ) ⊂ GE6(F̄ ) such that

ĀE6 := UAM&S
E6

U−1 + ∂(U)U−1 =
∑
α∈∆

Xα +
∑
γi∈Ω

fiXγi (10.3)

with at least one fi ∈ C [z] \ C and the differential Galois group of the matrix equation
∂(y) = ĀE6y over F̄ is GE6(C).

Proof. Lemma 10.1 implies the existence of an element U ∈ U−0 ⊂ GE6 such that equa-
tion (10.3) holds. Since differential conjugation defines a differential isomorphism, we
deduce with Corollary 3.12 that the differential Galois group of ∂(y) = ĀE6y is again
GE6(C) over F̄ . We still need to show the existence of fi ∈ C [z] \ C for some γi ∈ Ω.
Suppose ĀE6 =

∑
α∈∆Xα +

∑
γi∈Ω fiXγi ∈ Lie(GE6)(C). Then the corresponding differ-

ential equation L(y) ∈ C {y} has coefficients in C. But then by [Mag94, Corollary 3.28]
the differential Galois group is abelian. Thus, we obtain ĀE6 ∈ Lie(GE6)(F̄ )\Lie(GE6)(C).
Since 0 6= A1 ∈ H(C) and A = (z2A1 +A0) in Corollary 3.12, we start our transformation
with at least one coefficient lying in C [z] \ C. In each step the application of Ad(Uβ(ζ))
generates at most new entries which are polynomials in ζ. Moreover, the logarithmic
derivative is the product of the two matrices ∂(Uβ(ζ)) and Uβ(ζ)−1 = Uβ(−ζ). In the
proof of Lemma 10.1 we choose the parameter ζ to be one of the coefficients. Hence, we
get fi ∈ C[z] \ C.

Theorem 10.3. The matrix differential equation

∂(y) = AE6(t)y

has E6 as differential Galois group over C 〈t1, ..., t6〉. Moreover, let F̂ be a differential
field with field of constants equal to C. Let Ê be a Picard-Vessiot extension over F̂
with differential Galois group GE6(C) and suppose the defining matrix differential equa-
tion ∂(y) = Ây satisfies Â ∈

∑
αi∈∆Xαi +

∑
α∈Φ− Lα. Then there is a specialization

∂(y) = AE6(t̂1, ..., t̂6)y with t̂i ∈ F̂ such that ∂(y) = AE6(t̂1, ..., t̂6)y gives rise to the
extension Ê over F̂ .

Proof. Let E be a Picard-Vessiot extension for the equation ∂(y) = AE6(t)y over F
and denote by G the differential Galois group. Since for our matrix differential equation
∂(y) = AE6(t)y holds AE6(t) ∈ Lie(GE6)(F ), Proposition 2.1 yields G(C) ≤ GE6(C). By
Corollary 10.2 there exists a specialization σ : (t1, ..., t6)→ (f1, ..., f6) with fi ∈ C[z] such
that σ(AE6(t1, ..., t6)) = ĀE6 and the differential Galois group of ∂(y) = ĀE6y is GE6(C).
Moreover, we have C{f1, ..., f6} = C[z]. Thus we can apply Corollary 2.15. This yields
GE6(C) ≤ G(C). Hence, it holds G(C) = GE6(C).
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183 10.3 The equation for the group of type E6

Since the defining matrix Â satisfies Â ∈
∑

αi∈∆Xαi +
∑

α∈Φ− Lie(GE6)α, Lemma 10.1

provides that Â is differentially equivalent to a matrix Ã =
∑

αi∈∆Xαi +
∑

γi∈Ω âiXγi

with suitable âi ∈ F̂ . Obviously the specialization

σ̂ : (t1, ..., t6) 7→ (â1, ..., â6)

does the required.
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