Numerical Methods for the
Unsteady Compressible

Navier-Stokes Equations

Philipp Birken

Numerical Methods for the
Unsteady Compressible

Navier-Stokes Equations

Dr. Philipp Birken

Habilitationsschrift
am Fachbereich Mathematik und Naturwissenschaften
der Universitat Kassel

Gutachter: Prof. Dr. Andreas Meister
Zweitgutachterin: Prof. Dr. Margot Gerritsen
Drittgutachterin: Prof. Dr. Hester Bijl

Probevorlesung: 31. 10. 2012

There are all kinds of interesting
questions that come from a know-
ledge of science, which only adds to
the excitement and mystery and awe
of a flower. It only adds. I don’t un-
derstand how it subtracts.

Richard Feynman

Acknowledgements

A habilitation thesis like this is not possible without help from many people. First of all,
I'd like to mention the German Research Foundation (DFG), which has funded my research
since 2006 as part of the collaborative research area SFB/TR TRR 30, project C2. This
interdisciplinary project has provided me the necessary freedom, motivation and optimal
funding to pursue the research documented in this book. It also allowed me to hire students
to help me in my research and I'd like to thank Benjamin Badel, Maria Bauer, Veronika
Diba, Marouen ben Said and Malin Trost, who did a lot of coding and testing and created
a lot of figures. Furthermore, I thank the colleagues from the TRR 30 for a very successful
research cooperation and in particular Kurt Steinhoff for starting the project.

Then, there are my collaborators over the last years, in alphabetical order Hester Bijl,
who thankfully also acted as reviewer, Jurjen Duintjer Tebbens, Gregor Gassner, Mark
Haas, Volker Hannemann, Stefan Hartmann, Antony Jameson, Detlef Kuhl, Andreas Meis-
ter, Claus-Dieter Munz, Karsten J. Quint, Mirek Tuma and Alexander van Zuijlen. Fur-
thermore, thanks to Mark H. Carpenter and Gustaf Soderlind for a lot of interesting dis-
cussions.

I"d also like to thank the University of Kassel and the Institute of Mathematics, as well
as the colleagues there for a friendly atmosphere. In particular, there are the colleagues
from the Institute of Mathematics in Kassel: Thomas Hennecke, Gunnar Matthies, Bet-
tina Messerschmidt, Sigrun Ortleb who also did a huge amount of proofreading, Martin
Steigemann, Philipp Zardo and special thanks to my long time office mate Stefan Kopecz.

Furthermore, there are the colleagues at Stanford at the Institute of Mathematical and
Computational Engineering and the Aero-Astro department, where I always encounter a
friendly and inspiring atmosphere. In particular, I’d like to thank the late Gene Golub,
Michael Saunders and Antony Jameson for many interesting discussions and getting things
started. Furthermore, I'd like to thank Margot Gerritsen for being tremendously helpful
and taking on the second review.

My old friend Tarvo Thamm for proofreading.

Not the last and certainly not the least, there is my former PhD advisor Andreas Meister
and reviewer of this habilitation thesis, who has organized my funding and supported and
enforced my scientific career whereever possible.

Finally, there is my Margit who had to endure this whole process as much as me and
who makes things worthwhile.

Contents

[2

The (Governing Equations|

[2.1 The Navier-Stokes Equations|.
2.1.1 Basic form of conservation lawsl

[2.1.4 Conservation of energyl

[2.1.5 Equation of state|
2.2 Nondimensionalizationl
I2,;i :‘2!2”]!:9 !f:l“lsl
[2.4 Simplifications of the Navier-Stokes equations|
[2.5 The Euler Equations| 0oL
[2.6 Boundary and Initial Conditions|.
2.7 Boundary layers|.
2.8 Laminar and turbulent flows

[2.9 Analysis of viscous flow equations|
[2.9.1 Analysis of the Euler equations|
[2.9.2 Analysis of the Navier-Stokes equations|.

13

The Space discretization|

3.1 Structured and unstructured Gridslo

13
14
17
18
18

19
19
20
20
21
22
22
23
25
26
26
27
29
29
30
32
32
33

10 CONTENTS
[3.3.2 Low Mach numbersf 43
[3.3.3 Discretization of the viscous fluxesl 45

[3.4 Convergence theory for finite volume methods| 47
[3.4.1 Hyperbolic conservation laws| 47
[3.42 Parabolic conservation lawsl 0oL 48

[3.5 Boundary Conditions| 49
.51 Fixedwalll 49
3.5.2 Inflow and outflow boundaries 50
[3.0.3 Periodic boundaries| 0oL 51

3.6 Source Terms 52

[3.7 Finite volume methods of higher order| 52
[3.7.1 Convergence theory tor higher order finite volume schemes| 52
[B.7.2 Reconstructionl 53
B.7.3 Modification at the Boundaries 54
B.7.4 Timiters 55

8.8 Discontinuous Galerkin methods 56
[3.8.1 Polymorphic modal-nodal scheme| 60
[3.8.2 DG Spectral Element Method| 61
[3.8.3 Discretization of the viscous fluxes 63

[3.9 Convergence theory tor DG methods| 65

[3.10 Spatial Adaptation| 65

[4 Time Integration Schemes| 67

4.1 Order of convergence and order of consistency| 68

(4.2 Stability| 69
[4.2.1 'T'he linear test equation, A- and L-stability|] 69
[4.2.2 'T'VD stability and SSP methods|. 70
[4.2.3 The CFL condition, Von-Neumann stability analysis and related topics| 71

[4.3 Stiff problems|o 74

1.4 Backward Differentiation formulasl00 oo 75

4.5 Runge-Kutta methods| 0. 76
[4.5.1 Explicit Runge-Kutta methods| 7
452 DIRK methodso 78
[4.5.3 Additive Runge-Kutta methods| 82

4.6 Rosenbrock-type methods| L. 82

4.7 Adaptive time step size selection|. 85

4.8 Operator Splittings| 87

1.9 Alternatives to the method of lined 89

[4.9.1 Local time stepping Predictor-Corrector-DG| 90

CONTENTS

15

Solving equation systems|

[>.1 The nonlinear systems|
(5.2 The linear systems| o

[.5.1 Splitting Methods|.
[5.5.2 Fixed point methods for nonlinear equations|
[5.6 Multigrid methods| o
[>.6.1 Multigrid for linear problems|,
[>.6.2 Full Approximation Schemes|.
[5.6.3 Steady state solvers|.
[5.6.4 Multi-p methods|
[.6.5 Dual Time steppingf.
[5.6.6 Optimizing Runge-Kutta smoothers for unsteady flow|
[5.6.7 Optimizing the smoothing properties|
[5.6.8 Optimizing the spectral radius|.
I;li,!i,gz N!lnlf:li(:al If:Slll!SI

[>.7.1 Choice of initial guess|
[5.7.2 Globally convergent Newton methods|
[5.7.3 Computation and Storage ot the Jacobian|
[>.8 Krylov subspace methods| L.

[5.9 Jacobian Free Newton-Krylov methods|
[5.10 Comparison of GMRES and BiICGSTAB|
[.11 Comparison of variants of Newton’s method|

Preconditioning linear systems|

[6.1 Preconditioning for JENK schemes|
[6.2 Specific preconditioners|. Lo
[6.2.1 Block preconditioners|. L.
[6.2.2 Splitting-methods| 0L
6.2.3 ROBO-SGS|
[6.2.4 ILU preconditioningl,
[6.2.5 Multilevel preconditioners|
[6.2.6 Nonlinear preconditioners|
[6.2.7 Other preconditioners|
[6.2.8 Comparison of preconditioners|.
[6.3 Preconditioning in parallell 0000
[6.4 Sequences of linear systems|o

11

93

93

95

96

97

98

99
101
102
102
105
106
108
109
111
113
116
122
124
129
129
130
131
132
134
135
137
138

12 CONTENTS

[6.4.1 Freezing and Recomputing 156

[6.4.2 Triangular Preconditioner Updates| 156

643 Numerical resultsl oo oo 161

[6.5 Discretization for the preconditioner|{. 163
[7__The final schemes| 165
([r1 DIRK scheme o oo 166
(.2 Rosenbrock schemel oo 168
(7.3 Parallelizationl 170
[7.4 Efficiency of Finite Volume schemes 170
[7.5 Efficiency of Discontinuous Galerkin schemes| 172
[7.5.1 Polymorphic Modal-Nodal DG{. 172

7.5.2 DGSEM. 174

I8 Thermal Fluid Structure Interaction| 177
8.1 Gas Quenchingl 177
R.2_ The mathematical modell 178
[8.3 Space discretization|.o 179
[8.4 Coupled time integration| L. 180
8.5 Fixed Point iterationl 181
8.6 Numerical Results. o 182
86.1 Testcasel. 182

8.6.2 Order of the methodl 183

[8.6.3 Time-adaptive computations| 185

[A Test problems| 189
[A.1 Shu-Vortex] 189
(A2 Wind Turbinel 189
[A.3 Vortex shedding behind a sphere| 191

[B Coefficients of time integration methods| 195

Chapter 1

Introduction

Historically, the computation of steady flows has been at the forefront of the development
of computational fluid dynamics (CFD). This began with the design of rockets and the
computation of the bow shock at supersonic speeds and continued with the aerodynamic
design of airplanes at transonic cruising speed [99]. Only in the last decade, increasing
focus has been put on unsteady flows, which are more difficult to compute. This has several
reasons. First of all, computing power has increased dramatically and for 5,000 Euro it
is now possible to obtain a machine that is able to compute about a minute of realtime
simulation of a nontrivial unsteady three dimensional flow in a day. As a consequence, ever
more nonmilitary companies are able to employ numerical simulations as a standard tool
for product development, opening up a large number of additional applications. Examples
are the simulation of tunnel fires [19], flow around wind turbines [225], fluid-structure-
interaction like flutter [59], aeroacoustics [40], turbomachinery, flows inside nuclear reactors
[164], wildfires [163], hurricanes and unsteady weather phenomenas [162], gas quenching
[126] and many others. More computing capacities will open up further possibilities in
the next decade, which suggests that the improvement of numerical methods for unsteady
flows should start in earnest now. Finally, the existing methods for the computation of
steady states, while certainly not at the end of their development, have matured, making
the consideration of unsteady flows interesting for a larger group of scientists. This research
monograph is written with both mathematicians and engineers in mind, to give them an
overview of the state of the art in the field and to discuss a number of new developments,
where we will focus on the computation of laminar viscous flows, as modelled by the Navier-
Stokes equations.

These are the most important model in fluid dynamics, from which a number of other
widely used models can be derived, for example the incompressible Navier-Stokes equations,
the Euler equations or the shallow water equations. An important feature of fluids that
is present in the Navier-Stokes equations is turbulence, which roughly speaking appears if
the Reynolds number of the problem at hand is large enough. Since Reynolds numbers for

13

14 CHAPTER 1. INTRODUCTION

air flows as modelled by the compressible equations are large, most airflows of practical
importance are turbulent. However, turbulence adds a completely new level of complexity
to all aspects of solver design. Therefore, we will focus on laminar flows instead, which are
more accessible by a mathematical perspective.

Another important feature of the Navier-Stokes equations is the boundary layer, which
makes it necessary to use very fine grids. Since explicit time integration methods have an
inherent stability constraint, they need to choose their time step on these grids based on
stability only and not via error control. This makes the use of implicit time integration
methods desirable, since these are not bound by stability constraints as explicit schemes.
However, using implicit scheme requires solving linear or nonlinear equation systems. Con-
sequently, a large part of this book will be about implicit schemes and schemes for solving
linear and nonlinear equation systems.

1.1 The method of lines

Here, we follow the method of lines paradigm:

1. The space discretization transforms the partial differential equation (PDE) into a
system of ordinary differential equations (ODE), introducing a discretization error.

2. The implicit time integration transforms the ODE into a system of algebraic equa-
tions, introducing a time integration error, that needs to be related to the discretiza-
tion error.

3. If this algebraic system is nonlinear, it is approximately solved by an iterative method
(until termination), which introduces an iteration error that needs to be smaller than
the time discretization error.

4. If this algebraic system is linear or if Newton’s method was chosen in the previous
step, another iterative method solves the linear system (until termination), which
introduces another iteration error, which needs to related to the time discretization
error, respectively the error in the nonlinear solver.

The main advantage of the method of lines is its immense flexibility, allowing the reuse of
existing methods that can be tested and analyzed for the simpler subproblems, as well as
the simple exchange of any part of the overall solution procedure. Therefore, the use of the
method of lines is ubiquitious in scientific computing, meaning that most of the techniques
discussed here can be applied to a large class of problems, as long as they are modelled by
time dependent partial differential equations. On the other hand, the main drawback of the
approach is in the limitations of how spatial and temporal adaptation can be connected.
Therefore, space-time discretizations are an interesting alternative.

Thus, we arrive at the common questions of how we can guarantee robustness and
accuracy, obtain efficient methods and all of that at reasonable implementation cost?

1.1. THE METHOD OF LINES 15

Regarding space discretization, the most prominent methods for flow problems are
finite volume methods. These respect a basic property of the Navier-Stokes equations,
namely conservation of mass, momentum and energy and, despite significant theory gaps
for multidimensional problems, it is known how to obtain robust schemes of order up to
two. The question of obtaining higher order schemes is significantly more difficult and has
been an extremely active area of research for the past ten years. As the most prominent
type of methods there, discontinuous Galerkin (DG) schemes have been established. These
use higher order polynomials and a Galerkin condition to determine the solution. However,
as for all schemes of higher order, the question of efficiency for the Navier-Stokes equations
is still the topic of much ongoing research, in particular for implicit time integration.

In the case of an explicit time integration, the best choice are explicit Runge-Kutta
methods. In the implicit case, BDF methods are used widely in industry, essentially because
these just need to solve one nonlinear system per time step. However, third and higher
order BDF schemes have limited stability properties. Furthermore, time adaptivity is a
problematic issue. This is important for an implicit scheme, since the whole point is to
choose the time step based on error estimators and not on stability constraints. Therefore,
singly diagonally implicit Runge-Kutta (SDIRK) schemes are the important alternative,
which was shown to be competitive with BDF methods at engineering tolerances [17].
These consist of a sequence of backward Euler steps with different right hand sides and
time step sizes, thus allowing a modular implementation. Furthermore, time adaptivity
can be done at almost no additional cost using embedded schemes. Another interesting
alternative, in particular for more accurate computations, are Rosenbrock schemes that in
essence are linearized SDIRK methods, thus only needing linear system solves.

The steps that mainly determine the efficiency of an implicit time integration scheme
are the last two in the method of lines: Solving equation systems. In the industry but
also in academia, code development has been driven by the desire to compute steady flows.
This requires the solution of one large algebraic system and the fastest codes to do so use
a multigrid method. For this reason, the majority of codes used in industry employ this
strategy, for example the DLR TAU-code [66]. The multigrid method for steady states can
be carried over to unsteady flows using the dual time stepping approach [98]. Since this
allows to compute unsteady flows at essentially no additional implementation cost, dual
time stepping is the method of choice in the said codes.

The main alternative is Newton’s method, which requires solving sequences of linear
systems. Therefore, common data structures needed are vectors and matrices. Since an
explicit code is typically based on cell or point based data structures and not on vectors,
the implementation cost of this type of methods is considered to be high. Together with
the fact that the canonical initial guess for the steady state (freestream data) is typically
outside the region of convergence of Newton’s method, this has led to a bad reputation of
the method in the CFD community.

Now, if we consider a steady state equation, discretized in space, we obtain a nonlinear
algebraic equation of the form

£(u) = 0

16 CHAPTER 1. INTRODUCTION

with u € R™ and f : R™ — R™. However, the nonlinear equation arising from an implicit
time discretization in the method of lines is of the form

(u—s)/(aAt) —f(u) =0,

where s is a given vector, a a method dependent parameter and At the time step size. Due
to the additional term, we actually expect the second system to be easier to solve.

When considering the existing multigrid codes employing dual time stepping, it turns
out that if at all, the convergence speed is increased only slightly. This can be explained
quite easily: A multigrid method depends on the specific PDE to be solved, as well as on
the discretization. If the PDE is changed, in this case by adding a time derivative term,
we cannot expect the method to perform well. On the other hand this means that better
multigrid methods can be designed and we will illuminate a route on how to do that.

The second important point regarding the change from steady to unsteady states is
that for Newton’s method in an implicit time integration, the canonical initial guess is the
solution from the last time level. This is in a sense close to the solution at the new time
level which means that the performance of Newton’s method changes dramatically for the
better when going from steady to unsteady flows.

Furthermore, when solving the linear equation systems using a Krylov subspace method
like GMRES, the Jacobian is needed in matrix vector products only. Since the matrix is a
Jacobian, it is possible to replace these by a finite difference approximation. Thus, a method
is obtained that does not need a Jacobian and needs no additional implementation effort
when changing the spatial discretization, just in the spirit of the flexibility of the method
of lines. Unfortunately, this is not completely true in that Krylov subspace methods need
a preconditioner to be truly efficient. It is here that a lot of research has been put in and
more research needs to be done to obtain efficient, robust and easy to implement schemes.
Summarizing, it is necessary to reevaluate and redesign the existing methods for unsteady
flows.

As for preconditioning, the linear systems that arise have few properties that can be
exploited, in particular they are nonnormal and not diagonally dominant for reasonable
At. However, the systems have a block structure arising from grouping unknowns from
the same cell together. For finite volume schemes, where the blocks are of size four for two
dimensional flows and size five for three dimensional flows, a block incomplete LU (ILU)
decomposition leads to a fast method. This situation is different for DG schemes. There,
the number of unknowns in one cell depends on the dimension, the order of the scheme
and the particular method chosen. As a rule of thumb, the number of unknowns in two
dimensions is in the dozens and in the hundreds for three dimensional flows. This makes a
significant difference for efficiency with the result being that currently, the class of problems
where an implicit scheme is more efficient than an explicit one is significantly smaller for
DG schemes than for FV schemes. For a specific DG scheme, namely a modal method
with a hierarchical polynomial basis, we describe a preconditioner that is able to adress
this specific problem.

1.2. HARDWARE 17

Repeating the issues named earlier about robustness, efficiency and accuracy, an im-
portant topic arises: Since an implicit method requires one or two subiterations, there are
a lot of parameters to choose in the method. Here, the goal is to have only one user defined
parameter in the end, namely the error tolerance, and all other parameters should be deter-
mined from there. Furthermore, the termination criteria in the subsolver should be chosen
such that there is not interference with the discretization error, but also no oversolving,
meaning that these schemes should not perform more iterations than necessary. Finally,
iterative methods have the inherent danger of divergence. Therefore, it is necessary to
have feedback loops on what happens in these cases. Otherwise, the code will not be ro-
bust and therefore, not be used in practice. In these regards, mathematics is a tremendous
help, since it allows to obtain schemes that are provable convergent, to derive termination
criteria that are sharp and to detect divergence.

1.2 Hardware

A fundamental trend in computing since the introduction of the microprocessor has been
Moore’s law, meaning that the speed of CPUs increases exponentially. There is a second
important trend, namely that instead of one computation on a single processor, multiple
computations are carried out in parallel. This is true for huge clusters commonly used
in high performance computing, for common PCs that have multiple CPUs with multiple
cores and for GPUs that are able to handle a thousand threads in parallel. This means
that numerical methods must be devised to perform well in parallel. Typically, this trend
was driven by hardware manufacturers not having numerical computations in mind, then
compilers and operating systems were built by computer scientists not having numerical
computations in mind. This leads to a situation where the numerical analysts at the bottom
of the food chain have a hard time designing optimal methods, in particular when hardware
architecture is quickly changing as it is now.

However, there is an interesting development going on with graphics processing units
(GPUs), which were originally designed for efficient single precision number crunching.
When the market leader Nvidia realized that scientific computation is an attractive market,
it developed GPUs able of performing double precision computations together with making
coding on GPUs easier using the documentation of CUDA. This makes a programming
paradigm, where codes are parallelized on multicore CPUs using the MPI standard and on
top of that, GPUs are employed.

Another important trend is that the available memory per core will decrease in the
future, meaning that computations will be not only compute bound, but also memory
bound, at least for three dimensional calculations. Consequently, methods that use little
memory are to be preferred.

18 CHAPTER 1. INTRODUCTION

1.3 Notation

Troughout this book, we will use bold capital letters (A) to indicate matrices and bold small
letters (x) to indicate vectors. Small letters represent scalars, and thus the components of
vectors are small letters with indices. Thus, u; is the first vector of a family of vectors, but
u, would be the first component of the vector u. Specifically, the three space directions are
T1, o and 3 as the components of the vector x. A vector with an underbar u denotes a
vector representing the discrete solution on the complete grid.

1.4 Outline

The book essentially follows the order of steps in the method of lines. We first describe
in chapter 2 the basic mathematical models of fluid dynamics and discuss some of their
properties. Then we will discuss space discretization techniques in chapter 3, in particular
finite volume and discontinuous Galerkin methods. In chapter 4, different time integration
techniques are presented, in particular explicit and implicit schemes, but also schemes
that do not fall directly in the method of lines context. If implicit schemes are used, this
results in linear or nonlinear equation systems and the solution of these is discussed in
chapter 5. In particular, fixed point methods, multigrid methods, Newton methods and
Krylov subspace methods are described, as well as Jabobian-Free Newton-Krylov methods.
Preconditioning techniques for Krylov subspace methods are described in chapter 6. In
chapter 7, we summarize and combine the techniques of the previous chapters and describe
how the final flow solvers look like, as well give an assessment of their performance. Finally,
unsteady thermal Fluid-Structure interaction is considered in chapter 8 and the application
of the techniques discussed before is described.

Chapter 2

The Governing Equations

We will now describe the equations that will be used throughout this book. The mathemat-
ical models employed in fluid mechanics have their basis in continuum mechanics, meaning
that it is not molecules that are described, but a large number of those that act as if they
were a continuum. Thus velocities, pressure, density and similar quantities are of a statis-
tical nature and say that on average, at a certain time, the molecules in a tiny volume will
behave in a certain way. The mathematical model derived through this approach are the
Navier-Stokes equations. The main component of these is the momentum equation, which
was found in the beginning of the 19th century independently of each other by Navier
[149], Stokes [187], Poisson [I58] and de St. Venant [46]. During the course of the century,
the equations were given more theoretical and experimental backing, so that by now, the
momentum equation together with the continuity equation and the energy equation are
established as the model describing fluid flow.

This derivation also shows a limitation of the mathematical model, namely for rarefied
gases as in outer layers of the atmosphere, the number of molecules in a small volume is
no longer large enough to allow statistics.

From the Navier-Stokes equations, a number of important simplifications have been
derived, in particular the incompressible Navier-Stokes equations, the Euler equations, the
shallow water equations or the potential flow equations. We will discuss in particular
the Euler equations, which form an important basis for the development of discretization
schemes for the Navier-Stokes equations, as well as an already very useful mathematical
model in itself.

2.1 The Navier-Stokes Equations

The Navier-Stokes equations describe the behavior of a Newtonian fluid. In particular, they
describe turbulence, boundary layers, as well as shock waves and other wave phenomenas.

19

20 CHAPTER 2. THE GOVERNING EQUATIONS

They consist of the conservation laws of mass, momentum and energy. Thus they are
derived from integral quantities, but for the purpose of analysis, they are often written in a
differential form. There, they form a system of second order partial differential equations of
mixed hyperbolic-parabolic type. If only the steady state is considered, the equations are
elliptic-parabolic. A more detailed description can be found for example in the textbooks
of Chorin and Marsden [37] and Hirsch [93].

In the following sections, we will start with dimensional quantities, denoted by the
superscript ~ and derive a nondimensional form later. We now consider an open domain
U C R? and the elements of U are written as x = (21, ..., x4)" .

2.1.1 Basic form of conservation laws

The conservation of a quantity is typically described by rewriting the amount ¢q(t) given
in a control volume 2 C U using a local concentration ¢ (x, t):

oa(t) :/Q@b(x,t)dQ.

Conservation means that the amount ¢q can only be changed by transport over the bound-
ary of € or internal processes. An important tool to describe this change is Reynolds’
transport theorem:

Theorem 1 (Reynolds’ transport theorem) Let Q(t) be a possibly time dependent con-
trol volume, ¥ a differentiable function and v(x,t) be the velocity of the flow. Then

d
a/gwgg):/ﬂatqug-y 8Qwv-nds. (2.1)

The proof is straightforward using multidimensional analysis, see e.g. [222 page 10]. We
will now consider control volumes that are fixed in time. Thus we have

/Q BudQL = 9, /Q bdS.

2.1.2 Conservation of mass

The conservation equation of mass (also called continuity equation) is given in terms of the
density p for an arbitrary control volume 2 by

0; / pd+ | th-nds = 0. (2.2)
Q o0

Here m = pv denotes the momentum vector divided by the unit volume. Since this is
valid for any €2, application of the Gaussian theorem for the boundary integral leads to the
differential form

2.1. THE NAVIER-STOKES EQUATIONS 21

Oip+ V-1 = 0. (2.3)

Here, the divergence operator is meant with respect to the spatial variables only, throughout
the book.

Note that by contrast to the two following conservation laws, which are based on deep
principles of theoretical physics like the Noether theorem, conservation of mass is not a
proper law of physics, since mass can be destroyed and created. A particular example
is radioactive decay, where mass is transformed into energy, meaning that the underlying
physical law here is conservation of energy via Einsteins discovery of the equivalence of
mass and energy. However, for the purpose of nonradioactive fluids at nonrelativistic
speeds, is a perfectly reasonable mathematical model.

2.1.3 Conservation of momentum

The equation for the conservation of momentum is based on Newton’s second law, which
states that the change of momentum in time is equal to the acting force. For the time
being, we assume that there are no external forces acting on the fluid and look at surface
forces only. As relevant terms we then have the pressure gradient, which results in a force,
and the forces resulting from shear stresses due to viscous effects. Additionally we get the
flow of momentum from Reynolds’ transport theorem. With the pressure p and the velocity
vector v, we obtain for an arbitrary control volume {2

Q o0 oN

Again, application of the Gaussian theorem for the boundary integral leads to the differ-
ential form

d
aml+Za (mit; + poi) = > 05,85, i=1,...d, (2.5)
7j=1

7=1

where 0;; is the Kronecker symbol and the viscous shear stress tensor S is given by

. 2
Sij = ((@%j@i + 03,05) — §5z‘jv"7‘) 7 i,j=1,...,d, (2.6)

where fi is the dynamic viscosity. In particular, this means that the shear stresses with
1 # j are proportional to the velocity gradient. If this is not the case for a fluid, it is
called non-Newtonian. Examples of this are fluids where the viscosity itself depends on
the temperature or the velocity, namely blood, glycerin, oil or a large number of melted
composite materials. Note that in , the experimentally well validated Stokes hypothesis
is used, that allows to use only one parameter [i for the description of viscosity.

22 CHAPTER 2. THE GOVERNING EQUATIONS

2.1.4 Conservation of energy

Regarding conservation of energy, its mathematical formulation is derived from the first
law of thermodynamics for a fluid. The first law states that the change in time in total
energy in a control volume {2 is given by the flow of heat plus work done by the fluid. The
heat flow is given by the convective flux from the Reynolds’ transport theorem plus
the viscous flow due to Fourier’s law of heat conduction. Furthermore, the work done by
the fluid is due to the forces acting on it. Again, we neglect external forces for now and
thus we have the pressure forces and the viscous stresses. With E being the total energy
per unit mass we thus obtain for an arbitrary control volume:

2 2
af/,sEdQJr/ (Hm).nds:/ > D S0 — Wy | -nds. (2.7)
Q Q 00 =7 \'im1

As before, application of the Gaussian theorem for the boundary integral leads to the
differential form

d d
0ipE + Vs - (Hin) =Y 0, (Sijb; — Wj> . (2.8)
j=1 i=1

H=F +§ denotes the enthalpy and Wj describes the flow of heat which, using the thermal

conductivity coefficient &, can be written in terms of the gradient of the temperature T as

The total energy per unit mass E is given by the sum of inner and kinetic energy as

E=¢é+4 |V

DO | —

2.1.5 Equation of state

The five differential equations depend on the variables p, m and ﬁE, but also on a number
of others. These need to be determined to close the system. First of all, the thermodynamic
quantities density, pressure and temperatur are related through the ideal gas law

A

p

pR
Furthermore, we need an equation for the pressure p, which is called the equation of

state, since it depends on the particular fluid considered. Typically, it is given as a function

p(p,€). For an ideal gas and fluids similar to one, the adiabatic exponent 7 can be used to
obtain the simple form

T =

(2.9)

2.2. NONDIMENSIONALIZATION 23

p=(y—1)pe, (2.10)
which can be derived using theoretical physics. However, for some fluids, in particular
some oils, the equation of state is not given as a function at all, but in the form of discrete
measurings only.

Finally, the adiabatic exponent v and the specific gas constant R are related through the
specific heat coefficients for constant pressure ¢,, respectively constant volume ¢,, through

and

R=¢,—¢,.
For an ideal gas, v is the quotient between the number of degrees of freedom plus two
and the number of degrees of freedom. Thus, for a diatomic gas like nitrogen, v = 7/5
and therefore, a very good approximation of the value of ~ for air is 1.4. The specific
gas constant is the quotient between the universal gas constant and the molar mass of

the specific gas. For dry air, this results in R ~ 287J/Kg/K. Correspondingly, we obtain
¢, ~ 1010J/Kg/K and &, ~ 723 /Kg/K.

2.2 Nondimensionalization

An important topic in the analysis of partial differential equations is the nondimensional-
ization of the physical quantities. This is done to achieve two things. First, we want all
quantities to be O(1) due to stability reasons and then we want scalability from experiments
to real world problems to numerical simulations. For the Navier-Stokes equations, we will
obtain several reference numbers like the Reynolds number and the Prandtl number. These
depend on the reference quantities and allow this scaling by specifying how reference values
had to be changed to obtain solutions for the same Reynolds and Prandtl number.

A nondimensional form of the equations is obtained by replacing all dimensional quan-
tities with the product of a nondimensional variable with a dimensional reference number:

¢:¢'¢ref' (2‘11>
Given reference values for the variables length, velocity, pressure and density (Z,cf, Uref,
Dres and prer), we can define the reference values for a string of other variables from these:

S i’ f A o ~2]3 f ~ N
by = T By =By =P Ry,

For compressible flows, the pressure reference is usually defined as

Dres = PresOres

24 CHAPTER 2. THE GOVERNING EQUATIONS

Typical reference values are p,.; = 1.2kg/m? which is approximately the density of air at
room temperature or 9,.y as the modulus of a reasonable reference velocity for the problem
considered, for example the speed of an airplane. Regarding the reference length, there
is no clear way of choosing this. Typically, this is the length of an object that crucially
determines the flow, for example the diameter of a cylinder or the length of a plane.
Additionally, we need references for the physical parameters and constants fi,.; and
Rref, as well as possibly reference values for the external forces. Reasonable values for air

at room temperature and at sea level are fi,.y = 18- 10_6% and Apep = 25- 1073 ’;g;'g For
the nondimensional p, the Sutherland law gives a relation to the temperature:
3 1 + Su
= T3 2.12

with Su being the Sutherland-constant, which is Su = IT}M for air.

ref
The Reynolds and Prandtl number, as well as the parameter M are dimensionless
quantities, given by:

Re = Pretlrestres — p et gy = et (2.13)
Href Kref Cref
The Reynolds and the Prandtl number determine important flow properties like the size of
the boundary layer or if a flow is turbulent. Another important nondimensional quantity
is the Mach number Ma, after the german engineer Ernst Mach, which is the quotient of
the velocity and the speed of sound ¢. The latter is given by

. |.p
¢= /7= (2.14)
p

For Mach numbers near zero, flow is nearly incompressible. This is called the low Mach
number regime. The nondimensional number M is related to the Mach number Ma via
M = /yMa and thus M = Og(Ma).

All in all, in the three dimensional case, we obtain the following set of equations for the
nondimensional Navier-Stokes equations:

atp—i-Vm = O,

3 2
1
j=1

j=1
1 < 2 W,
. - cay.
pE + V- (Hm) Re;awj (;Suvl PT).

In short, using the vector of conservative variables u = (p, my, mo, ms3, pE)T, the convective
fluxes

2.3. SOURCE TERMS 25

mq Mo m3
mivr +p Moy mavy
fi(u) = myvs , ()= mova+p |, f5(u)= M3y . (2.16)
mivs3 maovUs mgvs + p
pHuvy pHuvy pHuvs
and the viscous fluxes
0 0 0
1 Sll 1 521 1 531
ff(u) = = Sha , Bu) = 522 fy () = — S32
Re Sis Re Sy Re Sas
Sl'V—% SQ'V_% Sg'V—%
(2.17)

these equations can be written as

u; + 0, 7 (u) + 0, £5 (u) + 0., £5 (u) = 0, £ (u, Vu) + 0,,15 (u, Vu) + 0,15 (u, Vu), (2.18)

or in a more compact form:

u; + V-f(u) = V-{f(u, Vu). (2.19)
Finally, we can write this in integral form as
85/ ud) + / f(u) -nds = / £’(u, Vu) - nds. (2.20)
Q 00 o9

2.3 Source terms

If external forces or source terms are present, these will be modeled by additional terms on
the appropriate right hand sides:

Gg/ud9+/ fc(u)-nds:/ £(u, Vu)-nds—l—/ng.
Q o0 G) Q

An important example is gravity, which appears as a vector valued source in the momentum
equation:

g = (0,0,0,9,0)".

Another example would be a local heat source in the energy equation or the coriolis force.
Additional nondimensional quantities appear in front of the source terms. For the gravita-
tional source term, this is the Froude number

Uref

\V4 :i‘refgref.

Fr= (2.21)

26 CHAPTER 2. THE GOVERNING EQUATIONS

2.4 Simplifications of the Navier-Stokes equations

The compressible Navier-Stokes equations are a very general model for compressible flow.
Under certain assumptions, simpler models can be derived. The most important sim-
plification of the Navier-Stokes equations are the incompressible Navier-Stokes equations
modeling incompressible fluids. In fact, this model is so widely used, that sometimes these
equations are referred to as the Navier-Stokes equations and the more general model as the
compressible Navier-Stokes equations. They are obtained when assuming that density is
constant along the trajectories of particles. In this way, the energy equation is no longer
needed and the continuity equation simplifies to the so called divergence constraint:

V-v = 0,
1 %

vi+v-Vv+4+-Vp = —Av. (2.22)
p p

Note that the density is not necessarily constant here. However, since this is a common
modeling assumption, for example for water, the above equations are often called the incom-
pressible Navier-Stokes equations with variable density, whereas the above equations with
the density hidden via a redefinition of the other terms are referred to as the incompressible
Navier-Stokes equations.

There is a different way of deriving the incompressible Navier-Stokes equations with
variable density, namely by looking at the limit M — 0. Using formal asymptotic analysis,
it can be shown that the compressible Navier-Stokes equations result in these in the limit.

2.5 The Euler Equations

An important simplification of the Navier-Stokes equations is obtained, if the second order
terms (viscosity and heat conduction) are neglected or otherwise put, if the limit Reynolds
number to infinity is considered. The resulting set of first order partial differential equations
are the so called Euler equations:

8,5,5 + V . Ii’l = 0,
d
O + Y Oy (i + poyy) =0, i=1,..d (2.23)
j=1
dy(pE) + V- (Hrn) = 0.

Using the standard nondimensionalization, we obtain the following form of the Euler equa-
tions:

2.6. BOUNDARY AND INITIAL CONDITIONS 27

atp—i-Vm:O,

d
8tmi + Z@xj (m,-vj +p5”) = 0, 1= 1, ceey d (224)
j=1

OwpE +V-(Hm) = 0.

As can be seen, no dimensionless reference numbers appear. With the vector of conservative
variables u = (p, my, my, m3, pE)T and the convective fluxes ff(u), f5(u), f5(u) as before,
these equations can be written as

u; + Oy, fi(u) + 0, £5(u) + 0., f5(u) = 0

or in more compact form

u; + V-f9(u) =0. (2.25)

2.6 Boundary and Initial Conditions

Initially, at time ¢,, we have to prescribe values for all variables, where it does not matter if
we use the conservative variables or any other set, as long as there is a one to one mapping
to the conservative variables. We typically use the primitive variables, as these can be
measured quite easily, in contrast to e.g. the conservative variables. Further, if we restrict
ourselves to a compact set D € U, we have to prescribe conditions for the solution on the
boundary. This is necessary for numerical calculations and therefore, D is also called the
computational domain. The number of boundary conditions needed depends on the type
of the boundary.

Initial Conditions At time ¢ = ¢y, we define a velocity vg, a density py and a pressure
po. All other values like the energy and the momentum will be computed from these.

Fixed wall Conditions At the wall, no-slip conditions are the conditions to use for
viscous flows, thus the velocity should vanish: v = 0. Regarding the temperature, we use
either isothermal boundary conditions, where the temperature is prescribed or adiabatic
boundary conditions, where the normal heat flux is set to zero.

For the Euler equations, there are fewer possible conditions at the wall, due to the
hyperbolic nature. Therefore, the slip condition is employed, thus only the normal velocity
should vanish: v, = 0.

28 CHAPTER 2. THE GOVERNING EQUATIONS

Moving walls At a moving wall, the condition is that the flow velocity has to be the
same as the wall velocity x. This leads to the following equation:

/utquL/ f(u)—)'(-nds:/ f’(u, Vu) - nds. (2.26)
Q o0 G

Periodic boundaries To test numerical methods, periodic boundary conditions can be
useful. Given a set of points x; on a boundary I';, these are mapped to a different set of
points x5 on a boundary I's:

u(xy) = u(xy). (2.27)

Farfield boundaries Finally, there are boundaries that are chosen purely for computa-
tional reasons, sometimes referred to as farfield boundaries. From a mathematical point
of view, the question is which boundary conditions lead to a well-posed problem and how
many boundary conditions can be posed in the first place [116]. For the Euler equations,
the answer is that the crucial property is the number of incoming waves, which can be
determined using the theory of characteristics. This means that the sign of the eigenvalues
has to be determined and negative eigenvalues in normal direction correspond to in-
coming waves. As shown in [192] for the Navier-Stokes equations using the energy method,
the number of boundary conditions there differs significantly. Note that the question, if
these boundary conditions lead to the same solution on the small domain as for the Navier-
Stokes equation on an unbounded domain is open. The number of boundary conditions
that lead to a well-posed problem is shown in table [2.1]

Euler equations Navier-Stokes equations

Supersonic inflow 5) 5)
Subsonic inflow 4 5
Supersonic outflow 0 4

1 4

Subsonic outflow

Table 2.1: Number of boundary conditions to be posed in 3D

For the Navier-Stokes equations, a full set of boundary conditions has to be provided
at both supersonic and subsonic inflow and one less at the outflow. Intuitively, this can
be explained through the continuity equation being a transport equation only, whereas the
momentum and energy equations have a second order term. For the Euler equations and
subsonic flow at an inflow boundary, we have to specify three values, as we have one outgoing
wave corresponding to the eigenvalue v, — ¢ < 0. At the outflow boundary, we have three
outgoing waves and one incoming wave, which again corresponds to the eigenvalue v,, — c.
For supersonic flow, we have only incoming waves at the inflow boundary, respectively no
incoming waves, which means that we cannot prescribe anything there.

2.7. BOUNDARY LAYERS 29

2.7 Boundary layers

Another important property of the Navier-Stokes equations is the presence of boundary
layers [I72]. Mathematically, this is due to the parabolic nature and therefore, boundary
layers are not present in the Euler equations. We distinguish two types of boundary layers:
the velocity boundary layer due to the slip condition, where the tangential velocity changes
from zero to the free stream velocity and the thermal boundary layer in case of isothermal
boundaries, where the temperature changes from the wall temperature to the free stream
temperature. The thickness of the boundary layer is of the order 1/Re, where the velocity
boundary layer is a factor of Pr larger than the thermal one. This means that the higher
the Reynolds number, the thinner the boundary layer and the steeper the gradients inside.

Y

Vo

Vo
—_— ““l

g W W

;ld‘..

Figure 2.1: Boundary layer; Tuso, CC-by-SA 3.0

An important flow feature that boundary layers can develop is flow separation, where
the boundary layer stops being attached to the body, typically by forming a separation
bubble.

2.8 Laminar and turbulent flows

When looking at low speed flow around an object, the observation is made that the flow
is streamlined and mixing between neighboring flows is very limited. However, when the
speed is increased, then at some point the streamlines start to break, eddies appear and
neighboring flows mix significantly, see figure 2.2] The first is called the laminar flow
regime, whereas the other one is the turbulent flow regime. In fact, turbulent flows are
chaotic in nature. As mentioned in the introduction, we will consider almost only laminar
flows.

The same qualitative behavior can be observed dependend on the size of the object
and the inverse of the viscosity. More precise, for any object, there is a certain critical

30 CHAPTER 2. THE GOVERNING EQUATIONS

Figure 2.2: Turbulent flow; Jaganath, CC-by-SA 3.0

Reynolds number at which a laminar flow starts to become turbulent. The dependency on
the inverse of the viscosity means that air flows are typically turbulent, for example, the
Reynolds number of a commercial airliner is between 10° and 10® for the A-380, whereas
the critical Reynolds number is more of the order 103. The exact determination of the
critical Reynolds number is very difficult.

Simulating and understanding turbulent flows is still a very challenging problem. An
important property of turbulent flows is that significant flow features are present at very
different scales. The numerical method has to treat these different scales somehow. Es-
sentially there are two strategies to consider in the numerical model: Direct Numerical
Simulation (DNS) or turbulence models. DNS uses extremely fine grids to resolve turbu-
lent eddies directly. Unfortunately, resolving the smallest eddies, as shown by Kolmogorov,
requires points on a scale of Re”* and therefore, this approach is infeasible for practical
applications even on modern supercomputers and more importantly, will remain to be so
[T45]. This leads to the alternative of turbulence models.

2.8.1 Turbulence models

A turbulence model is a model derived from the Navier-Stokes equations that tries to resolve
only the larger eddies and not smaller eddies. To this end, the effect of small scale eddies
is incorporated using additional terms in the original equations with additional equations
to describe the added terms. Examples for these approaches are the Reynolds Averaged
Navier-Stokes equations (RANS) and the Large Eddy Simulation (LES).

The RANS equations are obtained by formally averaging the Navier-Stokes equations
in a certain sense, an idea that goes back to Reynolds. Thus every quantity is represented
by a mean value plus a fluctuation:

¢($,t> = a(imt) + ¢/($,t>.

For the definition of the mean value ¢(x,t), several possibilities exist, as long as the corresp-
ing average of the fluctuation ¢'(z,t) is zero. The Reynolds average is used for statistically

2.8. LAMINAR AND TURBULENT FLOWS 31

steady turbulent flows and is given by averaging over a time interval that is significantly
smaller than the time step, but large enough to integrate over small eddies
1 (T2

Bty =7 | ottt

whereas the ensemble average is defined via

¢(x,t) = lim _ZU’

N—oo N

Furthermore, to avoid the computation of mean values of products, the Favre or density
weighted average is introduced:

¢ = pd/p (2.28)

with a corresponding different fluctuation

¢($,t) = &(:L‘,t) + ¢”(l’,t).

Due to its hyperbolic nature, the continuity equation is essentially unchanged. In the
momentum and energy equations, this averaging process leads to additional terms, namely
the so called Reynolds stresses S and the turbulent energy, which have to be described
using experimentally validated turbulence models. We thus obtain the RANS equations
(sometimes more correctly referred to as the Favre- and Reynolds-Averaged Navier-Stokes
equations):

d
OBV + Y O (P0idy) = —0, 50, + - Zax] (Si+88), i=1,..d (2.29)

Jj=1

B Nz 17 /—”\/ W
OpE +V - (pHb;) = Zax] (Sig = S50 =y Sigvl =gk + Re]i?“) '

The Reynolds stresses

and the turbulent energy

cannot be related to the unknowns of this equation. Therefore, they have to be described
using experimentally validated turbulence models. These differ by the number of additional
partial differential equations used to determine the Reynolds stresses and the turbulent
energy. There are zero equation models, like the Baldwin-Lomax-model where just an

32 CHAPTER 2. THE GOVERNING EQUATIONS

algebraic equation is employed [4], one equation models like the Spallart-Allmaras model
[183] or two equation models, as in the well known k-e-models [I55].

A more accurate approach is LES, which originally goes back to Smagorinsky, who
developed it for meteorological computations [I77]. Again, the solution is decomposed into
two parts, where this time, a filtering process is used and the unfiltered part (the small
eddies) is neglected. However, as for the RANS equations, additional terms appear in the
equations, which are called subgrid scale stresses (SGS). These correspond to the effect of
the neglected terms and have to be computed using a subgrid scale mode.

Finally, there is the detached eddy simulation (DES) of Spallart [184]. This is a mixture
between RANS and LES, where a RANS model is used in the boundary layer, whereas an
LES model is used for regions with flow separation. Since then, several improved variants
have been suggested, for example DDES.

2.9 Analysis of viscous flow equations

Basic mathematical questions about an equation are: Is there a solution, is it unique and is
it stable in some sense? In the case of the Navier-Stokes equations, there are no satisfactory
answers to these questions. The existing results provide roughly speaking either long time
results for very strict conditions on the initial data or short time results for weak conditions
on the initial data. For a review we refer to Lions [125].

2.9.1 Analysis of the Euler equations

As for the Navier-Stokes equations, the analysis of the Euler equations is extremely diffi-
cult and the existing results are lacking [36]. First of all, the Euler equations are purely
hyperbolic, meaning that the eigenvalues of Vf¢-n are all real for any n. In particular,
they are given by

)\1/2 = |Un| + C,
)\3’4’5 = |Un| (230)

Thus, the equations have all the properties of hyperbolic equations. In particular, the solu-
tion is monotone, total variation nonincreasing, /;-contractive and monotonocity preserving.
Furthermore, we know that when starting from nontrivial smooth data, the solution will
be discontinuous after a finite time.

From (2.30), it can be seen that in multiple dimensions, one of the eigenvalues of
the Euler equations is a multiple eigenvalue, which means that the Euler equations are
not strictly hyperbolic. Furthermore, the number of positive and negative eigenvalues
depends on the relation between normal velocity and the speed of sound. For v, > ¢, all
eigenvalues are positive, for v, < ¢, one eigenvalue is negative and furthermore, there are

2.9. ANALYSIS OF VISCOUS FLOW EQUATIONS 33

zero eigenvalues in the cases v, = ¢ and v, = 0. Physically, this means that for v, < c,
information is transported in two directions, whereas for v,, > ¢, information is transported
in one direction only. Alternatively, this can be formulated in terms of the Mach number.
Of particular interest is this for the reference Mach number M, since this tells us how the
flow of information in most of the domain looks like. Thus, the regime M < 1 is called
the subsonic regime, M > 1 the supersonic regime and additionally, in the regime M, we
typically have the situation that we can have locally subsonic and supersonic flows and this
regime is called transonic.

Regarding uniqueness of solutions, it is well known that these are nonunique. However,
the solutions typically violate physical laws not explicitely modelled via the equations, in
particular the second law of thermodynamics that entropy has to be nonincreasing. If this
is used as an additional constraint, entropy solutions can be defined that are unique for the
one dimensional case.

2.9.2 Analysis of the Navier-Stokes equations

For a number of special cases, exact solutions have been provided, in particular by Helmholtz,
who managed to give results for the case of flow of zero vorticity and Prandtl, who derived
equations for the boundary layer that allow to derive exact solutions.

34

CHAPTER 2. THE GOVERNING EQUATIONS

Chapter 3

The Space discretization

As discussed in the introduction, we now seek approximate solutions to the continuous
equations, where we will employ the methods of lines approach, meaning that we first dis-
cretize in space to transform the equations into ordinary differential equations and then
discretize in time. Regarding space discretizations, there is a plethora of methods avail-
able. The oldest methods are finite difference schemes that approximate spatial derivatives
by finite differences, but these become very complicated for complex geometries or high
orders. Furthermore, the straightforward methods have problems to mimic core properties
of the exact solution like conservation or nonoscillatory behavior. While in recent years,
a number of interesting new methods have been suggested, it remains to be seen whether
these methods are competitive, respectively where their niches lies. In the world of elliptic
and parabolic problems, finite element discretizations are standard. These use a set of ba-
sis functions to represent the approximate solution and then seek the best approximation
defined by a Galerkin condition. For elliptic and parabolic problems, these methods are
backed by extensive results from functional analysis, making them very powerful. However,
they have problems with convection dominated problems in that there, additional stabiliza-
tion terms are needed. This is an active field of research in particular for the incompressible
Navier-Stokes equations, but the use of finite element methods for compressible flows is very
limited.

The methods that are standard in industry and academia are finite volume schemes.
These use the integral form of a conservation law and consider the change of the mean of a
conservative quantity in a cell via fluxes over the boundaries of the cell. Thus, the methods
inherently conserve these quantities and furthermore can be made to satisfy additional
properties of the exact solutions. Finite volume methods will be discussed in section [3.2]
A problem of finite volume schemes is their extension to orders above two. A way of
achieving this are discontinous Galerkin methods that use ideas originally developed in the
finite element world. These will be considered in section B.8

35

36 CHAPTER 3. THE SPACE DISCRETIZATION

3.1 Structured and unstructured Grids

Before we describe the space discretization, we will discuss different types of grids, namely
structured and unstructured grids. The former are grids that have a certain regular struc-
ture, whereas unstructured grids do not. In particular, cartesian grids are structured and
also so called O- and C-type grids, which are obtained from mapping a cartesian grid using
a Mobius transformation. The main advantage of structured grids is that the data structure
is simpler, since for example the number of neighbors of a grid cell is a priori known, and
thus the algorithm is easier to program. Furthermore, the simpler geometric structure also
leads to easier analysis of numerical methods which often translates in more robustness and
speed.

DBV

Figure 3.1: Example of unstructured (left) and structured (right) triangular grids

On the other hand, the main advantage of unstructured grids is that they are geomet-
rically much more flexible, allowing for a better resolution of arbitrary geometries.

When generating a grid for the solution of the Navier-Stokes equations, an important
feature to consider is the boundary layer. Since there are huge gradients in normal direction,
but not in tangential direction, it is useful to use cells in the boundary layer that have a high
aspect ratio, the higher the Reynolds number, the higher the aspect ratio. Furthermore, to
avoid cells with extreme angles, the boundary layer is often discretized using a structured
grid.

Regarding grid generation, this continues to be a bottle neck in CFD calculations in
that automatic procedures for doing so are missing. Possible codes are for example the
commercial software CENTAUR [35] or the open source Gmsh [67].

3.2. FINITE VOLUME METHODS 37

3.2 Finite Volume Methods

The equations we are trying to solve are so called conservation, respectively balance laws.
For these, finite volume methods are the most natural to use. Basis for those is the integral
form of the equation. An obvious advantage of this formulation is that discontinuous
solutions of some regularity are admissible. This is favourable for nonlinear hyperbolic
equations, because shocks are a common feature of their solutions. We will present the
implemented method only briefly and refer the interested reader for more information to
the excellent textbooks [69] 93] 04, 123 124] and the more concise treatises [140] [7]. We
start the derivation with the integral form (2.20)):

%/Qu(x,t) dQ+/8Qf(u(x,t)).nds:/g(x,t,u(x,m 9. (3.1)

Q

Here, €) is a so called control volume or cell with outer normal unit vector n. The
only condition we need to put on € for the derivation to work is that it has a Lipschitz
continuous boundary. However, we now assume that all control volumes have polygonal
boundaries. This is not a severe restriction and allows for a huge amount of flexibility in grid
generation, which is another advantage of finite volume schemes. Thus we decompose the
computational domain D into a finite number of polygons in 2D, respectively polygonally
bounded sets in 3D.

We denote the i'th cell by €; and its volume by |Q2;|. Edges will be called e with the
edge between ; and ; being e;; with length |e;;|, whereby we use the same notation for
surfaces in 3D. Furthermore, we denote the set of indices of the cells neighboring cell ¢ with
N(i). We can therefore rewrite for each cell as

d

— [uxt)d2+ > / f(u(x,t))-nds = / g(x,t,u(x, t)) dQ. (3.2)
i _]EN(?,) i i

The key step towards a numerical method is now to consider the mean value

1
oo /Q u(x, t)dS2

of u(x,t) in every cell €; and to use this to approximate the solution in the cell. Under
the condition that €2; does not change with time we obtain an evolution equation for the
mean value in a cell:

d 1
0= 3 [

JEN(i) €l

u; (t) =

1
f(u(x,t)) -nds+] /Q g(x,t,u(x,t)) d. (3.3)

We will now distinguish two types of schemes, namely cell-centered and cell-vertex
schemes. For cell-centered schemes, the grid will be used as generated, meaning that the
unknown quantities do not correspond to vertices, but to the cells of the grid. This is a very
common type of scheme, in particular for the Euler equations. In the case of cell-vertex

38 CHAPTER 3. THE SPACE DISCRETIZATION

Figure 3.2: Primary triangular grid and corresponding dual grid for a cell-vertex scheme.

schemes, the unknowns are located in the vertices of the original (primary) grid. This is
possible after creating a dual grid with dual control volumes, by computing the barycenter
of the original grid and connecting this to the midpoints of the edges of the containing
primary cell, see fig. [3.2 The finite volume method then acts on the dual cells.

For cartesian grids, there is no real difference between the two approaches, but for
shapes like triangles and tetrahedrons, the difference is significant. For example, the angles
between two edges are larger, which later implies a smaller discretization error and thus
the possibility of using larger cells. However, the main purpose of these schemes is to make
the calculation of velocity gradients on unstructured grids easier, which is important in the
context of Navier-Stokes equations. This will be discussed in section [3.3.3

3.3 The Line Integrals and Numerical Flux Functions

In equation , line integrals of the flux along the edges appear. A numerical method
thus needs a mean to compute them. On the edge though, the numerical solution is usually
discontinuous, because it consists of the mean values in the cells. Therefore, a numerical
flux function is required. This takes states from the left and the right side of the edge and
approximates the exact flux based on these states. For now, we assume that the states are
the mean values in the respective cells, but later when considering higher order methods in
section [3.7], other values are possible. The straight forward way to define a numerical flux
function would be to simply use the average of the physical fluxes from the left and the
right. However, this leads to an unconditionally unstable scheme and therefore, additional
stabilizing terms are needed.

A numerical flux function f¥(uy, ug, n) is called consistent, if it is Lipschitz continuous
in the first two arguments and if f¥(u,u,n) = f(u,n). This essentially means that if we
refine the discretization, the numerical flux function will better approximate the physical

3.3. THE LINE INTEGRALS AND NUMERICAL FLUX FUNCTIONS 39

flux.

We furthermore call a numerical flux function £ rotationally invariant if a rotation of
the coordinates does not change the flux. The physical flux has this property, therefore
it is reasonable to require this also of the numerical flux. More precisely, this property is
given by

T (n)f"(T(n)ug, T(n)ug; (1,0)") = £V (ur, ug; n).
In two dimensions, the matrix T is given via

1
ny N2
—ng N

1

T(n) =

The rotation matrix in three dimensions is significantly more complicated. This property
can be made use of in the code, as it allows to assume that the input of the numerical flux
function is aligned in normal direction and therefore, it is sufficient to define the numerical
flux functions only for n = (1,0, 0)%.

In the derivation so far, we have not used any properties of the specific equation, except
for the rotational invariance, which is a property that most physical systems have. This
means that the flux functions contain the important information about the physics of the
equations considered and that for finite volume methods, special care should be taken in
designing the numerical flux functions. There is a significant advantage to this, namely
that given a finite volume code to solve a certain equation, it is rather straightforward to
adjust the code to solve a different conservation law.

Employing any flux function, we can now approximate the line integrals by a quadrature
formula. A gaussian quadrature rule with one Gauss point in the middle of the edge
already achieves second order accuracy, which is sufficient for the finite volume scheme
used here. Thus, we obtain a semidiscrete form of the conservation law, namely a finite
dimensional nonlinear system of ordinary differential equations. This way of treating a
partial differential equation is also called the method of lines approach. For each single
cell, this differential equation can be written as:

d 1

() + o D e T g V(T (nij)w;, Tng)uy; (1,0,0)") = 0, (3.4)

JEN()
where the input of the flux function are the states on the left hand, respectively right hand
side of the edge.

3.3.1 Discretization of the inviscid fluxes

We will now briefly describe the inviscid flux functions employed here, for more detailed
information consult [94], T98] and the references therein. Van Leers flux vector splitting [207]

40 CHAPTER 3. THE SPACE DISCRETIZATION

is not a good method to compute flows with strong boundary layers. Another alternative
is the Rusanov flux. We further mention the CUSP and the SLIP scheme developed by
Jameson. These use an artificial diffusion term. Finally, there is the famous Roe scheme.
In the context of the later explained DG methods, the extremely simple Rusanov flux is
also employed. In the descriptions of the flux functions, we will assume that they have the
vectors uz, and ug as input, with their components indexed by L and R, respectively.

HLLC

The HLLC flux of Toro is from the class of approximate Riemann solvers that consider a
Riemann problem and solve that approximately. HLLC tries to capture all waves in the
problem to then integrate an approximated linearized problem, see figure [3.3] It is an

S Sk SR

uy, upr

Figure 3.3: The solution of the linearized Riemann problem used in HLLC: Four different
states uy, ug, u,r and u,g are separated by two shock waves with speeds s; and sg and

a contact discontinuity of speed s,

extension of the HLL Riemann solver of Harten, Hyman and van Leer, but additionally
includes a contact discontinuity, thus the C. To this end, the speeds s; and sp of the
left and right going shock are determined and the speed of the contact discontinuity is
approximated as s*. With these, the flux is determined as

f(uL), 0< S,
fz, ST, < 0 < S*,
fr, " <0< sg,

f(ur), sr2>0,

f(ur, up;n) = (3.5)

where
f; = flu) + sp(u., —uyp)

3.3. THE LINE INTEGRALS AND NUMERICAL FLUX FUNCTIONS 41

and analogously,
f;, = f(ur) + sp(u.r — ug).

Here, the intermediate states u,x are given by

1
S*
SK _UIK
W = PK (—* U2k
SK — S V3
Ex * * _ _ PK
DK + (s V1,)(8 pK(stle))

The intermediate speed is given by

1

s = %{vl} + §(PL — pr)/(pC),

where {v;} is the left-right averaged quantity and

.1 o1
Furthermore, the speeds of the left and right going shock are found as
Sp = V1, —CrqrL, SR = Vig T CRYR,
Finally, the wave speeds qx for K = L, R are obtained from

{ 1, p* < pk
Te = (Pt *

with
1

p = S} + 50, —)/ 50).

AUSMDV

By contrast to many other numerical flux functions like HLLC, the idea behind the fluxes
of the AUSM family is not to approximate the Riemann problem and integrate that, but
to approximate the flux directly. To this end, the flux is written as the sum of a pressure
term and a flow term. The precise definition of these then determines the exact AUSM-
type scheme. The AUSMDV flux [217] is actually a combination of several fluxes, namely
AUSMD, AUSMYV, the flux function of Hanel and a shock fix. First, we have

1
fAUSMD(Uu URr; n) = 5[(,0%)1/2(\1% + ‘I’R) + |(Pvn)1/2|(‘1’1: - ‘IJR)] + P12, (3-6)

42 CHAPTER 3. THE SPACE DISCRETIZATION

with
U= (17 V1, U2, U3, H)T and pl/2 = (Oap1/27 07 07) O)T
Here,
P12 =Df +Dr,
with

= v +v
pL/R n,L/RTVUn L/R else.
Un,L/R

n o/ rR(Mpyr £1)2(2F Mpr) if [Myg| <1,
%pL/R

The local Mach numbers are defined as

with ¢, = max{cy, cg}. Furthermore, the mass flux is given by

(pvn)1/2 = vyt oL + vy gPRS

with
Uy, +em)? Uy, +|v, Uy, +|v, .
. arg <:l:(,Lizca)* Uni/r 2\ ,L/Rl) 4 UnL/R 2| .L/R| if |ML/R| <1,
Un,L/R = " Un,L/REVn,L/R
% else.

The two factors a; and ap are defined as

1./ O /L

(p/P)e + (p/P)r (p/p)r + (p/P)R
As the second ingredient of AUSMDYV, the AUSMV flux is identical to the AUSMD

flux, except that the first momentum component is changed to

my Y (g, g) = vl (pvn) 1+ v g (PUn) R+ D12 (3.7)

with vy, and v, , defined as above.

The point is that AUSMD and AUSMV have different behavior at shocks in that
AUSMD causes oscillations at these. On the other hand, AUSMV produces wiggles in
the velocity field at contact discontinuities. Therefore, the two are combined using a gra-
dient based sensor s:

1 1
fAUSMD+V _ <§ + s) FAUSMD (y, ap:n) + (5 — s) FAUSMV (v, ug:m). (3.8)

The sensor s depends on the pressure gradient in that

1 _
S:—min{l,K—’.pR le }a
2 min{pr, pr}

3.3. THE LINE INTEGRALS AND NUMERICAL FLUX FUNCTIONS 43

where we chose K = 10.
Now, the AUSMD+V still has problems at shocks, which is why the Héanel flux is used
to increase damping. This is given by

fHaenel(uL’ Uug; Il) — "U;:LPL‘I’L —+ ’U;’RPR‘I’R + p1/2, (39)

where everything is defined as above, except that oy, = ag = 1 and ¢, is replaced by ¢y,
respectively cg.

Furthermore, a damping function f? is used at the sonic point to make the flux function
continuous there. Using the detectors

A= ((Un,L — CL) < O) & (Un,R — CR) > 0)

and
B = ((vnr +cr) <0)& (vpr + cr) > 0),

as well as the constant C' = 0.125, we define the damping function as

C((vnr —cr) = (Unr — cr))((pP)1) — (p®)r), if A& B,
fP =< C((vnr +cr) — (Vnr+cr)((p®)r) — (pP)r), if Wl‘l & B, (3.10)
0’ else.

Finally, we obtain

fAUSMDV — (1 . 52,SL+SR>(fD + fAUSMD+V> + (52’SL+SR)fHaenel7 (311)
where
1, if 35 € N(i) with (v, —c;) > 0& (vp, —¢;) <0
Sy = or (Un, +¢;) > 0& (vy; +¢5) <0,
0, else,

is again a detector for the sonic point near shocks.

3.3.2 Low Mach numbers

In the case of low Mach numbers, meaning M < 0.1, care has to be taken, since all standard
flux functions will produce wrong solutions on reasonable grids, in particular in the pressure
field. In figure (left), the result of a steady state computation is shown using a standard
Riemann solver. What happens here is that the spatial fluctuations in the pressure are of
the order O(M), instead of O(M?) as would be expected from an asymptotic analysis
of the continuous equations [79]. From a historical point of view, the reason is that for
decades, the most important applications in CFD were hypersonic and supersonic flows
and thus, the standard methods were designed for the resolution of strong shocks. The
mathematical reason are jumps in the discrete normal velocity, as was shown by analyzing
Riemann problems in [78§]. Furthermore, as shown in [167], this problem does not exist on
triangular grids.

44 CHAPTER 3. THE SPACE DISCRETIZATION

(>

Figure 3.4: Pressure isolines of a NACAO0012 simulation at Mach 0.001 using a standard

flow solver (left) and a low Mach preconditioned solver (right).

One solution is the preconditioning technique of Guillard and Viozat [79], as demon-
strated in figure (right). However, this turns out to be unacceptably inefficient if
combined with explicit time integration, as was shown by von Neumann stability analysis
in [27] and later for a more general case in [48]. There, it is shown that the time step
size has to decrease asymptotically with the Mach number squared. Another suggestion is
the AUSM+up flux of Liou [127], which also solves the accuracy problem. However, this
method has a number of parameters which are difficult to tune and, although stable, shows
a similar dependency of the solution on the time step as the preconditioning technique of
Guillard and Viozat.

Therefore, more recent fixes focus on the decrease of the jumps in the normal component
of the velocity at cell interfaces. Since these jumps are a result of the discretization, they
can be mitigated by using higher order methods. For example, Thornber et. al. use a
specific limiter that is 5th order on cartesian grids in combination with an averaging of the
normal velocity at the cell interfaces to obtain good results at low Mach numbers, while
showing that this approach does not work for arbitrary limiters [I96]. Unfortunately, their
approach is restricted to cartesian grids. A more promising approach for unstructured grids
is the following of Rieper [166]. He suggests the method LMRoe, a modification of Roe’s
flux function, where the jump Aw, in the normal component across the interface is replaced
with

Av,, = min(1, M)Awv,
and the local Mach number M is given by

|Unij + Ivtij

M =
cij

3.3. THE LINE INTEGRALS AND NUMERICAL FLUX FUNCTIONS 45

and all quantities are supposed to be Roe averaged velocities, which means that we consider

5, = YO+ 30,
VIR N/
For this fix, Rieper proves by asymptotic analysis that the resulting method leads to cor-

rectly scaled pressure and by von Neumann stability analysis that the time step scales with
O(M).

3.3.3 Discretization of the viscous fluxes

The viscous fluxes are easier to discretize, because, due to the parabolic nature of the
second order terms, central differences do not lead to an unconditionally unstable scheme.
It is therefore possible to base the evaluation of the viscous fluxes at an edge on simple
averages over the neighboring cells:

s = bi + ¢;
%/ 2 .

Here, ¢ corresponds to one of the needed quantities in the viscous fluxes, namely the

viscosity v, a velocity component v; or the thermal conductivity .

Furthermore, gradients of velocity and temperature need to be computed on the edge.
Here, the naive implementation using arithmetic means unfortunately leads to a decoupling
of neighboring cells, leading to the so called checker board effect. Therefore, the coupling
between cells needs to be recovered in some way.

Ql

Figure 3.5: The dual cell €' used to compute the gradients for a structured cell-centered

method.

In the context of a structured cell-centered finite-volume method, this is done by intro-
ducing a dual cell Q' around the edge point where we want to compute the derivative (see
figure . Now we assume that a higher order finite volume method is used, as explained
in the later section B.7.2l This means that the values of the derivatives at the cell centers

46 CHAPTER 3. THE SPACE DISCRETIZATION

are given. The others are obtained using arithmetic means over all neighboring cells. The
derivative of a quantity ¢ at the edge point is then approximated using Green’s theorem:

@dﬂ = onds.
o Oz a0
Thus, we obtain
o¢p 1 1
95 1 b ¢pnds o Z / Gmlemn| (3.12)
em €O
As an example in 2D, we have
81}1 1
— — Ay.
o, AIAy((vl)l (v1)2) Ay

The generalization of this approach to unstructured grids leads to a rather complicated
scheme, but there are two possible remedies. For cell-centered methods, the following
heuristic approach is commonly used [31]. First, compute intermediate approximations of
the gradients using arithmetics means:

1
Vo = D (04 ¢)mjley.

|Qz| €ij €o0);

[\

Then, the means of these are taken:

Vi = 5(V6: + V).

Finally, using the approximated directional derivative

<%) _ 0=
ol ij . |51

and the normalized vector r;;, pointing from cell center 7 to cell center j, we obtain the
final corrected approximation

= = 0
Voi; = Vo, — <v¢ij "Tij — ((’7?)”) rjj. (3.13)

Alternatively, if a structured cell-vertex method is employed, we can simply use (3.12)
to obtain the derivative, where as dual cell ', we just use the original primal cell. For
an unstructured cell-vertex method using triangles and tetrahedrons as primary cells, we
can define a unique gradient on these based on the unique linear function interpolating the
values in the nodes of the primary grid [I42]. In the threedimensional case we have four
points X1, ..., x4 with the values there called ¢4, ..., ¢4. We then obtain for the components
of the gradient

Vi = det A’

(3.14)

3.4. CONVERGENCE THEORY FOR FINITE VOLUME METHODS 47

where
(x4 — Xl)T
A= (xo—x)7
(x3 — Xl)T

and A; is obtained by replacing the i’th column of A with the vector ((¢o2 — ¢1), (d3 —
#1), (¢4 — ¢1))T. In the two dimensional case, the formulas are accordingly derived from
Cramer’s rule.

3.4 Convergence theory for finite volume methods

3.4.1 Hyperbolic conservation laws

By contrast to finite element methods for elliptic equations, the convergence theory for
numerical methods for conservation laws is unsatisfying, in particular for the relevant case
of nonlinear systems. Nevertheless, during the last decade, significant advancements have
been made, so that the theory for scalar one dimensional equations has reached a certain
maturity. An important property of finite volume schemes is that they are conservative,
meaning that the total amount of a conservative quantity inside the computational domain
is changed only through terms on the boundary and source terms. The theorem of Lax-
Wendroff tells us that this is a good thing: If a scheme is conservative and consistent and
the numerical solution is of bounded variation, then it converges to a weak solution of the
conservation law, if it converges.
Here, the total variation of a function in space is defined as

TV (u(x)) = / W/ ()| da (3.15)
In the case of a grid function, this simplifies to

TV(u) = Ju; — i (3.16)

i

Convergence proofs become possible using this concept, since a set of functions with a
bounded total variation and a compact support is compact in L;. The space of functions
in R? with bounded total variation is called BV (RY).

Furthermore, a scheme is called monotone, if it has the following property: Given two
numerical solutions ™ and v with «™ > v", it holds that u"*! > y"+1,

We thus have the following theorem [117], which says that for a scalar equation, a
monotone scheme converges to the weak entropy solution of the equations and gives an a
priori error estimate:

48 CHAPTER 3. THE SPACE DISCRETIZATION

Theorem 2 Let ug(x) be in BV (R?) and u(x,t) be a weak entropy solution of the conser-
vation law. Furthermore, let u, be a numerical solution obtained by a monotone scheme
with explicit Euler integration in time with a suitably restricted time step. Let K be a

specific subset of RY x R*. Then there exists a constant C' > 0, such that
||U, — uh||L1(K) S Ch1/4.

In the one dimensional case, the statement goes with h'/? and this convergence rate is
optimal.

The time step restriction in this theorem will be discussed further in the next chapter in
section

When we consider a one dimensional linear system instead of a scalar equation, it is
possible to apply the results to the diagonalized form of the equations and thus, they carry
through. However, while diagonalization is still possible for nonlinear systems, it depends
on the solution and thus, the equations do not truly decouple. Therefore, the convergence
theory for nonlinear systems is very limited.

3.4.2 Parabolic conservation laws

In the case of parabolic conservation laws, there are even fewer results than for hyperbolic
equations. This is counterintuitive, since a major problem for the analysis of hyperbolic
conservation laws are the discontinuities, which are smoothed through viscous terms. How-
ever, the additional terms lead to other difficulties. For example, the total variation is
not guaranteed to be nonincreasing for the exact solutions. There is extensive analysis
of the linear convection diffusion equation. A more interesting result for nonlinear scalar
conservation laws with a diffusion term in multiple dimensions is due to Ohlberger [150].
Since the result is very technical, we give only the gist of it. However, we will discuss the
implied restriction on the time step for reasons of stability in section

Theorem 3 Consider the equation in R?
u + V- f(u) = eAu

with 1 > € > 0 and reasonably regular initial data with compact support and a reasonably
reqular function f. Assume a finite volume discretization on a reasonable grid and a time

step At that is small in a certain sense. Then there is a constant K > 0, such that

||u — uh||Ll(Rde+) S K(E + vV Ax + vV At)l/Q (317)

3.5. BOUNDARY CONDITIONS 49

As in the case of hyperbolic equations, there are no results for the case of nonlinear
systems in multiple dimensions, in particular not for the Navier-Stokes equations.

3.5 Boundary Conditions

If an edge is part of the boundary of the computational domain, the numerical flux cannot
be defined as before and we have to take a different approach on the edge. With respect to
implementation, there are two ways of doing this. The first is to define a flux corresponding
to the boundary condition on the edge. Alternatively, a layer of ghost cells is defined. In
these, values are prescribed, such that when the numerical flux is computed based on these
values, a certain boundary condition is realized. The precise condition depends on the type
of boundary.

3.5.1 Fixed wall

At a fixed wall in the case of the Euler equations, we use slip conditions as in section
for the continuous equations, meaning there should be no flux through the boundary, but
tangential to the boundary, no conditions are imposed. Therefore, at the evaluation points
on the wall the condition v-n = 0 has to hold. For the Navier-Stokes equations, we have
to use no-slip boundary conditions thus we require the solution to have zero velocity in the
boundary points: v = 0. In addition, a boundary condition for the heat flux term has to be
given. This is again done corresponding to the continuous equations as either isothermal
or adiabatic, thus either prescribing a value for temperature or for the heat flux.

For the slip conditions using ghost cells, we have to prescribe a negative normal velocity,
such that this adds up to zero on the wall, all other values are chosen the same as in the
neighboring cell. Using boundary fluxes, the prescribed flux is f = (0,np, ...,,ngp, 0)1.
Regarding no-slip conditions, the convective boundary flux is the same and there is no
additional contribution from the viscous stress tensor, since the velocity is zero. In a
ghost cell implementation, this would be realized by setting all velocity components to the
appropriate negative value.

In the case of an adiabatic wall condition, the additional flux term on top of the no-slip
flux would be zero and similarly, nothing needed to be changed about the ghost cells. For an
isothermal wall, the temperature values are extrapolated in the ghost cell implementation,
whereas for boundary fluxes, a corresponding temperature gradient is determined.

Note that the slip condition can be used in the case of symmetric flows to cut the
computational domain in half.

20 CHAPTER 3. THE SPACE DISCRETIZATION

3.5.2 Inflow and outflow boundaries

Other boundaries are artificial ones where the computational domain ends, but not the
physical one. Thus, a boundary flux has to be found that leads to the correct solution in
the limit of mesh width to zero or that otherwise spoken, makes the artificial boundary
interfer as little as possible with the solution on the larger domain.

Several types of boundary conditions are possible and should be used depending on the
problem to solve. The most simple ones are constant interpolation boundary conditions
which means that we use Neumann boundary conditions where we set the derivative on
the edge to zero. Using ghost cells, this corresponds to copying the value from the interior
cell to the ghost cell. However, this reduces the order at the boundary to one and leads to
problems when significant tangential flows are present.

Another option are far field boundary conditions, where the value in the ghost cell is
always set to the initial value. This type of boundary conditions is particularly useful for the
computation of steady flows. However, it can happen that in this way, waves are reflected
back into the computational domain. Therefore, it must be made sure that the boundary
is sufficiently far away from regions where something happens, even for the computation of
steady states. This makes the use of these conditions limited for unsteady flows.

To circumvent this problem, nonreflecting boundary conditions can be used [195] (also
called absorbing boundary conditions). Essentially, we want outgoing waves to leave the
computational domain without any disturbances reflecting backwards. This can be achieved
by setting all incoming waves to zero. First, we use a formulation of the Euler equations
using tangential (7) and normal (n) derivatives:

Ou+ Opf(u) + 0.f(u) = 0.

We write the normal derivative in quasilinear form to obtain:

o+ ApOpu + 0.f(u) = 0.

Then we replace the Jacobian A, by the matrix A} = RATR™!, which is obtained
by diagonalizing A,,, setting all negative eigenvalues to zero and transforming back. The
matrix A is also known from the theoretical analysis of the van Leer flux vector splitting.
Thus the velocity of incoming waves is zero:

da + Afdu+ 9,.f(u) = 0.

At an inlet edge between a ghost cell and an inner cell this equation is then discretized
using first order upwinding. Note that the tangential component can be neglected in most
applications. However, for example for buoyancy driven flows, a correct implementation of
the tangential part is mandatory.

Another possibility are characteristic boundary conditions, where depending on whether
we are at an inlet or outlet boundary, we prescribe three, respectively one value in the ghost
cell neighbouring the boundary and use for the remaining variables the values from the

3.5. BOUNDARY CONDITIONS 51

computational domain. For the Navier-Stokes equations, we have to prescribe all values at
an inflow boundary, but one less at an outflow boundary, mentioned in section 2.6, This way
of setting the boundary conditions has been refined over the years by Nordstrom and others
using the concept of summation by parts operators and the simultaneous approximation
term (SAT), see [191] and the references therein.

However, even for the Navier-Stokes equations, often the conditions for the Euler equa-
tions are employed. Although it cannot be proven that this leads to a well-posed problem,
it works quite well. The intuitive explanation is that away from turbulent structures and
boundary layers, the second order terms can be neglected and thus, the Euler equations
and their boundary conditions provide a very good approximation. We will now explain
these in more detail.

As mentioned in section the number of conditions to pose depends on the Mach
number, respectively on the sign of the eigenvalues . Thus, for supersonic inflow, the
farfield value determines the flux on the boundary, whereas for supersonic outflow, the value
in the computational domain defines the boundary flux. For subsonic flow, conditions are
derived using the theory of characteristics, respectively of Riemann invariants [221]. Given
a value u; in the cell next to the boundary, the value u; in the ghost cell on the other side
of the boundary with normal vector n has to be defined. The conditions obtained in this
way are not unique, but depend on the components of the farfield values uy used. At an
inflow boundary, we obtain for the case that py and vy are prescribed

Pj = Po,
Vj = Vo,
v—1
G =" (v, +2¢i/(y = 1) = vo,).

The values for m; and pE; are obtained from the values given above. For subsonic outflow
in the case that the pressure pg is used, we have
—8;Jep\ Y/ (—1)
Pj = (poe 5/)
v; =V, +2¢/(y—1)n

cj = 1/VPo/P;-

3.5.3 Periodic boundaries

Another possibility are periodic boundary conditions . These are an easy way to
obtain long time numerical test problems that do not require a large computational domain.
When using ghost cells, periodic boundary conditions are implemented by copying the value
from the cells on the one periodic side to the ghost cells of the other periodic side and vice
versa. With fluxes, these are computed based on the values in the cells on both sides of
the periodic boundary. When using a cell-vertex method with a dual grid, things become

92 CHAPTER 3. THE SPACE DISCRETIZATION

slightly more complicated. One way is to define cells based on the vertices on the boundary,
that then have volume on both sides. In this way, no fluxes along the periodic boundary
need to be computed.

3.6 Source Terms

Regarding source terms, there are two basic approaches. The first one is to incorporate
these into the computation of the fluxes. The other will be discussed in the next chapter
and splits the source terms from the other terms to separately integrate these in time. One
example are the well-balanced schemes of Greenberg and Leroux [75] or the Z-wave method
of Bale et. al. [5].

3.7 Finite volume methods of higher order

The method as given so far uses a piecewise constant approximation to the solution u(x,)
and therefore results in a method that can be at most of first order. This is not sufficient for
practical applications, because the spatial resolution needed renders the schemes inefficient.
Therefore, more accurate methods are necessary that need a smaller amount of degrees of
freedom at as little additional cost as possible. A large number of approaches to obtain
higher order have been suggested. The standard approach is the MUSCL scheme, that
uses a reconstruction technique to obtain a linear representation u,;(t) of u(x,t) in each
cell. Others are WENO- and ADER schemes, as well as discontinuous Galerkin methods,
which will be described in section [3.8] First, we will explain important results on higher
order discretizations for conservation laws.

3.7.1 Convergence theory for higher order finite volume schemes

It turns out that a monotone scheme can be at most of first order [83]. Therefore, this
requirement is too strong and needs to be relaxed. This has lead to the use of total variation
dimininishing (TVD) schemes, which means hat the total variation of the numerical solution
is nonincreasing with time, a property that is shared by the exact solutions in characteristic
variables of hyperbolic equations. One point is that the TVD property implies that no new
maxima and minima can be created, leading to nonoscillatory schemes.

It is possible to prove convergence results for a fixed time step At using the so called
TV-stability property, which means that the total variation of the numerical solution is
bounded, independently of the grid. If a scheme is consistent, conservative and TV-stable,
then the solution converges in the L;-norm to a weak solution of the conservation law,
which is not necessarily the entropy weak solution. Note that to prove whether a scheme
has the TVD property, it is not sufficient to consider the space discretization alone, but

3.7. FINITE VOLUME METHODS OF HIGHER ORDER 93

the time discretization has to be considered as well. For the sake of simplicity, we will
only consider explicit Euler time integration for the remainder of this chapter and examine
different time integration methods in the next chapter.

Unfortunately, it turns out that even with this relaxed property, TVD schemes are not
the final answer. First, Godunov proved that a linear TVD scheme can be at most of
first order [70]. For this reason, higher order schemes have to be nonlinear. Furthermore,
they have to reduce to first order at spatial local maxima, as was proven by Osher and
Chakravarty [152]. In multiple dimensions, as was proven by Goodman and LeVeque [71],
TVD schemes are at most first order. Finally, on unstructured grids, not even a plane wave
can be transported without increasing the total variation. Nevertheless, nonlinear TVD
finite volume schemes using higher order ideas have become the workhorse in academia and
industry in the form of the MUSCL schemes using reconstruction and limiters.

An alternative development are positive schemes, as made popular by Spekreijse [I85],
respectively local extrema diminishing schemes (LED) as suggested by Jameson [99]. This
were developments in parallel to the development of TVD schemes that looked particularly
interesting in the context of unsteady flows. However, it turns out that these schemes
have the same restrictions as TVD schemes. Nevertheless, this led to the development
of interesting flux functions like CUSP and SLIP, which are widely used in aerodynamic
codes.

3.7.2 Reconstruction

The reconstruction procedure is based on the primitive variables q = (p, vy, v2, p)7, as this
is numerically more stable than using the conservative variables [140]. At a given time t,
the linear representation of a primitive variable ¢ € {p, vy, ..., v4, p} in cell ¢ with barycenter
X; is given by

q(x) = ¢ + Vg (x = x;), (3.18)

where ¢; is the primitive value corresponding to the conservative mean values in €2;. The
unknown components of Vq represent the slopes and are obtained by solving a least square
problem [|. In the case of the Navier-Stokes equations, these slopes can sometimes be reused
for the computation of the viscous fluxes.

For a cell-centered method on cartesian grids, the computation of the gradients is
straightforward. If unstructured grids are employed, the following procedure is suitable.
Let C' be the closed polygonal curve that connects the barycenters of the neighbouring
cells, see figure [3.6h. We then define the piecewise linear function g. on C' by setting

qe(Xj) = q;

for all barycenters x; of neighbouring cells. The least squares problem, which has to be
solved for all primitive variables, is then:

o4 CHAPTER 3. THE SPACE DISCRETIZATION

Figure 3.6: Left: The curve C used in the construction of the least squares problem for an

unstructured cell. Right: The intersection of the primary triangle with a dual cell.

min L(Vq) := /C(q(x) — q.(x))%ds. (3.19)

VqeRd

For a cell-vertex scheme, first the unique linear interpolants of the cell averages located
at the nodes are computed in each primary cell T; [142], as described in the section on
viscous flows. Let these have the gradient Vg;. The gradient on the dual box §2; is then
defined as

1
Vq = m—ilquj\ijQiy. (3.20)

Again, this procedure has to be done for each primitive variable. Note that |7, N€;| is zero
except for the few primary cells that have a part in the creation of the box €);, see figure
[3.6b. Thus, the reconstruction procedure is significantly easier to implement and apply for
cell-vertex methods than for cell-centered methods in the case of unstructured grids.

3.7.3 Modification at the Boundaries

At a fixed wall, the boundary condition requires the flux to satisfy v - n = 0 in the evaluation
point, thus the slopes have to satisfy the same condition. For the cell-vertex method,
nothing needs to be done, since there the values at the boundary will be zero in the first
place and thus, the linear interpolants computed on the primary cells have the required
property.

However, for the cell-centered method, we have to modify the original velocity slopes
(V1) 215 (V1) g, (02)2, and (vy),,. We first define the unit vector n = (11, 72)7 to be the one
pointing from the cell barycenter to the evaluation point on the wall and the unit vector
Y = (91,92)7 = (=m2,m)T to be perpendicular to n. To ease the following construction,

3.7. FINITE VOLUME METHODS OF HIGHER ORDER 95

we now restrict the set of possible slope modifications (07)z,, (U1) g, (02)z,, (02)s, satisfying
v -n = 0 to those with a constant ¢ derivative. Thus we only modify the derivatives (v;),
and (vs),. This does not define the new slopes uniquely, therefore we require the new slopes
to deviate from the old slopes minimally in the euclidian norm. We obtain the least squares
problem:

min(((71)y — (v1)y)* + ((T2)y = (v2))*1(01) e, (T1)azs (B2)s, (02)y = ¥- 1= 0).

With A being the euclidian distance from the cell barycenter to the evaluation point
on the edge, we can write the modified velocity on the evaluation point as v = v; +
A((v1)y, (v2),)T, where v; is the mean velocity vector of the cell and we obtain:

Ven = (vi+ A((v1)y, (v2),)") m =0

=4 (1_)1)71711 + (1_)2)7777,2 = —V;" II/A

Inserting this condition directly into the least squares functional allows us to solve
the minimization problem to obtain the solution (,);, (v2);. Then we can compute the
modified slopes via

(U1)ar =m(01)y = m2(vi)o, (V2)ay = m(V2); — n2(v2)s,

(01)25 = m2(01);;, + m(v1)s and (V2)s, = 02(02);, + M1 (v2)y-

3.7.4 Limiters

As mentioned before, to obtain a TVD scheme, the scheme can be at most of first order at
shocks and local extrema. Thus, on top of the reconstruction scheme, a so called limiter
function is needed. Typically a slope limiter ¢ is employed for the switching between first
and higher order spatial discretization:

q(x) = ¢ + oVq- (x — x;). (3.21)

If the limiter function is zero, the discretization is reduced to first order, while it can be
of second order for other values. In one dimension, conditions can be found for a limiter to
result in a TVD scheme. For these, the limiter is taken as a function of the left and right
slope and should be between zero and two, with the more precise shape given in figure)
Furthermore, the conditions for the resulting scheme to be second order are demonstrated
in figure) A large number of limiters has been suggested that fulfil these conditions,
for example the superbee limiter or the van Albada limiter. On structured grids, these can
be applied directionwise and it is possible to prove the TVD property.

o6 CHAPTER 3. THE SPACE DISCRETIZATION

®(6) (0)
A A

25 —| D(O) =06 25 —

20 20 —

15 15 —

1.0 P(O)=1 10

0.5 — 05

0.0 1 1 T T >06 0.0 T T 1 1 >0
00 05 10 15 20 25 00 05 10 15 20 25

Figure 3.7: Left: Admissible region for a TVD slope limiter. Right: Admissible region for
a 2nd order TVD slope limiter.

If the grid is unstructured, heuristic approaches must be used. We suggest either the
Barth-Jesperson limiter [§] or the limiter proposed by Venkatakrishnan [212]. The latter is
defined in cell 7 as follows:

A2+ €) + 2A;;A
¢ = min (2, _2) e (3.22)
Here, e = 107% and B
A — { 0> if Aiinj < 0,
Y L 1
q] ql? € Sea

where the indicator Zij is given by

Aij = Qs (;Ell.j — I‘li) — Gz, (ﬂfgij — .’172)

with the edge center (z1,;,72,;).

Regarding boundaries, in the ghost cells at the inlet boundaries, the slopes and limiters
are computed in the usual way. As the ghost cells are the definite border of the computa-
tional domain, no values beyond the ghost edges are interpolated or incorporated in any
way, as is done for the fixed wall.

3.8 Discontinuous Galerkin methods

For example when trying to track vortices over a large time period, a scheme with high
accuracy and little diffusion is necessary if the number of grid points is to be kept reason-
able. A problem of finite volume methods, in particular in 3D, is the current inability to

3.8. DISCONTINUOUS GALERKIN METHODS 57

obtain methods that are efficient, of order higher than two and not extremely difficult to
implement. A class of schemes that has received increasing research interest over the last
twenty years are Discontinuous Galerkin (DG) schemes [114] [106], [90], because there is rea-
son to believe that this class can replace finite volume schemes for industrial applications
where highly accurate computations are necessary.

DG schemes can be seen as more natural extensions of first order finite volume schemes
to higher orders than the reconstruction or WENO techniques mentioned earlier. Again,
the solution is represented by a multivariate polynomial in each cell, leading to a cellwise
continuous numerical solution. The specific polynomial is then determined using a Galerkin
approach. There is a huge variety of methods based on this approach and a standard has
only been established in parts. Furthermore, there are still a number of serious issues with
DG methods that need to be solved before they are feasible for industrial applications
[216]. In particular there is the treatment of curved boundaries, the efficient solution of
the appearing systems inside an implicit time integration, as well as the formulation of
appropriate limiter functions.

Starting point of a DG method is the weak form of the conservation law, whereby as
test functions, polynomials ¢ from some test space are used:

/ugbdQ—i— / V -f(u, Vu)pds = 0.
Q Q

We then use integration by parts to obtain

/QuthdQ—i— /mf~n¢dQ - /Qf-qudﬂ = 0. (3.23)

At this point, the solution is approximated in every cell §2; by a polynomial

u/ (t;x) = Zui,j(t>¢j<x), (3.24)

where u; ;(t) € R4 are coefficients and ¢; are polynomial basis functions in R? of up to
degree p. Thus, by contrast to a finite volume method where we have just the d + 2 mean
values u;(t) as unknowns in cell €2;, there are now d+ 2 times the number of basis functions
unknowns per cell for a DG method. We denote the dimension of this space by N.

Typically, the test functions are chosen to be from the same space. A specific DG
method is obtained when we choose a precise polynomial basis, as well as the quadrature
rules for the integrals in the scalar products, in particular the nodes and weights. Generally,
there are two different types of basis polynomials, namely modal and nodal bases. A
nodal basis is defined by a number of nodes, through which then Lagrange polynomials are
defined. On the other hand, a modal basis is defined by functions only, a prime example
would be monomials. Typically, a modal basis is hierarchical and some authors use the
term hierarchical instead.

Obviously, the polynomial basis depends on the shape of the cell. Therefore, it is com-
mon for DG methods to restrict the possible shapes to for example quadrangles, triangles,

o8 CHAPTER 3. THE SPACE DISCRETIZATION

tetrahedrons or cubes, then define the basis a priori for corresponding reference elements,
e.g. unit quadrangles, triangles, tetrahedrons or cubes, to precompute as many terms as
possible for that element. The basis for a specific cell is then obtained by a transforma-
tion from the reference cell. We will now demonstrate this for a curved quadrangle, the
technique is similar for triangles.

»
'

Ty T3

x = X(§7)

G|)

Figure 3.8: Illustration of the isoparametric mapping between an arbitrary quadrilateral

cell and the reference element.

First, the cell §; is transformed to a unit cell, for example [0,1]? with coordinates
& = (&,&) = (&,m) using an isoparametric transformation r, which can be different for
each cell. To this end, each of the four boundaries is represented by a polynomial T',,(s),
m=1,...,4, s € [0,1] and the four corners are denoted by x;, 7 = 1, ...,4. The isoparamet-
ric transformation can then be understood as mapping the four corners and curves onto
their representative in the reference space and filling the domain in between by convex
combinations of the curves opposite of each other:

r;(&,n) =(1 = &T1(&) + nT3(8) + (1 — ETa(n) + £T(n)
—x1(1 = &)1 —n) —x26(1 — 1) —x3En — x4(1 = & (3.25)

We thus obtain the new local equations

ut+V§f:0

with u = Jii, @ being the values in the original coordinates and f, = (v; X vy,) - £ (k, [, m to
be cyclic). Here, v; = Or/9¢;, but formally embedded into R3 for i = 1,2 and v3 = (0,0, 1)7.
Furthermore, J = vy, - (v; X v;;,) is the factor coming from the transformation of the volume
integrals, both of which depend on space if the mapping r is nonlinear. A derivation of
this can be found in [I14, Chapter 6]. Note that most of the above mentioned geometric

3.8. DISCONTINUOUS GALERKIN METHODS 59

quantities can be precomputed and stored directly after grid generation. For different
reference cells, similar transformations can be employed.

On the reference cell €2, we now define the quadrature rule to approximate the integrals
in . Here, we choose Gaussian quadrature, such that polynomials of degree up to 2p
are integrated exactly, which is well defined on the reference shapes with known nodes x;
and weights wy:

/Qf(x)dQ ~ Z Fx)w;. (3.26)

Applying these quadrature rules in ([3.23)), we obtain for the different terms:

d N
/Qufgbde:/S]E;uj(t)gbj(x)qﬁk(x)dﬁ, k=1,..,N (3.27)

which, due to the quadrature rule being exact for polynomials up to degree 2p, can be
written as Mu,. Here, the mass matrix M € RUFDNXH2N is 5 block diagonal matrix
with blocks in R(#*+2%(4+2) wwhere the value on the diagonal of the block (j,k) is costant
and given by

My, = / ¢jrdY, j,k=1,...,N.
Q
Furthermore, the vector of coefficients is given by
= (uj (1), .., up ()" € RN,

For the volume integral, we obtain using (3.26)):
N
/ E(uP) - VebpdS — / f (Z uj(t)gbj(x)) V()2 k=1, N
Q o \5o
N
~ Z f <Z uj(t)gzﬁj(xl)) . ngk(xl)wl k= 1, ceey N. (328)

This can again be written in compact form as ijl ijj with fj being the vector of eval-

uations of the function f; at the quadrature nodes and S; € RUFANXE+DN heing again a

block diagonal matrix where on the diagonal of the block (k,1) we have the constant value
Skl :V¢k(Xl)wl, k‘,l: 1,...,N.
Finally, the boundary integral can be written as

/mf-nqﬁkds DI (Z uj(t)gbj(xl)) ngp(x)w, k=1,..,N, (3.29)

Faces [=1

60 CHAPTER 3. THE SPACE DISCRETIZATION

with N being the number of quadrature points on the boundary. Here, the compact form
is Mg; with M € RUFDNXH2IN plock diagonal with values

M = ér(x)wy

on the diagonal of the block (k,!). The vector g; consists of function evaluations at the
quadrature nodes on the surface. As in the case of finite volume schemes, this has to be
done using a numerical flux function, thus coupling neighboring cells together. Since the
spatial resolution is obtained primarily through the high order polynomials, the specific
flux function used is not as important as for finite volume schemes. For the inviscid fluxes,
any of the previously discussed schemes can be used, whereas the choice of the viscous flux
is slightly more complicated than before. This will be discussed in section [3.8.3]

Finally, we obtain the following ordinary differential equation for the coefficients in a

reference cell:
nFaces d

Mu, + » Mg, —> S,f;=0. (3.30)

J=1 J=1

Note that the matrices M, M® and S; depend only on the basis and the geometry, not on
u and can thus be precomputed after grid generation.

Obviously, the choice of basis is very important for the question of efficiency of the
resulting methods. Essentially it turns out that for an efficient implementation of DG
schemes, a nodal basis is more useful. This is because due to the use of Lagrange poly-
nomials, a nodal basis allows the computation of the vectors f and g without the need
for evaluating the ansatz function at those points. In a similar fashion, some other
approaches to obtain higher order methods also lead to a scheme that is similar to the
nodal DG method, in particular the flux reconstruction schemes of Huynh [96] and the
energy stable subfamily of schemes found by Vincent et. al. [2I5]. Here, we consider
two particular types of DG schemes, namely the DG spectral element method (DG-SEM)
approach of Kopriva [115] and the modal-nodal method suggested by Gassner et. al [65].

3.8.1 Polymorphic modal-nodal scheme

The modal-nodal approach allows for arbitrary element types and starts with a modal
basis of monomials, that are based on the barycenters of reference cells. These are then
orthonormalized using a Gram-Schmidt procedure. Thus, the basis is orthonormal and
hierarchical, meaning that the basis functions can be sorted by the polynomial order. The
dimension of the polynomial space is given by N = (p + d)!/(p!d!), which amounts to 280
degrees of freedom in 3D for 5th order polynomials. Generally, this basis can be used to
define a DG scheme as is. In this case, the vectors f and g contain a huge number of
evaluations of the polynomial approximations . Therefore, this is combined with a
nodal quadrature that reduces this computational effort significantly.

3.8. DISCONTINUOUS GALERKIN METHODS 61

Thus, in addition a nodal basis is defined for the reference elements chosen, where we
use Legendre-Gauss-Lobatto (LGL) points on the edges. For the interior points, an LGL-
type approach is suggested in [65]. Other choices are possible, but the LGL-type approach
leads to a very small condition number of the basis. The modal coefficients @@ and the
nodal coefficients @ can then be related using a Vandermonde matrix V, which contains
the evaluations of the modal basis polynomials at the nodes defining the nodal basis:

i=Vi. (3.31)

If the number of basis functions is not identical, as is the case for triangles and tetrahe-
drons, this matrix is rectangular. Then, the backtransformation V~! is defined in a least
squares sense, as the pseudoinverse. Note that in both cases, these operators depend on
the geometry and choice of basis alone, and thus can be precomputed and stored. All in
all, we obtain the following ordinary differential equation for a reference element:

nFaces d
;= —Vill\ﬂv/[il (Z Mf~z — Z Skfk> , (332)
i=1 k=1

where the ~ denotes terms based on the nodal basis.

3.8.2 DG Spectral Element Method

The DG-SEM requires quadrilateral cells, respectively hexahedral cells in three dimensions.
However, hanging nodes as well as curved boundaries are possible. The method uses a nodal
basis defined by Gaussian quadrature nodes. Thus, the dimension of the polynomial space
is N = (p+ 1) For the rest of the derivation, we will now assume a two dimensional
problem, which simplifies the formulas significantly. The extension to three dimensions is
straightforward. On the unit rectangular then approximation is then written as

p
u’(t:6,m) = D wu(t)du (€ n), (3.33)
w,v=0
where we additionally use the ansatz
p
£7¢n) =) fudu(En) (3.34)
p,v=0

with
fij = f(u;, Vug), 6i5(&m) = 1:(§)1;(n)

and Lagrange polynomials

lj (5) = Hf:o,i;ﬁj %

62 CHAPTER 3. THE SPACE DISCRETIZATION

based on the nodes ¢;, n; of a Gauss quadrature. Note that we thus have to compute and
store the metric terms from above per Gauss point per cell. Regarding the viscous terms,
we need to compute gradients of the solution as well. We have for the gradient of the j-th
component:

=0 Uy, (D1(E), (1)
vul'(t,&,n :(pv=0 "H pa> .
J () Z,, Ou,uu (t)llt(g)lu(n)
The scalar products in (3.23]) are approximated using Gauss quadrature with the weights

w0,
/ / (€ndedn = 3" vl ny sy

1,7=0
Thus, the final approximation in one cell is given by

/Uf@de-F/ fP'l’lcbide—/fP-V@de:O, i,7=0,....p.
Q o9 0

Due to the choice of using the Lagrange polynomials based on the Gauss-Legendre points,
the terms simplify significantly. We obtain

and

/ 7. Vi;dQ = Zflw (&)wuw; + Zgw (1) wiw, .

Regarding the flux, the boundary 1ntegra1 is the sum of the four integrals on the edges of
the unit cell. We have exemplary for the lower edge:

[76~ (e -0ds = ~1(-) Y B (-1 [Lo

! p,v=0 1

Approximating this using a the quadrature formula on the line, we obtain

/_ fP(S? _1) : IIQbij(f, —1)d£lf ~ _lj(_l) Z f2wlu(_1) Zlu(ga)lz(g)w

1 w,v=0
= —£; (&, (- w.
Dividing by w;w;, we finally obtain

duy; _ P L) cp fu wu_
e i S
[1;(1) (0w
P P p) W
+ |5 (&, 1) o, B (&, -1l ngm —1=0 (3.35)

3.8. DISCONTINUOUS GALERKIN METHODS 63

or in three dimensions:

Tjk flp(lvnjagk) <) _flp(_lan]agk) () _Zflwk]
Wy w; Wy
[1;(1) S(n)w
6107 - 56 1.6 Zfzm ’“‘, - (3.36)
| (1 I (g w
+ féj(gzan]ﬂ]-)%k)_f;(fzvnjv_ Zf AL A :O,

The sums in (3.35)) and (3.36) can be computed using information given in that cell.
However, the boundary term need to be coupled with the neighbours and since the nu-
merical solution is discontinuous at the boundary by construction, again numerical flux
functions are needed. We thus replace the boundary terms via

flp(la M5, gk) ~ fN(uP(17 75, Ck)? ﬁP(_17 75, Ck)a Il),

P

where @1" corresponds to the polynomial from the neighboring cell.

3.8.3 Discretization of the viscous fluxes

More difficulty is posed by the diffusive terms, since the averaging procedure used in the
finite volume case is unstable in this context. Several options to circumvent this problem are
available, for example the Bassi-Rebay-flux in version 1 and 2 [I1], local DG of Cockburn
and Shu [39] and the compact DG flux (CDG) of Persson and Perraire [156]. We will use
the diffusive Generalized Riemann Problem (dGRP) flux of Gassner et. al. [63] [64], which,
as CDG, has the advantage of using a small discretization stencil. To derive this flux, we
first have to go back to the volume integral in and rewrite the viscous part ,
using the notation f¥ = D(u)Vu and a second integration by parts, as

/D(u)Vu-ngdQ :/ u-((D(u)'Ve)-nds — / u-(V-D(u)'Ve))dQ. (3.37)
Q o0

Q

We now introduce the adjoint flux

£ (u, Vo) := D' (u) Ve, (3.38)

which is later used to make sure that the discretization is consistent with the adjoint prob-
lem. A failure to do so results in either nonoptimal convergence rates or higher condition
numbers [2]. To obtain a more efficient evaluation of the second term in we use a
third integration by parts

64 CHAPTER 3. THE SPACE DISCRETIZATION

/Q u- (V- D(w)"Ve))dQ = / - (- £ (u, V) rvrds — (£, Vo), (3.39)

o0
where the subscript INT refers to an interior evaluation of the respective function at the

boundary. Combining (3.37)) and (3.39)) in (3.23) we obtain
(ug, @) +/ f-ngds — (f,Vo) + / h(u,n,V¢)ds =0 (3.40)
o0 0

Q
with the additional diffusion flux

h(u,n,V¢) :=u-(n-f"(u, Vo)) — [u- (n-f"(u, Vo)) inr. (3.41)

We can now formulate the dGRP flux by defining the numerical fluxes used in the
computation of the boundary integrals in (3.40)). For the viscous fluxes, this is derived
from the viscous Riemann problem. If we assume that the flux has been rotated into
normal direction (which is possible since the adjoint flux is rotationally invariant as well)
and using the characteristic length scale

min(|€%], [€;])
AJ]Z" = ’ J s
! 08251
a constant n and the averaging operator
{u} =0.5(uy +ug), (3.42)

the dGRP flux for the viscous term is given by

fIGRP (u; ug) = 7 <{u}7 (AZU (up —ugr) + {u,}, {ut}))) , (3.43)

where 1, is the tangential component of u. The constant 1 can be considered as a penal-

p| 1 2 3 4 5
B 15 07 035 025 0.13

Table 3.1: Parameter §* in the dGRP scheme.

ization of the jumps and is given by
2p+1

- VAB(p)
with 4* a real number which becomes smaller with increasing order p, see table |3.1] Fur-
thermore, for the adjoint flux (3.41]), the approximation

h = %(uL —ug)- (f"({u}, Vo) -n) (3.44)

is used.

3.9. CONVERGENCE THEORY FOR DG METHODS 65

3.9 Convergence theory for DG methods

In the case of DG methods, the theory does not use the total variation stability to prove
convergence, as is the case for finite volume methods. Instead, energy stability is employed.
Thus, for a wide range of equations, convergence of higher order can be proved, see e.g.
[90]. In particular, for scalar equations on cartesian and particular structured triangular
grids, the optimal convergence order of p+41 can be proved, whereas on unstructured grids,
at most p + 1/2 is obtained.

Zhang and Shu could prove using the energy method that for smooth solutions of a
symmetrisable hyperbolic system in multiple dimensions, a DG scheme on triangles using
an appropriate (SSP, as explained later) time integration scheme and an appropriate flux,
converges in Ly with a spatial order of p 4+ 1/2 [226].

As for finite volume schemes, these results are only valid under a time step restriction,
which turns out to be more severe and to depend on the polynomial degree. This will be
discussed in section 4.2l

3.10 Spatial Adaptation

Though important, the topic of spatial adaptation is not a focus of this book. We will
nevertheless give a few pointers to the important concepts in this field. Thereby, we con-
centrate on methods that can be used on unstructured grids. These lead to a huge amount
of freedom in grid generation, which can be used in the adaptation strategy. The major
problem is therefore to find a good error estimator.

As mentioned before, the convergence theory for nonlinear systems of conservation laws
for both finite volume and DG methods is lacking and therefore, rigorous error estimates
similar to theorem [2] do not exist for the interesting methods and equations. In fact, it
is known for the Euler equations that nonunique solutions may exist and for the Navier-
Stokes equations, uniqueness has not been proven for general initial conditions. Therefore,
by contrast to finite element methods for elliptic PDEs, the grid adaptation has to be based
on more or less heuristical error estimators.

For steady state computations, a large amount of literature is available on grid adap-
tation. There, it is clear that any error in the solution is due to the space discretization.
Therefore, grid adaptation can be done by starting on a coarse grid, computing the steady
state on that grid, estimating the error of that solution and iterating the last two steps. For
unsteady problems in the context of the method of lines, it is not straightforward to sepa-
rate the spatial discretization error. Note that due to the sequential nature of the method
of lines, the time discretization error for a given ordinary differential equation defined by
the spatial discretization can be estimated quite well by the time integration method, as
will be described in the next chapter. A remedy to this are space-time discretization meth-
ods that will be briefly discussed in section 4.9} The alternative way typically used is to
perform a grid refinement every couple of time steps.

66 CHAPTER 3. THE SPACE DISCRETIZATION

Error estimators for steady state problems typically use the assumption that the right
hand side of the ODE vanishes, respectively that a1 = 0. First of all, the residual can be
used, although it is known that this can be a misleading indicator for the local error for
nonlinear problems. Then, there is the popular method of gradient based grid adaptation.
There, the assumption is made that large gradients correspond to large local discretization
errors, which is valid for smooth solutions, e.g. subsonic flows. For transonic or supersonic
flows which typically contain shocks, gradients can even increase with grid adaptation,
leading to a better accuracy, but a worse error estimation. Nevertheless, this leads to
reasonably good results in practice.

Finally, there are goal oriented methods that adapt the grid not to decrease the error
in the numerical approximation to the PDE, but to decrease errors in a user specified,
typically nonlinear functional J(u). The functional reflects a quantity that the user is
particularly interested in, for example lift over drag. This is useful, since often the solution
of the PDE is of minor interest and only the mean to compute the value of a functional.
The most widely used technique is the dual weighted residual approach [12]. There, the
error in the value of the functional J(u*) — J(uy,) is estimated, where u* is the solution and
uy, a discrete approximation. This is done by solving a linearized form of the so called dual
or adjoint problem. This makes the grid adaptation process rather costly, but if successful,
leads to a powerful refinement strategy [84]. Another question is if a functional other than
the residual can be found that leads to an overall good solution to the complete problem.
To this end, Fidkowski and Roe suggest to use an entropy functional [61].

Chapter 4

Time Integration Schemes

After the discretization in space, when combining the equations for one cell in one cou-
pled system, we obtain a large system of ordinary differential equations (ODEs) or more
precisely, initial value problems (IVP)

d 0

) =£(tut)), ulto) =u’, t€ [t tend, (4.1)

where u € R™ is a vector containing all the unknowns from all grid cells. Very often in
CFD, the function f : R™*! — R™ defined by the spatial discretization has no explicit
dependence on t and then we obtain an autonomous IVP:

d 0
Ju(t) =fu(), u0)=u’, tE€ [, lend. (4.2)

There is a huge variety of numerical methods to solve problems of this type, see for example
the classic text books [81] 82]. Typically, these provide a number of approximations u” ~
u(t,) at discrete times tg, t1, ..., teng. Using the generating function @, they can be written
as:

u"t =u" + Atd, . =t, + At

If ® is a function of data points at past times, it is called a multistep method, otherwise it
is a onestep method. Multistep methods need some sort of starting procedure, for example
a onestep method. Furthermore, a scheme is called implicit if it incorporates the unknown
data u™*!, otherwise it is called explicit. Implicit schemes require solving an equation
system in every step. In this chapter, we will assume that these can be solved to whatever
accuracy is needed. Methods for doing so, as well as the problems appearing there, are

discussed in the next chapter. The prototypical schemes are the explicit Euler method
u"t = u" + Atf(u") (4.3)

67

68 CHAPTER 4. TIME INTEGRATION SCHEMES

and the implicit Euler method

u"tt = u" + Atf(utt). (4.4)

4.1 Order of convergence and order of consistency

There is a large number of different time integration methods. Two basic important prop-
erties necessary to describe and understand the behavior of a method are the order of
convergence and the order of consistency.

Definition 1 The local truncation error of a method is defined as the difference between
the exact solution of an IVP and the numerical solution obtained after one step if exact

initial data is used:

[= u(tysr) — ulty) — Atd(u(t)). (4.5)

Definition 2 A method is called consistent of order p if for any right hand side f € CP*L,
the norm of the local truncation error is O(AtPT),

If a method is consistent, this means that the local truncation error will converge to zero
for At to zero or otherwise put that the method actually solves the correct problem. This
property is about one time step, which means that we can actually measure it. However,
a more important property is if it is possible that the error after a large number of steps
still has something to do with the solution.

Definition 3 A method is called convergent of order p if for any right hand side f € CP*1,

the norm of the error e, == u(t,) — u, is O(AtP).

The order of convergence is an important property of any method and the idea is that
higher order methods will allow for higher time steps for a given error tolerance, but a
smaller cost per unit step.

It should be noted that due to the use of Landau symbols in the definition, consistency
and convergence are defined only for At — 0, whereas practical numerical calculations are
always carried out for At well away from zero. Therefore consistency alone is not sufficient
to obtain convergence and we need a notion of stability in addition to that.

4.2. STABILITY 69

4.2 Stability

Roughly speaking, a method is called stable, if it is robust with respect to the initial data.
This implies that rounding errors do not accumulate or more precise that the error remains
bounded for t to infinity for a fixed time step size. This is very difficult to establish for
a general right hand side, which is why a large of number of stability properties exist for
special equations.

4.2.1 The linear test equation, A- and L-stability

Important insights can be gained already in the scalar case using the Dahlquist test equation

%u = Au, u(0) = 1. (4.6)
For a A with negative real part, the exact solution decays to zero for ¢ to infinity. Conse-
quently a method is stable if the numerical solution to this problem remains bounded. Note
that this depends on the step size At. If we consider only schemes with fixed step sizes, the
set of all complex numbers At for which the method is stable is called the stability region
of the method. This stability region differs widely from method to method, see [82]. For
the explicit Euler method, it is easy to show that the stability region is the circle around
-1 with radius 1, whereas for the implicit Euler method it is the complete complex plane
minus the circle around 1 with radius 1.

Since for a A with positive real part, the solution is unbounded, it can not be expected
that the error remains bounded. Therefore, the left half of the complex plane plays a special
role in the evaluation of the stability of a numerical method. This gives rise to the notion
of A-stability:

Definition 4 A scheme is called A-stable, if the stability region contains the left complex
half plane.

Obviously, the implicit Euler method is A-stable, whereas the explicit Euler method is not.
Generally speaking, explicit methods are not A-stable, whereas implicit methods can be.

This property is rather strong, but turns out to be insufficient for the solution of CFD
problems, because A-stability is not able to prevent oscillations due to very high amplitude
eigenmodes. Therefore, the following more strict property is required. Here, R(z) is the
stability function of a onestep method for the test equation, defined via

u"t = R(AtN)u™. (4.7)

In other words, the stability region of a onestep method is the set of all z with |R(z)| < 1.

70 CHAPTER 4. TIME INTEGRATION SCHEMES

Definition 5 A scheme is called L-stable, if it is A-stable and furthermore, the stability
function satisfies

lim R(z) =0.
Z— 00
These stability properties are derived using a scalar linear test equation and the question
is what the relevance is for more complex equations. For a linear system with constant
coefficients

%u(t) = Au,
it can be proved that if an RK method is A-stable, then it is unconditionally contractive
in the 2-norm, if the matrix A € R™*™ is normal and the real part of its eigenvalues is
negative. For a nonnormal matrix A, this is not true and we must expect a more severe
constraint on the time step.

For nonlinear equations, even less can be said. Therefore, more general stability prop-
erties aimed at nonlinear equations like AN-stability have been suggested. However, A-
and L-stability seem to be sufficient for the cases discussed here.

4.2.2 TVD stability and SSP methods

The stability properties discussed so far are aimed at general equations and do not take
into account special properties of the IVPs considered here, which arise from the space
discretization of flow problems. As remarked in the last chapter (see section , there
is an interesting form of stability that can be used to prove convergence of finite volume
methods. This is the so called strong stability [73], originally suggested in [I75] and [176]
under the name of TVD-stability. Since then, a large number of articles have been published
on this topic, see for example the recent review articles [72] and [T10]. To define strong
stability, we assume that there exists a value Atgg, such that the explicit Euler method is
stable for a certain class of functions f in the following sense for all 0 < At < Atgg:

lu” + Atf ") < a7 (4.8)

for an appropriate norm || - ||. This is in line with the requirement that the total variation
does not increase with time, which corresponds to our definition of TVD schemes. The
following definition carries this over to higher order time integration methods.

Definition 6 An s-step method is called strong stability preserving (SSP) on a certain

class of functions with strong stability constant ¢ > 0, if it holds that
" < mas{Ju", Ju"), -)

for any time step At < cAtgg.

4.2. STABILITY 71

This can be related to A-stability in that a method is A-stable, if it is unconditionally
SSP for the linear test equation with the real part of A € C~ in the norm |-|. The crucial
question is now, if we can construct methods with large ¢. There is good news in that it
turns out that the implicit Euler method is unconditionally SSP. However, for any general
linear method of order greater than one, the SSP constant is finite. Furthermore, explicit
RK methods or SDIRK methods that are SSP can have an order of at most 4. A more
precise bound has not been proved so far, however, convincing numerical evidence obtained
by an optimization software shows the following results [I10]. For a second order SDIRK
method with s stages, the bound is 2s, for third order, it is s — 1 + v/s?> — 1. For higher
orders, the bounds obtained are roughly speaking 2s. For linear multistep methods of order
greater than one, the SSP constant is smaller or equal to two.

These SSP coefficients are well below what is needed to make implicit methods compet-
itive. Therefore, if using an implicit method, we do not know for sure that our numerical
method is TVD. This does not seem to matter at all in practice. Nevertheless, for problems
where explicit methods are faster than implicit ones, SSP methods should be preferred to
be on the safe side.

4.2.3 The CFL condition, Von-Neumann stability analysis and

related topics

The stability conditions so far have been derived using ordinary differential equations only.
If we consider linear partial differential equations instead, more insight can be gained. The
conditions obtained in this way are less strict than the SSP conditions, but nevertheless
useful in practice. Furthermore, the maximal stable time step Atgg for the explicit Euler
method used in the SSP theory can be determined.

First of all, for the hyperbolic inviscid terms, we know that the timestep size has to
satisfy the Courant-Friedrichs-Levy (CFL) condition that the domain of dependence of the
solution has to contain the domain of dependence of the numerical method [41]. This is
illustrated in figure [4.1

The CFL condition is automatically satisfied by implicit schemes, regardless of the
time step. For finite volume methods for one dimensional equations with explicit time
integration, we obtain the constraint

Ax

A Y
Jnax [Ae(u,n)|

At < CF Ly - (4.9)

with the maximal CFL number C'F'L,,,, depending on the method, for example 1.0 for the
explicit Euler method. The \; are the eigenvalues of the Jacobian of the inviscid
flux. When comparing this constraint to the one that would come out of applying the
eigenvalue analysis as for the linear test equation, it turns out that this constraint is twice
as strong, meaning that the time step is twice as small.

72 CHAPTER 4. TIME INTEGRATION SCHEMES

tn+l“

Figure 4.1: Ilustration of the CFL condition for a linear equation: the exact solution in the
point (z;,t,41) can be influenced by the points in the shaded area. The numerical domain
of dependence (the grey area) has to contain the shaded area for the scheme to be stable,

resulting in a constraint on At/Auw.

It can be shown that the condition (4.9)) is the result of a linear stability analysis for
an upwind discretization, namely the von Neumann stability analysis. This is, besides the
energy method, the standard tool for the stability analysis of discretized partial differential
equations. To this end, the equation is considered in one dimension with periodic bound-
ary conditions. Then, the discretization is applied and Fourier data is inserted into the
approximation. The discretization is stable if no component is amplified, typically leading
to conditions on At and Az. Unfortunately, this technique becomes extremely complicated
when looking at unstructured grids, making it less useful for these. For linear problems, the
analysis results in necessary and sufficient conditions. This means that the CFL condition
is sharp for linear problems.

For nonlinear equations the interactions between different modes are more than just
superposition. Therefore, the von Neumann stability analysis leads to necessary conditions
only. Typically, there are additional stability constraints on top of these. For the case of
the viscous Burger’s equation, this has been demonstrated in [131]. For general equations,
no complete stability analysis is known.

If additional parabolic viscous terms are present, like in the Navier-Stokes equations, the
stability constraint changes. For a pure diffusion equation, resp. the linear heat equation,
this is sometimes called the DFL condition and for a finite volume method given by

4.2. STABILITY 73

Az?
where € is the diffusion coefficient. Here, the dependence on the mesh width is quadratic
and thus, this condition can be much more severe for fine grids than the CFL condition.
One way of obtaining a stable time integration method for the Navier-Stokes equations
is to require the scheme to satisfy both the CFL and DFL conditions. However, this is too
severe, as seen in practice and by a more detailed analysis. For example, the restriction on
the time step in theorem [3]is of the form

ol Ax?
At < . 4.11
@ e, Tl AT T ¢ @1

Here, « is a grid dependent factor that is roughly speaking closer to one the more regular
the grid is (see [150] for details). A similar bound has been found in praxis to be useful for
the Navier-Stokes equations:

Ax?

Jnax, |Ar(u,n)|Ax + 2¢

At <

In the case of a DG method, both time step constraints additionally depend on the
order of the polynomial basis in that there is an additional factor 1/(2N + 1) for the CFL
condition and of 1/N? for the DFL condition. The dependence of the stability constraint
on the choice of the viscous flux has been considered in [105].

In more than one space dimension, the situation is, as expected, more difficult. It is
not obvious which value to choose in a cell for Az and no stability analysis is known. A
relation to determine a locally stable time step in a cell €2 that works on both structured
and unstructured grids for finite volume schemes is the following:

€
>\c,1 +)\c,2 + /\c,3 + 4()\1),1 +)\0,2 +)\v,3) ‘

At =0

Here, A\.; = (|vi| + ¢)|s;| and

Ve () e lsil
3p"p) PriQf

where s; is a projection of the control volume on the planes orthogonal to the z; direction
[214]. The parameter o corresponds to a CFL number and has to be determined in practice
for each scheme, due to the absence of theory. Finally, a globally stable time step is obtained
by taking the minimum of the local time steps.

74 CHAPTER 4. TIME INTEGRATION SCHEMES

4.3 Stiff problems

Obviously, implicit methods are more costly than explicit ones. The reason they are consid-
ered nevertheless are stiff problems, which can loosely be defined as problems where implicit
methods are more efficient than explicit ones. This can happen since broadly speaking, im-
plicit schemes have better stability properties than explicit ones. If the problem is such,
that a stability constraint on the time step size leads to time steps much smaller than useful
to resolve the physics of the system considered, the additional cost per time step can be
justified making implicit schemes the method of choice. To illustrate this phenomenon,
consider the system of two equations

Ty = —XT,
y; = —1000y.

The fast scale quantity y(t) will decay extremely fast to near zero and thus, large time
steps that resolve the evolution of the slow scale quantity x(¢) should be possible. However,
a typical explicit scheme will be hampered by stability constraints in that it needs to chose
the time step according to the fastest scale, even though this has no influence on the solution
after an initial transient phase. This example illustrates one possibility of characterising
stiffness: we have a large Lipschitz constant of our function, but additionally eigenvalues
of small magnitude. In this case, the longterm behavior of the solution is much better
characterised by the largest real part of the eigenvalues, instead of the Lipschitz constant
itself [47). This is connected to the logarithmic norm. Another possibility of obtaining
stiffness are stiff source terms. Note that if stiffness manifests itself also depends on the
initial values chosen, as well as on the maximal time considered, which is why it is better
to talk of stiff problems instead of stiff equations.

The Navier-Stokes equations have similar properties as the above system with both slow
and fast scales present. First of all for the Euler equations, there are fast moving acoustic
terms which correspond to the largest eigenvalue. Then, there are the significantly slower
convective terms, which correspond to the convective eigenvalue |v|. The time step size of
explicit schemes will be dictated by the acoustic eigenvalue, even if the physical processes
of interest usually live on the convective scale. This property becomes extreme for low
Mach numbers, when the convective eigenvalue approaches zero and the quotient between
these two eigenvalues becomes very large, e.g. stiffness increases.

In the case of the Navier-Stokes equations with a bounding wall, we have additionally
the boundary layer. This has to be resolved with extremely fine grid spacing in normal
direction, leading to cells which are several orders of magnitude smaller than for the Euler
equations. For an explicit scheme, the CFL condition therefore becomes several orders of
magnitude more restrictive, independent of the flow physics. Furthermore, large aspect
ratios are another source of stiffness, sometimes called geometric stiffness. Therefore, im-
plicit methods play an important role in the numerical computation of unsteady viscous

4.4. BACKWARD DIFFERENTIATION FORMULAS 75

Figure 4.2: Solution of the stiff example equation with initial condition (10, 10) (left);
Eigenvalues for a 2D Navier-Stokes DG discretization with Re = 100, 6 x 6 mesh, 4th order

in space (right).

flows. If no boundary layer is present, this problem is less severe and it may be that explicit
methods are still the methods of choice.

4.4 Backward Differentiation formulas

A class of time integration schemes that belongs to the multistep methods are backward
differentiation formulas, short BDF. These approximate the solution by a p-th order poly-
nomial that interpolates the values u”*'=* at the points t,11_1, kK = 0,...,p. Since both
u"* and f(u"*!) are unknown, it is additionally required that the polynomial fulfills the
differential equation at ¢,,;. Thus, to determine the new approximation u,,_ ;, one nonlin-
ear equation system has to be solved:

p+1

D au™ = Atf(u"t). (4.12)
=1

Here, the coefficients «; are defined via the interpolation polynomial and thus depend on
the step size history.

The resulting methods are of order p, but unstable for p > 6. For p = 1, the implicit
Euler method is obtained. The method BDF-2, obtained for p = 2, for a fixed time step
size At is

1_1”‘1> +fu"t") =0. (4.13)

76 CHAPTER 4. TIME INTEGRATION SCHEMES

. ent

Imz
o

DA

Figure 4.3: Eigenvalues for a 2D finite volume discretization for Euler (left), and Navier-

Stokes with Re = 1000 (right).

This method is A-stable and also L-stable. For higher orders, this is impossible due to
the second Dahlquist barrier. There, the methods are A(a)-stable, with decreasing a. As
shown in figure (right), this is problematic. As for the SSP property, linear multistep
methods of order greater than one have an SSP constant of two or smaller [72].

In the case of varying time step sizes, the coefficients of the method vary as well. In
practice, this is neglected and thus, an additional time integration error is introduced.
BDF methods with varying time step sizes are used in the well know ODE solver DASSL
of Petzold et. al. [32], as well as in SUNDIALSs [92]. BDF methods, in particular BDF-2,
are often used in the engineering community, with the reason given that you get a second
order A-stable method that needs only one nonlinear system.

4.5 Runge-Kutta methods

By contrast to multistep methods, the by far most widely used class of onestep methods
are the Runge-Kutta (RK) methods. A s-Runge-Kutta method for the solution of the IVP
(4.1)) can be written as

ki = f(tn + A, 0" + ALY ayky), i=1,..s (4.14)

Jj=1

ut = u+ ALY bk,
=1

4.5. RUNGE-KUTTA METHODS 7

where the vectors k; are called stage derivatives. For the autonomous system (4.2)), this
simplifies to

j=1
i=1

The coefficients of the scheme can be written in a compact form using the vectors ¢ =
(c1yes¢5)T, b = (b, ..., b5)" and the matrix A = (a;;);; € R***. Typically, these are then
combined in the so called Butcher array, which is the standard way of writing down the
coefficients of an RK scheme:

Ci| Qi1 - Qis
c| A
= T
Cs | A1 - Ags b
‘ by --- by

An explicit Runge-Kutta method is obtained, if the matrix A is strictly lower triangular,
otherwise the method is implicit. The stability function is the rational function

_ det(I— zA + zeb")

R(z) = det(I —zA) 7 (4.16)

where e € R? is the vector of all ones. This can be seen by looking at the equation system
obtained when solving the linear test equation and solving that using Cramer’s rule.

The maximal order of an s-stage Runge-Kutta method is 2s, which is obtained by
the so called GauB-Legendre methods. One way to obtain Runge-Kutta methods of a
certain order is to use Taylor expansions and coefficient matching. To keep track of the
high order derivatives, the concept of Butcher trees is used. Nevertheless, this results in a
huge number of nonlinear equations. Therefore, Butcher devised simplifying conditions that
allow to solve these nonlinear systems even for high orders. In this way, it is possible to find
Runge-Kutta methods with different orders, degrees of freedom and stability properties.

Several time integration schemes are widely used, for example the Crank-Nicholson
scheme, also called trapezoidal rule, which is A-stable. Another example is the implicit
Midpoint rule, which is of second order and also A-stable.

4.5.1 Explicit Runge-Kutta methods

There is a variety of popular explicit Runge-Kutta methods, in particular the explicit Euler
method, the improved Euler method, which is a second order explicit Runge-Kutta scheme

78 CHAPTER 4. TIME INTEGRATION SCHEMES

or the classical Runge-Kutta method of fourth order. Regarding stability, the stability
function (4.7)) of an s-stage explicit Runge-Kutta method is a polynomial of degree s:

R(z) = Zaizi. (4.17)

Therefore the stability region is bounded and thus, these methods cannot be A-stable.

Regarding order, since a large number of the a;; is zero, there are significantly less
degrees of freedom in the design of the method. Therefore, the order of an s-stage method
can be up to s for s < 4. Beyond that, the maximal order of an s-stage explicit RK method
is smaller than s.

As for the choice of method, explicit RK methods are useful if the stability constraint
is not severe with regards to the time scale we are interested in. Now, if oscillations
are a problem, SSP methods should be employed. This is essentially never the case for
finite volume methods, where the inherent diffusion is quite large. However, for high order
methods like DG, oscillations can become a problem. The coefficients of k-stage, kth-order
methods with an optimal SSP constant of 1 can be found in table (B.1]).

If oscillations are not an issue, low storage explicit RK method are a good option, that
need only two vectors for the solution. These are given by

u=u

k=0

: | k=a; k+ Atf (u) (4.18)
ie[l, .. 9: { u—u+tbk

un+1:H

Suitable coefficients can be found in the appendix, table [B.3|

4.5.2 DIRK methods

In contrast to multistep schemes, no bound on the order for A-stable schemes has been
proved or observed for implicit Runge-Kutta methods. This is because the stability function
is rational and therefore, the stability region can be unbounded. However, a general implicit
Runge-Kutta method requires solving a nonlinear equation system with s-m unknowns.
Several methods have been suggested to avoid this, for example SIRK methods where A
is diagonalizable. We will restrict ourselves to so called diagonally implicit Runge-Kutta
methods or short DIRK methods. Given coefficients a;; and b;, such a method with s stages
can be written as

4.5. RUNGE-KUTTA METHODS 79

ki :f(tn—i—ClAt,gn—i—AtZCLmk]), 1= 1,...,8 (419)

j=1
un+1 = En + At Z bzkz
i=1

Thus, all entries of the Butcher array in the strictly upper triangular part are zero. If addi-
tionally all values on the diagonal of A are identical, the scheme is called singly diagonally
implicit, short SDIRK. The stability function of a DIRK method is given by

det(I — zA + zeb”)
Rle) = I, (1 — za;)

Regarding order, an s-stage SDIRK method can be of order s+1. This is a bit surprising,
since there is only one additional degree of freedom compared to an explicit method. A
way to obtain an L-stable scheme is to require, that the coefficients b and the last line of
the matrix A coincide. This class of schemes is called stiffly accurate and is popular for the
solution of differential algebraic equations (DAEs). Unfortunately, but not unexpectedly,
these schemes have at most order s. Finally, there is the class of ESDIRK schemes, where
the first step of the Runge-Kutta schemes is explicit. The butcher arrays of SDIRK and
ESDIRK methods are illustrated in table [4.1]

al a 0 0 0 00 0 0 0
Cy | a1 0 0 Cy | a1 0 0
0 : 0

Cs | Gs1 ... Qg1 Cs | Gs1 ... Qg1
by b by b

Table 4.1: Butcher array of a DIRK method (left) and an ESDIRK method

The point about DIRK schemes is, that the computation of the stage vectors is de-
coupled and instead of solving one nonlinear system with sm unknowns, the s nonlinear
systems with m unknowns have to be solved. This corresponds to the sequential
application of several implicit Euler steps in two possible ways. With the starting vectors

i—1
si=u"+At> a;k;, (4.20)

j=1

we can solve for the stage derivatives

80 CHAPTER 4. TIME INTEGRATION SCHEMES

or we define the stage values via
j=1
which implies
kz = ﬁ(Uz)
and then solve the equation

In the autonomous case, the equations (4.21)) and (4.23) correspond to one step of the
implicit Euler method with starting vector s; and time step a;At. If (4.23)) is employed,
the stage value k; is then obtained via

k; = (Ui - Si>/<aiiAt)>

which avoids a costly and for stiff problems error prone evaluation of the right hand side
[T74]. The major difference between the two formulations is that the iterative solver used
to solve one of the equations will produce errors in either the stage values or the stage
derivatives, leading to a different error propagation [I51]. Finally, we apply the formula

=1

Note that this is not necessary for stiffly accurate methods that work with stage values,
since there u"*! = U,. Therefore, we will only consider stiffly accurate methods, since
they have beneficial stability properties and less computational costs.

All in all, the application of a DIRK scheme corresponds to the solution of s nonlinear
systems of the form per time step and therefore, the intuitive thought is not to
consider this class of schemes, since they are inefficient. However, several facts lead to a
positive reevaluation of these schemes. First of all, a;; is typically smaller than one and
thus the equation systems are easier to solve than a system arising from an implicit Euler
discretization with the same At. Second, if a time adaptive strategy is used, the higher
order leads to larger time steps compared to the implicit Euler method and therefore fewer
time steps are needed to integrate from ty to t.,.q, leading to a smaller total number of
nonlinear systems to be solved. Finally, since we have a sequence of nonlinear systems
which continuously depend on each other, results from previous systems can be exploited
to speed up the solution of later systems. This will be explained in the following chapter.

Additionally, it is usually possible to give a second set of coefficients l;, which define for
the otherwise identical Butcher tableau a method of lower order. This can be used for the
estimation of the time integration error, as will be explained later. Furthermore, so called

4.5. RUNGE-KUTTA METHODS 81

dense output formulas can be found. These are designed to deliver values of the solution
inside the interval [t,,t,.1], once u"** has been computed. However, they can be used to
extrapolate the solution into the future to obtain starting values for the iterative solution
methods for the nonlinear equation systems. This will be discussed in the next chapter.
The formulas itself are given by

u(t, + 0At) = u" + At Z b (6)f(u?), (4.24)

i=1

where the factors bf(©) are given by
P '
bi(0) =D b, b0 =1)=b, (4.25)
j=1

with b}; being a set of coefficients and p* the order of the formula.

One example for an SDIRK scheme is the method of Ellsiepen [57], which is of second
order with an embedded method of first order, see table . A method of third order with
an embedding of second order was developed by Cash, see table . In the context of
solid mechanics, it has been demonstrated by Hartmann that these methods are competitive
[85].

Regarding ESDIRK schemes, this allows to have a stage order of two, but also means
that the methods cannot be algebraically stable. The use of these schemes in the context
of compressible Navier-Stokes equations was analyzed by Bijl et al. in [I7] where they
were demonstrated to be more efficient than BDF methods for engineering accuracies.
They suggested the six stage method ESDIRK4 of fourth order with an embedded method
of third order and the four stage method ESDIRK3 of third order with an embedded
method of second order, both designed in [I09]. The coefficients can be obtained from
the diagrams and (B.7), respectively (B.8) and (B.9) for the dense output formulas.
This result about the comparative efficiency of BDF-2 and ESDIRK4 was later confirmed
by Jothiprasad et. al. for finite volume schemes [I03] and Wang and Mavriplis for a DG
discretization of unsteady Euler flow [219].

The use of a first explicit stage k; = f(u™) in a stiffly accurate method allows to reuse
the final stage derivative k, from the last time step in the first stage, since this is equal to
f(u"' + At, 1 Y7, bik;). Besides saving a modest amount of computing time, this is in
particular advisable for stiff problems with a large Lipschitz constant. There, small errors
in the computation of stage values may lead to large errors in evaluated functions, whereas
small errors in the computed stage derivative are just that. The drawback here is that the
methods then no longer are onestep methods in the strict sense, since we have to store the

last stage derivative.

82 CHAPTER 4. TIME INTEGRATION SCHEMES

4.5.3 Additive Runge-Kutta methods

An idea that came up in the 1980s is to use different Runge-Kutta methods for different
terms in the equation, which was introduced to the CFD community by Jameson. He used
explicit additive methods as smoothers in his multigrid methods and found that it was
beneficial to treat the convective and diffusive terms differently. This will be explained
later. Another point about this are implicit-explicit methods (IMEX) as designed in [109],
which treat nonstiff terms explicitly and stiff terms implicitly. We will here represent the
idea for two terms, but the extension to N terms is straightforward. Consider the ODE

d
%E@) = £<tau(t))a E(t()) = Uy, te [t07 tend}? (426)

with
The method is then applied as

2 %

v=1 j=1

2 s
wt =+ ACY Y RVE(U).

v=1 =1

I
—_

ey S (4.27)

4.6 Rosenbrock-type methods

To circumvent the solution of nonlinear equation systems, so called Rosenbrock methods
can be used, also referred to as Rosenbrock-Wanner or short ROW methods, see [82] or
the german volume [T190]. The idea is to linearize an s-stage DIRK scheme, thus sacrificing
some stability properties, as well as accuracy, but reducing the computational effort in that
per time step, s linear equation systems with the same system matrix and different right
hand sides have to be solved. Therefore, this class of schemes is also sometimes referred to
as linearly implicit or semi-implicit. Note that the last term is used in an ambiguous way
in different contexts and therefore shouldn’t be used. In [102], Rosenbrock methods are
compared to SDIRK methods in the context of the incompressible Navier-Stokes equations
and found to be competitive, if not superior. The use of Rosenbrock methods in the context
of compressible flow problems is so far quite rare. One example is the work of St.-Cyr et.
al. in the context of DG [I186].

For the derivation of the schemes we start by linearizing formula around s; ([4.20))
to obtain

du
To avoid a recomputation of the Jacobian, we replace % by J = %. Finally, to gain

more freedom in the definition of the method, linear combinations of AtJk; are added to

4.6. ROSENBROCK-TYPE METHODS 83

the last term. Since the linearization procedure can be interpreted as performing just one
Newton step at every stage of the DIRK method instead of a Newton loop, the added terms
correspond roughly to choosing that as the initial guess for the first Newton iteration. If
instead of the exact Jacobian, an approximation W = J is used, we obtain so called
W-methods. Since for the systems considered here, exact solutions are impossible, we
will consider W-methods only. If the linear system is solved using a Krylov subspace
method (see section , the scheme is called a Krylov-ROW method. This is for example
implemented in the code ROWMAP [220)].

We thus obtain an s-stage Rosenbrock-Wanner method with coefficients a;;, v;; and b;
in the form

i—1
(I -7 AtW)k; = f(s;) + AtW Z%‘jkj, 1=1,...,s
j=1
i—1
S; = Hn‘i‘AtZaijk]‘, 1=1,...,s (4.28)

j=1

i=1
Here, the coefficients a;; and b; correspond to those of the DIRK method and the ;; are
the diagonal coefficients of that, whereas the offdiagonal +;; are additional coefficients.
In the case of a nonautonomous equation (4.1)), we obtain an additional term Atv;0,f(t,, u,,)
with v; = 23:1 7i; on the right hand side of 1) and thus:

i—1
j=1
i—1
S, = g"+AtZaZ]k], 1= 1,...,8 (429)

j=1

u"“ = un —+ At Z blk“
=1

with a; = Zl;l Q.

Regarding order, order trees for Rosenbrock methods can be derived using the same
techniques as for Runge-Kutta methods and the result is very similar to that for DIRK
methods. For W-methods, additional order conditions are needed to avoid a loss of order.

Generally speaking, Rosenbrock methods are less accurate than SDIRK methods, which
will result later in the time step selector chosing smaller time steps for Rosenbrock methods.
Regarding stability, the stability function of a Rosenbrock method is that of a DIRK method
where the matrix in the butcher array has entries a;; + 7;;. It turns out that it is possible
to design A-stable and even L-stable W-methods.

84 CHAPTER 4. TIME INTEGRATION SCHEMES

The efficient implementation of Rosenbrock methods is done using a set of auxiliary
variables '
j=1

and thus circumvents the matrix-vector multiplication in the previous formulation (4.28)).

Using the identity
i—1
ki = ng)
(% =

with coefficients ¢;; explained below, we obtain

i—1

(I—3AMW)U; = Atyf(8) +7i Y ciUy, i=1,..s, (4.30)
7=1
i—1
éz - un+zdij Iz =1,...,8,
j=1

s
un-|—1 — Hn_|_§ mlU

The relation between the two sets of coefficients is the following:

C =diag(yity 7)) -7, A=AT"Y, mf =b'r

where I' = (7;5);;. Again, in the nonautonomous case, we obtain an additional term on the
right hand side and thus:

i—1

j=1
i—1

éz = un_l'zéij 79 =1..8,
j=1

s
unJrl — Hn+§ :mlU

When coding a Rosenbrock method from a given set of coefficients, extra care should
be taken, since different authors define the coefficients in slightly different ways, including
different scalings by At in the definition of the method. Further possible confusion arises
from the two different formulations. Here, the coefficients for both formulations will always
be given.

4.7. ADAPTIVE TIME STEP SIZE SELECTION 85

As in the case of DIRK methods, the fact that we have a sequence of linear systems, can
be exploited. In particular, we have a sequence of s linear systems with the same matrix,
but varying right hand side, following in the next time step by a sequence of another s
linear systems, with a new matrix that is not arbitrary far away from the last. Approaches
for this are described in the next chapter.

One example for a Rosenbrock method is ROS34PW2, which was introduced in [161].
This method has four stages and is of order 3 with an embedded method of order 2. It is a
W-method and L-stable. The Butcher array is given in table (B.10). Another example of
an L-stable W-method is given by the 6-stage, 4th order method RODASP, which can be
seen in table and has an embedded method of order 3.

o T T T T

Ak +

Log of Error
&
I
|

& ESDIRK3

—5— ROS34PW2

-y - —o— ESDIRK4 |]
—<— SDIRK3

10 1 1 1 1
25 2 15 -1 -05 0
Log(dt)

Figure 4.4: Order of different time integration methods in the DG case.

A comparison of the order and error of different implicit time integration schemes can
be seen in figure 4.4] where a DG discretization is used for a weakly compressible flow
problem. Due to the weak nonlinearity, there is little difference in the errors of Rosenbrock
and DIRK schemes.

4.7 Adaptive time step size selection

For an explicit method, the CFL condition is typically so strict that when choosing the time
step based on it, the time integration error is below the error tolerance. This is not the case
for an implicit method, which means that there, a different strategy is needed for the time
step selection. Often, a CFL number is stated and the time step computed accordingly.
This has a number of drawbacks. First of all, while the CFL number corresponds to a well

86 CHAPTER 4. TIME INTEGRATION SCHEMES

defined time step on a specific grid for a specific solution, its size is not obvious, whereas
for unsteady computations, we often think in time scales based on physical time. Second,
when we assume that the CFL number has been chosen such that the time integration
error is reasonable, this might be inefficient if much larger time steps would be possible.
Finally, even if typically the time integration error is significantly smaller than the space
discretization error, we would still like to know the size of the time integration error or
otherwise put, we want to control it.

Therefore, time adaptive strategies that choose the time step based on estimates of the
time integration error are to be preferred. For DIRK and Rosenbrock methods, this is done
using the embedded schemes of a lower order p. Comparing the local truncation error of
both schemes, we obtain an estimate of the local error 1 of the lower order scheme:

L~ Aty > (b — bk, (4.32)
j=1
respectively, for the efficient formulation (4.31]) of the Rosenbrock method

s

1~ (mi — ;) U (4.33)

j=1

For BDF methods, the error estimate is obtained from taking a two steps with half the
time step size, resulting in u, and using Richardson extrapolation. The local error 1, after
the two half steps for a method of order p is estimated as

_ gqn+1
u, —u

= 4.34
1 (4.34)

12 ~

The local error estimate is then used to determine the new step size. To do this, we

decide beforehand on a target error tolerance, which we implement using a common fixed
resolution test [181]. This means that we define the error tolerance per component via

d; = RTOL|u"| + ATOL. (4.35)

Typically, we choose RT'OL = ATOL, so that there is only one input parameter for this.
We then compare (4.35)) to the local error estimate via requiring

IL/df <1, (4.36)

where the . denotes a pointwise division operator. An important question here is the
choice of norm. First of all, the maximum norm guarantees that the tolerance test is
satisfied in every cell. However, the 2-Norm is typically more accurate overall and since we
have to define a tolerance for the subsolver, namely the Newton-GMRES method in some
norm, it is natural to use this one, since GMRES uses a 2-norm minimization. Therefore, we
will use the latter, since it seems to work well in practice. Nevertheless a more substantial
and less heuristic choice of norm would be desirable for the future.

4.8. OPERATOR SPLITTINGS 87

The next question is, how the time step has to be chosen, such that the error can be
controlled. Under the assumption that higher order terms can be neglected in a Taylor
expansion of the local error, we have

I A A,)| = " = w7

where U(t,,u) is the error function of the embedded method. If we additionally assume
that W(t,u) is slowly varying, we obtain the classical method, see [82]:

Atpew = Aty - ||L/d|| 7V, (4.37)

Here, k = p leads to a so called EPUS (error per unit step) control, whereas k = p+1 is an
EPS (error per step) control. We will use EPS, which often results in more efficient schemes.
Formula is combined with safety factors to avoid volatile increases or decreases in
time step size:

ifL./d]| > 1, Aty = Aty max(fruin, fsagery||1./d]| 7P
clse Atn+1 = Atn min(fmaza fsafetyHl‘/dlrl/ﬁJrl)'

The classical controller is what corresponds to the I-controller in control theory. More elab-
orate controllers that take the step size history into account are possible, for example the
PID controller [I79]. Séderlind suggested a controller using methods from signal processing
[178].

Finally, tolerance scaling and calibration should be used [I80]. Tolerance scaling is
useful, since, although for the above controller, convergence of the method for TOL — 0
can be proven, the relation between global error and tolerance is typically of the form

lle|| = 7-TOL®,

where « is smaller than one, but does not depend strongly on the problem solved and 7
is a proportionality factor. Therefore, an internal rescaling TOL' = O(TOLY*) should be
done, so that the user obtains a behavior where a decrease in TOL leads to a corresponding
decrease in error.

Tolerance calibration is used to make sure that at least for a reference problem and a
specific tolerance TOLy, TOL and TOL' are the same. This is achieved via the rescaling

TOL =TOLY V1oL, (4.38)

Through numerical experiments, we suggest the values in table for a for different
methods [24].

4.8 Operator Splittings

Consider an initial value problem with a right hand side split in a sum of two terms f; and
f,, arising from the discretization of a balance law

88 CHAPTER 4. TIME INTEGRATION SCHEMES

SDIRK 3 ESDIRK 3 ESDIRK 4 ROS34PW2
Q 0.9 0.9 0.9 0.8

Table 4.2: Values for a chosen for different time integration methods

%u(t) =f,(t,u(t)) + f5(t,ut)), ulto) =u’, t€ [to, tend]- (4.39)
For example, the splitting could correspond to the x and y dimension in the Navier-Stokes
equations, f; could be the discretization of the inviscid fluxes, whereas f, is the discretiza-
tion of the viscous fluxes. Or f; could be both viscous and inviscid fluxes, whereas £, arises
from the discretization of a source term like gravity.

The terms f, and f, interact and the most accurate way to treat these terms is to
respect this interaction in the spatial discretization. This was discussed in section [3.6]
However, it is sometimes easier to treat these terms separately. This is called an operator
splitting or fractional step method. These split the solution process into the solution of two
ordinary differential equations, which is useful if for both equations, well known methods
are available. A first order approximation (for smooth solutions u) to this problem is given
by the simple Godunov splitting [70]:

1. Solve 4u + f,(u) = 0 with timestep At and initial data u™ to obtain intermediate
data u*.

2. Solve %u + f,(u) = 0 with the same timestep, but inital data u* to obtain u™!.

Here, we require each ”solve” to be at least first order accurate.

To increase the accuracy and obtain a scheme of second order for smooth solutions, we
have to use a slightly more sophisticated method, for example the Strang splitting [I8§],
where again the subproblem solvers have to be at least of first order:

1. Solve Su+ f,(u) = 0 with timestep At/2.
2. Solve 4u + f,(u) = 0 with timestep At.

3. Solve Lu+ f,(u) = 0 with timestep At/2.

As before, in each step, the intermediate result obtained in the last step is used as inital
data. Since the problem with f, is solved twice in this operator splitting, f; should be
chosen such that it is easier to solve than the problem with f,. Splittings of order greater
than two can only be defined under severe assumptions on the operators [30].

The role of f; and f, can of course be exchanged, however in general they do not
commute. This becomes obvious when considering a local heat source. Increasing the heat
first and then applying the convective flux leads to a different result compared to doing

4.9. ALTERNATIVES TO THE METHOD OF LINES 89

the convective step first and then increasing the heat locally. For this reason, special care
has to be taken in chosing the numerical boundary conditions for the partial differential
equation. Otherwise, unphysical effects can be introduced into the solution.

The "solves” in each step correspond to a time integration procedure, which has to be
chosen of the appropriate order. For source term, the idea is that for these, typically quite
simple time integration procedures can be chosen, possibly leading to more efficient overall
schemes than when incorporating the source term into the computation of the fluxes. For
the Navier-Stokes equations, an important idea is to use an operator splitting where an
implicit time integration method is used for the diffusive fluxes and an explicit method is
used for the convective parts, since the CFL condition is typically less severe than the DFL
condition. This is sometimes referred to as an IMEX scheme for implicit-explicit, but care
has to be taken since this term is also used for schemes where an explicit or implicit scheme
is used depending on the part of the spatial domain considered.

Tang and Teng [193] proved for multidimensional scalar balance laws that if the exact
solution operator is used for both subproblems, the described schemes converge to the
weak entropy solution and furthermore that the L' convergence rate of both fractional step
methods is not worse than 1/2. This convergence rate is actually optimal, if a monotone
scheme is used for the homogenous conservation law in combination with the forward Euler
method for the time integration. Langseth, Tveito and Winther [121] proved for scalar one
dimensional balance laws that the L' convergence rate of the Godunov splitting (again using
the exact solution operators) is linear and showed corresponding numerical examples, even
for systems of equations. A better convergence rate than linear for nonsmooth solutions is
not possible, as Crandall and Majda proved already in 1980 [42].

The L' error does not tell the whole story. Using the Strang or Godunov splitting
combined with a higher order method in space and a second order time integration does
improve the solution compared with first order schemes and is therefore appropriate for the
computation of unsteady flows. This is for example suggested by LeVeque [124].

Regarding time adaptivity, embedded Runge-Kutta methods cannot be used and Richard-
son extrapolation has to be used instead.

4.9 Alternatives to the method of lines

So far, we have looked at the method of lines only. In [I30], Mani and Mavriplis follow a
different approach in the F'V case in that they write down a huge equation system for all
the unknowns at several time steps simultanously and combine this with a time adaptive
strategy. An alternative to discretizing in space first and then in time, is to discretize
in space and time simultaneously. This approach is unusual in the finite volume context,
but followed for example in the ADER method [197]. For DG methods, this is slightly
more common, for example in the space-time DG of Klaij et. al. [IT1] or the space-time
expansion (STE) DG of Lorcher et. al. [128], which allows for a local time stepping via
a predictor-corrector scheme to increase efficiency for unsteady flows. There and in other

90 CHAPTER 4. TIME INTEGRATION SCHEMES

approaches, the time integration over the interval [t,,t,+1] is embedded in the overall DG
formulation.

4.9.1 Local time stepping Predictor-Corrector-DG

As an example of an alternative method, we will now explain the Predictor-Corrector-DG
method and the local time stepping used in more detail. Starting point is the evolution
equation (3.30)) for the cell ¢, integrated over the time interval [t,, t,1]:

tny1 NFaces d
n+l _ ..n S
u, =u, — / E Mz gi — E Skfk dt.
t k=1

n =1

Ry (pi) Rs(pi,pj)

The time integral is approximated using Gaussian quadrature. This raises the question of
how to obtain the values at future times. To this end, the integral is split into the volume
term defined by Ry that needs information from the cell ¢ only and the surface term
R that requires information from neighboring cells. Then, the use of cellwise predictor
polynomials p;(t) in time is suggested. Once this is given, the update can be computed via

tni1
u't =u — Ry (pi) — Rs(pi, pj)dt. (4.40)

) i
in

Several methods to obtain these predictor polynomials have been suggested. The first
idea was to use a space time expansion via the Cauchy-Kowalewskaja procedure [12§],
which leads to a rather costly and cumbersome scheme. However, in [62], the use of
continuous extension Runge-Kutta (CERK) methods is suggested instead. This is a type
of RK methods that allows to obtain approximations to the solution not only at ¢,,1, but
at any value t € [t,,,t,41] [I53]. The only difference to the dense output formulas and
(4.25) mentioned earlier is that the latter are designed for particular RK methods, whereas
the CERK methods are full RK schemes in their own right. Coefficients of an explicit four
stage CERK method with its continuous extension can be found in the appendix in tables
and [B.13l

The CERK method is then used to integrate the initial value problem

d n
Euz(t) = Rv(uz‘), ui(tn) = lli s (441)

in every cell ¢, resulting in stage derivatives k;. The values at the Gauss points are obtaind
via the CERK polynial,

p
p(t) = Z qit”
k=0

4.9. ALTERNATIVES TO THE METHOD OF LINES 91

which is of order p corresponding to the order of the CERK method minus one and has the

coefficients
1 S

where the coefficients by; can be found in table [B.13]

The predictor method needs to be of order k — 1, if order k is sought for the complete
time integration. If a global time step is employed, the method described so far is already
applicable. However, a crucial property of the scheme is that a local time stepping procedure
can be used.

A cell i can be advanced in time, if the necessary information in the neighboring cells
is already there, thus if the local time at time level n is not larger than the time level in
the neighboring cells:

tr < min {71} V) € N(i). (4.42)

This is illustrated in figure There, all cells are synchronized at time level ¢,, then in
each cell a predictor polynomial is computed using the CERK method, which is valid for
the duration of the local time step At,,. However, for the completion of a time step in both
cell — 1 and i 4+ 1, boundary data is missing. However, cell 7 fulfills the evolve condition
and thus, the time step there can be completed using the predictor polynomials p; ; and
pir1- Then, the predictor polynomial in cell 7 for the next local time step is computed.
Now, cell 7 — 1 fulfills the evolve condition and after the completion of that time step, the
second time step in cell ¢ can be computed. Note that while this example looks sequential,
on a large grid, a number of cells can be advanced in time in parallel, making the scheme
attractive on modern architectures.

Finally, to make the scheme conservative, care needs to be taken when a cell is advanced
in time, whose neighbor has been partially advanced. Thus, the appropriate time integral
is split into two parts, which are computed separately:

tn+l tK 2 t'rH»l

t! t2 -
/ ...dt:/ ...dt+/ ...dt+...+/ ...dt+/ i,
tn tn t1 tK—-2 tK—1

we split the interval [¢7,¢/""] into the intervals [¢},¢5™"] and [t5*", ¢7*'] which yields

n+l

"+1 n+1
/ Rs (P, fa) dt = / Rs (0,7)dt+/+ Rs (71, 57") dt.
1 1 tn 1

92 CHAPTER 4. TIME INTEGRATION SCHEMES

th R it
7777777777777777 i g
th T
1‘ 7
L %
! ' i fi—17;\ f|+1/2 !
‘ ‘ ‘=0 ‘ ‘=0
Qi Qi Qi Qi Qi Qi
7777777 2 e,
t|_1 i—1 t|3
e TETT S
i t|2 i i | fi—1/2 t|2
tL 1 : t
fiir ! | iRy
1 § 1
fisn § ! §
' t=0 ' t=0
Qi Qi Qi Qi Qi Qi

Figure 4.5: Sequence of steps 1-4 of a computation with 3 different elements and local

time-stepping

Chapter 5

Solving equation systems

The application of an implicit scheme for the Navier-Stokes equations leads to a nonlinear
or, in the case of Rosenbrock methods, linear system of equations. To solve systems of this
form, differents methods are known and are used. As mentioned in the introduction, the
question of efficiency of an implicit scheme will be decided by the solver for the equation
systems. Therefore, this chapter is the longest of this book.

The outline is as follows: We will first describe properties of the systems at hand and
general paradigms for iterative solvers. Then we will discuss methods for nonlinear systems,
namely fixed point methods, multigrid methods and different variants of Newton’s method.
In particular, we make the point that dual time stepping multigrid as currently applied
in industry can be vastly improved and that inexact Newton methods are an important
alternative. We will then discuss Krylov subspace methods for the solution of linear systems
and finally revisit Newton methods in the form of the easy to implement Jacobian-free
Newton-Krylov methods.

5.1 The nonlinear systems

For DIRK or BDF methods we obtain systems of the form (see (4.21)), (4.23) and (4.12))

u = 0+ aAtf(u), (5.1)

where u € R™ is the vector of unknowns, o a parameter and u is a given vector. As before,
the underbar denotes a vector of all conservative variables from all cells. Finally, the func-
tion f (u) consists of everything else coming from the spatial and temporal discretization.
In the case of an autonomous ODE, f (u) just denotes an evaluation of the function f(u)
representing the spatial discretization on the whole grid.

If has a unique solution, we call it u*. For nonlinear systems, there are two
important formulations that are used depending on the context. The first one is the fixed

93

94 CHAPTER 5. SOLVING EQUATION SYSTEMS

point form
u=g(u) (5.2)

and the second one is the root form
F(u) =0 (5.3)
Equation is for example in fixed point form and one possible root form would be
u—i— aAtf(u) = 0.

Obviously, neither form is unique for a given nonlinear equation.

For the right hand side functions arising in CFD, formulas for exact solutions of do
not exist, which is why iterative methods are needed. These produce a sequence of iterates
{u™}, hopefully converging to the solution u*. There exists a plethora of schemes to solve
multidimensional nonlinear systems, for example fixed point methods, Newton’s method
and its variants or multigrid methods. All of these are employed in the CFD context,
with fixed point methods being used due to high robustness, meaning global and provable
convergence, whereas the other two are much faster. We will examine those in detail in
this chapter. First, we will discuss some properties of the nonlinear equation system.

Important mathematical questions are if there exist solutions of a given equation and if
these are unique. As mentioned in chapter 2, both of these have not been answered for the
continuous equations. In fact, it is known that the steady Euler equations allow nonunique
solutions and for the Navier-Stokes equations, existence and uniqueness results for general
data are an open question. With regard to the discrete equations we are faced with, we
know that if the right hand side is Lipschitz continuous, then the later presented Banach’s
fixed point theorem tells us that for a sufficiently small At, equation has a unique
solution. For larger time step sizes or right hand sides that are not Lipschitz continuous,
no results are known.

Regarding the properties of the discrete system, an important role is played by numerical
flux functions, of which we required that they are consistent, which in particular implied
Lipschitz continuity, but not differentiability! However, a look at typical numerical flux
functions tells us that they are differentiable except for a finite number of points. In the
finite volume context, we have to look at the reconstruction and the limiters as well. The
first one is based on linear least squares problems, which means that the reconstructed
values depend differentiably on the data. On the other hand, the latter always contain
minimum or maximum functions and are therefore differentiable except at a finite number
of points and Lipschitz continuous otherwise. Regarding discontinuous Galerkin methods,
we know that the cellwise approximations are even differentiable and the only problem is
posed by the numerical flux functions. Finally, we have to consider turbulence models and
these are again in general only Lipschitz continuous and piecewise differentiable.

All these components are then combined using sums and products, meaning that the
resulting function is globally Lipschitz continuous and except for a finite number of points,
also differentiable.

5.2. THE LINEAR SYSTEMS 95

5.2 The linear systems

In the case of a Rosenbrock method (4.30]) or if the nonlinear systems are solved using
Newton’s method, we obtain linear systems of the form

Ax=Db (5.4)

- (I - aAt%) ’u. (5.5)

The values of the Jacobian and thus the cost of computing it depend on the set of unknowns
chosen, e.g. primitive or conservative. Often, the formulas are simpler when using primitive
variables, leading to a small but noticable speedup.

The matrix A in has the property of being sparse, ill conditioned and unsymmetric
(though it has a certain block symmetry). We can also deduce that the matrix is close to
a block diagonal matrix for small time steps and that thus the linear equation systems
become the harder to solve, the bigger the time step is.

As for the block structure of A, this depends on the space discretization method. The
size of the blocks corresponds to the number of unknowns in a cell. For a finite volume
scheme, the size is d 4+ 2 and the blocks are dense, whereas for a modal DG scheme, the
size increases to (p + d)!/(pld!) with again dense blocks. However, while the block size for
the DG-SEM is even greater for the same order with (p + 1)? unknowns, the blocks are
suddenly sparse with (d + 1)dp? nonzero entries for the case of the Euler equations. This

can be immediately seen from (3.35) and (3.36)) and is visualized in figure [5.1]

]
a

with x, b € R™ and A € R™*™ with

_ OE(u)

A
ou

-
100 NS
200
300t
aoof
500}
a00}
700}
800}
a00

1000 -

" 200 400 G500 800 1000
nz = 86400

Figure 5.1: Sparsity pattern of a diagonal block for the Euler equations.

In the case of the Navier-Stokes equations, the computations of the gradients leads to a
less sparse block. However, due to using the dGRP-flux (3.43)), we still have some sparsity,

96 CHAPTER 5. SOLVING EQUATION SYSTEMS

as shown in figure Regarding the offdiagonal blocks, we again have to take into account
the gradients of the points on the boundary in neighboring cells.

0 500 100 150 z0D 250 300 0 500 100 1500 zOD o 2500 300
nz =12539 nz = 22778

Figure 5.2: Sparsity pattern of a diagonal (left) and offdiagonal (right) for the Navier-Stokes

equations.

Since the number of unknowns is rather large and can be several millions in the case
of 3D-Navier-Stokes computations, it is of utmost importance to use the structure of this
equation system to obtain a viable method. Thereby, both storage and computing time
need to be considered. For example, it is impossible to store a dense Jacobian matrix and
therefore, the sparsity of the Jacobian must be exploited. This narrows the choice down to
sparse direct methods, splitting methods, Krylov subspace methods and linear multigrid
methods.

Splitting methods like Jacobi or Gauss-Seidel can exploit the sparsity, but they are
only linearly convergent with a constant near one, which makes them too slow. However,
they will play a role as preconditioners and smoothers for other methods. As for linear
multigrid methods, there is no theory that tells us what smooth components are for the
Euler- or Navier-Stokes equations and therefore, no fast linear multigrid solver has been
found. Regarding sparse direct methods, there has been significant progress during the
last decades and robust solver packages like PARDISO, SuperLU or UMFPACK have been
developed. At the moment, these are still slower than Krylov subspace methods for large
systems, but might be an option in the future [87]. The major choice left are therefore so
called Krylov subspace methods.

5.3 Rate of convergence and error

Since for both nonlinear and linear systems, iterative methods play an important role, it
helps to have properties that can be used to compare these schemes. One is the notion of
the rate of convergence.

Definition 7 (Rate of convergence) A method with iterates x*) € R™, k € N, which

converges to x* is called

5.4. TERMINATION CRITERIAS 97
e linearly convergent to x*, if ||[x* 1) — x*|| < O|x® —x*||, 0 < C < 1,

e superlinearly convergent of order p to x*, if |x**V) —x*|| < C||x® —x*||P with p > 1,
C >0,

[™D ||

o superlinearly convergent to x*, if limy_ o = 0

e quadratically convergent to x*, if ||[x**1) — x*|| < CO||x® — x*||? with C > 0.

Note that superlinear convergence of order p implies superlinear convergence, but not the
other way around.
Using the error for a given vector u

e=u—u' (5.6)

and using the short hand notation for the error in the k-th iteration

e, = u® — u”, (5.7)

we can write these notions in quite compact form.

5.4 Termination criterias

For iterative schemes, it is important to have a termination criterion that avoids costly
oversolving, meaning beyond the accuracy needed. Furthermore, a norm has to be chosen.
Often the 1-, 2- or co-norm are used with a fixed tolerance for each system, to be defined
in the parameter file. While easy, this neglects that we do not solve these nonlinear system
for themselves, but inside a time adaptive implicit time integration. This means that the
nonlinear systems have to be solved to a degree that guarantees not to interfere with the
error estimator in the time integration, such as not to lead to unpredictable behavior there.
In [I80], it is demonstrated on the DASSL code, how a bad choice of the tolerance in
the nonlinear solver can lead to problems in the adaptive time integrator. The way to
circumvent this is to choose the tolerances in the nonlinear solver based on the tolerances
in the time integrator (see ({.35))) and furthermore, to measure convergence in the same
norm as for the error estimator. Thus, we will always assume that a tolerance TOL and a
norm || - || will be given from the outside solver.

We are now faced with the same problem as for the time integration: We do not know
the error and have to estimate it instead. In the absence of any other information about
the system, typically one of the following two quantities is used to estimate the error: The
residual ||F(u®)| given by or the difference of two subsequent iterates ||[u*+" —u®||.
Obviously, both converge to zero if the sequence converges to u*, but conversely, it is not

98 CHAPTER 5. SOLVING EQUATION SYSTEMS

true that when one of these is small, we can be sure that the sequence converges to the
solution or just that u® is close to u*. Nevertheless, the term convergence criteria is often
used instead of termination criteria and it is common to say that a solver has converged to
denote that the termination criterion is satisfied.

However, for a differentiable F we have the following relation between relative residual
and relative error:

el B 48(F u))e]
eow(E @) = [EQO] =~ Jeol

where x denotes the condition number in the 2-norm. The inequalities mean that if the
Jacobian of the function in the solution is well conditioned, the residual is a good estimator
for the error. If this is not the case, then we do not know. For the other criteria, we have
that

€pt+1 = € + u+ — u®

and thus for a method that is convergent of order p we have
lex]l = lu®™* —u®[+ O(|lex||?)

near the solution.
As termination criteria, we always use relative ones. For the residual based indicator
we obtain

IE(u"™)]| < TOL-E||(u)] (5.8)

and for the solution based indicator the test becomes
[u®* —u® | <TOL|u]. (5.9)

For the solution of steady problems when using a time integration scheme to compute
the steady state, it is typically sufficient to do only a very small number of iterations of the
nonlinear solver. This is not the case for unsteady problems, where it is important that the
termination criterion is reached for not interfering with the outer time integration scheme.

Now, it may happen that the timestep is chosen so large by the adaptive time step
selector, that the nonlinear solver does not converge. Therefore, it is useful to add another
feedback loop to this: Set a maximal number of iterations for the nonlinear solver. If the
iteration has not passed the termination criterion by then, repeat the time step, but divide
the step size by two.

5.5 Fixed Point methods

As mentioned before, we speak of a fixed point equation, if it is in the form

gu) =u. (5.10)

5.5. FIXED POINT METHODS 99

Note that (5.1]) is in fixed point form. A method to solve such equations is the fixed point
iteration
ulF) = g(g(k)). (5.11)

A very useful and important theorem to determine convergence of this type of methods
is Banach’s fixed point theorem:

Theorem 4 Let X be a Banach space with norm || - ||. Let D C X be a closed set and g be
a contraction on D, meaning that g is Lipschitz continuous on D with Lipschitz constant
L, <1 . Then the fized point equation has a unique solution u* and the iteration
converges linearly to this solution if u®) € D.

Since At appears in the definition of equation ([5.1)), a bound of the form O(AtL,) < 1

has to be put on the time step to guarantee convergence. If the problem is very stiff, this
leads to an unacceptably strict constraint, even for A-stable methods.

5.5.1 Splitting Methods

A particular type of fixed point methods for the solution of linear systems Ax = b ([5.4))
are splitting methods. The name comes from writing the system matrix in a split form

A=(A-B)+B

via a matrix B € R"™*™ and then defining a fixed point equation, which is equivalent to
Ax = b via
x=(I-B'A)x+B'b.

The corresponding fixed point method is given by
x*) = (1T -B'A)x® + B 'b. (5.12)

Several specific choices for the matrix B correspond to well known methods. The idea of
the GauB-Seidel method is to start with the first equation and solve for the first unknown,
given the current iterate. The first component of the first iterate is then overwritten and
the method proceeds to the next equation, until each equation has been visited. Thus, the
method is inherently sequential and furthermore, if the system matrix is triangular, it is a
direct solver. In matrix notation, it can be written as

X(erl) _ —(L 4 D)*lUX(k) + (L + D)flb, (513)

where L is the strict lower left part of A, D the diagonal and U the strict upper right part.
Thus, B=L + D.

100 CHAPTER 5. SOLVING EQUATION SYSTEMS

If, following the forward sweep of the Gauf}-Seidel method, a backward sweep using
the same method with a reverse numbering of the unkowns is performed, the symmetric
Gaufl-Seidel method (SGS) is obtained. This can be written using

Bses = (D+U)"'D(D+L)". (5.14)

Note that the convergence behavior of both GS and SGS depends on the ordering of
the unknowns. Therefore, if this method is used in some way, we suggest to reorder the
unknowns appropriately after grid generation or adaption. A particular strategy is to use
physical reordering as suggested in [I43]. There, planes are built orthogonal to the direction
of the inflow and then the unknowns in the first plane are numbered first, then the second
plane, and so on. This significantly improves the performance of SGS, as well as of the
later described ILU preconditioner.

Furthermore, there is the Jacobi method, which is inherently parallel and is obtained
by chosing

B, =D. (5.15)

The idea behind the method is to solve all equations simultaneously for the unknown on
the diagonal, given the current values for the other unknowns. In matrix notation, it can
be written as

x@+) = D YL + U)x® + D 'b. (5.16)

Finally, all these methods exist in a relaxation form, meaning that a relaxation param-
eter w is added, which can lead to improved convergence speed. For SGS, this method is
known as the symmetric overrelaxation method (SSOR) and is given by

1 1
B =——B - -
SSOR o2 =) SGS o2 =)
All these methods can be extended trivially to block matrices.
Convergence of these methods can be analyzed using the following corollary of Banach’s

fixed point theorem:

(D+U)"'D(D+ L)L (5.17)

Corollary 5 Let x*t1) = Mx"® + z be a linear iterative scheme. Then the scheme is

globally convergent if and only if p(M) < 1.

This can be proved using that for any ¢ > 0, there is a matrix norm, such that for any
matrix M € R™ ™ it holds that |M| < p(M) + e.

Thus, if [|[I—B™'A|| < 1 or more general if p(||I —B7!'A]|) < 1, the methods converge.
In the case of block matrices, this was considered by Varga [211] and in the context of
computational fluid dynamics, by Dwight [54]. Furthermore, we have that the methods
actually converge to the solution of Ax = b, due to the special form of the vector z in
these cases.

5.5. FIXED POINT METHODS 101

5.5.2 Fixed point methods for nonlinear equations

The Jacobi and GauB-Seidel iteration can be extended to nonlinear equations [165]. To
this end, we recall the original ideas of the method. Thus, the Gau-Seidel process starts
with the first nonlinear equation and, given the current iterate u'®), solves for the first
unknown ugk). The first component of the first iterate is then overwritten and the method
proceeds to the next equation, until each equation has been visited. Here, solve means an
inner iterative process for the solution of nonlinear systems, for example Newton’s method.
Sometimes, the inner solve is added to the name, for example, Gau-Seidel-Newton process.

We thus obtain the method

e For k =1,... until convergence do
— Fori=1,...,m do:
Solve fi(ugkﬂ), . ,ugﬁrl), uz(»kﬂ), ug_]?l, . u®™) =0 for ugml). (5.18)

The symmetric GauB3-Seidel and the Jacobi method can be extended in a corresponding
way, for example the Jacobi process can be written as

e For k£ =1,... until convergence do
— Fori=1,...,n do:

Solve fi(ugk), . ,uz(ﬁ)l, uz(»kﬂ), ugi)l, ™) =0 for uz(.kﬂ). (5.19)
Again, for all of these processes, relaxation can be used to improve convergence. Further-
more, the extension to a block form, where instead of scalar equations, nonlinear systems
have to be solved in each step, is straight forward.
Regarding convergence, we can again use Banach’s fixed point theorem to deduce under
the assumption of exact solves, that this will be linear. More precise, we define a mapping
g for the GauB-Seidel case via the formula

gi<x7 y) = fi(xlu ooy Ly Yid 1y -eny yn)

for it’s i-th component. Then we are in a fixed point of the original equation if x =y,
corresponding to u** = u®). It then follows using the implicit function theorem that
the process converges in a neighborhood of the solution u* if

p(—0ig(u*, u*) 'g(u*,u")) < 1,

where the partial derivatives are taken with respect to x and y [165, p. 31]. This corre-
sponds to the condition on I — B~ A in the linear case.

102 CHAPTER 5. SOLVING EQUATION SYSTEMS

5.6 Multigrid methods

A class of methods that has been developed particularly for equation systems arising from
discretized partial differential equations are multigrid methods [80), 201, 222]. If designed
properly, multigrid schemes are linearly convergent and furthermore, the so called text-
book multigrid efficiency has been demonstrated or even proved for large classes of partial
differential equations, in particular elliptic ones. This means that the convergence rate is
independent of the mesh width and that only a few steps are necessary to compute the
solution. Multigrid methods are the standard method used in industry codes, even though
textbook multigrid efficiency has not been acchieved for the Navier-Stokes equations.

The idea is to divide the error of the current iterate into two parts, called smooth and
nonsmooth or sometimes low and high frequency. The latter part is taken care of by a
so called smoother S and the other part by the coarse grid correction, which solves the
suitably transformed problem in a space with fewer unknowns using the same approach
again, thus leading to a recursive method on multiple grids. The point here is to choose
the coarse space such that the smooth error can be represented well in that space and thus
the dimension of the problem has been significantly decreased.

There are basically three concepts to choose the coarse space. The first is the original
one, where the computational grid is coarsened in some way. Then there are algebraic
multigrid methods, which just use algebraic operations to reduce the number of unknowns.
These are also generalized in the numerical linear algebra community to multilevel methods.
Finally, in particular for DG methods, there are multi-p methods (also called p-multigrid),
that use lower order discretizations to reduce the space dimension.

We will now first explain the multigrid method for linear problems, before looking at
nonlinear problems and then multi-p methods. After that, we will demonstrate the benefit
of designing a multigrid scheme directly for unsteady flows on a model equation and Runge-
Kutta smoothers.

To describe the method, assume that a hierarchy of spaces is given, denoted by their
level [, where a smaller index corresponds to a smaller space. Corresponding to this are a
restriction operator R;_1; to go from level [to the next coarse level [—1 and a prolongation
operator P;;_; for the return operation.

5.6.1 Multigrid for linear problems

The multigrid method was first designed for the Poisson equation. Consider the Dirichlet
problem

—Ugy = f(l'), YIS (07 1)7 f € C(((): 1)7R)
uz)=0,z=0,z=1

The eigenfunctions of —u,, satisfying the boundary conditions are

o(z) = sin(kmz), k € N,

5.6. MULTIGRID METHODS 103

which are sine-functions of increasing oscillation. If the problem is discretized with m
unknowns using second order central differences and a fixed mesh width Az, then the
resulting matrix has eigenvectors that are discrete evaluations of the eigenfunctions for the
first m frequencies. Now the point is that if we define a coarse grid by dropping every other
point, then only the slowly varying, namely the more smooth functions can be represented
there. Furthermore, it can be shown that the spectral radius of the iteration matrices for
Jacobi and Gauf3-Seidel approaches one as the mesh is refined, but that they are very good
at reducing the highly oscillatory error components. It is from this observation that the
vocabulary with smooth and nonsmooth errors was derived.

If a different linear PDE is considered, the design of a multigrid method for that equation
repeats the steps from above: First determine the eigenfunctions of the continuous operator
and their discrete counterparts for the specific discretization given. Then define the coarse
space and determine the eigenfunctions/eigenvectors present in the coarse space. With that
information, find a smoother that takes care of the other components of the error.

This means that the notions of high and low frequency errors depend on the equation
to be solved and the discretization used. Correspondingly, the components of the method
(smoother, restriction and prolongation) have to be chosen in an appropriate way and the
same smoother may not work for a different equation. In the case that we do not consider a
linear, but a nonlinear PDE and the linear equation system comes from a linearization, e.g.
from Rosenbrock time integration or Newton’s method, the design of multigrid methods in
this way becomes even more difficult.

For conservation and balance laws, it is important to have restriction and prolongation
operators that are conservative. To this end, a coarse grid is obtained by agglomerating a
number of neighboring cells, giving rise to the term agglomeration multigrid. The restricted
value in a coarse cell is then given by summing up the fine grid values, weighted by the
volumes of the respective cells and dividing by the total volume. For an equidistant grid
in one dimension, the corresponding restriction operator would be given by

1 1 0 ... 0
110 01 1 0... 0
Rl—l,l:§ o

00 0 O 1 1

One possible prolongation is the injection, where the value in the coarse cell is taken
as value on all the corresponding fine cells, which would result in P;;_y = 2R/ ;. This
can be refined by interpolating means of reconstructed functions. Jameson suggests a
bilinear interpolation, which in addition to the coarse grid point corresponding to a fine
grid point incorporates those neighboring coarse grid cells which would incorporate a fine
grid neighbor of the fine grid point considered, using suitable weights.

Furthermore, the problem on the coarse grids has to be defined. A common way for
linear problems is to use

Al =R, ;AP

104 CHAPTER 5. SOLVING EQUATION SYSTEMS

Alternatively, the problem can be discretized directly on the coarse level, which will be the
way to go for nonlinear problems. To obtain the problem on the coarse level, we now use
that for linear problems if Ax —b =r, then

Ae =r. (5.20)

This is called the defect equation and means that on the coarse level, we will solve for the
error and then correct the fine level solution by the prolongated error on the coarse level.
Finally, we the obtain the following scheme to solve the system Ax = b:

Function MG(x;, by, 1)

e if (1 =0), x; = A;'b; (Exact solve on coarse grid)

e else
— x; = S/ (x1,b;) (Presmoothing)
— I = Rl—l,l(bl - Ale) (ReStI'iCtiOIl)
— Vi1 = 0
— For (j=0; j<~; j++4) MG(v,_1,r;_1,l — 1) (Computation of the coarse grid
correction)
— x; =x;+ Py;_1v;1 (Correction via Prolongation)
— x; = S,”(x;, b;) (Postsmoothing)
e cnd if

If v =1, we obtain a so called V-cycle, where each grid is visited only once, whereas if
v = 2, we obtain a W-cycle. Both are illustrated in figure |5.6.1] Larger choices of v will
not be used, since there is rarely a benefit for the additional cost.

g e o,

R P,
[£a [G, o,

FAVARE VLY N

Figure 5.3: V and W-multigrid cycle

=

Regarding convergence theory, note that the iteration matrix of the scheme for two
grids only can be written in compact form as

M =S2(I-P;; 1A 'Ri_1,A)S] (5.21)

5.6. MULTIGRID METHODS 105

and thus, corollary [5| says that the method converges if p(M) < 1. The common approach
to prove this and in particular that p(M) is independent of the mesh width, is the analy-
sis as established by Hackbusch [80], which distinguishes between the smoothing and the
approximation property. The first one describes if the smoothing operator is able to deal
with the high frequency errors and the approximation property describes if the coarse grid
solution is able to approximate the remaining components of the error.

5.6.2 Full Approximation Schemes

If instead of a linear problem, a nonlinear equation f(u) = s is considered, the multigrid
method has to be modified and is called Full Approximation Scheme (FAS). This type of
method is widespread in industry, in particular for steady flows, where text book multigrid
efficiency has been demonstrated for the steady Euler equations [34] and at least mesh
width indepent convergence rates for the Navier-Stokes equations. The point where we
have to modify the scheme for the linear case is that for a nonlinear operator, we have in
general

f(u) — f(u") # f(e)

and therefore the defect equation is not valid and we cannot solve for the coarse grid error
directly. Therefore, we instead consider the equation

f(u*) = f(u) —r(u), (5.22)

which reduces to the coarse grid equation from the last section for the linear case. Here,
care has to be taken that due to the nonlinearity, the right hand side might be such that it is
not in the image of f. In this case, the residual needs to be damped by a factor s. However,
this does not seem to be necessary in our case. There is one more change, because even on
the coarsest level, it is impossible to solve the nonlinear equation exactly. Therefore, only
a smoothing step is performed there. The prolongation Q;;+1 and restriction R4y, are
chosen as described in the last section and the coarse grid problem is defined in a natural
way as if the equation would be discretized on that grid. We thus obtain the following
method, where 1, is the current approximation and u,; the output:

Function FAS-MG(1,, u;,s;, ()
e u, =S/ (1i,s;) (Presmoothing)
o if (1>0)

— =5 — fz(uz)
— ;-1 = Ry_1,1; (Restriction of solution)

— 511 =f_1(W-1) + Ry_1,1r; (Restriction of residual)

106 CHAPTER 5. SOLVING EQUATION SYSTEMS

— For (j =0; j <~; j++) FASSMG(0,-1,1,_;,8-1,] — 1) (Computation of the
coarse grid correction)

—w=w+P;;_;(u_, —0_1) (Correction via Prolongation)

— u, = S*(u;,s;) (Postsmoothing)
e end if

Regarding smoothers, the proper choice depends on the problem. We will therefore now
review the method for steady state problems, before continuing with the unsteady case.

5.6.3 Steady state solvers

In the context of compressible flows, the most widely used and fastest FAS type scheme
is the one developed by Jameson over the course of thirty years [99]. The latest version is
due to Jameson and Caughey [34] and solves the steady Euler equations around an airfoil
in three to five steps. Thus, two dimensional flows around airfoils can be solved on a PC
in a matter of seconds. The solution of the steady RANS equations is more difficult and
takes between fifty steps and two hundred steps for engineering accuracies.

As smoothers, different methods have been successfully used, namely explicit RK schemes,
explicit additive RK methods, point implicit smoothers, line implicit smoothers and the
SGS method.

For the Runge-Kutta methods, recall that a method to compute a steady state is to
advance an approximation of the steady state in time using a time stepping method. Thus,
an explicit Runge-Kutta method is an iterative method for the solution of steady state
problems and can be used as a smoother. The scheme is applied to the steady state
equation, with an added time derivative and the forcing term s; from the FAS-MG:

d
%ul = fi(w,) — 5.
Calling the initial value gl(o) and using a low storage explicit RK method 1) we obtain

the scheme

) = u” — e An[f) + s

ul(q+1) _ ul(O) — g1 A [fl(E(Q)) + 5]

1
H?—H _ ul(q'i‘).

Jameson also suggests the use of additive Runge-Kutta methods (4.27)), where different
coefficients are used for the convective and the diffusive parts. This is done to reduce the

5.6. MULTIGRID METHODS 107

number of evaluations of the expensive diffusive terms, but also to increase the degrees of
freedom in choosing a good smoother. Given a splitting in the convective and diffusive part

f(u) = f(u) + £"(u)

he suggests to implement these schemes in the following equivalent form

- =1y
u? =@y — ;AR (FUD 4 £20D) =1, s
uf =,
where
foil _fc(]), j=0,..,5—1
f = fv(©)7

= Bt () + (1= BEUY, =151

The methods are then designed to provide an optimal damping of high frequency modes.
For the one dimensional linear advection equation

u + auy, =0, (5.23)

with a > 0, discretized using a first order upwind scheme with fixed mesh width Az and
explicit RK smoothing, this was done in [208]. However, the methods obtained in this
way are not convincing when applied to the Euler or Navier-Stokes equations. Instead,
Jameson used the one dimensional linear advection with a fourth order derivative to obtain
a better smoother for 4th order artificial diffusion schemes [97]. The coefficients for the
corresponding additive RK smoothers can be found in table [5.1] and [99].

i1 2 3 4 5
a; | 1/3 4/15 5/9 1
Gl 1 12 0 0 -
a; | 1/4 1/6 3/8 1/2 1
g1 1 0 05 0 044

Table 5.1: Coefficients of additive Runge-Kutta smoothers, 4-stage and 5-stage method.

In short, since the model problems are linear, the explicit Runge-Kutta method can
be written as a complex polynomial Ps(z) of degree s in AtA. The free parameters of
the polynomial are given by the method and should be chosen, such that the value of the
polynomial is minimized for the high frequency part of the spectrum of the equation. To this

108 CHAPTER 5. SOLVING EQUATION SYSTEMS

end, eigenvalues and eigenvectors are determined assuming periodic boundary conditions.
For the linear advection equation, these are the functions ¢“®, © € [—x, 7], where © is the
nondimensional wave number. The high frequency components are then those that cannot
be represented on the coarse grid, e.g. |0| € [7/2,7]. Van Leer et. al. suggest to define
the smoother via the solution of the optimization problem

in max |1 P5(2(0))],
where « is the set of free parameters of the polynomial and z(©) are the eigenvalues of a
model discretiation, namely the one dimensional linear advection equation with an upwind
discretization. For this case, the optimization problem can be solved directly, but for more
complex equations, this is no longer possible.

A powerful alternative to Runge-Kutta smoothers is the SGS method. This is typ-
ically used in conjunction with flux vector splitting discretizations, since this results in
significantly less computational work.

Point implicit smoothers correspond to using an SDIRK scheme with only one Newton
step, where the Jacobian is approximated by a block diagonal matrix [119, [120]. Line im-
plicit smoothers are used to cope with grid induced stiffness by defining lines in anisotropic
regions normal to the direction of stretching. These lines then define a set of cells, for
which an SDIRK method is applied, again with one Newton step, but taking into account
the coupling between the cells along the line. This leads to a tridiagonal block matrix.

Convergence is accelerated by local time stepping or preconditioning of the time deriva-
tive and furthermore residual averaging. Then, a W-cycle with four or five grid levels is
performed. All of these ingredients are important for fast convergence and have been suc-
cessfully tuned to the case of steady Euler flows. Residual averaging is used to increase
the level of implicitness in the method and thus to move unphysical parts of the solution
even faster out of the domain [100]. To this end, a small parameter € is chosen and then a
Laplace-filter is applied directionwise:

— E’Fj_l + (1 + 26)77]' — 677]'4_1 = 7"]'. (524)

This equation is solved for the new residuals using a Jacobi iteration. For a suitably large
parameter €, this stabilizes the scheme.

5.6.4 Multi-p methods

Another alternative in the context of DG and other higher order methods are multi-p
schemes, where instead of coarsening the grid, the coarse scale problem is defined locally
on each element using a lower order method [60]. Therefore, these two approaches are
also often called p- and h-multigrid. Mesh width indepent convergence rates have been
demonstrated numerically for steady state problems. To define the method, let a high
order space II; and a nested low order space II;_; C II; be given. Typically, the low order

5.6. MULTIGRID METHODS 109

space is defined by decreasing the polynomial order by one, although in the original method,
a more agressive coarsening is used, dividing the order by two. Then, the FAS multigrid
method is applied as before, where we have to define new prolongations and restrictions and
for the restriction of the solution (represented by the coefficients of a polynomial ansatz)
and the residual, different operators R;_;; and Rl—l,l are used.

To interpolate the solution from the lower to the higher order space, we use that there
is a unique representation of the basis functions ¢!~ of the low order space in the basis of

the high order space:
ot = aydl.
J

Then, the prolongation is given by P;;_1 = (aj);;. For a hierarchical basis, this repre-
sentation is trivial, in that the prolongation is just an identity matrix with added zero
columns.

For the restriction of the residual, Rz-u = Pfl_l is typically used. The restriction of
the states is defined by an Lo-projection in that we require

(Wl_l,Vl_l) — (Wl_l,Vl), \V/Wl—l c Hl—l-

This leads to
Ry = M;ll_lNl,z—la

where (M;;_1);; = (qbﬁ_l,(bz_l) is a quadratic matrix and (N;;_1);; = (gbi-_l,(bé-) is rectan-
gular. For a DG method with an orthogonal basis as for example the modal-nodal method
described in section , we have that (¢, qﬁ?) = d;; and thus M;;_; = L. If a nodal basis
is used, M;;_; is dense.

Regarding the smoother, because the coarse grid has been defined differently from
before, different methods have to be chosen. Alternatives that have been used are element-
Jacobi [219], line-Jacobi [60], ILU [157], Runge-Kutta methods [10} [105] and combina-
tions thereof [129]. In the context of the linear advection equation, optimal Runge-Kutta
smoothers were analyzed in [9]. There, coefficients and corresponding optimal time step
sizes are computed for the case of steady flows. Again, in the unsteady case, the corre-
sponding eigenvalues are shifted and therefore, these schemes are not optimal, let alone for
more complex equations.

5.6.5 Dual Time stepping

To apply the FAS method to unsteady flows with a minimal amount of coding, Jameson
developed the so called dual time stepping approach [98]. This means that a pseudo time
derivative is added and the steady state of the equation system

ou
ot*

+fu) =0 (5.25)

110 CHAPTER 5. SOLVING EQUATION SYSTEMS

is computed using the multigrid method for steady states described above. Typically, f is
the result of a BDF-time discretization, where in particular the A-stable BDF-2 method is
popular. For the case of the implicit Euler as in , we obtain
on u(t’) —u" — Atf(u(t)) = 0.
ot~

Note that can be solved in principle using any suitable method and dual time
stepping is in that sense more an approach to solve a time dependent problem than a
method in itself. Nevertheless, dual time stepping is inherently connected to the nonlinear
multigrid method of Jameson and is thus usually meant as a nonlinear multigrid method
to solve equation (}5.25)).

Figure 5.4: Comparison of convergence of FAS multigrid in UFLO103 for steady and un-

steady flows for flow around a circle.

In figure [5.4, we demonstrate the convergence behavior of the FAS multigrid scheme
implemented in the UFLO103 code of Jameson. The test case is two dimensional flow
around a circle at Mach 0.25, a Reynolds number of 100,000 and zero angle of attack and
the grid is a C-type grid with 512 x 64 unknowns. We start with freestream data and use
the steady state solver for the first 100 steps. As can be seen, there is no convergence to
a steady state, which is in this case due to unsteady effects starting. We then switch to
the unsteady method, which uses BDF-2 and thus one nonlinear system per time step has
to be solved. These systems should be easier to solve than a steady state problem and
indeed, the scheme is able to reduce the norm of the residual by seven orders of magnitude
in 50 steps. However, it can be seen that after about thirty iterations, the convergence rate
decreases significantly.

The code of Jameson is designed for structured grids around airfoils and significantly
faster than the codes employed in the industry for general unstructured grids, which are

5.6. MULTIGRID METHODS 111

O Freestream
A Steady State

|IFu®)|| 2

0 100 200 300 400
lteration

Figure 5.5: Comparison of convergence of FAS multigrid in DLR-TAU for steady and

unsteady flows for flow around a circle.

designed for robustness. This is demonstrated in figure [5.5] where the convergence of the
dual time stepping method implemented in the DRL TAU code is demonstrated. As can
be seen, the convergence rate decreases significantly for lower tolerances. This behavior is
also typical for other large industrial codes.

In practice, this leads to a scheme that takes hundreds or sometimes even thousands of
iterations to solve the systems inside a time step, when we would in fact expect to be able
to solve these systems much more quickly. This is because the original multigrid method
is designed for steady states and the operator f in is shifted due to the additional
time discretization terms. Therefore, the smoother and the choice of prolongation and
restriction is no longer optimized for that problem. For example, the coefficients of the
steady state Runge-Kutta smoothers are optimized for a different set of eigenvalues.

5.6.6 Optimizing Runge-Kutta smoothers for unsteady flow

The lack of theory for the original method leads to a situation, where so far, there has
been little success in fixing this undesirable behavior. By contrast, significant progress on
the design of multigrid methods has been obtained for the incompressible Navier-Stokes
equations [202].

We will consider two different ways of finding good smoothers, both involving an opti-
mization process, which is described in [20]. This text follows that article. First of all, we
can try to optimize the smoother alone, such that it removes nonsmooth error components
fast. This approach was followed in [208] and later in [9]. Additionally, we suggest to
compute the iteration matrix of the multigrid scheme and minimize its spectral radius in

112 CHAPTER 5. SOLVING EQUATION SYSTEMS

a discrete way.

The difference between the two approaches is that the latter one is theoretically able
to provide truly optimal schemes, whereas the first one does not. However, the second
approach is much more costly, meaning that we are not able to compute the global optimum
in a reasonable time. Therefore, both approaches are discussed here.

As a model problem to design the smoothers on we consider the linear advection equa-
tion

u + auy, = 0. (5.26)

with @ > 0 on the interval x € [0, 2] with periodic boundary conditions. This is discretized
using an equidistant finite volume method with mesh width Az leads to the evolution
equation for the cell average u; in one cell i:

Ui, + &(Ul - ui—l) = 0.

Using the vector u = (uy, ..., u,,)" and

we obtain the system of ODEs
a
—Bu(t) =0. 5.27
u, + - Bu(t (5.27)

Here, we discretize this using implicit Euler with time step size At, which is also a building
block for the more general diagonally implicit Runge-Kutta (DIRK) methods. Thus, in
each time step, a linear system has to be solved. Using the notation u™ = u(t,), this can
be written as

At
un+1 —ut+ G’A_xBunJrl =0
sSu" - Au" =0 (5.28)
where y
A= (I —B) 2
+ Ar (5.29)

with v = aAt. Here, CFL := aAt/Az corresponds to the CFL number in the implicit
Euler method. If we consider nonperiodic boundary conditions, the entry in the upper right
corner of B becomes zero. Otherwise, additional terms appear on the right hand side, but
this does not affect multigrid convergence.

If we look at the new eigenvalues and eigenvectors, we see that the eigenvectors have not
been changed, but if \; is an eigenvalue of f, then 1 — v); is an eigenvalue in the unsteady
case. A similar analysis has been performed in [112]. We now discuss the two optimization
procedures.

5.6. MULTIGRID METHODS 113

5.6.7 Optimizing the smoothing properties

For the first approach, the eigenvectors of the matrix A from (5.29)) are discrete forms of
the functions e*© for various © and the eigenvalues are given by

v .
MO)=—1——"—(1—-¢79),
(©) (1=)
If nonperiodic boundary conditions are used, the matrix becomes lower triangular and all
eigenvalues are equal to —1 — . In the steady case, the eigenvalues would be scaled and
shifted, resulting in A(©) = —2&(1 — ¢). Now, on the coarse grid, we can represent
functions with © € [—x/2,7/2]. Thus, the smoother has to take care of error components
with |O] € [7/2, 7.
Due to the linearity, it is sufficient to look at Ps(At*A(©)) with
At*
v a
Ax
Possible parameters of the smoother are the pseudo time step size At* and the coefficients
of the RK method. Now, v = aAt is fixed during the multigrid iteration, but Az is not.

Furthermore, the pseudo time step is restricted by a CFL condition based on v. Thus,
instead of optimizing for At*, we define the pseudo time step on each grid level as

AN(O) = —At" — —e79),

At} = cAx; /v
and optimize for ¢ := vAt; /Ax;. Now we have
2(0,¢;v, Axy) := At'N(O) = —cAx; /v — ¢+ ce™©, (5.30)

where we see that z does not depend on v and Az, separately, but only on Ax;/v = 1/CFL.
Thus, with e~ = cos(©) — isin(O) we obtain

2(0,¢,CFL) = —c¢/CFL — ¢+ ccos(0) — icsin(0O).

In the end, given C'F'L, we have to solve an optimization problem where we look at the
modulus of the maximal value of the smoother for |O| € [7/2,7] and then minimize that
over the parameters o; and c. Using symmetry of P, and equivalenty looking at the square
of the modulus, we obtain
min max |P,(2(0,c; CFL))|. (5.31)
c,Ps |©|€[r/2,7]
Due to the dependence of the optimal coefficients on C'F'L, there is no unique optimal

smoother for all problems.
For the 2-stage scheme we have:

|P2(Z>|2 = |1 +z+ 05122‘2
= (1 + Rez + aRez® — a;Imz?)? + (201 Rezlmz + Imz)?.

114 CHAPTER 5. SOLVING EQUATION SYSTEMS

Similar computations for the 3-stage scheme lead to

|P5(2)|* =(1 + Rez + apRez? — aplmz® + ajasRez® — 3agasRezImz?)*+

(Imz + 2aoRezImz — agaslmz® + 3a;asRez*Imz)?
and for the 4-stage scheme we obtain

|Py(2)]* = (1 + Rez + a;Rez? — agImz? + ajasRez® — 30 asRezImz?
+ajasasRez? — 6agasasRez?Imz? + a1a2a31m24)2 +
(Imz + 2a;RezImz + 3ajasRez?Imz — agasImz?

+4oyapa3Rez’ Tmz — 4a1a2a3RezIm23)2)

0.1 0z 03 04 05 06 07 08 03 0.1 02z 03 04 05 06 07 08 038
[o

Figure 5.6: Contourplots of functions log;ymaxjejepr/oq |Pa(2(0,¢;3))* (left) and
log, max|e|efr/2,q] | P2(2(0, ¢; 24))|? (right).

It turns out that for these functions, the final form of is too difficult to solve
exactly, in particular due to the min-max-formulation. Therefore, we discretize the param-
eter space and compute an approximate solution. This requires a bounded region, which is
already the case for © and the o, which are between 0 and 1. As for ¢, we know that any
explicit RK scheme has a bounded stability region, therefore we chose an upper bound for
¢, such that the optimal value for ¢ is not on the boundary. As an example, the function

f(a,c) :==1log,, max |Py(2(0,c;CFL))|?
|©|€[m/2,7]

is shown in figure for CFL =3 and C'FL = 24. Note that the optimal ¢ is not on the
boundary, meaning that the choice ¢ € [0, 1] here is reasonable. Furthermore, we can see
that for ¢ = 0, we obtain a method with a value of 1. This is correct, since this is a method

5.6. MULTIGRID METHODS 115

CFL | « c Opt-value
1 0.275 0.745 0.01923
3 0.3 0.93 0.05888
6 0.315 0.96 0.08011
9 0.32 0.975 0.08954
12 0.325 0.97 0.09453
24 0.33 0.98 0.10257

Table 5.2: Results of optimization of smoothing properties for 2-stage scheme

CFL | oy Q9 c Opt-value
1 0.12 035 1.14 0.001615
3 0.135 0.375 1.37 0.007773
6 0.14 0.385 1.445 0.01233

9 0.14 0.39 145 0.01486
12 0.145 0.395 1.44 0.01588
24 0.145 0.395 1.495 0.01772

Table 5.3: Results of optimization of smoothing properties for 3-stage scheme

with time step zero, meaning that the resulting smoother is the identity. For v = 0, we
obtain the explicit Euler method. This is also a possible smoother, but as can be seen it is
less powerful. Furthermore, we can see the finite stability regions of the methods.

We now compute the optimal value for CFL = 1,3,6,9,12,24 for all schemes using a
MATLAB/C++ code. For the 2-stage scheme, we choose a grid of 200 x 200 x 200 for the
parameter space a1 X ¢ X t. The optimization gives results presented in table 5.2 As can
be seen, CF'L =1 is a special case, otherwise the parameter a; does not depend on C'F'L,
whereas there is a slight increase of ¢ with C'F'L.

For the 3-stage scheme, we have one more parameter, which increases the dimension of
the parameter space oy X ap X ¢ X t, resulting in the grid 200 x 200 x (2-200) x 200. As a
restriction for ¢, we put ¢ € [0,2]. The results can be seen in table . Again, CFL=1isa
special case in that a significantly smaller value for ¢ comes out. Otherwise, the coefficients
a1 and as have only a weak dependence on C'F' L. However, the optimal value is decreased
by a factor of about 500, suggesting that these schemes are significantly better than the
2-stage methods.

Finally, for the 4-stage scheme, we chose a grid of the size 150 x 150 x 150 x (2 - 150) x 100

116 CHAPTER 5. SOLVING EQUATION SYSTEMS

CFL | oy oy o3 c Opt-value
1 0.0733 0.1867 0.4 1.3267 0.0005302
3 0.0733 0.1867 0.4 1.96 0.002118
6 0.08 0.2 0.4133 1.907 0.00297

9 0.08 0.2 0.4133 1.98 0.003372
12 0.08 0.2 0.42 1.907 0.003972
24 0.0867 0.2133 0.433 1.84 0.004313

Table 5.4: Results of optimization of smoothing properties for 4-stage scheme

with ¢ € [0,2]. A finer grid was not possible due to storage restrictions. As for the 3-stage
case, a significantly smaller value for ¢ is obtained for C'F'L = 1, otherwise there is only a
weak dependence of the parameters on C'F'L. The optimal value is decreased by a factor
of four compared to the 3-stage schemes, as shown in table [5.4]

An important difference between the schemes obtained is the size of ¢, which is about
0.9 for the 2-stage case, 1.4 for the 3-stage case and 1.9 for the 4-stage case, which suggests
that one effect of allowing more freedom in the design of the smoother is that the stability
region is increased. The stability regions of the optimal methods obtained for CFL = 3
and CFL = 24 are shown in figure [5.7, emphasizing this point.

Figure 5.7: Stability regions of optimally smoothing methods for CFL = 3 (left) and
CFL = 24 (right). The larger the stability region, the higher the number of stages.

5.6.8 Optimizing the spectral radius

The optimization just considered aims at improving the smoother on its own, without taking
into account the interaction with the coarse grid correction or the multigrid structure. This

5.6. MULTIGRID METHODS 117

has the benefit that the optimization is fast, even for the 4-stage case, where we run into
memory problems. An alternative is to optimize the spectral radius of the iteration matrix
M of the complete multigrid scheme as a function of the smoother, which is a function of
a and ¢, with ¢ defined as above:
min p(M(a, ¢; v, Ax)). (5.32)
a,c
Regarding the iteration matrix, it is important to note that the smoother is furthermore a
function of a right hand side and an approximate solution.
Thus, when applying the s-stage Runge-Kutta smoother on level [to an ODE with right
hand side fj(u) = b — Aju, there is an additional term on top of the stability polynomial,

depending on the vector b:
S,.(b,u) =S¥ u+S! b,

Here, S§, = P,(—At*A;) is the matrix coming out of the stability polynomial, whereas the
second matrix corresponds to a different polynomial. For the 2-, 3- and 4-stage smoother,
we have

Ssl = AtIl — OélAt Al, (533)
Sg,l = AtIl — OélAt Al -+ OélOZQAtgAlz, (534)
SZ,Z = AtIl — OélAtzAl -+ afloZQAt:)’A.lQ — (110520[3At4A:;. (535)

When first calling the multigrid function, this is done with the actual right hand side
b and the current approximation u®. However, on lower levels the right hand side is
the restricted residual R;_;;r; and the current approximation is the zero vector. For a
three-level scheme, we have
(k+1) Su ll(k + S b + PQJMG(O, ry, 1)
= 82,2 —|— Ss’2b + P271(Sg71r1 + PL()SI;OI'Q), (536)
where

rg = R071 (Il - Alsgl)rl (537)

and

= Ria(b — Ay(S),b+ S ,ul))
=R (I — AxSY,)b — RLQAQSS,Qu(’ﬁ). (5.38)

Inserting (5.37) and (5.38) into (5.36]), we obtain

utt) = 8r u® + 8 b + Py (8%, + P oSt Rot (I — ASY))ry
= (S0, 4+ P21(S2, + P1oS. Roi (I — A1SY) Ri2(Io — AsSY,))b
+ (Sg’Q — P2’1<Sg71 + PI,OS;ORO,I(II — A18271)>R1’2A28g,2>u(k).

118 CHAPTER 5. SOLVING EQUATION SYSTEMS

Y ARSI ST SAOOE ONEE VP NOSIE PIRSE S 02

o1 02 03 04 05 06 07 08 03 o1 02 03 04 05 06 07 08 039
3 o

Figure 5.8: 2-stage method: Contourplots of log(p(M(a, ¢))) for Az =1/24 and v = 0.125
(left) and v = 1.0 (right).

Thus, the iteration matrix of the three level scheme is given by
M =S¥, — P31(S2, + P1,0S (Ro1(I1 — A1S%)R 2A5SY,.

To solve the optimization problem (5.32]), we again compute a discrete optimum, this
time using a MATLAB code and the eig function to obtain the spectral radius. For the
2-stage case, we use a grid of size 200 x (2-200) with ¢ € [0, 2]. Here, both v and Az have
to be varied, where we chose v according to the same CFL numbers as for the last strategy
and Ax = 1/24,1/12,1/6. The results are shown in table The contour lines of the
function p(M(a, ¢; v, Az)) are illustrated in figure (5.8). As can be seen, the results are
qualitatively similar to the ones from the other strategy.

In the 3-stage case, we use a grid of the size 100 x 100 x (2-100), the results are shown
in table p.6] Finally, a 50 x 50 x 50 x (2-50) grid is used for the 4-stage case with the
results being shown in table 5.7 The decrease in mesh width is due to the polynomially
growing computational cost. One optimization on the fine grid in the 2-stage case takes a
couple of minutes, whereas the 4-stage case needs more than ten hours, despite the coarser
grid.

Comparing the results for the different stages, we see that there is no dependence of the
optimal solution on Az in the sense that for a fixed CFL number and accordingly chosen
v, the results are almost identical. In this sense, the multigrid method obtained has a
convergence speed which is independent of the mesh width. Otherwise, an increase in CFL
number leads to an increase in the spectral radius and thus a decrease of the convergence
speed of the methods. Regarding the coefficients, there is a weak dependence of a on the
CFL number, but ¢ increases significantly with C'F'L. Regarding the size of the spectral
radius, going from two to three stages leads to a huge decrease of the optimal value for small
and moderate CFL number, but not for large CFL numbers. As for adding a fourth stage,
this actually leads to a decrease in spectral radius. This can be explained by the much
coarser grid used for the optimization of the 4-stage method. Consequently, the solution
found is too far away from the actual optimum to beat the 3-stage method.

5.6. MULTIGRID METHODS

Ax =1/24 Axr =1/12
CFL | v a c p(M) | v a c p(M)
1 1/24 0.25 0.545 0.0689 | 1/12 0.25 0.56 0.0681
3 0.125 0.21 0.615 0.2072 | 0.25 0.21 0.615 0.2072
6 0.25 0.305 0.94 0.3007 | 0.5 0.315 096 0.2954
9 0.375 0.295 1.145 0.3824 | 0.75 0.3 1.145 0.3819
12 0.5 0.295 1.255 0.4584 | 1.0 0.3 1.26 0.4575
24 1.0 0.295 146 0.6425 | 2.0 0.29 1485 0.6371
Az =1/6
1 1/6 0.245 0.555 0.0673
3 0.5 0.27 0.77 0.1851
6 1.0 0.295 1.0 0.2734
9 1.5 0.29 1.175 0.3694
12 2.0 029 129 0.4473
24 4.0 0.28 151 0.6315

Table 5.5: Results of optimization of p(M) for 2-stage scheme

119

120 CHAPTER 5. SOLVING EQUATION SYSTEMS

Ax =1/24 Ax =1/12
CFL | v o 9 c p(M) | v o 9 c p(M)
1 1/24 0.11 0.33 0.69 0.0402 1/12 0.11 0.33 0.69 0.0402

0.125 0.14 0.39 1.42 0.0819 | 0.25 0.14 0.39 1.43 0.0799
0.25 0.14 04 1.58 0.1444] 0.5 0.14 04 1.6 0.1397
0.375 0.12 037 1.75 0.2317|0.75 0.12 0.36 1.77 0.2237
12 0.5 0.13 039 1.91 0.3124| 1.0 0.12 0.36 1.95 0.2954
24 1.0 0.12 0.38 2.14 0.5252 | 2.0 0.10 0.31 2.42 0.4720
Ar=1/6
1/6 0.11 0.33 0.68 0.0381
0.5 0.14 0.39 1.43 0.0799
1.0 0.13 0.38 1.67 0.1375
1.5 0.12 0.36 1.78 0.2230
12 2.0 0.11 0.34 1.93 0.2948
24 4.0 0.09 0.28 2.59 0.4427

o O W

Ne e N

Table 5.6: Results of optimization of p(M) for 3-stage scheme

5.6. MULTIGRID METHODS 121
Ax =1/24 Ax =1/12

CFL | v o Q9 a3 c p(M) | v o 9 o3 c p(M)

1 1/24 0.02 0.08 03 0.62 0.0525|1/12 0.02 0.08 0.3 0.62 0.0525

3 0.125 0.02 0.14 0.38 1.42 0.1138 | 0.25 0.02 0.14 0.38 1.42 0.1138

6 0.25 0.02 0.14 0.38 1.52 0.1783 | 0.5 0.02 0.14 0.38 1.52 0.1783

9 0.375 0.02 0.14 04 1.7 0.2501 | 0.75 0.02 0.12 0.36 1.78 0.2365

12 0.5 0.02 0.12 036 1.9 0.3053 | 1.0 0.02 0.12 0.34 1.88 0.3040

24 1.0 0.02 0.12 0.34 2.16 0.5173 | 2.0 0.02 0.1 030 2.18 0.5094
Ax =1/6

1 1/6 0.02 0.08 0.3 0.62 0.0492

3 0.5 0.02 0.14 0.38 1.42 0.1138

6 1.0 0.02 0.14 0.38 1.52 0.1783

9 1.5 0.02 0.12 0.36 1.78 0.2236

12 2.0 0.02 0.12 0.34 1.88 0.3040

24 4.0 0.02 0.10 0.32 2.34 0.4858

Table 5.7: Results of optimization of p(M) for 4-stage scheme

122 CHAPTER 5. SOLVING EQUATION SYSTEMS

In figure the stability region of the optimal methods for Az = 1/24 and v = 0.125,
as well as v = 1.0 are shown. Again, an increase in the number of stages leads to a larger
stability region.

o = N W

1}

—2}

4 : : _a :
-6 -4 -2 [} -6 -4 -2 [}

Figure 5.9: Stability region of optimal 2-; 3- and 4-stage method for Az = 1/24 and
v = 0.125 (left) and v = 1.0 (right). The larger the number of stages, the larger the
stability region.

Comparing the optimal solutions found with the schemes obtained by the previous
method, we see that the coefficients are similar, as is the value of ¢ and the same is valid
for the stability regions.

5.6.9 Numerical results

We test the smoothers on two problems with Az = 1/24 on the finest level and a = 2.0.
As initial conditions, we use a step function with values 5 and 1, as well as the function
sin(mrz). We then perform one time step with At = 1/16, respectively At = 0.5, meaning
that v = 0.125 and CF'L = 3 (a problem with a medium CFL number), respectively v = 1.0
and CFL = 24 (a problem with a large CFL number). The resulting linear equation system
is solved with 80 steps of the different multigrid methods. As a reference, the optimal 2-
and 3-stage methods derived by van Leer et. al. [208] for steady state problems are used.
The 2-stage method is given by o = 1/3 and a ¢ = 1, whereas the 3-stage method does
not actually fall into the framework considered here. It consists of one step of the explicit
Euler method with ¢ = 0.5, followed by a step of a 2-stage method with o = 0.4 and ¢ = 1.
All computations are performed using MATLAB.

In figure [5.10] the computed solutions for the linear advection equation are shown. The
initial data is always shown in blue, whereas the exact solution is in red, as well as the
numerical one. Since the space discretization is of first order and the time integration
method is implicit Euler, the results are very diffusive. However, the multigrid method
computes the correct solution.

5.6. MULTIGRID METHODS 123

5 T T T 1 [al=ls)
11 s} o
£28%° © Sol att=0 o° %5 o Salattn
asl ®®® O Exactsol att=0.1 || 08 o ®®®®@®® © Exactsol attl
o2 - % Diser. ol att=0.1 © o7 ° * Discr. sl attl
o o
@ 06 s E
4 @ 2 @ o @
o ® 04F o @ o ®®
a @ =]
38 ® 0z o @
@ =1 ® o @
@
3 1 @ o @ o
° e ° =
® ®
R ®
25 @ 0.2 o o o o
@ @ @
- o4l o @ °
L I3
z @ ° & e @
@ @ 0B o @ a @
2 E @ o 8"
15 Ll ®®
ke 0.8 o P o eRe
Bay E o
i o Be0an 4 o

Figure 5.10: Initial solution and discrete and numerical solution after one time step for

step function (left) and sine initial data (right).

Regarding computational effort, the main work of the multigrid method consists of
matrix vector multiplications in the smoother. Thus, the 3-stage schemes are conservatively
50% more costly than the 2-stage schemes, whereas the 4-stage schemes are less than twice
as expensive as the RK-2 smoother.

We now look at the convergence speed of the different methods, where we call the
methods obtained by the second optimization p-optimized schemes. In figure |5.11] and
[5.12] logy, of the error in the 2-norm is plotted over multigrid iterations, where the first
figure shows the results for CFL = 3 for both test cases and the latter the results for
CFL = 24 for both test cases. The 3-stage method of van Leer diverges for CF L = 24 and
is only shown in the first figure, where it is barely faster than the 2-stage method of van
Leer. Otherwise we can see, that the p-optimized schemes behave as expected in that the
3-stage scheme is the fastest, then the 4-stage scheme and then the 2-stage scheme with the
3-stage scheme being roughly twice as fast as the 2-stage scheme. For the schemes coming
out of the first optimization, there the 4-stage scheme is faster than the 3-stage scheme,
which is faster than the 2-stage scheme. Furthermore, the p-optimized schemes are able to
beat their counterparts with the exception of the 4-stage scheme. Thus, the more costly
optimizition is generally worthwhile.

Generally, the 3-stage p-optimized scheme is the fastest, in particular it is almost twice
as fast as the 2-stage p-optimized scheme, making it more efficient. Compared to the
reference method of van Leer, it is between two and four times faster, making it between
70% and 270% more efficient. Thus, just by changing the coefficients of the RK smoother,
we can expect to gain more than a factor of two in multigrid efficiency.

Finally, we consider the step function case with nonperiodic boundary, to evaluate if
the different eigenvalues respectively different matrices lead to problems. As can be seen
in figure |5.13| this is not the case for CFL = 3, as the convergence rate for all methods

124 CHAPTER 5. SOLVING EQUATION SYSTEMS

Figure 5.11: Convergence plots for different multigrid methods and C'F'L = 3: step function
(left) and sine initial data (right).

is almost unchanged, but not so for CF L = 24, where the new methods have the same
convergence speed, but van Leers 2-stage method becomes as fast as the p-optimized 2-stage
method.

5.7 Newton’s method

A classical method to solve nonlinear equation systems is Newton’s method, sometimes
referred to as the Newton-Raphson method. The basic idea is to linearize the problem
and thus replace the nonlinear problem by a sequence of linear problems. For the one
dimensionsal case, the method is illustrated in figure [5.14 Newton’s method is locally
convergent and can exhibit quadratic convergence. Outside the region of convergence, it is
not clear what happens. The method can converge nevertheless or if equation has
multiple solutions, it may converge to a different solution, otherwise, it diverges. In fact,
it has been shown for a number of equations that the set of starting points that converge
to a certain solution is fractal.

The local convergence means that its use for steady flows is limited, since the typical
starting guess in that case consists of choosing freestream values in the whole domain, which
are far away from the steady state values. This problem can be adressed by globalization
strategies, but while this leads to a convergent method, it still takes very long to find a
good approximation. For unsteady problems, the situation is different in that the solution
at time t,, is not that far away from the solution at ¢,,.;. Therefore, Newton’s method has
to be reassessed in that situation. Jothiprasad et. al. compare the FAS scheme with an
inexact Newton method where either linear multigrid or GMRES is used as a solver and
find the FAS scheme to be computationally the worst [103].

5.7. NEWTON’S METHOD 125

Figure 5.12: Convergence plots for different multigrid methods and CFL = 24: step
function (left) and sine initial data (right).

We will now explain those parts of the theory relevant to the methodology used here
and otherwise refer to the books of Kelley [I08] and Deuflhard [51]. Newton’s method
solves the root problem

F(u)=0 (5.39)
for a differentiable function F(u) in the following way:

OF (u)
8u ul®

H(k‘-i—l) — E(k) + AH? k = O’ 1,

Au = —F(u") (5.40)

The method must not necessarily be written in conservative variables. Instead, deriva-
tives of primitive variables could be used without any difference in convergence speed. As

termination criteria, either (5.8]) or (5.9)) is used.

Convergence of the method can be proved under very few assumptions. However, a
major point about Newton’s method is that it is second order convergent. To prove that,
the following standard assumptions are used in [108]:

Definition 8 (3.2: Standard Assumptions)
i) Equation has a solution u*.
i) F' - Q — R™ ™ js Lipschitz continuous with Lipschitz constant L’.

i) F'(u*) is nonsingular.

126 CHAPTER 5. SOLVING EQUATION SYSTEMS

Figure 5.13: Convergence plots for different multigrid methods for step function initial data

with nonperiodic boundary conditions: CFL 3 (left) and CFL 24 (right).

Note: Since the determinant is a continuous function, iii) implies with ii) that F” is non-
singular in a whole neighborhood around x* and thus, Newton’s method is well defined in
that neighborhood.

If the linear equation systems (5.40f) are solved exactly, the method is locally second
order convergent. However, this is never done, because an exact Jacobian is rarely available
and furthermore, this is too costly and unnecessary. Instead, we will approximate terms in
(5.40) and solve the linear systems only approximately. Thus we might lose convergence
speed, but we save a significant amount of CPU time. Since in case of convergence, the
limit is determined by the right hand side, we can approximate the matrix or Au without
disturbing the outer time integration scheme.

Simplified Newton’s method: If we approximate the matrix, there is first of all the
simplified Newton’s method, where we compute the Jacobian only once and thus iterate:

Au = —F(u®) (5.41)

8u u(®
uf M = u® 4 Au, k=0,1,..
This method is also locally convergent and has convergence order one. It is frequently used

in a variant, where the Jacobian is recomputed periodically, see e.g. [?]. Due to the high
cost of computing the Jacobian, the loss of order of convergence is typically less important.

Methods of Newton type: The simplified Newton method can be generalized to so
called methods of Newton type, where we approximate the Jacobian by some matrix A. For

5.7. NEWTON’S METHOD 127

F(u)

Figure 5.14: Illustration of Newton’s method in one dimension

example, this could correspond to a lower order Jacobian for a higher order discretization.
We thus obtain the scheme:

AAu = —-F(u®) (5.42)
E(k+1) — u(k) + AE) k= O7]_7

This method converges locally linear, if A is close enough to the Jacobian or more precise,
if p(I — Aflag—flg)) < 1, respectively if ||A — al;—flg)ﬂ is small enough. In the proof, the size of
the neighborhood of the solution where convergence can be proved depends on the spectral

radius just mentioned in the sense that it becomes smaller, the further away A is from
OF(u)
ou

Inexact Newton methods: Another approach to saving computing time are inexact
Newton methods. There, the linear equation systems are solved by an iterative scheme,
for example one of the later discussed Krylov subspace methods. These are terminated
prematurely, based on the residual of the linear equation system. Typically, the scheme
suggested in [49] is chosen, where the inner solver is terminated, if the relative residual is
below a certain threshhold. This type of scheme can be written as:

H s luwAu + F(u®)

ou

] < mlF@)] (5.43)

E(k+1) — u(k) + AH7 k= O, 1,

128 CHAPTER 5. SOLVING EQUATION SYSTEMS

The 7y, € R are called forcing terms. In [56], the choice for this sequence is discussed and
the following theorem is proved:

Theorem 6 Let the standard assumptions hold. Then there is § such that if u® is in
a d-neighborhood of u*, {nx} C [0,n] with n < 7 < 1, then the inexact Newton iteration
converges linearly. Moreover,

e if n, — 0, the convergence is superlinear and

o if g < K,||[F(u®)|]P for some K, > 0 and p € [0,1], the convergence is superlinear
with order 1 + p.

The region of convergence given by ¢ is smaller or as large as the one for the exact New-
ton’s method. Furthermore, the convergence region decreases with growth of x(F'(u)).
Regarding speed of convergence, it follows from the theorem that the common strategy of
choosing a fixed 7 leads to a first order convergence speed. The last part of the theorem
means that for a properly chosen sequence of forcing terms, namely, if the n; converge to
zero fast enough, convergence is quadratic. However, it is not necessary to solve the first
few linear systems very accurately. This is in line with the intuition, that while we are far
away from the solution, we do not need the optimal search direction for Newton’s method,
but just a reasonable one, to get us in the generally correct direction.
A way of achieving this is the following:

A IF@®)?
e
with a parameter v € (0, 1]. This was suggested by Eisenstat and Walker in [56], where they
also prove that this sequence has the convergence behavior required for the theorem. Thus,
the theorem says that if this sequence is bounded away from one uniformly, convergence is
quadratic. Therefore, we set 1y = Nnas. for some 1,4, < 1 and for k£ > 0:

ng = min(Mmaz, M-

Eisenstat and Walker furthermore suggest safeguards to avoid volatile decreases in 7. To
this end, yn?_, > 0.1 is used as a condition to determine if 7;,_; is rather large and thus
the definition of 7 is refined to

Nmazx n = 07
77,? =< min(Nmaz, nf),) n > 0,777,371 <0.1
min (Nae, max(mi, ymg_1)) 1> 0,9mi_; > 0.1

Finally, to avoid oversolving in the final stages, FEisenstat and Walker suggest
Iy = 000 (g, ma(n, 0.5¢/|[F ()), (5.44)
where € is the tolerance at which the Newton iteration would terminate, see ([5.8)) and (/5.9)).

5.7. NEWTON’S METHOD 129

5.7.1 Choice of initial guess

The choice of the inital guess in Newton’s method is important for two reasons: Firstly,
the method is only locally convergent, meaning that for bad choices of initial guesses,
the method may not converge. Secondly, a smart initial guess may reduce the number of
iterations significantly.

A reasonable starting value for the Newton iterations for unsteady computations is the
solution from the last time level, respectively the last stage value inside a DIRK scheme.
For small time steps, this will be in the region of convergence, if the time step is too large,
the method will diverge. Typically, this type of initial guess works for reasonably large time
steps. If not, as discussed in section [5.4], we will repeat the time step with half the step
size, hopefully leading to a situation where the initial guess is in the region of convergence.
Nevertheless, better initial guesses can be obtained, for example by extrapolation, proper
orthogonal decomposition [200] or dense output formulas . Extrapolation corresponds
to taking the sequence of solutions of the previous nonlinear systems and extrapolating it
in some way to the next system. Dense output formulas originate in the DIRK methods
used.

5.7.2 Globally convergent Newton methods

Even with an improved initial guess obtained using any of the methods from the last
section, we might not be in the region of convergence of Newton’s method. This makes
globally convergent variants of Newton’s method attractive. This property can be achieved
in a number of ways. Here, we focus on using a so called line search, which is easy to
implement. This means that we change the update in the method to

where A is a real number between 0 and 1. Different ways of doing this line search exist,
a popular choice is the Armijo line search [50]. Here, A is chosen such that we obtain a
sequence of residuals that is almost monotone:

IE ™V < (1= an)[[f @], (5.45)

with o being a small positive number. For example, o = 107* is a suitable choice. The
search for a suitable A is done in a trivial way by starting with 1 and then dividing it by 2
if the condition is not satisfied. More sophisticated strategies are possible.

It can be shown that this method is linearly convergent [50], however once the iteration
is close enough to the solution, full steps with A = 1 can be taken and thus, the original,
possibly quadratic, convergence behavior is recovered.

Globally convergent Newton methods can be used to compute steady state solutions.
However, this does not lead to schemes that are competitive with the FAS multigrid. A vari-
ant that is often used is to consider the backward Euler method with just one Newton step

130 CHAPTER 5. SOLVING EQUATION SYSTEMS

per time step and then choose a CFL number that increases with time. This corresponds
to a damped Newton method, where the choice of the A from above does not originate in
a line search, but a time step chosen. In figure [5.15] the norm of the steady state residual
is shown for a run of TAU_2D with linear reconstruction, AUSMDYV flux and Barth limiter
for a NACAO0012 profile computation. The Mach number is 0.85, the Reynolds number is
1.000, the angle of attack 1.25, the computation is started with freestream values and the
number of cells is 4605.

Figure 5.15: Residual history for a damped Newton method for the computation of the
steady state around a NACAQ0012 profile.

The starting CFL number is 4 and this is increased every 10 steps by 1.2. While this
is not an optimal strategy, it works reasonably well. The Newton termination tolerance
is 107*, as is the case for the linear systems. As can be seen, convergence to the steady
state is very slow, which explains why Newton methods are rarely used for steady state
computations.

5.7.3 Computation and Storage of the Jacobian

The computation of the Jacobian leads to two significant problems. First, as explained in
the introduction of this chapter, the function F is in general only piecewise differentiable
and thus, the Jacobian in u®¥) may not exist. Second, if it exists, the computation of the
full second order Jacobian in the finite volume context is extremely difficult to implement
and to compute. In the DG context, the implementation and computation is much easier,
but in particular the viscous fluxes pose a certain amount of difficulty. Therefore, it is
important to consider ways of circumventing these two problems.

First of all, approximations of the Jacobian can be used. For example, we could com-
pute a Jacobian based on the first order method, which does not contain a reconstruction

5.8. KRYLOV SUBSPACE METHODS 131

procedure or limiters and can therefore be implemented and computed in a reasonable
amount of time. This means that a method of Newton type is employed and thus
only first order convergence is reached. Nevertheless, this is a popular approach.

Alternatively, we could use automatic differentiation. This is a procedure where the code
itself is analyzed by a program (for example ADIFOR [29]), which automatically creates a
second version of the code, that computes the derivative using product rule, quotient rule
and so on. If-statements are treated as branches of the Jacobian definition.

Both of these approaches have the drawback that the Jacobian needs to be stored. Since
it is sparse, this is done using a sparse data format, for example CVS. There, two vectors
are stored for each row, one integer vector for the indices of columns where nonzero entries
can be found and a second one of equal length with the corresponding values. The block
structure can be respected by letting the indices correspond to cells and changing the second
vector from one with values to one with pointers, which point to an appropriate container
for values of the small block. The number of nonzeros for threedimensional flows is 35 per
unknown for quadrilaterals and 25 per unknown for tetrahedrons for finite volume schemes,
whereas the number explodes for DG methods, leading to an often prohibitive amount of
storage. Therefore, often so called Jacobian free methods will be used in conjunction with
Krylov-subspace methods. This will be explained in the next section.

5.8 Krylov subspace methods

As explained in section , we use Krylov subspace methods for the linear system [169] 204].
These approximate the solution of a linear system

Ax=b, AeR™™
in the space

Xo + span{rg, Arg, ..., A" o} = x0 + K, (A, b, %) (5.46)

with xy being the initial guess. The space K, is called the m-th Krylov subspace of A, b
and xg. Thus, the approximate solution in step m is of the form x,, = xq + p(A)ry with
p being a polynomial of degree m — 1. A prototype Krylov subspace method computes an
orthogonal basis of this space and then uses a projection to compute the next iterate. This
process needs the Jacobian only in the form of matrix vector multiplications and thus the
sparsity of A can be exploited.

In the case of symmetric and positive definite systems, the CG method computes the
iterate with optimal error in the energy norm vx?T Ax using a short recurrence of three
vectors. As Faber and Manteuffel proved in [58], a similar method that is both optimal
and has a short recurrence is not possible for general matrices. Therefore, a choice has to
be made: Either use a method that is optimal and thus has increasing demand for storage
and CPU time or use a method that has a short recurrence and thus a constant storage and

132 CHAPTER 5. SOLVING EQUATION SYSTEMS

CPU time requirement per iteration or use a method like CGN that works with the normal
equations and thus the matrix AT A. This comes at the price of a squaring of the condition
number and the use of AT, which is why we do not suggest the use of these schemes.

The most prominent methods of the first two kinds are GMRES of Saad and Schultz
[T70], which computes the optimal iterate regarding the 2-norm of the residual and BICGSTAB
of van der Vorst [203], which has a three-vector recurrence. Furthermore, the interesting
method IDR(s) has been recently introduced by van Gijzen and Sonneveld, which is a gen-
eralization of BICGSTAB [182]. In [147], different Krylov subspace methods are applied to
different classes of nonsymmetric systems and for each type, a class is found where this class
performs best. Therefore, no general answer can be given, as to which method performs
best for nonsymmetric matrices. Note that by construction, GMRES is tied to the 2-norm,
whereas the others are not.

5.8.1 GMRES and related methods

As a first Krylov subspace method we will explain the generalized minimal residual method
(GMRES) [170] in detail. In the j-th iteration, the scheme computes an orthogonal basis
vy, ..., v; of the j-th Krylov subspace

K; = span{ry, ..., A’ 'ro}
by the so called Arnoldi method. GMRES uses this basis to minimize the functional

J(x) = [[Ax = bl

in the space xg + K;. The point about Arnoldi’s method is that it allows an efficient
implementation using a Hessenberg matrix. In every step, this is updated and transformed
to an upper triangular matrix using for example Givens-rotations. This then allows to
obtain the value of the functional J in every iteration without explicit computation of x;,
which is only done after the tolerance is satisfied. In pseudocode, the algorithm can be
formulated as (taken from [141]):

[} I‘Ozb—AXO

e If ryg =0, then END

_ 1o
o V| =
1 [lroll2

e Forj=1,...m
— Wj = AV]'
— Fori=1,...,j5do h;; =vlw;

ey = S v hyery = [l

5.8. KRYLOV SUBSPACE METHODS 133

CFori=1,..j—1do(i Yo G sn hi;
it —Sit+1 Cit1 hit1

- 2 2 . o hiy
B=/hj;+hin; si="5

hi:
— = hy =0
= Vi1 = TS+ Y T G+
— if [yja| > TOL, vj4 = 2

hjt1,5

— else
S R B Y .
x fori=7,...,1do q i <’y] > it h@kak)

* X = Xg + Zgzl Vi
* END

Since GMRES has no short recurrence, the whole basis has to be stored. Thus the cost
and storage per step increase linearly with the iteration number. In step 7, we need to
store the j basis vectors and compute one matrix vector product and j scalar products.
It is possible to restart the iteration after k iterations by scrapping the orthogonal basis
and starting new with the current approximation, thus bounding the maximal amount
of storage without simply terminating the iteration. This method is called GMRES(k).
Unfortunately, there are examples where the restart technique does not lead to convergence
and examples, where the restart convergence results in a speedup. Typical restart lengths
are 30 or 40.

The assumption used in the termination criteria is that the basis is actually orthogonal.
This can be tested by computing the residual after the computation of the solution. It
turns out that in practice, the difference in the estimate and the actual residual is negligi-
ble. Therefore, we will never use techniques for reorthonormalization of the basis used in
GMRES, as suggested by several authors.

Due to the minimization, in exact arithmetic, GMRES computes the exact solution of
an m X m linear equation system in at most m steps. Furthermore, the residual in the
2-norm is nonincreasing in every step. For diagonalizable matrices, a more useful residual
estimate is possible (for the proof of this and the next results, see e.g. [108]):

Theorem 7 Let A = VAV ™! be a nonsingular diagonalizable matriz. Then for all p € 11,
with p(0) = 1, we have

Irnsall < froflara(V) max [pe(2)].

a(

For nonnormal matrices, the condition number is not a good tool to describe the be-
havior of the matrix A. More useful is the distribution of eigenvalues. A result that sheds
some light on the performance of GMRES for general matrices is the following:

134 CHAPTER 5. SOLVING EQUATION SYSTEMS

Theorem 8 Let A be nonsingular, then we have

T = i A)rglls.
e=in [lp(A)oll:

Using this it can be proved that if A is normal and the right hand side has only m
eigenvector components, GMRES will produce the solution in m iterations. This suggests
that the method will converge fast if the eigenvalues are clustered, since then the method
will choose the polynomial such that the zeros are the eigenvalues. This insight is useful
when designing preconditioners (see the next chapter). However, if a matrix is strongly
nonnormal, the eigenvalues fail to accurately reflect the behavior of a matrix. Consequently,
a theorem by Greenbaum, Ptdk and Strakos [74] states that for any discrete monotone
decreasing function, a matrix with an arbitrary eigenvalue distribution can be constructed
for which the GMRES algorithm produces that residual history. In particular it might be
possible that the residual is constant until the very last step when it drops to zero.

GCR

A method that is mathematically equivalent to GMRES is the Generalised Conjugate
Residual method (GCR) [55]. This uses two sets of basis vectors and thus allows some
more flexibility in convergence acceleration, which will be discussed later.

e x5 =0,r9) =b— Axg, k=-1

e while ||rg||2 > tol do

—k=k+1
- Pr =Tk
— qr = Ap,

—fori=0,1,....,k—1do oy = g’ q;, qx = qx — 4, Px = Pr — iPi
— qr = qx/[|akll2; Px = Pr/l|akll2
— Xp41 = Xp + quzrk

_ T
= Tip41 =T — Qg T

5.8.2 BiCGSTAB

As the major alternative to the GMRES method, the BICGSTAB method was established
[203]. This uses two matrix vector products per iteration, but a constant number of basis
vectors and scalar products. The method is constructed to satisfy

1. = qr(A)pr(A)rg

5.9. JACOBIAN FREE NEWTON-KRYLOV METHODS 135

where
qr(2) = Hle(l — w;z).

In pseudocode, the method can be written as follows:
e rg=by— Axy. Set pp=a=w =1
o If rp =0, then END
e Forj=1,..n

— B = (pr/pr—1)(a/w)
—p=r+3p—wv
—v=Ap

— a=p/(E]v)
—s=r—av,t=As

— w=t's/[[t]l3, pri1 = —wigt
—X=X+aptws
—r=s—wt

- END

For BICGSTAB, no convergence analysis similar to the one of GMRES is known and
in fact, the method can break down. What can be proved is that the residual after k steps
of BICGSTAB is never smaller than that after 2k steps of GMRES when starting with the
same initial guess. Nevertheless, it exhibits fast convergence behavior in practice.

5.9 Jacobian Free Newton-Krylov methods

In Krylov subspace methods, the system matrix appears only in matrix vector products.
Thus it is possible to formulate a Jacobian free version of Newton’s method. See [I13] for
a survey on Jacobian free Newton-Krylov methods with a lot of useful references. To this
end, the matrix vector products Aq are replaced by a difference quotient via

a%ig)g - F(u+eq) — F(u) ‘ (5.47)

Aq =
€

This works for the linear systems arising in Newton scheme, but also for those from the
Rosenbrock scheme. For the root equation arising from , the above approximation
translates into

A@)g~ g+ oAt <£(2+66_1) —£(1_1)> '

€

136 CHAPTER 5. SOLVING EQUATION SYSTEMS

If the parameter € is chosen very small, the approximation becomes better, however,
cancellation errors become a major problem. A simple choice for the parameter that avoids
cancellation but still is moderately small is given by Quin, Ludlow and Shaw [159] as

\eps

€= —
lall>”

where eps is the machine accuracy.

The Jacobian free version has several advantages, the most important are low storage
and ease of implementation: instead of computing the Jacobian by analytical formulas or
difference quotients, we only need flux evaluations. In the context of finite volume solvers,
the most important part of the spatial discretization are the approximate Riemann solvers.
Changing one of these thus becomes much more simple. Furthermore, this allows to increase
the convergence speed of the Newton scheme: Since we never compute the exact Jacobian,
but only a first order version, the scheme with matrix is always a method of Newton-type
and thus has first order convergence. However, the Jacobian-free approximation
is for the second order Jacobian and thus can obtain second order convergence if proper
forcing terms are employed, since it is possible to view the errors coming from the finite
difference approximation as arising from inexact solves and not from approximation to the
Jacobian.

Of the Krylov subspace methods suitable for the solution of unsymmetric linear equation
systems, the GMRES method was explained by McHugh and Knoll [138] to perform better
than others in the Jacobian free context. The reason for this is that the vectors in matrix
vector multiplications in GMRES are normalized, as opposed to those in other methods.

Regarding convergence, there is the following theorem about the outer iteration in the
JFNK scheme, when the linear systems are solved using GMRES (see [108]). Essentially, the
Jacobian free approximation adds another error of the order O(¢e). This can be interpreted
as an increase of the tolerance 7y in the kth step to n; + ce for some constant c. Then, the
previous theorem [6] can be applied:

Theorem 9 Let the standard assumptions hold. Then there are §, &, ¢ such that if u, is

in a §-neighbodhood of u* and the sequences {ny} and {ex} satisfy
O = N +cep, < 0,
then the Jacobian free Newton-GMRES iteration converges linearly. Moreover,
o if 0, — 0, the convergence is superlinear and

e if op < K, |[F(u®™)|]P for some K, > 0 and p € [0,1], the convergence is superlinear

with order 1+ p.

5.10. COMPARISON OF GMRES AND BICGSTAB 137

This theorem says that for superlinear convergence, the parameter € in needs to
approach zero. However, this leads to cancellation errors. Therefore, if we keep e fixed
as described, a behavior like quadratic convergence can only be expected for the initial
stages of the iterations, while ce is still small compared to 7. The constant c¢ is problem
dependent and thus it can happen that linear convergence sets in at a very late stage. In
these cases, the strategy of Eisenstat and Walker for the choice of 7 still makes sense.

5.10 Comparison of GMRES and BiCGSTAB

We now compare GMRES, GMRES(25) and BiCGSTAB for the case with matrix and
the Jacobian-free variant using TAU_2D. To this end, we consider the linear system from
an implicit Euler step with a certain CFL number, solve that up to machine accuracy
and look at the residual norm ||Az® — bl|, over iterations. The first test problem is
the isentropic vortex described in the appendix and we consider the first time step
using the AUSMDYV flux function and a first order discretization in space. In figure
(left), we see that the BICGSTAB variants converge the fastest, but run into problems at
1071°. GMRES(25) and GMRES have the same convergence behavior, thus restarting has
no detrimental effect. However, the Jacobian free variant JF-GMRES(25) starts having
problems after the second restart.

v GMRES
x JF-GMRES
On A O GMRES(25)

3 2| & JF-GMRES(25)
Aﬂaﬁ O BICGSTAB
- O JF-BICGSTAB
5

[Ires||

Iteration

Figure 5.16: Norm of the relative residual over iterations for different Krylov subspace
schemes for the Shu-Vortex problem at CFL=5 on the basis of a first order FV scheme
(left) and a second order FV scheme (right).

Now, this test is fair in that all methods solve the same system. However, the more
realistic situation is a second order discretization in space. Therefore, we repeat the experi-

138 CHAPTER 5. SOLVING EQUATION SYSTEMS

ment with a linear reconstruction using the Barth limiter. Now, the schemes with a matrix
solve a slightly different system with the same matrix as in the first test, but a different
right hand side, corresponding to a method of Newton-type. The Jacobian-free schemes
approximately solve the system corresponding to the second order Jacobian. As can be seen
in figure (right), there is very little difference in convergence behavior for the schemes
with matrix to the first test case. This is expected, since the system matrix is the same.
The Jacobian-free schemes on the other hand converge slower, which can be attributed to
the more difficult system. Now, JF-BiCGSTAB performs worse than JF-GMRES.

We now repeat these experiments with CFL 5 and CFL 20 (see figure and addi-
tionally for the wind turbine problem (described in the appendix with CFL 5 and 20
(see figure . It becomes apparent that the larger the CFL number, the more difficult it
is for the Krylov subspace methods to solve the system. This corresponds the observations
about the system matrix made so far. Actually, for large CFL numbers, JF-BiCGSTAB
is not a good method and may even diverge. This is in line with the results of Meister,
that for the case with a Jacobian, BiCGSTAB performs best [?] and those of McHugh and
Knoll that CGS and BICGSTAB do not perform well in the JENK setting [138]. Thus, we
will not consider BICGSTAB anymore.

10 & T . T
v GMRES Y~ GMRES
% x JF-GMRES % W x JF-GMRES
A O GMRES(25) 0 & O GMRES(25)
3 A JF-GMRES(25) 1 ey O A JF-GMRES(25)
[AN O BiCGSTAB i O BiCGSTAB
10’5 % N { JF-BICGSTAB JF-BICGSTAB
A
_N & N N
= A @ o
] e
= = 10.5 e S
o 3 oo
-10 4
10 | %}D O
)
-10
10t 3
0 0 20 40 60 80 700

Iteration Iteration

Figure 5.17: Comparison of different Krylov subspace schemes for the Shu Vortex problem
at CFL=1 (left) and CFL=20 (right).

5.11 Comparison of variants of Newton’s method

To compare the different variants of Newton’s method, we use the code TAU_2D with the
AUSMDYV flux and a linear reconstruction based on the Barth limiter. The nonlinear system
considered is the first system appearing when solving the Shu vortex problem using the

5.11. COMPARISON OF VARIANTS OF NEWTON’S METHOD 139

v GMRES v GMRES

x JF-GMRES 100 x JF-GMRES
O GMRES(25) O GMRES(25)
A JF-GMRES(25) 4 A JF-GMRES(25)
O BIiCGSTAB 10’2 I o] O BICGSTAB
1075 { O JF-BICGSTAB
4
= 10 }
8 8
o T s
10 10
10
-8
10 |
i)
0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration

Figure 5.18: Comparison of different Krylov subspace schemes for the Wind turbine prob-
lem at CFL=5 (left) and CFL=20 (right).

implicit Euler method with C'F'L = 0.7. The linear systems are solved using GMRES up to
machine accuracy. In figure [5.19] the convergence curves for different variants of Newton’s
method are shown. In the left picture, the actual relative errors are shown, which have been
obtained by solving the nonlinear system up to machine accuracy, storing the solution and
repeating the Newton loop. The figure on the right shows the relative residuals. As can be
seen, the method with a first order Jacobian is first order convergent, as expected. If the
Eisenstat-Walker strategy is used, this hardly changes errors or residuals and thus leads
to the same order of convergence. The JFNK method exhibits second order convergence
and the Eisenstat-Walker strategy is able to obtain that as well, where again, errors and
residuals are hardly changed. This demonstrates that the strategy used is indeed very
reasonable.

Furthermore, for this problem, the JENK scheme obtains quadratic convergence up to
machine accuracy, meaning that the constant ¢ from theorem @D is very small. The other
thing that can be seen is that for this case, the residual is an excellent indicator of the
error, being larger by less than a factor of five.

Now, we estimate the radius of convergence by using the canonical initial guess u® = u,,
and determine the minimal time step At at which the Newton iteration diverges. Intuitively,
one assumes that when we increase At, u,,; gets further away from u,,. However, this need
not be the case. For example for a periodic flow, it might be that an increase in At causes
u,1 to get closer to u,. Therefore, we choose as test case the Shu vortex where we know
that the solution essentially moves to the right with time. The results can be seen in table
.8l As can be seen, the methods of Newton type with large errors in the Jacobian lead to
a smaller radius of convergence, whereas the JFNK methods have a radius of convergence
that is about four times larger. The use of the Eisenstat-Walker strategy as opposed to a

140 CHAPTER 5. SOLVING EQUATION SYSTEMS

2 v JFNK without EW [v JFNK without EW
10 O JFNK with EW 10° O JFNK with EW
% © Newton-type without EW © Newton-type without EW
107 =4 *_Newton-type with EW 0 _% x_Newton-type with EW
o | %
10
S I ‘F
o
=8
10)4
v
107} v
F ov
107} &
[oy
10-14 s X X X i)) oy) X)) i) i
6 100 20 30 40 50 60 70 0 10 20 30 40 50 60 70 &0
Newton iteration Newton iteration (k)

Figure 5.19: Illustration of Newton’s method. Relative errors (left) and relative residuals

(right).

JENK-FT JFNK-EW Newton-type-F'T Newton-type-EW
3.0 4.1 0.7 0.9

Table 5.8: Upper bounds of convergence radius for Shu vortex problem in terms of CFL

numbers. FT stands for a fixed tolerance, EW for Eisenstat-Walker.

fixed tolerance also leads to an increase in the convergence radius.

We now compare the efficiency of the different schemes. To this end, we solve the wind
turbine problem on a time interval of ten seconds using time adaptive SDIRK2 with
a relative and absolute tolerance of 1072. The nonlinear systems are solved with up to
40 Newton steps and the linear systems are solved using GMRES. Regarding the other
tolerances, the Newton tolerance is set to 1072/5, whereas the linear tolerance is set to
1072/50 for the JFNK case and to 1072 for the Newton type case. This is because in the
latter, we only expect first order convergence of the Newton method and thus, it is not
necessary to solve the linear systems to such a high accuracy.

In table[5.9] the total number of GMRES iterations and the total CPU time are shown.
The computations are performed on one CPU of an Opteron Quad twelve-core 6168 machine
with 1.9 GHz. The computation for the method of Newton-type with a fixed tolerance was
stopped after more than 50.000 time steps needing more than 4 Million GMRES iterations
and still not having computed more than 0.6 seconds of real time. With the Eisenstat-

5.11. COMPARISON OF VARIANTS OF NEWTON’S METHOD 141

JENK-FT | JENK-EW | Newton-type-FT | Newton-type-EW
Iter. 379,392 348,926 - 1,121,545
CPUin s | 64,069 61,337 - 348,174

Table 5.9: Comparison of efficiency of different Newton variants NEW GRID!.

Walker strategy, the computations take more than five times longer than with the JFNK
methods. So in both cases, the use of the Eisenstat-Walker strategy leads to a speedup,
although it is less pronounced for the JENK methods. Thus, the JENK method is faster
than the method of Newton-type, meaning that the fastest method is the JENK method
with the Eisenstat-Walker strategy. This can be attributed to a number of factors playing
together.

First, as just demonstrated, the JFNK method has a larger convergence radius than
the method of Newton type. This means that the control that causes the time step to
be repeated with a smaller time step when Newton’s method fails the tolerance test after
the maximal number of iterations, kicks in less often and actually leads to larger possible
time steps. Second, the JFNK method is second order convergent, needing less Newton
steps, thus being more efficient and having again the same effect as the first issue. Third,
the Eisenstat Walker strategy reduces the tolerance at which the linear systems are solved.
This is good in itself, since it leads to less Krylov subspace iterations, but there is an added
benefit when using GMRES: Since GMRES needs more storage and more computational
effort with every iteration, it is extremely fast for small tolerances. Finally, we have seen
in the last section that GMRES in the JFNK context works better if we avoid restarting.
This is achieved if the tolerances are such that GMRES terminates before the maximal
dimension of the Krylov subspace is reached.

142 CHAPTER 5. SOLVING EQUATION SYSTEMS

Chapter 6

Preconditioning linear systems

As discussed in the last chapter, the speed of convergence of Krylov subspace methods
depends strongly on the matrix. Unfortunately, matrices arising from the discretization of
PDEs are typically such that Krylov subspace methods converge slowly. Therefore, an idea
called preconditioning is used to transform the linear equation system into an equivalent
one to speed up convergence:

P, APzx” =P;b, x=Ppx’.

Here, P, and Py are invertible matrices, called a left respectively right preconditioner that
approximate the system matrix in a cheap way. The optimal preconditioner in terms of
accuracy is A1, since then we would just need to solve a system with the identity matrix.
However, that’s not efficient. In terms of cost, the optimal preconditioner is the identity,
which comes for free, but also has no effect on the number of iterations.

Often, the preconditioner is not given directly, but implicitly via its inverse. Then, the
application of the preconditioner corresponds to the solution of a linear equation system.
If chosen well, the speedup of the Krylov subspace method is enormous and therefore, the
choice of the preconditioner is more important than the specific Krylov subspace method
used.

Preconditioning can be done very easily in Krylov subspace methods. Every time a
matrix vector product Av; appears in the original algorithm, the right preconditioned
method is obtained by applying the preconditioner Pz to the vector v; in advance and then
computing the matrix vector product with A. For left preconditioning the preconditioner
is applied afterwards instead. Hence, left preconditioned GMRES works in the Krylov
subspace

Ki(PA,rY) = span{r) PArl, .. (PA)'rl},

whereas the Krylov subspace generated by right preconditioning is
K1(AP, 1) = span{rg, APry, ..., (AP)*'ry}.

143

144 CHAPTER 6. PRECONDITIONING LINEAR SYSTEMS

Note that right preconditioning does not change the initial residual, because

I’OZbO—AXOZbO—APRX(I)D,

therefore the computation of the initial residual can be done without the right precondi-
tioner. However, when the tolerance criterion is fulfilled, the right preconditioner has to
be applied one last time to change back from the preconditioned approximation to the
unpreconditioned. On the other hand, a left preconditioner has to be applied once initially,
but not afterwards. This means that left preconditioning changes the residual.

For nonnormal matrices as we have here, the crucial properties that determine the speed
of convergence are the pseudospectra that were introduced by Trefethen [199]. Unfortu-
nately, for the matrix dimensions considered here, these cannot be computed in reasonable
time. Furthermore, there exist only a few analytical results about the matrices appearing
in compressible flow. Therefore, the preconditioner has to be chosen by numerical experi-
ments and heuristics. An overview of preconditioners with special emphasis on application
in flow problems can be found in the book of Meister [141] and the study in the context of
compressible flow by Meister and Vémel [143].

6.1 Preconditioning for JFNK schemes

Regarding preconditioned versions of the Jacobian free matrix vector product approxima-
tion ([5.47)), we obtain for left preconditioning

PAq~ P (E(u +€q) — E(u)) 6.1)

€

whereas for right preconditioning we have

APq ~ F(u+ ¢Pq) - E(E). 6.2)

€

Thus, preconditioning can be implemented in exactly the same way as for the case with
Jacobian. However, the construction of the preconditioner becomes a problem, since we do
not have a Jacobian anymore. In fact, while the JENK scheme as presented so far can be
implemented into an existing code with little extra work and in particular, no new data
structures, it is here that things can become complicated. Regarding this, there are two
approaches:

1. Compute the Jacobian nevertheless, then compute the preconditioner and store that
in place of the Jacobian

2. Use preconditioners that need only parts of or no part of the Jacobian, thus leading
to extremely low storage methods.

6.2. SPECIFIC PRECONDITIONERS 145

The first strategy still reduces the storage needed by one matrix compared to the case with
Jacobian. It is for example necessary when using ILU preconditioning. The second strategy
severely limits the set of possible preconditioners. Jacobi would be one example, since this
just uses the diagonal. Another example would be multigrid methods with appropriate
smoothers, in particular Jacobi or Runge-Kutta smoothing.

6.2 Specific preconditioners

6.2.1 Block preconditioners

As discussed in section the matrix we are concerned with is a block matrix and if this
structure is respected by the preconditioner, the convergence speed is increased. This is
done by interpreting all methods if possible as block methods with an appropriately chosen
block size. The main difference of preconditioners for finite volume methods as opposed to
discontinuous Galerkin methods is the size of the blocks, which is significantly larger for
DG schemes. This makes an efficient treatment of the blocks imperative for a successful
implicit DG scheme, whereas it is only beneficial for a finite volume scheme.

In the case of the DG-SEM method, there are different block sizes that can be used
(compare figure . First of all, there are the small blocks corresponding to one degree
of freedom which are of the same size as the number of equations, namely d + 2. Then,
this can be increased to include all degrees of freedom in x;-direction, leading to a block
of size (d +2)(p+ 1). Of course, the xo direction can be included as well, until if also
the x3 direction is included the block corresponds to all the unknowns in one cell. For
the modal-nodal DG scheme, we later suggest the ROBO-SGS method, which exploits the
specific block structure of the hierarchical basis.

6.2.2 Splitting-methods

The splitting methods explained in the last chapter, although inferior to Krylov subspace
methods for the solution of linear systems, turn out to provide useful preconditioners. They
were based on the splitting

A= (A-B)+B,
giving rise to the fixed point method (5.12)):

x*) = (1-B'A)x® + B~ 'b.

Thus, they are based on approximating A~! via the matrix B. Therefore, B can be used
as a preconditioner. In particular the symmetric block Gauss-Seidel-method (SGS) is a
very good preconditioner for compressible flow problems. One application of SGS as a
preconditioner to the vector q corresponds to solving the equation system (see (5.14))

146 CHAPTER 6. PRECONDITIONING LINEAR SYSTEMS

(D+L)D'(D+U)x =q. (6.3)

For the purpose of preconditioning, one iteration is completely sufficient. The blocks of L
and U can be computed when required one at a time, so it is not necessary to store the
complete matrix. Only the diagonal blocks which appear several times are computed in
advance and stored.

Another simple choice for a splitting method would be Jacobi-preconditioning, corre-
sponding to P = D! (see [5.15)), where we need only the diagonal blocks, thus reducing
the cost of applying the preconditioner and a preconditioner that is simple to implement.
However this rarely pays, since the approximation of A is just not good enough.

A common technique to improve the efficiency of a splitting related preconditioner is
relaxation, which corresponds for SGS to:

m(D +wL) D' (D +wU)x =q.

Unfortunately, it is difficult to find a choice of w that leads to consistently better results
and significant speedup can not be expected.

6.2.3 ROBO-SGS

In [23], the low-memory SGS preconditioner with a reduced oftblock order (ROBO-SGS)
is suggested for use with modal DG schemes. This exploits that the basis is hierarchical in
that for the off-diagonal blocks L and U in , only the parts corresponding to a lower
order discretization are computed, see figure [6.1, The number of entries of the off-diagonal

Py P 2 bo by b,
Po { / \ / \ } Py Po { } Po
b, by P b,
2 \ / \ / b, P, b,
(a) p =0 variant (b) p =1 variant

Figure 6.1: Reduced versions of the off-block Jacobians, p = 0 and p = 1 variants

blocks in the preconditioner is then N -(d + 2) x N -(d 4 2), where N is the dimension

6.2. SPECIFIC PRECONDITIONERS 147

of the lower order polynomial space of order p chosen for the off-diagonal blocks. We
denote the corresponding preconditioner as ROBO-SGS-p, for example ROBO-SGS-1 is
the SGS preconditioner where in the off diagonal blocks, only the terms of order one and
zero are considered. Thus, the unknowns whose contributions are incorporated into the
preconditioner have a physical meaning even for low orders.

While this results in a decreased accuracy of the preconditioner, the memory require-
ments and the computational cost of the application become better, the less degrees of
freedom of the neighboring cells one takes into account. We consider the significant savings
in memory to be even more important for 3D simulations since there memory is usually
the main limitation for high order DG schemes.

6.2.4 ILU preconditioning

Another important class of preconditioners are block incomplete LU (ILU) decompositions,
where the blocks correspond to the small units the Jacobian consists of. A thorough
description can be found in the book of Saad [169]. The computation of a complete LU
decomposition is quite expensive and in general leads to a dense decomposition, also for
sparse matrices. By prescribing a sparsity pattern, incomplete LU decompositions can be
defined, which consist of an approximate factorization LU ~ A. The larger the sparsity
pattern, the better the approximation and the more powerful the preconditioner, but the
more expensive are application and computation. The application of such a decomposition
as a preconditioner is done by solving by forward-backward substition the corresponding
linear equation system.

Given a sparsity pattern M C {(i,7)|i # j,1 <i,7 < m}, the algorithm can be written
as

e Fork=1..m—1

o fori=k+1,...,mandif (i,k) ¢ M

® Wik, = Qi A,

. for j=k+1,...,mandif (:,5) ¢ M
b Qij = Qij — Qik L

. end for

° end for
e cnd for

The question remains, how the sparsity pattern should be chosen. A widely used strat-
egy is the level of fill [, leading to the preconditioner ILU(l). The level of fill is a recursively
defined measure for how much beyond the original sparsity pattern is allowed: Using the

148 CHAPTER 6. PRECONDITIONING LINEAR SYSTEMS

sparsity pattern of A corresponds to level 0. The sparsity pattern for level 1 is obtained by
computing ILU(0), multiplying the corresponding L and U matrices and using the nonzero
entries of that product. Level 2 is obtained by computing ILU(1), multiplying the corre-
sponding matrices and so on. For the purpose of memory allocation, these patterns can
be determined in advance based on the sparsity pattern of A. Those decompositions with
higher levels of fill are very good black box preconditioners for flow problems, see for ex-
ample the study [I§]. However they also have large memory requirements. Thus remains
ILU(0), which has no additional level of fill beyond the sparsity pattern of the original
matrix A.

Another widely used method is ILUT, where the T stands for drop tolerance. There,
the sparsity pattern is determined on the fly, by dropping an entry in the LU factorization,
if it is below a drop tolerance e. This leads to a preconditioner with a good compromise
between accuracy and efficiency. However, the implementation is much more difficult, due
to the variable sparsity pattern.

Note that as GS and SGS, the ILU depends on the ordering of the unknowns, as does its
performance. This is because the ordering of unknowns changes the amount of fill-in of the
exact LU decomposition and thus also the errors introduced by the ILU. Strategies to do
this are for example reverse Cuthill-McKee ordering [169], as well as the physical reordering
suggested for SGS in [143]. There, unknowns are renumbered along planes normal to the
flow direction, thus the numeration partly reflects the physical flow of information.

6.2.5 Multilevel preconditioners

Another possibility is to use linear multilevel schemes as preconditioners. Using nonlinear
schemes as preconditioners is covered in the next subsection. First of all, the linear multigrid
methods as described in section can be applied. Then, the multi-p-method can be
applied to the linear problem. Finally, there are other generalizations of multigrid methods
to multilevel ideas, for example algebraic multigrid. All of these can be applied in the
Jacobian-free context by replacing the matrix vector products in the algorithm with the
finite difference approximation and furthermore, if the coarse grid problem is defined by
the coarse grid discretization, instead of a somehow transformed fine grid matrix.

In the finite volume context, this has been analyzed in [I36] and found to be competitive
when compared to FAS multigrid or using Newton with Multigrid as a linear solver. A
number of approaches have been tried in the context of DG methods, e.g. multigrid methods
and multi-p methods with different smoothers (see [148, 137] for steady Euler flows), as
well as a variant by Persson and Peraire [I57], where a two-level multi-p method is used
with ILU(0) as a postsmoother.

More precise, they suggest a slightly different method than the linear multigrid described
earlier:

1. Restrict right hand side b

2. Solve coarse scale problem for approximation of solution

6.2. SPECIFIC PRECONDITIONERS 149

3. Prolongate solution
4. Apply smoother to residual and correct solution
We propose to use the more classic variant with presmoothing, which can be written as
1. Apply presmoothing
2. Restrict residual b — Ax
Solve coarse scale problem for approximation of error

Prolongate error

A

Correct solution

6.2.6 Nonlinear preconditioners

If there is an already existing nonlinear multigrid code with dual time stepping for unsteady
flows, it seems natural to use that method as a preconditioner in a JFNK method ,
since this gives a low storage preconditioner at no additional implementation cost. This
approach was first tried for steady problems by Wigton, Yu and Young in 1985 [223], later by
Mavriplis [136] and then for unsteady problems by Bijl and Carpenter [16]. In [26] and [25],
Birken and Jameson analyze the use of general nonlinear solvers as preconditioners. This
section follows these two articles. It turns out that the use of nonlinear left preconditioning
alters the equation system in a nonequivalent way, leading to a stall in Newton convergence.

Left Preconditioning

Following Mavriplis, we define the nonlinear preconditioner for the Jacobian-free method
via

~P7'F(u) :=N(u) - u. (6.4)

Here, N(u) is some nonlinear method for the solution of the original nonlinear equation
F(u"™) = 0, for example FAS multigrid. The definition is motivated by noticing that
—F(u) is the right hand side of the linear system in a Newton iteration at iterate u (compare
(5.40)). Thus, —P~'F(u) should be defined such that it approximates Au. Now, u + Au
is supposedly a better approximation of u™™! than u, as is N(u), therefore N(u) — u is a
reasonable approximation of —P~!'F(u).

Since N is nonlinear, we expect P~! to be changing with every step, so the space in
which the Krylov subspace method works would be

xg + span{P; 'ro, P 'APyro, P, AP AP, 1y, ...}

This is in general not a Krylov subspace. However, for the Jacobian-free method we
have the following result:

150 CHAPTER 6. PRECONDITIONING LINEAR SYSTEMS

Lemma 1 In the Jacobian-free sense, the left preconditioned operator is linear and is given

by
ON
P 'Aq=(I-— : 6.5
q (6g> E(k)q (6.5)
The preconditioner is given by
N
P! = (I — 0_) A
Ju u(k)

Proof: We have for the preconditioned Jacobian-free matrix vector product

P 'F(u® + eq) - P'F(u®)
: .

P 'Aq=

Inserting (6.4) into the above equation, we obtain

1 ~N@u® + eq) + u® + eq + N(u®) — u® N(u® + eq) — N(u®)
P Aq= =q-— :
€ €

In the Jacobian-free sense, this is nothing but . The representation of the precon-
ditioner is obtained by reformulating the equation. [

Thus, while the preconditioner is nonlinear, it behaves as if it were a linear operator
and may be applied to any Krylov subspace method without changes. We will now use the
formulation to look more closely at the properties of the preconditioner. In particular,
it becomes clear that the preconditioned operator I — %_1:|u(k) is not necessarily better than
A as far as convergence is concerned. For the special case of the dual time stepping method,
the preconditioner is equal to the original value plus an update from the multigrid method:
N(u) = u+ MG(u). We thus obtain

[ON OMG
Cdu Ou
If the dual time stepping stalls, for example because we are near a steady state, this is close
to zero and may be ill conditioned and thus hinder convergence.
More importantly, the problem is that the preconditioned right hand side is off. In
the current method, the definition of the preconditioner is applied when computing the

preconditioned right hand side:
_P—lF(u(k)) — N(H(k)) —u®,

But, as we just saw, the correct approach would be to apply (6.5]), resulting in

- (I - a—N> AT'F(u®) = (I - %_N) Au® =yt _y® - Naym ()

ou u

We thus obtain the following theorem:

6.2. SPECIFIC PRECONDITIONERS 151

Theorem 10 The nonlinear left preconditioned method changes the right hand side in the

Newton method in a nonequivalent way.

This theorem says that even if the nonlinear left preconditioner increases the conver-
gence speed of the Krylov subspace method, it changes the behavior of Newton’s method.
Since it is the right hand side that determines the limit of the Newton iteration, we cannot
expect fast convergence of the nonlinear iteration anymore. In fact, the numerical evidence
shows that it leads to a stall in convergence of the nonlinear iteration. This is demonstrated
in figure (left), where the convergence curve during one time step for steady inviscid
flow around a NACAQ0012 profile at Mach 0.796 is shown. The grid was a 192 x 32 C-mesh.

In figure (right), this is shown for one system arising from the simulation of a
two dimensional flow around a cylinder, just before the onset of turbulence. To be more
precise, the code used was a modification of UFLO 103 of Jameson, the grid was a 512 x 64
C-type grid, the Reynolds number was 100.000 and the Mach number 0.25. As can be
seen, the left preconditioned method leads to a stall of Newton convergence, whereas the
unpreconditioned method results in fast convergence.

10 w w w w 10

)
)
T

Nonlinear Res.
=
o
Kl
Nonlinear Res.
[~
o
»

=
o

—6—GCR : : ——GCR
3 —&— GCR Left 4 —&—GCR Left
i i i T 10 i i i T
0 2 4 6 8 10 0 2 4 6 8 10
Iterations Iterations

10

Figure 6.2: Nonlinear residual over Newton iterations for steady inviscid flow (left) and
unsteady viscous flow around a cylinder (right). The change of the right hand side by the

nonlinear left preconditioning leads to a stall of the convergence of Newton’s method.

Note that this cannot be fixed easily since u**" is an unknown. One approach would
now be to approximate the right hand side of , but the most reasonable approximation
is u® and then we would end up with a zero right hand side and no update for the Newton
iteration.

152 CHAPTER 6. PRECONDITIONING LINEAR SYSTEMS

Right Preconditioning

Alternatively we can use the nonlinear preconditioner in the context of right preconditioning
and obtain

APlq~ PP Ta) ~ Pl
€
which means that before applying A, we have to apply the preconditioner to q. In the

nonlinear case the following problems occur:

1. GMRES uses basisvectors of the solution space, thus these vectors correspond to Au.
However, the FAS multigrid does not work on differences of solutions, but on the
solution vector u, therefore, it cannot be used.

2. Since P~! might be variable, we do not really know what the proper backtransforma-
tion would be to transform the preconditioned solution back to the unpreconditioned
space.

The second problem is solved by the flexible GMRES method (FGMRES) of Saad
[168], which allows to use a different preconditioner in every iteration. However, since
FMGRES is just a slight modification of GMRES, it still has the first problem. Both
problems are solved by GMRES-* [205] of van der Vorst and Vuik, which allows nonlinear
right preconditioning, there the * represents the right preconditioner. Thus, we could have
GMRES-SGS or GMRES-DTS (for Dual Time Stepping). GMRES-* is mathematically
equivalent to GCR, which is in the fixed preconditioner case mathematically equivalent
to GMRES. The preconditioner in GMRES-* is applied by replacing the line p, = ry in
the GCR algorithm with the application of the preconditioner to the residual r; and the
storing of the result in the search direction pg. Thus, the preconditioner works with residual
vectors and nonlinear right preconditioning is applied via:

P lr, ~ P'Fu® 4+ x,,) = u® +x,, - Nu® +x,,), (6.7)
which is motivated by remembering that
OF
r, = Ax,, —b=Fu®) + — (u*) —u®) = F(u® + Xpm).
LY NE)

This is a truly nonlinear method, which does not have the same problem as the left pre-
conditioner of changing the right hand side of the Newton scheme.

The residual history of left and right preconditioning for different test cases is shown in
figure [6.2.6] The same test cases as above were used, where the system solved is that from
the first Newton iteration. As can be seen, the left preconditioner improves the convergence
speed in the unsteady case, but not in the steady case. There, N(u) is close to the identity.
The right preconditioner on the other hand, which does not lead to a stall in the Newton
iteration, also does not improve the convergence speed much. In the case of steady flow,
it even leads to a loss of speed of convergence. We conclude that this type of nonlinear
preconditioning is not advisable.

6.2. SPECIFIC PRECONDITIONERS 153

L TP GCR
............................. oo| 7B GCR Left
.......... | =2 GMRES-DTS

Linear Res.
-
o

0 10 20 30 40 50
Iterations

Figure 6.3: Linear Residual versus Iteration number for one linear system of unsteady

viscous flow (left) and steady inviscid flow (right).

6.2.7 Other preconditioners

There is a multitude of other preconditioners that have been suggested over time. One
example are polynomial preconditioners. There, it is used that if p(I — A) < 1, the inverse
of A can be represented by its Neumann series

AT =D "1-AF
k=0
Thus,
P=) I-A)F (6.8)
k=0
or more generally
P=> 0,I-A)f (6.9)
k=0

with ©; € R can be used as a preconditioner.

Furthermore, there are physical preconditioners that use the discretization of simpler
problems that still incorporate core issues of stiffness like low Mach numbers, diffusion or
grid induced stiffness to define a preconditioner [154]. Here, it is important to include the
sources of stiffness, as for example using the Euler equations to define a preconditioner
does not lead to a fast method. This is because in this case, the simplified model is less
stiff than the approximated model, the Navier-Stokes equations.

Other ideas would be the use of the Alternate Direction Implicit (ADI) splitting for
structured grids [3] or the SPAI preconditioner aimed at parallel computations [76].

154 CHAPTER 6. PRECONDITIONING LINEAR SYSTEMS

6.2.8 Comparison of preconditioners

We will now compare the effect of different preconditioners on the convergence behavior
of Krylov subspace methods for a single system. Since this does not take into account the
performance of the overall solution scheme for an unsteady flow problem, we cannot say
what the best preconditioner is. Appropriate results will be discussed in the next chapter.

We first analyze the influence of ordering on convergence. To this end, we consider the
flow around a cylinder at Mach 10. We solve this using the in house FV code TAU_2D on
a grid with 20994 point, thus we have 83976 unknowns. We solve the first system when
using the implicit Euler method with CFL = 2.0 with ILU preconditioned Jacobian-free
GMRES and GMRES. As can be seen in figure [6.4] the physical renumbering leads to a
small, but noticable increase in convergence speed for the case with a Jacobian, but doesn’t
change much for the Jacobian-free case, where we have to remember that the linear system
solved in that case is the second order system, being more difficult. For other cases with
smaller Mach numbers, the physical renumbering strategy has no effect.

v ILU
O ILU-ren.
O JF-ILU
A JF-ILU-ren.
o~ q0°
— Al
) fal
I
= AN
— [a}
S &g
10_10 o a)
v © & =] a
O Ei
0 5 10 15
Iteration

Figure 6.4: Effect of physical renumbering.

To evaluate the effect of using different preconditioners for finite volume schemes, we
considere the wind turbine problem and solve it using the in house FV code TAU_2D.
We solve the first system when using the implicit Euler method. In figure |6.5] we can see
that Jacobi preconditioning has essentially no effect on the convergence speed, in fact it is
barely able to lead to a speedup at all. By contrast, ILU preconditioning increases conver-
gence speed by more than a factor of two. As before, for the more difficult system with
CFL = 20, even the ILU preconditioned scheme needs a significant number of iterations.
However, note that for engineering accuracies of 1072 or 107°, ILU is able to prevent a
restart.

For the case of DG methods in parallel, we compare Jacobi, ILU, ILU-CSC and ROBO-
SGS-0 till ROBO-SGS-4 for a 5th order polymorphic modal-nodal discretization of the
sphere vortex shedding problem [A.3] We use eight CPUs in a domain decomposition

6.2. SPECIFIC PRECONDITIONERS

DA

WM O GMRES-Jacobi
A GMRES(25)

X GMRES(25)-ILU
{ GMRES(25)-Jacobi

155

Figure 6.5: Comparison of different preconditioners for FV. CFL=5 (left) and CFL=20

(right).

fashion, as explained in section [7.3|
Newton scheme for the first nonlinear system during the first time step of an ESDIRK4
time integration scheme with a time step size of At = 0.065. As a solver, Jacobian-Free
GMRES(20) is employed. The relative residuals are shown in figure [6.6]

|[res|| 2

10

10

10°

10

—4—None
-=-Jacobi
++ROBO-SGS-0
*-ROBO-SGS-1
&-ROBO-SGS-2
—~<-ROBO-SGS-3
—-ROBO-SGS-4
-ILU

©-1LU-CSC

10

20

30
lteration

40 50

Figure 6.6: Comparison of different preconditioners for DG discretization.

The system solved is the first system arising in the

As can be seen, the most powerful preconditioner is ILU-CSC, then ILU. The, we have
ROBO-SGS-4, which is almost as powerful, and then the other ROBO-SGS preconditioner
in decreasing order. As expected, Jacobi is the least powerful preconditioner. Regarding
efficiency, the most powerful preconditioner is not necessarily the best one. This is discussed

in section

156 CHAPTER 6. PRECONDITIONING LINEAR SYSTEMS

6.3 Preconditioning in parallel

When doing computations in a parallel hardware environment, a number of things about
preconditioners have to be rethought. In particular, GS, SGS and ILU are inherently
sequential methods in that some parts of the computations can be carried out only after
some other parts. This is not the case for Jacobi and it is also not the case for multigrid
methods, provided the smoothers are appropriately chosen. For example, Runge-Kutta
smoothers work well in parallel, whereas SGS obviously does not.

However, this behavior can be fixed by using a domain decomposition approach for the
preconditioner. This means that the spatial domain is decomposed into several connected
subdomains, each of which is assigned to one processor. The preconditioner is then applied
locally. When using this approach, care has to be taken since the performance of SGS
and ILU in particular depend on the choice of subdomains. The details of how to apply a
domain decomposition method will be explained in the next chapter.

6.4 Sequences of linear systems

In the context of unsteady flows, we always have a sequence of linear systems with slowly
varying matrices and right hand sides. To obtain an efficient scheme, it is mandatory
to exploit this structure. One example for this was the idea of the simplified Newton
method, where the Jacobian is not recomputed in every time step. Since setup costs of
preconditioners are often high, it is necessary to abstain from computing the preconditioner
for every matrix in the sequence. Instead, one of the following strategies should be used.

6.4.1 Freezing and Recomputing

The most common strategy is to compute the preconditioner for the first system and
then use it for a number of the following system (freezing), for example by defining a
recomputing period [, in that after [time steps, the preconditioner is constructed again.
Often, the preconditioner is frozen completely either from the beginning or after a number
of time steps [143]. For ILU and Jacobi preconditioning, this is a natural thing, but for
SGS, we have another choice. There, it is possible to store only the diagonal and compute
the off diagonal blocks on the fly, implying that they have to be computed anew for every
system. Alternatively, if storage is not a problem, the off diagonal blocks can be stored,
allowing to use freezing and recomputing as a strategy.

6.4.2 Triangular Preconditioner Updates

An idea that aims at reusing information from previous linear systems are preconditioner
updates. The technique we base our updates on was suggested originally by Duintjer

6.4. SEQUENCES OF LINEAR SYSTEMS 157

Tebbens and Tuma in [52]. It was then reformulated and refined for block matrices [22, 21]
and later put into the JFNK context [53]. This strategy has the advantage that it works for
any matrix, is easy to implement, parameter-free and with only a small overhead. However,
it requires storing not only the matrix and an ILU preconditioner, but also a reference
matrix with a reference ILU preconditioner, which means that the storage requirements
are high. Nevertheless, it is a powerful strategy if storage is not an issue and has been
applied also outside of CFD with good results [218]. This section follows [22].

In addition to a system Ax = b with a block ILU(0) (BILU(0)) preconditioner P =
LDU = LUp, let A™xT = b™ be a system of the same dimension with the same sparsity
pattern arising later in the sequence and denote the difference matrix A — A" by B.
We search for an updated block ILU(0) preconditioner P* for A*x*t = b*. Note that this
implies that all matrices have the same sparsity pattern and thus, after a spatial adaptation,
the scheme has to be started anew.

We have

IA—P| =[AT— (P -B)|,

hence the level of accuracy of PT = P—B for A" is the same, in the chosen norm, as that of
P for A. The updating techniques from [52] are based on the ideal updated preconditioner
PT = P — B. If we would use it as a preconditioner, we would need to solve systems
with P — B as system matrix in every iteration of the linear solver. For general difference
matrices B, these systems would be too hard to solve. Therefore, we will consider cheap
approximations of P — B instead.

Under the assumption that P—B is nonsingular, we approximate its inverse by a product
of triangular factors which are easier to invert. In particular, we will end up with using
either only the lower triangular or the upper triangular part of B. First, we approximate
P—-Bas

P-B=L(Up - L 'B) ~ L(Up — B), (6.10)
or by
P-B=(LD-BU YU~ (LD -B)U. (6.11)

Next we replace Up — B or LD — B by a nonsingular and easily invertible approximation.
Following [22], we use

UD —B~x thZU(UD — B),

or
LD — B ~ btril(LD — B),

where btriu and btril denote the block upper and block lower triangular parts (including
the main diagonal), respectively. Putting the two approximation steps together, we obtain
two possible updated preconditioners in the form

P* = L(Up—btriu(B)) (6.12)

and
P* = (LD-btril(B))U. (6.13)

158 CHAPTER 6. PRECONDITIONING LINEAR SYSTEMS

These can be obtained very cheaply. They ask only for subtracting block triangular parts
of A and A" (and for saving the corresponding block triangular part of A). In addition,
as the sparsity patterns of the factors from the BILU(0) factorization and from the block
triangular parts of A (and A™) are identical, both backward and forward substitution with
the updated preconditioners are as cheap as with the frozen preconditioner LUp = LDU.

Regarding the distance of the updated preconditioners (6.12)) and to the ideal
preconditioner, we can deduce from the two approximations we make, that it is mainly
influenced by the following two properties. The first is closeness of L or U to the identity.
If matrices have a strong diagonal, the diagonal dominance is in general inherited by the
factors L and U [I5] [14], yielding reasonable approximations of the identity. The second
property is a block triangular part containing significantly more relevant information than
the other part.

Summarizing, one may expect updates of the form (6.12) or (6.13) to be accurate
whenever btril(B) or btriu(B) is a useful approximation of B and when the corresponding
second factor L or U is close to the identity matrix. The following lemma from [22]
suggests that under the circumstances mentioned, the updates have the potential to be
more accurate than the frozen or any other (possibly recomputed) preconditioner for A*.
This lemma is formulated for updates of the form , where we use the lower part of
B; a similar statement can be obtained for updates of the form .

Lemma 2 Let ||A — LDU|| = ¢||A|| < ||B|| for some ¢ > 0. Then the preconditioner
from satisfies

[U][[bstriu(B)| + [[U = L] [B]| + [|All
B —el[A]l

AT =P < -[[AT — LDU]|, (6.14)

where bstriu denotes the block strict upper triangular part.

This result is a straightforward modification of Lemma 2.1 in [52]. Having a reference
preconditioner LDU which is not too weak we may assume that ¢||A]| is small. Then
the multiplication factor before [|[AT — LDU|| in is dominated by the expression
HUH% + ||U —1I||, which may become smaller than one when btril(B) contains
most of B and when U is close to the identity matrix. It is possible to show that also
the stability of the updates benefits from situations where btril(B) contains most of B and
where U is close to identity. In our context, the stability is measured by the distance of
the preconditioned matrix to the identity. This conforms to the treatment of the stability
in [38].

The next result from [22] is more specific to the situation we are interested in here. It
presents a sufficient condition for superiority of the update in the case where the frozen
preconditioner is a BILU(0) factorization. It is again formulated for the update , but
has, of course, an analogue for (6.13). The matrix E denotes the error E = A — LDU of
the BILU(0) preconditioner and || - || stays for the Frobenius norm.

6.4. SEQUENCES OF LINEAR SYSTEMS 159

Lemma 3 Let

5 — Mbtril(B)A = U)|lr (2 B — bstriu(B) || + |fotril(B)L = U)llr) _
btril(B)]% '

Then the accuracy ||AT — (LD —btril(B))U||r of the updated preconditioner is higher
than the accuracy of the frozen preconditioner |AT — LDU||% with

|A* — (LD—btril(B)U|x < \/||A* — LDUJ2 — (1 — p)[otril(B)|3. (6.15)
Proof: We have, by assumption,

|A* — (LD—btril(B))U|% |A — LDU — B+btril(B)U|)%
= ||E—bstriu(B) + btril(B)(I — U)||%
< (|E = bstriu(B) || ¢ + ||btril(B)(I — U)|)

= ||E — bstriu(B)||% + p||btril(B)]|3.

Because the sparsity patterns of B and E are disjoint,
|E — bstriu(B)|[7 + [|btril(B)|[7 = [|E[% + Bl = [|[E — B[= |[AT — LDU]|%.
Hence
[E—bstriu(B)|[% + pllotril(B) |7 = [|A* — LDUJ% — (1 — p)|btril(B)][3

OJ

With (6.15), the value of p may be considered a measure for the superiority of the
updated preconditioner over the frozen preconditioner. However, interpretation of the
value of p is not straightforward. We may write p as

- (i U)HF)2 , IE = bstriu(B)||r 616
[btril(B)|| [otril(B)[|7 '
where the ratio il (BYI — U
Jotril (B)(1 - V) | .

|btril(B)|| ¢

shows a dependence of p on the extent to which btril(B) is reduced after its postmultipli-
cation by (I — U). This is something slightly different from the dependence of the quality
of the update on the closeness of U to identity. In general, also the second term in (6.16)
should be taken into account; only when the lower triangular part clearly dominates and
when LDU is a powerful factorization, one may concentrate on . Computation of p
is not feasible in practice because of the expensive product in ||btril(B)(I — U)||r but it
offers some insight in what really influences the quality of the update. As the proof of the

160 CHAPTER 6. PRECONDITIONING LINEAR SYSTEMS

lemma uses only one inequality, one may expect to be a tight bound. We confirm
this later by numerical experiments.

We will now describe how to apply updated preconditioners in the solution process. A
first issue is the choice between and . We can use some of the previous lemmas
to make this choice but we prefer simpler strategies. In [22], three different criterias are
suggested.

The first is called the stable update criterion and compares the closeness of the factors
to identity, keeping the factor that is closest to the identity, which leads to more stable back
and forward substitutions. This is done by comparing the norms ||L —I|| and |U —1I||. If
the former norm is smaller, then we update the upper triangular part of the decomposition
via (6.12), whereas if, on the contrary, U is closer to identity in some norm, we update the
lower triangular part according to .

As a second criterion we compare ||btril(B)|| and ||btriu(B)||. We assume the most
important information is contained in the dominating block triangular part and therefore
we update with if btriu(B) dominates btril(B) in an appropriate norm. Otherwise,
(6.13)) is used. This rule is denoted by information flow criterion.

The third criterion is the unscaled stable update criterion. It is motivated by considering
that using the update is straightforward but in order to obtain U and to apply
we need to scale Up by D1, Scaling with inverse block diagonal matrices does have, in
contrast with inverse diagonal matrices, some influence on overall performance and should
be avoided if possible. Note that our stable update criterion compares ||L —1I|| with ||U -1
where both factors L and U have a block diagonal consisting of identity blocks. This means
that in order to use the criterion we need to scale Up, even if the criterion decides for
and scaling would not have been necessary. This possible inefficiency is circumvented by
considering Up and LD instead of U and L . More precisely, we compare |D — Up|| with
ILD — D

A related issue is the frequency of deciding about the update type based on the chosen
criterion. On one hand, there may be differences in the performance of and ;
on the other hand, switching between the two types implies some additional costs like, for
instance, storage of both triangular parts of B. Consequently, the query is used only directly
after a recomputation of the BILU(0) decomposition, which takes place periodically. The
chosen type of update is then used throughout the whole period. With the information flow
criterion we compare ||btril(B)|| with ||btriu(B)|| for the first difference matrix B generated
after recomputation, i.e. just before solving the system following the system for which we
used a new BILU(0) decomposition. For the two stable update criteria we may decide
immediately which update type should be used as soon as the new BILU(0) decomposition
is computed. Note that as soon as the update type is chosen, we need to store only one
triangular part of the old reference matrix A (and two triangular factors of the reference
decomposition).

As another tweak, we do not start the updating right away after a recomputation of
the frozen preconditioner. This is because in the sequence of linear systems it may happen
that several succeeding system matrices are very close and then the frozen preconditioner

6.4. SEQUENCES OF LINEAR SYSTEMS 161

should be powerful for many subsequent systems. Denote the number of iterations of the
linear solver needed to solve the first system of the period by itery. If for the (5 + 1)st
system the corresponding number of iterations iter; satisfies

iter; > iterg + 3, (6.18)

where the threshold 3 is chosen heuristically, we start updating.

6.4.3 Numerical results

50 ‘
! .
ol |7 No Updating
g %: — Updating
T
E¥ 0
o
<N I
w2075 ‘ r 1‘L‘
- R I I
Q IR AN
@ ,
10“ I H‘ ‘,‘ j‘ ;L‘ “\‘.” 1‘ * ‘
ol ol AAA AL T
0 L L L
0 100 200 300 400 500
Timestep

Figure 6.7: BiCGSTAB iterations over timesteps for a cylinder at Mach 10 (left) and

pressure isolines (right).

We now compare the triangular updates to freezing and recomputing for a model prob-
lem, namely a steady Mach 10 2D Euler flow hitting a cylinder. 3000 steps of the implicit
Euler method are performed. In the beginning, a strong shock detaches from the cylinder,
which then slowly moves backward through the domain until reaching the steady state
position. Therefore, the linear systems are changing only very slowly during the last 2500
time steps and all important changes take place in the initial phase of 500 time steps. The
grid consists of 20994 points, whereby only a quarter of the domain is discretized, and
system matrices are of dimension 83976. The number of nonzero entries is about 1.33 - 10°
for all matrices of the sequence. For the initial data, freestream conditions are used. The
initial CFL number is 5, which is increased up to 7 during the iteration. All computations
were performed on a Pentium IV with 2.4 GHz. The code used is the in house 2D flow
solver TAU_2D. The solution is shown in figure [6.7]

As the flow is supersonic, the characteristics point mostly in one direction and therefore,
renumbering leads to a situation where we obtain a matrix with a dominant triangular

162 CHAPTER 6. PRECONDITIONING LINEAR SYSTEMS

i | ||JA® —LDU|f | |[A® —P@ || | Bound from (6.15) | p from (6.15
2 37.454 34.277 36.172 0.571
3 37.815 34.475 36.411 0.551
4 42.096 34.959 36.938 0.245
5 50.965 35.517 37.557 0.104
6 55.902 36.118 38.308 0.083

Table 6.1: Accuracy of the preconditioners and theoretical bounds

part. Lemmas |2/ and |3 suggest that the updated preconditioner is influenced favorably by
this. In figure [6.7] the effect of preconditioner updates on the number of Krylov iterations
is compared to a periodic recomputation strategy. As subsequent linear systems change
heavily, frozen preconditioners produce rapidly increasing numbers of BICGSTAB iterations
(with decreasing peaks demonstrating the convergence to steady state). Updating, on the
other hand, yields a nearly constant number of iterations per time step. The recomputing
period here is thirty and the criterion used is the stable update criterion but other periods
and criteria give a similar result. With freezing, 5380 BiCGSTAB iterations are performed
in this part of the solution process, while the same computation with updating needs only
2611 iterations.

In Table we explain the superior performance of the updates with the quantities
from Lemma (3] for the very first time steps; they demonstrate the general trend for the
whole unsteady phase. Here, P denotes the update for the ith linear system. As
the upper bound on the accuracy of the updates is very tight, we conclude that in
this problem the power of the updates is essentially due to the small values of p.

The performance of the updates for the whole sequence is displayed in Table [6.2] To
evaluate the results, first note that the reduction of the BICGSTAB iterations happens
primarily in the first 500 time steps. After 500 time steps, freezing is a very efficient
strategy and actually gains again on updating. The different updating strategies lead to
nearly identical results, whereby the stable update criterion is the best, except for one
period. As expected, the update criterions all choose to update the lower triangular part
according to , as the upper triangular part is close to identity due to the numbering
of the unknowns and the high Mach number. Therefore, they all obtain the same iteration
numbers. Updating is clearly better than freezing if the recomputing period is at least 20.
The CPU time is decreased by about 10 % in general; with the recomputing period 50 it
reaches up to 20 %. For high recomputing periods, the number of iterations is reduced
by even more than 20 %. If the ILU decomposition would have been recomputed in every
step, only 11099 BiCGSTAB iterations would be needed, but 28583 seconds of CPU time.

For recomputing periods of 30 or greater, the performance of the updating strategy

6.5. DISCRETIZATION FOR THE PRECONDITIONER 163

Freezing/Recomp. Stable update Unscaled stable update | Information flow

Period | Iter. | CPUins | Iter. | CPU in s || Iter. CPU in s Iter. | CPU in s
10 10683 7020 11782 7284 11782 7443 11782 7309
20 12294 6340 12147 6163 12147 6300 12147 6276
30 13787 7119 12503 5886 12503 5894 12503 5991
40 15165 6356 12916 5866 12916 5835 12916 5856
50 16569 6709 13139 5786 13139 5715 13139 5740

Table 6.2: Total iterations and CPU times for supersonic flow example

does not much depend on the period, meaning that the solver becomes more robust in its
behavior with respect to the specific choice of the updating period.

When considering different test cases, we see that the triangular updates are less power-
ful than for this example, if the flows are very steady. Nevertheless, the updating strategy is
roughly as efficient as freezing and recomputing, even for test cases where it should perform
bad, like steady low Mach number flows.

6.5 Discretization for the preconditioner

The other question, besides which specific preconditioner to use, is, which discretization we
base the computation of the blocks on. In the finite volume case, the Jacobian computed
is based on the first order discretization in the first place. Now, one advantage of JFNK
schemes is that the flux function can be changed easily without a need to reprogram a Ja-
cobian. However, this is no longer the case when an ILU preconditioner is used. Therefore,
one idea is to base the computation of the preconditioner on a fixed flux function, thus
regaining this advantage of JENK schemes. In [132], the van Leer flux-vector splitting is
used for the preconditioner, as then the blocks can be computed quite efficiently. By con-
trast, the Jacobian of the AUSMDYV or HLLC flux is extremely complicated and expensive
to compute.

In figure the convergence of ILU(0) preconditioned JENK-GMRES, where the pre-
conditioner is based on the same flux function as used for the discretization, is compared
to the case where a different discretization is used. Furthermore, the results of the scheme
with Jacobian are shown. More precise, the in house 2D-FV code TAU_ 2D is used with
the AUSMDYV flux and the computation of the Jacobian is based on AUSMDYV or the van
Leer flux vector splitting. The problem considered is the wind turbine test case and
we show the result of the first time step of an implicit Euler calculation with CFL = 5.

164 CHAPTER 6. PRECONDITIONING LINEAR SYSTEMS

As can be seen, the method with mismatched discretizations is only slightly slower than
its counterpart. This means that this strategy can be used to simplify the implementation
of implicit schemes.

100 P I I I v AUISMDV
O VLFVS
o O JF-AUSMDV
A JF-VL-FVS
9 a
(a] s 5]
— 10
3 ©
L.
© o |
10" o
Q

20 40 60 80 100
Iteration

Figure 6.8: Effect of discretization of preconditioner.

Chapter 7

The final schemes

Putting the methodology from the last chapters together, we obtain two prototype schemes,
a Rosenbrock type scheme and a DIRK type scheme. In the Rosenbrock type schemes, at
each stage of the time integration method, a linear system has to be solved, where the
matrix is frozen during a time step, whereas the right hand sides are changing. On the
other hand, for the SDIRK type scheme, at each stage of the time integration method, a
nonlinear system has to be solved, meaning that we obtain a sequence of linear systems
with slowly varying right hand sides and matrices.

All of these schemes need tolerances, termination criterias and parameters. It is imper-
ative to choose these such that accurate schemes are obtained, but it is also important to
avoid oversolving and thus obtain efficient schemes. This is rarely discussed in the CFD
context, see for example [109] for FV schemes and [104] for DG schemes. We will now
collect the results on this documented so far in this book and give reasonable choices that
lead to efficient schemes. The core problem here is to find good values for parameters where
the existing mathematical results are not guidance enough. In particular, good parameters
are problem dependent and different parameters are connected via feedback loops. As an
additional goal, there should be as few user defined parameters as possible. At best, we
would end up with just one parameter, namely the tolerance for the time integration error
error, from which everything else would be determined.

As a further problem, it is difficult to make fair efficiency comparisons of different
schemes, because a lot depends on the actual implementation, the test case chosen and
also the tolerance we are interested in. It is clear that it is not sufficient to look at the
number of Newton iterations needed or the number of time steps chosen. In particular,
time step rejections due to a failure in inner convergence change the picture. Also, the
impact of a preconditioner cannot be measured in how much it reduces the number of
linear iterations, since we have to consider the setup and application cost as well.

For these reasons, we will consider two measures of efficiency, namely the total CPU
time and the total number of matrix vector multiplications, which would be equal to the

165

166 CHAPTER 7. THE FINAL SCHEMES

total number of GMRES iterations. Here, total means that we measure this for a complete
time integration process from tg till ¢.,4. The latter indicator is independent of the imple-
mentation and of the machine, but does not take into account all the overhead from the
Newton iteration, setting up the preconditioner, etc. Furthermore, since GMRES iterations
become more costly during one GMRES run, the same number of GMRES iterations for
two runs does not mean the same when in a different context of Newton iterations. On
the other hand, the CPU time takes these overheads into account, but depends on the
machine, the implementation and what else is going on on the machine at a certain point.
Nevertheless, the two together give a good assessment of efficiency.

7.1 DIRK scheme

For a DIRK scheme that uses a Newton-Krylov method for the solution of the appearing
nonlinear systems, there are three loops where termination criterions and controls need to
be defined: The time integration scheme, the nonlinear solver and the linear solver. In
the time integration scheme with error tolerance 7, we have the embedded error estimation
based on (4.32) and (4.37)). The error estimator might lead to a rejection of time steps,
but as discussed, this is not necessary. For the method to solve the nonlinear system,
termination is tested using either or with a tolerance, chosen to be 7/5.

As shown in section [5.11], if the time step is chosen too large, Newton’s method diverges
and the same is true of other methods. Therefore, it is imperative to reject a time step if a
tolerance test was failed or if a maximal number of iterations has been reached. In the code
SUNDIALS [92], the time step is repeated with At, /4. Of course, the choice of division by
four is somewhat arbitrary, but since the original time step was chosen by the time error
estimator, a possible decrease by two will lead to an increase by the factor f,,., in the next
step, which is typically chosen to be two. Therefore, it often happens that in this way,
the next time step is rejected again due to the same problems in the nonlinear solver. A
division by four leads to less overall rejections and thus to a more efficient scheme.

As an additional tweak, we terminate the computation if the time step size is below a
certain threshhold to avoid a computation stalling with ever tinier time steps.

The linear systems are then solved using a preconditioned Jacobian-free GMRES scheme,
where the tolerance is chosen by the Eisenstat-Walker strategy, resulting in a second order
convergent inexact Newton scheme. This was shown to be the fastest option in section
(.11} If the approximate solution of the linear system still fails the tolerance test after a
maximal number of iterations, nothing is done except performing another Newton step.

Another important question is the maximal number of Newton steps allowed before a
time step is rejected. To get an idea of a reasonable choice, we use TAU 2D with ESDIRK4,
ILU preconditioning and the wind turbine problem with 10 s of simulation time for
different tolerances. As initial time step size, At = 7.23349 - 10e—4 is chosen, corresponding
to a CFL number of ten. The results are shown in table [Z.1]

First of all we can see that there is a large variance in performance with regards to

7.1. DIRK SCHEME 167

Newton Steps 1071 1072 1073
Iter. CPUin s | [ter. CPUin s | [Iter. CPU in s
15 62,784 24,819 | 134,365 | 50,891 | 139,568 | 51,139
20 113,782 | 37,662 97,964 32,675 | 140,542 | 45,903
25 114,526 | 37,373 | 116,694 | 36,887 | 158,018 | 49,133
30 96,654 28,907 | 124,390 | 38,064 | 157,818 | 48,449
35 122,387 | 35,905 | 177,412 | 53,714 | 270,918 | 80,036
40 139,973 | 40,201 | 173,602 | 49,655 | 205,378 | 61,044
45 204,970 | 57,619 | 211,810 | 59,471 | 206,275 | 61,197
50 219,252 | 62,589 | 279,497 | 78,129 | 272,123 | 79,489

Table 7.1: Effect of different maximal number of Newton iterations on time adaptive ES-

DIRK4 calculation.

this parameter and that the feedback loop of rejection a time step when the Newton loop
does not terminate is highly nonlinear. This is because choosing a large number leads to
very large time steps with nonlinear systems that take overly long to solve, whereas a small
number in a way leads to a bound on the maximal possible time step. Nevertheless, there
are two trends visible. First, allowing a too large maximal number of Newton iterations
decreases performance. In addition to the reason just mentioned, this is because at some
point, more Newton steps only increase the amount of time spent in diverging Newton
iterations. Second, setting this too low is also not a good idea, because time step rejections
are very inefficient. We need rejections in case of a diverging Newton methods, but if the
maximal number of iterations is too low, this implies that convergent Newton iterations
will be cut off causing smaller time steps than necessary. Thus, a number of roughly 30
maximal Newton iterations seems to be reasonable.
All in all, we obtain the following algorithm:

e Given error tolerance 7, initial time ¢y and time step size Aty, the number of stages s
e Forn=20,1,... do

— Fori=1,..,s
x Compute new right hand side

x Compute initial guess for Newton scheme

x For k=0, 1,... until either (5.8)) or (5.9)) with tolerance 7/5 is satisfied or
kE =MAX_NEWTON_TER

168 CHAPTER 7. THE FINAL SCHEMES

- Determine relative tolerance for linear system solve via ([5.44)
- Solve linear system using preconditioned GMRES

— If MAX_NEWTON_ITER has been reached, but the tolerance test has not been
passed, repeat time step with At,, = At, /4

— Estimate local error and compute new time step size At,.; using (4.32)) and
(#.37)

— If At,1 < 1072°, ABORT computation
— tpp1 =1 + Atn

7.2 Rosenbrock scheme

For Rosenbrock schemes, the algorithm becomes easier because there is no Newton scheme
and thus one loop less. Nevertheless, we have to define tolerances for the linear systems.
Furthermore, similar to the control when the nonlinear solver does not terminate in the
SDIRK case, we need to handle the situation when the linear solver does not terminate.
Another problem is that with the Rosenbrock methods considered here, it may happen that
a result obtained in between or after the time step is unphysical. If this happens, meaning
that the norm of the new function evaluation is NaN, we repeat the time step with At,, /4.

Regarding the choice of solver, we have to keep in mind that there is no Newton scheme
involved and therefore, the choice of scheme has to be reassessed. To this end, we use the
wind turbine test case for ten seconds of simulation time and ROS34PW2, as well as
RODASP with an initial time step of At = 3.61674 - 10e — 4. The linear systems are solved
using ILU preconditioned GMRES up to a tolerance of TOL/100. The total number of
GMRES iterations and the CPU times can be seen in table [.2l

First of all, the schemes with a tolerance of 107! do not converge in the sense that
at some time t, the time steps start to get rejected due to NaN appearing and the time
integration does not progress anymore. To check if this is due to the linear systems not
being solved accurately enough, we repeat the runs and solve the linear systems up to
machine accuracy. For ROS34PW2 and the scheme with a first order Jacobian, this leads
to an even earlier stall at ¢t = 200.311s, whereas the scheme finishes when using Jacobian-
free GMRES after 19,266 s of CPU time needing 73,887 GMRES iterations. In the case of
RODASP as time integration scheme, solving the linear systems more accurately does not
help.

Apparently we are facing a stability problem, since the main difference resulting from
the smaller tolerances are the smaller time steps. This could be a loss of A-stability, which
occurs in a ROW-method if the approximation of the Jacobian used is too far away from
the Jacobian or some additional nonlinear stability problem. Note that in the study on
incompressible flows by John and Rang [102], a Jacobian is computed and kept fix during
a time step.

7.2. ROSENBROCK SCHEME 169

ROS34PW2 RODASP
Tolerance 1st order Jac. | JF-GMRES | 1st order Jac. | JF-GMRES
1071 Time of stall 200.157 202.157 200.783 205.884
L0 Iter. 353,421 73,750 368,400 178,361
CPU in s 81,159 21,467 95,552 52,503
10-3 Iter. 427,484 105,647 Div. 240,744
CPU in s 105,707 32,923 78,162

Table 7.2: Efficiency of ROS34PW2 and RODASP if the linear systems are solved based
on a first order Jacobian or using the Jacobian-free GMRES; linear systems are solved up
to TOL/100. For the coarsest tolerance, the time of stall of the time integration scheme is

mentioned instead.

Table furthermore shows that the Jacobian-free scheme is significantly faster than
the scheme with 1st order Jacobian. This deserves further comment. The main reason
the JFNK method was faster than the scheme with first order Jacobian in the DIRK
context was that the first one acchieves second order convergence with a large radius of
convergence, whereas the latter one is only first order convergent with a small radius of
convergence. Both of these points are irrelevant for the Rosenbrock scheme. Therefore, two
different aspects should come to the fore: The finite difference approximation is more
expensive than a matrix vector product and GMRES with matrix has a faster convergence
behavior. Indeed, after about ten time steps of ROS34PW2 with TOL = 1072, the iteration
count of the scheme with first order Jacobian is 326, whereas it is 1643 for the Jacobian-free
scheme.

However, since the scheme with first order Jacobian solves the wrong linear system at
each stage, it incurs larger time integration errors, leading to an average time step of about
1072 and needing 7,847 time steps in total to reach the final time. Conversely, the scheme
with the Jacobian-free matrix-vector multiplication allows an average time step of about
107! and needs only 124 time steps to reach the final time. This implies that the first order
Jacobian is not a good approximation of the second order Jacobian.

Finally, we obtain the following flow diagram for the Rosenbrock type schemes:

e Given error tolerance 7, initial time ty and time step size Atg, the number of stages s
e Forn=20,1,... do

—Fori=1,..,s

x Compute new right hand side

170 CHAPTER 7. THE FINAL SCHEMES

+x HEstimate initial guess

* Solve linear system using a preconditioned Krylov subspace method with
relative tolerance 7/5.

— If ||f(w,41)]| =NaN, repeat time step with At,, = At, /4.
— Estimate local error and compute new time step size At,.; using (4.33]) and

(#.37)

— If At < 1072°, ABORT computation
— tpy1 =1l + Atn

7.3 Parallelization

The obvious way of performing parallel computations in the context of the method of
lines is to divide the spatial domain into several parts and to assign the computations
involving variables from each part to one core. This should be done in a way that minimizes
necessary computations betweens domains. Several ways of obtaining such partitions exist
and software that does so can be obtained freely, for example the parMETIS-package [107]
which is used here.

Thus we use shared memory parallelization and this is done using the MPI standard,
with either the MPICH [1] or the openMPI [194] implementation. The parallel computa-
tions considered here are not on massively parallel cluster or on GPUs but on standard
multicore architectures.

7.4 Efficiency of Finite Volume schemes

To test finite volume schemes, we use the TAU_2D flow solver with the AUSMDYV flux and
linear reconstruction using the Barth limiter.

In section [5.11], we compared different variants of Newton’s method and saw that the
JFNK method with the Eisenstat-Walker strategy to determine the tolerances in the GM-
RES method was by far the most efficient. This does not take into account the case of
Rosenbrock schemes. We will now look at the different preconditioners available, where
the preconditioner is recomputed every 30 time steps. To this end, we use the time adap-
tive ESDIRK4 scheme with 30 maximal Newton iterations and a starting time step of
At = 7.23349 - 10e — 4, which corresponds to CFL=10. As a test case, we consider again
the wind turbine problem for a time interval of 10 seconds. The results can be seen in
table[7.3] As can be seen, ILU reduces the total number of GMRES iterations by a factor of
three to six and is two or three times faster than the code without preconditioning. Block
Jacobi is only beneficial for larger tolerances and not very powerful, meaning that Jacobi
is not a worthwhile preconditioner for finite volume schemes.

7.4. EFFICIENCY OF FINITE VOLUME SCHEMES 171

Tolerance None | Jacobi ILU
L1 Iter. 319,089 | 473,692 | 96,654
CPUin s | 55,580 | 90,981 | 28,701

L0-2 Iter. 586,013 | 576,161 | 124,390
CPU in s | 102,044 | 111,775 | 39,056

103 Iter. 833,694 | 642,808 | 157,818
CPU in s | 142,606 | 124,901 | 48,419

Table 7.3: CPU times and iteration numbers for the ESDIRK4 scheme for different pre-

conditioners.

Tolerance SDIRK2 | SDIRK3 | ESDIRK3 | ESDIRK4
Lo-1 Iter. 72,707 57,703 68,598 96,654
CPU in s 21,593 19,041 20,736 28,576
102 Iter. 54,622 61,042 89,983 124,390
CPU in s 17,367 21,699 28,377 38,064

ROS34PW2 | RODASP

102 Iter. 73,750 178,361

CPU in s 21,467 52,503

Table 7.4: CPU times and iteration numbers for different time integration schemes.

We now consider different time integration schemes. To this end, we consider the wind
turbine test case for a time interval of 10 seconds and different tolerances. The DIRK
schemes all use Jacobian-free GMRES, the Eisenstat-Walker strategy, a maximal number
of 30 Newton steps and ILU preconditioning. Furthermore, we consider RODASP and
ROS34PW2 with Jacobian-free GMRES, which were shown not to work for the coarse
tolerance previously in this chapter. In table [7.4] we can see the total number of GMRES
iterations and the CPU times in seconds for the various schemes. The fastest is SDIRK?2,
then comes SDIRK3, ROS34PW2, ESDIRK3 and ESDIRK4, the worst scheme is RODASP.
On the example of SDIRK2, we can see the phenomenon of computational instability
[180], meaning that for adaptive schemes, smaller errors not necessarily lead to larger
computational cost. In this particular case, SDIRK2 reduces the time step to 1078 via 28
failures to terminate Newton in a row. The reason ESDIRK4 performs so badly is that the
time steps chosen are so huge that the nonlinear systems cannot be solved anymore, leading

172 CHAPTER 7. THE FINAL SCHEMES

to frequent rejections. The explicit method RK2 needs 40,221 seconds of CPU time.

7.5 Efficiency of Discontinuous Galerkin schemes

7.5.1 Polymorphic Modal-Nodal DG
We first consider the polymorphic modal-nodal method described in section with

different preconditioners. To this end, we use a fixed time integration scheme, namely
ESDIRK4, which has proven to be a very good DIRK method. After that, we compare
different time integration schemes for the preconditioner found best by the first tests.

As a test case, we use vortex shedding behind a 3D sphere [A.3] the code is HALO3D,
developed at the University of Stuttgart. The relative and absolute error tolerance in the
time integration scheme is 1072 and the nonlinear systems are solved using the Jacobian-
Free inexact Newton scheme with the Eisenstat-Walker strategy and GMRES. Since storage
is a problem, we allow a maximal Krylov subspace dimension of 20.

For the first time step, we chose At = 0.0065, from then on the steps are determined
by the time adaptive algorithm. This time step size was chosen such that the resulting
embedded error estimate is between 0.9 and 1, leading to an accepted time step. Then, we
perform the computations on a time interval of 30 seconds. The initial solution and the
result at the end when using ESDIRK4 time integration with a tolerance of 10~ are shown
in figure , where we see isosurfaces of lambda2=—10"%, a common vortex identifier
[101]. Note that there is no optical difference between the results for ESDIRK4 and the
LTSRKCK procedure described in section [4.9.1]

Preconditioner Iter. | CPU in s | Memory in GB
None 218,754 | 590,968 16.8
Jacobi 23,369 90,004 17.4

ROBO-SGS-0 | 18,170 77,316 17.4

ROBO-SGS-1 | 14,639 66,051 19.0

ROBO-5GS-2 | 13,446 76,450 24.2

ROBO-SGS-3 | 13,077 87,115 32.1

ROBO-SGS-4 13,061 100,112 43.8

ILU 12,767 | 108,031 43.8
ILU-CSC 11,609 | 127,529 43.8

Table 7.5: Efficiency of preconditioners for DG.

7.5. EFFICIENCY OF DISCONTINUOUS GALERKIN SCHEMES 173

We now compare the use of different preconditioners in table [7.5] The computations
were performed in parallel using 8 CPUs. There, the preconditioners are ordered by how
powerful we expect them to be, since Jacobi can be seen as the most extreme variant
of ROBO-SGS where no information from neighboring cells is taken into account. Thus,
as expected from figure the total number of GMRES iterations decreases from no
preconditioning to Jacobi to ROBO-SGS-0 up to ROBO-SGS-4, then ILU and then ILU-
CSC. The first thing that can be see is that by contrast to the finite volume case, Jacobi
is a powerful preconditioner. Regarding ROBO-SGS, the decrease is strongest for the first
two orders, namely when the constant and the linear part of the solution are taken into
account. Consequently, the method of this class with the minimal CPU time is ROBO-
SGS-1. Regarding storage, the increase in storage is nonlinear with increasing orders, where
ROBO-SGS-4 takes into account the full off diagonal block and thus needs the same amount
of storage as ILU, which is more than double as much as ROBO-SGS-1. This demonstrates
again the huge size of the blocks of the Jacobian in a DG scheme and why it is so important
to find a way of treating these in an efficient way. Furthermore, it explains why Jacobi is
actually a good preconditioner.

When comparing ROBO-SGS to ILU, we see that both ILU and ILU with the coarse
scale correction are more powerful preconditioners with ILU-CSC being the overall best
preconditioner. However, this does not pay in terms of CPU time and thus the overall best
preconditioner is ROBO-SGS-1.

43494

" [>—ROBO-5GS-2
—8-Opt. scaling

19831}

10260}

5500F

CPUins

3605}
2488}

A))))
1 3 6 12 24 48
Processors

Figure 7.1: Parallel efficiency of ROBO-SGS-1.

Now, we demonstrate the strong parallel scaling of ROBO-SGS-1, meaning the scaling
of solution time with the number of processors for a fixed problem size. To this end, we
use the initial conditions from above, but compute only until t.,; = 133 and use a fourth

174 CHAPTER 7. THE FINAL SCHEMES

order method. This saves storage and allows to use the Twelve-Quad-Core machine from
the finite volume part. As can be seen in figure [7.1] the scaling trails off for more than
12 processors. This is roughly the number of processors where the number of unknowns
per core drops below 50,000, since we have 740,000 unknowns for this problem. Thus, this
behavior is not unexpected.

Scheme Iter. | CPU in s | Memory in GB
LSERK4 - 346,745 16.3
RKCK - 80,889 22.9
SDIRK3 | 22,223 110,844 19.0
ESDIRK3 | 14,724 73,798 19.0
ESDIRK4 | 14,639 66,051 19.0
ROS34PW2 | 60,449 239,869 19.0

Table 7.6: Efficiency of time integration schemes for modal-nodal DG.

Finally, we compare different implicit time integration schemes when using ROBO-SGS-
1 as a preconditioner with two explicit methods. The results are shown in table [7.6] As
can be seen, the explicit scheme LSERKA4 is by far the slowest with about a factor of five
between ESDIRK4 and LSERK4. Thus, even when considering that a fourth order explicit
scheme is probably overkill for this problem, the message is that explicit Runge-Kutta
methods are significantly slower than implicit methods for this test case. Furthermore, the
local-time stepping RKCK scheme is about 20% slower than ESDIRK4. Note that for this
test case, the time step of the explicit scheme is constrained by the CFL condition and not
the DFL condition. Therefore, it can be expected that for higher Reynolds number and
finer discretizations at the boundary, the difference in efficiency is even more significant.

When comparing the different implicit schemes, we can see that SDIRKS is significantly
slower than the ESDIRK methods, wheras ESDIRK3 is competitive with ESDIRK4. The
worst scheme is the Rosenbrock method, which chooses time steps that are significantly
smaller than those of the DIRK methods, which is in line with the experiences from the
finite volume case.

7.5.2 DG-SEM

Finally, we consider the second type of DG schemes discussed in the discretization chapter,
namely DG-SEM, see [3.8.2] To this end, we consider vortex shedding behind a cylinder in
three dimensions at Reynolds number 500 and solve this using the code Strukti, developed
at the University of Stuttgart. The result after 1 second of real time for a sixth order
scheme on an 8 x 8 x 1 grid can be seen in figure [7.2]

7.5. EFFICIENCY OF DISCONTINUOUS GALERKIN SCHEMES 175

Figure 7.2: |v| around a cylinder at Re 500 after 1 second real time.

To compare efficiency, we use ESDIRK3 with ILU preconditioning and classical Runge-
Kutta. The implicit method turns out to be three time slower than the explicit one for
a parallel run on 8 processors, even though the time step is 50 times higher. The major
difference to the modal-nodal scheme is that due to the nonhierarchic basis, ROBO-SGS
cannot be applied. Since the size of the blocks for this scheme is even larger than for the
modal-nodal scheme, the class of problems for which implicit schemes are more efficient
than explicit ones becomes smaller. Thus, more research needs to be put into finding
efficient preconditioners for this type of schemes.

176 CHAPTER 7. THE FINAL SCHEMES

Chapter 8

Thermal Fluid Structure Interaction

One example where the computation of unsteady flows often plays a crucial role is fluid-
structure interaction. This can happen in different ways. First of all, aerodynamic forces
can lead to structural displacement, leading to different forces and so on. The prime
example for this are aeroelastic problems, for example flutter of airfoils or bridges or the
performance of wind turbines [59]. Second, heat flux from a fluid can lead to temperature
changes in a structure, leading to different heat fluxes and so on.

This is called thermal coupling or thermal fluid structure interaction. Examples for this
are cooling of gas-turbine blades, thermal anti-icing systems of airplanes [33] or supersonic
reentry of vehicles from space [139, O1]. Another application, which will serve as the
main motivating example, is quenching, an industrial heat treatment of metal workpieces.
There, the desired material properties are achieved by rapid cooling, which causes solid
phase changes, allowing to create graded materials with precisely defined properties.

For the solution of a coupled problem, two general approaches can be distinguished.
In a partitioned or staggered approach [59)], different codes for the sub-problems are used
and the coupling is done by a master program which calls interface functions of the other
codes. This allows to use existing software for each sub-problem, in contrast to a monolithic
approach, where a new code is tailored for the coupled equations. In the spirit of this book
to use flexible components, while still obtaining efficient high order results, we will follow
a partitioned approach. We will now explain how the framework of time adaptive higher
order implicit methods described so far can be used for efficient solution of thermal coupling
problems.

8.1 Gas Quenching

Gas quenching recently received a lot of industrial and scientific interest [I71), 89]. In
contrast to liquid quenching, this relatively new process has the advantage of minimal

177

178 CHAPTER 8. THERMAL FLUID STRUCTURE INTERACTION

environmental impact because of non-toxic quenching media and clean products like air
[189]. Furthermore it is possible to control the cooling locally and temporally for best
product properties and to minimize distortion by means of adapted jet fields, see [173].

To exploit the multiple advantages of gas quenching the application of computational
fluid dynamics has proved essential [6, 189, 126]. Thus, we consider the coupling of the
compressible Navier-Stokes equations as a model for air, along a non-moving boundary
with the heat equation as a model for the temperature distribution in steel.

8.2 The mathematical model

The basic setting we are in is that on a domain Q; C R? the physics is described by a
fluid model, whereas on a domain Q, C R?, a different model describing a structure is
used. A model consists of partial differential equations and boundary conditions, as well as
possibly additional algebraic equations. The two domains are almost disjoint in that they
are connected via an interface. The part of the interface where the fluid and the structure
are supposed to interact is called the coupling interface I' C ©; U Qg, see figure 8.1 Note
that I' might be a true subset of the intersection, because the structure could be insulated.
At the coupling interface I', coupling conditions are prescribed that model the interaction
between fluid and structure. For the thermal coupling problem, these conditions are that
temperature and the normal component of the heat flux are continuous across the interface.

Figure 8.1: Illustration of an FSI problem. The domains §2; and {2, meet at an interface,

part of that is the coupling interface T'.

We model the fluid using the Navier-Stokes equations (2.15)), written in compact form
as

8.3. SPACE DISCRETIZATION 179

u + V-f(u) = V-f(u, Vu). (8.1)

Additionally, we prescribe appropriate boundary conditions at all parts of the boundary of
Q1 except I'.

Regarding the structure model, heat conduction is derived from Fourier’s law, but de-
pending on the application, additional equations for thermomechanical effects could and
should be included [88]. Here, we will consider heat conduction only. Hler. For steel,
we have temperature-dependent and highly nonlinear specific heat capacity cp, heat con-
ductivity A and emissivity. However, we assume that there is no temperature dependence
and that heat conductivity is isotropic to obtain the linear heat equation for the structure
temperature O(x,t)

p(x)en O 1) = ~V - a(x,1), (8.2)

where

q(x,t) = —=AVO(x,1)

denotes the heat flux vector. On the boundary, we have Neumann conditions q(x, t) - n(x) =
(%, 1).

Finally, initial conditions for both domains, ©(x,ty)) = Oy(x), u(x,ty) = ug(x) are
required.

8.3 Space discretization

Following the partitioned coupling approach, we discretize the two models separately in
space. For the fluid, we use a finite volume method, leading to

d
dt

Regarding structural mechanics, the use of finite element methods is ubiquitious. There-
fore, we will also follow that approach here and use linear finite elements, leading to the
linear equation for all unknowns on €2,

M%@(t) +KO(t) — g(u(t)) = 0. (8.4)

Here, M is the heat capacity and K the heat conductivity matrix. The vector ® consists

of all discrete temperature unknowns and q(u(t)) is the heat flux vector in the structure.

The coupling conditions have to be enforced implicitely via appropriate boundary con-

ditions on I' at time ¢,,.1, meaning that we do not know the correct boundary conditions

beforehand. Therefore, an iterative Dirichlet-Neumann coupling is employed, as explained
in the next section.

180 CHAPTER 8. THERMAL FLUID STRUCTURE INTERACTION

8.4 Coupled time integration

A number of articles devoted to the aspect of time integration for fluid-structure interaction
problems have been published. In [I33], energy conservation for a problem from aeroelastic-
ity is analyzed using the implicit midpoint rule in a monolithic scheme. Already in [13], [43],
it is suggested to use an explicit high order Runge-Kutta scheme for both subproblems with
data exchange at each stage. Due to the explicit nature, the resulting scheme has severely
limited time steps. The order of coupling schemes on moving meshes is analyzed in [77],
but only convergence of first order is proved for p-th order schemes. Furthermore, the
combination of higher order implicit Runge-Kutta schemes for problems on moving meshes
is explored in [209] for the one dimensional case and in the subsequent paper [210] for 3D
calculations. There, so called explicit first stage, singly diagonally implicit Runge-Kutta
schemes (ESDIRK) are employed and higher order in time is demonstrated by numerical
results.

Now, as explained before, if the fluid and the solid solver are able to carry out time
steps of implicit Euler type, the master program of the FSI procedure can be extended to
SDIRK methods very easily, since the master program just has to call the backward Euler
routines with specific time step sizes and starting vectors.

If time adaptivity is added, things become slightly more complicated, because in formula
, all stage derivatives are needed. Therefore, these have to be stored by the master
program or the subsolvers. We choose the latter, is applied locally and the error
estimates are reported back to the master program. Furthermore, if the possibility of
rejected time steps is taken into account, y, has to be stored as well. Accordingly, the
possibilities to achieve higher order accurate results are opened. This approach was first
suggested in [28] and the rest of this chapter follows that article.

To comply with the condition that temperature and heat flux are continuous at the
interface I'; a so called Dirichlet-Neumann coupling is used. Namely, the boundary condi-
tions for the two solvers are chosen such that we prescribe Neumann data for one solver
and Dirichlet data for the other. Following the analysis of Giles [68], temperature is pre-
scribed for the equation with smaller heat conductivity, here the fluid, and heat flux is
given on I' for the structure. Choosing the conditions the other way around leads to an
unstable scheme. Convergence of this approach has been proved for a system of coupled
heat equations. However, the case considered here is beyond current convergence theory
[160].

In the following it is assumed that the step size At, (or a;At,) is prescribed. To
show the global procedure at stage ¢, the starting vector of the DIRK-method is
decomposed into the fluid and solid variables, s; = {s}, S®}. According to equation ({8.3))-
the coupled system of equations

F(u;,®;) = u; — Sig — Aty a;h(w;, ©;) =0 (8.5)

has to be solved.

8.5. FIXED POINT ITERATION 181

The dependence of the fluid equations h(u;, ®;) on the temperature ©; results from
the nodal temperatures of the structure at the interface. This subset is written as @] .
Accordingly, the structure equations depend only on the heat flux of the fluid at the coupling
interface.

8.5 Fixed Point iteration

In each stage 7 the coupled system of nonlinear equations — has to be solved.
Here, a distinction has to be made between loose coupling and strong coupling approaches.
In the first approach, only one step of each solver is performed in each time step, while
the latter approach adds a convergence criterion and an inner loop. Nonlinear fixed point
methods like Block-Gauf3-Seidel and Block-Jacobi are typically used here, although also
Newton-type methods have been considered [135]. A nonlinear Gau-Seidel method reads

0 s u(y+1) (87)

7

F(u(v+1) @(1/))

T ™ ey =0 ~ el (8.8)

7

within an iteration symbolized by the iteration index (v). The starting values of the
iteration are given by ul(-o) =s; and @1(-0) = s?. The termination criterion is formulated by

the nodal temperatures at the interface of the solid structure
le; “* —e; || < TOLp;x. (8.9)

This is interpreted as a fixed point iteration. If the iteration is stopped after on step, e.g.
only one computation of (8.7)-(8.8) is carried out, this is also referred to as loose coupling,
whereas iterating until the termination criterion is fulfilled corresponds to strong coupling.
Various methods have been proposed to increase the convergence speed of the fixed
point iteration by decreasing the interface error between subsequent steps, for example
Relaxation [122] [118], Interface-GMRES [144] or ROM-coupling [213]. Relaxation means
that after the fixed point iterate is computed, a relaxation step is added:
e, "t — el vt 4 (1-w)e; .

2 3

Several strategies exist to compute the relaxation parameter w, in particular Aitken relax-
ation, which amounts to

(I‘F (u))T(rF (v+1) _ rf (u))
||I‘F (v+1) _ rr (v) ||2

Wy4+1 = —Wy

Here, we use the interface residual

L) 95 (v+1) _ @f)

182 CHAPTER 8. THERMAL FLUID STRUCTURE INTERACTION

8.6 Numerical Results

For the calculations presented here, we will use the DLR TAU-Code, version 2007.1, [66]
for the flow and the in-house code TASA-FEM for higher order time integration [86] for the
solid. TAU uses a nonlinear multigrid method to solve the appearing nonlinear equation
systems, whereas TASA-FEM uses UMFPACK [44] for the appearing linear equation sys-
tems. The technical difficulty of different programming languages (FORTRAN for TASA-
FEM and C++ for TAU) in the partitioned approach is dealt with a C++-library called
Component Template Library (CTL) [134].

8.6.1 Test case

To analyze the properties of the coupling method, we choose a test case that is as simple
as possible. The reason is that this comparably simple coupling problem is already beyond
the possibilities of current mathematical analysis, although the exact solutions for the
uncoupled problems are known. Therefore, to be able to make statements about the error
of our scheme, we need to make sure that no additional uncontrollable side effects are
present.

Accordingly, the cooling of a flat plate resembling a simple work piece is considered.
This example has also been studied by other authors [224] and |95 p. 465] in conjunction
with the cooling of structural parts in hypersonic vehicles. There, localized heating was
of special interest. In our case the work piece is initially at a much higher temperature
than the fluid and then cooled by a constant air stream. The latter is modeled in a first
approximation as a laminar flow along the plate, see figure [8.2

50 50 200 100
R AT T
o 2
— inlet outlet
— iL boundar\;/f layer !

symmetric BC .
regularization region 77 q -0 0
o 1

Figure 8.2: Test case for the coupling method

The inlet is given on the left, where air enters the domain with an initial velocity
of Ma,, = 0.8 in horizontal direction and a temperature of 273 K. Then, there are two
succeeding regularization regions of 50 mm to obtain an unperturbed boundary layer. In the
first region, 0 < o < 50, symmetry boundary conditions, v, = 0, ¢ = 0, are applied. In the
second region, 50 < x < 100, a constant wall temperature of 300 K is specified. Within this
region the velocity boundary layer fully develops. The third part is the solid (work piece)

8.6. NUMERICAL RESULTS 183

of length 200 mm, which exchanges heat with the fluid, but is assumed insulated otherwise,
q = 0. Therefore, Neumann boundary conditions are applied throughout. Finally, the fluid
domain is closed by a second regularization region of 100 mm with symmetry boundary
conditions and the outlet.

As material in the structure we use steel, where the following constant material prop-
erties are assumed: mass density p = 7836 kg/m?, specific heat capacity cp = 443 J/(kgK)
and thermal conductivity A = 48.9 W/(mK).

Regarding the initial conditions in the structure, a constant temperature of 900 K at ¢t =
0 s is chosen throughout. To specify reasonable initial conditions within the fluid, a steady
state solution of the fluid with constant wall temperature © = 900 K is computed. Thus,
we are able to compare the results with the theoretical solution of Blasius for the velocity
boundary layer and experimental results of van Driest for the temperature boundary layer
[206]. Furthermore, the grid of the fluid is refined manually until a good agreement with
these is achieved.

The grid is chosen cartesian and equidistant in the structural part, where in the fluid

(a) Entire mesh (b) Mesh zoom

Figure 8.3: Full grid (left) and zoom into coupling region (right)

region the thinnest cells are on the boundary and then become coarser in y-direction (see
figure 8.3). To avoid additional difficulties from interpolation, the points of the primary
fluid grid, where the heat flux is located in the fluid solver, and the nodes of the structural
grid are chosen to match on the interface I'.

8.6.2 Order of the method

Figure shows the temporal evolution of the temperature at two points of the coupling
interface, namely the beginning (x = 100) and the end (z = 300) of the coupling interface.
The abbreviation BE symbolizes the Backward-Euler method, whereas El corresponds to
the second order method of Ellsiepen, SDIRK2. As expected, the temperature decreases
monotonously with a large gradient in the beginning which then becomes smaller. At
t = 1 s, the temperature in the end point has dropped to 895 K. Furthermore, the tem-
perature decrease at the beginning of the solid part is much more pronounced than further
downstream, where the gas has already been heated. In other words, the heat absorption
is strongly inhomogeneous from the left to the right.

184 CHAPTER 8. THERMAL FLUID STRUCTURE INTERACTION

900 %
Ref.
895 BE (At = 0.5) —&—
BE (Ar= 0.25) —%—

N El (A7 = 0.5) —%—
©)
L
S 885
=
[P}
g 880
L

875

N I N S N

time 7 [S]

Figure 8.4: Temperature evolution at interface for different methods and time step sizes:
BE is backward Euler, El Ellsiepens method and no index the reference solution. The
upper curves correspond to the endpoint, the lower curves to the first point of the coupling

interface.

A first computation is done on a fine grid with 54600 cells in the fluid region and 6934
in the structure domain, whereas a second computation (coarse grid) is done with 9660
cells in the fluid domain and n, x n, = 120 x 9 = 1080 elements with 121 x 10 = 1210
nodes for the structure.

Since no exact solution is available, we compute reference solutions using a time step of
At, = 0.001 s. The fine grid solution is necessary to show that the coarse grid solution is
reasonable. Both solutions are obtained using the implicit Euler method using fixed point
coupling and a fixed tolerance (see next paragraph) for all involved solvers.

In the following the implicit Euler method is compared to SDIRK2. Figure [8.5| shows
the error compared to the reference solution for different time step sizes. All tolerances
(within the nonlinear multigrid solver of the fluid and the fixed point iteration of equation
(8.9)) are set to TOL = 10~7. BE-FPGS and EL-FPGS, respectively, correspond to the
implicit Euler and SDIRK2 combined with the fixed point iteration in equation .

Obviously, the implicit Euler method is of first order, whereas SDIRK2 is of higher
order. The second order is clearly seen if strong coupling is used, whereas using loose
coupling results in a decrease of the order to one.

Regarding computational effort, it is useful to measure this by the number of fixed

8.6. NUMERICAL RESULTS 185

0.01 ¢
g ImpE-FPGS —e—
- i] ImpE-GS —&—
0|« 0.001 DIRK2-FPGS —&—
=15 : ¥ DIRK2-GS
= (o)
o= -
A le-04 ¢
. o
= .
St
© le-05 ¢
i) 3
m -
le-06
0.1 1

Time step-size At, [s]
Figure 8.5: Order diagram for coarse and fine grid

point iterations needed. The EI-GS method (combination of SDIRK2 and one Gauf3-Seidel
step) needs exactly twice as much as the BE-GS method (implicit Euler method with one
GauB-Seidel step) since both take by definition only one fixed point iteration per stage.

In view of the fully converged fixed point solvers, SDIRK2 needs slightly less than
twice the effort of the implicit Euler solver. This is due to the decreased time-step in the
intermediate stages, which accounts for slightly simpler FSI-problems and, consequently,
faster convergence of the fixed point algorithms. Note that there is a fair number of methods
to accelerate convergence of the fixed point solver, which are not discussed here.

The main computational effort is in the fluid solver, for two reasons. First of all,
the number of grid cells is significantly larger than in the solid problem and there are
four unknowns per grid cell leading to a much larger system. Furthermore, the strong
temperature boundary layer leads to a significant loss of speed of convergence in the fluid
solver, which is the bottleneck in the first place.

8.6.3 Time-adaptive computations

To test the time-adaptive method, the test case from above on the coarse grid is used
again. For the iterations, namely the fixed point iteration of the coupled system and
the multigrid method in the fluid, we use a tolerance which is ten times smaller than e of
the local error estimation. Here, € := ATOL = RTOL is chosen. Results for t,,q = 1 s
with two local error tolerances ¢, = 1072 and €, = 10~* are compared with the reference
solution from the last section to make sure that the error estimator works properly.

In the first case of ¢, = 1073 the error estimator says that a time-step of 1 s is sufficient

186 CHAPTER 8. THERMAL FLUID STRUCTURE INTERACTION

to satisfy the tolerance, which is confirmed by the results from the last section. For the
second case, €, = 107%, the error estimator suggests to start with A¢, = 0.15, which is
below the At, = 0.5 obtained by the results from the last section and, accordingly, is
slightly too conservative.

Finally, a computation until ¢.,; = 30 s is carried out to compare efficiency of the time-
adaptive approach with a fixed time-step computation using At, = 1 s. The resulting
temperature isolines can be seen in figure [8.6] indicating that there is a strongly inhomo-

temperature

l875

600

'270

Figure 8.6: Iso-lines of temperature at ¢t = 30 s

geneous heat transport to the fluid from the solid in horizontal direction. Additionally, the
evolving boundary layer becomes obvious. This is also depicted in greater detail in figure
m, where the cross section of the temperature profile at the beginning (z = 100) and the
end (z = 200) of the solid is shown.

Figure 8.7: Temperature distribution in cross sections at ¢t = 30 s

As starting step size the one from the last computations is chosen. The temperature
evolution at point x = 100 of the interface for the three different computations (fixed step
size At, = 1s, tolerance ¢, = 1073, and tolerance e = 10™*) can be seen in figure 8.8, Note
that the time step control always increases the step size in the problem under consideration,

8.6. NUMERICAL RESULTS 187

Figure 8.8: Step-size behavior of the entire thermal FSI-problem (left) and temperature

evolution at interface (right).

where no external changes influence the evolution of the transient process, see figure |8.8
(left). However, for a low tolerance the step size estimation is much more restrictive.

104 fixed point iterations are needed in total for the computation with e, and 63 for the
computation with €;. If the fixed time step size is employed, 243 are needed. Since they
have the same starting step size, the low tolerance solution is less accurate than the fixed
time-step solution, but the strong tolerance solution is more accurate than the fixed time
step solution. However, the fixed time step solution needs more than twice as much fixed
point iterations as the strong tolerance solution. Thus, the adaptive method is more than
twice as efficient as the fixed time step-size method for this problem.

188 CHAPTER 8. THERMAL FLUID STRUCTURE INTERACTION

Appendix A

Test problems

A.1 Shu-Vortex

For the Euler equation, a 2D problem where the exact solution is known is the convection
of a 2D vortex in a periodic domain, which is designed to be isentropic [45]. The initial con-
ditions are taken as freestream values (poo, v1, V2., Too) = (1,v1,0, 1), but are perturbed
at to by a vortex (duvy, 0ve,dT') centered at (Z1,Z2), given by the formulas

o ~ T
ov = —%(952 — Fg)e?),
o i~ -r
052(’7 - 1) ~ —r2
T =~y (11— P,

where ¢ and « are parameters and r is the euclidian distance of a point (z1, x2) to the vortex
center, which is set at (Z1,Z2) = (0,0) in the domain [—7,7] x [-3.5,3.5]. The parameter
a can be used to tweak the speed of the flow in the vortex, whereas ¢ determines the size.
The initial solution can be seen in figure [A.1]

The functions do not provide an exact solution of the Navier-Stokes equations.
There, we have additional diffusion, which leads to a decay of the solution in time. To test
our methods, we use a structured grid with 23500 cells, which is illustrated in figure [A.2]

A.2 Wind Turbine

The second test case is a two dimensional flow around the cross section of the wind turbine
DUW-96, designed by the wind energy research initiative DUWIND of the TU Delft. The

189

190 APPENDIX A. TEST PROBLEMS

Figure A.1: Initial solution of isentropic vortex solution of the Euler equations. Density

(left) and v, (right).

osf

0.BE

0.4 K

nzpb NS

0 ANANL WA NS NGNG NN N N N W N
0 0.2 0.4 0.6 0.8 1

Figure A.2: Excerpt of grid for Shu vortex problem.

Mach number is 0.12 with an angle of attack of 40° and the Reynolds number 1,000. The
grid has 24,345 cells and is illustrated in figure

To obtain an unsteady test case, we first compute the steady state around this for an
Euler low. When starting from this solution, an immediate vortex shedding starts, which
is slow due to the low Reynolds number. The steady state solution and the ones after
30, 60 and 90 seconds of simulation time can be seen in figures [A.4] and These were
computed using SDIRK2 at a tolerance of 1072

A.3. VORTEX SHEDDING BEHIND A SPHERE 191

2000

1000

-1000

Figure A.3: Grid around wind turbine.

A.3 Vortex shedding behind a sphere

This test case is a three dimensional test case about vortex shedding behind a sphere at
Mach 0.3 and a Reynolds number of 1,000. The grid is illustrated in figure It consists
of 21,128 hexahedral cells.

To obtain initial conditions and start the initial vortex shedding, we begin with free
stream data and with a second order method. Furthermore, to cause an initial disturbance,
the boundary of the sphere is chosen to be noncurved at first. In this way, we compute 120
s of time. Then we switch to fourth order, compute another 10 s of time. From this, we
start the actual computations with a 5th order method and a curved representation of the
boundary. Thus, we have 739,480 unknowns.

192 APPENDIX A. TEST PROBLEMS

Figure A.4: Density isolines for wind turbine problem at ¢ = Os and ¢ = 30s.

Figure A.5: Density isolines for wind turbine problem at ¢ = 60s and ¢ = 90s.

193

A.3. VORTEX SHEDDING BEHIND A SPHERE

'~

Caeftinalsz

Figure A.6: Grid for sphere test case.

APPENDIX A. TEST PROBLEMS

194

Figure A.7: Isosurfaces of lambda-2=—10"* for initial (left) and final solution of sphere

problem (right).

Appendix B

Coefficients of time integration

methods
1 1
e 1/2|1/4 1/4
12 12
1/6 1/6 2/3

Table B.1: Explicit SSP methods: SSP2 and SSP3

0|0 0 0 0
1/211/2 0 0 0
12 0 12 0 0

10 0 1 0
1/6 1/3 1/3 1/6

Table B.2: Coefficients for RK4

195

196 APPENDIX B. COEFFICIENTS OF TIME INTEGRATION METHODS

) a; b;
1 0 1432997174477
9575080441755
9 | _ 567301805773 5161836677717
1357537059087 13612068292357
3 | _ 2404267990393 1720146321549
2016746695238 2090206949498
/4 | _ 3550018686646 3134564353537
2091501179385 4481467310338
5 | _ 1275806237668 2277821191437
842570457699 14882151754819

Table B.3: LSERK4 coefficients

« « 0
l-a « a=1-1+2/2
b, 1—a a a=2-2V2
by |1-a @ a—a=-1+32
bz—l;Z a—a a—a&

Table B.4: Butcher array for the method of Ellsiepen.

a = 1.2084966491760101

Y v 00

[= —0.6443631706844691
) o—v v O

v = 0.4358665215084580
1 a B~

0 = 0.7179332607542295
b; «Q B
A R 0 — v = 0.2820667392457705
b, a B 0

. a = 0.7726301276675511
bz - bz Y ~

B = 0.2273698723324489

Table B.5: Butcher array for the method of Cash.

197

0 0 0 0 0
2y g g 0 0
3/5 | 0.257648246066427 -0.093514767574886 v 0

1 0.187641024346724 -0.595297473576955 0.971789927721772 v

bi 0.187641024346724 -0.595297473576955 0.971789927721772 v

bi 0.214740286223389 -0.485162263884939 0.868725002520388 0.401696975141162

b; — b; | -0.027099261876665 -0.110135209692016 0.103064925201385 0.034169546367297
Table B.6: Butcher diagram for ESDIRK3. v = 0.435866521508459

0 0 0 0 0 0 0

2y ¥ v 0 0 0 0
83/250 0.137776 -0.055776 ¥ 0 0 0
31/50 0.144636866026982 -0.223931907613345 0.449295041586363 v 0 0
17/20 0.098258783283565 -0.591544242819670 0.810121053828300 0.283164405707806 o 0

1 0.157916295161671 0 0.186758940524001 0.680565295309335 -0.275240530995007 y

b K3

0.157916295161671

0.186758940524001

0.680565295309335

-0.275240530995007

Y

-0.319187399063579
0.043946868068572

0.273225035410765
-0.023225035410765

0.189205191660680
-0.002446251136679

0.702045371228922

0
b; 0.154711800763212 0
0 -0.021480075919587

b; —b; | 0.003204494398459

Table B.7: Butcher diagram for ESDIRK4. v = 0.25

ji 1 2 3 4

2.596814547851191 0.088302676840802
-1.625024620129419 0.347563844667657

1 | 0.203524508852533
2 | -0.015883484505809

-1.888641733544525
1.29334425996757

Table B.8: Coefficients b;; of the dense output formulas for ESDIRK3

ji‘ 1 2 3 4 5 6

0.73854539473069 -1.734975873282416
-0.551786454206689 1.984975873282416

-2.517224551339271
3.197789846648606

3.5887741459555
-3.864014676950506

1 0.924880883935497 0
2 -0.766964588773826 0

Table B.9: Coefficients bj; of the dense output formulas for ESDIRK4

198

APPENDIX B. COEFFICIENTS OF TIME INTEGRATION METHODS

v = 0.435866521508459

ap1 = 0.87173304301691801 ~21 = —0.87173304301691801 | ao; = 2 co1 = —4.588560720558085
a31 = 0.84457060015369423 ~v31 = —0.90338057013044082 | az; = 1.419217317455765 c31 = —4.184760482319161
agy = —0.11299064236484185 | 33 = 0.054180672388095326 asy = —0.259232211672970 | c3p = 0.285192017355496
G41 =0 ~v41 = 0.24212380706095346 ay1 = 4.184760482319161 c41 = —6.36817920012836
Gigo =0 ~a2 = —1.2232505839045147 agp = —0.285192017355496 | c4o = —6.795620944466837
Gg3 =1 ~43 = 0.54526025533510214 a4z = 2.294280360279042 c43 = 2.870098604331056
by = 0.24212380706095346 by = 0.37810903145819369 m1 = 4.184760482319160 M1 = 3.907010534671193
by = —1.2232505839045147 by = —0.096042292212423178 | mo = —0.285192017355497 | o = 1.118047877820503
b3 = 1.545260255335102 b3 = 0.5 m3 = 2.294280360279042 3 = 0.521650232611491
by = 0.435866521508459 by = 0.2179332607542295 my =1 g = 0.5

Table B.10: Coefficients for ROS34PW2

v = 0.25

ag1 = 0.75 v21 = —0.75 ag1 = 3.0 co1 = —12.0

&31 = 0.08612040081415375 v31 = —0.13551240081415375 | a3; = 1.831036793486770 c31 = —8.791795173947078
a3y = 0.12387959918584625 32 = —0.13799159918584625 | a3y = 0.495518396743385 c3y = —2.207865586973539
&41 = 0.77403453550732462 41 = —1.2560840048950797 ag1 = 2.304376582692655 cq1 = 10.817930568571748
G4p = 0.14926515495086924 Y42 = —0.25014471050642479 | agp = —0.052492752457437 c42 = 6.780270611428374
G43 = —0.29419969045819386 | ~43 = 1.2209287154015045 ay3 = —1.176798761832776 c43 = 19.534859446424075
&51 = 5.308746682646143 v51 = —7.0731843314206279 a5y = —7.170454962423204 c51 = 34.190950067497354
app = 1.3308921400372693 52 = —1.8056486972435724 a5y = —4.741636671481872 cso = 15.496711537259923
as3 = —5.3741378116555623 V53 = 7.7438296585713671 as3 = —16.310026313309713 | c53 = 54.747608759641373
as4 = —0.26550101102784999 | ~54 = 0.88500337009283331 as4 = —1.062004044111401 c54 = 14.160053921485337
a1 = —1.7644376487744849 v61 = 1.6840692779853733 ag1 = —7.170454962423204 ce1 = 34.626058309305947
aga = —0.47475655720630317 | ~g2 = 0.41826594361385614 agy = —4.741636671481872 ce2 = 15.300849761145031
a3 = 2.3696918469158048 v63 = —1.881406216873008 agz = —16.310026313309713 | cg3 = 56.999555786626757
a4 = 0.61950235906498332 v64 = —0.11378614758336428 | agy = —1.062004044111401 ce4 = 18.408070097930938
ags = 0.25 v65 = —0.35714285714285714 | ags = 1.0 ce5 = —5.714285714285714
by = —0.08036837078911165 by = —1.7644376487744849 m1 = —7.170454962423198 M1 = —7.1704549624232
by = —0.056490613592447036 | by = —0.47475655720630317 mo = —4.741636671481874 g = —4.741636671481875
b3 = 0.48828563004279679 b3 = 2.3696918469158048 m3 = —16.310026313309713 | 3 = —16.310026313309713
by = 0.50571621148161904 by = 0.61950235906498332 my = —1.062004044111401 My = —1.062004044111401
bs = —0.10714285714285714 bs = 0.25 ms = 1.0 s = 1.0

bg = 0.25 bg = 0.0 mg = 1.0 g = 0.0

Table B.11: Coefficients for RODASP

0] 0 0
12/23 0
-68/375 368/375

0 0
0 0
0 0

0

31/144 529/1152 125/384

Table B.12: Butcher array of the four stage CERK method

199

k| b bra brs bra
0| 1 0 0 0
1|-65/48 529/384 125/128 -1
2 | 41/72 -529/576 -125/192 1

Table B.13: Coefficients of the continous extension of the four stage CERK method

200 APPENDIX B. COEFFICIENTS OF TIME INTEGRATION METHODS

Bibliography

[1] Argonne National Laboratory. MPICH, http://www.mcs.anl.gov /research/projects/mpich2/,
last accessed on 1/7/2012.

[2] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified Analysis of Discon-
tinuous Galerkin Methods for Elliptic Problems. SIAM J. Num. Anal., 39(5):1749—-
1779, 2002.

[3] K. J. Badcock, I. C. Glover, and B. E. Richards. A Preconditioner for Steady Two-
Dimensional Turbulent Flow Simulation. Int. J. Num. Meth. Heat Fluid Flow, 6:79—
93, 1996.

[4] B. S. Baldwin and H. Lomax. Thin Layer Approximation and Algebraic Model for
Separated Turbulent Flows. AIAA Paper 78-257, 1978.

[5] D. S. Bale, R. J. LeVeque, S. Mitran, and J. A. Rossmanith. A wave propagation
method for conservation laws and balance laws with spatially varying flux functions.
SIAM J. Sci. Comput., 24(3):955-978, 2002.

[6] A. L. Banka. Practical Applications of CFD in heat processing. Heat Treating
Progress, (August), 2005.

[7] T. Barth and M. Ohlberger. Finite Volume Methods: Foundation and Analysis. In
E. Stein, R. de Borst, and T. J. R. Hughes, editors, Encyclopedia of Computational

Mechanics, volume 1: Fundame, chapter 15, pages 439-473. John Wiley and Sons,
2004.

[8] T. J. Barth and D. C. Jesperson. The Design and Application of Upwind Schemes
on Unstructured Meshes. AIAA Paper 89-0366, 89-0366, 1989.

[9] F. Bassi, A. Ghidoni, and S. Rebay. Optimal Runge-Kutta smoothers for the p-
multigrid discontinuous Galerkin solution of the 1D Euler equations. J. Comp. Phys.,
11:4153-4175, 2011.

[10] F. Bassi, A. Ghidoni, S. Rebay, and P. Tesini. High-order accurate p-multigrid dis-
continuous Galerkin solution of the Euler equations. Int. J. Num. Meth. Fluids,
60:847-865, 2009.

201

202

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

BIBLIOGRAPHY

F. Bassi and S. Rebay. Numerical evaluation of two discontinuous Galerkin methods
for the compressible Navier-Stokes equations. Int. J. Num. Fluids, 40:197-207, 2002.

R. Becker and R. Rannacher. An optimal control approach to a posteriori error
estimation in finite element methods. Acta Numerica, 10:1-102, 2001.

O. O. Bendiksen. A new approach to computational aeroelasticity. In AIAA Paper
ATAA-91-0939-CP, volume ATAA-91-09, pages 1712-1727, 1991.

M. Benzi and D. Bertaccini. Approximate inverse preconditioning for shifted linear
systems. BIT, 43:231-244, 2003.

M. Benzi and M. Tuma. Orderings for factorized sparse approximate inverse precon-
ditioners. SIAM J. Sci. Comput., 21:1851-1868, 2000.

H. Bijl and M. H. Carpenter. Iterative solution techniques for unsteady flow compu-
tations using higher order time integration schemes. Int. J. Num. Meth. in Fluids,
47:857-862, March 2005.

H. Bijl, M. H. Carpenter, V. N. Vatsa, and C. A. Kennedy. Implicit Time Integration
Schemes for the Unsteady Compressible Navier-Stokes Equations: Laminar Flow. J.
Comp. Phys., 179:313-329, 2002.

P. Birken. Preconditioning GMRES for Steady Compressible Inviscid Flows. Tech-
nical report, RWTH-Aachen, IGPM, 2002.

P. Birken. Numerical simulation of tunnel fires using preconditioned finite volume
schemes. ZAMP, 59:416-433, 2008.

P. Birken. Optimizing Runge-Kutta smoothers for unsteady flow problems. ETNA,
39:298-312, 2012.

P. Birken, J. Duintjer Tebbens, A. Meister, and M. Tuma. Updating preconditioners
for permuted non-symmetric linear systems. PAMM, 7(1):1022101-1022102, 2007.

P. Birken, J. Duintjer Tebbens, A. Meister, and M. Tuma. Preconditioner Updates
applied to CFD model problems. Appl. Num. Math., 58:1628-1641, 2008.

P. Birken, G. Gassner, M. Haas, and C.-D. Munz. Preconditioning for modal dis-
continuous Galerkin methods for unsteady 3D Navier-Stokes equations. J. Comp.
Phys.

P. Birken, G. Gassner, M. Haas, and C.-D. Munz. Efficient Time Integration for
Discontinuous Galerkin Methods for the Unsteady 3D Navier-Stokes Equations. In
J. Eberhardsteiner, editor, European Congress on Computational Methods and Ap-
plied Sciences and Engineering (ECCOMAS 2012), number Eccomas, 2012.

BIBLIOGRAPHY 203

[25]

[26]

[31]
[32]

[33]

[35]

[36]

[37]

[38]

P. Birken and A. Jameson. Nonlinear iterative solvers for unsteady Navier-Stokes
equations. In Proceedings of Hyp2008 - the twelfth International Conference on Hy-
perbolic Problems, pages 429-438. AMS, 2009.

P. Birken and A. Jameson. On Nonlinear Preconditioners in Newton-Krylov-Methods
for Unsteady Flows. Int. J. Num. Meth. Fluids, 62:565-573, 2010.

P. Birken and A. Meister. Stability of Preconditioned Finite Volume Schemes at Low
Mach Numbers. BIT, 45(3), 2005.

P. Birken, K. J. Quint, S. Hartmann, and A. Meister. A Time-Adaptive Fluid-
Structure Interaction Method for Thermal Coupling. Comp. Vis. in Science,
13(7):331-340, 2011.

C. Bischof and A. Carle. ADIFOR, http://www.mcs.anl.gov/research/projects/adifor/,
last accessed 1/21/2012.

S. Blanes and F. Casas. On the necessity of negative coefficients for operator splitting
schemes of order higher than two. Appl. Num. Math., 54(1):23-37, 2005.

J. Blazek. Computational Fluid Dynamics. Elsevier, 2nd edition, 2004.

K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical solution of initial-value
problems in DAEs. Classicas in Applied Mathematics, 14, 1996.

J. M. Buchlin. Convective Heat Transfer and Infrared Thermography. J. Appl. Fluid
Mech., 3(1):55-62, 2010.

D. A. Caughey and A. Jameson. How Many Steps are Required to Solve the Euler
Equations of Steady Compressible Flow: In Search of a Fast Solution Algorithm.
ATAA Paper 2001-2673, 2001.

CENTAUR Software. CENTAUR Grid Generator,
http://www.centaursoft.com/grid-generator, last accessed on 1/20/2012.

G.-Q. Chen and D. Wang. The Cauchy problem for the Euler equations for com-
pressible fluids. In Handbok on Mathematical Fluid Dynamics, volume 1. Elsevier,
2002.

A. J. Chorin and J. Marsden. A Mathematical Introduction to Fluid Mechanics.
Springer Verlag, New York, 1997.

E. Chow and Y. Saad. Experimental study of ILU preconditioners for indefinite
matrices. J. Comp. Appl. Math., 86:387-414, 1997.

B. Cockburn and C.-W. Shu. The local discontinuous Galerkin method for time-
dependent convection diffusion systems. SIAM J. Num. Analysis, 35:2440-2463, 1998.

204

[40]

[41]

BIBLIOGRAPHY

Tim Colonius and Sanjiva K. Lele. Computational aeroacoustics: progress on non-
linear problems of sound generation. Progress in Aerospace Sciences, 40(6):345-416,
August 2004.

R. Courant, K. O. Friedrichs, and H. Lewy. Uber die partiellen Differentialgleichungen
der mathematischen Physik. Math. Annalen, 100:32-74, 1928.

M. Crandall and A. Majda. The method of fractional steps for conservation laws.
Numer. Math., 34:285-314, 1980.

G. A. Davis and O. O. Bendiksen. Transonic Panel Flutter. In ATAA 93-1/76, 1993.

T. Davis. UMFPACK. http://www.cise.ufl.edu/research/sparse/umfpack/, last ac-
cessed 1/21/2012.

F. Davoudzadeh, H. Mcdonald, and B. E. Thompson. Accuracy evaluation of un-
steady CFD numerical schemes by vortex preservation. Computers ¢ Fluids, 24:883—
895, 1995.

B. de St. Venant. Memoire sur la dynamique des fluides. C. R. Acad. Sci. Paris,
17:1240-1242, 1845.

K. Dekker and J. G. Verwer. Stability of Runge-Kutta methods for stiff nonlinear
differential equations. CWI Monogr. 2. North Holland, Amsterdam, 1984.

S. Dellacherie. Analysis of Godunov type schemes applied to the compressible Euler
system at low Mach number. J. Comp. Phys., 229(4):978-1016, February 2010.

R. Dembo, R. Eisenstat, and T. Steihaug. Inexact Newton methods. STAM J. Numer.
Anal., 19:400-408, 1982.

J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. Classics in Applied Mathematics. SIAM, Philadelphia,
1996.

P. Deuflhard. Newton Methods. Springer, 2004.

J. Duintjer Tebbens and M. Tuma. Efficient preconditioning of sequences of nonsym-
metric linear systems. SIAM J. Sci. Comput., 2007.

J. Duintjer Tebbens and M. Tuma. Preconditioner updates for solving sequences of
linear systems in matrix-free environment. Num. Lin. Algebra with Appl., 17:997—
1019, 2010.

R. P. Dwight. Efficiency Improvements of RANS-based Analysis and Optimization
using Implicit and Adjoint Methods on Unstructured Grids. Phd thesis, University of
Manchester, 2006.

BIBLIOGRAPHY 205

[55]

[56]

[57]

[61]

[62]

[64]

[65]

[66]

S. C. Eisenstat, H. C. Elman, and M. H. Schultz. Variational iterative methods
for nonsymmetric systems of linear equations. SIAM J. Num. Anal., 20(2):345-357,
1983.

S. C. Eisenstat and H. F. Walker. Choosing the forcing terms in an inexact newton
method. SIAM J. Sci. Comput., 17(1):16-32, 1996.

P. Ellsiepen. Zeits- und ortsadaptive Verfahren angewandt auf Mehrphasenprobleme
poroser Medien. Dissertation, University of Stuttgart, Institute of Mechanics 11, 1999.

V. Faber and T. Manteuffel. Necessary and sufficient conditions for the existence of
a conjugate gradient method. SIAM J. Numer. Anal., 21(2):352-362, 1984.

C. Farhat. CFD-based Nonlinear Computational Aeroelasticity. In E. Stein,
R. de Borst, and T. J. R. Hughes, editors, Encyclopedia of Computational Mechanics,
volume 3: Fluids, chapter 13, pages 459-480. John Wiley & Sons, 2004.

K. J. Fidkowski, T. A. Oliver, J. Lu, and D. L. Darmofal. p-Multigrid solution of
high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes
equations. J. Comp. Phys., 207:92-113, 2005.

K. J. Fidkowski and P. L. Roe. An Entropy Adjoint Approach to Mesh Refinement.
SIAM J. Sci. Comput., 32(3):1261-1287, 2010.

G. Gassner, M. Dumbser, F. Hindenlang, and C.-D. Munz. Explicit one-step time
discretizations for discontinuous Galerkin and finite volume schemes based on local
predictors. J. Comp. Phys., 230(11):4232-4247, 2011.

G. Gassner, F. Lorcher, and C.-D. Munz. A contribution to the construction of

diffusion fluxes for finite volume and discontinuous Galerkin schemes. J. Comp.
Phys., 224:1049-1063, 2007.

G. Gassner, F. Lorcher, and C.-D. Munz. A Discontinuous Galerkin Scheme based
on a Space-Time Expansion II. Viscous Flow Equations in Multi Dimensions. J. Sci.
Comput., 34:260-286, 2008.

G. J. Gassner, F. Lorcher, C.-D. Munz, and J. S. Hesthaven. Polymorphic nodal
elements and their application in discontinuous Galerkin methods. J. Comp. Phys.,
228(5):1573-1590, 2009.

T. Gerhold, O. Friedrich, J. Evans, and M. Galle. Calculation of Complex Three-
Dimensional Configurations Employing the DLR-TAU-Code. AIAA Paper, 97-0167,
1997.

C. Geuzaine and J.-F. Remacle. Gmsh, http://www.geuz.org/gmsh/, last accessed
on 1/20/2012.

206

[68]

[69]

[70]

[76]

[77]

[78]

BIBLIOGRAPHY

M. B. Giles. Stability Analysis of Numerical Interface Conditions in Fluid-Structure
Thermal Analysis. Int. J. Num. Meth. in Fluids, 25:421-436, 1997.

E. Godlewski and P.-A. Raviart. Numerical Approximation of Hyperbolic Systems
of Conservation Laws, volume 118 of Applied Mathematical Sciences. Springer, New
York, Berlin, Heidelberg, 1996.

S. K. Godunov. A Finite Difference Method for the Numerical Computation of
Discontinuous Solutions of the Equations of Fluid Dynamics. Mat. Sb., 47:357-393,
1959.

J. B. Goodman and R. J. LeVeque. On the Accuracy of Stable Schemes for 2D Scalar
Conservation Laws. Math. Comp., 45(171):15-21, 1985.

S. Gottlieb, D. I. Ketcheson, and C.-W. Shu. High Order Strong Stability Preserving
Time Discretizations. J. Sci. Comp., 38:251-289, 20009.

S. Gottlieb, C.-W. Shu, and E. Tadmor. Strong Stability-Preserving High-Order
Time Discretization Methods. SIAM Review, 43(1):89-112, 2001.

A. Greenbaum, V. Ptak, and Z. Strakos. Any Nonincreasing Convergence Curve is

Possible for GMRES. SIAM J. Matriz Anal. Appl., 17(3):465-469, 1996.

J. J. Greenberg and A. Y. Leroux. A Well-Balanced Scheme for the Numerical
Processing of Source Terms in Hyperbolic Equations. SIAM J. Numer. Anal., 33(1):1-
16, 1996.

M. J. Grote and T. Huckle. Parallel Preconditioning with Sparse Approximate In-
verses. SIAM J. Sci. Comput., 18(3):838-853, 1997.

H. Guillard and C. Farhat. On the significance of the geometric conservation law for
flow computations on moving meshes. Comp. Meth. Appl. Mech. Engrg., 190:1467—
1482, 2000.

H. Guillard and A. Murrone. On the behavior of upwind schemes in the low Mach
number limit: II. Godunov type schemes. Computers & Fluids, 33:655-675, May
2004.

H. Guillard and C. Viozat. On the Behaviour of Upwind Schemes in the Low Mach
Number Limit. Computers & Fluids, 28:63-86, 1999.

W. Hackbusch. Multi-Grid Methods and Applications, volume 4 of Springer Series in
Computational Mathematics. Springer, Berlin, Heidelberg, New York, Tokio, 1985.

E. Hairer, S. P. Ng rsett, and G. Wanner. Solving Ordinary Differential Equations 1.
Springer, Berlin, Heidelberg, New York, series in edition, 2000.

BIBLIOGRAPHY 207

[82]

[83]

[84]

[85]

[80]

[87]

3]

[89]

[92]

[93]

[94]

E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Springer,
Berlin, series in edition, 2004.

A. Harten, J. M. Hyman, and P. D. Lax. On Finite-Difference Approximations and
Entropy Conditions for Shocks. Comm. Pure Appl. Math., XXIX:297-322, 1976.

R. Hartmann. Adaptive discontinuous Galerkin methods with shock-capturing for
the compressible Navier-Stokes equations. Int. J. Num. Meth. Fluids, 51:1131-1156,
2006.

S. Hartmann. Finite-Elemente Berechnung inelastischer Kontinua. PhD thesis, Kas-
sel, 2003.

S. Hartmann. TASA-FEM: Ein Finite-Elemente-Programm fiir raum-zeitadaptive
gekoppelte Strukturberechnungen. Mitteilungen des Instituts fir Mechanik, 1, 2006.

S. Hartmann, J. Duintjer Tebbens, K. J. Quint, and A. Meister. Iterative solvers
within sequences of large linear systems in non-linear structural mechanics. ZAMM,
89(9):711-728, 20009.

P. Haupt. Continuum Mechanics and Theory of Materials. Springer, Berlin, 2000.

U. Heck, U. Fritsching, and K. Bauckhage. Fluid flow and heat transfer in gas jet
quenching of a cylinder. International Journal of Numerical Methods for Heat €
Fluid Flow, 11:36—49, 2001.

J. S. Hesthaven and T. Warburton. Nodal Discontinuous Galerkin Methods: Algo-
rithms, Analysis, and Applications. Springer, 2008.

M. Hinderks and R. Radespiel. Investigation of Hypersonic Gap Flow of a Reentry
Nosecap with Consideration of Fluid Structure Interaction. AIAA Paper, 06-1111,
2006.

A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker,
and C. S. Woodward. SUNDIALS: Suite of Nonlinear and Differential/Algebraic
Equation Solvers, 2005.

C. Hirsch. Numerical computation of internal and external flows, volume 1. Wiley &
Sons, Chicester, New York, 1988.

C. Hirsch. Numerical computation of internal and external flows, volume 2. Wiley &
Sons, Chicester, New York, 1988.

K. H. Huebner, D. L. Dewhirst, D. E. Smith, and T. G. Byrom. The Finite Element
Methods for Engineers. John Wiley & Sons, 4th edition, 2001.

208 BIBLIOGRAPHY

[96] H. T. Huynh. A Flux Reconstruction Approach to High-Order Schemes Including
Discontinuous Galerkin Methods. In ATAA Paper AIAA 2007-4079, 2007.

[97] A. Jameson. Transonic flow calculations for aircraft. In F. Brezzi, editor, Numerical
Methods in Fluid Dynamics, Lecture Notes in Mathematics, pages 156-242. Springer,
1985.

[98] A. Jameson. Time dependent calculations using multigrid, with applications to un-
steady flows past airfoils and wings. ATAA Paper 91-1596, 1991.

[99] A. Jameson. Aerodynamics. In E. Stein, R. de Borst, and T. J. R. Hughes, editors,
Encyclopedia of Computational Mechanics, volume 3: Fluids, chapter 11, pages 325—
406. John Wiley & Sons, 2004.

[100] A. Jameson and T. J. Baker. Solution of the Euler equations for complex config-
urations. In Proceedings of AIAA 6th Computational Fluid Dynamics Conference,
Danvers, pages 293-302, 1983.

[101] J. Jeong and F. Hussain. On the identification of a vortex. J. Fluid Mech., 285:69-94,
1995.

[102] V. John and J. Rang. Adaptive time step control for the incompressible Navier-Stokes
equations. Comp. Meth. Appl. Mech. Engrg., 199:514-524, 2010.

[103] G. Jothiprasad, D. J. Mavriplis, and D. A. Caughey. Higher-order time integration
schemes for the unsteady Navier-Stokes equations on unstructured meshes. J. Comp.
Phys., 191:542-566, 2003.

[104] A. Kanevsky, M. H. Carpenter, D. Gottlieb, and J. S. Hesthaven. Application of
implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes.
J. Comp. Phys., 225:1753-1781, 2007.

[105] R. Kannan and Z. J. Wang. A Study of Viscous Flux Formulations for a p-Multigrid
Spectral Volume Navier Stokes Solver. J. Sci. Comput., 41(2):165-199, January 2009.

[106] G. E. Karniadakis and S. Sherwin. Spectral/hp Element Methods for Computational
Fluid Dynamics. Oxford University Press, 2nd edition, 2005.

[107] Karypis Lab. ParMETIS, http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview,
last accessed on 1/7/12.

[108] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. SITAM, Philadel-
phia, PA, 1995.

[109] C. A. Kennedy and M. H. Carpenter. Additive Runge-Kutta schemes for convection-
diffusion-reaction equations. Appl. Num. Math., 44:139-181, 2003.

BIBLIOGRAPHY 209

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

D. I. Ketcheson, C. B. Macdonald, and S. Gottlieb. Optimal implicit strong stability
preserving Runge-Kutta methods. Appl. Num. Math., 59:373-392, 20009.

C. M. Klaij, J. J. W. van der Vegt, and H. van der Ven. Space-time discontinuous
Galerkin method for the compressible Navier-Stokes equations. J. Comp. Phys.,
217(2):589-611, 2006.

C. M. Klaij, M. H. van Raalte, J. J. W. van der Vegt, and H. van der Ven. h-
Multigrid for space-time discontinuous Galerkin discretizations of the compressible
Navier-Stokes equations. J. Comp. Phys., 227:1024-1045, 2007.

D. A. Knoll and D. E. Keyes. Jacobian-free Newton-Krylov methods: a survey of
approaches and applications. J. Comp. Phys., 193:357-397, 2004.

D. A. Kopriva. Implementing Spectral Methods for Partial Differential Equations.
Scientific Computation. Springer, 2000.

D. A. Kopriva, S. L. Woodruff, and M. Y. Hussaini. Computation of electromagnetic
scattering with a non-conforming discontinuous spectral element method. Int. J.
Num. Meth. in Eng., 53:105-122, 2002.

H.-O. Kreiss and J. Lorenz. Initial Boundary Value Problems and the Navier-Stokes
FEquations. Academic Press, New York, 1989.

D. Kroner and M. Ohlberger. A posteriori error estimates for upwind finite vol-
ume schemes for nonlinear conservation laws in multi dimensions. Math. Comp.,
69(229):25-39, 1999.

U. Kiittler and W. A. Wall. Fixed-point fluidstructure interaction solvers with dy-
namic relaxation. Comput. Mech., 43:61-72, 2008.

S. Langer. Investigation and application of point implicit RungeKutta methods to
inviscid flow problems. Int. J. Num. Meth. Fluids, 2011.

S. Langer and D. Li. Application of point implicit RungeKutta methods to inviscid
and laminar flow problems using AUSM and AUSM + upwinding. International
Journal of Computational Fluid Dynamics, 25(5):255-269, 2011.

J. O. Langseth, A. Tveito, and R. Winther. On the Convergence of Operator Splitting
applied to Conversation Laws with Source Terms. SIAM J. Num. Anal., 33(3):843—
863, 1996.

P. Le Tallec and J. Mouro. Fluid structure interaction with large structural displace-
ments. Comp. Meth. Appl. Mech. Engrg., 190:3039-3067, 2001.

210

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

BIBLIOGRAPHY

R. J. LeVeque. Hyperbolic Conservation Laws and Numerical Methods. High Reso-
lution (Upwind and TVD) Methods for the Compressible Flow Equations, Selected
Special Topics, Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, 1994.

R. J. LeVeque. Finite Volume methods for Hyperbolic Problems. Cambridge Univer-
sity Press, Cambridge, 2002.

P.-L. Lions. Mathematical Topics in Fluid Mechanics Volume 2 Compressible Models.
Oxford Science Publications, 1998.

N. Lior. The cooling process in gas quenching. J. Materials Processing Technology,
155-156:1881-1888, 2004.

M.-S. Liou. A sequel to AUSM, Part II: AUSM+-up for all speeds. J. Comp. Phys.,
214:137-170, 2006.

F. Lorcher, G. Gassner, and C.-D. Munz. A Discontinuous Galerkin Scheme Based
on a Space-Time Expansion. I. Inviscid Compressible Flow in One Space Dimension.
Journal of Scientific Computing, 32(2):175-199, 2007.

H. Luo, J. D. Baum, and R. Lohner. A p-multigrid discontinuous Galerkin method
for the Euler equations on unstructured grids. J. Comp. Phys., 211:767-783, 2006.

K. Mani and D. J. Mavriplis. Efficient Solutions of the Euler Equations in a Time-
Adaptive Space-Time Framework. AIAA-Paper 2011-774, 2011.

M. F. Maritz and S. W. Schoombie. Exact analysis of nonlinear instability in a
discrete Burgers’ equation. J. Comp. Phys., 97(1):73-90, 1991.

R. Massjung. Numerical Schemes and Well-Posedness in Nonlinear Aeroelasticity.
PhD thesis, RWTH Aachen, 2002.

R. Massjung. Discrete conservation and coupling strategies in nonlinear aeroelasticity.
Comp. Meth. Appl. Mech. Engrg., 196:91-102, 2006.

H. G. Matthies, R. Niekamp, and J. Steindorf. Algorithms for strong coupling pro-
cedures. Comput. Methods Appl. Mech. Engrg., 195:2028-2049, 2006.

H. G. Matthies and J. Steindorf. Algorithms for strong coupling procedures. Comput.
Methods Appl. Mech. Engrg., 195:2028-2049, 2003.

D. J. Mavriplis. An Assessment of Linear Versus Nonlinear Multigrid Methods for
Unstructured Mesh Solvers. J. Comp. Phys., 175:302-325, 2002.

G. May, F. Tacono, and A. Jameson. A hybrid multilevel method for high-order dis-
cretization of the Euler equations on unstructured meshes. J. Comp. Phys., 229:3938—
3956, 2010.

BIBLIOGRAPHY 211

[138]

[139]

[140]

[141]

[142)

[143]

[144]

[145]

[146]

[147)

[148)

[149]

[150]

[151]

P. R. McHugh and D. A. Knoll. Comparison of standard and matrix-free implemen-
tations of several Newton-Krylov solvers. ATAA J., 32(12):2394-2400, 1994.

R. C. Mehta. Numerical Computation of Heat Transfer on Reentry Capsules at Mach
5. AIAA-Paper 2005-178, 2005.

A. Meister. Zur zeitgenauen numerischen Simulation reibungsbehafteter, kompress-
wler, turbulenter Stromungsfelder mit einer impliziten Finite- Volumen-Methode vom
Box-Typ. Dissertation, Technische Hochschule Darmstadt, 1996.

A. Meister. Numerik linearer Gleichungssysteme, Eine Einfiihrung in moderne Ver-
fahren. Vieweg, Wiesbaden, 1999.

A. Meister and Th. Sonar. Finite-volume schemes for compressible fluid flow. Surv.
Math. Ind., 8:1-36, 1998.

A. Meister and C. Vomel. Efficient Preconditioning of Linear Systems arising from the
Discretization of Hyperbolic Conservation Laws. Adv. in Comput. Math., 14:49-73,
2001.

C. Michler, E. H. van Brummelen, and R. de Borst. Error-amplification Analysis of
Subiteration-Preconditioned GMRES for Fluid-Structure Interaction. Comp. Meth.
Appl. Mech. Eng., 195:2124-2148, 2006.

P. Moin and K. Mahesh. DIRECT NUMERICAL SIMULATION: A Tool in Turbu-
lence Research. Ann. Rev. Fluid Mech., 30:539-578, 1998.

K. W. Morton and Th. Sonar. Finite volume methods for hyperbolic conservation
laws. Acta Numerica, pages 155-238, 2007.

N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen. How fast are nonsymmetric
matrix iterations? SIAM J. Matriz Anal. Appl., 13(3):778-795, 1992.

C. R. Nastase and D. J. Mavriplis. High-order discontinuous Galerkin methods using
an hp-multigrid approach. J. Comp. Phys., 213:330-357, 2006.

C. L. M. H. Navier. Memoire sur les lois du mouvement des fluides. Mem. Acad. R.
Sci. Paris, 6:389-416, 1823.

M. Ohlberger. A posteriori error estimate for finite volume approximations to singu-
larly perturbed nonlinear convection-diffusion equations. Numer. Math., 87:737-761,
2001.

H. Olsson and G. Soderlind. The Approximate Runge-Kutta Computational Process.
BIT, 40:351-373, 2000.

212

[152]

[153]

[154]

[155]

[156]

[157]

158

[159]

[160]

[161]

162]

[163]

164]

BIBLIOGRAPHY

S. Osher and S. Chakravarthy. High resolution schemes and the entropy condition.
SIAM J. Num. Anal., 21(5):955-984, 1984.

B. Owren and M. Zennaro. Order Barriers for Continuous Explicit Runge-Kutta
methods. Math. Comp., 56(194):645-661, 1991.

H. Park, R. R. Nourgaliev, R. C. Martineau, and D. A. Knoll. On physics-based
preconditioning of the NavierStokes equations. J. Comp. Phys., 228(24):9131-9146,
2009.

V. C. Patel, W. Rodi, and G. Scheuerer. Turbulence Models for Near-Wall and
Low-Reynolds Number Flows: A Review. AIAA Journal, 23(9):1308-1319, 1985.

J. Peraire and P.-O. Persson. The Compact Discontinuous Galerkin (CDG) Method
for Elliptic Problems. SIAM J. Sci. Comput., 30(4):1806-1824, 2008.

P.-O. Persson and J. Peraire. Newton-GMRES Preconditioning for Discontinu-
ous Galerkin discretizations of the Navier-Stokes equations. SIAM J. Sci. Comp.,
30:2709-2733, 2008.

S. D. Poisson. Memoire sue les equations generales de I'equilibre et du mouvement des
corps solides elastiques et des fluides. J. de [’Ecole Polytechnique de Paris, 13:139—
166, 1831.

N. Qin, D. K. Ludlow, and S. T. Shaw. A matrix-free preconditioned New-
ton/GMRES method for unsteady Navier-Stokes solutions. Int. J. Num. Meth. Fluids,
33:223-248, 2000.

A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Differential
Equations. Oxford Science Publications, Oxford, 1999.

J. Rang and L. Angermann. New Rosenbrock W-Methods of Order 3 for Partial
Differential Algebraic Equations of Index 1. BIT, 45:761-787, 2005.

J. Reisner, V. Mousseau, A. Wyszogrodzki, and D. A. Knoll. A fully implicit hurricane
model with physics-based preconditioning. Monthly Weather Review, 133:1003-1022,
2005.

J. Reisner, A. Wyszogrodzki, V. Mousseau, and D. Knoll. An efficient physics-
based preconditioner for the fully implicit solution of small-scale thermally driven
atmospheric flows. J. Comp. Phys., 189(1):30-44, 2003.

F. Reitsma, G. Strydom, J. B. M. de Haas, K. Ivanov, B. Tyobeka, R. Mphahlele,
T. J. Downar, V. Seker, H. D. Gougar, D. F. Da Cruz, and U. E. Sikik. The PBMR

steadystate and coupled kinetics core thermal-hydraulics benchmark test problems.
Nuclear Engineering and Design, 236(5-6):657-668, 2006.

BIBLIOGRAPHY 213

[165]

[166]

[167]

[168]

169

[170]

[171]

172]

[173]

[174]

[175]

[176]

[177]

178]

[179]

[180]

W. C. Rheinboldt. Methods for Solving Systems of Nonlinear Equations. SIAM, 2nd
edition, 1998.

F. Rieper. A low-Mach number fix for Roe’s approximate Riemann solver. J. Comp.
Phys., 2011.

F. Rieper and G. Bader. Influence of cell geometry on the accuracy of upwind schemes
in the low Mach number regime. J. Comp. Phys., 228:2918-2933, 2009.

Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci.
Comput., 14(2):461-469, 1993.

Y. Saad. [Iterative Methods for Sparse Linear Systems. PWS Publishing Company;,
Boston, 1996.

Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7:856-869, 1986.

B. Saba and K. Steinhoff. Massivumformprodukte mit funktional gradierten Eigen-
schaften durch eine differenzielle thermo-mechanische Prozessfithrung. WT-Online,
pages 745-752, 2007.

H. Schlichting and K. Gersten. Boundary Layer Theory. Springer, 8th revise edition,
2000.

S. Schiittenberg, M. Hunkel, U. Fritsching, and H.-W. Zoch. Controlling of Dis-
tortion by means of Quenching in adapted Jet Fields. Materialwissenschaft und

Werkstofftechnik, 37(1):92-96, 2006.
L. F. Shampine. Numerical solution of ordinary differential equations. Springer, 1994.

C.-W. Shu. Total-variation diminishing time discretizations. SIAM J. Sci. Stat.
Comp., 9:1073-1084, 1988.

C.-W. Shu and S. Osher. Efficient Implementation of Essentially Nonoscillatory
Shock-Capturing Schemes. J. Comp. Phys., 77:439-471, 1988.

J. Smagorinsky. General Circulation Experiments with the Primitive Equations.
Monthly Weather Review, 91:99-165, 1963.

G. Séderlind. Digital Filters in Adaptive Time-Stepping. ACM TOMS, 29(1):1-26,
2003.

G. Soderlind. Time-step selection algorithms: Adaptivity, control, and signal pro-
cessing. Appl. Num. Math., 56:488-502, 2006.

G. Soderlind and L. Wang. Adaptive time-stepping and computational stability. J.
Comp. Appl. Math., 185:225 — 243, 2006.

214

[181]

182

[183]

[184]

[185]

[186]

[187]

188]

[189)]

[190]

191]

[192]

193]

[194]
[195]

BIBLIOGRAPHY

G. Soderlind and L. Wang. Evaluating numerical ODE/DAE methods, algorithms
and software. J. Comp. Appl. Math., 185:244 — 260, 2006.

P. Sonneveld and M. B. van Gijzen. IDR(s): A family of simple and fast algorithms
for solving large nonsymmetric systems of linear equations. SIAM J. Sc. Comp.,
31(2):1035-1062, 2008.

P. R. Spalart and S. R. Allmaras. A One-Equation Turbulence Model for Aerody-
namic Flows. AIAA 30th Aerospace Science Meeting, 92-0439, 1992.

P. R. Spalart, W. Jou, M. Strelets, and S. R. Allmaras. Comments on the Feasi-
bility of LES for Wings, and on a Hybrid RANS/LES Approach. In 1st ASOSR
CONFERENCE on DNS/LES. Arlington, TX, 1997.

S. P. Spekreijse. Multigrid Solution of Monotone Second-Order Discretizations of
Hyperbolic Conservation Laws. Math. Comp., 49(179):135-155, 1987.

A. St-cyr and D. Neckels. A Fully Implicit Jacobian-Free High-Order Discontinuous
Galerkin Mesoscale Flow Solver. In Proceedings of the 9th International Conference
on Computational Science, pages 243-252, Berlin, Heidelberg, 2009. Springer.

G. G. Stokes. On the theories of the internal friction of fluids in motion. Trans.
Camb. Phil. Soc., 8:287-305, 1845.

G. Strang. On the construction and comparison of difference schemes. SIAM J. Num.
Anal., 5(3):506-517, 1968.

P. Stratton, I. Shedletsky, and M. Lee. Gas Quenching with Helium. Solid State
Phenomena, 118:221-226, 2006.

K. Strehmel and R. Weiner. Linear-implizite Runge-Kutta-Methoden und thre An-
wendung. Teubner, Stuttgart, 1992.

M. Svéard, M. H. Carpenter, and J. Nordstrom. A stable high-order finite difference
scheme for the compressible Navier-Stokes equations, far-field boundary conditions.
J. Comp. Phys., 225(1):1020-1038, 2007.

M. Svard and J. Nordstrom. Well-Posed Boundary Conditions for the Navier-Stokes
Equations. STAM J. Num. Anal., 30(3):797, 2005.

T. Tang and Z.-H. Teng. Error bounds for fractional step methods for conservation
laws with source terms. SIAM J. Num. Anal., 32(1):110-127, 1995.

Open MPI Development Team. OpenMPI.

K. Thompson. Time dependent boundary conditions for hyperbolic systems. J.
Comp. Phys., 68:1-24, 1987.

BIBLIOGRAPHY 215

[196]

[197]

198

[199]

[200]

201]

202]

[203]

204]

[205]

[206]

1207]

[208]

B. Thornber, A. Mosedale, D. Drikakis, and D. Youngs. An improved reconstruction
method for compressible flows with low Mach number features. J. Comp. Phys.,
227:4873-4894, 2008.

V. A. Titarev and E. F. Toro. ADER: Arbitrary High Order Godunov Approach. J.
Sci. Comp., 17(1-4):609-618, 2002.

E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer,
Berlin, Heidelberg, New York, 2. edition, 1999.

L. N. Trefethen. Pseudospectra of Linear Operators. SIAM Review, 39 (3):383-406,
1997.

D. Tromeur-Dervout and Y. Vassilevski. Choice of initial guess in iterative solution
of series of systems arising in fluid flow simulations. J. Comp. Phys., 219:210-227,
2006.

U. Trottenberg, C. W. Qosterlee, and S. Schiiller. Multigrid. Elsevier Academic Press,
2001.

S. Turek. Efficient Solvers for Incompressible Flow Problems: An Algorithmic and
Computational Approach. Springer, Berlin, 1999.

H. A. van der Vorst. BI-CGSTAB: A fast and smoothly converging variant of BI-
CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput.,
13:631-644, 1992.

H. A. van der Vorst. [terative Krylov Methods for Large Linear Systems, volume 13
of Cambridge Monographs on Applied and Computational Mathematics. Cambridge
University Press, Cambridge, 2003.

H. A. van der Vorst and C. Vuik. GMRESR: a Family of Nested GMRES methods.
Num. Lin. Algebra with Appl., 1(4):369-386, 1994.

E. R. Van Driest. National Advisory Commitee for Aeronautics (NACA) - Inves-

tigation of laminar boundary layer in compressible fluids using the crocco method.
NACA, 1952.

B. van Leer. Flux-vector splitting for the Euler equations. In E Krause, editor, Fighth
International Conference on Numerical Methods in Fluid Dynamics, number 170 in
Lecture Notes in Physics, pages 507-512, Berlin, 1982. Springer Verlag.

B. van Leer, C.-H. Tai, and K. G. Powell. Design of Optimally Smoothing Multi-Stage
Schemes for the Euler Equations. In ATAA 89-1933-CP, pages 40-59, 1989.

216

[209]

[210]

[211]

212]

213]

214]

[215]

[216]

[217]

218]

[219]

[220]

221]

222

BIBLIOGRAPHY

A. van Zuijlen and H. Bijl. Implicit and explicit higher order time integration
schemes for structural dynamics and fluid-structure interaction computations. Comp.
€9 Struct., 83:93-105, 2005.

A. van Zuijlen, A. de Boer, and H. Bijl. Higher-order time integration through
smooth mesh deformation for 3D fluidstructure interaction simulations. J. Comp.
Phys, 224:414-430, 2007.

R. S. Varga. Matriz Iterative Analysis, volume 27 of Series in Computational Math-
ematics. Springer, New York, Berlin, Heidelberg, 2000.

V. Venkatakrishnan. Convergence to Steady State Solutions of the Euler Equations
on Unstructured Grids with Limiters. J. Comp. Phys., 118:120-130, 1995.

J. Vierendeels, L. Lanoye, J. Degroote, and P. Verdonck. Implicit Coupling of Parti-
tioned Fluid-Structure Interaction Problems with Reduced Order Models. Comp. &
Struct., 85:970-976, 2007.

P. Vijayan and Y. Kalinderis. A 3D Finite-Volume Scheme for the Euler Equations
on Adaptive Tetrahedral Grids. J. Comp. Phys., 113:249-267, 1994.

P. E. Vincent, P. Castonguay, and A. Jameson. A New Class of High-Order Energy
Stable Flux Reconstruction Schemes. J. Sci. Comp., 47:50-72, 2011.

P. E. Vincent and A. Jameson. Facilitating the Adoption of Unstructured High-
Order Methods Amongst a Wider Community of Fluid Dynamicists. Math. Model.
Nat. Phenom., 6(3):97-140, 2011.

Y. Wada and M.-S. Liou. A Flux Splitting Scheme with High-Resolution and Ro-
bustness for Discontinuities. AIAA Paper 94-0083, 94-0083, 1994.

K. Wang, W. Xue, H. Lin, S. Xu, and W. Zheng. Updating preconditioner for iterative
method in time domain simulation of power systems. Science China Technological
Sciences, 54(4):1024-1034, February 2011.

L. Wang and D. J. Mavriplis. Implicit solution of the unsteady Euler equations
for high-order accurate discontinuous Galerkin discretizations. J. Comp. Phys.,
225:1994-2015, 2007.

R. Weiner, B. A. Schmitt, and H. Podhaisky. ROWMAP a ROW-code with Krylov
techniques for large stiff ODEs. Appl. Num. Math., 25:303-319, 1997.

P. Wesseling. Principles of Computational Fluid Dynamics. Springer, 2001.

P. Wesseling. An Introduction to Multigrid Methods. R T Edwards Inc, 2004.

BIBLIOGRAPHY 217

[223] L. B. Wigton, N. J. Yu, and D. P. Young. GMRES acceleration of Computational
Fluid Dynamics Codes. ATAA Paper 85-1494, A85-40933, 1985.

[224] P. W. Yarrington and E. A. Thornton. Finite Element Analysis of Low-Speed Com-
pressible Flows Within Convectively Cooled Structures. J. Thermophysics and Heat
Transfer, 8(4):678-686, 1994.

[225] F. Zahle, N. N. Soerensen, and J. Johansen. Wind Turbine Rotor-Tower Interaction
Using an Incompressible Overset Grid Method. Wind Energy, 12:594-619, 2009.

[226] Q. Zhang and C.-W. Shu. Error Estimates to Smooth Solutions of Runge-Kutta
Discontinuous Galerkin Method for Symmetrizable Systems of Conservation Laws.
SIAM J. Num. Anal., 44(4):1703-1720, 2006.

	Introduction
	The method of lines
	Hardware
	Notation
	Outline

	The Governing Equations
	The Navier-Stokes Equations
	Basic form of conservation laws
	Conservation of mass
	Conservation of momentum
	Conservation of energy
	Equation of state

	Nondimensionalization
	Source terms
	Simplifications of the Navier-Stokes equations
	The Euler Equations
	Boundary and Initial Conditions
	Boundary layers
	Laminar and turbulent flows
	Turbulence models

	Analysis of viscous flow equations
	Analysis of the Euler equations
	Analysis of the Navier-Stokes equations

	The Space discretization
	Structured and unstructured Grids
	Finite Volume Methods
	The Line Integrals and Numerical Flux Functions
	Discretization of the inviscid fluxes
	Low Mach numbers
	Discretization of the viscous fluxes

	Convergence theory for finite volume methods
	Hyperbolic conservation laws
	Parabolic conservation laws

	Boundary Conditions
	Fixed wall
	Inflow and outflow boundaries
	Periodic boundaries

	Source Terms
	Finite volume methods of higher order
	Convergence theory for higher order finite volume schemes
	Reconstruction
	Modification at the Boundaries
	Limiters

	Discontinuous Galerkin methods
	Polymorphic modal-nodal scheme
	DG Spectral Element Method
	Discretization of the viscous fluxes

	Convergence theory for DG methods
	Spatial Adaptation

	Time Integration Schemes
	Order of convergence and order of consistency
	Stability
	The linear test equation, A- and L-stability
	TVD stability and SSP methods
	The CFL condition, Von-Neumann stability analysis and related topics

	Stiff problems
	Backward Differentiation formulas
	Runge-Kutta methods
	Explicit Runge-Kutta methods
	DIRK methods
	Additive Runge-Kutta methods

	Rosenbrock-type methods
	Adaptive time step size selection
	Operator Splittings
	Alternatives to the method of lines
	Local time stepping Predictor-Corrector-DG

	Solving equation systems
	The nonlinear systems
	The linear systems
	Rate of convergence and error
	Termination criterias
	Fixed Point methods
	Splitting Methods
	Fixed point methods for nonlinear equations

	Multigrid methods
	Multigrid for linear problems
	Full Approximation Schemes
	Steady state solvers
	Multi-p methods
	Dual Time stepping
	Optimizing Runge-Kutta smoothers for unsteady flow
	Optimizing the smoothing properties
	Optimizing the spectral radius
	Numerical results

	Newton's method
	Choice of initial guess
	Globally convergent Newton methods
	Computation and Storage of the Jacobian

	Krylov subspace methods
	GMRES and related methods
	BiCGSTAB

	Jacobian Free Newton-Krylov methods
	Comparison of GMRES and BiCGSTAB
	Comparison of variants of Newton's method

	Preconditioning linear systems
	Preconditioning for JFNK schemes
	Specific preconditioners
	Block preconditioners
	Splitting-methods
	ROBO-SGS
	ILU preconditioning
	Multilevel preconditioners
	Nonlinear preconditioners
	Other preconditioners
	Comparison of preconditioners

	Preconditioning in parallel
	Sequences of linear systems
	Freezing and Recomputing
	Triangular Preconditioner Updates
	Numerical results

	Discretization for the preconditioner

	The final schemes
	DIRK scheme
	Rosenbrock scheme
	Parallelization
	Efficiency of Finite Volume schemes
	Efficiency of Discontinuous Galerkin schemes
	Polymorphic Modal-Nodal DG
	DG-SEM

	Thermal Fluid Structure Interaction
	Gas Quenching
	The mathematical model
	Space discretization
	Coupled time integration
	Fixed Point iteration
	Numerical Results
	Test case
	Order of the method
	Time-adaptive computations

	Test problems
	Shu-Vortex
	Wind Turbine
	Vortex shedding behind a sphere

	Coefficients of time integration methods

