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Abstract

The ongoing growth of the World Wide Web, catalyzed by the increasing
possibility of ubiquitous access via a variety of devices, continues to strengthen
its role as our prevalent information and commmunication medium. However,
although tools like search engines facilitate retrieval, the task of finally making
sense of Web content is still often left to human interpretation. The vision of
supporting both humans and machines in such knowledge-based activities led
to the development of different systems which allow to structure Web resources
by metadata annotations. Interestingly, two major approaches which gained
a considerable amount of attention are addressing the problem from nearly
opposite directions: On the one hand, the idea of the Semantic Web suggests to
formalize the knowledge within a particular domain by means of the “top-down”
approach of defining ontologies. On the other hand, Social Annotation Systems
as part of the so-called Web 2.0 movement implement a “bottom-up” style of
categorization using arbitrary keywords.

Experience as well as research in the characteristics of both systems has shown
that their strengths and weaknesses seem to be inverse: While Social Annotation
suffers from problems like, e. g., ambiguity or lack or precision, ontologies were
especially designed to eliminate those. On the contrary, the latter suffer from a
knowledge acquisition bottleneck, which is successfully overcome by the large
user populations of Social Annotation Systems. Instead of being regarded as
competing paradigms, the obvious potential synergies from a combination of
both motivated approaches to “bridge the gap” between them. These were
fostered by the evidence of emergent semantics, i. e., the self-organized evolution
of implicit conceptual structures, within Social Annotation data. While several
techniques to exploit the emergent patterns were proposed, a systematic analysis
— especially regarding paradigms from the field of ontology learning — is still
largely missing. This also includes a deeper understanding of the circumstances
which affect the evolution processes.

This work aims to address this gap by providing an in-depth study of methods
and influencing factors to capture emergent semantics from Social Annotation
Systems. We focus hereby on the acquisition of lexical semantics from the



underlying networks of keywords, users and resources. Structured along differ-
ent ontology learning tasks, we use a methodology of semantic grounding to
characterize and evaluate the semantic relations captured by different methods.
In all cases, our studies are based on datasets from several Social Annotation
Systems.

Specifically, we first analyze semantic relatedness among keywords, and iden-
tify measures which detect different notions of relatedness. These constitute
the input of concept learning algorithms, which focus then on the discovery
of synonymous and ambiguous keywords. Hereby, we assess the usefulness
of various clustering techniques. As a prerequisite to induce hierarchical re-
lationships, our next step is to study measures which quantify the level of
generality of a particular keyword. We find that comparatively simple measures
can approximate the generality information encoded in reference taxonomies.
These insights are used to inform the final task, namely the creation of concept
hierarchies. For this purpose, generality-based algorithms exhibit advantages
compared to clustering approaches.

In order to complement the identification of suitable methods to capture
semantic structures, we analyze as a next step several factors which influence
their emergence. Empirical evidence is provided that the amount of available
data plays a crucial role for determining keyword meanings. From a different
perspective, we examine pragmatic aspects by considering different annotation
patterns among users. Based on a broad distinction between “categorizers” and
“describers”, we find that the latter produce more accurate results. This suggests
a causal link between pragmatic and semantic aspects of keyword annotation.
As a special kind of usage pattern, we then have a look at system abuse and
spam. While observing a mixed picture, we suggest that an individual decision
should be taken instead of disregarding spammers as a matter of principle.

Finally, we discuss a set of applications which operationalize the results of
our studies for enhancing both Social Annotation and semantic systems. These
comprise on the one hand tools which foster the emergence of semantics, and
on the one hand applications which exploit the socially induced relations to
improve, e.g., searching, browsing, or user profiling facilities. In summary,
the contributions of this work highlight viable methods and crucial aspects for
designing enhanced knowledge-based services of a Social Semantic Web.
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Zusammenfassung

Der anhaltende Zuwachs an Inhalten sowie die steigende Verfiigbarkeit iiber
verschiedenste Endgerite festigen die Rolle des World Wide Web als ein zentra-
les Kommunikations- und Informationsmedium. Trotz der Unterstiitzung durch
beispielsweise Suchmaschinen bleibt dabei die Zuordnung von Bedeutung zu
Informationsresourcen immer noch weitgehend dem Benutzer iiberlassen. Die
Hoffnung, Menschen und Computer bei diesen wissensbasierten Aktivitdten
zu unterstiitzen, fithrte zur Entwicklung verschiedener Systeme, die das Struk-
turieren von Webinhalten iiber die Annotation mit Metadaten ermoglichen.
Interessanterweise finden sich in zwei bekannten Ansétzen solcher Systeme
zwei beinahe entgegengesetzte Herangehensweisen an dieses Problem wieder:
FEinerseits basiert die Vision des Semantic Web darauf, Wissensgebiete mittels
nach und nach verfeinerter Konzepte innerhalb einer Ontologie zu formalisieren
(“top-down”). Auf der anderen Seite zeichnen sich soziale Verschlagwortungssys-
teme, die im Zuge des Web 2.0 Bekanntheit erlangten, durch einen aufbauenden
(“bottom-up”) und unkontrollierten Ansatz der Erstellung eines kollaborativen
Vokabulars aus.

Die Erfahrungen im Umgang mit beiden Systemen sowie Forschungen in
diesem Bereich zeigten auf, dass die individuellen Stadrken und Schwichen
beider Herangehensweisen in einem inversen Verhéltnis zueinander zu stehen
scheinen: Unkontrollierte freie Verschlagwortung bringt Probleme wie zum
Beispiel Unschirfe oder Mehrdeutigkeiten mit sich, die in formalen Ontologien
nicht existieren. Auf der anderen Seite haben letztere das Flaschenhalsproblem
der Wissensakquisition, was wiederum fiir soziale Verschlagwortung aufgrund
der hohen Benutzerbeteiligung eine untergeordnete Rolle spielt. Anstatt beide
Klassen von Systemen als konkurrierend zu betrachten, wurden viele Methoden
im Bereich eines “Briickenschlages” zwischen beiden Ansétzen von den dabei
moglichen Synergien inspiriert. Dies wurde noch verstirkt durch Anzeichen
von “entstehender Semantik”, die sich in der selbsténdigen Herausbildung von
impliziten konzeptuellen Strukturen innerhalb der Verschlagwortungssysteme
zeigte. Obwohl hierbei viele verschieden Techniken eingesetzt wurden, um diese
nutzbar zu machen, wurde bisher keine systematische Analyse — besonders im
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Bereich von Ansétzen aus dem Ontologielernen — durchgefiihrt. Ebenfalls kaum
erforscht sind die Umsténde, die zur Entstehung der semantischen Strukturen
fiithren.

Das Ziel der vorliegenden Arbeit ist es, diese Liicke zu schliessen und ei-
ne detaillierte Untersuchung von Methoden zur Erfassung von entstehender
Semantik sowie deren beeinflussende Faktoren innerhalb sozialer Verschlag-
wortungssysteme durchzufithren. Das Hauptaugenmerk liegt hierbei auf der
Akquisition von lexikalischer Semantik, basierend auf der Netzwerkstruktur
zwischen Schlagworten, Benutzern und Ressourcen. Innerhalb verschiedener
Teilaufgaben aus dem Bereich des Ontologielernens wird dazu eine Methodologie
der “semantischen Erdung” eingesetzt, die es erlaubt, von verschiedenen Me-
thoden erzeugte semantischen Strukturen zu bewerten und zu charakterisieren.
Die zugehorigen Experimente werden jeweils auf Datensétzen aus verschiedenen
Verschlagwortungssystemen durchgefiihrt.

In einem ersten Schritt wird hierzu die semantische Verwandtschaft zwischen
Schlagwortern analysiert. Inbesondere werden Mafle identifiziert, die verschie-
dene Arten von Verwandtschaftsbeziehungen anzeigen. Diese dienen in einem
néchsten Schritt als Eingabe fiir Algorithmen des Konzeptlernens, die synony-
me und mehrdeutige Schlagworter entdecken. Zu diesem Zweck werden auch
verschiedene Clustering-Verfahren angewendet und bewertet. Als Vorarbeit zur
Extraktion hierarchischer Beziehungen werden dann Mafle analysiert, die den
Grad der “Allgemeinheit” eines bestimmten Schlagwortes quantifizieren. Ein
Ergebnis in diesem Bereich ist, dass vergleichsweise einfache Mafle bereits eine
gute Approximation der Art von Allgemeinheit erfassen, die auch in Taxo-
nomien enthalten ist. Diese Ergebnisse bilden die Grundlage fiir den letzten
Schritt, ndmlich die Erstellung von Konzept-Hierarchien. Hierbei zeigt sich,
dass spezielle Verfahren auf Basis der Allgemeinheit von Schlagwortern Vorteile
gegeniiber allgemeinen Clustering-Techniken besitzen.

Als Gegenpart zur Bestimmung geeigneter Methoden, um die enstehenden
semantischen Strukturen zu erfassen, werden anschliessend Faktoren untersucht,
die zu deren Entstehung beitragen. Hierbei wird empirisch gezeigt, dass die Men-
ge an vorhandenen Daten einen zentrale Rolle fiir das Erfassen der Bedeutung
eines Schlagworts spielt. Aus einer anderen Perspektive werden anschliessend
pragmatische Aspekte der Annotation untersucht, die sich in verschiedenen
Verschlagwortungsmustern innerhalb der Benutzerschaft wiederspiegeln. Basie-
rend auf einer groben Einteilung in “Kategorisierer” und “Beschreiber” zeigt
sich, dass letztere Gruppe zu préziseren Ergebnissen fithrt. Dies weist auf eine
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kausalen Zusammenhang zwischen pragmatischen und semantischen Aspekten
bei der kollaborativen Verschlagwortung hin. Als letztes wird schliesslich der
Einfluss einer besonderen und unerwiinschten Benutzergruppe untersucht, die
Verschlagwortungssysteme fiir missbrauchliche Zwecke einsetzen. Dies zeigt sich
beispielsweise in massenhafter Annotation von werberelevanten oder anstossigen
Inhalten durch sogenannte “Spammer”. Da hierbei teilweise widerspriichliche
Ergebnisse auftreten, scheint eine individuelle Betrachtung geeigneter als ein
kategorischer Ausschluss von Spammern.

Abschliessend werden eine Reihe von Anwendungen vorgestellt, die die Ergeb-
nisse der vorherigen Studien zur Verbesserung von Verschlagwortungssystemen
und semantischen Plattformen nutzbar machen. Diese beinhalten einerseits
Implementierungen, die das Entstehen von Semantik fordern. Andererseits
werden Applikationen beschrieben, die direkten Gebrauch von den gelernten
Strukturen machen, um beispielsweise verbesserte Such-, Navigations- oder Per-
sonalisierungsmoglichkeiten anzubieten. Zusammenfassend besteht der Beitrag
dieser Arbeit darin, gangbare Methoden und zentrale Aspekte fiir den Entwurf
von verbesserten wissensbasierten Anwendungen eines Social Semantic Web
aufzuzeigen.
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Chapter 1.

Introduction

1.1. Motivation

The ability to acquire, memorize and process knowledge is an integral part of
human intelligence. Throughout the evolutionary and cultural development of
mankind, the access to relevant knowledge within a given context has always been
an “asset” and a competitive advantage. With the development of computer
systems and especially their interconnection by the Internet, the resulting
digital ecosystem evolved to an important source of information for large user
populations. Especially the invention of the World Wide Web by Tim Berners-
Lee around 1990 and its global distribution of immensely growing amounts
of digital information resources have fostered this development. However, the
massive amounts of data are hereby a mixed blessing: While relevant content is
available in abundance, the question how to identify and make it accessible is
still a difficult issue.

Because a cognitive strategy of humans to handle large amounts of infor-
mation is to use abstractions into interrelated concepts (Anderson, 2001)), an
obvious approach is to apply the same principle to the content of the Web
by implementing facilities to structure and organize its information resources.
While some existing tools (like, e.g., corporate taxonomies or even personal
bookmark folders) work well within individual or organizational boundaries,
they do not necessarily scale to the requirements of the dynamic and fast-
growing Web environment. Nevertheless, within the history of the Web, several
organization systems (often including some form of annotation to categorize or
classify a particular resource) were proposed and implemented — some of them
by authoritative institutions like the W3C!, others “emerged” as successful
applications by innovative individuals, groups or companies.

Thttp://www.w3.org/
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Among the latter, especially two approaches have gained a considerable
amount of attention. Interestingly, they are approaching the solution of the
problem from nearly opposite directions: On the one hand, the vision of the
Semantic Web coined by Tim Berners-Lee (Berners-Lee et al., [2001) suggested
to formalize the knowledge within a particular domain by means of a “top-down’
approach of defining ontologies. Based on an annotation of Web resources
using defined classes and relations, Semantic Web agents would be able to
perform “intelligent” tasks of information integration and processing. Despite
this appealing vision, impeding factors like the knowledge acquisition bottle-
neck (Cullen and Bryman, |1988)) have hindered the mass adoption of such
semantic applications on the Web. On the other hand, based on the user-centric
paradigms of the so-called Web 2.0 movement, an alternative way of annotating
Web resources in a “bottom-up” manner quickly gained huge popularity. It
was implemented within Social Annotation Systems, which allowed their users
to mark up different kinds of (possibly shared) resources like, e.g., websites,
videos or pictures by using arbitrary keywords. The simplicity and immediate
usefulness of these platforms effectively engaged millions of humans in the
process of “producing” metadata — an accomplishment that the Semantic Web
had never reached before. However, the disadvantages of missing structure and
conventions within the uncontrolled vocabularies also quickly became visible,
e.g., in retrieval difficulties related to varying or imprecise annotations.

Having observed the obvious inverse relation among the strengths and weak-
nesses of both approaches — i.e., Social Annotation suffer exactly from the
problems that ontologies were designed to eliminate, but tackle on the other
hand successfully the knowledge acquisition and annotation bottleneck — the idea
to combine the best from both worlds by methods to “bridge the gap” (Hotho
and Hoser, 2007) between the Social and the Semantic Web was picked up
by researchers from different communities. Activities in this direction were
catalyzed by studies which provided evidence for emergent semantics within
the user-created Social Annotation vocabularies. The latter became visible,
e.g., in a “nascent consensus” (Golder and Huberman, |2006) of keyword usage,
which might lead to the “crystallization” of concepts without any external
control or influence. While several methods to exploit the emergent structures
were proposed, a systematic analysis of the applicability of different paradigms
especially from the field of ontology learning is still largely missing. This also
includes a deeper understanding of the factors which foster the emergence
processes.
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This dissertation aims to address this gap by providing an in-depth study
of concepts, methods and influencing factors of capturing emergent semantics
from Social Annotation Systems. It has its roots in the research field of
ontology learning, i. e., the (semi-)automatic acquisition of a conceptual domain
model from data (Cimiano, [2006; [Maedche, 2002)). The ultimate goal hereby
is to contribute to a synergetic “intermediation” between the social and the
semantic paradigm of knowledge organization, intended to pave the way towards
augmented knowledge-based services of a next generation Social Semantic Web.

1.2. Research Questions

Because the notion of “capturing emergent semantics from Social Annotation
Systems” is rather general, we aim to specify now more precisely the research
questions addressed within this dissertation. For this purpose, we will separately
treat each main part of this expression above, clarify its understanding for the
context of this dissertation and state the related research questions. We will
hereby refer to the corpora of Social Annotation Systems as Social Annotation
data.

Emergent Semantics: As will be elaborated in greater detail in Section [5.2.1
the study of emergent semantics is concerned with the evolution of decentralized
semantic structures. Because Social Annotation Systems are typically made
up of three kinds of constituents, namely keywords, users and resources (see
Section , it is necessary to clarify the objects of investigation. In other
words, when interpreting structures as relations among objects, we need to
specify between which kinds of objects the relations of interest hold. While
there is work on “collective semantics” including emerging relations between
users, keywords and resources (Au Yeung, |2009), the focus of this dissertation
is solely the evolution of keyword structures. The rationale behind this decision
is that we want to compare the different paradigms of Social Annotations and
the Semantic Web for structuring information resources — without blurring the
focus by taking into account, e. g., the detection of user communities. Because
ontologies as core components of the Semantic Web have in most cases a lexical
layer as well, this approach allows us to contrast the top-down induced relations
with those emerging in a bottom-up manner. Hereby we are finally dealing with
the “meaning” of words; hence, this dissertation also has contact points to the
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fields of lexical semantics and lexical acquisition (Widdows and Dorow, 2002).
So strictly speaking, when we talk about “emergent semantics” in the context
of this dissertation, we primarily refer to emergent keyword semantics.

Another important question is how the “meaning” of a particular keyword
or relation is represented. While there is work on “mapping” keywords to
existing semantic resources (Angeletou, 2008]), our primary goal is to capture
the meaning of a keyword relative to the other keywords in the system. An
exemplary outcome could be, e.g., that two keywords mean the same thing,
i.e., denote the same concept — without the need to be able to explicitly map
this concept to an existing one in some external ontology. This is a crucial
point, because we expect one of the largest benefits from capturing emergent
semantics actually in the discovery of previously unknown concepts and relations.
However, in order to tune the instruments for this purpose, a prerequisite is
an understanding to which extent existing structures (e. g., relations defined in
reference ontologies) can be reproduced based on Social Annotation data.

Specifically, our interest in the emergence of semantic structures among
keywords in Social Annotation Systems can be broken down into the following
research questions:

e [s it possible to derive keyword relations from Social Annotation data
which correspond to term relations defined within existing semantic re-
sources?

e Are there methods to differentiate the “nature” of emerging keyword
relations, i.e., is it possible to find out which semantic relation (as defined
in existing semantic resources) is captured by a particular type of keyword
relation?

e Which factors influence the emergence of keyword semantics, i. e., which
influences have a positive (or negative) impact on the similarity of the
emerging relations to existing ones within semantic resources?

Capturing: Although there exist also explicit relations among keywords within
Social Annotation Systems (e. g., direct co-occurrence), there is evidence for a
much richer underlying implicit structure (Cattuto et al., |2007). This implies
that even when we know that there exist meaningful latent relations, the
crucial question is how to obtain access to them, or in other words, how to
make them explicit. Because this task is also typically addressed in the field
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of ontology learning (e.g., by capturing the implicit relations present within
natural language text or semi-structured documents), one might assume that
methods stemming from this field can be useful for the purpose of analyzing
Social Annotation data as well. These methods borrow usually from several
research areas, like natural language processing (NLP), machine learning or
data mining. However, due to the rich network structure of Social Annotation
Systems, promising candidates also exist in related fields like social network
analysis (SNA), graph theory or information retrieval. Regarding these fields,
another research question addressed within this dissertation is the following:

e Is it possible to apply methods from the fields of ontology learning,
knowledge acquisition and related disciplines to Social Annotation data?

e What are the core characteristics which differentiate Social Annotation
data from other kinds of input to ontology learning or knowledge acquisi-
tion algorithms?

Social Annotation Systems: Besides the question which kind of relations
among which objects present in Social Annotation Systems (i. e., users, keywords
and resources) should be targeted, another important aspect is which part of the
data is considered for inferring those relations. This corresponds to the question
which exact data source to use as an input for the chosen algorithms. While there
exist approaches which require user-specified relations (Plangprasopchok et al.,
2010), or analyze the textual content of keywords (Tatu and Moldovan) [2010)) or
resources (Brooks and Montanez, [2006)), the main focus of this dissertation is to
exploit solely the tripartite network structure of users, keywords and resources
(as well as derived networks, which will be introduced in Section [3.1.3). Hereby
we actually ignore all additional information based on the “content” of keywords,
users or resources; strictly speaking, most of our methods are actually “blind”
for the latter, and address objects of all three kinds basically just by an arbitrary
identifier. While hereby surely useful information is left aside, the strong benefit
of our approach is its universality: While, e. g., methods based on the analysis
of the resources themselves are mostly only applicable to textual content,
operating solely on the graph structure retains the possibility to analyze all
kinds of resource types. This leads to the following research questions:

e Is it possible to deduce semantic keyword relationships solely based on
the network structure of Social Annotation Systems?
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e Are there particular networks which are especially well-suited to derive a
certain semantic keyword relation from?

e What are the general properties of the different kinds of networks regarding
the amount and type of keyword semantics which they encode?

The following section outlines the major steps which will be considered to
thoroughly address the aforementioned research questions.

1.3. Outline

Briefly spoken, the overall structure is intended to familiarize the reader first
with the social and the semantic approach to Knowledge Organization, and
then to examine all relevant aspects for “mediating” between both by means
of capturing emergent semantics. More specifically, this comprises the steps
explained in the following.

In Chapter [2, some open problems of working with knowledge on the Web
will be highlighted, and Knowledge Organization and Knowledge Engineering
will be introduced as two approaches to address those. After that, Chapters
and [4 provide an in-depth explanation of the relevant paradigms and concepts
in the field of Social Annotation and the Semantic Web. Hereby formal models
for both are introduced, and special attention is given to the discussion of their
respective strengths and weaknesses. Chapter [5f finally introduces the core
topic of this dissertation, namely the field of bridging the gap between Social
Annotations and the Semantic Web. After presenting general issues which
need to be considered hereby, ontology learning as a bridging methodology is
introduced. In the sequel, the state of the art and further relevant work in this
direction are discussed, based on a set of comparison dimensions. The latter
will then be used to concretize again the specific focus of the approach of this
dissertation.

The second and main part then starts by a presentation of the Social Anno-
tation Systems, whose data is the object of investigation, along with summary
of the reference semantic datasets used for evaluation purposes (Chapter @
The core methodological contribution is then contained in Chapter [/} Broadly
structured along tasks derived from ontology learning, we will systematically
study methods which unveil different kinds of semantic relations among key-
words. The most basic one is semantic relatedness, which will be addressed
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first. Based on insights gained hereby, the next step is to induce concepts
by discovering synonymous and polysemous keywords. As a prerequisite for
inducing hierarchical relationships, the subsequent section introduces measures
of semantic keyword generality. The latter will finally serve as an input for
methods targeted towards building concept hierarchies. Next, in Chapter |8 we
will shift perspective and take a look at the factors which have an impact on
the emergence of semantics. These belong mainly to three classes, namely (i)
properties of the keywords themselves, (ii) tagging pragmatics, i.e., how and
why people are annotating, and (iii) the malicious activities of spammer users.

Chapter [9] then outlines a set of existing and envisioned applications, which
build on the insights gained in the previous methodological chapter. These
comprise on the one hand systems which enhance Social Annotation Systems
by (i) fostering the emergence of semantics and (ii) feeding back the learned
semantics, and on the other hand external semantic systems, which can benefit
from the derived semantic relations. Chapter [L0|then summarizes the contribu-
tions of this dissertation, and gives an outlook to interesting future research
directions.

Figure summarizes in a graphical way the outline of this dissertation,
especially highlighting the relations among the aforementioned chapters. It is
intended to serve as a reader’s guide for the remainder of this work.

1.4. Overview of Author’s Contributions

Large parts of this work were created during collaborations with colleagues
and other researchers. Several approaches and results have also appeared in
previous publications by the author, together with collaborators. This section
clarifies the author’s original contributions, and relates each publication to its
corresponding chapter within this thesis. All other parts of this thesis which
are not explicitly mentioned below are the sole work of the author.

Chapter 7.1

e Dominik Benz, Beate Krause, Praveen Kumar, Andreas Hotho, and Gerd
Stumme. Characterizing semantic relatedness of search query terms. In
Proceedings of the 1st Workshop on Explorative Analytics of Information
Networks (EIN2009), Bled, Slovenia, September 2009.



1.4. Overview of Author’s Contributions

e Benjamin Markines, Ciro Cattuto, Filippo Menczer, Dominik Benz, An-
dreas Hotho, and Gerd Stumme. FEvaluating similarity measures for
emergent semantics of social tagging. In Proceedings of the 18th Interna-
tional World Wide Web Conference (WWW2009), pages 641-641, April
20009.

e Ciro Cattuto, Dominik Benz, Andreas Hotho, and Gerd Stumme. Seman-
tic grounding of tag relatedness in social bookmarking systems. In Amit P.
Sheth, Steffen Staab, Mike Dean, Massimo Paolucci, Diana Maynard, Tim-
othy W. Finin, and Krishnaprasad Thirunarayan, editors, Proceedings
of the Tth International Semantic Web Conference (ISWC2008), volume
5318 of LNAI, pages 615-631, Heidelberg, 2008. Springer.

e Dominik Benz, Marko Grobelnik, Andreas Hotho, Robert Jaschke, Dunja
Mladenic, Vito D. P. Servedio, Sergej Sizov, and Martin Szomszor. Ana-
lyzing tag semantics across collaborative tagging systems. In Harith Alani,
Steffen Staab, and Gerd Stumme, editors, Proceedings of the Dagstuhl
Seminar on Social Web Communities, number 08391, 2008.

The analysis around semantic grounding of tag relatedness was done in close
collaboration with Ciro Cattuto and Andreas Hotho; both of them contributed
original ideas hereby. More precisely, Ciro Cattuto suggested the distributional
measures of relatedness (especially the tag context relatedness), the methods
of qualitative analysis, and implemented parts of the path analysis within
WordNet. The idea of semantic grounding, and the computation and analysis
of FolkRank on the Delicious dataset can be attributed to Andreas Hotho. The
author implemented the distributional measures, and generalized the results to
other datasets. The idea of alternative aggreation schemes (namely macro and
collaborative aggregation) stems from Filipo Mencer and Ben Markines. The
alternative weighting schemes and similarity measures are based on the author’s
ideas and implementations. Most similarity computations were performed using
a framework implemented within the scope of a Master thesis by Tobias Gunkel,
under the guidance of the author. The analysis of logsonomy data was done
together with Beate Krause, who compiled the data and contributed to the
discussion of the results.
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Chapter 7.2

The baseline approach of grouping synonym keywords resulted from a master
thesis by Stefan Stiitzer, under the guidance of Andreas Hotho and the author.
The same holds for the idea of using hierarchical agglomerative clustering for
tag sense disambiguation.

Chapter 7.3

e Dominik Benz, Christian Korner, Andreas Hotho, Gerd Stumme, and
Markus Strohmaier. One tag to bind them all : Measuring term abstract-
ness in social metadata. In Grigoris Antoniou, Marko Grobelnik, Elena
Simperl, Bijan Parsia, Dimitris Plexousakis, Jeff Pan, and Pieter De Leen-
heer, editors, Proceedings of the 8th Fxtended Semantic Web Conference
(ESWC2011), Heraklion, Crete, May 2011.

The graph-based generality measure were partially implemented by members
of the Knowledge Management Institute, Graz University of Technology (Chris-
tian Korner, Markus Strohmaier). They also implemented the web platform for
the user study. The design of the user-based evaluation was done by the them
and the author together. The explanation of the results stems from extensive
discussions with them.

Chapter 7.4

e Markus Strohmaier, Denis Helic, Dominik Benz, Christian Kérner, and Ro-
man Kern. Evaluation of folksonomy induction algorithms. Transactions
on Intelligent Systems and Technology, 2011.

e Dominik Benz, Andreas Hotho, Stefan Stiitzer, and Gerd Stumme. Se-
mantics made by you and me: Self-emerging ontologies can capture the

diversity of shared knowledge. In Proceedings of the 2nd Web Science
Conference (WebSci2010), Raleigh, NC, USA, 2010.

e Dominik Benz and Andreas Hotho. Position paper: Ontology learning
from folksonomies. In Alexander Hinneburg, editor, Workshop Proceedings
of Lernen - Wissensentdeckung - Adaptivitit (LWA 2007), pages 109-112.
Martin-Luther-Universitdt Halle-Wittenberg, September 2007.
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All works concerning the creation of the concept hierarchies (such as the
implementation of the clustering and generality-based algorithms, and the pre-
processing of the datasets) was done by members of the Knowledge Management
Institute, Graz University of Technology (Denis Helic, Roman Kern, Christian
Koérner and Markus Strohmaier). The author contributed the semantic evalu-
ation of the results, as well as the design and evaluation of the involved user
study. The optimized version of the generality-based algorithm as well as the
inclusion of disambiguated keywords and synonyms in the learning process was
developed during the master thesis by Stefan Stiitzer, under the guidance of
Andreas Hotho and the author.

Chapter 8.3

e Christian Korner, Dominik Benz, Markus Strohmaier, Andreas Hotho,
and Gerd Stumme. Stop thinking, start tagging - tag semantics emerge
from collaborative verbosity. In Proceedings of the 19th International
World Wide Web Conference (WWW2010), Raleigh, NC, USA, April
2010. ACM.

The initiative to analyze semantic implications of tagging pragmatics origi-
nates from members of the Knowledge Management Institute, Graz University
of Technology (Christian Kérner, Markus Strohmaier), who also developed
and implemented the measures of tagging pragmatics. The experimental de-
sign of assessing the influence of pragmatic factors on emergent semantics was
developed to equal parts by them and the author.
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Chapter 2.

Knowledge on the Web

As technology and Web access is pervading more and more areas of our personal
and professional lives, the role of the World Wide Web as a central communica-
tion and information medium is becoming more and more prevalent. However,
actually finding and making use of its contained knowledge can still be difficult.
While web search engines like Google! allow for keyword-based retrieval, the
identification of central concepts and their interrelation within a particular
domain of interest is still largely left to human interpretation. To use a more
pointed formulation, the role of the Web as a “knowledge repository” still
consists to a large extent of how its users actually process and make sense of its
contents. However, its sheer size and complexity demands for theoretical and
practical solutions to support humans such knowledge-based tasks.

Historically, the establishment of such solutions has been the driving force
behind a large number of activities in different research areas. An important
representative among them is Artificial Intelligence, which has been concerned
since its early days with formalisms and mechanisms to operationalize so-called
Knowledge-based Systems (KBS) (Studer et al., [1998)). The goal hereby was to
develop tools which are able to make “intelligent” decisions within a certain
domain, coming close to (or even outreaching) human expertise. The discipline
of constructing such systems became known as Knowledge Engineering.

From a different point of view, a core interest in the field of Library and
Information Science were methods and activities to organize repositories of
knowledge resources. “Resources” are hereby understood in a general sense as
artifacts (e.g., books or web pages) which encode knowledge in a particular
format. Efforts in this direction were hereby subsumed under the term Knowl-
edge Organization Systems (KOS) (Weller, [2010)). A typical example are library
indexing schemes, which are intended to structure the available content and
hence facilitate its efficient access.

"http://www.google.com
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It is clear that the requirements of “web scale” presented new challenges and
opportunities for both Knowledge Engineering and Knowledge Organization.
Despite both are concerned with making knowledge on the Web accessible, they
are focusing hereby on orthogonal aspects: While the primary goal of Knowledge
Engineering is to represent this knowledge such that it can be understood and
processed by machines, the focus of a Knowledge Organization scheme lies
more in facilitating its access by humans. However, it is clear that both targets
are not necessarily mutually exclusive, because a particular form of knowledge
representation may be understandable for both humans and machines. In any
case, both disciplines benefit from a meaningful modeling and structuring of
the concepts and relations within a domain of interest — i.e., in other words, of
a precise semantic representation.

Because a core topic of this dissertation is how such a representation can be
derived from emerging patterns within a particular kind of web applications
(namely Social Annotation Systems, which will be introduced in Chapter [3)), it
clearly touches both mentioned disciplines. As our ultimate goal is to derive
a formal representation, which can be understood by intelligent agents of the
Semantic Web (which will be introduced in Chapter , we see a stronger
relationship to the field of Knowledge Engineering. However, because some
concepts and terminology from Knowledge Organization are relevant and useful,
we will borrow those when appropriate. We will start by giving a brief overview
on the relevant aspects of Knowledge Organization, and continue with a summary
of Knowledge Engineering.

2.1. Knowledge Organization

As stated above, within the cultural development of mankind, institutions were
developed intended to collect and aggregate knowledge resources in order to
keep track with the ever-growing amount of knowledge resources — libraries are
an early example. Because a cognitive strategy of humans to cope with large
amounts of information is to structure it using categories and concepts (Ander+
sonl, [2001)), the latter were fundamentally concerned with methods and activities
to organize the aggregated repositories. In the field of library and information
science, these efforts are subsumed under the term Knowledge Organization
(KO). Its narrow meaning is defined as follows:

“[...] Knowledge Organization (KO) is about activities such as docu-

16
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000 Computer science, information and general works
100 Philosophy and psychology

200 Religion

300 Social sciences

400 Language

500 Science

600 Technology and applied Science

700 Arts and recreation

800 Literature

900 History, geography, and biography

Figure 2.1.: Top level classes of the Dewey Decimal System (DDC).

ment description, indexing and classification performed by libraries,
bibliographical databases, archives and other kinds of 'memory in-
stitutions’ by librarians, archivists, information specialists, subject
specialists as well as by computer algorithms and laymen.”
(Hjorland, |2008, spelling corrected)

Its implementation takes mainly place within Knowledge Organization Systems
(KOS), for which the following is a generic definition stemming from library
science:

“The term knowledge organization systems is intended to encom-
pass all types of schemes for organizing information and promoting
knowledge management.” (Hodge, 2000)

Classical examples are hereby nomenclatures, thesauri and classification
systems (Weller, 2010, p.21 ff). The core idea of the latter is to subdivide a
given domain of interest in a hierarchical fashion into classes and subclasses.
A prominent example is the Dewey Decimal Classification (DDC); Figure
shows its ten top level classes. Please note that each class can also be represented
by a so-called notation (a numeric value ranging from 0 to 999 for the case of
DDC), which allows the language-independent assignment of resources. One
of the main purposes of such a cataloguing activity is to facilitate efficient
browsing, search and retrieval within large resource collections.

17
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Applied to the context of the World Wide Web, one could interpret the
approach of KO as viewing the Web as a “library” of resources, for which a
suitable organization scheme needs to be defined. However, it is clear that the
different nature of the Web requires novel paradigms to this end. Within its
evolution, several organization systems were proposed and implemented — some
of them by authoritative persons or institutions like the W3C?, others “emerged”
as successful applications by innovative individuals, groups or companies. For
the scope of this thesis, we will adapt the above definition of KOS from (Hodgel
2000) as follows:

Definition 2.1 A Knowledge Organization System is a system which allows
to structure information resources by annotating them with metadata which
indicates their membership in classes or categories.

We are primarily introducing this notion to have a common terminology for
the “social” (Chapter and the “semantic” (Chapter approach of annotating
resources on the World Wide Web. In the next section, we will relate both to
the discipline of Knowledge Engineering.

2.2. Knowledge Engineering

As stated above, the discipline of Knowledge Engineering (KE) is fundamentally
concerned with designing, building and maintaining Knowledge-Based Systems.
While this activity had historically been viewed as a transfer process (Hayes{
Roth et al., [1983) from human expertise into a program, the current consensus
is more a modeling view:

“Building a KBS means building a computer model with the aim
of realizing problem-solving capabilities comparable to a domain
expert.” (Studer et al., |1998)

When we talk about Knowledge Engineering from the World Wide Web, we
mean primarily mechanisms and formalisms to model the knowledge present
within its vast amount of information resources. Hereby, certain knowledge
organization schemes may be used for representation purposes (e. g., a taxonomy
of website topics). Hence, we interpret these as an aspect of the general process
of Knowledge Engineering from the Web.

Zhttp://www.w3.org/
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Within the following two chapters, two approaches of knowledge organization
systems which are relevant to Knowledge Engineering from the Web will be pre-
sented — namely Social Annotations and the Semantic Web. Hereby, especially
their respective strengths and weaknesses will be highlighted. In the subsequent
chapter, the idea to provide an augmented kind of knowledge organization by
combining “the best of the two worlds” will be presented, and the state of the
art will be discussed.
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Chapter 3.

Social Annotations

Since its invention around 1990 by Tim Berners Lee, the World Wide Web has
undergone a tremendous development through various phases. A first major
step towards mass adoption was the introduction of graphical web browsers,
among which Mosaic (NCSA| 2011) became especially popular.! According
to its developers, this breakthrough was mainly due to “features — like icons,
bookmarks, a more attractive interface, and pictures — that made the software
easy to use and appealing to 'non-geeks” (NCSA, [2011). Despite the Web
was subsequently populated by an immensely growing amount of users, the
boundary between information consumers (i.e., mostly people browsing the
Web) and providers (i. e., mainly website and content authors) remained clearly
observable.

Several years later, this dichotomy should be blurred within the course of a set
of developments being summarized under the term “Web 2.0”, coming along with
a retrospective naming of the prior stage of the WWW as “Web 1.0”. The variety
of novel applications, techniques and principles makes it hard to formulate a
precise definition what exactly were the distinguishing features of this second
stage; however, a common characteristic of many involved applications is their
participatory nature and a user-centered design. This allowed end-users to
contribute and collaborate in a highly interactive manner, making them in
fact an integral part of what became subsequently known as the “Social Web”.
While the notation “Web 2.0” may suggest an update of a technical specification,
Tim Berners Lee himself pointed out in an interview? that this was not the
case, and that instead these novel applications were based on existing web

'The importance of Mosaic in the early history of the WWW is reflected in the title of
the Proceedings of the Second World Wide Web Conference: “Mosaic and the Web”
(cf. http://web.archive.org/web/20050306013919/archive.ncsa.uiuc. edu/SDG/IT94/
IT94Info-0ld.html)

2http://www.ibm.com/developerworks/podcast/dwi/cm-int082206. txt
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technologies. Despite that, an important point is that the distinction between
information consumers and providers could no longer be drawn at a comparable
level of clarity.

A further notable feature of many social web platforms was that they greatly
simplified the process of annotating digital objects like websites or multimedia
items. Annotation could hereby be performed in various ways, e. g., by classi-
fying, voting, editing or rating, and the targeted objects could be created by
others or by the annotator himself. In any case, this feature turned out to be
immediately useful for the users. As an example, uploading and annotating
a holiday picture to Flickr® has the immediate benefit of having this picture
stored on a central server, being able to access it from anywhere; in addition, it
is easy to discover further interesting pictures by other users which have used
the same keywords for annotation. These and other advantages have in fact
engaged millions* of end-users in the process of annotating web resources.

Although Social Annotation yields different kinds of benefits, its function
as a means of organizing information has gained particular interest (Halpin
et al., 2007)). Hereby especially Social Tagging Systems (Hammond et al.,
2005), which allow the annotation of various kinds of resources with arbitrary
keywords or tags, were seen as a bottom-up categorization alternative to or even
a replacement (Shirkyl |2005) for more formalized classification approaches like
taxonomies, controlled vocabularies or ontologies (the latter will be described in
detail in Chapter ). While the idea of non-expert manual indexing systems using
an uncontrolled vocabulary was not fundamentally new, their implementation
on the Web using intuitive interfaces and immediate feedback mechanisms
finally leveraged mass adoption (Voss| 2007). Early analyses like (Hotho et al.,
2006al) described the resulting complex networks of users, tags and resources as
lightweight conceptual structures.

In this chapter, a systematic characterization of Social Annotation as an
approach of organizing information will be given. The first and main section is
concerned with Social Tagging Systems, whose data is the main focus of the anal-
yses presented within this thesis. After a description of their core functionalities,
a formal model is given and derived structures as well as specialized ranking
algorithms are described. The section closes with a discussion of different kinds
of tagging motivations. The second section introduces further kinds of Social

3http://www.flickr.com
4The factual number of users for several systems can be found in Section
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Annotation Systems which can be found among Web 2.0 applications. The
chapter closes with a summarization of the most important characteristics,
intended to lead over to the complementary Semantic Web approach described
in the subsequent Chapter

3.1. Social Tagging Systems

As stated above, among all Social Annotation variants, the collaborative as-
signment of keywords or tags to different kinds of resources has gained a large
amount of attention, especially in research fields interested in different aspects
of organizing information. The basic principle of these so-called Social Tagging
Systems® is to allow registered users the comfortable maintenance of a resource
collection (e. g., videos on YouTubeb, images on Flickr”, URLs on Delicious® or
bibliographic references on BibSonomy?) within a centralized online location. In
order to ease later browsing and retrieval, the users can assign a set of keywords
or tags to each resource. A key characteristics hereby is that the choice of tags
is not limited to a predefined vocabulary; instead, any arbitrary'” character
sequence can be selected. Figure [3.1] shows an exemplary screenshot of the
social bookmark and publication sharing system BibSonomy , highlighting the
occurrence of the three major constituents of social tagging systems — i. e., tags,
users and resources.

An typical use case for the BibSonomy system is the collaborative mainte-
nance of a bibliography during a research project as exemplified in the following
scenario: During his PhD thesis, a researcher discovers an interesting paper
about folksonomy analysis. Then he can create a new publication entry!!
and assign, e. g., the following keywords to it: folksonomy, analysis, toread,
thesis and 2010.'? Immediately after storing the entry, the interlinked struc-

Salso often called Social Bookmarking Systems or Collaborative Tagging Systems

Shttp://www.youtube.com

"http://www.flickr.com

8http://www.delicious.com

%http://www.bibsonomy.org

10A slight natural exception is that a system-defined character used as a keyword delimiter
cannot be part of a tag. Common delimiters are a whitespace character (e. g., in BibSonomy
or Delicious) or a comma (e.g., in Flickr).

1BibhSonomy supports several ways to enter the bibliographic details, ranging from manual
input over copying from other users to extraction techniques from online digital libraries.

12Please note that we will use this formatting (namely a slanted monospace font) to refer
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Figure 3.1.: Screenshot of the Social Tagging System BibSonomy. It allows
its users the maintenance of a collection of two types of resources,
namely URLs (i.e., bookmarks, left column) and bibliographic
references (right column).

ture allows him to quickly explore (i) which other users in the system have the
same paper in their collection, (ii) which other resources in the system were
tagged with the same tags and (iii) which tags other users have used to annotate
the paper he just discovered. These immediate feedback mechanisms are offering
directly perceivable added values like the discovery of (i) other users with similar
research interests and (ii) further potentially interesting publications. The latter
combined with the possibility to browse the folksonomy structure along all
dimensions (i. e., via selecting users, tags or resources) facilitates especially the
serendipitous discovery of relevant items which one did not explicitly search

to keywords stemming from Social Annotation processes throughout this thesis. Fur-
ther formatting conventions (namely for concepts and concept labels) are introduced in

Section @
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for. During further tagging activities of our exemplary researcher and other
users, the system is able to aggregate tag assignments into tag clouds (see also
Figure [3.1]). These typically depict the tag usage frequencies by different font
sizes or color shades, leading to a intuitive description which can be grasped
quickly by a user.

Despite their obvious usefulness which was documented by a growing pop-
ularity among Web users, systematic research in the nature of these systems
showed up inherent strengths and weaknesses, which will be discussed in the
following subsection.

3.1.1. Strengths and Weaknesses

With the aforementioned advent of the so-called Web 2.0, existing knowledge
organization techniques like taxonomies or ontologies could hardly cope with the
masses of user-generated content. The participatory nature of many of the new
applications demanded for open and dynamic categorization approaches, which
could be handled by end-users themselves in an effortless manner. The growing
popularity of Social Tagging Systems can be attributed to their fulfilment of
many of these requirements:

“The mass amateurization of Web publishing makes the mass am-
ateurization of cataloguing a forced move. Folksonomies are a
trade-off between traditional structured centralized classification
and no classification or metadata at all. And they are the best we
actually have.” (Quintarelld, |2005])

More specifically, the following characteristics of Social Tagging were seen
as superior compared to existing categorization approaches (Quintarelli, 2005;
Mathes|, 2004; [Sinhay, [2005]):

e Inclusiveness and Adaptivity: Because each tag added by each user
is comprised in the global vocabulary without any kind of filtering or
centralized control, the resulting structure completely includes all personal
viewpoints and preferences. Due to this continuous inclusion process,
folksonomies are also adapting quickly to vocabulary changes, contrasting
the typically slow process of terminology adaptation in, e. g., controlled
vocabularies.
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Serendipity: The highly interlinked structure of folksonomies together
with their navigability along all dimensions (i. e., by selecting users, tags or
resources) makes them an excellent candidate for serendipitous discovery
of interesting content which one did not explicitly search for.

Low Cognitive Effort: The uncontrolled nature of the tagging process
relieves users from the burden of having to select the “correct” cate-
gorization among a set of predefined choices. Furthermore, no special
domain expertise or knowledge of domain concepts and their interrelation
is required for participation.

Immediate usefulness and feedback: As described earlier in this
chapter, Social Tagging Systems directly offer added values: Even after
the first contribution, a new user gets immediate feedback on which tags
other potentially interesting users have applied and which other relevant
resources exist in the system.

Scalability: Especially when a domain is growing, the maintenance of
a categorization scheme is an expensive task. Social Tagging Systems
have the potential to tackle this problem, because they attract large user
populations due to their aforementioned benefits. Or to use the formula-
tion by |Shirky| (2005): “The only group that can categorize everything is
everybody.” .

To summarize, Social Tagging seemed to be a pragmatic answer to the ques-
tion of how to organize the masses of user-generated content within the Social
Web. Despite that, most authors agreed that tagging is not the “silver bullet” of
knowledge organization — interestingly, it turned out that folksonomies suffered
mainly from problems that more formalized approaches were designed to elimi-
nate. Typical arguments in this direction found in the literature are (Mathes,
2004; (Quintarelli, |2005; |Golder and Huberman), 2006}):
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door for all kinds of noisy annotations, including misspellings, idiosyncratic
terms, or even erroneous descriptions due to missing expertise.

e Lack of tag structure: For some tasks like tag-based information

retrieval, the flat structure of the tag space can prove problematic, because,
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e. g., missing hierarchical tag relationships make broadening or narrowing
of the retrieval scope difficult.

Synomymy and Polysemy: Because tags can be considered as words,
language phenomena like synonymy are becoming problematic in folkso-
nomies when users are naming the same concept by different terms. On
the other hand, a given tag may have more than one meaning. Both has
a detrimental effect especially on information retrieval tasks.

Varying basic levels: Another problem is rooted in cognitive aspects
of categorization. Depending among others on their expertise in a given
domain, different users will use terms with varying levels of specificity to
describe a given object. Faced with, e. g., a picture of a wildcat, an animal
expert might annotate it with wildcat or even felis silvestris, while
an ordinary person would probably use cat. These conflicting basic levels
lower the usefulness of too specific or too general tags for particular user
groups.

Limited Retrieval possibilities: While one of the core strengths lies
in the serendipitous discovery of relevant content by browsing activities,
searching for specific resources especially via tag-based retrieval is much
more difficult, mostly due to the aforementioned problems.

Throughout this dissertation, possible solutions for some of these shortcomings
(mainly those related to the lack of structure as well as synonymy and polysemy)
will be presented. In order to lay the groundwork for the presentation of these
approaches, the following subsection introduces a formal model of folksonomies.

3.1.2. Formal Model

As described in the previous sections, the three main constituents of social
tagging systems are users, tags and resources. The assignment of tags to
resources by users is given by a ternary relation. For the context of this thesis,
we will stick to the following formalization taken from (Hotho et al.l 2006b):

Definition 3.1 A folksonomy is a tuple F := (U, T, R,Y, <) where

e U, T, and R are finite sets, whose elements are called users, tags and
resources, resp.,
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e Y is a ternary relation between them, i.e., Y C U x T X R, called
assignments, and

e < is a user-specific subtag/supertag-relation, i.e., <CU x T x T.

Definition 3.2 The personomy P, of a given user u € U is the restriction of
F to u, i.e., Py := (Ty, Ry, Iu, <u) with I, := {(t,r) € T x R| (u,t,r) € Y},
T, :=mi(1y), Ry :=ma(ly), and <y:= {(t1,t2) € T x T | (u,t1,t3) €<}.

Users are commonly identified by their user name in the system and tags
can be arbitrary character sequences. Different systems support different kinds
of resources; however, these are usually identified by a mechanism like URLs
independent of their type. This data model is underlying all social tagging
systems presented in Section Among those, the implementation of the user-
specific tag relations < differs: While Delicious allows the creation of tag sets
called bundles, BibSonomy enables users to create directed tag relations. Other
systems do not offer this feature at all. In such a case or when the relations are
irrelevant for the research question under consideration, we will set <= ) and
regard a folksonomy for simplicity reasons as a quadruple F := (U, T, R,Y). In
Formal Concept Analysis (Ganter and Wille, [1999) this structure is known as a
triadic context (Lehmann and Wille, [1995). This data structure can alternatively
be regarded as a tripartite undirected hypergraph G = (V, E), whose set of
nodes is defined by the disjoint union of the sets of users, tags and resources
V = UUTUR connected by the set of hyperedges E = {{u,t,r} | (u,t,r) € Y}.
Figure [3.2] shows an exemplary visualization of a small hypothetical folksonomy.

For convenience reasons, we will refer to a post as a triple (u, Ty, r) with
u e U, r € R, whereby T, := {t € T | (u,t,r) € Y} is a non-empty set of
tags. In other words, a post corresponds to all data which accrues during the
annotation of a given resource r by a given user u with a set of tags T,;.

3.1.3. Induced Networks

When researchers started to analyze folksonomies, it turned out that several
existing algorithms and techniques were not well developed for the three-mode
nature of the folksonomy graph structure. But because the hypergraph also
induces other kinds of networks, often two-mode and especially one-mode views
on the data were used.
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Figure 3.2.: Visualization of the folksonomy data structure.

Two-mode networks: Having users, tags and resources as three folksonomy
constituents at hand, it is consequently possible to derive (g) = 3 undi-
rected two-mode networks, namely (i) user-tag, (ii) tag-resource and (iii)
user-resource networks. Mika (2005) denoted these as actor-concept (AC),
concept-object (CO) and actor-instance (AI) graphs, respectively. Figure
shows a graphical overview. As an example, the edges of the tag-resource
network TR = (TUR, E,) along with an edge weighting function wy.: E — R
for a given folksonomy F can be constructed according to

Ey ={(t,r) €T x R| Ju: (t,u,r) €Y}
wy-((t, 7)) = {u: (t,u,r) € Y}

This means an edge between a tag t and a resource r is weighted by the
number of users u who have used t to annotate r. The user-resource and user-tag
networks can be constructed analogously. However, these have seldom been
analyzed as such, but were further processed to derive one-mode networks (Mika,
2005; |Au Yeung et al., [2009al).
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Figure 3.3.: Schematic overview of 2-mode and 1-mode networks which can be
derived from the 3-mode folksonomy data.

One-mode networks: For many applications addressing the aforementioned

weaknesses of folksonomies (see Section [3.1.1]), one-mode networks are of special

interest — e. g., user-user networks for community detection, tag-tag networks
for inferring semantic relations, or resource-resource networks for item recom-
mendations. Figure depicts how six canonical types of one-mode networks
can be derived!® from underlying two-mode representations. In each case, the
connections between the nodes are based on the principle of co-occurrence —i. e.,
the common occurrence of items within the context of tag assignments. As an
example, in the tag-based resource-resource network, the connection strength

between two resources is growing with the number of times they “co-occurred”
by being annotated with the same tag. Because especially tag-tag networks are

encoding a lot of relevant information to overcome folksonomy shortcomings
like synonymy, polysemy or the lack of tag structure, these will be treated

13 A more formal description of this process is found in the next paragraph.
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separately in the following paragraph.

Tag networks: Because tags are used by humans to annotate resources, it is
justified to expect that the common occurrence of tags encodes information
about the semantic relation among them. For this reason, different kinds of
tag co-occurrence networks were employed for the purpose of analyzing tag
semantics (Hotho et al.l [2006a; Schmitz, 2006; Begelman et al. |2006). The
general formulation of these graphs is T = (T, ), whereby the edges E C T x T
can be weighted by the function w: E — R. There exist three basic kinds of co-
occurrence, which differ mainly in the definition of the respective co-occurrence
context and the weighting function:

e Resource-based: Two tags co-occur when they were used by one or more
users to annotate the same resource:
Wres ((t1,t2)) = [{r : (t1,u,7) €Y A (to,u/,7) € Y}

e User-based: Two tags co-occur when a single user has used both of them
to annotate one or more of his resources:
wuser((tlatQ)) = |{u : (tl,u, T) EY A (tz,u,T/) € Y}|

e Post-based: Two tags co-occur when a single user has used both of them
to annotate one of his resources:
Wpost ((t1,t2)) = {(u,r) : (t1,u,7) €Y A (t2,u,7) € Y}.

These result in the three networks Tyes = (T, Eres)y Tuser = (T, Euser) and
Tpost = (T, Epost). In all cases, the set of edges is constructed according to
(t1,t2) € E; < wi((t1,t2)) > 0,1 € {res, user, post}. Please note that the
adjacency matrix of T,.s can also be obtained by multiplying the adjacency
matrix of the tag-resource network with its inverse, as described by (Mikal, 2005).
The same holds analogously for T, and the user-tag network. It is obvious
that post-based co-occurrence is a restriction of resource-based co-occurrence
which excludes cross-user co-occurrences, i.e., it holds that Fp,s C Eres.

While co-occurrence itself can be interpreted as a kind of relatedness measure
among tags, more elaborate measures were used in the literature (see Heymann
and Garcia-Molina, (2006]) and Section of this work) to create tag relatedness
networks, often based on a vector representation of tags within different contexts.
A systematic in-depth analysis of which kind of semantics is captured by the
individual measures is a core contribution of this thesis and can be found in

Section [T.11
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3.1.4. Tagging System Characteristics

While the formal data model presented in Section is valid for all Social
Tagging Systems, the concrete implementations differ significantly. Hence,
individual design choices and system characteristics may have a strong effect
on the resulting folksonomy structure. Based on a set of key design dimensions
proposed by (Marlow et al., [2006)), the following aspects can be expected to
have an influence:

Broad vs. narrow folksonomies: An early distinction made by (Vander Wal,
2005) has its origin in tagging permissions. While narrow folksonomies like
Flickr allow only the content creator himself to annotate, objects within broad
folksonomies like Delicious can be tagged by the whole folksonomy population.
This implies that the number of posts in narrow folksonomies is equal to the
number of resources. A direct consequence is that resource-based and post-based
co-occurrence are essentially identical in such a case.

Tagging Support: The process of annotation itself can be supported in differ-
ent ways. A first question is if the user is exposed during his tagging activities
to the tags other users have used to annotate the object under consideration,
possibly causing imitation effects. Other systems go one step further and offer
personalized tag recommendations (Hotho et all 2008)).

Type of object: The sharing of different kinds of objects (e. g., videos, images,
websites, publications, ...) possibly also affects the tagging process. When
a user is exposed during the tagging process to textual resource content, one
can assume, e.g., a bias towards using words occurring in the resource title.
The success of title-based tag recommendations (Lipczak et al. 2009) provides
empirical evidence for this assumption.

Spam Detection: Due to their popularity, social tagging systems are also an
attractive goal for malicious user activities like link promotion or the distribution
of inappropriate content. As an example, (Krause et al., 2008b) reported that
among the 20000 users of BibSonomy, 18500 were identified manually as
spammers, responsible for 90 % of all posted bookmarks. With further system
growth, automatic spam detection methods were a forced move. Though it is
hard to assess which spam prevention techniques are employed by the different
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system administrators, the existence of spam within folksonomy data is a
necessary consideration in order to avoid strongly biased results. A study which
examines the influence of spammers on emergent semantics can be found in
Section 8.4

A further question which is independent from individual system characteristics
is how to harness existing information retrieval techniques to calculate relevancy
among objects within a folksonomy. The next section discusses possible solutions
for this purpose.

3.1.5. Calculating Relevancy

Although the optimization of information retrieval techniques on folksonomies
is not a core topic of this dissertation, the notion of relevancy among objects
(e.g., search terms and websites for the case of web search) is a valuable source
for the analysis of implicit relations. The PageRank algorithm (Brin and Pagel
1998) is a popular and successful example of a web search ranking algorithm.
It reflects the idea that a web page is important if there are many pages linking
to it, and if those pages are important themselves. Faced with a given keyword
query, all matching results are ranked by their importance. As it is based
upon the Web graph (whose vertices are websites, and hyperlinks correspond
to directed edges among them), it cannot be applied directly to the tripartite
data structure of Social Tagging Systems.

However, (Hotho et al. 2006b]) showed how its principle can be employed for
folksonomies: A resource which is tagged with important tags by important
users becomes important itself. The same holds, symmetrically, for tags and
users. The core idea hereby is that by modifying the weights for a given object
in the random surfer vector, the so-called FolkRank can compute a ranked list
of relevant other objects within the folksonomy. Simply spoken, giving a high
weight to one or more objects 01, ..., 0, (which can be an arbitrary combination
of tags, users and resources) corresponds to submitting a “query”, which yields
the most relevant resources (i.e., again tags, users and resources) relative to
01, ...,0n. Of special interest for this dissertation is hereby FolkRank’s ability
to compute a tag-specific ranking — i.e., when “querying” with a given tag t,
then the most relevant tags to t are found. Section presents an analysis of
the semantic implications of the obtained relevancy relation.

More specifically, FolkRank considers a folksonomy (U,T, R,Y’) as an undi-
rected graph (UUT U R, E) with E = {{u,t},{u,r},{t,r} | (u,t,r) € Y}.
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For a given object o, it computes in this graph the usual PageRank (Brin and
Page, [1998)) with a high weight for o in the random surfer vector. Then, the
resulting vector is compared to the case of PageRank without random surfer
(which equals the simple edge count, as the graph is undirected). In this way
the winners (and losers) are computed that arise when giving preference to
a specific object in the random surfer vector. The objects that, for a given
object o, obtain the highest FolkRank are considered to be the most relevant
in relation to o. Hotho et al. (2006b) provides a detailed description of the
algorithm.

3.1.6. Tagging Pragmatics

Another interest which the research community has developed is concerned
with usage patterns of tagging, such as why and how users tag. Early work
like (Golder and Huberman, [2006; Marlow et al., 2006|) provided first evidence
for different usage patterns among users. Further work suggested that tag
usage and motivations vary across different tagging systems (Heckner et al.,
2009; Hammond et al., 2005). It was also shown that even within the same
tagging system, strong differences of tagging motivation between individual
users can be observed (Korner, [2009). These observations led to the formulation
of the hypothesis that the emergent properties of tags in tagging systems — and
their usefulness for different tasks — are influenced by pragmatic aspects of
tagging (Heckner et al., 2009). For the context of this dissertation, especially
the question to which extent tagging pragmatics are influencing emergent tag
semantics will be addressed (cf. Section [8.3)).

Previous work such as (Marlow et al. 2006; [Hammond et al., [2005; Heckner
et al., 2009) and especially (Korner et al., 2010]) suggests that a distinction
between at least two types of user motivations for tagging is interesting: On
one hand, users can be motivated by categorization (in the following called
categorizers). These users view tagging as a means to categorize resources
according to some (shared or personal) high-level conceptualizations. They
typically use a rather elaborated tag set to construct and maintain a navigational
aid to the resources for later browsing. On the other hand, users who are
motivated by description (so called describers) view tagging as a means to
accurately and precisely describe resources. These users tag because they
want to produce annotations that are useful for later searching and retrieval.
Developing a personal, consistent ontology to navigate to their resources is not
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Table 3.1.: Two Types of Taggers according to (Korner et al., 2010)).

’ H Categorizer ‘ Describer ‘
Goal of Tagging later browsing | later retrieval
Change of Tag Vocabulary costly cheap
Size of Tag Vocabulary limited open
Tags subjective objective

their goal. Table gives an overview of characteristics of the two different
types of users, based on (Korner et al. 2010]).

While these two types make an ideal distinction, tagging in the real world
is likely to be motivated by a combination of both. A user might maintain
a few categories while pursuing a description approach for the majority of
resources and vice versa, or additional categories might be introduced over time.
Second, the distinction between categorizers and describers is purely based on
tag usage patterns, and not related to tag semantics. One implication of that
is that it would be perfectly plausible for the same tag (for example java)
to be used by both describers and categorizers, and serve both functions at
the same time — for different users. In other words, the same tag might be
used as a category or a descriptive label. Hence tagging pragmatics represent
an additional perspective on folksonomical data. However, as will be shown
later within this thesis, knowledge about the users’ motivation for tagging can
be useful for the optimizing methods to capture emergent tag semantics (cf.

Section .

3.1.7. Related Work

While the description of related work in the field of capturing emergent seman-
tics is found in Section in the following section further relevant work will
be briefly covered in order to provide the reader with a sound overall picture
of folksonomy research. While Social Tagging entered the scientific discourse
roughly around the year 2004 via newsgroups, weblog posts or mailing lists
(e.g., (Mathes, 2004; Shirky, [2005)), a first systematic and meanwhile famous'#
analysis was performed by (Golder and Huberman), 2006)). The authors discussed

Mcited by more that 700 papers according to http://scholar.google.de/scholar?cites=
14807028176669359586, retrieved on 2011/08/08
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basic differences between taxonomies and folksonomies, and identified different
functions of tags. Hammond et al|(2005); Lund et al|(2005) analyzed general
aspects of Social Bookmarking, including reasons for participation and com-
munity building. mentioned a smaller cognitive effort as a main
success factor for Social Tagging. Further works focused on comparing Social
Annotations with existing methods of (i) professional subject indexing
igor and Mccullochl, [2006; [Voss, 2007} [Veres|, 2006; [Heymann et al., [2010; [Lin|
et all [20006), (ii) automatic keyword extraction (Al-Khalifa and Davis|, 2006}
Mishne|, 2006} [Chirita et al., [2007) and (iii) paid annotation (Heymann et al.|
2010)). Another research direction came up with generative models intended
to simulate the tagging process (Cattuto, 2006; Dellschaft and Staab, 2008;
Halpin et al. [2007). (Millen et al., 2005) reported on experiences of using social
bookmarking tools within an enterprise context, while (Ramage et al., 2009)
explored the value of social tags as an information source to cluster websites.
Researchers were also interested in the statistical and network properties of
evolving folksonomies; (Shen and Wu, |2005) reported small world and scale
free characteristics, while (Cattuto et all 2007) adapted standard network mea-
sures like characteristic path length and clustering coefficients to the tripartite
folksonomy structure. Further addressed questions were how experts could be
identified within a folksonomy (Au Yeung et al.| 2009b) and recommendation
processes could be designed to assist the user in choosing tags (Siersdorfer and|
Sizovl, 2009; Hotho et al. 2008, Wu et al., 2009).

3.2. Other Forms

The popularity of Social Tagging Systems along with the availability of tagging
datasets catalyzed a large amount of research activities around folksonomies.
Though the role of keywords is less central and less explicit in most cases, other
forms of Social Annotations exist as well. The paradigms of the “Web 2.0” itself
as well as the increasing spread of mobile devices connected to the Internet led
to the situation that a growing amount of everyday professional and leisure
activities became digitally observable. Two brands of popular applications are
hereby Weblog Systems and Wikis, which both facilitate the easy publishing
and sharing of textual content. Microblogging services like Twitter!® are a more
recent development which produces massive amounts of user-generated markup.

Bhttp://www. twitter. com
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Additionally, clicklogs of traditional web search engines have been interpreted
as an implicit annotation of web resources as well. Lastly, keywords as such
are used in some Question Answering portals like Stackoverflow!® to categorize
questions.

Because the core topic of this dissertation is the analysis of keyword-based
approaches, we will use mainly “pure” folksonomy datasets. However, in order
to show up the applicability of the studied methods to other kinds of data,
these will be complemented by (i) a clicklog dataset and (ii) a dataset derived
from a Question Answering portal (see Section @ In this way, our intention is
to highlight promising analogies. We excluded Weblog and Wiki data, because
an in-depth analysis of the different characteristics is beyond the scope of this
work. So the main purpose of the following section is to provide the reader with
pointers towards possible extensions of the methods and techniques proposed
in this dissertation.

3.2.1. Weblogs and Microblogging

While the focus of Social Tagging as a Social Web application lies mainly
in the field of organizing and categorizing resources, Web logs or short blogs
became popular because they greatly alleviated the process of web publishing
for amateurs. Blogs are an interactive kind of website where individuals create
new content in a personal or organizational context, typically on a regular
basis. These entries (which can consist of different media types like, e. g., text,
images or videos) can then be again referenced and commented by visitors.
Most platforms also allow an annotation of posts by tags. However, these
may typically be assigned by the post creator. Hence, coming back to the
discrimination introduced in Section a web log system can be interpreted
as a narrow folksonomy: All contributing authors form the set of users, the
blog posts they produce correspond to the set of resources, and the keywords
they assign to them can be viewed as the set of tags.

While the tag assignment within Social Bookmarking Systems is mainly
driven by the purpose of making one’s own resource collection accessible for
oneself (or as (Golder and Huberman, 2006) formulated: “users bookmark
primarily for their own benefit, not for the collective good”), the assignment
of tags to blog posts probably shows some more extrinsic aspects: Because

Yhttp://www.stackoverflow.com
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the blog entries themselves are usually targeted towards a public audience,
their annotation with keywords or labels!” can be expected to serve publicly
oriented purposes as well. Among them are (i) summarization of post content,
(ii) navigational support for browsing the set of posts, and (iii) the attraction
of possibly interested readers via blog indexing services like Technorati'®. Tag
disambiguation approaches like (Si and Sun, |2009) have furthermore exploited
the fact that textual content is often present within resources, which is not
necessarily the case for Social Tagging Systems. Despite that, it is justified to
consider keyword annotation of web logs as a special case of Social Tagging as
described in Section B.1]

A further specialized kind of web logs are microblogging services like Twitter!®.
These restrict the resource content which can be published to short text messages
(constrained to e.g., 140 characters). Within these plain text snippets, simple
markup conventions are used: “RT” stands for retweet, a word-of-mouth like
mechanism used to spread messages; references to other user names are indicated
by a leading @-character; and finally, a leading #-character turns individual words
into so-called hashtags. According to (Kwak et al., 2010)), the latter are “/...] a
convention among Twitter users to create and follow a thread of discussion”. In
an analysis by (Wagner and Strohmaier} [2010)), indication of context is described
as a main function of hashtags. While tripartite data models of microblogging
similar to folksonomies have been proposed (Wagner and Strohmaier} 2010), it
was also mentioned that “social awareness streams” from Twitter have a much
more dynamic nature and a different type of complexity. The latter makes
it difficult to directly apply methods originating from the analysis of Social
Tagging Systems to microblogging data.

3.2.2. Wikis

Wikis are websites which allow easy editing and interlinking via a web browser,
typically using a simplified markup language.?’ Wikipedia?! is probably the
most well-known example of a community-created encyclopedia based on this
technology. The idea of making its content available as structured information

"The popular web log platform Blogspot http://www.blogspot .com denotes tags as labels.
Bhttp://www.technorati.com

Yhttp://www. twitter. com

2Ohttp://en.wikipedia.org/wiki/Wiki

http://www.wikipedia.org
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is the driving force behind the DBPedia project??. Hereby mainly pattern
matching techniques are applied based among others on the article’s textual
content and its structuring by templates (Auer and Lehmann) 2007; Lehmann
et al., 2009).

From the viewpoint of resource annotation, another mechanism is interesting;:
Within Wikipedia, articles can be assigned to a category system by adding
a “category tag” (e.g., [[Category:Science]]) which points to a category
page (Voss, 2006). The latter can themselves be assigned to “super-categories”,
leading to a polyhierarchical structure whose elements can be created, modified
an deleted by every Wikipedia contributor. While the semantics of category
relations is not explicitly defined, (Ponzetto and Strubel 2007) presented an
approach to identify subsumption pairs among them using network properties
and lexico-syntactic matching. In contrast to Social Tagging, the users have
to agree on the set of categories for a given article. These properties position
the Wikipedia category annotation system “somewhere between indexing with a
controlled vocabulary and free keywords” (Voss, [2007)).

3.2.3. Question Answering

Another participatory brand of web applications which has existed before the
advent of the Web 2.0 are Question Answering portals (Q&A). Their basic
principle is that users can ask questions on various topics, hoping to get an
answer from an expert in the respective field. The motivation for answering
is usually driven by some form of reputation score. Social Annotations come
hereby into play for the purpose of categorizing questions: As an example, on
the Q&A platform Stackoverflow??, users have to assign at least one and at
most five tags to each question asked. This process is hence more controlled,
compared to the open paradigm of typical Social Tagging Systems. Furthermore,
often there exist guidelines on which tags should be chosen (see Section .
The choice of tags can also be expected to be extrinsically motivated, as a
“good” tag choice will heighten the chance of a good answer by a suitable expert.

Hence, the annotation of questions by keywords represents a slightly more
restricted variant of Social Annotation. Despite that, considering questions as
resources, they fit nicely into the folksonomy model, and will hence be included
in the later studies.

nttp://www.dbpedia.org
Bhttp://wuw.stackoverflow.com
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3.2.4. Implicit Annotation within Logsonomies

A common characteristics of all aforementioned variants of Social Annotations
is that users explicitly choose suitable metadata and attach it to resources.
While not being a genuine Web 2.0 phenomenon, search engines on the other
hand come along with a more implicit form of annotation. Within their log files
containing queries and clicks of users, a folksonomy-like relation between users,
query terms and a resources is induced when a user clicks on a specific URL
after submitting a query. The resulting structure of this process, previously
called logsonomy (Krause et al., 2008al)), is a tripartite graph of a set of users,
queries and clicked URLs with hyperedges, each connecting one query, one
clicked URL and one specific user. Previous work (Krause et al., 2008a)) revealed
that the latter exhibits structural similarities to folksonomy graphs, e. g., small
world properties, a power law distribution of tags and users, and a similar
co—occurrence behavior of tags.

Analogous to the folksonomy model described in Section a logsonomy
can be more formally defined as:

Definition 3.3 A logsonomy is a tuple L = (U, T, R,Y) whereby

o U is the set of users of the search engine.

o T is the set of query terms contained in the queries the users gave to the
search engine,

o R is the set of URLs which have been clicked by the search engine users.

Y is a subset of U x T' x R. It contains a tuple (u,t,r) whenever user u
clicked on resource v of a result set after having submitted the query term t
(eventually with other terms).

Although logsonomies show similarities to folksonomies, (Jéschke et al., [2008b])
also mentions some differences: First, there is a bias towards clicking top-ranked
search results. Apart from that, “erroneous” clicks are introduced when a user
is not satisfied when inspecting a particular URL and returns to the result list.
Furthermore, because the applied techniques are not disclosed by the search
engine operators, one can not be sure if, e. g., query expansion or reduction
affects the relation between search terms and the results. Finally the process of
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Table 3.2.: Overview of other forms of Social Annotation.

H annotators \ resources \ vocabulary purpose
blogs blog authors blog posts open organizing
unstructured | and
set of categorizing
keywords posts,
attraction of
readers
Twitter || tweet authors | tweets open creating and
unstructured | following a
set, of thread of
hashtags discussion
Wiki- Wikipedia Wikipedia open polyhier- | organizing
pedia contributors articles archically and
structured set | categorizing
of categories | Wikipedia
articles
Log- search engine | URLs within | open n/a (implicit
sonomzies || users search results | unstructured | annotation)
set of query
terms
Social resource various open organizing
Tagging || authors resource types | unstructured | and
(narrow), set of tags categorizing
resource personal
collectors resource
(broad) collection
QEA question questions open categorize
authors unstructured | questions,
set of tags, assign
sometimes question to
with tagging suitable
guidelines experts
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splitting queries and relating individual search terms to results may change the
intended meaning.

Apart from that, logsonomies can still be seen as form of knowledge organi-
zation which occurs as a by-product of users’ information retrieval activities.

3.3. Summary

The objective of this chapter was to familiarize the reader with Social An-
notations as a means of knowledge organization, with a special focus on the
characteristics and formal properties of Social Tagging Systems. Table
briefly gives an overview of the different types of Social Annotations which were
introduced within this chapter. In summary, their underlying principle of index-
ing information resources is not fundamentally new and has existed for several
years in the fields of library or information science. However, somehow similar
to how the first intuitive browsers like Mosaic helped to turn the World Wide
Web from a technology enthusiast playground into a mass phenomenon, Social
Annotation Systems pioneered to transfer the process of information indexing
from specialized domains and trained experts to a general and public audience.
Despite its weaknesses, an important benefit is that Social Tagging allows
to observe and learn from how users perceive and organize content (Wetzker,
2010}, p. 184). Using the insights gained hereby, user-created annotations could
play the role of a bridging technology towards more intelligent and adaptive
information retrieval and management tools like the ones comprised in the
vision of a Semantic Web described by Tim Berners-Lee (Berners-Lee et al.|
2001). The following chapter introduces the core ideas of the Semantic Web as
a complementary approach of organizing information resources.
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Although the information on World Wide Web is essentially contained within a
giant network of computers, its primary clients which access, extract, interpret
and maintain information are still human users (Maedche, 2002). This is
rooted in its original design as a medium of information exchange among
users — using Tim Berners-Lee’s words: “Web 1.0 was all about connecting
people”!. Consequently, most of the communication via this novel medium
was encoded in the same way as humans were used to communicate to each
other, namely via natural language. This is why the Web 1.0 is also sometimes
referred to as the Syntactic Web (Breitman et al., 2007), where computers are
mainly responsible for information storage and presentation, but the semantic
interpretation and hence its organization is delegated to humans. Figure [4.1
depicts the underlying structure of the Syntactic Web graph, indicating that
very few machine-processable information is present.? But with the ever-growing
amount and availability of online resources, the complexity of this task is growing
towards becoming practically unfeasible. As an example, though search engines
are of great help in finding relevant content, going through possibly lengthy
result lists and judging if an element satisfies the current information need
remains a tedious task. To summarize, large parts of organizing the knowledge
contained in the syntactic web are left to its users.

A natural question which arises is to which extent these “intelligent” tasks can
be delegated to computers. Tim Berners-Lee himself coined in a revolutionary
article (Berners-Lee et all 2001)) the vision of a Semantic Web, in which Web
resources are annotated with machine-readable metadata, enabling software
agents to process them in a meaningful way. A common semantic layer defines
hereby the meaning of the symbols used for exchanging information. Within

"http://www.ibm.com/developerworks/podcast/dwi/cm-int082206. txt
?The illustrations of Figures and were inspired by http://www.w3.org/2007/Talks/
0130-sb-W3CTechSemWeb/#7,281%29, retrieved on 2011/08/18.
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Figure 4.1.: Structure of the Syntactic Web Graph. From a conceptual point
of view, all resources (e. g., websites) are equal, and the hyperlinks
between them are also all of the same unspecific type.

this layer, the relevant concepts of a given domain as well as their relationship
are specified by means of ontologies (these will be introduced in detail in Sec-
tion [4.1)). While the idea of facilitating Web information access by standardized
categorization has been central to a number of approaches stemming from the
research field of Artificial Antelligence (Breitman et al., [2007), James Hendler
as another founding father of the Semantic Web points out that decentralization
should be one of its core aspects:

“Instead of a few large, complex, consistent ontologies that great
numbers of users share, I see a great number of small ontological
components consisting largely of pointers to each other.”

(Hendler, |2001|)

Figure 4.2] illustrates how this vision leads to a different semantic Web graph.
It depicts the same Web resources as found in the Syntactic Web graph (see
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Figure 4.2.: Structure of the Semantic Web Graph. The novelty compared
to the Semantic Web graph (see Figure is that the resources
as well as the links between them are annotated with metadata
indicating their type. The label prefixes (org, pers and sci) indicate
different ontologies, in which the (link) semantics is defined.

Figure 4.1]). However, these are annotated using machine-readable metadata
which allows to define different types of resources (highlighted as symbols in
the upper right corner of each resource) and links (indicated by the link labels).
Hereby it is important to notice that

e the different resources may stem from different data sources (e. g., those
labelled WWW and semantics from an online taxonomy of research topics,
and those labelled w3c.org and ibm.com from a business directory) and

e the semantics of the resource and link types (indicated by the label prefixes
org, pers and sci) may be defined within different ontologies (e. g., pers
could be an ontology describing personal attributes of users, while org
could model business-related activities).
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Trust

Proof

Logic

Rules: SWRL

Ontologies: OWL

Lightweight ontologies: RDFS

Data Model: RDF

Syntax: XML

Identifiers: URI Character Set: UNICODE

Figure 4.3.: Proposed layered architecture of the Semantic Web.

In other words, the Semantic Web does not intend to be a replacement for the
Syntactic Web, but rather an extension based upon the existing infrastructure.
This is also reflected in the proposed layered architecture (Berners-Lee et al.,
2001)) of the Semantic Web (see Figure , whose lower layers are effectively
based upon existing Web technologies. For the scope of this dissertation, pri-
marily the paradigm of knowledge organization implemented in the “Ontologies”
layer is relevant. For this reason, the further technical details as well as the
concrete languages used in its current implementation will be just briefly cov-
ered in the next paragraph, while ontologies will be introduced in detail in the
subsequent section
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Characters, Identifiers, Syntax: Starting from the bottom, a very first prereq-
uisite for the exchange of information with computers is that all participating
parties encode and decode the binary message content in the same manner;
Unicode? is a standard serving this purpose. Organized in groups, planes,
rows and cells, its goal is to provide a unique representation for each character
used within any real-world language. Once this is accomplished, the next
issue is to be able to assign unique identifiers to objects in order to be able
to “talk” about the same object. This is accomplished by Uniform Resource
Identifiers (URI), which provide “a simple and extensible means for identi-
fying a resource”®. A commonly used subset of those are Uniform Resource
Locators (URLs) like http://www.kde.cs.uni-kassel.de, which additionally
encode the location where the resource can be accessed. For the case of tex-
tual resources, the Extensible Markup Language (XML) defines a set of
syntactical rules to add additional information (called markup) to the resource
content. This markup adds structure to text documents, which facilitates their
automated and standardized processing. Up to this level, all technologies are
purely syntactical and represent in fact well-established Web technologies.

Data Model, Lightweight Ontologies: While XML allows to add markup to
the content of web resources, the Resource Description Framework (RDF)
provides syntax and data model to represent additional information about
resources themselves. Its basic principle is to denote this information in the
form of triples, consisting of a subject, a predicate and an object, each being
identified by a URI as described in the previous paragraph. An example is to
express the affiliation of a person: Let’s say Joe works for IBM. This would be
expressed by the following triple:

http://ibm.com/joe http://jobs.org/worksFor http://ibm.com

Please note that the above is a simplified notation — others (especially XML-
based variants) exist as well. This triple can be interpreted as a directed labelled
edge between two nodes (subject and object) in a resource graph. Coming back
to Figure the reader may notice that the depicted Semantic Web graph is
an alternative representation of a set of triples. So far this corresponds to a
further syntactic convention; however, RDF and its extension RDF Schema

%http://unicode.org
“http://www.ietf.org/rfc/rfc3986.txt
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(RDFS) offer special vocabulary elements whose semantics is defined formally
by means of a model theory®. As an example, the RDFS vocabulary allows to
define classes, class hierarchies, membership within classes and the domain and
range of properties. In this way, RDF and RDFS allow to specify lightweight
ontologies.

Ontologies, Rules: The limited expressivity of RDFS naturally restricts its
ability to model more complex knowledge domains. To facilitate that, the
Ontology Web Language (OWL) adds further RDF vocabulary elements
with defined formal semantics. As an example, it allows to define new classes
by intersecting, combining or restricting existing classes. Because an enhanced
expressivity needs to be traded off against a greater complexity of reasoning
over the captured knowledge, OWL is available in three expressivity levels
(OWL Lite ¢ OWL DL ¢ OWL Full). OWL DL is based on the logical
formalism of Description Logics, which are decidable fragments of First Order
Logic (FOL). This allows to perform inference tasks like instance checking (is a
given individual an instance of a given class), subsumption (is a given concept
subsumed by another concept) or consistency (are there contradictions within
a set of statements) efficiently. As stated above, the underlying knowledge
representation paradigm of ontologies will be discussed in depth in Section

While the focus of RDFS and OWL as ontology languages is to represent
knowledge, rule languages like the Semantic Web Rule Language (SWRL)
are designed to formulate rules by which new facts can be synthesized from
existing ones (Breitman et al, 2007, p.105). These rules can be, e. g., useful for
defining views over ontologies or mappings between heterogeneous data sources.

Other layers: At the time of writing of this dissertation, the top three layers
of the Semantic Web architecture were not realized at a comparable level to
the lower ones. The idea behind the Logic layer is to provide a unifying logic
formalism for ontologies and rules; the Proof layer is intended to allow the truth
assessment of statements by applying rules. Trust finally takes furthermore
the origin of statements into account to assess their trustworthiness.

Two further layers which are typically included, but were left out intentionally
because they are not directly relevant within the scope of this dissertation
are (i) Query languages like SPARQL (which offer the possibility to issue

*W3C Recommendation on RDF Semantics: http://www.w3.org/TR/rdf-mt/
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queries over ontologies) and (ii) protocols of cryptography (which are used
for authentication and authorization purposes).

After this brief introduction of the Semantic Web as a whole, the following
section is concerned with ontologies as its underlying mechanism of knowledge
representation.

4.1. Ontologies

Having its roots in philosophy, the term “ontology” has been used and adapted
by various disciplines, and hence it is hard to formulate a generally agreed
definition across all communities. Etymologically, the term stems from the
greek word “ontologia”, composed from “ontos” (being) and “logos” (word). As
a philosophical discipline, Ontology is concerned with the science of being. As
a branch of metaphysics, a central goal of this discipline was to reason about
category systems which account for a certain vision of the world (Breitman
et al., 2007, p.17). While the idea of abstraction dates back to Platon, his
student Aristotle shaped notions like category or subsumption (Cimianol 2006)
and proposed the first known category system. The latter was commented by
the Greek philosopher Porphyry, who arranged the proposed categories in a
tree diagram, intended to serve as a basis to classify things. In other words,
the “Tree of Porphyry” can be interpreted as one of the first examples of a
knowledge organization scheme.

Although the underlying motivation of establishing categories and properties
to describe the world is similar, ontologies® in the context of computer science
are not necessarily concerned with capturing the “nature of existence” as a
whole. Instead, an ontology is primarily understood as “a formal, explicit
specification of a shared conceptualisation.” (Studer et al. [1998). The authors
explain further:

“A ’conceptualisation’ refers to an abstract model of some phe-
nomenon in the world by having identified the relevant concepts of
that phenomenon. 'Explicit’ means that the type of concepts used,
and the constraints on their use are explicitly defined. [...] "Formal’
refers to the fact that the ontology should be machine readable,

5Please note that we stick to the notation “Ontology” (with upper case O and without a
plural) to denote the philosophical discipline, and to “ontology” for the use in the field of
computer science.
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which excludes natural language. Shared’ reflects the notion that
an ontology captures consensual knowledge, that is, it is not private
to some individual, but accepted by a group.” (Studer et al., |1998)

One can observe that the understanding of Ontology as a scientific discipline
is replaced by regarding ontologies as resources which describe the conceptual
model of a particular domain of interest by a language which specifies its relevant
concepts (or classes) and relations. In line with (Corcho and Gomez-Perez, [2000),
throughout the remainder of this dissertation, the terms concept and class will
be used synonymously. In the previous chapter, two possible ontology languages
with a well-defined syntax and formal semantics were briefly introduced, namely
RDFS and OWL. While several others were proposed within the Semantic
Web movement (cf. (Gomez-Perez and Corchol 2002)) for an overview), their
individual characteristics and differences are not directly relevant for the scope
of this dissertation. Instead, we will stick to a more mathematical notion of
ontologies based on (Cimiano, 2006) and (Maedche, 2002), which is intended to
paint a clearer picture of the underlying paradigm of knowledge organization.
This formal model will be introduced in the following section.

4.1.1. Formal model

The following definition is an adaption from the definitions given by (Cimiano,
2006) and (Maedche, |2002)) for our purposes:

Definition 4.1 An ontology is a structure

0 :=(C,<¢,rootc, R,0r, <R)

whereby

C and R are two disjoint sets whose elements are called concept identifiers
and relation identifiers, respectively,

o <cC C x C is a partial order called concept hierarchy or taxonomy,

e rootc € C is a designated root element of the tazonomy <c, i.e., Ve €
C :c <¢ roote,

e op: R— C xC is a function called relation signature, and
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e <rC RXR is a partial order called relation hierarchy, whereby (r1,7r2) €<gr
implies m;(og(r1)) <c¢ mi(or(r2)),i € {1,2}.

For simplicity reasons, we define two projection functions C(O) = 71(O) and
R(O) = m(0O) on set of concept and relation identifiers, respectively.

If (c1,c2) €<¢ (or ¢1 <¢ c2) we say that ¢p is a subconcept of co, and ¢o is a
superconcept of ¢1. If this is the case, and there exists no ¢g with ¢ <¢ ¢3 <¢ ¢
then we denote c1 as a direct subconcept of co and accordingly co as a direct
superconcept of ¢1. Sub- and superrelations and their direct variants are defined
analogously. Please note that the above definition differs from (Cimiano, 2006)
insofar the relation signature only allows binary relations. This is of course a
restriction, as in principle also higher-order relations are possible; but because
these are not directly relevant for the scope of this dissertation, we will stick to
binary relations only.

For simplicity reasons, we will refer to the concept identifiers and relation
identifiers as concepts and relations, respectively. Because these do not nec-
essarily need to be natural language items, often a lexicon is assigned to an
ontology, which provides textual concept and relation labels. It is defined as
follows:

Definition 4.2 A lexicon for an ontology O := (C,<¢, rootc, R,0R)
1S a structure

L := (Lc, LR, Ref ¢, Ref )
whereby

e Lo and Li are non-empty sets, whose elements are called lexical entries
for concept and relations, respectively,

e Refo C Lc x C is a relation called lexical reference for concepts and

e Refr C Lr x R is a relation called lexical reference for relations.

Based on Ref -, we define forl € Lo

Refo(l) :=={ce C:(l,c) € Refc}
and for c € C:
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Refg'(c) :={l € Lo : (l,c) € Ref¢}

Both functions also have a counterpart for sets L and C, respectively: Ref ~(L)
Uier Refc(l) and Ref5'(C) = Ueeo Ref;'(c). Refp and Refy' are defined
analogously.

Similar to the convention for keywords from Social Annotation (see Section 3.1}
we will use a special formatting (namely a monospace font and small capitals)
when we refer to concepts (or classes), and another one (namely a monospace
font) to refer to their lexical reference(s) in order to ensure a clear legibility and
differentiation within running text. As an example, the concept Company could
be lexically represented by the terms company, firm or enterprise. As a quick
reminder, if the latter term would be used in the context of Social Annotation,
we would format it as enterprise.

While ontologies capture the conceptualization of a particular domain, and the
associated lexicon provides lexical labels for concepts and relations, a knowledge
base is used to hold information about instances of concepts and relations. In
other words, the ontology itself contains (mostly) intensional definitions, while
the knowledge base comprises (mostly) extensional parts, which correspond to
a concrete state.

Definition 4.3 A knowledge base for an ontology O := (C, <¢, rootc, R,0R)
1S a structure

KB :=(I,ic,tr)
whereby
e [ is a set of instance identifiers or short instances,
e 1c: C — 2! is a function called concept instantiation and

e 1p: R — 21 is a function called relation instantiation.

Similar to concepts and relations, the instances do not necessarily need to be
identified by natural language entities, but can be referred to by an arbitrary
identifier. In order to assign textual labels to instances, usually an instance
lexicon is defined. Although instance labels are playing a subordinate role in
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Figure 4.4.: Example ontology O, including a lexicon £ and an associated
knowledge base KB with an instance lexicon ZL.
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the context of this dissertation, we introduce the following definition for the

sake of completeness:

Definition 4.4 An instance lexicon for a knowledge base KB := (I,tc,tR) is

a structure

whereby L is a non-empty set, whose entries are called lexical entries for
instances and Ref ; C Ly x I is a relation called lexical reference for instances.

Figure[4.4]displays graphically an example ontology O, together with a lexicon
L and an associated knowledge base KB including an instance lexicon ZL. The
ontology models a small excerpt of concepts and relations possibly present in a

ZL := (Ly, Refr)

scientific or business domain. Its formal representation is the following:

ontology O:

lexicon L:

Lo =

Lr=
Refc =

Refp =
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{c1,¢2,¢3,¢4,¢5,c6,C7}

{(c2,c1), (e3,¢1), (eas e1), (c5, ¢2), (c6, c3), (7, ca),
(cs,c1), (¢, 1), (e, 1)}

2

{ri,r2, 73}

or(r1) = (ce,¢5),0r(r2) = (c7,¢6),0R(r3) = (ca, c5)

{entity, event, organization, person, workshop, company,
employee}

{organizes, worksFor, pcMember}

{(entity, c1), (event, c2), (organization, c3), (person, cy),
(workshop, cs5), (company, cg), (employee, c7) }

{(organizes,ry), (worksFor,ry), (pcMember,rs)}
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knowledge base KB:

I = {i17i27i3}
Lo te(es) = i1, Le(cs) = 12, tc(cr) = i3
LR : tr(r1) = (i2,11), tr(r2) = (i3,12), tr(r3) = (i3,171)

instance lexicon £Z:

Ly = { Websem Workshop, IBM , Joe}
Ref; = {(WebsemWorkshop,i1), (IBM ,iz), (Joe,i3)}

4.1.2. Classifying Ontologies

The formal model introduced in the previous section is a generic one and is
hence valid for all kinds of ontologies. However, due to great number and
variety of ontologies, it would be illusory to treat all of them in the same
manner. For the purpose of distinguishing among them, several dimensions of
comparisons were proposed in the literature. The following summary is largely
based on (Breitman et al., 2007, p.26ff).

Semantic Spectrum: A first differentiation can be made by the “complexity”
of semantics which can be captured within an ontology (Uschold and Gruninger,
2004; [McGuinness, 2003). Essentially, ontologies serve the purpose of assigning
meaning to terms, whereby different ontology languages offer different possi-
bilities and levels of expressiveness. The comparison of these languages based
on their degree of formality as done in Figure illustrates that these lead to
a continuum of ontology types. Starting from the left, one can find languages
which merely allow the definition of terms, offering little or no support to specify
their meaning. On the opposite end of the scale, logical languages are present
which are capable of formulating strictly formal logical theories (Guarino et al.,
2009). When moving from left to right, the complexity and amount of meaning
which can be captured is growing, together with the level of formality. However,
the more complex meaning constructs can be formulated, the more complex
becomes reasoning over the captured knowledge. Description Logics offer a
good trade-off to this end; this is why they form the basis of many Semantic
Web ontologies. Though it is difficult to draw a clear border for the criterion of
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Ad-hoc Hierarchies XML First-Order,
(Yahoo!) DTDs Data Models Higher-Order,
Modal Logic
bB Logic
Terms Thesauri Schema Programming
informal formal
'Ordinary’ Structured XML Description
Glossaries Glossaries Schema Logics
Data Dictionaries Informal Formal
Hierarchies Taxonomies

Figure 4.5.: Classification of Ontology languages according to (Guarino et al.
2009) by to their semantic spectrum.

a “formal” specification, in practice these two rightmost categories are usually
considered as such.

Generality: Another distinction introduced by (Guarino}, |1998) is based on the
generality of the captured knowledge. Starting from the most general category,
Upper Level ontologies are intended to model generic and domain-independent
concepts such as space, time or action. The main purpose of these ontologies
is to serve as a basis for interoperability in large user communities and for
refinement in other ontologies. On the next level of generality, one can find
Domain ontologies and task ontologies. These are specializing the concepts
present in top-level ontologies focused on a specific domain or generic tasks or
activities. Finally, the most specific kind are application ontologies, whose goal
is to describe the vocabulary relevant to a particular application in the context
of a given domain or task.

Further proposed ontology classification schemes were based on the type of
information represented (Gomez-Pérez et al., 2004)), the focus on formal, termi-
nological or prototypical representation (Biemann, [2005) and others (Maedchel
2002; (Omelayenko, 2001). But for the purpose of laying the groundwork for
understanding which kind of ontologies are suitable and feasible to represent
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Figure 4.6.: Excerpt of the Linnaean taxonomy of biological species. Picture is
taken from http://psnt.net/blog/wp-content/uploads/2010/
04/Linnaeus_-_Regnum_Animale_1735. jpg

emergent semantics from Social Annotation Systems, the aforementioned catego-
rization dimensions suffice. As will be explained in Section these will mainly
be domain and application ontologies. Because taxonomies as the conceptual
backbone are playing hereby an important role, these will be discussed in greater
detail in the next chapter, together with thesauri as a closely related approach.

4.1.3. Taxonomies and Thesauri

Similar to the case of “Ontology” and “ontologies”, Taxonomy as a scientific
discipline is concerned with all aspects of classification, i.e., the organization of
objects by an assignment into a (mostly hierarchical) arrangement of classes.
Literally translated from its Greek origin, it means “method of arrangement”. A
taxzonomy on the other hand corresponds to a particular classification of objects
belonging to a certain domain of interest (e.g., the taxonomy of mammals).
Historically, taxonomies were in fact first used in biological contexts to classify
living things — a famous example is the Linnaean taxonomy (Figure depicts
an excerpt). While being used in the sequel within a broad variety of domains,
the underlying principle remained the same: Starting in a top-down manner from
a “root” class (denoted by rootc in the ontology model found in Section
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which contains all objects, these are subsequently divided into subclasses based
on common properties. In a strict sense, the subclass / superclass relationship
corresponds to a refinement in the sense that objects belonging to the subclass
(e.g., MaMMALS) exhibit the same properties as the ones from the superclass (e. g.,
VERTEBRATES), plus additional ones which allows to distinguish them from the
latter. This conceptual generalization-specialization semantics of the taxonomic
relation hence corresponds to concept subsumption, also denoted as is-a or
type-of relationship. From a linguistic point of view, this relation corresponds
to hyponymy. And with respect to instances, the taxonomic relation implies
a directed instance inheritance from subclasses to superclasses: Sticking to
the example, each object which is an instance if the class MaMmMaLs also is an
instance of the class VERTEBRATE. All these properties are characteristic of
formal taxonomies (cf. Figure , which are sometimes denoted to exhibit
“strong semantics” (Breitman et al., 2007)).

Apart from that, there exist also taxonomies whose hierarchy encode a less
strict parent-child relationship. Although this informal use does not necessarily
correspond to a generalization relationship, the aggregation of related concepts
under a common class can still be useful for organizing resources. An example
is the class hierarchy

COMPUTERS > INTERNET > SEARCHING
found on the user-created Web directory DMOZ". The reader will instantly
notice that SEARCHING is not a “type of INTERNET”, and INTERNET is not a
“type of CompuTERS”. However, a possible observation is that the Internet
plays an important role for a large number of Computer users, which makes
it an important “sub-aspect” of Computers as such. The same holds for the
relationship between INTERNET and SEARCHING. The precise semantics of this
relationship may be hard to capture and vary across and even within such
informal taxonomies; one could find here part-of, cause-effect, association or
localization meanings, just to name a few (Breitman et al., 2007). An analysis
by (Veres, 2006) related these mixed semantics to so-called Wierzbicka categories,
which are strictly speaking not taxonomic as such, but are often based, e. g., on
a common function (e.g., WEAPONS) or a functional or origin collocation (e. g.,
FURNITURE, GARBAGE). The authors identified many examples of Wierzbicka
categories within DMOZ. On the semantic spectrum from Figure [4.5] such
structures can be found on a range between ad-hoc hierarchies and informal

"http://www.dmoz.org/Computers/Internet/Searching/, retrieved on 2011/08/25
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taxonomies.

A thesaurus can basically be regarded as an extension of a taxonomy by a
limited set of well-defined additional relationships among classes. The underlying
taxonomy can hereby adhere to formal or informal semantics. These hierarchical
relationships are usually encoded by prefixes like BT (broader than) and NT
(narrower than). Apart from these, one can typically find (i) associative relations
RT (related term) and (ii) Equivalence relations UF (used for) to denote
synonym or quasi-synonym relations. A further information which is encoded
hereby are “preferred” terms, which indicate a standard way to refer to a
particular class.

Finally, the question remains how one can distinguish taxonomies and thesauri
from ontologies. The following three criteria are mentioned by (Breitman et al.|
2007)):

e Formal is-a hierarchy: While taxonomies and thesauri may contain in-
formal hierarchical relationships, an ontology must strictly adhere to the
generalization-specialization semantics of the taxonomic relation.

o Ambiguity-free interpretation of relationships: The fuzziness present, e. g.,
in associative thesaurus relationships is not allowed within an ontology,
where the semantics of relationships need to be clearly and unambiguously
defined.

e Vocabulary: The vocabulary used to specify an ontology needs to be
controlled and finite, but extensible.

4.1.4. Strengths and weaknesses

While taxonomies and thesauri are classical approaches to knowledge organiza-
tion and have existed since a long time, the sheer amount and the dynamics
of Web knowledge resources make their straightforward deployment difficult.
Ontologies with their enhanced expressiveness have been envisioned by the
Semantic Web community to serve as a better basis for structuring Web con-
tents. This vision is mainly nourished by the following strengths of ontologies
as knowledge organization formalism®:

8The enumeration of strengths and weaknesses is based on (Benz, [2007)
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High precision: Because domain experts usually craft an ontology using
the high degree of expressiveness available in many ontology languages,
classes and relations can be precisely specified.

Avoidance of ambiguity: The usage of an ontology specification lan-
guage with a controlled vocabulary and formally defined semantics makes
it possible to avoid ambiguity of concepts of relations.

Creation of context: The (hierarchical) relation structure among classes
provides a considerable amount of context, which can be of great help to
users interacting with specific classes or instances.

Transferability: Knowledge captured in ontologies is usually meant to
be stable over time and different contexts. Together with the usage of a
“lingua franca”, ontologically represented knowledge is hence transferable
over cultural, temporal and language barriers.

Despite these obvious advantages, to the time of writing of this dissertation,

ontologies have not yet fully found their way into all critical Web applications
like search engines or knowledge management systems. The following reasons
are named in the literature as impeding factors for their widespread adoption:
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e Required Expertise: The establishment and maintenance of an ontology

requires both domain expertise and thorough understanding of ontological
techniques. This makes the whole process expensive and thus problematic
for large-scale deployment.

Metadata annotation bottleneck: Even when a stable ontology is set
up, the sheer mass of information resources on the Web makes their ex-
haustive annotation with metadata a very time-consuming and practically
often unfeasible task.

Inflexibility: With the precision of class and relation definitions, the
degree of rigidity increases, as each modification of the scheme needs the
review of a central authority. This makes an ontological scheme inflexible
with respect to fast changing organization needs.

Creator bias: It has been argued that the establishment and maintenance
of an ontology is influenced by subjectivity and cultural background of the
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involved people (sometimes called cataloguers) (Mathes| [2004). Especially
(Shirky, [2005)) argued in addition that “there is no perfect organization
scheme” due to context errors. The author furthermore pointed out
that the establishment of an ontological organization scheme requires the
cataloguer to mind-read the target audience in order to come up with
a scheme everybody will agree on. The last problem mentioned is that
future-telling is necessary to reach a scheme that will be stable over time.

The alert reader will have noticed that these strengths and weaknesses are
in a way inverse to those of Social Annotations as presented in Section [3.1.1
While, e. g., folksonomies suffer from problems which ontologies were explicitly
designed to eliminate (e. g., ambiguity or lack of precision), their ability to scale
and involve large user populations is an advantage hardly reachable by current
Semantic Web approaches. Section [5.1] will detail further on the potential
benefits and synergies from a combination of both approaches.

4.2. Derived Measures

Besides the explicitly encoded information about classes and their relations
within taxonomies, thesauri or ontologies, their internal structure can be ex-
ploited to derive further information which is present in a more implicit manner.
As an example, even if the two classes TABLE and CHAIR are not connected by a
direct relationship, it is still possible to infer an indirect one, e. g., by observing
that they are both subsumed under the class INTERIOR in the underlying tax-
onomy. Measures which are based (among others) on this kind of information
are denoted to capture semantic relatedness among concepts. These will be
described in Section £.2.1]

Another aspect which is encoded mainly within the taxonomic relation is
the notion of semantic generality. Intuitively, when humans are asked which of
the classes CoMPUTER or NOTEBOOK is more general, most people will probably
judge CoMPUTER as more general. With high probability, this information is
encoded directly within a technological taxonomy. On the contrary, when asked
if NoTEBOOK or TEXT PROCESSING SOFTWARE is more general, most people might
choose NoTEBOOK, despite these two concepts will probably not be related by
a (strict) taxonomic relation. Measures of semantic generality have received
much less attention compared to measures of semantic relatedness; however,
Section [4.2.2] provides a formal definition and summarizes existing approaches
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in order to lay the groundwork for the methods of making emergent semantics
explicit presented in Chapter [7]

4.2.1. Semantic Relatedness

Measuring the degree of semantic relatedness among concepts has its roots in
the field of natural language processing. In this context, tasks like word sense
disambiguation, text summarization or spell checking are applications which
benefit strongly from relatedness measures. While the notion of “semantic
similarity” has also been used partially, we stick to the term “relatedness”, be-
cause |Budanitsky and Hirst| (2006) pointed out that similarity can be considered
as a special case of relatedness. Essentially, measures of semantic relatedness
assign a relatedness score to pairs of concepts, as can be seen from the following
definition:

Definition 4.5 A Semantic Relatedness Measure based on a set of concepts C
18 a function

,OC':CXC—>R+

For two concepts c1,co € C we denote pc(cy,c2) as the semantic relatedness
of c1 and co. The higher the value of pc(ci, c2) is, the stronger is their semantic
relatedness. The possible values are restricted by a defined maximum value
mazpe, . €.,

Ver, e € C: po(er, c2) < mazp,,.

Furthermore it must hold that all concepts are maximally semantically related
to themselves:

Vee C:pole,c) = maz,,

If two concepts ¢y, co are semantically unrelated, their value of semantic
relatedness is po(ci,c2) = 0. Sometimes, the inverse concept of semantic
distance is used. It differs from measures of semantic relatedness insofar that
a smaller distance value corresponds to a higher degree of relatedness. In
any case, a measure of semantic distance pEl (c1,c2) can be transformed into a
measure of relatedness by the a simple inversion according to:
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Table 4.1.: Exemplary results of computing semantic relatedness based on Word-
Net. All concepts are described by are English nouns, and are used
in the following senses (taken from WordNet):

TaBLE: “a piece of furniture having a smooth flat top that is usually
supported by one or more vertical legs”

DEsSK: “a piece of furniture with a writing surface and usually draw-
ers or other compartments”

CHAIR: “a seat for one person, with a support for the back”
GARDEN: “a plot of ground where plants are cultivated”

SOFTWARE: “written programs or procedures or rules and associated
documentation pertaining to the operation of a computer system
and that are stored in read/write memory”

concept pair short. | Hirst St- | Leacock | Lin | Resnik | Jiang
path Onge Chodorow Conrath
table — desk 0.5 4 2.99 0.93 | 741 0.91
table — chair 0.25 5 2.3 0.81 | 6.19 0.34
table — garden 0.07 0 1.12 0.14 | 1.17 0.07
table — software || 0.06 0 0.91 0 0 0.05

1 -1
pcci,c2) = po(c1,c2) pe (c1,¢2) >0
maz,,  otherwise

Analogously, a measure of semantic distance can be transformed in to a
measure of semantic relatedness. As a basis for computation, often WordNet
as a structured lexicon of the English language is used (see Section .
Table contains exemplary results for a set of word pairs, whose semantic
relatedness was captured by different measures?. Most of the measures take
into account graph-based measures of distance between the two concepts in
WordNet’s taxonomy; some of them (e. g., Resnik, Jiang/Conrath) also take into
account information-theoretic aspects like the information content of a concept,
estimated by its occurrence frequency in a reference corpus. See (Budanitsky and
Hirst, |2006) for a detailed explanation of the measures. Budanitsky and Hirst

9The values were computed using Ted Pedersen’s WordNet::Similarity library (http://
search.cpan.org/dist/WordNet-Similarity/|)
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Figure 4.7.: Taxonomy excerpt to exemplify semantic generality of concepts.

also evaluated these measures in the context of a spell-checking application, and
found that the Jiang-Conrath distance (which is transformed to a relatedness
measure in the rightmost column of Table [4.1)) performed best.

Finally, there exist also measures of relatedness which are not based on
strongly structured resources like taxonomies, thesauri or ontologies, but on less
controlled ones like text corpora (Mohammad and Hirst, 2006), Wikipedia (Strube
and Ponzetto, |2006) or even information retrieved via web search engines (Cili+
brasi and Vitanyi, [2007). These capture often co-occurrence or distributional
similarity among words. From a linguistic point of view, these two families of
measures focus on orthogonal aspects of structural semiotics (de Saussure, 1916}
Chandler, 2007)). The co-occurrence measures address the so-called syntagmatic
relation, where words are considered related if they occur in the same part of
text. The contextual measures address the paradigmatic relation (originally
called associative relation by Saussure), where words are considered related if
they can replace one another without affecting the structure of the sentence.
The latter also adopt the distributional hypothesis (Firthl [1957; Harris, |1968)),
which states that words found in similar contexts tend to be semantically similar.
The relation between distributional similarity and semantic relatedness is also
discussed by (Budanitsky and Hirst, 2006)).
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4.2.2. Semantic Generality

In a similar way as taxonomies form the backbone of many approaches to
compute semantic relatedness, their generalization/specialization semantics also
allows to make assessments about the semantic generality of a concept. If two
concepts are taxonomically related, i.e., (¢1, c2) €<¢, this typically implies that
co is more general than c;. This is the case, e. g., for the two concepts MaMmMaL
and VERTEBRATE in the sample taxonomy excerpt shown in Figure 4.7 However,
one could argue that this taxonomy encodes further generality information
besides the explicitly encoded one: Intuitively, most people would probably
agree that INANIMATE ENTITY is a more general concept than Dog, even though
they are not connected by a direct taxonomic relation.

From a completely different point of view, the question of which factors deter-
mine the generality of natural language terms has been addressed by researchers
coming from the areas of Linguistics and Psychology. The psychologist [Paivio
et al.[ (1968) published in 1968 a list of 925 nouns along with human concreteness
rankings; an extended list was published by (Clark and Paivio (2004)). Kam/{
mann and Streeter| (1971) compared two definitions of word abstractness in
a psychological study, namely imagery and the number of subordinate words,
and concluded that both capture basically independent dimensions. [Allen and
Wu/ (2010) identified the generality of texts with the help of a set of “reference
terms”, whose generality level is known. They also showed up a correlation
between a word’s generality and its depth in the WordNet hierarchy. In their
work they developed statistics from analysis of word frequency and the com-
parison to a set of reference terms. In (Zhang) [1998), Zhang makes an attempt
to distinguish the four linguistic concepts fuzziness, vagueness, generality and
ambiguity.

To clarify the meaning of semantic generality for the context of this disserta-
tion, we define the following:

Definition 4.6 A concept generality measure C© based upon an ontology O
is a partial order among the concepts C present in O, i. e.,

COC C(0) x C(0)

If (c1, c2) €@ (orc 9 c2) we say that co is equally or more general than
c1. C9 is reflexive
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Ve e C(0) : (¢, ¢) e,

antisymmetric

Ver,e0 € Coey # co: (c1,¢2) e9= (co,c1) ¢EO

and transitive:

v01,CQ,C3 c C(O) : (61,62) EEO A(CQ,Cg) EEO:> (01,03) GEO

In the literature, implementations and approaches to measure semantic
generality (besides via the direct taxonomic relationship) are scarcely found.
As mentioned above, the depth in the WordNet taxonomy has shown to be
an indicator of concept generality (Allen and Wu, [2010); another intuition
comes from (Kammann and Streeter, 1971)), who stated that “the abstractness
of a word or a concept is determined by the number of subordinate words
it embraces/...]”. These two approaches are examples of generality ranking
functions

o : C(O) = RT

which assign a real value to a concept (e.g., the length of the shortest path
from a given concept to the taxonomy root, or the size of the taxonomy subgraph
rooted a given concept). It is clear that a ranking function ¢ induces a concept
generality measure according to

(c1,¢2) €EC9% vo(e1) < ve(e2)

The resulting measure will be denoted as E,?C. Please note that all generality
measures based on real-value ranking functions are by construction total orders,
but this is not mandatory. Later in Section [7.3.1] we will analyze which kinds of
ranking functions come close to what humans actually perceive as semantically
“general”. The next section will summarize the main aspects of the Semantic
Web which were discussed so far.
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4.3. Summary

This chapter was intended to familiarize the reader with the concepts and
paradigms of knowledge organization within the Semantic Web. After a brief
introduction in its layered architecture, which consists essentially in an extension
of the existing Web infrastructure, the approach of formalizing knowledge by
defining classes and relations among them within an ontology was introduced.
A formal model of ontologies was given, together with the introduction of
lexicons (containing lexical information about concepts) and knowledge bases
(containing instances of classes and relations). As a next step, two dimensions
to differentiate ontologies were presented, namely their semantic spectrum and
their level of generality. Additionally, ontologies were discriminated from the
related concepts of taxonomies and thesauri, with a special focus on formal and
informal taxonomic relationships. As a next step, strengths and weaknesses
of the “ontological” way of knowledge organization were discussed. Finally,
semantic relatedness as well as semantic generality were introduced as sources
of additional information which can be derived from knowledge captured within
an ontology.

Having introduced two “global players” of knowledge organization on the
Web so far (namely Social Annotations and the Semantic Web), a justified
preliminary conclusion is that none of them alone can be seen so far as the
ultimate solution to bring order into the masses of Web content. In the literature,
these two classes of approaches are often not seen as competing, but rather
than “flip-sides of the same coin” (Mika, 2005). The next chapter will detail
on the idea of creating synergies by “combining the best from both worlds” by
establishing connections between them.
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Chapter 5.

From Social Annotations to the Semantic Web

Since the idea of the Semantic Web was initiated by the visionary article of
Tim Berners-Lee in 2001 (Berners-Lee et all [2001), it has attracted great
interest in both academic and corporate contexts. This is reflected in a number
of successful conference series! and company foundations®. Despite that, its
outreach has not yet pervaded the experience of large user populations on
the Web at a degree comparable with major applications like keyword-based
search engines, online social networks or even Social Annotation Systems. In
Section high entry barriers and inflexibility were named among potential
reasons which hampered mass adoption of semantic applications for knowledge
organization purposes.

On the other hand, Social Annotation Systems with their highly flexible and
easy-to-use usage characteristics attracted millions of Web users within short
periods of time.> While early advocates of social tagging like (Shirky, 2005)
interpreted this as evidence that the ontological approach was “overrated”, the
following years showed that the deficiencies like ambiguity or lack of precision
of Social Annotation Systems (cf. Section effectively hampered interoper-
ability and retrieval mechanisms — which are two crucial aspects of knowledge

'As an example, since 2004 there exists the European Semantic Web Conference (later
Ezxtended Semantic Web Conference) ESWC (cf. http://vwww.eswc2011.org/content/
history, retrieved on 2011/08/27). Since 2002, there exists the International Semantic
Web Conference ISWC (cf. http://iswc.semanticweb.org/, retrieved 2011/08/27).

2As an example, the Semantic Web Company www.semantic-web.at| provides professional
services related to the Semantic Web; Ontoprise http://www.ontoprise.de offers among
others professional knowledge management solutions based on semantic technologies.

3Roughly during their third year after foundation, Delicious reported to have tripled their
number of users to one million, see http://blog.delicious.com/blog/2006/09/million,
html, retrieved on 2011/08/27. Roughly 4 years after the foundation of Flickr, it was
reported that 3 billions of images were shared over this portal, see http://blog.flickr,
net/en/2008/11/03/3-billion/, retrieved on 2011/08/27.
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organization systems. In his keynote speech at ESWC 20114, James Hendler
retrospectively criticized that “Tagging has largely failed to meet its promise”.

Apart from their individual criticisms, the idea of combining the best from
both worlds by “bridging the gap” (Hotho and Hoser, 2007) was seen as a
promising direction towards an augmented kind of knowledge organization for
the Web, sometimes denoted as Web 3.0 (Hengartner and Meier, [2010]). While
approaches in this direction concern a variety of applications like Wikis or search
engines, the focus of this dissertation is how to establish connections between
Social Annotations and ontologies as the “heart” of knowledge representation
in the Semantic Web.

In the first section of this chapter, a motivation for this combination will be
given by covering general aspects which show up potential synergies. In the
following section, the presence of emergent semantics within social annotation
systems is reported, and methods of ontology learning are described as potential
mechanisms to make the emergent semantic structures explicit. Hereby also
a comparison to ontology learning from textual data sources is included. In
the context of this section, the precise research problem addressed within this
dissertation will be formulated. In the sequel, the state of the art in related
approaches will be described, structured along the different tasks involved.
Because a crucial question hereby is how to assess the quality of the learned
semantic structures, the chapter closes with an overview of evaluation methods.

5.1. General Aspects

Within the previous chapters, a groundwork for the understanding of the
two concepts of Social Annotations and the Semantic Web as approaches of
Knowledge Organization on the Web was laid. Based on that, this section
aims to highlight the core differences, intended to show up aspects of synergies
which potentially arise from merging both paradigms. The first dimension is the
comparison of bottom-up and top-down structuring, including an identification
of explicit and implicit concept representations. Hereby, the necessity to
differentiate between classes and categories becomes visible, and will be treated
in the subsequent sections. In order to recapitulate the “inverse” relation
of strengths and weaknesses of Social Annotations and ontologies, a brief
summarization and comparison is given as a last general aspect.

“http://www.slideshare.net/jahendler/why-the-semantic-web-will-never-work
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Figure 5.1.: Comparison of top-down and bottom-up approaches of annotation.
Each black circle in the resource layer corresponds to a Web resource
(e.g., a website). The upper and lower half of the figure visualize
the top-down and bottom-up approach of (semantic) metadata
annotation, respectively.

5.1.1. Bottom-up vs. Top-down

A core difference in the paradigms of social and semantic annotation has
often been seen in the “direction” in which they approach the structuring of
knowledge resources (Eda et al, 2009; Quintarelli et al., [2007; |Zhang et al., |[2006)).
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Because ontologies need to be constructed before resources can be annotated
with the defined concepts, the Semantic Web has been regarded as a top-down
methodology. This view also stems from the hierarchical decomposition of a
domain of interest within taxonomies, starting from a root class at the top which
subsumes all other classes. It was pointed out (Shirky, [2005)) that this works
especially well in domains which are characterized by a relatively small corpus
of stable and restricted entities. Because the identification of relevant classes
and relations usually requires a sufficient degree of domain knowledge, this task
is typically performed by users with the corresponding qualification. In addition,
the semantic technologies themselves require at least a basic understanding
of the underlying concepts and tools. Both leads to a knowledge acquisition
and annotation bottleneck, because the comparatively high requirements limit
the number of potential knowledge engineers and annotators. The summary
of this top-down approach is depicted in the upper half of Figure It is
important to notice hereby that the meaning of the terms present in the lexical
layer (topmost part of Figure is specified by explicit concepts and relations
within the conceptual layer.

Social Annotations on the other hand do not require a well-structured and
predefined vocabulary. Their simplicity is rooted in the possibility that users can
assign arbitrary keywords in an uncontrolled manner to resources of their choice.
The meaning of these tags is not formally specified by explicit concepts (as it
is the case for ontologies), but requires human interpretation. As an example,
if a user assigns the keyword paper to a resource, only the interpretation
based on a sufficient amount of context (e.g., the contents of the resource, or
other keywords used by this user) allows possibly to judge whether it is about a
scientific paper or paper as a material. So at first sight, the inherent uncontrolled
nature of free tagging seems to give rise to a rather chaotic overall structure.
However, analyses of tagging networks like (Golder and Huberman, 2006)
interestingly reported stable patterns and a “nascent consensus” on appropriate
descriptions. This phenomenon was attributed to emergent semantics (described
in greater detail in Section , mainly due to imitation effects and shared
background knowledge among participants. So in summary, it seems to be
the case that implicit concepts and relations are present in the aggregated
annotation data, which form a kind of conceptual layer (see Figure. Because
the semantics “crystallizes” after the annotation with lexical items, this opposite
direction (compared to the ontological approach) has been denoted as a bottom-
up methodology.
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Table 5.1.: Comparison of Categorization and Classification as methods of

organizing information.

Aspect H Categorization Classification
Process Creative synthesis of Systematic arrangement of
entities, based on context | entities based on analysis
or perceived similarity of necessary and sufficient
characteristics
Boundaries Non-binding group Mutually-exclusive and
membership, “fuzzy” non-overlapping classes,
boundaries fixed boundaries
Membership flexible, based on rigorous, binary class

generalized knowledge and
/ or immediate context

membership (yes / no)
based on class intension

Criteria for

context-independent and

predetermined guidelines

form hierarchical structure

Assignment context-dependent or principles
Typicality graded structure, ungraded structure, all
individual members can be members equally
ranked by typicality representative
Structure clusters of entities, may hierarchical structure of

fixed classes

Figure [5.1] contrasts the top-down and bottom-up approach paradigm visually.
One apparent potential synergy of a combined approach would be to make
the implicit concepts within social annotations explicit. In this way, still large
user populations would participate in the annotation process, alleviating the
knowledge acquisition bottleneck. In addition, the explicit concepts would
facilitate interoperability and resolve ambiguity. In order to achieve this goal,
methods are required which detect categorization patterns and deduce potential
emergent concepts or classes. Because this transition from categories to classes
needs to cross systemic differences between both approaches, the following
section contrasts their underlying organizational structures.
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5.1.2. Categorization vs. Classification

The schema by which Social Annotation Systems and ontologies structure a
set of information resources differs fundamentally. While Social Annotation is
usually said to produce categories (Shirky, 2005) of associated items, an ontology
consists of precisely specified classes (recall from the definition of the ontology
model introduced in Section that the term classes is used interchangeably
with concepts). The corresponding processes are called categorization and
classification. Reinforced by both being essentially mechanisms for organizing
information, (Jacob, 2004) reports within the literature several occurrences of
the misconception that categorization and classification are in fact synonymous.
Coming back to the ontology model introduced in Section please recall
that the term classes is used interchangeably with concepts. However, there
is a fundamental difference in their underlying structure and their paradigms
of organization. The following systemic properties which differentiate them
from each other were identified (Jacob, [2004)): (i) process, (ii) boundaries,
(iii) membership, (iv) criteria for assignment, (v) typicality and (vi) structure.
Table summarizes the comparison. As will become apparent during the
following explanation of the dimensions, Social Annotation resembles more
closely to a categorization approach, while ontologies belong more to the
classification paradigm. Both will be used as illustrative examples during
explanation. If not stated otherwise, the comparison is based on (Jacob 2004]),
and literal quotations within are taken from there.

The process of categorization is concerned with “dividing the world into
groups of entities whose members are in some way similar to each other”. As
an example, the assignment of, e. g., tags within a tagging system is grouping
Web resources sharing some kind of commonality. This generally unsystematic
process is mainly based on individually perceived suitability of a given tag for
the resource under consideration, which may be driven by the current context,
personal goals or individual experience. Ontologies on the other hand stand
for a much more systematic approach, because the definition of concepts or
classes is typically based on a thorough analysis of object characteristics within
a domain of interest.

Because the context may play an important role for category membership,
the boundaries of categories tend to be “fluent” or fuzzy in the sense that
a given object may be contained under certain contextual circumstances, but
not under others. Hence, category membership is flexible, and the criteria
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for assignment may vary. Because ontologies are intended to capture context-
independent transferable knowledge, their class boundaries are fixed, class
membership is rigorous (i.e., true or false) and the assignment of objects to
classes requires predetermined principles. Though mutual exclusiveness is not a
hard requirement for ontology classes as such, the idea of a (formal) taxonomy
remains to assign an object to a single class.

Another implication of the binary class membership principle of ontologies
is that all class members share the same level of typicality — i.e., there is
no internal structure within a class. Coming back to the ontology example
presented in Section and the CoMPANY class, this means that there is no
“most typical” company. On the contrary, such distinctions could be reflected,
e.g., in the popularity of resources: If the website of IBM is tagged very often
with the keyword company, then one could hypothesize that IBM is a more
prototypical example of a company than, e. g., a seldom tagged local web design
company.

As a last and most important criterion, which is influenced by the aforemen-
tioned ones, the hierarchical structure of well-defined classification systems
provides rich context and a cognitive scaffolding. The encoded class relationships
make it a stable medium for the “accumulation, storage and communication of
information”. Categorizations like found in Social Annotation Systems exhibit
a more ephemeral nature, i. e., their meaning may be short-lived and subject
to change. This implies an increased adaptivity, but hampers their use as a
persistent medium.

So in summary, categories are characterized by lightweight, flexibility and a
kind of “plasticity”, while classes are more static and formal groupings. It is
clear that each has its right to exist, being particularly suited for different tasks.
However, an especially appealing synergetic vision is to observe the process of
category formation until a certain degree of stability is reached, and then to try
to “transform” stable categories into classes.

5.1.3. Comparison of Strengths and Weaknesses

In the previous Sections [3.1.1] and [4.1.4] the respective advantages and disad-
vantages of Social Annotations and ontologies were explained in detail. In order
to summarize them for comparison and to point out their “inverse” relation,
Table contains a condensed representation of the most important aspects.
Note that the notation of “4” and “—” within the table corresponds to relative
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Table 5.2.: Overview on strengths and weaknesses of Social Annotation and
Ontologies.

Aspect H Ontologies | Social Annotation

precision

consistency

interoperability

creation of context

_l’_
_l’_
ambiguity + —
_'_
+
_|_

support for retrieval

requirements —

flexibility, adaptivity —

inclusiveness —

|+ +

scalability —

2

advantages and disadvantages when contrasting both approaches. , e.g., a “+
sign under the aspect of ambiguity means that within ontologies, ambiguity is a
smaller problem than within Social Annotation Systems, because the different
meanings are explicitly represented. Similarly, a “—” in the requirements aspect
means that ontologies have a disadvantage here, because they impose higher
requirements on contribution than Social Annotation Systems. Please refer to

Sections and for a detailed explanation of the aspects.

The essence of this comparison is the following: Social Annotation systems
suffer on the one hand side exactly from problems that ontologies were designed
to eliminate (e.g., ambiguity, lack of precision, low interoperability); but on the
other hand, their scalability and flexibility let them achieve a level of dissemina-
tion and widespread use hardly reachable for purely ontological approaches. To
use the formulation of (Mathes|, 2004), “A folksonomy represents simultaneously
some of the best and worst in the organization of information”. In order to
design an augmented kind of organization system, a promising direction would
hence be to keep the adaptive aspects of Social Annotations, while applying
methods to enhance precision and resolve ambiguity in order to “harvest” more
formalized knowledge structures.

76



5.2. Ontology Learning to capture Emergent Semantics

5.2. Ontology Learning to capture Emergent Semantics

The idea of extracting meaningful concepts and relations from massive corpora of
semantically informal content stems traditionally from the discipline of ontology
learning. According to (Cimiano et al., 2009), the latter defines a family of
“data-driven techniques supporting the task of engineering ontologies”. Typically,
such approaches are applied to structured (e. g., databases), semi-structured
(e.g., HTML or XML documents) or unstructured (e.g., textual) resources.
Based on data mining and machine learning principles, the goal hereby is to
detect structures within the data which correspond to meaningful relations.
These are then extracted, intended to support an ontology engineer in the task
of modeling a particular domain of interest. Obviously, a prerequisite for such
a methodology is the existence of semantic structures within the data.

In this section, we will first report on evidences of emergent semantics within
Social Annotation Systems, which makes them an appropriate data source
for ontology learning. In the following, we will detail on the different tasks
involved, and explain which ones are relevant and feasible for the case of
Social Annotations. Furthermore, the characteristics of Social Annotation data
compared to more “traditional” ontology learning input like natural language
text are worked out. The section closes with a precise description and definition
of the ontology learning approach pursued within this dissertation.

5.2.1. Emergent Semantics

According to the definition given by Philippe Cudré-Mauroux in the Encyclope-
dia of Database Systems (Cudré-Mauroux, 2009), emergent semantics “refers
to a set of principles and techniques analyzing the evolution of decentralized se-
mantic structures in large scale distributed information systems”. In this article,
Cudré-Mauroux also mentions collaborative tagging as a key application to be
analyzed using an emergent semantic paradigm. In fact one of the main reasons
of the growing interest of different research communities in social bookmarking
data were early evidences for the formation of stable semantic patterns within
the large bodies of human-annotated content.

An early systematic analysis was performed by (Golder and Huberman, 2006]).
One core finding was that the openness and uncontrolled nature of these systems
did not give rise to a “tag chaos”, but led on the contrary to the development
of stable patterns in tag proportions assigned to a given resource. (Cattutol,

"



Chapter 5. From Social Annotations to the Semantic Web

2006|) reported similar results and denoted the emerging patterns as “semantic
fingerprints” of resources. Kome| (2005)) provided further empirical evidence
for the existence of hidden hierarchical relationships among tags. |(Cattuto et al.
(2007) analyzed statistical properties of tag co-occurrence networks; by using a
shuffling approach, they discovered local patterns of co-occurrence indicating a
possible underlying semantic hierarchical organization. |Al-Khalifa and Davis
(2007)) compared folksonomy tags with (i) keywords from trained human indexers
and (ii) content-extracted keywords and judged folksonomies as a rich source
for semantic metadata. Hotho et al.| (2006al) showed that existing knowledge
discovery techniques like association rule mining provide meaningful results
when applied to tagging data. From a slightly different perspective, (Kennedy:
et al., |2007) showed that tagging patterns of pictures upload to Flickr together
with geographical labels can be useful to generate summaries of important
locations and events.

Though coming from different disciplines and analyzing different aspects, the
consensus of these works is that the large bodies of human-annotated content
resulting from collaborative tagging systems contain evidences for emergent
semantics.

5.2.2. Ontology Learning Tasks

Similar to the differentiation of ontologies by their semantic spectrum (cf.
Section [4.1.2)), methods of ontology learning can be distinguished by the specific
ontology components they are targeting. Because these are inherently of different
complexity, the involved tasks can be arranged in a “layer cake” hierarchy (see
Figure as proposed by (Cimianol 2006)).

Starting from the bottom, the least complex task is to discover terms. This is
more relevant for textual resources; for the case of Social Annotations, existing
approaches typically regard the keywords used for annotation as terms. In this
way, Social Annotation data greatly simplifies the process of term extraction.
As a next goal, the extracted terms need to be grouped into synonym sets,
i.e., clusters of terms with similar meanings. According to (Cimiano|, [2006)),
apart from its lexical representation Ref ~(c), learning a concept c also requires
an intensional definition i(c) (i.e., a specification of its meaning, given, e.g.,
by a natural language description or typical attributes) and an extension ||c||
(i.e., the set of its instances). As a next step, it is desirable to arrange the
learned concepts into a concept hierarchy, whose relation semantics may
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Ve, y(worksFor(x,y) = 3z(tsCEO(z,y) A isBossFrom(z,x))( general axioms
disjoint(person, event) axiom schemata
isCEO <p worksFor relation hierarchy
worksFor(dom : person, range : company) relations

company <c organization Concept hierarchy

¢ := company = (i(c), ||c||, Ref o (c)) concepts

{company, enterprise, Firma} (multilingual) synonyms

ibm, company, person, event, ... terms

Figure 5.2.: Summary of the different tasks involved in ontology learning, ar-
ranged in a hierarchical “layer cake” as proposed by (Cimiano,
2006).

be strict or non-strict. Besides this taxonomic relation, the next ontology
learning task addresses general relations among concepts. Due to the great
variety of possible relations, the complexity of this task is considerably higher
compared to the lower layers — and is becoming even more complex when trying
to arrange the relations into a relation hierarchy. Finally, the top two layers
are concerned with axiom schemata and general axioms, which are the
most formal representation variants. However, due to the very high complexity
of deriving rigorous logical axioms by a data-driven methodology, it is a less
tackled problem (Terrientes et al., 2010).

5.2.3. Comparison to Ontology Learning from other input

In the context of ontology learning, the question is now to which extent the
data resulting from Social Annotation Systems differs from “traditional” input
data of ontology learning algorithms, like database schemata, dictionaries or
plain text documents. A fundamental difference lies hereby within the way how
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and by whom the data is created. This difference can be best explained among
the following comparison dimensions:

e Motivation of contributors
e Communication among contributors

e Requirements for contribution

The following sections explain each of these in detail.

Motivation of contributors. The first aspect which can help to characterize
Social Annotation data is the motivation of the people involved in its creation.
Having a look at, e.g., approaches of ontology learning from text, one can
observe that these are often performed on specialist literature of a given domain
(e.g., tourism websites in (Maedche and Staab, [2005) or abstracts from medical
journals in (Cimiano, 2006)). This implies that the underlying text corpora
have often been produced for a specific purpose and often targeted towards a
specific audience. Especially for datasets stemming from scientific literature,
newspapers, periodicals or journals, it is justified to presume that an important
motivation of the authors is to capture and convey information such that it can
be used by others. This is not necessarily the case for Social Annotations; for
social bookmarking systems, (Golder and Huberman) 2006)) presented evidence
that “users bookmark primarily for their own benefit, not for the collective
good”. While this distinction is less sharp for, e. g., weblogs, Twitter posts or
wikis, the aspect that an intrinsically private information management task (like
the maintenance of a personal bookmark collection) is performed in a public
space is a novel characteristic of the resulting data. To use a more pointed
formulation, the main motivation for users to “produce” data in a Web 2.0
system is not necessarily to make the data available to the public (as it is when
writing articles or books), but rather to solve a specific personal task.

Communication among contributors. Apart from the motivation of the users,
the way how the contributors are interacting differs fundamentally compared to
more traditional data used for ontology learning. Taking a look at, e. g., a group
of people writing a book, creating a dictionary, or designing a database schema
to describe a given domain, one can usually assume that each participant is
aware of all other involved individuals (e. g., group members or authors of cited
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papers). It is furthermore probable that the contents of the book, dictionary
or schema were discussed and negotiated via (direct or computer-mediated)
exchange of messages. This allows also to trace back particular contributions on
an individual level. On the contrary, the connection among all users involved,
e.g., in the creation of a tag cloud describing a certain resource is much less
explicit. (Xia et al., 2009) refers to these communication features as ballot box
communication. Compared to “traditional” computer-mediated communication,
one of its distinguishing characteristics is the many-to-one nature of information
flows. It describes the paradigm that the many individual contributions are
aggregated and presented to each user as a single “voice of the crowd”. This
exposure leads to an implicit influence on individuals by local or global trends
within a certain community - without necessarily being able to pin down this
influence to one or more particular users.

Requirements for contribution. As a third and last comparison dimension,
we’ll have a look at what is required from each contributor, and which cognitive
processes are involved in contribution. Sticking to the example of ontology
learning approaches based on specialist literature of a given domain, it is clear
that authors are typically required to have a demonstrated expert knowledge in
the area of interest. The process of structuring and capturing this knowledge in
a written form is very time-consuming and requires further communication skills
as well an an elaborate audience design. These high entry barriers are a natural
cause for the relatively small number of contributors involved in the creation
of “traditional” ontology learning input. Among the characteristics of social
annotation systems, here we can find probably the most distinguishing feature:
A central aspect of them is their very low entry barrier and immediate usability
for a large number of users. (Xia et al., [2009) noted that this is partially due
to limited interaction options which lower the participation costs compared
to, e. g., reading and writing messages. A cognitive analysis by |Sinha; (2005)
attributed the simplicity of free annotation to the observation that after the
mental activation of related categories, no choice between them is necessary. In
addition, most systems impose no special requirements of domain knowledge,
which leads to the situation that the knowledge is not concentrated within a
small circle of experts, but more fragmented and distributed among a broad
community. Table summarizes the main dimensions of comparison discussed
before.
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Table 5.3.: Dimensions of comparision between “traditional” input of ontology
learning algorithms and input from social tagging systems. The
different kinds of “traditional” input are explained at the beginning

of Section

Social Annotation
data

“traditional” OL
input

user goal solution of specific <> capturing and
(personal) task, conveying information
_§ primarily for own for a specific audience
3 benefit
'_§ community aggregate user < provide more content
EQ goal preferences in higher quality
publicity of side-effect < core aspect
medium
user types producers, consumers < contributors, lurkers
communication || low < high
§ richness
."3 type of com- many-to-many, <> one-to-many
§ munication many-to-one
S | communication || low < high
§ cost
8 influence on by actions, implicit < by messages, explicit
users
amount of small < large
domain
knowledge
-§ required
¥ | cognitive related category < thorough structuring
g PR . ;
| processes activation, lightweight & preparation of
'S | involved conceptualization, content, audience
g comparatively design, communication
& effortless skills
number of high < low
contributors
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In the following section, we broaden again our perspective from ontology
learning to the general research direction of “bridging the gap” between Social
Annotations and the Semantic Web. Specifically, the State of the Art in this
area will be elaborated, based on a comparison framework which summarizes
the most important distinguishing dimensions.

5.3. State of the Art

The early evidences of emergent semantics in Social Annotation Systems and
the availability of large test data sets quickly motivated a large number of
approaches coming from different disciplines targeted towards making the
implicit semantic structures explicit. In the sequel, we will first propose a set of
comparison dimensions and values in Section which are intended to cover
as exhaustively as possible all approaches. Then, the related work is explained
along the core dimension of “Learning Tasks” (see Table [5.4]), which comprise
the ones mentioned in the ontology learning layer cake (see Section . The
selection of the presented approaches was intended to be as complete as possible.
If a selection was still necessary (e.g., for space reasons), it was guided by the
goals of (i) preferring early works on a specific direction (ii) covering a possibly
broad range of relevant authors and (iii) providing of at least one example for
each of the values defined in our comparison model.

5.3.1. Comparison dimensions

The main dimensions and values used for comparison are summarized in Ta-
ble Garcia-Silva et al.| (2011) also provided an extensive review of approaches
to discover tag semantics, including a suggestion for a unified process model.
Complementing their work, our main focus is not to compare existing approaches
based on the different process steps, but rather using dimensions similar to
prior comparisons of approaches of general ontology learning like (Omelayenkol,
2001; [Shamsfard and Barforoush, 2003} Biemann, [2005). As we consider the
“Learning Tasks” to be the core dimension of comparison, we will cover each
of its values in a subsequent section; the other dimensions will now be briefly
explained.

First of all, a core question is of course which Data Source is exactly used
to derive semantics from. A large number of approaches (e.g., (Heymann and
Garcia-Molina; 2006 Schmitz, 2006)) is solely based on the folksonomy structure.
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Table 5.4.: Comparison dimensions and possible values to compare methods of
making semantics in folksonomies explicit.

Dimension H Values

Data Sources folksonomy structure, resource content, tag content,
user-defined tag relations, additional metadata, exter-
nal sources

Data Filtering by tag / resource / user properties, by external source,
manual

Learning Technique || statistical data mining & machine learning (clustering,
association rules, generative models, latent semantic
analysis), SNA measures, NLP techniques, custom
algorithms

Learning Task ontology construction (terms, synonyms, concepts, con-
cept hierarchy, relations & axioms), semantic measures
(relatedness, generality), tag sense disambiguation, on-
tology maintenance, ontology population

Evaluation human assessment, gold-standard based, application-
centered (folksonomy), application-centered (external
application)

By this we mean the tripartite structure itself as defined in Section as
well as derived structures like tag-resource (Mika, [2005) or tag co-occurrence
networks. The advantage of this kind of approaches is their independence from
tag language and content type of the shared resources (e. g., bookmarks, videos
or pictures). When taking into the tag content (i.e., the lexical representation
of a tag itself (Tatu and Moldovan, 2010)) or the resource content (Brooks
and Montanez, 2006), the advantage of more information is to be traded off
against a restricted applicability to different languages and content types. If
available, additional metadata like time and location information can also be
exploited (Kennedy et al., [2007). Some systems also allow their users to define
tag relations, which can also be used for taxonomy induction (Plangprasopchok:
and Lerman), [2009). Finally, approaches which consider external sources like
existing ontologies or thesauri (Marinho et al., |2008; Angeletou, |2008) benefit
from rich prior knowledge, but of course naturally depend on the availability of
such.
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Having chosen a specific data source, most approaches perform an a-priori
Data Filtering in order to exclude inappropriate content or optimize the input
for a specific learning procedure. Typically, data items are hereby disregarded
based on certain tag, user or resource properties. Very common are minimum
frequency thresholds (Wu et al. 2006b), or top-k selections which restrict
the analysis to popular folksonomy partitions. But also more sophisticated
strategies like including only resources annotated with a least one verb (Maala
et al., 2007)) can be found. Spam removal is another motivation to this end.
Another possible data restriction is to only keep items which are present in
external repositories like tags in Tagpedia® (Tesconi et al., 2008) or resources in
Wikipedia® (Meder} 2010). In addition, the fine-tuning of the resulting dataset is
also often done manually, e. g., by removing system tags like system:unfiled.

The variety of disciplines interested in learning tag semantics also led to a
variety of applied Learning Techniques. Clustering is an obvious candidate
of statistical data mining and machine learning techniques to form groups of
(semantically) related tags (Begelman et al., 2006} |Giannakidou et al., 2008;
Gemmell et al.; 2008]). Closely related are association rule mining methods
(Hotho et al., 2006a; Lin et al., [2009) which are able to detect semantic relations
among items. A more specialized example from this area are statistical models
of subsumption (Schmitzl 2006)), targeting the discovery of is-a relations among
tags. From a different perspective, generative approaches like the separable
mixture model (SMM, (Zhang et al., [2006))) are modeling the users’ behavior
in assigning tags to resources. Starting from an observed tag co-occurrence
distribution, a conditional distribution of tags over a fixed number of topics is
computed. Another theoretically well-founded approach is to apply dimension-
ality reduction techniques like latent semantic analysis (LSA, (Eda et al., [2009;
Levy and Sandler, 2008)) to the high-dimensional tag vector space, resulting in
a mapping of tags to “topics” or “concepts”. Because some folksonomy-induced
networks exhibit suitable properties, also measures stemming from social net-
work analysis (SNA) like centrality or clustering coefficient were applied (Mikal,
2005; Heymann and Garcia-Molina), [2006]), mostly in order to distinguish be-
tween general and specific tags. Despite the fact that the assignment of tags
to resources does not follow any kind of syntactical pattern, researchers from
the natural language processing community (NLP) have used part-of-speech

Shttp://wuw.tagpedia.org
Chttp://www.wikipedia.org
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taggers to gain a deeper syntactic understanding of a tag and finally to discover
equality and synonymy relations among tags (Tatu and Moldovan, 2010)). A
last family of approaches are custom algorithms specifically tailored for the
task of capturing tag semantics, like the incremental tag taxonomy induction
algorithm proposed by (Heymann and Garcia-Molinaj, 2006]).

Besides the specific learning tasks (which will be covered in the subsequent
subsections), the last comparison dimension is which Evaluation paradigm
was used to assess the quality of the learned semantics. Because this dimension
differs least from general ontology learning, we just recapitulate briefly the three
main classes mentioned by (Dellschaft and Staabl 2006) of (i) human assessment
(e.g., (Schmitz, [2006)), (ii) gold-standard based and (iii) application-centered
approaches. The latter is often performed within the folksonomy system itself,
e.g., by using the learned semantics to improve tag recommendations (Wetzker
et al., [2010) or information retrieval (Marinho et al. 2008). Examples of
integration into external systems are less frequent, but found for example in
the context of e-learning applications (Doush and Pontelli, 2010).

5.3.2. Capturing Semantic Relatedness

Motivated by the existence of ontology-based measures of Semantic Relatedness
(see Section , an early research question was to which extent such measures
could be derived from a folksonomy. While a number of approaches successfully
applied several kinds of such measures (e.g., an adapted version of Jaccard
similarity coefficient in (Meo et al., 2009)), a systematic analysis has largely
been missing. This gap is addressed by this dissertation, which examines several
variants of folksonomy-based measures of semantic relatedness in Section

5.3.3. Learning Concepts

Although, e. g., measures of semantic tag relatedness do have a value on their own,
the goal of formalizing the implicit knowledge in folksonomies by constructing
ontologies remains desirable. For the coverage of such approaches, we will
stick to the ontology learning layer cake (see Figure and start with term
extraction methods. Because the processes of synonym discovery and concept
formation is sometimes hard to disentangle, both will be presented in a common
paragraph. Approaches of tag sense disambiguation as an important aspect will
then be explained in a separate paragraph.
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Terms: A main advantage of folksonomies compared to text documents as
input for ontology learning algorithms is that the process of term extraction
is much simpler — in fact, many approaches skip this step completely and
regard tags directly as terms. However, observing a great variety of spelling
and abbreviation variants among tags, some works perform tag normalization
at different levels of complexity. This reaches from the simple removal or
replacement of special characters (Cantador et al., 2008) (e.g., i — u) to the
unification of morphological variants by string distance measures (Specia and
Mottal 2007)) or information from external lexical resources (Tesconi et al.
2008]).

Synonyms & Concepts: Among the most often mentioned problems of Social
Annotation Systems is that synonymy within the uncontrolled tag vocabulary
hampers information retrieval tasks. As an example, in order to collect references
for an ontology learning book, some people will use the tag o1, others ont-learn
or ontology_learning. Searching by only one of these will consequently fail to
retrieve the relevant resources tagged with the others. This obvious deficiency
has motivated researchers to come up with various methods to form groups
of tags with a similar meaning, often referred to as concepts. In a strict
sense, the latter does not conform to the definition given by (Cimianol, 2006)),
according to which the process of concept formation should also provide an
intensional definition (e.g., a natural language description or a set of typical
attributes) of each concept. Despite that, we will treat for simplicity reasons
both variants (i.e., semantic groupings of tags with and without” an additional
intensional definition) uniformly as “concepts”. Begelman et al.| (2006) proved
the applicability of clustering to discover concepts by using an algorithm based
on spectral bisection. Their approach as well as the ones from (Grahl et al., 2007;
Giannakidou et al., 2008]) requires an predefinition of the number of clusters —
a parameter which is usually hard to come up with in advance. Examples of
approaches which produce a variable number of clusters are (Specia and Motta,
2007; [Zhou et al., [2008; |Gemmell et al., [2008; |Radelaar et al., [2011)). [Jung
(2010) explores the possibility to match tags with the same meaning across
different languages. |Jaschke et al.| (2008a) applied FCA techniques to discover
so-called frequent tri-concepts (i.e., sets of users, tags and resources belonging

TOf course one could also argue that the set of tags themselves can always be interpreted as
a lightweight intensional description.
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to an implicit concept) within folksonomies. Wetzker et al. (2010) apply a
translation approach to compute mappings between tags used by different users
to describe similar concepts.

Another class of approaches is to take into account external sources containing
prior knowledge about semantic relations. |Angeletoul (2008) proposed a method
to enrich folksonomies by mapping tags to concepts defined in WordNet; (Canta~
dor et al.| [2008; Tesconi et al., [2008} (Garcia-Silva et al., [2009)) described similar
approaches using categories and concepts derived from Wikipedia. Grineva
et al.| (2008) exploited a Wikipedia-derived measure of semantic relatedness
for tag clustering. Though coming from a different direction, approaches like
(Abbasi and Staab, [2009; |[Lee and Yong, 2007)) are exploiting WordNet for
query expansion, geared towards enhancing retrieval quality by querying with
“concepts on the fly”.

Tag Sense Disambiguation Besides the aforementioned problem of synonymy,
another major and often mentioned weakness of tagging systems is ambiguity of
tags. Of course this it not an intrinsic problem of social tagging, but in a way
“inherited” from the fact that tags can mostly be considered as natural language
entities. However, the openness and uncontrolled nature of these systems makes
this issue more visible.

In principle, the task of disambiguating tag meanings belongs to the process
of concept identification (see Figure but in order to clarify the different
aspects and approaches, it is treated separately in this chapter. Statistical
natural language processing distinguishes between supervised, dictionary-based
and unsupervised disambiguation (Manning and Schutze, |1999)). In all cases,
information taken from the context of a term forms the basis for its assignment
to a certain sense. In the process model of discovering tag semantics by (Garcia-
Silva et al.l 2011), “context identification” is also included as a major step.

Supervised approaches are based on labelled training data, and learn usually a
classifier based on context features of a given word. Such approaches have rarely
been applied to social tagging systems. Dictionary-based approaches rely on
sense definitions defined in dictionaries or thesauri. |Angeletou et al.| (2008)) first
identifies a set of candidate senses for a given tag within WordNet, interprets co-
occurring tags as context and uses a measure of semantic relatedness to choose
the most appropriate sense. In a similar manner, (Garcia-Silva et al., |2009)
uses cosine similarity between tag co-occurrence vectors and a bag-of-words
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representation of Wikipedia pages to identify the most suitable sense definition
within DBPedia.® [Lee et al.| (2009) also computes a relevance score between
tags and Wikipedia articles for the same purpose.

Unsupervised approaches are trying to partition the context of a given term
into clusters corresponding to its different senses. |[Au Yeung et al.| (2007, 2009a))
analyzed several folksonomy-derived networks with regard their suitability to
derive senses by graph clustering algorithms. |Zhang et al. (2006]) proposed
an entropy-based metric to capture the level of ambiguity of a given tag. |Si
and Sun| (2009) take into account a web-based measure of semantic relatedness
as well as well as textual article content to disambiguate tags in weblogs by
spectral clustering.

As a last class of approaches, methods like the one proposed by (Passant and
Laublet|, 2008} [Passant}, 2007)) require the user to define the intended meaning
during the tagging process by choosing among a set of possible senses.

5.3.4. Capturing Semantic Generality

Apart from semantic relatedness, some knowledge extraction algorithms are
also based on a notion of Semantic Generality of tags, which is used, e. g., to
distinguish between broader and narrower terms. Again, several measures were
used in the literature (e. g., network centrality by (Heymann and Garcia-Molinay,
2006), or a statistical model of subsumption in (Schmitz, [2006)). However, a
systematic comparison has largely been missing. This gap is addressed within
this thesis, more precisely in Section

5.3.5. Learning Concept Hierarchies

While synonym resolution is mainly targeted towards improving retrieval tasks,
the reconstruction of hierarchical relationships among tags (or learned concepts)
is often mentioned in the context of enhanced browsing facilities. Because
the maintenance of larger hierarchies is a difficult task and hence the idea of
self-organizing structures is very appealing, many researchers have focused on
this aspect. Mika, (2005|) pioneered in deriving broader / narrower tag relations
from a user-tag graph (called “actor-concept network”), which are effectively
based on subcommunity relationships. Hamasaki et al. (2007) extended his
work by taking into account information from the users’ neighbourhood in the

8http://www.dbpedia.org
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folksonomy graph. Heymann and Garcia-Molina, (2006)) suggested a custom
algorithm to induce a “tree of tags”, based on a measure of tag generality
and a measure of tag similarity. |Schmitz| (2006) applied a statistical model of
subsumption (originally stemming from work on deriving concept hierarchies
from text) for a similar purpose. Eda et al| (2009)) used probabilistic latent
semantic indexing (PLSI) to induce a taxonomy of tags. Zhou et al.| (2008) used
a divisive clustering technique based on deterministic annealing to iteratively
split the set of tags into semantically coherent subsets. |Lin et al.| (2009) uses
association rule mining together with hypernym relations from WordNet to
derive a hierarchical tag structure. The approach of (Meo et al. 2009)) consists
in building first a directed weighted tag graph using a notion of generality, and
then removing edges until a maximum spanning tree is found.

Based on a different data source, (Plangprasopchok and Lerman, 2009))
suggested to integrate user-specified tag relations” into a global consensus
structure.

5.3.6. Learning Attributes, Relations and Axioms

Apart from learning taxonomic relations among concepts as described in the
previous paragraph, literature on learning other kinds of relations from social
tagging data is still sparse. A possible reason for this is that a large portion of
relation learning techniques based on text (see (Cimianol [2006) for an overview)
comprise the exploitation of syntactic dependencies or lexico-syntactic patterns,
which do not exist in folksonomies. However, when reviewing the results of
taxonomy learning techniques, it turns out that in some cases the learned
taxonomic relations do not always convey a sharp and precise “is-a” semantics.
In the examples given by the authors, one can also find occurrences of e. g.,
“part-of”-relationships or purpose-related connections. But the “disambiguation”
of these relations remains so far an open and interesting research problem, as
well as the extraction of more complex constructs like axioms.

9Recall that some social tagging systems like BibSonomy or Flickr allow users to create
explicit directed tag relationships.

90



5.4. Evaluation Paradigms

5.4. Evaluation Paradigms

Because the methods and techniques used to harvest emergent semantics build
mostly upon data mining and machine learning models, evaluation is a crucial
aspect. However, compared to other disciplines in this area like information
retrieval or speech recognition, standardized benchmark datasets and measures
are largely missing (Dellschaft and Staab, |2006). Among the possible reasons
for this, one factor can surely be seen in the nature of semantic modeling
itself: The establishment of valid semantic structures which represent precisely
the conceptual elements and relations of a certain domain is an inherently
challenging task. Especially when learning ontologies, their inherent complexity
makes a holistic evaluation approach hardly feasible:

“An ontology is a fairly complex structure and it is often more
practical to focus on the evaluation of different levels of the ontology
separately rather than trying to directly evaluate the ontology as a
whole.” (Brank et al.l, |2005)

In addition, a global quality criterion may not even be desirable for the
following reason: Ontologies are usually constructed not only for the mere
purpose of representing knowledge, but are often targeted towards a particular
application. Depending on the application type and the anticipated user
population, different aspects of the ontology will be more or less important,
which should be reflected in any evaluation approach. If, e.g., there exists
a direct interface where humans work with the ontology, the quality of the
lexical labels to describe concepts will be more important than in a case where
the ontologically captured knowledge serves only as an input for an automatic
process. Generally speaking, the different aspects or levels correspond to the
ontology learning layer cake (see Figure . So in general, the design of a
meaningful evaluation needs to consider at least two aspects: (i) which ontology
learning tasks are to be evaluated and (ii) which task is most relevant for the
targeted application, task or audience.

Because a core question when capturing emergent structures within social
annotation data is to which extent they represent “correct” relations, most
works in this direction have applied semantic evaluation approaches. Hereby,

one can broadly distinguish between three evaluation paradigms (cf. Dellschaft
and Staabl (2006); [Brank et al.| (2006))):
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o Application-centered: Especially within the Semantic Web, there exist
several applications (like semantic search engines or recommender systems)
which are based on background knowledge in form of explicitly represented
semantics. In such cases, a natural measure of semantic quality would
be the performance improvement achieved by using different semantic
structures as input. A requirement hereby is the existence of measures to
compare the achieved results. Though this paradigm reflects clearly the
actual “utility” of an ontology, a problematic issue is how to disentangle
the influence of the semantic input from other application parameters.

e Human Assessment: This paradigm relies on the assessments of human ex-
perts how well an formal semantic representation meets a set of predefined
criteria. Hereby it is obviously an important question on which criteria to
agree. This paradigm can be expected to provide valuable assessments of
semantic quality at a high cost due to the heavy involvement of human
interaction.

e Reference-based: The prerequisite of this methodology is the existence
of a semantic “gold-standard”, to which the learned semantic structures
can be compared. The gold standard can be an ontology itself, but also,
e. g., a set of documents covering the domain in question. The key issues
hereby are how to assess the quality of the gold-standard itself, and the
establishment of valid comparison measures.

Comparing the paradigms, (Dellschaft and Staab, 2006|) concludes that
application-centered evaluation is suitable for ontology engineering scenar-
ios; for large-scale and frequent evaluations of ontology learnign algorithms
themselves, only reference-based methods are practically feasible. In the context
of this dissertation, the main evaluation goal is to assess the degree to which
the captured semantic structures exhibit desirable properties (e.g., precision,
consistency, unambiguity) of more formally engineered structures. Hence, we
will mostly adopt a reference-based evaluation paradigm, including manually
built semantic resources. Because our focus hereby lies in the formation of
concepts and the induction of concept hierarchies, the two most relevant aspects
for evaluation are the lezxical layer (i.e., which terms are used to denote the
concepts) and the structural layer (i.e., how the concepts are arranged hierar-
chically). In section and existing evaluation measures for both are
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presented. For a deeper discussion of evaluation issues, refer to (Dellschaft and
Staabl, 2006; Bade and Benz, [2008; [Brank et al., 2005)).

More recently, a fundamentally different paradigm of evaluation was proposed
in the context of inducing hierarchies from social tagging systems (Helic et al.,
2011). It is essentially concerned with an assessment how useful a learned struc-
ture is to fulfil a particular task like e. g., navigation within a folksonomy. The
difference to application-centered evaluation is that this task is not necessarily
implemented within a running system, but can be e.g., simulated within a
model. Compared to semantic evaluation, this is an orthogonal dimension of
comparison, because a learned hierarchy does not necessarily be semantically
precise in order to serve as a useful navigational aid. However, the application
of both paradigms to a set of candidate hierarchies actually returned consistent
quality assessments (Strohmaier et al. 2011). For this reason and because the
main focus of this dissertation lies in the assessment of semantic properties of
the emergent structures, we will adhere to the semantic evaluation paradigm as
is customary in the literature.

5.4.1. Lexical Layer

Because an important issue in the field of knowledge organization is the assign-
ment of meaning to terms, a first criterion when comparing two organization
structures is to which extent they are using the same vocabulary to denote
concepts. Several measures have been proposed in the literature (see (Dellschaft
and Staab, |2006; Bade and Benz, |2008) for an overview). Most of them are
assessing the size of the intersection between the term sets used in the learned
and reference structure; (Sabou et al.l 2005) proposed to adapt the precision /
recall measures known from information retrieval for this purpose. [Dellschaft
and Staab (2006]) picked up this idea and defined lexical precision, lexical recall
and lexical F1-measure as :

Definition 5.1 Lezical precision, recall, F1-measure
Given a learned ontology

O* = (C*, <, roote, R* ok, <p)
and a reference ontology

AN A A A pAN AN _A
07 = (C=, <, root o, R™, 0, <R)
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with associated lexicons

L= (Lg, Lk, Reft, RefR)
and
L% = (LS, LS, Ref&, Ref )
then the lexical precision LP and lexical recall LR between O and Og are
given by
AN
_LenLg|

LP(O*,0%) = BT LR(O*,0%)
C

A
_ e n L
- A
L |
The lexical Fl-measure LF combines LP and LR according to

2. LP(O*,0%) - LR(O*,0%)
LP(O*,02) + LR(O*,0%)

LF(O*,0%) =

Though other measure exist, which take, e. g., into account the edit distance
between lexical labels (Maedche and Staab, [2002), the above measures will
be used to compute similarity on the lexical level. Besides their clarity and
simplicity, another reason for this choice was to avoid potential mismatches
induced by matching semantically unrelated terms with a small edit distance
(e.g., punk — funk, bank — bunk).

5.4.2. Structural Layer

Even if two conceptualizations are described by exactly the same terms (which
would be reflected in lexical precision and recall values of 1), their structure
can still be completely different. However, on this structural layer, it is a
non-trivial task to judge the similarity between a learned concept hierarchy and
a reference hierarchy, especially regarding the absence of well-established and
universally accepted evaluation measures. While measures for the similarity
of trees, concept lattices and graphs exist, their implication when applied to
concept hierarchies (Cimiano, |2006). Yet, a number of useful measures have
been proposed by past research. A number of them is based on the comparison
of so-called characteristic excerpts (Maedche and Staabl 2002 Cimiano, 2006
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Figure 5.3.: Visualization of taxonomic similarity measures between a learned
ontology O* and a reference ontology O”. The grey shade corre-
sponds to a possible characteristic excerpt of the concept denoted
as “company” in both structures.

Dellschaft and Staabl 2006|): The idea hereby is to represent a concept c*
within a hierarchy by some kind of a “representative neighbourhood” ce(c*),
which reflects its position within the hierarchical structure. Given that a
corresponding concept ¢ exists in another hierarchy, its excerpt ce(c®) can
be compared to ce(¢*) — if both are very similar, then it is assumed that
both are found at similar positions within both hierarchies. Such a single
computation corresponds to the local part of these measures. Figure is
adapted from (Maedchel |2002)) and depicts this principle. The highlighted parts
within both example hierarchies correspond to the two characteristic excerpts
of the concept denoted as “company”. As a next step, the local values are
aggregated into a global part, which finally indicates the overall similarity of
both structures.

In all proposed variants, these taxonomic similarity measures are strongly
influenced by (i) the specific composition of the characteristic excerpt and (ii) the
schema. by which the local parts are aggregated into a global value [Dellschaft
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and Staab| (2006) formulated three criteria which should be met when making
these choices, namely (i) multi dimensionality (i.e., that different aspects can be
separately evaluated without interference effects), (ii) proportional error effect
(i.e., “more severe” differences like those close to the hierarchy root should be
reflected in stronger dissimilarities) and (iii) usage of interval (i.e., the range
of similarity values should be fully used, and gradual increases / decreases be
reflected accordingly). Analyzing existing approaches, Dellschaft argued that
the common semantic cotopy as a characteristic excerpt fulfils these criteria.

It is defined as:

ese(e, 0%, 0%) :={c : € Ref&(L*NLA)YA(d <t eVe<td)ANe#d}

Simply spoken, a concept is described by its sub- and superconcepts whose
lexical representations are present in both hierarchies. Based on this excerpt,
Dellschaft defines:

Definition 5.2 Taxonomic precision, recall, F1-measure Given a learned and
a reference ontology and the corresponding lexicons as defined in Definition [5.1
the local taxonomic precision and recall values of two concepts ¢* € C* and
™ € C? are defined according to:

o (. OF 08 = [RAFERAE (esel(e, O, 02) ) Ref ™ (ese(c?, 0%, 0%)))

|csc(cx, O*, O8))|

_ |RefE(Ref & (ese(cr, 0%, 0%)) 0 Refgi ! (ese(c?, 0%, 0%)))|

* AN yx A
trese(¢”, €7, 07, 0%) lcsc(c®, 04, OF))|

The global taxonomic precision TP is computed by averaging over the concept
overlap between both ontologies according to:

1
Ay _ Z A
OO = e n o) Wesel26, 007
c cERef £ (L*NLA)

The global taxonomic reall TR is computed analogously. Finally the taxonomic
F-measure is computed as the harmonic mean of taxonomic precision and recall
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according to

TR0, 0%) = L TP(0*,0%) - TR(O*,0%)
') TP(O*,0%) 4+ TR(O*, 0%)

The same idea underlies the measure of tazonomic overlap proposed by
Maedche (Maedche, 2002), which is defined as follows:

Definition 5.3 Tazonomic Ouverlap Given a learned and a reference ontology
and the corresponding lexicons as defined in Definiton [5.1], the local tazonomic
overlap values of two concepts ¢ € C* and ¢® € C* are defined according to:

fous(c, B, 0%, 0B) = |Ref&(Ref 5™ (ese(cr, 0, 0%)) N Ref 5™ (ese(c?, 02, 0%))))]

|RefE(Ref i (ese(er, 0%, 02) U Ref ' (ese(c™, 04, 0%)))|

The global taxonomic overlap TP is computed by averaging over the concept
overlap between both ontologies according to:

1
T * VAN ese * VAN
0(0*, 02) NI EEyES] Y towele,e,0%,0%)
cERef & (L*NLA)

While these measures have not been applied widely, they are theoretically
sound and interesting. This was the reason to choose them for the evaluations
on the structural layer within this dissertation.

5.5. Approach of this dissertation

Having laid the groundwork by (i) describing ontology learning as a methodology
to combine the advantages of Social Annotations and ontologies, (ii) introducing
a comparison framework of related work in this direction and (iii) giving an
overview of evaluation approaches, this section is intended to specify which
tasks will be addressed exactly, what kind of data they will be based on and
which evaluation paradigms will be chosen.
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Learning Tasks: As was pointed out in Figure the implicitness of concepts
and relations within Social Annotation Systems is a problematic issue regarding
their reusability. Hence, one core focus of the approaches presented within this
dissertation is to make these concepts and relations explicit. In terms of the
ontology learning layer cake (see Figure , we adopt hereby the notion from
the literature that the set of terms is defined by the set of keywords (e.g.,, the
set of tags T within a folksonomy F = (U, T, R,Y")). Starting from those terms,
the tasks of synonym discovery and concept formation will be pursued (see
Sections and . As a next goal, the arrangement of the learned classes
into a hierarchical structure is approached (see Sections and . Hereby,
the goal to derive a formal taxonomic structure (as described in Section is
not regarded as mandatory. In other words, the learned hierarchical structures
are not restricted to strong generalization/specialization relationships only.
Tasks which are found in layers above (i. e., relations, relation hierarchy and
axioms) are regarded as beyond the scope of this dissertation and left for future
investigation. The rationale for this decision as well as preliminary ideas will
be presented in Section [7.5]

Data Foundation: As pointed out in Section [5.3.1] an important question is
which data source is exploited to capture emergent semantic structures. In order
to remain independent from different languages and different resource types,
the approaches presented in this dissertation are solely based on the structure of
Social Annotation data. This implies that when performing the ontology learning
tasks, no prior knowledge from external sources (e.g., existing ontologies) is
taken into account. The main intention behind this is to observe the conceptual
equivalent of “desire lines” (Mathes, [2004), i. e., semantic structures which are
formed by actual needs and actions of users, in an unbiased manner.

Evaluation: In order to evaluate the quality of the learned semantic structures,
our primary paradigm will be the comparison against gold-standard references.
We stick hereby to the common notion in the literature that gold-standard
based methods are the only feasible tools for frequent and large-scale evalua-
tions (Dellschaft and Staabl 2006). However, when possible, these evaluations
will be completed by user studies.
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5.6. Summary

The main goal of this chapter was to concretize which motivations, aspects
and methods are relevant for the goal of exploiting synergies between Social
Annotations and ontologies (as core part of the Semantic Web). In order
to highlight contrasting characteristics, the paradigms of bottom-up and top-
down knowledge organization were discussed, and the need to make implicit
concepts within Social Annotations explicit was identified. This process was then
related to the transition from the collaborative categorization to a more formal
classification, based on capturing “matured” structures. Further motivation
was given by a summary of the inverse relation between the respective strengths
and weaknesses of both approaches. As a concrete family of techniques to
capture emergent semantics, ontology learning was introduced, along with the
ontology learning layer cake which summarizes the different tasks involved like
term extraction or concept hierarchy induction. Three main differences between
ontology learning from more “traditional” input were identified, namely (i) the
motivation of contributors, (ii) the communication among contributors and (iii)
the requirements for participation. In the sequel, related work in the field of
making implicit semantics within Social Annotations explicit was described
extensively in order to convey a clear picture to the reader of the state of the art
in this field. The description was structured by a comparison framework, whose
dimensions were (i) data sources, (ii) data filtering, (iii) learning technique,
(iv) learning task and (v) evaluation. Furthermore, the last dimension was
elaborated more deeply by presenting approaches of assessing the quality of
learned semantics, both on the lexical and the structural layer. The chapter
closed with a precise specification which tasks are being addressed within the
scope of this dissertation.
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Chapter 6.

Data

Because the collaborative emergence of semantics within Social Annotation
Systems is finally a data-driven process, one can assume that different dataset
properties have an influence on the result of methods and algorithms which
capture the emergent semantic structures. For this reason, we did not restrict
ourselves to a single system, but selected several datasets intended to provide a
broad coverage of system characteristics. These differ in various dimensions,
like the size, the type of resources which are annotated, or the permission
model (see also the distinction between broad and narrow folksonomies from
Section . Furthermore, we also included data which does not stem from
“pure” social resource sharing systems, but also from related applications like
search engines (see Section on logsonomies) or Question-Answering plat-
forms (Section [3.2.3). This choice allows us to assess the usefulness of the
methods presented later in Chapter [7] on a variety of Social Annotation data.
Each dataset will be briefly introduced in Section [6.1] along with a summary of
its respective statistical properties.

Apart from the question of input data, another important aspect considering
the empirical evaluation of the output of the presented algorithms is the choice
of reference datasets. Because we will stick in most cases to a gold-standard
evaluation paradigm, we hence require a “ground truth”, to which the learned
semantics can be compared. Hereby we are naturally facing the problem that
one can hardly imagine the existence of a single “universal” semantic gold
standard, which is globally accepted. Instead, we will also focus on a set of
manually and semi-automatically built ontologies, characterized by different
sizes and scopes. Those will be introduced in Section [6.2]
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Table 6.1.: Statistics about the BibSonomy dataset.

popular tags H Statistics

software Complete dataset
727_t0o_sort Tags Users | Resources TAS Posts
deutschland 192 445 6463 | 551540 2434387 | 636479
web2.0 Restricted to 10000 most popular tags
nn Tags Users | Resources TAS Posts
programming 10000 5777 | 504709 1829211 | 580763
theorie WordNet overlap of k most popular tags
web 100 1000 10000 100 000 all
university 60 544 4027 18521 25182
Frequency Distributions

Tags Users Resources
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10000 F * 1, 10000

1000 1000
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6.1. Systems and Datasets

As stated above, we will now briefly introduce a set of Social Annotation
datasets, which will serve as a basis for the methods of capturing emergent
semantics presented in Chapter [7] More precisely, we will introduce three broad
folksonomies (BibSonomy, CiteULike and Delicious), a narrow one (Flickr), and
two related datasets, namely a search engine clicklog (AOL logsonomy) and a
snapshot from a Question-Answering platform (Stackoverflow).

6.1.1. BibSonomy

BibSonomy! is a social bookmark and publication sharing system developed
at our group. Established in 2004, its user base consists currently mainly
of students, scientists and knowledge workers. Being a broad folksonomy,
it allows to share two kinds of resource types, namely URLs to web pages
(i.e., bookmarks) and references to scientific papers. The latter is based on

"http://www.bibsonomy.org
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the BibTeX-format (Patashnik, 1988]), commonly used especially in natural
scientific areas. Resource identity is established for web pages by their URL;
for publications, a bibliographic hashkey?® is used, which is computed over a
set of normalized metadata fields (namely title, author, editor and year). The
BibSonomy team provides dumps for research purposes on a regular basis?.
For the analyses presented in this thesis, a snapshot from September 2010 was
used. In order to allow for an aggregated view on the data, bookmarks and
publications were merged into a single dataset. Table gives an overview
about the statistical properties of the resulting folksonomy. Compared to the
other datasets (which will be presented thereafter), the user base of BibSonomy
is comparatively small. However, an important issue hereby is that BibSonomy
performs an extensive semi-automatic filtering of inappropriate system usage
by spammers (which is the topic of Section . The current cleaned dataset
consists solely of non-spam contributions. The relatively small number of users
makes the popular vocabulary sensitive towards very active users; as an example,
the tag zzz_to_sort was used by just a single user, but is still the 2nd most
popular tag within the whole system. We included this dataset to see whether
this sensitivity has implications for the emergent semantics within the system.
The last table row shows the frequency distributions of tags, users and resources.
In all cases, the objects are found on the z-axis, ordered in descending order
by their frequency; the y-axis depicts then the frequency of each object. Both
axes are log-scaled. The shape of all curves exhibits the folksonomy-typical
characteristics of long tailed distributions — i.e., there are few very frequent
objects, and a large number of infrequent ones. The latter are denoted as the
“long tail”.

6.1.2. CiteULike

CiteULike* has a similar focus like the BibSonomy system, because it is also
a broad folksonomy which facilitates the sharing of bibliographic references.
Initiated in 2004 by Richard Cameron®, its user base now has a noticeable
topical focus in the field of biology and genetics. This becomes visible in the list
of most popular tags (see Table , where several keywords denoting a worm

Zhttp://www.gbv.de/wikis/cls/Bibliographic_Hash_Key
3http://www.kde.cs.uni-kassel.de/bibsonomy/dumps
‘http://www.citeulike.org
Shttp://www.citeulike.org/faq/faq.adp
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Table 6.2.: Statistics about the CiteULike dataset.

popular tags

Statistics
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1000 10000 100000 10406

16406
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10000

no-tag Complete dataset
bibtex-import Tags Users Resources TAS Posts
elegans 549145 | 77846 | 2656969 12014185 | 3480953
celegans Restricted to 10000 most popular tags
c_elegans Tags Users Resources TAS Posts
nematode 10 000 72249 | 2373352 8856 879 3073457
caenorhabditis_elegans WordNet overlap of k most popular tags
wormbase 100 1000 10 000 100 000 all
humans 82 808 5593 23008 45764
Frequency Distributions

Tags Users Resources

1 10

100 1000 10000 100000 10+06 Lo+07

organism called “caenorhabditis elegans” are found.

question if these properties lead also to a larger degree of emergent semantics.

CiteULike also provides
regular data dumps®. For our study, we used a snapshot from September 2010.
Its user base is roughly an order of magnitude larger than BibSonomy, and
its vocabulary contains a larger portion of English words. It is an empirical

The operators of CiteULike do not expose which kinds of preventions exist
against system abuse and spam.

6.1.3. Delicious

Being a pioneer of the social bookmarking movement, Delicious’ is probably
among the most well-known systems of its kind. Founded in 2003 by Joshua
Schachter, it grew quickly and claimed to serve 5.3 million users sharing roughly

Shttp://www.citeulike.org/faq/data.adp
"http://www.delicious.com
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Table 6.3.: Statistics about the Delicious dataset.

popular tags H Statistics ]

design Complete dataset
software Tags Users Resources TAS Posts
blog 2454546 532938 | 17296850 140333714 | 47342391
web Restricted to 10000 most popular tags
programming Tags Users Resources TAS Posts
reference 10000 511348 | 14567465 117319016 | 42202093
tools WordNet overlap of k most popular tags
music 100 1000 10 000 100000 all
css 83 797 6117 25367 79528
Frequency Distributions

Tags Users Resources
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180 million unique URLS after 5 years of existence®. The Delicious dataset? used
within this thesis stems from a crawl performed in the context of the Tagora
project'? in November 2006. Table summarizes its statistical properties.
Similar to BibSonomy and CiteULike, it is also a broad folksonomy; however,
due to the much larger user base, the percentage of shared resources (i. e., those
annotated by more than one user) is higher. Its popular vocabulary does have a
bias towards technophilic areas (like web design and programming) (Michlmayr,
2005)), but contains less idiosyncratic terms compared to, e. g., BibSonomy. This
is also reflected in the comparatively high overlap of its vovabulary overlap
with WordNet: Among the 100 most popular tags, 83 % are proper English
words. Even when taking into account the top 10000 tags, there is still a
significant overlap of ~ 61 %. Alghough not all tags can be mapped, one can
see clearly here the existence of a vocabulary of “common” words. We included

8http://blog.delicious.com/blog/2008/11/delicious-is-5.html
%https://www.uni-koblenz.de/FB4/Institutes/IFI/AGStaab/Research/DataSets/
PINTSExperimentsDataSets/
Ohttp: /www.tagora-project.eu
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Table 6.4.: Statistics about the Flickr dataset.

popular tags H Statistics ]

2005 Complete dataset
wedding Tags Users Resources TAS Posts
2004 1547678 298954 | 24599875 110345103 | 24599875
party Restricted to 10000 most popular tags
japan Tags Users Resources TAS Posts
travel 10000 271359 | 21633082 72002 331 21633082
family WordNet overlap of k most popular tags
friends 100 1000 10000 100 000 all
vacation 89 835 5568 20 387 61370
Frequency Distributions

Tags Users Resources
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the Delicious dataset in our studies, because the system offers a large amount of
data and has been analyzed by several other researchers. Furthermore, its high
WordNet overlap allows a reliable evaluation of learned keyword structures.

6.1.4. Flickr

As a representative example of a narrow folksonomy, Flickr!'! is a social photo
sharing site. Launched in 2004, it was also among the “stars” of the Web 2.0
movement, it claimed to host 6 billion images in 2011'2. We use a dataset created
within the Tagora project, more precisely a snapshot from the system containing
roughly 25 million pictures, uploaded in 2004 and 2005 (see Table[6.4). Please
note that within a narrow folksonomy, the number of posts is always equal to
the number of resources, because each resource can only be annotated by its
owner. Despite that, the frequency distribution of tags, users and resources
show a similar behavior compared to broad folksonomies. Unsurprisingly, the

http://www.flickr.com
?http://news.softpedia.com/news/Flickr-Boasts-6-Billion-Photo-Uploads-215380.
shtml
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Table 6.5.: Statistics about the AOL logsonomy dataset.

popular tags H Statistics ]

free Complete dataset
county Tags Users Resources TAS Posts
pictures 1074640 519203 | 1619871 34500590 | 12758653
school Restricted to 10000 most popular tags
lyrics Tags Users Resources TAS Posts
florida 10000 463380 | 1284724 26227550 | 10513533
sale WordNet overlap of k most popular tags
sex 100 1000 10 000 100000 all
google 95 944 8166 36 154 65235
Frequency Distributions

Tags Users Resources
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popular vocabulary comprises keywords denoting common situations for taking
pictures, like party or vacation. Despite its obvious different nature, we
included the Flickr dataset to assess to which extent methods from analyzing
broad folksonomies are applicable to narrow folksonomies as well.

6.1.5. AOL Logsonomy

Having observed similar structural properties within search engine clicklogs (i. e.,
logsonomies as introduced in Section and folksonomies, the question arises
to which extent emergent semantics can be captured from this kind of data as
well. For this purpose, we used a click dataset from the AOL search engine,
collected from March, 1st to May, 31st 2006. Based on that, we constructed the
logsonomy as presented in Definition We hereby interpreted each individual
query term (using the space character as separator) as a keyword. Since the
AOL data was only available with truncated URLSs, we reduced the URLs to
host-only URLs, i.e., we removed the path of each URL leaving only the host
name. Table gives an overview of the result. A first interesting observation
is that the popular vocabulary consists to a large extent from proper English
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Table 6.6.: Statistics about the Stackoverflow dataset.

popular tags H

Statistics

cH# Complete dataset
java Tags Users Resources TAS Posts
php 28221 272882 | 1468486 4307918 | 1468486
javascript Restricted to 10000 most popular tags
jquery Tags Users Resources TAS Posts
.net 10000 272313 | 1466062 4191551 | 1466062
iphone WordNet overlap of k most popular tags
asp.net 100 1000 10000 100 000 all
c++ 41 438 2939 2939 5231
Frequency Distributions

Tags Users Resources

10000

1 10 100 1000 10000 10000¢ 1 10

100 1000 10000 100000 1e+06 1
1 10 100 1000 10000 100000 10406 1e+07

terms. Apart from that, the frequency distributions come close to the ones
observed in the “real” annotation systems. We included this dataset as a
representative of implicit annotations.

6.1.6. Stackoverflow

As a more controlled and hence more widely related example for social annota-
tions, we used a dataset from the Question-and-Answering platform Stackover-
flow!3. Being part of the Stack Exchange network!?, its focus lies within topics
around computer programming. When posing a question, users are forced to use
between one and five tags to categorize their inquiry. While these can be in prin-
ciple freely chosen, the operators impose directly visible guidelines (like “favor
existing popular tags, avoid creating new tags”, “don’t include synonyms” or
“combine multiple words with dashes”). Furthermore, annotation is supported by
an elaborated suggestion mechanism, which also includes a snippet explaining

Bhttp: //www.stackoverflow.com
Yhttp://stackexchange.com/
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the meaning of a particular keyword. Popular keywords also have an “info
page” ! containing a detailed explanation and manually identified synonyms.
We used a data dump from April 20116 and converted the information of
users annotating questions with tags into a (narrow) folksonomy-like structure,
described in Table [6.6] Naturally, the specialized technical terminology has a
small overlap with WordNet, and the resource frequency distribution mirrors
directly the tagging limitations mentioned above. Despite these differences, the
reason to include this dataset was to broaden the spectrum of types of analyzed
data and to assess if a more controlled and supported way of annotation leads
to a clearer kind of of emergent semantics.

As a followup of the presentation of the Social Annotation datasets, the
upcoming section deals with semantic resources used in the remainder of this
dissertation.

6.2. Gold-standard Ontologies

As already mentioned in Section[5.4]in the context of evaluating ontology learning
methods, an inherent problem of the automatic discovery and capturing of
semantic structures is how to judge their quality. Because gold-standard based
paradigms do have strong benefits (Dellschaft and Staab, 2006) for frequent
and systematic evaluations (as required within the context of this thesis), we
will make use of a number of “established” semantic resources. Hereby we are
aware that the term “gold-standard” needs to be interpreted with caution, as
the process of establishing and maintaining a “correct” knowledge repository is
afflicted with difficulties and potential sources of error. Nevertheless we have
chosen a set of resources which facilitate a process of semantic grounding of
derived relations. Because the grounding process becomes more meaningful the
more complete a mapping between learned and reference resources is, there is
a tradeoff between coverage and semantic precision: While carefully crafted
ontologies made by experts are usually smaller, but semantically precise, semi-
automatically enriched resources or collaboratively created hierarchies are more
fuzzy, but cover a greater amount of domain aspects and terms. The following
choice of ontologies was guided by the motivation to select exemplars equally
distributed between both ends of this scale: While WordNet is a prototype

see http://stackoverflow.com/tags/java/info as an example for java
http://blog.stackoverflow.com/category/cc-wiki-dump/
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Table 6.7.: Statistical properties of the gold-standard datasets. C' denotes the
set of concepts, Lo the set of lexical items which is part of the
associated lexicon, Ref . is the lexical reference relation and >¢ the
taxonomic relation (see the ontology model defined in Section .

Dataset H |C| ‘ | >c | ‘ |LC] ‘ | Ref | ‘
WORDNET || 79690 81 866 141 391 141692
YAGO 244553 249465 206418 244553
WIKI 2445974 | 4447010 | 2445974 | 2445974
DMOZ 767019 767019 241910 767019

of a comparatively small and precise resource, its semi-automatic extension
in YAGO exhibits a much larger coverage. Finally, the category hierarchies
derived from the Open Directory project and from Wikipedia focus even less on
strict semantics, but cover the largest amount of concepts and terms.

6.2.1. WordNet

WordNet (Fellbaum), [1998) is a semantic lexicon of the English language. In
WordNet, words are grouped into synsets, sets of synonyms that represent one
concept. Synsets are nodes in a network and links between synsets represent
semantic relations. The “meaning” of most synsets is described by means of
a gloss, which is a short textual description (somewhat similar to dictionary
definitions). WordNet provides a distinct network structure for each syntactic
category (nouns, verbs, adjectives and adverbs). For nouns and verbs it is
possible to restrict the links in the network to (directed) is-a relationships only,
therefore a subsumption hierarchy can be defined. The is-a relation connects a
hyponym (more specific synset) to a hypernym (more general synset). A synset
can have multiple hypernyms, so that the graph is not a tree, but a directed
acyclic graph. Further relations which are defined among synsets are, e.g.,
holonymy, meronymy or antonymy.

Compared to the remaining datasets, WordNet has the smallest coverage,
but is probably also the semantically most “precise” one. This means that in
general, one can assume, e. g., the taxonomic is-a relation to exhibit the strong
semantics described in Section Apart from that, WordNet is known for a
comparatively fine-grained distinction among meanings of a given term.
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6.2.2. YAGO

A popular dataset which can be seen as an “extension” of WordNet is YAGO,
a large ontology which was derived automatically from Wikipedia and Word-
Net (Suchanek et al., 2007)). Manual evaluation studies have shown that its
precision (i.e., the percentage of correct facts) lies around 95 %. It has a much
higher coverage than WordNet (see Table , because it also contains named
entities like people, books or products. The complete ontology contains 1.7
million entities and 15 million relations; as our main interest lies in the taxon-
omy hierarchy, we restricted ourselves to the contained is-a relation!” among
concepts.

YAGO is — as said — much larger than WordNet, but this comes at the cost
of having not exclusively manually-defined relations. This means despite the
precision is high, one cannot be sure that the taxonomic relation does in all
cases exhibit strong semantics. However, even in such a case the hierarchical
information can still be of great use for our evaluation purposes.

6.2.3. DMOZ

DMOZ'® (also known as the open directory project or ODP) is an open con-
tent directory for links of the World Wide Web. Although it is hierarchically
structured, it differs from the above-mentioned datasets insofar as its internal
link structure does not always reflect a sub-concept / super-concept relation-
ship. Taking a cursory look at its category hierarchy reveals a rather “mixed”
semantics of the contained links, which resembles much more the way how,
e.g., people organize their bookmarks hierarchically — which is in a certain
sense exactly what DMOZ was built for. Hence one has to be careful when
talking about this dataset as an “ontology”. However, we included this dataset
as a reference because it was built for a similar purpose than many social
bookmarking systems, namely to organize references to web pages. Because it
uses hereby the contrary approach of hierarchical structuring (in contrast to
the flat paradigm of social bookmarking), it might be the case that the emer-
gent semantic structures from Social Annotation data resemble to those found
within DMOZ. Apart from that, especially for our analysis of term generality
in Section [7.3] its category hierarchy is also a valuable resource, as its top level

Yhttp://www.mpi-inf .mpg.de/yago-naga/yago/subclassof .zip (v2008-w40-2)
Bhttp://www.dmoz.org/
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categories (like “arts” or “business”) are described by rather abstract terms,
becoming more specific towards the leaf categories.

6.2.4. Wikipedia Category Hierarchy

The last dataset used for evaluation is a “Wikitaxonomy”, which was derived
from the Wikipedia category hierarchy (Ponzetto and Strube, 2007). This
large scale domain independent taxonomy'® was derived by evaluating the
semantic network between Wikipedia concepts and labeling the relations as
is-a and not-is-a, using methods based on the connectivity of the network and
on lexico-syntactic patterns. It contains by far the largest number of lexical
items (see Table , but this comes at the cost of a much lower level of manual
control. Despite this, the interesting point about this reference dataset is that
the assignment of Wikipedia pages to user-defined categories has also been
interpreted as a kind of “social annotation” (Voss, |2007) — however, in contrast
to, e. g., typical social bookmarking systems, including a structure among the
categories used for annotations. Hence we expect this dataset to serve as the
most “closely related” gold-standard, and it will be especially interesting to
see if the learned semantic relations resemble those stemming from Wikipedia
annotators.

After this presentation of the social and semantic datasets which are used for
learning and evaluation purposes, the following main chapter of this disserta-
tion presents methods to capture emergent semantic structures within Social
Annotation data.

Yhttp://www.h-its.org/english/research/nlp/download/wikitaxonomy . php

114


http://www.h-its.org/english/research/nlp/download/wikitaxonomy.php

Chapter 7.
Methods

Within the previous chapter of this dissertation, social and semantic approaches
to Knowledge Organization on the Web were introduced, as well as the promising
idea to use ontology learning approaches to “bridge the gap” between both
worlds. Using the datasets described lastly, the current chapter can be seen
as a core part of this dissertation, which introduces several concrete methods
and algorithms to capture emergent semantics in various forms. Similar to the
description of the state of the art in this direction (see Section [5.3)), we will
broadly stick hereby to the structuring given by the different tasks contained in
the ontology learning layer cake (see Section . More precisely, given the
observed differences between “traditional” ontology learning, we will propose an
adapted layer model for capturing emergent semantics from Social Annotation
data; it is displayed in Figure

It comprises basically some levels of the ontology learning layer cake (like,
e.g., learning concepts or concept hierarchies), but adds two layers (mainly the
measures of semantic relatedness / generality) which have shown to be useful for
our purpose at hand. Furthermore, the “keywords” layer (which corresponds to
the term layer in the original version) is of lesser importance, because a positive
aspect about most Social Annotation Systems is that one can directly interpret
the contained keywords as terms. Finally, higher levels which seem to be hardly
reachable from the current point of view (like learning relations or axioms) are
represented in a condensed way.

Based on this model, we will now present in a bottom-up manner methods
which tackle the respective task of each layer. Because a prerequisite for higher
levels is a precise understanding of different notions of keyword relatedness, we
will start with a systematic analysis to this end. Based on that, we will continue
by presenting methods of concept learning, mainly concerned with tackling two
problems of Social Annotation Systems, namely synonymy and polysemy. As a
further prerequisite to induce structure into the initially flat tag space, we will
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relations, axioms

company <c organization concept hierarchy

gen(company) = 0.57 measures of semantic generality

COMPANY := {enterprise, firma}
SPACESHIP := {enterprise, u.s.s}

concepts (synonym / sense discovery)

sim(company, enterprise) = 0.73 measures of semantic relatedness

ibm, company, person, event, ... | keywords |

Figure 7.1.: Layer cake model of capturing emergent semantics from Social
Annotation data.

then have a look at different folksonomy-derived notions of tag generality. The
latter are an integral input for the last class of methods, which targets towards
learning concept hierarchies from keywords.

7.1. Capturing Semantic Relatedness

As pointed out in Section the ezplicit representation of knowledge within
ontologies allows to derive measures of semantic relatedness, which encode
the degree of likeness between concepts. Although concepts are not explicitly
present within Social Annotation data, the reported evidences for emergent
semantics (see Section suggest that such measures could also be derived
from these emergent implicit structures. Because concepts inherently do not
exist, the goal hereby is to compute relatedness among the keywords used for
annotation. In analogy to Definition we will denote such a measure based
on a folksonomy structure F = (U, T,R,Y) as pr : T x T — R*. Because
these keywords can be considered as natural language entities, one way of
defining such measures is to map the keywords to explicitly defined concepts
within, e. g., a thesaurus or lexicon like the ones presented in Section [6.2] and
to compute keyword relatedness based on the well-known metrics among the
mapped concepts. However, this approach has the following drawbacks:

e When observing the dynamic vocabulary of Social Annotations, it turns
out that it contains many community-specific terms, neologisms and other
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lexical items which are with high probability not (yet) present in any
external lexical resource. Hence a restriction to well-established lexicon
vocabulary would leave out a significant portion of metadata. Furthermore,
this would narrow the possibility to include “matured” Social Annotation
vocabulary back into the thesauri or lexicons, which could potentially
address the inherent knowledge acquisition bottleneck problem of these
systems.

e The process of mapping keywords to concepts is inherently afflicted with
problems like polysemy or homonymy. Hence it is a non-trivial task to
identify the “correct” concept for a given keyword. Non-optimal choices
would lead here to inappropriate relatedness assessments.

e Even when a lexical item is present within an external resource, one
can not be sure to which extent its usage and meaning in the Social
Annotation System corresponds to the meaning captured in the external
resource. As an example, the technical meaning of the keyword ajax! is
not necessarily present within a lexicon, where it might be associated to
a Greek mythology figure.

For the above reasons, it is highly desirable to define measures of relatedness
directly on the network structure of the Social Annotation System. From a
linguistic point of view, this corresponds to a structuralist approach of lexical
semantics (de Saussure, 1916). Because relatedness is — from a semantic
point of view — a relatively unspecific relation, a deeper understanding in the
characteristics of different relatedness measures is an indispensable prerequisite
for capturing more precise semantic relations. For this reason, we will present in
this chapter a detailed analysis of several relatedness measures, partially inspired
by corpus-based approaches (Lin, 1998; |Cimiano, 2006|), information theory and
information retrieval. We will start with a presentation of three main classes
of measures (namely co-occurrence based, distributional and graph-based),
followed by a qualitative evaluation of their respective properties. We then go
one step further and present an in-depth analysis of the semantic characteristics
of each measure based on a grounding approach against an external lexical
resource (namely WordNet). After that, we present alternative aggregation and

' AJAX (Asynchronous JavaScript and XML) is a programming technique used in many web
applications.
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weighting approaches, whose intention is to reduce complexity and enhance the
quality of the captured relations. In summary, we are laying the groundwork in
this section for choosing an appropriate measure of relatedness for the different
tasks of concept learning presented in Section [7.2]

7.1.1. Relatedness Measures

Measures of keyword relatedness in a Social Annotation System can be defined in
several ways. Most of these definitions use statistical information derived directly
from the tripartite structure or from induced networks (see Section for an
overview). Hereby especially the different types of co-occurrence networks are
playing an important role. Please recall that a co-occurrence event between two
keywords corresponds to their common usage either within (i) the same resource,
(ii) the same post or (iii) the same user. This relationship of “direct contact” is
referred to as first-order co-occurrence (Rapp, 2002) in corpus-based approaches.
Other approaches adopt the distributional hypothesis (Firth, |{1957; Harrisl [1968),
which states that words found in similar contexts tend to be semantically similar.
Of course a crucial question hereby is what kind of “contextual” information
is taken into account. A typical approach having its roots in the field of
information retrieval and automatic text processing is to project a word into
a suitable vector space, whose dimensions correspond to contextual semantic
features. As a last class, graph-based approaches are operating directly on the
tripartite annotation graph, computing relative relevancy among the contained
items.

From a linguistic point of view, the first two families of measures focus
on orthogonal aspects of structural semiotics (de Saussurel |1916} (Chandler,
2007). The first-order co-occurrence measures address the so-called syntagmatic
relation, where words are considered related if they occur in the same part of
text. The contextual measures address the paradigmatic relation (originally
called associative relation by Saussure), where words are considered related if
they can replace one another without affecting the structure of the sentence.

Apart from the aforementioned three broad classes of approaches, the following
issued need to be considered when designing a measure of semantic relatedness
based on Social Annotation Systems:

e Co-occurrence: Which kind of co-occurrence (post-based, resource-based,
user-based) is used?
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o Aggregation: When projecting the tripartite network structure into two-
dimensional vectors, how are the values aggregated?

e Weighting Scheme: Which weighting scheme is used to post-process the
co-occurrence counts or the vector entries?

e Vector Similarity: Which metric is chosen to measure similarity among
the projected vectors?

For each individual design choice there exist several candidate methods
stemming from different fields. Furthermore, dataset characteristics might also
have an influence. In order to disentangle the effects of the resulting large
number of possible combinations, our approach is to start with our largest
annotation dataset (namely Delicious as introduced in Section and a
systematic analysis of “standard representatives” of each dimension. More
precisely, these are five measures: First, the post-based co-occurrence count;
then three distributional measures which use the cosine similarity (Salton, [1989)
in the vector spaces spanned by users, tags, and resources, respectively; and
finally FolkRank (see Section7 a graph-based measure that is an adaptation
of PageRank (Brin and Pagel 1998)) to folksonomies. For those, we will present
a in-depth analysis in a qualitative (Section and semantically grounded
(Section manner. In order to avoid noise caused by the inherent sparseness
of the Delicious folksonomy, we restricted our dataset to the 10 000 most frequent
tags of Delicious, and to the resources/users that have been associated with
at least one of those tags. One could argue that tags with low frequency have
a higher information content in principle — but despite this fact they are less
useful for the study of both co-occurrence and distributional measures. In the
sequel, we will focus on alternative aggregation and weighting schemes and
vector similarity measures (Section .

Co-Occurrence The most “direct” way to assess the relatedness between two
keywords is to count how often they were used together within the same post.
This corresponds to computation of the edge weights within the post-based tag
co-occurrence graph described in Section Please recall that the set of
nodes of this graph is the set of tags T' of the folksonomy (U, T, R,Y), and that
the co-occurrence count for a pair of tags (1,t2) is incremented each time ¢;
and t2 were used to annotate the same resource by the same user. Based on
this graph, the co-occurrence relatedness between tags is given directly by the
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edge weights. For a given tag t € T, the tags that are most related to it are
thus all the tags t' € T with ¢’ # ¢ such that w(t,t’) is maximal. We will denote
this co-occurrence relatedness by p77~ °“ or simply co-occ. For its computation,
we first create a sorted list of all tag pairs which occur together in a post.

The complexity of this can be estimated as O(% log(‘;‘/—lljl)). Then, we group
this list by each tag and sort by count, which corresponds to an additional

complexity of O(|T|?1log(|T|?)). Y, P, T denote the set of tag assignments, posts
and tags, respectively (see Section (3.1.2)).

Distributional measures For capturing distributional relatedness, we adopt
the standard approach of vector space representations. A core aspect hereby —
and thus a core aspect of the measures — is the feature space used to describe
the keywords. Having users, tags and resources as possible dimensions of the
folksonomy, we vary over these and introduce three representations. Specifi-
cally, for X € {U, T, R} we consider the vector space R*, where each tag t is
represented by a vector v; € R, as described below.

e Tag Context Similarity. The Tag Context Similarity (p%ag “ont or TagCont)

is computed in the vector space R”, where, for tag ¢, the entries of the

vector v; € RT are defined by vy := w(t,t') for t # t' € T, where w is the

co-occurrence weight defined above, and vy = 0. The reason for giving

weight zero between a node and itself is that we want two tags to be

considered related when they occur in a similar context, and not when

they occur together. The complexity of this measure comprises the cost of
Y]

computing co-occurrence (see above), i.e., O(W log(%)—l—]ﬂ? log(|T]%)),

plus the cost of comparing each tag pair, which is O(|T|?2|X1), X C T.

e Resource Context Similarity. The Resource Context Similarity (pltes¢ont

or ResCont) is computed in the vector space RE. For a tag t, the vector
v; € RE is constructed by counting how often a tag t is used to annotate
a certain resource r € R: vy = [{u € U | (u,t,r) € Y}| . In terms of
complexity, the tag-resource counts amount for O(|Y|log(|Y])), plus the
pairwise comparison cost of O(|T|?2|R]).

e User Context Similarity. The User Context Similarity (pTUseTC‘mt or User-

Cont) is built similarly to ResCont, by swapping the roles of the sets R
and U: For a tag t, the vector v; € RY is defined as vy, := [{r € R |
(u,t,7) € Y}| . In this case, the complexity is O(|Y|log(|Y|) + |T|?2|U})).
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In all three representations, we adopt a standard method from information
retrieval (Salton, 1989) and measure vector similarity by using the cosine
measure: If two tags t; and t, are represented by vy, vy € R¥, their cosine
similarity is defined as:

V1 - V2

cossim(ty, t2) := cos £ (v1, v2) Tor s Toa il

The cosine similarity is thus independent of the length of the vectors. Its
value ranges from 0 (for totally orthogonal vectors) to 1 (for vectors pointing
into the same direction).

FolkRank As described in Section FolkRank employs the principle of
the PageRank algorithm (Brin and Pagel, (1998) to folksonomies: A resource
which is tagged with important tags by important users becomes important
itself. The same holds, symmetrically, for tags and users. By modifying the
weights for a given tag ¢ in the random surfer vector, FolkRank can compute a
ranked list of relevant tags for . To establish the connection to searching the
web, this corresponds to “querying” the FolkRank search engine with ¢, getting
relevant other tags as results. We then interpret relevancy as an indicator of
relatedness, and assume the most relevant tags to be semantically related.
More specifically, we have set the weights in the random surfer vector as
follows: Initially, each tag is assigned weight 1. Then, the weight of the given
tag t is increased according to w(t) = w(t) + |T'|. Afterwards, the vector is
normalized. The random surfer has an influence of 15 % in each iteration. The
tags that, for a given tag ¢, obtain the highest FolkRank score are considered to
be the most relevant in relation to ¢. This measure will be denoted as pg"lkR“"k
or simply FolkRank. Its complexity can be estimated as O(i|Y'|), where i is the
number of iterations (the typical values used in this study were 30-35).

7.1.2. Qualitative Evaluation

Using each of the measures introduced above, we computed, for each of the
10000 most frequent tags of Delicious, its most closely related tags. As we used
different (partially existing) implementations for the measures we investigate,
runtimes do not provide meaningful information on the computational cost of the
different measures. We refer the reader to the prior discussion on computational
complexity.
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Table 7.1.: Examples of most related tags for each of the presented measures
co-occurrence (CO), FolkRank (FR), tag context (TC), resource
context (RC) and user context (UC) relatedness.

[ tag [ meas. [ [ 1 [ 2 [ 3 [ 4 [ 5 ]

co ajax web tools blog webdesign

- FR web ajax tools design blog

~ TC web?2 web-2.0 webapp “web web_2.0

° RC web2 web20 2.0 web_2.0 web-2.0

& uc ajax aggregator rss google collaboration
co tutorial reference tips linux programming

o FR reference linux tutorial programming software

*; TC how-to guide tutorials help how_to

] RC how-to tutorial tutorials tips diy
uc reference tutorial tips hacks tools
cO fun flash game free software

w FR game fun flash software programming

g TC game timewaster spiel jeu bored

g RC game gaming juegos videogames fun
uc video reference fun books science
cO programming | development opensource software web
FR programming | development software ajax web

g TC p}.rthon Perl . code c++ delphi .

3 RC j2ee j2se javadoc development programming

- uc eclipse j2ee Jjunit spring xml

o) cO software linux programming tools free

% FR software linux programming tools web

2 TC open_source open-source open.source 0ss foss

g RC open-source open open_source 0ss software

& ucC programming linux framework ajax windows
coO shopping books book design toread
FR toread shopping design books music

E TC wishlist to_buy buyme wish-list iwant

:’é RC wishlist shopping clothing tshirts t-shirts
uc toread cdm todownload todo magnet

Table provides a few examples of the related tags returned by the measures
under study. A first observation is that in many cases the tag and resource
context similarity provide more synonyms than the other measures. For instance,
for the tag web2.0 they return some of its alternative spellings.? For the tag
games, the tag and resource similarity also provide tags that could be regarded
as semantically similar. For instance, the morphological variations game and

2The tag “web at the fourth position (tag context) is likely to stem from users who typed
‘‘web 2.0’°, which the early Delicious interpreted as two separate tags, ¢ ‘web and 2.07°.
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Figure 7.2.:
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Tag co-occurrence fingerprint of five selected tags in the first 30
dimensions of the tag vector space.

corresponding words in other languages, like spiel (German),

jeu (French) and juegos (Spanish). This effect is not obvious for the other
measures, which tend to provide rather related tags instead (video, software).
The same observation holds for the “functional” tag tobuy (see (Golder and

Huberman,

2006))), for which the tag context similarity provides tags with

equivalent functional value (to_buy, buyme), whereas the FolkRank and co-
occurrence measures provide categories of items one could buy. The user context
similarity also yields a remarkable amount of functional tags, but with different
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target actions (toread, todownload, todo). The latter might be due to the
behavior that if a user utilizes functional tags, he will use them for more than
one action. The aggregation across all “functional tag users” would then yield
high correlations among these tags.

An interesting observation about the tag java is that python, perl and c++
(provided by tag context similarity) could all be considered as siblings in some
suitable concept hierarchy, presumably under a common parent concept like
PROGRAMMING LANGUAGES. An approach to explain this behavior is that the
tag context is measuring the frequency of co-occurrence with other tags in the
global context of the folksonomy, whereas the co-occurrence measure and — to
a lesser extent — FolkRank measure the frequency of co-occurrence with other
tags in the same posts.

Another insight offered by this first visual inspection is that context similarities
for tags and resources seem to yield equivalent results, especially in terms of
synonym identification. The tag context measure, however, seems to be the only
one capable of identifying sibling tags, as it is visible for the case of java in
Table This is also visible in Figure which displays the tag co-occurrence
vectors of 5 selected tags. The vectors are restricted to co-occurrence with
the 30 most frequent tags of the folksonomy, i.e., to only 30 dimensions of
the vector space RT introduced earlier in this section.? The figures shows that
both java and python appear frequently together with programming, and (to
a lesser degree) with development. These two common peaks alone contribute
approximately 0.68 to the total cosine similarity of the two tags java and
python of 0.85.

A similar behavior can be seen for game and games both displaying peaks at
fun and (to a lesser degree) free. Here we also see the effect of imposing vy = 0
in the definition of the cosine measure: while the tag game has a very high
peak at games, the tag games has by definition a zero component there. The
high value for tag game in the dimension games shows that these two tags are
frequently assigned together to resources (probably because users anticipate
that they will not remember a specific form at the time of retrieval).

In the case of python, on the other hand, we observe that it seldom co-occurs
with java in the same posts (probably because few web pages deal with both
java and python). Hence — even though python and java are “most related”
according to the tag context similarity — they are less so according to the other

3The length of all the vectors was normalized to 1 in the La-norm.
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Table 7.2.: Overlap between the 10 most closely related tags according to the
measures under consideration.

H co-occurrence | FolkRank | tag context | resource context ‘

measures. In fact, in the lists of tags most closely related to java, python is at
position 21 according to FolkRank, 34 according to co-occurrence, 97 according
to user context similarity, and 476 according to resource context similarity.

Our next step is to substantiate these first insights with a more systematic
analysis. We start by using simple observables that provide qualitative insights
into their behavior.

The first natural aspect to investigate is whether the most closely related tags
are shared across measures of relatedness. We consider the 10000 most popular
tags in Delicious, and for each of them we compute the 10 most related tags
according to each of the relatedness measures. Table reports the average
number of shared tags for the relatedness measures we investigate. We first
observe that the user context measure does not exhibit a strong similarity to
any of the other measures. The same holds for the tag context measure, with a
slightly higher overlap of 2.65 tags with the resource context measure. Based
on the visual inspection above, this can be attributed to shared synonym tags.
A comparable overlap also exists between resource context and FolkRank /
co-occurrence similarity, respectively. Based on the current analysis, it is hard to
learn much on the nature of these overlapping tags. A remarkable fact, however,
is that relatedness by co-occurrence and by FolkRank share a large fraction
(6.81) of the 10 most closely related tags. That is, given a tag ¢, its related tags
according to FolkRank are — to a large extent — tags with a high frequency of
co-occurrence with ¢. In the case of the context relatedness measures, instead,
the suggested tags seem to bear no special bias towards high-frequency tags.
This is due to the normalization of the vectors that is implicit in the cosine
similarity, which disregards information about global tag frequency.

To better investigate this point, for each of the 10000 most frequent tags in
Delicious we computed the average rank (according to global frequency) of its
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Figure 7.3.: Average rank of the related tags as a function of the rank of the
original tag.

10 most closely related tags, according to each of the relatedness measures under
study. Figure [7.3] shows the average rank of the related tags as a function of
the original tag’s rank. The average rank of the tags obtained by co-occurrence
relatedness and by FolkRank is low and increases slowly with the rank of the
original tag: this points out that most of the related tags are high-frequency tags,
independently of the original tag. On the contrary, the context (distributional)
measures display a different behavior: the rank of related tags increases much
faster with that of the original tag. That is, the tags obtained from context
relatedness span a broader range of ranks.*

7.1.3. Evaluation by Semantic Grounding

In this section we shift perspective and move from the qualitative discussion
of Section to a more formal validation. Our strategy is to ground the
relations between the original and the related tags by looking up the tags in
a formal representation of word meanings. As structured representations of

4Notice that the curves for the tag and user context relatedness approach a value of ~ 5000
for high ranks: this is the value one would expect if the rank of the related tags was
independent from the rank of the original tags.

126



7.1. Capturing Semantic Relatedness

knowledge afford the definition of well-defined metrics of semantic similarity
(see Section one can investigate the type of semantic relations that hold
between the original tags and their related tags, defined according to any of
the relatedness measures under study.

In the following we ground our measures of tag relatedness by using WordNet
(see Section a semantic lexicon of the English language. This choice was
guided by its large coverage of English terms (i. e., a language also frequently used
on the Web), and its careful engineering by language experts. As a consequence,
the semantic relations among its comprised terms can be regarded as precise and
well-defined. Furthermore, there exist a number of well-established measures of
semantic similarity based on WordNet — which is exactly what is required for our
presented methodology of semantic grounding. Most WordNet-based measures
of semantic similarity take into account its taxonomic is-a relation. Since the
is-a WordNet network for nouns and verbs consists of several disconnected
hierarchies, it is useful to add a fake top-level node subsuming all the roots of
those hierarchies, making the graph fully connected and allowing the definition
of several graph-based similarity metrics between pairs of nouns and pairs of
verbs. We will use such metrics to ground and characterize our measures of
tag relatedness in folksonomies. In WordNet, we will measure the semantic
similarity by using both the taxonomic shortest-path length and a measure
of semantic distance introduced by Jiang and Conrath (Jiang and Conrath)
1997)) that combines the taxonomic path length with an information-theoretic
similarity measure by Resnik (Resnik} 1995).

For our studies, we used the implementation of those measures available in
the WordNet : : Similarity library®, using WordNet 2.1 as basis. It is important
to remark that (Budanitsky and Hirst|, 2006) provides a pragmatic grounding
of the Jiang-Conrath measure by means of user studies and by its superior
performance in the context of a spell-checking application. Thus, our semantic
grounding in WordNet of the similarity measures is extended to the pragmatic
grounding in the experiments of (Budanitsky and Hirst, 2006]).

The program outlined above is only viable if a significant fraction of the
popular tags in Delicious is also present in WordNet. Several factors limit the
WordNet coverage of Delicious tags: WordNet only covers the English language
and contains a static body of words, while Delicious contains tags from different
languages, tags that are not words at all, and is an open-ended system. Another

Shttp://search.cpan.org/dist/WordNet-Similarity/
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Table 7.3.: WordNet coverage of Delicious tags.

# top-frequency tags 100 | 500 | 1000 | 5000 | 10000
fraction in WordNet || 82% | 80% | 79% | 69% | 61%

limiting factor is the structure of WordNet itself, where the measures described
above can only be implemented for nouns and verbs, separately. Many tags are
actually adjectives (Golder and Huberman) 2006) and although their grounding
is possible, no distance based on the subsumption hierarchy can be computed
in the adjective partition of WordNet. Nevertheless, the nominal form of the
adjective is often covered by the noun partition. Despite this, if we consider
the popular tags in Delicious, a significant fraction of them is actually covered
by WordNet: as shown in Table roughly 61 % of the 10000 most frequent
tags in Delicious can be found in WordNet. In the following, to make contact
with the previous sections, we will focus on these tags only.

A first assessment of the measures of relatedness can be carried out by
measuring — in WordNet — the average semantic distance between a tag and the
corresponding most closely related tag according to each one of the relatedness
measures we consider. Given a measure of relatedness, we loop over the tags
that are both in Delicious and WordNet, and for each of those tags we use the
chosen measure to find the corresponding most related tag. If the most related
tag is also in WordNet, we measure the semantic distance between the synset
that contains the original tag and the synset that contains the most closely
related tag. When measuring the shortest-path distance, if either of the two
tags occurs in more than one synset, we use the pair of synsets which minimizes
the path length.

Figure [7.4] reports the average semantic distance between the original tag
and the most related one, computed in WordNet by using both the (edge)
shortest-path length and the Jiang-Conrath distance. The tag and resource
context relatedness point to tags that are semantically closer according to both
measures. We remark once more that the Jiang-Conrath measure has been
validated in user studies (Budanitsky and Hirst, 2006), and because of this the
semantic distances reported in Figure [7.4] correspond to distances cognitively
perceived by human subjects.

The best performance is achieved by similarity according to resource context.
This is not surprising as this measure makes use of a large amount of contextual
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Figure 7.4.: Average semantic distance, measured in WordNet, from the original
tag to the most closely related one. The distance is reported for each
of the measures of tag similarity discussed in the main text (labels
on the left). Grey bars (bottom) show the taxonomic path length
in WordNet. Black bars (top) show the Jiang-Conrath measure of
semantic distance.

information (the large vectors of resources associated with tags). While similarity
by resource context is computationally very expensive to compute, it can be used
as a reference for comparing the performance of other measures. To this end, we
also computed the distances for the worst case scenario of a measure (marked
as random in Figure that associates every tag with a randomly chosen
one. All the other measures of relatedness fall between the above extreme
cases. Overall, the taxonomic path length and the Jiang-Conrath distance
appear strongly correlated, and they induce the same ranking by performance
of the similarity measures. Remarkably, the notion of similarity by tag context
(TagCont) has an almost optimal performance. This is interesting because it is
computationally lighter that the similarity by resource context, as it involves
tag co-occurrence with a fixed number (10000) of popular tags, only. The closer
semantic proximity of tags obtained by tag and resource context relatedness was
intuitively apparent from direct inspection of Table but now we are able to
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Figure 7.5.: Probability distribution for the lengths of the shortest path leading
from the original tag to the most closely related one. Path lengths
are computed using the subsumption hierarchy in WordNet.

ground this statement through user-validated measures of semantic similarity
based on the subsumption hierarchy of WordNet.

As already noted in Section the related tags obtained via tag context
or resource context appear to be “synonyms” or “siblings” of the original tag,
while other measures of relatedness (co-occurrence and FolkRank) seem to
provide “more general” tags. The possibility of looking up tags in the WordNet
hierarchy allows us to be more precise about the nature of these relations. In
the rest of this section we will focus on the shortest paths in WordNet that lead
from an initial tag to its most closely related tag (according to the different
measures of relatedness), and characterize the length and edge composition
(hypernym /hyponym) of such paths.

Figure displays the normalized distribution P(n) of shortest-path lengths
n (number of edges) connecting a tag to its closest related tag in WordNet. All
similarity measures share the same overall behavior for n > 3, with a broad
maximum around n =~ 6, while significant differences are visible for small values
of n. Specifically, similarity by tag context and resource context display a strong
peak at n = 0. Tag context similarity also displays a weaker peak at n = 2 and
a comparatively depleted number of paths with n = 1. For higher values of n,
the histogram for resource context and tag context has the same shape as the
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Figure 7.6.: Edge composition of the shortest paths of length 1 (left) and 2
(right). An “up” edge leads to a hypernym, while a “down” edge
leads to a hyponym.

others, but is systematically lower due to the abundance of very short paths
and the normalization of P(n). The peak at n = 0 is due to the detection of
actual synonyms in WordNet. As nodes in WordNet are synsets, a path to a
synonym appears as an edge connecting a node to itself (i.e., a path of length
0). Similarity by tag context points to a synonym in about 18 % of the cases,
while using resource context this figure raises to about 25 %. In the above cases,
the most related tag is a tag belonging to the same synset of the original tag. In
the case of tag context, the smaller number of paths with n = 1 (compared with
n =0 and n = 2) is consistent with the idea that the similarity of tag context
favors siblings/synonymous tags: moving by a single edge, instead, leads to
either a hypernym or a hyponym in the WordNet hierarchy, never to a sibling.
The higher value at n = 2 (paths with two edges in WordNet) for tag context
may be compatible with the sibling relation, but in order to ascertain this we
have to characterize the typical edge composition of these paths.

Figure displays the average edge type composition (hypernym/hyponym
edges) for paths of length 1 and 2. The paths analyzed here correspond to n = 1
and n = 2 in Figure For tag context, resource context and user context, we
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Figure 7.7.: Probability distribution of the level displacement Al in the WordNet
hierarchy.

observe that the paths with n = 2 (right-hand side of Figure consist almost
entirely of one hypernym edge (up) and one hyponym edge (down), i.e., these
paths do lead to siblings. This is especially marked for the notion of similarity
based on tag context, where the fraction of paths leading to a sibling is about
90 % of the total. Notice how the path composition is very different for the
other non-contextual measures of relatedness (co-occurrence and FolkRank):
in these cases roughly half of the paths consist of two hypernym edges in the
WordNet hierarchy, and the other half consists mostly of paths to siblings. We
observe a similar behavior for paths with n = 1, where the contextual notions
of similarity have no statistically preferred direction, while the other measures
point preferentially to hypernyms (i.e., 1-up in the WordNet taxonomy). As
mentioned above, for n > 2 the distribution P(n) of paths lengths for tag
context and resource context (Figure is similar to the ones for the other
distributions. We can say that if synonyms or siblings are present, then these
measures are able to find them. If not, they behaves similarly to the other
measures, i.e., they points to related tags that preferentially lie higher in the
WordNet hierarchy.
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We now generalize the analysis of Figure to paths of arbitrary length.
Specifically, we measure for every path the hierarchical displacement Al in
WordNet, i.e., the difference in hierarchical depth between the synset where
the path ends and the synset where the path begins. Al is the difference
between the number of edges towards a hypernym (up) and the number of edges
towards a hyponym (down). Figure displays the probability distribution
P(Al) measured over all tags under study, for the five measures of relatedness.
We observe that the distribution for the tag context and resource context is
strongly peaked at Al = 0 and highly symmetric around it. The fraction of
paths with Al = 0 is about 40 %. The average value of Al for all the contextual
measures is Al ~ 0 (dotted line at Al = 0) . This reinforces, in a more general
fashion, the conclusion that the contextual measures of similarity involve no
hierarchical biases and the related tags obtained by them lie at the same level
of the original one, in the WordNet hierarchy. Tag context and resource context
are more peaked, while the distribution for user context, which is still highly
symmetric around Al = 0, is broader. Conversely, the probability distributions
P(Al) for the non-contextual measures (co-occurrence and FolkRank), look
asymmetric and both have averages Al ~ 0.5 (right-hand dotted line). This
means that those measures — as we have already observed — point to related
tags that preferentially lie higher in the WordNet hierarchy.

Generalization to other datasets As stated at the beginning of Section [7.1.1
the presented analysis of relatedness measures has been done so far based solely
on the Delicious dataset. The main motivations behind this choice were:

e Because the emergence of semantics is finally a user-driven process, we
expect more reliable results from systems with (i) larger user populations
and (ii) more active users (i.e., a higher total number of annotations
produced by them). For both criteria, the Delicious dataset is most
suitable among the ones presented in Section

e (Golder and Huberman| (2006) suggested that imitation is a crucial aspect
of the evolution of stable tagging patterns. This influence can be expected
to be stronger within broad folksonomies (see Section , in which a
user is typically exposed to other users’ keyword choices while annotating
a resource. Delicious also exhibits this property.

133



Chapter 7. Methods

e As Delicious was among the first Social Annotation Systems which became
very popular early in the Web 2.0 movement, its presence within the
scientific literature is also comparatively strong. In this way, the presented
analysis becomes comparable with other approaches.

e Despite a clearly visible bias towards technical topics, the sheer amount
of contributing users introduced still a relatively broad coverage across
several domains of interest. This is also reflected in a comparatively
“general” vocabulary (i. e., not restricted to highly specialized terminology),
consisting to a substantial amount (namely around 60 %) of proper English
words. This makes our proposed grounding methodology against WordNet
more reliable.

To summarize, we expected Delicious to be the most “representative” Social
Annotation dataset. Despite this fact, the question remains to which extent the
presented results can be generalized to other systems and datasets. Because
an in-depth analysis on both a qualitative and semantically grounded level is
beyond scope, we focus on on a single core aspect. Specifically, we think that
the comparison of measures based on how well they correspond to WordNet-
based metrics (as done in Figure gives a good overall impression. For this
reason, we applied the same procedure to datasets from BibSonomy, CiteULike,
Flickr, AOL logsonomy and Stackoverflow. In the same manner as earlier in
Section we restricted all datasets to the 10000 most popular tags in order
to make the vector-based similarity assessment more meaningful. Figure [7.8
depicts the results. For comparison results, the prior results of Delicious are
also included.

To start with the most “similar” systems, BibSonomy (Figure and
CiteULike (Figure are also collaborative tagging systems which allow
resources to be annotated by more than one user (i.e., broad folksonomies).
A first commonality to Delicious is that both FolkRank and the user context
relatedness (UserCont) lead to semantically more distant tags. The other
measures (i.e., co-occurrence, tag and resource context relatedness) show a
very similar performance (£0.3 for BibSonomy, 0.5 for CiteULike). This
differs from Delicious insofar as the resource context measure is not consistently
best. A possible explanation lies in the high dimensionality of the resource
context vector space: Despite the fact (as argued before) that the latter encodes
potentially a large amount of contextual information, it requires a comparatively
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in WordNet, black bars (top) show the Jiang-Conrath measure of

semantic distance (see Section [7.1.3)).
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high amount of annotations to form meaningful “resource context fingerprints”
(similar to the ones exemplified in Figure for the tag context). Because
the total number of tag assignments is much smaller within BibSonomy (=~ 1.8
million) and CiteULike (= 8.8 million) compared to Delicious (~ 117.3 million),
one could hypothesize that the information does not suffice to establish precise
semantic fingerprints in the resource context. Another difference is that the
tag context relatedness differs not strongly from plain co-occurrence. Again,
this can be probably attributed to the fact that precise tag context vectors
also need a sufficient number of tag assignments — which is lower than the one
needed for the resource context, but still higher than when just counting plain
co-occurrences (as done by the co-occurrence relatedness).

Although tagging also plays a crucial role within Flickr, an important dif-
ference is its permission model which allows only owners to annotate their
pictures — leading to a narrow folksonomy. This naturally makes aggregation
in the resource context less meaningful, which is reflected in an non-optimal
performance of the resource context relatedness in Figure While FolkRank
and user context relatedness are consistently less precise, co-occurrence relat-
edness performs better compared to Delicious. This might be explained by
the different purposes of these systems: While users of Delicious primarily use
keywords to structure their personal collection of bookmarks, the exchange of
pictures among Flickr users has a much more extrovert nature. In order to
attract a broad audience, picture publishers might use more keywords, including
semantically closely related ones as well as synonyms. In fact, the average num-
ber of keywords per resource is slightly higher (= 3.01) compared to Delicious
(~2.62).

Lastly, the AOL logsonomy and Stackoverflow datasets to not stem from
genuine social tagging systems. For the logsonomy case, the annotation process
is much more implicit (namely by clicking on search engine results), while the
keyword annotation is not the main focus of the question/answering platform
Stackoverflow. For both reasons, we observe the strongest differences here.
Within the AOL logsonomy dataset, a remarkable difference compared to the
Delicious is that the co-occurrence relatedness yields tags whose meanings are
comparatively distant from the one of the original tag. A cursory manual analysis
revealed that co-occurrence often “reconstructs” compound expressions;, e. g.,
the most related tag to power according to co-occurrence relatedness is point.
This is a natural consequence of splitting queries and consequently splitting
compound expressions as we did; so our results confirm the intuitive assumption
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that the semantics of isolated parts of a compound expression usually are
semantically complementary. For the Stackoverflow case, all measures except the
tag context relatedness show a comparatively weak performance. We attribute
this to the strong topical focus of its computer programming community, which
introduces highly specialized relations within its technical terminology not
necessarily present within a general resource like WordNet.

Despite the mentioned individual differences, a common observation across all
datasets is that the tag context relatedness shows an optimal or nearly optimal
performance — independent of the size or type of the underlying dataset. This
is especially interesting because its computation is computationally much less
expensive compared to the high-dimensional resource context relatedness. For
both reasons, we will stick in the further analysis to the tag context relatedness
as a measure of semantic similarity among keywords in Social Annotation
Systems.

7.1.4. Alternative Aggregation, Weighting and Similarity
Approaches

As stated at the beginning of Section the variety of options within the
different steps of computing semantic relatedness leads to a large number of
possible combinations. In the previous analysis, standard choices for each phase
(i.e., co-occurrence computation, aggregation, weighting and similarity) were
selected in order to assess the core properties of co-occurrence, distributional
and graph-based measures. An important observation hereby was that the tag
context relatedness seems to be a suitable proxy for semantic similarity. In this
section, we aim to complete this picture by presenting alternative choices for
each step of its computation.

Because the entries at each dimension of a tag context vector are based
on co-occurrence events, the first question is which scheme is used for their
computation. Coming back to the explanations of Section we will first
analyze the semantic implications of post-based, resource-based and user-based
co-occurrence. Furthermore, for the distributional measures presented in the
previous section, a crucial aspect is how the dimensionality of the tripartite
hypergraph is reduced into the two-dimensional vector space used for similarity
computation. Because this process is inherently afflicted with the loss of corre-
lation information, an inappropriate aggregation choice may have a detrimental
effect on the quality of the captured semantic relations. The intuitive scheme
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which was used in the previous chapter can be regarded as “micro-aggregation”,
in analogy to micro-averaging in text mining and when one thinks of users
as classes. In this section, we will present two further aggregation methods
(namely macro and collaborative aggregation) and compare their characteristics.
Another important issue stemming from the field of information retrieval is
the scheme by which the vector entries are weighted after aggregation. The
goal hereby is usually to assign lower weights to less informative dimensions. In
order to complement the approach of uniform weighting (i. e., all dimensions
were regarded as equally informative) from the previous section, we will ap-
ply to two standard weighing methods from the field of information retrieval,
namely term frequency x inverted document frequency (TFIDF) and positive
pointwise mutual information (PPMI) (Turney and Pantel, |2010). A last and
important choice is which method is used to compute the similarity (or dissim-
ilarity) among the context vectors obtained from the previous steps. In the
field of natural language processing, several measures of distributional similarity
were proposed (Leel [1999). These include geometrically-motivated functions
(as the cosine similarity used in the previous chapter), as well as metrics of
“distance” between probability distributions. We will detail here on the se-
mantic implications of the « skew divergence and the L1 norm, which showed
superior performance in the context of estimating the probability of unseen
co-occurrences (Lee, |1999). For judging the effect of the presented alternative
choices, we will stick to the methodology of semantic grounding presented in the
previous section. Specifically, we will use the average Jiang-Conrath distance
(measured in WordNet) between a tag ¢t and its most related tag g, according
the alternative metrics (compare Figure . For the observed distances, we will
use the term semantic precision: Hereby we consider a measure as semantically
more precise if it leads to smaller average distances while grounding its top
relatedness pairs in WordNet.

Co-occurrence computation

As explained in Section there exist three basic notions of a co-occurrence
event between tags. These differ in the definition of the context in which the
two tags co-occur: The post-based variant counts a co-occurrence when two
tags were used together within the same post — i.e., by the same user for the
same resource. On the other hand, resource-based counting disregards the
users and only records co-occurrences within the same resource. The user-based
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Figure 7.9.: Semantic grounding of different types of co-occurrence.

approach finally captures co-occurrences only within individual vocabularies
of users, independent of resources. Figure shows the semantic precision
of each variant. The black bar corresponds to the post-based variant, which
has been used in the previous in-depth analysis (Section . On the y-
axis, the different Social Annotation datasets are found. First of all, one can
observe that within all narrow folksonomies (i.e., Flickr and Stackoverflow),
post-based and resource-based are identical — which is obvious: As each resource
is present in exactly a single post in these systems, both variants are effectively
identical. In the other systems, resource-based co-occurrence is on the same
or a slightly better level than post-based co-occurrence. This is also not too
surprising, because a single user is less likely to assign, e. g., two synonym tags
to a particular resource. Conversely, because different users might use different
keywords for the same thing, co-occurrence on the resource levels is more likely
to establish connections among semantically more closely related keywords. This
is most clearly visible for the logsonomy, where resource-based co-occurrence
seems to partially compensate the aforementioned effects of reconstructing
compound expressions (see Section . Throughout all conditions, user-
based co-occurrence performs worst: A possible explanation is that users will
probably be interested in several independent (and semantically diverse) topics.
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Figure 7.10.: Schematic overview of micro and macro aggregation.

Hence, co-occurrence in the user context tends to introduce relations among
unrelated keywords.

In summary, the resource-based variant of co-occurrence computation seems
to be the best choice for the task of capturing first-order tag-tag correlation
information from Social Annotation data. However, one has also to take
into account complexity aspects: Co-occurrence always comprises the pairwise
processing of all keywords found in a given context. This quadratic complexity
can prove problematic especially in large folksonomies, where the number of
keywords attached to a resource is much larger than the number of keywords
found in a post. In such a situation, post-based co-occurrence can be seen as
an almost optimal replacement in most cases.

Aggregation Schemes

For the process of aggregating the tripartite Social Annotation graph into a
two-dimensional representation for similarity computation, a “global” scheme
was used in the previous analysis — i.e., all co-occurrences produced by all
users were aggregated into a single “system-wide” vector for each keyword.
This method can be seen as an analogy to micro-averaging in the field of text
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mining (Manning et al., |2008). Hereby each annotation is given the same
weight, so that a more active user would have a larger impact on the weights
and consequently on any derived similarity measure. We will now present two
alternative aggregation schemes, which first treat each user’s annotation set
independently, and then aggregate across users.

Macro-aggregation Instead of “system-wide” aggregation based on a complete
folksonomy F = (U, T, R,Y), the idea behind the macro approach is to work
on personomies P, (see Definition [3.1)), i.e., “user-wide” folksonomy partitions.
Figure [7.10] gives a schematic overview about both variants. One can see that
in the macro aggregation case, each personomy is processed in the same manner
as the complete folksonomy in the micro case, i.e., co-occurrence is computed,
context vectors are built, and the similarity among these vectors is computed.
The resulting per-user relatedness measures pr,,u € U are then combined into
a global measure via a voting, i.e., summing across all users according to

Vi, te € Tt pr(ti,ta) = Z pr, (t1,t2)
uelU

Macro-aggregation does not have a bias toward users with many annotations.
However, in giving the same importance to each user, the derived similarity
measures amplify the relative impact of annotations by less active users. It is
an empirical question which of these biases is more effective.

Collaborative aggregation The approach of macro aggregation comes close
to the idea of collaborative filtering: Global relatedness is constructed by many
votes similar to “other users think that these keywords are related”. However,
because all context relatedness measures are essentially based on feature-based
representations, they will yield zero similarities if two keywords do not share
a feature. This effect is less severe for the case of micro aggregation, but may
prove problematic within the necessarily smaller per-user vocabularies used
for macro aggregation. In order to tackle this issue, we interpret the common
usage of two keywords by a user for annotation as an implicit evidence for their
relatedness. Technically, we achieve this by adding a “special tag” ¢} to each
post of a given user u. In this way, we “connect” all keywords used by u with a
common feature. In order to avoid the thematic mixing effects observed for the
user-based co-occurrence, the motivation behind these special annotations is to
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Figure 7.11.: Semantic grounding of different types of aggregation.

yield a small but non-zero contribution to the per-user relatedness measures.
The remaining procedure is identical to macro aggregation as described above.

Figure displays the semantic implications of macro (top bar) and collab-
orative (lower bar) aggregation, compared to micro aggregation (middle bar). A
first consistent observation is that collaborative and macro aggregation perform
similar, with a slight advantage of the collaborative variant throughout. Hence,
the small contribution of the special annotation seems to lead to a slight positive
effect. For BibSonomy and CiteULike, both alternative aggregation methods
perform comparable with the micro approach; for all other datasets, they do not
reach its semantic precision. In fact, this is especially visible for datasets with
(i) larger user populations and (ii) where the original tag context relatedness
performed particularly well. Hereby the fact that each user is given the same
weight seems to be problematic: Because within the latter systems, there exists
a large number of less active users, their aggregated contribution has a strong
influence — probably towards more popular tags. Table [7.4] corroborates this
assumption: It lists the overlap of the 10 most related tags according to each
aggregation method with the 10 most related tags according to (post-based)
co-occurrence, averaged across all tags. In all cases, one can see that macro and
collaborative aggregation introduce a higher overlap (second and third row).
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Table 7.4.: Average overlap of the 10 most related tags according to different
aggregation schemes with the 10 most frequently co-occuring tags
(post-based co-occurrence).

Bib- CiteULike Flickr Stackover- AOL Delicious
Sonomy flow Logsonomy
micro 2.77 2.20 2.90 1.25 0.88 1.69
macro 3.40 3.79 3.01 5.97 4.82 5.59
collaborative 3.20 3.64 3.10 6.48 5.96 6.20
[ #ofusers [ 5777 [ 72249 [ 271359 | 272313 [ 463380 [ 511348 |

However, this effect is much stronger for systems with larger user populations
(fourth row). This means that while alternative aggregation schemes seem to be
an option for smaller systems, the long tail of less active users in larger systems
introduces a strong bias towards popular keywords.

Weighting Schemes

When representing keywords as feature vectors, another crucial aspect is the
weighting scheme applied to capture the relative importance of each dimension
in a given vector. The underlying idea is that “surprising events, if shared by
two wvectors, are more discriminative of the similarity between vectors than less
surprising events” (Turney and Pantel, [2010). A typical approach from the
field of information retrieval are t¢f-idf (term frequency X inverted document
frequency) weighting functions. According to those, a term (i. e., a dimension) is
relevant for a document (i. e., a vector) if its frequency tf within the document
is high, and if it occurs seldom within other documents (i.e., its inverted
document frequency idf is high). Translated to the tag context relatedness,
a co-occurrence event of a tag t with another tag ¢’ should be given higher
weight the more often it occurs, and if ¢’ co-occurs with only a small number
of other tags besides t. More formally, if we denote the co-occurrence weight
with w(t,t') as defined in Section and the set of all tags co-occuring with
t as cooc(t) := {t' € T : w(t,t') > 0}, the adaptation of tf-idf weighting to tag
context vectors vy can be written according do:

T

Vi = ’U)(t, t,> log W

An alternative weighting scheme which has shown good performances for
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Figure 7.12.: Semantic grounding of different types of weighting schemes (tag
context relatedness). The values used for Laplace smoothing were
k = 0 (BibSonomy, CiteULike, Flickr), k£ = 18 (Delicious, AOL
logsonomy) and k = 6 (Stackoverflow).

measuring semantic similarity with word-context matrices is Pointwise Mutual
Information (PMI) (Turney and Pantel, 2010), and especially its strictly positive
variant (PPMI) (Bullinaria and Levyl, [2007)). Its basic idea is to relate the
probability that a term ¢ occurs in a context ¢ with the “marginal” probabilities
of t and ¢, respectively. Applied to our problem at hand, we define:

w(t,t)
P = ;
ZteT Zt’GT w(t,t')
D = Zt’eT w(t7 t/)
. =
ZtET Zt’eT w(t,t)
Patr = ZteT w(t7 t/)
xt! —
ZteT Zt’eT w(t,t)

. < P/ )
pmiy = log [ ——
DtxDxt’
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.| pmiy ifpmig >0
PPy = { 0 otherwise

Consequently we set vy = ppmi,y in the PPMI-weighted vector. As one can
see, the PMI weighting increases when there is a statistical dependency between
t and t' such that py > pupsy. Similar to the tf-idf scheme, this introduces a
bias towards frequent co-occurrences among infrequent tags. A way to weaken
this bias is to apply Laplace smoothing to the probability estimates p;, p and
pxer by adding a constant k£ > 0 to the raw frequencies (Turney and Pantel, |2010),
i.e., w(t,t') + k. We did a simple grid search and varied k = 0,2,4,6,...30 in
our experiments in order to find the optimal choice regarding the minimization
of the average Jiang-Conrath distance. Figure [7.12] depicts the effects of both
weighting schemes on the results of the tag context relatedness. Compared
to using no weighting scheme (black bar), a first common observation is that
PPMI weighting leads to an improvement in semantic precision in all cases
(the respective values for the Laplace smoothing are given in the caption). The
gain is partially impressive: The ratio of synonyms among the most similar
tags improves from 5.4 to 11.6 % for CiteULike, from 11.0 to 20.0 % for Flickr
and from 20.3 to 30.9% for the AOL logsonomy. Even for Delicious, the
improvement from 17.3 to 21.1 % indicates that PPMI weighting seems to be
able to compensate partially for the loss of context information compared to the
resource context relatedness (whose synonym ratio is 25.6 %, see Figure .

On the contrary, for all social tagging systems (i.e., BibSonomy, CiteULike,
Delicious and Flickr), the tf-idf scheme has a detrimental effect. For the AOL
logsonomy and Stackoverflow, its gain is noticeably smaller compared to the
PPMI weighting. A main difference between both weighting schemes is that
for a given dimension t’, the inverse document frequency takes into account
only the number of other vectors in which ¢’ has a non-zero value, while the
marginal probabilities of PPMI are based on the sum of all vector entries at
dimension ¢'. The inherent bias towards less frequently used dimensions (i.e.,
keywords in our case) seems to have beneficial effects against the domination of
the similarity by overly popular dimensions. However, especially for larger and
broad folksonomies (like Delicious or AOL logsonomy), a slight dampening of
this effect by Laplace smoothing can further improve the results. A possible
explanation for this is that while within smaller datasets, popular terms might
be strongly influenced by individual users, which might increase the percentage
of popular idiosyncratic terms. These are probably no good “partners” in terms
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of semantic similarity to other tags. In larger datasets, this effect is probably
less severe because the influence of individual users is smaller, and hence the
popular tags might tend to resemble more closely an “agreed” terminology.
Furthermore it can be hypothesized that the latter is even more visible in broad
folksonomies, because of imitation effects when users “talk” about the same
resources — which would explain why not smoothing yields optimal values for
the large, but narrow Flickr folksonomy.

Similarity Measures

The distributional representation of tags based on a set of context dimensions
can either be interpreted as a vector or as a probability distribution. Both
perceptions afford a variety of possibilities to assess tag similarity: Especially
in the field of information retrieval, geometrically-motivated metrics like the
cosine similarity (which was used in the previous analysis), the Euclidean
distance or the L1 norm are commonly applied (Turney and Pantel, [2010).
Other measures like the Kullback-Leibler, Jensen-Shannon or skew divergence
stem from information theory and focus on quantifying the “distance” between
probability distributions (Lee, [1999). For choosing representative measures to
compare with, we rely on prior work by [Weeds et al.| (2004), who found that
different measures tend to select neighbors of particular frequencies. Specifically,
the authors proposed a division into three classes, namely measures that favor
(i) high frequency terms, (ii) low frequency terms or (iii) terms with a similar
frequency compared to the target term. Our choice of measures was guided
by the motivation to select a measure for each class which has shown good
performances in the literature.

For the high-frequency class, we selected the a-skew divergence. It is based on
the Kullback-Leibler (KL) divergence measure (also known as relative entropy),
which quantifies the distance between two discrete probability distributions p
and ¢ according to:

D(pllq) = Zp g

Tag co-occurrence vectors can be turned into probability distributions by

. . . v . .
normalization according to vy = s~ L . Based on thls, we would rewrite
t Gcoaz(t)vtt/

the KL divergence as D(ve|[vy) = Dy cooe(t) . Obviously, an infinite
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distance occurs when vy = 0, i.e., if there exists a single dimension of v
where v; has a zero entry — which is very likely to happen. Different kinds of
smoothing techniques were proposed to alleviate this problem; among them,
the a-skew divergence showed the best performance for the task of predicting
unseen co-occurrences (Lee, 2001)). It is defined as:

sa(p;q) = D(rllag + (1 - a)r)

Hereby the distribution ¢ is smoothed by p; the parameter o controls the
degree to which the original KL distance is approximated. We stick to a choice
of a = 0.99, because it has given good results in previous studies (Lee, 2001)).

Another measure which belongs to the low-frequency biased class is preci-
sion according to the additive MI-based co-occurrence retrieval model (AM-
CRM) (Weeds et al. [2004). Given two tags ¢ and ¢/, it is defined as:

Zt” € cooc(t)Ncooc(t') ppmiyn
> e cooc(t) PPTVyyr

prec(t,t’) =

ppmi denotes the positive pointwise mutual information, as introduced above.
Hereby, tags ¢’ are considered as more similar when they have co-occurred with
fewer tags that ¢ did not co-occur with. This leads to a preference towards less
frequent and consequently distributionally more specific words.

A similar measure which tends to select terms with the same frequency as
the target term is Lin’s similarity (Lin, |1998]), which is defined as:

lin(t t/) _ Zt//GCOOC(t)ﬂCOOC(t/) DPPMiyyr + PPNy
7 Zt”ecooc(t) PPMiyyn + Zt”Ecooc(t) PPMLy 41

It is based on information theory and relates “the amount of information
needed to state the commonality of A and B” to “the information needed to
fully describe what A and B are” (Weeds et al., 2004).

Including in total four measures (i. e., the cosine, a-skew divergence, precision
and Lin’s), we have a representative selection for both geometrically-motivated
and information-theoretic approaches, covering all frequency-bias classes men-
tioned by (Weeds et al, 2004). Figure displays the semantic precision for
each measure. In general, the picture looks less consistent: While precision
performs worst across almost all datasets, it seems to have an advantage for
the Flickr case. On the other hand, the skew divergence has benefits in most
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Figure 7.13.: Semantic grounding of different types of similarity measures.

situations, but is slightly worse compared to cosine for Delicious. First of all,
manual inspection of the results turned out that the bias of precision towards
infrequent terms led in fact to a large number of idiosyncratic terms being
judged as most related. As most of these are not present in WordNet, the
number of pairs which afforded a semantic grounding by the Jiang-Conrath
measure was significantly lower compared to the other measures — e.g., 229
versus 2002 for the case of Flickr. The fewer the number of mappable pairs is,
the less reliable becomes the evidence provided by semantic grounding. Hence,
the only valid conclusion which can be drawn is that the precision measure
seems to avoid “agreed” vocabulary (when we consider the existence of a term
in a dictionary as a sign of agreement).

Generally speaking, the a-skew divergence seems to be a good choice for a
broad range of Social Annotation datasets, especially if they are not too large:
A further experiment based on roughly half of the total annotations within the
Delicious dataset led to superior results of the skew divergence compared to
cosine similarity.
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7.1.5. Summary

In this section, we have presented an in-depth analysis of the semantic character-
istics of several measures of keyword relatedness based purely on the structure of
Social Annotation Systems. Using a methodology based on semantic grounding
within WordNet, the first observation was that the notions of FolkRank and
co-occurrence relatedness exhibit a tendency towards more general keywords —
i.e., they seem to have a bias towards hypernyms. Distributional approaches
based on resources or tags as context showed a different behavior, and turned
out to favor synonym or “sibling” keywords. Especially for the tag context
relatedness, this property was found to be consistent across different kinds of
Social Annotation Systems. Hence, the context of co-occurring keywords can
be seen as a valuable source of information for capturing the semantics of a
given keyword.

In the following, this finding was further elaborated by presenting various
alternatives for the different steps involved in measuring distributional similarity
based on the tag context — namely co-occurrence computation, aggregation,
weighting and similarity assessment. While resource-based co-occurrence was
found to be optimal in most cases, it is approximated well by the less complex
post-based co-occurrence. Aggregation schemes based on the idea of collabora-
tive voting seemed to be problematic for larger datasets, because they introduce
a strong bias towards popular (and not necessarily semantically close) keywords.
Hence micro-aggregation (i. e., computing similarity on the system instead of
the user level) seems to be the most suitable scheme. Because of the domina-
tion effects by popular tags, weighting approaches proved to be crucial: Using
positive pointwise mutual information (PPMI) to weigh the context vector
entries led to a substantial improvement throughout all conditions, partially
in conjunction with Laplace smoothing on larger datasets. Finally the choice
of the vector similarity measure showed a less consistent picture, pointing to
skew divergence and cosine similarity as generally robust metrics for social
bookmarking systems.

When taking into account all analyzed factors, a common conclusion is that
appropriately weighted keyword co-occurrence seems to encode a large amount
of the implicit semantics within Social Annotation Systems. In the next section,
these insights will be exploited for the purpose of learning concepts.
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7.2. Learning Concepts

Having identified measures of keyword relatedness which are able to discover
semantically close keywords, the next step according to the ontology learning
layer cake (see Section is to use these measures to identify concepts. To
put it more formally, one can interpret the keyword vocabulary T' of a Social
Annotation System as a set L¢ of lexical labels for an unknown set C' of concepts.
Hence, the process of concept formation has two aspects, namely (i) identifying
this set C' of underlying concepts and (ii) learning the relation Ref . among
these concepts and the keyword vocabulary Lo. Hereby, two problems which
are inherent to the flexibility of Social Annotations need to be solved, namely
synonymy (i.e., the existence of different keywords for the same concept) and
polysemy (i.e., a keyword denoting more than one concept). In other words,
this corresponds to “cleaning up” the collaboratively created vocabulary.

As explained earlier when detailing on the state of the art in this direction
(see Section , (Cimiano, 2006) mentions that the process of concept
discovery “should ideally provide (i) an intensional definition of concepts, (ii)
their extension and (iii) the lexical signs which are used to refer to them”.
In order to assure the applicability of our proposed methods to a variety of
systems (and not only to those dealing with textual resources), we interpret
concepts in a less strict manner as “semantic groupings” of keywords. In this
way, we restrict ourselves to the keywords themselves as the only intensional
and lexical vocabulary. More precisely, this means that we will use the keywords
for the intensional definition and as lexical signs. Our primary focus hereby is
furthermore the identification of the set of underlying concepts; this means that
the task of instance assignment (i. e., creating the extension of the concepts) is
secondary. The main reason for this decision is twofold: First, the discovery
of concepts without their extension does have a value on its own, e.g., for
automatically extending structured lexical resources like WordNet. Second, we
think that a prerequisite for instance assignment is naturally the existence of
meaningful concepts.

In this section, we will first analyze different methods to resolve the usage of
synonymous keywords based on the measures of semantic relatedness presented
in the previous section. In a next step, we discuss approaches to discover
different meanings of individual keywords. In summary, both corresponds to
the discovery of concepts underlying the collaboratively created vocabulary of
Social Annotation Systems.
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7.2.1. Synonym Resolution

As mentioned in Section the retrieval of relevant resources within Social
Annotation Systems is negatively affected when different keywords are being
used to denote identical or very similar concepts. Due to the open nature
of these systems, this can happen in a variety of ways: First of all, users
have different habits of separating multiple words within a single keyword,
like ontology_learning, ontology-learning or ontologyLearning. The us-
age of singular and plural is also subject to the same kind of fluctuations
(e.g., ontology and ontologies). Apart from that, various acronyms and
abbreviations like o1 or ontolearn are also typically found. The international
population of many systems introduces also cross-language phenomena like
Ontologie (German) or ontologi (Swedish). Lastly, there exist potentially
also very similar keywords like ontologyDefinition for which it may be desir-
able to be subsumed under the same concept. As one can see, we are interpreting
“synonymy” hereby in a comparatively broad manner. So instead of detecting
linguistically precise synonyms, our goal is to “shrink” the vocabulary T of a
Social Annotation System by grouping all keywords with a very similar meaning.
In order to be able to use the existing formalisms for this newly created
structure, we will refer to it as a a synsetized folksonomy defined as follows:

Definition 7.1 A synsetized folksonomy is a tuple F* := (U, S, R,Y°) where
U and R are the sets of users and resources present in a folksonomy F. S is the
synsetized vocabulary of F', whereby each original tag t € T has been replaced
by a synset s C S. The synsets s € S may overlap and contain exhaustively all
tagst €T, i.e., Useg =T

The synsetized tag assignments Y5 are created by replacing each original triple
(t,u,r) € Y with its corresponding synsetized variants (s1,u,r), ..., (Sp,u,7).
Hereby s1,..., s, are the synsets associated to t.

In most cases, the synsetized vocabulary is at most as big as the original
vocabulary, i.e., |S| < |T| and |Y¥| < |Y|. Of course, the crucial point here is
how to map a tag to its synset. Two classes of approaches are predestined for
this kind of task, namely dimensionality reduction and clustering techniques. A
common approach in the first direction is latent semantic indexing (Deerwester,
1988), which maps from a high-dimensional space (i.e., the ones spanned by
all keywords) into a latent latent semantic space, whose dimensions correspond
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to concepts (Eda et all 2009). While such approaches are found in the litera-
ture (Eda et al., 2009 |Zhang et al., |2006]), most of them were performed on
comparatively small datasets due to the involved complexity. For this reason and
in order to complement these works, we are focusing on clustering techniques
in the scope of this dissertation. Another reason for this decision is that we
can build hereby on elaborate measures of tag relatedness, which we presented
earlier.

The general idea of clustering is to form groups of objects (so-called clusters)
which exhibit a greater similarity to each other than to objects within other
clusters. A great number of algorithms and variants has been developed within
different research areas; cf. (Jain et al., |1999) for an overview. For some
algorithms (like, e.g., k-means) the number of clusters needs to be fixed in
advance. Because the number of underlying concepts within a Social Annotation
System is unknown, such approaches are not very well suited. A popular brand
of algorithms which do not require a predefined number of clusters is hierarchical
agglomerative clustering (HAC). While there exist several other approaches,
we have chosen HAC because it is the most “direct” way to derive synonym
classes from the relatedness measures presented in Section Our goal hereby
is not primarily to perform an exhaustive study of the suitability of different
clustering algorithms for the purpose of identifying synonyms, but more to
ensure that our studied measures do provide valuable input for clustering. We
will now first detail on the variants of hierarchical clustering we analyzed, and
explain how clusters can be derived; additionally, we will introduce a simple
baseline to compare against.

Hierarchical Agglomerative Clustering

Given a set of objects O, the basic idea of hierarchical agglomerative clustering
is to build a “linkage” of clusters, starting from |O| individual clusters and
merging these in a bottom-up manner until all objects are in a single cluster.
Hereby often the notion of distance instead of similarity is used; however, given
a properly normalized similarity measure, one can easily transform a similarity
value s into a distance value d according to d = 1 — s. The general hierarchical
clustering algorithm is explained by (Jain et al., [1999) as follows:

1. Compute the distance matrix containing the distance between each pair
of objects. Treat each object as a cluster.
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Figure 7.14.: Example dendrogram obtained from hierarchical agglomerative
clustering.

2. Find the least distant pair of clusters using the distance matrix. Merge
these two clusters into one cluster. Update the distance matrix to reflect
this merge operation.

3. If all objects are in one cluster, stop. Otherwise, go to step 2.

This results in a so-called dendrogram, wich depicts graphically the level of
distance at which each merging step took place (See Figure . Hierarchical
agglomerative clustering algorithms can mainly be differentiated by the scheme
how the distance matrix in step 2 is updated. The core question hereby is how
the distance between merged clusters is computed. Let U = {uy,...,u;} € O
be a the newly created cluster by merging two existing clusters S C O and
T C O, and let V = {vq,...,v;} C O be another cluster. Then the following
standard schemes for updating the matrix with distances between U and each
V exist:

e Single Link:
dist(U,V) = min dist(u,v)
ueUweV
e Complete Link:
dist(U,V) = max_ dist(u,v)

ueUweV
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Average Link:
dist(u, v)

dist(U, V)= ) Gl

ueUweV
e Weighted Average Link:

dist(S, V) + dist(T, V)
2

dist(U, V) =
o (Centroid Link:
dist(U, V') = dist(cy, cy)

Hereby ¢y and ¢y are the centroids of clusters U and V, respectively. The
centroid of a cluster is that object which minimizes the distance to all
other contained objects.

e Ward’s variance minimization Link:

T
dist(U, V) = \/Wdist(v, S)? + W'I”dist(‘/, T)? + ‘xwdz'st(s, T)?

Hereby z = |V| +|S| + |T|

As stated above, the outcome of the clustering step is not a fixed set of clusters,
but rather a dendrogram which captures the agglomerative merging steps. In
order to derive clusters (which is desirable in our case), this dendrogram needs
to be further analyzed. Hereby there exist two standard ways to “cut” the
latter into a set of flat object clusters by using a threshold ¢:

e Distance criterion: The most intuitive approach is to fix a threshold 7z
and to keep only those clusters in which all objects have the maximum
distance of 74. This corresponds to “cutting” the dendrogram by a
horizontal straight line, and keeping those clusters underneath the cut
(this is denoted as “cut criterion” in Figure .

e Inconsistency coefficient: Another way to identify “natural” divisions
within the set of objects is to compare the distance at which a given cluster
c was formed with the distances at which its components were created. If
this distance is very low, then ¢ can be expected to contain a coherent
set of highly similar objects (see Figure . Leaf nodes in the cluster
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tree and clusters merged from those are hereby assigned an inconsistency
coefficient of 0. In our experiments, we used the implementation of
inconsistency computation present in SciPy’s corresponding module®. By
setting a threshold 7;,., one can keep only those clusters with a maximum
inconsistency of Tine.

In the following, we will explain a simple baseline against which the perfor-
mance of the aforementioned algorithm variants can be compared.

Baseline Approach

Apart from clustering, another very direct way to group keywords based on
their similarity is to use a direct similarity threshold 74;,,. More precisely, we
defined the baseline synonym mapping function syn as follows:

syn(t) = {t' € T: sim(t,t") > Tgim }

Because sim(t,t) = 1 a tag t is always contained in its “own” synset, i.e.,
Vte T :te syn(t). It is clear that when setting 7, to a very high value, then
the size of synonym sets will be very small, while setting it very low will yield
large sets of unrelated tags.

In order to assess the suitability of the different variants of hierarchical
agglomerative clustering to build meaningful synonym sets, we computed clus-
terings for all datasets mentioned in Section As similarity measure among
keywords, we used the tag context relatedness, along with a PMI weighting
including appropriate Laplace smoothing as shown in Figure Because data
sparsity can be problematic for its computation, we restricted ourselves again
to the sub-folksonomies induced by the 10000 most frequently used tags. For
identifying concrete clusterings, we performed a stepwise incrementation of the
distance criterion and inconsistency coeflicient thresholds starting from 0, and
ending at the value where only a single cluster was formed. The same was done
for the baseline approach, varying the similarity threshold 7, between 0 and
1.

A first cursory analysis of the computed synsets showed promising results;
especially using Ward’s method for distance computation together with an

Shttp://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.
inconsistent.html
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inconsistency coefficient thresholding seemed to produce consistent keyword
clusters. In order to allow a more systematic assessment of the influence of
the different algorithm variants, the following section performs a semantically
grounded evaluation against WordNet synonyms.

7.2.2. Evaluation by Semantic Grounding

Similar to the procedure of grounding measures of keyword relatedness against
reference measures, we also apply a gold-standard based evaluation paradigm
to the task of synonym resolution. Because within WordNet, synonym words
are grouped into synsets, we can exploit those as ground truth to compare the
clustered synsets against. More precisely, we define the set of keywords which
is present in WordNet as T'WerdNet and based on that a reference synonym
function:

synA : TWordNet — ]P;(TWordNet)

This function maps each keyword ¢ to all other keywords contained in all
synsets where t is included. We are aware that we are “mixing” hereby different
senses of a word within WordNet; however, the same mixing effects can be
expected to take place on the folksonomy side. Analogously, we define the
synonym functions induced by the aforementioned algorithms as:

syn* . TWordNet N P(TWordNet)

Based on these functions, we can now measure to which extent both functions
retrieve the same synonyms. We will employ a variant of the well-known IR
measures precision and recall for this purpose. More precisely, we define local
precision and recall functions according to:

pty=q w0

syn’* (t)Nsyn'> (t) if|syn*(t)] >0
0 otherwise

T’(t) = syn(t)

syn'* (t)Nsyn’2 (t) if\synA(t)| >0
0 otherwise

Hereby syn’* and syn’® exclude the term itself from its synset, i.e., syn(t) =
syn*(t) \ t. The global precision and recall values, as well as their combination
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in the F-measure are then computed according to:

1
P = ‘TWordNet| Z p(t>

teT WordNet

1
R= |TWordNet| Z T(t)
teTWW'dNet
2% Px R
~ P+R

Because our focus lies more on the question whether the learned synsets are
correct rather than to reach a complete coverage of all WordNet senses, we will
focus in the evaluation on precision and F-measure.

Figure shows the results of the semantic evaluation for the Delicious
dataset”. The subfigures (a) to (d) depict the hierarchical clustering approaches,
using the inconsistency coefficient (subfigures (a) and (c)) and the distance
criterion (subfigures (b) and (d)). Subfigure (e) contains the baseline approach
based on a simple similarity threshold. Higher values on the y-axis correspond
in each figure to a higher agreement with the reference synsets, i.e., a better
performance. When reading the figures, one has to keep in mind that lower
thresholds imply a higher number of smaller clusters, while higher thresholds
produce fewer clusters of larger size.

A first observation is that almost all hierarchical clustering conditions yield
a higher agreement to WordNet than the baseline approach. This is not too
surprising, as setting a single global threshold can be seen as a relatively coarse
instrument, which does not fit well the potentially very different levels of
similarity produced by the tag context relatedness.

Among the clustering variants, single and centroid linkage show a weaker
performance throughout all conditions. This can be probably attributed to
the “chaining effect” of single linkage, which tends to create large clusters.
Additionally, taking into account only a centroid as a representative for a cluster
seems to disregard a crucial amount of information encoded in the remaining
cluster members.

When comparing the inconsistency coefficient and the distance criterion, it
turns out that the latter does not reach the performance of the first: Its optimal

"For space reasons, we omit detailed results for the other datasets; however, they show a
very similar behaviour, whose optimal values are depicted in Table
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Figure 7.15.: Performance of different clustering methods for the task of syn-
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values for both precision and F-measure are considerably lower. Hence the
inconsistency coefficient seems to be the more appropriate method to “flatten’
the hierarchical keyword clustering.

Though the remaining clustering variants show a similar performance, Ward’s
method almost consistently has a slight advantage. Taking a look at the
precision values obtained by varying the inconsistency threshold, it turns out
that the clustering result is basically identical between a threshold range from
0.0 to roughly 0.6, yielding a set of 6424 clusters. Recall that in contrast to the
distance criterion, setting the inconsistency threshold to 0.0 already provides
non-singleton clusters, because the inconsistency of leaf nodes and clusters
composed of leaf nodes in the cluster tree is defined as zero. Interestingly, the
resulting synset / keyword ratio of ~ 1.6 comes close to the one of WordNet
(=~ 1.73). So when the goal is to optimize synset precision, then choosing Ward’s
method along with an inconsistency coefficient threshold of 0.0 seems to be a
good choice.

In order to exclude the possibility that this is a dataset-specific phenomenon,
Table [7.5] depicts the thresholds for the optimal precision for all other datsets
(upper table). Apart from CiteULike and Flickr, the same optimal threshold is
obtained. However, a closer look reveals that 7;,. = 0.0 yields almost the same
precision in these cases (0.1255 and 0.23, respectively). The same holds for the
BibSonomy dataset, where Ward’s method yields a precision of 0.0679 for a
threshold of 0.0.

When shifting perspective to the F-measure, we find a similar common peak
around 7;,. = 0.71. Taking a look at the number of clusters produced, one can
observe a decrease of around ~ 2 000 clusters in this region. Again, this effect is
visible across all datasets (see Table . Increasing the threshold further has a
detrimental effect in all cases. Taking a cursory look at the resulting synsets at
this level reveals naturally slightly larger clusters, conveying the impression of
“topics”, which embrace closely related, but not necessarily synonym keywords.

In summary, one can condense the results of the semantic evaluation to two
statements: First, Ward’s method together with an inconsistency coefficient
threshold seems to be most well-suited among all analyzed variants for the
purpose of detecting synonym clusters. And second, when using the latter,
there seem to be two natural “steps” of cluster formation, taking place when
(i) highly related “leaf” tags are combined into smaller clusters (threshold of
0.0) and when (ii) those clusters are combined into topic-like larger clusters
(threshold of 0.71). It depends on the requirements of a knowledge engineer

i
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Table 7.5.: Optimal parameters and cluster sizes for synonym detection on
different datasets. The upper table depicts depicts the optimal
thresholds and cluster sizes for precision, the lower one for the

F-measure (see also Figure [7.15))

H threshold ‘ precision ‘ method ‘ # clusters
BibSonomy 0.0 0.0695 complete 6 387
CiteULike 0.59 0.1257 ward 6407
Delicious 0.0 0.1582 ward 6426
Flickr 0.65 0.2302 ward 6 260
AOL logsonomy 0.0 0.1334 ward 6341
Stackoverflow 0.0 0.1655 ward 5994

’ H threshold | F-measure | method ‘ # clusters

BibSonomy 0.71 0.0706 ward 3808
CiteULike 0.71 0.1174 ward 3838
Delicious 0.71 0.1301 ward 3777
Flickr 0.77 0.2254 ward 3676
AOL logsonomy 0.71 0.1192 ward 3845
Stackoverflow 0.84 0.1527 ward 3870

which step is most suited for a particular application at hand. For the purpose
of building a synsetized folksonomy, the first step is probably the preferred one,
because it corresponds to a more “cautious” consolidation of highly related
keywords.

In order to convey an impression of the resulting keyword clusters obtained
on both step levels, Table depicts some examples. The synonyms of “step 17
(i.e., those obtained by a threshold of 0.0) seem to come in fact closer to the
notion of “identical meaning” (or to meaningful concepts, like exemplified by
“desperate housewives”® or “evolutionary selection”), while those obtained in
the second step (i.e., by a threshold of 0.71) add slightly more widely related
keywords.

In order to tackle the next problematic issue of the open vocabulary of Social
Annotation Systems, the following chapter will explain methods to resolve

8 “Desparate Housewives” is the title of an American television series.
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Table 7.6.: Example synonym sets created by hierarchical clustering, using
Ward’s method together with an inconsistency threshold. The two
steps correspond to setting its value to 7, = 0.0 and 74, = 0.71,

respectively.
[ Dataset H keyword [ synonyms step 1 [ synonyms step 2 l
BibSonomy football soccer soccer, basketball
genderstudies | gender geschlechterforschung, gender,
feminismus, queer, frauen,
gendercrawl
broadcast broadcasting broadcasting, audience
CiteULike amplifier amplifiers amplifiers, gain
selection evolutionary adaptation, drift, evolutionary
kernel kernels kernels, factorization
Delicious parser parsing parsing, compiler, syntax
remove removal removal, hijacker, nuker,
remover
soviet ussr ussr, chernobyl
Flickr smiling laughing laughing, posing, smiles
jewelry jewellery jewellery, beads, bracelet,
necklace
nyc newyorkcity newyorkcity, newyork, ny,
manhattan
AOL logsonomy housewives desperate desperate, elliott, wright,
regina
conroller controls controls, active, features
fence fences fences, privacy
Stackoverflow digraphs directed-graphs directed-graphs,
directed-acyclic-graphs, dag,
igraph, networkx
empty blank blank, none, check
pixel pixels pixels, processing, raw

polysemy by discovering multiple senses of a single keyword.

7.2.3. Tag Sense Disambiguation

As mentioned in Section another weakness of Social Annotation Systems
is related to polysemy, i.e., when a single keyword may have more than one
meaning. This clearly hampers retrieval as well as browsing facilities: Because
the different senses of a keyword may be semantically unrelated (e.g., apple as
a fruit and a company), the user is presented with irrelevant content. Naturally
this problem is not restricted to Social Annotations, but is present basically
within all systems dealing with natural language; however, the open vocabulary
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as well as the lack of structure (compared to, e.g., the syntax of a written text)
makes this issue more visible.

Despite that, the problem of word sense disambiguation has been addressed in
a large number of studies in the field of Natural Language Processing (Manning
and Schiitze, 1999, p. 229ff). The applied methods can be broadly distinguished
in supervised and unsupervised approaches. Supervised methods see disam-
biguation mainly as a classification task and require a defined set of senses for
each word, as well as a correctly disambiguated training set. Both requirements
make their application to the dynamic vocabularies of Social Annotation Sys-
tems difficult, because the number of senses of a given keyword is generally
unknown and subject to change. Unsupervised methods can be distinguished
according to the necessity to specify the number of senses in advance. Clearly,
for our problem at hand only those approaches are viable which do not require
an a-priori determination of this end.

Accordingly, the first desirable goal in our case is best described by tag sense
discovery. NLP approaches in this field like (Dorow and Widdows, 2003; Pantel
and Lin| [2002) are typically applying clustering approaches to divide a suitable
context of a given term into partitions which correspond to its senses. When
transferring this idea to Social Annotation Systems, the two crucial issues
hereby are (i) context identification, i.e., how to construct a “suitable” context
and (ii) context disambiguation, i.e., how to subdivide this context into senses.

In prior work, (Au Yeung et al., 2009a) performed extensive studies on the
characteristics of different context definitions for the task of tag sense discovery.
More precisely, the authors examined tag- and user-based document networks,
as well as tag co-occurrence and similarity networks. Among those, it was
found that tag context similarity networks provided the most clear-cut results
among all the network types.. Although hereby some more specific senses were
missed in some cases, we will adopt tag similarity networks for building contexts
because we are primarily interested in “generally agreed” emergent senses —
which we assume to be more general ones. Hence, we will use the tag context
relatedness to depict the relations among the items present in the context of a
given keyword.

The next question is which keywords to include in the context of a given
keyword t. The goal hereby is to choose a sample of context keywords which
are representative for ¢’s main senses. Hereby we follow the procedure described
by (Rapp, 2003), who found that the “20 strongest first-order associations
[..] are [...] a good mix of the two main senses for each word”. First-order
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associations correspond to tag-tag co-occurrence in our case. Although we do
not necessarily target to discover two main senses, we follow these steps to
construct a context for a given keyword t:

1. Let t € T be a keyword whose senses are to be discovered.

2. Let SC; = (Vi, Ey) be an initially empty undirected graph, whose edges
are weighted by a weighting function w : V; — R. We call this graph the
sense context graph for t.

3. The vertices V; are constructed by adding those 20 tags t; € T\, t; # t,i =
1,...,20 which maximize the co-occurrence relatedness to t.

4. The edges are constructed by computing the pairwise tag context relat-
edness as introduced in Section among all t € V;; we add an edge
between t; and t; if their similarity is greater than zero. The weights of
the edges are given by the corresponding similarity value.

Given this graph representation of the context, the next step is how it
can be divided into partitions which denote different meanings. As stated
above, clustering techniques have been used to this end, e.g., Clustering By
Committee (Pantel and Lin, [2002), Markov Clustering (Dorow and Widdows,
2003) or graph clustering (Au Yeung et al., |2009a). From a different direction,
this problem is similar to community detection, for which modularity-based
clustering techniques showed promising results (Leskovec et al., [2010]), and were
also applied to sense detection by (Au Yeung et al., 2009a).

For the scope of this study, we will stick to hierarchical agglomerative clus-
tering as described in the previous chapter as a representative of a standard
algorithm; furthermore we include a graph partitioning method inspired by (Wid-
dows and Dorow, 2002), as well as a modularity-based clustering used by (Au
Yeung et al., [2009al). Each approach will be briefly introduced in the following
subsections.

Hierarchical Agglomerative Clustering

Based on the similarities among the context keywords which form the edges of
the sense context graph SC, the hierarchical clustering procedure described
in the previous Section can be directly applied to form “sense clusters”.
Because it showed optimal behavior for the task of synonym clustering, we will
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stick to Ward’s method for updating the distance matrix. For obtaining distinct
clusters, we will vary the distance criterion threshold for simplicity reasons, and
because the inconsistency coefficient showed suboptimal behavior during initial
studies.

Graph Clustering

Another observation made by (Widdows and Dorowl, 2002) is that the different
senses of a given word are often semantically unrelated. Based on a similarity-
based graph representation of a word’s context as in our case, the authors
proposed to identify different senses as different connected components within
the context graph. This follows the intuition that context words belonging to
a particular sense will be highly similar (i.e., connected) to each other, while
less similar (i.e., unconnected) to the other senses. In other words, with an
appropriate definition of similarity, the context graph should “automatically”
decompose itself into sense components. Of course a crucial question hereby is
how to fix an appropriate similarity threshold when creating the edges within
the context graph: A too low value will yield a single connected component
(i.e., a single sense), while a too high value will result in a set of singleton
components — both of which is not desired. In order to check if a suitable
threshold setting produces meaningful senses, we varied the thresholds between
0.0 and 1.0.

Modularity-based Clustering

An inherent property of the two aforementioned algorithms is that the number of
resulting clusters depends strongly on the specified threshold. Another approach
to detect a “natural” number of clusters which does not require parameterization
is modularity-based clustering. It has been applied to community detection in
social networks (Leskovec et al., 2010), and also to tag sense discovery (Au
Yeung et al., 2009a). Modularity is hereby a measure of quality of a given
graph partitioning; see (Leskovec et al.,2010) for a detailed explanation. As a
concrete implementation, we used the algorithm by (Blondel et al., 2008). It
basically takes the context graph as an input, and returns a “best partition” of
its nodes according to a modularity optimization strategy.

Having introduced three clustering variants to discover tag senses, it is
important to notice that our intention is not a complete coverage of all relevant
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clustering techniques in order to find the optimal method. Moreover, we want
to asses whether our proposed measures of tag relatedness serve as a useful
input for an exemplary set of applicable clustering approaches, coming from
different fields. Furthermore, we want to assess whether the relatively small set
of 20 context keywords suffices to identify different senses.

In all cases, a further question is how the computed senses should be labeled.
In the literature, typically the most popular tags within the resulting clusters
are used (Au Yeung et al. 2009a). Instead, we propose to choose a single
label by choosing the keyword ¢; within the sense cluster which maximizes the
tag context relatedness to the keyword ¢ which is to be disambiguated. More
formally, let S = {t1,...,t;} be a sense cluster of ¢, and let sim denote the tag
context relatedness. Then we choose the label tg for S as follows:

tg = argmax sim(t,t')
t'eS

While we do no propose to disregard the remaining keywords within the sense
cluster, we hypothesize that tg is a concise description of what the cluster is
about. We will refer to the remaining keywords as preference tags, because
they serve as an additional description of what the sense is about. In order to
assess the performance of all methods under consideration, the following section
presents a gold-standard based evaluation approach.

7.2.4. Evaluation by Semantic Grounding

As mentioned by (Pantel and Lin, [2002), evaluating the performance of a sense
discovery algorithm is difficult, because there is no completely reliable way to
determine the “correct” set of senses within a given corpus. Existing sense
definitions like those within WordNet may be too fine-grained or incomplete.
For this reason, researchers have used manual case studies instead (Au Yeung
et al., 2009a). However, those do not scale for the purpose of frequent evaluation
across several datasets, as is required in our case. Because of that, we stick
to a WordNet-based evaluation approach, because we think that despite its
shortcomings, it can still give us some insights on the quality of the results
produced by the different algorithms. Within WordNet, a polysemous word is
being assigned to several synsets, each of which is being described by a gloss,
a short textual description what the synset is about. For the computed sense
clusters, one could also interpret the contained keywords within each cluster
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as a lightweight form of “gloss”. Hence, we propose to match the computed
senses against those defined within WordNet based on overlapping words in
both “glosses”. Because WordNet is reported on the one to be too fine-grained,
an on the other hand to to miss other senses (Au Yeung et al.; 2009a), precision
and recall are not very well suited. Instead, we suggest to take the absolute
number of matching senses as an indicator of quality. The intuition behind this
decision is that if an algorithm produces a large number of senses which can be
mapped correctly to WordNet senses, then its performance is better.

More precisely, the sense mapping process between learned sense clusters and
WordNet glosses involves the following steps:

. Let ¢ be a keyword whose sense context graph SC; = (V;, E;) has been

disambiguated by an algorithm into k sense clusters Cy = {S1,..., Sk},
SlUi:l,...,kSi =V

First we remove all singleton clusters from C; (i.e., those with |S;| = 1),
because we want focus more on “generally agreed” senses.

After that, we retrieve the set of glosses Gy = {g1,...,g;} for each noun
sense of ¢t within WordNet.

We consider a sense cluster S; to match a gloss g; if at least two keywords
present in S; occur in the gloss g;. We have chosen two keywords in order
to exclude matches by chance of only a single keyword, and in order to
still be able to match also smaller sense clusters (consisting of just a few
keywords). Based on this definition, we compute all matching pairs of
sense clusters and glosses.

From the resulting set of matches, we remove all those which do not
correspond to a one-to-one mapping, i.e., we remove all matches where
a sense cluster matches more than one gloss, and all matches where one
gloss matches more than one sense cluster.

Based on the resulting set of matches for each keyword ¢, we compute the
global match count by summing over those keywords for which one of the
following conditions holds:
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° |Ct’>1/\‘Gt’>1

The first condition corresponds to the case in which an algorithm has correctly
predicted that a keyword has exactly one sense; the second one to the case
where polysemy has been correctly identified. This comparatively elaborate
kind of aggregation is necessary because otherwise algorithms which produce
exactly a single sense for each keyword would be strongly biased.

Figure [7.16] shows the results for varying the threshold for hierarchical clus-
tering and Widdow’s graph clustering algorithm, exemplified for the Delicious
dataset. Please note the different scale of the two x-axes; in order to ease
comparison, the z-axis for the distance criterion threshold is inverted. In this
way, the starting point on the left hand side corresponds for both algorithms
to the state where each keyword is assigned exactly one sense (i.e., all context
keywords lie within a single cluster). When moving from left to right (i.e.,
lowering the distance criterion threshold and increasing the similarity threshold),
the number of sense clusters is growing. The interesting question hereby is if we
can obtain a higher number of matches by splitting up the “correct” keywords
(namely those which are polysemous witin WordNet). It becomes apparent that
this is the case for both algorithms; however, the number of matches produced
by the hierarchical clustering algorithm is consistently higher compared to the
graph clustering approach. So a first impression is that according to the chosen
evaluation criterion, hierarchical clustering seems to be slightly better suited
than the graph clustering approach by Widdows to discover keyword senses
which exist also in an external lexical resource like WordNet. Furthermore,
based on the number of matches it is now also possible to deduce an “optimal”
parameter for each case, i.e., a setting which maximizes the number of matches.
For the dataset at hand, those are 0.35 for the similarity threshold and 1.38 for
the distance criterion threshold.

In order to give a more detailed insight, we performed the same parameter
optimization for all other datasets under consideration. Table summarizes
the properties of the results. Hereby we are also including the modularity-
based clustering approach for comparison. In terms of the absolute number of
matches, hierarchical clustering reaches the best performance in all cases except
for the Flickr dataset, where it scores slightly lower, but still better than the
graph clustering approach. This points further in the direction that hierarchical
clustering seems to be the most adequate choice among all examined methods
to discover tag senses. An additional insight is that while modularity-based
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distance criterion threshold
2 15 1 0.5 0

450 ‘ ‘
Hierarchical Clustering
400 T NN Graph Clustering ----------- E

350 b= e
300 +
250 +
200 +
150
100
50

number of matched senses

0 0.2 0.4 0.6 0.8 1
similarity threshold

Figure 7.16.: Parameter variation for two clustering algorithms for tag sense dis-
covery. The performance is measured agains matched senses within
WordNet (y-axis). The graph clustering algorithm is inspired by

Widdows (see Section [7.2.3)).

clustering also performs quite well in some conditions, it has a strong tendency to
judge all keywords to be ambiguous (as can be seen for the very high perc_ambig
values in Table |7.7). While this fine-grained distinction of senses might be
desired in some cases, the possibility to obtain only “generally agreed” senses
by an appropriate threshold might be more suitable in others.

Despite that, the results so far have to be seen in light of the shortcomings of
the chosen evaluation paradigm; because, e. g., the matching between WordNet
glosses and sense clusters might be afflicted with noisy matches, the dominance
of hierarchical clustering is best regarded as a tendency. In order to establish a
connection between our chosen evaluation method and a user study, we reuse a
manually compiled set of disambiguated keywords from Delicious introduced
by (Au Yeung et al., [2009a). It consists of 10 ambiguous tags, which were
disambiguated to in total 22 senses by human judges. Though the concrete
dataset used in this study is not identical to ours, we can still identify each
tag and compare the manually created senses with the ones produced by our
algorithms, using the obtained optimal thresholds. In this setting, we can use
precision, recall and F-measure as valid performance metrics, because both
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Table 7.7.: Optimal sense clusters according to different clustering algorithms.
num_matches denotes the number of matches, opt_thresh the op-
timal threshold obtained by parameter variation, perc_ambig the
percentage of ambiguous keywords and avg_senses stands for the
average number of senses, computed over all ambiguous keywords.

Hierarchical Widdow’s graph Modularity-based
clustering clustering clustering
BibSonomy
num_matches 167 159 144
opt_thresh 1.26 0.15 n.a.
perc_ambig 79.7% 31.4% 98.3%
avg_senses 2.21 2.31 2.67
CiteULike
num_matches 406 384 275
opt_thresh 1.62 0.15 n.a.
perc_ambig 20.9% 1.1% 99.6 %
avg-senses 2.01 2.02 2.47
Delicious
num_matches 436 404 387
opt_thresh 1.38 0.35 n.a.
perc_ambig 78.8% 57.6 % 99.7 %
avg_senses 2.07 2.67 2.55
Flickr
num_matches 435 375 453
opt_thresh 1.24 0.22 n.a.
perc_ambig 95 % 71.3% 99.9%
avg_senses 2.49 3.02 2.87
AOL logsonomy
num_matches 602 437 598
opt_thresh 1.04 0.41 n.a.
perc_ambig 81.2% 48.3 % 92.2%
avg-senses 2.19 2.51 2.14
Stackoverflow

num_matches 63 38 62
opt_thresh 1.22 0.11 n.a.
perc_ambig 77.7% 6.6 % 99.7%
avg-senses 2.16 2.04 2.74
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Table 7.8.: Manual evaluation of tag sense discovery for the Delicious dataset.
Precision, reall and F-measure are computed relative to a manually
disambiguated set of 10 keywords compiled by |Au Yeung et al.

(2009a)).
Hierarchical Widdow’s graph | Modularity-based
clustering clustering clustering
PTECision 0.78 0.63 0.56
recall 0.78 0.46 0.68
F-measure 0.78 0.53 0.62

sense sets are now defined over the same dataset. The matching between the
senses was done manually.

Table depicts the results. Because the average number of senses is higher,
the modularity-based clustering scores comparatively low precision values. Apart
from that, the hierarchical clustering approach outperforms the other examined
methods. Although the manual evaluation scores will change with different
threshold settings, we think it is a fair comparison after having selected the
“optimal” parameters by the aforementioned procedure. This provides evidence
that our WordNet-based evaluation approach is valid, and corroborates further
the impression that hierarchical clustering is the best choice among all analyzed
methods to discover tag senses. Of course the setting of the distance criterion
threshold is a crucial issue; however, its variation also gives the knowledge
engineer the possibility to adjust the granularity of discovered senses. For
particular applications, also an optimization strategy like the one presented in
this analysis (i.e., including external lexical repositories) may be the method of
choice. In order to provide the reader with an impression of the disambiguation
quality, Table depicts some exemplary discovered senses within all datasets
under consideration. Hereby the usefulness of our proposed method to denote
the sense label of a cluster becomes visible.

7.2.5. Summary

This chapter on concept learning was mainly intended to examine techniques
addressing a major shortcoming of Social Annotation Systems, namely that
retrieval of relevant resources is negatively affected by the usage of different
keywords for the same concept, and by keyword ambiguity. The first problem
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Table 7.9.: Examples of discovered senses of selected keywords produced by
hierarchical clustering along with the optimal distance criterion
threshold (see Table Samples are taken from all datasets under

consideration.
[ keyword [ sense label [ preference keywords (excerpt) l
recipe dessert food recipes chicken baking recipe cake cooking
lemon?® -
attorney consumer auto lawyer car lawyers automobile law usa
craft diy art craft origami cool crafts design fun blog shopping
paper - :
research software reference toread tools article science web
photography art photography blog design photos
desert chocolate dessert food recipes cooking chocolate recipe
arizona california high travel home to plants in arizona palm usa
bug insect fly macro bugs closeup insects nature flower yellow animal
beetle 2005 vw volkswagen beetle
game games videogame screenshot games video
football highschoolfootball show play v blue high hockey texas night
b colony optimization colony algorithms genetic systems artificial
ant build-tools tool tools apache build-tools java develop development build
data grid computing storage data amazon analysis
cloud tagcloud tag tagcloud tagging web 2.0 daily tags google blog web2.0
applications 07_system soft applications bar
library opensource tools web javascript java opensource programming software
books blog information search bibliothek science research web2.0
phylogeny vertebrates primates evolution genetics morphology animals
taxonomy . - 2
web social folksonomy software ontology web classification
. yeast genetic genomics drug yeast bioinformatics protein rnai
screen printing technology interaction methods touch surface multi
pet pictures black red free dogs white dog pet
flea market market city markets house home florida water center sale day
4 system pictures dvd cd video free high make home http car music
disc pain problems disk body pain back
mysql oracle sql sql-server postgresql query mysql database
index indexing indexing search lucene
arrays c# python performance javascript arrays optimization php
matching matching regex string perl javascript matcher php match
pattern cH# c# .net asp.net
design-patterns mvc architecture factory oop design design-patterns

““Lemon laws” is a nickname of a special kind of American state laws concerning the rights
of automobile purchasers, see http://en.wikipedia.org/wiki/Lemon_law

b Apache Ant is a build-tool for developing Java applications, see http:// ant.apache.org/

““Yeast screening” is a technige used in molecular biology, see http://en.wikipedia.org/
wiki/Two-hybrid_screening

¢A common cause for backaches are problems with the intervertebral discs.
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was tackled by methods of synonym resolution, whose goal is to form groups of
highly related keywords, yielding a so-called synsetized folksonomy. Based on an
evaluation against reference synonym sets from WordNet, hierarchical clustering
using Ward’s method together with an inconsistency coefficient thresholding
seemed to produce meaningful clusters of higher quality than a simple similarity-
based thresholding approach. For the second problem, the core idea was to
perform sense discovery for a given keyword by partitioning its context into
sense clusters. For this purpose, again hierarchical clustering together with a
distance criterion threshold exhibited advantages compared to graph clustering
and modularity-based clustering approaches. This result was based on matching
disambiguated senses to WordNet senses, and a subsequent small-scale manual
evaluation against a manually disambiguated set of keywords.

Despite hierarchical clustering proved to be useful for both purposes, it is not
the intended core contribution of this section to have identified the “optimal”
clustering technique. We see the main contribution in (i) the used methodology,
showing up a reference-based paradigm of evaluating keyword-based concept
learning, and (ii) the confirmation that the measures of keyword relatedness
introduced in Section[7.1.T]are a valuable input to standard clustering algorithms
with the goal to synthesize and disambiguate keywords.

In summary, our results point at the direction that our applied methods are
able to capture “emergent concepts” within the vocabularies of our analyzed
Social Annotation Systems. Although these can not directly be expected to
exhibit the same degree of semantic precision than those defined by experts, the
learned structures can be of great help for (i) enhancing retrieval within Social
Annotation Systems, and (ii) tackling the knowledge acquisition bottleneck of
semantic resources by discovering new meanings of existing terms.

Having identified concepts, a crucial aspect when trying to assemble those into
a hierarchical structure is how to capture the different levels of generality. The
following section presents a thorough analysis of generality measures derived
from Social Annotations.

7.3. Capturing Semantic Generality
As introduced in Section a semantic representation of concepts like a

taxonomy allows to differentiate the contained concepts based on their level of
“generality”: Because the hierarchical structure is typically obtained by a top-
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down approach of subsequently subdividing a domain, more general concepts
are typically found closer to the taxonomy root. Despite those hierarchical
structures are not explicitly present within Social Annotation Systems, the
existence of emergent semantics suggests that it might still be possible to assess
the “level of generality” of a given keyword. Within the literature, several
folksonomy-derived notions of “tag generality” have been used for this purpose.
In a similar fashion to the systematic analysis of relatedness measures presented
in Section the objective of this chapter is to study the characteristics of
the different approaches. Our chosen methodology is hereby to examine how
close different measures come to the notion of generality which is encoded in a
set of reference taxonomies.

Building on the formalization of semantic generality measures presented in
Section [4.2.2] we will primarily make use of ranking functions -, which induce
the generality measures. Because these functions are not defined based on
ontologies, but rather on folksonomies or derived networks, we generalize the
definition of term generality measures to allow a common terminology as
follows: Let S be either a Folksonomy F = (U, T, R,Y) or a derived term graph
T = (7,V) (as defined in Sections [3.1.2 and [3.1.3} respectively). Then we
refer to a term generality measure based on S as a partial ordering among the
contained vocabulary:

CSCTxT

Accordingly, the corresponding generality ranking functions are defined as:

yr T — RT

Apart from that, these definitions inherit all remaining properties from those
based on ontologies (see Section . We will now continue by presenting
generality measures coming from different fields; this will be followed by a
semantic grounding of each measure against “ground-truth” measures, which
gives us insights into the characteristics of each measure.

7.3.1. Generality Measures

Based on the problem formalization from the previous chapter, we will now
introduce a set of ranking functions ~7 which are supposed to order lexical items
within a folksonomy F by their degree of generality, inducing a partial order
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EET among the set of tags. The measures are partially based on prior work in
related areas, and build on different intuitions. One commonality they all share
is that none of them considers the textual content of a tag itself (e.g., with
linguistic methods). All measures operate solely on the folksonomy structure
itself or on a derived term network, making them language-independent.

Frequency A first natural intuition is that more abstract tags are simply
used more often, because there exist more resources which they describe - as
an example, the number of computers in the world is much larger than the
number of notebooks. Hence one might assume that within a folksonomy, the
tag computer is used more often than the tag notebook. We capture this
intuition in the abstractness measure C% induced by the ranking function

=freq
freq(t) which counts the number of tag assignments according to

freq(t) = [{(u,t',r) €Yt =1t} (7.1)

SNA measures In network theory the centrality of a node in a network is
usually an indication of how important the vertex is (Wasserman and Faust,
1994). Such metrics typically capture the connectedness and the position of
a node; in the field of social network analysis, this allows, e.g., to identify
members which are close to the network “core”, and could hence potentially
be more influential. Applied to our problem at hand, centrality can also be
interpreted as a measure of abstractness or generality, following the intuition
that more abstract terms are also more “important”. The same idea underlies
the an approach by (Heymann and Garcia-Molina, [2006|) to infer hierarchical
tag relationships. We adopted three standard centralities (degree, closeness,
betweenness). All of them can be applied to a term graph T, leaving us with
three measures Egc, E}fe and 2101‘0 as follows:

Degree centrality simply counts the number of direct neighbors d(v) of a vertex
vin a graph G = (V, E):

d(v)

de(v) = V-1

(7.2)

According to betweenness centrality a vertex has a high centrality if it can be
found on many shortest paths between other vertex pairs:
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be(v) = Y 95t(V) (7.3)

g
stvAtey St

Hereby o4 denotes the number of shortest paths between s and ¢ and o4(v)
is the number of shortest paths between s and t passing through v. As its
computation is obviously very expensive, its application to larger networks is
typically only feasible by using approximations (Brandes, [2001)) like calculating
the shortest paths only between a fraction of points.

Finally, a vertex ranks higher according to closeness centrality the shorter its
shortest path length to all other reachable nodes is:

1
B ZtEV\v dG(Uv t)

dg(v,t) denotes hereby the geodesic distance (shortest path) between the vertices
v and t.

(7.4)

cc(v)

Entropy measures Another intuition stems from information theory: Entropy
measures the degree of uncertainty associated with a random variable. Consid-
ering the application of tags as a random process, one can expect that more
general tags show a more even distribution, because they are probably used at
a relatively constant level to annotate a broad spectrum of resources. Hence,
more abstract terms will have a higher entropy. This approach was also used
by [Heymann et al.| (2008) to capture the “generality” of tags in the context of
tag recommendation. We adapt the notion from there and define:

entr(t)=— > p('[t)logp(t'|t) (7.5)

t' € cooc(t)

whereby cooc(t) is the set of tags which co-occur with ¢, and the conditional
probabilities are computed based on the co-occurrence counts according to

p(t'|t) = % w(t’,t) is hereby the co-occurrence weight defined in
t!/ € cooc(t ’

section entr(t) induces the term abstractness measure CF, , .

Statistical Models Schmitz et.al. (Schmitz, 2006) applied a statistical model
of subsumption between tags when trying to infer hierarchical relationships. It
is based on the assumption that a tag ¢ subsumes another tag ¢’ if P(t|t') > k
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Table 7.10.: Statistical properties of the term graphs derived from the Delicious

dataset.
[ Term Graph H |T| [ |E]| ]
coocC 892749 | 38210913
SIM 10000 405 706

and P(t'|t) < k for a suitable threshold k. This approach has its roots in a
model proposed by (Sanderson and Croft, |1999) to derive concept hierarchies
from text. For measuring generality, the number of subsumed tags according to
this model can be seen as an indicator of abstractness — the more tags a tag
subsumes the more general it is:

subs(t) = [{t' € T : p(t|t') > k) Ap(t'|t) < k}| (7.6)

The resulting abstractness measure will be denoted as Efub -

While some of these measures were used in different contexts of analyzing
Social Annotation data, their choice has been in most cases rather ad-hoc.
In the following section, we present a comparative study of the introduced
measures in order to allow a more systematic selection of a suitable measure

for a given purpose.

7.3.2. Evaluation by Semantic Grounding

In order to assess the quality of the tag abstractness measures introduced in
the previous section, a natural approach is to compare them against a ground
truth. A suitable grounding should yield reliable assessments about the “true”
abstractness of a given lexical item. Of special interest are hereby taxonomies
and concept hierarchies, whose hierarchical structure typically contains more
abstract concepts like ENTITY or THING close to the taxonomy root, whereby
more concrete ones are found deeper in the hierarchy. Hence, we have chosen
a set of established ontologies and taxonomies, which cover each a rather
broad spectrum of topics. They vary in their degree of control — WordNet
(Section on the one hand being manually crafted by language experts,
while the Wikipedia category hierarchy (Section and DMOZ (Section
on the other hand are built in a much less controlled manner by motivated web
users. For an introduction of each used reference dataset, refer to Section [6.2
an overview about their statistical properties can be found in Table [6.7]
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As an experimental testbed for the proposed term abstractness measures,
we used data from the social bookmarking system Delicious as described in
Section [6.1.3] For space reasons, we will perform a detailed analysis solely
for this dataset. Furthermore, because Delicious is the largest corpus within
our collection which has been analyzed in other studies as well, we think that
this choice makes the study most representative. From the raw data, we first
derived the post-based tag-tag co-occurrence graph COOC = (T, Ecoocs Weooe)
as described in Section Recall that two tags ¢ and to are connected by an
edge, if there is at least one post (u, Ty, r) with t1,ts € Ty,. The edge weight
is given by weeoe(t1,t2) == |{(u,r) € U X R | t1,t2 € Ty }| . In order to exclude
co-occurrences introduced by chance and to enable an efficient computation of
the centrality measures, we removed all tags from the resulting graph with a
degree of less than 2.

In a similar way to (Heymann and Garcia-Molinal 2006|), we also derived a
tag-tag similarity graph SIM = (T", Egim, wsim ) based on the resource context
relatedness described in Section [7.3.1l We have chosen this measure because it
was also used by (Heymann and Garcia-Molinal, 2006)), and showed furthermore
good results for capturing semantic similarity (see Section . However,
because rarely used tags have very sparse vector representations, we restricted
ourselves to the 10000 most frequently used tags. Based on the resulting
pairwise similarity values, we added an edge (t1,t2) to the edge list Fg;,, when
the similarity was above a given threshold min_sim = 0.04. This threshold was
determined by inspecting the distribution of all similarity values. Table
summarizes the statistics of all obtained term graphs.

Subsequently, we computed all term abstractness measures introduced in the
previous chapter based on the Delicious folksonomy DFEL and the derived term
graphs COOC and SIM, i.e., CPEL CDEL CCO0C 000C [ CO0C  S5IM

—freq > =entr» =dc y =bhe
CoM and EORT.

Grounding by reference taxonomies

As stated above, our grounding datasets (namely the reference taxonomies)
contain information about concept subsumptions. If a concept ¢; subsumes
concept co (i.e., (¢1,c2) €>¢, we assume c¢; to be more abstract than cy; as the
taxonomic relation is transitive, we can infer (¢1, c2), (c2, c3) €>0c= (c1,¢3) €>¢
and hence that ¢; is also more abstract than cs. In other words, thinking of the
taxonomic relation as a directed graph, a given concept ¢ is more abstract than
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Figure 7.17.: Grounding of each introduced term abstractness measure CS
against four ground-truth taxonomies. Each bar corresponds
to a term abstractness measure; the y-axis depicts the gamma
correlation as defined in Equation .

all other concepts contained in the subgraph rooted at c.

As we are interested in the abstractness of lexical items, we can consequently
infer that concept labels for more abstract concepts are more abstract themselves.
However, hereby we are facing the problem of polysemy: A given lexical item
[ can be used as a label for several concepts of different abstractness levels.
Consequently, [ has “several” abstractness levels, depending in which context
it is used. As a most simple approach, which removes possible effects of word
sense disambiguation techniques, we “resolve” ambiguity in the following way:
Let C9C C(0) x C(0O =>¢ be the abstractness relation on the concepts
of O given by the taxonomic relation. Then, we construct a corresponding
abstractness relation CXC on the lezical labels Lo contained in the associated
lexicon (L¢, Lr, Ref o, Ref ) according to:
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(I1,15) €eCFos {(c1, 1), (ca,12)} € Refo A (c1,¢2) €>¢ (7.7)

Due to the polysemy effect described above, CL¢ is not necessarily a partial
order, as it may contain cycles. But despite this fact, CT“¢ contains the complete
information which terms [; € L are more abstract than other terms l; Lc
according to the taxonomy of Q. Hence we can use it as a “ground truth” to judge
the quality of a given term abstractness measure C5. We are interested how well
CLe correlates to C5; picking up the idea of the gamma rank correlation (Cheng
et al., [2010), we define concordant and discordant pairs between two partial
orderings C, C, as follows: A pair of terms [ and & is called concordant when
both partial orderings C, C, agree on it, i.e., [ CAAIC, k) V (ECIANk T, ).
It is called discordant if they disagree, i.e., [ CkAKC, )V (ECINIC, k).
Based on these notions, the gamma rank correlation is defined as:

_ ¢l - D

C,Cy) = ———
CHEE) = o)

(7.8)
whereby C and D denote the set of concordant and discordant pairs, respectively.
In our case, C, is not a partial ordering, but only a relation — which means
that in the worst case, a pair [, k can be concordant and discordant at the same
time. As is obvious from the definition of the gamma correlation (see Eq. ,
such inconsistencies lead to a lower correlation. Hence, our proposed method of
“resolving” term ambiguity by constructing C¢ according to Eq. leads to a
lower bound of correlation.

Figure summarizes the correlation of each of our analyzed measures,
grounded against each of our ground truth taxonomies. First of all, one can
observe that the correlation values between the different grounding datasets differ
significantly. This is most obvious for the DMOZ hierarchy, where almost all
measures perform only slightly better than random guessing. A slight exception
is the entropy-based abstractness measure CF, , . which in general gives greater
than 0.25 across all datasets. Another relatively constant impression is that the
centrality measures based on the tag similarity graph (cc_sim and bc_sim) show
a smaller correlation than the other measures. The globally best correlations are
found for the Wikitaxonomy dataset, namely by the subsumption-model-based
measure subs. Apart from that, the centrality measures based on the tag
co-occurrence graph and the frequency-based measure show a similar behavior.

Hence the first impression is that there is no “clear winner” regarding the
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ability of the measures to capture the notion of generality which is defined
in external resources. However, another interesting first insight is that com-
putationally rather “cheap” measures (like the frequency count or the degree
centrality) perform equally or in some cases even better than more complex
ones like closeness or betweenness centrality. In order to further investigate
this point, we will now take into account information which is not explicitly
encoded in the taxonomy, as well as a case study with human subjects.

Grounding by taxonomy-derived measures

The grounding approach of the previous section gave a first impression of the
ability of each measure to predict term abstractness assessments which are
explicitly present in a given taxonomy. This methodology allowed only for an
evaluation based on term pairs between which a connection exists based on
their associated concepts c; and cy in the taxonomy, i.e., pairs where c; is
either a predecessor or a successor of co in the subsumption hierarchy. However,
our proposed measures make further distinctions among terms between which
no connection exists within a taxonomy (e.g., the freq states that the most
frequent term ¢ is more abstract than all other terms). This phenomenon can
probably also be found when asking humans — e. g., if one would ask which
of the concepts Doc or INANIMATE ENTITY is more abstract, most people will
probably choose INANIMATE ENTITY, even though both words are not connected
by the is-a relation in (at least most) general-purpose taxonomies. This issue
has also already been discussed in Section [4.2.2} see especially Figure [4.7]

In order to extend our evaluation to these cases, we derived two straightfor-
ward measures from a taxonomy which allow for a comparison of the abstractness
level between terms occurring in disconnected parts of the taxonomy graph.
Because this approach goes beyond the explicitly encoded abstractness infor-
mation, the question is justified to which extent it makes sense to compare
the generality of completely unrelated concepts, e. g., between WATERFALL and
CHAIR. Besides our own intuition, we are not aware of any reliable method to
determine when humans perceive the abstractness of two terms as comparable
or not. For this reason, we validated the derived measures — namely (i) the
shortest path to the taxonomy root and (ii) the number of subordinate terms —
by an experiment with human subjects.
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Table 7.11.: Results from the user study on judging semantic generality.

’ Category Number of classifications ‘
One tag more general 41
Same level 11
Not comparable 154
Do not know one or two tags 3

Shortest path to taxonomy root As stated above, most taxonomies are built
in a top-down fashion, whereby more abstract terms are more likely to occur
closer to the taxonomy root. Hence, a natural candidate for judging the ab-
stractness of a term is to measure its distance to the root node. This corresponds
to a ranking function sp_root(c), which ranks the concepts ¢ contained in a
taxonomy in ascending order by the length of the shortest path between root
and c. Simply spoken, different shades of generality are hereby translated to
different depth levels in the taxonomic hierarchy.

Number of subordinate terms Another measure is inspired by [Kammann
and Streeter| (1971), who stated that “the abstractness of a word or a concept
is determined by the number of subordinate words it embraces/...]”. Given a
taxonomy @ and its comprised taxonomic relation <¢, we can easily determine
the number of “sub-concepts” by subgraph_size(c) = |{(¢, ') €<c}|. We are
aware that this measure is strongly influenced, e. g., by fast-evolving domains
like, e. g., MOBILE COMPUTING, whose rapid growth along with a strong expansion
of the included vocabulary might lead to an overestimation of its abstractness
level. This is another motivating reason for the user study presented in the
next paragraph.

Validation by user study In order to check whether sp_root(c) and subgraph_size(c)
correspond to human perception of abstractness, we performed an exemplary
user study with 12 participants?. As a test set, we drew a random sample of
100 popular terms occurring in each of our datasets; for each term, we selected
3 candidate terms, taking into account co-occurrence information from the
folksonomy DFEL. The resulting 300 term pairs were shown to the each subject

9students and staff from two IT departments

181



Chapter 7. Methods

Table 7.12.: Accuracy of the taxonomy-derived abstractness measures.

WordNet | YAGO | DMOZ | Wikitaxonomy

sp_root 0.94 0.42 0.88 0.45
subgraph _size 0.94 0.96 0.8 0.87

via a web interface!?, asking them to label the pair by one of 5 options (see
Table [7.11). Hereby, the option “One tag more general” was split into two
options, indicating which term is more general than the other one.

We calculated Fleiss’ x (Fleiss, [1971) to take a closer look at the agreement of
the study participants. In the case of this experiment x = 0.2836 indicating fair
agreement. Table shows the results of the number of classifications given
that an agreement of 6 or more participants signalizes significant agreement.
The relatively high number of “not comparable” choices show that even with

our elaborate filtering, the task of differentiating abstractness levels is quite
difficult.

Despite this fact, our user study provided us with a well-agreed set of 41
term pairs, for which we got reliable abstractness statements. Denoting these
pairs as C.anual, We can now check the accuracy of the term abstractness mea-
sures introduced by sp_root and subgraph_size, i.e., the percentage of correctly
predicted pairs. Table contains the resulting accuracy values. From our
sample data, it seems that the subgraph size (i.e., the number of subordinate
terms) is a more reliable predictor of human abstractness perception. Hence, we
will use it for a more detailed grounding of our folksonomy-based abstractness
measures.

The ranking function subgraph_size naturally induces a partial order Q?ub graph_size
among the set of concepts present in an ontology Q. In order to check how
close each of our introduced term abstractness measures correlate, we computed
— as already done within the first evaluation — again the gamma correlation
coefficient (Cheng et al. 2010) between the two partial orders (see Equation[7.8)).
The transformation from a generality measure based on concepts to one which
is based on lexical labels of concepts was also done analogously to Eq.

according to:

Ohttp://www.kde.cs.uni-kassel.de/benz/generality_game.html
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Figure 7.18.: Grounding of the term abstractness measure CS against
_S;b graph._size derived from four ground-truth taxonomies. Each
bar corresponds to a term abstractness measure; the y-axis depicts

the gamma correlation as defined in Equation
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Figure shows the resulting correlations. Again, the correlation level
between the datasets differs, with DMOZ having the lowest values. This is
consistent with the first evaluation based solely on the taxonomic relations
(see Figure . Another consistent observation is that the measure based on
the tag similarity network (bc_sim and cc_sim) show the weakest performance.
The globally best value is found for the subsumption model, compared to the
Wikitaxonomy (0.5); for the remaining conditions, almost all correlation values
lie in the range between 0.25 and 0.4, and correlate hence weakly.
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Discussion Our primary goal during the evaluation was to check if folksonomy-
based term abstractness measures are able to make reliable decisions about
the relative abstractness level of terms. A first consistent observation is that
measures based on frequency, entropy or centrality in the tag co-occurrence
graph do exhibit a correlation to the abstractness information encoded in gold-
standard-taxonomies. One exception is DMOZ, for which almost all measures
exhibit only very weak correlation values. We attribute this to the less precise
semantics of the DMOZ topic hierarchy, compared to the other grounding
datasets. As an example, the category

Top/COMPUTERS/MULTIMEDIA/MUSIC_AND_AUDIO/SOFTWARE/JAVA
does hardly imply that SoFTwARE “is a kind of” Music_anp_Aubpio. WordNet
on the contrary subsumes the term Java (among others) under taxonomically
much more precise parents:

[...] > ARTIFICAL LANGUAGE > PROGRAMMING LANGUAGE > JAVA
The same holds for YAGO, and the Wikitaxonomy was also built with a
strong focus on is-a relations (Ponzetto and Strube} [2007). This is actually
an interesting observation: Although both DMOZ and Delicious were built for
similar purposes (namely organizing WWW references), the implicit semantics
within Delicious resembles more closely to well-established semantic repositories
than to the bookmark-folder-inspired hierarchical organization scheme of DMOZ.

Another consistent observation is that abstractness measures based on tag
similarity graphs (as used, e. g., by (Heymann and Garcia-Molina, 2006)) perform
worst through all experimental conditions. This is consistent with observations
in Section where we showed that distributional similarity measures (like
resource context relatedness used by us and by (Heymann and Garcia-Molinal
2006)) induce connections preferably among tags having the same generality
level. On the contrary, applying, e. g., centrality measures to the “plain” tag co-
occurrence graph yield better results. Hence, a justifiable conclusion is that tag-
tag co-occurrence encodes a considerable amount of “taxonomic” information.

But this information is not solely present in the co-occurrence graph - also
a probabilistic model of subsumption (Schmitz, [2006) yields good results in
some conditions, especially when grounding against the taxonomy-derived
subgraph_size ranking. We attribute this to the fact that both measures (the
subsumption model and the subgraph size) are based on the same principle,
namely that a term is more general the more other terms it subsumes.

Apart from that, even the simplest approach of measuring term abstractness
by the mere frequency (i.e., the number of times a tag has been used) already
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exhibits a considerable correlation to our gold-standard taxonomies. This has
an interesting application to the popularity / generality problem: Our results
point in the direction that popular tags are on average more abstract (or more
general) than less frequently used ones.

7.3.3. Summary

Analogous to the prior systematic characterization of tag relatedness measures,
this section presented a comparative study of different families of measures
which capture the degree of “semantic generality” of keywords within Social
Annotation Systems. These were partially used in the literature, and comprise
different levels of computational complexity: While frequency-based metrics as
well as degree centrality and entropy exhibit a comparatively lightweight nature,
the shortest path computations involved in closeness or betweenness centrality
are much more demanding. For the evaluation based on the comparison against
generality information encoded in reference taxonomy, all network-based mea-
sures were computed on two kinds of keyword graphs, namely a co-occurrence
and a similarity graph. While the results exhibited a mixed picture in general,
similarity-based tag networks seemed to be less well suited as an information
source for capturing semantic generality. In summary, the interpretation of the
results can be condensed in two statements: First, folksonomy-based measures
of term abstractness do exhibit a partially strong correlation to well-defined
semantic repositories; and second, the abstractness level of a given tag can be
approximated well by simple measures.

To conclude, these results can be interpreted as further empirical evidence for
the feasibility of making emergent semantics within Social Annotation Systems
explicit. The presented characterization of generality measures is intended to
inform the decision process of knowledge engineers concerned with deriving,
e. g., hierarchical keyword relationships for a given purpose. In the same spirit,
the following chapter builds on these insights, and presents methods to learn
concept hierarchies based on Social Annotation data.

7.4. Learning Concept Hierarchies

Apart from the synonymy and polysemy problem, which was tackled by meth-
ods of concept learning in Section [7.2] another main shortcoming of Social
Annotation Systems is their lack of structure. As explained in Section
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the inherently “flat” nature of the keyword space does not allow for tasks like
narrowing or broadening a search, or browsing the system content from more
general to more specific topics. Simply spoken, in this aspect Social Annotation
Systems are missing exactly the advantages of the hierarchical arrangement
of concepts within the taxonomic relation defined in an ontology. However,
although explicit hierarchies are not present, researchers like (Cattuto et al.,
2007)) analyzed the network properties of folksonomies and found characteristics
which “could be related to an underlying hierarchical organization of tags”. This
very appealing vision of “emerging taxonomies” has motivated a large number
of works targeted towards making the latent hierarchical structures explicit (see
Section .

While some methods (like lexico-syntactic patterns or dictionary-based ap-
proaches, see (Cimiano, 2006)) of learning concepts from text are not applicable
to Social Annotation data due to the lack of syntactical structure, others can be
adapted. Among the latter, clustering techniques, especially based on distribu-
tional similarities like those introduced in Section can be quite analogously
applied. Apart from that, one can find in the literature some specific algorithms
tailored towards Social Annotation Systems; an example is (Heymann and
Garcia-Molina, |2006)). These are best described by generality-based methods,
because they are based on measures of keyword generality as those introduced
in the previous Section [7.3]

In this section, we will examine approaches from both fields regarding their
ability to induce a meaningful hierarchical structure among the initially flat
keyword space. In a similar way to the approaches presented in the previous
chapters, it is hereby not our intention to perform an exhaustive study on, e.g.,
a large set of clustering techniques in order to identify the optimal one. On
the contrary, our goal is to pick representative approaches from different fields
(which were partially already used in the literature for the same purpose), and
assess which ones perform better in exploiting keyword similarity and / or
keyword generality measures to build taxonomy-like keyword structures.

As an evaluation criterion, we will again primarily stick to a reference-based
paradigm and compare the learned structures with reference taxonomies taken
from several gold-standard datasets (see Section . In order to disentangle
the effects of concept learning, we will first apply clustering and generality-based
methods to the “plain” folksonomies (Sections |7.4.1] and [7.4.2). The quality
of the results will then be judged first by a reference-based evaluation (Sec-
tion , and then be backed up against a study involving human assessment
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(Section [7.4.4). In a last step, we will present an enhanced version of the
best-performing algorithm, which involves the techniques of synonym resolution
and concept disambiguation described earlier.

7.4.1. Clustering Approaches

While the typical goal of clustering is to create partitions of similar objects, there
exist several approaches in which not a flat set of clusters is produced, but rather
a hierarchical arrangement of those (Bade, 2009). As input, those algorithms
usually require information about the pairwise similarity among all objects to
be clustered. Based on the analysis of semantic relatedness from Section
we can now build on its results and choose the tag context relatedness as a
distributional measure which captures semantic relations among keywords.

Having fixed the similarity measure, the next important choice is which
kind of clustering algorithm to use. Analogously to flat clustering methods,
one possible criterion to differentiate the available approaches is the need to
specify a “preferred” branching degree within the resulting taxonomy tree.
As an example of a method which requires a fixed specification of how many
“sub-clusters” to create in each splitting step, we will use a hierarchical variant
of the well-known k-keans algorithm (Jain et al., 1999). Though the a-priori
fixation of a branching factor (by choosing a concrete parameter k) is surely a
rather rigid control of the result, it can be motivated by cognitive limitations of
humans interacting with the hierarchy: Hereby, structures with a very large
number of sub-nodes are probably, e.g., quite difficult to navigate. In other
words, the k-means approach corresponds to the effort to “force” the emergent
hierarchies into a predefined structural schema.

As an example of a technique which leaves a greater degree of freedom to the
properties of the resulting hierarchy, we will use affinity propagation as a new
clustering method which has been successfully applied to derive hierarchies from
Social Annotation data (Plangprasopchok et al., [2010). We prefer this method
to the standard hierarchical agglomerative one (which showed good results for
the tasks of synonym detection and sense discovery before) in order to enable
a better comparison with state-of-the-art clusterings for our purpose at hand.
The following two paragraphs will describe the concrete implementation!! of

1Please note that because the current study was done in collaboration with the Knowledge
Management Institute of the Graz University of Technology, the implementation of the
algorithms as well as the creation of the keyword hierarchies were performed by our
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each clustering method.

Hierarchical K-Means The basic idea behind the k-means clustering algorithm
is to produce a partition by iterative relocation of k£ centroids. The number
of resulting clusters is hereby controlled by the parameter k. As a similarity
metric among the data points (i.e., the keywords), we will use the tag context
relatedness introduced in Section using a “spherical” k-means variant
introduced by (Dhillon et al., 2001)). The latter differs from the original algorithm
mainly in a heuristic which speeds up the convergence of the algorithm towards
a (local) maximum of the cluster coherence criterion. Furthermore, in order to
allow efficient computation, we used an optimized variant proposed by (Zhong,
2005). In order to derive a hierarchical structure among keywords, we utilize
k-means iteratively in a top-down manner. Basically, in the first step, the whole
input data set is used for clustering the data into 10 clusters. While the choice
of k = 10 seems arbitrary, it was motivated by the above-mentioned cognitive
limitations of humans when interacting with the resulting structure. Clusters
containing more than 10 connected samples are further partitioned while ones
with less than 10 samples are considered as leaf clusters. However, since a
cluster containing 11 samples would also be partitioned into 10 clusters, we
introduced a special case to give some freedom to the clustering process for
these border cases by setting the cluster number to the maximum of 10 or
number of data samples divided by 3 what would result in 3 clusters in case of
11 samples. The tag representing a node is selected by taking the nearest tag to
the centroid. Furthermore, this tag is removed from the actual tags contained
in a cluster and which are further clustered in the next step, if there are more
than 10 samples left.

Affinity Propagation Frey and Dueck introduced Affinity Propagation (AP) as
a new clustering method in (Frey and Dueck, |2007). A set of similarities between
data samples provided in a matrix represents the input for this method. The
diagonal entries (self-similarities) of the similarity matrix are called preferences
and are set according to the suitability of the corresponding data sample to serve
as a cluster center (called “exemplar” in (Frey and Dueck, 2007)). Although it
is not required to set a cluster number explicitly, the preference values correlate

collaborators.
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with the number of resulting clusters (lower preference values result in fewer
clusters and vice versa).

In several iterations, AP exchanges messages between data samples to update
their “responsibility” and “availability” values. Responsibility values reflect how
well data samples serve as exemplars for other data, and the availability values
show the suitability of other data samples to be the exemplars for specific data
samples. Responsibility and availability are refined iteratively with a parameter
A as an update factor. A full description of AP is beyond the scope of this
section, we point the interested reader to (Frey and Dueck, 2007) for further
information.

Based on (Frey and Dueck, |2007)), the authors of (Plangprasopchok et al.,
2010) have introduced an adaption of affinity propagation to infer hierarchies
from social tagging data. The authors incorporated structural constraints
directly into the global objective function of affinity propagation, so that a
tree evolves naturally from execution. Their work is based on incorporating
user-defined keyword relations. Because in this dissertation, we solely rely
on the network structure of Social Annotation Systems (as some systems do
not allow the specification of keyword relations), we follow a simpler approach
by applying the original AP recursively in a bottom-up manner. In a first
step, the top 10 Cosine similarities (pruned for memory reasons) between
the tags in a given dataset serve as the input matrix, and the minimum of
those serves as preference for all data samples. Then, AP produces clusters
by selecting examples with associated data samples. If the ratio between the
number of clusters and the data samples is between 3 and 15 (which we use as an
adjustable parameter), then the result will be retained, otherwise another run
with lower (too many clusters have been selected) or higher preference values
(too few clusters have been selected) will be executed. Finally, the centroids
of the clusters are calculated by using the sum of the connected data samples
normalized to unit length. Now the Cosine similarities between the centroids
serve as the input matrix for the next run of affinity propagation. This approach
is executed until the top-level is reached.

Since our objective is to construct a tag hierarchy where each node represents
a unique tag, a tag in each cluster is used as a label. The label is selected by
choosing the nearest tag to the centroid. Furthermore, this tag is removed from
the actual tags contained in the leaf cluster and is not used as a representative
in lower hierarchy levels. We set the AP parameter Ay to 0.6 with increasing
values depending on the iteration count (i) (A = Ai—1 + (1.0 — Xo) * 7/imaz)-
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AP will terminate after either a maximum of 5000 iterations (imqq) or if the
exemplars of clusters are stable for at least 10 iterations.

Following the description of the two clustering approaches, the next section
presents generality-based approaches developed specifically for Social Annotation
data.

7.4.2. Generality-based Methods

In (Heymann and Garcia-Molina, |2006), the authors introduce an incremental
algorithm to assemble a tag hierarchy from social tagging data. It is comprised
mainly of two building blocks, namely (i) a measure of keyword generality, and
(ii) a measure of keyword similarity. As introduced in Section m in the
original version generality is computed based on betweenness centrality in a tag
similarity network. As a similarity measure, the authors stick to the resource
context relatedness introduced in Section|7.1.1] Based on these two components,
the scheme to induce a keyword hierarchy is as follows:

1. Create a list of all keywords, ordered in descending order by their degree
of generality (according to the chosen generality measure).

2. Create an empty tree, and add the most general (i.e., topmost) keyword
from this list as root node.

3. Iterate through the remaining keywords in order of descending generality
and add each keyword ¢ to the tree according to:

a) If a sufficiently similar keyword t' is present within the tree, add ¢
and a child node to #’. The degree of sufficient similarity is controlled
by a threshold 7gp,.

b) Otherwise, add ¢ as child node to the root node.

Though its simplicity, the authors found that their proposed algorithm
produces consistent hierarchical structures based on manual inspection. Fur-
thermore, the algorithm is described as extensible due to the possibility to apply
different similarity and centrality measures. As one can see, this property fits
nicely into our general approach, and allows us to “plug in” different notions of
generality and similarity, which were analyzed in depth in the previous sections.
For the current study, we have chosen two settings: The first one is intended
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Table 7.13.: Statistical properties of the tag-tag-networks derived from four
social tagging systems.

’ H BibSonomy | CiteULike | Delicious Flickr

Tags 56 424 347835 380979 395 329
Links 2003986 | 27536381 | 39808439 | 17524927

to come close to the setup of the original algorithm. Hence, as a generality
measure, we have chosen closeness centrality within a tag similarity network.
The latter is based on cosine similarity within the tag context, which is also
used as similarity measure for the algorithm itself. We will denote this setup as
Clo/Cos.

The second condition is driven by the idea of “simplicity “: Instead of using
computationally more expensive measures like closeness centrality and cosine
similarity, we were interested if “cheaper” measures like simple co-occurrence
and degree centrality perform equally. For this reason, we have chosen tag-tag co-
occurrence as similarity measure, and degree centrality within the co-occurrence
network as generality measure. This condition will be referred to as Deg/Cooc.

Subsequently, we computed the keyword hierarchies by all aforementioned
algorithms based on the BibSonomy, CiteULike, Delicious and Flickr dataset.
The AOL logsonomy and Stackoverflow data is excluded, because social book-
marking systems were of primary interest, and in addition some data was
compiled after the collaboration had taken place. Furthermore, in order to
facilitate the computation of the clustering algorithms, we extracted the data of
a single month from the Delicious and the Flickr dataset (November 2006 and
December 2005, respectively). The BibSonomy dataset differs insofar as only
the publications (not the bookmarks) were taken into account. For each dataset,
we first computed the tag-tag co-occurrence network; Table [7.13]|summarizes the
size of the resulting network. This network was the direct input to the Deg/Cooc
condition of the generality-based method introduced above. Then, we created
a tag-tag similarity network by re-weighting the edges of the co-occurrence
network with the tag context similarity As a baseline, we also created a random
hierarchy by repeatedly adding 10 randomly chosen tags as child nodes to each
tag.

Table summarizes some statistical properties of the produced hierarchies.
The first impression is that on the structural level, there are some substantial
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Table 7.14.: Statistical properties of the induced hierarchies by all proposed
methods. br depicts the average branching factor, computed over
all non-leaf nodes (For comparison, the branching factors of the
reference taxonomies are: WordNet 4.86, YAGO 14.32, Wikitaxon-
omy 48.82). dia depicts the full network diameter, based on 500
randomly selected nodes (For comparison, the diameters of the
reference taxonomies are: WordNet 7, YAGO 7, Wikitaxonomy 2).

Table 7.15.: Lexical overlap among concepts present in the learned and reference
The values are approximated, as some induction
algorithms led to slight variations of the overlap, but to a negligible

BibSonomy | CiteULike | Delicious Flickr
br \ dia br \ dia br \ dia | br \ dia
Affprop 3.36 6 342 | 4 |361| 5 |323] 4
Clo/Cos 2.21 13 2.1 16 | 246 | 12 | 2.25 | 13
Deg/Cooc || 8.04 8 6.82| 9 |814| 9 |917 | 7
KMeans 3.78 6 381 | 10 |3.71| 36 | 3.81 | 5
Random 10 2 10 3 10 2 10 4

taxonomies.

amount (+/- 100 concepts).

|

H BibSonomy \ CiteULike | Delicious \ Flickr ‘

WordNet 8680
YAGO 5970
Wikitazonomy 11280

22 380
14180
33430

21830
13620
40270

23480
13770
37950

differences: While the Clo/Cos approach seems to produce relatively “deep’
hierarchies with a small branching factor, the Deg/Cooc variant has a bias
towards more shallow ones. Both clustering variants lie mostly in between both
extremes. Apart from these first insights, the following section compares each
hierarchy with several gold-standard ones, targeting a deeper comparison on
the structural level.
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7.4.3. Gold-standard based Evaluation

A prerequisite for the application of hierarchy comparison metrics like those
introduced in Section (namely taxonomic overlap, precision and recall) is
the existence of a sufficient overlap between the vocabulary between a learned
and a reference taxonomy. Table summarizes the overlap among all Social
Annotation datasets and the reference hierarchies. The significant overlap in
all cases makes the comparison on the structural level by the aforementioned
metrics possible.

Figure displays the results of the reference-based semantic evaluation.
On the y-axis of each figure, the similarity between each learned hierarchy
and a reference gold-standard taxonomy is depicted. We measure similarity
using different measures, including taxonomic precision (TP), taxonomic recall
(TR), taxonomic Fl-measure (TF) and taxonomic overlap (TO), each based on
the common semantic cotopy (csc) as characteristic excerpt. As explained in
Section[5.4.2] all these measures have a local part based on the direct comparison
of excerpts, while the global value is obtained by averaging the local ones.

At a first glance, the results from our experiments convey a consistent
picture: Taking the taxonomic F1l-measure (black bars) as an example, one can
observe that across almost all experimental conditions the hierarchies induced
by generality-based methods (Clo/Cos and Deg/Cooc in the figures) outperform
the clustering-based ones (Affprop and Kmeans). A similar distribution is found
for the other measures (TP, TR and TO). In all cases, the folksonomy induced
by the random algorithm performs worst and yields a similarity score of close
to zero.

So one justified conclusion which can be drawn from these empirical results
is that the clustering techniques we investigated seem to produce hierarchies
which exhibit a smaller degree of similarity to gold-standard taxonomies than
techniques based on term generality. Especially those produced by degree
centrality as generality measure and co-occurrence as similarity measure seem
to resemble most closely to the reference taxonomies. This is an interesting
observation, especially regarding that these measures are computationally much
more lightweight compared to, e.g., closeness centrality, cosine similarity or
elaborate clustering mechanisms.

When comparing the clustering techniques among each other, it seems that
affinity propagation has a slight advantage compared to k-means, however to a
much lesser extent than the difference to the generality-based methods. An open
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Figure 7.19.: Results of the reference-based semantic evaluation. Higher values
on the y-axis depict stronger similarity between a learned hierarchy
and the gold-standard, and hence a better performance.

question which remains is how to interpret the absolute similarity values, or in
other words: Is, e.g., a score of 0.02 captured by the taxonomic F1l-measure
an indication of a “strong” similarity between the learned and the reference
taxonomy? Due to the complexity and the size of the involved structures, it is
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difficult to make a clear decision to this end. Because the values are averaged
over the complete concept overlap, it is possible that some branches are very
similar, while others are not. In order to facilitate a better understanding of
the “true” quality of the learned hierarchies, we also performed a small-scale
user study, which will be presented in the subsequent section.

7.4.4. Evaluation by Human Assessment

Although the human ability to interpret and integrate information in a mean-
ingful way can surely be seen as superior to current automatic approaches, the
task of evaluating the “quality” of a learned hierarchical structure remains
challenging even for skilled subjects. Especially the manual comparison of
two (potentially very large and complex) taxonomies will probably not lead to
consistent and reproducible evaluation results. For this reason, we have chosen
a simpler approach targeted towards the assessment of the consistency of each
learned taxonomy. Our basic idea hereby was to sample a subset of all direct
taxonomic subsumption pairs from a learned hierarchy, and then to let humans
judge if (and if yes — how) the two contained terms are related. We used a
web interface to present each human subject one term pair (A4, B) at a time,
asking “What’s the relation between the two terms A and B?”. As an answer,
the participant could choose between selecting one of the following options:

o A is the same as B.

A is a kind of B.

A is a part of B.

A is somehow related to B.

A is not related to B.

I don’t know the meaning of A or B.

In order to allow as many meaningful answers as possible from a broad
audience, we performed an a-priori filtering of the term pairs by a list of
“common” words, namely the 5000 nouns which were used most often in the
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Brown corpus'?. We only kept those pairs (A, B) as candidates for the study
where both terms A and B were present in this list of popular nouns.

The intuition behind this approach is that a “better” taxonomy will yield a
lower percentage of pairs being judged as unrelated. The reason why we allowed
for a further distinction of relations (i.e., “same as”, “kind of”, “part of” and
“somehow related”) is that we do not expect our analyzed algorithms to produce
exclusively semantically sharp taxonomic (i.e., “kind of”) relations.

In order to come up with a concrete set of samples for our study, we first
extracted all subsumption pairs containing “common” terms (as described be-
fore) present in each hierarchy induced from the Flickr dataset. We focused
on this dataset because its scores in the reference-based evaluation were com-
paratively high. Furthermore, data from this system was used in related work
on folksonomy induction before (Plangprasopchok et al., [2010), which allows
for comparison with their results. From the resulting sets of candidate pairs,
we randomly selected 25 pairs for each hierarchy induction algorithm under
consideration, leading to 125 term pairs. As a control condition, we also added
25 term pairs randomly sampled from one of our reference hierarchies (namely
the WordNet noun taxonomy), leading to a total number of 150 term pairs to
be judged for each of our subjects. We then sent a link'3 pointing to the online
study to students and staff from two IT departments. In summary, 27 persons
took part in the evaluation. Because some of them did not completely finish the
rating of all pairs, we received 3 381 votes, including 249 “don’t know” choices —
leading to a total of 3132 useful answers for our study. In order to consider
only pairs for which we have reliable assessments, we removed 22 pairs with
very sparse voting data. This left us with a final set of 128 term pairs. For
each term pair, we computed the fraction of each possible answer, and averaged
these values subsequently over each hierarchy induction algorithm. Figure [7.20
shows the results.

The topmost five rows correspond to the algorithms used, while the lowermost
row depicts the control condition based on the WordNet noun taxonomy. The
values on the y-axis depict the average fraction of choices for each possible
answer — as an example, among all assessments on subsumption pairs produced
by affinity propagation, the average fraction of “part of” answers was roughly

12This corpus was compiled in 1960 and contains roughly 2 million words from a general set
of English texts (see http://khnt.aksis.uib.no/icame/manuals/brown/)
Bhttp://www.kde.cs.uni-kassel.de/benz/relations_and_cartoons.html
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Figure 7.20.: Results of the semantic evaluation performed by a user study. The
upper five horizontal bars correspond each to a folksonomy induced
on the Flickr dataset by each algorithm under consideration; the
lowest bar depicts a control condition based upon the WordNet
noun taxonomy. The different patterns correspond to the average
fraction of choices the human subjects have made when presented
with a sample of subsumption pairs from each hierarchy.

5,8% (0.058, black part of the uppermost bar). Please note that only “positive”
answers are included in this plot (i.e., answers stating that there is a meaningful
relation among two terms). However, the percentage of “negative” answers
(i.e., explicit statements by the users that two terms are not related) can
be deduced from the figure by subtracting the sum of positive votes from 1.
As an example, we received for affinity propagation in average a fraction of
roughly 59 % (0.59, topmost row) of “not related” answers for each pair. So as
a shortened statement, one can say that the “longer” the bars are, the higher is
the quality of the corresponding folksonomy.

To start with the lower and upper bounds, the folksonomy produced by
the random algorithm performs worst - all “positive” relation assessments are
adding up to roughly 0.2. On the contrary, the control assessments on the
WordNet noun taxonomy sum up to ~ 0.82, including a large portion (= 0.42)
of of “kind of” answers. So as a first observation, we can say that the random
folksonomy was judged to be the worst and the WordNet noun taxonomy was
judged to be the best hierarchy — which confirms our intuition and validates our
experimental methodology. In between these bounds, the sum of positive votes
seems to confirm the impression from the reference-based evaluation: Again,
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the two generality-based methods yield a higher percentage of positive votes
compared to the two clustering approaches. Despite this fact, taking a more
detailed look one can also see that the percentage of “kind of” and “part of”
votes (which are semantically more sharp compared to “somehow related”) is
highest for the k-means clustering algorithm. This could of course be an artifact
of sampling, but could also point towards a greater semantic precision of the
folksonomy induced by k-means clustering. However, taking a closer look at the
“somehow related” pairs, it turns out that despite their lesser degree of semantic
sharpness, the obtained relations can still be useful especially for organizational
purposes of a category hierarchy (e.g., “pot / stove”). In light of this viewpoint,
the results of the user study can be seen as a confirmation of the validity of the
measures we used in our reference-based evaluation setting.

7.4.5. Enhancement by Synonym Resolution and Disambiguation

The alert reader will have noticed that the “concepts” within the concept hierar-
chies learned within the previously described methods corresponded directly to
keywords used within the Social Annotation Systems. While this was done (as
explained earlier) intentionally in order to allow an unbiased comparison of the
hierarchy induction algorithms, the question remains if the methods of synonym
resolution and sense disambiguation (i. e., concept learning) can further enhance
the quality of the learned taxonomies. Because the generality-based approaches
led to the best results, we will focus on those, and present an enhanced variant
of the algorithm proposed by (Heymann and Garcia-Molina, 2006)). For the
sake of brevity, we omit a complete coverage of all datasets used within this
dissertation, but focus again on Delicious as a representative for a large and
broad folksonomy. However, we will not use the exact dataset as described in
Section but a slightly smaller crawl performed in July 2005. Originally, it
contained |U| = 75260 users, |T| = 533 191 tags, and |R| = 3151 353 resources,
related by |Y| = 17364552 triples. Because “singletons” (i.e., nodes without
any connection) in the tag-tag co-occurrence graph are not relevant for our
purpose, we removed all tags used only once by a single user; this left us with a
dataset of |U| = 74680 users, |T| = 373690 tags, and |R| = 2972695 resources,
related by |Y| = 17181896 triples.

Based on this data, we performed a very careful synonym resolution by the
baseline approach described in Section Hereby we applied a minimum
similarity threshold of 7g;,, = 0.96. The main reason for choosing the baseline
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approach instead of the synonym clustering methods is that the latter were
developed after the collaboration, during which the study presented in this
section was performed. Apart from that, the choice of a rather high threshold
can be expected to leads to the inclusion of only few, but rather “correct”
synonym sets. Based on this setting, the resulting synsetized folksonomy (recall
the Definition contained |S| = 373572 synsets and |Y®| = 17154948
synsetized tag assignments.

In a next step, we applied tag sense discovery by the hierarchical clustering
method described in Section using a context size of k = 10 tags. As
a distance criterion threshold, a value of 74 = 0.55 led to good results. In
order to exploit the information about ambiguity, we adapted the original
generality-based algorithm by (Heymann and Garcia-Molinaj, 2006) in such a
way that it considers each sense of a keyword separately. More precisely, this
adaptation led to the following algorithm (differences to the original version
are highlighted in italics):

1. Create a list of all keywords, ordered in descending order by their degree
of generality (according to the chosen generality measure).

2. Create an empty tree, and add the most general (i.e., topmost) keyword
from this list as root node.

3. Iterate through the remaining keywords in order of descending generality
and add each keyword t to the tree according to:
a) Identify the most similar existing tag within the hierarchy ¢, to t.

b) If the generality score of t is above a given threshold Tger, or if the
tsim 1s not sufficiently similar according to a threshold 7g;,,, append
t as a child node to the root node.

¢) If teim is an ambiguous tag, identify the correct sense of tgim in the
context of the t by taking into account the preference tags of tsim and
t

d) Append t; as a less general term underneath the correct sense of

tsz'm .

e) Ift is an ambiguous tag, repeat steps 3.a - 3.e for each of its senses.
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Figure 7.21.: Results of the reference-based evaluation of enhanced concept
hierarchy learning based on Delicious data. The learned structures
are compared against two gold-standard hierarchies from WordNet
and Wikipedia.

4. Apply a post-processing to the resulting tree by re-inserting orphaned tags
underneath the root node in order to create a balanced representation.
The re-insertion is done based on steps 3.a-3.c.

So in summary, the main enhancements are the handling of ambiguous tags
and the post-processing step. In order to assess whether these modifications lead
to a “better” learned taxonomy, we computed a hierarchy based on the original
and the extended version of the algorithm. To ensure comparability, we used in
both cases co-occurrence as tag similarity measure and degree-centrality in the
co-occurrence graph as generality measures. This corresponds to the Deg/Cooc
from the previous chapter, which seemed to be the best performing variant.
For the adjustment of the algorithm parameters 74, and 7ge,, we performed a
variation procedure and kept those settings which maximized the similarity to
the reference taxonomies, namely those from WordNet (see Section and
the Wikipedia category hierarchy (Section . Figure summarizes the
results obtained for the best parameter settings.

For both reference ontologies, our proposed extended algorithm leads to
taxonomies which resemble more closely to the gold-standard. While the
increase is smaller when using taxonomic overlap, it is still clearly visible.
To come back to our initial question, the results point in the direction that
synonym resolution and tag sense discovery are in fact suitable to further
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enhance the quality of concept hierarchy learning. While this is intuitively clear,
we provided in this section empirical evidence for this assumption by reaching
a higher structural agreement with gold-standard taxonomies.

7.4.6. Summary

After laying the groundwork by analyzing measures of semantic relatedness and
generality, as well as concept learning methods based on Social Annotation,
this chapter was intended to examine algorithms which induce hierarchical
relationships among the initially flat keyword space. The main motivation hereby
was to analyze standard clustering methods as well as custom generality-based
procedures which exploit similarity and generality information for establishing a
concept hierarchy. Based on a gold-standard based evaluation setting, it turned
out that k-means and affinity propagation clustering approaches produced
hierarchies which were less similar to several reference taxonomies compared to
generality-based algorithms specifically tailored for Social Annotation data. This
assumption was confirmed by a user study, which involved human assessments
about the consistency of the learned subsumption relations. Beside that, further
results seemed to be that tag co-occurrence as a similarity measure together with
degree centrality based on the co-occurrence graph have advantages compared
to closeness centrality and distributional similarity measures. These findings are
in line with the prior analysis in Section [7.1.3] where co-occurrence relatedness
exhibited a bias towards semantically more general tags. As a last step, the
beneficial influence of “preprocessing” the raw Social Annotation data by
synonym grouping and keyword disambiguation was shown in an exemplary
case study.

Despite these results are promising, the same limitations for the concept
learning methods in general apply here as well: It can be probably not be
expected that the resulting taxonomies exhibit in their current state the same
semantic precision as manually built ones. However, they can surely be helpful
to address the problems related to the lack of structure within Social Annotation
Systems by providing additional navigation facilities, or query refinement /
broadening possibilities. Furthermore, it can be expected that they can serve
as useful input for further refinement steps, targeted towards, e. g., suggesting
potential new relations for more controlled semantic repositories.

201



Chapter 7. Methods

7.5. Learning Attributes, Relations and Axioms

As already mentioned in the earlier literature review (Section , approaches
which address higher levels in the ontology layer learning cake are still scarcely
found. Hence most researchers “stop” at the level of concept hierarchies as the
most complex structure to be learned. Though there exists rich networks among
users, tags and resources within Social Annotation Systems, the application of
methods stemming from, e. g., learning attributes or relations from text often
require further syntactical or lexical structure. Among the common approaches
in this field mentioned by (Cimiano| 2006|), in fact only collocations have a
counterpart in Social Annotation data, namely in the co-occurrence of keywords.
However, it is further mentioned that “A collocation [...] typically reveals
a strong but unknown relation between words.”. For this reason, we will also
refrain from tackling further layers of the ontology learning layer cake within
the scope of this dissertation.

In order to provide some potential methodological starting points for further
research in this direction, the interested reader is referred to Section By
using an approach of semantic grounding, a deeper insight into the semantic
properties of different folksonomy-based relations was obtained. The “target”
used for grounding was hereby the taxonomic relation of WordNet. Despite —
as said before — the definition of measures will be more difficult, this procedure
is in principle viable for other kinds of externally defined relations as well. As
an example, the same setup could be used to assess, e.g., if there exists a
folksonomy-based relation which captures information similar to meronymy
(i. e., part-of relationship) within WordNet. A cursory analysis of the learned
hierarchies from the previous chapter also revealed that such relations are
partially already present, giving the learned taxonomies a somewhat “mixed”
semantics. It may be another good starting point to try to “disambiguate”
these different kinds of relations, eventually by taking into account background
knowledge from an external source.

With these pointers, the methodological chapter of making emergent semantics
within Social Annotation Systems is closing. While within this chapter, several
“instruments” to capture emergent structures were introduced, the next chapter
changes perspective and focuses on analyzing factors which play a crucial role
in the process of emergence itself.
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Influencing Factors

When trying to make the implicit semantics within Social Annotation Systems
explicit, all methods and approaches presented in the previous chapter were
mainly addressing the “final” state of these systems, up to the time when the
snapshot for the dataset was taken. In addition, besides some a-priori filtering
based on keyword frequency (especially in order to counteract sparse vectors
when computing context relatedness), all available data was taken into account
in an unmodified manner. This was done in order to enable a “clear” view on
the kind of structures which these systems produce, and in order to check how
well this “pure” data serves as an input to algorithms which discover semantics.

In this chapter, we will shift perspective and focus on the processes and
aspects which influence the emergence of implicit semantic structures. A deeper
understanding of the factors which have a (desirably positive) effect hereby would
be highly desirable for at least two purposes: (i) Operators of Social Annotation
Systems interested in fostering emergent semantics would be enabled to adapt
the design of their systems (e. g., by optimized interfaces) in order to stimulate
the beneficial processes. Furthermore, (ii) analysts of Social Annotation data
would be able to perform intelligent data filtering, retaining, e. g., only a subset
which exhibits potentially “more precise” semantics.

In order to address this issue, we will first describe which methodology we
applied in order to “measure” the effects of different factors regarding the
evolution of emergent semantics. Then, we will focus on three major aspects —
namely keyword properties, tagging pragmatics and spam — and analyze their
influence on the emergence process. In summary, these studies are intended to
complement the methods presented in the previous chapter by getting a deeper
understanding of when they produce especially good results.
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Figure 8.1.: Methodology of influence assessment concerning factors of emergent

semantics. The similarity values are for exemplary purposes only.
See Section for a detailed explanation.

8.1. Methodology of Influence Assessment

The first crucial question when interested in the factors which influence the
emergence of semantics is how to quantify their impact. The goal hereby is to
assess that certain influences lead to “better” or “worse” semantics. Because
a manual assessment is hereby hardly feasible, we stick to the gold-standard
based evaluation paradigm used so far in this dissertation and validate the
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different outcomes against “reference semantics”, defined in (semi-)manually
built ontologies. More precisely, because many of the methods presented in
Chapter m (like, e. g., synonym resolution or tag sense discovery) benefit from
a precise notion of semantic relatedness among keywords, we will use the tag
context relatedness (TagCont, see Section as our main indicator dimension.
The intuition hereby is as follows: If a particular factor (e.g., the keyword
frequency, as will be analyzed in Section has a beneficial effect on the
semantic quality of the relations obtained by TagCont, then this has a positive
influence on the overall quality of semantic structures produced by our methods.

In order to operationalize this idea, we will focus on the most related keyword,
according to the tag context relatedness. We will then perform its semantic
grounding (as already done in Section , and measure the “true” semantic
relatedness among the current keyword pair, using established WordNet-based
metrics. Depending on the context, we will employ the Jiang-conrath distance or
the shortext tazonomic path length (as introduced also in Section for this
purpose. This semantically grounded relatedness will then be used as our final
indicator of the “quality” of the emergent implicit structures. While we consider
these values individually in some cases, in others we will use their average as
the final criterion. Because many factors can be analyzed best when performing
a filtering or an extension, we will often perform the final comparison between
the “original” data, and another “filtered” (or extended) dataset according to a
the given criterion. Figure depicts graphically this chosen approach.

8.2. Keyword Properties

Because within the approach of this dissertation, keywords and their intercon-
nections within Social Annotation Systems are regarded as the main “medium”
of semantics, it is natural to start with the question if there exist certain keyword
properties for which the process of harvesting semantics works especially well.
Especially having observed that the tag context relatedness yields semantically
very close keywords in some cases (e.g., synonyms), while more widely related
ones in others, it is worth investigating why this could be the case. Hereby we
will focus on two aspects: First, because we get intuitively the more information
about a particular keyword the more often it has been used, we will check if the
usage frequency has an impact. An obvious hypothesis hereby is that a higher
frequency will yield to more precise semantics, simply because we have a more
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“informed” relatedness measure in such case.

Second, because the choice of keywords is also often strongly influenced by
technical or visual properties of the system at hand, we will analyze interface
characteristics and their influence on the resulting vocabulary. Specifically, we
will check if the removal of certain artifacts (e.g., system tags or erroneous
delimiters) has a beneficial effect. In all cases, we will stick to the methodology
of influence assessment described in the previous section.

8.2.1. Frequency

An implicit assumption when talking about “emergent semantics” is that the
semantic structures emerge over time, as more and more information is added to
the system. Because the methods to capture these structures are hence mostly
data-driven, an justified hypothesis is that the semantics of a particular keyword
can be captured better when there is more data about it, i.e., when it has been
used more often. The alert reader will have noticed that this hypothesis was
also the basis for restricting the datasets in the previous chapter (especially
Section to popular (mostly the top 10000) keywords: While this decision
was motivated by the idea to avoid sparse context vector representations, we
will now assess the effect of frequency in a more systematic manner.

Because we can quantify for each keyword (i) its frequency and (ii) the
“true” semantic similarity to its most related “partner” according to the tag
context relatedness (see Figure , a first natural thing is to check for a
correlation among both. Figure depicts a plot, where the frequency is found
on the y-axis by means of the “tag rank” (the most frequent tag is assigned
rank 1, the second one rank 2, and so on), and the y-axis shows the semantic
quality of the most related keyword. Because one can obviously expect a
strong variation of the values, the distributions are smoothed by Bézier curves.
Apart from the BibSonomy dataset, there is an evident tendency that more
often used keywords (i.e., low-rank ones, found on the left) are assigned to a
semantically more similar partner than less often used ones (right side of the
figure). This is especially visible for the Delicious dataset, which exhibits an
additional peak roughly among the 200 most popular keywords. This points in
the direction that our initial hypothesis was correct, i.e., that a more frequent
usage provides substantially more information which can be exploited by the
tag context relatedness. The impression that the BibSonomy dataset seems
to follow a slightly different pattern could also be explained herewith, because
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Figure 8.2.: Influence of tag frequency on emergent semantics. The z-axis
depicts the tag rank (whereby 1 corresponds to the most frequently
used tag), and the y-axis shows the path length similarity (measured
in WordNet) between each tag and its most related one according
to the tag context relatedness. The results are smoothed using a
Bézier curve.

due to its comparatively small size (see Section , there is still quite little
data for the more popular keywords. The remaining datasets (i.e., CiteULike
and Stackoverflow) are left out for readability reasons, but exhibited a similar
behavior.

In order to confirm these visual impressions, we computed Kendall’s 7 as a
rank correlation coefficient; the two rankings of keywords were induced (i) by
the tag rank and (ii) the semantic similarity to its most closely related keyword.
Based on that, Kendall’s 7 is defined as:

__lcl-1p)
sn(n—1)

Hereby C' is the set of concordant pairs (i.e., those were both rankings agree),
and D the set of discordant pairs (i.e., those where they disagree). Its value
ranges from 1 (perfect positive correlation) to —1 (perfect negative correlation).
We found for BibSonomy and CiteULike a value of ~ —0.05, and for Delicious,
Flickr, AOL logsonomy and Stackoverflow a value of = —0.1. This confirms the
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Figure 8.3.: Influence of restrictions to different fractions of popular keywords
(CiteULike dataset). The z-axis measures semantic quality by
means of the Jiang-Conrath distance, the y-axis depicts the number
of popular keywords each sub-dataset was derived from.

slight, but recognizable negative correlation, which seems to be stronger for
larger datasets.

In order to better investigate this point (and in order to justify the restriction
to the 10000 most popular tags often applied in Chapter , we extended the
analysis presented in Section on the CiteULike dataset to less frequently
used tags. While we originally used the sub-folksonomy induced by the 10000
most frequent keywords, we varied the threshold and used the ones induced
by the 50000, 100000, 200 000, 300000, 400 000 most frequent keywords, as
well as the complete dataset (549 145 keywords). Based on each condition, we
computed the average semantic similarity to the most closely related tags, as
explained in the previous section. Figure |8.3| shows the results. The y-axis
depicts the number of popular keywords, which induced each dataset; the z-axis
shows in the customary manner the semantic quality (shorter bars indicate
higher quality, as we are using the Jiang-Conrath distance). In line with the
prior observations, the overall quality of semantics decreases when taking into
account less frequent keywords. Though being intuitive, these results confirm
in an empirical way our assumption that it is difficult to assess the semantics
of the “long tail” of seldom used keywords, because their inherent sparsity
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hampers a reliable assessment.

To summarize, our results suggest that frequent usage facilitates the harvesting
of keyword relationships with a higher degree of semantic “precision”. This
implies that, e. g., that operators of Social Annotation Systems should focus on
enhancing user activity, and analysts of semantics within tagging data could
benefit from restricting their studies to the denser parts of the folksonomy.
As another keyword-related aspect, we will now turn our attention to the
characteristics of the tagging interfaces.

8.2.2. Interface characteristics

Because they provide the direct interaction points with the users, the design
and characteristics of the interfaces by which the users submit their annotations
can also be expected to be relevant. Typically there exists several of those, e. g.,
a “common” website where users fill out forms, or a programming interface like
a REST-API, which allows local client applications to interact directly with
the system. In addition, many systems allow a batch import of resources in
various formats. When compiling the datasets for this dissertation, especially
two artifacts introduced by these variants became visible. Among the popular
keywords of the CiteULike dataset, many “import-related” tags were found,
like file-import, file-import-10-02-08, jabref-import and many others.
Apart from their minor importance for, e.g., learning concepts from tags,
the question arises if the batch processing (probably widely without human
interaction) could even have detrimental effects on the global semantics. As
an example, the tag context relatedness is based on the 10000 most popular
keywords as vector dimensions, which are intended to capture the semantic
context of a keyword. If among those, there are many “import-related” tags
without any meaningful relevance to the other keywords, it could happen that
the vector representations get blurred.

The next phenomenon is related to our own BibSonomy system. Because
we are using the whitespace character as keyword delimiter, it turned out that
quite an number of tags could be found which ended in a comma — pointing
towards users erroneously thinking that the latter can be used as a delimiter.
Because tags have been treated in an unfiltered way so far, this would lead
to, e.g., java and java, being handled as separate terms. Apart from that,
we could also find the typical variations of using multi-word tags, like e. g.,
ontology-learning, ontology_learning or ontology.learning. In all those
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Figure 8.4.: Influence of vocabulary cleaning on emergent semantics. For the
BibSonomy dataset, all non-alphanumeric charaters were removed

from each keyword; for the CiteULike case, all “system tags” related
to imports from different systems were removed.

cases, it can be assumed that a careful “normalization” of tags might have
beneficial effects.

In order to assess both issues, we cleaned the vocabulary of both the CiteULike
and the BibSonomy dataset. For the CiteULike case, we manually removed all
“import-related” keywords, leaving us with 9431 instead of 10000 tags. Within
the BibSonomy case, we applied a comparatively thorough tag normalization:
First, we replace all dashes (=) by underscores (_), and removed subsequently all
non-alphanumeric characters (except underscore). This reduced the vocabulary
size from 10 000 to 9 311 keywords. Based on both cleaned datasets, we computed
similar tags as done before.

Figure [8.4] compares the semantic precision of the original datasets to their
cleaned alternatives. Evidently, both led to a very small improvement. Despite
the effect is not strong, these results suggest that within Social Annotation data,
there may exist fractions of interface-related artifacts (= 6.5 % of keywords in
our case) which should be considered and can — at least — be safely disregarded
from a further semantic analysis.

8.2.3. Summary

In this first step of assessing influences of emergent semantics, we focused
on keyword-related aspects. By checking the correlation between the usage
frequency and the semantic precision of related keywords, a first observation
was that a high usage frequency has in general beneficial effects on the resulting
semantics. This was attributed mainly to the corresponding higher density of the
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co-occurrence network, which encodes a larger amount of semantic information.
Subsequently, properties of the tagging interfaces themselves were analyzed,
namely artifacts introduced by batch-processing as well as particular system
design choices like the keyword delimiter. The analysis here suggested that
such artifacts can safely be removed, without negatively affecting the inherent
semantic structures.

As a next step, we will move away from the keywords themselves as objects
of investigation, but focus rather on users and pragmatic aspects, i.e., how and
why Social Annotation System are used.

8.3. Tagging Pragmatics

As introduced in Section the analysis of pragmatic aspects of tagging
(i.e., how and why users tag) has gained considerable attention in the research
community. Especially the distinction proposed by (Korner et al., [2010) of users
into categorizers (who follow an “ontology-like” style of tagging) and describers
(who are characterized by a more verbose and descriptive behavior) intuitively
suggests an influence on the quality of the resulting semantic structures. In
other words, the question arises if those different tagging practices and moti-
vations affect the processes that yield emergent semantics. This would mean
that in order to assess the usefulness of methods for harvesting semantics from
folksonomies, we would need to know whether these methods produce similar
results across different user populations characterized by different tagging prac-
tices and driven by different motivations for tagging. Given these implications,
it is interesting to explore whether and how emergent semantics of tags are
influenced by the pragmatics of tagging.

For a general introduction into the characteristics of categorizers and de-
scribers, refer to Section A prerequisite to study their influence is the
ability to assign users to either of the two types. Because a “direct” assessment
would require an interaction with the users and is hence difficult, we will first
present a set of quantitative measures which indicate — for each user — the degree
of membership in both classes. Based on these metrics, our approach is then
to systematically induce “sub-folksonomies”, which are comprised of varying
proportions of categorizers and describers. As an indicator of the quality of
the emergent semantic structures, we will stick to the approach described in
Section and compute tag relatedness on each of these subsets. Based on
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the results, our last step is to discuss implications for methods which target
towards harvesting emergent semantics from Social Annotation Systems.

8.3.1. Measures of Tagging Pragmatics

As stated above, because the motivation behind tagging is difficult to measure
without direct interaction with users, we are defining in the following surrogate
measures which capture different pragmatic aspects of tagging. Since these mea-
sures correspond to different intuitions how the different behavior of categorizers
and describers could become apparent, we will use them later to approximate a
user’s membership in either of the two classes.

Vocabulary size: The first measure is based on the intuition that describing a
resource in a detailed manner will typically require a larger amount of keywords
than categorizing it according to its membership in a few classes. Hence, the
vocabulary size, i.e., the number of distinct keywords used by a user, is our first
proposed measure:

vocab(u) = |Ty,| (8.1)

Describers would likely produce an open set of tags with an unlimited and
dynamic tag vocabulary while categorizers would try to keep their vocabulary
limited and would need far fewer tags.

Tag/resource ratio (trr): While the plain size of the vocabulary provides a
first coarse estimation, an inherent limitation is that it does not consider the
number of resources annotated by the vocabulary. If a user has used, e.g.,
a large number of keywords to annotate just a few resources, but uses very
few keywords to annotate the majority of them, then having a look at the
vocabulary size alone might be misleading. Because we expect describers to
introduce more and more keywords as they annotate further resources, a natural
adaptation is to relate the vocabulary size with the total number of annotated
resources according to:

|z
Rl

Taggers who use lots of different tags for their resources would score higher

trr(u) (8.2)
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values for this measure than users that use fewer tags. Due to the limited
vocabulary, a categorizer would likely achieve a lower score on this measure
than a describer who employs a theoretically unlimited vocabulary. Equation
shows the formula used for this calculation where R, represents the resources
which were annotated by user .

Average tags per post (tpp): Although the tag/resource ratio encompasses
further information, its scores do not necessarily reflect that a user uses consis-
tently more keywords for annotation. In order to better capture this aspect,
one would have to take a look at each individual post, and average the number
of applied keywords. This is exactly what our next proposed measure is doing;:

ZTGRU, ‘Tur|
| Rl

Taggers who usually apply lots of tags to their resources get higher scores
by this measure than users who use few tags during the annotation process.
Describers would score high values for this measure because of their need for
detailed and verbose tagging. In contrast, categorizers would score lower values
because they try to annotate their resources in an efficient way.

tpp(u) = (8.3)

Orphan ratio: Our final measure builds upon a different intuition. Hereby
we have a look at “orphaned” tags, i.e., tags which are assigned to very few
resources. Because of the expected “verbose” annotation style of describers, we
hypothesize that we will find a higher percentage of such orphaned tags within
their vocabulary, because they might — to use a pointed formulation — annotate
in a somewhat “tag-and-forget” manner. This is not a problem, as their goal is
not to establish a small and consistent vocabulary; however, because the latter
is the explicit target of categorizers, we expect to find fewer orphaned tags
within their vocabularies. The last measure is defined as:

(o]
T | Rutgnos |

T
orphan(u) = AL T2 = (¢ [Rul < n).n = [100] (8.4)

The orphan ratio thus captures the percentage of items in a user’s vocabulary
that represent orphaned tags. T, denotes the set of orphaned tags in a user’s
tag vocabulary T, (based on a threshold n). The threshold n is derived from
each user’s individual tagging style in which ¢]'*” denotes the tag that was used
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the most. R, denotes the set of resources which are tagged with tag ¢ by user
u. The orphan ratio values range from 0 to 1 where a value of 1 identifies users
with lots of orphaned tags and 0 identifies users who maintain a more consistent
vocabulary. Considering the categorizer / describer paradigm this would mean
that categorizers tend more towards values of 0 because orphaned tags would
introduce noise to their personal taxonomy. For a describer’s tag vocabulary,
this measure would produce values closer to 1 because describers tag resources
in a verbose and descriptive way, and do not mind the introduction of orphaned
tags to their vocabulary.

Properties of the measures While these measures of tagging pragmatics were
inspired by the dichotomy between categorizers and describers, we do not
require them to accurately capture this distinction. Another aspect is that these
measures might not only capture intrinsic user characteristics, but can also be
influenced by, e. g., elements of user interfaces (such as recommenders). What
is important in the light of our hypothesis is that all of the above measures
are independent of semantics — they capture usage patterns of tagging (the
pragmatics of tagging) only. This allows us to explore a potential link between
tagging pragmatics and the emergent semantics of tags.

8.3.2. Influcence Assessment

In the analysis of tag relatedness measures in Section an important finding
was that the definition of an adequate contexrt plays a crucial role for the task
of capturing emergent (tag) semantics. However, given the massive amounts of
data available in social tagging systems, the question is not only to identify a
valid context, but also to identify the minimal context which retains the relevant
structures while allowing for efficient computation. As human annotators are
the creators of implicit semantic structures, an important aspect hereby is which
users should be included in an optimal context composition. Following our
discussion in the previous section, our hypothesis is that individual tagging
pragmatics can play an important role for selecting “productive” users. The
question is whether the categorizers — who follow the ontology engineering prin-
ciple of a clean vocabulary — or the describers — who provide more descriptions
to their resources — are the more “productive” ones.

In order to answer this question, our strategy is to analyze the suitability
of each of our previously introduced pragmatic measures to assemble a (pref-

214



8.3. Tagging Pragmatics

Table 8.1.: Statistic for the Delicious dataset variants used for the influence
assessment of tagging pragmatics.

dataset T| |U| |R| Y]
full 10000 | 511348 | 14567465 | 117319016
minl00res || 9944 | 100363 | 12125476 | 96298409

erentially small) subset of users which provides a sufficient context to harvest
emergent tag semantics. The general idea hereby is to start at both ends of the
scale with the “extreme” categorizers and describers, and then to subsequently
add more users (in the order given by the respective measure). In each step, we
check how well the folksonomy partition defined by the current user subset serves
as a basis to compute semantically related tags. For the latter, we revert to the
tag context relatedness measure (TagCont) that has shown to produce valid
results (cf. Sec. . The assumption hereby is that the TagCont measure
will yield more closely related tags when better implicit semantic structures
are present. Hence, the whole procedure allows us to assess the quality of the
emergent semantics and finally the degree to which it was influenced by tagging
pragmatics.

Experiments

The intention of our experiments is to quantify the influence of individual
tagging practices on emergent tag semantics in a folksonomy. We will first
provide details on data preprocessing and then explain each experimentation
step before discussing the results.

Data preprocessing In order to validate our hypothesis on real-world data, we
used the Delicious dataset described in Section More precisely, because
we are relying heavily on the computation of meaningful distributional similarity
measures, we stick to our dataset induced by the 10000 most frequent tags.
We will refer to the resulting folksonomy as the full dataset (see Table . In
order to eliminate noise introduced by our measures misjudging new users, we
furthermore removed all users having less than 100 resources in their collection.
The reason behind this is that, e. g., the tag/resource ratio is not very informative
in the case of a new user with very few resources. Interestingly, our results
show that removing this “long tail” of new (or inactive) users already increases
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Figure 8.5.: Distribution of the membership scores for each introduced measure
of tagging motivation (orphan ratio, tag/resource ratio, tags per
post and vocabulary size), computed for the 100393 users present
in our Delicious dataset (z-axis). Values close to 0 on the y-axis
indicate strong categorizers, while values close to one 1 point to
describers. All measures were normalized to the interval [0, 1].

the quality of the learned semantic relations. Details of this observation will be
discussed in Section We will denote the resulting dataset as mini00res

(see Table :

Experimental setup In order to assess the capability of each of our measures
to predict “productive” users, we followed an incremental approach: For each of
our measures m € {orphan,vocab,trr,tpp}, we first created a list L,, of all users
u € U sorted in ascending order according to m(u). All our measures yield low
values for categorizers, while giving high scores to describers. This means that,
e.g., the first user in the orphan ratio list (denoted as Lypphan[1]) is assumed
to be the most extreme categorizer, while the last one (Lomphanlk], & = |U]) is
assumed to be the most extreme describer. Figure depicts the obtained
distribution of membership scores for each ordered list Ly,,, Lipr, Lorphan and
Lyocap- An observation which can be made in this figure is that the distribution
of the orphan measure differs clearly from the other three measures. This
implies that the orphan ratio seems to be able to make a more fine-grained
distinction between users. However, our results did not exhibit a positive impact

216



8.3. Tagging Pragmatics

on the resulting semantics; rather contrary, the orphan ratio performs often
worse than the other measures (see below for details).

Because we are interested in the minimum amount of users needed to provide
a valid context, we start at both ends of L and extract two folksonomy partitions
CF{" and DF" based on 1% of the “strongest” categorizers (Cat]* = {L,][i] |
i < 0.01-|U|}) and describers (Desc* = {Ly[i] | i« > 0.99 - |U|}). CF" =
(cor, Cc1™, CRY*, CY]™) is then the sub-folksonomy of F' induced by Cat!",
i.e., it is obtained by CU" := Cat*, CY{" = {(u,t,r) € Y | u € Cat]"},
CT7" = m(CY(™), and CRT" := w3(CY{"). The sub-folksonomy DFJ" is
determined analogously.

As a next step, we took the first extracted partition CF" as input to extract
semantic tag relations, in the way described in Section We check whether
the data produced by a very small subset of “extreme” categorizers already
suffices to compute meaningful semantic relations. More specifically, for each
tagt € C'T]", we computed its most similar tag ¢y, according to the tag context
relatedness defined in Section [7.1.1l We then looked up each resulting pair
(t,tsim) in WordNet and measured — whenever both ¢ and tg;,, were present —
the Jiang-Conrath distance JCN(¢, t4;n) between both words (see Section [7.1.3).
After that we took the average JCN distance of all mapped tag pairs as an
indicator of the quality of emergent semantic structures contained in C'F}™:

SO () = 2T TN in)
WREELST wn_pairs(CTT)

Here, wn_pairs(DT]") denotes the number of tag pairs (¢,tsm) (i-e., a tag
and its most similar tag) for which both ¢ and ¢, are present in WordNet.
The corresponding describer partition DF]" was processed in the same manner.

As discussed in Section [7.1.3] we use the Jiang-Conrath distance as an
indicator of the “true” semantic relatedness between tags. However, in order to
avoid the dependency of our results on a single measure of semantic similarity,
we also measured the tazonomic path length for each mapped tag pair (¢, tgim)
between the two synsets s; and sp containing ¢ and tg;,, respectively.! This
measure counts the number of nodes in the WordNet subsumption hierarchy
along the shortest path between s1 and s3. We noticed that the outcomes of both
measures (JCN and taxonomic path length) was almost perfectly correlated

MIf ¢ and teim were present in more than one synset, we took the shortest possible path.
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throughout our experimentation; for this reason, we will stick to the JCN
distance in the remainder of this paper, because it has been shown to be a
better surrogate for the human perception.

For or each of our measures m € {orphan,vocab,trr,tpp}, we repeated this
overall procedure, using the following percentages i:

i€{1,2,3,...,24,25,30,40, 50,60, 70, 80,90}

As we keep adding users while incrementing 4, it is important to notice that
the size of the resulting “sub-folksonomy” is growing towards the size of the
full dataset, i.e., DF[5, = CF[i, = F. Another important aspect is the fact
that users are added in descending order of their membership degree in the
respective user class: This means that C'F|™ contains users v who score high on
measure m, while, e.g., CFj contains a more mixed population. “Mixed” in
this context means that there exist users in C'F3j which are to a certain degree
assumed to exhibit describer characteristics as measured by m. This implies
that the distinction between both user groups is blurred while incrementing .
In other words, one can also read these partitions from the other side, namely
that CF§) contains all users except 10 % of the most extreme describers.

In summary, we created 64 partitions for each of our 4 measures (32 cate-
gorizer + 32 describer), summing up to a total of 256 sub-folksonomies, each
being extracted by a different composition of users according to their tagging
characteristics. Before presenting our results on the most suitable partitions for
extracting semantic tag relations, we discuss upper and lower bounds. As we
measured the quality of an extracted relation between two tags ¢t and tg;, by
its Jiang-Conrath distance within WordNet, a lower bound can be identified
by computing the pairwise JCN distance between all tags t € T" and averaging
over the minimum distance found for each tag:

_ EtET mintmmET ‘]CN(t7 tSl’ITL)

Nowe'," F -
TONiower(F) wn_pairs(T)

As an upper bound we assume that the respective folksonomy subset does
not contain any inherent semantics and hence only randomly related tags are
returned by our measure. We simulate this by defining a random relatedness
function rand(t), which returns a randomly selected tag tsm € T, tsim # t. The
upper bound is then:
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JONI(t d(t
JONypper(F) = ZteT (t, rand(t))

wn_pairs(T)

For the Delicious dataset it turned out that JCONypper = 15.8 and JCONjpyer =
0.7. Please recall that JCN is a semantic distance measure — which means a
low JCN distance corresponds to a high degree of semantic relatedness.

As seen later (cf. Figure , none of our experimental conditions (including
the full dataset) came close to the lower bound. There are (at least) two
explanations for this. First, the lower bound was determined independent of
a sub-folksonomy of the full dataset. It would be interesting to determine
the sub-folksonomy that provides the optimal average Jiang-Conrath distance.
Then one could check how far it is away from this optimum, and one could try
to learn a classifier for this target dataset. Unfortunately, the computation of
this sub-folksonomy requires the consideration of all subsets of the user set U
and is thus computationally unfeasible.

Second, WordNet is built by language experts with the goal to capture all
existing senses of a given word. Given two tags t; and to, our JCN implementa-
tion searched for the smallest possible distance between any two senses of each
tag. By doing so for all possible pairs of tags ¢ € T, the probability is quite
high to find two closely related (or even equal) senses. Contrary to that, the
technophilic bias of the user population of Delicious leads to some usage-induced
relations which are not reflected well within WordNet; as an example, the most
related tag to doom in a folksonomy subset was quake?, leading to a large
JCN distance of ~ 18.08, while the optimal distance was found between doom
and will with ~ 1.88. This observation does not invalidate the procedure of
semantic grounding as a whole, because we do find matching semantics in both
systems. The same approach has also been taken in Section [7.1.3]

Results In Figures and we present the results of our analysis of the
different sub-folksonomies which were created in each of our 256 experimental
conditions.

The horizontal axis displays the percentage of included users; the vertical
axis displays the average JCN distance obtained from computing semantically
related tags based on the respective partition. The dashed line at the bottom
of each figure represents the level of semantic precision obtained from the full

2Doom and Quake are popular videogames.
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dataset. A first impression is — in all diagrams, independently of the selection
strategy — that mass matters: the average JCN distance decreases and hence
the results get better while more users are included. This equally holds for
the random selection strategy (solid line, +). In other words, the more people
contribute to a collaborative tagging system, the higher is the quality of the
semantic tag relations which can be obtained from the folksonomy structure
they produce. This matches the intuition that a sufficient “crowd” is necessary
to facilitate the emergence of the “wisdom of the crowds”.

However, the obvious differences between the two Figures and
suggest that the composition of the crowd also seems to make a difference: When
incrementally adding users ordered from categorizers to describers (starting from
the left of Figure , all resulting folksonomy partitions yield systematically
weaker semantic precisions compared to adding users in random order (solid line,
+). This effect can be observed most clearly for the vocabulary size measure
vocab (dotted line, A), which judges users as categorizers when the size of their
tag vocabulary is small (see Eq. [8.1). Only after the addition of 90 % of all
users in this order, the quality of the inherent semantics is on the same level of
randomly selected 90 %. The other measures — with an exception of the tags per
post ratio (dotted line, o) which will be discussed later — show a very similar
behavior, namely the tag/resource ratio (dotted line, M) and the orphan ratio
(dotted line, *).

When incrementally building sub-folksonomies starting from describer users
(Figure , we see a completely different picture: most measures start on
the same or even on a slightly higher level of contained semantics compared to
adding users in a random order. Beginning from roughly 10 % included users, all
sub-folksonomies yield better results than the random case. In addition, after
having added 40 % of the users in the order of the tag/resource ratio (dotted
line, [J), we can even observe a first improvement of the results compared to the
full dataset. This implies that a bit less than the “better half” of the complete
folksonomy population produces equally precise semantic structures compared
to the whole unfiltered “crowd”. This improvement increases and reaches its
maximum after adding 70 % of all users, before it decreases again to the global
level.

Especially for very small partitions (roughly < 20%), users selected in
descending order by their vocabulary size yield the best results (dotted line,
A). Interestingly, this effect is inverse when adding users the other way round
(dotted line, A, in Fig. : Even quite a large number of users with small
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Figure 8.6.: Results of the influence assessment of tagging pragmatics. Each
datapoint corresponds to a “sub-folksonomy” C'F;™ (a) / DF/™ (b)
induced by different pragmatic measures. The z-axis denotes the
percentage of all folksonomy users included in the subset, and the
y-axis depicts the quality of the semantic tag relations obtained
from the respective partition (lower values are better).
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Table 8.2.: Statistical properties of selected folksonomy partitions. %t denotes
the fraction of the tags from the complete dataset included in the
respective partition; %w denotes the number of similar tag pairs
(t,tsim) found in WordNet for the respective partition divided by
the number of mapped pairs from the whole dataset. For the entire
dataset, |T'| = 9944 and wn_pairs(T) = 4335.

D}Witrr D.Fitpp DFiOTPhCm Dﬂvocab
i %t [ %w || %t | 9w || %t | %w || %t | %w
1 0.93 | 1.03 || 0.96 | 1.01 || 0.97 | 1.02 || 0.98 | 1.04
3 0.96 | 1.02 || 0.98 | 1.02 || 0.99 | 1.01 || 0.99 | 1.03
) 0.97 1 1.02 || 0.99 | 1.02 || 0.99 | 1.02 || 0.99 | 1.03
10 || 0.97 | 1.03 || 0.99 | 1.02 || 1.00 | 1.02 || 0.99 | 1.01
20 || 0.98 | 1.02 || 0.99 | 1.00 || 1.00 | 1.03 || 0.99 | 1.01
50 || 0.98 | 1.02 || 1.00 | 1.00 || 1.00 | 1.00 || 1.00 | 1.01
70 || 0.99 | 1.01 || 1.00 | 1.00 || 1.00 | 1.00 || 1.00 | 1.00

C Fitrr C Fitpp C FVZ orphan C Fivocab
i %t [ %w || %t | %w || %t | %w || %t | %w
1 0.56 | 0.48 || 0.44 | 0.00 || 0.48 | 0.59 || 0.27 | 0.18
3 0.86 | 0.77 || 0.74 | 0.23 || 0.78 | 0.77 || 0.59 | 0.44
5) 0.94 | 0.83 || 0.87 | 0.49 || 0.89 | 0.88 || 0.76 | 0.59
10 || 0.97 | 0.90 || 0.95 | 0.80 || 0.95 | 0.95 || 0.91 | 0.78
20 || 0.99 | 0.95 || 0.97 | 0.88 || 0.97 | 0.98 || 0.97 | 0.88
50 || 1.00 | 1.00 || 0.98 | 0.96 || 0.98 | 1.01 || 0.98 | 0.95
70 || 1.00 | 1.00 || 0.98 | 0.98 [| 0.99 | 0.99 || 0.98 | 0.98

vocabularies performs considerably worse than most other folksonomy partitions.
This means that scale still matters, as the quality almost constantly increases
while adding users; but the “collaborative verbosity” of a small subset of users
with large vocabularies seems to lead to much richer inherent semantics than
the contributions of a larger set of more “tight-lipped” users.

One could suspect now that this comparison is not completely fair: Especially
when selecting users with small vocabularies, the question is to which extent
semantic relations can be present at all in the data. In other words: If the
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aggregated small vocabularies of a subset of categorizers result in a considerably
smaller global vocabulary compared to aggregating more verbose users, then the
probability to find semantically close tags would consequently be much lower.
In the worst case, the vocabulary would be so small that the “right partner”
for a given tag does not exist.

In order to eliminate this concern, we counted the size of the collective tag
vocabulary for each sub-folksonomy. In addition, we measured how many tag
pairs (t,tsm) could be mapped to WordNet during the computation of the
JCN distance. By doing this we want to make sure that the average semantic
distance is computed roughly over the same number of tag pairs. Table
summarizes some selected statistics relative to the complete dataset.?

The first observation is that in all partitions based on describers (upper half
of the table) the global vocabulary is almost completely contained (> 93 %).
For partitions larger than 20 %, this value raises to 98 %. The same holds for
the fraction of tag pairs mapped to WordNet. On the first sight, values > 1
might appear counter-intuitive here. The explanation is the following: It can
happen that for a given tag t, its most similar tag ts;; based on the complete
dataset is not present in WordNet, but its most similar tag ¢, based on a
particular partition is contained. A high percentage of mapped tags does not
imply better semantics per se (as the two mapped tags can still be semantically
distant); but the comparison of different sub-folksonomies is more meaningful
when they both allow for a roughly equal number of mapped pairs. As expected,
the coverage observed for the describer-based case is not as complete as for the
categorizer-based excerpt: For very small samples, the collective tag pool is in
fact small. However, this effect is mitigated already for samples of 3 %; and
starting from roughly 10-20 % sample size, a sufficient global vocabulary exists
(=~ 97%). This means that the comparison in general is performed on a fair
basis, because the underlying vocabulary sizes are comparable.

Our results suggest that sub-folksonomies based on describers contain more
precise inherent semantic structures than partitions based on categorizers.
However, there seems to be a limitation in this observation: Inspecting the
curve for the tpp measure on the right side of Figure one can observe that
the most precise semantic relations among all experimental conditions are found
after the addition of 90 % of the categorizers according to this measure. As

3We did not include the statistics for every partition for space reasons; missing values can be
interpolated from the given examples.
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stated above, this partition can also be read from the other side and corresponds
to a removal of 10 % of the most extreme describers. As the tpp measure captures
the average numbers of tags per post, there seems to be a number of “ultra-
taggers” who use a large number of tags per post (many spammers, typically
more than 9 tags per post in our case) and have detrimental effects on the
global tag semantics. In other words, removing these users seems to eliminate
“semantic noise”, leading to more precise tag semantics.

8.3.3. Implications

A core topic of this dissertation as well as of other works in the literature
(e.g., (Wu et al. 2006a; [Schmitz, 2006)) are methods to harvest emergent
semantic structures from Social Annotation Systems. Our results show that the
effectiveness of current semantic measures for tag relatedness are influenced by
factors originating outside of the semantic realm. On small data samples (up to
40 % of users in our dataset), we have singled out a group of users (categorizers)
that has particularly detrimental effects on the performance of current semantic
measures compared to random sampling. At the same time, describers (based
on the tags-per-resource measure) consistently outperform random sampling,
and can level and even outperform the results achieved on the entire dataset
with as little as 40 % of the users. This suggests that methods for harvesting
semantics from samples of tagging systems can be made more effective when
utilizing knowledge about the pragmatics of tagging, considering individual user
behavior. For analysts of small data samples who wish to improve semantic
relatedness measures, this would mean focusing on those users that use tagging
systems in a verbose ‘Stop Thinking, Start Tagging’ fashion. With increasing
sample sizes (>50 % of users), we can observe that adding more categorizers does
not produce significantly better results. However, when adding more describers,
we see significant improvements in performance until we hit an accuracy limit
at approximately 90 % of users. This suggests that rewarding verbose taggers
comes with limitations itself: The most verbose taggers (in our case: mostly
spammers) negatively influence the results as well.

The practical implications of our results concern mainly two questions: (i)
What is the minimum amount of users needed to produce meaningful tag
semantics in collaborative tagging systems and how can these users be selected?
(ii) Does the quality of emerging tag semantics increase with the available
amount of data, or can it be improved by eliminating “semantic noise”?
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Figure 8.7.: Minimum size of the folksonomy partitions created by each measure
sufficient to reach the semantic precision of the complete dataset.
The y-axis denotes the percentage of tag assignments contained in
the smallest folksonomy partition which reached the global semantic
precision; the labels above the bars depict the percentage of users
the respective sub-folksonomies are based on.

A main contribution of our analysis lies in the observation that tagging
pragmatics, i.e., individual tagging characteristics, play an important role
in both cases. The experiments described above reveal that not all users
contribute equally to emerging semantics; we could show that a relatively
small subset of describers yields significantly better results than a group of
categorizers. Figure summarizes the minimum sizes of the folksonomy
partitions identified by each of our introduced measures necessary to reach the
level of semantic precision for the entire dataset. The white bars correspond
to sampling users ordered from describers to categorizers (Fig. while
the black bars correspond to sampling users ordered in the opposite direction
(Fig. . The number on top of each bar displays the user fraction needed to
reach the global semantic precision; the y-axis depicts the size of the respective
sub-folksonomy relative to the complete one.

In general, most describer-based selection strategies create smaller folksono-
mies which produce meaningful semantics. The “smallest” one consists of 40 %
describers according to the trr measure, responsible for roughly 40 % of all tag
assignments. However, the observation that uncontrolled verbosity is not a good
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Figure 8.8.: Improvement of semantic precision by removing users from the
complete dataset. The y-axis depicts the semantic precision of the
(sub-)folksonomies, while the z-axis denotes the percentage of tag
assignments which were disregarded by removing certain users. The
labels at each data point describe which users were removed.

thing is confirmed by the observation that removing 30 % of the most extreme
describers according to the tpp measure (rightmost black bar) also creates a
comparatively small and semantically precise partition. According to Figure[8.7]
two adequate strategies for creating the smallest possible scaffolding for global
tag semantics can be identified: (1) include roughly half of the users with a
high tag/resource ratio, and (2) remove roughly one third of “ultra-taggers’
identified by a large average number of tags per post.

The next interesting question to ask is whether, and to which extent we can
even infer more precise semantics when removing users. Figure displays
the obtained semantic precision (y-axis) plotted against the amount of tag
assignments removed when removing users according to different selection
strategies. The first and most simple strategy is to remove the “long tail” of
users with less than 100 resources in their collection. This already eliminates
roughly 18 % of the data, while interestingly slightly improving the semantic
precision. One cannot conclude from that that the long tail of users does not
contain valuable information at all. But with regard to popular tags (recall
that we restricted our dataset to the top 10000 tags), a valid first insight is
that the long tail of inactive users can be discarded during the computation of

9
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semantic tag relations.

As discussed before, our results indicate that categorizers also have a detri-
mental effect on the quality of the emerging structures. Removing 30 % of
them as determined by the tag/resource ratio leads to a further improvement
in semantic precision. The best result in all of our experimental conditions
however was reached by eliminating 10 % of the extreme describers according
to the tags-per-post measure. Those “hyper-active” users (in our case mostly
spammers as confirmed by manual inspection) generate roughly 40 % of the
global amount of tag assignments. Spammers typically use a large number of
semantically disjoint tags to attract other users and to bias search engines to-
wards their posted URLs. Unsurprisingly, they are not very helpful for creating
meaningful tag relations. Rather the contrary is the case: we can see in our
results that spammers introduce significant semantic noise — a removal of them
leads to an overall improvement in accuracy of the resulting semantic structures.
Turning the tables around, this insight can of course also be useful for spammer
detection itself — but because our dataset does not contain explicit spammer
labels for each user, determining the exact ratio of spammers detected by each
of our pragmatic measures is subject to future work.

Generalization to other datasets In order to exclude the possibility that the
implications mentioned above are influenced by characteristics of the Delicious
dataset, we repeated the experimental procedure described in Section [8.3.2]on a
dataset from January 2010 of our own social bookmarking system BibSonomy?.
It differs from the dataset mentioned in Section [6.1.7] insofar as it also contains
spam posts. In summary, it contained 17 777 users, 10000 tags and 4 520212
resources connected by 34 505061 TAS. We omit a detailed explanation for the
sake of brevity; but in general, all measures exhibited a very similar behavior
as observed for the Delicious dataset in Figures [8.6a] and [B.6D] Especially the
practical implications discussed before were valid in a nearly identical way for
the BibSonomy data: 30 % of describers according to the trr measure were
sufficient to reach the semantic precision of the whole dataset, and removing
20 % of describers according to the ¢tpp measure led to the best overall semantics.

“http://www.bibsonomy.org
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8.3.4. Summary

In this section, we analyzed the influence of individual tagging practices in
collaborative tagging systems on the emergence of global tag semantics. After
proposing a number of statistical measures to assign users to two broad classes
of categorizers and describers, we systematically built folksonomy partitions
by incrementally adding users from each class. We then judged the quality
of the emergent semantics contained in each of these “sub-folksonomies” by
means of semantically grounded tag relatedness measures. Apart from the
observation that adding more users is beneficial in many — but not all — cases, our
results reveal a dependence of the obtained semantic structures on the different
partitions. In general, the collaborative verbosity of describers provides a better
basis for harvesting meaningful tag semantics. However, this observation comes
with a limitation: The most verbose taggers (in our case mostly spammers)
negatively influenced semantic accuracy. From a practical perspective, the
pragmatic measures can be used to select a comparatively small subset of users
which produce tag relations of equal or better quality than the entire set of users.
In addition, the measures can facilitate improvement of the global semantic
precision by eliminating users that introduce “semantic noise”.

A main implication hereby is the presentation of first empirical evidence for
a causal link between the pragmatics of tagging (individual tagging practices)
and the emergent semantics of tags. This link is not dependent on our choice of
a particular semantic relatedness measure, because 1) the chosen Jiang-Conrath
distance has been shown to best reflect the human perception of semantic
relatedness in previous validation studies (Budanitsky and Hirstl [2006) and
2) our experiments with alternative measures for semantic relatedness have
produced similar results.

This finding has interesting implications for the research questions addressed
within this dissertation: First, while our results focus on semantic relatedness, it
appears plausible that other semantic tasks, such as hypo/hypernym detection,
exhibit similar effects. We argue that a general link between tagging pragmatics
and tag semantics could yield new ways of thinking and new algorithm designs
for learning ontologies from folksonomies. Second, a further promising idea
is to “stimulate” the emergence of semantics by utilizing tag recommenders
to influence tagging behavior and to “steer” evolution of folksonomies into
semantically richer directions.

228



8.4. System Abuse and Spam

8.4. System Abuse and Spam

As with many other services on the Web, the popularity of Social Annotation
Systems may be seen as a mixed blessing: While they are on the one hand of
great help for a large number of users, they also attract malicious activities.
Among the latter, especially the system abuse in form of spamming (i.e., the
annotation of inappropriate content) is relevant for studies of emergent semantics.
Despite the discovery of spammers is not a core topic of this dissertation, we
will start by giving a brief introduction of our understanding of “spam” in
the context of Social Annotation Systems, and describe the countermeasures
we undertake within BibSonomy to prevent system abuse. Because we are in
the unique position to have a dataset with explicitly marked up users, we will
present in the following a comparison between the kind of semantics introduced
by spammers and non-spammers.

8.4.1. Spam Definition and Detection

While the existence of, e.g., email spam is widely known, its counterpart
in Social Annotation Systems is sometimes less visible for the average user.
A potential explanation for this is that the system operators are forced to
undertake preventive measures, which filter out large parts of the inappropriate
content. In order to convey our understanding of spam for the context of this
dissertation to the reader, we stick to the following definition:

“[. .. ]we consider spam in folksonomies as (1) content which legitimate
users do not wish to share and (2) content which is tagged in a
way to mislead other users. The first part refers to web spam: For
commercial or political interests, to simply distract the system, or
to run down other companies, spammers try to score high with their
web sites by posting their content in the system. The second part
considers the tagging behavior: spammers add keywords that do
not match the content of the bookmarks. Again the motivation
may be self-promotion (users looking for a specific tag will receive
advertisements) or to distract and destroy the serendipitous browsing
facilities that make folksonomies special.”  (Krause et al., |2008b)

So briefly spoken, spam corresponds to unintended and disturbing usage of a
Social Annotation System. Especially the last mentioned aspect can be expected
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to have an especially detrimental effect: Because emergent semantic structures
are mostly based on meaningful co-occurrences, the intentional introduction
of semantically irrelevant correlations presents a potential threat. This has
been visible, e. g., in the previous Section [8.3.2] where a comparatively small
number of excessively “spamming describers” significantly affected the global
folksonomy semantics. On the other hand, in case that spammers are using
“correct” annotations (for whatever purpose), it is not impossible that they may
be also useful: As shown in Section [8.2.1] more data has usually a beneficial
effect.

In any case, from our own experience of running BibSonomy, we know
that spam is an issue that needs definitely to be considered by each Social
Annotation System operator. While it is (for good reasons) typically hard to
find out which countermeasures are taken by other systems, our position of
running an own platform enables us to take a look behind the scenes. Due to
a growing popularity since its establishment in 2004, the high search engine
ranking of BibSonomy has been an attractive target for a large number of users
trying to increase their own ranking by submitting large amounts of content at
our site. In the beginning, those were filtered out manually by a small group of
evaluators. This process is described best as follows:

“The flagging of spammers by different evaluators is a very subjective
process. There were no official guidelines, but a common sense of
what distinguishes users from spammers, based on the content of
their posts. To narrow down the set of potential spammers, the
evaluators normally looked at a user’s profile (e. g., name, e-mail
address), the composition of posts (e. g., the semantics of tags, the
number of tags) before assessing the content of the bookmarked
web sites. Borderline cases were handled from a practical point of
view. BibSonomy intends to attract users from research, library and
scholarly institutions. Therefore, entries referring to commercial
advertisements, Google Ad clusters, or the introduction of specific
companies are considered as spam.” (Krause et al., |2008b)

Because this approach naturally did not scale with further growth of the
system, the manually labeled training data was used to optimize machine
learning algorithms, which make automatic predictions if a user is a spammer or
not. Those decisions are based on a varying set of features from users’ profiles,
locations or activities (see (Krause et al., |2008b) for detailed explanations). In
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order to highlight the “dimension” of the spammer problem, Table depicts
some statistics of the “good” and the “bad” part of BibSonomy. As one can
see, the amount of data produced by spammers is immense, and outnumbers,
e.g., the number of tag assignments produced by non-spamers by the factor
of ~ 25. While those large amounts of actually unwanted contents pose some
technical challenges, they might give rise to the hope that at least some parts
of it could still be useful for complementing the comparatively small size of the
non-spammer data.

In order to investigate the possibility on a qualitative level, Table compares
a number of statistical properties of the folksonomies produced by both groups.
We start by contrasting the two vocabularies in order to check whether spammers
and non-spammers “use the same language” or “talk about the same things”,
at least within certain domains. From inspecting the 10 most popular tags, this
seems not to be case: While we find partially offensive and business-related terms
for spammers (as well as artifacts from automatic content submission systems®),
the non-spammer vocabulary is mostly free from the latter. Also when exploring
this issue in a more general fashion by computing the overlap between both
vocabularies for the top 10000, 100000 and all keywords, it becomes clear that
only roughly every 4th or 5th keyword is used by both parties. This confirms
the assumption that the fundamentally different motivations for using the
system are reflected in differing vocabularies. The same holds for the resource
overlap: Here we counted how many resources (bookmarks or publications) were
annotated by both spammers and non-spammers. The comparatively low value
of 30951 (which corresponds to roughly 5.6 % of all non-spammer resources)
indicates that spam content is of limited interest for “good” system users.

Despite these indications for a limited usability of spam data, the comparison
of the tag frequency distribution shows a similar pattern. In addition, the
WordNet overlap is even higher for the spammer case. Although a cursory
manual analysis exhibited that the higher overlap seems to lie mostly within
typical “spammer topics”, it is still worth exploring if some parts of this data
can be useful to counteract the sparsity problem when capturing emergent
semantics. The following section analyzes this issue by comparing the different
semantic qualities of both datasets.

®Onlywire http://onlywire.com is a platform which offers automated submission of content
to several social sharing platforms.
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Table 8.3.: Comparison of spammer and non-spammer data within BibSonomy.

[ spammers [ [ non-spammers ]
statistics
2283703 [T 192445
297174 U 6463
6701874 R 551540
62128872 Y 2434387
popular tags
onlywire, free, online, to, for, top 10 zzz_to_sort, deutschland,
home, business, sex, and, web2.0, nn, programming,
video theorie, web, university,
media

Keyword overlap Spammers / Nonspammers

2751 top 10000 2751
21853 top 100000 21853
74450 all 74450

tag frequency distribution

10106 100000

10000 F *4-

1 10 100 1000 10000 100000 16+06 1e+07 1 10 100 1000 10000 100000 1e+06

Resource overlap Spammers / Nonspammers

30951 [ all [ 30951
WordNet Overlap
771 top 1000 544
6098 top 10000 4027
22154 top 100 000 18521
62366 all 25 182

8.4.2. Influence Assessment

As stated above, the ultimate question is whether or not spammers are con-
tributing the emergence of implicit semantic structures within Social Annotation
Systems. Following our method influence assessment, we computed tag similari-
ties on three different datasets, comprising (i) only non-spammer data, (ii) only
spammer data and (iii) spammer and non-spammer data. The goal of the last
“mixing” condition was to check if spammers would eventually even destroy the
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Figure 8.9.: Influence assessment of spammers on emergent semantics. “Sp”
stands for Spammers, “NoSp” for non-Spammer users. “Overlap
symbolized the keyword overlap among both (~ 2 700 keywords).

“good” kind of semantics produced by non-spammer users.

The top 3 rows of Figure depict the results, measured by both the Jiang-
Conrath distance and the taxonomic path length. Somewhat contrary to our
expectations, all conditions including spammers lead to better results, i.e., to
semantically more closely related tags. In order to exclude the possibility that
this effect is due to “good” semantic relations within “unwanted” domains (like,
e.g., explicit terms), we repeated the experiment based only on the vocabulary
overlap. Because the keywords in the overlap were also used by trustworthy
users, we expect the latter to be a filtering to appropriate terms only. The
lower three rows of Figure depict the result — which shows a similar pattern
like the unfiltered condition. So an impression obtained from these results
is that spammers — especially after an elaborate filtering of content has been
undertaken — could in fact be useful to counteract data sparsity issues. Table
shows some exemplary keyword pairs for which the inclusion of spam data had
a positive effect.

However, these results need to be interpretated with caution: First of all,
within the scope of this dissertation there is evidence for both beneficial and
detrimental effects of spam. The latter was especially visible in the analysis of
tagging pragmatics (see Section , where excessive “describers” negatively
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Table 8.4.: Examples of better semantic relations obtained from spam data. For
the given pairs, the semantic quality of the most related tag was

higher when taking into account spammer data.

keyword spammers + non-spammers | non-spammers
education | teaching english_linguistics
bike motorcycle earth

physicians | physicians medical

plans program participatory
pipes pipe bloglines

tax taxes financial_performance
bags bag boomerang
exercises exercise imaging

e-mail email privacy

converter | converters editing

affected the global semantics. Second, one has to take into account the strong
difference in the size of the datasets: While the non-spammer BibSonomy
dataset is the smallest one we used (roughly 2.5 million tag assignments, see
Table its spammer counterpart is an order of magnitude larger (roughly
60 million tag assignments). This obvious discrepancy may also have biased
the results. And finally, as explained in the previous section, the labelling of
spammers has been done both manually and by automatic algorithms — both of
which can not be expected to make solely perfect decisions. Hence one can not
exclude the possibility that there are “normal” users among the “spammers”,
and vice versa.

Despite these considerations, a contribution of this analysis is that spam data
should not be disregarded as a matter of principle when analyzing emergent
semantics. Though a lot of care has to be taken, it seems to be worth to
explore those cases in which the intrinsically malicious spammer activities can
be exploited in a beneficial way.

8.4.3. Summary

In this section, the influence of inappropriate system usage or spam on the
emergence of implicit semantic structures was analyzed. After introducing a
definition of two main spammer groups, namely those who (i) annotate inap-
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propriate content and (ii) target to mislead other users, manual and automatic
spam classification as countermeasures undertaken within the BibSonomy plat-
form were explained. Based on the resulting dataset, the quality of inherent
semantics within both was measured. Despite the vocabulary of spammers
and non-spammers significantly differs, there seemed to be cases in which the
large amounts of spam data had actually a beneficial effect of tackling data
sparseness. As a final recommendation, the outcome of the experiments was
summarized by stating that spam data should not be excluded from semantic
analyses as a matter of principle.

With the presented spam analysis, the chapter on factors of emergent se-
mantics is closing, as well as the second part of this dissertation, which was
concerned with data, methods and influencing factors. The following chapter is
now concerned with concrete applications which can benefit from the insights of
the studies presented so far in this dissertation. As a final step, the conclusions
which can be drawn from the latter are presented.
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Chapter 9.
Applications

While the previous and main part of this dissertation was concerned with a
thorough theoretical and empirical analysis of methods to harvest emergent
semantics from Social Annotation Systems, our next goal within the current
Chapter is to discuss how to make best use of the insights gained hereby. More
precisely, we will present a set of applications which implement or operationalize
the most important findings. Based on the two broad classes of the “Semantic
Web” and “Social Annotations” introduced in the first part of this dissertation,
a first question hereby is which class is targeted: We will start by describing
applications which focus on exploiting the gained insights for enhancing Social
Annotation Systems themselves. As mentioned in Section those do exhibit
a number of weaknesses, which can be nicely addressed by, e. g., the outcomes
of concept learning approaches.

As a next step, we will discuss how some of the shortcomings of typical
Semantic Web applications (see Section can benefit from the captured
emergent semantics from Social Annotation Systems. In general, all mentioned
applications in this chapter are in different “development states”: While some
of them (e.g., those mentioned in Section are already being used for
productive purposes, others represent ideas or prototypical implementations.
The reason to present all of them in a unified manner is to present to the reader
an overview of existing and potential future tools in the field of “bridging the
gap” between social and semantic resource annotation on the Web.

9.1. Enhancing Social Annotation Systems

For the purpose of providing an enhanced user experience of Social Annotation
Systems based on the previous methods and results, there exist two natural
integration points: First, based on the insights on influencing factors of emergent
semantics, it is a desirable goal to develop tools and adaptations which have
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a positive effect to this end. This ideas of “steering” the evolution of the
folksonomy into a semantically richer direction would lead to better results
of tools which capture these semantics, and finally to an enhanced overall
experience. Such tools which foster the emergence process will be presented in
Section

The second natural idea is to use the previously described methods to tackle
directly the inherent shortcomings of Social Annotation Systems, like synonymy,
polysemy or the lack of structure. Because such ideas are basically making the
implicit semantics available to the user in an explicit form, this corresponds
to “feeding back” the learned semantics into the original system. This idea
is especially appealing for two reasons: First, because no external semantic
repository is involved, the kind of semantics should — in the ideal cases —
match exactly the users’ needs, because it essentially does not produce “new”
things, but rather makes existing latent structures visible. Second, because of
imitation processes it might be possible that the exposure to meaningful semantic
relations influences the users towards a “better” kind of annotation, ultimately
fostering the convergence to a globally accepted and universal vocabulary. Such
applications will be discussed in Section [9.1.2

9.1.1. Fostering the Emergence of Semantics

The main results which are relevant for applications targeted towards stimulating
the emergence of semantic structures within Social Annotation Systems are the
ones from Chapter [§ on influencing factors. An important insight hereby was
that having more data is (with certain limitations) desirable in order to allow a
more precise assessment of keyword semantics. Consequently, one could argue
that all tools which enhance user interaction and enlarge the resulting set of
annotations help to foster the emergence of semantics. Based on the experiences
of developing and maintaining the BibSonomy system, a crucial point when
trying to leverage user contributions is to enhance the general usefulness of
a system for a broad variety of tasks. Because a large part of BibSonomy’s
audience stems from an academic environment, an especially important factor
is hereby that the system integrates as seamlessly as possible into the working
routine of doing research and writing papers. The maintenance of publications
lists is hereby a critical use case, as well as the integration of BibSonomy into
existing applications and tools. Because the latter was a core responsibility of
the author as a member of the BibSonomy development team, we will briefly
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describe a set of integration tools. After this, we will discuss how the insights
from analyzing pragmatic aspects of tagging can be operationalized by means
of tag recommendation engines.

Integration tools

When trying to attract users and their contributions to BibSonomy, it is an
important question which specific task they are typically using the system
for. From our own experience, there are “power users” which use BibSonomy
as their personal resource repository, making use of all of its facets. Besides
those, especially the maintenance of publication lists (e.g., on institution or
group websites) seemed to be a use case for which a support by BibSonomy
would be highly desirable. This means if we can provide an added value by
offering a comfortable and automatic maintenance of publication lists, then our
user base might significantly grow. Furthermore, despite BibSonomy offers a
convenient web interface, some users are already accustomed to local solutions for
maintaining their bibliographies. In order to make BibSonomy more attractive,
and ultimately to enable an enhanced user experience by a semantically richer
folksonomy, the author has been the leading developer of the following tools
and applications:

e JabRef Integration: JabRef! is a popular open source application for
client-side management of bibliography files based on the BibTeX-format?.
It offers various convenient facilities which ease the process of creating,
maintaining and using a repository of bibliographic references. As an
example, it allows to directly search and retrieve entries from various
online libraries, without the need of manually typing each publication
detail. Furthermore, it offers a built-in grouping mechanism, which allows
among others to organize a collection based on keywords. These features
have led to its popularity, reflected in roughly between 800 and 1000
downloads each day?. In order to tap into this large user base and its
potentially high number of keyword-annotated bibliographic records, we
developed a plugin which connects a local repository in a convenient way

"http://jabref .sourceforge.net

2http://www.bibtex.org

8 According to http://sourceforge.net/projects/jabref/files/jabref/stats/
timeline, retrieved on 2011/10/17.
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Figure 9.1.: Screenshot of JabRef, including the BibSonomy plugin.

to an online variant within BibSonomy. Figure [0.1] shows a screenshot
highlighting some of its functionalities. On the top left corner, one can
see JabRef’s built-in grouping facility; below that, there is a BibSonomy
tag cloud, which allows browsing and direct retrieval from entries present
in BibSonomy. The latter is complemented by a full-text search facility.

In order to push the entries from client side to our servers, there exist
two mechanisms: First, there is a synchronization option, which guides
the user through a dialog targeted towards aligning his local and remote
bibliography. Furthermore, one or more entries can be individually selected
and uploaded via a menu option. In this way, our goal was to combine
the advantages of a comfortable local bibliography client with those from
a central repository like BibSonomy. From a viewpoint of emergent
semantics, our goal was to enlarge our corpus of annotated content by
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greatly simplifying the process of uploading, directly from within the
JabRef application. Furthermore, because the local grouping facility
follows a hierarchical scheme, this opens up future possibilities to, e. g.,
feed back automatically induced keyword hierarchies from BibSonomy
back into JabRef. The usage of the plugin is also extensively documented?.

e Typo3 Integration: While the JabRef targets to stimulate user con-
tributions mainly by supporting the creation and maintenance phase of
bibliographies, the next tool is focused towards enhancing BibSonomy’s
usefulness for the purpose of making the latter available to the public.
Typically, on personal or group websites, one can find a publication list
for this purpose. Because an up-to-date list of published papers can
be seen as a promotionally effective “asset”, great efforts are sometimes
undertaken to this end. Instead of manually created static web pages,
many researchers are using content management platforms like Typo3® for
this purpose. However, instead of potentially maintaining two reference
collections (one for the publication list and one as a personal library),
our idea was to build an extension which allows to display entries from
BibSonomy directly within a Typo3-based website, formatted in an ap-
propriate manner. The resulting extension can be found in the Typo3
Extension Repository®. Figure shows a screenshot of its configuration
interface, while Figure displays a publication list as an exemplary
output. The offered features mainly correspond to controlling the options
of BibSonomy’s internal layout rendering engine, i. e., selection of content
via a URL pattern, and choosing a layout template to render the selected
entries. Apart from that, tag clouds can also be displayed. While these
functionalities are not directly related to adding content to BibSonomy,
we think that providing a solution to an often requested task (namely the
comfortable and centralized management of publication lists) provides
a further incentive to use BibSonomy and hence fosters indirectly the
annotation of content.

¢ REST-API: While the above tools were targeted towards integration with
two specific existing applications, the establishment of an interface which

“http://www.bibsonomy.org/help/doc/jabref-plugin/index.html
Shttp://typo3.org
Shttp://typo3.org/extensions/repository/view/ext_bibsonomy/current/
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Figure 9.2.: Screenshot of the Typo3 plugin configuration.

allows for integration with a variety of potential future applications was the
driving force behind developing a REST-based programming interface (i. e.,
a REST-API). Initially built within the scope of a student project (Borkl
2006), its further development and maintenance was primarily lead by the
author. The basic functionality of the API is to allow the interaction with
the system using a standardized XML data format, making it possible to
create, read, update and delete (CRUD) publication and bookmark entries.
For this purpose we are offering a dedicated URL syntax’, against which
different HTTP requests can be sent in order to access the corresponding
functionalities. Again, the REST-API on its own does not lead directly
to new content being added to BibSonomy; however, the existence of
a programmatic access to BibSonomy data is intended to catalyze the
development of third-party applications based on the latter, which finally
can be expected to have positive effects on the total amount of Social
Annotation data ending up in our system.

"http://www.bibsonomy.org/help/doc/api.html
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Figure 9.3.: Screenshot of a publication list created by the Typo3 plugin.

Tag Recommendation

Besides the goal to “collect” more data and hence to improve potentially
emerging semantics, another insight from analyzing pragmatic aspects of tagging
(Section was that a more “verbose” style of tagging is desirable. In other
words, apart from attracting new active users, an additional goal is to provide
incentives for a richer annotation, especially one which includes more keywords.
While the goal of changing user habits is hereby probably hard to reach (and
may also not be desired), another viable strategy is to make richer annotations
easier by providing support during the annotation process. A typical tool in this
field are tag recommenders, which are suggesting a set of keywords. Because the
process of choosing among the latter is cognitively easier than coming up with
own keywords, the hope is that this alleviation is reflected in a more verbose
annotation. A large number of approaches exists in this direction; see
for an overview. Some of the mentioned works are also available
as implemented recommenders within BibSonomy; it will be an interesting
research question to examine their influence on the resulting vocabulary.
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Apart from tools which are intended to foster the emergence of semantics,
the following section highlights ideas to make use of the latter by different kinds
of feedback mechanisms.

9.1.2. Feeding back Semantics

Having observed the inverse relation between the strengths and weaknesses of so-
cial and semantic annotation (see Section , a further promising application
field is use the harvested semantics to address some inherent shortcomings of
Social Annotation Systems. Because the latter are often related to homonymy,
polysemy and lack of structure, we will present (partially implemented) ideas
of semantic search, concept recommendation, vocabulary maintenance and
semantic browsing to address these issues.

Semantic Search

Especially the keyword-based retrieval of resources within Social Annotation
Systems is negatively affected when different users use varying annotations for
the same “concept”. This problem could be tackled effectively by the methods
of concept learning presented in Section [7.2} Having identified that, e.g., oo
and object-oriented belong to the same “synset”, using this information e. g.,
for query expansion would raise the possibility to find relevant content. On
the other hand, polysemous keywords lower the usability of the search results,
because the returned resources may belong to different (potentially unrelated)
meanings. Such cases could be detected using the sense discovery methods
mentioned in Section [7.2.3] in the best case completed by a disambiguation step.
Finally, in case an overly general or overly specific keyword is used, the number
of returned results will be either to high or too low. These problems could be
addressed by an automatically learned concept hierarchy (see Section, which
would facilitate the suggestion of broader or narrower search terms, leading to
a suitable number of results.

Vocabulary Maintenance

Despite the data model of many Social Annotation Systems is characterized
by a “flat” keyword space, some systems allow the user-driven specification of
keyword relations. Within Delicious, those are denoted as “bundles”, while
BibSonomy facilitates the creation of generic subtag-supertag relationships. A
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set of relationships including a particular keyword is denoted a a “concept”.
Those can be used to structure the keyword and resource collection. Because
this process can be expected to be laborious, supporting it by means of a
“concept recommender” would be desirable: Similar to tag recommendation
engines (as explained in the previous section), the goal would be to come up
with concept suggestions, making it easier for users to structure their annotation
vocabulary.

Another experience, especially when the number of keywords is growing, is
that the vocabulary becomes “noisy”, in the sense that users do not necessarily
stick to a consistent keyword usage. As an example, it might happen that
synonymous keywords are introduced, because the tagger simply does not
remember which variants he used before. While this may even be desired (e. g.,
by “describers” as explained in Section, the elimination of this noise would
surely be useful to a number of users. While the aforementioned suggestion
of concepts is one possibility, another one is to provide a facility to “clean’
the vocabulary by providing recommendations which keywords should, e. g.,
be replaced by a canonical variant. Such activities were also subsumed under
the term “tag gardening” in the literature (Weller and Peters, |2008). As an
example, such a suggestion could be to replace all occurrences of the keywords
ontology and ontologies with the standard singular form ontology. Generally
speaking, this would tackle the retrieval problems of Social Annotation Systems
directly at the annotation level, while the aforementioned methods of semantic
search target the retrieval process instead.

i

Semantic Browsing

Besides their role as a searchable repository, especially the various browsing
facilities of Social Annotation Systems have been seen as one of their core
strengths (Golder and Huberman| 2006|). However, typically exploration is
possible only along ezplicit links between tags, users and resources. While this
already allows for serendipitous discovery of interesting content, the additional
possibility of a “semantic” browsing direction would represent an orthogonal
and potentially useful aspect. For such purposes, especially the measures of
semantic keyword relatedness (Section are applicable. More precisely, on
each keyword page within BibSonomy, we added an additional facility to browse
along “similar tags”, which are computed based on the tag context relatedness
(see Figure . The similarities are recomputed on a daily basis in order to
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Figure 9.4.: Screenshot of a semantic browsing facility within BibSonomy.

reflect changes in the underlying semantics. As is visible within the example
of Figure this introduces in fact a new kind of browsing direction: While
the most related keywords to python are programming, django, tutorial and
software, its most similar tags are perl, 1isp, c++ and code. This allows e. g.,
to extend the browsing activities also to other kinds of programming languages.

Shifting the focus away from Social Annotation Systems themselves, the
following section discusses ideas on how the captured emergent structures can
be useful for other kinds of semantic applications.

9.2. Enhancing Semantic Applications
While having a stronger background on the “social” side by running BibSonomy

as sharing platform, our ideas to reuse the learned semantic structures for
external purposes remain on a more visionary level. However, having observed
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the deficiencies of the “ontological” way of capturing knowledge, we expect
the strongest benefits in the field of optimizing web search engines, ontology
maintenance and rich user profiling — each of which will be briefly explained in
the following.

Optimizing Web Search Engines

The idea of optimizing web search engines by exploiting social information is
not new; as an example, (Bao et al., 2007) proposed a SocialPageRank including
information from Delicious. Another example is (Au Yeung et al.l [2008),
who reported high precision when using semantics from collaborative tagging
systems to disambiguate web search queries. These two works exemplify that the
meaningfulness of the captured semantic structures within Social Annotation
platforms is not limited to the systems themselves, but can also be reused in
different contexts. So from a more general point of view, it seems plausible
that, e. g., the synonym sets discovered by the concept learning methods from
Section can not only be useful for enhancing search within their originating
system, but also, e.g., for query expansion in the context of traditional web
search engines.

Ontology Maintenance

The knowledge acquisition bottleneck and the high cost of maintaining a
consistent and up-to-date ontology effectively hampers their widespread usage.
Though the semantic structures learned from Social Annotation data can in
their current form surely not be seen as a direct replacement, they can still be
very useful to assist knowledge engineers in construction and maintenance tasks.
Especially semi-automatic approaches which include collaborative ontology
editing tools like Soboleo (Braun et al., 2007b|) could benefit strongly from, e. g.,
presenting the creators with a set of concept suggestions derived from Social
Annotation data. Once an ontology has been established, it is thinkable to keep
it up-to-date (or to foster its “maturing” (Braun et al.,|2007a)) by checking on a
regular basis, e. g., if there exists a new meaning of a contained term (using the
sense discovery methods described in Section [7.2.3). In addition, the synonym
resolution methods from Section could be used to complete the vocabulary
by including newly introduced synonymous keywords from Social Annotation
Systems.
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Rich User Profiling

Providing the user with a personalized experience is an important goal in many
Web applications. Ranging from shopping recommendations to search results,
a concise representation of a user’s interest is hereby a great advantage. While
semantic techniques are an obvious candidate (e.g., (Middleton et al., 2001))),
other studies have explored the value of Social Annotations for web search
personalization (Noll and Meinel, 2007). Because within this field, the prompt
reaction to changes in user interests is especially important, the adaptivity
of usage-driven semantics derived from Social Annotation Systems could be
especially useful. One could imagine, e. g., to complete the set of terms which
depict a user’s interest by learned synonym keywords, or to sharpen his profile
by disambiguating the latter.

9.3. Summary

This chapter was intended to convey an impression to the reader how the
insights gained from the previous studies can be exploited by concrete appli-
cations. These concerned mainly two directions, namely (i) enhancing Social
Annotation Systems themselves, and (ii) transferring the learned semantic
structures to external applications. For the first class, integration tools like a
JabRef plugin or a REST-API were described as means to foster the emergence
of semantics, similar to tag recommendation engines which stimulate the rich
annotation. Furthermore, it was explained how inherent weaknesses of Social
Annotation Systems could be tackled by applications in the field of semantic
search, vocabulary maintenance and semantic browsing. Apart from those
methods of “feeding back” the learned semantics into their originating systems,
in the following external applications were highlighted which could benefit from
the latter. These were mainly found in the fields of optimizing web search
engines, creating and maintaining ontologies and supporting personalization by
enhanced user profiling techniques.

With these explanations, the chapter on applications is closing. The following
chapter summarizes the overall contributions of this dissertation, and discusses
which questions could not be answered within its context, before closing with
concluding remarks.
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Conclusions

The core topic of this dissertation was to explore possible synergies between
two contrasting paradigms of Knowledge Organization and Engineering on the
Web, namely Social Annotations and the Semantic Web. The pursued direction
hereby was to explore the possibility to “mediate” between both by means of
ontology learning methods which capture emergent semantics. The final chapter
is now intended to briefly summarize the results of each major part, and then
to clarify the contributions of this dissertation. An outlook to promising further
research directions will also be given.

10.1. Summary

The first part of this dissertation was concerned with laying the groundwork
by introducing Social Annotations and the Semantic Web as two paradigms of
organizing information resources on the World Wide Web. Hereby the individ-
ual characteristics were discussed, and especially the respective strengths and
weaknesses were highlighted: While Social Annotations represent an immedi-
ately useful service, which has demonstrated its potential to engage large user
populations into the process of resource annotation, its inherent uncontrolled
nature and lack of structure can be problematic. On the other hand, ontolo-
gies as a core element of the Semantic Web offer a precise and unambiguous
knowledge representation paradigm, but suffer from the knowledge acquisition
and annotation bottleneck. This apparently “inverse” relation of strengths
and weaknesses was the main motivation behind the subsequently proposed
approach to bridge between both worlds by means of ontology learning methods.
The main difference between Social Annotation data and “traditional” input of
ontology learning algorithms was then explained to consist mainly in (i) the
motivation of contributors, (ii) the communication among contributors and (iii)
the requirements for contribution. In the following coverage of relevant work
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and the state of the art in this field, the existing works were categorized based
on a set of comparison dimensions, namely which data source they exploit,
what kind of data filtering they pursue, which learning technique is used to
address which learning task, and finally which kind of evaluation is performed.
An outcome hereby was that a systematic and comparative study of the appli-
cability of ontology learning methods to capture emergent keyword semantics is
largely missing. With the goal to address this gap, the precise approach of this
dissertation was elaborated.

After introducing which Social Annotation Systems (e. g., BibSonomy and
Delicious) were used as objects of investigation, and describing a set of gold-
standard ontologies for evaluation purposes, the following core chapter started
with a clarification which learning tasks are specifically addressed. For this
purpose, an adapted version of the ontology learning layer cake was proposed,
consisting mainly of four parts: (i) Measures of semantic relatedness, (ii)
concept learning, (iii) measures of semantic generality and (iv) concept hierarchy
learning. Then, several methods and approaches for each task were introduced
and compared, using mostly a reference-based evaluation paradigm.

For the case of semantic relatedness, distributional measures based on different
context definitions were compared to co-occurrence and graph-based variants.
It turned out that the tag context relatedness, which captures the semantics
of a keyword based on its co-occurrence distribution with other keywords, is
a semantically precise and computationally feasible metric across a variety
of datasets. The analysis of alternative aggregation and weighting schemes
identified pointwise positive mutual information (PPMI) to have a positive effect.
For some datasets, alternative similarity measures like the a-skew divergence
showed better results.

These insights were the basis of subsequently introduced methods to discover
concepts, firstly using synonymy relations among keywords. Hereby hierarchical
clustering, together with an appropriate choice of an inconsistency coefficient
threshold, seemed to lead to two natural steps of synonym grouping. For the
purpose of discovering different senses of a given keyword, different kinds of
clustering techniques which partition its context were analyzed. Among them,
hierarchical clustering with a distance criterion threshold led to the best results,
measured by the ability to reproduce manually defined senses from WordNet
and a disambiguated dataset.

As a prerequisite to infer hierarchical structures, the next step was the study
of measures of semantic generality, which capture the level of “abstractness”
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of a given keyword. Hereby we reported mixed results of different measures
among datasets, but two consistent observations where (i) that measures based
on a co-occurrence network were better suited than those based on similarity
networks, and (ii) that computationally less complex measures (like, e. g., the
frequency count or degree centrality) already yielded good approximations of
semantic generality.

The final step in the layered model of capturing emergent semantics was
then to include concept hierarchies from the initially flat keyword space. For
this purpose, two hierarchical clustering algorithm variants were compared
to generality-based algorithms, which were specifically designed for Social
Annotation data. Based on a comparison of the outcomes against several
reference taxonomies, the latter showed a better performance. This was also
confirmed by a user study, involving human consistency assessments of the
learned hierarchical relations. In addition, the consideration of the learned
synonyms and polysemous keywords led to a further improvement of the results.

Shifting our attention away from specific methods, the next step was to
study which factors lead to the evolution of better (or worse) implicit semantic
structures. Here we analyzed a set of keyword properties, finding out that
a higher degree of usage as well as a careful normalization with respect to
interface artifacts have beneficial effects. From a different perspective, we then
analyzed pragmatic aspects, asking the question if the way how keywords are
used could potentially affect what tags mean. Based on a broad distinction
of annotators according to their habits into categorizers and describers, the
interesting outcome was that the verbosity of describers led to a faster and
clearer emergence of keyword semantics — which even outperformed the semantic
precision of the complete data in some cases. This provided evidence for a causal
link between tagging pragmatics and semantics, which should be considered
when trying to capture emergent semantics. As a last step, because malicious
users are attracted by the popularity of Social Annotation Systems, we were
interested if their activity could be exploited as well. In general, we observed
hereby evidences for both a detrimental (by introducing noisy relations) and
beneficial (by providing simply more data) influence. We concluded that a
choice respecting the individual characteristics of a specific dataset should be
preferred to an exclusion of spammer data as a matter of principle.

Based on the insights gained in the methodological chapters, we then high-
lighted a set of potential applications. These were broadly found in two areas:
First, in the field enhancing Social Annotation Systems themselves, either by
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stimulating the emergence of semantics (using, e. g., integration tools like the
JabRef Plugin or the REST-API) or feeding back the learned semantics into the
originating system (using, e. g., semantic search or browsing facilities). Second,
we focused on applications targeted towards improving semantic applications;
hereby we mentioned the areas of optimizing web search engines, ontology
maintenance and rich user profiling.

In the next section, we will relate these results to the overall contributions of
this dissertation.

10.2. Contributions and Outlook

This work has contributed to the advancement of the state of the art in the
field of analyzing emergent semantics in various ways. Specifically, we see the
contributions hereby mainly in the following fields:

e We presented a methodology of semantic grounding, which allows to assess
the extent to which semantic structures derived from Social Annotation
Systems resemble those which are defined in existing semantic resources
like ontologies. This methodology is furthermore suitable to analyze differ-
ent methods and algorithms to make these structures explicit, especially
regarding (i) their ability to capture them in a precise way and (ii) the
question which kind of relations are preferentially captured by a particular
approach. This allows a more principled choice of methods for a given
task.

e Based on the aforementioned methodology, we performed extensive empir-
ical studies to examine which methods from the field of ontology learning
and related areas are applicable to the domain of Social Annotation
systems. Those were validated on a variety of datasets which are charac-
terized by different properties, in order to assure that the findings can be
generalized. As a result, we identified a set of suitable tools for various
purposes related to capturing semantic structures, which can be directly
applied in the context of further analyses.

e Finally, we have contributed to a deeper understanding of the phenomenon
of emergent semantics within Social Annotation data by analyzing several
influencing factors. Hereby we provided especially empirical evidence
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for a causal link between tagging pragmatics (i.e., different annotation
patterns) and the resulting keyword semantics. These insights can on
the one hand be used to further fine-tune and optimize the capturing
methods, but are on the other hand also a valuable input to operators
of Social Annotation Systems which seek to stimulate the emergence of
semantic structures within their platforms.

Instead of “concluding” the research direction pursued in this dissertation,
our results of course open up several interesting areas for future research. We
expect the most promising starting points in the fields described below.

Characterization of Emergent Semantics from Different Sources

While we provided a systematic analysis of a variety of Social Annotation
Systems, the phenomenon of emergent semantics is not limited to those, but can
be observed in other information systems as well (Aberer et al., 2004). Especially
as pervasive technologies and ubiquitous connectivity are entering more and more
parts of our professional and personal lives, we think that the resulting growing
amount of digital traces of humans interacting with information resources
exhibits similar dynamics. Because it would surely be too narrow to treat all
such systems the same, the question arises which kind of semantics emerges from
a particular sort of system. As an example, microblogging platforms like Twitter
might be appropriate for mining a more ephemeral kind of knowledge, compared
to what we could harvest from, e. g., Delicious. We expect a great benefit from a
comparative study to this end (potentially based on the methodology proposed
within this dissertation), ultimately envisioning some kind of framework by
which emergent semantics from different systems can be characterized.

Further Refinement of Captured Semantics

Although some of our proposed methods reach a remarkable semantic “precision”,
there is still room for the overall improvement of the quality of the learned
semantics. Apart from further optimizing the methods themselves, an interesting
question is if an iterative refinement approach is feasible. The iteration steps
could hereby take place on various levels: First, an idea would be to, e.g.,
compute an iteratively refined synsetized folksonomy, i.e., starting with synsets
which consist of the original keywords, and then to recompute co-occurrence
and the synonymy measures to derive “synsets of synsets” in a second step. The
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hope hereby is that the repetition of this process converges to a semantically
more precise system, compared to the initial state.

Combination of Evidences of Emergent Semantics

Within the scope of this dissertation, exclusively the network structure of Social
Annotation Systems was exploited to derive emergent semantic relations. While
this was done in order to ensure the applicability to different kinds of system and
resource types, one might expect that the consideration of additional information
sources leads to better results. Hereby it would be especially interesting to
investigate how several information sources can be combined — as an example,
in a system which is made up of textual content, and offers the definition of
keyword relations, the integration of all these evidences of semantics into a
single model might be beneficial.

Tighter Integration of Social Annotation Systems and Semantic Resources

While the approaches presented in this thesis can contribute to “bridge” between
Social Annotation Systems and semantic resources, the question how exactly
both can be integrated was not elaborated in detail. Interesting issues to this
end are, e.g., how to define interfaces by which the user interacts with the
learned semantics, or how to ensure quality within the process of ontology
emergence. Furthermore it would be interesting to study how the process of
“feeding back” the learned semantics influences the further development of a
Social Annotation System. While we expect further synergies from a reciprocal
improvement of Social Annotations and ontologies, this assumption would have
to be validated in further studies.

10.3. Closing Remarks

Social Annotations should not be seen as the “silver bullet” of knowledge
organization on the Web, and neither should their emergent semantic structures
be understood as an intended ultimate replacement for ontologies. However,
their popularity has shown up important requirements of humans interacting
with growing amounts of information resources, which were obviously not met
by prior approaches. In this light, Social Annotations along with the emergent
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semantics should be interpreted as a further mosaic piece, contributing to
complete the picture how to design an intelligent Social Semantic Web.
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