
Context as a Service

Dissertation

in partial fulfillment of the requirements for the degree

Doktor der Naturwissenschaften (Dr. rer. nat.)

for submission to the

Faculty of Electrical Engineering and Computer Science

University of Kassel, Germany

Kassel 2012
Dipl.-Inf. Michael Wagner

Advisors:
Prof. Dr. Kurt Geihs, Universität Kassel
Prof. Dr. Christian Becker, Universität Mannheim

Additional Doctoral Committee Members:
Prof. Dr. Klaus David, Universität Kassel
Prof. Dr. Arno Wacker, Universität Kassel

Date of Defense: 4 March 2013

To Anke and Jakob

Contents

List of Figures v

List of Tables vii

List of Listings ix

List of Algorithms xi

List of Abbreviations xiii

Abstract xv

Zusammenfassung xvii

Acknowledgements xix

I Foundations 1

1 Introduction 3
1.1 Motivation . 3
1.2 Problem Statement . 6
1.3 Solution Approach . 8
1.4 Contribution . 10
1.5 Structure of the Thesis . 10

2 Ubiquitous Computing Systems 13
2.1 Ubiquitous Computing . 13
2.2 Context . 16

2.2.1 Context Awareness . 16
2.2.2 Characteristics of Context Data 17
2.2.3 Quality of Context . 18
2.2.4 Cost of Context . 23

2.3 Self-Adaptation . 24
2.3.1 Adaptation Mechanisms . 24
2.3.2 Adaptation Policies . 25

3 Logic and Ontologies 27
3.1 Proof Methods for Propositional Logic 28

3.1.1 Analytic Tableaux for Propositional Logic 28
3.1.2 Resolution for Propositional Logic 32

i

3.2 Proof Methods for First-Order Logic . 33
3.2.1 Resolution for First-Order Logic 33
3.2.2 Analytic Tableaux for First-Order Logic 36

3.3 Ontologies . 37
3.3.1 General Discussions on Ontologies 38
3.3.2 OWL . 40

4 Related Work 43
4.1 Existing Context-Aware Systems . 44

4.1.1 Adaptive middleware for context-aware applications in smart-homes 45
4.1.2 ASC-CoOL & CoCo . 45
4.1.3 AWARENESS . 46
4.1.4 CARE . 47
4.1.5 CoBrA . 48
4.1.6 CONTEXT . 48
4.1.7 Context Toolkit . 49
4.1.8 COSMOS . 50
4.1.9 EEMSS . 51
4.1.10 Gaia . 52
4.1.11 Hydrogen . 52
4.1.12 Information exchange and fusion in dynamic and heterogeneous

distributed environments . 53
4.1.13 Managing Context Information in Mobile Devices 54
4.1.14 MobiLife . 55
4.1.15 MUSIC & Paspallis . 55
4.1.16 Nexus . 56
4.1.17 Quality-Aware Context Management Middleware (QCMM) 56
4.1.18 Sentient Object Model . 57
4.1.19 SOCAM . 58
4.1.20 Supporting pervasive computing applications with active context

fusion and semantic context delivery 58
4.2 Summary . 59

II Solution Approach 63

5 Overview 65

6 Context Model 69
6.1 Layers of the Context Model . 69
6.2 Context Information . 71
6.3 Metadata . 74
6.4 Operations . 76

6.4.1 Inter-Representation Operations 77
6.4.2 Metadata Operations . 79

6.5 Hierarchical Composition of the Ontology 79
6.6 Discussion . 80

ii Contents

7 Context Offer and Query Language 83
7.1 Context Offer and Request . 84
7.2 Constraints . 85
7.3 Selection Function . 86
7.4 Example . 88
7.5 Discussion . 90

8 Context Offer and Query Matching 91
8.1 Initial Matching . 92
8.2 Mediation Check . 93
8.3 Metadata Constraint Matching . 101
8.4 Example . 106
8.5 Discussion . 109

9 Context Service Selection 113
9.1 Motivating Example . 114
9.2 The Selection Approach . 116

9.2.1 Syntactic Elements . 116
9.2.2 Semantics . 118

9.3 Calculation of the Domain of a Quality or Cost Dimension 122
9.3.1 Example . 125

9.4 Selection Algorithm . 126
9.5 Example . 130
9.6 Discussion . 135

10 Architecture 139

III Evaluation 145

11 Demonstrators 147
11.1 Study of Context Information, QoC, and CoC in Related Work 148
11.2 General Description of the Demonstrators 152
11.3 Demonstrator A: Heterogeneity . 158
11.4 Demonstrator B: Simple Selection . 163
11.5 Demonstrator C: Multiple Selection . 170
11.6 Demonstrator D: Discovery of Remote Offers 172
11.7 Demonstrator E: Cost Minimization . 173

12 Performance and Scalability 175
12.1 Mediation Service . 175
12.2 Constraint Matching . 182
12.3 Selection Service . 185

13 Conclusions 189
13.1 Summary of Contributions . 189
13.2 Outlook and Future Work . 192

Contents iii

IV Appendices 195

A Logging Output for Demonstrator B 197

B Erklärung 199

C Bibliographies 201
C.1 Bibliography . 201
C.2 Publications as (Co-)Author . 215

iv Contents

List of Figures

1.1 Overview of the Solution Approach. 9

2.1 Taxonomy of Computer Systems Research Problems in Pervasive Computing 14
2.2 Interdependence between QoS, QoS and QoD 19
2.3 QoC Processing Model . 21
2.4 States and Actions . 25

3.1 Analytic Tableaux for Different Construction Rules. 29
3.2 Analytic Tableau for ¬(p ∧ q)→ (¬p ∨ ¬q) 31
3.3 Analytic Tableau for (∀x)(Px→ Qx)→ ((∀x)Px→ (∀x)Qx) 37
3.4 Semantic Web Layer Cake . 40
3.5 RDF Statement and Example . 41

5.1 Detailed Overview of the Solution Approach including Stakeholders. . . . 66

6.1 Layers of the Context Model . 70
6.2 General Concepts: Entity, Scope and Representation 71
6.3 Several Examples for Multiple Representations 72
6.4 Detailed Example for a Composite Representation 73
6.5 Context Metadata . 75
6.6 Context Operations . 77
6.7 Hierarchical Composition of the Ontology 80

7.1 Overview of the Context Offer and Query Language (COQL) 84
7.2 COQL: Subscription Modes . 85
7.3 COQL: Operators . 86
7.4 COQL: Entity Constraints . 86
7.5 COQL: Scope Constraints . 87
7.6 COQL: Metadata Constraints . 87
7.7 COQL: Selection Function . 88

8.1 Overview on the Context Offer and Query Matching 91
8.2 Mediator Chain Overview . 94
8.3 Example for Metadata Constraint Matching 105
8.4 Example for the Context Offer and Query Matching 106
8.5 Matching Example – Metadata Constraint Matching 107
8.6 Mediator Chain Example . 108
8.7 Matching Example – Metadata Constraint Matching 2 109

9.1 Motivating Example for the Selection . 115
9.2 Example of a Selection Process – Offers and Queries 132

v

10.1 Context Service Infrastructure and Execution Environment 139
10.2 Context Service Middleware Architecture 141
10.3 Screenshot of the Android Visualization Application 142
10.4 Context Service Lifecycle . 144

11.1 Demonstrator A: Chains in Scenario 1. 161
11.2 Demonstrator A: Screenshots of the Visualization Application in the first

Scenario. 162
11.3 Demonstrator A: Chains in the Second Scenario 163
11.4 Demonstrator A: Screenshot of the Visualization Application for the Second

Scenario. 164
11.5 Demonstrator B: Potential Mediator Chains in the First Scenario 165
11.6 Demonstrator B: Screenshots of the Visualization Application in the First

Scenario . 168
11.7 Demonstrator B: Potential Mediator Chains/Offers in the Second Scenario 169
11.8 Demonstrator D: Remote Discovery of Context Offers on the Second Device 173
11.9 Demonstrator E: Power Consumption in Different Use Cases 174

12.1 Scalability Evaluation: Number of Representations Compared to Generated
IROs . 176

12.2 Scalability Evaluation: Resulting Graph for Four Representations 177
12.3 Scalability Evaluation: Number of Chains and Cycle Exceptions Depending

on Number of IROs . 178
12.4 Scalability of the Establishment of Mediator Chains. 179
12.5 Memory Usage for the Establishment of Mediator Chains 180
12.6 Mean Memory Usage per Normalized Mediator Chain 181
12.7 Comparison of the Memory Usage on Different Devices during the

Establishment of Mediator Chains . 182
12.8 Scalability of Matching Metadata Constraints. 183
12.9 Memory Usage while Matching Metadata Constraints 184
12.10 Mean Runtime of the Selection . 187
12.11 Mean Runtime of the Selection Grouped by Number of Offers 188
12.12 Mean Memory Usage of the Selection Process 188

vi List of Figures

List of Tables

2.1 Quality of Context Parameters . 23

3.1 Operation (A) for Construction of an Analytic Tableau 30
3.2 Operation (B) for Construction of an Analytic Tableau 30

4.1 Overview on Existing Context-aware Systems 61

8.1 Definition of the Metadata Domain . 104

9.1 Example for Domain Calculation – Historical Values 126
9.2 Example for Domain Calculation – Intermediate Results 127
9.3 Selection Example 1 – Intermediate Results 133
9.4 Selection Example 1 – Results . 134
9.5 Selection Example 2 – Results . 135
9.6 Selection Example 3 – Results . 136

11.1 Sensor Types Supported by the Android Platform 149
11.2 Battery Consumption of the Accelerometer on a Google Nexus One 149
11.3 Activity Detection Time in the Activity Recognition Approach by Wang et al. 151
11.4 Evaluation of Accuracy and Power Consumption in the Activity Recognition

Approach by Yan et al. 152
11.5 Context Offers of the Implemented Context Services 156
11.6 Context Queries of the Implemented Context Services 157
11.7 Demonstrator A: Context Queries . 158
11.8 Demonstrator A: Potential Context Offers for Scenario 1 and 2. 159
11.9 Demonstrator A: Inter-Representation Operations 160
11.10 Demonstrator A: Metadata Operation . 160
11.11 Demonstrator C: Context Queries . 170
11.12 Demonstrator C: Mediator Chains . 171

12.1 Scalability Evaluation: Generated IROs for Four Representations 176
12.2 Runtime Statistics for Mediation . 179
12.3 Memory Usage for Mediation . 180
12.4 Memory Usage for Mediation (Desktop Computer) 181
12.5 Memory Usage for Constraint Matching of 500 Constraints 184
12.6 Runtime Statistics . 186

vii

List of Listings

7.1 Example of a Context Query . 89

8.1 Example of Metadata Constraints . 102
8.2 Example of Metadata Constraints 2 . 104

9.1 Example of Metadata Constraints 3 . 125

11.1 Demonstrator B: Logging Output of the Selection Service in the First
Scenario . 166

A.1 Demonstrator B: Logging Output of the Selection Service for the Second
Scenario . 197

ix

List of Algorithms

3.1 Resolution Algorithm . 33
3.2 Skolem Algorithm . 34
3.3 Gilmore’s Algorithm . 35
3.4 Ground Resolution Algorithm . 35

8.1 Algorithm checkMediation(query, chainin, level) 95
8.2 Algorithm checkMetadataMediation(query, chain) 96
8.3 Algorithm generateInputQueryForIRO(iro, offer) 99
8.4 Algorithm generateOutputForIRO(iro, offer) 100

9.1 Algorithm select(query, chainSet) . 127

xi

List of Abbreviations

API . Application Programming Interface

AUF . Aggregated Utility Function

CAS . Context-Aware System

CMUF Cost Minimization Utility Function

CNF . Conjunctive Normal Form

CoC . Cost of Context

COQL Context Offering and Query Language

CQL . Context Query Language

DNF . Disjunctive Normal Form

FCL . Feedback Control Loop

GPS . Global Positioning System

IQR . Interquartile range

IRI . Internationalized Resource Identifier

IRO . Inter-Representation Operation

MOO Multi-Objective Optimization

OWL . Web Ontology Language

QoC . Quality of Context

QoD . Quality of Device

QoS . Quality of Service

RDF . Resource Description Framework

RDF-S Resource Description Framework Schema

SLA . Service-Level Agreement

SOC . Service Oriented Computing

SUF . Single Utility Function

UC . Ubiquitous Computing

URI . Uniform Resource Identifier

WGS84 World Geodetic System 1984

xiii

Abstract

In the vision of Mark Weiser on ubiquitous computing, computers are disappearing
from the focus of the users and are seamlessly interacting with other computers and
users in order to provide information and services. This shift of computers away from
direct computer interaction requires another way of applications to interact without
bothering the user. Context is the information which can be used to characterize the
situation of persons, locations, or other objects relevant for the applications. Context-
aware applications are capable of monitoring and exploiting knowledge about external
operating conditions. These applications can adapt their behaviour based on the retrieved
information and thus to replace (at least a certain amount) the missing user interactions.
Context awareness can be assumed to be an important ingredient for applications in
ubiquitous computing environments. However, context management in ubiquitous
computing environments must reflect the specific characteristics of these environments,
for example distribution, mobility, resource-constrained devices, and heterogeneity of
context sources.

Modern mobile devices are equipped with fast processors, sufficient memory, and
with several sensors, like Global Positioning System (GPS) sensor, light sensor, or
accelerometer. Since many applications in ubiquitous computing environments can
exploit context information for enhancing their service to the user, these devices are
highly useful for context-aware applications in ubiquitous computing environments.
Additionally, context reasoners and external context providers can be incorporated. It
is possible that several context sensors, reasoners and context providers offer the same
type of information. However, the information providers can differ in quality levels
(e.g. accuracy), representations (e.g. position represented in coordinates and as an
address) of the offered information, and costs (like battery consumption) for providing
the information.

In order to simplify the development of context-aware applications, the developers should
be able to transparently access context information without bothering with underlying
context accessing techniques and distribution aspects. They should rather be able to
express which kind of information they require, which quality criteria this information
should fulfil, and how much the provision of this information should cost (not only
monetary cost but also energy or performance usage). For this purpose, application
developers as well as developers of context providers need a common language and
vocabulary to specify which information they require respectively they provide. These
descriptions respectively criteria have to be matched. For a matching of these descriptions,
it is likely that a transformation of the provided information is needed to fulfil the criteria
of the context-aware application. As it is possible that more than one provider fulfils the
criteria, a selection process is required. In this process the system has to trade off the
provided quality of context and required costs of the context provider against the quality
of context requested by the context consumer. This selection allows to turn on context

xv

sources only if required. Explicitly selecting context services and thereby dynamically
activating and deactivating the local context provider has the advantage that also the
resource consumption is reduced as especially unused context sensors are deactivated.

One promising solution is a middleware providing appropriate support in consideration of
the principles of service-oriented computing like loose coupling, abstraction, reusability,
or discoverability of context providers. This allows us to abstract context sensors,
context reasoners and also external context providers as context services. In this thesis
we present our solution consisting of a context model and ontology, a context offer
and query language, a comprehensive matching and mediation process and a selection
service. Especially the matching and mediation process and the selection service differ
from the existing works. The matching and mediation process allows an autonomous
establishment of mediation processes in order to transfer information from an offered
representation into a requested representation. In difference to other approaches, the
selection service selects not only a service for a service request, it rather selects a set
of services in order to fulfil all requests which also facilitates the sharing of services.
The approach is extensively reviewed regarding the different requirements and a set of
demonstrators shows its usability in real-world scenarios.

xvi Abstract

Zusammenfassung

In Mark Weisers Vision von ubiquitären Computern verschwinden Computer aus
dem Blickfeld der Nutzer und interagieren nahtlos mit anderen Computern und
Nutzern um Dienste und Informationen bereitzustellen. Durch das Verschieben des
Computers in den Hintergrund des Nutzers wird eine andere Art an Anwendungen
benötigt, um weiterhin zu interagieren allerdings ohne den Nutzer zu stören. Der
Kontext einer Anwendung umfasst alle Informationen, die genutzt werden können
um Situationen, Orte oder andere für die Anwendung relevante Objekte zu beschreiben.
Kontextsensitive Anwendungen sind in der Lage ihre Umgebung zu überwachen und
Wissen über externe Betriebsbedingungen anzusammeln. Diese Anwendungen können ihr
Verhalten dynamisch an die gesammelten Informationen anpassen und somit (zumindest
einen Teil) der fehlenden Nutzerinteraktion ersetzen. Kontextsensitivität kann also als
wichtiger Baustein für Anwendungen im Umfeld von ubiquitären Computern angesehen
werden. Dabei müssen kontextsensitive Anwendungen in Umgebungen ubiquitärer
Systeme besondere Herausforderungen meistern, wie beispielsweise die Verteilung von
Informationen über diverse Geräte, die Mobilität dieser Geräte, Beschränkung von
Geräteressourcen und Heterogenität von Informationsquellen.

Moderne mobile Geräte sind heutzutage mit schnellen Prozessoren, großem Speicher
und mehreren Sensoren, wie Global-Positioning-System-Sensor (GPS), Lichtsensor oder
Beschleunigungsmesser, ausgestattet. Da viele Anwendungen im Umfeld ubiquitärer
Systeme Kontextinformationen nutzen, um ihre Dienste zu verbessern, eignen sich diese
Geräte hervorragend um kontextsensitive Anwendungen auszuführen. Zusätzlich zu den
Sensoren können so genannte Kontext-Reasoner und externe Informationsquellen, wie
zum Beispiel ein in einem Gebäude installiertes Lokalisierungssystem existieren und somit
auch als weitere Informationsquellen auf dem mobilen Gerät genutzt werden. Dabei
ist es möglich, dass all diese Sensoren und andere Quellen Informationen des gleichen
Typs zur Verfügung stellen. Allerdings können sich diese Dienste in Qualitätsstufen
(z. B. Genauigkeit), Darstellungsform der angebotenen Informationen (z.B. Position in
Koordinaten und als Adresse dargestellt) und in den Kosten für die Bereitstellung der
Informationen unterscheiden (z.B. Batterieverbrauch).

Um die Entwicklung von kontextsensitiven selbstadaptiven Anwendungen zu erleichtern,
sollten die Entwickler in der Lage sein, transparent auf Kontextinformationen zuzugreifen,
ohne sich mit den zugrunde liegenden Techniken bezüglich Zugriff und Verteilung zu
beschäftigen. Sie sollten lediglich ausdrücken müssen, welche Art von Information
sie benötigen und welche Qualitätskriterien und Kostenlimits bei der Bereitstellung
eingehalten werden sollen. Daher benötigen sowohl Anwendungsentwickler als auch
Entwickler von Informationsquellen eine gemeinsame Sprache und Vokabular um
genau angeben zu können, welche Information sie bereitstellen bzw. benötigen. Diese
Beschreibungen müssen anschließend auf Übereinstimmungen überprüft werden. Dabei
ist es möglich, dass Informationen zunächst noch transformiert werden müssen,

xvii

bevor sie den Kriterien des Konsumenten entsprechen. Da es zudem möglich ist,
dass mehrere Anbieter zur Verfügung stehen, die die Kriterien erfüllen, wird ein
Auswahlverfahren benötigt um den besten Anbieter zu finden. Dabei muss das System
die bereitgestellten Qualitätsmerkmale und benötigten Kosten der Kontextquelle gegen
die vom Kontextverbraucher erhobenen Anforderungen bezüglich Kosten und Qualität
abwägen. Dieses Auswahlverfahren erlaubt es auch, Informationsquellen nur zu
aktivieren, wenn diese auch wirklich benötigt werden. Diese explizite Aktivierung bzw.
Deaktivierung von lokalen Kontextanbietern reduziert den Ressourcenverbrauch enorm.

Eine viel versprechende Lösung ist eine Middleware, die geeignete Unterstützung
bereitstellt und dabei die Prinzipien des Service-Oriented Computing wie lose Kopplung,
Abstraktion oder Wiederverwendbarkeit von Kontext-Anbietern berücksichtigt. Dies
erlaubt uns, Sensoren, Kontext-Reasonern und auch externen Anbietern zu Kontext-
dienste zu abstrahieren. In dieser Arbeit präsentieren wir unsere Lösung, bestehend
aus einem Kontextmodell und einer Ontologie, einer Sprache um Kontextangebote bzw.
-anforderungen zu spezifizieren, einem umfassenden Matching- und Mediationsverfahren
und einem Auswahlverfahren für geeignete Kontextdienste. Insbesondere das Matching-
und Mediationsverfahren und das Auswahlverfahren heben sich von den bereits
existierenden Ansätzen ab. Das Matching- und Mediationsverfahren ermöglicht die
autonome Erstellung von Ketten sogenannter Kontextvermittler um Informationen aus
einer angebotenen Form in die angeforderte Form zu überführen. Der Dienst zur Auswahl
von Kontextquellen wählt im Unterschied zu anderen Ansätzen nicht nur einen Service
für eine Serviceanfrage, vielmehr wählt er eine Reihe von Diensten um damit alle
Anfragen zu erfüllen. Dies erlaubt auch die gemeinsame Nutzung von Kontextquellen
durch mehrere Konsumenten. Der präsentierte Ansatz wird ausführlich diskutiert und
insbesondere in Bezug auf die unterschiedlichen Anforderungen evaluiert. Dabei zeigen
mehrere Demonstratoren die Verwendbarkeit des Ansatzes in realen Szenarios.

xviii Zusammenfassung

Acknowledgements

Never lose the child-like wonder.
It’s just too important.

It’s what drives us.

– Randy Pausch (1960-2008)
The Last Lecture (2007)

Writing this thesis would have never been possible without the help, the discussions, the
criticisms and last but not least the motivations by so many people. Even if I am not a
man of many words, I have to thank everyone who has tenaciously asked for the current
status of my work and has gotten more than once the short answer “Little by little, the
bird builds its nest (Mühsam ernährt sich das Eichhörnchen)”.

First and foremost I want to thank my advisor Kurt Geihs, who provided his support and
guidance throughout the progress of my dissertation. Furthermore I also would like to
thank my second advisor Christian Becker for the fruitful discussions before writing this
document. A thank you also goes to my recently appointed committee members Klaus
David and Arno Wacker.

Working in Kurt’s department at the University of Kassel was really a pleasure as I was
able to work with a lot of excellent, friendly and helpful researchers, colleagues and
friends. Here, I have to highlight Roland Reichle as without his help this thesis would have
never been finished. Thanks for all the discussions and motivations. Furthermore I have
to thank Christoph Evers, Philipp Baer, Michael Zapf, and Eva Mellom for proofreading this
thesis. However, I do not want to forget to mention the rest of my colleagues: Till Amma,
Steffen Bleul, Diana Comes, Mohammad Ullah ‘Titu’ Khan, Dominik Kirchner, Thomas
Kleppe, Alex Kohout, Stefan Niemczyk, Iris Roßbach, Daniel Saur, Hendrik Skubch, Thomas
Weise, and Andreas Witsch. Thank you for all the discussions and inspirations.

During an important phase of my short life as a researcher, I have been part of the
MUSIC project consortium. It was a great pleasure to work with so many inspiring and
experienced researchers. I would especially like to thank Nearchos Paspallis from the
University of Cyprus for his excellent work and the valuable discussions with him. In
addition, I want to emphasize Geir Horn, Svein Hallsteinsen, Erlend Stav, Jacqueline Floch
(all SINTEF), Frank Eliassen (University of Oslo) and Romain Rouvoy (University Lille 1).

Finally, I have to thank my beloved wife, my little son, my parents, my siblings, my
parents-in-law, the rest of my family and also my friends. Thank you so much for being
extremely patient with me!

xix

Part I

Foundations

1

1 Introduction

In writing a problem down or airing it in conversation we let its
essential aspects emerge. And by knowing its character, we remove, if
not the problem itself, then its secondary, aggravating characteristics:

confusion, displacement, surprise.

– Alain de Botton (1969-)
The Consolations of Philosophy, 2000

1.1 Motivation

Following the vision of Mark Weiser, ubiquitous computing is getting more and more
important these days [145]. In this vision, computers are disappearing from the focus
of the user and are seamlessly interacting with other computers and users in order
to provide information and services. Weiser’s vision becomes a reality due to the
substantial progresses in the different computational technologies. Size and powerfulness
of computing devices are growing inversely proportional. This means devices are getting
smaller, but are also equipped with faster and more powerful processors, more memory,
and also with a lot of sensors. Nevertheless, devices and their equipment are also
becoming very energy efficient and are able to communicate using several different
communication standards.

The movement of devices into the background of the user does not only require a
significant progress in the development of hardware but it also requires a change of
software development paradigms. The user should be bothered as less as possible.
Applications have to work autonomously based on information they retrieve from
different sources (like sensors, databases, or also other devices and applications).
These applications are called context-aware and self-adaptive. In recent years, context
awareness (see Definition 2.1 and Definition 2.2) has attracted a lot of attention,
especially in the realms of mobile and ubiquitous computing. Context-aware applications
are capable of monitoring their surrounding environment and exploiting knowledge
about external operational conditions.

In addition to context awareness, applications in ubiquitous computing environments
have not only to collect information but they are also required to react on changing
information. Software that dynamically adapts as a response to changes in the execution
context is called self-adaptive software. As stated by Geihs, self-adaptive software in
general and not only in ubiquitous computing environments needs to be context-aware,
too [41].

3

In ubiquitous computing environments, applications have to struggle with additional
challenges supplementary to the requisite to be context-aware and self-adaptive. Schiele
et al. mention dynamic discovery, data interpretation, and energy-saving as essential
requirements in ubiquitous computing [120]. Context management in ubiquitous
computing environments must reflect the specific characteristics of these environments,
for example distribution, mobility, resource-constrained devices, and heterogeneity of
context sources.

Modern mobile devices are equipped with fast processors, plenty of memory space,
and several sensors, like a Global Positioning System (GPS) sensor, a light sensor, or
an accelerometer. Since many applications in ubiquitous computing environments can
exploit context information for enhancing their service to the user, these devices are
highly useful for context-aware applications in ubiquitous computing environments.
Additionally to sensors, context reasoners can also be deployed on these devices and can
retrieve new context information from other (context) information. External context
providers, like a localization system installed in a building or a shared information source
provided by another device, can also be incorporated. It is possible that several context
sensors, reasoners and other context providers offer the same type of information. For
example, a modern smartphone can retrieve the location via a GPS sensor or it can use
a WiFi-based localization. Besides, an external location service may be available in a
building.

However, as stated by Becker, “[. . .] if multiple applications and context sources feed their
data into a context model multiple representations of an object may exist. The context model
has to provide concepts to deal with such phenomena, e.g., choosing one representation,
combining them, or prompting the user.” [9]. Becker et al. provide also concrete examples:
“Information about locations is presented in different formats. Geometric coordinates as they
are used by GPS refer to a point or geometric figure in a multi-dimensional space, typically
a plane or a three-dimensional space. [. . .] Symbolic coordinates on the other hand do not
provide any reasoning about their spatial properties (distance and inclusion) without any
additional information. Such coordinates are available via cell-IDs in cellular networks,
such as GSM or wireless LAN, as well as via other positioning technologies, such as radio
frequency tags (RFIDs) or infrared (IR) beacons.” [10].

More generally, context services can differ in quality levels (e.g. accuracy), repre-
sentations (e.g. position represented in coordinates or as an address) of the offered
information, and costs (e.g. battery consumption) for providing the information. For
example a context service encapsulating a GPS sensor provides information regarding
the current device position in form of WGS84 coordinates with a high accuracy but
consumes a lot of energy. In difference, another context service retrieving the current
position from calendar entries could provide the current position in form of an address
without requiring much additional resources. However this address can deviate in its
accuracy.

In order to simplify the development of context-aware self-adaptive applications, the
developer should be able to access context information transparently without bothering
with underlying context access techniques, distribution aspects, and the additional
challenges caused by the ubiquitous computing environment. As stated by Lehmann
et al., “The variety of possible information sources and services, such as sensors, actuators,
and user interfaces, should be transparent to applications. A layer of abstraction should be

4 Introduction

provided to facilitate the easy change of resources, such as upgrading a positioning system.
Newly integrated resources should be made available to applications.” [9, 82]. Instead of
accessing a certain context provider, developers should rather be able to express which
kind of information they require, which quality criteria this information should fulfil,
and how much the provision of this information should cost (not only monetary cost but
also energy or performance usage).

For this purpose, the application developer as well as the developer of context providers
need a common language and vocabulary to specify which information they require
respectively they provide. Becker states that “[. . .] the interpretation of context data across
applications requires a common semantic. Examples are a common type schema or ontology.”
[9]. These descriptions respectively criteria have to be matched. For this matching, it
might be possible that a transformation of the provided information is needed to fulfil
the criteria of the context-aware application. As it is possible that more than one provider
matches the criteria, a selection process is required. For the selection, the system has
to trade off the provided quality of context and required costs of the context provider
against the quality of context requested by the context consumer.

As already stated by Wang et al., “continuously capturing this contextual information on
mobile devices consumes huge amount of energy” [144]. Especially on mobile devices,
it is important to reduce the energy consumption. In addition to costs for measuring
or calculating a piece of context information, which describe some kind of resource
consumption, it is also desirable to reduce other costs like monetary expenses. Hence,
context services should only be activated when selected and otherwise they should be
deactivated. This activation & deactivation strategy saves a lot of costs but also causes
some problems. For example, context services have to provide a detailed description of
the provided information especially of the metadata as no control sample can be received
from the service to check whether a service provides the information as requested or not.

One promising solution is a middleware providing appropriate support in consideration
of the principles of service oriented computing (SOC) like loose coupling, abstraction,
reusability, or discoverability of context providers [38]. This allows us to abstract context
sensors, context reasoners and also external context providers as context services. In this
thesis, we present our solution consisting of a context model and ontology, a context offer
and query language, a comprehensive matching and mediation process and a selection
service. Especially the matching and mediation process and the selection service differ
from the existing works. The matching and mediation process allows an autonomous
establishment of mediation processes in order to transfer information from an offered
representation into a requested representation.

Similar to context services, where several services exist that only differ in the quality
or cost of the provided information, context-aware applications can also have diverse
requirements regarding the information. A middleware for developing context-aware self-
adaptive applications has to provide support for selecting appropriate context services.
The middleware also has to trade off the provided quality of context and required costs
of the context service against the quality of context requested by the context consumer.
Selection approaches in related works typically search for a service sequentially request
by request. In contrast, our selection service selects a set of services in order to fulfil
all requests which also facilitates the sharing of services. This selection allows to turn
on context sources only if required. Explicit selection of context services and thereby

1.1 Motivation 5

dynamically activating and deactivating the local context provider has the advantage
that also the resource consumption is reduced as especially unused context sensors are
deactivated.

The multi-service selection and the dynamic activation & deactivation are the main
reasons why existing concepts for service selection like the approaches by Jaeger [62] or
by Yang et al. [148] are not appropriate for selecting context services (see related work
discussion in section Chapter 4 and Chapter 9).

1.2 Problem Statement

The general objective of this work is a comprehensive approach allowing the abstraction
of heterogeneous context providers as context services. In this approach, the previously
motivated challenges like the selection and integration of dynamically discovered context
sources and exchanging the provided, heterogeneously represented context information
in a ubiquitous computing environment have to be considered. These context services
can be dynamically discovered, selected, and activated based on the requirements of a
context consumer. In all phases from the discovery until the selection, the matching of
offered and required context information and the metadata, like the provided quality
levels and costs have to be taken into account.

The Mobile Users in Ubiquitous Computing Environments (MUSIC)1 platform [96, 151] and
the PhD theses of Reichle [109] and Paspallis [104] serve as a basis for this work. MUSIC
offers a middleware and methodology for the development of self-adaptive context-aware
applications in ubiquitous computing environments and explores advanced compositional
adaptation by considering dynamically discovered services as possible replacements
for application components. Furthermore, the platform offers extensible support for
accessing context data. Context accessing methods are encapsulated into context plug-
ins which can be transparently accessed by context consumers with a context query
language. Paspallis’ work forms a central part of the MUSIC context middleware and
hence serves also as a basis for this work. Reichle also builds on this middleware and
significantly extends it by supporting heterogeneously represented context information
and information fusion.

We identified the following requirements that form the work plan for this thesis and that
are not or only partially addressed in MUSIC or by Paspallis or Reichle:

Requirement 1: Semantic discovery and integration of independently developed
context services and consumers. In an ubiquitous computing environment, the
appearance and disappearance of users, their devices, and services hosted on these
devices have to be considered. This has several reasons. For example, it can not be
assumed, that users and their devices are permanently available (devices may be turned
off or have no network connection). In addition, it is impossible to know all devices and
services in a ubiquitous computing environment at design-time. For that reason, run-time
mechanisms are required to discover context services and context consumers, to reason
about, and to perform the mediation tasks that are needed to bridge the heterogeneity
issues arising from the independent development of the involved context services.

1MUSIC: Mobile Users in Ubiquitous Computing Environments, IST FP6 IP 035166, http://ist-music.
berlios.de. Last visited on Jan 12, 2012.

6 Introduction

http://ist-music.berlios.de
http://ist-music.berlios.de

Requirement 2: Loose coupling of context providers and consumers. Context
services dynamically appear and disappear, runtime conditions of services may influence
the quality of the provided information, and the requirements regarding context
information and their metadata can change. So, applications should be able to switch
dynamically between different context services and context services should not be hard-
wired in the source code. The principle of loose coupling2 promotes the independent
design and evolution of a context service’s logic and implementation. This further allows
to compose the different components encapsulating context provisioning mechanisms
to so-called context reasoners. These context reasoners retrieve higher-level context
information by composing, aggregating, or interpreting low-level context information of
one or more context sources.

Requirement 3: Exchange and interpretation of heterogeneously represented
context information. Independent development of context providers and consumers
implies that each development team utilizes the most suitable platform and technology
for its task, but also it names and represents the data and metadata according to its needs.
Even if platform-independent data exchange formats like XML are used and if context
providers try to satisfy the desires of the consumers, the independent development
results in naming conflicts and in heterogeneous representations of data and metadata.
For example, the location of the user in a ubiquitous computing environment may be
given in GPS coordinates or as room number of a building. Additionally, the accuracy of
the location may be specified as radius around that position in millimeter or as value
ranges for the coordinates. A common vocabulary has to be defined that allows to
semantically interpret the meaning and representation of the data and metadata. This is
a prerequisite to reason about the needed mediation tasks to achieve interoperability at
runtime when exchanging context information but also at selection time when selecting
a certain context service based on the metadata. In particular, this also comprises the
conversion between different data representations, as for example the conversion of a
room number to GPS coordinates.

Requirement 4: Expressing context offers and needs. Krause et al. assume that
context-aware services should not have hard-linked context sensors but have to search
for context providers at runtime due to the increasing mobility of users and devices [75].
In order to establish communication links between context consumers and providers in a
dynamic fashion, also context offers and needs have to be expressed based on a common
vocabulary as mentioned in Requirement 3. A language should allow the elaborate
specification of context needs, to filter out inappropriate context offers and to establish
only communication links that provide the information actually needed.

Requirement 5: Activation and deactivation of local context services. Mobile devices
are limited in their capabilities like CPU and also in their resources like battery or memory
space. Hence, software on a mobile device should be as energy efficient as possible.
Especially sensors are known to be very resource consuming. In order to minimize the
resource consumption, local context providers should be activated only when required
and unused providers should be deactivated.

Requirement 6: Dynamic selection of context services based on quality and cost
attributes. The set of available context services providing the same type of context
information varies over time. Context services appear and disappear and the quality

2The principle of loose coupling is also adopted from the SOC principles

1.2 Problem Statement 7

levels, representations, and costs for providing the information vary between the different
providers and also over time. Similar, the set of (local and remote) context consumers and
their requirements regarding context information, their quality attributes, and the costs
may vary. A mechanism is required for selecting an appropriate set of context services
while taking into account provided and required quality levels, costs for the calculation,
the consumer’s preferences regarding costs, and the heterogeneous representations.
The selection algorithm additionally has to address the challenge of activation and
deactivation of context services. The activation & deactivation of context services result
in using average and potentially not up-to-date quality data for the selection. This can
have several consequences. For instance, after selecting and activating a provider, its
actual quality values can be much worse than the predefined quality and also worse than
the quality levels of the second-choice provider. This would result in a deactivation, a
new run of the selection algorithm and potentially in the selection of the same context
provider.

Requirement 7: Minimizing total amount of resources used by context services.
While the selection of context services, it has to be considered that several context
consumers can request the same type of context information with slightly different
requirements. In order to minimize the resource consumption, appropriate support has
to be provided to minimize the number of selected respectively activated context services
for example by sharing context services. In addition, the cheapest context service should
be selected which satisfies the requirements of a context consumer with respect to the
required quality of context.

1.3 Solution Approach

Figure 1.1 provides an overview of the proposed approach. The baseline of the overall
approach is a context model and an ontology which define the semantic concepts of
Entity types, Scopes and Representations. An entity is a physical or logical entity of the
world that is described by the context information, e.g. a smartphone or a person. The
scope refers to the type of the provided information, e.g. the location. Metadata are also
considered as scopes and finally a representation describes how the context information
is internally structured. The context ontology is used to provide a common vocabulary
to bridge semantic differences by defining the semantic concepts for entity (concrete
individuals) respectively entity types (classes of individuals), scopes and representations.
In addition, the ontology captures the relationships between the defined concepts. The
internal organization of context information and their quality attributes are defined as
representations in the ontology. By providing Inter-Representation Operations (IROs)
similar to Strang et al. [134], we allow the conversion between different representations.
With the help of these concepts a common vocabulary is established that enables
interpreting the meaning and representation of the exchanged data.

As highlighted in the previous section, several context services and consumers can exist
in parallel. The required and offered context information are specified with the Context
Offer and Query Language (COQL) and referencing the common vocabulary defined by
the ontology. The COQL makes it possible to precisely define context offers and request.
The corresponding semantic definitions serve as input for the Discovery and Matching
approach. Matching of context offers and requests already includes the reasoning on

8 Introduction

Selection
Criteria

Context
Queries

Matching Results

Selection Results

Context
Offers

Discovery and Matching

Context Reasoner 0..*

Selection

Binding

Converted
Data

Inter-
Representation

Operation

Context Offer
and Query
Language

Data

Context Offer
and Query
Matching

Context Service
Selection

Context Model and Ontology
Context Reasoner 0..*

Context Provider
0..*

Context Consumer
0..*

Figure 1.1: Overview of the Solution Approach.

potentially required mediation tasks in form of IROs to overcome mismatches in the
provided and required representations of the context information. Potentially required
IROs to mediate between the representations of selection criteria (context metadata
in general) have to be appointed to ensure comparability of offers and requests in the
selection phase.

The results of the Discovery and Matching serve as input for the Selection step. Before the
actual selection, the discovery and matching results have to be analysed for temporal
infeasible context services. As mentioned in the previous section, the quality information
of a context service does not necessarily have to reflect the actual quality, as the service
might currently be deactivated. This results in using estimated and potentially not
up-to-date quality data for the selection. Unfeasible context services are removed from
the selection until a significant context change has happened. After a significant context
change, a correspondence of estimated quality attributes and actual quality attributes
after activation is more likely. For the actual selection, a combined utility function is
used to calculate the utility of a set of context services regarding all registered context
requests. This combined utility functions aggregates the selection functions expressed
by the different context requests in consideration of the provided and required quality
and cost data. The set of context services with the highest utility is selected. A context
service can also be shared by several context requests. If a context service does not
provide the required representation but an appropriate IRO is available (already checked
in the Discovery and Matching), the costs of the IRO also have to be taken into account.
Furthermore an IRO can result in a change of the quality of the provided information.
The result of the Selection is used to establish communication links between context
provider and consumer. The selected context services will be activated and optionally

1.3 Solution Approach 9

context mediator chains consisting of 1 . . . n IROs will be established to provide the
requested representation of the context information.

In summary, our solution provides support for the dynamic discovery and selection of
context services based on a matching of context offers and context requests. Context
providers (sensors and reasoners) are encapsulated as loosely coupled context services.
Our system is able to overcome heterogeneously represented context and metadata,
offered by these context services, by transferring them in comparable representations.
In addition this approach provides support to handle the challenges introduced by the
functionality of dynamically activating and deactivating context services.

1.4 Contribution

The research work and results documented in this thesis lead to a number of contributions
to the state-of-the-art research. Most of the contributions are made in the area of
Context Management, Context Modelling, Self-Adaptation but also SOA and Web Services in
Ubiquitous Computing Environments. We provide the following major contributions:

1. a comprehensive context model and ontology combining existing approaches in
order to meet all the requirements described in Section 1.2 [158],

2. a Context Query language building the baseline for our Context Offering and
Query Language [159],

3. an approach for the dynamic integration of services into a component-based
self-adaptive application [154, 152],

4. the general solution approach described in this thesis, which has been iteratively
developed within the last years [165, 168],

5. the matching of context offers and queries along with the autonomous
transformation of heterogeneously represented context information,

6. and the selection of context services under consideration of constraints caused
by the dynamic activation and deactivation of context providers.

1.5 Structure of the Thesis

The document is divided in three parts. The first part describes the foundations and
existing works, which serve as the basis for the rest of the document. The second part
describes our solution approach in detail, while the last part evaluates the solution and
discusses its advantages and disadvantages. Part I has four chapters, Part II six, and Part
III is divided into three chapters. The content of the rest of the document is summarized
as follows:

Chapter 2: In this chapter, the general terms like ubiquitous computing or context
awareness are defined.

Chapter 3: Checking satisfiability of logical expressions builds an important basis for the
matching of context offers and queries. In this chapter, all required logical foundations
are introduced. Furthermore, a short introduction to ontologies is provided.

10 Introduction

Chapter 4: Based on the requirements for our work introduced in Section 1.2, existing
works are evaluated and discussed in this chapter.

Chapter 5: This chapter gives a short overview of our solution approach and introduces
the relevant stakeholders for the development of context-aware applications following
our approach.

Chapter 6: The context model builds the semantic basis of our system. In Chapter 6 we
introduce the context model and associated concepts like the mediation operators.

Chapter 7: In order to support the loose coupling and discoverability, both, context
consumers and context providers need a way to describe which information they need
respectively they provide. For these descriptions, we developed the Context Offer and
Query Language, which is described in this part of the thesis.

Chapter 8: Context offers and requests have to be evaluated to decide which offer
potentially can provide the requested information. Furthermore it might be possible that
mediation is required to transform information into a specific representation.

Chapter 9: Several context providers may offer the same kind of information. Hence, a
selection is required to decide which providers to activate.

Chapter 10: In this chapter, the resulting architecture and implementation details of our
middleware are discussed.

Chapter 11: As a basis for our demonstrators, we have done a study on context
information, QoC and CoC used in existing works. This study is used as an input
for implementing a set of context services, which are used afterwards in the different
demonstrators. The demonstrators show the fulfilment of the different requirements and
the feasibility of our approach.

Chapter 12: In the different discussion sections of the chapters describing our solution
approach, the computation complexity of our solution has been discussed from the
theoretical point of view. In Chapter 12, performance and scalability is evaluated in
practise and the results are compared to the theoretical results.

Chapter 13: Finally, this chapter concludes this thesis and presents an outlook on future
work.

1.5 Structure of the Thesis 11

2 Ubiquitous Computing Systems

The most profound technologies are those that disappear. They
weave themselves into the fabric of everyday life until they are

indistinguishable from it.

– Mark Weiser (1952-1999)
Scientific American, September 1999

With the appearance and penetration of mobile devices such as notebooks, tablet
computers and smartphones, ubiquitous computing systems are becoming increasingly
popular. The term ‘ubiquitous computing’ introduced first by Weiser refers to the seamless
integration of devices into the user’s everyday life [145].

As indicated by Langheinrich et al., Weiser used the term ‘ubiquitous computing’ and
associated it with an idealistic and human-centric technology vision, which can only
be realized in the distant future [80]. With a more pragmatic emphasis the industry
in particular IBM, has coined the term ‘pervasive computing’. Similar to ubiquitous
computing, it is about the omnipresent information processing, however, with the primary
goal of using existing mobile computing technologies, which are already available in short
term. In addition to these two terms, the term ‘ambient intelligence’ emerged including
aspects of the human-machine-interaction and artificial intelligence. However as stated
by Langheinrich et al., the distinction between the three concepts is rather academic
and the similarities predominate [80]. For this reason, we use the terms ‘ubiquitous
computing’, ‘pervasice computing’, and ‘ambient intelligence’ interchangeable in the rest
of this thesis.

As terms like context awareness and self-adaptation are inevitably connected with
ubiquitous computing (UC) and as these concepts are the most important properties of
UC for this work, we first define UC in general and then focus on the specific aspects of
context like definition of context and context awareness and characteristics of context
data in Section 2.2 and afterwards on self-adaptation in Section 2.3.

2.1 Ubiquitous Computing

In the dictionary of reference.com the term ubiquitous is defined as follows:
u·biq·ui·tous [yoo-bik-wi-tuhs] – adjective – existing or being everywhere, especially at
the same time; omnipresent: ubiquitous fog; ubiquitous little ants1.

1http://dictionary.reference.com/browse/ubiquitous, last visited on Nov. 10, 2011.

13

http://dictionary.reference.com/browse/ubiquitous

In difference to other topics, where it is very hard (if not impossible) to state the first
person mentioning the topic, Ubiquitous Computing is inevitably associated with Mark
Weiser. He states “The most profound technologies are those that disappear. They weave
themselves into the fabric of everyday life until they are indistinguishable from it.” [145].

Satyanarayanan explains the vision of Weiser regarding Ubiquitous Computing and
provides a rather formal explanation [119]. According to him, UC is based on the wide
research topics of distributed systems and mobile computing. Satyanarayanan provides a
taxonomy of computer research problems in pervasive computing, which is depicted in
Figure 2.1.

Remote communication
protocol layering, RPC, end-to-end args…

Fault tolerance
ACID, two-phase commit, nested

transactions…

High availability
replication, rollback recovery,…

Remote information access
dist. file systems, dist. databases, caching…

Distributed security
encryption, mutual authentication…

Mobile networking
Mobile IP, ad hoc networks, wireless TCP fixes…

Mobile information access
disconnected operation, weak consistency…

Adaptive applications
proxies, transcoding, agility…

Energy-aware systems
goal-directed adaptation, disk spin-down…

Location sensitivity
GPS, WaveLan triangulation, context awareness…

Distributed
systems

Mobile
computing

Pervasive
computing

Smart spaces

Invisibility

Localized scalability

Uneven conditioning

Figure 2.1: Taxonomy of Computer Systems Research Problems in Pervasive Computing [119]

As indicated by the modulation symbol, Satyanarayanan notes that pervasive computing
takes advantages of distributed and mobile computing while inheriting problems in these
fields increasingly. Thereby also the combination of distributed and mobile computing
solves not all problems of UC. Lyytinen et al. share this opinion. They state that “In
mobile computing, however, an important limitation, is that the computing model does not
considerably change while we move. This is because the computing device cannot seamlessly
and flexibly obtain information about the context in which the computing takes place and
adjust it accordingly.” [84].

In the literature a wide range of different challenges or requirements have been discussed
that have to be solved in order to provide software respectively systems which are “UC-
ready”. Here, we only give an overview of the most important ones (the interception set
of all challenges mentioned in [52, 67, 84, 98, 116, 119, 129]). It is possible to divide
this set of challenges into two: a list of underlying properties/technologies that serve as
a baseline of UC systems and a set of cross-cutting aspects/challenges that have to be
handled within all items of the first list.

14 Ubiquitous Computing Systems

Foundations of ubiquitous computing:
• Context awareness: A central aspect of ubiquitous computing systems is mobility.

Hence, runtime conditions of applications/systems change continuously. However,
as mentioned by Weiser, technology in UC systems should disappear [145].
To accomplish this invisibility, the user interaction with the system has to be
reduced whereas the system has to react on several more aspects as standard
desktop applications. Thus, the system requires new ways to retrieve the required
information. For this reason, the ubiquitous computing systems have to be context-
aware. The different aspects of context awareness are explained in detail in
Section 2.2.

• Self-Adaptation: Context awareness alone is not sufficient to replace the reduced
user interaction and to satisfy the vision of disappearing technology. The system
has to react autonomously on the changing conditions and thus on the retrieved
context information. Therefore, it has several options, like changing parameters,
adding/exchanging/removing components or binding external services. This aspect
is called self-adaptation and is described in detail in Section 2.3.

Cross-cutting concerns in ubiquitous computing:
• Heterogeneity: Within a UC environment, many different devices, software

fragments, and user interfaces exist, which makes heterogeneity to a central
and also cross-cutting challenge in UC systems. To highlight the importance of
this aspect, Saha et al. propagate “Middleware must mask heterogeneity to make
pervasive computing invisible to users.” [116]. Henricksen et al. therefore note
“[. . .] heterogeneous devices will be required to interact seamlessly, despite wide
differences in hardware and software capabilities.” [52]. As stated by Niemelä et al.,
“[. . .] heterogeneity of software is expressed by a diversity of software structures,
component models, interface technologies and languages.” [98]. “This will require
dynamic interoperability at the component level, in addition to interoperability that
overcomes the heterogeneity of the environment and of components.” as mentioned
by Henricksen et al. [52].

• Invisibility: Weiser et al. state “Ubiquitous computing will require a new approach
to fitting technology to our lives, an approach we call ‘calm technology’.” [146]. In
the vision of calm computing, human intervention with the system is reduced to a
minimum and hence the system becomes nearly invisible. This central point has
already been used to motivate context awareness and self-adaptation.

• Masking uneven conditions: This aspect is introduced by Satyanarayanan, who
states that it is not very likely that a uniform penetration of pervasive computing
technologies with different environments will be reached in the next decades
[119]. For this reason, a UC system has to be able to work in both extremes:
in environments fully penetrated with technology and in environments without
any UC technology. Besides, the system has to be able to detect changes in the
environments also with regard to its equipment (→ context awareness) and has to
adapt appropriately to this changes (→ self-adaptation).

• Scalability: UC systems may consist of thousands of devices, sensors, services, and
users. Hence, scalability is an aspect that influences all parts of such systems.

2.1 Ubiquitous Computing 15

• Privacy and security: As aforementioned, user activities should be reduced in
order to increase the invisibility of UC actors. But the central ingredients of UC,
context awareness and self-adaptation, open a wide range of potential security and
privacy issues, for example it has to be proven to which actor context information
is revealed and if the communication between context provider and consumer is
secure.

2.2 Context

Context (from Latin contextus connection of words, coherence, from contexere to weave
together, from com- + texere to weave2) in general describes the conditions and
circumstances of an entity.

Various different definitions of the term context exist in computer science literature.
Schilit et al. state that “[. . .] context encompasses more than just the user’s location,
because other things of interest are also mobile and changing. Context includes lighting,
noise level, network connectivity, communication costs, communication bandwidth, and
even the social situation; e.g., whether you are with your manager or with a co-worker.”
[121]. They define context as “[. . .] where you are, who you are with, and what resources
are nearby.”.

Gwizdka distinguishes between internal and external context [49]. Internal context is
the state of the user (composition of work context, personal events, communication
context, and emotional state of the user etc.) whereas external context describes the
state of the environment (composition of location, proximity of other people or devices,
and temporal context etc.).

One of the most accurate (and widely referenced) definitions of context is given by
Abowd et al. [2]. They refer to context as “any information that can be used to characterize
the situation of entities (i.e. whether a person, place or object) that are considered relevant
to the interaction between a user and an application, including the user and the application
themselves.”.

Becker et al. adopt and revise the definition on the definition of Abowd et al. [11]. We
adopt this definition and define context as follows:

Definition 2.1 (Context). Context is the information, which can be used to characterize
the situation of an entity. Entities are persons, locations, or objects which are considered
to be relevant for the behaviour of an application. The entity itself is regarded as part of
its context.

2.2.1 Context Awareness

Schilit et al. were one of the first who mentioned context awareness: “context-aware
software adapts according to the location of the user, the collection of the nearby people,
hosts, and accessible devices, as well as to changes to such things over time.” [121]. However,
this was rather a collection of examples than a concrete definition.

2See http://www.merriam-webster.com/dictionary/context. Last visited Apr. 10, 2012.

16 Ubiquitous Computing Systems

http://www.merriam-webster.com/dictionary/context

Abowd et al. define context awareness as follows: “A system is context-aware if it uses
context to provide relevant information and/or services to the user, where relevancy depends
on the user’s task.” [2].

Similarly, Chen et al. state that “context-awareness [. . .] can be defined as a computer
system’s ability to provide relevant services and information to users based their situational
conditions.” [20].

Whereas the definitions by Abowd et al. and Chen et al. focus on the provisioning of
information and/or services to the user, other authors specify more general definitions.
For example, Razzaque et al. define context awareness as a “[. . .] term from computer
science, which is used for devices that have information about the circumstances under which
they operate and can react accordingly.” [108].

Becker et al. state that “an application is context-aware if it adapts its behavior depending
on the context.” [11].

Baldauf et al. introduce context-ware systems as systems that “[. . .] are able to adapt
their operations to the current context without explicit user intervention and thus aim at
increasing usability and effectiveness by taking environmental context into account.” [8].

More concisely, Huebscher et al. write “Context-awareness is the ability of an application
to adapt itself to the context of its user(s).” [59].

The last two definitions highlight the context of the user. As we think, both – the context
of the user of the application and the context of the application itself – is important, the
following definition will be used in this thesis:

Definition 2.2 (Context Awareness). An application is context-aware, if its behaviour is
influenced by information on its context.

2.2.2 Characteristics of Context Data

Henricksen et al. discuss in their paper the different characteristics of context information
[53]. This discussion can be summarised as follows:

• “Context information exhibits a range of temporal characteristics. Context information
can be characterized as static or dynamic. [. . .] The persistence of dynamic context
information is highly variable;”

• “Context information is imperfect. [. . .] Information may be incorrect if it fails to
reflect the true state of the world it models, inconsistent if it contains contradictory
information, or incomplete if some aspects of the context are not known.”

• “Context has many alternative representations. [. . .] For example, a location sensor
may supply raw coordinates, whereas an application might be interested in the identity
of the building or room a user is in.”

• “Context information is highly interrelated.”

After Dey et al. “both sensed and interpreted context is often ambiguous. A challenge facing
the development of realistic and deployable context-aware services [. . .] is the ability to
handle ambiguous context” [34].

The different reasons for unreliable or error-prone context information are discussed by
Krause et al. [75]:

2.2 Context 17

• Necessary context information (or context sources) might not be available.

• Context information might be out-dated and no longer applicable to the current
situation.

• Physical constraints and temporary effects limit the precision of the sensors.

• Reasoning rules which often base on probabilities do not apply in certain situations.
As a result, they could derive false context information.

• Information from malicious extrinsic sources could feign a context that is not real.

Motivated by these characteristics, Quality of Context is an central aspect in this thesis.

2.2.3 Quality of Context

As one of the first, Buchholz et al. introduced a new set of quality parameters for
context information [17]. The quality of context information (precision, probability
of correctness, trustworthiness, resolution, and up-to-date[d]ness3) is according to
them neither identical to Quality of Service (QoS), nor to the quality of the underlying
hardware components, i.e. Quality of Device (QoD). This new set has been called Quality
of Context (QoC):

“Quality of Context (QoC) is any information that describes the quality of
information that is used as context information. Thus, QoC refers to information
and not to the process nor the hardware component that possibly provide the
information.” [17].

Buchholz et al. identified precision, probability of correctness, trust-worthiness, resolution
and up-to-dateness as the most important QoS-parameters. Besides, they have pointed
out the differences between QoC, QoS and QoD. While QoC describes the quality of
information, QoS refers to the quality of a service and QoD is any information about a
device’s technical properties and capabilities. QoC is not equal to QoS and QoD, since
context information can exist without services and devices. Nevertheless, QoC, QoS and
QoD influence each other. As depicted in Figure 2.2, Buchholz et al. distinguish between
two possibilities in which one notion of quality can affect another one:

• In the bottom-up approach, impacts of one quality on another are indicated
through arrows that point upwards. Relating to QoC, the device dependent
capabilities (QoD), which can also deviate, influence the QoC. Similar QoS
influences QoC.

• In the top-down approach, qualities influence each other via the requirements
they pose.

Buchholz et al. introduce also several examples for the usage of QoC:

• QoC agreements: “When several actors cooperate to provide CASs [context-aware
systems] [. . .], there is a need for contracts that not only specify the required QoS,
but also address the QoC. In analogy to SLAs [service-level agreements 4], we call
contracts defining QoC requirements QoC agreements.” [17].

3The terms “up-to-dateness” and “up-to-datedness” are used interchangeable.
4According to Erl, a SLA is “[. . .] a document that establishes a contract associated with quality of

service characteristics [. . .]” [38].

18 Ubiquitous Computing Systems

Figure 2.2: Interdependence between QoS, QoS, and QoD [17]

• Reconstructing the behaviour of context-aware systems: “Context information is
used to automatically adapt services or the content they provide. Therefore, the
imperfection of context information has a significant impact on the experiences users
make with CASs [context-aware system].” [17].

• Selection of appropriate context providers: “In many cases, a particular context
information can be generated using different value chains. These value chains can be
realized by different, competing context providers, each operating an infrastructure of
context sources and sub-services in order to derive that particular context information.
In such a scenario, it is not unlikely that competing context providers deliver the same
context information with different QoC. From the point of view of a CAS provider, QoC
is then a valuable indicator to select an appropriate context provider.” [17].

• Adaptation of context refinement: “Like context is used to modify the behavior of a
CAS, QoC can be utilized to adapt the context refinement process. [. . .] an important
task of context refinement is the derivation of new, high-level context information
from low-level context information. Often, such a derivation is needed due to the
unavailability of appropriate context sources. The quality of the respective low-level
context information is an important indicator of whether or not the generation of
high-level context information makes sense at all, and, if so, how to determine the
quality of the produced context information.” [17].

• Adaptation of context dissemination: “Context dissemination comprises the
distribution and storage of context information. Based on QoC agreements, a context
provider can optimize the sub-processes of context dissemination.” [17].

• Fine-grained privacy policies: “[. . .] a context owner [. . .] represents the entity the
context information is about. [. . .] a context owner can restrict access to his personal
context. Without QoC the context owner could only determine who is allowed to access
which part of his context. QoC, however, enables him to specify access policies in a
much more fine-grained way. For example, a context owner might grant permission
that a certain group might access his current location, but only with a precision of 10
kilometers and with a delay of some hours.” [17].

Krause et al. define “Quality of Context (QoC) is any inherent information that describes
context information and can be used to determine the worth of the information for a specific

2.2 Context 19

application. This includes information about the provisioning process the information has
undergone (‘history’, ‘age’), but not estimations about future provisioning steps it might run
through.” [75].

In difference to the definition by Buchholz et al. [17], Krause et al. distinguish between
the objective ‘quality’ and the application-specific ‘worth’ of context information and they
use QoC to estimate the worth of context information for an application.

Additionally to the motivation for the usage of QoC, Krause et al. introduce challenges
for modelling QoC:

• Expressiveness of QoC parameters: Similar to context information, QoC
parameters can be expressed in several different representations. According to
Krause et al., accuracy can be understood in several ways, namely as average error,
minimal error, maximum error, or as probability distribution. Additionally, QoC
parameters might also be missing or be incomplete.

• Modelling QoC for context discovery: Krause et al. motivate to avoid the hard-
linking of context providers and context consumers and instead propose the usage
of a dynamic context discovery at runtime. For that reason, descriptions of context
provider have to be matched with the request for context information by context
consumers in the context discovery phase. The context provider description
should be used to decide whether a context provider can provide appropriate
context information for a certain request. Context consumers can request
context information either synchronously (‘pull’) or asynchronously (‘push’). This
means that the context provider immediately delivers the requested information
respectively delivers only under certain circumstances. The problem here is, that if
a context consumer sends a subscription for certain context information, it might
express additional dynamic QoC dependencies in advance.

Sheikh et al. further motivate the usage of QoC in context-aware applications [123].
Based on the definition of Buchholz et al., they discussed five QoC indicators:
precision, freshness, spatial resolution, temporal resolution and probability of correctness.
According to Sheikh et al. there are three main reasons to consider QoC:

• Due to the imperfection of context information, Sheikh et al. additionally propose
an adaptation of the behaviour of real-world context-aware applications to QoC
information.

• “Middleware efficiency - In a typical situation, there are several context sources
available that can produce a certain type of context [. . .]. By comparing the required
QoC and with the QoC of the available context sources [. . .], the middleware can
optimize the selection of which context source (not) to use.” [123],

• “Users’ privacy enforcement - There is a relationship between the privacy sensitiveness
of context information and its QoC. The middleware must therefore provide users
(context owners) with the means to limit the QoC information provided to different
requesters.” [123].

Manzoor et al. characterize QoC as “Quality of Context indicates the degree of conformity
of the context collected by sensors to the prevailing situation in the environment and the
requirements of a particular consumer” [88]. The authors base their definition on the
statements by Buchholz et al. and Krause et al., but they argue that these explanations

20 Ubiquitous Computing Systems

only consider QoC “[. . .] as an objective term that is independent of the situation of use of
context information and consumer requirements for that context information.”. For that
reason, they introduce, additionally to the objective QoC metrics like accuracy, subjective
QoC metrics like usability and significance taking into account the context consumer’s
requirements.

Manzoor et al. further introduce a processing model for QoC information. As depicted
in Figure 2.3 the model consists of several layers. The higher layers are calculated
based on the data of the lower layers. The lowest layer consists of sensor characteristics
(e.g. accuracy and time periods of measurements), the measurement context (e.g.
measurement time and location) and specifications and consumer requirements (e.g.
validity time and required attributes). The sensor’s characteristics and the measurement
context is used for the calculation of the objective QoC metrics, whereas the calculation
of subjective QoC metrics additionally involves the specifications and consumer
requirements.

Sensor
Characteristics

Measurement
Context

Specifications and
Consumer

Requirements

Objective QoC Metrics Subjective QoC Metrics

QoC as „Degree of Conformity“

Figure 2.3: QoC Processing Model [88]

As aforementioned, several authors introduce different QoC dimensions (or indicators).
Krause et al. already realized that “[. . .] there is a wide range of possible representation
formats to express a QoC parameter. Labels like ‘precision’, ‘granularity’ [or] ‘probability
of correctness’ can only be coarse categories regarding this variety [. . .]” [75]. We agree
with Krause et al., as we also detected that authors give partly different names for
similar QoC dimensions (similarity based on the definition) and that their definitions
differ significantly in the degree of precision. For example, Buchholz et al. [17] give
only raw, informal descriptions of their QoC dimensions, whereas Manzoor et al. [86,
88] provide very detailed and formal definitions of each dimension. At this point, we
will only give a short overview of the most popular QoC dimensions as presented by
Buchholz et al. [17], Sheikh et al. [123], and Manzoor et al. [86, 88]. Buchholz et al. and
Sheikh et al. exclusively introduce the QoC dimensions stated below, whereas Manzoor
et al. distinguish between QoC metrics [88] (called QoC parameters [86]) and sensor
characteristics and the measurement context (called QoC sources [86]). QoC sources are
values describing the context provider and its characteristics, like source location, life
time, and measurement unit. The overview is depicted in Table 2.1.

2.2 Context 21

Pa
ra

m
et

er

Authors Description

Pr
ec

is
io

n Buchholz et al.
[17]

“precision describes how exactly the provided context
information mirrors the reality.”

Sheikh et al.
[123]

“granularity with which the context information describes a
real world situation.”

Pr
ob

ab
il

it
y

of
co

rr
ec

tn
es

s

Buchholz et al.
[17]

“ [. . .] the probability that a piece of context information is
correct.”

Sheikh et al.
[123]

“the probability that an instance of context accurately
represents the corresponding real world situation, as
assessed by the context source, at the time it was
determined.”

Tr
u

st
-w

or
th

in
es

s

Buchholz et al.
[17]

“[. . .] trust-worthiness also describes how likely it is
that the provided information is correct. In comparison
to correctness, however, trustworthiness is used by the
context provider to rate the quality of the actor from
which the context provider originally received the context
information.”

Manzoor et al.
[86]

“[. . .] the belief that we have in the correctness of
information in a context object. Trust-worthiness of a
context object is highly affected by the space resolution,
i.e., the distance between the sensor and the entity.”

R
es

ol
u

-
ti

on

Buchholz et al.
[17]

“[. . .] resolution denotes the granularity of information.”

U
p-

to
-d

at
ed

n
es

s
or

fr
es

hn
es

s

Buchholz et al.
[17]

“[. . .] up-to-dateness describes the age of context
information.”

Sheikh et al.
[123]

Freshness is “[. . .] the time that elapses between the
determination of context information and its delivery to
a requester.”. Based on the definitions of Buchholz et al.
and Sheikh et al., up-to-datedness and freshness seems to
be equivalent

Manzoor et al.
[86]

“the degree of rationalism to use a context object for a
specific application at a given time. We take into account
the age of context object and the lifetime of that context
object [. . .]”

Te
m

po
ra

l
re

so
lu

ti
on

Sheikh et al.
[123]

“[. . .] the period to which a single instance of context
information is applicable”

22 Ubiquitous Computing Systems

Pa
ra

m
et

er
Authors Description

Sp
at

ia
l

re
so

lu
ti

on

Sheikh et al.
[123]

“[. . .] the precision with which the physical area, to
which an instance of context information is applicable, is
expressed”

C
om

pl
et

e-
n

es
s

Manzoor et al.
[86]

“[. . .] the completeness of a context object as the ratio of the
sum of the weights of the available attributes of a context
object to the sum of the weights of all the attributes of that
context object”

Table 2.1: Quality of Context Parameters

As a quintessence of the previous discussion about different QoC parameters, we can
summarize that it is difficult to define a set of QoC parameters that fulfils all different
opinions and requirements. Nevertheless, we do not focus on providing such a definition
in this work. As QoC is one of the criteria for the selection and activation of a context
provider, we need a rather generic definition of QoC. Based on the aforementioned
definitions of Quality of Context, the following definition will be used in the context of
this thesis:

Definition 2.3 (Quality of Context). Quality of Context (QoC) is any information that
describes the quality of information that is used as context information.

2.2.4 Cost of Context

Quality of Context describes certainly only the part of the metadata regarding context
information. Another important aspect is the cost for acquiring the context information.
This does not necessarily need to be monetary but can also be interpreted as e.g. power
consumption of the sensors for acquiring the information.

Villalonga et al. introduced the additional concept of Cost of Context (CoC), which they
define as “Cost of Context (CoC) is a parameter associated to the context that indicates the
resource consumption used to measure or calculate the piece of context information.” [137].

For this work we adopt the definition of Villalonga et al. and use the following definition:

Definition 2.4 (Cost of Context). Cost of Context (CoC) is a parameter associated to the
context that indicates the resource consumption used to measure or calculate the piece
of context information.

Similar to QoC, we do not propose a concrete set of QoC parameters like CPU usage,
memory footprint, monetary cost, . . .) but rather focus on providing support for arbitrary
QoC and CoC parameters.

2.2 Context 23

2.3 Self-Adaptation

As motivated in the definition of Ubiquitous Computing (Section 2.1), context awareness
is solitary not sufficient to replace the reduced user interaction and to satisfy the vision
of disappearing technology. The system has to react somehow to the changing conditions
and thus to the retrieved context information. Therefore, it has several options like
changing parameters, adding/exchanging/removing components or binding external
services. This aspect is called self-adaptation. As stated by Henricksen et al., “adaptation
is required in order to overcome the intrinsically dynamic nature of pervasive computing”
[52]. After Geihs, adaptation itself can be divided into design time adaptation and
runtime adaptation [41]. Whereas design time adaptation is static, adaptation at runtime
is dynamic. The adaptation at runtime without any user interaction is called self-
adaptation. Nzekwa et al. explain this as follows: “Self-adaptive systems (or autonomic
systems) are self-managing system that use Feedback Control Loops (FCLs) to monitor,
analyse, plan, and act according to changes occurring in their environment.” [99]. As stated
by IBM, “the function of any autonomic capability is a control loop that collects details from
the system and acts accordingly.” [61].

One of the most famous and earliest definition of self-adaptation, is the definition
mentioned in an DARPA5 announcement. According to the DARPA Broad Agency
Announcement on Self-Adaptive Software, “self-adaptive software evaluates its own
behavior and changes behavior when the evaluation indicates that it is not accomplishing
what the software is intended to do, or when better functionality or performance is possible”
[78].

Another definition is the one by Oreizy et al.: “Self-adaptive software modifies its own
behavior in response to changes in its operating environment. By operating environment, we
mean anything observable by the software system, such as end-user input, external hardware
devices and sensors, or program instrumentation.” [101].

There are many definitions for self-adaptation, but all refer more or less directly (and
partially only implicitly) to context awareness. As we think that this is a key point, we
adapt (and revise) the definition by Oreizy et al. The following definition will be used in
the context of this thesis:

Definition 2.5 (Self-Adaptation). Self-adaptive software modifies its own behaviour in
response to changes in its context.

2.3.1 Adaptation Mechanisms

Software can be adapted in several ways. Geihs mentions parametrization and
compositional adaptation as the most important ones [41]. McKinley et al. generalize
the distinction to weak and strong adaptation: “Weak adaptation involves modifying
parameters (parameter adaptation) or performing low-cost/limited-impact actions, whereas
strong adaptation deals with high-cost/extensive-impact actions, such as replacing
components with those that improve system quality” [92]. In the following, we focus

5DARPA: Defense Advanced Research Projects Agency, http://www.darpa.mil. Last visited Apr. 20,
2012.

24 Ubiquitous Computing Systems

http://www.darpa.mil

on parametrization and compositional adaptation as the most prominent adaptation
mechanisms. For more details see e.g. Salehie et al. [118].

Parametrization or parameter adaptation involves the modification of variables that
determine program behaviour. As stated by Geihs, parameter adaptation does not modify
the structure of the application but rather variables [41]. According to Khan, “Parameter
settings are defined at design time based on some ranges of values. For practical applications
there are some constraints on choosing such value ranges. For example, a continuous value
range would effectively create infinite number of parameter settings, eventually making it
impossible to evaluate the appropriateness of particular setting. Choosing concrete values
for parameter settings solves that issue.” [65].

As mentioned by Khan, “[. . .] compositional adaptation refers to the exchange of
algorithmic or structural parts of a system in the aim of fitting it to the current environment”
[65]. This adaptation mechanism is particularly useful to adjust component-based
applications. These applications are considered as a composition of components and
alternative component implementations are used to realize particular functionalities of
the application. Compositional adaptation cannot only influence the selection of specific
component implementations but also the composition of components itself, so Geihs
et al. [42]. Hence, an implementation of a component has not necessarily to be local.
It can rather be realized by an external service, e.g. a web service as demonstrated for
instance by Geihs et al. [154].

2.3.2 Adaptation Policies

The adaptation reasoning is part of the control loop (see e.g. [61]) and decides when an
adaptation has to be triggered and also which “application mode” has to be activated. In
general, three different types of adaptation policies exist: action, goal and utility function
policies [63].

S‘1

S‘3

S‘2
2

3

1

S

Figure 2.4: States and Actions

Kephart et al. introduce a framework based on the notions of states and actions in order
to relate the different policy mechanisms [63]. A system is characterized as beeing in a

2.3 Self-Adaptation 25

state S at a given moment in time, whereas S is a vector of attributes either measured by
a sensor or inferred from low-level measurements. A policy will cause a transition/action
α from S to a new state S′.

Figure 2.4 depicts a scenario in which three transitions from state S exist, which means
that the application has three different options to adapt its behaviour. Based on this
example, the three different adaptation policies can be defined and distinguished as
follows:

• Action policies: Based on the current state S, an action policy defines which
action/transition α has to be followed without taking into account the new state
S′. This state will be reached by taking this action.

• Goal policies: In contrast to action policies, goal policies specify either a single
desired state S′ or one or more criteria that characterize an entire set of desired
states. This also implies that any member of this set is equally acceptable as goal
policies cannot express fine distinctions in preference.

• Utility function policies: Utility function policies can be seen as an extension of
goal policies that map each possible state of a system to a real scalar value instead
of the binary classification into desirable and undesirable states.

26 Ubiquitous Computing Systems

3 Logic and Ontologies

“Contrariwise,” continued Tweedledee, “if it was so, it might be, and
if it were so, it would be; but as it isn’t, it ain’t. That’s logic!”

– Charles Lutwidge Dodgson (Lewis Carroll) (1832-1898)
Through the Looking-Glass, and What Alice Found There (1871)

“Logic is a fundamental organizing principle in nearly all areas in Computer Science. It runs
a multifaceted gamut from the foundational to the applied. At one extreme, it underlies
computability and complexity theory and the formal semantics of programming languages.
At the other, it drives billions of gates every day in the digital circuits of processors of all
kinds. Logic is in itself a powerful programming paradigm but it is also the quintessential
specification language for anything ranging from real-time critical systems to networked
infrastructures. It is logical techniques that link implementation and specification through
formal methods such as automated theorem proving and model checking. Logic is also the
stuff of knowledge representation and artificial intelligence” [24].

Several types of logic exist, like classical, modal, and description logic. Propositional logic
is the simplest form of (classical) logic consisting of simple propositions and conjunctions:

• A = Cats hate dogs

• B = Cats hate mice

These propositions can be either true or false (The proposition A is true where B is
false.) First-order logic is a subclass of predicate logic which extends the propositional
logic by quantifiers, predicate, and functional symbols. They allow to express e.g. that
two objects are in relation to each other. For a detailed definition of syntax and semantics
of both logics, we kindly refer to standard literature like Schöning [122].

In this chapter, we only focus on these parts of logics which are relevant for this thesis:

• Proof methods for propositional (see Section 3.1) and predicate logic (see
Section 3.2) are used for the within the matching process of context offers and
queries (see Chapter 8).

• Ontologies, in particular the Web Ontology Language (OWL) (see Section 3.3),
serve as the basis of our context model (see Chapter 6) and for our context query
and offer language, which reference to individuals and classes in the ontology (see
Chapter 7).

27

3.1 Proof Methods for Propositional Logic

In this section we introduce methods to prove satisfiability of formulae in propositional
logic. We can only give a short overview of a few methods. A detailed discussion would
be out of scope and therefore we refer for more details to literature on logic like Schöning
[122] or Smullyan [128]. We also skip the introduction of proving formulae with the
truth table method. This simple but very costly method is explained in any general
literature on logic like Schöning [122].

3.1.1 Analytic Tableaux for Propositional Logic

The analytic tableaux (or semantic tableaux) method is a decision procedure (a method
for solving a decision problem) for propositional logic and a proof procedure (a systematic
method for producing proofs) for formulae of first-order logic. The tableaux method can
also determine the satisfiability of finite sets of formulae of various logics.

In this section we present the analytic tableaux method as introduced by Smullyan [128].
Smullyan based his method on the semantic tableaux method by Beth [12].

Before defining the analytic tableaux method, Smullyan introduces the following facts as
the basis of his method (for any formulae X and Y)1:

1. a) If ¬X is true, then X is false.

b) If ¬X is false, then X is true.

2. a) If a conjunction X ∧ Y is true, then X and Y are both true.

b) If a conjunction X ∧ Y is false, then either X is false or Y is false.

3. a) If a disjunction X ∨ Y is true, then either X is true or Y is true.

b) If a disjunction X ∨ Y is false, then X and Y are both false.

4. a) If an implication X → Y is true, then either X is false or Y is true.

b) If an implication X → Y is false, then X is true and Y is false.

Based on the given facts, which directly follow the above definitions, Smullyan introduced
a set of rules for the construction of the tableaux in the following schematic form:

1. ¬¬X
X

2.
X ∧ Y
X
Y

¬(X ∧ Y)
¬X | ¬Y

3.
X ∨ Y
X | Y

¬(X ∨ Y)
¬X
¬Y

1In this work, we reuse the motivation and definitions of Smullyan [128] but transfer them into the
notation of Schöning[122] which are also already used in the definitions above.

28 Logic and Ontologies

4.
X → Y
¬X | Y

¬(X → Y)
X
¬Y

Rule 1 means that from ¬¬X we can directly infer X. Rule 2 indicates that X ∧ Y
directly yields both X and Y whereas ¬(X ∧ Y) branches into X and Y . Rule 3 and 4
behave analogously. The visualization of these rules is shown in Figure 3.1

¬¬X

X

(a) Rule 1

X ∧ Y

X

Y
(b) Rule 2.1

¬(X ∧ Y)

¬X ¬Y

(c) Rule 2.2

X ∨ Y

X Y

(d) Rule 3.1

¬(X ∨ Y)

¬X
¬Y

(e) Rule 3.2

X → Y

¬X Y

(f) Rule 4.1

¬(X → Y)

X

¬Y
(g) Rule 4.2

Figure 3.1: Analytic Tableaux for Different Construction Rules.

Smullyan distinguishes two types of formulae, which he calls (α) and (β): type (α) are
those that have direct consequences (viz. ¬¬X, X ∧Y , ¬(X ∨Y), ¬(X → Y)) while type
(β) branches (viz. ¬(X ∧ Y), X ∨ Y , X → Y). Furthermore he wrote: “It is practically
desirable in constructing a tableau, that when a line of type (α) appears on the tableau, we
simultaneously subjoin its consequences to all branches which pass through that line. Then
that line need never be used again. And in using a line of type (β), we divide all branches
which pass through that line into sub-branches, and the line need never be used again”
[128].

Smullyan also provides a precise definition of tableaux based on the previously mentioned
construction rules [128]. This definition is based on trees. For that reason we have to
add definitions of trees (more precisely ordered dyadic trees)before the definition of
tableaux. The following definitions are also adopted from Smullyan.

Definition 3.1 (Unordered Tree). An unordered tree T is defined by the following items:

• A set S of elements called points.

• A function l, which assigns to each point x a positive integer l(x) called the level of
x.

• A relation xRy defined in S, which is read “x is a predecessor of y” or “y is a
successor of x”. This relation must obey the following conditions:

C1: there is a unique point a1 of level 1. We call this point the origin of the tree.

C2: every point other than the origin has a unique predecessor.

C3: for any points x, y, if y is a successor of x, then l(y) = l(x) + 1.

3.1 Proof Methods for Propositional Logic 29

We call a point x an end point if it has no successors; a simple point if it has exactly one
successor, and a junction point if it has more than one successor. A path is defined as any
finite or denumerable sequence of points, beginning with the origin. In this sequence of
points, each term of the sequence (except the last, if there is one) is the predecessor of
the next. A maximal path or branch describes a path whose last term is an end point of
the tree or a path which is infinite. It follows from C1, C2, C3 that for any point x exists
a unique path Px whose last term is x. If y is within Px, then we say that y dominates x
or x is dominated by y. If x dominates y and x 6= y, then we say that x is above y, or that
y is below x. We say that y is between x and z if y is above x or z and below the other.

Definition 3.2 (Ordered Tree, Dyadic Tree). An ordered tree T is defined as an unordered
tree together with a function θ which assigns to each junction point z a sequence θ(z)
which contains no repetitions and whose set of terms consists of all successors of z. Hence,
if z is a junction point of an ordered tree, we can speak of the 1st, 2nd,. . . ,nth,. . . successor
of z (for any n up to the number of successors of z) meaning the 1st, 2nd,. . . ,nth,. . . terms
of θ(z). For a simple point x, we also speak of the successor of x as the sole successor
of x. An ordered tree in which each junction point has exactly two successors is called
dyadic tree. For such trees we refer to the first successor of a junction point as the left
successor and the second successor as the right successor.

Definition 3.3 (Analytic Tableaux). An analytic tableau for X is an ordered dyadic tree,
whose points are (occurrences of) formulae, which is constructed as follows: we start
by placing X in the origin. Now suppose T is a tableau for X, which has already been
constructed; let Y be an end point. Then we may extend T by either of the following
two operations:

(A) If some α, as depicted in the first column of Table 3.1, occurs on the path PY , then
we may adjoin α1 or α2 as the sole successor of Y .

α α1 α2

X ∧ Y X Y

¬(X ∨ Y) ¬X ¬Y
¬(X → Y) X ¬Y
¬¬X X X

Table 3.1: Operation (A) for Construction of an Analytic Tableau

(B) If some β, as depicted in the first column of Table 3.2, occurs on the path PY , then
we may simultaneously adjoin β1 as the left successor of Y and β2 as the right
successor of Y .

β β1 β2

¬(X ∧ Y) ¬X ¬Y
X ∨ Y X Y

X → Y ¬X Y

Table 3.2: Operation (B) for Construction of an Analytic Tableau

30 Logic and Ontologies

The above inductive definition of tableaux for X can be made explicitly as follows:
given two ordered dyadic trees T1 and T2, whose points are occurrences of formulae, we
call T2 a direct extension of T1 if T2 can be obtained from T1 by one application of the
operation (A) or (B) above. Then T is a tableau for X iff there exists a finite sequence
(T1, T2, . . . , Tn = T) such that T1 is a 1-point tree whose origin is X and such that for
each i < n, Ti+1 is a direct extension of Ti. A branch θ of a tableau is closed if it contains
some formula and its negation. And T is called closed if every branch of T is closed. A
proof of a formula X means that the tableau for ¬X is closed.

Example In the following example we proof the tautology ¬(p ∧ q)→ (¬p ∨ ¬q). The

resulting tableau is depicted in Figure 3.2. The cross 7 under a branch indicates that
this branch is closed as it contains a formulae and its contradiction.

¬(¬(p ∧ q)→ (¬p ∨ ¬q)) (1)

¬(p ∧ q) (2)
¬(¬p ∨ ¬q)) (3)

¬p (4)

¬¬p (6)
¬¬q (7)

p (10)

7

¬q (5)

¬¬p (8)
¬¬q (9)

p (11)
q (12)

7
Figure 3.2: Analytic Tableau for ¬(p ∧ q)→ (¬p ∨ ¬q)

The tableau depicted in Figure 3.2 was constructed as follows. As defined in
Definition 3.3, in order to proof a formula X, we have to check if the tableau for
¬X is closed. For that reason, the origin (marked with (1) in Figure 3.2) of our tableau
for proving ¬(p ∧ q)→ (¬p ∨ ¬q) is ¬(¬(p ∧ q)→ (¬p ∨ ¬q)). Now following the third α

rule
¬(X → Y)

X
¬Y

we have to adjoin X and ¬Y to the tableau, which means we adjoin

¬(p ∧ q) (line (2)) and ¬(¬p ∨¬q)) (line(3)). For the node in line (2), we now add node

(4) and (5) following the first β rule
¬(X ∧ Y)
¬X | ¬Y

, which means the node in line (2)

branches into ¬p and ¬q. Now the node in line (3) is further processed following the

second α rule
¬(X ∨ Y)
¬X
¬Y

. As explained above, the result of node (3) has to be added

to all branches. Hence we adjoin ¬X (in our case ¬¬p and ¬Y (in our case ¬¬q to both
branches of node (2) (thus to line (4) and (5)). After applying the forth α rule ¬¬X

X

3.1 Proof Methods for Propositional Logic 31

on node (6) and respectively on line (8) and (9), we have to adjoin p in line (10) (p in
line (11) and q in line (12)). After adding p to the left branch (line (10)), we can close

this branch (indicated by 7). The branch is closed as it contains a formula (here p in
line (10)) and its negation (here ¬p in line (4)) (see Definition 3.3). Following this rule
we can also close the other branch as it contains both q and ¬q. As now all branches of
the tableau are closed, the tableau is closed according to the definition.

Definition 3.4 (Complete Branch, Complete Tableau). A branch θ of a tableau is complete
if for every α which occurs in θ, both α1 and α2 occur in θ, and for every β which occurs
in θ at least one of β1 and β2 occurs in θ. A tableau T is called completed if every branch
of T is either closed or complete.

Theorem 3.1. If T is any completed open tableau (open in the sense that at least one
branch is not closed), the origin of T is satisfiable. (For proof see Smullyan [128].)

3.1.2 Resolution for Propositional Logic

Resolution is a rule of inference leading to a refutation theorem-proving technique.
Resolution exists for both propositional logic and first-order logic (see Section 3.2.1). To
perform resolution it is necessary to have the formula in conjunctive normal form. For
that reason, we adapt the defintions for normal forms by Schöning [122].

Definition 3.5 (Normal Forms). A literal is an atomic formula or the negation of an
atomic formula. A formula F is in conjunctive normal form (CNF) iff it is a conjunction
of disjunctions of literals:

F = (
n∧
i=1

(
mi∨
j=1

Li,j)) with Li,j ∈ {A1, A2, . . .} ∪ {¬A1,¬A2, . . .}

A formula F is in disjunctive normal form (DNF) iff it is a disjunction of conjunctions of
literals:

F = (
n∨
i=1

(
mi∧
j=1

Li,j)) with Li,j ∈ {A1, A2, . . .} ∪ {¬A1,¬A2, . . .}

Theorem 3.2. For every formula F in the propositional calculus, an equivalent formula
in CNF and an equivalent formula in DNF exists. (For proof see Schöning [122].)

Definition 3.6 (Clausal Form). A clause is a set of literals which is considered to be an
implicit disjunction. A unit clause is a clause consisting of exactly one literal. A formula
in clausal form is a set of clauses which is considered to be an implicit conjunction.

Hence, a formula F = (L1,1 ∨ . . . ∨ L1,n1) ∧ . . . ∧ (Lk,1 ∨ . . . ∨ Lk,nk
) in CNF with

Li,j ∈ {A1, A2, . . .} ∪ {¬A1,¬A2, . . .} is equivalent to the following formula F ′ =
{{L1,1, . . . , L1,n1}, . . . , {Lk,1, . . . , Lk,nk

}} in clausal form.

Definition 3.7 (Resolvent). Let K1, K2, and R be clauses. Then R is called resolvent of
K1 and K2 if a literal L exists with L ∈ K1 and L̄ ∈ K2 and R has the form:

R = (K1 − {L}) ∧ (K2 − {L̄}).

32 Logic and Ontologies

L̄ is defined as following:

L̄ =


¬Ai, if L = Ai,

Ai, if L = ¬Ai.

Definition 3.8 (Resolution Function Res). Let F be a set of clauses. Then we define the
resolution function Res(F) as follows:

Res(F) = F ∪ {R|R is resolvent of two clauses in F}
Res0(F) = F

Resn+1(F) = Res(Resn(F)) for n ≥ 0
Res∗(F) =

⋃
n≥0

Resn(F).

Theorem 3.3 (Resolution theorem). A set of clauses F is unsatisfiable, iff � ∈ Res∗(F).
(For proof see Schöning [122].)

Based on the resolution theorem, the recursive Algorithm 3.1 can be applied to decide
whether a formula in CNF is satisfiable or not.

Algorithm 3.1 Resolution Algorithm (returns true if formula is satisfiable)

Precondition: formula F in CNF
1: Built a set of clauses (also denoted with F) based on F
2: repeat
3: G← F
4: F ← Res(F)
5: until (� ∈ F) or (F = G)
6: if � ∈ F then
7: return false
8: else
9: return true

10: end if

3.2 Proof Methods for First-Order Logic

Similar to the propositional logic, several proof methods exist to proof first-order logic
on satisfiability respectively unsatisfiability. In the following we will only discuss the
most common methods, resolution and tableaux method.

3.2.1 Resolution for First-Order Logic

Similar to the resolution for propositional logic (see Section 3.1.2), resolution for first-
order logic requires a formula to be specified in a specific form (for propositional logic
it has to be in conjunctive normal form (CNF)). For that reason, we first have to define
the required form. The following definitions are based on the definitions formulated by
Schöning [122].

3.2 Proof Methods for First-Order Logic 33

Definition 3.9 (Clean Formula). A formula F is clean if no variable occurs both free and
bound in F and every occurrence of quantifiers binds different variables.

Definition 3.10 (Prenex Normal Form). A formula is called prenex or being in prenex
normal form, if it is built as follows:

Q1y1Q2y2 . . . QnynF,

whereby Qi ∈ {∃, ∀}, n ≥ 0 and yi are variables. Furthermore, F does not contain any
quantor.

Theorem 3.4. For every formula F exists an equivalent clean formula G in prenex
normal form. (For proof see Schöning [122].)

Definition 3.11 (Skolem Form). For every clean formula F in prenex normal form, we
define the result of Algorithm 3.2 as its skolem form.

Algorithm 3.2 Skolem Algorithm

1: while F contains ∃ quantor do
2: F has form F = ∀y1∀y2 . . . ∀yn∃zG for a clean prenex formula G and n ≥ 0
3: Let f be a n-ary function symbol, which is not part of F
4: F ← ∀y1∀y2 . . . ∀ynG[z/f(y1, y2, . . . , yn)]
5: end while

Definition 3.12 (Herbrand Universe). The Herbrand universe D(F) of a closed formula
F in skolem form is the set of all variable-free terms, which can be built from the parts of
F . In case that F does not contain a constant, we initially choose an arbitrary constant
(for instance a), and built the variable-free terms. Formally, D(F) is inductively defined
as follows:

1. All constants in F are elements of D(F). If F does not contain any constant,
a ∈ D(F) applies.

2. For every n-ary function symbol f contained in F and terms t1, t2, . . . , tn ∈ D(F),
the term f(t1, t2, . . . , tn) ∈ D(F) applies.

Definition 3.13 (Herbrand Structure). Let F be a formula in skolem form. Every
structure A = (UA, IA) is called Herbrand structure of F if the following is valid:

1. UA = D(F),

2. For every n-ary function symbol f in F and t1, t2, . . . , tn ∈ D(F), fA(t1, t2, . . . , tn)
= f(t1, t2, . . . , tn)

We call a Herbrand structure of a formula F a Herbrand model, if it is a model for F .

Theorem 3.5. Let F be a formula in skolem form. F is satisfiable, iff F has a Herbrand
model. (For proof see Schöning [122].)

Definition 3.14 (Herbrand Expansion). Let F = ∀y1∀y2 . . . ∀ynF ∗ be a formula in skolem
form. The Herbrand expansion E(F) is defined as following:
E(F) = {F ∗ [y1/t1][y2/t2] . . . [yn/tn]|t1, t2, . . . , tn ∈ D(F)}

34 Logic and Ontologies

Theorem 3.6 (Gödel-Herbrand-Skolem). Every formula F in skolem form is satisfiable,
iff the set of formulae E(F) is satisfiable. (For proof see Schöning [122].)

Definition 3.15 (Gilmore’s Algorithm). Let F be a closed formula in skolem form and
let {F1, F2, F3, . . .} be an enumeration of E(F). Algorithm 3.3 has the property to stop
in finite time for unsatisfiable formulae.

Algorithm 3.3 Gilmore’s Algorithm

1: n← 0
2: repeat
3: n← n+ 1
4: until (F1 ∧ F2 ∧ . . . ∧ Fn) is unsatisfiable . This can be checked with any method for

propositional logic
5: return ‘unsatisfiable’ and halt

Definition 3.16 (Ground Clauses). A ground term is a term without occurrences of
variables. A ground formula is a formula in which only ground terms occur. A predicate
clause is a disjunction of atomic formulae. A ground clause is a disjunction of ground
atomic formulae. A ground instance of a predicate clause K is the result of substituting
ground terms for the variables of K. This substitutions are called ground substitutions.

Definition 3.17 (Ground Resolution Algorithm). Let F be a closed formula in skolem
form with matrix F ∗ in CNF and let {F1, F2, F3, . . .} be an enumeration of E(F).
Algorithm 3.4 is called Ground resolution algorithm.

Algorithm 3.4 Ground Resolution Algorithm

1: i← 0
2: M ← ∅
3: repeat
4: i← i+ 1
5: M ←M ∨ {Fi}
6: M ← Res∗(M)
7: until � ∈M
8: return ‘unsatisfiable’ and halt

Theorem 3.7 (Ground resolution theorem). A formula F = ∀y1 . . . ∀ynF ∗ with matrix
F ∗ in CNF is unsatisfiable iff there is a set of ground clauses K1, . . . ,Km such that:

• Km is the empty clause, and

• for every i = 1, . . . ,m

– either Ki is a ground instance of a clause K ∈ F ∗, which means
Ki = K[y1/t1] . . . [yn/tn] with t1, . . . , tn ∈ D(F),

– or Ki is a resolvent of two clauses Ka, Kb with a < i and b < i.

(For proof see Schöning [122].)

3.2 Proof Methods for First-Order Logic 35

3.2.2 Analytic Tableaux for First-Order Logic

The analytic tableaux method for first-order logic presented here, is based on the method
of Smullyan and is an extension of the analytic tableaux method for propositional logic as
presented in Section 3.1.1 [128]. Smullyan therefore uses the α and β rules exactly as he
did for propositional logic and additionally adds the two categories γ and δ. γ-formulae
(also formulae of universal type) are any formulae of the form (∀x)A and ¬(∃x)A and
for any parameter a, γ(a) means A[x, a], ¬A[x, a] respectively. δ-formulae (also formulae
of existential type) are any formulae of the form (∃x)A and ¬(∀x)A, and δ(a) stands for
A[x, a], ¬A[x, a] respectively. The tableaux rules are extended accordingly resulting in
the following four rules:

Rule A:
α
α1
α2

Rule B:
β

β1 | β2

Rule C:
γ

γ(a) , where a is any parameter.

Rule D: δ
δ(a) , where a is a new parameter, or a has not been previously introduced

by rule D, and does not occur in δ, and no parameter of δ has been previously
introduced by rule D.

The rules A and B are the same as in propositional logic, whereas rule C and D can be
concreted as following:

Rule C: (∀x)A
A[x/a]

¬(∃x)A
¬A[x/a]

Rule D:
(∃x)A
A[x/a]

¬(∀x)A
¬A[x/a]

Example In the following example we proof the formula (∀x)(Px → Qx) →
((∀x)Px→ (∀x)Qx). The resulting tableau is depicted in Figure 3.3.

The tableau was constructed as follows. Following Definition 3.3, to proof a formula
X, we have to check if the tableau for ¬X is closed. Hence, the origin depicted in line
(1) of our tableau for proving the formula (∀x)(Px → Qx) → ((∀x)Px → (∀x)Qx) is
the formula ¬((∀x)(Px→ Qx)→ ((∀x)Px→ (∀x)Qx)). Now following the third α rule
¬(X → Y)

X
¬Y

we have to adjoin X and ¬Y to the tableau, hence we add (∀x)(Px→ Qx)

(line(2)) and ¬((∀x)Px → (∀x)Qx)) (line(3)). For line (2), we now add line (4)

following the first γ rule
(∀x)A
A[x/a]

. For that reason, line (2) leads to Pa → Qa.

36 Logic and Ontologies

¬((∀x)(Px→ Qx)→ ((∀x)Px→ (∀x)Qx)) (1)

(∀x)(Px→ Qx) (2)
¬((∀x)Px→ (∀x)Qx)) (3)

Pa→ Qa (4)

¬Pa (5)

(∀x)Px (7)
¬((∀x)Qx) (8)

Pa (11)

7

Qa (6)

(∀x)Px (9)
¬((∀x)Qx) (10)

Pa (12)
¬Qa (13)

7
Figure 3.3: Analytic Tableau for (∀x)(Px→ Qx)→ ((∀x)Px→ (∀x)Qx)

Following the third β rule X → Y
¬X | Y , line (4) branches into ¬Pa and Qa. To these two

branches the results by applying the third α rule
¬(X → Y)

X
¬Y

on line (3) are appended.

For that reason, we have to add (∀x)Px (line (7) and (9)) and ¬((∀x)Qx)) (line (8) and
(10)) to line (5) and (6) respectively. Line (7) results in Pa (line (11)) after using the

first γ rule
(∀x)A
A[x/a]

. This closes the branch as it contains both Pa (line (11)) and ¬(Pa)

(line (5)). The second branch can be closed analogously after applying the second δ rule
¬(∀x)A
¬A[x/a]

on line (10).

On the previous pages we have presented the analytic tableaux and the resolution
methods for both propositional and first-order logic. These methods of giving evidence of
the satisfiability of a formula are used within the matching process. A detailed description
and discussion about which method is finally used and why it is used can be found in
Section 8.3.

3.3 Ontologies

In this thesis, we focus on context awareness in ubiquitous computing environments.
Context sources are distributed on several heterogeneous devices. These devices are
equipped with a set of heterogeneous context sensors and other sources containing
context information, e.g. a calendar or a contact database. One of the goals of this thesis
is the seamless integration of such heterogeneous context sources and to support the

3.3 Ontologies 37

interoperability between context sources and consumers. Therefore, context services
and consumers must have a common knowledge about the exchanged information. A
common vocabulary prevents using the same term with different semantics. However,
for the exchange of heterogeneous context information a common vocabulary is a good
starting point. Also, information about the relationship between the different items is
required to support context reasoning and finally, knowledge about the representation of
the information is required. Otherwise it would be possible, that e.g. context consumer
and provider have the same understanding of the term position but the consumer expects
to receive a position in form of an address and the provider sends the position in WGS84
coordinates. This knowledge is described in an ontology. In this section we will give a
first introduction and general overview on ontologies, whereas our concrete ontological
concepts will be discussed in Chapter 6.

3.3.1 General Discussions on Ontologies

In the Handbook on Ontologies by Staab et al. [130], Guarino et al. provide a detailed
introduction on ontologies: “The word ‘ontology’ is used with different senses in different
communities. The most radical difference is perhaps between the philosophical sense, which
has of course a well-established tradition, and the computational sense, which emerged in
the recent years in the knowledge engineering community, starting from an early informal
definition of (computational) ontologies as ‘explicit specifications of conceptualizations”’
[45].

According to Gruber “[. . .] a body of formally represented knowledge is based on a
conceptualization: the objects, concepts, and other entities that are presumed to exist in
some area of interest and the relationships that hold them [. . .]. A conceptualization
is an abstract, simplified view of the world that we wish to represent for some purpose.
Every knowledge base, knowledge-based system, or knowledge-level agent is committed to
some conceptualization, explicitly or implicitly. An ontology is an explicit specification of a
conceptualization” [44].

Ding et al. mention that conceptualization is only one of three important aspects that are
needed to realize explicit ontologies [35]:

• Conceptualization: “The language should choose an appropriate reference model, such
as entity-relationship model and object-oriented model, and provide corresponding
ontology constructs to represent factual knowledge, such as defining the entities and
relations in a domain, and asserting relations among entities.”

• Vocabulary: “Besides the semantics, the language should also cover the syntax such as
symbol assignment (i.e., assigning symbols to concepts) and grammars (i.e., serializing
the conceptualism into explicit representation).”

• Axiomatization: “In order to capture the semantics for inference, rules and constraints
are needed in addition to factual knowledge. For example, we can use rules to generate
new facts from existing knowledge, and to validate the consistency of knowledge.”

Additionally to these general requirements on an ontology language, Ding et al. introduce
some aspects in order to consider ‘web-based knowledge sharing activities’:

• Extensibility: to support the incremental development of ontologies and to ease the
reuse of existing ontological concepts, ontologies should be extensible.

38 Logic and Ontologies

• Visibility: “Merely publishing knowledge on the Web does not guarantee that it can
be readily understood by machines or human users. In order to make knowledge
visible on the Web, additional common ontological ground on syntax and semantics is
required between information publishers and consumers. This requirement is especially
critical to machines since they are not capable of understanding knowledge written in
an unfamiliar language” [35].

• Inferenceability: ontologies do not only contain existing knowledge, but also support
the computation of new knowledge based on the existing knowledge, like “enabling
logical inference on facts through axiomatization” [35].

Ding et al. argue that these additional requirements caused the evolution of ontologies
especially in the Semantic Web community. As the above mentioned requirements also
meet our needs regarding an ontology, we will focus on ontology languages common in
the semantic web community.

Whereas traditional ontology languages like F-Logic2 [66], KIF & Ontolingua3 [44],
LOOM [85], and OCML4 [95] are mainly used to achieve interoperability of knowledge-
based systems in artificial intelligence, the web-based ontology languages have been
developed to make steps forward to the vision of a semantic web5. Hence, languages like
DAML+OIL [28], Web Ontology Language (OWL) [139, 140], RDF6 [141], and RDF-S7

[142] have been mainly developed to facilitate the interchange of ontologies across the
World Wide Web (WWW) and the cooperation among heterogeneous agents placed on it.

From this set of languages, OWL turns out to be the de-facto standard, which has also
been confirmed by Antoniou et al. [7]. They summarize the development and evolution
of OWL starting from RDF and DAML+OIL as follows: “The expressivity of RDF and
RDF Schema [. . .] is deliberately very limited: RDF is (roughly) limited to binary ground
predicates, and RDF Schema is (again roughly) limited to a subclass hierarchy and a
property hierarchy, with domain and range definitions of these properties. However, the
Web Ontology Working Group of W3C identified a number of characteristic use-cases for
Ontologies on the Web which would require much more expressiveness than RDF and RDF
Schema. A number of research groups in both America and Europe had already identified
the need for a more powerful ontology modelling language. This lead to a joint initiative
to define a richer language, called DAML+OIL [. . .]. DAML+OIL in turn was taken as the
starting point for the W3C Web Ontology Working Group in defining OWL, the language
that is aimed to be the standardised and broadly accepted ontology language of the Semantic
Web” [7].

2Frame Logic.
3Ontolingua is based on KIF.
4Operational Conceptual Modelling Language.
5According to the W3C, “The Semantic Web provides a common framework that allows data to be

shared and reused across application, enterprise, and community boundaries. It is a collaborative effort led
by W3C with participation from a large number of researchers and industrial partners. It is based on the
Resource Description Framework (RDF).” [138].

6Resource Description Framework
7RDF Schema

3.3 Ontologies 39

3.3.2 OWL

Figure 3.4 shows the so-called Semantic Web Layer Cake also known as Semantic Web
Stack [15]. It shows the different languages and technologies that are used to ‘build’ the
semantic web. Each layer exploits and uses capabilities of the layers below. As depicted,
OWL builds on RDF-S, which is based on RDF, Extensible Markup Language (XML),
and finally the Uniform Resource Identifiers (URI) respectively the Internationalized
Resource Identifier (IRI) concepts. We will give a short overview of how the technologies
underlying OWL are used, whereas we skip the discussions of other technologies and
concepts, as they are out of scope.

Figure 3.4: Semantic Web Layer Cake [15]

The bottom layer contains the URI/IRI concepts. The Uniform Resource Identifiers (URI)
have basically two functions. They provide unique, unambiguous names for arbitrary
concepts and they can be used as a reference to those concepts (or at least a description).
The Internationalized Resource Identifier (IRI) is a generalized form of the URI, which
allows all Unicode characters instead of only a subset of ASCII characters.

The Resource Description Framework (RDF) is a language used to represent information
on resources in the web [141]. These resources are described in terms of properties and
property values using RDF statements. A statement is represented as a triple consisting of
subject, predicate, and object as shown in Figure 3.5. A concrete example8 is depicted
in the second subfigure of Figure 3.5 explaining that the title of the the website http:
//www.w3.org/ is ‘World Wide Web Consortium’.

The subject in general describes a resource. As stated by Lacy, “[. . .] resources are the
key building block in RDF. Resources are typically associated with nouns (i.e. people, places,
things). An RDF is anything with an associated URIref. Since anything can have a URIref,

8The example is inspired from the W3C RDF Validation service hosted at http://www.w3.org/RDF/
Validator/. Last visited on Aug 23, 2012.

40 Logic and Ontologies

http://www.w3.org/
http://www.w3.org/
http://www.w3.org/RDF/Validator/
http://www.w3.org/RDF/Validator/

(a) RDF Statement

(b) Example of a RDF Statement

Figure 3.5: RDF Statement and Example

anything can be a resource” [77]. The predicate of the RDF statement describes a property.
“Properties describe attributes of resources and relationships between resources” [77]. So,
properties link either resources with data values or they associate resources with other
resources in order to describe their relationship and the object of the RDF statement is
either a data value or a resource.

Even if RDF and RDF-S provide basic capabilities for describing resources, several
capabilities are missing. For example, RDF and RDF-S do not support restrictions on
property cardinality. Furthermore it is not possible to express disjoints between classes
of resources. To overcome these shortcomings, OWL [139, 140] has been developed. It
builds on RDF, more precisely OWL semantically extends RDF respectively RDF-S.

The W3C standard for OWL foresees three different variants of the language, each
providing a different level of expressiveness. These are OWL Full, OWL DL and OWL
Lite. In OWL Full, all language elements and constructs can be used as long as the result
is valid RDF. Consequently, it also covers OWL DL and OWL Lite. In general, OWL Full is
undecidable.

The undecidability of OWL Full was the main reason to standardize other variants of OWL.
In difference to OWL Full, OWL DL and OWL Lite are decidable. In comparison to OWL
Full, resources in OWL DL are only allowed to be either a class, a data type, a property
of an individual, a data value or part of the built-in vocabulary [130]. Furthermore, all
resources must be explicitly typed. Another restriction of OWL DL is that object and data
type properties are disjoint and the cardinality restrictions for transitive properties are
not allowed. Finally, the usage of anonymous classes is limited to the domain and range
of owl:equivalentClass and owl:disjointClass and to the range of owl:subClassOf.

OWL Lite is a sub-language of OWL DL and also of OWL Full. Additionally to the
restrictions of OWL DL, it is not allowed to use owl:oneOf, owl:disjointWith, owl:unionOf,
owl:complementOf and owl:hasValue. Furthermore, cardinality can only be limited to 0
or 1 and the usage of anonymous classes in both domain and range of owl:equivalentClass
is not allowed.

According to Hitzler et al. OWL DL is the most used variant of OWL [55]. OWL Full
is avoided due to its undecidability, whereas OWL Lite is avoided due to its limited
expressiveness.

3.3 Ontologies 41

4 Related Work

The young always have the same problem - how to rebel and
conform at the same time. They have now solved this by defying

their parents and copying one another.

– Quentin Crisp (1908-1999)
The Naked Civil Servant (1968)

In this chapter ‘Related Work’, existing approaches for supporting the development of
context-aware applications1 are discussed and evaluated according to the requirements
described in Section 1.2:

• Requirement 1: Semantic discovery and integration of independently developed
context services and consumers

• Requirement 2: Loose coupling of context providers and consumers

• Requirement 3: Exchange and interpretation of heterogeneously represented
context information

• Requirement 4: Expressing context offers and needs

• Requirement 5: Activation and deactivation of local context services

• Requirement 6: Dynamic selection of context services based on QoC and CoC

• Requirement 7: Minimizing total amount of resources used by context services

2007 Baldauf et al. published an extensive survey on context-aware systems [8]. This
survey gives a very good overview of the different definitions of context awareness
and common architecture principles for context-aware systems. In their survey, the
authors presented an evaluation of different existing context-aware frameworks. For the
evaluation, they introduced several different evaluation criteria:

• The architecture of a context-aware system is mainly driven by the context
acquisition method. The main criteria for a reasonable architectural approach
is the separation of concerns between the context acquisition and the components
with user interaction as proposed by Abowd et al. [2]. This corresponds to our
request for loose coupling (see Requirement 2).

• The sensing technology is implemented differently in every framework. It is
important, that the concrete sensing mechanisms are encapsulated in separate
components to support the aforementioned separation of concerns. Furthermore,

1We use the term context-aware systems as umbrella term for frameworks and middleware supporting
the development of context-aware applications.

43

it allows to access the contextual data via defined interfaces. This is implicitly
requested by our requirement for semantic discovery (see Requirement 1), the
ability to express context offers and needs (see Requirement 4) and loose coupling
(see Requirement 2), as it is only possible to describe, discover, select and (de-)
activate specific context sources if these are separated into explicit components.

• Also the underlying context model has an important influence on the context-
aware system. Baldauf et al. reference the survey of Strang et al., who evaluate
the different kinds of context models [133]. This survey was also an important
input when developing our context model. As the exchange of heterogeneously
represented context information is an important aspect of our system (see
Requirement 3), the criteria of the underlying context model is implicitly part
of our requirement for supporting heterogeneity.

• The criteria of the underlying context processing logic refers to the abilities of
interpreting, inferring, aggregating, or composing context information in order to
retrieve higher-level information. This is also requested by the loose coupling as
described in Requirement 2.

• Resource discovery mechanisms are currently used rarely in the different existing
frameworks. Such dynamic mechanisms are important, especially in a pervasive
environment, where the availability of sensors and other context sources changes
rapidly (new ones are added and removed). This corresponds to our requirement
on semantic discovery (see Requirement 1).

• Access to historical context data might be partially necessary to establish trends
and to predict future context values. This is required to some extent for our
requested support for activation and deactivation (see Requirement 5) as without
knowledge about historical data (more precisely historical metadata) it is only
possible to select deactivated sources on default/average values.

• As context may include sensitive information on e.g. people, it is necessary to have
the opportunity to protect privacy. This criteria is not addressed in this thesis but
rather part of our future work (see Section 13.2).

Based on these criteria, the Baldauf et al. evaluated the several frameworks, namely the
Context Managing Framework [73], SOCAM [46], CoBrA [21, 19], the Context Toolkit
[117, 33, 2], Hydrogen [56], the Sentient Object Model [13], and Gaia [110]. Most
of the criteria from Baldauf et al. correspond to our requirements. However, some of
them (like Requirement 6 on dynamic selection) are not considered by Baldauf et al.
For that reason, we refresh the evaluation of the above mentioned works and add some
additional relevant systems. In this chapter we only consider these approaches which
focus on the development of context-aware systems. Approaches which provide solutions
to only one specific requirement are not discussed in this chapter but in the different
discussions at the end of the chapters of Part II.

4.1 Existing Context-Aware Systems

In this section we present and evaluate several existing context-aware systems based
on the requirements introduced in Section 1.2. The systems are presented in alphabetic
order.

44 Related Work

4.1.1 Adaptive middleware for context-aware applications in smart-homes

Huebscher et al. present in their paper [59] a middleware for developing context-aware
applications. This middleware exhibits autonomic properties and can choose one of
several context providers offering the same type of context according to the requirements
of the context consumer. The adaptive middleware uses utility functions to determine
which alternative should be used at any time. For this dynamic selection, Huebscher et al.
introduce context services2, which connect application and different context providers.
These providers, connected by a context service offer the same type of context but use
different underlying sensors. This concept of context services allows an application to
use a type of context whilst abstracting from the actual instance of a context provider. A
directory service is used by the context services to find relevant context providers. When
context providers join the network, they advertise their presence to the directory service,
supplying it with the descriptive attributes for the service they provide. The directory
service monitors the status of the context providers and can send notification events to
the adaptation engine to trigger a new selection of the context providers.

Major contributions: Huebscher et al. provide a utility-based approach for the selection
of context sources. Their approach dynamically reacts on changes of the provided quality
of the different context providers.

Weaknesses: Even if Huebscher et al. mention that “[. . .] context acquisition is a costly
operation [. . .]”, they address only implicitly the issue of cost minimization by selecting
only one context provider per context request. However, while selecting context services,
cost related metadata are not considered. Furthermore, they do not address the issue of
dynamic activation and deactivation of context sensors and the according challenges (e.g.
calculation of the QoC of a deactivated context source). Finally the approach requires a
common understanding of parameters and the dimensions these parameters are specified
in.

4.1.2 ASC-CoOL & CoCo

Strang et al. developed a context modelling approach called Aspect Scale Context (ASC)
model, which is based on ontologies [134]. Based on this model, the authors derived
the Context Ontology Language (CoOL), which is used to enable context awareness
and contextual interoperability during service discovery and execution in a distributed
architecture. “An aspect is a classification, symbol- or value-range, whose subsets are a
subset of all reachable states, grouped in one or more related dimensions called scales.
[. . .] A scale is an unordered set of objects defining the range of valid context information”
[134]. Hence, an aspect corresponds to what we call the information type or scope
and the scale to what we call context representation. An example for an aspect is
GeographicCoordinateAspect and two corresponding scales could be WGS84Scale or
GaussKruegerScale. In this respect, the work of Strang et al. stands out from all other
analysed approaches, as it also captures different representations for a type of context
information. Besides, transformations between different representations are covered by

2The concept of context services is used here differently as in our work. Whereas Huebscher et al. use
context services as layer to group similar context sources, in our solution, context services encapsulate
arbitrary sources and provide a common interface and service description for these sources.

4.1 Existing Context-Aware Systems 45

IntraOperations and InterOperations. IntraOperations just convert between two scales of
one aspect, whereas InterOperations also involve information corresponding to other
aspects. The CoCo (Context Composition) system by Buchholz et al. relies on the context
model of Strang et al. [16]. In their work, context consumers can query for context
information with a so-called CoCoGraph, which is a manually constructed chain for
composing and transforming context information.

Major contributions: The ASC-CoOL approach by Strang et al. provides an ontology-
based context model, which explicitly addresses heterogeneity with regard to different
representations of context information. Furthermore, the system allows the transforma-
tions between different scales of an aspect.

Weaknesses: Even if explicitly mentioning metadata for context information, the
authors do not explain how this metadata are handled when performing conversions
between different scales. The conversions called IntraOperations and InterOperations
are also explained very imprecisely. Other required aspects like context selection are not
addressed by the approach (also not by the CoCo system). The issue of using QoC during
the discovery and matching of useful context providers has been discussed by Krause
et al. But according to them, it has not been implemented in the CoCo system [75].

4.1.3 AWARENESS

In the AWARENESS project3, Sinderen et al. and Sheikh et al. motivate the consideration
of QoC and identify five relevant QoC indicators for context-aware middleware [125,
123, 124]. Thereby the authors reuse and extend the motivation and definition of QoC
by Buchholz et al. [17]. Whereas Buchholz et al. describe six use cases for QoC, Sheikh
et al. generalize and categorize these use cases to three:

• QoC-based application adaptation: the application adapts its behavior according to
the QoC information of the incorporated context sources.

• Middleware efficiency: the middleware selects the “best” context source from a set
of context sources offering the same type of context information based on the QoC.

• Users’ privacy enforcement: according to the privacy requirements of the users, the
middleware limits the QoC of the delivered context information.

After introducing these three application areas for QoC, the authors discussed five QoC
indicators and their quantification: precision, freshness, temporal resolution, spatial
resolution, and probability of correctness. Moreover, they justify the selection of these
indicators and why they did not take into account other indicators like trustworthiness
which have already been identified as relevant by other researchers. In their work the
authors mainly focus on the protection of the user’s privacy.

Major contributions: Sheikh et al. motivate clearly the usage of QoC and also they
justify the selection of QoC indicators. In their work, the authors motivate the
adaptation/reduction of the quality of context information to protect the user’s privacy.

Weaknesses: Even if they provide a clear motivation for the usage of QoC, they only
focus on the protection of the user’s privacy but do not provide any solution how to

3AWARENESS (Context AWARE mobile NEtworks and ServiceS) http://www.freeband.nl/project.
cfm?language=en&id=494

46 Related Work

http://www.freeband.nl/project.cfm?language=en&id=494
http://www.freeband.nl/project.cfm?language=en&id=494

solve the raised issues of QoC-based application adaptation and middleware efficiency.
Furthermore, by splitting the QoC indicator ‘resolution’ introduced by Buchholz et al.
[17] into spatial and temporal resolution, an important subset of this indicator is lost.
For example, it is not possible to express the resolution of a temperature sensor.

4.1.4 CARE

The Context Aggregation and REasoning (CARE) middleware aims at supporting context-
aware adaptation of Internet services in a mobile computing environment. As described
by Agostini et al., the platform focuses on the server-side adaptation of services providing
content [3, 5, 4]. The authors distinguish between shallow context data (e.g. device
capabilities) and non-shallow context data (e.g. user activity). They are using a logic
programming language for reasoning shallow context data, while they have adopted
OWL DL as the language for representing and reasoning with ontology-based context
data. The context data are managed by the different entities (e.g. user, network operator,
service provider). A profile contains all context data collected and managed by a certain
entity and includes both shallow context data and ontology-based context data which
are expressed by means of references to ontological classes and relations. Both the user
and the service provider can declare policies in the form of rules over context data in
order to derive higher-level context data and to determine the adaptation parameters
of the service. A dedicated module, the context provider, is in charge of building the
aggregated context data for the application logic, evaluating adaptation policies and
solving possible conflicts. While the initial version of the approach only presents the
support for shallow context data based on Composite Capability/Preference Profiles
(CC/PP) [68], the extended version [5] contains a hybrid approach. In this approach,
ontology reasoning is loosely coupled with the efficient rule-based reasoning of a
middleware architecture for service adaptation. While rule-based reasoning is performed
at the time of a service request to evaluate adaptation policies and reconcile possibly
conflicting context information, ontology reasoning is mostly performed asynchronously
by local context providers to derive non-shallow context information. The context model
is based on CC/PP profiles. The authors are using the CC/PP profile for shallow profile
data (context data which can be modelled in a natural way by using attribute/value
pairs, and where the semantics for attributes and their allowed values is clear) and an
extended CC/PP profile linking those attributes modelling non-shallow context data (e.g.
user activities) to ontology concepts that formally define their semantics.

Major contributions: The CARE middleware focuses on the server-side adaptation of
services based on context information provided by the user and the communication
provider. It contains a very efficient and scalable approach for combining rule-based
reasoning with ontology-based reasoning. Ontology-based reasoning in general is known
to be very resource consuming. As a consequence, the authors splitted the ontology in
to several parts: “The solution we adapt consists in keeping the terminological part of the
ontology [. . .] static, in order to be able to perform the TBox classification in advance to
the service request. [. . .] Furthermore, the assertional part of the ontology can be filled in
advance to the service request with those instances that are known a priori [. . .]” [4].

Weaknesses: The middleware is built to adapt content providers based on context
information about the requesting user. For these adaptations, context information is
collected from the user’s device, the communication provider, and the service provider.

4.1 Existing Context-Aware Systems 47

During this process neither quality of context information nor cost of context information
are used, for example to solve conflicts when the user’s device provides the position
retrieved by the GPS sensor and the communication provider provides a position retrieved
by triangulation. Furthermore, the authors do not support different representations of
context information.

4.1.5 CoBrA

The Context Broker Architecture (CoBrA) by Chen et al. is an architecture to support
context-aware systems in smart spaces [21, 22, 19, 20]. A smart space is a physical
space (like a room) populated with intelligent systems that provide pervasive computing
services to users. The central aspect of CoBrA is “[. . .] an intelligent broker agent that
maintains a share model of context for all agents, services, and devices in the space [. . .]”
[20]. This broker operates on a central server in the space. Newly acquired context is
sent to this broker. The broker integrates the information to a shared context model.
Context consumers can send requests to the broker, which answers these requests based
on his knowledge collected in the shared context model. As stated by the authors, the
“[. . .] centralized design of a broker could create a bottle neck” [21]. For that reason, the
authors allow to group several brokers into so-called broker federations.

Major contributions: Chen et al. developed a system for supporting context awareness
with the involvement of resource-limited devices. They developed a centralized approach.
The central context broker is installed on a server and takes over the tasks of context
acquisition and reasoning from these resource-limited devices. Context data are stored
in a central knowledge base of the broker. This knowledge base consists of a context
ontology providing an explicit vocabulary and allowing reasoning.

Weaknesses: As mentioned by the authors, the central broker also acts as a bottleneck.
Even if context brokers are grouped into broker federations, the approach relies very
heavily on communication. In consequence, although the authors focus on resource-
limited devices, the approach requires a permanent and stable connection of these
devices to an external server. Furthermore, most of the other requirements are not
addressed by the approach. The context model, even though developed for exchanging
information from heterogeneous devices, does not support multiple representations of
the same information type. Other aspects like the context selection are not required as
context information is integrated to a central knowledge base.

4.1.6 CONTEXT

Chantzara et al. present in their paper an approach for evaluating and selecting context
information to be used by context-aware services. This system takes the quality of
information into account and automatically adapts to any changes and failures of
information sources [18]. Furthermore, they propose a quality-aware discovery of service
information sources which allows services to be ported easily to environments with
different sets of sources. The authors motivate the need for a dynamic context selection
as following:

• Context sources may provide the same type of information but vary in update
frequency, accuracy, format of representation, and price.

48 Related Work

• Context-aware services can be easily ported to other environments where different
context sources provide information.

• Varying user requirements point to the provisioning of the same context-aware
service with different quality levels and these levels may require different context
information with different quality characteristics.

The presented approach builds on top of the IST-CONTEXT platform4, which allows to
separate the logic of context-aware services from the context management functionality.
So-called context brokers are acting as intermediaries between context sources and
context-aware services. Context sources register the properties of the provided context
information at the local context broker. Furthermore, context-aware services request
context information from the local context broker. The context broker decides about
the best sources to answer the context requests. If the context source is not locally
available, the context broker is requesting external context brokers for the required
context information. For the decision making, the context broker is calculating a utility
that describes the usability of the context source in terms of accuracy, freshness, and
fidelity. Besides, the selected source has to hold a cost and time response constraint.
The authors mention that the context selection problem, which is according to them an
instance of the Multi-Choise Multi-Dimensional Knapsack Problem (MMKP), is formulated
as a utility maximization problem rather than a cost minimization problem.

Major contributions: Chantzara et al. provide a utility based approach for the selection
of context sources, which also takes into account constraints in difference to e.g. the
approach of Huebscher et al. [59] (see Section 4.1.1), which only allows to select a
source without expressing constraints to limit the selection set.

Weaknesses: Chantzara et al. do not provide support for heterogeneous parameters and
parameter dimensions. Furthermore, the selection approach does not take into account
the challenges caused by the dynamic activation and deactivation of context sources. The
authors also use a fixed set of quality parameters: accuracy, refresh rate, time sample,
fidelity, and time response. Cost is only foreseen as a constraint, whereas it remains
unclear which type of cost this parameter should be (unclear semantic: monetary or
resource usage). Finally, it remains unclear if the approach supports the selection of
more than one context source to fulfil more than one context request and to support
sharing of context sources.

4.1.7 Context Toolkit

The Context Toolkit by Salber et al. is one of the first and most referenced approaches
to support the development of context-aware applications [117, 33, 32]. The basic
concept of the toolkit is the reuse of specialized components for context sensing. These
components are similar to graphical widgets, which are used to simplify the development
of Graphical User Interfaces (GUIs). As described by Dey et al., the toolkit consists of
three main abstractions [33]:

• Widgets: “Just as GUI widgets mediate between a user and an application, context
widgets mediate between a user and the environment.” [33].

4CONTEXT: Active Creation, Delivery and Management of efficient Context Aware Services, IST-2001-
38142-CONTEXT, http://context.upc.es. Last visited on Dec. 18, 2011.

4.1 Existing Context-Aware Systems 49

http://context.upc.es

• Aggregators: “Context aggregators can be thought of as meta-widgets, taking on all
capabilities of widgets, plus providing the ability to aggregate context information of
real world entities such as users or places.” [33].

• Interpreters: “A context interpreter is used to abstract or interpret low-level context
information into higher-level information.” [33].

The toolkit is implemented as a set of Java APIs that represents its abstractions and uses
the HTTP protocol for communication and XML as the language model.

Major contributions: The Context Toolkit was one of the first approaches to support the
decoupling of context provider and context consumer. By separating the context provider
into reusable components, the approach also eases the development of context-aware
systems.

Weaknesses: The approach lacks in nearly all required capabilities: the toolkit only
supports the decoupling of context provider and consumer. But it does not support any
other requested feature.

4.1.8 COSMOS

The COSMOS (COntext entitieS coMpositiOn and Sharing) framework is a component-
based framework for managing context data in ubiquitous computing environments.
The framework has been initially introduced by Conan et al. [27] and has been revised
afterwards by Rouvoy et al. [113] and Abid et al. [1].

The basic structuring concept of COSMOS is the context node which “[. . .] is a context
information modelled by a software component.” [113]. Context nodes are organized
hierarchical to form context management policies. Communication in the hierarchy
of context nodes may be bottom-up (notification) or top-down (observation). Context
nodes providing raw context data build the leaves of the hierarchy and are called context
collectors. In difference, context nodes above these leaves inference context information
from the lower nodes are called context processors. To describe this composition of
nodes, COSMOS provides a declarative language [113].

Abid et al. present an approach for the integration of QoS into COSMOS [1]. In COSMOS,
QoC is supported through the notion of QoC operators that can integrate various kinds
of QoC parameter operators, dedicated to a particular QoC parameter. A QoC-aware
context node is composed of context collectors which are again context nodes and a QoC
operator. A context collector collects raw metadata coming from the context sensors
or sources in the distributed system. The raw metadata are then transformed by the
QoC operator to deliver QoC parameters. The QoC operator is responsible for extracting
required data, computing QoC, and supplying it to upper layers via the message operator.
Different context collectors within the QoC operator collect the raw metadata, which
get analysed by a QoC aware operator component which extracts relevant data and
distributes them to QoC parameter operator components. Each QoC parameter operator
computes a specific QoC parameter such as accuracy.

Major contributions: With its component-based and hierarchical abstraction of context
providers the COSMOS framework provides a solid basis for decoupling the processes
of data collection, data interpretation, and reasoning. Context providers, so called

50 Related Work

context nodes, are encapsulated into separate components which can be composed to
new context nodes. This also eases the reuse of existing nodes. An additional benefit of
or reason for this separation is described by Conan et al. [27] as following: “Although
adaptation actions should not be too frequent, processing context information is an activity
that must be conducted more often, while data gathering is a third activity that must be
continuous. Thus, we have three different activities with different frequencies. We decouple
as much as possible these activities in order to obtain a non-blocking and usable framework”.

Weaknesses: Despite its benefits, the COSMOS framework also has some drawbacks.
The composition of context providers into context processors or reasoners has to be
done with the declarative language introduced by COSMOS. This language is used to
couple these nodes. As this description has to be written at design time, the system
does not support the dynamic discovery of previously unknown context sources or the
disappearing of context sources. This is also mentioned as future work by Rouvoy et al.:
“A second direction concerns the composition of context policies at run-time, the issue being
to be able to address situations in which the intersection between these policies may be non
empty, that is dynamically detecting and solving conflicts.” [113]. Furthermore Abid et al.
describe “[. . .] another research direction concerns the design of look-up mechanisms to
find a child in the context hierarchy with a specific QoC level.” [1].

4.1.9 EEMSS

Wang et al. developed a framework called Energy Efficient Mobile Sensing System (EEMSS)
with the main motivation to “[. . .] powering only a minimum set of sensors and using
appropriate sensor duty cycles” [144]. They developed a sensor management engine based
on states and state transitions which are used to turn on respectively turned off sensors.
As an example, they present an activity recognition system retrieving the user’s current
activity based on data from GPS sensor, accelerometer, microphone, and a WiFi device to
retrieve the surrounding WiFis. In difference to other approaches, the four used sensors
are not running permanently but rather are activated only when they are useful to detect
an activity change. For instance, in the state walking only the GPS sensor is activated. If
the sensor detects that the user stopped or the sensor is not able to retrieve the current
position, the WiFi device is started in order to check if known WiFi spots can be detected.
At such a place the GPS is turned off and microphone and accelerometer are turned on.
The accelerometer is used to detect movements of the user, whereas the microphone is
used to retrieve if it is a loud or quiet surrounding.

Major contributions: With their approach the authors evaluated that turning off unused
sensors to minimize the total power consumption increases the device’s battery life by
more than 75% without waiving accuracy.

Weaknesses: The system created by Wang et al. has many open issues which are
indispensable for ubiquitous computing systems. For example, the system can only use
sensors already known at design time as these sensors are hard-coded into the XML
based state description, which is used to turn the sensors on/off. A dynamic switch of
sensors due to QoC issues is not possible as long it is not foreseen in the state description.
For this state description, “[. . .] it is important to note the system designer must be well
familiar with the operation of each sensor and how a user state can be detected by a set of
sensors’’.

4.1 Existing Context-Aware Systems 51

4.1.10 Gaia

Gaia is a distributed middleware system for “Smart Spaces, which are ubiquitous computing
environments that encompass physical spaces.” [106, 110, 107]. This system also contains
support for context awareness:

• “Context Providers are sensors or other data sources of context information.”

• “Context Synthesizers get sensed contexts from various context providers, deduce
higher-level or abstract contexts from these simple sensed contexts and then provide
these deduced contexts to other agents.”

• “Context Consumers are entities (context-aware applications) that get different types
of contexts from Context Providers or Context Synthesizers.”

• “Context Provider Lookup Service enables Context Providers to advertise what they
offer and agents to find appropriate Context Providers.”

• “Context History Service lets agents query for past contexts, which are logged in a
database.

• “Ontology Server maintains the ontologies that describe different types of contextual
information.”

Major contributions: The approach adapts the idea of loosely coupling of context
consumer and provider as introduced by the Context Toolkit. Additionally, they introduce
a semantic annotation of the exchanged context information to address the issue of
interoperability.

Weaknesses: The problem of selecting an appropriate context provider is passed to the
different context consumers. As described by Ranganathan et al., context consumers can
query the Lookup Service for a context provider that provides the contextual information
they need [106]. The Lookup Service checks if any of the context providers satisfy what
the consumer needs and returns the results to the application. In addition, Ranganathan
et al. mention that the integration of metadata is only limited to metadata expressing
the precision of the data [106].

4.1.11 Hydrogen

Hydrogen by Hofer et al. is a three-layered architecture and software framework relying
on a peer-to-peer network [56]. Context sources are abstracted to the so-called Adaptor
Layer. With this layer, the simultaneous access by two or more applications to one context
provider is ensured. The second layer of the architecture is the Management Layer, which
consists of the Context Server. “The context server stores all contextual information about
the current environment of the device. Furthermore the context server has the possibility to
share its information with other devices in range” [56]. The third layer is the Application
Layer consisting of the context-aware applications.

Hydrogen uses an object-oriented context model approach to realize context awareness
specialized for mobile devices. Context information is stored in a context server and the
management layer is responsible for providing and retrieving this context information
and sharing it with other devices. Context-aware applications that use the context

52 Related Work

information provided by the underlying layers constitute the application layer. Due to its
limited capabilities a device cannot sense all the context information itself. Hydrogen
provides a mechanism to share sensed context data with other nearby devices. Context
data sharing is based on peer-to-peer connection over LAN, WiFi, or Bluetooth. However,
the authors do not mention distributing the ‘aggregated context’, i.e., context originating
from two or more devices.

Major contributions: The authors present an extendible framework to decouple context
provider and context consumer. Context consumers can access context information from
the context server either via the exchange of serialized Java objects or by XML streams.

Weaknesses: Even if motivating that the provisioning of meta information is an
important requirement, Hofer et al. do not foresee this in their object-oriented context
model [56]. The model is missing important features. For example, it does not support
the expression of relationships among context information. The representations of
information are not specified explicitly and the context model does not provide any
semantic reference. Furthermore, the framework does not support the hierarchical
composition of context providers such as context reasoners that retrieve higher-level
information from raw information as requested in our requirement on loose coupling
(see Requirement 2). Finally, due to the missing metadata support context selection is
not possible.

4.1.12 Information exchange and fusion in dynamic and heterogeneous distributed
environments

Like Paspallis’ work, Reichle’s approach serves as a base for this thesis [109]. Reichle
focuses on the information exchange and fusion in heterogeneous and dynamic
distributed environments. He developed concepts for bridging the heterogeneity issues
and considering uncertain, imprecise and unreliable sensor information in information
fusion and reasoning approaches. He relies on the same context model [158] and
the CQL [159]. In difference to Paspallis, he revised both context model and CQL. He
extended the context model by adding support for describing imprecise and uncertain
data. Additionally, the CQL, which serves originally only as description language for
expressing context requests, has been extended to describe also the offered context
information by context providers.

Major contributions: Reichle developed an approach for handling, fusion of and
transforming heterogeneously represented information under consideration of their
unreliability and imprecision.

Weaknesses: Reichle extended the context model presented by Reichle et al. [158].
However, the support for metadata in his extended model has been limited to these
metadata required for his fusion approach. Furthermore, the model does not support
any cost related metadata and Reichle does not support selection of context sources. His
extended version of the CQL, which has been initially presented by Reichle et al. [159],
does not provide any support for expressing selection criteria.

4.1 Existing Context-Aware Systems 53

4.1.13 Managing Context Information in Mobile Devices

Korpipää et al. developed a “[. . .] uniform mobile terminal software framework that
provides systematic methods for acquiring and processing useful context information from a
user’s surroundings and giving it to applications” [73, 71]. They developed an ontology-
based context model supporting the abstraction of raw numerical sensor data by semantic
symbolic expressions [72, 70].

The presented framework basically consists of four parts:

• The blackboard-based context manager serves as the central communication point
between the context sources and the applications.

• So-called resource servers abstract the actual context sources: “The resource servers
connect to any context data source and post context information to the context
manager’s blackboard” [73].

• Context recognition services are used to infer higher-level information from raw
data, which are shared again with the applications.

• Applications can query for arbitrary context information from the context manager:
“The client may request context information directly from the context manager database,
or specifically request context recognition” [73].

In the context model by Korpipää et al., context information can be described by seven
properties:

• The context type refers to a category of the context
(e.g. Environment:Sound:Intensity).

• The Context refers to “the symbolic ‘value’ of the information” [72].

• The value is an optional property containing the numerical value.

• The confidence is “an optional property of context describing the uncertainty of context.
Typically a probability or a fuzzy membership of context, depending on the source.”
[72].

• The source property can be used to describe the source of the information.

• The Timestamp property contains the time of the context retrieval.

• User-defined free attributes can be attached to the actual information.

Major contributions: Korpipää et al. present an extendible framework which decouples
context sources and context consumers. In addition, they provide simple support for
requesting and offering semantically enriched information.

Weaknesses: Even if the authors provide support for the metadata type confidence to
describe the characteristics of the context information, more generic support is required.
With the presented model it is not possible to specify e.g. cost. Furthermore, the authors
did not directly foresee an explicit semantic description of the representation of the
context information (more precisely of the context value). The support for requesting
and selecting context information is only based on the information type but it is not
possible to take metadata constraints into account.

54 Related Work

4.1.14 MobiLife

The MobiLife project5 provides a Context Management Framework (CMF) to realize a
loose coupling of context information sources and consumers [40, 64]. Context Sources
deliver raw context information and are wrapped into so-called Context Providers. These
context providers can additionally include context aggregation, prediction or reasoning.
Context Consumers are software entities that “[. . .] use the Context Provider’s interface
as communication endpoint to obtain contextual data” [40]. Context Brokers are used by
the context consumers to search for appropriate providers. Context providers have to
advertise the provided information: “In order to achieve interoperability between Context
Providers from diverse domains, the context management framework standardizes a meta
model for Context Representation that all Context Providers should adhere to, in order
to register themselves in a Context Broker and to enable potential Context Consumers to
discover the context information they need” [40].

Major contributions: The framework facilitates a loose coupling of context providers
and consumers. Additionally, context consumers can search and discover new and at
design time unknown context providers. The concept of context broker enables the
framework to access also remote context consumers.

Weaknesses: In order to reach interoperability, the MobiLife project decided to use
standardized formats to represent context information. Even if this is a common
way, it means a loss of flexibility. Furthermore, the framework does not wrap and
hide context providers but rather the context broker forwards relevant advertisements
of context providers to the context consumers and these consumers have to handle
appearance/disappearance and selection.

4.1.15 MUSIC & Paspallis

In his thesis Paspallis presents one of the bases of this work [104]. He developed a context
middleware which is part of the Mobile Users in Ubiquitous Computing Environments
(MUSIC) platform [96, 151].

Paspallis’ main focus is on the separation and abstraction of context provision mechanisms.
As a consequence, he separates these mechanisms into context plug-ins. Context plug-ins
can access either directly underlying sensors, other data sources like calendars, or also
other context plug-ins. Paspallis’ approach relies on the context model by Reichle et al.
[159]. Context plug-ins are queried with the help of the Context Query Language (CQL)
by Reichle et al. [158].6.

In order to support the hierarchical composition and the separate activation respectively
deactivation of plug-ins, Paspallis developed an extended lifecycle which is inspired by
the OSGi component lifecycle [102]. Plug-ins can be in different states, e.g. installed,
resolved or activated. This lifecycle is reused in an extended version in our system (see
Chapter 10).

5MobiLife (IST-511607) http://www.ist-mobilife.org/.
6Both documents (the one on the context model and the one on the CQL) have been co-authored by the

author of this thesis and also serve as starting point for the context model respectively the context offer and
query language presented in this thesis.

4.1 Existing Context-Aware Systems 55

http://www.ist-mobilife.org/

Major contributions: Paspallis decoupled context consumer and context provider.
Providers are abstracted by context plug-ins. These plug-ins can be activated and
deactivated.

Weaknesses: Paspallis uses the CQL for expressing context requests to his middleware.
These requests are only matched based on the requested information type. More accurate
matching and descriptions are future work. Furthermore, if more than one context
plug-in exists, which fits to a context request, a plug-in is selected randomly. The support
for heterogeneous representation of context information is only described based on the
results of Reichle et al. [159] but has not been fully implemented and integrated in the
system. For that reason, it is for example not possible to transfer context information
from one representation (e.g. WGS84 coordinates) to another representation like an
address.

4.1.16 Nexus

The Nexus project7 aims at context management for highly dynamic and complex context
information in large-scale environments [9, 112, 97, 43, 79, 58].

For their system, the project developed a three-layer architecture consisting of a
context information layer, the federation layer and the application layer. In the context
information layer, various context data providers offer context information. As stated by
Großmann et al., “[. . .] different context providers may provide data with different levels of
detail” [43].

Federation nodes are based in the federation layer and combine context information
into one global context model. When several different sensors are monitoring the
same environment, inconsistencies between information provided by different context
providers are unavoidable. The Nexus project tries to remove inconsistencies by
integrating the provided information into a spatial world model. As described by
Großmann et al., the authors take three QoC aspects, namely uncertainty, inconsistency,
and trust, into account.

Major contributions: Nexus “[. . .] provides an abstraction of the single data source to the
applications [. . .]” by integrating all available context information into a single global
context model [43].

Weaknesses: In the Nexus project, context providers are only selected based on spatial
restrictions [79] and not based on other requirements of the consumer, e.g. the requested
accuracy. This is also not required as information of several providers, that offer the
requested information type, are fused and then forwarded to the consumer. Besides, the
project does not provide support for the dynamic activation of context providers, so it is
not possible to minimize the resource consumption based on the selection.

4.1.17 Quality-Aware Context Management Middleware (QCMM)

Manzoor et al. intensively discuss different aspects of Quality of Context and propose
QoC metrics [86, 87, 88]. To evaluate their proposals, they implemented the so-called

7SFB 627: Nexus - Umgebungsmodelle für Mobile Kontextbezogene Systeme http://www.nexus.
uni-stuttgart.de/

56 Related Work

http://www.nexus.uni-stuttgart.de/
http://www.nexus.uni-stuttgart.de/

Quality-Aware Context Management Framework (QCMF) [87] respectively Quality-
Aware Context Management Middleware (QCMM) [88]. Their system is hierarchically
structured into several layers (according to the survey of Baldauf et al. [8]): sensors,
context acquisition, processing, context distribution, and applications. As described by
Manzoor et al., QoC parameters are used in the different layers to resolve different kinds
of conflicts [87]. Hence they base their decision on QoC parameters when deciding which
sensor is more reliable if two or more sensors provide the same type of information.

Major contributions: Manzoor et al. extensively discuss the usage of QoC and how
to retrieve the different QoC parameters. In this discussion, they focus on these QoC
parameters that are able to be retrieved by the middleware without relying on other
parameters provided by context providers. In addition, they propose several policies to
solve conflicts based on QoC.

Weaknesses: Even if the authors used QoC information e.g. to resolve conflicting
situations during the context acquisition, the presented approach is not very generic.
The focus is solely on a few QoC parameters and intensively discusses the usage of these
parameters. Hence, they also provide policies to resolve conflicting situations, which are
tailored to this small set of parameters. Unfortunately, the authors only implemented
these policies as fixed methods to configure the middleware, instead of allowing context
consumers to specify policies according to their requirements.

4.1.18 Sentient Object Model

The sentient object model by Biegel et al. “provides a systematic approach to the
development of context-aware applications in mobile ad-hoc environments, supporting
the important aspects of sensor fusion, context extraction and reasoning” [13]. The model
results from the CORTREX8 project.

Sentient objects are used to couple the loose context providers (both sensors and other
sentient objects) and context consumers (here called actuators). These objects capture
the information from underlying sensors or other sentient objects and perform sensor
fusion “[. . .] in order to manage uncertainty of sensor data and derive higher level context
information from multi-modal data sources” [13].

Major contributions: The presented model decouples context consumers and providers
and also allows hierarchical composition of these. The implementation is based on the
STEAM (Scalable Timed Events And Mobility) middleware, which provides an event-
based communication with the focus on ad-hoc wireless networks. Hence, the mobile
character of users/devices in ubiquitous computing environments is explicitly addressed.

Weaknesses: The main focus of the approach is on fusion of information collected in
a very mobile environment. Other characteristics of the information are not explicitly
discussed. In addition, it remains unclear if metadata are considered during context
fusion.

8IST-20000-26031 CORTEX - CO-operating Real-time senTient objects: architecture and EXperimental
evaluation. http://cortex.di.fc.ul.pt

4.1 Existing Context-Aware Systems 57

http://cortex.di.fc.ul.pt

4.1.19 SOCAM

The Service-oriented Context-Aware Middleware (SOCAM) by Gu et al. is a middleware
“[. . .] for the building and rapid prototyping of context-aware mobile services.” [46, 48, 47].
The ontology-based context model is a central aspect of the middleware. The context
ontology is divided into a two-level hierarchy, distinguishing between common and
specific context information. The upper level describes global concepts of the ontology
and the lower level is divided into several pervasive computing sub-domains, each defines
specific details and properties for a particular scenario. Depending on the situation and
the available devices, an appropriate sub-domain is selected from the lower level. The
main focus of the SOCAM project is on context reasoning. Gu et al. distinguish between
Context Providers, Context Interpreter, the Service Location Service and Context-Aware
Mobile Services. Context provider “[. . .] abstract useful contexts from heterogeneous sources
[. . .]”, whereas context interpreters “[. . .] provide logic reasoning services to process context
information [. . .]” [47], and thus “[. . .] provides high-level contexts by interpreting low-
level contexts.” [46]. The Service Locating Service serves as a central registry where
context providers and interpreters have to register the provided information and where
context-aware services can query for information. “Context provider can either use a
service template or use OWL expressions to specify the kinds of contexts they provide. An
application wishes to find out a context [. . .], will send a query [. . .] to the Service Location
Service. The Service Location Service will load the context ontologies stored in the database
and context instances advertised by different context providers, and apply semantic matching
to find out which context provider provide[s] this context. If a match is found the reference
to the context provider will returned to the application.” [46].

Major contributions: The authors verify that the usage of ontology-based context
models is also feasible on low performance devices: they evaluated the context reasoning
on a computer equipped with an Intel Celeron CPU with 600 MHz and 256 MB memory.

Weaknesses: SOCAM lacks supporting metadata for context information. But this is
a very important requirement for context selection. Additionally, the context model
does not provide any support for heterogeneous representations of context information.
The architecture foresees a central server for the registry of context offers and request.
But as it might not be possible to always reach a central server within every ubiquitous
computing scenario, it would be better to provide more flexible support.

4.1.20 Supporting pervasive computing applications with active context fusion and
semantic context delivery

Roy et al. developed a resource-optimized, quality-assured framework for sensor networks
[115, 114]. For this reason, they focus on fusion of context information based on Dynamic
Bayesian Networks (DBN) and on ontology-based context mediation: “We propose an
active context fusion technique based on DBN for fusing multimodal fragments of sensor
data, and a composable rule-based mediation model to infer the situation space based
on a hierarchy of contexts” [115]. During the fusion, their framework “[. . .] resolves
information redundancy, and also ensures the conformance to the application’s quality of
context (QoC) bounds based on an optimal sensor placement and / or configuration” [114].

58 Related Work

In general, the proposed system fuses context information of two or more context sources
in order to provide a certain level of quality. For this reason, the set of used context
sources is selected from the set of available sources so that the potential costs are
minimized but the quality requirements are still fulfilled.

Context information is described semantically by referencing to a two-level ontology
similar to the ontology presented in the SOCAM project9 (see Section 4.1.19).
Additionally, the ontology is used to group sensor nodes providing semantically similar
context data.

Major contributions: The authors present an interesting approach to fuse information
in order to increase the provided quality. While establishing the fusion, the system tries
to reduce the resource consumption.

Weaknesses: The general idea of the system is really interesting due to its support
for cost minimization while increasing the quality of provided context information.
Unfortunately, the authors did not consider several quality and cost variables. In their
papers, the authors only considered “[. . .] update cost in terms of communication overhead
[. . .]” [115] and the “[. . .] probability of correctness [. . .]” [114]. Even if they state that
“[. . .] heterogeneous sensors [. . .] usually have different resolutions [. . .] accuracies,[. . .]
data rates and formats [. . .]” [114], they do not provide any support to handle these
characteristics. The presented selection mechanism only focuses on minimizing the cost
and maximizing the accuracy to the required level. It is not possible to express context
consumer-specific selection functions.

4.2 Summary

After the extensive discussion of the different systems, we summarize the results and
provide an overview of the discussed systems. Table 4.1 lists all systems and the
evaluation results regarding our previously mentioned requirements. The degree of
fulfilment of a system regarding a criteria is expressed by five categories:

• 7 This requirement is not supported.

• Ø Very limited support of the system.

• ÚAt least the most important features for fulfilling the respective requirement are
provided even if some features are missing.

• 3Full support of the requested feature.

• ? It is not possible to justify the respective requirement.

• Both Ø and Úare extended by footnotes to specify why the feature is not fulfilled
respectively what is missing.

9The authors do not explicitly refer to the SOCAM project, but the described concepts look very similar
and the co-author of [115] Tao Gu is the first author of the papers describing SOCAM.

4.2 Summary 59

A
pp

ro
ac

h

R
eq

u
ir

em
en

t
1

D
is

co
ve

ry

R
eq

u
ir

em
en

t
2

Lo
os

e
co

up
lin

g

R
eq

u
ir

em
en

t
3

H
et

er
og

en
ei

ty

R
eq

u
ir

em
en

t
4

O
ff

er
s

&
qu

er
ie

s

R
eq

u
ir

em
en

t
5

(D
e-

)a
ct

iv
at

io
n

R
eq

u
ir

em
en

t
6

Se
rv

ic
e

se
le

ct
io

n

R
eq

u
ir

em
en

t
7

R
es

ou
rc

e
us

ag
e

ASC-CoOL & CoCo [134, 16, 75] 7 3 Ú10 Ú11 7 7 7

AWARENESS [125, 123, 124] ? ? 7 ? 7 7 ?12

CARE [3, 5, 4] ? 3 7 ? 7 7 7

CoBrA [21, 22, 19, 20] 3 3 7 7 7 7 7

CONTEXT [18] 3 3 7 Ú13 7 3 Ø14

Context Toolkit [117, 33, 32] 7 3 7 7 7 7 7

COSMOS [27, 113, 1] 7 3 7 Ø15 7 7 7

EEMSS [144] 7 7 7 7 3 Ú16 3

Gaia [110, 106, 107] 3 3 Ú17 Ú18 7 7 7

Huebscher et al. [59] ? 3 7 3 7 Ú19 Ø20

7= no support Ø= very limited support Ú= partial support 3= full support

10The metadata representations are fixed.
11The CoCo system requires the context consumers to express required meditation tasks by themselves

instead of only specifying the required information. Furthermore, no dynamic selection and according
specifications in the requests are supported and the usage of QoC parameters to state more precisely the
context request is not possible.

12This issue has been motivated but not addressed in the different papers.
13Cost is only implicitly taken into account during selection as it is possible to specify one cost constraint

and ergo to limit the search space.
14Cost preferences are limited to be expressed by only one cost constraint. However, the system does not

take the cost parameter into account during the selection.
15Context queries contain explicit references to context sources instead of criteria to find these sources.
16Selection based on state diagram; no explicit support for selection of context provider from a set of

services providing the same type of information.
17Heterogeneous representations are only implicitly described by the context type; no support for

transformation between representations.
18No support for metadata constraints and selection functions.
19The selection is only based on a fixed set of quality parameters. Cost parameters or other quality

parameters as the mentioned ones are not considered.
20The issue is only addressed implicitly by minimizing the number of used context sources. It is not

possible to select for example a cheap context source as cost parameters are not considered.

60 Related Work

A
pp

ro
ac

h

R
eq

u
ir

em
en

t
1

D
is

co
ve

ry

R
eq

u
ir

em
en

t
2

Lo
os

e
co

up
lin

g

R
eq

u
ir

em
en

t
3

H
et

er
og

en
ei

ty

R
eq

u
ir

em
en

t
4

O
ff

er
s

&
qu

er
ie

s

R
eq

u
ir

em
en

t
5

(D
e-

)a
ct

iv
at

io
n

R
eq

u
ir

em
en

t
6

Se
rv

ic
e

se
le

ct
io

n

R
eq

u
ir

em
en

t
7

R
es

ou
rc

e
us

ag
e

Hydrogen [56] 7 3 7 7 7 7 7

Korpipää et al. [73, 72, 70, 71] 3 3 7 Ú21 7 7 7

MobiLife [40, 64] 3 3 7 3 7 7 7

MUSIC & Paspallis [104] 3 3 Ú22 Ú23 3 7 Ø24

Nexus [9, 112, 97, 43, 79, 58] 7 3 7 7 7 7 7

QCMM [86, 87, 88] ? 3 7 Ú25 7 Ú26 7

Reichle [109] 3 3 Ú27 Ú28 7 7 7

Roy et al. [115, 114] 3 3 7 Ú29 7 Ú30 Ú31

Sentient Object Model [13] 7 3 7 3 7 7 7

SOCAM [46, 48, 47] 3 3 7 3 7 7 7

7= no support Ø= very limited support Ú= partial support 3= full support

Table 4.1: Overview on Existing Context-aware Systems

It can be seen that, none of the existing systems fulfil all requirements, whereas most
of the approaches decouple context provisioning and context consumer and support
semantic discovery of new context providers. Only few approaches cover the other
requirements.

21No support for constraints or selection functions.
22Not fully implemented for context information; no support for multiple representation of metadata.
23Missing support for e.g. context selection.
24Support only implicitly through sharing of context sources.
25No support for selection properties.
26Selection based on middleware policy; limited set of used parameters for selection.
27No support for multiple representation of metadata.
28Missing support for e.g. context selection.
29Missing generic support for arbitrary cost and metadata constraints.
30No generic selection functions.
31Limited to one cost dimension.

4.2 Summary 61

The systems by Strang et al. [134, 16, 75], MUSIC & Paspallis [104], and Reichle [109]
provide initial support for the conversion of context information from the provided
representation into the requested representation. However, none of these approaches
provide this support also for metadata of context information. In addition, both Strang
et al. and Paspallis do not support the automatic establishment of transformation chains,
which is supported by Reichle [109].

Huebscher et al. [59] and the MobiLife system [40, 64] provide the only systems
supporting the specification of context offers and needs including metadata constraints
and preferences used for the selection of context sources. Additionally, the system by
Huebscher et al., Chantzara et al. [18], EEMSS [144], QCMM [86, 87, 88], and Roy et al.
[115, 114] are context-aware systems providing support for context selection. From this
set the approach by Chantzara et al. [18] has to be highlighted as it allows a selection of
context sources based on generic metadata.

The dynamic activation and deactivation is an important requirement in order to
minimize cost respectively resource consumption. The systems by MUSIC & Paspallis
[104] and EEMSS [144] are the only approaches with concrete support for this feature.

Finally, the explicit minimization of the total amount of used resources is only fully
addressed by EEMSS [144]. Whereas e.g. MUSIC & Paspallis [104] or Huebscher et al.
[59] support this feature only implicitly by deactivating unused context sources. But they
do not take into account cost information to select which source to use. Chantzara et al.
[18] consider at least one cost parameter (with unclear semantic) during the selection.
In difference to these other approaches, EEMSS [144] explicitly focuses on minimization
of resource cost and also demonstrates that their system reduces the resource usage.

We will see in the next section that we reuse some of the features provided by the
discussed solutions, especially by CoOL [134] and the systems of Paspallis [104] and
Reichle [109]. In our approach, the issue of dynamic selection and activation respectively
deactivation is explicitly addressed. Context services are described by an extensive
context offer and query language. Mediator chains are automatically established to
transform the context information into the requested format. In order to make a precise
selection of deactivated context providers, historical values are used to estimate the
current status of the deactivated context providers (more precisely the QoC parameters).

62 Related Work

Part II

Solution Approach

63

5 Overview

Any sufficiently advanced technology is indistinguishable from magic.

– Arthur C. Clarke (1917-2008)
Clarke’s third law. Profiles of The Future (1961)

Modern smartphones contain a wide range of different sensors and various kinds of
other data sources like calendars which are also useful to retrieve context information.
Additionally, reasoning, fusion, and inferencing mechanisms can be used to retrieve high-
level context information from other context information. In this work, we abstract all
these context providers as context services.

While on the one hand several context services can exist, on the other hand, context-
aware applications can request different kind of context information. It is also common
that a single application requests for several different information types. These requests
are called context requests or context queries1. A context consumer is a small part of an
application, which queries and receives the required information of one type, thus for a
single context request.

Applications and the according context consumers build the top layer of our system.
Context services and the encapsulated sensors, databases, reasoning mechanisms build
the bottom layer as depicted in Figure 5.1. The middle layer of our system contains our
context middleware. Context services register their offered information with a so-called
context offer. Similar context consumer express context queries in order to retrieve context
information from the middleware. A context middleware instance can communicate with
other middleware instances and also with servers to exchange context offers and also
context information2.

As shown in Figure 5.1 we can distinguish between several stakeholders in our system.
Database developers, context sensor developers, and context reasoner developers are
responsible for the functionalities of the databases, sensors, and reasoning mechanisms
used as context sources, respectively. Especially the database developers and context
sensor developers are mostly developers of the device manufacture (e.g. Samsung3 or
Apple4) or of the operating system (OS) of the device (e.g. Android5 or iOS6)

1The terms ‘context request’ and ‘context query’ are used interchangeable in this thesis.
2It depends on the implementation if the middleware communicates only with other middleware

instances, directly with other (remote) context services and/or other external servers. Communication and
also discovery aspects are encapsulated in separate binding respectively discovery plug-ins, which can be
independently developed and accessed. This is discussed in more detail in Chapter 10.

3http://www.samsung.com
4http://www.apple.com
5http://www.android.com
6http://www.apple.com/iphone/ios

65

http://www.samsung.com
http://www.apple.com
http://www.android.com
http://www.apple.com/iphone/ios

Application 2Application 1

Context
Consumer 1

CQ

Context
Consumer 2

CQ

C
on

te
xt

 R
eq

ue
st

s

Context Offers
Data

Data

Context
Service
Developers

Application
Developers

Context
Consumer 3

CQ

Application
Users

Context
Service 1

COCQ

Reasoner

Context
Service 3

CO

Sensor

Context
Service 2

CO

Database

Middleware Instance 1

Matching

Selection
D

iscovery

B
in

di
ng

M
ed

ia
tio

n Middleware
Instance 2

Middleware
Instance 3

use use

develop

develop

developdevelop
develop

Context
Sensor

Developers

Database
Developers

Context
Reasoner

Developers

develop

developdevelop

Figure 5.1: Detailed Overview of the Solution Approach including Stakeholders.

The Context Service Developers encapsulate the provided information sources by mainly
writing a proxy component to translate the database or sensor API to the Context Service
API. Furthermore, they write the context offer describing what context information is
provided (which type, regarding which entity, in which representation), in which quality
and to what cost the information can be provided. Context service developers and for
instance context sensor developers can also be one and the same person. In the following,
our focus is mainly set on context service developers.

For applications we differentiate between the typical two roles of Application Users and
Application Developers. The application users are the end-user and have no influence
on the development of the actual application. Nevertheless, the application developer
can offer ways (e.g. by user settings or explicit dialogues with the user) to influence
the context requests and as a result the selection of context sources. This is for example
useful as users might have different opinions regarding cost-minimization.

66 Overview

The following chapters give a detailed description of the core functionalities of our
middleware as indicated in Figure 5.1. These functionalities are required to combine
the loosely coupled context services and context consumers. As a cross-cutting concern,
we will first introduce our context model. The context model and the corresponding
data descriptions build the basis for all other components of our work. For example, the
context requests and offers are described in our Context Offer and Query Language, which
inherits concepts from the context model. This language will be described in Chapter 7.
The context offers and queries are registered to the Context Discovery. As the discovery
component does not contain any specific new technology, we will not focus on that. It
will rather be discussed with the rest of the overall architecture in Chapter 10.

After registering context offers and requests, the middleware starts the Context Matching
and verifies which offers can be used as sources for the different requests. During this
matching process also the tentative Context Mediation is evaluated. Context mediation
might be necessary to bind specific context sources to context consumers which do not
provide the information in the request representation. Context matching and mediation
are discussed in detail in Chapter 8. Finally, the Context Selection decides which set of
context offers should be activated. The selection algorithm tries to fulfil the different
preferences of the context consumers as best as possible and additionally tries to minimize
the number of used resources (see Chapter 9).

The resulting middleware architecture and further implementation details are discussed
in Chapter 10.

67

6 Context Model

The nice thing about standards is that
you have so many to choose from.

– Andrew S. Tanenbaum (1944-)
Computer Networks (1981)

A context model contains an arbitrary number of context artefacts and provides
information about these artefacts as well as their representations and semantics.

The usage of the context model in a Ubiquitous Computing (UC) environment causes
additional requirements: context information is distributed on an arbitrary number of
devices; these devices are mobile and can appear and disappear; we cannot assume a
UC environment to contain only homogeneous devices, these are rather heterogeneous
providing different sets of context artefacts in different representations and under
different names. This is also described in Requirement 1 ‘Semantic discovery and
integration of independently developed context services and consumers’. The context
model provides a baseline for a solution of this requirement. Additionally it directly
supports to solve Requirement 3 ‘Exchange and interpretation of heterogeneously
presented context information’ (see Section 1.2).

Furthermore, it takes the general characteristics of context data into account, like
ambiguity, impreciseness or incompleteness (see Section 2.2.2). These characteristics are
expressed as metadata which require generic support to describe arbitrary quality and
cost information. This support is not only useful to describe the specific characteristics
but also to provide an input for the selection process as requested by Requirement 6
‘Dynamic selection of context services based on QoC and CoC’.

The context model forms the baseline of our approach. The initial version of this
context model has been presented among others by the author of this thesis in [158].
Reichle developed this initial version further but focused on support for context fusion
[109]. Reichle’s approach mainly supports metadata required for context fusion, e.g.
information reliability, precision, uncertainty and outdateness. In this work, we adapt the
extensions by Reichle but significantly extend the support for metadata (Section 6.3) and
operations to calculate the metadata (Section 6.4). In difference to Reichle, the focus
here is not on specific metadata but rather on generic support for arbitrary metadata and
cost information.

6.1 Layers of the Context Model

A context model in a ubiquitous computing environment has also to fulfil some
requirements with regard to abstraction of information, its representation, and finally

69

the concrete implementation. Firstly, it has to provide a common vocabulary to achieve
interoperability between heterogeneous context services and consumers. Secondly,
during runtime, especially on resource restricted mobile devices, a well-organized slim
data structure containing the context data is necessary and thirdly, this data has to get
exchanged between the different nodes in the UC environment. Based on this motivation,
we have identified three abstraction layers of the context model. As shown in Figure 6.1,
we can distinguish between three layers: the conceptual layer, the exchange layer, and
the functional layer.

Conceptual layer

Exchange layer

Functional layer

Context Information

Java Object Serialization / XML / JSON / CSV

Context Model

Ontology (OWL)

Data
Data

structures

Transformation Correspondency

Serialization /
Deserialization

Figure 6.1: Layers of the Context Model

The conceptual layer consists of the context ontology specified in OWL 2 [139, 140] (see
Section 3.3.2 for more details). The context ontology provides a common vocabulary
including the semantics as well as the structure of the context information. Furthermore
the ontology consists of static context information, like the relationship status of persons,
which generally do not change very often. The context ontology is defined at design time
and transformed into the data structures of the functional layer. These data structures
hold the context information at runtime. The third layer is the exchange layer containing
the serialized context information. This context information refers to the corresponding
concepts of the context ontology and is serialized from respectively deserialized into the
generated data structures. The serialized context information is used for the exchange of
context services and context consumers.

In the following sections we will focus on the core concepts of the context model, which
are mainly described in the context ontology. These concepts also correspond to the
other layers due to the relationship of the layers.

70 Context Model

6.2 Context Information

According to our definition (see Definition 2.1), context is defined as every information
that can be used to characterize the situation of an entity. While formalizing this
definition, we realized that several context information can be of the same information
type but differ in its representation. For example information regarding the position
can be represented as World Geodetic System 1984 (WGS84) coordinates or an address.
This information type is called the context scope. Corresponding to our definition and as
shown in Figure 6.2, this scope characterizes a certain entity, e.g. a person or an object
like a device.

Strang et al. [134] introduced in their Aspect-Scale-Context (ASC) model the concepts of
aspects, scales, and context information as following: “Each aspect aggregates one or
more scales, and each scale aggregates one or more context information.” We adopt this
model but adjust it to our purposes.

EntityType

Scope Representation

characterizes
characterized
by

has Representation

Basic
Representation

Composite
Representation

is a is a
has

Dimension

Figure 6.2: General Concepts: Entity, Scope and Representation

A scope can have several representations, e.g. a position can be represented as WGS84
coordinate or as an address. Figure 6.2 shows that these representations can be
either atomic/basic or composite representations. A basic representation consists of a
single value like an Integer, Double or String and optionally also a unit. A composite
representation consists of several dimensions. Likewise, these dimensions are scopes
which can also have several representations. For example, an representation ‘WGS84
coordinate’ consists of the two dimensions with the scope ‘longitude’ and ‘latitude’. These
two dimensions have again a representation, like. e.g. a basic representation consisting
of a Double value and a unit ‘mm’.

By supporting various representations for a certain scope, we directly address the
interoperability of context information. It would be rather restrictive to fix the
representation e.g. of a position to WGS84 coordinates as it depends on the application
and its users in which format the expected information are represented1. A position in
WGS84 coordinates is e.g. easier to use within an application to determine all objects
with a certain radius whereas a position in the address format is more human-readable
than a position in coordinates.

1It is of course the developer of the context service who appoints the representation of the provided
information. In difference, the application developer of a context-aware application decides on the requested
representation. However, the application developer can also offer the option for application users to select
the representation. This is not useful for the actual application logic but for information presented within
the user interface, for instance to allow the user to select his preferred representation for a distance (meter
vs. mile) or temperature (Fahrenheit vs. Celsius).

6.2 Context Information 71

Date = 20070927

Scope Representation
has Representation

DateTime

Location

is a
is a

Date1

Date2

DateTimeRep LocationRep

Day = 27
Month = September

Year = 2007

DateTime
Rep1

DateTime
Rep2

is a
is a

is a is a

has
Representation

has Representation

Location1

Location2

Address
Rep

WGS84
Rep

Street = Wilhelmshöher Allee 73
City = Kassel

Country = Germany

Latitude = 51,31169
Longitude = 9,47345

has Representation

Temperature

is a is a

has Representation

Temperature =
27.4

Temperature Rep

Celsius

Fahrenheit

is a

is a
is a

Temperature =
81.3

instance
of

is a

Temp1

Temp2

has Representation

has Representation

instance
of

instance
of

instance
of

instance
of

instance
of

instance
of

instance
of

instance
of

instance
of

instance
of

instance
of

Figure 6.3: Several Examples for Multiple Representations

Figure 6.3 shows several examples for multiple representations. To improve the
readability, the different dimensions of a representation are summarized in one block,
e.g the DateTimeRep1 consists actually of the three dimensions Day, Month and Year. As
depicted, representations can vary in several ways: variation in format (like Date1 and
Date2 in the example), variation in value/unit (like Temp1 and Temp2) and variation in
both format and value/unit (like Location1 and Location2).

To ensure the exclusive usage of compatible representations for a certain scope, it is
possible to limit the range of the hasRepresentation property of this scope, e.g. for the
scope Location:

hasRepresentation only LocationRep (6.1)

Without this constraint, it would be possible to combine incompatible scope and
representations, like the scope DateTime and the TemperatureRep representation
Fahrenheit.

To get a deeper understanding of a composite representation, the WGS84Rep is depicted
in more detail in Figure 6.4. A composite representation consists of several dimensions,
which are again scopes. This is indicated by the ‘has Dimension’ property. To model a
specific representation like the WGS84Rep, this property has to be limited to the actual
dimensions. In the depicted example, these dimensions are Latitude, Longitude, and
Altitude. In our OWL 2-based implementation, this can be done in two ways:

• by limiting the range of the object property ‘hasDimension’, e.g.

hasDimension only LocationConcepts (6.2)

• or by adding sub/child object properties of the object property ‘hasDimension’ to
the ontology, e.g. the subproperty ‘hasLatitude’ with the domain ‘WGS84’ and the
range “Latitude” as depicted in Figure 6.4.

72 Context Model

Scope Representation
has Representation

Basic
Representation

Composite
Representation

is a is ahas
Dimension

Location
Rep

WGS84
Rep

is a

is a

is a
FloatRep

is a

LocationConcepts

Latitude

Longitude

Altitude

is a

is ais ais a

has Latitude

has Longitude

has Altitude

has Representation

Unit

has Unit

FloatIn
MeterRep

degrees

meter

BaseUnit

UnitDerived
ByScaling

radianis a

is a is a

derived fromhas Unit

<implicit
class>

is a

has Unithas Representation

DerivedUnit

is a

instance of

instance
ofinstance of

Figure 6.4: Detailed Example for a Composite Representation

The first option has the drawback, that it is necessary to define additional constraints to
limit the multiplicity. For example, additional constraints are required to express that a
WGS84 position consists exactly of one latitude and one longitude, whereas the altitude
is optional. For this reason the second option is preferable.

Additional to expressing the dimensions of the representations, it has to be further
specified which representation these dimensions should have. Otherwise the dimensions
would be provided in arbitrary representations. In the example depicted in Figure 6.4,
latitude and longitude should be expressed as Float values with the unit degree and the
altitude should be expressed as Float with the unit meter. The class Unit is based on the
NASA SWEET Units ontology [135]. This ontology allows a conversion between units
only based on the information specified in the ontology. The SWEET ontology contains
the classes Prefix and Unit with its subclasses BaseUnit and DerivedUnit and several object
properties like hasPrefix or derivedFrom. The concrete units are individuals of the different
classes, e.g. meter is an individual of the class BaseUnit, whereas degrees is an individual
of UnitDerivedByScaling, which is again a subclass of DerivedUnit. This individual degree
is derived from the base unit radian by scaling. To limit the hasRepresentation property
of the dimension scopes, there are again two different ways. In both cases, constraints
are used to limit the range of the hasRepresentation property.

• In the first variant, the range of the hasRepresentation property is limited to an
existing subclass of the Representation class, e.g. in our example the dimension
Altitude is limited to the FloatInMeterRep by

hasRepresentation only FloatInMeterRep (6.3)

This representation again has a constraint expressing that limits the hasUnit
property to the unit individual meter: FloatInMeterRep by

hasUnit value meter (6.4)

6.2 Context Information 73

• In the second variant, an implicit class is created by first limiting the hasRepresenta-
tion property of the dimension class and within this constraint further limiting the
hasUnit property of the representation, e.g.

hasRepresentation only (FloatRep and

(hasUnit value degrees))
(6.5)

This ends in a new implicit class, as depicted in our example for the dimensions
Latitude and Longitude.

Both ways can be used without any constrictions as they finally end in the same result.
Reichle decided on the usage of implicit classes [109]. This variant has the benefit
that the ontology is rather small and clear but requires a more accurate and complex
specification of the dimension restriction. We support both ways and it is up to the
developer which way he prefers.

6.3 Metadata

As mentioned by several authors, context information can be unreliable, inaccurate, out-
dated, etc.2. Metadata are important information about the actual context information
and allow to handle these characteristics of context information. As aforementioned, our
context model relies on the work of Reichle et al. [158] and its successor [109]. Whereas
in the initial version, metadata only had a marginal position at best, in the successor
metadata played a more important role as they are indispensable for Reichle’s context
fusion approach [109]. However Reichle focused on specific metadata required for his
concept3. In our work, metadata are mandatory criteria for selecting context services
according to requests. For this reason, we do not rely on any specific metadata. Instead
we provide a rather generic approach to support arbitrary cost and quality data.

In our context model, metadata are also again scopes which can have several
representations. For example, it is possible to describe the accuracy of a position as a
derivation in meter or in millimeter. In difference to our work, Reichle [109] only links
metadata describing impreciseness with the representation of context data, whereas the
representations for other metadata are fixed.

In Definition 2.3 we defined Quality of Context (QoC) as any information that describes
the quality of information that is used as context information. Furthermore, we defined
in Definition 2.4 Cost of Context (CoC) as a parameter associated to the context that
indicates the resource consumption used to measure or calculate the piece of context
information. Even if parameters of both classes can be generally defined as metadata
and are modelled equally, these parameters are handled separately during the selection
(see Chapter 9). For that reason, it is not possible to completely resign the distinction
but rather to abstract as much as possible – but still be able to identify which metadata
are cost related and which are quality related. For this purpose, we introduced the class
Cost Metadata. Instances of this class or of its subclasses are related to cost, whereas all
other instances are related to quality.

2A detailed discussion on the different characteristics of context data can be found in Section 2.2.2.
3For example, Reichle does not have any use for metadata related to cost and does not support them.

74 Context Model

Scope

is a

Metadata

Common Metadata ScopeMetadata
Representation

Metadata
Atomic Metadata Derived Metadata CostMetadata

Sensor Cost
Metadata

Cost of Context
Metadata

is a

is a
is a is a

is a
is a

is ais ais a

based on

Timestamp Freshness
basedOn

is a

is a

is a

is a

is a

Value Range

is a

Reliability

is a

Estimated Sensor
Cost

is a

Estimated CoC

is a
Change Frequency

is a

basedOnbasedOn

is a

Figure 6.5: Context Metadata

In general, metadata can be classified into two subclasses. The first subclass contains
metadata describing the information source, like reliability or the sensor cost. The
second class consists of metadata which are associated to, or respectively depend on the
representation of the context information, e.g. the value range of such a representation or
also the cost of context information. Additionally there are metadata which can be used to
describe both aspects, information source and representation. For example, a timestamp
can be associated to a scope to express when the a certain piece of context information
has been gathered by the context service whereas a timestamp for the representation
expressed when the context information has been transformed into this representation.
As depicted in Figure 6.5 we distinguish between scope metadata, representation metadata,
and common metadata, which can be both scope and representation metadata. Scope
metadata describe rather metadata related to the information source. Representation
metadata on the other hand depend on the representation of the context information
and characterize the associated data.

Cost related metadata are metadata which are instances of the cost metadata class. As
described, these metadata can be associated to either the representation or the scope.
Cost metadata associated to the representation are used to express the ‘Cost of Context’:
the cost which originated from the calculation of a certain piece of context information.
Consequently, we introduced the class cost of context metadata which is a subclass of
both classes representation metadata and cost metadata. In difference to cost of context
metadata, metadata can exist that describe e.g. the average cost consumption of the
context service. For that reason, these metadata are not related to a certain piece of
context information. They are collected in the class sensor cost metadata which is a
subclass of cost metadata and scope metadata.

It is clear that various metadata have a correlation to other metadata. For example in
order to calculate the freshness (see Section 2.2.2) of context information it is necessary
to know its date of origin, e.g. in form of a timestamp. Furthermore, it is possible to

6.3 Metadata 75

retrieve the estimated cost for a single piece of context from the estimated sensor cost if
the frequency of data acquisition is known. Consequently, metadata (independent if cost
related metadata or quality related metadata) can be either atomic or derived.

Atomic metadata are these metadata which have to be calculated directly by the
information source or the information processor, e.g. the process transforming the
information into the requested representation. In difference, derived metadata can be
derived from other metadata. Figure 6.5 contains the metadata class Freshness. This class
is a subclass of common metadata but also of derived metadata. As aforementioned, all
derived metadata rely on one or more other data, e.g. the freshness of context information
can be calculated from the timestamps of these information. This is indicated through
the OWL object property basedOn directed from the freshness class to the timestamp
class.

The previously introduced cost of context metadata class is also a subclass of the derived
metadata, e.g. the estimated cost of context can be calculated based on the change
frequency of the sensor and the estimated sensor cost.

Nevertheless, we only provide a generic frame for the different types of context metadata
but do not offer an exhaustive set of metadata. The ontology contains an appropriate set
of metadata to demonstrate all concepts within this work, but it is easily extendible as
presented in Section 6.5.

6.4 Operations

In the previous sections we described our support to allow arbitrary representations for
context information and also for its metadata. Furthermore, we described that metadata
can be derived from other metadata. This flexibility requires support for example to
provide information in requested representations or to perform the mentioned metadata
calculations.

Operations in general are calculations specified in the ontology to produce or
transform context information or its metadata based on other information or metadata.
As depicted in Figure 6.6, we distinguish between Inter-Representation Operations
(IROs) and Metadata Operation. The concept of Inter-Representation Operations has
already been introduced by Reichle et al. [158]. These IROs can transfer information
from one representation to another representation. With the concept of IROs as
introduced by Reichle et al. it is not possible to derive metadata from other metadata.
Inter-Representation Operations transform context information of one scope from a
representation into another representation of the same scope. But in order to derive
metadata, this concept has to be extended to transfer information of one scope in a
representation to another scope in another representation. This support is provided
by the concept of Metadata Operations. Metadata Operations are used to calculate
the previously introduced derived metadata. As both Metadata Operations and Inter-
Representation Operation have a common subset of properties, we generalized these
classes and introduce the class Operation.

As shown in Figure 6.6 an operation works on a certain scope, provides its information
in a certain representation (indicated by the hasOutput property), and has a grounding.

76 Context Model

The grounding contains information of how to invoke the specific operation, e.g. by
calling a web service or by starting a certain OSGi bundle [102].

Operation
Inter-Representation

Operation

Metadata
Operation

Scope

Metadata

Derived Metadata Common Metadata

is a

TimestampFreshness
based on

is a is a

is a

is a

is a

is a

works on

Operation
Grounding

has Grounding

derived by

derives

Freshness
Operation

derived by

derives

is a

has Input Metadata

has Output Metadata

has Dependency

Representation
has Representation

has Input

has Output

Figure 6.6: Context Operations

In the ontology, Operations in general and hence also its specialisations Inter-Represen-
tation Operation and Metadata Operations are specified as classes. Intuitively, adding a
new concrete IRO or metadata operation would mean to create a new individual of the
IRO class respectively the Metadata Operation class. But this would also mean that the
operation would only be applicable for one single individual of one specific scope and
one single individual of the corresponding representation. In consequence, also concrete
(Inter-Representation or Metadata) operations have to be specified on class level by the
usage of constraints limiting the different object properties, for example:

hasOutput only AddressRep (6.6)

In difference, a new individual of the Operation Grounding class has to be created to
add a new grounding to such a concrete operation. Additionally, an individual of the
previously added operation class (describing the concrete operation) has to be added to
establish the grounding. This new individual does not require any additional information,
for instance regarding the representation as this information is already available within
the class definition.

The classes Inter-Representation Operation and Metadata Operation are both specialisa-
tions of the Operation class and inherit the above mentioned properties and associations.

6.4.1 Inter-Representation Operations

In order to support interoperability of context information, we developed the concept
of Inter-Representation Operations based on the ideas of Strang et al. [134]. Inter-
Representation Operations convert context information of a certain scope from one
representation into another representation, like a position represented in WGS84
coordinates into a position represented as an address.

6.4 Operations 77

As shown in Figure 6.6, an IRO is a specialization of an operation working on a certain
scope like ‘position’, provides the information in a certain output representation like an
address, and can have several groundings for instance to web-services.

Additionally to the Operation class the Inter-Representation Operation class requests its
data in a certain input representation (by the OWL object property has Input, e.g. WGS84
coordinates).

IROs can also influence the metadata of the context information, for example the
accuracy if the address for a certain coordinate is unknown. Hence, an IRO also has
additional requirements on input and output metadata, as it influences and/or calculates
these metadata. For example, the transformation of a position represented in WGS84
coordinates into an address can influence the accuracy of the position information. For
these purposes, the IRO class has the OWL object property has Input Metadata and
has Output Metadata associating the IRO class with the Metadata class, as shown in
Figure 6.6. To manage multiple representation of metadata, the properties has Input
Metadata and has Output Metadata also require information in which representation
the metadata are expected respectively provided. This can easily be done within the
ontology by limiting the range of the particular property. For example, to express that an
IRO expects the input metadata Freshness to have the representation DoubleRep and the
Unit Second, the following expression can be used:

hasInputMetadata only (Freshness and (hasRepresentation only

(DoubleRep and (hasUnit value Second))))
(6.7)

Additionally, IROs can have dependencies to other context information, e.g. to calculate
an absolute position of a person located in a building based on relative position of this
person within this building (e.g. the room number), the absolute position of the building
is required. The exact specification of the requested information works similar as for the
specification of the input and output metadata by limiting the range of the OWL object
property.

During the implementation, it turns out that it is sometimes not applicable to specify
all functionalities of an IRO in the ontology. The main reason is, that IROs exist that
are applicable in a wide range of scopes and representations (e.g. an IRO applicable
for most of the atomic representations to cast between them) and it would cause a big
overhead to specify all ranges. For this reason, we introduced subclasses of the IRO class:
Specific IRO and Generic IRO. Both classes do not provide any additional properties to
the inherited ones. But whereas all IROs of the Specific IRO class have to specify the
provided and requested representation and scopes explicitly, the IROs of the Generic IRO
class use in their specification more generic scopes and representation. For example,
an IRO which can cast between different simple data types, like Integer and Double,
can be specified to work on every scope and every atomic representation. To determine
whether this IRO is useful to convert data from one representation to another, it has
an extended interface compared to the IROs of the Specific IRO class. This extended
interface contains a method which can be called to check whether it is applicable or
not. Such support also increases the ease of reusing existing implementation. Most unit
conversion implementations are a good example. They already provide support to check
whether a conversion is feasible or not.

78 Context Model

6.4.2 Metadata Operations

Metadata operations are used to calculate the derived metadata. This is indicated by the
derives property shown in Figure 6.6. It is the only additional property of the metadata
operation to the inherited properties works on, has Grounding and has Output. The
depicted example shows a generic freshness operation, which derives the metadata of
the type freshness from the timestamps. This generic freshness operation must have at
least one subclass which has additional concrete specifications of the required input and
output representations. For example the freshness operation can have a specialization
which calculates the freshness as a Double value in seconds based on a Unix timestamp4.
The output representation can be specified in OWL 2 as following:

hasOutput only (DoubleRep and

(hasUnit value second))
(6.8)

The input representation is specified as:

worksOn only (Timestamp and

(hasRepresentation only Time_ UnixTimeStamp))
(6.9)

Here, the output representation refers to an implicit class, similar to the examples shown
and explained in Figure 6.4. In difference, the input representation in our example is
an explicit/concrete representation. It is also possible to refer to an implicit class, for
example by referring to the FloatRep class and to add a further constraint limiting the
hasUnit property.

6.5 Hierarchical Composition of the Ontology

In this chapter we present the generic concepts of our context model. These concepts are
implemented in an OWL ontology (see Section 3.3.2). As it is impossible to provide an
exhaustive ontology addressing every domain and applicable for every application, we
decided to allow a hierarchical composition of the core context ontology, whereby the
core ontology is extended by one or more domain or application specific ontologies (e.g.
we extended it with an ontology containing all examples presented in this chapter and
also used in the demonstrator described in Chapter 11).

For this hierarchical composition, we adopted the concept of the SOCAM project (see
Section 4.1.19). The Service-Oriented Context-Aware Middleware (SOCAM) [46] is an
architecture for building context-aware services based on a two-level context model.
This middleware acquires context information from different sources and interprets
it. The context ontology is divided into a two-level hierarchy, distinguishing between
common and specific context information. The upper level describes global concepts of

4The Unix timestamp is defined as the number of seconds elapsed since midnight Coordinated Universal
Time (UTC) of January 1, 1970. http://en.wikipedia.org/wiki/Unix_time. Last visited on Feb 12,
2012.

6.5 Hierarchical Composition of the Ontology 79

http://en.wikipedia.org/wiki/Unix_time

the ontology and the lower level is divided into several pervasive computing sub-domains,
each one of which defines specific details and properties for each scenario. Depending
on the situation and the available devices, an appropriate sub-domain is selected from
the lower level. When environment changes are detected, the lower level ontology can
be dynamically plugged into and unplugged from the upper ontology, hence dynamically
changing this association. This mechanism appears to be very reasonable also with
respect to resource limited devices. An ontology resulting from the extension of the
top-level ontology with a domain-specific ontology can be kept quite small in comparison
to a single ontology capturing all potentially involved concepts.

Reichle extended the idea of the SOCAM project by introducing additional hierarchies as
depicted in Figure 6.7 [109].

Scope RepresentationEntity Types

...
...

...

...

......

......

owl:Thing
Top-level ontology

concepts

Unit

...

......

SWEET Units
Ontology

... ...

...

......

...
...

...
...

......

Domain-specific ontology n

Domain-specific ontology 1

Application-specific ontology 1 Application-specific ontology n

Figure 6.7: Hierarchical Composition of the Ontology [109]

Similar to the SOCAM project, the top-level ontology contains the core concepts (classes
and properties). This top-level ontology can be extended by various domain-specific
ontologies, which in turn can be extended by various application-specific ontologies. In
this work, we simply adopt this concept. The concepts presented here are all part of our
top-level-ontology. Whereas the concrete examples are part of an extension we made for
demonstration issues.

6.6 Discussion

The introduced context modelling approach serves as the baseline of the work presented
in this document. In the first section of this chapter, we presented the different layers of
our context model. The conceptual layer and its concepts have been discussed afterwards

80 Context Model

in detail: The core idea of our context model is to specify context information, not only
with regard to their information type and the entity it corresponds to, but rather to also
specify in which representation the information is provided. We additionally extended
this idea not only to the actual information but also to its metadata. The so-called Inter-
Representation Operations are used to transform data between the representations. This
is also our solution for the requirement “Exchange and interpretation of heterogeneously
presented context information” (Requirement 3) described in Section 1.2. Furthermore
this is one of the big differences to other existing works. Most of them require a fixed
representation for a certain scope, for instance a location is always represented as WGS84
coordinates. As a consequence, Strang et al. introduced the concept of aspects and scales
[134], which has been adapted by Reichle et al. to scopes and representations [158]. Here,
we further extended these concepts in order to also establish arbitrary representations
for metadata. This requires an extension of the IRO concept to additionally support the
calculation of metadata based on other data.

The evaluation of different context modelling approaches by Strang et al. states that
ontology based context models are the most expressive models and fulfil most of
their requirements [133]. An often discussed drawback of ontologies is the overhead
required to process and reason in an ontology. To tackle this problem, we established
the three layers of our context model. Only the first (conceptual) layer contains the
ontology. This ontology is used at start time of the application to generate the data
structures for handling and storing the context information and its metadata at runtime.
The representation of the context information and the according representations of
the metadata are used for that purpose. Moreover, a dedicated ontology reasoning
component is used during the service discovery, matching and mediation phases to
extract the required information how to transform/mediate the context respectively meta
data into the requested representation(s). After extracting the required information from
the ontology to establish the binding, the actual information exchange between context
service and consumer does not require further ontology access respectively reasoning.

Another criticism on ontology based context models is that the handling of heterogeneity
by ontologies just pushes the problem into another higher level even though the solution
is quite similar to source-code based solutions namely to define standardized data
structures to exchange information. However, allowing several representations increases
not only the flexibility and re-usability but it is also much easier to adapt applications to
the preferences and requirements of different human beings, e.g. with regard to units.
As a consequence, our approach directly addresses issues that are also raised by Korpipää
et al. [73].

6.6 Discussion 81

7 Context Offer and Query Language

In re mathematica ars proponendi pluris facienda est quam solvendi.
In mathematics the art of asking questions is more valuable than

solving problems.

– Georg Cantor (1845-1918)
Doctoral thesis (1867)

The previously discussed context model addresses the requirement of “Exchange and
interpretation of heterogeneously represented context information” (Requirement 3 in
Section 1.2) and builds the baseline of our approach. With the help of the concepts of the
context model a common vocabulary is established that allows interpreting the meaning
and representation of the exchanged data.

Several context services and consumers can exist in parallel. In order to specify the
required and offered context information on the common vocabulary defined by the
ontology, a new Context Offering and Query Language (COQL) has been developed.

The COQL provides support for complex filters and conditions in order to precisely
define context offers and requests. The corresponding semantic definitions serve as
input for the Discovery and Matching step described in Chapter 8. The COQL directly
addresses the Requirement 4 “Expressing context offers and needs” and are furthermore
an important ingredient to solve Requirement 2 “Loose coupling of context providers
and consumers” (see Section 1.2 for more details). To allow such a loose coupling, it is
necessary that both, the provided and the required context information (including its
metadata) are described in detail. Such a description specifies which information (scope)
is offered respectively requested, to which entity this information corresponds and in
which representations the information is offered respectively requested. Metadata criteria
can be expressed to further specify the requested information, e.g. that the freshness
of the context information should be smaller than 5 seconds. Optionally, the context
consumer defines its preferences regarding cost minimization or quality maximization.
These preferences are used in the selection phase to find the ‘best’ context provider for a
request.

The COQL is based on the MUSIC Context Query Language (CQL) [159] and the
Information Offer and Request Language (IORL) [109]. In contrast to the CQL but like
the IORL, the COQL also provides support for context offers. Furthermore, it supports
complex filters and conditions like the IORL but in difference to the IORL it also allows
different metadata representations and the specification of context selection criteria. The
extended support for metadata and selection criteria is also the main contribution of this
work compared to its predecessors.

83

7.1 Context Offer and Request

As depicted in Figure 7.1 the central concepts of the COQL are the COQLDocument, the
ContextOffer element, and the ContextQuery element1 A COQLDocument can contain an
arbitrary number of context offers and context queries. The COQLDocument is used by
context services to express both their context needs and offers, e.g. a context reasoning
service can require the current position, orientation, and environment volume of the
phone to retrieve the current activity of the user.

ContextOffer
1..1 offerID: String
1..1 scope: String
1..1 representation:String
1..* subscriptionMode: SubscriptionType
1..1 source: String
1..1 sourceType: String
0..1 sourceDiscoveryProtocol: String
0..1 sourceProtocol: String
0..1 sourcePort: int

ContextQuery
1..1 queryID: String
1..1 scope: String
1..1 representation:String
1..1 subscriptionMode: SubscriptionType

COQLDocument
1..1 docID: String

0..*

0..*

0..*

0..*

SelectionFunction

MetadataConstraint

ScopeConstraint

Entity
1..1 entityRef: String

EntityConstraint

1..*

1..*

0..*

0..*

0..*

0..*

0..*

1..*

Figure 7.1: Overview of the Context Offer and Query Language (COQL)

Both context offer and request reference to the main concepts of the context model:
scope, representation, and an arbitrary number of entities. Scope, entities as well as
the expected/provided metadata can be further specified with the use of constraints
(EntityConstraints, ScopeConstraints and MetadataConstraints). These constraints are
explained in detail in Section 7.2. In difference to representation and scope, where the
string contains a reference to the corresponding class in the context ontology, the COQL
provides an extended support for the entity specification. In the normal case, the string
entityRef also references to the corresponding entity type in the context ontology (e.g.
#Person). As this entity type can comprise a large number of individuals, it is possible to
limit the search space to a specific individual (e.g. the person Roland). This can be done
either by referring to the concrete ontology individual or by concatenating the entity

1The visualization in Figure 7.1 is adopted from UML (see http://www.uml.org/). Classes are depicted
as separate boxes and its interconnections by arrows. In this chapter we only use two types of connections:
specialization respectively generalization (indicated by ‘is a’) and aggregation, which is indicated by a
diamond at the end of the aggregating class.

84 Context Offer and Query Language

http://www.uml.org/

type, the separator “|” and the name of the individual (e.g.#Person|Roland). This second
option is necessary as it cannot be expected that every person is also available as an
individual. Consequently, we create implicit new individuals at runtime.

Context offers specify at least one subscription mode. As depicted in Figure 7.2 the
subscription mode can be ONCLOCK, ONCHANGE, or ONDEMAND. In the ONCLOCK
mode the context service periodically provides context information independent of the
fact whether the service can provide new information or not. The frequency as a sensor
metadata is specified as metadata constraint. In the ONCHANGE model, the context
service informs the context consumer about every change. Both modes require a listener
as a context consumer as context information are pushed to the consumer whereas in
the ONDEMAND mode the context information are only pulled once from the service.

<<enumeration>>

SubscriptionType
ONCLOCK
ONCHANGE
ONVALUE

Figure 7.2: COQL: Subscription Modes

In difference to the context queries, the context offers have to provide several
additional information on the context service providing the offer: source, sourceType,
sourceDiscoveryProtocol, sourceProtocol, and sourcePort. Source (e.g. GPS sensor) and
sourceType (e.g. context sensor or context reasoner) are used to further describe the
context service. These values are only informative and are not used for any decision-
making. For this reason, they can contain arbitrary strings. The sourceDiscoveryProtocol
contains the name of the discovery protocol, which has discovered the context offer,
whereas the sourceProtocol and sourcePort encapsulate the protocol and port required to
access the context service. The context queries are additionally associated to optional
selection functions. These are described in detail in Section 7.3.

7.2 Constraints

In this section, a variety of constraints(entity constraints, scope constraints, and metadata
constraints) is described. They are used for further specification of context queries
and offers. The different kinds of constraints have in common that they can be either
composite or atomic constraints. Composite constraints consist of a logical operator (see
Figure 7.3) and of one or more constraints of the same kind. Furthermore, the atomic
scope constraints and atomic metadata constraints have in common that they are only
unary constraints (e.g. accuracy ≥ 10m). Figure 7.3 illustrates the different operators
(relational, string, and logical operators) used in the constraints.

Unlike the atomic scope constraints and the atomic metadata constraints, the atomic
entity constraint is a binary constraint as shown in Figure 7.4. The entity constraints
are used to further limit the set of entities about which context information are
required/offered. The entityRef contains in general a reference to an entity type of
the context ontology. As a large number of individuals can be of that type, the atomic

7.2 Constraints 85

<<enumeration>>

RelationalOperator
EQ (=)
NEQ (!=)
GT (>)
NGT (!>)
LT (<)
NLT (!<)
GE (>=)
NGE (!>=)
LE (=<)
NLE (!=<)

<<enumeration>>

StringOperator
EQ (=)
NEQ (!=)
CONT (contains)
NCONT (not contains)
STW (starts with)
NSTW (not starts with)
ENW (ends with)
NEW (not ends with)

<<enumeration>>

LogicalOperator
AND
OR
NOT

Figure 7.3: COQL: Operators

Entity
1..1 entityRef: String

EntityConstraint

1..*

CompositeEntityConstraint
1..1 operator: LogicalOperator

1..*
is a

AtomicEntityConstraint
1..1 relation: String
1..1 domainEntity: String

is a

Figure 7.4: COQL: Entity Constraints

entity constraint is used to express relations, e.g.‘work at’, all individuals have to fulfil
with regard to a domain entity, e.g. ‘University of Kassel’.

Unlike entity constraints and metadata constraints, which are used for calculating the
matching of context offers and queries (see Chapter 8), scope constraints, which are
depicted in Figure 7.5, are used to filter context information. We distinguish between
two kinds of atomic scope constraints: atomic string scope constraints and atomic numerical
scope constraints. The only difference is the usage of string operators like contains
in string constraints respectively relational operators like ≥ in numerical constraints.
Additionally, the atomic numerical scope constraint has an additional parameter delta to
soften the relational operator. For example, specifying a delta of 10 within a constraint
accuracy = 100m results in the constraint accuracy = 100m± 10m.

As shown in Figure 7.6, atomic metadata constraints are divided similarly like scope
constraints into atomic string metadata constraints and atomic numerical metadata
constraints.

7.3 Selection Function

Constraints are used to precisely describe context offers and requests. Especially the
metadata constraints of context requests are used to reduce the size of the set of context
offers that are potentially useful as context provider for the respective request. As
this set of potential context providers does not necessarily contain only one offer after

86 Context Offer and Query Language

ScopeConstraint CompositeScopeConstraint
1..1 operator: LogicalOperator

1..*

is a

is a

AtomicScopeConstraint
1..1 scopeProperty: String
1..1 scopeID: String
1..1 representation:String

AtomicStringScopeConstraint
1..1 operator: StringOperator
value: String

AtomicNumericalScopeConstraint
1..1: RelationalOperator
1..1 value: Object
0..1 delta: Object

is a

is a

Figure 7.5: COQL: Scope Constraints

MetadataConstraint CompositeMetadataConstraint
1..1 operator: LogicalOperator

1..*

is a

is a

AtomicStringMetadataConstraint
1..1 operator: StringOperator
value: String

AtomicNumericalMetadataConstraint
1..1: RelationalOperator
1..1 value: Object
0..1 delta: Object

is a

is a

AtomicMetadataConstraint
1..1 metadata: String
1..1 representation: String
0..* dimensionConstraint:String

Figure 7.6: COQL: Metadata Constraints

the matching process and as constraints are only optional, a selection function can
additionally be specified2.

The selection function is an optional part of a context query and is used to select a
context offer if more than one context offer is fulfilling the request. While specifying
a context request, the developer actually does not know the concrete set of matching
context offers and hence he is not able to concretely specify which offer to select. This
would also be contradictory to the overall principle of decoupling context offers and
requests (see e.g. Requirement 2).

In general the selection function used in the selection phase (see Chapter 9) is a utility
function (see Section 2.3.2) in form of a weighted sum. In this utility function, the
different quality and cost characteristics of a context offer are aggregated to a single
number expressing the usefulness of this offer with respect to the user’s preferences. The
offer from the set of matching context offers with the highest usefulness is selected. In
this calculation the user preferences are considered by weighting the quality and cost

2If no selection function is specified, all matching offers are rated equally without any user preferences
and it is up to the system to select one of the offers. Nevertheless, the selection is always influenced by the
system as the system tries constantly to find combined solutions by binding a context provider to more than
one query in order to minimize cost.

7.3 Selection Function 87

SelectionFunction
1..*

SelectionFunctionFactor
1..1 weight: Double
1..1 metadata: String
1..1 representation: String
0..* dimensionConstraint: String
1..1 minPref: boolean

Figure 7.7: COQL: Selection Function

characteristics according to the user preferences.

While specifying a context request, the developer can distribute weights between 0 and 1
to the quality and cost parameters. A weight of 1 expresses the highest importance of
the respective parameter. As depicted in Figure 7.7, a selection function consists of one
or more selection function factors. A factor refers to a certain (quality or cost) metadata
scope which can be stated more precisely by referencing additionally to one or more
dimensions of the representation (by an arbitrary number of Dimension Constraints), e.g.
instead to weigh the accuracy of a GPS sensor, it is also possible to focus only one the
accuracy of the altimeter of this GPS sensor. The Boolean parameter minPref expresses
the general preference of the user if the minimization or the maximization of the specific
metadata are preferred. For example, whereas cost should be minimized, it depends on
the quality scope of the metadata and its representation if it is better to minimize or to
maximize it.

7.4 Example

In this section we introduce a short context query example. For the implementation
of the COQL we developed a Java API. The first version of the implementation has
been based on Eclipse Modeling Framework (EMF) [131]. EMF is an Eclipse-based
modeling framework and code generation facility which provides features like XML
serialization and persistence support. Unfortunately it turned out that the generated
code is incompatible to the Android platform, which has been selected for the prototypical
implementation. For this reason we cleaned up the generated Java code and removed
all external dependencies. The current implementation of the COQL as a Java API is
also an additional difference to the CQL [159] and the IORL [109] as both languages
are XML-based. One drawback of the Java API is its programming language dependency.
Nevertheless, the previously described concepts can also be implemented in a language
independent way, e.g. in XML. However, we skipped this as it is not essential for the
proof of our concepts3.

In Listing 7.1 we show an example of a context query expressed with our Java-based
implementation:

3Within the architecture, a serialization/de-serialization module to transfer a offer respectively request
from Java to XML and vice versa is already foreseen. In the architecture described in Chapter 10, the
discovery and also the advertisement of context services is done by the discovery service. This service can be
extended by so-called discovery plug-ins, which separate concrete implementation and technology dependent
aspects for the discovery and advertisement. The previously mentioned serialization/de-serialization module
would also only be required within such a discovery module, which does not solely use Java based technology,
while for the middleware internal usage the Java based version is used.

88 Context Offer and Query Language

� �
1 IContextQuery query = coqlFac tory Impl . eINSTANCE .

createContextQuery () ;
2 query . setQueryID (" query_position_dummy ") ;
3 query . s e tRepre sen ta t i on ("#AddressRep ") ;
4 query . setScope ("#P o s i t i o n ") ;
5

6 ICOQLEntity e n t i t y = coq lFac tory Impl . eINSTANCE . c r e a t e E n t i t y () ;
7 e n t i t y . s e t E n t i t y R e f ("#User| re ichle@vs . uni−k a s s e l . de ") ;
8 query . g e t E n t i t i e s () . add(e n t i t y) ;
9

10 I S e l e c t i on Fu nc t i on func t ion = coqlFac tory Impl . eINSTANCE .
c r ea t eSe l e c t i onFunc t i on () ;

11 I S e l e c t i o n F u n c t i o n F a c t o r f a c to r 1 = coqlFac tory Impl . eINSTANCE .
c r e a t eSe l e c t i onFu nc t i o nFac t o r () ;

12 f a c t o r1 . setMetadata ("#Accuracy ") ;
13 f a c t o r1 . s e tRepre sen ta t i on ("#IntegerInMeterRep ") ;
14 f a c t o r1 . setWeight (0 .1) ;
15 func t ion . ge tFac to r s () . add(f a c t o r1) ;
16

17 I S e l e c t i o n F u n c t i o n F a c t o r f a c to r 2 = coqlFac tory Impl . eINSTANCE .
c r e a t eSe l e c t i onFu nc t i o nFac t o r () ;

18 f a c t o r2 . setMetadata ("#Est imatedSensorCost ") ;
19 f a c t o r2 . s e tRepre sen ta t i on ("#IntegerRep ") ;
20 f a c t o r2 . setWeight (0 .9) ;
21 func t ion . ge tFac to r s () . add(f a c t o r2) ;
22 query . s e t S e l e c t i o n F u n c t i o n (func t ion) ;
23

24 IAtomicNumericalMetadataConstra int con1 = coqlFac tory Impl .
eINSTANCE . createAtomicNumerica lMetadataConstra int () ;

25 con1 . setMetadata ("#Freshness ") ;
26 con1 . se tRepre sen ta t i on ("#DoubleRep ") ;
27 con1 . s e tUn i t ("#second ") ;
28 con1 . se tMetadataConst ra in t ID (" Freshness ") ;
29 con1 . se tOperator (Re la t iona lOpera to r . LT_LITERAL) ;
30 con1 . se tVa lue (Factory . c rea teVa lue (10)) ;
31 query . ge tMetadataConst ra in t s () . add(con1) ;� �

Listing 7.1: Example of a Context Query

In the example, the current position (line 4) as an address (line 5) of the user
reichle@vs.uni-kassel.de is requested. The context provider has to fulfil the atomic
numerical metadata constraint defined in line 24–31. This constraint is checked during
the matching process (see Chapter 8) and is used to filter out inappropriate context
providers. Appropriate providers have to provide the information with a freshness of 10
seconds. From the set of appropriate providers, one provider is selected with a selection
function. The selection approach is explained in detail in Chapter 9. The information
specified in line 10–22 is used to further customize the selection. In this example, the
context consumer has the main interest in minimizing the cost and not that much on
getting highly accurate data. This is expressed by the weights for the accuracy in line 14
and for the cost in line 20. As the selection function is generally a weighted sum, the
utility for a provider p with regard to the above specified selection function would be
calculated with the following formula:

7.4 Example 89

u(p) = 0.9 ·
costp

max∀provider(cost)
+ 0.1 ·

accuracyp
max∀provider(accuracy) (7.1)

In detail, the selection function is a little more complex, but still based on the general
idea of the weighted sum. The detailed explanations on the selection approach can be
found in Chapter 9.

7.5 Discussion

In this chapter we presented our Context Offer and Query Language, which is used to
describe the information provided by context services and required by context consumers.
By allowing the explicit and detailed specification of both context and requests, it is
possible to establish a loose coupling of context consumers and services. This can be
compared to service descriptions, e.g. as a WSDL document [143], which are common
in service-oriented computing (SOC). However, standard service description approaches
are not applicable for our approach, as it requires a lot of modifications to express the
information required to describe context offer and request in detail. Similar to SOC,
several approaches for the semantic specification of sensors in sensor networks exist.
Compton et al. have reviewed twelve of these approaches and came to the conclusion that
even if combining several approaches, open issues remain [26]. For example, “questions
remain about [. . .] how to express response model details such as accuracy and how to
delineate between and integrate sensors, services and scientific (and other predictive)
models” [26].

The COQL is based on the Context Query Language [159] and its successor IORL [109].
Reichle identified that it is not sufficient to only describe a query with a dedicated
language [109]. He extended the CQL by support for specification of context offers. But
as Reichle considered metadata only with fixed representations, we extended the IORL to
also allow different representations for metadata. Additionally, Reichle does not require a
selection of context providers. Instead, he fuses the result of matching context offers. As
we do not focus on fusion but rather on selection, an appropriate support for expressing
the user preferences regarding quality and cost characteristics has been added to the
COQL. These preferences are used afterwards in the selection phase (see Chapter 9).

In the future, the COQL should be extended with regard to allow more complex
constraints. Currently only unary constraints and their combinations are supported.
N-ary constraints would allow to compare variables or also to define complex expressions
like distanceBetween(friend.position,my.position) < 1km, which could be used as
e.g. scope constraint. This also requires a notion of ‘distance’ as stated by Becker et
al.: “ For geometric coordinates, the direct physical distance between two positions can be
calculated using well-known formulas like Pythagoras in Cartesian systems. If only symbolic
coordinates are modeled then the model must contain explicit definitions of distances between
these coordinates, e.g., to define the distance between room number X and the printers in
the rooms number Y and Z, since symbolic coordinates do not contain a natural embedment
into a metric space. There are other notions of distance that are often more relevant than
the direct physical distance. For instance, for a pedestrian it might be impossible to cross a
highway. Therefore, a restaurant across the highway with a direct physical distance of 100
m might be farther away than a restaurant with 200 m direct physical distance not located
across this highway.” [9, 10].

90 Context Offer and Query Language

8 Context Offer and Query Matching

The most exciting phrase to hear in science, the one that heralds new
discoveries, is not “Eureka!” (“I found it!”) but rather

“hmm . . .that’s funny . . .”

– Isaac Asimov (1920-1992)
Unknown source

Using the Context Offer and Query Language, context offers and queries are registered to
the system. After discovering these offers and queries, the system has to check which
context services can provide the requested information and hence satisfy the queries.

Matching successful
1..m Mediator chains

Matching
unsuccessful

Metadata
Constraint
Matching

Initial
Matching

Mediation
Check0 chains

false
true

1..n chains

1..m
chains

Context
offer

Context
query

0 chains
pass

Figure 8.1: Overview on the Context Offer and Query Matching

Figure 8.1 shows the three main steps in the matching process: initial matching, the
mediator check, and the metadata constraints matching. During the initial matching,

91

an offer and a query are checked if they fit together with regard to entity, scope and
subscription mode. If this is not the case, the matching process stops. Otherwise the
mediation check is started. While the initial matching focused on scope and entity of
the offer respecivetly the query, the mediation check evaluates if the representations of
provided context information and of their metadata fit to the expected representations. If
a representation of offered information does not match, the information can be mediated
into the requested representation by a chain of mediators. Such a mediator chain consists
of one or more Inter-Representation Operations (IROs) and/or Metadata Operators.
During this mediation check, it is possible that more than one chain can be created as
different IROs respectively chains of IRO can established fulfilling the context request. In
this phase not only the mediation of the context data but also of the according metadata
is checked. If no mediation is possible and no chains can be created, the matching is
unsuccessful. Otherwise, the metadata constraints of the offer and query are checked in
the metadata constraint matching whether they are satisfiable. As every chain provides
a slightly different offer with regard to the metadata constraints (see Section 8.2 for
details), it is possible that not all chains, that have been created during the mediation
check, pass this phase. But if at least one chain satisfies this test, the matching is
successful.

Several approaches exist for matching service requests and service descriptions only on
a syntactic level. Other works also exist that extend these syntactical matching with
a semantic matching. For example, Bleul et al. “[. . .]introduce a semantic model and
framework for service level brokering where service vendors and consumers can specify
their interests in service levels. Service level requests are matched against offers to
discover the appropriate service.” [14]. Similarly, SWAPS [100] is a semantic approach
for matching WS-A [6] descriptions for automatic partner selection. It uses semantic
matching but lacks the ability to transform metrics. This is also the main difference of our
concept compared to existing service matching approaches in the domain of ubiquitous
computing. Furthermore, we also provide support for mediating the metadata and taking
into account the cost caused by the mediation.

The matching process presented in this chapter, contains the complete establishment of
mediator chains. A mediator chain converts context information and its metadata from
the provided representations to the requested representations. This step has to be part of
the matching as

1. without the ability to build such a chain the context service would not be able to
satisfy the context request and

2. only after building and using this chain it is possible to reason on the matching
of the metadata constraints of offer and request. This is due to the requirement
that also the metadata representations have to be transformed (otherwise the
constraints would not be comparable) or that the chain influences the metadata
(e.g. the accuracy).

8.1 Initial Matching

In the initial matching phase, context offers and context queries are only coarsely checked.
More precisely to pass this phase, the following conditions must hold:

92 Context Offer and Query Matching

• Scope matching: The requested scope is a) the same scope as the offered scope,
or b) is a generalization of the offered scope or c) matches with a nested scope1

of the offer (e.g. the representation of the offer is a composite representation and
the requested scope is one of the dimensions of this representation). As mentioned
before, the scope constraints are ignored here. They are only used for filtering.

• Entity matching: The requested entity or entity type is a) the identical entity
respectively entity type as offered or b) is a generalization of the offered entity
respectively entity type. Furthermore, the entity constraints must be checked.2

• Subscription mode matching: The requested subscription mode has to be
provided by the context offer.

8.2 Mediation Check

After passing the initial matching, the representations of the context information and the
metadata of both offer and query have to be reviewed. In general, two representations
match if

1. the offered representation is the same as the requested representation, or

2. the requested representation is a generalization of the offered representation, or

3. the offered representation can be transformed by one or more IROs into the
requested representation.

As explained in Section 6.4, IROs transfer context information of one scope from
one representation into another. During this mediation, they can also influence the
metadata of this information, e.g. the accuracy. Furthermore, IROs can have additional
dependencies on other context information to be able to transfer the actual information.
Additionally, metadata operations can be used to derive new metadata from existing
metadata.

As depicted in Figure 8.2, various IROs and metadata operations can be linked to a chain
to transform the provided information into the requested information. As we allow for
different interconnections, we do not directly interconnect IROs but use rather so-called
mediators. We distinguish between several kinds of mediators to cope with different
kind of required transformation.

Figure 8.2 shows an overview about the general concept of mediator chains containing
some of the mediator types, namely the metadata mediator and the IRO mediator. These
mediators are used if mediation of context information or metadata is necessary. In
difference to the metadata mediator and the IRO mediator, the identity mediator and
the extraction mediator serve only as input provider of a mediator chain. Hence, either
an identity mediator or an extraction mediator is the first mediator of every mediator
chain.3

1A nested scope is used as a dimension of the representation of the offered scope. For example, a
position in WGS84 coordinates contains the nested scopes longitude, latitude, and altitude.

2Checking the entity constraints is generally ontology reasoning, which has not been further reviewed
in this work as already a lot of existing works target this topic. An overview on these works can be found
e.g. in [130].

3The chain in Figure 8.2 is missing an identity mediator at the beginning. We removed it in order to
improve the readability.

8.2 Mediation Check 93

Generic
metadatum
mediation &
calculation

IRO-based
dependency

mediation

Context offer
Generic

metadatum
mediation

IRO-specific
metadatum
mediation

ContextInformation
Rep_out

Metadatum1
Rep_out

Metadatum3
Rep_out

ContextInformation
Rep_in

Metadatum1
Rep_in

Metadatum2
Rep_in

Mediation

Mediation

Mediation

Mediator
chain

Mediator chain

Mediation

Mediation

Mediation

Mediation

Mediation

Context query

Metadatum2
Rep_out Calculation

Metadata Mediator

IRO Mediator

1

2

3

4

Figure 8.2: Mediator Chain Overview

• Identity mediator: The identity mediator is the simplest mediator, as it forwards
the input without transforming anything. If a context offer provides exactly the
requested information (according to the representations of the actual context
information and the associated metadata), the resulting mediator chain only
contains an identity mediator. Every successful matching results in at least one
mediator chain. This is true, even if this chain contains only one mediator, as
this chain is then used to interconnect the loosely coupled context service and
consumer.

• Extraction mediator: The extraction mediator is used if a requested scope is a
nested scope of the offered scope. It extracts the required information from the
input and is used as an alternative to the identity mediator serving as starting point
of a mediator chain.

• IRO mediator: The IRO mediator encapsulates an IRO and can optionally also
request additional information such as mediator 2 and 4 depicted in Figure 8.2 by
the third mediator which has an additional mediator chain as input.

• Metadata mediator: The metadata mediator contains one or more IROs to sepa-
rately transfer the different types of metadata into the requested representations.
Additionally it may contain one or more metadata operations to calculate new
metadata (see mediator 1 and 3 in Figure 8.2).

The mediator chain that transfers the offered information and its metadata to the
requested information and its metadata is built recursively by Algorithm 8.1. The
algorithm is rather straight-forward:

• line 2–4: check if representation of offer and chain match

• line 7–21: walk through the list of IROs and check if

– line 14–17: requested representation can be provided by an IRO

94 Context Offer and Query Matching

– line 17–19: requested representation can be provided by one or more chains
(recursive call of the method)

The algorithm initially checks if the representations of offer and query are equal (see
line 2). If this is the case, the result of the checkMetadataMediation algorithm (see
Algorithm 8.2) is returned (line 3). In general, the checkMetadataMediation method
checks whether at the end of a chain a metadata mediation is required in order to fulfil a
query or not.

Algorithm 8.1 Algorithm checkMediation(query, chaini, level) to build mediator chain
for input chain chaini and context query query

1: offer ← chaini.offer
2: if offer.rep = query.rep then
3: return checkMetadataMediation(query, chaini)
4: end if
5: result← emptyset
6: iroList← iroListsForRep.get(offer.rep) . List of IROs transfering data from the

offer.rep
7: for all i ∈ iroList do
8: if All dependencies of i are fulfilled then
9: checkMetadataMediation(generateInputQueryForIRO(i, offer), chaini)

10: newOffer ← generateOutputForIRO(offer, i)
11: mediator ← new IROMediator(i, new Offer)
12: chain← chaini.copy
13: chain.append(mediator)
14: if i.outputRep = query.rep then
15: checkMetadataMediation(query, chain);
16: result.add(chain)
17: else if level ≤ maximalNumberOfHierarchies then
18: result.addAll(checkMediation(query, chain, level + 1))
19: end if
20: if result.size ≥ maximalNumberOfResults then
21: return result
22: end if
23: end if
24: end for
25: return result

If representation of offer and query are not equal, every IRO that has the same input
representation as the representation of the offer is added to a list (line 4). For every
IRO in this list, it is first checked if all dependencies are fulfilled (line 8). As explained
in Section 6.4.1, an IRO might require additional data in order to transform the data
into the required representation. Afterwards it has to be checked if some additional
metadata transformations are required before the actual IRO is added. For this proof,
the checkMetadataMediation method is called (line 9). This algorithm is depicted in
Algorithm 8.2 and is explained afterwards in detail. As this method checks whether at the
end of a chain a metadata mediation is required in order to fulfil a query or not, it needs

8.2 Mediation Check 95

a query and a chain as input parameters. Therefore, we have to generate a new pseudo-
query describing the input needs of the IRO. This is done by the generateInputQueryForIRO
method. This method is also called in line 9 and is further described in Algorithm 8.3.

As now all requirements are fulfilled to perform the IRO, the IRO is now added to the
chain (line 13). Before adding the IRO to the chain, a new offer is generated by the
generateOutputForIRO method first (see Algorithm 8.4) in line 10. Afterwards a new
mediator is created in line 11, which is added to a copy of the input chain (lines 12 & 13).
The mediator is added to a copy of the chain and not to the origin chain as we are not
only searching for one possible mediator chain to transform the requested information
into the required representation but rather want to have as many different chains as
possible. As every IRO influences the metadata differently, e.g. the accuracy, and the
total costs of the chain, the selection process described in Chapter 9 does not only choose
the best fitting chain but also selects the best combination of IROs.

Finally a check assures that the last IRO added provides the requested representation (line
14). Then the final metadata mediation is checked (line 15) and the chain is added to
the set of results (line 16). If the IRO does not provide the requested representation, the
checkMediation method is called recursively (line 18) adding its results to the set of chains.
The recursive call is interrupted if an IRO provides the requested representation (line
14–17), the maximal number of hierarchy levels is reached (line 17), or no more IROs
exist matching the provided representation as input representation. The walk through
the set of IROs is aborted, if the maximal number of results (line 20–22) is reached.4

It must be noted that if a mediator is appended to a mediator chain that provides a
representation already provided by another mediator in that chain, an exception is
thrown to prevent a mediation cycle or loop in that chain.

Algorithm 8.2 Algorithm checkMetadataMediation(query, chain)
1: offer ← chain.offer.copy
2: metadataMapquery ← generateMetadataMap(query.metadataConstraints)
3: if metadataMapquery.size = 0 then
4: return chain
5: else
6: metadataMapoffer ← generateMetadataMap(offer.metadataConstraints)
7: if metadataMapoffer.size = 0 then
8: return NULL
9: else

10: mediator ← new MetadataMediator
11: for all dim ∈ metadataMapquery.dimensions do
12: for all metadataquery ∈ metadataMapquery.get(dim).metadata do
13: handled← false
14: if metadataMapoffer.containsKey(dim) then
15: metadataoffer ← metadataMapoffer(dim)(metadataquery.scope)

4The parameters maximalNumberOfHierarchies and maximalNumberOfResults are system parameters,
which can be used to tune the number of results returned according to the available system resources. By
default both are set to 10, so that maximal 10 chains (each maximally containing 10 IRO mediators) can be
constructed. This limit is motivated by the evaluation results. Furthermore, maximalNumberOfHierarchies
inhibits infinite recursion.

96 Context Offer and Query Matching

16: if metadataoffer 6= NULL then
17: if metadataoffer.rep = metadataquery.rep then
18: handled← true
19: continue
20: else
21: iro← findIRO(metadataoffer.rep,metadataquery.rep)
22: if iro 6= NULL then
23: mediator.add(iro, dim,metadataquery.scope)
24: handled← true
25: else
26: return NULL
27: end if
28: end if
29: end if
30: end if
31: if ¬handled then
32: ops← findOperation(metadataq..scope,metadataq..rep)
33: for all op ∈ ops do
34: inputAvailable← true
35: for all input ∈ op.inputs do
36: if metadataMapoffer.get(dim).contains(input.scope) ∧

metadataMapoffer.get(dimension).get(input.scope).rep = input.rep then
37: inputAvailable← inputAvailable ∧ true
38: else
39: inputAvailable← false
40: continue
41: end if
42: end for
43: if inputAvailable = true then
44: mediator.add(op, dim,metadataquery.scope)
45: else
46: return NULL
47: end if
48: end for
49: end if
50: end for
51: end for
52: if ¬(mediator.isEmpty) then
53: chain.append(mediator)
54: end if
55: return chain
56: end if
57: end if

In Algorithm 8.2 the checkMetadataMediation method is described which checks whether
a metadata mediation is required at the end of a chain so that a query is fulfilled or not:

• line 11–51: check for all metadata requested by the query if

8.2 Mediation Check 97

– line 17–20: metadata is provided as requested or

– line 20–28: metadata is provided by a IRO transformation or

– line 33–48: metadata is calculated with a metadata operation

The algorithm starts with the generation of a map containing the different metadata for
every dimension by the generateMetadataMap method in line 2. If this map is empty for
the query, the query does not contain any metadata constraints and does not require
any transformation. Hence, the chain is returned (line 3–5). If this map is non-empty
but the map for the offer is empty, the mediation is aborted, as obviously the offer does
not provide any metadata. Without any metadata, it is not possible to fulfil the request –
neither by an IRO nor by any metadata operation as both require metadata as input –
(line 7–9).

Now for every dimension (line 11) and the metadata of the query for this dimension
(line 12) it is checked whether the offer provides the metadata in the same dimension
with the same scope (line 14–16). If this is the case, the algorithm checks – similar to
the algorithm above – if an IRO is required to transform the offered metadata into the
requested representation (line 17–29). If the offer does not provide the metadata with
the same scope as the offer, it is checked if a metadata operation can be used to calculate
the requested metadata based on other available metadata. This is done in the second
part of the checkMetadataMediation method (line 30–56).

To check whether a metadata operation can be used to calculate the requested metadata,
first the findOperation method is called to find all operations providing information of
the required scope and in the required representation (line 32). Next it is checked for
all these operations if the input that the respective operation requires, can be provided
(line 33–42). If a suitable operation is found, it is also added to the mediator (line 44).
Otherwise the mediation is aborted as the required metadata cannot be provided (line
46).

If all dimensions and scopes are checked (line 51) and if the mediator contains at least
one IRO or operation, the mediator is append to the chain (line 52–53) and the chain is
returned (line 55).

In order to mediate between an offer before an IRO and the requirements of that IRO
with respect to the provided metadata and their representations, a query is generated
encapsulating these requirements of the IRO and allowing to reuse the previously
described method.

Algorithm 8.3 generates this new query based on the provided context offer and the
metadata preferences of the provided IRO. As mentioned before, this method is required
to check if some additional metadata mediations are required in a chain before an IRO:

• line 1–8: Generate a new query by copying everything except the representation
(representation is replaced by the representation of the IRO) and the metadata
constraints from the offer.

• line 9–26: Generate new metadata constraints for the new query based on the
metadata provided by the offer and the specification of the IRO regarding its
influence on metadata (the IRO can influence also the metadata and consequently
requests these metadata to have a specific representation).

98 Context Offer and Query Matching

In detail, generateInputQueryForIRO creates a new query with the same entities and
scope as the offer (lines 2–4). The representation requested by the query is the
input representation of the IRO (line 5). Before returning the new query (line
7), new constraints are generated based on the constraints of the offer by the
generateInputMetadataConstraintsForIRO function (line 6). This function is depicted in
lines 9–26. The function checks for every constraint (line 11) if the IRO requests another
representation for the referenced metadata (line 14). In the corresponding constraints
the representation is exchanged (lines 15–17). The function is called recursively to
transfer also the composite constraints (lines 19–23).

Algorithm 8.3 Algorithm generateInputQueryForIRO(iro, offer) to generate a new
context query based on the context offer offer and the metadata preferences of the IRO
iro input

1: function generateInputQueryForIRO(iro, offer)
2: query ← new Query
3: query.scope← offer.scope
4: query.entities← offer.entities
5: query.rep← iro.inputRep
6: query.metadataConstraints ← generateInputMetadataConstraintsForIRO

(offer.metadataConstraints, iro)
7: return query
8: end function
9: function generateInputMetadataConstraintsForIRO(inputMetadataConstraints,iro)

10: result = new List < MetadataConstraint >
11: for all constraint ∈ inputMetadataConstraints do
12: temp← constraint
13: if constraint is AtomicNumericalMetadataConstraint ∨

constraint is AtomicStringMetadataConstraint then
14: newRep ← iro.getInputMetadataRepresentationForScopeAndDim...

(constraint.getMetadata(), constraint.getDimensionConstraint);
15: if newRep 6= null then
16: temp.rep← newRep
17: end if
18: result.add(temp)
19: else if constraint is CompositeMetadataConstraint then
20: temp.constraints.clear
21: temp.constraints ← generateInputMetadataConstraintsForIRO

(constraint.constraints)
22: result.add(temp)
23: end if
24: end for
25: return result
26: end function

For example, a context offer provides the current position of a user as WGS84 coordinates
and additionally the accuracy of this position in meter. As the context query requests
the position as an address, an IRO can be used to mediate from the WGS84 coordinate

8.2 Mediation Check 99

to an address. With this mediation also the accuracy is influenced. However, the IRO,
which asks for the context information in WGS84 coordinates as input data, expects the
accuracy to be represented in miles. To express this requirement, an according input
query for that IRO is generated to check the required metadata mediation between offer
and IRO.

Algorithm 8.4 Algorithm generateOutputForIRO(iro, offer) to generate a new
context offer based on the context offer offer and the metadata preferences of the
IRO iro output

1: function generateOutputForIRO(iro, offer)
2: newOffer ← new Offer
3: newOffer.scope← offer.scope
4: newOffer.entities← offer.entities
5: newOffer.rep← iro.outputRep
6: newOffer.metadataConstraints ← generateOutputMetadataConForIRO

(offer.metadataConstraints, iro)
7: return newOffer
8: end function
9: function generateOutputMetadataConstraintsForIRO(inputMetadataConstraints,

iro)
10: result = new List < MetadataConstraint >
11: for all constraint ∈ inputMetadataConstraints do
12: temp← constraint
13: if constraint is AtomicNumericalMetadataConstraint ∨

constraint is AtomicStringMetadataConstraint then
14: newRep ← iro.getInputMetadataRep...ForScopeAndDimension

(constraint.getMetadata(), constraint.getDimensionConstraint);
15: if newRep 6= null then
16: temp.rep← newRep
17: temp.value ← iro.performWorstCaseMetadataConversion

(constraint.value)
18: end if
19: result.add(temp)
20: else if constraint is CompositeMetadataConstraint then
21: temp.constraints.clear
22: temp.constraints ← generateInputMetadataConstraintsForIRO

(constraint.constraints)
23: result.add(temp)
24: end if
25: end for
26: return result
27: end function

The next operation called in the main Algorithm 8.1 is the generateOutputForIRO method,
which is described in detail in Algorithm 8.4. This algorithm calculates a new offer which
is provided by a chain after executing the last IRO in that chain. In general, this function
is comparable with the Algorithm 8.3. The main difference is that also the values of some

100 Context Offer and Query Matching

metadata constraints have to be adjusted (line 17). For this purpose, every IRO has to
provide a performWorstCaseMetadataConversion method to calculate a new value of the
constraint. Similar to Algorithm 8.3, the function to transform the metadata constraints
is called recursively to transfer also the composite metadata constraints.

8.3 Metadata Constraint Matching

The final phase of the complete matching process is to check whether the metadata
constraints of context offer and query fit or not.5 This is only possible after the mediation
check as the mediation process may influence the metadata and as a consequence the
constraints, which in general express the upper, lower limit, or average value of certain
metadata. A metadata constraint co of an offer o and a constraint cq of a query q match
only if and only if:

1. Scope matching: The scope of the offer metadata constraint co equals the scope
of the request metadata constraint cq or the scope of cq is a generalization of the
scope of the offer constraint co.

2. Representation matching:

a) The representation of the offer metadata constraint co equals the representa-
tion of the request metadata constraint cq

b) or the representation of cq is a generalization of the representation of the offer
constraint co,

c) or the metadata of the offer can be transformed into the representation of the
request constraint using an IRO.

3. Constraint satisfaction: The conjunction of both constraints co ∧ cq has to be
satisfiable.

The first two requirements are already checked within the previous mediation steps.
Hence, we can assume in this phase that two or more constraints of either offer or query
with the same scope also have the same representation and are comparable.

In general, constraint programming is a programming paradigm wherein relations
between variables are stated in the form of constraints allowing users to describe
problems in a declarative way. A possible solution has to satisfy all these constraints. In
our approach, context provider and context consumer can use constraints to detail the
description of provided respectively requested context information. As stated by Hofstedt
et al. [57], constraint logic programming is based on first-order logic as constraints
are nothing else than first-order expressions. Whereas a constraint solver provides
concrete variable assignments which fulfil the set of constraints, this is not required in
our approach. Instead we want to know if the constraints are satisfiable in general.

Unfortunately, the satisfiability problem for first-order logic in general is undecidable
[23]. But Löwenheim proved that of first-order logic in which all predicate letters are
monadic and which does not contain function letters is decidable [83]. Fortunately, it

5The topic of this section has also been subject of the Bachelor Thesis of Alexander Kohout [69], which
has been supervised by the author of this thesis.

8.3 Metadata Constraint Matching 101

is possible to transform the metadata constraint into this so-called monadic predicate
calculus as follows:

• Atomic constraints: The relational or string operator (see Figure 7.3) of the
constraint is modelled as a predicate symbol of arity 2 and the two parameters of
this predicate are the scope of the constraint and the value of the constraint. This
predicate is only monadic, as only the scope is a free variable, whereas the value is
bound.

• Composite constraints: The formulae for the 1..n constraints contained in the
composite constraint are associated with ∧ (if logical operator is AND), ∨ (logical
operator is OR) or ¬ (logical operator is NOT).

• Top-level list of constraints: As described in Section 7.1, a context offer or request
can contain an arbitrary number of metadata constraints, which have all to be
satisfied in order to satisfy the offer or request. For this reason, the formulae for
these constraints (either atomic or composite) are associated with ∧ (colloquial
and).

Following these transformation rules, the metadata constraints of the query shown in
Listing 8.1 result in the following formula: 6

(LessThan(#Freshness, 10) ∧ (LessThan(#Accuracy, 100)
∨GreaterThan(#Reliability, 75)))

(8.1)

� �
1 IContextQuery query = coqlFac tory Impl . eINSTANCE .

createContextQuery () ;
2 [. . .]
3 IAtomicNumericalMetadataConstra int con1 = coqlFac tory Impl .

eINSTANCE . createAtomicNumerica lMetadataConstra int () ;
4 con1 . setMetadata ("#Freshness ") ;
5 con1 . se tRepre sen ta t i on ("#DoubleRep ") ;
6 con1 . s e tUn i t ("#second ") ;
7 con1 . se tMetadataConst ra in t ID (" Freshness ") ;
8 con1 . se tOperator (Re la t iona lOpera to r . LT_LITERAL) ;
9 con1 . se tVa lue (Factory . c rea teVa lue (10)) ;

10 query . ge tMetadataConst ra in t s () . add(con1) ;
11 IAtomicNumericalMetadataConstra int con2 = coqlFac tory Impl .

eINSTANCE . createAtomicNumerica lMetadataConstra int () ;
12 con2 . setMetadata ("#Accuracy ") ;
13 con2 . se tRepre sen ta t i on ("#DoubleRep ") ;
14 con2 . s e tUn i t ("#meter ") ;
15 con2 . se tMetadataConst ra in t ID (" Accuracy ") ;
16 con2 . se tOperator (Re la t iona lOpera to r . LT_LITERAL) ;
17 con2 . se tVa lue (Factory . c rea teVa lue (100)) ;
18 IAtomicNumericalMetadataConstra int con3 = coqlFac tory Impl .

eINSTANCE . createAtomicNumerica lMetadataConstra int () ;
19 con3 . setMetadata ("#R e l i a b i l i t y ") ;
20 con3 . se tRepre sen ta t i on ("#DoubleRep ") ;

6As described above, we can assume that constraints of the same scope also have the same
representations/units. Hence, we can ignore this information when transforming the constraints into
a formula.

102 Context Offer and Query Matching

21 con3 . s e tUn i t ("#percent ") ;
22 con3 . se tMetadataConst ra in t ID (" R e l i a b i l i t y ") ;
23 con3 . se tOperator (Re la t iona lOpera to r . GT_LITERAL) ;
24 con3 . se tVa lue (Factory . c rea teVa lue (75)) ;
25 IComposi teMetadataConstra int con4 = coqlFac tory Impl . eINSTANCE .

createComposi teMetadataConstra int () ;
26 con4 . se tOperator (Log ica lOpera tor . OR_LITERAL) ;
27 con4 . g e t C o n s t r a i n t s () . add(con2) ;
28 con4 . g e t C o n s t r a i n t s () . add(con3) ;
29 query . ge tMetadataConst ra in t s () . add(con4) ;� �

Listing 8.1: Example of Metadata Constraints

In order to prove the satisfiability of the constraints of both offer and query, the formulae
for the constraints are conjuncted (∧). The satisfiability of this conjunction can be
proven by any method presented in Section 3.2. In our prototypical implementation, we
use the analytic tableaux method (see Section 3.2.2). As our formulae do not contain
any quantifiers (∀ or ∃), we can use the simple method for propositional logic (see
Section 3.1.1).

Following Definition 3.4 and Theorem 3.1 the conjunction of the formulae is satisfiable, if
the resulting tableaux is completed and open. The analytic tableaux method has several
advantages over e.g. the resolution method (see Section 3.1.2 and Section 3.2.1). For
instance the method of analytic tableaux does not require an input formula to be in a
certain normal form. Another important advantage of tableaux method compared to
resolution method is that the tableaux method is able to stop analysing a formula without
reducing the formula to its atomic components.

We construct the analytic tableau as defined in Definition 3.3 but change the rule when
to close a branch. For propositional logic a branch is closed if it contains both a formula
F and its negation ¬F . In difference to this rule, we support two different modes to
close a branch: weak and strong consistency check.

Before defining these consistence classes, we have to introduce the domain of metadata
of a certain scope (e.g. freshness).

Definition 8.1 (metadata domain). The domain of a metadata scope is the complete set
of possible values of metadata of that scope. Based on a metadata constraint, the domain
DA of the corresponding metadata scope A is defined in Table 8.1.

Based on this definition, we can define weak and strong consistency as follows:

Definition 8.2 (weak consistency). A constraint A is weakly consistent to a constraint B
if the intersection of both domains is non-empty, thus if DA ∩DB 6= ∅.

Definition 8.3 (strong consistency). A constraint A is strongly consistent to a constraint
B if the domain of A is a subset of the domain of B, thus if DA ⊂ DB.

Based on the previous definition, constraints are satisfiable a) for some of the possible
variable assignments if the constraints are weakly consistent and b) for all possible
variable assignments if the constraints are strongly consistent. From the definition it
is clear that strong consistency implies weak consistency as from DA ⊂ DB follows
DA ∩DB = DA 6= ∅.

8.3 Metadata Constraint Matching 103

Operator Short name Predicate Metadata domain DA

Equal EQ EQ(A, x) DA = {x}
Not equal NEQ NEQ(A, x) DA = {y ∈ R|y 6= x}
Greater than GT GT (A, x)

DA = {y ∈ R|y > x} = (x,∞)
Not less or equal NLE NLE(A, x)
Not greater than NGT NGT (A, x)

DA = {y ∈ R|y ≤ x} = (−∞, x]
Less or equal LE LE(A, x)
Less than LT LT (A, x)

DA = {y ∈ R|y < x} = (−∞, x)
Not greater or equal NGE NGE(A, x)
Not less than NLT NLT (A, x)

DA = {y ∈ R|y ≥ x} = [x,∞)
Greater or equal GE GE(A, x)

Table 8.1: Definition of the Metadata Domain

To check whether a branch of the analytic tableaux has to be closed or not, we check if
all atomic constraints of the offer are weakly or strongly consistent7 to the corresponding
atomic constraints of the query with the same scope. If we detect inconsistency, the
branch has to be closed. Per definition, weak consistence allows that some of the provided
context information do not fulfil the request8 (more precisely the metadata constraints
of the request), whereas all context information fulfil the request if we check for strong
consistency. Weak consistency has the advantage that the repertory of context offers
to fulfil a query is larger than the repertory with strong consistency. As a consequence,
the probability of not finding an offer fulfilling the request is smaller than with strong
consistency.

To explain the complete metadata constraint matching, we first introduce a new context
offer:� �

1 ICon tex tOf fe r o f f e r = coq lFac tory Impl . eINSTANCE .
c rea teContex tOf f e r () ;

2 [. . .]
3 IAtomicNumericalMetadataConstra int con1 = coqlFac tory Impl .

eINSTANCE . createAtomicNumerica lMetadataConstra int () ;
4 con1 . setMetadata ("#Freshness ") ;
5 con1 . se tRepre sen ta t i on ("#DoubleRep ") ;
6 con1 . s e tUn i t ("#second ") ;
7 con1 . se tMetadataConst ra in t ID (" Freshness ") ;
8 con1 . se tOperator (Re la t iona lOpera to r . LT_LITERAL) ;
9 con1 . se tVa lue (Factory . c rea teVa lue (5)) ;

10 o f f e r . ge tMetadataConst ra in t s () . add(con1) ;
11 IAtomicNumericalMetadataConstra int con2 = coqlFac tory Impl .

eINSTANCE . createAtomicNumerica lMetadataConstra int () ;
12 con2 . setMetadata ("#Accuracy ") ;
13 con2 . se tRepre sen ta t i on ("#DoubleRep ") ;

7By default, we check for weak consistency. The middleware can be configured by a system property to
check for strong consistency.

8This non-fitting context information is filtered out by the middleware before transferring them to the
context consumer.

104 Context Offer and Query Matching

14 con2 . s e tUn i t ("#meter ") ;
15 con2 . se tMetadataConst ra in t ID (" Accuracy ") ;
16 con2 . se tOperator (Re la t iona lOpera to r . GT_LITERAL) ;
17 con2 . se tVa lue (Factory . c rea teVa lue (50)) ;
18 o f f e r . ge tMetadataConst ra in t s () . add(con2) ;� �

Listing 8.2: Example of Metadata Constraints 2

The metadata constraints of the query shown in Listing 8.2 result in the following
formula:

(LT (#Freshness, 5) ∧GT (#Accuracy, 50)) (8.2)

In order to proof satisfiability of the constraints of the query in Listing 8.1 and the offer
in Listing 8.2, we have to construct the analytic tableaux for the conjunction of the
formulae Equation 8.1 and Equation 8.2, hence for the following formula:9

(LT (Freshq, 10) ∧ (LT (Accq, 100) ∨GT (Relq, 75)))
∧(LT (Fresho, 5) ∧GT (Acco, 50))

(8.3)

The resulting tableaux is depicted in Figure 8.3.

(LT (Freshq, 10) ∧ (LT (Accq, 100) ∨GT (Relq, 75)))
∧(LT (Fresho, 5) ∧GT (Acco, 50)) (1)

LT (Freshq, 10) ∧ (LT (Accq, 100) ∨GT (Relq, 75)) (2)
LT (Fresho, 5) ∧GT (Acco, 50) (3)

LT (Freshq, 10) (4)
LT (Accq, 100) ∨GT (Relq, 75) (5)

LT (Fresho, 5) (6) strong
GT (Acco, 50) (7)

LT (Accq, 100) (8)
weak

GT (Relq, 75) (9)

7
Figure 8.3: Example for Metadata Constraint Matching

The tableaux depicted in Figure 8.3 was constructed as defined in Definition 3.3. The
conjunction of the formulae for offer and query metadata constraints are placed in the

origin (1). Now following the first α rule
X ∧ Y
X
Y

we have to adjoin X and Y to the

9To improve the readability, we abbreviated the parameter names: Fresh = #Freshness, Acc = #Accuray,
Rel = #Reliability. Furthermore, we added indices o and q to indicate whether a constraint is associated to
the offer or the query, respectively.

8.3 Metadata Constraint Matching 105

tableaux: LT (Freshq, 10) ∧ (LT (Accq, 100) ∨ GT (Relq, 75)) (2) and LT (Fresho, 5) ∧
GT (Acco, 50) (3). The first α rule is used again for (2) which results in LT (Freshq, 10)
(4) and LT (Accq, 100) ∨GT (Relq, 75) (5). Afterwards the rule is used for (3) resulting
in LT (Fresho, 5) (6) and GT (Acco, 50) (7). When adding (6), we can perform the
first consistency check for the tree. As it already contains an atomic constraint with
the same scope (here Freshness), we can perform the check for LT (Freshq, 10) in (4)
and LT (Fresho, 5) in (6). Based on Definition 8.1 and Definition 8.3, we detect strong
consistency and continue. GT (Acco, 50) in line (7) can be checked so far, as another
atomic constraint with the same scope is inside the tableaux.

Following the second β rule X ∨ Y
X | Y , (5) branches into LT (Accq, 100) in (8) and

GT (Relq, 75) in (9). Now we can also check the consistency for (8), which results in
weak consistency. (9) cannot be checked as the tableaux is now completely expanded.
But as all atomic formulae in the first branch are weakly consistent, the tableaux is still
open. As a consequence, the query and offer constraints match.

8.4 Example

This section illustrates the matching process by an example. As shown in Figure 8.4 there
is one context query, three context offers, three IROs, and one metadata operation
registered at the system. The clouds in the offers and queries indicate metadata
constraints, whereas the clouds in the IROs describe the influence on the metadata
by the according IRO. Several clouds for an offer are interpreted like in the COQL as a
conjunction of these constraints.

MetadataOperation 1
Input: Scope: Time

Rep: UNIX
Output: Scope: Freshness

Rep: second

IRO 3
Scope: Scope
Rep: second minute

CONTEXT OFFER 1

Entity: User
Scope: Position
Rep: WGS84 EstimatedCost

= 0.5 mWh
GPS Sensor

Accuracy
> 10 m

CONTEXT QUERY 1

Entity: User | Roland
Scope: Position
Rep: WGS84

(EstimatedCost < = 0.5 mWh
AND Accuracy < 20 m) OR
EstimatedCost < 0.2 mWh

CONTEXT OFFER 2

Entity: User
Scope: Position
Rep: WorkstationNumber

Accuracy =
1 m

Workstation Registry

Timestamp
UNIX > 0 s

EstimatedCost = 0.05 mWh

CONTEXT OFFER 3

Entity: Building
Scope: Position
Rep: WGS84

Building DB

IRO 1
Scope: Position
Rep: WorkstationNumber

RoomPosition_rel

Accuracy > 10 m

IRO 2
Scope: Position
Rep: RoomPosition_rel

WGS84

Context dependency
Entity: Building
Scope: Position
Rep: WGS84

EstimatedCost
+= 0.1 mWh

Accuracy > 15 m

Timestamp
UNIX > 0 s

Freshness >
0.1 min

Freshness <
1 min

Figure 8.4: Example for the Context Offer and Query Matching

The context query requests the position of the user with the ID Roland represented in
WGS84 coordinates. The context consumer is willing to pay a higher price (here expressed
in energy up to 0.5 mWh) if the according offer can provide the requested position with

106 Context Offer and Query Matching

an accuracy less than 20 m. Otherwise, the consumer wants to spend less energy (here
0.2 mWh). Additionally the maximum age (freshness) of the provided data is limited to
1 minute.

The first offer exactly provides the requested information, which is also the result of
the simple matching phase and the mediation check. As the offer accurately provides
the scope and entity as requested, the initial matching is passed. The mediation check
is also finished rather quickly. As the representation of offer and request are equal,
the checkMediation algorithm (see Algorithm 8.1) stops immediately by calling the
checkMetadataMediation algorithm for the chain only containing an identity mediator
as input provider. This algorithm also terminates immediately as the metadata required
by the query (here freshness, accuracy, and estimated cost) are provided by the offer
and are in the requested representation. The metadata matching decides about the
overall matching: the conjunction of the translated first-order formulae of the metadata
constraints in query and offer is checked regarding its satisfiability. The analytic
tableaux for the conjunction of ((LE(Costq, 0.5) ∧ LT (Accq, 20)) ∨ LT (Costq, 0.2)) ∧
(LT (Freshq, 1) and GT (Acco, 10) ∧ EQ(Costo, 0.5) ∧GT (Fresho, 0.1) is constructed as
described above. The result is depicted in Figure 8.5.

(((LE(Costq, 0.5) ∧ LT (Accq, 20)) ∨ LT (Costq, 0.2))
∧(LT (Freshq, 1)) ∧ (GT (Acco, 10) ∧ EQ(Costo, 0.5) ∧GT (Fresho, 0.1)) (1)

((LE(Costq, 0.5) ∧ LT (Accq, 20)) ∨ LT (Costq, 0.2)) ∧ (LT (Freshq, 1) (2)
GT (Acco, 10) ∧ EQ(Costo, 0.5) ∧GT (Fresho, 0.1) (3)

(LE(Costq, 0.5) ∧ LT (Accq, 20)) ∨ LT (Costq, 0.2) (4)
LT (Freshq, 1) (5)

GT (Acco, 10) (6)
EQ(Costo, 0.5) (7)

GT (Fresho, 0.1) (8) weakly consistent with (5)

LE(Costq, 0.5) ∧ LT (Accq, 20) (9)

LE(Costq, 0.5) (11)
LT (Accq, 20)) (12)

weakly consistent due to
weak consistency of

(5)(8), (7)(11) and (6)(12)

LT (Costq, 0.2) (10)

not consistent with (7)

Figure 8.5: Matching Example – Metadata Constraint Matching for Offer 1 and Query 1

According to the definition of weak and strong consistency the tableaux is weakly
consistent. Consequently offer and query match.

8.4 Example 107

The second offer provides a position of a user in form of a workstation number.
Furthermore, it provides metadata like timestamp, accuracy, and estimated cost. Similar
to the first offer, the initial matching is quickly passed as entity and scope are similar
to the requested ones. However, the mediator check is much more complex due to the
non-fitting representations. The result of this phase is a mediator chain like shown in
Figure 8.6.

IRO-based
dependency

mediation
Generic

metadatum
mediation

IRO-specific
metadatum
mediation

Generic
metadatum
mediation &
calculation

Context offerContext query

Mediator chain

Position
(WGS_84)

Metadatum1
Accuracy (m)

Metadatum2
Freshness (min)

Position
Workstation

Number

Metadatum1
Accuracy (m)

Metadatum2
Timestamp (UNIX)

Mediation
second into

minute

acc
=

1 m

fresh
>

0 min

cost =
0.05 mWh

Mediator chain
Building Position

(WGS84)

Calculation
Freshness (s)

based on
Timestamp

(UNIX)

Mediation
Estimated cost

(mWh)
increase

Mediation
Position

WGS84

Mediation
Accuracy

(m)
decrease
Mediation

WorkstationNo.
RoomPosition

relativ

Metadatum3
Estimated cost

(mWh)

Metadatum3
Estimated cost

(mWh)

Mediation
Accuracy (m)

decrease

acc >
10 m

timestamp >
0 s

cost =
0.15

mWh

fresh
>

0 s

Figure 8.6: Mediator Chain Example

The checkMediation algorithm (Algorithm 8.1) initially appends the IRO 1, as it is the
only available IRO with the representation WorkstationNumber as input representation.
This IRO transfers the position into the relative room position (RoomPosition_ rel) and
decreases the accuracy from 1 meter (initial offer) to minimum of 10 meters. Before
appending the IRO to the chain, the algorithm checks if a metadata mediation is required
to bring the influenced metadata into the representation requested by the IRO. This is
not the case in this example. As the provided representation of IRO 1 is not the requested
representation, the algorithm appends the next IRO (IRO 2). Whereas the first IRO
only influences the accuracy, the second IRO influences two types of metadata (cost and
accuracy) and has an additional context dependency. Again the algorithm checks if a
metadata mediation is required before the IRO. Due to the additional context dependency,
the algorithm also checks if an appropriate offer is available before proceeding. This is
the case in our example, as Offer 3 provides the requested information: the position of
the building in WGS84 coordinates. With the help of this information, the IRO is able to
transform the information provided by the previous IRO to the requested representation
(WGS84).

As the chain offers the information in the requested representation, the checkMediation
algorithm stops after calling the checkMetadataMediation algorithm. While running
this algorithm, it turns out that the offer cannot provide metadata with the scope
Freshness. Therefore, a new mediator is appended to the chain containing the metadata
operator MetadataOperation1 which calculates the metadata scope Freshness based on
the Unix timestamp. As this operation cannot really provide any detailed constraints
regarding the provided metadata, a simple metadata constraint is added to the offer

108 Context Offer and Query Matching

which expresses the upper limit of the metadata scope (freshness > 0 seconds). As
the metadata scope freshness is still not in the requested representation (minute), an
additional metadata mediator is appended containing the IRO 3 for these metadata.
Now the chain provides everything in the requested representations under the following
constraints: Accuracy > 15 m ∧ Freshness > 0 min ∧ EstimatedCost = 0.15 mWh.

After the mediation check, the metadata constraint matching has to be calculated
for the conjunction of chain offer and the query (((LE(Costq, 0.5) ∧ LT (Accq, 20)) ∨
LT (Costq, 0.2))∧ (LT (Freshq, 1))∧ (GT (Acco, 15)∧GT (Fresho, 0)∧EQ(Costo, 0.15)).
The resulting tableaux is shown in Figure 8.7. Again the tableaux is also only weakly
consistent, but this again is a match. We have two matching offers respectively mediator
chains for the query available, wherefrom we have to choose one as the ‘best’ provider.
This selection process is explained in the following chapter.

(((LE(Costq, 0.5) ∧ LT (Accq, 20)) ∨ LT (Costq, 0.2))
∧(LT (Freshq, 1)) ∧ (GT (Acco, 15) ∧GT (Fresho, 0) ∧ EQ(Costo, 0.15)) (1)

((LE(Costq, 0.5) ∧ LT (Accq, 20)) ∨ LT (Costq, 0.2)) ∧ (LT (Freshq, 1) (2)
GT (Acco, 15) ∧GT (Fresho, 0) ∧ EQ(Costo, 0.15) (3)

(LE(Costq, 0.5) ∧ LT (Accq, 20)) ∨ LT (Costq, 0.2) (4)
LT (Freshq, 1) (5)

GT (Acco, 15) (6)
GT (Fresho, 0) (7) weakly consistent with (5)

EQ(Costo, 0.15) (8)

LE(Costq, 0.5) ∧ LT (Accq, 20) (9)

LE(Costq, 0.5) (11)
LT (Accq, 20)) (12)

weakly consistent due to
weak consistency of

(5)(7), (8)(11) and (6)(12)

LT (Costq, 0.2) (10)

weakly consistent due to
strong consistency of (8)(10)

and weak consistency of (5)(7)

Figure 8.7: Matching Example – Metadata Constraint Matching for Chain starting from Offer 2
and Query 1

8.5 Discussion

In this chapter we presented our matching process. A context offer matches a context
query, if it provides the context information as requested. Within the matching process

8.5 Discussion 109

not only matching of offer and query is checked, but additionally the mediator chains are
created. These chains interconnect the loosely coupled context consumer and context
service. Within such a chain, a couple of mediators (at least one) are called sequentially
to transform the data and its associated metadata into the requested representation.
Setting up these chains is already important in this phase: If it is not possible to create
the chains, offer and query do not match and without the creation of the chain it is not
possible to check the metadata constraint satisfaction. After the creation of mediator
chains, the constraints expressed in a context offer (the adopted offer of the chain and
not the original offer) and the constraints detailing a context query are comparable.

The autonomous establishment of the mediator chains has to be highlighted. Other
approaches, like CoCo by Buchholz et al., can also compose and transform different
context information in order to retrieve the requested information in the required
representation, but here the context consumer has to provide a model containing the
description of the mediator chain.

To estimate the complexity of Algorithm 8.1 checkMediation, the complexity of the other
algorithms has to be determined first:

• The algorithm checkMetadataMediation described in Algorithm 8.2 in worst case
has to iterate through the list of metadata used in the constraints (cardinality is
#meta) and through the list of all metadata operators (cardinality is #op). Hence,
its worst case complexity is O(#meta+ #op) = O(n) and hence linear.

• Algorithm 8.3 generateInputQueryForIRO and Algorithm 8.4 generateOutputForIRO
iterate through the list of metadata constraints (cardinality is #con) of the offer
provided as an input parameter. For that reason, the complexity of both algorithms
is O(#con) = O(n) and thus also linear.

Based on these estimations, the complexity of checkMetadataMediation can be de-
rived. In the worst case, the algorithm is called #maximalNumberOfHierarchies
times recursively as no IRO provides the requested representation. In every call,
#maximalNumberOfResults IROs are used to generate new variants of the initial
mediator chain. Furthermore, during every call checkMetadataMediation and gener-
ateInputQueryForIRO are called once. For this reason, the complexity can be calculated
as #maximalNumberOfHierarchies · #maximalNumberOfResults · (#meta+#op+
#con).

During the metadata constraint matching we reuse a standard approach (analytic
tableaux as introduced by Smullyan [128]). The complexity of this approach has
been discussed by e.g. Massacci [91] and estimated to O(2n2), whereas in our case
n = #offer.constraints+ #query.constraints. This is only the worst case complexity.
The constraint matching performs in average and best case much better. This will be
discussed in Chapter 12 in detail.

Regarding the consistency check during the constraint matching, the strong consistency
is preferable as it guarantees that context data meet the requirements of the context
consumer and do not require any additional filtering. Nevertheless, it might be
challenging to find offers with strong consistence. It is future work to integrate the
result of the consistence check in the actual selection and not in the matching phase in
order to handle this problem dynamically. A context offer with strong consistence could
be rated better than an offer with weak consistence.

110 Context Offer and Query Matching

At this point, we will discuss a weakness of our current approach: In Algorithm 8.4 the
method performWorstCaseMetadataConversion is called in order to revise the metadata
constraints according to the influence of the IRO regarding the metadata. This method
has to be provided by every IRO and is part of its implementation. But it is obvious
that the developer at least requires methodological support to estimate the influence
on metadata caused by an IRO conversion. This support is also required to estimate
respectively calculated the QoC and CoC at all, which is not in the focus of this thesis. We
rather focus on providing a generic frame which can be used with both highly accurate
and measured QoC and CoC or with only roughly estimated values for QoC and CoC.
This generic approach is our main contribution in this chapter and with this approach
we also differ from existing approaches, which focus on the transformation of context
information but neglecting the influence on the metadata.

8.5 Discussion 111

9 Context Service Selection

There is a theory which states that if ever anybody discovers exactly
what the Universe is for and why it is here, it will instantly disappear

and be replaced by something even more bizarre and inexplicable.
There is another theory which states that this has already happened.

– Douglas Adams (1952-2001)
The Hitchhiker’s Guide to the Galaxy (1979)

In the previous chapter, the matching approach checks if a binding of context provider
and context consumer via the establishment of one or more mediator chains is possible
or not. By any means, it is possible that several context services exist for which such a
chain can be established. Additionally, it is possible that a context provider can serve as
input provider for more than one mediator chain and thus for more than one request.

To meet this fact, we are not searching for a single offer respectively mediator chain
for each context request. We are rather searching for an optional set of context offers
respectively chains to fulfil all requests system-wide. By a selection, the total cost should
be minimized while the requirements of the different requests are fulfilled as good
as possible. Consequently, the selection task is a multi-objective optimization (MOO)
problem [25, 94]. In an MOO, two or more conflicting objectives are optimized to certain
constraints. In our case we have to find an optimal set of context providers for one query
with, for example, costs as little as possible, whereas a second request is only interested
in maximizing the accuracy. In most cases increasing the accuracy also means increasing
the resulting cost. As a result, an optimal solution for one of the requests is in conflict
with the other request. Hence, the best solution for both requests is a so-called Pareto
Optimum [25], meaning that it is not possible to select another set of context providers
respectively mediator chains without hurting at least one request.

One of the general challenges of this work is the dynamic activation and deactivation of
required or not required context consumers (Requirement 5). This leads to the problem
that no up-to-date and highly accurate description of the provided properties of the
context consumers can be assumed but rather the metadata constraints in the context
offer describe the worst or at best the average case. To estimate the worst and/or average
values of the metadata, historical values can be taken into account. In this estimation
the very dynamic nature of context data has to be taken into account: Context data and
its metadata can change very often. As a consequence the age of historical context data
has to be considered when adjusting worst or average values (see Section 9.3). Last
but not least, the selection should favour solutions that minimize the total cost, e.g. by
supporting the sharing of context offers as input provider (see Requirement 7).

113

Typically, service selection problems in Service-Oriented Computing (SOC) are limited
to find one service for one service request. This is a fundamental difference to our
MOO problem. In detail, the focus of service selection in SOC is on finding one service
instance for every variation point or abstract service in a service composition which holds
the specific constraints and thereby, e.g. optimizes some objective function. Typically
the selection does not care about sharing services, as these are generally stateless and
only monetary cost are brought to account. In contrast, in our approach also costs (e.g.
resource usage or energy consumption) are taken into account.

In order to achieve this, our approach evaluates a set of context offers with respects to
the preferences of a set of context consumers. Services in general (like web services)
can be assumed to be rather static with regard to changes of their metadata. Even if
there are changes it is possible to adjust the service description used to select an optimal
service. Services can be assumed to run permanently and can be monitored continuously
in contrast to our context services, which are often deactivated. In the SOC domain,
service mediation is another important topic [54, 93]. However many approaches for
service mediation rather focus on the transportation/exchange layer and only few really
target message conversion. Most approaches rely furthermore on manual configuration
of the mediation where mediators act like proxies hiding the underlying service. This is
why a comprehensive process for automatically establishing the mediation, as described
in the previous chapter, is not required. To the best of our knowledge, none of the
approaches in SOC consider mediation and selection together but rather focus on both
issues separately. The drawback of this approach is that it is not possible to use a service
as a source for several mediation chains and to calculate the total cost for the actual cost
and the separate mediation processes.

In this chapter, we present our selection approach which provides an optimal solution for
a set of context consumers, and minimizes the total costs while satisfying the consumers
requests as good as possible. Context services can be shared to serve as input provider for
several mediator chains in parallel, which reduces resource consumption. Additionally,
the selection process estimates the worst or average metadata values used based on
historical context data.

9.1 Motivating Example

In this section we motivate the problems through using an example. Figure 9.1 shows
three context offers and requests and seven mediator chains between the offers and
the requests. For instance, Context Offer 1 serves as input provider for four mediator
chains (Chain 1 – 4). Every context offer expresses its cost, e.g. 5 for Context Offer 1,
and the degree of accuracy, e.g. 5 for Context Offer 1. Every chain contains the resulting
cost and accuracy, e.g. Chain 3 increases the cost to 15 whereas it also increases the
accuracy to 10. Mediator chains only containing the Identity Mediator (see Section 8.2)
and hence merely establishing the bindings, have the same metadata conditions as the
input provider, e.g. Chain 1 has the same cost and accuracy as its input provider Context
Offer 1. In contrast to context offers and chains, context requests only express their
preferences regarding the metadata and cost dimensions, e.g. Context Request 1 has a
high preference to minimize cost and only a low preference to maximize the accuracy.

114 Context Service Selection

Chain 7

Chain 1

Chain 3

Chain 2

Chain 4

Chain 6

Chain 5

cost: 15 acc: 10

cost :5 acc: 5

cost: 100 acc: 100

cost: 50 acc: 50

cost: 5 acc:5

Context Offer 2

cost: 100 acc: 100

Context Offer 1

cost: 5 acc: 5

Context Request 2

cost acc

Context Request 1

cost acc

Context Request 3

cost acc

cost: 50 acc: 50

cost: 5 acc: 5

Chain 8

cost: 50 acc: 50

Context Offer 3

cost: 50 acc: 50

high preference of request to min/max metadatum

medium preference

low preference

optimal selection for single query suboptiomal selection for a single query

optimal selection for set of queries

Figure 9.1: Motivating Example for the Selection

According to these preferences, it is a simple task to select a mediator chain for each
context request separately and to ignore the preferences of the other context requests.
This selection is highlighted by a darker color of the arrow. Context Request 1 selects
Chain 2 as it is cheaper than Chain 3 and Chain 8. In contrast Context Request 2 chooses
Chain 5 as this chain provides the highest accuracy. Context Request 3 requests a balanced
ratio of cost and accuracy and thus uses Chain 7 as the input provider.

But as shown in Figure 9.1, a context offer can serve as input provider not only for one
chain, so e.g. Context Offer 3 can be bound to Context Request 1 via Chain 8, Context
Request 2 with Chain 6, and Context Request 3 via Chain 7. Thus when evaluating a set of
context offers respectively mediator chains regarding their usability, it is not useful to
evaluate such a set independently for every request.

Sharing an offer would result in decreasing the total cost, which is a general requirement
in our approach (see Requirement 7 in Section 1.2). For example, when using Chain 6 and
Chain 7 as the input providers for Context Request 2 and Context Request 3 respectively,
the total cost would be the actual cost for the context offer and the actual cost for both
mediation chains: (50− 50) + (50− 50) + 50 = 50.

Also it is clear that when searching for an optimal solution for all queries, it is not
possible to reuse simply the solutions found by the single selection method, as this can
be contradictory to some other solutions. For example, a solution set containing Chains

9.1 Motivating Example 115

2, 5, and 7 conflicts with the preference of Context Request 1 to minimize the cost as
much as possible. Consequently an alternative has to be found which minimizes the
number of contradictions of the different requests as much as possible. In our example,
this could be Context Offer 3 with Chains 6 – 8. This is the optimal solution for Context
Request 3, whereas Context Request 1 and Context Request 2 have to cut back with regard
to accuracy maximization and cost minimization respectively. We will explain in detail
how to calculate the most promising solution in the following sections.

9.2 The Selection Approach

In this section the selection approach will be introduced in a formal way. First the
syntactic elements are introduced, followed by some constraints regarding the syntax
and afterwards the semantics.

9.2.1 Syntactic Elements

Before formally explaining the selection process, the syntactic elements are introduced:

• The set CR is the set of context services which implement a reasoning mechanism
and require additional context information. Other context services are in set CS. A
context service can only be element of CR or CS, hence CR ∩ CS = ∅.

• The set OS is the set of context offers provided by context services. The cardinality
of the set is |OS | = nS . Offers can either be provided by context reasoners or by
regular context services. Let OCR ⊂ OS be the set of offers provided by context
reasoners and OCS ⊂ OS be the set of offers provided by regular context service.
Again offers can only be provided by either a context reasoner or by a regular
context service, hence OCR ∩OCS = ∅ and OCS = OS \OCR.

• The set R contains all context queries registered by the various context consumers.
Its cardinality is |R| = nR. RCR ⊂ R is the subset of requests expressed by context
reasoners. The complement of the set of all requests R and the set of requests
expressed by reasoners RCR builds the set of regular requests RCS = R \RCR =⇒
RCR ∩RCS = ∅.

• Mo
r is the set of all mediator chains mediating between an offer o ∈ OS and the

request r ∈ R. The set M contains all mediator chains for all offers in OS and all
request in R, thus M =

⋃
o∈OS ,r∈RM

o
r . The set Mo is the set of all mediator chains

using a context offer o ∈ OS as input provider. Hence Mo =
⋃
r∈RM

o
r . The set Mr,

containing all the mediator chains that provide input to fulfil the context request
r ∈ R is defined as Mr =

⋃
o∈OS

Mo
r . The offer oinm is the offer of the input provider

of the mediator chain m, whereas the offer om is the offer of the mediator chain
itself, thus oinm ∈ OS .

• OM is the set of context offers provided by mediator chains in M . As described
in the matching chapter (especially in Section 8.2), this set does not necessarily
contain an offer o ∈ OS , hence an offer that is provided by a context service. The
cardinality of OM is |OM | = nM . The set O contains all original offers and offers
of mediator chains, hence O = OS ∩OM .

116 Context Service Selection

• D is the set of quality dimensions used in the different context offers and queries
to express the metadata constraints and the selection function (e.g. accuracy,
freshness, reliability). The cardinality of D is |D| = m.

• The function q(o, d) : O ×D → [0, 1] maps a quality dimension d ∈ D in an offer o,
o ∈ O to the normalized quality value.

• C is the set of cost dimensions used in the different context offers and queries
to express the cost constraints and the preferences regarding the different cost
dimensions in the selection function.

• The function c(o, d) : O × C → R+ describes the cost for cost dimension d ∈ C,
of a context offer o ∈ O. cm(o, d) is the part of the cost for cost dimension d of
an offer o ∈ OM that is caused by the mediator chain m ∈ M , thus cm(o, d) =
c(om, d)− c(oinm , d).

• Both functions q(o, d) and c(o, d) are calculated based on the domain of the
respective quality alternatively cost dimension. The domain of an dimension
d ∈ D ∨ C is a function dom(o, d) : O × (D

⋃
C) → R × R. This calculation is

described in detail in Section 9.3.

• In order to calculate the domain of a quality or cost dimension for an offer o,
the set of specified metadata constraints is used. In contrast to the previous
chapters where constraints consist of a dimension, an operator, a representation,
and a value, we can simplify the constraints here, as after the matching phase
the representation information are not required any more. The set of operators is
OP = {EQ,NEQ,GT,NGT,LT,NLT,GE,NGE,LE,NLE} (see Section 7.2).
A constraint is a mapping con(o, op, d) : O ×OP × (C

⋃
D)→ R . All constraints

used in an offer o ∈ O are contained in a set CONo.

• As described in Section 7.3, the context consumer can optionally express his
preferences regarding the different quality or cost dimensions. These values are
used afterwards during the selection to find an optimal context provider. The
variable wdr is the preference/weight of a quality/cost dimension d ∈ D ∨ C
expressed in a context request r ∈ R. Additionally, the consumer can express
preferences regarding cost in general and not only to specific cost dimensions. The
variable wcr describes the preference/weight regarding cost c in a context request
r ∈ R.

Based on the previously introduced syntactic elements, the following syntactic constraints
must hold:

1. The weight regarding a certain quality dimension d or the cost c has to be between
0 and 1:

0 ≤ wdr ≤ 1 (9.1)

0 ≤ wcr ≤ 1 (9.2)

2. The sum of all weights used in a selection function of a context request has to be 1:∑
d∈D

wdr + wcr = 1 (9.3)

9.2 The Selection Approach 117

9.2.2 Semantics

After introducing the syntactic elements, the actual selection based on the syntactic
elements and the constraints will be explained. The first step of the selection process is
the calculation of the quality and cost values.

Quality Value Calculation The function q(o, d) : O ×D → [0, 1] calculates the quality
value of an offer o ∈ O for a quality dimension d ∈ D. As the result of q(o, d) is
normalized, we have to calculate the actual value before the normalization. For this
purpose, we use the domain dom(o, d) of the dimension d in offer o, which is calculated
based on the metadata constraints and on historical values. The result of this function is
an interval (x, y). The function is explained in detail in Section 9.3. At this place, we
assume that dom(o, d) = (x, y).

v(o, d) =



x+ y

2 , if x 6= −∞∧ y 6= +∞,

x, if minPref = false ∧ x 6= −∞∧ y = +∞,

y, if minPref = true ∧ x = −∞∧ y 6= +∞,

0, else.

(9.4)

v(o, d) is calculated by Equation 9.4. In general we prefer the average value of a
dimension. But this requires both lower and upper limit of the domain to be available,
here x and y, and both limits to be finite. Otherwise, we try to retrieve the worst case.
This depends on whether metadata of a certain type should be maximized, e.g. reliability
in percent, or should be minimized like accuracy as a radius in meter.1 Metadata
that should be maximized, thus minPref = false, have in worst case the value of
their lower limit, x in this case. Inversely, metadata that should be minimized, hence
minPref = true, have in worst case the value of their upper limit, y in this case. If the
required limit is infinite, v(o, d) is zero. This is necessary as the maximum of v(o, d) will
be used for the normalization and should not be +∞.

q(o, d) =



v(o, d)(
max
o′∈O

v(o′, d)
)

+ ε
, if minPref = false ∧ x 6= −∞,

1− v(o, d)(
max
o′∈O

v(o′, d)
)

+ ε
, if minPref = true ∧ y 6= +∞,

ε, else.

(9.5)

1Accuracy is an interesting example for the variation of the preference regarding minimization or
maximization of this value depending on the representation of these metadata. Accuracy can be interpreted
as discrepancy in form of a radius in meter. The smaller the radius, the better (more accurate) the position
is. In contrast, accuracy as used in general linguistic usage should be maximized.

118 Context Service Selection

q(o, d) as shown in Equation 9.5 normalizes the value of v(o, d) to be in the
interval [0, 1]. With the calculation of q(o, d), we remove the dependency from the
maximization/minimization preference minPref . In the calculation of q(o, d) we
distinguish between the two cases minPref = true and minPref = false. In case of
minPref = false, the metadata should be maximized. For that reason it is best to get as
close as possible to the maximum of all values for this dimension for the different offers.
In case of the preferred minimization of the metadata (minPref = true), it is to the
preferred maximization contrary: the closer to the maximum of all values of the different
offers the value is, the worse. The normalized value is subtracted from 1 to achieve
this. As a consequence, q(o, d) is better the closer it is to 1. We check again during the
calculations if the required limits are finite. Hence it is checked if the lower limit x is
finite for metadata that should be maximized and if the upper limit y is finite for metadata
that should be minimized. If this is not the case, so if (minPref = false ∧ x = −∞) or
(minPref = true ∧ y = +∞), then q(o, d) = ε with ε near 0. By using ε instead of 0 at
this place, we avoid in the later phase that a context offer is removed from the solution
space even if it can only provide a really small contribution (which is nevertheless better
than no contribution).

Cost Value Calculation In our approach we search for an optimal selection of context
offers respectively mediator chains fulfilling a set of context requests. As after a successful
matching of an offer and a request, one or more mediator chains are created. For these
offer-request pairs that match without mediation,2 we search within the set of offers
provided by the mediation chains OM . Consequently, the selected set of context offers is
within the powerset of OM .

During the selection, not only the context requests have to be satisfied. The selection
process has also to struggle with the general requirement to minimize the resource
consumption and other costs. To calculate an optimal set of offers that satisfies both
the context requests and the system requirement, we have to take into account the
aggregated cost for a set of context offers X ∈ P(OM). The cost for an arbitrary set of
context offers X, where X is an element of the powerset of the set of all offers provided
by the chains OM , is the sum of all cost dimensions of all offers o ∈ X.

The value for a cost dimension d ∈ C is calculated similarly to the value for other
metadata dimensions with the difference that costs should never be maximized. Thus
Equation 9.4 can be simplified to Equation 9.6 to calculate the value of the cost dimension.
Here, we assume again that dom(o, d) = (x, y).

c(o, d) =



x+ y

2 , if x 6= −∞∧ y 6= +∞,

y, if x = −∞∧ y 6= +∞,

0, else.

(9.6)

2For an offer and a request that match without any mediation, a mediator chain is created only containing
an Identity Mediator. This chain only serves as an interconnecting/binding of the loosely coupled service
and consumer.

9.2 The Selection Approach 119

For the calculation of c(o, d) the same conditions hold: the favoured solution is to
calculate the average value. If this is not possible, as the lower and/or upper limit are
infinite, the worst case is calculated (only if the lower limit is finite) or the result is 0.

To calculate the aggregated cost for a set of context offers, we first have to take care of
the fact, that several mediator chains can have the same context service and hence the
same context offer as input provider. We split the costs into costs that are caused by the
context services respectively input providers and that are caused by the actual mediator
chains. For that purpose we have to define the set of mediator chains MX providing a
set of context offers X ∈ P(OM):

MX = {m|m ∈M ∧ om ∈ X} (9.7)

Based on this definition, we can ascertain the set of context offers OMX
serving as input

provider for a set of mediator chains MX :

OMX
=
{
o|o ∈ OS ∧ ∃m ∈MX : oinm = o

}
(9.8)

With these two definitions, the value of a cost dimension d for a set of context offers
provided by mediator chains c(X), X ∈ P(OM), is calculated as follows:

c(X, d) =
∑
o∈X

cm(o, d) +
∑

o∈OMX

c(o, d) (9.9)

The first summand is the sum of the cost dimension d of the mediator chains providing
the offers in X. The second summand is the sum of the cost dimension of the input
providers of these chains.

As motivated before, we evaluate the usefulness of a set of context offers regarding
the preferences mentioned in the context requests. Additionally, we introduced the
requirement to minimize the total cost (see Requirement 7). This system requirement
is also expressed by a utility function that has to be maximized. For this purpose, we
introduce the function uc(X, d), which expresses the usefulness of a set of context offers
X regarding resource respectively cost saving of cost dimension d in a scale between 0
and 1. A value of 0 is worst as this means a maximal cost production, whereas a value of
1 is best as it means that no costs are generated.

This utility for a set of context offers X ∈ P(OM) and a cost dimension d ∈ C is also
called Cost Minimization Utility Function (CMUF) and is calculated as following:

uc(X, d) =


ε, if ∃o ∈ X, dom(o, d) = (x, y) ∧ y = +∞,

1− c(X, d)
c (OM , d) , else.

(9.10)

In this function, c(OM , d) is the maximal value for the cost dimension d and hence the
cost for all offers and mediation chains for that dimension. The utility uc(X, d) for a set
X of context offers and cost dimension d is maximal for an empty set (=⇒ uc(X, d) = 1)

120 Context Service Selection

and minimal for the set of all offers and mediation chains (=⇒ uc(X, d) = 0). If it
is not possible to determine the value for one of the offers in X, uc(X, d) becomes ε.
This might be the case if for one of the offers the upper limit is infinite and as a result
neither the average nor the worst case value can be calculated. Missing information are
therefore said to have the worst influence.

Single Utility Function The utility for cost dimensions uc(X, d) and the valuation factor
q(o, d) are now used to validate context offers regarding the different metadata and cost
preferences mentioned in a context request. Based uc(X, d) and q(o, d), and with the
preferences as expressed in a context request r ∈ R the utility of a set of context offers
X ∈ P(OM) can be calculated as shown in Equation 9.12. This utility function is also
called Single Utility Function (SUF).

For the calculation of the SUF, we redefine the weights for the different cost dimensions.
As described in Section 9.2.1, the context consumer can express a preference regarding
cost in general and not only to specific cost dimensions with the variable wcr. This weight
is equally distributed about all weights for cost dimensions. For this purpose, the weights
for cost dimensions are redefined as following:

w′dr = wdr + wcr
|C|

for d ∈ C (9.11)

With this redefined weight the SUF changes to:

ur(X) =



0, if ¬ (∃m ∈M r : om ∈ X) ,

0.5, if no selection function is defined for r ∧ ∃m ∈M r : om ∈ X,

(
max

x∈{y∈X|∃m∈Mr:om=y}

(∑
d∈D

wdr · q(x, d)
))

+
∑
d∈C

w′druc(X, d), else.

(9.12)

When calculating the utility of a set of context offers X regarding a request r, we
distinguish between three cases:

• The utility is 0 if no mediator chain exists the offer of which is in X and that
provides an appropriate output for the request. (This set is useless for the request
r.)

• The utility is 0.5 if a mediator chain exist but no selection function has been
specified. This specification is optional and means that the context consumer has
no explicit preferences regarding QoC and CoC. As a consequence, the consumer
accepts any context chain (that passes the matching process). This is also an
important reason for the additional system requirement. The selection process
ends in the cheapest option, if not other context request has influence on it.

• In the third case, the utility is calculated based on the preferences specified
in the selection function. For this purpose, the weighted sum of the differ-
ent quality dimensions is calculated as

∑
d∈D

wdr · q(x, d) for every offer x ∈

9.2 The Selection Approach 121

{y ∈ X|∃m ∈M r : om = y}. This set only contains these offers from X that are
context offers of mediator chains mediating between an input offer and the request
r. As we are only searching for one context provider, we are selecting the one that
provides the maximal result for the aforementioned condition. We then add the
summand expressing the influence of the cost of the set. This summand is also a
weighted sum

∑
d∈C

w′druc(X, d).

The utility ur(X) expresses to what degree a set of offers X ⊆ OM fulfils the preferences
of a request r.

Aggregated Utility Function In our approach, a selection function is used to find a set
of context offers fulfilling all context request as good as possible. This selection function
is called Aggregated Utility Function (AUF) .3 As shown in Equation 9.13, the AUF among
others aggregates the SUF for every context request.

u(X) =



0, if ∃r ∈ R, ur(X) = 0,

(1− α) ·

(∑
r∈R

ur(X)
)

+ α ·

∑
d∈C

uc(X, d)

|C|
, else.

(9.13)

In general, the AUF is a linear combination (more precisely a convex combination) of
two factors: the first aggregates the SUFs and the second represents the average of the
cost minimization utility function (CMUF) for all cost dimensions.

Given the SUF formulae, it is obvious that if a context request does not have weights on
the cost dimensions, so wdr = 0 for every d ∈ C and wcr = 0, every set that contains the
offer with the maximal sum for the QoC values has the same utility. Ergo, it is important
that the final selection – the AUF – has at least a minimal influence on these sets with
regard to the cost minimization. This influence is controlled by the parameter α in
Equation 9.13.

The AUF u(X) is 0 if a request r exists that cannot be satisfied with this set X. Requests
that cannot be satisfied by at least one offer, are already removed during the matching
process as otherwise the AUF would be 0 for every set of offers. If every request can be
satisfied with at least one offer in X, the function is calculated as described.

9.3 Calculation of the Domain of a Quality or Cost Dimension

This section described the calculation of the domain of a quality or cost dimension in
an offer. The domain of a metadata dimension is the complete set of possible values of
metadata of that dimension. As motivated in the previous section, this domain is used to
estimate the average or at least worst case value of a quality or cost dimension in an offer.
In general, the domain range of metadata or cost dimension d ∈ D ∪ C in an context
offer o ∈ O is a function dom : O × (D ∪ C)→ R× R. Thus the domain is expressed as
an interval.

3The Aggregated Utility Function is also called Aggregated Objective Function in literature, e.g. in [94].

122 Context Service Selection

The metadata constraints CONo used in an offer o serve as a starting point for the calcula-
tion of the domain. We define two subsets of the set of operators OP : a set of operators to
retrieve the lower limit of the domain OPL = {EQ,NLT,GE,GT,NLE} ⊂ OP and a
set to retrieve the upper limit of the domain OPU = {EQ,NGT,LT,NGE,LE} ⊂ OP .

With these subsets a first estimation dom′ of the domain for an offer o and a cost or
quality dimension d can be defined as expressed in Equation 9.14.

dom′(o, d) =



(min {y|∃op ∈ OPL : con(o, op, d) = y} ,
max {y|∃op ∈ OPU : con(o, op, d) = y})
, if ∃op1 ∈ OPL : con(o, op1, d) ∈ CONo

∧∃op2 ∈ OPU : con(o, op2, d) ∈ CONo,

(−∞,max {y|∃op ∈ OPU : con(o, op, d) = y}) ,
if 6 ∃op1 ∈ OPL : con(o, op1, d) ∈ CONo

∧∃op2 ∈ OPU : con(o, op2, d) ∈ CONo,

(min {y|∃op ∈ OPL : con(o, op, d) = y} ,+∞) ,
if ∃op1 ∈ OPL : con(o, op1, d) ∈ CONo

∧ 6 ∃op2 ∈ OPU : con(o, op2, d) ∈ CONo,

(−∞,+∞) , else.

(9.14)

With this equation the domain of a metadata dimension d in an offer o is defined as an
interval. If one or more constraints exist limiting the set upwards, the operator of this
constraint has to be in set OPU . The upper limit of this interval is the maximum of the
values used in these constraints. Otherwise the upper limit is infinite. The lower limit of
the domain interval is defined respectively: if one or more constraints exist limiting the
set downwards, the operator of this constraint has to be in set OPL. The lower limit of
this interval is the minimum of the values used in these constraints. Otherwise the lower
limit is negative infinite.

The equation presented in Equation 9.14 is the calculation of the domain of a cost or
metadata dimension without any historical data only based on the metadata constraints.
These constraints only roughly limit the domain. As one main requirement on our system
is the support for activation and deactivation of required and not required local context
provider (see Requirement 5), it is in general not possible to request the context provider
for its current status and hence for up-to-date metadata. Using a collection of historical
data to estimate a domain is much more insusceptible with regard to outlier as using
only a single value even if it is much more up-to-date. For these reasons, historical values
can provide an important feedback on the current status of the context service and can
be helpful to make the domain definition more precise. Nevertheless, historical values
do not necessarily reflect the current status of its provider.

We define the set of historical data as a set of tuples consisting of the metadata value
v and the timestamp t: the set of historical data for dimension d of offer o is H ′od =
{(v1, t1), (v2, t2), . . . , (vn, tn)} with vi is value of dimension d at time ti. Furthermore we

9.3 Calculation of the Domain of a Quality or Cost Dimension 123

define current time as t0. To this set of historical data we add the previously calculated
upper and lower limit of the domain. As we assume constraints to be permanently valid,
the current time is assigned to both limits as timestamps:

Assume dom′(o, d) = (x, y), then H = H ′ ∪ {(vn+1 = x, t0), (vn+2 = y, t0)}.

Context data and also their metadata change permanently. As a result, metadata are
getting more and more uninteresting for the calculation of the domain the older they
are. In order to calculate the new domain of the metadata type based on historical
data, we discount the different values based on their age t0 − ti. For this calculation we
introduce a new system parameter β, which represents the half-value period of metadata
in seconds. This means after β seconds the influence respectively importance of the
metadata is halved: after 0 seconds the importance is 1, after β seconds the importance
is 1

2 , after 2β seconds the importance is 1
4 , and so on:

wi = 1
2xi

with xi = t0 − ti
β

(9.15)

In this analysis we assume newer values to have a higher relative frequency than older
values. As a result, the weight wi is interpreted as influencing factor or relative frequency.
Values with a high weight should have a high influence respectively frequency on the
domain interval, whereas values with a low weight should have low influence respectively
frequency. Consequently our domain interval should preferably include values with high
influence respectively frequencies. In descriptive statistics, the cumulative frequency
analysis is used for this. A cumulative frequency is the aggregation of all relative
frequencies of these values which fall at or below a given value. For this analysis we
have to determine a relative frequency distribution from the weights by normalizing it
by dividing by the sum of all values:

wi = wi
n+2∑
z=1

wz

= wi
n∑
z=1

wz + 2
(9.16)

With this equation, we can define a new set of tuples containing the metadata value with
the calculated weight. To calculate the domain, this set is ordered in ascending order of
values:

(v′1, w′1) . . . (v′i, w′i) . . . (v′n+2, w
′
n+2)

with v′i ∈ {v1, . . . , vn, x, y} ∧ v′i ≤ v′i+1
∧(v′i = vj ∧ w′i = wj , 1 ≤ j ≤ n+ 2)

(9.17)

With this ordered set, we can now define the domain of a metadata dimension d in an
offer o as following:

dom(o, d) =



dom′(o, d), if Hod = ∅,

v′
min
{
x|(

x∑
i=1

w′
i)≥0.25

}, v′
min
{
x|(

x∑
i=1

w′
i)≥0.75

}
 , else.

(9.18)

124 Context Service Selection

From the equation it becomes clear that if no historical data are available our domain
is the interval calculated by Equation 9.14. Otherwise the lower limit is defined by the
lower quartile of the cumulative frequency and the upper limit by the upper quartile of
the cumulative frequency.

The usage of the lower and upper quartile is motivated by the rather common approach
in statistics to define a range as its interquartile range (IQR) instead of the difference
between the highest and lowest values. As stated by Upton et al. [136], the usage of
the interquartile range has the advantage that it does not ignore the distribution of the
intermediate values. Upton et al. further mention that “a single very large or very small
value would give a misleading impression of the spread of the data”.

The resulting domain can be informally described as approximately 75% of all values are
above the lower limit and approximately 75% are below the upper limit.

9.3.1 Example

This subsection explains the calculation of the domain of the metadata type ‘accuracy’ for
an offer o. We initially have to estimate the domain based on the metadata constraints.
For this purpose, we have to calculate dom′(o, accuracy) as described in Equation 9.14.
The metadata constraints of offer o are shown in Listing 9.1.� �

1 ICon tex tOf fe r o f f e r = coq lFac tory Impl . eINSTANCE .
c rea teContex tOf f e r () ;

2 [. . .]
3 IAtomicNumericalMetadataConstra int con1 = coqlFac tory Impl .

eINSTANCE . createAtomicNumerica lMetadataConstra int () ;
4 con1 . setMetadata ("#Accuracy ") ;
5 con1 . se tRepre sen ta t i on ("#DoubleRep ") ;
6 con1 . s e tUn i t ("#meter ") ;
7 con1 . se tMetadataConst ra in t ID (" Accuracy1 ") ;
8 con1 . se tOperator (Re la t iona lOpera to r . LT_LITERAL) ;
9 con1 . se tVa lue (Factory . c rea teVa lue (200)) ;

10 o f f e r . ge tMetadataConst ra in t s () . add(con1) ;
11 IAtomicNumericalMetadataConstra int con2 = coqlFac tory Impl .

eINSTANCE . createAtomicNumerica lMetadataConstra int () ;
12 con2 . setMetadata ("#Accuracy ") ;
13 con2 . se tRepre sen ta t i on ("#DoubleRep ") ;
14 con2 . s e tUn i t ("#meter ") ;
15 con2 . se tMetadataConst ra in t ID (" Accuracy2 ") ;
16 con2 . se tOperator (Re la t iona lOpera to r . GT_LITERAL) ;
17 con2 . se tVa lue (Factory . c rea teVa lue (5)) ;
18 o f f e r . ge tMetadataConst ra in t s () . add(con2) ;� �

Listing 9.1: Example of Metadata Constraints 3

With these constraints, the result of the calculation is dom′(o, accuracy) = (5, 200). In
order to precise this estimation, we reuse historical values:4

H ′o,accuracy = (42, 1113757440) . . . (400, 1113757145)
4In our implementation we use the Unix timestamp as the internal representation for timestamps. The

Unix timestamp is defined as seconds elapsed since midnight Coordinated Universal Time (UTC) of January
1, 1970. http://en.wikipedia.org/wiki/Unix_time. Last visited on Mar 13, 2012

9.3 Calculation of the Domain of a Quality or Cost Dimension 125

http://en.wikipedia.org/wiki/Unix_time

As mentioned earlier, we add both values of the estimated domain dom′ with the current
time t0 = 1113757445 to this set. The resulting set of tuples H is shown in Table 9.1.

Sample i 1 2 3 4

Accuracy acc (m) 42 7 12 55

Time t 1113757440 1113757325 1113757345 1113757355

Sample i 5 6 7 8

Accuracy acc (m) 3 21 8 400

Time t 1113757245 1113757415 1113757385 1113757145

Sample i 9 10

Accuracy acc (m) 5 200

Time t 1113757445 1113757445

Table 9.1: Example for Domain Calculation – Historical Values

With this set we can now calculate the new domain as described above. Before the
calculation we have to initially define a half-value period. In this example we use a
half-value period of β = 60 seconds.

In Table 9.2 the results of the different intermediate steps for the calculation of the
domain are shown.5 First, the age of the metadata instance has to be calculated. With
the age the discounting factor w can be calculated, which is afterwards normalized. The
normalization result w is then used to define the cumulative frequency.

With these results, the new upper and lower limits can be determined: the lower limit is
the first value, the cumulative frequency of which is higher than or equal to 0.25; the
upper limit is the first value, the cumulative frequency of which is higher than or equal to
0.75. As a result, the domain is dom′(o, accuracy) = (7, 55), which is much more precise
than the domain defined only by the constraints dom′(o, accuracy) = (5, 200).

9.4 Selection Algorithm

In the previous sections the functions to evaluate the usefulness of a set of context offers
X ⊂ OM regarding a set of context requests have been described. For this purpose, the
Aggregated Utility Function (AUF) is calculated. Evaluating every subset of the set of
offer OM causes exponential computational costs. The powerset P(OM) of OM (the set
of all subsets of OM) contains 2OM sets. However, most of these subsets would only
cause the calculation of the AUF to deliver a result of 0 as one of the requests cannot
be fulfilled. For example, a set containing only an offer fulfilling one request but not
all requests, would result 0 for the AUF. Hence, avoiding the calculation of the AUF
for these useless subsets substantially reduces the computational costs and improves
scalability. A subset of OM which can potentially result in an AUF > 0 has only to fulfil
the following requirement: It has to contain exactly one offer for every query which

5Please note here that in this table the tuples are already sorted to ascending accuracy values.

126 Context Service Selection

i 5 9 2 7 3

i’ 1 2 3 4 5

acc 3 5 7 8 12

t 1113757245 1113757445 1113757325 1113757385 1113757345

age 200 0 120 60 100

w 0.099 1.000 0.250 0.500 0.315

w 0.019 0.192 0.048 0.096 0.061∑i′
z=1w 0.019 0.211 0.259 0.356 0.416

i 6 1 4 10 8

i’ 6 7 8 9 10

acc 21 42 55 200 400

t 1113757415 1113757440 1113757355 1113757445 1113757145

age 30 5 90 0 300

w 0.707 0.944 0.354 1.000 0.031

w 0.136 0.182 0.068 0.192 0.006∑i′
z=1w 0.552 0.734 0.802 0.994 1.000

Table 9.2: Example for Domain Calculation – Intermediate Results

can serve as a input provider for that query. Subsets containing no offer for one of the
queries would lead to an AUF of 0. A subset containing more than one offer per query
would not be selected as well. More than one offer per query has no benefit (as we do
not provide any context fusion support) but increases the cost. Such a set would result
in a lower AUF as every subset containing only one of the offers for that query due to the
aggregation of the cost. Consequently we use the algorithm as described in Algorithm 9.1
to calculate the subsets of OM , which potentially build the optimal selection for the
different queries. In this calculation we have to distinguish between queries send from
context reasoners and queries send from other context consumers. Context queries from
context reasoners only have to be satisfied by the selection set if also a chain using the
context reasoner as input provider is part of this set. In contrast context requests from
other consumers have to be fulfilled by every potential selection set. As shown in line 1
and 2 of the algorithm, context queries are distributed over the two arrays query[] and
reasonerQuery[]. A context reasoner in general provides a context offer and can request
one or more different types of context information. In order to retrieve the corresponding
context queries of a reasoner that is used in a chain, a map is established mapping an
offer of a reasoner to a set of queries (of that reasoner, see line 4).

Algorithm 9.1 Algorithm select(query[], chainSet) to select a set of mediator chains
from all chains chainSet for the array of context queries query[]

1: query[] . array of all context queries without queries from reasoners
2: reasonerQuery[] . array of all context queries from reasoners
3: chainArrayForQueryMap . global variable that maps a query to an

array containing all chains useful as input provider for that query; used chainSet for

9.4 Selection Algorithm 127

initialization
4: reasonerQueryForOfferMap . global variable that maps an offer to a set of

queries required by a reasoner
5: mapOfQueryIndex . global variable mapping a query to an integer (initially to 0)
6: numOfComb← 1
7: for x← 0;x < query.length;x+ = 1 do
8: numOfComb← numOfComb · chainsForQueryMap[query[x]].size
9: end for

10: utilityOfSelectionSet← 0.0
11: Set < IMediatorChain > selectionSet← Set < IMediatorChain > ()
12: for z ← 1; z ≤ numOfComb; z+ = 1 do
13: Set < IMediatorChain > combination← Set < IMediatorChain > ()
14: Set < IContextQuery > reqReasonerQueries← Set < IContextQuery > ()
15: increaseF lag ← true
16: for y ← 0, query.length do
17: i← mapOfQueryIndex[query[y]]
18: chain← chainsForQueryMap[query[y]][i]
19: if reasonerQueryForOfferMap.contains(chain.inputOffer) then
20: reqReasonerQueries.addAll(reasonerQueryForOfferMap.get(

chain.inputOffer))
21: end if
22: combination.add(chain)
23: if increaseF lag then
24: i← i+ 1
25: if i >= chainsForQueryMap[query[y]].size then
26: mapOfQueryIndex[query[y]]← 0
27: i← 0
28: for s← y + 1; s < query.length; s+ = 1 do
29: i2← mapOfQueryIndex[query[s]] + 1
30: if i2 < chainsForQueryMap[query[s]].size then
31: mapOfQueryIndex[query[s]]← i2)
32: break
33: else
34: mapOfQueryIndex[query[s]]← 0
35: end if
36: end for
37: else
38: mapOfQueryIndex[query[y]]← i
39: end if
40: increaseF lag ← false
41: end if
42: end for
43: reasonerComb← 1
44: for x← 0;x < reqReasonerQueries.length;x+ = 1 do
45: reasonerComb← reasonerComb · chainsForQueryMap[query[x].size
46: end for
47: for y ← 1; y ≤ reasonerComb; y+ = 1 do
48: Set < IMediatorChain > reasonerCombination ← Set <

128 Context Service Selection

IMediatorChain > ()
49: for chain : combination do
50: reasonerCombination.add(chain)
51: if reasonerQueryForOfferMap.contains(chain.inputOffer) then
52: increaseF lag2← true
53: rQuery[]← reasonerQueryForOfferMap.get(chain.inputOffer)
54: for q ← 0; q ≤ rQuery; q+ = 1 do
55: i2← mapOfQueryIndex[rQuery[q]]
56: chain2← chainsForQueryMap[rQuery[y]][i2]
57: reasonerCombination.add(chain2)
58: if increaseF lag then
59: Similar to increasing of pointers as above.
60: end if
61: end for
62: end if
63: end for
64: combinationUtility ← aggregatedUtilityFunction(reasonerCombination)
65: if combinationUtility > utilityOfSelectionSet then
66: utilityOfSelectionSet← combinationUtility
67: selectionSet← reasonerCombination
68: end if
69: end for
70: end for
71: return selectionSet

The set of all chains can be divided into subsets according to the usefulness for one
request. The set of offers provided by context services can be useful for more than
one request. In contrast, a context offer provided by a mediator chain o ∈ OM is only
useful for the request for which the chain has been constructed (see Section 8.2). Before
starting the actual selection, we build a mapping from a query to an array of these
context offers respectively mediator chains that are constructed for it (line 3). With this
map we can easily calculate a valid subset of context offers respectively chains resulting
in an AUF > 0. Additionally, we initialize a new map serving as indexes for every query
(line 5).

These indexes are increased stepwise and serve as a pointer in the array of context
chains of the respective context query.6 For example, at the beginning (when calling
the function) all indexes are set to 0. Consequently, for every query the first mediator
chain is chosen and combined to a new set (line 22). Afterwards one of these indexes is
increased (line 23–41). In the next run of the main loop (line 12–70), the second chain
is chosen for the first query, whereas for all the other queries (still) the first is taken.
The main loop consists of two internal loops calculating a valid chain set. The first loop
(line 16–42) selects a chain for every query, which is not expressed by a reasoner. For
every selected chain it is checked whether a context reasoner serves as input provider
for that chain or not (see line 19–20). In the second loop (line 47–69) the set of chains

6This method is comparable to the systematic approach to pick a combination lock with the only
difference that every ring (in our case query) can have a different cardinality of numbers (here mediator
chains).

9.4 Selection Algorithm 129

calculated by the first loop is extended by chains for every query of a used reasoner.
These chains are chosen similarly to the first loop by increasing an index (line 58–60).
For every of these combinations calculated in the second loop, the AUF is calculated (line
64) and the combination with the highest result is the selection set (line 66–67).

The outer loop (starting in line 12) is called in total numOfComb times, which is
approximately the average number of mediator chains per regular (not from a reasoner
expressed) query raised with the number of these queries. The first inner loop (starting
in line 16) is used to retrieve the next combination of mediator chains for the regular
queries and hence it is called |OCS | times per run of the outer loop. The second inner
loop (starting in line 47) calculates the different allocations of reasoner queries with
appropriate chains. These different allocations can also be seen as different variants of a
context reasoner. A variant of a context reasoner is a concrete allocation of its context
queries with a chain. Hence a context reasoner with one query and with two potential
chains for this query results in two variants (one using the first chain for the query and
one using the second chain for the query).

In general, the number of variants of a reasoner can be approximated by the average
number of mediator chains per query of that reasoner raised with the number of queries
expressed by this reasoner. With this definition an offer provided by a context reasoner
can be considered as a kind of abstract offer which is substantiated to a concrete offer
by the concrete allocations. Hence a reasoner provides as many concrete offers as
variants. OCR is the set of context offers provided by context reasoner. Let Or ⊂ OCR
be the offer provided by a context reasoner r ∈ CR. Similarly, RCR ⊂ R is the subset
of requests expressed by context reasoners. Let Rr ⊂ RCR be the subset of requests
expressed by a context reasoner r ∈ CR. In worst-case, there are mediator chains
between every offer o ∈ OS \ Or and every query r ∈ Rr. In this case, we have(
|OS \Or| · |Rr|

|Rr|

)|Rr|

= |OS \Or||Rr| variants of that reasoner r ∈ CR.

In the first part of the main loop we handle requests that are not expressed by context
reasoners. The complement of the set of all requests R and the set of requests expressed
by reasoners RCR then builds the set RCS of what we called regular requests before. The
worst case can be approximated here similarly by assuming that we have a mediator chain
from every offer o ∈ OS to every query r ∈ RCS , hence |OS | · |RCS | chains. As defined in
Section 9.2.1 an offer is either an element of the offers provided by context reasoners or
by regular services, hence |OS | = |OCR|+ |OCS |. However, an offer of a context reasoner
can be seen as some kind of abstract context offer which can be replaced by one or
more concrete instances, which are concretely allocated chains to the different queries
of that reasoner. A reasoner r ∈ CR can have (|OS \Or|)|Rr| variants, thus OCR can
be estimated by

∑
r∈CR (|OS \Or|)|Rr| ≤ (|CR| · |OS |)|RCR|. The worst case complexity

of the whole algorithm can so be approximated by
(
|OCS |+ (|CR| · |OS |)|RCR|

)|RCS |
.

Hence the algorithm has exponential complexity.

9.5 Example

This section explains the selection process using an elaborate example. Figure 9.2 shows
three context queries and four context offers. In this example we assume that all offers

130 Context Service Selection

and queries passed the matching process and that we can ignore their representations
here. However not all offers fit to every query:

• Offer 1 matches all queries, as it provides both the position and the altitude

• Offer 2 and 3 match only queries 1 and 2 but not query 3, as both do not provide
the altitude.

• Offer 4 only satisfies query 3, as it provides only information on the altitude but
not on the position.

Similar to the matching example in Section 8.4, the offers contain several clouds
expressing the metadata constraints but we removed the representation here to improve
the readability. The context queries in Figure 9.2 do not contain any metadata constraints,
as these are not used in the selection phase but rather in the matching phase. Instead,
they contain several selection function factors (boxes with the white hand in the left top
corner). These factors express the preferences of the context consumer regarding QoC
and CoC. For example, query 1 in Figure 8.4 contains two selection function factors, the
first regarding accuracy and the second regarding cost. With these factors, the consumer
defines that during the selection phase the only decision criteria is accuracy (indicated by
the weight of 1.00 for accuracy) while cost is a minor factor (indicated by the weight of
0.00). Furthermore, all selection function factors contain an arrow in the top right corner,
which shows the minPref and hence whether it is better to search for the minimum
(arrow to the bottom) or to search for the maximum (arrow to the top) within the set of
metadata.

In this example, we focus on the actual selection. All context offers contain only one
metadata constraint per metadata dimension (e.g. only one constraint referring to
accuracy). In addition, all constraints are limiting the respective metadata upwards and
all metadata should be minimized (as indicated by the arrows in the queries). These
upper limits represent the worst case and are essential for the calculation of quality
respectively cost values (as explained in Section 9.2.2 and Section 9.2.2). Furthermore,
it improves the readability of the example, as the values depicted in the figure are also
used in the following calculations (more precisely the depicted values are the result of
v(o, d) respectively c(o, d)).

v(o, d) respectively c(o, d) are used within the calculation of q(o, d) and uc(X, d). These
functions map an offer and a cost respectively quality dimension to a value between
0 and 1 and provide the input for the single utility functions (SUF). As all quality and
cost dimensions should be minimized, q(o, d) and uc(X, d) are calculated as follows:
q(o, d) = 1− v(o,d)(

max
o′∈O

v(o′,d)
)

+ε
and uc(X, d) = 1− c(X,d)

c(OM ,d) .

For the calculation we have to identify the maximum for every quality dimension:

• maxaccuracy = 10000
• maxaccuracy_alt = 50

Consequently, q(o, d) for Offer 1 and the quality dimension accuracy is q(o1, acc) =
1− 10

10000+ε = 0.9990.

Similarly, we have to identify the maximum for every cost dimension. In contrast to the
quality dimensions this is not the highest value of v(o, d) respectively c(o, d) but rather
the aggregated cost caused by all context offers together:

9.5 Example 131

CONTEXT QUERY 1

Entity: User | Paul
Scope: Position
Rep: WGS84

accuracy
weight = 1,00

cost
weight = 0,00

CONTEXT QUERY 2

Entity: User | Paul
Scope: Position
Rep: WGS84

accuracy
weight = 0,50

cost
weight = 0,50

CONTEXT QUERY 3

Entity: User | Paul
Scope: Altitude
Rep: Meter

acc_alt
weight = 0,50

cost
weight = 0,50

CONTEXT OFFER 1

Entity: User
Scope: Position
Rep: WGS84_3D

Accuracy <
10

Cost < 100 GPS Sensor

Accuracy_alt < 50

CONTEXT OFFER 2

Entity: User
Scope: Position
Rep: WGS84_2D

Accuracy <
2000

Cost < 50

Network based Positioning

CONTEXT OFFER 3

Entity: User
Scope: Position
Rep: WGS84_2D

Accuracy <
10000

Cost < 5

Cell-ID based Location Sensor

CONTEXT OFFER 4

Entity: User
Scope: Altitude
Rep: Meter

Accuracy_alt < 5

Cost < 30

Altimeter

Figure 9.2: Example of a Selection Process – Offers and Queries

• maxcost = c (OM , d) = 100 + 50 + 5 + 30 = 185

Hence, uc(X, d) for a set X only containing Offer 1 and the cost dimension cost is
uc(o1, cost) = 1− 100

185 = 0.4596.

The values can be calculated similarly for all dimensions and all different sets of offers
and are afterwards used for the calculation of the SUFs. The calculation of the SUFs is the
first part of the selection. A SUF provides a feedback on the usability of a set of context
offers with regard to a single context request. The SUF ur(X) for a set of offers X ⊆ OM

is a sum of two summands: the first summand max
x∈{y∈X|∃m∈Mr:om=y}

(∑
d∈D

wdr · q(x, d)
)

expressing the utility of the ‘best’ offer within this setX with regard to quality dimensions.
The second summand

∑
d∈C

w′druc(X, d) represents the utility with regard to costs of the

complete set. We only search for one context offer per request, as we do not support
context fusion. Hence only one, actually the offer with the highest utility with regard to
quality is considered.

The result of max
x∈{y∈X|∃m∈Mr:om=y}

(∑
d∈D

wdr · q(x, d)
)

is presented for every combination

of offers and queries in Table 9.3.

132 Context Service Selection

Query 1 Query 2 Query 3

Accuracy 1 0.5 0

Cost 0 0.5 0.5

Accuracy_alt 0 0 0.5

Offer 1
√ √ √

Accuracy 10 0.9990 0.4995 –

Cost 100

Accuracy_alt 50 – – 0.0098

Offer 2
√ √

�
Accuracy 2000 0.8000 0.4000 �

Cost 5 �
Accuracy_alt – – – �

Offer 3
√ √

�
Accuracy 10000 0.00009 0.00005 �

Cost 5 �
Accuracy_alt – – – �

Offer 4 � �
√

Accuracy – � � –

Cost 30 � �
Accuracy_alt 5 � � 0.4510

Table 9.3: Selection Example 1 – Intermediate Results

Based on these results, the complete SUFs and the aggregated utility function (AUF) can
be calculated. The results are shown in Table 9.4. In this example we use α = 0.05 to
express that mainly the context queries take care of cost minimization.

Table 9.4 can be read as follows: the four columns o1 - o4 are used to describe all subsets
of the set of context offers X – the powerset of X. The fifth column (

∑
cost) contains

the aggregated cost for the respective set of context offers, e.g. the set consisting of all
four offers causes cost of 100 + 50 + 5 + 30 = 185. In the next column uc is calculated
as described above in Equation 9.10. In the next three columns the SUFs of the single
requests regarding the respective set of context offers are calculated. Therefore, the
results of Table 9.3 are used. As in query 1 the preference regarding cost is 0, the utility of
a set of offers is the maximum of the results of the respective subset of offers in Table 9.3.
The last column contains the AUF, which is computed as described in Equation 9.13. For
example in the third line for the set only consisting of offer 4 the AUF is 0, as this set
cannot satisfy query 1 and query 2. Here it has to be highlighted that we calculated the
SUFs/AUFs for the complete powerset of X only for this example. The rows resulting in
a AUF of 0 are not calculated as they would not be a valid combination combined by the
Algorithm 9.1. The maximum result (2.15) has been calculated for the set consisting of
offers 1 and 4 (see line 10). This set satisfies all three requests without one of them has

9.5 Example 133

o1 o2 o3 o4
∑
cost uc uq1 uq2 uq3 AUF

1 0 1 - - - 0

2
√

30 0.84 - - 0.87 0

3
√

5 0.97 0.00 0.49 - 0

4
√ √

35 0.81 0.00 0.41 0.86 1.25

5
√

50 0.73 0.80 0.76 - 0

6
√ √

80 0.57 0.80 0.68 0.73 2.14

7
√ √

55 0.70 0.80 0.75 - 0

8
√ √ √

85 0.54 0.80 0.67 0.72 2.11

9
√

100 0.460 1.00 0.73 0.23 1.88

10
√ √

130 0.30 1.00 0.65 0.60 2.15

11
√ √

105 0.43 1.00 0.72 0.22 1.86

12
√ √ √

135 0.27 1.00 0.63 0.59 2.12

13
√ √

150 0.19 1.00 0.59 0.09 1.61

14
√ √ √

180 0.03 1.00 0.51 0.46 1.88

15
√ √ √

155 0.16 1.00 0.58 0.08 1.59

16
√ √ √ √

185 0 1.00 0.50 0.45 1.85

Table 9.4: Selection Example 1 – Results

to cut back. If we change, e.g. the weights in context query 1 to weightaccuracy = 0 and
weightcost = 1, the result would look completely different. This is shown in Table 9.5.
We can skip the calculation of the intermediate results, as the only change in Table 9.3
would be to replace the values for query 1 and the respective accuracy of the offers with
– due to the full weight of this request on cost and not on QoC.

In this example it becomes clear that it is not always possible to fulfil all preferences.
The set with the maximal AUF (AUF = 2.01, see line 4 in Table 9.5) is the set consisting
of offers 3 and 4 (see line 4). This set does actually not select the optimal solution for all
single requests. For query 1 the optimal selection would be offer 3 as it is the cheapest
offer providing the requested information. For query 2, the set consisting of offer 2
would be the optimal solution and for query 3 the set consisting of offer 4. However,
all requests have to cut back: offer 1 and 3 with regard to cost, offer 2 with regard to
accuracy.

Another interesting observation is the effect caused by changing α. In the previous
calculation we have used α = 0.05. A change to α = 0.5 would not result in another
selection in the previous example (Table 9.5) as also the requests have an high interest
on minimizing the costs, but it would result in another selection for the first example
(Table 9.5), as depicted in Table 9.6.

Compared to Table 9.4 only the last column containing the AUF is changed. As shown in
Table 9.6 the set of context offers causing the highest AUF (AUF = 1.39, see line 6 in
Table 9.6) is the set consisting of offers 2 and 4. In comparison to the previous selection
this is a drawback for request 1 as it requests high accuracy. However, this selection

134 Context Service Selection

o1 o2 o3 o4
∑
cost uc uq1 uq2 uq3 AUF

1 0 1 - - - 0

2
√

30 0.84 - - 0.87 0

3
√

5 0.97 0.97 0.49 - 0

4
√ √

35 0.81 0.81 0.41 0.86 2.01

5
√

50 0.73 0.73 0.76 - 0

6
√ √

80 0.57 0.57 0.68 0.73 1.91

7
√ √

55 0.70 0.70 0.75 - 0

8
√ √ √

85 0.54 0.54 0.67 0.72 1.86

9
√

100 0.460 0.46 0.73 0.23 1.37

10
√ √

130 0.30 0.30 0.65 0.60 1.48

11
√ √

105 0.43 0.43 0.72 0.22 1.32

12
√ √ √

135 0.27 0.27 0.63 0.59 1.43

13
√ √

150 0.19 0.19 0.59 0.09 0.84

14
√ √ √

180 0.03 0.03 0.51 0.46 0.95

15
√ √ √

155 0.16 0.16 0.58 0.08 0.79

16
√ √ √ √

185 0 0.00 0.50 0.45 0.90

Table 9.5: Selection Example 2 – Results

causes fewer costs. Hereby it becomes obvious that the value of α can be used to adapt
the complete system e.g. to save resources when running out of battery.

9.6 Discussion

In this chapter, we introduced the selection process for searching an optimal set of
context offers respectively context chains to be activated to satisfy all requests and also
the system requirement regarding cost minimization. Several solutions especially in the
area of service-oriented computing exist (like the approaches by Jaeger [62] and Yang
et al. [148]) that separately select a service provider per request. In contrast to these
context source and service selection approaches, we are searching for a solution which
fulfils all requests and does not search for a solution for every query independently. As a
result we use an aggregated utility function.

This has the advantage that it is possible not only to satisfy the requests but also to
reduce the resource consumption, as this approach also facilitates sharing of context
services. The problem is obviously a multi-objective optimization problem (MOO), where
it might be possible only to find a semi-optimal solution as requests can be contradicting.
For example, one request can query for the cheapest provider whereas another queries
for the most accurate but also more expansive one. As a result, one or both of these
requests have to cut back. In general and in contrast to a single-objective optimization, a
single solution for such a MOO problem does not exist. It is rather a set of optima. These

9.6 Discussion 135

o1 o2 o3 o4
∑
cost uc uq1 uq2 uq3 AUF

1 0 1 - - - 0

2
√

30 0.84 - - 0.87 0

3
√

5 0.97 0.00 0.49 - 0

4
√ √

35 0.81 0.00 0.41 0.86 1.04

5
√

50 0.73 0.80 0.76 - 0

6
√ √

80 0.57 0.80 0.68 0.73 1.39

7
√ √

55 0.70 0.80 0.75 - 0

8
√ √ √

85 0.54 0.80 0.67 0.72 1.37

9
√

100 0.460 1.00 0.73 0.23 1.21

10
√ √

130 0.30 1.00 0.65 0.60 1.27

11
√ √

105 0.43 1.00 0.72 0.22 1.18

12
√ √ √

135 0.27 1.00 0.63 0.59 1.24

13
√ √

150 0.19 1.00 0.59 0.09 0.94

14
√ √ √

180 0.03 1.00 0.51 0.46 1.00

15
√ √ √

155 0.16 1.00 0.58 0.08 0.91

16
√ √ √ √

185 0 1.00 0.50 0.45 0.97

Table 9.6: Selection Example 3 – Results

optimal solutions are also called Pareto optimal solutions [25, 94]. Such a set contains
solutions that cannot be improved in one of the single objectives without deteriorating
their performance in at least one of the other objectives.

Marler et al. discuss in detail different methods for MOO with the main result that “the
selection of a specific method depends on the type of information that is provided in
the problem, the user’s preference, the solution requirements, and the availability of
software” [89, 90]. According to Marler et al., MOO methods can be generally divided
into methods with a priori articulation of preferences (e.g. like the weighted sum
method used in this work) and methods with a posteriori articulation of preferences (e.g.
physical programming) [90]. Additionally, they mention methods with no articulation of
preferences (like the global criterion methods) and genetic algorithms [89].

A MOO problem can have several different solutions. Consequently, a decision maker has
to select one of the solutions from this set of possible solutions as the most preferable
solution. For using methods with a priori articulation of preferences, the decision maker
has to express preferences or additional criteria before calling the method. This has the
advantage that these methods return only one solution. However, the decision maker
has to express his preferences without knowing different potential solutions. In contrast,
methods with a posteriori articulation of preferences return the Pareto optimal set. This
has the advantage that the decision maker knows the different alternatives. But the
selection process is then up to the decision maker.

In our work, we actually do not have a single decision maker, but rather several context
consumers that request different context information. Furthermore we have the system

136 Context Service Selection

requirement to minimize the total resource consumption. Methods returning a set of
potential solutions are not sufficient in this work, as these would require an additional
selection process. We consequently selected a method with a priori articulation of
preferences, namely the weighted sum method. According to Marler et al., “the weighted
sum method provides a basic and easy-to-use approach for multi-objective optimization
[...]” [90].

Disregarding these benefits of the weighted sum method, this method also has some
disadvantages. One of the biggest issues is the selection of the weights. Even if several
approaches exists to systematically determine the weights (see e.g. the survey by
Eckenrode [37]), it cannot be guaranteed that the solution is optimal in the end. In
addition, it is not possible to evaluate points on non-convex partitions of the Pareto
optimal set in the search space, as mentioned by Marler et al. [89]. However, Das et
al. stated that non-convex Pareto optimal sets are relatively uncommon [31]. Further
drawbacks are that the relations between weights and result are often complicated and
non-intuitive and the uneven sampling of the Pareto front. In addition, the method
requires a scaling of the different parameters (which is no problem in our case as we
already support representations).

The AUF and the bruteforce search for a set of offers respectively chains with the highest
result for that AUF is only a simple solution with some drawbacks, e.g. with regard to
scalability. Even if we increased the complexity of our selection algorithm from 2|OM |

to
(
|OCS |+ (|CR| · |OS |)|RCR|

)|RCS |
, it would still scale exponentially with the number

of queries. The scalability is also discussed from the practical point of view in the
evaluation chapter (see Chapter 12). Nevertheless, the focus was to support simple
and independently specifiable context request and not that much on high scalability. To
further increase scalability, also other heuristic methods like Evolutionary Algorithms
(see [147]), A*-search [50] or deterministic optimisation methods may be evaluated in
future work.

9.6 Discussion 137

10 Architecture

Science bestowed immense new powers on man and at the same time
created conditions which were largely beyond his comprehension and

still more beyond his control.

– Winston Churchill (1874-1965)
Speech, 31st March 1949.

Based on the concepts presented in the previous chapters, a context management
middleware has been developed. Figure 10.1 presents an overview of its general
infrastructure and execution environment. As depicted, a middleware instance has
to run on every device on which at least one context consumer or service is executed1.
This instance can be shared by all context consumers and services on that device. Context
consumers register requests on that instance and context service register respectively
offers. The middleware instance then organizes the selection and also handles the
advertisements of context services regarding external context consumers.

Device 2 Device mDevice 1

Middleware
Instance 1

Application 1

CQ

Sensor 1

CO

Reasoner 1

COCQ

Application 2

CQ

Sensor 3

CO

Sensor 4

CO

Sensor 5

CO

Application 4

CQ

Application 3

CQ

Sensor 2

CO

Middleware
Instance 3

Reasoner 2

COCQ

Application
Reasoning 1

CQ

Context
Service

Consumer

Middleware

Context
Services

Middleware
Instance 2

Synchronous or
asynchronous communication
of context information

Service
advertisement &
context dissemination

CO Context Offer CQ Context Query

Figure 10.1: Context Service Infrastructure and Execution Environment

Also the context dissemination between a context service and a context consumer, which
is placed on another device as the service, is handled via middleware instances of the
service and the consumer. Even if this causes a small overhead compared to a direct
communication of the context service with the middleware instance of the consumer

1It is also possible to implement stand-alone context services that do not require any middleware
instance by providing these services the remote binding and advertisement functionalities.

139

requested for the information2, this has the benefit that context services do not have to
provide additional techniques for service advertisement and for communication.

Figure 10.2 presents the architecture of the middleware. The middleware is split into
several separate components. For that reason, the middleware is easily extendable by
e.g. exchanging one of the components. This has also been a requirement to further
ease the future work on e.g. other matching algorithms3 or other selection processes4.
Last but not least, it is a requirement to add more powerful adaptation mechanisms
regarding the middleware itself. In Section 2.3 also the different adaptation mechanisms
have been introduced. Our middleware is a composition of the different components.
As the implementation already foresees different variants of the specific components
(e.g. more than one implementation of the context repository), this is one step towards a
self-adaptive middleware. With a self-adaptive middleware, also the middleware adapts
to context changes, e.g. a less resource-consuming selection algorithm could be chosen
if the device is running out of battery. Additional to the component-based adaptation,
the middleware could also be adjusted by tuning the different parameters (e.g. the
parameter α introduced in Section 9.2.2). The actual adaptation of the middleware is
still future work.

The system design in general is motivated by the different processes described in the
previous chapters (mainly the matching approach described in Chapter 8 and the selection
approach described in Chapter 9). The general process model (see Figure 1.1) can be
summarized as followed:

1. Context Services and Context Service Consumers register their offers and queries,
respectively at the Discovery Service.

2. These offers and queries have to be matched, as described in Chapter 8. For this
purpose, the component called Matching Service is used.

3. After the matching, one of the matching offers has to be selected as context provider.
This is done by the Selection Service.

4. Finally the Binding Service is used to establish the binding between the selected
context service and the consumer.

Additionally to the components motivated by this general process model, we have
introduced several other components, which extend these basic functionalities:

• The Ontology Manager encapsulates the access to the context ontology (see
Chapter 6).

• The Mediation Engine provides the techniques to establish the mediator chains
as described in Section 8.2. Even if this is actually a part of the matching phase,
we decided to split matching (step 1 and 3 of the matching phase described in
Chapter 8) and mediation (step 2 of the matching phase) mainly to ease the further
independent development of both functionalities.

2Between local service and consumer, it is also required that the exchange is between service and
middleware and middleware and consumer. One reason is that the middleware provides the mediation
techniques. Another reason is the monitoring and filtering done by the middleware which is essential to
react e.g. on services providing information which violate its context offer.

3See Section 8.5 for more details.
4See Section 9.6 for more details.

140 Architecture

Ontology
Reasoner

Mediation
Engine

Selection
Service

QoC & CoC
Monitor

Register

Trigger Matching

Use

Trigger
Selection

Trigger
mediation check

Trigger
Binding &
Access
Repository Punish &

amnesty offers

Establish
mediator
chains

Access
Repository

Access
Ontology

Access Ontology

Access
Repository

Matching
Service

Ontology
Manager

Ontology
Access Repository

Trigger
Monitoring

Access
Repository Discovery

Service

Context Offer
& Query

Repository

Discovery
Plugin

Middleware
Instances

Context
Repository

Context Data
Repository

Context
Service

Consumer

Context
Service

Data Push/Pull
Data

Push/Pull

Activate / deactivate offer

Binding
Service

Binding
Plugin

Mediator Chain
Repository

Visualization
Service

Inform Inform

Figure 10.2: Context Service Middleware Architecture

• The Context Repository stores historical data, e.g. to support the selection (see
Section 9.3).

• The QoC & CoC Monitor monitors the context information and reports eventual
violations of constraints.

• The Visualization Service provides support for logging registered context offers,
context queries, IROs, metadata operators, and established mediator chains.
Additionally, these data can also be sent to a visualization application. This
application can be used at runtime for debugging and monitoring purposes. It
additionally shows the collected context data before and after transformations
by chains. Such an application has been implemented for the Android OS. A
screenshot of this application is depicted in Figure 10.3 and the application is also
used in the different demonstrators in the next chapter.

The central services (discovery, matching, selection and binding service) are working
event-based, which means that all actions are added to an event queue and are handled
asynchronously in sequence. As depicted in Figure 10.2, Context Service Consumers and
Context Services register their context requests respectively context offers (described with

141

Figure 10.3: Screenshot of the Android Visualization Application

the COQL as introduced in Chapter 7) at the Discovery Service. To discover not only
local context services, the Discovery Service can leverage several Discovery Plugins. These
plugins provide support for different remote discovery protocols, e.g. a protocol using
ZooKeeper [60] as a remote service dictionary. The Discovery Service employs a local
repository containing all registered context offers and queries. For every new registration
of either a query or offer, the Discovery Service triggers a new matching process by the
Matching Service. For calculating the Matching Results as described in Chapter 8, the
Matching Service accesses the ontology with the help of the Ontology Manager, triggers
the mediation check (as described in Section 8.2) by the Mediation Engine and accesses
the repository for context offers and queries provided by the Discovery Service.

The Mediation Engine encapsulates the establishment of the mediator chains as described
in Section 8.2. The resulting chain offers are first returned to the Matching Service, which
then proceed to the constraints matching (see Section 8.3). If the metadata constraint
matching is also successful, the established mediator chains will be stored in the Mediator
Chain Repository of the Binding Service. If mediator chains binding a request of a context
reasoner are established, this is also reported to the Discovery Service, which forwards
the offer of the respective reasoner if all queries of that reasoner are resolved. In general,

142 Architecture

the Binding Service also reports chains to the Selection Service. Here it has to to be
differentiated between chains for a query of a reasoner and chains for other queries.
Chains for a query of a reasoner are only sent to the Selection Service if at least one chain
exists that is using the respective context reasoner. Otherwise these chains are ignored as
they are not required. However they have to be established even before the usage of the
according reasoner is clear to ensure that the queries of the reasoner can be resolved.

If both event queues of the Discovery Service and the Matching Service are empty, a new
selection process done by the Selection Service is triggered (see Chapter 9 for a detailed
description of the selection process). The Selection Service accesses the Mediator Chain
Repository and the Context Offer & Query Repository provided by the Discovery Service.
After selecting a mediator chain for a certain context query, the Selection Service triggers
the activation of the mediator chain, which consequently binds the offer and query used
in the chain by the Binding Service. More precisely, the Binding Service stores the selected
mediator chains created by the mediation check during the matching phase and calls the
according chains for an offer if this offer provides new information. The Binding Service
also sends the command to activate or deactivate a selected respectively unselected
context offer. The Discovery Service forwards this command to the respective context
service. To be able to also access/receive information from remote context services, the
Binding Service as well can use several Binding Plugin for e.g. establishing a Socket based
connection between two middleware instances.

This Binding Service uses the mediator chains, which have been established during the
matching phase by the Mediation Engine. Furthermore it triggers the monitoring process
by the QoC and CoC Monitor. The monitor controls the context data provided by the
context provider according to their context offers and handles eventual violations of the
constraints, e.g. a new matching process can triggered whereby the violating offer is
ignored.

The prototype implementation of the middleware is based on Java and OSGi [102]. The
different components described in the previous section on the architecture are realized
as OSGi bundles. Similar to Paspallis [104], also context providers are implemented
leveraging the OSGI component specification. We have extended the general OSGi lifecyle
as the context services can have additional context dependencies. The context providers
for these dependencies change dynamically as new services appear or disappear and as
new applications are started or stopped.

To overcome this limitation, the Context Service lifecycle is amended with four context
middleware specific states as depicted in Figure 10.4: C_INSTALLED, C_RESOLVED,
C_ACTIVE and C_PUNISHED. A newly installed context service is registered as
C_INSTALLED. If all context dependencies are resolved, this service is moved to
C_RESOLVED. Context services (e.g. sensors) without additional context dependencies
are directly moved to C_RESOLVED after the registration. For context reasoners, a
matching process is triggered for all of its context queries. Only if these matching
processes result in nonempty matching results, the reasoner is moved to C_RESOLVED.
This extended context service lifecycle has already been introduced by Paspallis [104].
We extended this lifecycle with the additional state C_PUNISHED. A running context
service is monitored by the QoC and CoC Monitor and offenses against the constraints
in its offer, will be punished: context services are moved to the state C_PUNISHED and
will be ignored. For all components of the middleware except the Discovery Service, who

143

INSTALLED

RESOLVED

UNINSTALLED

STARTING

C_INSTALLED

C_RESOLVED

C_ACTIVE

STOPPING

install

resolve
refresh /
update

uninstall

un
in

st
a

ll

refresh / update

start

c_resolve c_resolve

c_activate c_deactivate

stop

C_PUNISHED

c_punish

c_amnesty

Figure 10.4: Context Service Lifecycle

manages the context service lifecycles, and the QoC and CoC Monitor, punished services
are not existent. In the current implementation, context services are moved after a
timeout5 of x minutes back into the C_INSTALLED state and will then be used like any
other service. For future work it is also foreseen to have additional amnesty conditions
monitored by the QoC and CoC Monitor. For example, a service providing a position,
which is moved to C_PUNISHED as it doesn’t hold its constraint regarding the provided
accuracy, can be amnestied after moving a certain amount from the position where it
violates the constraint.

5This timeout is also a system parameter and configurable.

144 Architecture

Part III

Evaluation

145

11 Demonstrators

I have not been able to discover the cause of those properties of
gravity from phenomena, and I frame no hypotheses; for whatever is

not deduced from the phenomena is to be called a hypothesis, and
hypotheses, whether metaphysical or physical, whether of occult

qualities or mechanical, have no place in experimental philosophy.

– Isaac Newton (1642-1726)
Letter to Robert Hooke (15th February 1676)

In this chapter, we present several demonstrators based on real-world scenarios. For this
purpose, a large amount of existing works has been reviewed to collect which kind of
context information including its metadata are used. This study serves as the basis for
the different demonstrators. More precisely the context sources presented in the different
existing works are implemented as context services. A subset (in the Demonstrators C–E
also the complete set) of these context services is used with the different demonstrators.

As described in Chapter 5 our system interacts with a set of context services and a set
of context consumers. These consumers may be different context-aware applications or
small parts of such applications used to receive a certain kind of context information.
In order to demonstrate the usefulness of the explained approach and the fulfilment
of the requirements introduced in Section 1.2, we do not require fully implemented
context-aware systems but rather have to implement the context consuming parts of
these applications. Hence, a demonstrator consists of a set of context services, a set
of Inter-Representation Operations (IROs) and metadata operators, and one or more
context consumers. Every context consumer registers a context query at the system.
With the different demonstrators we focus on the different requirements presented
in Section 1.2. The first Demonstrator A presents different examples for addressing
the issue of heterogeneous represented context information (see Requirement 3). In
Demonstrators B and C the dynamic matching and selection of context offers are
discussed (see Requirement 6). The next Demonstrator D shows an example for the
remote discovery and binding of context information (see Requirement 1). Within this
demonstration, the issues of loose coupling (see Requirement 2) and the provisioning of
context offers / requests (see Requirement 4) are also discussed implicitly. Finally the
fifth Demonstrator E focuses on the cost minimization by explicit activation respectively
deactivation of required and not required context services (see Requirement 7 and
Requirement 5).

147

11.1 Study of Context Information, QoC, and CoC in Related Work

In order to prepare the demonstration of our work and to built the demonstration on a
solid and realistic scenario, we have studied existing works regarding the types of context
information, QoC, and CoC, that are described in related works (also in the examples).
This study is not exhaustive but is rather used as input for developing a realistic set of
context services.

Android: The Android system already supports several different context providers as
depicted in Table 11.1, but for these providers, the system does not offer any quality
metrics. Additionally to the depicted sensors, the system provides different location
sources1, namely GPS, Cell-ID, and WiFi. These location providers also calculate the
accuracy of the retrieved position as a radius in meter. Furthermore, the providers are
coarsely divided regarding their power consumption into POWER_HIGH (GPS sensor),
POWER_LOW (Cell-ID- based position), and POWER_MEDIUM (WiFi based position).
When registering a listener for a specific sensor, it is necessary to consider a sampling
rate. Unfortunately the Android API does not support the specification of concrete
sampling rates but rather of sampling rate classes, namely SENSOR_DELAY_NORMAL,
SENSOR_DELAY_UI, SENSOR_DELAY_GAME, or SENSOR_DELAY_FASTEST.

Sensor Type Description
TYPE_ACCELEROME-
TER

Hardware Acceleration force in m/s2 that is applied to a device
on all three physical axes (x, y, and z), including the
force of gravity.

TYPE_AMBIENT_
TEMPERATURE

Hardware Ambient room temperature in degrees Celsius (°C).

TYPE_GRAVITY Software or
Hardware

Force of gravity in m/s2 that is applied to a device
on all three physical axes (x, y, and z).

TYPE_GYROSCOPE Hardware A device’s rate of rotation in rad/s around each of
the three physical axes (x, y, and z).

TYPE_LIGHT Hardware Ambient light level (illumination) in lux.
TYPE_LINEAR_
ACCELERATION

Software or
Hardware

Acceleration force in m/s2 that is applied to a device
on all three physical axes (x, y, and z), excluding the
force of gravity.

TYPE_MAGNETIC_
FIELD

Hardware Ambient geomagnetic field for all three physical axes
(x, y, and z) in µT .

TYPE_ORIENTATION Software Degrees of rotation that a device makes around all
three physical axes (x, y, and z). As of API level 3
you can obtain the inclination matrix and rotation
matrix for a device by using the gravity sensor and
the geomagnetic field sensor in conjunction with the
getRotationMatrix() method.

TYPE_PRESSURE Hardware Ambient air pressure in hPa or mbar.

1See http://developer.android.com/guide/topics/location/obtaining-user-location.html
for more details.

148 Demonstrators

http://developer.android.com/guide/topics/location/obtaining-user-location.html

Sensor Type Description
TYPE_PROXIMITY Hardware Proximity of an object in cm relative to the view

screen of a device. This sensor is typically used to
determine whether a handset is being held up to a
person’s ear.

TYPE_RELATIVE_
HUMIDITY

Hardware Relative ambient humidity in percent.

TYPE_ROTATION_
VECTOR

Software or
Hardware

Orientation of a device by providing the three
elements of the device’s rotation vector.

TYPE_TEMPERATURE Hardware Temperature of the device in degrees Celsius
(°C). This sensor implementation varies across
devices and this sensor was replaced with the
TYPE_AMBIENT_TEMPERATURE sensor in API Level
14

Table 11.1: Sensor Types Supported by the Android Platform.2

Paller has evaluated these sampling classes for the accelerometer on a Google Nexus
One smartphone3 (SENSOR_DELAY_NORMAL results in an average frequency of
4.09 Hz, SENSOR_DELAY_UI in 9.87 Hz, SENSOR_DELAY_GAME in 16.16 Hz, or
SENSOR_DELAY_FASTEST in 24.45 Hz) [103]. On a Sony-Ericsson x10 mini SEN-
SOR_DELAY_NORMAL results in an average frequency of 4.74 Hz, SENSOR_DELAY_UI
in 14.15 Hz, SENSOR_DELAY_GAME in 32.55 Hz, or SENSOR_DELAY_FASTEST in 94.77
Hz. Similarly he has evaluated the battery usage of the accelerometer on the Google
Nexus One depending on the chosen frequency. The results are depicted in Table 11.2.

Sampling speed Battery consumption (%/hour)

Normal 1.71

UI 3.19

Game 3.27

Fastest 3.41

Table 11.2: Battery Consumption of the Accelerometer on a Google Nexus One

Agostini et al.: Agostini et al. give an example on how to infer the music preferences
of a user based on his list of artists. But they do not use QoC or CoC information [4].

Dai et al.: Dai et al. describe an approach for retrieving information about user falling
based on the acceleration of the mobile [30, 29]. They do not provide any quality related
information. Nevertheless they evaluated their approach: “[. . .] the average FN [False
Negative] value is 2.67%, while the FP [False Positive] value is 8.7%.” Furthermore, they
also evaluated the average resource consumption: “The average CPU usage is 7.41%; the
memory usage is about 600KB, 0.6% of total RAM capacity of G1 phone”4. Furthermore,

2Copied from http://developer.android.com/guide/topics/sensors/sensors_overview.html.
3Google Nexus One http://en.wikipedia.org/wiki/Nexus_One.
4HTC Dream also known as T-Mobile G1, 528 MHz, 192 MB RAM http://en.wikipedia.org/wiki/

HTC_Dream

11.1 Study of Context Information, QoC, and CoC in Related Work 149

http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://en.wikipedia.org/wiki/Nexus_One
http://en.wikipedia.org/wiki/HTC_Dream
http://en.wikipedia.org/wiki/HTC_Dream

they extended the reasoning approach by also using the magnetic field sensor of the
mobile and a magnetic accessory bound on the leg of the user. With this approach they
increased the accuracy: “[. . .] the average of FN is 2.13% and the FP value is 7.7%”.
Even if they do not provide QoC values dedicated for every context information, these
values can at least be used to roughly describe the two approaches.

Rouvoy et al.: Rouvoy et al. introduce a detailed example on retrieving hierarchically
high-level context information from low-level data [113].

• Some of the low-level information are:

– RFID tag presence

– preference of the user regarding advertisements (e.g. no advertisements, only
postal advertisements or advertisements via email)

– battery change state

– battery time left

– bluetooth link quality

– WiFi link quality

– WiFi bit rate

• Some of the high-level information:

– Bluetooth notification enabled

– WiFi browsing enabled

– WiFi download enabled

• The interconnection and also the intermediate context information are described
by Rouvoy et al. [113]. Abid et al. reuse the example of Rouvoy et al. and added
QoC data [1]:

– Trustworthiness

– Up-to-dateness

– Precision

Kwapisz et al.: Kwapisz et al. present an activity recognition approach, which retrieves
the activity of the user only based on data from the accelerometer [76]. Their approach
relies on supervised learning methods (The authors compared different learning methods
like J48 decision tree and Multilayer Perceptron). They considered six activities: walking,
jogging, ascending stairs, descending stairs, sitting, and standing. Their approach
recognizes the activity correctly over 90% of the time (accuracy is 61.5 % correctly
predicted activities in minimum and 98.3 % in maximum depending of the actual
activity). Based on the results in the paper, an Android application called Actitracker5

has been developed.

Lee et al.: Similar to Kwapisz et al., Lee et al. also developed an activity recognition
approach utilizing the accelerometer [81]. In difference to Kwapisz et al., Lee et al. use
an hierarchical hidden markov model and are able to recognize the activities standing,
walking, running, and stair up/down. Unfortunately the authors do not provide precise
QoC values.

5http://www.actitracker.com/

150 Demonstrators

http://www.actitracker.com/

EEMSS: As described in Section 4.1.9, Wang et al. demonstrated their approach called
Energy Efficient Mobile Sensing System (EEMSS) by developing an activity recognition
system retrieving the users current activity based on data from GPS, accelerometer,
microphone and a WiFi detector [144]. Unlike other approaches, the four used sensors
are not running permanently but rather are activated only when they are useful to detect
an activity change. They have also precisely measured the energy consumption of the
different sensors on a Nokia N95 smartphone, e.g. the accelerometer with a duty cycle
of 6 sec sensing and 10 sec sleeping requires 0.359 Joule per sample. Furthermore, “the
average recognition accuracy [. . .] is found to be 92.56% with a standard deviation of
2.53%” [144]. The authors have also evaluated how long a state transition and hence
the detection of a new activity lasts. The results are summarized in Table 11.3.

Walking Vehicle At some place

Walking – < 40 sec < 5 min

Vehicle < 1.5 min – –

At some place < 1 min – –

Table 11.3: Activity Detection Time in the Activity Recognition Approach by Wang et al. [144]

Regarding the total resource consumption of their activity recognition system, the authors
only mention that “[. . .] the average device lifetime result with EEMSS [Energy Efficient
Mobile Sensing System] application running on a fully charged Nokia N95 device is
11.33 hours with regular cell phone functionalities” [144]. However a reference value
regarding the average runtime of the phone is missing.

Kose et al.: Kose et al. evaluated different classification methods for online activity
recognition on smartphones using the accelerometer [74]. They focused on the
activities walking, running, sitting, and standing. It turned out that the clustered KNN
algorithm, which is an improvement of minimum distance and k-nearest neighbor
(KNN) classification algorithms, provides the highest accuracy (92.12%) for all activities.
Additionally to the measurement of the accuracy of the different classification algorithms,
the authors evaluated the resource consumption as well, e.g. the clustered KNN causes
29% CPU usage and 21.9 MB memory usage on a Samsung Galaxy Gio6.

Yan et al.: Another activity recognition approach utilizing the accelerometer is the
system by Yan et al. [149]. In difference to the previous works, they recognize 10
different activities, namely stand, slowWalk, sitRelax, sit, normalWalk, escalatorUp,
escalatorDown, elevatorUp, elevatorDown, and downStairs. They developed an approach
called adaptive accelerometer activity recognition (A3R) based on the J48 adaptive decision
tree classifier of the Weka toolkit7, which dynamically adapts the sampling frequency
of the accelerometer in order to save energy. They evaluated the accuracy and power
consumption for different combinations of sampling frequencies and types of computed
features. This evaluation results in the configuration depicted in Table 11.4.

6Samsung Galaxy Gio, 800 MHz processor, 278 MB RAM, http://www.gsmarena.com/samsung_
galaxy_gio_s5660-3741.php.

7“Weka is a collection of machine learning algorithms for data mining tasks” http://www.cs.waikato.
ac.nz/ml/weka/.

11.1 Study of Context Information, QoC, and CoC in Related Work 151

http://www.gsmarena.com/samsung_galaxy_gio_s5660-3741.php
http://www.gsmarena.com/samsung_galaxy_gio_s5660-3741.php
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/

Activity Frequency Computed
features

Accuracy Power
consumption
(J/hr)

stand 16 Hz Ftime 0.9516 79.95

slowWalk 16 Hz Ftime 0.9171 79.95

sitRelax 5 Hz Ftime + Ffreq 0.9823 75.8

sit 16 Hz Ftime 0.9855 79.95

normalWalk 16 Hz Ftime 0.9237 79.95

escalatorUp 50 Hz Ftime 0.7265 110.05

escalatorDown 100 Hz Ftime + Ffreq 0.756 230.75

elevatorUp 5 Hz Ftime 0.7827 55.35

elevatorDown 5 Hz Ftime 0.8056 55.35

downStairs 16 Hz Ftime 0.8344 79.95

average 0.86654 92.705

Table 11.4: Evaluation of Accuracy and Power Consumption in the Activity Recognition Approach
by Yan et al. [149]

Yan et al. give a detailed explanation of the computed features [149]. The average values
depicted in the last row expect an equal distribution of all activities. These values are
not provided by Yan et al. and are calculated by the author of this thesis. Instead Yan
et al. made an extensive user study to retrieve the distribution of the different activities
but they only presented aggregated and raw results of this study. These results are not
useful for a context description within a context offer.

11.2 General Description of the Demonstrators

As described in Chapter 5 our system interacts with a set of context services (context
providers) and a set of context consumers. These consumers need not be different
context-aware applications but can be small parts of such an application used to receive
a certain kind of context information. Thus in order to demonstrate the usefulness of the
explained approach and the fulfilment of the requirements introduced in Section 1.2, we
do not require fully implemented context-aware systems but rather have to implement
the context consuming parts of these applications. These parts are called context
listeners. In summary, a demonstrator consists of our context middleware, a set of
context services, one or more context listeners, a set of Inter-Representation Operations,
and a set of metadata operations. In parallel to this, the visualization application is
running (see Chapter 10 for a description of the visualization application). Screenshots
of this application are used to illustrate the different scenarios.

Based on the previous study on context types, QoC and CoC referenced in the literature,
we have implemented a wide range of context services. Table 11.5 summarizes the

152 Demonstrators

context offers of these services8. Nearly all implemented context services in our
demonstrators are fully working and provide the context information as specified in the
context offers. Only these context services and context offers marked with asterisk (*) in
the table are not fully implemented. These services are rather implemented as mockups
able to encapsulate the respective context retrieving mechanisms. However, even these
mockups randomly fire context information according to the respective offer.

Se
rv

ic
e

Context
Offer

Entity Offered Scope Representation Metadata
Constraints

A
cc

el
er

at
io

n

Google
Nexus One
SENSOR_
DELAY_
NORMAL

Device|this Acceleration AndroidDevice-
AccelerationRep
(x_Acceleration,
y_Acceleration,
z_Acceleration)

TimeStamp ≥ 1
UnixTimeStamp ∧
PowerConsumption =
1.71 PercentPerHour
∧ ChangeFrequency =
4.09 Hz

Google
Nexus One
SENSOR_
DELAY_
FASTEST

Device|this Acceleration AndroidDevice-
AccelerationRep
(x_Acceleration,
y_Acceleration,
z_Acceleration)

TimeStamp ≥ 1 Unix-
TimeStamp ∧ Sensor-
Cost = 3.41 Percent-
PerHour ∧ ChangeFre-
quency = 24.45 Hz

Sony
Ericsson
X10 mini
SENSOR_
DELAY_
NORMAL

Device|this Acceleration AndroidDevice-
AccelerationRep
(x_Acceleration,
y_Acceleration,
z_Acceleration)

TimeStamp ≥ 1 Unix-
TimeStamp ∧ Change-
Frequency = 4.74 Hz

Sony
Ericsson
X10 mini
SENSOR_
DELAY_
FASTEST

Device|this Acceleration AndroidDevice-
AccelerationRep
(x_Acceleration,
y_Acceleration,
z_Acceleration)

TimeStamp ≥ 1 Unix-
TimeStamp ∧ Change-
Frequency = 94.77 Hz

Other
devices
SENSOR_
DELAY_
NORMAL

Device|this Acceleration AndroidDevice-
AccelerationRep
(x_Acceleration,
y_Acceleration,
z_Acceleration)

TimeStamp ≥ 1
UnixTimeStamp ∧
ChangeFrequency
> 4 Hz ∧
ChangeFrequency
<10 Hz

Other
devices
SENSOR_
DELAY_
FASTEST

Device|this Acceleration AndroidDevice-
AccelerationRep
(x_Acceleration,
y_Acceleration,
z_Acceleration)

TimeStamp ≥ 1 Unix-
TimeStamp ∧ Change-
Frequency > 20 Hz
∧ ChangeFrequency <
100 Hz

8We simplified the table by removing the context service label if this service only provides one context
offer, e.g. the context service GPS only provides the offer GPS.

11.2 General Description of the Demonstrators 153

Se
rv

ic
e

Context
Offer

Entity Offered Scope Representation Metadata
Constraints

GPS Device|this Location LocationWGS84
(Latitude,
Longitude,
Altitude)

Accuracy < 50 meter
∧ TimeStamp ≥ 1
UnixTimeStamp ∧
EstimatedSensorCost
= 100

Light Device|this AmbientLight-
Level

Float_lux TimeStamp ≥ 1
UnixTimeStamp ∧
EstimatedSensorCost
= 5

Magnetic
field

Device|this MagneticField AndroidMagnetic-
FieldRep
(X_MagneticField,
Y_MagneticField,
Z_MagneticField)

TimeStamp ≥ 1
UnixTimeStamp ∧
EstimatedSensorCost
= 5

Network lo-
cation

Device|this Location LocationWGS84
(Latitude,
Longitude,
Altitude)

Accuracy < 1000
meter ∧ TimeStamp ≥
1 UnixTimeStamp ∧
EstimatedSensorCost
= 50

Orientation Device|this Orientation Android-
OrientationRep
(Azimuth, Pitch,
Roll)

TimeStamp ≥ 1
UnixTimeStamp ∧
EstimatedSensorCost
= 5

Pressure Device|this Atmospheric-
Pressure

Float_hPa TimeStamp ≥ 1
UnixTimeStamp ∧
EstimatedSensorCost
= 5

Proximity Device|this Proximity Float_cm TimeStamp ≥ 1 Unix-
TimeStamp ∧ Sensor-
Cost = 5

Rotation Device|this RotationRate Android-
RotationRateRep
(X_RotationRate,
Y_RotationRate,
Z_RotationRate)

TimeStamp ≥ 1
UnixTimeStamp ∧
EstimatedSensorCost
= 5

Fall
detection
(*)

Device|this FallDetection BooleanRep FalseNegativeRate
= 2.67% ∧
FalsePositiveRate
= 8.7% ∧
DeviceMemoryUsage
= 600 kB ∧ CPUUsage
= 3.128 MHz

Music pref-
erences (*)

User|this Music-
Preferences

StringRep

154 Demonstrators

Se
rv

ic
e

Context
Offer

Entity Offered Scope Representation Metadata
Constraints

Advertise-
ment
preference
(*)

User|this Advertisment-
Preference

StringRep

B
at

te
ry

Battery
charging
state

Device|this BatteryAC-
PowerStatus

StringRep (ACOf-
fline, ACOnline)

Battery
level

Device|this BatteryLoad PercentRep

Bluetooth Device|this Discovered-
Bluetooth-
Device

String

W
iF

i

WiFi
Strength

Device|this Network-
SignalStrength

Float_Percent

WiFi
Networks

Device|this Discovered-
WifiNetwork

String

Activity
recognition
1 (*)

User|this Activity Activity-
KwapiscRep:
String (walking,
jogging,
ascendingStairs,
descendingStairs,
sitting, standing)

Accuracy > 61.5% ∧
Accuracy < 98.3%

Activity
recognition
2 (*)

User|this Activity ActivityLeeRep:
String (standing,
walking, running,
stairUpDown)

Activity
recognition
3 (*)

User|this Activity ActivityWangRep:
String (working,
meeting,
officeLoud, resting,
homeTalking,
homeEntertaining,
placeQuiet,
placeSpeech,
placeLoud,
walking, vehicle)

Accuracy = 92.56%
(2.53% Delta) ∧
RecognitionTime < 5
min

Microphone Device|this MicrophoneLog Adaptive Multi-
Rate audio codec
(AMR_NB)

Activity
recognition
4 (*)

User|this Activity ActivityKoseRep:
String (walking,
sitting, running,
standing)

Accuracy = 92.12% ∧
DeviceMemoryUsage
= 21.9 MB ∧
CPUUsage = 232
MHz

11.2 General Description of the Demonstrators 155

Se
rv

ic
e

Context
Offer

Entity Offered Scope Representation Metadata
Constraints

Activity
recognition
5 (*)

User|this Activity ActivityYanRep:
String (stand,
slowWalk, sitRelax,
sit, normalWalk,
escalatorUp,
escalatorDown,
elevatorUp,
elevatorDown,
downStairs)

Accuracy = 86.654%
∧ PowerConsumption
= 92.705 Joule/Hour

C
al

en
da

r

Calendar
Activity

User|this Activity Activity-
CalendarRep:
String (free, busy,
. . .)

Cost = 0

Calendar
Events

User|this Activity EventDescription
(EventTitle,
StartTime,
EndTime,
Attendees)

Cost = 0

Contacts User|this KnownPersons PersonDescription
(Name, Email, . . .)

Cost = 0

Table 11.5: Context Offers of the Implemented Context Services

Table 11.5 describes the different context services with the respective offers. A context
service can provide more than one context offer. For example, the context service
Acceleration provides 6 different context offers (Google Nexus One SENSOR_ DELAY_
NORMAL, Google Nexus One SENSOR_ DELAY_ FAST, . . .). At runtime this service only
provides two offers depending on the device (e.g. offer 1 and 2 are only applicable on
the device Google Nexus One). For every offer the characterized context entity type, the
scope, the representation9 and the different metadata constraints are shown.

As already indicated in the previous section, several of the context service contain
reasoning mechanisms retrieving new context information from other (basically) low-
level information. These context services are all different services encapsulating the
activity reasoners and also the service for fall detection. The information the different
services require are described in Table 11.6. Similar to the table on context services and
its offers, the different context requests of the context services are fully described. For
example, the context service Activity recognition 3 requires the information regarding
the four context scopes Acceleration, Location, DiscoveredNetworks, and MicrophoneLog.
The information provider for the Location scope has to fulfil the requirement that the
accuracy of the location is less than 500 meter. Additionally, within the selection function
of this request a preference for minimizing the accuracy is expressed10.

9For composite representations, the different dimensions are depicted in brackets after the label of the
composite representation.

10From the general understanding of accuracy it is preferable to maximize the accuracy. But in our case,

156 Demonstrators

Context
Consumer

Entity Required
Scope

Representation Metadata
Con-
straints

Selection
Criteria

Fall detection Device|this Acceleration AndroidDevice-
AccelerationRep
(x_Acceleration,
y_Acceleration,
z_Acceleration)

min
ChangeFre-
quency

Activity
recognition 1

Device|this Acceleration AndroidDevice-
AccelerationRep
(x_Acceleration,
y_Acceleration,
z_Acceleration)

Activity
recognition 2

Device|this Acceleration AndroidDevice-
AccelerationRep
(x_Acceleration,
y_Acceleration,
z_Acceleration)

Activity
recognition 3

Device|this Acceleration AndroidDevice-
AccelerationRep
(x_Acceleration,
y_Acceleration,
z_Acceleration)

Device|this Location LocationWGS84
(Latitude,
Longitude,
Altitude)

Accuracy <
500 meter

min Accu-
racy

Device|this Discovered-
WifiNetwork

String

Device|this Microphone-
Log

AMR_NB

Activity
recognition 4

Device|this Acceleration AndroidDevice-
AccelerationRep
(x_Acceleration,
y_Acceleration,
z_Acceleration)

Activity
recognition 5

Device|this Acceleration AndroidDevice-
AccelerationRep
(x_Acceleration,
y_Acceleration,
z_Acceleration)

Change-
Frequency
> 10 Hz

min
ChangeFre-
quency

Table 11.6: Context Queries of the Implemented Context Services

also the representation of the accuracy has to be taken into account: in this example accuracy is described
as a radius in meter. Consequently the smaller the radius, the larger the actual accuracy is. We adopted this
description and representation from the Android system.

11.2 General Description of the Demonstrators 157

11.3 Demonstrator A: Heterogeneity

In this first Demonstrator A we focus on the requirement to handle heterogeneously
represented context information (see Requirement 3). In order to illustrate all facets
of this aspect, we present two different scenarios in this first demonstration. While the
demonstrator consists of the previously introduced context services, the middleware,
and the visualization application running on the client, the scenarios differ in the
context listener and the corresponding context request. A context listener is a small
part within a context-aware application that is responsible for querying and receiving
context information from the middleware. In the two presented scenarios, only one
context listener registers its query at the middleware. The corresponding context
queries of both scenarios are shown in Table 11.7. The scope, representation, metadata
constraints, and the selection criteria are depicted similar to the context requests of the
context services (see Table 11.6). Here, we request information for a concrete entity
(here: mwagner@vs.uni-kassel.de) in contrast to the previous queries which requested
information regarding entity types11.

In the first scenario, the context listener is querying for the location of the user
mwagner@vs.uni-kassel.de, whereby the location should be represented as an address.
The selected context provider should offer the requested location with a freshness
less than 10 seconds. For the selection of the context provider, the context listener
sets a high preference (precisely 0.9) on using a provider that minimizes the cost
(here: EstimatedSensorCost) and only a low preference (namely 0.1) on minimizing the
accuracy12.

In the second scenario, the listener requests the current activity of the same user. In
difference to the first scenario, the request does not contain metadata constraints or
selection criteria.

Context
Consumer

Entity Required
scope

Representation Metadata
con-
straints

Selection
criteria

Scenario 1 User|
mwagner@
vs.uni-
kassel.de

Location AddressRep
(Street, Number,
City, Country)

Freshness <
10 s

0.9 min
Estimated-
SensorCost
& 0.1 min
Accuracy
(m)

Scenario 2 User|
mwagner@
vs.uni-
kassel.de

Activity ActivityKoseRep:
String (walking,
sitting, running,
standing)

Table 11.7: Demonstrator A: Context Queries

Both scenarios of this demonstrator mainly focus on the first two steps of the context
offer and query matching presented in Chapter 8: the initial matching and the mediation

11Nevertheless, these entity types are concreted at runtime by replacing them with the concrete entity.
More precisely the place holder this is replaced with the id of the device respectively the user ID.

12The accuracy is represented as a radius in meter. Hence, it is preferable to minimize it.

158 Demonstrators

check. The initial matching only coarsely compares an offer from the set of all offers with
a query in order to find offers which are potentially useful as context provider for the
query. For this initial matching test basically the scope and the entity are compared. The
result of this first check is depicted in Table 11.8. In the column ‘potential context offers’,
the context services are collected offering the correct scope and entity as requested in the
respective scenario. The offered representation of the respective context offer is shown
in brackets after the name of the service. According to this table, two context services
(namely the GPS and the network location service) offer the requested context scope
(here: location) for the first scenario while characterizing the correct entity. Similarly
there are seven context services, which potentially offer the requested information in
scenario 2.

Context Query Potential Context Offers

Scenario 1: Location (Address)
GPS (WGS84)
Network location (WGS84)

Scenario 2: Activity (ActivityKoseRep)

Activity recognition 1 (ActivityKwapiscRep)
Activity recognition 2 (ActivityLeeRep)
Activity recognition 3 (ActivityWangRep)
Activity recognition 4 (ActivityKoseRep)
Activity recognition 5 (ActivityYanRep)
Calendar Activity (ActivityCalendarRep)
Calendar Events (EventDescription)

Table 11.8: Demonstrator A: Potential Context Offers for Scenario 1 and 2.

It is visible that in the first scenario none of the potential context services provide the
information in the requested representation. In the second scenario it is only the context
service Activity recognition 4 that offers the correct representation. The data conversion
from the representation offered by the potential services to the requested representation
is tested by the next phase of the context offer and request matching, the mediation check.
Without any Inter-Representation Operations and metadata operators, the mediation check
would not be able to provide at least one chain for listener 1 and it would result in exactly
one chain for listener 2, namely a chain using the service ‘Activity recognition 4’ as input
provider. Table 11.9 shows the implemented IROs and Table 11.10 the implemented
operator.

IRO Name Scope InputRep OutputRep Input
Metadata

Output
Metadata

Activity-
KwapiscTo-
LeeIRO

Activity Activity-
KwapiscRep:
String
(walking,
jogging, as-
cendingStairs,
descend-
ingStairs,
sitting,
standing)

ActivityLeeRep:
String (standing,
walking, running,
stairUpDown)

11.3 Demonstrator A: Heterogeneity 159

IRO Name Scope InputRep OutputRep Input
Metadata

Output
Metadata

ActivityLee-
ToKoseIRO

Activity ActivityLee-
Rep: String
(standing,
walking,
running,
stairUpDown)

ActivityKoseRep:
String (walking,
sitting, running,
standing)

SecondTo-
MilliSecond-
IRO

Scope DoubleRep &
Unit=second

DoubleRep &
Unit=milli-
second

WGS84To-
AddressIRO

Location Location-
WGS84
(Latitude,
Longitude,
Altitude)

AddressRep
(Street, Number,
City, Country)

Estimated-
SensorCost
(Dou-
bleRep)

Estimated-
SensorCost
(Dou-
bleRep)

CastIRO Scope Basic-
Representation

Basic-
Representation

Table 11.9: Demonstrator A: Inter-Representation Operations

In Table 11.9, the CastIRO has to be highlighted. In difference to the other IROs, which
are specific IROs, the CastIRO is a generic IRO (see Section 6.4.1). Specific IROs are
exactly described in the ontology with respect to the scope and the input and output
representations, while the description of a generic IRO only references superclasses for
scope, input, and output representation. The respective generic IRO has to be called
explicitly to check whether a conversion is applicable or not. In our case, the CastIRO is
a generic IRO encapsulating Java type casts for the different atomic representations like
String, Integer, or Boolean.

Metadata Operation Input Output
FreshnessInSecondBasedOn-
UnixTimeOperation

TimeStamp
(Time_UnixTimeStamp)

Freshness (Double &
Unit=second)

Table 11.10: Demonstrator A: Metadata Operation

With these IROs and the Metadata Operator, the mediation check results in a set of
mediation chains, which are able to convert between a context service and a context
listener. Figure 11.1 shows the resulting mediator chains for the first scenario. These
chains look similar for both potential context providers: the information provided
by the context service and represented as a WGS84 coordinate is transformed by the
WGS84ToAddressIRO to the requested representation, namely an address. This conversion
increases the cost, in this case the estimated cost13 is increased by 10. After this
conversion, the actual data are represented correctly. However, the constraint exists that
the freshness has to be less than 10 seconds and neither the original offer nor the offer

13In this demonstrator we only work with a unit-less estimation of the cost in order to demonstrate the
concepts. It is part of the future work to provide concrete measurement methods to precisely measure the
resource usage and provide precise cost estimation.

160 Demonstrators

after the conversion by the IRO provides metadata of the type freshness. As this type can
be provided by the metadata operator FreshnessInSecondBasedOnUnixTimeOperation, this
operator is appended to the chain. Now all data are available and can be converted into
the requested representations.

IRO specific
metadatum
mediation

Generic
metadatum
mediation &
calculation

Context offer
(GPS context

service)

Context query

Mediator chain

Location
(AddressRep)

Metadatum1
Accuracy (m)

Metadatum2
Freshness (s)

Location
(WGS84)

Metadatum1
Accuracy (m)

Metadatum2
Timestamp (UNIX)

cost =
100

Calculation
Freshness (s)

based on
Timestamp

(UNIX)

Mediation
Estimated cost

increase

Metadatum3
Estimated cost

Metadatum3
Estimated cost

timestamp
> 1 s

cost =
110

fresh
>

1 s

Mediation
Location
WGS84

AddressRep

Acc <
50m

(a) Chain 1: GPS Context Service → Context Query 1.

IRO specific
metadatum
mediation

Generic
metadatum
mediation &
calculation

Context offer
(network location
context service)

Context query

Mediator chain

Location
(AddressRep)

Metadatum1
Accuracy (m)

Metadatum2
Freshness (s)

Location
(WGS84)

Metadatum1
Accuracy (m)

Metadatum2
Timestamp (UNIX)

cost =
50

Calculation
Freshness (s)

based on
Timestamp

(UNIX)

Mediation
Estimated cost

increase

Metadatum3
Estimated cost

Metadatum3
Estimated cost

timestamp
> 1 s

cost =
60

fresh
>

1 s

Mediation
Location
WGS84

AddressRep

Acc <
1000m

(b) Chain 2: Network Location Context Service → Context Query 1.

Figure 11.1: Demonstrator A: Chains in Scenario 1.

11.3 Demonstrator A: Heterogeneity 161

The screenshots depicted in Figure 11.2 show the visualization application of scenario 1
of Demonstrator A. In the subfigure (a), it is visible that the context query by the first
listener (it is the first context query in the screenshot) is resolved (indicated by the thumb
up) by two mediator chains (expressed by the number below this thumb). The subfigure
(b) shows one of these two chains. The indicated chain is also shown in subfigure (b) of
Figure 11.1. The thumb here indicates that this chain has been selected. An explanation
will follow in the next section.

(a) Query 1: Location (AddressRep) (b) Selected Chain: Network Location Service →
Query 1

Figure 11.2: Demonstrator A: Screenshots of the Visualization Application in the first Scenario.

In difference to the first scenario, the context listener in the second scenario does not
express any constraints and selection criteria. As a result the mediation process can
completely focus on transforming the actual data into the correct representation. The
results are depicted in Figure 11.3. As said before, the context service Activity recognition
4 provides already the requested representation. As a consequence, the mediator chain
is only contains an identity mediator as explained in Section 8.2. Additionally to this
simple chain, it is possible to establish two more chains. Chain 2 consists of only one
IRO mediator, whereas Chain 3 contains two mediators in series. Chain 1 and 3 are also
depicted in the screenshots in Figure 11.4.

162 Demonstrators

Context offer
(Activity recognition

service 4)

Context query Mediator chain

Activity
(ActivityKoseRep)

Activity
(ActivityKoseRep)

Metadatum1
Accuracy (%)

Metadatum2
CPU usage (MHz)

Metadatum3
Memory usage (MB)

(a) Chain 1: Activity Recognition 4 → Context Query 2.

Context offer
(Activity recognition

service 2)

Context query Mediator chain

Activity
(ActivityKoseRep)

Activity
(ActivityLeeRep)

Mediation
ActivtiyLeeRep
ActivityKoseRep

(b) Chain 2: Activity Recognition 2 → Context Query 2.

Context offer
(Activity recognition

service 1)

Context query Mediator chain

Activity
(ActivityKoseRep)

Activity
(ActivityKwapiscRep)

Metadatum1
Accuracy (%)

Mediation
ActivityKwapiscRep

ActivityLeeRep

Mediation
ActivtiyLeeRep
ActivityKoseRep

(c) Chain 3: Activity Recognition 1 → Context Query 2.

Figure 11.3: Demonstrator A: Chains in the Second Scenario

With this first Demonstrator A the ability to handle heterogeneously represented
information including the conversion and the generation of missing metadata has
been presented. Unlike existing approaches the established mediator chains have been
generated fully autonomously by the middleware. Implicitly this demonstrator also
provides an example that our approach is also able to handle loosely coupled context
services and consumers as requested in Requirement 2 described by offers and queries
(as described in Requirement 4).

11.4 Demonstrator B: Simple Selection

After the successful matching of at least one context offer regarding a context query and
hence the establishment of at least one mediator chain, the middleware has to select
the best chain with respect to the expressed selection criteria in the context query. In
general, the selection approach does not only try to find a solution query by query. It
rather tries to find a set of mediator chains, which satisfy all context requests.

11.4 Demonstrator B: Simple Selection 163

(a) Query 2: Activity (ActivityKoseRep). (b) Selected Chain: Activity Recognition 1 →
Context Query 2.

Figure 11.4: Demonstrator A: Screenshot of the Visualization Application for the Second Scenario.

For this reason, we register in every scenario of this Demonstrator B only one request14.
The multi-selection approach selecting a set of context services for a set of context queries
is demonstrated afterwards in the next section. In this section, the selection for a set of
context queries consisting of only one query is demonstrated in two different scenarios.
Each scenario presents the selection of a mediator chain for one context query. In the
scenarios of this demonstrator we reuse the two queries already used in the scenarios of
the first Demonstrator A.

In the first scenario of this Demonstrator B, the context query requests the location of
the user mwagner@vs.uni-kassel.de. This location should be represented as an address.
As depicted in Table 11.7, the potential context provider has to offer the requested
information with a freshness of 10 seconds. The context consumer expressed a high
importance on minimizing cost (0.9) while weighting the importance of the minimization
of accuracy to 0.1. After the matching phase (see first scenario of Demonstrator A), two
mediator chains could be established as shown in Figure 11.5.

14More precisely, we started only one context listener which registers its query to the system. There are
additionally several context queries registered from the different context services implementing reasoning
mechanisms (see Table 11.6).

164 Demonstrators

Context Request 1
Entity: User|mwagner@vs.uni-kassel.de

Scope: Location
Representation: AddressRep

Selection criteria: 0.9 minimize EstimatedSensorCost
& 0.1 minimize Accuracy

Mediator Chain 1 (GPS)
Metadata: EstimatedSensorCost = 110

& Accuracy < 50m

Mediator Chain 2 (Network)
Metadata: EstimatedSensorCost = 60

& Accuracy < 1000m

Figure 11.5: Demonstrator B: Potential Mediator Chains in the First Scenario

For both options the aggregated utility function (AUF, see Section 9.2.2) has to be
calculated. As in this case a potential selection set only consists of one chain, the AUF is
a linear combination of the single utility function (SUF, see Section 9.2.2) and the cost
minimization utility function (CMUF, see Section 9.2.2):

u(X) = (1− α) ·ur(X) + α ·

∑
d∈C

uc(X, d)

|C|
(11.1)

As described in Section 9.2.2, the parameter α is used to have at least minimal influence
on the utility with regard to cost minimization even if in the selection criteria doesn’t
express any preference with regard to any cost dimension. In our system α has been set
to 0.05.

As depicted in Table 11.7, Context Listener 1 specified two selection criteria in his request.
Hence, the SUF is a weighted sum of the two metadata dimensions EstimatedSensorCost
and Accuracy. The values for both dimensions are normalized. For the normalization
we have to distinguish between quality related metadata and cost related metadata.
Quality related metadata are normalized by the maximum value used in a context offer
for the respective quality dimensions. In contrast to the normalization of the cost related
metadata dimensions, first the cost caused by the set of all available mediator chains
are calculated and these values are used afterwards for the normalization. For all
normalizations, the denominator is increased with a very small ε (here ε = 0.00000001).
The SUF for the first mediator chain M1 looks as follows:

ur(M1) = 0.1 ·
(

1− 50
1000 + ε

)
+ 0.9 ·

(
1− 110

60 + 110 + ε

)
= 0.095 + 0.318
= 0.413

(11.2)

For the CMUF, the utility values for the different cost dimensions are aggregated and
normalized by the number of cost dimensions, which are specified in the ontology. In

11.4 Demonstrator B: Simple Selection 165

our case we have only specified four cost dimensions in the ontology15. Hence the CMUF
for mediator chain 1 looks as follows:

cmuf(M1) =
1− 110

60 + 110 + ε
4

= 0.088
(11.3)

This results then in the following AUF:

u(M1) = (1− α) ·ur(M1) + α · cmuf(M1)
= 0.396

(11.4)

Similarly, the SUF, CMUF, and AUF for the second mediator M2 chain are calculated:

ur(M2) = 0.1 ·
(

1− 1000
1000 + ε

)
+ 0.9 ·

(
1− 60

60 + 110 + ε

)
= 1 · 10−12 + 0.582
= 0.582

(11.5)

cmuf(M2) =
1− 60

60 + 110 + ε
4

= 0.162
(11.6)

u(M2) = (1− α) ·ur(M2) + α · cmuf(M2)
= 0.561

(11.7)

The chain set16 resulting in the highest utility is then selected and the respective context
service providing the offer, which serves as input provider for at least one of the selected
chains, are activated. The logging output for the previously described demonstrator is
depicted in Listing 11.1.� �

1 S t a r t s e l e c t i o n process
2 #Queries=1
3 #QueriesForReasoner=0
4 #Chains=2
5 #AverageChainsPerQueries=2
6 #Combinations = 2
7 Checking combination #1 of 2
8 c a l c u l a t e S i n g l e U t i l i t y F u n c t i o n fo r query =query_position_demo1

−1343829445822−75
9 Calcu la ted u t i l i t y f o r query [query_position_demo1

−1343829445822−75] and chainSet=[m_offer_ANDROID_GPS_42
−1343829444616−4_query_position_demo1
−1343829445822−75−1343829452632−96;] = maxUt i l i t y
(0.09500000000005) + cos tUt (0.3176470588235294) =
0.4126470588235794

15These cost dimensions are all used in the different context offers (see Section 11.2) and are defined in
the context ontology: CPUUsage, DeviceMemoryUsage, EstimatedSensorCost, and PowerConsumption.

16In this scenario, the set consists of only one chain.

166 Demonstrators

10 c a l c u l a t e A g g r e g a t e d U t i l i t y F u n c t i o n f o r s e t of cha ins (
m_offer_ANDROID_GPS_42−1343829444616−4_query_position_demo1
−1343829445822−75−1343829452632−96;) = 0.39642647096328276

11 Checking combination #2 of 2
12 c a l c u l a t e S i n g l e U t i l i t y F u n c t i o n fo r query =query_position_demo1

−1343829445822−75
13 Calcu la ted u t i l i t y f o r query [query_position_demo1

−1343829445822−75] and chainSet=[
m_offer_ANDROID_NetworkLocation_42−1343829444527−91
_query_position_demo1−1343829445822−75−1343829452937−82;] =
maxUt i l i t y (1.000000082740371E−12) + costUt
(0.5823529411764705) = 0.5823529411774705

14 c a l c u l a t e A g g r e g a t e d U t i l i t y F u n c t i o n f o r s e t of cha ins (
m_offer_ANDROID_NetworkLocation_42−1343829444527−91
_query_position_demo1−1343829445822−75−1343829452937−82;) =
0.5613235297877146

15 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 S e l e c t i o n f i n i s h e d in 8ms: Se lec ted cha ins = {Chain (Of fe r=

offer_ANDROID_NetworkLocation_42−1343829444527−91;Query=
query_position_demo1−1343829445822−75) :Loca t i on|−>
LocationWGS84−>AddressRep , } u t i l i t y O f S e l e c t i o n S e t =
0.5613235297877146

17 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−� �
Listing 11.1: Demonstrator B: Logging Output of the Selection Service in the First Scenario

The results in the logging data of AUF, SUF, and CMUF are the same as in the previously
described theoretical calculations. The chain set with the highest AUF is selected. In our
case, the process ends with the selection of the second chain and hence in the activation
of the offer Network location. Which context services, context offers and mediator chains
are selected respectively activated is also shown in the visualization tool. The screenshot
in Figure 11.6 presents the demonstrator after finalizing the selection (The left subfigure
shows the selected chain and the right subfigure the activated offer). The thumb up
indicates that the selection respectively activation happened as calculated before.

In difference to the first scenario, the matching process for the context query in the
second scenario results in three mediator chains (see Demonstrator A). Additionally this
query does not express any selection criteria. But as the context providers of the different
chains are context services implementing a context reasoner, the respective providers
are requiring again some context information to provide the requested information. In
our example, all context providers are activity reasoners retrieving the activity from
the acceleration of the device. For this purpose they request for acceleration, which is
provided by two context offers. The results of the matching process for all requests are
depicted in Figure 11.7.

There are three mediator chains available which can potentially provide the requested
information for the context query in this second scenario of this demonstrator. Each
of these chains is again connected to a context query. This query is expressed by the
respective context service serving as input provider for the respective chain. For each of
these context queries, again two mediator chains are provided.

The establishment of the different mediator chains is the result of the matching process.
This matching process is called for all context queries registered to the system. The

11.4 Demonstrator B: Simple Selection 167

(a) Selected Chain: Network Location
Service → Query 1

(b) Offer: Network Location

Figure 11.6: Demonstrator B: Screenshots of the Visualization Application in the First Scenario

actual matching process does not differ for requests by context listener (or context-aware
application in general) or requests by context services. Mediator chains resolving a
request of a regular context listener are immediately forwarded to the selection. In
contrast, mediator chains for requests of context services are only considered during the
selection of the corresponding services serve as input provider for at least one chain.

The selection algorithm described in Section 9.4 is now used to build combinations of
mediator chains, for which the AUF is calculated and which build potentially the set of
chains serving as input providers. The algorithm starts with adding one mediator chain
for every query (which is regular and hence not expressed by a context reasoner) to a
set. For this set, it is checked in the second phase if a context reasoner is used as input
provider for one or more chains. If this is the case, for every query of the reasoners, again
a chain is added to the set. This is repeated for all combinations of chains respectively
reasoner queries. For every of these combinations the AUF is calculated. In Figure 11.7 it
is easy to see that every path within the depicted tree builds a valid combination. Hence,
the AUF has to be calculated for the six chain sets {Chain1, Chain4}, {Chain1, Chain5},
{Chain2, Chain6}, {Chain2, Chain7}, {Chain3, Chain8}, and {Chain3, Chain9}.

As neither the query of the context listener in this second scenario nor the queries of the
different context services specify any selection criteria, the SUF always results in 0.5.
Plus the CMUF results in the same value as only the context service Activity recognition 4
defines some cost related metadata constraints. Thus the AUF is 0.95000005 for every

168 Demonstrators

of the six valid combinations of mediator chains. As a result, the selection is finally a
random selection from the set of valid combinations17. The complete logging output for
the second query can be found in Listing A.1 in the appendix.

Context Request 2
Entity: User|mwagner@vs.uni-kassel.de

Scope: Activity
Representation: ActivityKoseRep

Selection Criteria: none

Mediator Chain 1
(Activity recognition 4)

Metadata:
MemoryUsage = 21.9 MB
& CPUUsage = 232 MHz

& Accuracy = 92.12%

Request (Recognition 4)
Entity: Device|this
Scope: Acceleration

Representation:
AndroidDevice-
AccelerationRep

Selection criteria:
none

Mediator Chain 4
(Acceleration 5)

Metadata:
TimeStamp ≥ 1

& Frequency > 4Hz
& Frequency < 10Hz

Mediator Chain 5
(Acceleration 6)

Metadata:
TimeStamp ≥ 1

& Frequency > 20Hz
& Frequency < 100Hz

Mediator Chain 2
(Activity recognition 2)

Metadata: none

Request (Recognition 2)
Entity: Device|this
Scope: Acceleration

Representation:
AndroidDevice-
AccelerationRep

Selection criteria: none

Chain 6
(Acc. 5)

Chain 7
(Acc. 6)

Mediator Chain 2
(Activity recognition 1)

Metadata:
Accuracy > 61.5%

& Accuracy < 98.3%

Request (Recognition 1)
Entity: Device|this
Scope: Acceleration

Representation:
AndroidDevice-
AccelerationRep

Selection criteria: none

Chain 8
(Acc. 5)

Chain 9
(Acc. 6)

Figure 11.7: Demonstrator B: Potential Mediator Chains/Offers in the Second Scenario

With this second demonstrator, the ability of our system to select a mediator chain
according to the needs of a context listener has been shown as requested in Requirement 6.
Additionally it has been demonstrated that the specification of selection criteria is
optional and that the system is also able to proceed without these criteria. In general,
the specification of metadata constraints, with or without those criteria, is enough to
filter out non-fitting services respectively offers.

17The first valid combination for which the AUF is calculated, is finally chosen.

11.4 Demonstrator B: Simple Selection 169

11.5 Demonstrator C: Multiple Selection
With the Demonstrator B, the selection of a context service for only one context requests
has been demonstrated. To demonstrate the usefulness of our selection concepts for
a whole set of context queries, we introduce several more context queries, which are
depicted in Table 11.11. These queries and also the two queries used in Demonstrator A
and B are registered simultaneously at the middleware. Along with to these six queries,
the requests of the context services, as depicted in Table 11.6, are registered.

Context
Consumer

Entity Scope Representation Metadata
con-
straints

Selection
criteria

Context
listener 3

User|
mwagner@
vs.uni-
kassel.de

FallDetection BooleanRep

Context
listener 4

Device|this BatteryLoad PercentRep

Context
listener 5

Device|this Acceleration AndroidDevice-
AccelerationRep

Context
listener 6

User|
mwagner@
vs.uni-
kassel.de

Activity EventDescription-
Rep

Table 11.11: Demonstrator C: Context Queries

The matching process results in 25 mediator chains. These chains are shown in
Table 11.12. As already explained in the previous Demonstrators A and B, there are two
potential offers for context listener 1 and three offers for listener 2. The rest of this table
can be interpreted analogously.

Context Query Context Offer

Context listener 1: Location
Network location
GPS

Context listener 2: Activity (Kose Rep)
Activity recognition 4
Activity recognition 1
Activity recognition 2

Context listener 3: Fall detection Fall detection
Context listener 4: Battery load Battery: Battery load

Context listener 5: Acceleration
Accelerometer (Other devices SENSOR_
DELAY_ NORMAL)
Accelerometer (Other devices SENSOR_
DELAY_ FASTEST)

Context listener 6: Activity (Event descrip-
tion)

Calendar: Activity (Event description)

Fall detection: Acceleration
Accelerometer (Other devices SENSOR_
DELAY_ NORMAL)
Accelerometer (Other devices SENSOR_
DELAY_ FASTEST)

170 Demonstrators

Context Query Context Offer

Activity recognition 1: Acceleration
Accelerometer (Other devices SENSOR_
DELAY_ NORMAL)
Accelerometer (Other devices SENSOR_
DELAY_ FASTEST)

Activity recognition 2: Acceleration
Accelerometer (Other devices SENSOR_
DELAY_ NORMAL)
Accelerometer (Other devices SENSOR_
DELAY_ FASTEST)

Activity recognition 3: Acceleration
Accelerometer (Other devices SENSOR_
DELAY_ NORMAL)
Accelerometer (Other devices SENSOR_
DELAY_ FASTEST)

Activity recognition 4: Acceleration
Accelerometer (Other devices SENSOR_
DELAY_ NORMAL)
Accelerometer (Other devices SENSOR_
DELAY_ FASTEST)

Activity recognition 5: Acceleration
Accelerometer (Other devices SENSOR_
DELAY_ NORMAL)
Accelerometer (Other devices SENSOR_
DELAY_ FASTEST)

Activity recognition 3: Location
Network location
GPS

Activity recognition 3: Microphone log Microphone

Table 11.12: Demonstrator C: Mediator Chains

As depicted, there are several alternative mediator chains for most context queries. In
total there are 48 different valid combinations of mediator chains: for the first query,
there are 2 options. For the second query there are three chains but all are using a
context reasoner having each 2 different variants. Hence there are in total six different
combinations for query 2. Query 3 has only one chain which is starting from a reasoner
for which again, two alternative chains are available. Query 4 and 6 have only one chain
each and query 5 has two alternatives. Thus there are in total 2 · 6 · 2 · 1 · 2 · 1 = 48 valid
combinations of mediator chains. The result of the selection process is also depicted in
the previous table: the selected chains are highlighted bold.

With this demonstration we have again shown that our system holds the requirement for
a selection based on CoC and QoC (see Requirement 6). Furthermore it demonstrates the
ability to share context services. In this demonstrator, the context service ‘Accelerometer’
with its offer ‘Other devices SENSOR_DELAY_NORMAL’ is used simultaneously by context
listener 5 and serves as input provider for the context services ‘Fall detection’ and ‘Activity
recognition 4’. By sharing services, the system actively reduces the resource consumption
as requested in Requirement 7.

11.5 Demonstrator C: Multiple Selection 171

11.6 Demonstrator D: Discovery of Remote Offers

In the previous sections, the discovery, matching, and selection of local context services
have been discussed intensively. However, one additional benefit of our approach is that
we can share context information not only locally but also with other devices. Context
offers are advertised immediately after the respective local context services have been
selected and activated so that they can be discovered by remote devices. In general we
only advertise these context services, which are also used locally. The reason for that is,
that we mainly focus on mobile devices with limited energy resources. It follows that
only if we have a benefit by sharing information (namely we can also use the provided
information18), we allow to share a context service19.

For this demonstrator we installed and started the middleware and context consumers
as described in the previous Demonstrator C on a first device. Additionally, we started
a second instance on a second device whereby all context services from this instance
have been removed and this device has no local context service available. After at
maximum of 10 seconds20, the context offers advertised by the first device are discovered
by the second device and the matching started. The first device offers all offers that are
selected as described in Demonstrator C. Thereby it has to be highlighted that several of
these offers characterize the first device (the characterized entity is Device|this whereby
this is replaced by the ID of the executing device). Hence for these offers it is not
possible to establish any mediator chains on the second device. In contrast, information
characterizing the user mwa@vs.uni-kassel.de can also be reused on the second device
and according mediator chains could be established.

Figure 11.8 shows screenshots of the visualization application running on the second
device. In part (a) some of the discovered context offers are shown. The thumb up
indicates that the respective offer serves as input provider of at least one chain. The ‘e’
under the thumb marks external offers21. The number under the ‘e’ is the number of the
bound mediator chains. Part (b) shows some of the context queries registered on the
second device. The thumb down and the zero under this thumb indicate that there is no
mediator chain for the first shown query regarding the battery load, whereas there is
one chain per query for query 2 and 3 (indicated by the thumb up and the 1 under this
square). As it can be seen in the two screenshots, we use the IP address of the device
as its identifier. Hence we can see that the remote offers describing a device (e.g. the
second offer in Figure 11.8 (a)) refer to another entity as in the request of the second
device (e.g. in the first query in Figure 11.8 (b)).

With this demonstration we gave an example for the remote discovery of context offers
as requested in Requirement 1. Furthermore, this would not be possible without fulfilling
the requirements on loosely coupled service (see Requirement 2) and on the semantic
description of these service as well (see Requirement 4).

18The local usage is currently the sole criteria for the remote advertisement of a context service. Other
criteria like a user-defined privacy policy are part of the future work.

19Nevertheless, the middleware has also a flag which enables the sharing of all context services. This is
mainly relevant for devices without energy limits, like servers or for mobile devices which are currently
charging.

20This is the current remote discovery cycle.
21This is only for visualization purposes. Apart from the binding process, the system does not distinguish

between local and external context offers.

172 Demonstrators

(a) Offers Discovered on the Second Device (b) Queries Registered at the Second
Device.

Figure 11.8: Demonstrator D: Remote Discovery of Context Offers on the Second Device

11.7 Demonstrator E: Cost Minimization

Cost minimization is an important issues of this work. For this purpose context services
are deactivated if they are not required respectively services are activated if one or
more mediator chains are selected by the selection algorithm using a context service as
input provider. To measure the benefits of our work, we have made evaluations with
three different configurations. The first measurement setup is inspired by Paller [103],
who made some measurements to retrieve the energy consumption of an acceleration
sensor. This first measurement serves as a reference measurement and shows the
energy consumption of the device with nearly no activity disregarding the application
implemented for logging the battery load. The device is started in the airplane mode,
which means that all communication functionalities (like 3G, WiFi, Bluetooth, . . .) are
switched off. The device is fully charged and stayed undisturbed for at least 8 hours
meanwhile the logging application records the battery load.

In the second configuration, the device is again fully charged and also connected to 3G
and WiFi networks. Thereby our middleware and the full demonstrator, which means all
context services as described in Section 11.2, are activated and running on the device.
Additionally, all context queries used in the previous demonstrators are registered to the
middleware. Additionally the visualization application is running. Again the device is
running for at least 8 hours.

11.7 Demonstrator E: Cost Minimization 173

The third configuration is similar to the second configuration with the difference that all
context services are activated immidiately after the registration. This can be configured
in the middleware by a system flag called activateAfterDiscovery. The results of this
evaluation are visualized in Figure 11.9.

Runtime in min

B
at

te
ry

 L
oa

d
in

 P
er

ce
nt

20

40

60

80

100

0 200 400 600 800

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Power Consumption
All context services activated
Only required services activated
Reference case

●

Figure 11.9: Demonstrator E: Power Consumption in Different Use Cases

From Figure 11.9, it is obvious that solely activating the required context services
reduces the energy consumption enormously. While in the case, in which all services are
immediately activated , the battery load is decreased to 18% after 555 min in average,
the system, which only activates the required services decreases the battery to 83–84%
of the battery load in the same time. For sure, the effect strongly depends on the context
queries and the according matching results. For example, if the first listener would
prioritize the minimization of the accuracy22 instead of minimizing cost, the GPS sensor
would be the first choice, and effect of cost minimization would not be that good as in
this demonstrator. However as long as not all context services would be necessary to
fulfil the context requests, deactivation of irrelevant service would result in minimization
of the energy consumption. With this demonstration, we clearly showed the benefits
of activation/deactivation of context services as requested in Requirement 5. Moreover,
this demonstration is another good example how our system fulfils the requirement on
reducing the resource consumption (see Requirement 7).

22Depending on the representation of the accuracy which is a radius in meter: the smaller the accuracy,
the better the result is.

174 Demonstrators

12 Performance and Scalability

The birth of an idea is that happy moment when everything appears
possible and reality has not yet entered into the problem.

– Rudolf Diesel (1858-1913)
Written shortly after one of his early engine models had blown up and nearly killed him.

Besides the demonstration of the practical usability of our concepts, the performance and
scalability of them is an important aspect. While the theoretic complexity of the most
important algorithms has been discussed in the respective chapters, we will now focus
on practical experiments on a mobile device and reflect the results on the theoretical
discussions. For all evaluations we have used a Motorola Xoom tablet1. This device
is equipped with a 1 GHz dual-core processor and 1 GB RAM. The installed operating
system is Android 4.02.

12.1 Mediation Service

This first analysis focuses on the performance and scalability of the mediation service.
The mediation service is executed during the matching process (see Chapter 8) and is
responsible for the mediation check as described in Section 8.2. The mediation check is
called after the initial matching, which means that a matching offer and query at least
refer to the same entity (type) and the same context scope. The result of this check is a
(potentially empty) set of mediator chains mediating the context information provided
by the context service into the requested representation. A mediator chain consists of a
sequence of Inter-Representation Operations (IROs) and metadata operations.

Interpreting representations as vertices and IROs respectively metadata operations as
edges, the mediation problem can be transfered to a path finding problem within
a directed graph. Mediator chains are simple paths in this graph starting from the
representation offered by the context service to the representation requested by the
context consumer. The performance of the mediation check mainly depends on the
number of available IROs, metadata operations, and on the structure of the resulting
graph.

In this evaluation we focus on the performance and scalability of the mediation service
depending on the number of available IROs. In order to prove the scalability in the worst

1http://www.motorola.com/us/consumers/MOTOROLA-XOOM/72804,en_US,pd.html, last visited on
Aug 08, 2012.

2Android Ice Cream Sandwich http://www.android.com/about/ice-cream-sandwich/, last visited
on Aug 08, 2012.

175

http://www.motorola.com/us/consumers/MOTOROLA-XOOM/72804,en_US,pd.html
http://www.android.com/about/ice-cream-sandwich/

Input
Output

Rep 1 Rep 2 Rep 3 Rep 4

Rep 1 – IRO 1 IRO 2 IRO 3

Rep 2 IRO 4 – IRO 5 IRO 6

Rep 3 IRO 7 IRO 8 – IRO 9

Rep 4 IRO 10 IRO 11 IRO 12 –

Table 12.1: Scalability Evaluation: Generated IROs for Four Representations

case, each representation should be reachable by an IRO from each other representation.
For this purpose, we developed a factory, which generates a set of IROs based on a
set of representations. This factory generates all possible IROs between the different
representations except IROs having the same representation as input and output, hence
providing the identity. The factory generates for n representation n2−n IROs. Table 12.1
shows this for four representations.

Figure 12.1 visualizes the dependency of the number of generated IROs compared to the
number of representations.

Number of Representations

N
um

be
r

of
 IR

O
s

0

20

40

60

2 4 6 8

●

●

●

●

●

●

●

●

Figure 12.1: Scalability Evaluation: Number of Representations Compared to Generated IROs

The generated IROs are registered at an instance of the mediation service. Then the
mediation check is called for a context query (Entity: Ent, Scope: Scope, Representation:
Rep n) and a context offer (Entity: Ent, Scope: Scope, Representation: Rep 1). The time
is measured for establishing all possible mediator chains mediating between the offered
Rep 1 and the requested Rep n. For this evaluation we did not limit the number of
maximal results and also not the number of hierarchies as described in Section 8.5.

176 Performance and Scalability

Rep1

Rep2

Rep3

Rep4

IRO
3

IRO
1

IRO
2

IRO
4

IRO 6

IRO
5

IRO
8

IRO
9

IR
O

7
IRO

12

IRO
10

IRO 11

Figure 12.2: Scalability Evaluation: Resulting Graph for Four Representations

Figure 12.2 shows the resulting graph for four representations and the generated IROs.
Interpreting representations as vertices and IROs as edges of a directed acyclic graph
allows to redefine mediator chains as paths from a certain node s to a certain node t.

As stated by Sloane, a(n) =
∑n
k=0

n!
k! “is [. . .] the number of paths (without loops) in the

complete graph on n+2 vertices starting at one vertex v1 and ending at another v2” [126].
In the depicted example there are five simple paths from representation ‘Rep 1’ to ‘Rep 4’
(more precisely, there are five simple paths to every other representation):

• Rep 1 IRO 1−−−−→ Rep 2 IRO 5−−−−→ Rep 3 IRO9−−−→ Rep 4

• Rep 1 IRO 1−−−−→ Rep 2 IRO 6−−−−→ Rep 4

• Rep 1 IRO 2−−−−→ Rep 3 IRO 8−−−−→ Rep 2 IRO 6−−−−→ Rep 4

• Rep 1 IRO 2−−−−→ Rep 3 IRO 9−−−−→ Rep 4

• Rep 1 IRO 3−−−−→ Rep 4

To find these paths respectively the mediator chains, a deep-first search algorithm is
used. Starting from the offered representation, it is called recursively for every node
respectively representation connected by an IRO with the starting node. It terminates if

(a) the requested representation is reached,

(b) or the representation has already been visited by the paths which means that there
is a cycle in the path (resulting in a cycle exception),

(c) or if no IROs respectively edges start in the current vertex.

For our example with four representations, the algorithm results in the following six
cycle exceptions additionally to the five chains:

• Rep 1 IRO 1−−−−→ Rep 2 IRO 4−−−−→ Rep 1

• Rep 1 IRO 1−−−−→ Rep 2 IRO 5−−−−→ Rep 3 IRO 7−−−−→ Rep 1

12.1 Mediation Service 177

• Rep 1 IRO 1−−−−→ Rep 2 IRO 5−−−−→ Rep 3 IRO 8−−−−→ Rep 2

• Rep 1 IRO 2−−−−→ Rep 3 IRO 7−−−−→ Rep 1

• Rep 1 IRO 2−−−−→ Rep 3 IRO 8−−−−→ Rep 2 IRO 4−−−−→ Rep 1

• Rep 1 IRO 2−−−−→ Rep 3 IRO 8−−−−→ Rep 2 IRO 5−−−−→ Rep 3

In general, the algorithm generates in a(n) =
∑n
k=1 k · k! ·

(n
k

)
cycle exceptions with

n = |Representations| − 2. According to Stephan, this is the “[. . .] the number of
sequences – where each member is an element in a set consisting of n elements – such that
the last member is a repetition of a former member” [132].

The description of the algorithm is simplified as we skipped the metadata mediation.
This is described in detail in Section 8.5.

Number of IROs

N
um

be
r

of
 C

ha
in

s
an

d
N

um
be

r
of

 C
yc

le
 E

xc
ep

tio
ns

0

20000

40000

60000

80000

0 20 40 60

● ● ● ● ●
●

●

●

Mediaton Results
Number of chains
Number of cycle exceptions ●

Figure 12.3: Scalability Evaluation: Number of Chains and Cycle Exceptions Depending on
Number of IROs

Figure 12.3 shows the resulting number of mediator chains and cycle exceptions depend-
ing on the number of IROs. As described in Section 8.5, the algorithm is limited by the
two system parameters #maximalNumberOfHierarchies and #maximalNumberOfResults
and hence results in a complexity of
#maximalNumberOfHierarchies · #maximalNumberOfResults. However, as we are
interested in the performance of the algorithm (independent of any limiting parameters)
we set both parameters to infinite. The algorithm is then called a(n) = n · (a(n− 1) + 1)
times. “[. . .] for n >= 1, a(n) is the number of non-empty sequences with n or fewer terms,
each a distinct element of 1, ..., n” [127].

178 Performance and Scalability

R
ep

re
se

nt
at

io
ns

IR
O

s

C
ha

in
s

∅
C

ha
in

le
ng

th

C
yc

le
ex

.

∅
C

ha
in

le
ng

th
(c

yc
le

ex
.)

It
er

at
io

ns

n M
ea

n
(m

s)

St
an

da
rd

de
vi

at
io

n
(m

s)

2 2 1 1.00 0 0.00 1 50 1.420 0.499
3 6 2 1.50 1 2.00 4 50 3.820 0.523
4 12 5 2.20 6 2.67 15 50 13.040 0.450
5 20 16 3.06 33 3.45 64 50 61.500 12.614
6 30 65 4.02 196 4.33 325 50 646.100 50.040
7 42 326 5.00 1305 5.25 1956 50 4374.760 69.913
8 56 1957 6.00 9786 6.20 13699 50 41082.820 145.054
9 72 13700 7.00 82201 7.17 109600 50 1040791.160 7589.211

Table 12.2: Runtime Statistics for Mediation

In this evaluation we measured the time for establishing all possible mediator chains
mediating between the offered Rep 1 and the requested Rep n. The results of the
evaluation are depicted in Table 12.2. These results are also visualized in Figure 12.4.
Each evaluation has been repeated 50 times (as indicated by the n in Table 12.2). The
third column indicates the number of established chains.

Number of Representations

Ite
ra

tio
ns

 v
s.

 R
un

tim
e

0

200000

400000

600000

800000

1000000

2 4 6 8

● ● ● ● ● ●

●

●

Iterations vs. Runtime
Number of iterations (3.00x)
Mean runtime in (ms) ●

(a) Android tablet

Number of Representations

Ite
ra

tio
ns

 v
s.

 R
un

tim
e

0

1000

2000

3000

2 4 6 8

● ● ● ● ●
●

●

●

Iterations vs. Runtime
Number of iterations (0.03x)
Mean runtime in (ms) ●

(b) Desktop computer

Figure 12.4: Scalability of the Establishment of Mediator Chains.

This evaluation also shows that the algorithm is calculating all possible mediator chains
and correctly skipping chains containing cycles. In Figure 12.4 (a), we compare the
mean runtime to the number of iterations (scaled by 3.00). From this diagram, we can
see that the expected complexity and measured runtime correspond for all cases except
the last test case with 9 representations. As the comparison of expected complexity

12.1 Mediation Service 179

and measured runtime was not satisfying, we started the evaluation on another device,
namely on a desktop computer equipped with an Intel i5 processor and 8 GB RAM. The
resulting runtime curve is depicted in Figure 12.4 (b). The runtime is compared to the
number of iterations (now scaled by 0.03). This analysis gives the expected results.

In order to analyse the discrepancy of expected runtime and measured runtime on the
first device (the Android tablet Motorola Xoom), we also analysed the memory usage.
The results of the memory analysis are depicted in Table 12.3 and Figure 12.5.

R
ep

re
se

nt
at

io
ns

IR
O

s

C
ha

in
s

∅
C

ha
in

le
ng

th

n M
ea

n
(k

B
)

St
an

da
rd

de
vi

at
io

n
(k

B
)

2 2 1 1.00 50 1.816 0.756
3 6 2 1.50 50 5.691 1.070
4 12 5 2.20 50 14.638 42.391
5 20 16 3.06 50 74.932 31.742
6 30 65 4.02 50 337.509 6.539
7 42 326 5.00 50 1906.061 57.119
8 56 1957 6.00 50 12628.939 283.769
9 72 13700 7.00 50 96423.219 1661.985

Table 12.3: Memory Usage for Mediation

As the process creates a lot of new objects in form of mediator chains and other internally
used data structures, it has to be expected that the memory usage increases with the
number of chains.

Number of Chains

M
ea

n
M

em
or

y
U

sa
ge

 (
kB

)

0

20000

40000

60000

80000

100000

0 5000 10000

●●●●●
●

●

●

(a) Mean Memory Usage

Number of Chains

M
ea

n
M

em
or

y
pe

r
C

ha
in

 (
kB

)

2

3

4

5

6

7

0 5000 10000

●

●
●

●

●

●

●

●

(b) Mean Memory Usage per Mediator Chain

Figure 12.5: Memory Usage for the Establishment of Mediator Chains

180 Performance and Scalability

Figure 12.5 (a) shows that the total memory usage is growing with the number of chains
and subfigure (b) shows that the memory usage per chain is growing with the number of
chains. However, as expressed by the average chain length in Table 12.3 the number of
IROs within a mediator chain is also growing with the number of representations. For
four representations, the algorithm results in five mediator chains. Two of these chains
contain three IROs, two chains two IROs, and one chain one IRO. Hence, the chains have
a length of 2.2 in average. Taking the average length into account while comparing the
memory usage of mediator chains and normalizing the chains with the length, it turns
out that the memory usage is shrinking with the number of chains (Figure 12.6). The
main reason for this is that objects are shared by several chains.

Number of Chains

M
ea

n
M

em
or

y
pe

r
N

or
m

al
iz

ed
 C

ha
in

 (
kB

)

1.0

1.2

1.4

1.6

1.8

0 5000 10000

●

●

●

●

●

●

●

●

Figure 12.6: Mean Memory Usage per Normalized Mediator Chain

We also analysed the memory consumption during the test on the second device. The
results of this analysis are shown in Table 12.4.

R
ep

re
se

nt
at

io
ns

IR
O

s

C
ha

in
s

n M
ea

n
(k

B
)

St
an

da
rd

de
vi

at
io

n
(k

B
)

2 2 1 50 2.147 0.013
3 6 2 50 7.047 0.042
4 12 5 50 22.833 0.611
5 20 16 50 83.622 2.764
6 30 65 50 372.624 9.747
7 42 326 50 2095.470 85.993
8 56 1957 50 13807.709 459.081
9 72 13700 50 102787.474 5007.701

Table 12.4: Memory Usage for Mediation (Desktop Computer)

12.1 Mediation Service 181

The comparison of the memory usage of the two devices (see Figure 12.7) shows that
both require nearly the same amount of memory.

Number of Chains

M
ea

n
M

em
or

y
U

sa
ge

 (
kB

)

0

20000

40000

60000

80000

100000

0 5000 10000

●●●●●
●

●

●

Memory Usage
Tablet computer
Desktop computer ●

Figure 12.7: Comparison of the Memory Usage on Different Devices during the Establishment of
Mediator Chains

But when comparing the standard deviation of the evaluations on both devices, it turns
out that the deviation is significantly higher for the desktop device compared to the
Android tablet. This effect is hard to explain, but the most likely reason is the Java
garbage collector. As the desktop computer is much faster and has more memory
compared to the tablet computer, the garbage collector is called less often during the
tests (especially for a high number of established chains). This also explains the increased
runtime for nine representations on the tablet computer. The garbage collector is called
very often and thus retards the actual process.

12.2 Constraint Matching

The next phase for checking a matching of a context offer and a context query is the
evaluation of the metadata constraint (see Section 8.3). Metadata constraints are
used in both context queries and context offers to precise which information is required
respectively offered under which condition. The constraint matching is based on semantic
tableaux. The implementation used in this work has been provided by Alexander Kohout
as part of this Bachelor thesis [69]. This work has been supervised by the author of this
thesis.

For the evaluation we distinguish between three different scenarios: best, average and
worst case scenario. Every test has been performed for 20 up to 500 constraints (step
size has been 20 constraints). Furthermore, every test has been repeated 20 times to
provide a certain statistical persistence. The three different scenarios differ in the way
how the constraints are composed.

182 Performance and Scalability

As correctly described by Kohout, “[. . .] according to our tableaux algorithm, a best
case scenario is given when a logical expression consisting of conjunctions only has to be
analyzed. Here the algorithm expands the tableau without ever causing a branch, just adding
all components of a conjunction to the end of the tableau’s root node.” [69]. However
the last constraint has to contain a contradiction. Otherwise, the tableaux algorithm
stops immediately after the start, as no negative matching is possible. “The worst case
scenario is given when a logical expression consisting of conjunctions of disjunctions has to
be analyzed. According to the general method of tableaux, a disjunction causes a branch
while a conjunction just adds all components of a conjunction to the end of the current
node. If now only disjunctions with two predicates are defined, and these disjunctions are
conjuncted with each other, this will cause the highest possible count of created branches.”
[69]. “To create an average case scenario a trade-off between best and worst case scenario
has to be found. A kind of average scenario can be simulated by inserting disjunctions within
a conjunctive formula, causing 2k branches with k inserted disjunctions. The here chosen
trade-off between conjunctions and disjunctions is a 1 to 3 ratio, i.e. every third conjunction
is turned into a disjunction.” [69].

Number of Constraints

M
ea

n
R

un
tim

e
(m

s)

0

5

10

15

0 100 200 300 400 500

● ●

Runtime of Constraint Matching
Average case
Best Case
Worst Case

●

(a) Mean Runtime

Number of Constraints

M
ea

n
R

un
tim

e
pe

r
C

on
st

ra
in

t (
m

s)

0.00

0.01

0.02

0.03

0 100 200 300 400 500

● ●

Runtime of Constraint Matching
Average case
Best Case
Worst Case

●

(b) Mean Runtime per Constraint

Figure 12.8: Scalability of Matching Metadata Constraints.

The results of this analysis are visualized in Figure 12.8. As depicted in Figure 12.8 (a)
the mean runtime tends to exponential growth in the average and worst case scenarios.
From this subfigure, the exact interpretation of the runtime in the best case scenario is not
possible: as it is also a curve and not a line, it is at least not a linear dependency. However,
after normalizing the runtime with the number of constraints, we see Figure 12.8 (b) that
the mean runtime per constraint is growing linearly with the number of constraints in the
best case scenario. This means that the constraint matching has a quadratic complexity in
the best case scenario. With this result, we also refute the assumption of Kohout, that the
constraint matching has a linear complexity in the best case scenario. Anyway, we also
increased the number of repetitions and used another device compared to the evaluation
of Kohout. The two other scenarios look rather identical considering the curves, which is

12.2 Constraint Matching 183

a matter of the design of the average case. Nevertheless, the maximal mean runtime in
the worst case is 18.39 ms and should be fast enough for our application areas.

Case Constraints n Mean (kB) Standard deviation (kB)
Average Case 500 20 1.480 0.365
Best Case 500 20 0.895 0.459
Worst Case 500 20 2.083 0.179

Table 12.5: Memory Usage for Constraint Matching of 500 Constraints

Table 12.5 summarizes the memory usage while the constraint matching of 500
constraints in all three scenarios. Furthermore Figure 12.9 (a) shows the memory
usage in the worst case scenario in dependency to the number of constraints.

Number of Constraints

M
ea

n
M

em
or

y
U

sa
ge

 (
kB

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 100 200 300 400 500

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●●

●●

●

●

●

●

●●

●

(a) Mean Memory Usage

Number of Constraints

M
ea

n
M

em
or

y
U

sa
ge

 p
er

 C
on

st
ra

in
t (

kB
)

0.002

0.004

0.006

0.008

0 100 200 300 400 500

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●●●

●●

●

● ●

●

●●

●

(b) Mean Memory Usage per Constraint

Figure 12.9: Memory Usage while Matching Metadata Constraints

As depicted in Figure 12.9 (a), the memory usage curve contains many outliers. This
can easily be explained. In difference to e.g. the establishment of the mediator chains,
the constraint matching does not generate permanently available new objects but rather
several internally used but only temporarily available objects. As a consequence and
depending on the garbage collector of the Java runtime environment, these temporary
objects may already be removed before the actually measurement ends. Figure 12.9 (b)
shows the memory usage per constraint in the different test cases as boxplots. The figure
again shows that there are many outliers especially in these test cases with a higher
number of constraints and hence a higher runtime. However, the maximal usage of
2500 Byte in the worst case means that there is no restriction for this approach for our
purposes.

184 Performance and Scalability

12.3 Selection Service

After the matching of context offers and queries, the selection service tries to find an
optimal set of mediator chains. This set should satisfy all context requests registered to
the system taking into account the different selection criteria of the context queries. It
is the selection algorithm described in Section 9.4 that calculates the different sets of
mediator chains for which the Aggregated Utility Function (AUF, see Section 9.2.2) is
calculated in order to rate the respective set. The set resulting in the highest AUF is the
set of mediator chains that is activated.

The AUF is a weighted sum of multiple Single Utility Functions (SUF, see Section 9.2.2)
validating the usability of the evaluated set regarding a certain context query and a Cost
Minimization Utility Function (CMUF, see Section 9.2.2). As SUF and CMUF only consist
of linear combinations of different selection criteria, the calculation of these functions
and also of the AUF is of linear complexity. But it strongly depends on the selection
algorithm how often the AUF has to be calculated. The number of iterations of the
selection algorithm depends on the number of registered context queries and context
chains per query.

In Section 9.4 we have already discussed that the complexity of this algorithm is
exponential to the number of registered queries. More precisely, the complexity can be

estimated by
(
|OCS |+ (|CR| · |OS |)|RCR|

)|RCS |
. OCS is the set of context offers provided

by services that do not express any additional context query. CR is the set of context
reasoner, hence of context services that express additional context queries. The set
containing all context queries specified by these services is the set RCR, while RCS
contains any other context request. OS is the full set of context offers provided by an
arbitrary context service.

In this evaluation, we focus on the complexity from the practical point of view and
measure the duration until a selection is done. The selection is finished when all different
valid combinations of mediator chains are evaluated. We stepwise increase the number
of context queries (starting from one query up to nine queries) and also the number
of context offers respectively mediator chains that serve as input for different queries.
Every context query specifies two selection criteria: one selection criteria with respect to
the accuracy of the requested information and one with respect to the cost. Similarly
every offer expresses two metadata criteria regarding accuracy and cost. For every query
and every offer in the respective configuration a mediator chain is generated. As a result,
for n queries and m offers there are n ·m mediator chains. The evaluation for every
configuration(1–5 offers and 1–9 queries) is repeated ten times. As we focus in this
evaluation on regular services, which do not request for additional context information,
the estimation of the complexity can be simplified to |OCS ||RCS |.

The results of the evaluation are summarized in Table 12.6 and visualized in Figure 12.10.

Queries Offers Combinations n Mean (ms) Standard deviation (ms)
1 1 1 10 2.700 0.675
1 2 2 10 3.800 0.422
1 3 3 10 5.200 0.632
1 4 4 10 6.700 0.483

12.3 Selection Service 185

Queries Offers Combinations n Mean (ms) Standard deviation (ms)
1 5 5 10 8.700 0.823
2 1 1 10 3.200 0.632
2 2 4 10 8.400 0.699
2 3 9 10 14.400 0.966
2 4 16 10 18.200 0.789
2 5 25 10 26.300 0.823
3 1 1 10 3.100 0.316
3 2 8 10 13.400 0.516
3 3 27 10 41.400 5.337
3 4 64 10 202.000 3.232
3 5 125 10 392.800 23.574
4 1 1 10 3.600 0.516
4 2 16 10 29.600 0.699
4 3 81 10 330.000 8.083
4 4 256 10 1143.300 25.180
4 5 625 10 2813.200 33.999
5 1 1 10 3.900 0.316
5 2 32 10 141.400 6.963
5 3 243 10 1441.500 24.834
5 4 1024 10 6210.300 51.719
5 5 3125 10 19217.800 477.211
6 1 1 10 4.400 0.516
6 2 64 10 466.100 9.983
6 3 729 10 5489.700 184.260
6 4 4096 10 30355.300 184.044
6 5 15625 10 114808.100 237.391
7 1 1 10 6.100 2.132
7 2 128 10 1153.500 18.180
7 3 2187 10 19556.400 102.071
7 4 16384 10 147145.200 252.215
7 5 78125 10 703949.000 3721.804
8 1 1 10 5.900 0.738
8 2 256 10 2770.200 37.832
8 3 6561 10 71885.900 174.011
8 4 65536 10 722746.000 2376.953
8 5 390625 10 4352701.300 11796.179
9 1 1 10 6.600 0.516
9 2 512 10 6796.300 53.112
9 3 19683 10 265032.700 789.166
9 4 262144 10 3551579.800 9863.070
9 5 1953125 10 26852370.800 156932.677

Table 12.6: Runtime Statistics

186 Performance and Scalability

Table 12.6 can be interpreted as following: the column ‘Queries’ contains the number
of registered context queries, hence |RCS |. The column ’Offers’ comprises the number
of context offers that are applicable for a context query. As we evaluate the worst case,
we assume that every context offer o ∈ OCS is useful for every context query. For that
reason, we have in total |OCS ||RCS | valid combinations of context offers. The number of
valid combinations is depicted in the column ‘Combinations’. As described in Section 9.4,
we can see that the runtime increases significantly with every additional query. Naturally,
the runtime also expands when augmenting the number of offers respectively mediator
chains per query.

2

4

6

8

1

2

3

4

5

500000

1000000

1500000

#Queries#Offers

#C
om

bi
na

tio
ns

(a) Number of Combinations

2

4

6

8

1

2

3

4

5

5000

10000

15000

20000

25000

#Queries#Offers

R
un

tim
e

(s
)

(b) Mean Runtime for Selection Process

Figure 12.10: Mean Runtime of the Selection

More precisely, the runtime grows exponentially with the number of context queries
and polynomially with the number of context offers per context query. The polynomial
dependency to context offers is not that worse as it is rather improbably that there are
so many chains for every query. Also in the unlike case, it would be simple to establish
a prefiltering to lower the number of chains per query. Such a prefiltering could be
based on the single utility function (SUF) e.g. by calculating the SUF for every chain and
choosing only a few of these chains which resulted in a high SUF for the actual selection
process. Figure 12.10 (a) shows the number of valid combinations based on the number
of context queries and the number of context offers per query, while Figure 12.10 (b)
shows the mean runtime for the selection process. Figure 12.11 visualizes the mean
runtime of the selection process whereby the results are grouped by the number of
offers respectively chains per queries. Consequently, the figure contains five curves. This
diagram shows that there is an exponential dependency regarding the number of queries
and only a polynomial dependency of the selection runtime with regard to the number of
context offers per query. This polynomial dependency is also the main argument to limit
the number of results of the mediation check evaluated in the first section of this chapter.

12.3 Selection Service 187

Number of Queries

M
ea

n
S

el
ec

tio
n

R
un

tim
e

(m
in

)

0

100

200

300

400

1 2 3 4 5 6 7 8 9

● ● ● ● ● ● ● ● ●

Mean Selection Runtime
1 offer per query
2 offers per query
3 offers per query
4 offers per query
5 offers per query

●

Figure 12.11: Mean Runtime of the Selection Grouped by Number of Offers

Figure 12.12 shows the memory usage of the selection process for the different evaluated
combinations of queries and offers. From the visualization it becomes clear, that it
is not possible to provide clear statements regarding the memory consumption. The
selection process only creates temporarily available objects to calculate the different
utility functions. Due to the partially long runtime of the process, the garbage collection
deletes regularly the unused objects meanwhile. For this reason, we omitted the detailed
analysis of the memory consumption. Nevertheless, the selection process is not very
memory consuming and uses less than 1500 kB (see Figure 12.12).

2

4

6

8

1

2

3

4

5

500

1000

1500

#Queries#Offers

C
on

su
m

pt
io

n
(k

B
)

Figure 12.12: Mean Memory Usage of the Selection Process

188 Performance and Scalability

13 Conclusions

I may not have gone where I intended to go,
but I think I have ended up where I needed to be.

– Douglas Adams (1952-2001)
The Long Dark Tea-Time of the Soul (1988)

This chapter concludes the thesis by summarizing its research contributions and by
providing a discussion of key topics for future work.

13.1 Summary of Contributions

Nowadays mobile devices such as smartphones or tablet computers are equipped with
fast processors, a lot of memory, and a wide range of sensors like accelerometer, GPS
sensor, or light sensor. But in the vision of ubiquitous computing devices disappear from
the focus of the users. This change of shifting of computers away from direct computer
interaction requires another way of applications to interact without bothering the user.
Context awareness is a central aspect of the solution for this problem.

Different information providers can serve as input provider for context-aware applications.
In recent years, a lot of attention has been drawn to the development of reasoning
mechanisms. These mechanisms are able to retrieve high-level information from other
information, which can be offered by these sensors or by external information providers
like databases, information system or external sensors. Context-aware applications
use the information provided by sensors, reasoning mechanisms and other sources for
visualization purposes: Beyond that, context-aware self-adaptive applications are able to
adjust their behaviour without the intrusion of the user based on this information.

The ongoing trend of ubiquitous computing brings several new challenges, which have
also to be taken into account during the development of context-aware applications in
these environments. For example, it is not possible for the developer of a context-aware
application to know all possibly available information providers in the environment
during the development phase. For this reason developers should rather explicitly
describe which kind of information they expect instead of using an explicit source. On
the other hand, this requires also information sources to offer an concrete description of
the information they can provide. The abstraction of all different kinds of information
providers to context services allows for transparently discover new information sources
and to access the provided information by a common well known interface.

189

Abstracting information providers as context services comes along with several
requirements on the underlying system. A central requirement is the loose coupling
of information providers and information consumers. In our system, methods for
information access and retrieval are encapsulated in context services implementing
the common interface. The context services are dynamically bound to the system if they
can serve as input provider for one or more information consumers.

Context information can be represented in several ways. But only providing a common
interface to access the information from heterogeneous sources is not sufficient to
account the heterogeneous representations of context information and of its metadata.
For that reason, we developed a context model allowing the explicit definition of the
semantics and data structures of the information. This model has initially been inspired
by the CoOL approach developed by Strang et al. [134]. But CoOL only focused on the
actual information but not on metadata. The information on semantics and how the
data are structured are stored centrally in a context ontology. This ontology consists of
several parts. The top-level ontology contains the most important concepts, classes and
relationships while it is extensible by domain- and application-specific ontologies.

The requirement for loose coupling is attended by several more requirements, which
have to be fulfilled to offer an appropriate support for context services. Context services
should be dynamically discoverable as it it not possible to know all providers at design
time. As a consequence, our middleware contains a discovery service which is extensible
by discovery plug-ins. The discovery service itself only discovers locally available context
services. The discovery mechanisms for external discovery using different discovery
protocols are sourced out to the discovery plug-ins.

The dynamic discovery and the transparent access by the context-aware applications
require for a language to describe which kind of information are requested or offered. As
it is also not possible to know in which form the information is offered (data structures,
semantics, metadata, etc.), the system and consequently also the language needs to be
able to describe and handle heterogeneously represented information. For this purpose
we developed the Context Offer and Query Language (COQL). The COQL builds on the
context model and refers to the different classes and individuals of the context ontology
to specify which information is provided or required. Both context offers and context
queries can include constraints to further precise the offered or requested information.

Based on these descriptions, a matching process finds appropriate context services for
an information consumer. This matching process consists of a mediation phase and a
constraint matching. Along with our context model, we adopted the concept of Inter-
Representation Operations (IROs) from the CoOL project. IROs are able to transfer
information from one representation into another representation. In addition to this
concept, we developed the more generic concept of metadata operators, which allow
the calculation of new metadata based on other existing metadata. In the mediation
phase, the system establishes chains of IROs and metadata operators in order to transfer
the offered information into the requested information. This mediation also includes
the metadata and their representations. After the generation of at least one mediator
chain, the constraints of context offer and context query are compared to prove their
satisfaction. We applied the method of analytic tableaux for the prove of satisfaction.

While it is possible that some information providers offer the same type of information
(e.g. information regarding the current position or the current activity), this information

190 Conclusions

can differ in quality levels and also in costs (energy consumption, resource usage,
or monetary costs) for providing and calculating the information. This requires the
selection process to consider the requirements of the information consumer to find the
best service. Another challenge for such a system is the reduction of energy consumption.
Also modern mobile devices have a limited energy capacity. It is desirable to reduce the
energy consumption as much as possible. This goes along with two different requirements
on the system: first, services that are not selected as an information provider should be
deactivated to save energy and second it is possible to share a service among more than
one consumer. To facilitate this support, the system favours the selection and activation
of these services that can be used by more than one consumer. Both energy related
requirements highly influence the selection process. In our approach we use utility
functions to calculate the usefulness of a context offer serving as an input provider for
a context query. In difference to other systems, our system searches for a whole set of
context offers that may serve as input providers for all context queries. The selection
process has to incorporate historical context information and its metadata. Due to the
deactivation of unused context services, the process cannot assume to get up-to-date
information.

Our system stands out from the existing works by several aspects. We significantly
improved the context model by supporting metadata and more generic operations on the
information, even if the model is based on CoOL [134] and the revised version by Reichle
[109]. The COQL, which builds on the Context Query Language [158] and its successor
(the Information Offer and Request Language) [109], has been extended by support for
heterogeneously represented metadata and for expressing selection preferences. The
matching process also stands out. Firstly, the mediation process as part of the matching
process automatically establishes mediator chains. Other approaches like the CoCo
system by Buchholz et al. allow also to mediate between different representations of
information but require a manual configuration of the required meditations. Secondly, we
apply the method of analytic tableaux in the matching process to prove the satisfiability
of the constraints. The usage of the method of analytic tableaux to solve constraint
satisfaction problems or for ontology reasoning is described in several existing works.
Nevertheless, the usage in the domain of context-aware applications on a resource-limited
device is not common and outstanding. The selection approach also has to be highlighted.
While an utility-based selection is already been employed in other projects like CONTEXT
[18], to the best of our knowledge, none of the existing works tries to select a whole set
of context sources to support the sharing of information and to minimize the resource
consumption. The aspect of resource consumption is another highlight of our work. The
idea of activation respectively deactivation of context sources has been adapted from
Paspallis [104]. However, the system by Paspallis did not provide a complex selection
mechanism. Furthermore, we discussed the problems that come along with the activation
respectively deactivation and provided initial solutions for the selection on historical
data.

In order to prove and to demonstrate the developed concepts, a context middleware, a
set of small demonstrators, and performance and scalability tests have been developed.
While the demonstrators show the coverage of the different requirements, the scalability
and performance tests also point out the disadvantages of our solutions. Especially the
scalability of the selection approach is improvable due to its exponential complexity
depending on the number of requests. Nevertheless, we have demonstrated that our

13.1 Summary of Contributions 191

approach is useful even for a large set of offers and queries (our largest demonstrator
consists of 23 context services offering 31 different context offers and 6 context
consumers). The battery runtime evaluation has to be emphasized as it shows the
high potentials of our approach with respect to minimize resource consumption.

13.2 Outlook and Future Work

Although the wide range of contributions of this work in the areas of context-
aware computing especially with the focus on discovery, matching and selection of
heterogeneously represented context information and their providers, our work has of
course several open issues which remain as future work:

• Combined selection and fusion approach: several existing works (like Nexus
[9, 112, 97, 43, 79, 58] or Reichle [109]) fuse context information either to
increase reliability of the provided data (competitive fusion) or to infer new context
information (complementary fusion). While it is already possible to develop context
services encapsulating complementary fusion mechanisms with the current system,
the support for competitive fusion is missing. This would allow to select more than
one context service for a request.

• Enhance selection scalability: Currently the selection approach as described in
Chapter 9 selects one or more offers at once in order to satisfy one or more context
requests. Even if several enhancements are already implemented (see Section 9.4),
the selection algorithm can be further improved. The context selection is performed
once for all requests in order to share offers and to reduce cost. It might be sufficient
to divide the selection process into several sub-processes. Every sub-process selects
mediator chains (and as a consequence context offers) only for these requests,
which have at least one chain which use the same context offer as input provider.
Theoretically this should result in the same selection set as by the implemented
selection algorithm but should reduce the number of calculations. Additionally, it
would be possible to evaluate the usability of common optimization methods.

• Improved calculation of mediator chains: In the matching and mediation phase,
as described in Chapter 8, mediator chains are established to transfer information
from an offered representation into the requested format. A mediator chain
is a sequence of one or more Inter-Representation Operations and of metadata
operations. To calculate these mediator chains, the current algorithms stops either
if no more chains can be computed or if a maximal number of chains is reached.
This maximum is specified as a system parameter. As shown in the evaluation
of the selection function it is beneficial to limit the number of potential context
providers per query. For this purpose, the usability of optimization algorithms like
the Dijkstra algorithm has to be researched. But these algorithms cannot be simply
used due the complex transformation of the metadata.

• Development methodology: Introducing context services as transparently
accessible reusable context providers change the way how to develop context-
aware applications. Instead of focussing on methods for accessing the required
information from the underlying hardware and for reasoning on these information
to derive new information, the application developer has to know how to

192 Conclusions

use constraints and selection function factors in order to retrieve the required
information. Several methodologies exist (like the methodology by Henricksen
et al. [51]) that already rely on approaches encapsulating context providers in
separate reusable components. None of these approaches allow the expression of
complex queries (including constraints and selection preferences) to transparently
discover these providers.

• Enhanced support for retrieving metadata: Metadata are a central aspect in this
work as they are used to precise context queries and offers to construct appropriate
mediator chains and for the selection of context providers. As we focused in
this work on providing a generic support, we reused in the demonstrators either
statements regarding metadata raised in existing works or we forged values only
for demonstration purposes. Hence, in future work the middleware could provide
support for developers of context services to measure or learn different metadata
of their context services and to be able to specify correct metadata constraints.

• Remote context services: The remote binding of context services is already
possible within this work, but we currently do not support the revision of remote
context offers. This is actually required e.g to update required cost (in general this
will be communication cost and not cost caused by a sensor). On top of that, this
support is also necessary for updating quality related metadata, e.g. metadata with
the scope ‘freshness’ have to be recalculated after transmission as they are not valid
any more.

• Privacy and security: The topics of security and privacy have not been taken into
account within this work. For these topics a lot of additional questions have to be
answered: How to ensure a secure transmission of context data only to foreseen
receivers? How to share context data only to selected devices or persons? How to
prevent intrusion into and manipulation of context services respectively context
data? The solutions for these problems would intrude all parts of this work and
would also influence a potential development methodology.

• Extended constraint support: Currently only unary constraints and their
combinations are supported in both context offers and queries to precise them. In
the future, the COQL should be extended with regard to allow for more complex
constraints. With n-ary constraints it would be possible to compare variables or also
to define complex expressions like distanceBetween(friend.position,my.position)
< 1km, which could be used e.g. as a scope constraint.

13.2 Outlook and Future Work 193

Part IV

Appendices

195

A Logging Output for Demonstrator B

Listing A.1 shows the logging output of the selection service while calculating the optimal
selection for the second query of Demonstrator B (see Section 11.4).� �

1 S t a r t s e l e c t i o n process
2 #Queries=1
3 #QueriesForReasoner=3
4 #Chains=9
5 #AverageChainsPerQueries=2
6 #Combinations = 6
7 Checking combination #1 of 6
8 c a l c u l a t e S i n g l e U t i l i t y F u n c t i o n fo r query =query_act iv i ty_demo2−1343829250916−30
9 No s e l e c t i o n func t ion s p e c i f i e d −−> u t i l i t y = 0.5

10 c a l c u l a t e S i n g l e U t i l i t y F u n c t i o n fo r query =query_ActivityKose_ACCELERATION_1
−1343829250124−60

11 No s e l e c t i o n func t ion s p e c i f i e d −−> u t i l i t y = 0.5
12 c a l c u l a t e A g g r e g a t e d U t i l i t y F u n c t i o n f o r s e t of cha ins (

m_offer_ANDROID_ACCELEROMETER_Generic_1−1343829249900−33
_query_ActivityKose_ACCELERATION_1−1343829250124−60−1343829258283−87;
m_of fe r_Ac t iv i t yKose −1343829250124−51_query_act iv i ty_demo2
−1343829250916−30−1343829258564−19;) = 0.9500000005

13 Checking combination #2 of 6
14 c a l c u l a t e S i n g l e U t i l i t y F u n c t i o n fo r query =query_act iv i ty_demo2−1343829250916−30
15 No s e l e c t i o n func t ion s p e c i f i e d −−> u t i l i t y = 0.5
16 c a l c u l a t e S i n g l e U t i l i t y F u n c t i o n fo r query =query_ActivityKose_ACCELERATION_1

−1343829250124−60
17 No s e l e c t i o n func t ion s p e c i f i e d −−> u t i l i t y = 0.5
18 c a l c u l a t e A g g r e g a t e d U t i l i t y F u n c t i o n f o r s e t of cha ins (

m_offer_ANDROID_ACCELEROMETER_Generic_2−1343829249900−37
_query_ActivityKose_ACCELERATION_1−1343829250124−60−1343829258345−9;
m_of fe r_Ac t iv i t yKose −1343829250124−51_query_act iv i ty_demo2
−1343829250916−30−1343829258564−19;) = 0.9500000005

19 Checking combination #3 of 6
20 c a l c u l a t e S i n g l e U t i l i t y F u n c t i o n fo r query =query_act iv i ty_demo2−1343829250916−30
21 No s e l e c t i o n func t ion s p e c i f i e d −−> u t i l i t y = 0.5
22 c a l c u l a t e S i n g l e U t i l i t y F u n c t i o n fo r query =query_ActivityKwapisc_ACCELERATION

−1343829250132−45
23 No s e l e c t i o n func t ion s p e c i f i e d −−> u t i l i t y = 0.5
24 c a l c u l a t e A g g r e g a t e d U t i l i t y F u n c t i o n f o r s e t of cha ins (

m_offer_ANDROID_ACCELEROMETER_Generic_2−1343829249900−37
_query_ActivityKwapisc_ACCELERATION−1343829250132−45−1343829258360−60;
m_of fer_Act iv i tyKwapisc −1343829250132−5_query_act iv i ty_demo2
−1343829250916−30−1343829258588−44;) = 0.9500000005

25 Checking combination #4 of 6
26 c a l c u l a t e S i n g l e U t i l i t y F u n c t i o n fo r query =query_act iv i ty_demo2−1343829250916−30
27 No s e l e c t i o n func t ion s p e c i f i e d −−> u t i l i t y = 0.5
28 c a l c u l a t e S i n g l e U t i l i t y F u n c t i o n fo r query =query_ActivityKwapisc_ACCELERATION

−1343829250132−45
29 No s e l e c t i o n func t ion s p e c i f i e d −−> u t i l i t y = 0.5
30 c a l c u l a t e A g g r e g a t e d U t i l i t y F u n c t i o n f o r s e t of cha ins (m_of fer_Act iv i tyKwapisc

−1343829250132−5_query_act iv i ty_demo2−1343829250916−30−1343829258588−44;
m_offer_ANDROID_ACCELEROMETER_Generic_1−1343829249900−33
_query_ActivityKwapisc_ACCELERATION−1343829250132−45−1343829258305−48;) =
0.9500000005

31 Checking combination #5 of 6
32 c a l c u l a t e S i n g l e U t i l i t y F u n c t i o n fo r query =query_act iv i ty_demo2−1343829250916−30
33 No s e l e c t i o n func t ion s p e c i f i e d −−> u t i l i t y = 0.5

197

34 c a l c u l a t e S i n g l e U t i l i t y F u n c t i o n fo r query =query_ActivityLee_ACCELERATION
−1343829250178−87

35 No s e l e c t i o n func t ion s p e c i f i e d −−> u t i l i t y = 0.5
36 c a l c u l a t e A g g r e g a t e d U t i l i t y F u n c t i o n f o r s e t of cha ins (

m_offer_ANDROID_ACCELEROMETER_Generic_1−1343829249900−33
_query_ActivityLee_ACCELERATION−1343829250178−87−1343829258314−90;
m_of fe r_Ac t i v i t yLee −1343829250178−66_query_act iv i ty_demo2
−1343829250916−30−1343829258613−77;) = 0.9500000005

37 Checking combination #6 of 6
38 c a l c u l a t e S i n g l e U t i l i t y F u n c t i o n fo r query =query_act iv i ty_demo2−1343829250916−30
39 No s e l e c t i o n func t ion s p e c i f i e d −−> u t i l i t y = 0.5
40 c a l c u l a t e S i n g l e U t i l i t y F u n c t i o n fo r query =query_ActivityLee_ACCELERATION

−1343829250178−87
41 No s e l e c t i o n func t ion s p e c i f i e d −−> u t i l i t y = 0.5
42 c a l c u l a t e A g g r e g a t e d U t i l i t y F u n c t i o n f o r s e t of cha ins (

m_offer_ANDROID_ACCELEROMETER_Generic_2−1343829249900−37
_query_ActivityLee_ACCELERATION−1343829250178−87−1343829258368−0;
m_of fe r_Ac t i v i t yLee −1343829250178−66_query_act iv i ty_demo2
−1343829250916−30−1343829258613−77;) = 0.9500000005

43 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
44 S e l e c t i o n f i n i s h e d in 33ms: Se lec ted cha ins = {Chain (Of fe r=

offer_ANDROID_ACCELEROMETER_Generic_1−1343829249900−33;Query=
query_ActivityKose_ACCELERATION_1−1343829250124−60) : A c c e l e r a t i o n|−>
AndroidDeviceAccelerat ionRep , Chain (Of fe r=o f f e r _ A c t i v i t y K o s e
−1343829250124−51;Query=query_act iv i ty_demo2−1343829250916−30) : A c t i v i t y|−>
Act iv i tyKoseRep , } u t i l i t y O f S e l e c t i o n S e t = 0.9500000005

45 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−� �
Listing A.1: Demonstrator B: Logging Output of the Selection Service for the Second

Scenario

198 Logging Output for Demonstrator B

B Erklärung

Hiermit versichere ich, dass ich die vorliegende Dissertation selbstständig, ohne unerlaub-
te Hilfe Dritter angefertigt und andere als die in der Dissertation angegebenen Hilfsmittel
nicht benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten
oder unveröffentlichten Schriften entnommen sind, habe ich als solche kenntlich
gemacht. Dritte waren an der inhaltlich-materiellen Erstellung der Dissertation nicht
beteiligt; insbesondere habe ich hierfür nicht die Hilfe eines Promotionsberaters in
Anspruch genommen. Kein Teil dieser Arbeit ist in einem anderen Promotions- oder
Habilitationsverfahren verwendet worden.

Kassel, im November 2012

Dipl.-Inf. Michael Wagner

199

C Bibliographies

C.1 Bibliography

[1] Zied Abid, Sophie Chabridon and Denis Conan. A Framework for Quality of
Context Management. In: Quality of Context, First International Workshop,
QuaCon 2009, Stuttgart, Germany, June 25-26, 2009. Revised Papers. Ed. by
Kurt Rothermel, Dieter Fritsch, Wolfgang Blochinger and Frank Dürr. Vol. 5786.
LNCS. Springer, 2009, pp. 120–131. isbn: 978-3-642-04558-5 (cit. on pp. 50–51,
60, 150).

[2] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark
Smith and Pete Steggles. Towards a Better Understanding of Context and
Context-Awareness. In: Handheld and Ubiquitous Computing, First International
Symposium, HUC’99, Karlsruhe, Germany, September 27-29, 1999, Proceedings.
Ed. by Hans-Werner Gellersen. Vol. 1707. LNCS. Springer, 1999, pp. 304–307.
isbn: 3-540-66550-1 (cit. on pp. 16–17, 43–44).

[3] Alessandra Agostini, Claudio Bettini, Nicolò Cesa-Bianchi, Dario Maggiorini,
Daniele Riboni, Michele Ruberl, Cristiano Sala and Davide Vitali. Towards
Highly Adaptive Services for Mobile Computing. In: Mobile Information
Systems, IFIP TC 8 Working Conference on Mobile Information Systems (MOBIS),
15-17 September 2004, Oslo, Norway. Ed. by Elaine Lawrence, Barbara Pernici and
John Krogstie. Vol. 158. IFIP International Federation for Information Processing.
2004, pp. 121–134. isbn: 0-387-22851-9 (cit. on pp. 47, 60).

[4] Alessandra Agostini, Claudio Bettini and Daniele Riboni. A Performance
Evaluation of Ontology-Based Context Reasoning. In: Fifth Annual IEEE
International Conference on Pervasive Computing and Communications - Workshops
(PerCom Workshops 2007), 19-23 March 2007, White Plains, New York, USA. IEEE
Computer Society, 2007, pp. 3–8. isbn: 978-0-7695-2788-8 (cit. on pp. 47, 60,
149).

[5] Alessandra Agostini, Claudio Bettini and Daniele Riboni. Loosely Coupling
Ontological Reasoning with an Efficient Middleware for Context-awareness.
In: 2nd Annual International Conference on Mobile and Ubiquitous Systems
(MobiQuitous 2005), 17-21 July 2005, San Diego, CA, USA. IEEE Computer
Society, 2005, pp. 175–182. isbn: 0-7695-2375-7 (cit. on pp. 47, 60).

[6] Marco Aiello, Ganna Frankova and Daniela Malfatti. What’s in an Agreement?
An Analysis and an Extension of WS-Agreement. In: Service-Oriented Comput-
ing - ICSOC 2005, Third International Conference, Amsterdam, The Netherlands,
December 12-15, 2005, Proceedings. Ed. by Boualem Benatallah, Fabio Casati

201

and Paolo Traverso. Vol. 3826. LNCS. Springer, 2005, pp. 424–436. isbn: 3-540-
30817-2 (cit. on p. 92).

[7] Grigoris Antoniou and Frank van Harmelen. Web Ontology Language: OWL. In:
Handbook on Ontologies. Ed. by Steffen Staab and Rudi Studer. Second Edition.
International Handbooks on Information Systems. Springer, 2009, pp. 67–92.
isbn: 978-3-540-70999-2 (cit. on p. 39).

[8] Matthias Baldauf, Schahram Dustdar and Florian Rosenberg. A survey on
context-aware systems. In: IJAHUC 2.4 (2007), pp. 263–277 (cit. on pp. 17,
43–44, 57).

[9] Christian Becker. System Support for Context-aware Computing. Englisch.
Habilitation. Universität Stuttgart : Sonderforschungsbereich SFB 627 (Nexus:
Umgebungsmodelle für mobile kontextbezogene Systeme), Germany, June 2004,
p. 245. url: http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/
NCSTRL_view.pl?id=HABIL-2004-02&engl= (cit. on pp. 4–5, 56, 61, 90, 192).

[10] Christian Becker and Frank Dürr. On location models for ubiquitous comput-
ing. In: Personal and Ubiquitous Computing 9.1 (2005), pp. 20–31 (cit. on pp. 4,
90).

[11] Christian Becker and Daniela Nicklas. Where do spatial context-models
end and where do ontologies start? A proposal of a combined approach.
Deutsch. In: Proceedings of the First International Workshop on Advanced Context
Modelling, Reasoning and Management. Ed. by Jadwiga Indulska and David De
Roure. Nottingham, England, Sept. 2004, pp. 48–53. isbn: 854328130 (cit. on
pp. 16–17).

[12] Evert Willem Beth. The Foundations of Mathematics. Amsterdam, North-
Holland Pub. Co., 1959 (cit. on p. 28).

[13] Gregory Biegel and Vinny Cahill. A Framework for Developing Mobile,
Context-aware Applications. In: Proceedings of the Second IEEE International
Conference on Pervasive Computing and Communications (PerCom 2004), 14-17
March 2004, Orlando, FL, USA. IEEE Computer Society, 2004, pp. 361–365. isbn:
0-7695-2090-1 (cit. on pp. 44, 57, 61).

[14] Steffen Bleul and Kurt Geihs. Automatic Quality-Aware Service Discovery and
Matching. In: Proceedings of the 13th Annual Workshop of HP OpenView University
Association (HP-OVUA). Infonomics-Consulting, Stuttgart, Germany, May 2006,
pp. 109–118. isbn: 3-000-18780-4 (cit. on p. 92).

[15] Steve Bratt. Semantic Web, and Other Technologies to Watch. Presentation.
2007. url: http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/ (cit.
on p. 40).

[16] Thomas Buchholz, Michael Krause, Claudia Linnhoff-Popien and Michael
Schiffers. CoCo: Dynamic Composition of Context Information. In: 1st Annual
International Conference on Mobile and Ubiquitous Systems (MobiQuitous 2004),
Networking and Services, 22-25 August 2004, Cambridge, MA, USA. IEEE
Computer Society, 2004, pp. 335–343. isbn: 0-7695-2208-4 (cit. on pp. 46,
60, 62, 110, 191).

202 Bibliographies

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=HABIL-2004-02&engl=
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=HABIL-2004-02&engl=
http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/

[17] Thomas Buchholz, Axel Küpper and Michael Schiffers. Quality of Context
Information: What it is and why we need it. In: Proceedings of the 10th HP-
OVUA Workshop, 2003, Geneva, Switzerland. July 2003 (cit. on pp. 18–22, 46–47).

[18] Maria Chantzara, Miltiades E. Anagnostou and Efstathios D. Sykas. Designing
a Quality-Aware Discovery Mechanism for Acquiring Context Information.
In: 20th International Conference on Advanced Information Networking and
Applications (AINA 2006), 18-20 April 2006, Vienna, Austria. IEEE Computer
Society, 2006, pp. 211–216. isbn: 0-7695-2466-4 (cit. on pp. 48–49, 60, 62,
191).

[19] Harry Chen. An Intelligent Broker Architecture for Pervasive Context-Aware
Systems. PhD thesis. University of Maryland, Baltimore Count, Dec. 2004. url:
http://ebiquity.umbc.edu/get/a/publication/152.pdf (cit. on pp. 44, 48,
60).

[20] Harry Chen, Tim Finin and Anupam Joshi. A Context Broker for Building Smart
Meeting Rooms. In: AAAI 2004 Spring Symposium on Knowledge Representation
and Ontology for Autonomous Systems. Draft. Stanford, 2004. url: http://www.
aaai.org/Papers/Symposia/Spring/2004/SS-04-04/SS04-04-008.pdf
(cit. on pp. 17, 48, 60).

[21] Harry Chen, Tim Finin and Anupam Joshi. An Ontology for Context-Aware
Pervasive Computing Environments. In: The Knowledge Engineering Review
18.03 (2003), pp. 197–207. doi: DOI:10.1017/S0269888904000025. eprint:
http://journals.cambridge.org/article_S0269888904000025. url: http:
//dx.doi.org/10.1017/S0269888904000025 (cit. on pp. 44, 48, 60).

[22] Harry Chen, Timothy W. Finin and Anupam Joshi. Using OWL in a Pervasive
Computing Broker. In: Proceedings of the Workshop on Ontologies in Agent
Systems (OAS 2003), Melbourne, Australia, July 15, 2003. Ed. by Stephen
Cranefield, Timothy W. Finin, Valentina A. M. Tamma and Steven Willmott.
Vol. 73. CEUR Workshop Proceedings. CEUR-WS.org, 2003, pp. 9–16 (cit. on
pp. 48, 60).

[23] Alonzo Church. A Note on the Entscheidungsproblem. In: J. Symb. Log. 1.1
(1936), pp. 40–41 (cit. on p. 101).

[24] Ed Clarke and Andrei Voronkov (Programme Committee Chairs). 16th Inter-
national Conference on Logic for Programming Artificial Intelligence and
Reasoning (LPAR-16). In: Call for Paper. 2010. url: http://www.lpar.net/
lpar-16/cfp.cgi (cit. on p. 27).

[25] Yann Collette and Patrick Siarry. Multiobjective optimization: principles and
case studies. Decision engineering. Springer, 2003. isbn: 3-540-40182-2. url:
http://books.google.de/books?id=XNYF4hltoF0C (cit. on pp. 113, 136).

[26] Michael Compton, Corey Henson, Holger Neuhaus, Laurent Lefort and Amit
Sheth. A Survey of the Semantic Specification of Sensors. In: 2nd Interna-
tional Workshop on Semantic Sensor Networks, at 8th International Semantic Web
Conference. Washington DC, USA, 2009th Oct. 2009 (cit. on p. 90).

C.1 Bibliography 203

http://ebiquity.umbc.edu/get/a/publication/152.pdf
http://www.aaai.org/Papers/Symposia/Spring/2004/SS-04-04/SS04-04-008.pdf
http://www.aaai.org/Papers/Symposia/Spring/2004/SS-04-04/SS04-04-008.pdf
http://dx.doi.org/DOI:10.1017/S0269888904000025
http://journals.cambridge.org/article_S0269888904000025
http://dx.doi.org/10.1017/S0269888904000025
http://dx.doi.org/10.1017/S0269888904000025
http://www.lpar.net/lpar-16/cfp.cgi
http://www.lpar.net/lpar-16/cfp.cgi
http://books.google.de/books?id=XNYF4hltoF0C

[27] Denis Conan, Romain Rouvoy and Lionel Seinturier. Scalable Processing
of Context Information with COSMOS. In: Distributed Applications and
Interoperable Systems, 7th IFIP WG 6.1 International Conference, DAIS 2007,
Paphos, Cyprus, June 6-8, 2007, Proceedings. Ed. by Jadwiga Indulska and Kerry
Raymond. Vol. 4531. LNCS. Springer, 2007, pp. 210–224. isbn: 978-3-540-
72881-8 (cit. on pp. 50–51, 60).

[28] Dan Connolly, Frank van Harmelen, Ian Horrocks, Deborah L. McGuinness, Peter
F. Patel-Schneider and Lynn Andrea Stein. DAML+OIL Reference Description.
W3C Note, Dec. 2001. url: http://www.w3.org/TR/daml+oil-reference
(cit. on p. 39).

[29] Jiangpeng Dai, Xiaole Bai, Zhimin Yang, Zhaohui Shen and Dong Xuan. Mobile
phone-based pervasive fall detection. In: Personal and Ubiquitous Computing
14.7 (2010), pp. 633–643 (cit. on p. 149).

[30] Jiangpeng Dai, Xiaole Bai, Zhimin Yang, Zhaohui Shen and Dong Xuan. PerFallD:
A pervasive fall detection system using mobile phones. In: Eigth Annual IEEE
International Conference on Pervasive Computing and Communications, PerCom
2010, March 29 - April 2, 2010, Mannheim, Germany, Workshop Proceedings.
IEEE, 2010, pp. 292–297 (cit. on p. 149).

[31] Indraneel Das and J. E. Dennis. Normal-Boundary Intersection: A New
Method for Generating the Pareto Surface in Nonlinear Multicriteria
Optimization Problems. In: SIAM J. on Optimization 8 (3 Mar. 1998),
pp. 631–657. issn: 1052-6234. doi: 10.1137/S1052623496307510. url: http:
//dl.acm.org/citation.cfm?id=588907.589322 (cit. on p. 137).

[32] Anind K. Dey. Providing architectural support for building context-aware
applications. AAI9994400. PhD thesis. Atlanta, GA, USA: Georgia Institute of
Technology, 2000. isbn: 0-493-01246-X (cit. on pp. 49, 60).

[33] Anind K. Dey and Gregory D. Abowd. The Context Toolkit: Aiding the
Development of Context-Aware Applications. In: Workshop on Software
Engineering for Wearable and Pervasive Computing , Limerick, Ireland. June 2000
(cit. on pp. 44, 49–50, 60).

[34] Anind K. Dey, Jennifer Mankoff, Gregory D. Abowd and Scott Carter. Distributed
mediation of ambiguous context in aware environments. In: Proceedings of
the 15th Annual ACM Symposium on User Interface Software and Technology,
Paris, France, October 27-30, 2002. Ed. by Michel Beaudouin-Lafon. ACM, 2002,
pp. 121–130. isbn: 1-58113-488-6 (cit. on p. 17).

[35] Li Ding, Pranam Kolari, Zhongli Ding and Sasikanth Avancha. Using Ontologies
in the Semantic Web: A Survey. In: Ontologies. Ed. by Raj Sharman, Rajiv
Kishore and Ram Ramesh. Vol. 14. Integrated Series in Information Systems.
Springer US, 2007, pp. 79–113. isbn: 978-0-387-37022-4 (cit. on pp. 38–39).

[36] David S. Doermann and Ramani Duraiswami, eds. Proceedings of the 3rd
International Conference on Mobile and Ubiquitous Multimedia, MUM
2004, College Park, Maryland, USA, October 27-29, 2004. Vol. 83. ACM

204 Bibliographies

http://www.w3.org/TR/daml+oil-reference
http://dx.doi.org/10.1137/S1052623496307510
http://dl.acm.org/citation.cfm?id=588907.589322
http://dl.acm.org/citation.cfm?id=588907.589322

International Conference Proceeding Series. ACM, 2004. isbn: 1-58113-981-
0.

[37] Robert T. Eckenrode. Weighting Multiple Criteria. In: Management Science
12.3 (1965), pp. 180–192. doi: 10.1287/mnsc.12.3.180. eprint: http://
mansci.journal.informs.org/content/12/3/180.full.pdf+html. url:
http://mansci.journal.informs.org/content/12/3/180.abstract (cit. on
p. 137).

[38] Thomas Erl. SOA Principles of Service Design (The Prentice Hall Service-
Oriented Computing Series from Thomas Erl). Upper Saddle River, NJ, USA:
Prentice Hall PTR, 2007. isbn: 0132344823 (cit. on pp. 5, 18).

[39] Fifth Annual IEEE International Conference on Pervasive Computing and
Communications - Workshops (PerCom Workshops 2007), 19-23 March
2007, White Plains, New York, USA. IEEE Computer Society, 2007. isbn: 978-
0-7695-2788-8.

[40] Patrik Floréen, Michael Przybilski, Petteri Nurmi, Johan Koolwaaij, Anthony
Tarlano, Matthias Wagner, Marko Luther, Fabien Bataille, Mathieu Boussard,
Bernd Mrohs and Sianlun Lau. Towards a Context Management Framework
for MobiLife. In: In IST Mobile & Wireless Communications Summit. 2005 (cit. on
pp. 55, 61–62).

[41] Kurt Geihs. Selbst-adaptive Software. In: Informatik Spektrum 31.2 (2008),
pp. 133–145 (cit. on pp. 3, 24–25).

[42] Kurt Geihs et al. A comprehensive solution for application-level adaptation.
In: Softw., Pract. Exper. 39.4 (2009), pp. 385–422 (cit. on p. 25).

[43] Matthias Großmann, Nicola Hönle, Carlos Lübbe and Harald Weinschrott. An
Abstract Processing Model for the Quality of Context Data. In: Quality of
Context, First International Workshop, QuaCon 2009, Stuttgart, Germany, June
25-26, 2009. Revised Papers. Ed. by Kurt Rothermel, Dieter Fritsch, Wolfgang
Blochinger and Frank Dürr. Vol. 5786. LNCS. Springer, 2009, pp. 132–143. isbn:
978-3-642-04558-5 (cit. on pp. 56, 61, 192).

[44] Thomas R. Gruber. A translation approach to portable ontology specifica-
tions. In: Knowl. Acquis. 5.2 (June 1993), pp. 199–220. issn: 1042-8143. doi: 10.
1006/knac.1993.1008. url: http://dx.doi.org/10.1006/knac.1993.1008
(cit. on pp. 38–39).

[45] Nicola Guarino, Daniel Oberle and Steffen Staab. What Is an Ontology? In:
Handbook on Ontologies. Ed. by Steffen Staab and Rudi Studer. Second Edition.
International Handbooks on Information Systems. Springer, 2009, pp. 1–17.
isbn: 978-3-540-70999-2 (cit. on p. 38).

[46] Tao Gu, Hung Keng Pung and Da Qing Zhang. A Middleware for Building
Context-Aware Mobile Services. In: In Proceedings of IEEE Vehicular Technology
Conference (VTC). 2004 (cit. on pp. 44, 58, 61, 79).

C.1 Bibliography 205

http://dx.doi.org/10.1287/mnsc.12.3.180
http://mansci.journal.informs.org/content/12/3/180.full.pdf+html
http://mansci.journal.informs.org/content/12/3/180.full.pdf+html
http://mansci.journal.informs.org/content/12/3/180.abstract
http://dx.doi.org/10.1006/knac.1993.1008
http://dx.doi.org/10.1006/knac.1993.1008
http://dx.doi.org/10.1006/knac.1993.1008

[47] Tao Gu, Hung Keng Pung and Daqing Zhang. A service-oriented middleware
for building context-aware services. In: J. Network and Computer Applications
28.1 (2005), pp. 1–18 (cit. on pp. 58, 61).

[48] Tao Gu, Xiaohang Wang, Hung Keng Pung and Daqing Zhang. An Ontology-
based Context Model in Intelligent Environments. In: Communication Net-
works and Distributed Systems Modeling and Simulation Conference. San Diego,
California, Jan. 2004 (cit. on pp. 58, 61).

[49] Jacek Gwizdka. What’s in the context? In: Workshop on the What, Who, Where,
When, and How of Context-Awareness. 2000 (cit. on p. 16).

[50] P. E. Hart, N. J. Nilsson and B. Raphael. A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. In: Systems Science and Cybernetics,
IEEE Transactions on 4.2 (1968), pp. 100–107. doi: http://dx.doi.org/10.
1109/TSSC.1968.300136. url: http://dx.doi.org/10.1109/TSSC.1968.
300136 (cit. on p. 137).

[51] Karen Henricksen and Jadwiga Indulska. Developing context-aware pervasive
computing applications: Models and approach. In: Pervasive and Mobile
Computing 2.1 (2006), pp. 37–64 (cit. on p. 193).

[52] Karen Henricksen, Jadwiga Indulska and Andry Rakotonirainy. Infrastructure
for Pervasive Computing: Challenges. In: GI Jahrestagung (1). 2001, pp. 214–
222 (cit. on pp. 14–15, 24).

[53] Karen Henricksen, Jadwiga Indulska and Andry Rakotonirainy. Modeling Con-
text Information in Pervasive Computing Systems. In: Pervasive Computing,
First International Conference, Pervasive 2002, Zürich, Switzerland, August 26-
28, 2002, Proceedings. Ed. by Friedemann Mattern and Mahmoud Naghshineh.
Vol. 2414. LNCS. Springer, 2002, pp. 167–180. isbn: 3-540-44060-7 (cit. on
p. 17).

[54] Colombe Herault, Gaël Thomas and Philippe Lalanda. A distributed service-
oriented mediation tool. In: 2007 IEEE International Conference on Services
Computing (SCC 2007), 9-13 July 2007, Salt Lake City, Utah, USA. IEEE Computer
Society, 2007, pp. 403–409 (cit. on p. 114).

[55] Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph and York Sure. Semantic
Web: Grundlagen. Berlin: Springer, 2008. isbn: 978-3-540-33993-9. doi: 10.
1007/978-3-540-33994-6 (cit. on p. 41).

[56] Thomas Hofer, Wieland Schwinger, Mario Pichler, Gerhard Leonhartsberger,
Josef Altmann and Werner Retschitzegger. Context-Awareness on Mobile
Devices - the Hydrogen Approach. In: HICSS. 2003, p. 292 (cit. on pp. 44,
52–53, 61).

[57] Petra Hofstedt and Armin Wolf. Einführung in die Constraint-Programmie-
rung: Grundlagen, Methoden, Sprachen, Anwendungen. Springer, 2007.
isbn: 9783540231844. doi: 10.1007/978-3-540-68194-6 (cit. on p. 101).

[58] Nicola Hönle, Matthias Großmann, Daniela Nicklas and Bernhard Mitschang.
Design and implementation of a domain-aware data model for pervasive

206 Bibliographies

http://dx.doi.org/http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1007/978-3-540-33994-6
http://dx.doi.org/10.1007/978-3-540-33994-6
http://dx.doi.org/10.1007/978-3-540-68194-6

context information. In: Computer Science - R&D 24.1-2 (2009), pp. 69–83
(cit. on pp. 56, 61, 192).

[59] Markus C. Huebscher and Julie A. McCann. Adaptive middleware for context-
aware applications in smart-homes. In: Proceedings of the 2nd Workshop
on Middleware for Pervasive and Ad-hoc Computing, Toronto, Ontario, Canada,
October 18-22, 2004. Ed. by Paddy Nixon and Fabio Kon. ACM, 2004,
pp. 111–116. isbn: 1-58113-951-9 (cit. on pp. 17, 45, 49, 60, 62).

[60] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira and Benjamin Reed. Zoo-
Keeper: wait-free coordination for internet-scale systems. In: Proceedings of
the 2010 USENIX conference on USENIX annual technical conference. USENIX-
ATC’10. Berkeley, CA, USA: USENIX Association, 2010, pp. 11–11. url: http:
//dl.acm.org/citation.cfm?id=1855840.1855851 (cit. on p. 142).

[61] IBM. An architectural blueprint for autonomic computing. In: White Paper.
Ed. by IBM Corporation. 2006. url: http://www-03.ibm.com/autonomic/pdfs/
AC_Blueprint_White_Paper_4th.pdf (cit. on pp. 24–25).

[62] Michael C. Jaeger. Optimising Quality-of-Service for the Composition of
Electronic Services. PhD thesis. Berlin University of Technology, Jan. 2007.
url: http://opus.kobv.de/tuberlin/volltexte/2007/1472/ (cit. on pp. 6,
135).

[63] Jeffrey O. Kephart and Rajarshi Das. Achieving Self-Management via Utility
Functions. In: IEEE Internet Computing 11.1 (2007), pp. 40–48 (cit. on p. 25).

[64] Ralf Kernchen, David Bonnefoy, Agathe Battestini, Bernd Mrohs, Matthias Wagner
and Mika Klemettinen. Context-awareness in MobiLife. In: Proc. of the 15th
IST Mobile Summit. Mykonos, Greece, June 2006. url: http : / / www . ist -
esense.org/fileadmin/images/PDF_Other/IST_SUMMIT_2006/5.c\
_MOBILIFE.pdf (cit. on pp. 55, 61–62).

[65] Mohammad Ullah Khan. Unanticipated Dynamic Adaptation of Mobile
Applications. PhD thesis. Kassel, Germany: University of Kassel, Fachbereich 16:
Elektrotechnik/Informatik, Distributed Systems Group, Mar. 2010. url: http:
//www.upress.uni-kassel.de/publi/abstract.php?978-3-89958-918-4
(cit. on p. 25).

[66] Michael Kifer and Georg Lausen. F-Logic: A Higher-Order language for
Reasoning about Objects, Inheritance, and Scheme. In: Proceedings of the
1989 ACM SIGMOD International Conference on Management of Data, Portland,
Oregon, May 31 - June 2, 1989. Ed. by James Clifford, Bruce G. Lindsay and
David Maier. ACM Press, 1989, pp. 134–146 (cit. on p. 39).

[67] Tim Kindberg and Armando Fox. System Software for Ubiquitous Computing.
In: IEEE Pervasive Computing 1 (1 Jan. 2002), pp. 70–81. issn: 1536-1268. doi:
10.1109/MPRV.2002.993146. url: http://dl.acm.org/citation.cfm?id=
612822.612834 (cit. on p. 14).

[68] Cédric Kiss. Composite Capability/Preference Profiles (CC/PP): Structure
and Vocabularies 2.0. a WD in Last Call. http://www.w3.org/TR/2007/WD-
CCPP-struct-vocab2-20070430. W3C, Apr. 2007 (cit. on p. 47).

C.1 Bibliography 207

http://dl.acm.org/citation.cfm?id=1855840.1855851
http://dl.acm.org/citation.cfm?id=1855840.1855851
http://www-03.ibm.com/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf
http://www-03.ibm.com/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf
http://opus.kobv.de/tuberlin/volltexte/2007/1472/
http://www.ist-esense.org/fileadmin/images/PDF_Other/IST_SUMMIT_2006/5.c_MOBILIFE.pdf
http://www.ist-esense.org/fileadmin/images/PDF_Other/IST_SUMMIT_2006/5.c_MOBILIFE.pdf
http://www.ist-esense.org/fileadmin/images/PDF_Other/IST_SUMMIT_2006/5.c_MOBILIFE.pdf
http://www.upress.uni-kassel.de/publi/abstract.php?978-3-89958-918-4
http://www.upress.uni-kassel.de/publi/abstract.php?978-3-89958-918-4
http://dx.doi.org/10.1109/MPRV.2002.993146
http://dl.acm.org/citation.cfm?id=612822.612834
http://dl.acm.org/citation.cfm?id=612822.612834

[69] Alexander Kohout. Context Constraints in a Dynamic Context Service
Discovery and Binding Process. Bachelor Thesis. University of Kassel, June
2011 (cit. on pp. 101, 182–183).

[70] Panu Korpipää, Jonna Häkkilä, Juha Kela, Sami Ronkainen and Ilkka Känsälä.
Utilising context ontology in mobile device application personalisation.
In: Proceedings of the 3rd International Conference on Mobile and Ubiquitous
Multimedia, MUM 2004, College Park, Maryland, USA, October 27-29, 2004. Ed.
by David S. Doermann and Ramani Duraiswami. Vol. 83. ACM International
Conference Proceeding Series. ACM, 2004, pp. 133–140. isbn: 1-58113-981-0
(cit. on pp. 54, 61).

[71] Panu Korpipää, Esko-Juhani Malm, Ilkka Salminen, Tapani Rantakokko, Vesa
Kyllönen and Ilkka Känsälä. Context management for end user development
of context-aware applications. In: 6th International Conference on Mobile Data
Management (MDM 2005), Ayia Napa, Cyprus, May 9-13, 2005. Ed. by Panos K.
Chrysanthis and George Samaras. ACM, 2005, pp. 304–308. isbn: 1-59593-041-8
(cit. on pp. 54, 61).

[72] Panu Korpipää and Jani Mäntyjärvi. An Ontology for Mobile Device Sensor-
Based Context Awareness. In: Modeling and Using Context, 4th International
and Interdisciplinary Conference, CONTEXT 2003, Stanford, CA, USA, June 23-
25, 2003, Proceedings. Ed. by Patrick Blackburn, Chiara Ghidini, Roy M. Turner
and Fausto Giunchiglia. Vol. 2680. LNCS. Springer, 2003, pp. 451–458. isbn:
3-540-40380-9 (cit. on pp. 54, 61).

[73] P. Korpipää, J. Mäntyjärvi, J. Kela, H. Keränen and E. J. Malm. Managing
context information in mobile devices. In: Pervasive Computing, IEEE 2.3
(2003), pp. 42–51. doi: 10.1109/MPRV.2003.1228526. url: http://dx.doi.
org/10.1109/MPRV.2003.1228526 (cit. on pp. 44, 54, 61, 81).

[74] Mustafa Kose, Ozlem Durmaz and Cem Ersoy. Online Human Activity Re-
cognition on Smart Phones. In: 2nd International Workshop on Mobile
SensingWorkshop co-located with IPSN ’12 and CPSWEEK. Beijing China, Apr.
2012. url: http://research.microsoft.com/en-us/um/beijing/events/ms_
ipsn12/papers/msipsn-kose.pdf (cit. on p. 151).

[75] Michael Krause and Iris Hochstatter. Challenges in Modelling and Using
Quality of Context (QoC). In: Mobility Aware Technologies and Applications,
Second International Workshop, MATA 2005, Montreal, Canada, October 17-19,
2005, Proceedings. Ed. by Thomas Magedanz, Ahmed Karmouch, Samuel Pierre
and Iakovos S. Venieris. Vol. 3744. LNCS. Springer, 2005, pp. 324–333. isbn:
3-540-29410-4 (cit. on pp. 7, 17, 19–21, 46, 60, 62).

[76] Jennifer R. Kwapisz, Gary M. Weiss and Samuel Moore. Activity recognition
using cell phone accelerometers. In: SIGKDD Explorations 12.2 (2010), pp. 74–
82 (cit. on p. 150).

[77] Lee W Lacy. OWL : Representing Information Using the Web Ontology
Language. Victoria BC, Canada: Trafford Publishing, 2005. isbn: 1-4120-3448-5
(cit. on pp. 40–41).

208 Bibliographies

http://dx.doi.org/10.1109/MPRV.2003.1228526
http://dx.doi.org/10.1109/MPRV.2003.1228526
http://dx.doi.org/10.1109/MPRV.2003.1228526
http://research.microsoft.com/en-us/um/beijing/events/ms_ipsn12/papers/msipsn-kose.pdf
http://research.microsoft.com/en-us/um/beijing/events/ms_ipsn12/papers/msipsn-kose.pdf

[78] Robert Laddaga. Self-Adaptive Software. In: DARPA SOL BAA 98-12 (Dec. 1997).
Orignal url only available in web archive http://web.archive.org/web/
19990221110757/http://www.darpa.mil/ito/Solicitations/CBD_9812.
html. url: http://www.darpa.mil/ito/Solicitations/CBD_9812.html (cit.
on p. 24).

[79] Ralph Lange, Nazario Cipriani, Lars Geiger, Matthias Großmann, Harald
Weinschrott, Andreas Brodt, Matthias Wieland, Stamatia Rizou and Kurt
Rothermel. Making the World Wide Space Happen: New Challenges for
the Nexus Context Platform. In: Seventh Annual IEEE International Conference
on Pervasive Computing and Communications, PerCom 2009, 9-13 March 2009,
Galveston, TX, USA. IEEE Computer Society, 2009, pp. 1–4. isbn: 978-1-4244-
3304-9 (cit. on pp. 56, 61, 192).

[80] Marc Langheinrich and Friedemann Mattern. Digitalisierung des Alltags.
Was ist Pervasive Computing? In: Aus Politik und Zeitgeschichte (B 42/2003)
(13th Oct. 2003). See also Online-Version at www.bpb.de, pp. 6–12 (cit. on
p. 13).

[81] Youngseol Lee and Sung-Bae Cho. Activity Recognition Using Hierarchical
Hidden Markov Models on a Smartphone with 3D Accelerometer. In: Hybrid
Artificial Intelligent Systems - 6th International Conference, HAIS 2011, Wroclaw,
Poland, May 23-25, 2011, Proceedings, Part I. Ed. by Emilio Corchado, Marek
Kurzynski and Michal Wozniak. Vol. 6678. LNCS. Springer, 2011, pp. 460–467.
isbn: 978-3-642-21218-5 (cit. on p. 150).

[82] Othmar Lehmann, Martin Bauer, Christian Becker and Daniela Nicklas. From
Home to World - Supporting Context-aware Applications through World
Models. In: Proceedings of the Second IEEE International Conference on Pervasive
Computing and Communications (PerCom 2004), 14-17 March 2004, Orlando, FL,
USA. IEEE Computer Society, 2004, pp. 297–308. isbn: 0-7695-2090-1 (cit. on
pp. 4–5).

[83] Leopold Löwenheim. Über Möglichkeiten im Relativkalkül. In: Mathematische
Annalen 76 (4 1915). 10.1007/BF01458217, pp. 447–470. issn: 0025-5831. url:
http://dx.doi.org/10.1007/BF01458217 (cit. on p. 101).

[84] Kalle Lyytinen and Youngjin Yoo. Introduction. In: Commun. ACM 45.12 (2002),
pp. 62–65 (cit. on p. 14).

[85] Robert M. MacGregor. Inside the LOOM Description Classifier. In: SIGART
Bulletin 2.3 (1991), pp. 88–92 (cit. on p. 39).

[86] Atif Manzoor, Hong Linh Truong and Schahram Dustdar. On the Evaluation of
Quality of Context. In: Smart Sensing and Context, Third European Conference,
EuroSSC 2008, Zurich, Switzerland, October 29-31, 2008. Proceedings. Ed. by
Daniel Roggen, Clemens Lombriser, Gerhard Tröster, Gerd Kortuem and Paul
J. M. Havinga. Vol. 5279. LNCS. Springer, 2008, pp. 140–153. isbn: 978-3-540-
88792-8 (cit. on pp. 21–23, 56, 61–62).

[87] Atif Manzoor, Hong Linh Truong and Schahram Dustdar. Using Quality of
Context to Resolve Conflicts in Context-Aware Systems. In: Quality of Context,

C.1 Bibliography 209

http://web.archive.org/web/19990221110757/http://www.darpa.mil/ito/Solicitations/CBD_9812.html
http://web.archive.org/web/19990221110757/http://www.darpa.mil/ito/Solicitations/CBD_9812.html
http://web.archive.org/web/19990221110757/http://www.darpa.mil/ito/Solicitations/CBD_9812.html
http://www.darpa.mil/ito/Solicitations/CBD_9812.html
http://dx.doi.org/10.1007/BF01458217

First International Workshop, QuaCon 2009, Stuttgart, Germany, June 25-26, 2009.
Revised Papers. Ed. by Kurt Rothermel, Dieter Fritsch, Wolfgang Blochinger and
Frank Dürr. Vol. 5786. LNCS. Springer, 2009, pp. 144–155. isbn: 978-3-642-
04558-5 (cit. on pp. 56–57, 61–62).

[88] Atif Manzoor, Hong-Linh Truong and Schahram Dustdar. Quality of Context:
Models and Applications for Context-aware Systems in Pervasive Environ-
ments. In: The Knowledge Engineering Review Special Issue on Web and Mobile
Information Services (2010) (cit. on pp. 20–21, 56–57, 61–62).

[89] R. Timothy Marler and Jasbir S. Arora. Survey of multi-objective optimization
methods for engineering. In: Structural and Multidisciplinary Optimization
26.6 (1st Apr. 2004), pp. 369–395. issn: 1615-147X. doi: 10.1007/s00158-
003-0368-6. url: http://dx.doi.org/10.1007/s00158-003-0368-6 (cit. on
pp. 136–137).

[90] R. Timothy Marler and Jasbir S. Arora. The weighted sum method for multi-
objective optimization: new insights. In: Structural and Multidisciplinary
Optimization 41 (6 2010). 10.1007/s00158-009-0460-7, pp. 853–862. issn:
1615-147X. url: http://dx.doi.org/10.1007/s00158-009-0460-7 (cit. on
pp. 136–137).

[91] Fabio Massacci. The proof complexity of analytic and clausal tableaux. In:
Theor. Comput. Sci. 243.1-2 (2000), pp. 477–487 (cit. on p. 110).

[92] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten and Betty H. C. Cheng.
Composing Adaptive Software. In: IEEE Computer 37.7 (2004), pp. 56–64 (cit.
on p. 24).

[93] Anton Michlmayr, Florian Rosenberg, Philipp Leitner and Schahram Dustdar.
End-to-End Support for QoS-Aware Service Selection, Binding, and Medi-
ation in VRESCo. In: IEEE T. Services Computing 3.3 (2010), pp. 193–205 (cit.
on p. 114).

[94] Kaisa Miettinen. Nonlinear Multiobjective Optimization. Vol. 12. International
Series in Operations Research and Management Science. Kluwer Academic
Publishers, Dordrecht, 1999 (cit. on pp. 113, 122, 136).

[95] Enrico Motta. Reusable Components for Knowledge Modelling: Case Studies
in Parametric Design Problem Solving. 1st. Amsterdam, The Netherlands, The
Netherlands: IOS Press, 1999. isbn: 1586030035 (cit. on p. 39).

[96] MUSIC – Mobile Users in Ubiquitous Computing Environments. url: http:
//ist-music.berlios.de (cit. on pp. 6, 55).

[97] Daniela Nicklas and Bernhard Mitschang. On building location aware applica-
tions using an open platform based on the NEXUS Augmented World Model.
In: Software and System Modeling 3.4 (2004), pp. 303–313 (cit. on pp. 56, 61,
192).

[98] Eila Niemelä and Juhani Latvakoski. Survey of requirements and solutions
for ubiquitous software. In: Proceedings of the 3rd International Conference
on Mobile and Ubiquitous Multimedia, MUM 2004, College Park, Maryland, USA,

210 Bibliographies

http://dx.doi.org/10.1007/s00158-003-0368-6
http://dx.doi.org/10.1007/s00158-003-0368-6
http://dx.doi.org/10.1007/s00158-003-0368-6
http://dx.doi.org/10.1007/s00158-009-0460-7
http://ist-music.berlios.de
http://ist-music.berlios.de

October 27-29, 2004. Ed. by David S. Doermann and Ramani Duraiswami. Vol. 83.
ACM International Conference Proceeding Series. ACM, 2004, pp. 71–78. isbn:
1-58113-981-0 (cit. on pp. 14–15).

[99] Russel Nzekwa, Romain Rouvoy and Lionel Seinturier. Modelling Feedback
Control Loops for Self-Adaptive Systems. In: ECEASST 28 (2010) (cit. on
p. 24).

[100] Nicole Oldham, Kunal Verma, Amit P. Sheth and Farshad Hakimpour. Semantic
WS-agreement partner selection. In: Proceedings of the 15th international
conference on World Wide Web, WWW 2006, Edinburgh, Scotland, UK, May 23-26,
2006. Ed. by Les Carr, David De Roure, Arun Iyengar, Carole A. Goble and
Michael Dahlin. ACM, 2006, pp. 697–706. isbn: 1-59593-323-9 (cit. on p. 92).

[101] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heimbigner,
Gregory Johnson, Nenad Medvidovic, Alex Quilici, David S. Rosenblum
and Alexander L. Wolf. An Architecture-Based Approach to Self-Adaptive
Software. In: IEEE Intelligent Systems 14.3 (May 1999), pp. 54–62. issn: 1541-
1672. doi: 10.1109/5254.769885. url: http://dx.doi.org/10.1109/5254.
769885 (cit. on p. 24).

[102] OSGi Alliance. OSGi Service Platform Release 4. 2007. url: http://www.osgi.
org/Main/HomePage (cit. on pp. 55, 77, 143).

[103] Gabor Paller. Motion Recognition with Android Devices. Talk/Slides at
Droidcon London. Oct. 2011. url: http://www.slideshare.net/paller/
motion-recognition-with-android-devices (cit. on pp. 149, 173).

[104] Nearchos Paspallis. Middleware-based development of context-aware applic-
ations with reusable components. PhD thesis. Nicosia, Cyprus: Department of
Computer Science, University of Cyprus, 2009. url: http://www.cs.ucy.ac.cy/
~paspalli/phd/index.html (cit. on pp. 6, 55, 61–62, 143, 191).

[105] Proceedings of the Second IEEE International Conference on Pervasive
Computing and Communications (PerCom 2004), 14-17 March 2004, Or-
lando, FL, USA. IEEE Computer Society, 2004. isbn: 0-7695-2090-1.

[106] Anand Ranganathan and Roy H. Campbell. A Middleware for Context-
Aware Agents in Ubiquitous Computing Environments. In: Middleware 2003,
ACM/IFIP/USENIX International Middleware Conference, Rio de Janeiro, Brazil,
June 16-20, 2003, Proceedings. Ed. by Markus Endler and Douglas C. Schmidt.
Vol. 2672. LNCS. Springer, 2003, pp. 143–161. isbn: 3-540-40317-5 (cit. on
pp. 52, 60).

[107] Anand Ranganathan, Jalal Al-Muhtadi and Roy H. Campbell. Reasoning about
Uncertain Contexts in Pervasive Computing Environments. In: IEEE Pervasive
Computing 3.2 (2004), pp. 62–70 (cit. on pp. 52, 60).

[108] Mohammad Abdur Razzaque, Simon Dobson and Paddy Nixon. Categorization
and Modelling of Quality in Context Information. In: Proceedings of the IJCAI
2005 Workshop on AI and Autonomic Communications. 2005 (cit. on p. 17).

C.1 Bibliography 211

http://dx.doi.org/10.1109/5254.769885
http://dx.doi.org/10.1109/5254.769885
http://dx.doi.org/10.1109/5254.769885
http://www.osgi.org/Main/HomePage
http://www.osgi.org/Main/HomePage
http://www.slideshare.net/paller/motion-recognition-with-android-devices
http://www.slideshare.net/paller/motion-recognition-with-android-devices
http://www.cs.ucy.ac.cy/~paspalli/phd/index.html
http://www.cs.ucy.ac.cy/~paspalli/phd/index.html

[109] Roland Reichle. Information Exchange and Fusion in Dynamic and Hetero-
geneous Distributed Environments. PhD thesis. Kassel, Germany: University
of Kassel, Fachbereich 16: Elektrotechnik/Informatik, Distributed Systems Group,
July 2010. url: http : / / nbn - resolving . de / urn : nbn : de : hebis : 34 -
2010121035166 (cit. on pp. 6, 53, 61–62, 69, 74, 80, 83, 88, 90, 191–192).

[110] Manuel Roman, Christopher Hess, Renato Cerqueira, Roy H. Campbell and Klara
Nahrstedt. Gaia: A Middleware Infrastructure to Enable Active Spaces. In:
IEEE Pervasive Computing 1 (2002), pp. 74–83 (cit. on pp. 44, 52, 60).

[111] Kurt Rothermel, Dieter Fritsch, Wolfgang Blochinger and Frank Dürr, eds.
Quality of Context, First International Workshop, QuaCon 2009, Stuttgart,
Germany, June 25-26, 2009. Revised Papers. Vol. 5786. LNCS. Springer, 2009.
isbn: 978-3-642-04558-5.

[112] Kurt Rothermel et al. SFB 627 - Umgebungsmodelle für mobile kontextbezo-
gene Systeme. In: Inform., Forsch. Entwickl. 21.1-2 (2006), pp. 105–113 (cit. on
pp. 56, 61, 192).

[113] Romain Rouvoy, Denis Conan and Lionel Seinturier. Software Architecture Pat-
terns for a Context-Processing Middleware Framework. In: IEEE Distributed
Systems Online 9.6 (2008) (cit. on pp. 50–51, 60, 150).

[114] Nirmalya Roy, Sajal K. Das and Christine Julien. Resource-Optimized Quality-
Assured Ambiguous Context Mediation Framework in Pervasive Environ-
ments. In: IEEE Trans. Mob. Comput. 11.2 (2012), pp. 218–229 (cit. on pp. 58–59,
61–62).

[115] Nirmalya Roy, Tao Gu and Sajal K. Das. Supporting pervasive computing
applications with active context fusion and semantic context delivery. In:
Pervasive and Mobile Computing 6.1 (2010), pp. 21–42 (cit. on pp. 58–59, 61–62).

[116] Debashis Saha and Amitava Mukherjee. Pervasive Computing: A Paradigm for
the 21st Century. In: IEEE Computer 36.3 (2003), pp. 25–31 (cit. on pp. 14–15).

[117] Daniel Salber, Anind K. Dey and Gregory D. Abowd. The Context Toolkit:
Aiding the Development of Context-Enabled Applications. In: Proceeding of
the CHI ’99 Conference on Human Factors in Computing Systems: The CHI is the
Limit, Pittsburgh, PA, USA, May 15-20, 1999. Ed. by Marian G. Williams and
Mark W. Altom. ACM, 1999, pp. 434–441. isbn: 0-201-48559-1 (cit. on pp. 44,
49, 60).

[118] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and
research challenges. In: TAAS 4.2 (2009) (cit. on p. 25).

[119] M. Satyanarayanan. Pervasive Computing: Vision and Challenges. In: IEEE
Personal Communications 8 (2001), pp. 10–17 (cit. on pp. 14–15).

[120] Gregor Schiele, Marcus Handte and Christian Becker. Pervasive Computing
Middleware. In: Handbook of Ambient Intelligence and Smart Environments. Ed.
by Hideyuki Nakashima, Hamid Aghajan and Juan Carlos Augusto. Springer US,
2010, pp. 201–227. isbn: 978-0-387-93808-0. url: http://dx.doi.org/10.
1007/978-0-387-93808-0_8 (cit. on p. 4).

212 Bibliographies

http://nbn-resolving.de/urn:nbn:de:hebis:34-2010121035166
http://nbn-resolving.de/urn:nbn:de:hebis:34-2010121035166
http://dx.doi.org/10.1007/978-0-387-93808-0_8
http://dx.doi.org/10.1007/978-0-387-93808-0_8

[121] Bill Schilit, Norman Adams and Roy Want. Context-Aware Computing Ap-
plications. In: Proceedings of the Workshop on Mobile Computing Systems and
Applications. IEEE Computer Society, 1994, pp. 85–90 (cit. on p. 16).

[122] Uwe Schöning. Logik für Informatiker (4. Aufl.) Reihe Informatik. Spektrum
Akademischer Verlag, 1995, pp. 1–207. isbn: 978-3-86025-684-8 (cit. on pp. 27–
28, 32–35).

[123] Kamran Sheikh, Maarten Wegdam and Marten van Sinderen. Middleware
Support for Quality of Context in Pervasive Context-Aware Systems. In: Fifth
Annual IEEE International Conference on Pervasive Computing and Communications
- Workshops (PerCom Workshops 2007), 19-23 March 2007, White Plains, New
York, USA. IEEE Computer Society, 2007, pp. 461–466. isbn: 978-0-7695-2788-8
(cit. on pp. 20–23, 46, 60).

[124] Kamran Sheikh, Maarten Wegdam and Marten van Sinderen. Quality-of-Context
and its use for Protecting Privacy in Context Aware Systems. In: JSW 3.3
(2008), pp. 83–93 (cit. on pp. 46, 60).

[125] M.J. van Sinderen, A.T. van Halteren, M. Wegdam, H.B. Meeuwissen and E.H.
Eertink. Supporting context-aware mobile applications: an infrastructure
approach. In: Communications Magazine, IEEE 44.9 (Sept. 2006), pp. 96 –104.
issn: 0163-6804. doi: 10.1109/MCOM.2006.1705985 (cit. on pp. 46, 60).

[126] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences – A000522.
http://oeis.org/A000522. Oct. 2007 (cit. on p. 177).

[127] N. J. A. Sloane, Robert G. Wilson and Rick L. Shepherd. The On-Line
Encyclopedia of Integer Sequences – A007526. http://oeis.org/A007526.
June 2005 (cit. on p. 178).

[128] Raymond Smullyan. First-Order Logic. Mineola: Dover, 1995. isbn: 978-
0486683706 (cit. on pp. 28–29, 32, 36, 110).

[129] Ahmet Soylu, Patrick De Causmaecker and Piet Desmet. Context and Adaptivity
in Pervasive Computing Environments: Links with Software Engineering
and Ontological Engineering. In: JSW 4.9 (2009), pp. 992–1013 (cit. on p. 14).

[130] Steffen Staab and Rudi Studer, eds. Handbook on Ontologies. Second Edition.
International Handbooks on Information Systems. Springer, 2009. isbn: 978-3-
540-70999-2 (cit. on pp. 38, 41, 93).

[131] Dave Steinberg, Frank Budinsky, Marcelo Patenostro and Ed Merks. EMF: Eclipse
Modeling Framework, 2nd Edition. Addison Wesley, 2008 (cit. on p. 88).

[132] Ralf Stephan. The On-Line Encyclopedia of Integer Sequences – A093964.
http://oeis.org/A093964. Apr. 2004 (cit. on p. 178).

[133] Thomas Strang and Claudia Linnhoff-Popien. A Context Modeling Survey.
In: Workshop on Advanced Context Modelling, Reasoning and Management,
UbiComp 2004 - The Sixth International Conference on Ubiquitous Comput-
ing, Nottingham/England. 2004. url: http : / / elib . dlr . de / 7444 / 1 /
Ubicomp2004ContextWSCameraReadyVersion.pdf (cit. on pp. 44, 81).

C.1 Bibliography 213

http://dx.doi.org/10.1109/MCOM.2006.1705985
http://oeis.org/A000522
http://oeis.org/A007526
http://oeis.org/A093964
http://elib.dlr.de/7444/1/Ubicomp2004ContextWSCameraReadyVersion.pdf
http://elib.dlr.de/7444/1/Ubicomp2004ContextWSCameraReadyVersion.pdf

[134] Thomas Strang, Claudia Linnhoff-Popien and Korbinian Frank. CoOL: A Context
Ontology Language to Enable Contextual Interoperability. In: Distributed
Applications and Interoperable Systems, 4th IFIP WG6.1 International Conference,
DAIS 2003, Paris, France, November 17-21, 2003, Proceedings. Ed. by Jean-
Bernard Stefani, Isabelle M. Demeure and Daniel Hagimont. Vol. 2893. LNCS.
Springer, 2003, pp. 236–247. isbn: 3-540-20529-2 (cit. on pp. 8, 45–46, 60, 62,
71, 77, 81, 190–191).

[135] Semantic Web for Earth and Environmental Terminology (SWEET). http:
//sweet.jpl.nasa.gov/index.html (accessed 2011-09-08). NASA (cit. on
p. 73).

[136] Graham Upton and Ian Cook. Understanding statistics. Oxford University Press,
1996. isbn: 9780199143917. url: http://books.google.com/books?id=
vXzWG09_SzAC (cit. on p. 125).

[137] Claudia Villalonga, Daniel Roggen, Clemens Lombriser, Piero Zappi and
Gerhard Tröster. Bringing Quality of Context into Wearable Human Activity
Recognition Systems. In: Quality of Context, First International Workshop,
QuaCon 2009, Stuttgart, Germany, June 25-26, 2009. Revised Papers. Ed. by
Kurt Rothermel, Dieter Fritsch, Wolfgang Blochinger and Frank Dürr. Vol. 5786.
LNCS. Springer, 2009, pp. 164–173. isbn: 978-3-642-04558-5 (cit. on p. 23).

[138] W3C. Semantic Web Activity Page. Ed. by W3C. 2011. url: http://www.w3.
org/2001/sw/ (cit. on p. 39).

[139] OWL Working Group W3C. OWL 2 Web Ontology Language: Document
Overview. W3C Recommendation, Oct. 2009. url: http://www.w3.org/TR/
owl2-overview/ (cit. on pp. 39, 41, 70).

[140] OWL Working Group W3C. OWL 2 Web Ontology Language: Primer. Ed.
by Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-Schneider and
Sebastian Rudolph. W3C Recommendation, Oct. 2009. url: http://www.w3.
org/TR/owl2-primer/ (cit. on pp. 39, 41, 70).

[141] RDF Working Group W3C. RDF Primer. Ed. by Frank Manola and Eric Miller.
W3C Recommendation, Feb. 2004. url: http://www.w3.org/TR/rdf-primer/
(cit. on pp. 39–40).

[142] RDF Working Group W3C. RDF Vocabulary Description Language 1.0: RDF
Schema. Ed. by Dan Brickley and R.V. Guha. W3C Recommendation, Feb. 2004.
url: http://www.w3.org/TR/rdf-schema/ (cit. on p. 39).

[143] WSDL Working Group W3C. Web Service Definition Language (WSDL). Ed. by
Erik Christensen, Francisco Curbera, Greg Meredith and Sanjiva Weerawarana.
W3C Recommendation, Mar. 2001. url: http://www.w3.org/TR/wsdl (cit. on
p. 90).

[144] Yi Wang, Jialiu Lin, Murali Annavaram, Quinn Jacobson, Jason I. Hong, Bhaskar
Krishnamachari and Norman M. Sadeh. A framework of energy efficient
mobile sensing for automatic user state recognition. In: Proceedings of the 7th
International Conference on Mobile Systems, Applications, and Services (MobiSys
2009), Kraków, Poland, June 22-25, 2009. Ed. by Krzysztof Zielinski, Adam

214 Bibliographies

http://sweet.jpl.nasa.gov/index.html
http://sweet.jpl.nasa.gov/index.html
http://books.google.com/books?id=vXzWG09_SzAC
http://books.google.com/books?id=vXzWG09_SzAC
http://www.w3.org/2001/sw/
http://www.w3.org/2001/sw/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/wsdl

Wolisz, Jason Flinn and Anthony LaMarca. ACM, 2009, pp. 179–192. isbn: 978-
1-60558-566-6 (cit. on pp. 5, 51, 60, 62, 151).

[145] Mark Weiser. The Computer for the 21st Century. In: Scientific American
Communications, Computers, and Network (Sept. 1991). url: http://www.
ics.uci.edu/~dutt/ics212-wq05/weiser-sci-am-sep-91.pdf (cit. on pp. 3,
13–15).

[146] Mark Weiser and John Seely Brown. Designing Calm Technology. In: PowerGrid
Journal (July 1996). url: http://www.johnseelybrown.com/calmtech (cit. on
p. 15).

[147] Thomas Weise. Global Optimization Algorithms – Theory and Application.
it-weise.de (self-published): Germany, 2009. url: http://www.it-weise.de/
projects/book.pdf (cit. on p. 137).

[148] Kun Yang, Alex Galis and Hsiao-Hwa Chen. QoS-Aware Service Selection
Algorithms for Pervasive Service Composition in Mobile Wireless Environ-
ments. In: MONET 15.4 (2010), pp. 488–501 (cit. on pp. 6, 135).

[149] Zhixian Yan, Vigneshwaran Subbaraju, Dipanjan Chakraborty, Archan Misra
and Karl Aberer. Energy-Efficient Continuous Activity Recognition on Mobile
Phones: An Activity-Adaptive Approach. In: 16th IEEE International Sym-
posium on Wearable Computers (ISWC 2012), 18-22 June 2012, Newcastle, UK.
2012 (cit. on pp. 151–152).

C.2 Publications as (Co-)Author

[150] Alisa Devlic, Roland Reichle, Michael Wagner, Manuele Kirsch Pinheiro, Yves
Vanrompay, Yolande Berbers and Massimo Valla. Context inference of users’
social relationships and distributed policy management. In: 6th IEEE
Workshop on Context Modeling and Reasoning (CoMoRea) at the 7th IEEE
International Conference on Pervasive Computing and Communication (PerCom’09).
Washington, DC, USA: IEEE Computer Society, 2009, pp. 1–8.

[151] Jacqueline Floch, Cristina Fra, Rolf Fricke, Kurt Geihs, Michael Wagner, Jorge
Lorenzo, Eduardo Soladana, Stefan Mehlhase, Nearchos Paspallis, Hossein
Rahnama, Pedro A. Ruiz and Ulrich Scholz. Playing MUSIC – building context-
aware and self-adaptive mobile applications. In: Software: Practice and
Experience (2012). issn: 1097-024X. doi: 10.1002/spe.2116. url: http://
dx.doi.org/10.1002/spe.2116 (cit. on pp. 6, 55).

[152] Kurt Geihs, Christoph Evers, Roland Reichle, Michael Wagner and Mohammad
Ullah Khan. Development support for QoS-aware service-adaptation in ubi-
quitous computing applications. In: Proceedings of the 2011 ACM Symposium
on Applied Computing (SAC), TaiChung, Taiwan, March 21 - 24, 2011. Ed. by
William C. Chu, W. Eric Wong, Mathew J. Palakal and Chih-Cheng Hung. ACM,
2011, pp. 197–202. isbn: 978-1-4503-0113-8 (cit. on p. 10).

[153] Kurt Geihs, Roland Reichle, Michael Wagner and Mohammad Ullah Khan.
Modeling of Context-Aware Self-Adaptive Applications in Ubiquitous and

C.2 Publications as (Co-)Author 215

http://www.ics.uci.edu/~dutt/ics212-wq05/weiser-sci-am-sep-91.pdf
http://www.ics.uci.edu/~dutt/ics212-wq05/weiser-sci-am-sep-91.pdf
http://www.johnseelybrown.com/calmtech
http://www.it-weise.de/projects/book.pdf
http://www.it-weise.de/projects/book.pdf
http://dx.doi.org/10.1002/spe.2116
http://dx.doi.org/10.1002/spe.2116
http://dx.doi.org/10.1002/spe.2116

Service-Oriented Environments. In: Software Engineering for Self-Adaptive
Systems. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 146–163. url: http:
//www.vs.uni-kassel.de/publications/2009/GRWK09.

[154] Kurt Geihs, Roland Reichle, Michael Wagner and Mohammad Ullah Khan.
Service-Oriented Adaptation in Ubiquitous Computing Environments. In:
Proceedings IEEE CSE’09, 12th IEEE International Conference on Computational
Science and Engineering, August 29-31, 2009, Vancouver, BC, Canada. IEEE
Computer Society, 2009, pp. 458–463 (cit. on pp. 10, 25).

[155] Gabriel Hermosillo, Russel Nzekwa and Michael Wagner, eds. Context-Aware
Adaptation Mechanism for Pervasive and Ubiquitous Services 2011. Vol. 43.
Electronic Communications of EASST (ECEASST), June 2011. url: http://
journal.ub.tu-berlin.de/eceasst/article/view/584/615.

[156] Mohammad U. Khan, Roland Reichle, Michael Wagner, Kurt Geihs, Ulrich
Scholz, Constantinos Kakousis and George A. Papadopoulos. An Adaptation
Reasoning Approach for Large Scale Component-based Applications. In:
Communications of the EASST. Vol. 19. Proceedings of the Second International
DisCoTec Workshop on Context-Aware Adaptation Mechanisms for Pervasive and
Ubiquitous Services(CAMPUS 2009). 2009.

[157] Sonia Ben Mokhtar, Romain Rouvoy and Michael Wagner, eds. Context-Aware
Adaptation Mechanism for Pervasive and Ubiquitous Services 2010. Vol. 28.
Electronic Communications of EASST (ECEASST), June 2010. url: http://
journal.ub.tu-berlin.de/index.php/eceasst/issue/view/38.

[158] Roland Reichle, Michael Wagner, Mohammad Ullah Khan, Kurt Geihs, Jorge
Lorenzo, Massimo Valla, Cristina Fra, Nearchos Paspallis and George A.
Papadopoulos. A Comprehensive Context Modeling Framework for Pervasive
Computing Systems. In: Distributed Applications and Interoperable Systems, 8th
IFIP WG 6.1 International Conference, DAIS 2008, Oslo, Norway, June 4-6, 2008.
Proceedings. Ed. by René Meier and Sotirios Terzis. Vol. 5053. LNCS. 2008,
pp. 281–295. isbn: 978-3-540-68639-2 (cit. on pp. 10, 53, 55, 69, 74, 76, 81,
191).

[159] Roland Reichle, Michael Wagner, Mohammad Ullah Khan, Kurt Geihs, Massimo
Valla, Cristina Fra, Nearchos Paspallis and George A. Papadopoulos. A Context
Query Language for Pervasive Computing Environments. In: Sixth Annual
IEEE International Conference on Pervasive Computing and Communications
(PerCom 2008), 17-21 March 2008, Hong Kong. IEEE Computer Society, 2008,
pp. 434–440 (cit. on pp. 10, 53, 55–56, 83, 88, 90).

[160] Romain Rouvoy, Mauro Caporuscio and Michael Wagner, eds. Context-aware
Adaption Mechanisms for Pervasive and Ubiquitous Services. Vol. 11.
Electronic Communications of EASST (ECEASST), June 2008. url: http://
eceasst.cs.tu-berlin.de/index.php/eceasst/issue/view/18.

[161] Romain Rouvoy and Michael Wagner, eds. Context-Aware Adaptation Mech-
anism for Pervasive and Ubiquitous Services 2009. Vol. 19. Electronic
Communications of EASST (ECEASST), June 2009. url: http://eceasst.cs.tu-
berlin.de/index.php/eceasst/issue/view/25.

216 Bibliographies

http://www.vs.uni-kassel.de/publications/2009/GRWK09
http://www.vs.uni-kassel.de/publications/2009/GRWK09
http://journal.ub.tu-berlin.de/eceasst/article/view/584/615
http://journal.ub.tu-berlin.de/eceasst/article/view/584/615
http://journal.ub.tu-berlin.de/index.php/eceasst/issue/view/38
http://journal.ub.tu-berlin.de/index.php/eceasst/issue/view/38
http://eceasst.cs.tu-berlin.de/index.php/eceasst/issue/view/18
http://eceasst.cs.tu-berlin.de/index.php/eceasst/issue/view/18
http://eceasst.cs.tu-berlin.de/index.php/eceasst/issue/view/25
http://eceasst.cs.tu-berlin.de/index.php/eceasst/issue/view/25

[162] Hendrik Skubch, Michael Wagner and Roland Reichle. A Language for
Interactive Cooperative Agents. Tech. rep. University of Kassel, 2009. url:
http://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-
2009032026745.

[163] Hendrik Skubch, Michael Wagner, Roland Reichle, Stefan Triller and Kurt Geihs.
Towards a Comprehensive Teamwork Model for Highly Dynamic Domains.
In: Proceedings of the 2nd International Conference on Agents and Artificial
Intelligence. 2010.

[164] Martin Steinebach, Michael Wagner and Patrick Wolf. Verteilte Suche nach
digitalen Wasserzeichen in eMule. In: D-A-CH Security 2007. Klagenfurt:
Patrick Horster, June 2007, pp. 519–530.

[165] Michael Wagner. Context as a service. In: UbiComp 2010: Ubiquitous Computing,
12th International Conference, UbiComp 2010, Copenhagen, Denmark, September
26-29, 2019, Adjunct Papers Proceedings. Ed. by Jakob E. Bardram, Marc
Langheinrich, Khai N. Truong and Paddy Nixon. ACM International Conference
Proceeding Series. ACM, 2010, pp. 489–492. isbn: 978-1-4503-0283-8 (cit. on
p. 10).

[166] Michael Wagner. Verteilte Suche nach digitalen Wasserzeichen in eMule. In:
Informatik-Spektrum 30.4 (Aug. 2007), pp. 264–272. url: http://dx.doi.org/
10.1007/s00287-007-0162-8.

[167] Michael Wagner, Dieter Hogrefe, Kurt Geihs and Klaus David, eds. Workshops
der Wissenschaftlichen Konferenz Kommunikation in verteilten Systemen
2009 in Kassel (WowKiVS 2009). Vol. 17. EASST, 2009. url: http://eceasst.
cs.tu-berlin.de/index.php/eceasst/issue/view/24.

[168] Michael Wagner, Roland Reichle and Kurt Geihs. Context as a service -
Requirements, design and middleware support. In: Ninth Annual IEEE
International Conference on Pervasive Computing and Communications, PerCom
2011, 21-25 March 2011, Seattle, WA, USA, Workshop Proceedings. IEEE, 2011,
pp. 220–225 (cit. on p. 10).

C.2 Publications as (Co-)Author 217

http://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-2009032026745
http://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-2009032026745
http://dx.doi.org/10.1007/s00287-007-0162-8
http://dx.doi.org/10.1007/s00287-007-0162-8
http://eceasst.cs.tu-berlin.de/index.php/eceasst/issue/view/24
http://eceasst.cs.tu-berlin.de/index.php/eceasst/issue/view/24

	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Algorithms
	List of Abbreviations
	Abstract
	Zusammenfassung
	Acknowledgements
	Foundations
	Introduction
	Motivation
	Problem Statement
	Solution Approach
	Contribution
	Structure of the Thesis

	Ubiquitous Computing Systems
	Ubiquitous Computing
	Context
	Context Awareness
	Characteristics of Context Data
	Quality of Context
	Cost of Context

	Self-Adaptation
	Adaptation Mechanisms
	Adaptation Policies

	Logic and Ontologies
	Proof Methods for Propositional Logic
	Analytic Tableaux for Propositional Logic
	Resolution for Propositional Logic

	Proof Methods for First-Order Logic
	Resolution for First-Order Logic
	Analytic Tableaux for First-Order Logic

	Ontologies
	General Discussions on Ontologies
	OWL

	Related Work
	Existing Context-Aware Systems
	Adaptive middleware for context-aware applications in smart-homes
	ASC-CoOL & CoCo
	AWARENESS
	CARE
	CoBrA
	CONTEXT
	Context Toolkit
	COSMOS
	EEMSS
	Gaia
	Hydrogen
	Information exchange and fusion in dynamic and heterogeneous distributed environments
	Managing Context Information in Mobile Devices
	MobiLife
	MUSIC & Paspallis
	Nexus
	Quality-Aware Context Management Middleware (QCMM)
	Sentient Object Model
	SOCAM
	Supporting pervasive computing applications with active context fusion and semantic context delivery

	Summary

	Solution Approach
	Overview
	Context Model
	Layers of the Context Model
	Context Information
	Metadata
	Operations
	Inter-Representation Operations
	Metadata Operations

	Hierarchical Composition of the Ontology
	Discussion

	Context Offer and Query Language
	Context Offer and Request
	Constraints
	Selection Function
	Example
	Discussion

	Context Offer and Query Matching
	Initial Matching
	Mediation Check
	Metadata Constraint Matching
	Example
	Discussion

	Context Service Selection
	Motivating Example
	The Selection Approach
	Syntactic Elements
	Semantics

	Calculation of the Domain of a Quality or Cost Dimension
	Example

	Selection Algorithm
	Example
	Discussion

	Architecture

	Evaluation
	Demonstrators
	Study of Context Information, QoC, and CoC in Related Work
	General Description of the Demonstrators
	Demonstrator A: Heterogeneity
	Demonstrator B: Simple Selection
	Demonstrator C: Multiple Selection
	Demonstrator D: Discovery of Remote Offers
	Demonstrator E: Cost Minimization

	Performance and Scalability
	Mediation Service
	Constraint Matching
	Selection Service

	Conclusions
	Summary of Contributions
	Outlook and Future Work

	Appendices
	Logging Output for Demonstrator B
	Erklärung
	Bibliographies
	Bibliography
	Publications as (Co-)Author

