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Zusammenfassung

In der vorliegenden Dissertation werden Systeme von parallel arbeitenden und mit-

einander kommunizierenden Restart-Automaten (engl.: parallel communicating re-

starting automata systems; abgekürzt PCRA-Systeme) vorgestellt und untersucht.

Dabei werden zwei bekannte Konzepte aus den Bereichen Formale Sprachen und

Automatentheorie miteinander verknüpft: das Modell des Restart-Automaten und

die sogenannten PC-Systeme (systems of parallel communicating components).

Der Restart-Automat wurde entwickelt, um die linguistische Technik Analyse

durch Reduktion zu modellieren. Diese wird unter anderem dazu verwendet, die

syntaktische Korrektheit von Sätzen natürlicher Sprachen zu überprüfen. Bisher

wurden viele verschiedene Varianten des Restart-Automaten definiert und unter-

sucht, wobei sich unterschiedliche Eigenschaften und diverse Parallelen zu ande-

ren Aspekten aus der Theorie der Formalen Sprachen gezeigt haben. Die Zusam-

menarbeit von Restart-Automaten wurde erstmalig anhand der CD-Systeme von

Restart-Automaten (cooperating distributed restarting automata systems) betrach-

tet, in denen die Komponenten sequentiell an einer gemeinsamen Zeichenkette

arbeiten.

Das Konzept der PC-Systeme beruht auf dem classroom model als eine von

Menschen angewandte Problemlösungsstrategie, in der mehrere Experten gemein-

sam und parallel an der Lösung eines gegebenen Problems arbeiten und dabei

Information via Kommunikation austauschen können. Dieser Ansatz wurde be-

reits auf verschiedene Automaten- und Grammatikmodelle übertragen, z. B. auf

endliche Automaten, Kellerautomaten, Watson-Crick-Automaten und Chomsky-

Grammatiken unterschiedlichen Typs. In den meisten Fällen waren PC-Systeme

trotz einer sehr einfachen Kommunikationsstruktur deutlich ausdrucksstärker als

eine einzelne Komponente für sich genommen. Im übertragenen Sinn bedeutet dies,

dass ein Team von Experten durch eine einfach strukturierte Kooperation Aufga-

ben bewältigen kann, die ein einzelner Experte allein nicht zu lösen vermag. Da

sich nun Formale Sprachen als Problemspezifikationen interpretieren lassen, liegt

es nahe, Sprachen akzeptierende Automaten oder Sprachen generierende Gram-

matiken zur Modellierung der Experten zu betrachten.

Die vorliegende Arbeit ist wie folgt aufgebaut: Zunächst wird eine ausführliche

Motivation für die PCRA-Systeme gegeben und der aktuelle Forschungsstand dar-

gelegt. Nach dem Festlegen grundlegender Definitionen und Notationen werden

die wichtigsten Vertreter von bereits bekannten PC-Systemen anhand von Defi-
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nitionen, Beispielen und bekannten Resultaten vorgestellt. Dies soll einen ersten

Eindruck von der Funktionsweise, den unterschiedlichen Kommunikationsstrate-

gien und den sich daraus ergebenden Eigenschaften solcher Systeme vermitteln.

Darüber hinaus dienen diese Ausführungen als Modellierungs- und Vergleichs-

grundlage für die PCRA-Systeme. Nachfolgend wird das Modell des Restart-

Automaten detailliert beschrieben, da es die Grundlage für die hier betrachteten

Systeme bildet.

Im darauffolgenden Hauptteil dieser Arbeit werden PCRA-Systeme eingeführt

und untersucht. Dazu wird zunächst das Kommunikationsprotokoll erläutert, wel-

ches festlegt, wie die einzelnen Restart-Automaten miteinander kommunizieren,

und damit die Zusammenarbeit der Komponenten essentiell bestimmt. Diesbezüg-

lich werden auch wesentliche Unterschiede zu anderen PC-Systemen herausge-

stellt. Eine wichtige Eigenschaft der Kommunikationsstruktur ist die Tatsache,

ob sie zentralisiert oder nichtzentralisiert ist. Während in einer nichtzentralisier-

ten Kommunikationsstruktur jede Komponente mit jeder anderen Komponente

Information austauschen darf, gibt es in einer zentralisierten Kommunikations-

struktur eine ausgezeichnete Master-Komponente, sodass alle anderen (Client-)

Komponenten ausschließlich mit der Master-Komponente nicht jedoch mit einer

anderen Client-Komponente kommunizieren dürfen. Es hat sich herausgestellt,

dass PCRA-Systeme mit zentraler und nichtzentraler Kommunikationsstruktur

die gleiche Ausdrucksstärke besitzen, die Zentralisierung der Kommunikation also

keinen Nachteil bewirkt (das ist im Allgemeinen bei PC-Systemen nicht so).

Im Folgenden werden PCRA-Systeme mit der non-forgetting-Eigenschaft un-

tersucht und obwohl diese Eigenschaft eine echte Erweiterung für diverse Typen

von Restart-Automaten darstellt und deren Ausdrucksstärke erhöht, wird gezeigt,

dass diese Eigenschaft innerhalb der Systeme keine Erhöhung der Ausdrucksstärke

mit sich bringt.

Um Aussagen über die Robustheit der PCRA-Systeme treffen zu können,

werden die Sprachklassen der von PCRA-Systemen charakterisierten Sprachen

bezüglich Abschlusseigenschaften analysiert. Die betrachteten Sprachklassen sind

unter diversen Sprachoperationen abgeschlossen und einige Sprachklassen sind so-

gar abstrakte Sprachfamilien (sogenannte AFL’s). Im darauffolgenden Abschnitt

wird die Ausdrucksstärke von PCRA-Systemen untersucht und mit der von PC-

Systemen von endlichen Automaten und mit der von Mehrkopfautomaten vergli-

chen. PC-Systeme von endlichen Automaten besitzen bekanntermaßen die gleiche

Ausdrucksstärke wie Einwegmehrkopfautomaten und bilden eine untere Schranke

für die Ausdrucksstärke von PCRA-Systemen mit Einwegkomponenten. Tatsächlich

sind PCRA-Systeme auch dann stärker als PC-Systeme von endlichen Automaten,

wenn die Komponenten für sich genommen die gleiche Ausdrucksstärke besitzen,

iv



also die regulären Sprachen charakterisieren. Für PCRA-Systeme mit Zweiwege-

komponenten werden als untere Schranke die Sprachklassen der Zweiwegemehr-

kopfautomaten im deterministischen und im nichtdeterministischen Fall gezeigt,

welche wiederum den bekannten Komplexitätsklassen L (deterministisch logarith-

mischer Platz) und NL (nichtdeterministisch logarithmischer Platz) entsprechen.

Als obere Schranke wird die Klasse der kontextsensitiven Sprachen gezeigt.

Außerdem werden für PCRA-Systeme spezifische Probleme auf ihre Entscheid-

barkeit hin untersucht. Es wird gezeigt, dass Leerheit, Universalität, Inklusion und

Gleichheit bereits für die schwächste Art von PCRA-Systemen nicht einmal semi-

entscheidbar sind. Für das Wortproblem wird gezeigt, dass es im deterministischen

Fall in quadratischer Zeit und im nichtdeterministischen Fall in exponentieller Zeit

entscheidbar ist.

Im letzten Abschnitt werden die erzielten Resultate noch einmal zusammenge-

fasst und diskutiert. Offen gebliebene Fragen werden aufgezeigt und Ansätze für

weitergehende Forschung über dieses Thema werden angeboten.
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1 Introduction

Over the last decades distributed and parallel computing has gained a more and

more important role. Significant reasons for this are on the one hand an increase

of computational power and therefore a more efficient and faster computation

(see e.g. [Fou94], [Hro97]), and on the other hand an efficient shared allocation

of resources [CDK05]. The former reason is especially relevant in the develop-

ment of real-time applications and for problems where the power of sequential

devices is not sufficient anymore. Moreover, parallelism is somehow natural, so

there are various examples where parallelism occurs in the natural environment.

A frequently given example is the human brain [Fou94], where information is in-

terchanged in a massively parallel way between neurons via the synapses. Another

example is the growth of a cell culture, where many cells divide simultaneously.

An additional reason why parallelism is useful is the fact that many problems and

their underlying data structures are somehow suitable for a divide and conquer

approach. Consider, e.g. the typesetting of a book, where the different chapters

can be worked on more or less independently. Consider two more simple examples

that are suitable for parallelization [SCB05]:

1. The problem to sum the elements of a vector V = (v1, v2, . . . , vn) to a scalar

A:

A =

n∑
i=1

vi.

With p processors P1, P2, . . . , Pp and the assumption that there exists a k

such that n = k · p we can divide the problem into p parts such that, for

each 1 ≤ j ≤ p, Pj computes the partial sum Aj = vjk−k+1 + . . . + vjk. At

the end the partial results are summed to A = A1 + A2 + . . . + Ap.

2. Computing the prime number sieve that is also called the ‘sieve of Eratos-

thenes’. Let S(k) be the set of all prime numbers less than k. Then it can be

tested whether any n between k and k2 is a prime number by trying to divide

it by the elements of S(k) (if there are i and j such that n = i · j < k2, then

at least one of i and j must be less than k). Thus, all these n can be checked

in parallel and new primes are added to S(k2). Then we can continue with

testing the numbers between k2 and (k2)2 and so forth.

Distributed and parallel computing were not only developed in computer sci-

ence applications but also in theoretical computer science. Some popular examples
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2 Introduction

for theoretic approaches of distributed and parallel computing are: multi-head

automata [RS59, Ros66]1, multi-processor automata [Bud87], artificial neural net-

works [Hay94], networks of parallel language processors [CS97], Lindenmayer sys-

tems [PL96], eco-grammar systems [CKKP94, CKKP97], cooperating distributed

grammar and automata systems (CD systems), and parallel communicating gram-

mar and automata systems (PC systems)2. Throughout the development it can be

observed that by combining simple components to systems usually new interesting

properties arise and the computational power increases although the connection

between the components is mostly very simply structured. Moreover, various ap-

proaches of cooperation and communication were considered within that context.

In multi-head and multi-processor automata one device just uses some resources

in parallel (i.e. different reading heads or processors, respectively). The typical

structure of a network is a graph, where the nodes can be seen as independent

processors and the edges are communication connections. In such networks, the

particular power of the processors and the way of communication differs from one

model to another. PC grammar and automata systems can be seen as special

types of (communication) networks.

Some of the examples above are motivated by biological issues: the artificial

neural networks as a formal model for the biological neural network, the Linden-

mayer systems for describing the growth of plants, and the eco-grammar systems

for modeling the interaction between agents in a common biological or social en-

vironment. The CD and PC systems, mentioned above, are of particular interest,

because they represent two approaches of (human) problem solving: the black-

board model and the classroom model [CDKP94]. The blackboard model originally

arises from the field of artificial intelligence and consists of a central commonly

used data structure (blackboard) that contains the ‘problem solving state data’,

several separate and independent knowledge sources (experts), and an implicit

control that determines the currently working knowledge source [Nii86]. To solve

a given problem that is initially written on the blackboard, the experts work alter-

natingly on the blackboard, one at each point of time, and change its content until

the problem is solved. The essential idea of this strategy is to combine the different

knowledge and skills of the experts to find a solution for a problem that cannot

be solved by a single expert or that can just be solved more efficiently in this

manner. This way of problem solving is indeed distributed, but the interaction of

the experts is rather sequential. In contrast, in the classroom model, introduced in

[CDKP94], only one distinguished knowledge source works on the blackboard, this

1The original definitions do not supply a parallel work, but over the years an equivalent
definition was established where all read-only heads are moved simultaneously, see e.g. [HKM11].

2CD and PC grammar systems are considered in detail in [CDKP94]. Examples for CD and
PC automata systems are presented below.
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is the team leader, and the others work on their own data structures (‘notebooks’).

All experts work independently and mainly simultaneously (in parallel), and they

can communicate with each other. Thus, the experts solve parts of the problem

and communicate the partial results. The problem is solved once the solution is

written on the blackboard, i.e. the data structure of the leader contains it, and

the leader decides that this is indeed a solution to the given problem.

Distributed and parallel computing is one of the two main aspects of this

work. The other one is the model of the restarting automaton. The restart-

ing automaton is a device from formal language theory that was investigated

throughout the last two decades. Originally it was developed by Jančar et al. in

1995 to model a linguistic technique that is called analysis by reduction [JMPV95]

(see also [JMP+97, JMPV97, MPV96, NO01, NO03, Ott06, PLO03]). This tech-

nique is used for checking the syntactical correctness of a sentence of a natural

language with a free word order, which means that the positions of the parts

of the sentence are not strictly determined. Over the years many properties

(e.g. monotonicity [JMPV98, JMPV99, JMPV07, JOMP05a, JOMP05b, JOMP08,

MPJV97, Plá01], lookahead hierarchies [Mrá01, Sch10, Sch11], the number of

auxiliary symbols [JO06b, JO06a], the descriptional complexity [KR08, Rei07],

closure properties [JLNO04]) and variants of the restarting automata were con-

sidered, and interesting connections to well-known language classes were achieved

[JMP+95, JLNO04, NO99a, NO99b, Ott03], for example: stateless restarting au-

tomata [KMO09, Ott08b], shrinking restarting automata [JO05, JO07], nonforget-

ting restarting automata [Mes08, MS04, Mes07, MO06, MO11], restarting tree au-

tomata [SO07a, SO07b, Sta08], and clearing restarting automata [ČM10, ČM11].

Additionally, interesting results were shown for cooperating restarting au-

tomata, i.e. for CD systems of restarting automata [MO07a, MO07b, MO09,

Ott08a, Ott10], where the components work sequentially one after another on

a common string. It was proved that these systems have the same computa-

tional power as nonforgetting automata [Mes07, MO07a]. Moreover, connections

between the language classes accepted by CD systems of restarting automata,

rational trace languages, and context-free trace languages have been established

[NO10, NO11a, NO11b]. From another point of view the CD systems of restarting

automata can be seen as finite-state acceptors with translucent letters [NO11c].

The aim of this thesis is to combine these two concepts: systems of parallel

communicating components and restarting automata. Systems of parallel commu-

nicating restarting automata are defined (abbreviated as PCRA systems), where

several restarting automata work in parallel and independently of each other with

the possibility to communicate. For this, a specification of an appropriate commu-

nication protocol is necessary. Afterwards, various properties of these systems are



4 Introduction

investigated like their computational power, decidability questions, and closure

properties. Moreover, they are related to existing results from formal language

theory, complexity theory, and computability theory. This thesis consists of six

main parts. It is organized as follows.

At first, we give some preliminaries and basic notations in Section 2 that

are used within this work. In Section 3, the most popular representatives of

parallel communicating systems are presented giving their definitions, examples,

and results that can be found in the literature. This should give a first impression

of the structure, the used communication protocols, the principles of operation,

and their properties. We will use these explanations sometimes for the purpose of

comparisons. Section 4 gives a short overview of the model of the restarting au-

tomaton, which is used as the basic device for the systems investigated in Section 5.

Section 5 is the main part of this work. There, PCRA systems are introduced

and investigated. At first, these systems are defined and explained. The commu-

nication protocol is presented and important differences to the systems given in

Section 3 are emphasized. Moreover, a first detailed example is given. Then, after

defining some more useful technical material in Subsection 5.1, we will see some

other example systems for various well-known formal languages in Subsection 5.2.

More examples are given throughout the further subsections whenever it seems

helpful. Afterwards, we consider properties that are typically interesting for sys-

tems of parallel communicating components. In Subsection 5.3, we investigate an

essential property of the communication, namely whether a centralized communi-

cation structure is a restriction for the computational power of our systems. In

Subsection 5.4, we study the effect of the ‘nonforgetting property’ on our systems.

For single restarting automata (that are in general ‘forgetting’), this property is

an extension that in fact increases the computational power. In Subsection 5.5,

we show some closure properties for language classes that are characterized by

our systems. We will see that some of them are so-called ‘abstract families of

languages’ (AFLs). Then, in Section 5.6 we investigate the computational power

of PCRA systems. In this context our systems are compared with single restarting

automata and with other types of parallel communicating systems, and we obtain

some correlations to popular complexity classes. Moreover, systems of shrinking

restarting automata are considered there. In Section 5.7 it is shown that, although

the word problem is decidable in quadratic time for deterministic systems and in

exponential time for nondeterministic systems, many other questions are not de-

cidable even for systems with weak types of restarting automata as components.

In the last section we summarize our results, give a short discussion on interest-

ing problems that remain open, and present some approaches for further research.



2 Preliminaries

Here basic definitions and notations of formal language theory that are used in the

subsequent sections are introduced. Since this is only a short survey, the reader is

referred to the literature for further details, e.g. [HU79, RS97].

We denote sets with capital Latin letters. For a set M , the number of elements

is denoted by |M |. For two sets M1 and M2, we can apply the usual set operations:

union (M1 ∪ M2 and M1∪̇M2 for the disjoint union), intersection (M1 ∩ M2),

difference (M1 \M2), cartesian product (M1 ×M2), the power set (P(M1)), and

the set of all finite subsets (Pe(M1)). With Mn we mean the cartesian product

M ×M × . . .×M︸ ︷︷ ︸
n−times

.

For n sets M1,M2, . . . ,Mn, we can define an n-ary relation R, i.e. a subset of

M1 ×M2 × . . .×Mn. If M1 is a subset of M2, we notate this by M1 ⊆ M2. If the

subset is even proper, then this is denoted by M1 ⊂M2.

In general, the members of a set are not ordered and no member occurs more

than once. In contrast, an n-tuple is a finite and ordered list of objects that

is denoted by A = (a1, a2, . . . , an), where the members have not necessarily to

be distinct. Such tuples are usually used for the description of mathematical

structures and the formalization of formal language devices.

An alphabet is a finite collection of distinct symbols and is denoted by a capital

Greek letter. Symbols are mostly written with the first lower case Latin letters a,

b, c, and so forth. A word or string is a finite sequence of symbols and denoted

by the last Latin letters u, v, w, x, y, and z. The length |w| of a word w is

just the number of symbols it consists of, e.g. for the word w = abcba, we have

|w| = |abcba| = 5. The word of length zero is called the empty word and denoted

by ε. With |w|a we mean the number of occurences of the symbol a in w. Two

words u and v can be combined to a word w with the associative operation of

concatenation: w = u · v. Obviously, |w| = |u · v| = |u|+ |v| and ε ·w = w · ε = w.

The operator · is often omitted and we write w = uv. Let Σ be an alphabet, then

Σ∗ is the monoid over Σ (according to the concatenation as operation and the

identity element ε), i.e. the set of all words that can be obtained by combining an

arbitrary but finite number of symbols of Σ. The set Σ∗ without ε is denoted by

Σ+. Moreover, with Σn and Σ≤n we denote the set of all words of length n and

of length at most n, respectively. A subset L of Σ∗ is called a (formal) language

5



6 Preliminaries

over the alphabet Σ. Besides the usual set operations mentioned above we need

some more operations for formal languages L, L1, and L2 over an alphabet Σ:

• complement: L = Σ∗ \ L,

• reversal: LR = {wR | w ∈ L}, where for a word w = a1a2 . . . an, the reversal

is wR = an . . . a2a1 that is also called the mirror image,

• product: L1 · L2 = {uv | u ∈ L1 and v ∈ L2},

• Kleene closure:

L∗ =
∞⋃
i=0

Li,

where L0 = {ε} and Li = L · Li−1 for all i > 0,

• positive closure:

L+ =

∞⋃
i=1

Li.

Another operation that can be applied to words as well as to languages are

homomorphisms, which are defined by

h : Σ→ Γ∗,

where Σ and Γ are alphabets. Usually, h is extended to h : Σ∗ → Γ∗ by defining

h(ε) = ε and h(ua) = h(u)h(a) for any word u ∈ Σ∗ and any symbol a ∈ Σ. A

homomorphism is called non-erasing if |h(a)| > 0 for all a ∈ Σ.

A set of languages is called a language class. Famous language classes in

formal language theory are the set of regular languages (REG), the set of context-

free languages (CFL), the set of context-sensitive languages (CSL), and the set

of recursively enumerable languages (RE). The connection between these classes

according to the inclusion relation is given through the Chomsky hierarchy:

REG ⊂ CFL ⊂ CSL ⊂ RE.

These language classes are characterized by formal grammars of different types,

where the type indicates particular restrictions: regular grammars, context-free

grammars, context-sensitive grammars, and unrestricted grammars. Over the

years there were developed and investigated many more types of formal gram-

mars and automata models characterizing language classes with rather different

properties.

Other well-known language classes we will use here are: the deterministic

context-free languages (DCFL), which are characterized by deterministic pushdown
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automata; the growing context-sensitive languages (GCSL) [DW86], which are char-

acterized by strictly monotone grammars, i.e. grammars with rules only of the form

α→ β s.t. |α| < |β|; the Church-Rosser languages (CRL) [MNO88], characterized

by Church-Rosser Thue systems; and the classes of languages that can be accepted

by a Turing machine with only a logarithmic amount of space in the deterministic

case (L) or in the nondeterministic case (NL). The first three classes can also be

placed within the Chomsky hierarchy:

REG ⊂ DCFL ⊂
CFL ⊂

⊂
CRL ⊂

GCSL ⊂ CSL ⊂ RE.

An important property of language classes that we will investigate here are

closure properties. We say that a language class L ist closed under an n-ary

operation ◦ ⊆ Ln if, for arbitrary languages L1, L2, . . . , Ln ∈ L, it holds that

◦(L1, L2, . . . , Ln) ∈ L. A language class is called an abstract family of languages

(abbreviated by AFL) if it is closed under the operations union, intersection with

regular languages, non-erasing homomorphisms, inverse homomorphisms, product,

and positive closure.

Let M be a particular formal language device (e.g. an automaton, a grammar,

a system etc.). Then L(M) denotes the language class consisting of all languages

that can be characterized (generated, accepted) by this device.





3 Systems of parallel communicating

components

3.1 Multi-head finite automata and multi-processor au-

tomata

In this section we consider the model of multi-head finite automata. Although it is

not a system of several components that work in a distributed manner, it plays an

important role within this research field. On the one hand, it is closely connected

to the parallel communicating systems of finite automata, and the coordination of

the various heads can be seen as a simple kind of implicit communication. On the

other hand, they characterize the popular complexity classes L and NL that are

the classes of languages accepted by deterministic, nondeterministic respectively,

Turing machines using only a logarithmic amount of workspace (according to the

length of the input).

The multi-head finite automaton was introduced by Rabin and Scott [RS64]

and Rosenberg [Ros67]. It consists of a finite state control and an input tape with

a fixed number of read-only heads (see Figure 3.1). Basically, the finite control

requests the input symbols read by all heads and then determines a successor

state and the moving directions for all heads. The heads are abstract in the sense

that they can freely pass each other. Moreover, we consider so-called non-sensing

multi-head automata, which means that the automaton cannot check whether

some heads have the same position on the tape or not.

c| a b c c b a a b c c b a $

input tape head 1 head 2 head n

q
finite control

· · ·

Figure 3.1: Schematic representation of a multi-head finite automaton.

Formally1, a nondeterministic two-way n-head automaton M (2-NFA(n) for

1Here, for technical reasons we do not use the original definition, but a modified one that can
be found in e.g. [HKM09].

9
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short) is a tuple

M = (Q,Σ, n, δ, c| , $, q0, F )

with the finite set of states Q, the input alphabet Σ, the initial state q0 ∈ Q, and

the set of final states F ⊆ Q. The symbols c| and $ are not included in Σ and used

as the left and the right sentinels of the input. Further, δ is a mapping of Q× (Σ∪
{c| , $})n into the finite subsets of Q× {−1, 0, 1}n. We write (q, (d1, d2, . . . , dn)) ∈
δ(p, (a1, a2, . . . , an)) if the automaton M is allowed to change into the state q and

to move the i-th head di steps to the right for all 1 ≤ i ≤ n, when it is currently

in state p and reads the input symbol ai with the i-th head for all 1 ≤ i ≤ n.

In particular, if di = −1 for some 1 ≤ i ≤ n, then the i-th head is moved one

step to the left. In the cases di = 0 and di = 1, the i-th head does not move

and keeps the current position, or it moves one step to the right, respectively.

Whenever a head of the automaton reads the left sentinel c| , or the right sentinel $

respectively, it is not allowed to move to the left, to the right respectively. That is,

(q, (d1, d2, . . . , dn)) ∈ δ(p, (a1, a2, . . . , an)) with ai = c| (ai = $) for some 1 ≤ i ≤ n

implies di ∈ {0, 1} (di ∈ {−1, 0}).
A configuration of a 2-NFA(n) M with input w is an n-tuple (x1qy1, x2qy2,

. . . , xnqyn), where x1y1 = x2y2 = . . . = xnyn = c|w$, q is the current state

of the finite control, and for all 1 ≤ i ≤ n, the i-th head is positioned on

the first symbol of yi. The initial configuration for an input w is the n-tuple

(q0c|w$, q0c|w$, . . . , q0c|w$). For two configurations (x1pa1y1, x2pa2y2, . . . , xnpanyn)

and (x′
1qy

′
1, x

′
2qy

′
2, . . . , x

′
nqy

′
n) of M , a computation step

(x1pa1y1, x2pa2y2, . . . , xnpanyn) 	M (x′
1qy

′
1, x

′
2qy

′
2, . . . , x

′
nqy

′
n)

is possible if and only if (q, (d1, d2, . . . , dn)) ∈ δ(p, (a1, a2, . . . , an)) and for all

1 ≤ i ≤ n,

1. di = −1, xi = x′′
i bi, x

′
i = x′′

i , and y′i = biaiyi; or

2. di = 0, x′
i = xi, and y′i = aiyi; or

3. di = 1, x′
i = xiai, and y′i = yi.

A computation of an automaton M is denoted by 	∗M , which is the reflexive and

transitive closure of 	M . If there is no applicable transition for some configuration,

then the automaton halts. An input word w is accepted by an automaton M if

and only if M starts the computation from the initial configuration on input w

and halts after a finite number of computation steps in a final state. The language
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that is accepted by M with initial state q0 is

L(M) = {w ∈ Σ∗ | (q0c|w$, q0c|w$, . . . , q0c|w$) 	∗M (x1qa1y1, x2qa2y2, . . . , xnqanyn)

such that q ∈ F, xiyi = c|w$ for all 1 ≤ i ≤ n,

and δ(q, (a1, a2, . . . , an)) = ∅}.

Whenever the mapping δ of an n-head automaton M is a (partial) function

into the set Q× {−1, 0, 1}n, then we say M is a deterministic n-head automaton,

2-DFA(n) for short. Moreover, if δ maps into the set Q×{0, 1}n, i.e. no left moves

can be done, then we call M a one-way n-head automaton, that is, a 1-DFA(n) in

the deterministic case or a 1-NFA(n) in the nondeterministic case.

The class of all languages that can be accepted by any n-head automaton

of type X ∈ {2-NFA, 2-DFA, 1-NFA, 1-DFA} is denoted by L(X(n)). The class of

languages accepted by a multi-head finite automaton of type X with arbitrarily

many heads is denoted by

L(X) =
⋃
n≥1

L(X(n)).

In the following example a 1-DFA(2) M is given that accepts the language

Lanbncn = {anbncn | n ≥ 1}. The automaton M is just a deterministic finite

automaton with one additional head. Nevertheless it can accept languages like

Lanbncn that are not even context-free. This simple example demonstrates how

even small extensions by additional resources that can be used in parallel can

increase the computational power of a device.

Example 1. A two-head automaton that accepts the language Lanbncn behaves

as follows: initially, reading the c| -symbol with both heads, the heads are moved

one step to the right. Then, while reading a’s the second head moves to the right

and the first head stays on the first a. When the second head reaches the first b of

the input, then both heads move to the right simultaneously, where the first head

only reads a’s and the second head only reads b’s. At some point in time the first

head reads the first b and the second head reads the first c - at least if the number

of a’s and b’s are equal. Then, both heads are synchronously moved to the right,

while the first head reads the b’s and the second head reads the c’s. If the number

of b’s and c’s are equal, then the first head reads the first c at the same point in

time that the second head reads the $-symbol. In this case M switches into a final

state and halts. If the input word is not of the correct form, then M will halt

without reaching the final state and thus reject. Formally, M is given by

M = ({p, q, r, s}, {a, b, c}, 2, δ, c| , $, p, {s}),



12 Systems of parallel communicating components

where
δ(p, (c| , c| )) = (p, (1, 1)),

δ(p, (a, a)) = (p, (0, 1)),

δ(p, (a, b)) = (q, (1, 1)),

δ(q, (a, b)) = (q, (1, 1)),

δ(q, (b, c)) = (r, (1, 1)),

δ(r, (b, c)) = (r, (1, 1)),

δ(r, (c, $)) = (s, (0, 0)).

The computation on an input word akbkck for some k > 0 is

(pc| akbkck$, pc| akbkck$ )

	M (c| pakbkck$, c| pakbkck$ )

	kM (c| pakbkck$, c| akpbkck$ )

	M (c| aqak−1bkck$, c| akbqbk−1ck$)

	k−1
M (c| akqbkck$, c| akbkqck$ )

	M (c| akbrbk−1ck$, c| akbkcrck−1$)

	k−1
M (c| akbkrck$, c| akbkckr$ )

	M (c| akbksck$, c| akbkcks$ ).

Observe that M is deterministic, since in each situation at most one move is

possible. Moreover, it moves the heads only to the right but not to the left, thus

it is a one-way automaton. All in all, M is a 1-DFA(2) with L(M) = Lanbncn . �

There are several results concerning the computational power of multi-head

finite automata. For multi-head automata with only one head we just obtain a

finite automaton and thus for all variants of one-way, two-way, deterministic, and

nondeterministic automata the regular languages are characterized [RS59, She64]:

L(1-DFA(1)) = L(1-NFA(1)) = L(2-DFA(1)) = L(2-NFA(1)) = REG.

In [YR78] a hierarchy of the language classes according to the number of heads

was shown for one-way multi-head automata:

L(1-DFA(n)) ⊂ L(1-DFA(n+1)) and L(1-NFA(n)) ⊂ L(1-NFA(n+1)) for all n ≥ 1.

For this, the language

Lb = {w1 ∗ w2 ∗ . . . ∗ w2b | (wi ∈ {0, 1}∗) and (wi = w2b+1−i) for all 1 ≤ i ≤ 2b}

was shown to be accepted by a 1-DFA(n + 1) but not to be accepted by any

1-NFA(n) for b =

(
n + 1

2

)
. The same language and the fact that deterministic

one-way automata are closed under complementation are used to separate the

deterministic and the nondeterministic language classes:

L(1-NFA(2)) \ L(1-DFA) 
= ∅.
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Comparing one-way and two-way multi-head automata this leads to the result

that the former ones are less powerful than the latter ones:

L(1-DFA(n)) ⊂ L(2-DFA(n)) and L(1-NFA(n)) ⊂ L(2-NFA(n)) for all n ≥ 2.

This holds because the language of palindromes

Lpal = {w | w ∈ {a, b}∗ and w = wR}

cannot be accepted by any one-way multi-head automaton independently of how

many heads are used. But Lpal can easily be accepted by a deterministic two-way

multi-head automaton with only two heads: initially the first head is positioned

on the first letter of the input, while the second head is moved to the right end,

i.e. the last letter of the input word. Then, both heads are moved simultaneously

comparing each scanned symbol, the first head reads the input from the left to

the right and the second head reads the input from the right to the left. Reaching

the according other end of the tape, the word is accepted by the automaton. Oth-

erwise, if two compared symbols are not equal, the automaton halts and rejects,

since the input is not a palindrome.

Hierarchy results for two-way multi-head automata can be found in [Mon80,

Iba73, Sud77]. Summarizing it is known that

L(2-DFA(n)) ⊂ L(2-DFA(n + 1)) and L(2-NFA(n)) ⊂ L(2-NFA(n + 1)).

An important result that we will use below is the characterization of the well-

known complexity classes L and NL by two-way multi-head automata [Har72]:

L = L(2-DFA) and NL = L(2-NFA).

Another approach concerning parallel computations in finite automata is the

multi-processor automaton that was introduced by A.O. Buda in [Bud87]. This

device is equipped with a finite number of processors that are working simultane-

ously on a common working tape. The behaviour of each processor depends on its

own current state and the input symbol it currently reads and is determined by

a common transition mapping. Moreover, a global switching function determines,

depending on the current states of all processors, which of them are active and

which of them are idle.

In contrast to multi-head automata that have only one control with several

heads the computation of a multi-processor automaton with several (more or less
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independent2) processing units has a higher degree of distribution. Nevertheless

it was proved that both concepts have the same computational power. In the

original paper it was proved that each n-processor automaton can be simulated

by an n-head automaton. Later Ďurǐs et al. proved the other direction [ĎJKL98]

with the following consequences:

L(1-DP) = L(1-DFA),L(1-NP) = L(1-NFA),L(2-DP) = L(2-DFA),

and L(2-NP) = L(2-NFA),

where L(1-DP) (L(1-NP), L(2-DP), L(2-NP)) is the class of languages that are

accepted by a one-way deterministic (one-way nondeterministic, two-way deter-

ministic, two-way nondeterministic) multi-processor automaton.

According to the number of heads or processors, respectively, the authors of

[ĎJKL98] showed that each nondeterministic n-head automaton can be simulated

by an n-processor automaton:

L(1-NP(n)) = L(1-NFA(n)) and L(2-NP(n)) = L(2-NFA(n)).

In the deterministic one-way case this equality does not hold:

L(1-DP(2)) ⊂ L(1-DFA(2)).

But the simulation works when two additional processors are used:

L(1-DFA(n)) ⊆ L(1-DP(n + 2)) and L(2-DFA(n)) ⊆ L(2-DP(n + 2)).

Multi-head and multi-processor automata are early examples for parallel com-

putations in formal language devices. In the next sections systems of parallel

communicating devices are presented that have a rather different structure, but

also some interesting similarities.

3.2 Parallel communicating finite automata systems

Parallel communicating finite automata systems (PCFA systems for short) were

introduced by Mart́ın-Vide, Mateescu, and Mitrana in 2002 [MMM02]. They can

be seen as an in-between of the multi-processor automaton on the one hand and

the multi-head finite automaton on the other hand. Both kinds of models are

somehow extremes in coordinating their work: in the former one the processors

2On the one hand a transition step for a particular processor is independent of the other
processors. On the other hand it depends on the states of all processors, whether a particular
processor is active or not.
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work quite independently of each other and the cooperation is very loose, while

in the latter one there is just a single control using several heads. Further, PCFA

systems can be seen as a counterpart to PC grammar systems with the difference

that an automata system accepts input words instead of generating them like a

grammar system does.

A PCFA system consists of several finite automata that communicate by their

states. Originally, they all use the same input tape, but have their own finite

control and one-way read-only head (observe the similarity to multi-processor au-

tomata). However, w.l.o.g. it seems more natural to imagine that each automaton

has its own input tape like it is shown in Figure 3.2. The finite automata within

the system are called components and the number of components determines the

degree of the system.

A1 A2 An

a b c b a b a

input tape

q
finite control

a b c b a b a

input tape

q
finite control

...

a b c b a b a

input tape

q
finite control

communication connection

Figure 3.2: Schematic representation of a PCFA system with components A1, A2,
. . . , An.

Formally, a parallel communicating finite automata system A of degree n is

described by an (n + 2)-tuple

A = (Σ, A1, A2, . . . , An, K),

where Σ is the non-empty finite input alphabet, and for all 1 ≤ i ≤ n,

Ai = (Qi,Σ, δi, qi, Fi)

is a finite automaton with a set of states Qi, the initial state qi ∈ Qi, the set of

final states Fi ⊆ Qi, and the transition mapping δi : Qi× (Σ∪{ε})→ P(Qi). The

set

K = {K1, K2, . . . , Kn} ⊆
n⋃

i=1

Qi
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contains the query states that are used for communication3. For each component

Ai, the set K contains a dedicated query state Ki. In general, a PCFA system

is nondeterministic. However, if for all 1 ≤ i ≤ n, δi is a partial function, and

moreover, δi(s, ε) 
= ∅ implies δi(s, a) = ∅ for all s ∈ Qi and a ∈ Σ, then the

system is deterministic.

A PCFA system is called centralized if there exists only one 1 ≤ i ≤ n with

K ⊆ Qi. The component Ai is then called the master of the system, and each

communication can only be initiated by Ai. For simplicity it is mostly assumed

that the first component is the master of the system.

A configuration of a PCFA system of degree n is a 2n-tuple

(s1, x1, s2, x2, . . . , sn, xn),

where si ∈ Qi is the current state of Ai, and xi is the part of the input word that is

not yet read by the component Ai, 1 ≤ i ≤ n. There are two kinds of computation

steps: 1) a local computation step and 2) a communication step. A local step can

only be applied if none of the current states is a query state. Then each component

of the system performs exactly one computation step. If at least one component

is actually in a query state, then communication takes place. That means that

each requested component sends its current state to the requesting component. It

is required that query states themselves cannot be communicated. Thus, if the

requested state is also a query state, then this communication has to be resolved

first. Whenever there occurs a circular query, then the computation of the system

is blocked, the system halts, and it rejects the input.

Let (s1, x1, s2, x2, . . . , sn, xn) and (p1, y1, p2, y2, . . . , pn, yn) be two configura-

tions. Then

(s1, x1, s2, x2, . . . , sn, xn) 	 (p1, y1, p2, y2, . . . , pn, yn)

is a computation step if and only if one of the following two conditions is fulfilled:

• (local computation step) K ∩ {s1, s2, . . . , sn} = ∅, xi = aiyi, ai ∈ Σ ∪ {ε},
and pi ∈ δi(si, ai) for all 1 ≤ i ≤ n; or

• (communication step) K ∩ {s1, s2, . . . , sn} 
= ∅, for all 1 ≤ i ≤ n for which

si = Kji and sji /∈ K, pi = sji, for all the other 1 ≤ r ≤ n, pi = si, and for

all 1 ≤ t ≤ n, yi = xi.

3In difference to the original definition we allow K ⊆ {K1, . . . ,Kn} instead of K =
{K1, . . . ,Kn}, ommiting communication states that will not be used. Otherwise, an inaccu-
racy would appear in the case of centralized systems (see below), where component A1 must
unnecessarily contain the state K1.
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In the above definition of a computation step, a component whose state was

requested by another component continues its computation from the communi-

cated state. This strategy is called non-returning mode. Another strategy is

to reset the requested component to its initial state. This is called the return-

ing mode and is formally defined in the following way. For two configurations

(s1, x1, s2, x2, . . . , sn, xn) and (p1, y1, p2, y2, . . . , pn, yn)

(s1, x1, s2, x2, . . . , sn, xn) 	r (p1, y1, p2, y2, . . . , pn, yn)

is a computation step in the returning mode iff one of the following two conditions

holds:

• (local computation step) K ∩ {s1, s2, . . . , sn} = ∅, xi = aiyi, ai ∈ Σ ∪ {ε},
and pi ∈ δi(si, ai) for all 1 ≤ i ≤ n; or

• (communication step) K ∩ {s1, s2, . . . , sn} 
= ∅, for all 1 ≤ i ≤ n for which

si = Kji and sji /∈ K, pi = sji and pji = qji, for all the other 1 ≤ r ≤ n,

pi = si, and for all 1 ≤ t ≤ n, yi = xi.

The reflexive and transitive closures of the relations 	 and 	r are denoted

by 	∗ and 	∗r , respectively. A computation of a PCFA system is a sequence of

computation steps and it holds that a pair of two configurations κ and κ′ is an

element of 	∗ , 	∗r respectively, if and only if there exists a computation from κ

to κ′. The initial configuration for a system of degree n and an input word w is

(q1, w, q2, w, . . . , qn, w). The languages that are accepted by a PCFA system A in

the non-returning and the returning mode are defined by

L(A) = {w ∈ Σ∗ | (q1, w, q2, w, . . . , qn, w) 	∗ (s1, ε, s2, ε, . . . , sn, ε)

with si ∈ Fi for all 1 ≤ i ≤ n}

and

Lr(A) = {w ∈ Σ∗ | (q1, w, q2, w, . . . , qn, w) 	∗r (s1, ε, s2, ε, . . . , sn, ε)

with si ∈ Fi for all 1 ≤ i ≤ n}.

Due to the different possibilities of how to combine the properties of being

centralized/non-centralized and returning/non-returning, we distinguish four dif-

ferent types of PCFA systems:

• PCFA(n) - non-centralized and non-returning PCFA systems of degree n,

• CPCFA(n) - centralized and non-returning PCFA systems of degree n,

• RPCFA(n) - non-centralized and returning PCFA systems of degree n, and
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• RCPCFA(n) - centralized and returning PCFA systems of degree n.

The deterministic variants of the PCFA systems get the prefix ‘D’, i.e. DPCFA,

DCPCFA, DRPCFA, and DRCPCFA. The class of languages that are accepted by

a PCFA system of type X ∈ {PCFA,CPCFA,RPCFA,RCPCFA,DPCFA,DCPCFA,
DRPCFA,DRCPCFA} and degree n is denoted by L(X(n)). The class of languages

that can be accepted by a PCFA system of type X with arbitrarily many compo-

nents is denoted by

L(X) =
⋃
n≥1

L(X(n)).

In the following example from [MMM02] a system A is given that accepts the

language Lanbncn. This language is not context-free, which gives a first impression

of the computational power of PCFA systems.

Example 2. A system that accepts Lanbncn consists of two components that

basically work as follows: the first component waits, while the second component

moves its head over the a’s to the beginning of the b’s. Then both components

compare the number of a’s and the number of b’s just by moving their heads

synchronously. If the number of a’s equals the number of b’s, then A1 reaches

the b’s at the same time that A2 reaches the c’s. The number of b’s and c’s are

compared in the same way. In the whole computation both components work

synchronously, and A1 requests the state of A2 after each local computation step.

Since A2 stores the information about its own currently read symbol in its state,

A1 knows the current symbol of A2 in each step.

The system is given by

A = ({a, b, c}, A1, A2, {K1, K2})

with the two components

A1 = ({q1, q2, qf , s1, s2, sf , K2}, {a, b, c}, δ1, q1, {qf}) and

A2 = ({q1, q2, qf , s1, s2, sf}, {a, b, c}, δ2, q2, {sf}),

where δ1 and δ2 are defined as follows:

δ1(q1, ε) = K2,

δ1(s1, a) = K2,

δ1(q2, ε) = K2,

δ1(s2, b) = K2,

δ1(sf , c) = qf ,

δ1(qf , c) = qf ,

δ2(q2, a) = q2,

δ2(q2, b) = s1,

δ2(s1, b) = s1,

δ2(s1, c) = s2,

δ2(s2, c) = s2,

δ2(s2, ε) = sf ,

δ2(sf , ε) = sf .
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A computation of A for an input word anbncn proceeds as follows:

(q1, anbncn, q2, a
nbncn)

	 (K2, a
nbncn, q2, a

n−1bncn)

	 (q2, anbncn, q2, a
n−1bncn)

	2(n−1) (q2, anbncn, q2, b
ncn)

	 (K2, a
nbncn, s1, b

n−1cn)

	 (s1, anbncn, s1, b
n−1cn)

	2(n−1) (s1, abncn, s1, c
n)

	 (K2, b
ncn, s2, c

n−1)

	 (s2, bncn, s2, c
n−1)

	2(n−1) (s2, bcn, s2, ε)

	 (K2, c
n, sf , ε)

	 (sf , cn, sf , ε)

	 (qf , cn−1, sf , ε)

	n−1 (qf , ε, sf , ε)

�

The following facts result immediately from the definition:

1. L(CPCFA(n)) ⊆ L(PCFA(n)), L(RCPCFA(n)) ⊆ L(RPCFA(n)),

L(DCPCFA(n)) ⊆ L(DPCFA(n)), and L(DRCPCFA(n)) ⊆ L(DRPCFA(n)),

2. L(X(n)) ⊆ L(X(n+ 1)) for all X ∈ {PCFA,CPCFA,RPCFA,RCPCFA,DPCFA,
DCPCFA,DRPCFA,DRCPCFA}.4

The authors of [MMM02] showed that non-centralized and non-returning PCFA

systems of degree n have the same computational power as one-way n-head au-

tomata in the deterministic and in the nondeterministic case:

L(DPCFA(n)) = L(1-DFA(n)) and L(PCFA(n)) = L(1-NFA(n)).

A direct consequence of this result and the fact that multi-head pushdown au-

tomata satisfy the semi-linearity property is that all types of PCFA systems can

only accept semi-linear languages. Later, Choudhary, Krithivasan, and Mitrana

showed in [CKM07] that the second of the above equalities also holds for nonde-

terministic, non-centralized, and returning PCFA systems:

L(RPCFA(n)) = L(PCFA(n)) = L(1-NFA(n)).

Thus, returning and non-returning systems are equally powerful in the nondeter-

ministic and non-centralized version. Like in [MMM02] the authors proved this

by simulating a one-way multi-head finite automaton. The question, whether this

equation also holds for deterministic non-centralized PCFA systems was answered

by Bordihn, Kutrib, and Malcher in [BKM08]:

L(DRPCFA(n)) = L(DPCFA(n)) = L(1-DFA(n)).

4Whether these inclusions form a strict hierarchy we will see below.
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For the proof the authors defined and used the ‘cycling-token-method’, where an

information token is cyclically communicated within the system. Moreover, they

proved that in the deterministic non-returning case, centralized systems are weaker

than non-centralized systems:

L(DCPCFA) ⊂ L(DPCFA)

and that deterministic systems are less powerful than nondeterministic systems:

L(DCPCFA) ⊂ L(CPCFA) and L(DPCFA) ⊂ L(PCFA).

For returning systems the proper inclusion

L(DRPCFA) ⊂ L(RPCFA)

is immediately obtained due to the above connections and

L(DRCPCFA) ⊂ L(RCPCFA)

can be shown similarly to the proof in [BKM08]: the complement of the lan-

guage of palindromes Lpal over the alphabet {a, b}, i.e. Lpal, is accepted by an

RCPCFA(3)-system (see Example 3 below). Suppose Lpal is also accepted by any

DRCPCFA-system with arbitrarily many components, then Lpal ∈ L(1-DFA). Since

L(1-DFA) is closed under complementation [Ros66], Lpal ∈ L(1-DFA). This is a

contradiction, because it is well-known that even Lpal /∈ L(1-NFA) [WW86]. Thus,

Lpal /∈ DRCPCFA.

Example 3 (RCPCFA-system for Lpal = {a, b}∗ \ {w | w ∈ {a, b}∗ and w =

wR}). In Example 2 we presented a centralized system working in non-returning

mode. Now, we define a centralized system

A = ({a, b}, A1, A2, A3, {K1, K2, K3})

working in returning mode and accepting the complement of the language of all

palindromes over the alphabet {a,b}, i.e. Lpal. A word w = w1w2 . . . wl is contained

in Lpal if and only if l ≥ 2 and there exists an integer i with
⌈
l
2

⌉
< i ≤ l such that

wi 
= wl−i+1.

The components of the system A behave as follows: at the beginning of a com-

putation the first component only performs ε-steps and remains in its initial state

q0 without moving its head, while A2 and A3 move their heads in each step one

position to the right. Thereby in each step A2 stores the last symbol read in the
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current state, i.e. it changes into qa if it reads an a or into qb reading the symbol b.

Subsequently, after i steps A2 is in state qwi
. After exactly i ε-steps A1 requests the

current state of A2 that contains the symbol wi by reaching nondeterministically

the communication state K2. From here the second component is not of interest

anymore: it just reads the rest of the input, and performs ε-steps in an accepting

state. After the communication between A1 and A2 the former automaton moves

its head one position to the right in each computation step. After exactly l− i+ 1

steps it reaches the communication state K3 due to a nondeterministic decision.

Thus, A1 reaches state K3 in i+ l− i+ 1 = l + 1 local steps. Since component A3

moves its head in each step one position to the right, it has read the entire input

after l steps. With an additional ε-step it reaches a dedicated stated qf that is

communicated to A1. In the last phase of the computation A1 reads the remaining

i− 1 input symbols and A accepts.

Formally, the components of A are given by:

A1 = ({q0, K2, qa, qb, qf}, {a, b}, δ1, q0, {qf}),
A2 = ({p0, qa, qb, pe, }, {a, b}, δ2, p0, {pe}), and

A3 = ({s0, s1, qf , se}, {a, b}, δ3, s0, {qf , se, s0})

with

δ1(q0, ε) = {q0, K2},
δ1(qa, b) = {qa, K3},
δ1(qa, a) = {qa},
δ1(qb, a) = {qb, K3},
δ1(qb, b) = {qb},
δ1(qf , a) = δ1(qf , b) = {qf},

δ2(p0, a) = δ2(qa, a) = δ2(qb, a) = {qa, pe},
δ2(p0, b) = δ2(qa, b) = δ2(qb, b) = {qb, pe},
δ2(p0, ε) = δ2(pe, ε) = {pe},

δ3(s0, a) = δ3(s0, b) = {s0, s1},
δ3(s1, ε) = {qf},
δ3(qf , ε) = δ3(se, ε) = δ3(s0, ε) = {se}.

A computation of A for a word w ∈ Lpal is given by:

for i < l :

(q0, w, p0, w, s0, w)

	i−1 (q0, w, qwi−1
, wi . . . wl, s0, wi . . . wl)

	 (K2, w, qwi
, wi+1 . . . wl, s0, wi+1 . . . wl)

	 (qwi
, w, p0, wi+1 . . . wl, s0, wi+1 . . . wl)

	l−i (qwi
, wl−i+1 . . . wl, pe, ε, s1, ε)

	 (K3, wl−i+2 . . . wl, pe, ε, qf , ε)

	 (qf , wl−i+2 . . . wl, pe, ε, s0, ε)

	i−1 (qf , ε, pe, ε, se, ε)

for i = l :

(q0, w, p0, w, s0, w)

	l−1 (q0, w, qwl−1
, wl, s0, wl)

	 (K2, w, qwl
, ε, s1, ε)

	 (qwl
, w, p0, ε, s1, ε)

	 (K3, w2 . . . wl, pe, ε, qf , ε)

	 (qf , w2 . . . wl, pe, ε, s0, ε)

	l−1 (qf , ε, pe, ε, se, ε)
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Observe that although the components can nondeterministically choose the next

state, there is only one correct choice for A2 and A3 in each accepting computa-

tion. If they choose wrongly by executing an ε-move in the middle of the input

word (instead of at the end), then the remaining part of the input cannot be read

anymore and thus the system does not accept. Moreover, in any accepting compu-

tation there are two situations where A1 performs nondeterministic choices: guess

the position i and guess the position l − i + 1. If the second guess is wrong, i.e.

it does not match the first guess, then A1 does not obtain qf from A3, because

A3 is only in qf after exactly l + 1 local computation steps. If the first guess is

wrong and the second guess fits to the first one, i.e. wi = wl−i+1, then A1 is not

allowed to switch into K3 in l + 1 steps due to third and the fifth transitions. In

both cases A1 does not accept.

Obviously, if w /∈ Lpal, then A1 cannot guess successfully and thus cannot reach

qf . Therefore, in this case A does not accept w. �

In Figure 3.3 we summarize the relations between the language classes that

are characterized by multi-head finite automata and PCFA systems. An arrow

denotes a proper inclusion and a dotted arrow denotes an inclusion that is not yet

known to be proper.

L(DRCPCFA) ��

��

L(DRPCFA)

��

L(DPCFA)

��

L(1-DFA) ��

��

L(2-DFA) L

L(DCPCFA)

������������

������������

��
L(CPCFA)

�� ��
L(RCPCFA) �� L(RPCFA) L(PCFA) L(1-NFA) �� L(2-NFA) NL

Figure 3.3: Relations between language classes characterized by PCFA systems
and multi-head finite automata.

Besides the consideration of the computational power of the various types of

PCFA systems, typical decidability problems were investigated in [MM01, BKM10].

Though almost all questions are decidable for single finite automata (see e.g.

[HU79]), recent results show that most typical problems are not even semi-decidable

even for the weakest types of PCFA systems [BKM11]. Table 3.1 gives an overview

of some problems and these results can immediately be carried over to the language

classes of the remaining types of PCFA systems.

Dealing with systems of several components, another interesting question is

whether systems with more components are more powerful than systems with less
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L(CPCFA(n)) L(RCPCFA(n)) L(DCPCFA(n)) L(DRCPCFA(n))
emptiness n ≥ 2 n ≥ 3 n ≥ 2 n ≥ 3
universality n ≥ 2 n ≥ 2 n ≥ 2 n ≥ 3
inclusion n ≥ 2 n ≥ 2 n ≥ 2 n ≥ 3
equivalence n ≥ 2 n ≥ 2 n ≥ 2 n ≥ 3
finiteness n ≥ 2 n ≥ 3 n ≥ 2 n ≥ 3
infiniteness n ≥ 2 n ≥ 3 n ≥ 2 n ≥ 3
regularity n ≥ 2 n ≥ 3 n ≥ 2 n ≥ 3
context-freeness n ≥ 2 n ≥ 3 n ≥ 2 n ≥ 3

Table 3.1: Undecidability results for PCFA systems. All problems are not even
semi-decidable for the stated number of components.

components. For non-centralized PCFA systems this follows immediately from the

equivalence with multi-head automata and the hierarchy results that are already

known for multi-head automata:

L(X(n)) ⊂ L(X(n + 1)) for all n ≥ 1 and X ∈ {PCFA,RPCFA,DPCFA,DRPCFA}.

In [BKM11] it is proved that there exists an infinite strict hierarchy also for cen-

tralized non-returning PCFA systems:

L(X(n)) ⊂ L(X(n + 1)) for all n ≥ 1 and X ∈ {CPCFA,DCPCFA}.

For centralized systems working in the returning mode this is still an open question.

In the next section we will have a look at a more powerful variant of PC

systems, namely parallel communicating pushdown automata systems. These sys-

tems use a quite different communication protocol: instead of communicating

states as in PCFA systems, the components send their stack content by request.

It turns out that also these systems are related to well-known language classes of

the Chomsky-hierarchy.

3.3 Parallel communicating pushdown automata systems

Parallel communicating pushdown automata systems (we will abbreviate them as

PCPA systems) were introduced by Csuhaj-Varjú et al. in the year 2000 [CMMV00]

(see also [MM00] for a more compact introduction). Such a system consists of sev-

eral pushdown automata (the components) that are able to communicate with each

other. In contrast to PCFA systems, PCPA systems are defined to communicate

via requesting and sending the content of their stacks. Although a communication

by states is possible for PCPA systems as well, the authors of [CMMV00] stated
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that such systems can obviously simulate two-stack automata. Figure 3.4 shows

the schematical construction of a PCPA system.

A1 A2 An

a b c b a b a

input tape

stack

Y
X
X
Z
Y
X
X
⊥

q
finite control

a b c b a b a

input tape

stack

K1

Y
X
X
⊥

q
finite control

...

a b c b a b a

input tape

stack

Z
⊥

q
finite control

communication connection

Figure 3.4: Schematic representation of a PCPA system.

Formally, a parallel communicating pushdown automata system A of degree n

is an (n + 3)-tuple

A = (V,∆, A1, A2, . . . , An, K),

where V is the input alphabet, ∆ is the stack alphabet, K ⊆ {K1, K2, . . . , Kn} ⊆
∆ is the set of query symbols, and for all 1 ≤ i ≤ n,

Ai = (Qi, V,∆, δi, qi, Zi, Fi)

is a pushdown automaton, where

• Qi is the set of states,

• V is the input alphabet,

• ∆ is the stack alphabet,

• δi is the transition mapping from Qi × (V ∪ {ε})×∆ into P(Qi ×∆∗),

• qi ∈ Qi is the initial state,

• Zi ∈ ∆ is the bottom symbol of the stack, and

• Fi ⊆ Qi is the set of final states.
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A configuration of a PCPA system of degree n is a 3n-tuple

(s1, x1, α1, s2, x2, α2, . . . , sn, xn, αn),

where for all 1 ≤ i ≤ n, si ∈ Qi is the current state of Ai, xi ∈ V ∗ is the remaining

part of the input word that is not yet read by Ai, and αi ∈ ∆∗ is the current stack

content of Ai with the first letter being the topmost symbol of the stack. For an

input word w ∈ V ∗, the initial configuration is

(q1, w, Z1, q2, w, Z2, . . . , qn, w, Zn)

such that each component starts with the same input on its input tape and with

only the bottom symbol on its stack.

For two configurations (s1, x1, B1α1, . . . , sn, xn, Bnαn) and (p1, y1, β1, . . . , pn,

yn, βn) with Bi ∈ ∆ and αi, βi ∈ ∆∗ for all 1 ≤ i ≤ n,

(s1, x1, B1α1, . . . , sn, xn, Bnαn) 	 (p1, y1, β1, . . . , pn, yn, βn)

is a computation step iff one of the following two conditions holds:

• (local computation step)

K ∩ {B1, B2, . . . , Bn} = ∅ and for all 1 ≤ i ≤ n:

xi = aiyi, ai ∈ V ∪ {ε}, (pi, β
′
i) ∈ δi(si, ai, Bi), and βi = β ′

iαi; or

• (communication step)

– for all 1 ≤ i ≤ n with Bi = Kji and Bji /∈ K: βi = Bjiαjiαi,

– for all other 1 ≤ r ≤ n: βr = Brαr, and

– for all 1 ≤ t ≤ n: yt = xt and pt = st.

Whenever a communication can be performed this has a higher priority than

the local computation. Thus, if the topmost stack symbol of any component is a

query symbol, then a communication step has to be executed and no component is

allowed to perform a local computation step. Moreover, a component can send its

stack content only if the topmost symbol of its own stack is not a query symbol.

In that case this communication has to be resolved first. If there is a circular

query, then the system is blocked. Another strategy for the communication is the

returning mode (the previous strategy is called non-returning mode). Here, after

communicating the stack content, the stack of the requested component is emptied

and the bottom symbol is put onto it. Thus, the requested stack is initialized like
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in the very beginning of the computation. Formally,

(s1, x1, B1α1, . . . , sn, xn, Bnαn) 	r (p1, y1, β1, . . . , pn, yn, βn)

is a computation step iff one of the following two conditions holds:

• (local computation step)

K ∩ {B1, B2, . . . , Bn} = ∅ and for all 1 ≤ i ≤ n:

xi = aiyi, ai ∈ V ∪ {ε}, (pi, β
′
i) ∈ δi(si, ai, Bi), and βi = β ′

iαi; or

• (communication step in the returning mode)

– for all 1 ≤ i ≤ n with Bi = Kji and Bji /∈ K: βi = Bjiαjiαi and

βji = Zji,

– for all other 1 ≤ r ≤ n: βr = Brαr, and

– for all 1 ≤ t ≤ n: yt = xt and pt = st.

A computation of a PCPA system is denoted by 	∗ in the non-returning mode

and 	∗r in the returning mode that are the reflexive and transitive closures of

	 and 	r , respectively. The language that is accepted by a PCPA system A is

defined as

L(A) = {w ∈ V ∗ | (q1, w, Z1, q2, w, Z2, . . . , qn, w, Zn) 	∗ (s1, ε, α1, . . . , sn, ε, αn)

with si ∈ Fi for all 1 ≤ i ≤ n}

in the non-returning mode and

Lr(A) = {w ∈ V ∗ | (q1, w, Z1, q2, w, Z2, . . . , qn, w, Zn) 	∗r (s1, ε, α1, . . . , sn, ε, αn)

with si ∈ Fi for all 1 ≤ i ≤ n}

in the returning mode.

If only one component is allowed to request the stack content of any other

component (i.e. only this component is allowed to write query symbols on the

stack), then the system is called centralized and this component is called the

master of the system. For simplicity it is often assumed that the first component

is the master within a centralized system.

To distinguish the different types of PCPA systems we use the following nota-

tion5:

• PCPA(n): PCPA system of degree n,

5Here we differ from the notation in [CMMV00], where the different types are written in
lowercase and the according language classes are written in capital letters.
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• CPCPA(n): centralized PCPA system of degree n,

• RPCPA(n): returning PCPA system of degree n,

• RCPCPA(n): returning centralized PCPA system of degree n.

The class of all languages that are accepted by any PCPA system of type

X ∈ {PCPA(n),CPCPA(n),RPCPA(n),RCPCPA(n)} is denoted by L(X).

The authors of [CMMV00] established the following results. Non-centralized

systems are at least as powerful as centralized systems with the same number of

components in the returning mode as well as in the non-returning mode:

L(CPCPA(n)) ⊆ L(PCPA(n)) and L(RCPCPA(n)) ⊆ L(RPCPA(n)) for all n ≥ 1.

Systems of degree 1 characterize exactly the context-free languages and systems

with more components are at least as powerful as systems with less components:

L(X(1)) = CFL and L(X(n)) ⊆ L(X(n + 1))

for all X ∈ {PCPA,CPCPA,RPCPA,RCPCPA} and n ≥ 1.

Whether the hierarchy is strict for any of the above types is still an open problem.

Investigating the computational power of PCPA systems, it is proved in

[CMMV00] that each non-returning PCPA system can be simulated by a returning

system with twice as many components in the non-centralized case:

L(PCPA(n)) ⊆ L(RPCPA(2n)) for all n ≥ 2.

Furthermore, they proved that already two components are enough for non-return-

ing and non-centralized systems to accept all recursively enumerable languages.

In the case of returning non-centralized systems three components are used. For

the proof a two-stack automaton is simulated that characterizes the language class

RE [Har78]:

L(PCPA(2)) = L(RPCPA(3)) = RE.

For centralized systems a lower bound of the computational power is given by

multi-head pushdown automata [CMMV00] (these are automata with one stack

and multiple one-way read-only heads on the input tape, see e.g. [HI68] for further

details): each language accepted by an n-head pushdown automaton is accepted

by a centralized PCPA system with n components in the returning and in the

non-returning case. Moreover, any n-pushdown automaton can be simulated by a

centralized PCPA system with n + 1 components in the non-returning mode. An

n-pushdown automaton uses one input tape with a one-way head and n stacks,

see e.g. [BCCC96].
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Later, Balan, Krithivasan, and Madhu proved in [BKM03] that even centralized

PCPA systems with three components accept all recursively enumerable languages

in the non-returning case:

L(CPCPA(3)) = RE.

Similar to the proofs in [CMMV00] they simulate a two-stack automaton with a

centralized PCPA system of degree 3. Moreover, the authors introduce two new

communication protocols for PCPA systems: 1) filtered communication and 2)

communicating a constant amount of stack symbols. The communication filter is

realized by a projection for each component that determines which symbols of the

according stack content are transmitted and which are not. In a communication

step a requesting component replaces the query symbol only with the transmitted

symbols, i.e. only with those symbols that were not filtered out. In the returning-

mode only the transmitted symbols are deleted from the requested stack, such

that the filtered symbols remain in the stack of the requested component. It was

shown that PCPA systems with two components and communication filter are

computationally complete independent of the system’s type:

L(CPCPAF(2)) = L(PCPAF(2)) = L(RCPCPAF(2)) = L(RPCPAF(2)) = RE,

where the ‘F’ in the name of the type signalizes the usage of a communication

filter. With the other communication protocol, namely that only the topmost k

symbols of the stack are transmitted for a constant k has lead to a similar result.

The authors of [BKM03] proved that

L(PCPA(2, k)) = L(RPCPA(2, k)) = L(CPCPA(3, k)) = L(RCPCPA(2, k)) = RE

for all k ≥ 1, where X(n, k) denotes the type of the according PCPA system of

degree n that communicates only the topmost k stack symbols. Moreover, they

stated that even L(CPCPA(2, k)) = RE holds.

In 2009 M. S. Balan [Bal09] gave an answer to the question for the compu-

tational power of the remaining type of PCPA systems, namely the centralized

returning PCPA systems. He claimed that any RCPCPA system of degree n can

be simulated by an n-head pushdown automaton (n-PDA). As mentioned above,

the opposite direction was already proved in [CMMV00]. Unfortunately, the proof

of Balan is not correct. This was recently shown in [Ott12]. Moreover, the claim

does not hold either as it was recently shown in [Pet12]. For this, Petersen con-

structed a RCPCPA-system of degree two that accepts the exponential language

{a2n | n ≥ 1} and used the fact that each unary language that is accepted by a

multi-head pushdown automaton must be regular [HI68]. In the same work, Pe-



3.4 Parallel communicating Watson-Crick automata systems 29

tersen showed that a RCPCPA(2)-system can simulate a one register machine with

the operations multiplication and conditional division by 2 or 3. Thus, centralized

and returning PCPA systems of degree two are universal. This also improves the

result for non-centralized returning systems. In summery, we have:

L(RCPCPA(2)) = L(RPCPA(2)) = RE.

3.4 Parallel communicating Watson-Crick automata sys-

tems

In contrast to the variants of automata considered above, the Watson-Crick finite

automaton is biochemically inspired. It was introduced in [FPRS97] as a theo-

retical approach for DNA computing. Basically, a Watson-Crick finite automaton

(WK automaton, for short6) consists of a finite control and a Watson-Crick in-

put tape that has two tracks of the same length lying one upon the other. On

each track there is a one-way read-only head and both heads can be moved in-

dependently from the left-hand side of the tape to the right. The strings on the

two tracks represent a double-stranded DNA molecule7, and each two symbols

that stand at the same position (one stands above the other) are combined by

a complementarity relation. In DNA molecules both strands are connected by a

fixed one-to-one complementarity relation called Watson-Crick complementarity

relation with the pairing (A, T ) and (C,G)8. Figure 3.5 illustrates the structure

of a WK automaton.

q

finite control

A C C G A C C T T A

T G G C T G G A A T

input tape
upper strand

lower strand

Figure 3.5: Schematic representation of a Watson-Crick finite automaton (follow-
ing [PRS98], p. 154).

Although the Watson-Crick complementarity relation is determined by {(A, T ),

6The abbreviationWK is obtained by taking the first and the last letter of ‘WATSON-CRICK’
[FPRS97].

7For this model DNA molecules are idealised and seen as linear double-stranded sequences of
nucleotides without loops and branches.

8A, C, G, and T stand for the four types of nucleotides DNA molecules consist of: adenine,
cytosine, guanine, and thymine.
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(C,G)}, the definition of WK automata is generalized in the sense that arbitrary

symmetric binary relations over a finite alphabet are allowed. Formally, a Watson-

Crick finite automaton is a 6-tuple

A = (V, ρ,Q, q0, F, δ),

where V is the finite input alphabet, ρ ⊆ V×V is a symmetric relation representing

the complementarity relation on V , Q is a finite set of states containing the initial

state q0, F is the set of final states with F ⊆ Q, and δ : Q× (V ∗×V ∗)→ P(Q) is

the transition mapping with δ(q,
(
x
y

)
) 
= ∅ only for finitely many triples (q, x, y) ∈

Q×V ∗×V ∗. A transition q ∈ δ(p,
(
x
y

)
) means that being in state p, reading x on

the upper strand, and reading y on the lower strand, the automaton can change

into state q and move the input heads to the right of x and y, respectively. In

general, a WK automaton is nondeterministic. Whenever δ is a (partial) function

to Q, the automaton is called deterministic.

Referring to the notation of double stranded DNA molecules the elements of

V ∗×V ∗ are usually written as
(
x
y

)
instead of (x, y) and a transition q ∈ δ(p,

(
x
y

)
)

is written as a rewriting rule p
(
x
y

)
→
(
x
y

)
q. By

[
x
y

]
well-formed double-stranded

sequences are denoted, i.e. x and y have the same length and match according to

the complementarity relation ρ (if x = x1 . . . xn and y = y1 . . . yn, then for each

1 ≤ i ≤ n, it holds that (xi, yi) ∈ ρ). Then, the Watson-Crick domain that is

associated to ρ and V is defined as

WKρ(V ) =
{[

a1a2 . . . an
b1b2 . . . bn

]
| n ≥ 0, a1, . . . , an, b1, . . . , bn ∈ V,

(a1, b1), . . . , (an, bn) ∈ ρ
}

and contains all well-formed double-stranded sequences over V .

A computation step of a WK automaton is of the form(
x1
y2

)
p
(
x2
y2

)(
x3
y3

)
⇒
(
x1
y1

)(
x2
y2

)
q
(
x3
y3

)
,

and it is allowed if and only if q ∈ δ(p,
(
x2
y2

)
), where xi, yi ∈ V ∗ for 1 ≤ i ≤ 3 and[

x1x2x3
y1y2y3

]
∈WKρ(V ). The reflexive and transitive closure of⇒ is denoted by⇒∗.

The language that is accepted by a Watson-Crick automaton A is

L(A) =
{
x ∈ V ∗ | q0

[
x
y

]
⇒∗
[
x
y

]
q, q ∈ F,

[
x
y

]
∈WKρ(V )

}
.

The class of languages that are accepted by any Watson-Crick finite automaton is

denoted by L(WK).
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The following example is taken from [CC06a]. It shows how a deterministic

WK automaton A accepts the language Lanbncn. Observe the similarity between

the definition and the behaviour of A, the 2-head automaton in Example 1, and

the PCFA system constructed in Example 2.

Example 4. A WK automaton A accepting the language Lanbncn is constructed

as follows: A = ({a, b, c}, ρ, {q0, q1, q2, qf}, q0, {qf}, δ). Here ρ = {(a, a), (b, b), (c, c)},
and δ is given through:

δ(q0,
(
a
ε

)
) = q0, δ(q1,

(
b
a

)
) = q1, δ(q2,

(
c
b

)
) = q2,

δ(q0,
(
b
a

)
) = q1, δ(q1,

(
c
b

)
) = q2, δ(q2,

(
ε
c

)
) = qf ,

δ(qf ,
(
ε
c

)
) = qf .

First, the head on the upper strand reads over all a’s until it reaches the first b.

Then, the number of b’s of the upper strand is compared with the number of a’s

of the lower strand by moving both heads synchronously. The number of b’s and

c’s are compared in the same manner. At the end, the second head is moved to

the right hand end of the input and the word is accepted if and only if it is of the

form anbncn. �

The complementarity relation is said to be injective if each symbol a ∈ V has

a unique complementary symbol b ∈ V with (a, b) ∈ ρ. It is known that this

is not a restriction and, moreover, for each WK automaton A with an arbitrary

complementarity relation, there exists a WK automaton A′ with the identity com-

plementarity relation, i.e. ρ = {(a, a) | a ∈ V }, such that L(A) = L(A′) [KW05].

A WK automaton with the identity complementarity relation can be interpreted

just as an automaton with a tape with one track and two one-way read-only

heads. Indeed, Watson-Crick finite automata have the same computational power

as one-way 2-head finite automata [FPRS97].

In the literature several modifications and extensions of Watson-Crick au-

tomata have been studied, for instance: stateless WK automata, where Q = F =

{q0} [FPRS97], Watson-Crick ω-automata [Pet03], Watson-Crick finite transduc-

ers [FPRS97], WK automata with an additional Watson-Crick memory [PRS98].

Based on the fact that the two strands of a DNA molecule have opposite 5’-3’

orientations, reverse Watson-Crick finite automata are investigated (also called

5′ → 3′ Watson-Crick automata [FPRS97, LN10]). There, the two heads start on

opposite ends of the input and one head moves from the left to the right and the

other one moves from the right to the left. Reverse Watson-Crick automata are
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also considered in the sensing case, i.e. the computation of an automaton ends

when both heads meet each other [Nag08].

In [FPRS97] several variants of WK automata are introduced and compared

with each other according to their computational power. Moreover, different char-

acterizations of recursively enumerable languages by WK languages can be found

there. In addition, results about deterministic WK automata and about their

descriptional complexity are presented in [CCKS09].

Besides the Watson-Crick complementarity relation parallelism plays a ma-

jor rule in DNA computing. Accordingly, parallel communicating Watson-Crick

automata systems (PCWK systems, for short) were introduced in [CC05] and

investigated in [CC06b, CC06c, CC06a]. Similar to PCFA systems, a PCWK sys-

tem is a finite collection of Watson-Crick finite automata, where each automaton

works on its own input tape and communicates through sending its current state

on request. Figure 3.6 shows the basic structure of a PCWK system. Formally, a

PCWK system of degree n (abbreviated by PCWK(n)) is an n + 3-tuple

A = (V, ρ, A1, A2, . . . , An, K),

where V is the finite input alphabet, ρ is the complementarity relation, Ai =

(V, ρ,Qi, qi, Fi, δi) are the components of A, 1 ≤ i ≤ n, and K ⊆ {K1, K2, . . . , Kn}
is the set of communication states with K ⊆

n⋃
i=1

Qi.

A1 A2 An

q1

finite control

A C C G A

T G G C T

input tape

q2

finite control

A C C G A

T G G C T

input tape

... qn

finite control

A C C G A

T G G C T

input tape

communication connection

Figure 3.6: Schematic representation of a PCWK system with components A1,
A2, . . . , An.

A configuration of a PCWK system A of degree n is a 2n-tuple(
p1,
(
u1
v1

)
, p2,

(
u2
v2

)
, . . . , pn,

(
un
vn

))
,
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where pi is the current state of component Ai and
(
ui
vi

)
is the remaining part

of the input that has not yet been read by component Ai, 1 ≤ i ≤ n. Then, a

computation step of A is of the form(
p1,
(
u1
v1

)
, p2,

(
u2
v2

)
, . . . , pn,

(
un
vn

))
	
(
r1,
(
x1
y1

)
, r2,
(
x2
y2

)
, . . . , rn,

(
xn
yn

))
and can be executed by A if and only if one of the following two conditions holds:

1. K ∩ {p1, p2, . . . , pn} = ∅,
(
ui
vi

)
=
(
zi
z′i

)(
xi
yi

)
, and ri ∈ δi(pi,

(
zi
z′i

)
) for all

i ∈ {1, . . . , n} (local computation step);

2. for all i ∈ {1, . . . , n} such that pi = Kji and pji /∈ K, it holds that ri = pji.

For all other l ∈ {1, . . . , n}, rl = pl. Moreover, for all i ∈ {1, . . . , n},(
xi
yi

)
=
(
ui
vi

)
(communication step).

The reflexive and transitive closure of 	 is 	∗ , and the language accepted by

A is defined by

L(A) =
{
x ∈ V ∗ |

(
q1,
[
x
y

]
, q2,
[
x
y

]
, . . . , qn,

[
x
y

])
	∗

(
p1,
[
ε
ε

]
, p2,

[
ε
ε

]
, . . . , pn,

[
ε
ε

])
, pi ∈ Fi for all i ∈ {1, . . . , n}

}
.

The class of all languages that are accepted by any parallel communicating Watson-

Crick automata system is denoted by L(PCWK). Moreover, by L(PCWKin) we

denote the class of languages that are accepted by any PCWK system with an

injective complementarity relation.

The next example is taken from [CC06a] and shows how a non-injective com-

plementarity relation can be used to accept the language {a2n | n ≥ 1}.

Example 5. The idea for the construction of a PCWK system that accepts the

language {a2n | n ≥ 1} uses the equation

2n = 1 + 20 + 21 + 22 + . . . + 2n−1

and its representation in the complement bcbbccccbbbbbbbbcc . . . according to the

complementarity relation {(a, b), (a, c)}. Thus, for each word of the form a2
n
,

there exists the complement bcb2c4 . . . bn−1 for even n and bcb2c4 . . . cn−1 for odd n,

respectively, such that

[
aa . . . a

bcb2 . . . bn−1

]
(

[
aa . . . a

bcb2 . . . cn−1

]
) is the input of the system,

i.e. the input of all components. If the number of a’s is not a power of two,

then the described complement does not exist. Thus, the system basically verifies

whether the complement begins with bc and the blocks of b’s and c’s alternate,
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such that beginning with the second block, each following block contains exactly

twice as many symbols as the previous block. For doing this, two deterministic

components are taken: A1 and A2. The first one reads the according previous

block and A2 reads the according following block. In each comparison step, A1

reads one symbol and A2 reads two symbols. Thus, to verify whether the following

block has twice the length of the previous block, both components check if they

reach the beginning of the new block at the same computation step.

Formally, A is defined by

A = ({a, b, c}, ρ, A1, A2, {K1})

with
ρ = {(a, b), (a, c)},

A1 = ({a, b, c}, ρ, {q1, rb, rc, rbc, rcb}, q1, {rb, rc, rbc, rcb}, δ1),
A1 = ({a, b, c}, ρ, {q2, s1, rb, rc, rbc, rcb, f2, K1}, q2, {f2}, δ2),

where

δ1(q1,
(
a
b

)
) = rb, δ1(rb,

(
a
c

)
) = rbc, δ1(rbc,

(
a
c

)
) = rc, δ1(rbc,

(
a
b

)
) = rcb,

δ1(rb,
(
a
b

)
) = rb, δ1(rc,

(
a
c

)
) = rc, δ1(rc,

(
a
b

)
) = rcb, δ1(rcb,

(
a
b

)
) = rb,

δ2(q2,
(
aa
bc

)
) = s1, δ2(s1,

(
ε
ε

)
) =K1, δ2(rbc,

(
ε
ε

)
) = f2, δ2(rcb,

(
ε
ε

)
) = f2,

δ2(f2,
(
ε
ε

)
) = f2, δ2(rbc,

(
aa
bb

)
) =K1, δ2(rc,

(
aa
bb

)
) =K1, δ2(rb,

(
aa
cc

)
) =K1,

δ2(rcb,
(
aa
cc

)
) =K1.

�

It is known that each PCWK system of degree n with injective complementarity

relation can be simulated by a one-way 2n-head finite automaton and hence by a

PCFA system of degree 2n [CC06c]:

L(PCWKin(n)) ⊆ L(1-NFA(2n)) = L(PCFA(2n)).

Although for single Watson-Crick automata it has no effect whether the com-

plementarity relation is injective or not, PCWK systems with non-injective com-

plementarity relation are strictly more powerful than PCWK systems with injec-

tive complementarity relation [CC06b]. The PCWK system in Example 5 has

a non-injective complementarity relation and accepts the non-semi-linear expo-

nential language. On the other hand it is well-known that one-way multi-head

automata only accept semi-linear languages.

That PCWK systems are strictly more powerful than single Watson-Crick au-
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tomata even with injective complementarity relation was proved in [CC05]. There,

a system is given for the language {anbmcmdn | n,m ≥ 1} that cannot be accepted

by any single Watson-Crick automaton. An upper bound for L(PCWK) is CSL,

since each PCWK system can be simulated by a linear bounded automaton [CC05]:

L(PCWK) ⊆ CSL.

If we consider only languages over a one-letter alphabet, then PCWK systems

with injective complementarity relation can only accept regular languages [CC05].

This follows by the facts that each such language L can be represented as L =

h(L′), where h is a morphism, and L′ is a unary language that is accepted by a

WK automaton, each one-letter language accepted by a WK automaton is regular

[FPRS97], and the regular languages are closed under morphisms.

Furthermore, it is known that L(PCWK) is closed under the following opera-

tions [CC06c]. Let L1, L2 ∈ L(PCWK) over an input alphabet V , # /∈ V be a new

symbol, and (#,#) ∈ ρ. Then (L1 · {#}) ∩ (L2 · {#}), L1 · {#} · L2 · {#}, and

(L1 · {#})∗ are contained in L(PCWK).

3.5 Parallel communicating grammar systems

Parallel communicating grammar systems are shortly presented here, since they

are chronologically the first kind of PC systems and play an important role within

this research area. In contrast to PC automata systems, PC grammar systems

are language generating devices instead of language accepting ones. They were

introduced in [PS89] and intensively studied in [CDKP94].

A parallel communicating grammar system G of degree n is an (n + 3)-tuple

G = (N,K, T,G1, . . . , Gn),

where N is the finite set of nonterminal symbols, K is the set of so-called query

symbols, T is the finite set of terminal symbols, and G1, . . . , Gn are usual phrase

structure grammars with

Gi = (N ∪K, T, Pi, Si)

for all 1 ≤ i ≤ n, also called the components of G. The set of query symbols K con-

tains elements of the form Q1, Q2, . . . , Qn, one query symbol for each component.

To describe derivations of G, configurations are defined as n-tuples (x1, . . . , xn),

where xi ∈ (N ∪K ∪ T )∗ is a sentential form of component Gi for all 1 ≤ i ≤ n.

As we have already seen in the case of PC automata systems, a global clock is
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used to synchronize the computation of the components. The grammars of G work

together in the following way. Each starts its derivation from the start axiom Si as

usual. Then, in each global step, all Gi execute one local derivation step in parallel

provided that no query symbol appears in a sentential form of any component. If

there is a query symbol in some sentential form, then a communication step has

to take place. In a communication step of the system all query symbols within the

sentential forms are replaced by the corresponding sentential forms, i.e. a query

symbol Qj within the sentential form of Gi is replaced by the whole sentential

form of Gj . This replacing can be done only if the sentential form of Gj does not

contain query symbols itself. Such query symbols are not replaced in the current

step but possibly in one of the next communication steps. As long as there are

query symbols left in any sentential form, no local derivation is allowed. If there

occurs a cyclic query, then the whole system is blocked. The description above

demonstrates how components of a PC grammar system communicate with each

other. They exchange information by sending their generated strings on request.

Similar to PC automata systems two different modes of communication steps

can be defined: returning and non-returning. In the former case the grammars

that have sent their sentential forms continue the derivation from their start ax-

ioms. In the latter case they continue from their unchanged sentential forms.

Formally, these two types of derivation steps of a PC grammar system are de-

fined as follows. For two configurations (x1, . . . , xn) and (y1, . . . , yn), a derivation

step (x1, . . . , xn) ⇒ (y1, . . . , yn) is allowed if and only if one of the following two

conditions hold:

• For all 1 ≤ i ≤ n, it holds either

– xi ∈ T ∗ and yi = xi (terminal word), or

– |xi|K = 0, |xi|V > 0, and xi ⇒ yi in Gi (local derivation step).

• Communication step. For the non-returning case:

For all xi of the form xi = z1Qi1z2Qi2 . . . ztQitzt+1, 1 ≤ i ≤ n, with t > 0

and zj ∈ (N ∪ T )∗ for all 1 ≤ j ≤ t + 1, such that |xij |K = 0, 1 ≤ j ≤ t:

yi = z1xi1z2xi2 . . . ztxitzt+1. For all non-specified ys, ys = xs.

For the returning case:

For all xi of the form xi = z1Qi1z2Qi2 . . . ztQitzt+1, 1 ≤ i ≤ n, with t > 0

and zj ∈ (N ∪ T )∗ for all 1 ≤ j ≤ t + 1, such that |xij |K = 0, 1 ≤ j ≤ t:

yi = z1xi1z2xi2 . . . ztxitzt+1 and yij = Sij , 1 ≤ j ≤ t. For all non-specified ys,

ys = xs.

The reflexive and transitive closure of ⇒ is denoted by ⇒∗ and describes

arbitrary long derivations. With ⇒k we denote derivations of length k. Now, the
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language that is generated by a PC grammar system Γ is defined by

L(Γ) = {w ∈ T ∗ | (S1, S2, . . . , Sn)⇒∗ (w, α2, . . . , αn), αi ∈ (N∪T∪K)∗, 2 ≤ i ≤ n}.

Example 6. [CDKP94] Consider the PC grammar system

Γ = ({S1, S2, S3}, {Q1, Q2, Q3}, {a, b, c, d}, G1, G2, G3)

with the sets of rules

P1 = {S1 → aS1, S1 → aQ2, S3 → d},
P2 = {S2 → bS2, S2 → bQ3},
P3 = {S3 → cS3}

for the regular components G1, G2, G3. At the beginning of each derivation of the

grammar system, G1, G2, and G3 generate exactly one a, b, and c, respectively,

with their according first rule:

(S1, S2, S3)⇒k (akS1, b
kS2, c

kS3).

At one point in time, G1 and G2 apply their second rule in order to query the

sentential form of G2 and G3, respectively. In doing so, G1 generates another a,

G2 generates another b, and G3 generates another c:

(akS1, b
kS2, c

kS3)⇒ (ak+1Q2, b
k+1Q3, c

k+1S3).

It is important that G1 and G2 apply their second rule at the same time, otherwise

the system is blocked. Thereafter, two communication steps are executed:

(ak+1Q2, b
k+1Q3, c

k+1S3)⇒ (ak+1Q2, b
k+1ck+1S3, S3)⇒ (ak+1bk+1ck+1S3, S2, S3).

Here, the system works in returning mode, thus after the communications the

sentential forms of G2 and G3 are reset to S2 and S3, respectively. Working in

non-returning mode the system is blocked, since there is no rule for S3 in P2. In

the last step G1 generates the terminal word ak+1bk+1ck+1d by using its third rule.

Hence, the generated language of Γ is L(Γ) = {anbncnd | n ≥ 1}. �

A PC grammar system is called centralized if only the first component is allowed

to introduce query symbols. All the other components are not allowed to request

the sentential form of any other component. It is known that in case of returning

systems with regular or linear grammars, centralized systems are weaker than

non-centralized systems.
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Additionally, unsynchronized grammar systems were considered, where each

component is allowed to wait although it could apply a local derivation step.

Each unsynchronized system can be simulated by a synchronized system by just

introducing chain rules for each nonterminal symbol. Moreover, unsynchronized

systems are properly weaker than synchronized systems in the case of central-

ized and returning grammar systems with regular or linear components. These

systems are even not more powerful than the individual grammars, which means

they can only generate regular or linear languages, respectively. This shows that

synchronization is in fact a powerful mechanism.

Further, it is known that there exist infinite hierarchies according to the num-

ber of components for centralized and returning systems with regular or linear

components.

Since this work is not dedicated to grammar systems, the reader is referred to

the annotated bibliography of Erzsébet Csuhaj-Varjú and György Vaszil [CV] for

more information about parallel communicating grammar system.
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The model of the restarting automaton was introduced by Petr Jančar, Frantǐsek

Mráz, Martin Plátek, and Jörg Vogel in 1995 [JMPV95] as a variant of the forget-

ting automaton [JMP93b, JMP93a]. It is motivated by the linguistic technique

of analysis by reduction that is used for checking the syntactical correctness of a

sentence of a natural language. For that purpose a given sentence is simplified

stepwise by deleting or rewriting selected parts until a simple sentence is obtained

whose correctness can be checked immediately. This simplification is also called

reduction. An essential property of this method is that a deletion or rewriting may

not change the correctness of the sentence. Thus, if the sentence is correct before

a reduction step, then it has to be correct afterwards, too. If the sentence is not

correct, then the modified sentence must not be correct either. This property is

called correctness preserving property and error preserving property, respectively.

The following example from [JMPV95] demonstrates how a syntactical error can

be detected using analysis by reduction:

Example 7 (Analysis by reduction). Consider the sentence

The little boys I mentioned runs very quickly.

In the first step, the word ‘little’ can be deleted without changing the syntactical

correctness of the sentence:

The boys I mentioned runs very quickly.

During the next steps the parts ‘I mentioned’1, ‘The’, ‘very’, and ‘quickly’ are

erased successively:

The boys runs very quickly,

boys runs very quickly,

boys runs quickly,

boys runs.

After the last reduction step we obtain a simple sentence, where the syntactical

error can be immediately detected. �

Observe that for each reduction step the information about the previous steps

are unimportant and thus can be forgotten. Moreover, we can interpret each

1Here we swapped the second and the third step of the original example for a better reading.

39
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reduction step as a ‘restart’ of the processing with a new input sentence. Now

we define the restarting automaton whose behaviour represents the ‘reduction by

analysis’.

A restarting automaton consists of a finite state control and a working tape

with a read/write window of a fixed size (see Figure 4.1). At the beginning of each

computation the tape contains an input word (that is, what we called ‘sentence’

above) enclosed by the left sentinel c| and the right sentinel $, and the window

is positioned on the leftmost border of the tape. The sentinels can only be read

but they are not allowed to be erased or rewritten within the whole computation.

Furthermore, the tape is flexible, that means, if a symbol is deleted from the tape,

then the corresponding cell is cut out such that no empty cells can occur. During

the computation the automaton can move the window across the tape, then replace

the currently read string and at last perform a restart operation, that is, the finite

state control is set into the initial state and the window is placed on the leftmost

border of the tape.

c| a b c X b a a b c Y b a $

flexible tape read/write window

q
finite control

Figure 4.1: Schematic representation of a restarting automaton.

Over the years various types of restarting automata were considered and dif-

ferent definitions have been used. First, we define the most general case of the

restarting automaton, the two-way restarting automaton (RLWW-automaton for

short), and then we describe the various types with their according restrictions.

Thereby we lean on the definition of [Ott06].

Definition 1. An RLWW-automaton M is an 8-tuple

M = (Q,Σ,Γ, c| , $, q0, k, δ),

where

• Q is a non-empty finite set of states,

• Σ is a non-empty finite input alphabet,
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• Γ ⊇ Σ is a finite tape alphabet (the symbols from Γ \ Σ are called auxiliary

symbols),

• c| , $ /∈ Γ are the left and the right sentinels,

• q0 ∈ Q is the initial state,

• k ≥ 1 is the size of the read/write window, and

• δ : Q × PC(k) → Pe((Q × ({MVR,MVL} ∪ PC≤(k−1))) ∪ {Restart,Accept})
is the transition relation, where the set PC(k) contains all possible window

contents and is formally defined as

PC(i) = ({c| } · Γi−1) ∪ Γi ∪ (Γ≤(i−1) · {$}) ∪ ({c| } · Γ≤(i−2) · {$}) (i ≥ 0),

Γ≤n =

n⋃
i=0

Γi, and PC≤(k−1) =

k−1⋃
i=0

PC(i).

To avoid confusion when speaking about several automata with different

tape alphabets and window sizes, we extend this notation and associate it

with the name of the automaton: PCM . �

In general, a restarting automaton is nondeterministic. If δ is a (partial) func-

tion from Q×PC(k) into (Q× ({MVR,MVL}∪PC≤(k−1)))∪{Restart,Accept}, then

the automaton is deterministic.

A configuration κ describes an instantaneous situation of an automaton and

is either of the type κ = Accept, what we call an accepting configuration, or it is

written as a string κ = αqβ with q ∈ Q and either α = ε and β ∈ {c| } · Γ∗ · {$}
or α ∈ {c| } · Γ∗ and β ∈ Γ∗ · {$}. Here q is the current state of the finite control,

αβ is the current tape content, and the window is currently positioned on the first

symbol of β. That means that the window contains the first k symbols of β if

|β| ≥ k, or otherwise it contains all symbols of β including the right end marker

$, that is, all symbols of the right end of the tape. For an input word w ∈ Σ∗ and

the initial state q0, the configuration q0c|w$ is called an initial configuration. Any

configuration of the form q0c|u$ with u ∈ Γ∗ is called a restarting configuration.

To describe the window content of an automaton within a particular configu-

ration, the prefix function πk : Σ∗ → Σ∗ over the alphabet Σ is introduced:

πk(w1w2 . . . wl) =

⎧⎨
⎩w1w2 . . . wl, if l < k,

w1w2 . . . wk, otherwise,

with w1, w2, . . . , wl ∈ Σ. Figure 4.2 shows how πk is used to denote the currently

read window content of a component for a given configuration. If the window size



42 Restarting Automata

tape of M :

c| u1 u2 · · · ur v1 v2 · · · vl $

window:

πk(v$)

u v

Figure 4.2: The prefix function πk determines the currently read window content
of the component M for the current configuration c| uqv$ (q is the current state).

is not given explicitly, then we also use πM for an automaton M .

For two configurations κ1 and κ2 of an automaton M , κ1 	M κ2 is a computation

step, if one of the following five conditions holds:

1. Move-right step: the automaton moves its window exactly one position to the

right and changes from state p into state q, that is, κ1 = αpaβ, κ2 = αaqβ,

and (q,MVR) ∈ δ(p, πk(aβ)) with either

(a) α = ε, a = c| , and β ∈ Γ∗ · {$}; or

(b) α ∈ {c| } · Γ∗, a ∈ Γ, and β ∈ Γ∗ · {$}.

Observe that the automaton is not allowed to move the window to the right

if it is positioned on the rightmost border of the tape (a = $ and β = ε).

2. Move-left step: the automaton moves its window exactly one position to the

left and changes from state p into state q, that is, κ1 = αapβ, κ2 = αqaβ,

and (q,MVL) ∈ δ(p, πk(β)) with either

(a) α = ε, a = c| , and β ∈ Γ∗ · {$}; or

(b) α ∈ {c| } · Γ∗, a ∈ Γ, and β ∈ Γ∗ · {$}.

Particularly the automaton is not allowed to move the window over the left

border of the tape (α = a = ε and β ∈ {c| } · Γ∗ · {$}).

3. Rewrite step: the automaton replaces the currently read window content

by a shorter string, changes from state p into state q, and sets the window

directly to the right of the previously written substring, that is, κ1 = αpβ1β2,

κ2 = αβ ′
1qβ2, and (q, β ′

1) ∈ δ(p, β1) with |β ′
1| < |β1| = k, and either

a) α = ε, β1 ∈ {c| } · Γ∗, β2 ∈ Γ∗ · {$}, and β ′
1 ∈ {c| } · Γ∗; or

b) α ∈ {c| } · Γ∗, β1 ∈ Γ∗, β2 ∈ Γ∗ · {$}, and β ′
1 ∈ Γ∗.

If the rewriting takes place at the right end of the tape (the $-symbol appears

in the window), then the window may not move over the $-symbol after-

wards. Thus, it is positioned directly on the $-symbol. That is, κ1 = αpβ$,
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κ2 = αβ ′q$, and (q, β ′$) ∈ δ(p, β$) with 1 ≤ |β| ≤ k − 1, |β ′| < |β|, and

either

c) α = ε and β, β ′ ∈ {c| } · Γ∗, or

d) α ∈ {c| } · Γ∗ and β, β ′ ∈ Γ∗.

It is further required that between two rewrite steps a restart operation is

executed.

4. Restart step: the automaton can perform a restart operation, whereby the

finite control is set into the initial state q0 and the window is placed back

on the leftmost position of the tape, that is, κ1 = αpβ, κ2 = q0αβ, and

Restart ∈ δ(p, πk(β)).

5. Accept step: the automaton can accept the input word by changing into

the accepting configuration, that is, κ1 = αpβ, κ2 = Accept, and Accept ∈
δ(p, πk(β)).

The reflexive and transitive closure of the binary relation 	M describes the set

of all possible computations of M of an arbitrary length and is denoted by 	∗M .

To denote that a computation consists of exactly r computation steps we use 	rM .

If it is clear, to which automaton the relation is referring, then the name of the

automaton in the subscript is omitted.

If in a particular situation δ is not defined for the current state or window

content, then the automaton halts and therewith rejects the input. We call such

configurations rejecting configurations. Thus, a computation can finish in two

possible ways: accept the input word by reaching the accepting configuration or

reject the input by reaching a rejecting configuration. Both kinds of configurations

are also called halting configurations. Now we can define the language L(M) that

is accepted by an automaton M . It contains all words over the input alphabet

Σ for which there exists a computation that starts with the corresponding initial

configuration and reaches the accepting configuration:

L(M) = {w ∈ Σ∗ | q0c|w$ 	∗M Accept}.

Observe that in the rewrite step the new string β ′
1 has to be shorter than the

old string β1. This is called the length reducing property and ensures that the tape

gets shorter with each rewrite step.

In principle, the behaviour of an automaton M can be described as follows:

Beginning in a restarting configuration q0c|u$ for any u ∈ Γ∗ (this includes par-

ticularly the initial configurations), M can move its window over the tape, then
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rewrites a part of the tape, can move the window again, and at last M performs

a restart operation. Afterwards M is again in a restarting configuration and can

thus repeat this sequence until it reaches an accepting or a rejecting configuration.

The described sequence is called a cycle, and as mentioned above, in each cycle

exactly one rewrite step is performed. Thus, a cycle can be formally written as a

computation

q0c|u$ = κ1 	∗M κ2 	M κ3 	∗M κ4 	M κ5 = q0c|u′$,

where the first part of the computation κ1 	∗M κ2 contains only move right steps

and move left steps, then a rewrite step κ2 	M κ3 follows, the computation κ3 	∗M κ4

contains only move right steps and move left steps again, and the last step κ4 	M κ5

is a restart step. We use the notation q0c| u$ 	cM q0c| u′$, when the restarting con-

figuration q0c|u′$ is reached in one cycle from the restarting configuration q0c|u$.

For multiple cycles we use 	c∗M . The tail of a computation is the last part of the

computation that begins with a restarting configuration and reaches a halting con-

figuration without performing a restart operation. Observe the similarity between

a cycle of an automaton and a reduction step of the above explained technique

‘analysis by reduction’.

In the next example an RLWW-automaton is presented that accepts the lan-

guage

Lanbn = {anbn | n ≥ 0}.

Example 8. An automaton M that accepts the language Lanbn can behave in the

following way: It moves the window to the right over the c| -symbol and the a’s

until it has found the substring ab. Then it deletes the ab from the tape and

checks whether there are only b’s to the right of the deleted substring. For that

purpose it just moves the window to the right. Reaching the end of the tape (the

$-symbol appears in the window), it performs a restart operation and starts a new

cycle with the shorter word. This continues until only the sentinels are left on the

tape. Thus, if M reads c| $, then it accepts the input word. Formally, M is given

by

M = (Q,Σ,Γ, c| , $, q0, 2, δ)

with Q = {q0, q1} and Σ = {a, b}. Since M does not need auxiliary symbols, we

take Γ = Σ. The initial state is q0. The automaton needs to read and replace only

substrings of length two in one step, therefore the window size is set to 2. At last,
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δ is given by:

δ(q0, c| a) = (q0,MVR), δ(q1, bb) = (q1,MVR),

δ(q0, aa) = (q0,MVR), δ(q1, b$) = (q1,MVR),

δ(q0, ab) = (q1, ε), δ(q1, $) = Restart,

δ(q0, c| $) = Accept.

A computation on the input word aaabbb is formally written as follows (where the

computation starts in the first column, proceeds downwards, is continued in the

second column, and so forth):

q0c| aaabbb$
	M c| q0aaabbb$
	M c| aq0aabbb$
	M c| aaq0abbb$
	M c| aaq1bb$
	M c| aabq1b$
	M c| aabbq1$

	M q0c| aabb$
	M c| q0aabb$
	M c| aq0abb$
	M c| aq1b$
	M c| abq1$

	M q0c| ab$
	M c| q0ab$
	M c| q1$

	M q0c| $
	M Accept.

Each of the first three columns of the computation represents one cycle and the

last column corresponds to the tail of the computation.

If the input word is not of the form anbn, that is, it either is not of the form a∗b∗

(the a’s and b’s are mixed) or the numbers of a’s and b’s are different, then the

automaton behaves as follows. In the first case it rejects the input in the first

cycle because it reads an a when expecting only b’s or vice versa. In the second

case at one point of the computation only a’s or only b’s are on the tape and the

automaton halts and rejects by reading a$ or c| b, respectively. �

Now, we give the different types of the restarting automaton model that result

by adding several restrictions to the general model above. An RRWW-automaton

is an RLWW-automaton that is only allowed to move its window to the right but

not to the left. Therefore this type is also called one-way restarting automaton. If

we claim that after a rewrite step a restart operation has to be applied immediately,

then we obtain an RWW-automaton. In other words, this type of automaton is

not allowed to move the window between a rewrite and a restart step. In some

definitions for this type of automaton the rewrite and restart operations are merged

to a single operation.

Furthermore, the rewrite operation can be restricted. An RLWW-automaton

(RRWW-, RWW-automaton) is an RLW-automaton (RRW-, RW-automaton) if no

auxiliary symbols are used, that is, if Σ = Γ. At last, an RLW-automaton (RRW-,

RW-automaton) is an RL-automaton (RR-, R-automaton) if each rewrite operation
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is of the form (q, β ′) ∈ δ(p, β), where |β ′| < |β| and β ′ is a scattered subword of

β. That means that β ′ can be obtained by deleting one or more symbols from β.

For the simplification of further notations, we classify the types as follows:

T = {RLWW,RLW,RL,RRWW,RRW,RR,RWW,RW,R} and

TR = {RRWW,RRW,RR,RWW,RW,R}.

All these types refer to nondeterministic automata. For deterministic automata

we use the prefix ‘det’. Thus, a deterministic automaton of type X ∈ T is a det-X-

automaton. The automaton that is given in Example 8 is of type det-RR. First,

M is a one-way automaton that moves the window only to the right but not to the

left. Second, it moves the window between the rewrite and the restart operations,

thus it is not of the type RWW. Third, since no auxiliary symbols are used and

each rewrite step is just a deletion, it is of the type RR. As the transition relation

is a function and therewith M can perform in each situation at most one possible

operation, it is deterministic.

Historically, the development of the various types of restarting automata was

the other way round in contrast to our above explanation. The model that was

introduced by Jancǎr et al. in 1995 was exactly the R-automaton [JMPV95]. Then,

in 1998 the usage of auxiliary symbols (RWW-automaton) and the separation of

the rewrite step and the restart step (RRWW-automaton) were introduced by the

same authors [JMPV98]. The two-way restarting automaton was then given by

Martin Plátek in 2001 [Plá01].

The class of languages that are accepted by any automaton of type (det-)X,

X ∈ T , is denoted by L((det-)X). Sometimes it is useful to define the language

class not only depending on the particular type but also on the window size. The

set of languages accepted by restarting automata of type (det-)X with a window

size of at most k is denoted by L((det-)X(k)).

A more compact representation of restarting automata is given in [NO01] by so-

called meta-instructions. A meta-instruction is a triple of the form (E1, u→ v, E2),

where E1 and E2 are regular languages, and u → v is a rewriting rule with

|u| > |v|, so that the substring u is rewritten by the word v in one rewrite step.

This representation is based on the observation that an RRWW-automaton first

reads the left part of the tape checking a regular constraint E1, then performs

a rewrite step, in which a word u is replaced by a shorter word v, and at last

it can move the window over the remaining right part of the tape checking the

regular constraint E2. So a meta-instruction describes a cycle of an automaton.

An accepting tail (rejecting tails need not be described) can be described with a

meta-instruction of the form (c|E$,Accept), where E is a regular language and we
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assume w.l.o.g. that the automaton accepts only while reading the right sentinel

$. Since an RWW-automaton performs a restart immediately after the rewrite

step, the second constraint E2 can be omitted for this type of automata. The

automaton of Example 8 is described by the following two meta-instructions:

(c| a∗, ab→ ε, b∗$),

(c| $,Accept).

Now, consider the following computation for an automaton M :

q0c|u1v1w1$ 	cM q0c| u2v2w2$ 	cM . . . 	cM q0c| urvrwr$.

We assume that the substring vi is the part of the tape that is rewritten in the

current cycle. We say that the computation is monotone if the right distances

Di = |viwi$| never increase for i = 1, 2, . . . , r. The tail of the computation is not

of importance for monotonicity. An automaton is monotone if each computation

beginning from an initial configuration is monotone. By mon-X (det-mon-X) we

denote the type of (deterministic) monotone automata of type X ∈ T .

According to the computation given in Example 8, we have

q0c| aaabbb$ 	cM q0c| aabb$ 	cM q0c| ab$ 	cM q0c| $

with D1 = |abbb$| = 5, D2 = |abb$| = 4, and D3 = |ab$| = 3. Because of

D1 ≥ D2 ≥ D3, it follows that this computation is monotone. In fact, each

computation of M , and thus M itself, is monotone. Hence, M is of the type

det-mon-RR.

The property of monotonicity for restarting automata was defined in [JMPV95]

and investigated in, e.g. [JMPV98, JMPV99, JMPV07, MO06, MPJV97]. Mono-

tone automata gained an important role within the field of restarting automata,

as they yield alternative characterizations of the context-free languages [JMPV99]

and the deterministic context-free languages [JMPV97, JMPV99].

It turns out that some types of restarting automata characterize well-known

language classes. We want to give some examples for the types presented above.

Automata of type det-RR, R, RW, and RWW that have window size 1 accept

exactly the set of regular languages [Mrá01, Rei07]:

L(det-RR(1)) = L(R(1)) = L(RW(1)) = L(RWW(1)) = REG.

At first sight, this seems obvious due to the similarity between finite automata

and the fact that auxiliary symbols do not help in the case of window size 1. Par-
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ticularly, the restart operation is of no benefit in these cases. Then, Jančar, Mráz,

Plátek, and Vogel showed in [JMPV97] and [JMPV99] that all deterministic and

monotone one-way restarting automata accept exactly the class of deterministic

context-free languages:

L(det-mon-R) = L(det-mon-RRWW) = DCFL.

Omitting monotonicity and allowing the use of auxiliary symbols it turns out that

L(det-RWW) = L(det-RRWW) = CRL,

where CRL is the set of the Church-Rosser languages [NO03]. Further, the context-

free languages (CFL) are characterized by nondeterministic monotone restarting

automata with auxiliary symbols [JMPV99, Plá01]:

L(mon-RWW) = L(mon-RRWW) = L(mon-RLWW) = CFL.

Moreover, it is known that the class of the growing context-sensitive languages

(GCSL) is characterized by so-called weakly monotone RWW-, RRWW-, and RLWW-

automata2. An automaton is called weakly monotone if there exists a constant such

that the right distances of all computations increase by at most this constant (see

[JLNO04] for more details).

All types of restarting automata are linearly bounded. Thus, all languages

accepted by any type of restarting automata have to be contained in the set of

the context-sensitive languages:

L(RLWW) ⊆ CSL.

It is still an open question whether this inclusion is proper or not. For further

information about the relationship between the language classes accepted by the

various types of restarting automata, [Ott06] gives a useful overview and refer-

ences.

Another property of restarting automata that we will use here is the nonfor-

getting property. Normally, after a restart operation a restarting automaton is

reset into its initial state and the window is positioned back on the left side of

the tape. Thus, after a restart, the automaton has ‘forgotten’ everything about

the previous cycle. In contrast, a nonforgetting automaton is allowed to switch

to any (determined) state during a restart operation. For this purpose, a restart

2For RWW- and RRWW-automata this was proved in [JLNO04]. For RLWW-automata this
follows additionally from the proof of L(RRWW)=L(RLWW) in [Plá01].
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transition is extended as follows:

(Restart, q) ∈ δ(p, α),

which means that if the automaton is in state p and reads currently the string α

with its window, then it changes into state q and the window is positioned back on

the left side of the tape. We will have a closer look at this kind of automata and

the according language classes in the section ‘systems of nonforgetting restarting

automata’.





5 Systems of parallel communicating

restarting automata

5.1 Definitions

5.1.1 Systems of parallel communicating restarting automata

In this section systems of parallel communicating restarting automata and their

functionality are defined and explained. Whenever it seems useful, reasons for and

consequences of particular technical details are commented on.

Basically, a parallel communicating restarting automata system (PCRA system

for short) of degree n is an n-tuple

M = (M1,M2, . . . ,Mn),

where M1,M2, . . . ,Mn are restarting automata which are the components of the

system:

M1 = (Q1,Σ,Γ1, c| , $, q1, k1, δ1),
M2 = (Q2,Σ,Γ2, c| , $, q2, k2, δ2),

...

Mn = (Qn,Σ,Γn, c| , $, qn, kn, δn).

Let us explain how the components work together within a system. Following

the classroom model described in Section 1, all components start the computation

with the same task, i.e. the same input word on the tape. They perform local

operations independently from each other just as it is usual for a single restart-

ing automaton. At some point in time a component may need some help from

another component, i.e. it requests some information, or it wants to inform an-

other component about the results that it has achieved by its own previous local

computation, i.e. it gives a response containing some information to a requesting

component. This is exactly how the components work together within the system:

they communicate with each other. After a communication between two com-

ponents, they continue their local computations independently. In general, there

is no restriction on how often and with which other components a component is

allowed to communicate.

We now define the communication protocol that we use for PCRA systems

and that is closely connected with the described interaction of components within

51
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the classroom model. Basically, the communication is realized by particular types

of communication states that are included in the sets of states Q1, Q2, . . . , Qn:

request states, response states, receive states, and acknowledge states. Formally,

we denote the states as follows:

• request states (reqid): By entering the request state reqid, a component can

send a communication request to the component Mi. The subscript d is

a local information that allows to have more than one request state per

component.

• response states (resid,c): By entering the response state resid,c, a component

can answer to a request of Mi. The message can contain any information c

with a constant length. The subscript d allows to enter different response

states, but still sending the same answer to the same component.

• receive states (recid,c): A component Mj is set into the receive state recid,c if

it entered the request state reqid before and the component Mi has reached

a response state resjd′,c.

• acknowledge states (ackid,c): A component Mj is set into the acknowledge

state ackid,c if the component Mi has reached a request state reqjd′ and Mj

entered the response state resid,c.

A communication step can be executed if and only if a component Mi reaches a

request state reqjd through its local computation and the corresponding component

Mj reaches a corresponding response state resid′,c. For this purpose we introduce

transitions of the form

reqjd ∈ δi(q, α) and resid′,c ∈ δj(q, α).

A request state and response state correspond to each other if the superscript is

the index of the corresponding other component. Whenever a component enters

a request or response state, it waits for an answer from the communication part-

ner. Hereby it is not important whether the request state or the response state

is reached first. If a component is in a communication state but does never get

a corresponding answer, i.e. the communication partner does not reach a corre-

sponding communication state, then that component is blocked for the rest of the

computation. Also with one or more blocked components the system continues

the computation with the non-blocked components.

If two components reach corresponding communication states, then the com-

munication step can be executed. We also say: the communication is resolved.
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This means that the component Mi being in state reqjd is set into the receive state

recjd,c (because it has received the requested message from Mj) and the compo-

nent Mj being in state resid′,c is set into the acknowledge state ackid′,c (the receipt

of the message is acknowledged). The c in the subscript of the receive state sig-

nalizes the receipt of the information c that was sent by Mj through entering

the response state resid′,c. In general, the receive and acknowledge states cannot be

reached through a local computation, i.e. there do not exist transitions of the form

recjd,c ∈ δ(q, α) or ackid,c ∈ δ(q, α), and no transitions of the form A ∈ δ(reqjd, α)

or A ∈ δ(resid′,c, α) are allowed. After Mi and Mj are set into the receive and ac-

knowledge state, both components continue their independent local computations.

The receive and acknowledge states are somehow successor states for the request

and response states that are used for the formal description of a communication

step.

The usage of the subscript d of the communication states has a particular

reason. Consider, e.g. a communication step in a parallel communicating finite

automata system (see Section 3.2 for further details), i.e. a component Ai has

reached the communication state Kj and thus is set into the current state of Aj ,

say state q. Possibly, Ai can reach the state Kj for diffent prefixes of the input.

Thus, after the communication, Ai is in state q and the information about the

particular previously read part of the input is lost. However, according to the

classroom model it seems somehow natural that a component can keep the whole

information about its previous computation also in a communication step, such

that it can combine the result of its own computation with the communicated

information. For this, in PCRA systems the local information d is used.

Figure 5.1 demonstrates a communication between the components M1 and

M2, where the downward arrows denote timelines. There, M1 and M2 perform

their local computations independently of each other, which is denoted by the

continuous downward arrows. At some point in time, M1 reaches the request

state req2d that can be interpreted as sending a request message to M2 and keeping

the local information d. On the other hand, M2 reaches the response state res1d′,c
through its local computation. We can imagine, that with this M2 sends a response

message with the content c to M1 and keeps the local information d′. Since both

components reach corresponding communication states, the communication can be

resolved and M1 and M2 are set into the states rec2d,c and ack1d′,c, respectively. If we

imagine that the operation of setting M1 into the receive state is connected with

sending an acknowledge message to M2, then we can observe a similarity to the so-

called three-way handshake mechanism that is applied in communication networks

for synchronization and secure communication, where secure means that both

communication partners know whether the information was transmitted correctly
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or not. However, after the successful communication, M1 and M2 continue their

local computations independently.

M1 M2

send request

send response

send acknowledge

req2d

res1d′,c

rec2d,c

ack1d′,c

. . . . . .

local computation

communication step

continue the local
computation

Figure 5.1: A communication between the two components M1 and M2.

As mentioned above, receive and acknowledge states cannot be reached through

local computations in general. Nevertheless in some situations of proofs and con-

structions it may be useful to allow the direct reachability of receive and acknowl-

edge states in a local computation without performing a communication step.

Although this contradicts the basic idea of our communication concept, it does

not effect a change of the computational power. A transition recid,c ∈ δj(p, α) or

ackid,c ∈ δj(p, α) can simply be replaced by the transitions A ∈ δj(p, α) for all

A ∈ δj(rec
i
d,c, α), for all A ∈ δj(ack

i
d,c, α) respectively. All transitions of the form

A ∈ δj(rec
i
d,c, α), A ∈ δj(ack

i
d,c, α) respectively, have to be kept since the receive

and acknowledge state can be reached even through a communication step.

A fundamental difference between our communication protocol and those of

other PC systems is that there is no global clock synchronizing the components of

the system. A global clock is an external mechanism that forces all components to

execute exactly one computation step together in each unit of time. This is applied

to mostly all PC systems. Nevertheless we have decided to avoid using it since it

can be seen as implicit communication (in contrast to the defined communication

steps as explicit communication). Look at the following example: in [MMM02] a

PCFA system with three components is given that accepts the language Lanbncn

without processing any explicit communication. Certainly, since this language

is not even context-free, it cannot be accepted by a single finite automaton and



5.1 Definitions 55

hence not by a system of arbitrary many components without any communication -

including synchronization. This shows that synchronization alone can increase the

computational power of such systems without any explicit communication. Here it

is legitimate to ask what amount of explicit communication would really be needed

to realize a global clock, and by how much does it slowdown the computation of

the system? Another reason for avoiding a global clock is that it contradicts the

notion of distributed computing, where no global control mechanism exists. All in

all, we will not use any global clock in our definition of PCRA systems such that

the components are loosely connected only by explicit communications.

For the reason of abbreviation we define the following notations for a system

M = (M1,M2, . . . ,Mn) and a component Mi = (Q,Σ,Γ, c| , $, q0, k, δ), 1 ≤ i ≤ n:

• REQ(Mi) = {reqjd | req
j
d ∈ Q, 1 ≤ j ≤ n, and string d},

• RES(Mi) = {resjd,c | res
j
d,c ∈ Q, 1 ≤ j ≤ n, and strings d, c},

• REC(Mi) = {recjd,c | rec
j
d,c ∈ Q, 1 ≤ j ≤ n, and strings d, c},

• ACK(Mi) = {ackjd,c | ack
j
d,c ∈ Q, 1 ≤ j ≤ n, and strings d, c},

• COM(Mi) = REQ(Mi) ∪ RES(Mi) ∪ REC(Mi) ∪ ACK(Mi),

• REQ =
⋃

1≤i≤n REQ(Mi),

• RES =
⋃

1≤i≤n RES(Mi),

• REC =
⋃

1≤i≤n REC(Mi),

• ACK =
⋃

1≤i≤n ACK(Mi), and

• COM =
⋃

1≤i≤n COM(Mi).

The type of the components determines the type of the system. If the compo-

nents are restarting automata of type X for X ∈ T , then the system is of type

PC-X and is called a PC-X-system. With PC-X(n)-system we mean a system of

type X and degree n. Moreover, if the maximal window size is bounded by a

constant k, we write PC-X(n, k)-system.

For a formalization of the behaviour of a PCRA system we need to define

the concepts of configurations and computations. A configuration K of a PCRA

system of degree n is an n-tuple, which contains a configuration of each component:

K = (κ1, κ2, . . . , κn),
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where κi (1 ≤ i ≤ n) is either Accept or it is of the form uiqivi, where qi ∈ Qi and

either ui = c|α and vi = β$ or ui = ε and vi = c| β$ (α, β ∈ Γ∗
i ). For an input word

w and initial states qi (1 ≤ i ≤ n), the initial configuration of a PCRA system is:

K0 = (q1c|w$, q2c|w$, . . . , qnc|w$).

A computation step of a system M = (M1,M2, . . . ,Mn) can be described by the

binary relation 	M . Let K and K ′ be two configurations with K = (κ1, κ2, . . . , κn)

and K ′ = (κ′
1, κ

′
2, . . . , κ

′
n). Then K 	M K ′ if and only if, for all i ∈ {1, 2, . . . , n},

one of the following conditions holds:

1. κi 	Mi
κ′
i (local computation step),

2. ∃j ∈ {1, 2, . . . , n} \ {i} : κi = uireq
j
di
vi, κj = ujres

i
dj ,c

vj ,

κ′
i = uirec

j
di,c

vi, κ′
j = ujack

i
dj ,c

vj (communication),

3. ∃j ∈ {1, 2, . . . , n} \ {i} : κi = uires
j
di,c

vi, κj = ujreq
i
dj
vj ,

κ′
i = uiack

j
di,c

vi, κ′
j = ujrec

i
dj ,c

vj (communication),

4. κi = κ′
i, κi 
= Accept, and no local operation (MVR, MVL, rewrite, restart)

or communication of Mi is possible.

Whenever a local computation step of a component is possible, then it is exe-

cuted immediately and independently of the other components (1). If two compo-

nents have reached corresponding communication states, then this communication

is resolved immediately (2 and 3). If no local transition is possible anymore, then

the component is blocked and remains in its current configuration (4). If a compo-

nent is in a communication state but the communication partner is (still) not in the

corresponding communication state, then it remains in its current configuration

and waits for the communication answer (4).

At first sight the definition of a computation step may indicate the usage

of a global clock that actually should be avoided. In fact, this definition just

supports a formal and unique representation of a system’s computation1 but does

not influence the synchronization of the components (that is realized only by

explicit communication). Particularly the fourth item of the definition contradicts

the mechanism of a global clock, since a component can wait arbitrarily long for

the execution of a communication. Due to this fact, it is really unimportant for the

cooperation of the components within the system how long the local computations

between two communication steps are and whether each step of each component is

executed in parallel in the same unit of time. Moreover, in contrast to PC systems

1At this point it is important to distinguish between the real behaviour of the system and
the representation of the behaviour.
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with a global clock, it is not guaranteed that two components execute the same

number of computation steps between two communications.

The reflexive and transitive closure of the relation 	M is expressed by 	∗M and

describes a computation of M. Then, the accepted language of a PCRA system

M over an input alphabet Σ is

L(M) = {w ∈ Σ∗ | (q1c|w$, q2c|w$, . . . , qnc|w$) 	∗M (κ1, κ2, . . . , κn),

{κ1, κ2, . . . , κn} ∩ {Accept} 
= ∅},

where q1, q2, . . . , qn are the initial states of the components. Moreover, any con-

figuration that includes Accept is called an accepting configuration.

A PCRA system is called nondeterministic if there is at least one component

that is nondeterministic. If all components are deterministic, the system is called

locally deterministic and gets the prefix det-local. In general, there is no restriction

according to the accepting component. That allows the system to accept the

input with whatever component reaches the accepting configuration. A more strict

definition of determinism in PCRA systems is that the system accepts if and only

if the first component accepts. A locally deterministic system that accepts if and

only if the first component accepts is called globally deterministic and gets the

prefix det-global.

In addition, if a system consists only of monotone restarting automata of type

X ∈ T , then we denote the type of that system by mon-PC-X in the nondetermin-

istic case. For deterministic and monotone components we obtain systems of type

det-global-mon-PC-X and det-local-mon-PC-X, respectively.

The class of languages that are accepted by systems of automata of type X ∈ T
is denoted by L(PC-X) in the nondeterministic case. In the local-deterministic and

global-deterministic cases it is denoted by L(det-local-PC-X) and L(det-global-PC-X),

respectively. Further, the classes of languages that are accepted by systems of

monotone restarting automata are denoted by L(mon-PC-X), L(det-local-mon-PC-X),

and L(det-global-mon-PC-X).2

Let us consider a first example. Here we use the well-known copy language

with a middle marker:

Lw#w = {w#w | w ∈ {a, b}∗}.

Example 9. A PCRA system Mw#w that accepts the language Lw#w consists

of two components M1 and M2: Mw#w = (M1,M2). At the beginning of a

2Remark: Concerning the notation of the different types and language classes, we differ from
those of other PC systems. Instead, we follow the notation that is usually used for CD systems
of restarting automata and for individual restarting automata.
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computation the input word is placed on the tapes of both components enclosed

by the left and right sentinels c| and $. The basic idea is that M1 moves its

window over the first syllable and reads the first symbol of the second syllable,

while M2 reads the first symbol of the first syllable. Then, they compare the

symbols using a communication. If both symbols are equal, then they are deleted

and a restart operation is applied immediately to both M1 and M2. If the symbols

are different, then M1 gets stuck directly after the communication because of a

missing applicable transition and the system does not accept the input. If all

symbols are processed and both syllables are of the same length, then M1 reads

the $-symbol and M2 reads the #-symbol. In this situation M1 accepts after a

communication, and thus the system Mw#w accepts. Formally, M1 and M2 are

defined as follows:

M1 = ({q0, req2, rec2a, rec2b , rec2#, qr}, {a, b,#}, {a, b,#}, c| , $, q0, 2, δ1),
M2 = ({q0, res1a, res1b , res1#, ack1a, ack1b , ack1#, qr}, {a, b,#}, {a, b,#}, c| , $, q0, 2, δ2),

where, for all α ∈ {c| , a, b} · {a, b,#}, β ∈ {a, b, $}, and γ ∈ PC(2),

δ1(q0, α) = (q0,MVR),

δ1(q0,#β) = req2,

δ1(rec
2
a,#a) = (qr,#),

δ1(rec
2
b ,#b) = (qr,#),

δ1(rec
2
#,#$) = Accept,

δ1(qr, γ) = Restart,

δ2(q0, c| a) = res1a,

δ2(q0, c| b) = res1b ,

δ2(q0, c|#) = res1#,

δ2(ack
1
a, c| a) = (qr, c| ),

δ2(ack
1
b , c| b) = (qr, c| ),

δ2(qr, γ) = Restart.

The superscripts of the communication states of M1 are always 2 because M2 is

the only component M1 can communicate with. Particularly it makes no sense

for a component to communicate with itself. Accordingly, the superscripts of the

communication states of M2 are always 1. Whenever the communication partner

is unique as in this case, then we will omit the superscript of the communication

states in further considerations. Moreover, the response, receive, and acknowledge

states in our example have only one entry within the subscripts, and the request

state of M1 has not any subscript. The reason for this is that no local information

about the previous computation steps of the current cycle needs to be stored. In

addition, if also the message is unimportant, that is, if only the fact is interesting

whether a communication takes place or not, then we even omit the message in

the subscript. In the extreme we could have communication states like req, res,

rec, and ack without any annotation.

Let us now consider how the system behaves for a particular input. A computation

for Mw#w and the input word ab#ab is written in the following way, where the
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computation begins in the first column, proceeds downwards, and is continued in

the second column:

(q0c| ab#ab$, q0c| ab#ab$) 	Mw#w
(c| abreq2#b$, res1bc| b#ab$)

	Mw#w
(c| q0ab#ab$, res1ac| ab#ab$) 	Mw#w

(c| abrec2b#b$, ack1bc| b#ab$)

	Mw#w
(c| aq0b#ab$, res1ac| ab#ab$) 	Mw#w

(c| ab#qr$, c| qr#ab$)

	Mw#w
(c| abq0#ab$, res1ac| ab#ab$) 	Mw#w

(q0c| ab#$, q0c|#ab$)

	Mw#w
(c| abreq2#ab$, res1ac| ab#ab$) 	Mw#w

(c| q0ab#$, res1#c|#ab$)

	Mw#w
(c| abrec2a#ab$, ack1ac| ab#ab$) 	Mw#w

(c| aq0b#$, res1#c|#ab$)

	Mw#w
(c| ab#qrb$, c| qrb#ab$) 	Mw#w

(c| abq0#$, res1#c|#ab$)

	Mw#w
(q0c| ab#b$, q0c| b#ab$) 	Mw#w

(c| abreq2#$, res1#c|#ab$)

	Mw#w
(c| q0ab#b$, res1bc| b#ab$) 	Mw#w

(c| abrec2##$, ack1#c|#ab$)

	Mw#w
(c| aq0b#b$, res1bc| b#ab$) 	Mw#w

(Accept, ack1#c|#ab$)

	Mw#w
(c| abq0#b$, res1bc| b#ab$)

The components of M are deterministic monotone R-automata and, moreover,

only M1 is able to accept the input. Thus, the system M is of type det-global-

mon-PC-R(2). �

The copy language in Example 9 is not even growing context sensitive and thus

cannot be accepted by any single deterministic R-automaton, so this example gives

a first impression of how communication increases the computational power of

restarting automata. Moreover, we will see later in this thesis that even the copy

language without a middle marker can be accepted by a globally deterministic

system of three components with a window size of one.

In some situations it will be useful to describe the progress of the configurations

of a particular component M in a systemM. Therefore, the binary relation 	M,M
is introduced. It is somehow an extension of 	M that includes the communication

within the system. If M is of degree n, κ and κ′ are two configurations, and

M is the i-th component of M, then κ 	M,M κ′ holds if and only if there exist

configurations κj , κ
′
j for all j ∈ {1, . . . , n} \ {i} with

(κ1, . . . , κi−1, κ, κi+1, . . . , κn) 	M (κ′
1, . . . , κ

′
i−1, κ

′, κ′
i+1, . . . , κ

′
n).

Moreover, with κ 	∗M,M κ′ we denote a computation of M withinM, i.e. κ 	∗M,M κ′

if and only if there exist configurations κj , κ
′
j for all j ∈ {1, . . . , n} \ {i} such that

(κ1, . . . , κi−1, κ, κi+1, . . . , κn) 	∗M (κ′
1, . . . , κ

′
i−1, κ

′, κ′
i+1, . . . , κ

′
n).

Observe that in contrast to the relation 	M , the relation 	∗M,M is not the reflexive

and transitive closure of 	M,M .
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In the remaining subsections some more technical machinery is developed and

first results are derived.

5.1.2 Communicational equivalence between components of a system

We start this topic with the following observation: Let M = (M1,M2, . . . ,Mn)

be a PCRA system. Replacing a component Mi (1 ≤ i ≤ n) by an equivalent

automaton M ′
i leads to the system M′ = (M1, . . . ,Mi−1,M

′
i ,Mi+1, . . . ,Mn). Usu-

ally M and M′ are not equivalent anymore as can be easily seen from the next

example:

Example 10.M = (M1,M2) with M1 = ({q1, res2, ack2}, {a}, {a}, c| , $, q1, 1, δ1)
and M2 = ({q2, req1, rec1}, {a}, {a}, c| , $, q2, 1, δ2), where

δ1(q1, c| ) = {res2},
δ2(q2, c| ) = {req1},

δ2(rec
1, c| ) = {Accept}.

Then L(M1) = L(M2) = ∅ and L(M) = {a}∗. Let M ′
1 = ({q′1}, {a}, {a}, c| , $,

q′1, 1, δ
′
1) with δ′1(q

′
1, c| ) = ∅. Then it follows that L(M ′

1) = ∅ = L(M1). But for

M′ = (M ′
1,M2) it holds that L(M′) = ∅ 
= L(M). �

Though the component M1 in the system M was replaced by an equivalent au-

tomaton M ′
1, the resulting system M′ behaves quite differently from the original

system. The reason for this is the fact that not only the behaviour of the local

computations of the various components, but also the behaviour with respect to

communication influences the work of the whole system. The next definition deals

with this situation and gives a stronger interpretation of equivalence.

Definition 2 (Communicational equivalence). Let M1 = (Q1,Σ,Γ1, c| , $, q(1)0 , k,

δ1) and M2 = (Q2,Σ,Γ2, c| , $, q(2)0 , k, δ2) be two components such that COM(M1) =

COM(M2). Further, let

C1 = REQ(M1) ∪ RES(M1) = REQ(M2) ∪ RES(M2) and

C2 = REC(M1) ∪ ACK(M1) = REC(M2) ∪ ACK(M2).

Then M1 and M2 are called communicational equivalent (denoted by M1 ≡c M2)

if they are equivalent (L(M1) = L(M2)) and the following three conditions hold:

1. for all w ∈ Σ∗ and p ∈ C1,

q
(1)
0 c|w$ 	∗M1

upv ⇔ q
(2)
0 c|w$ 	∗M2

upv,
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2. for all p ∈ C2 and q ∈ C1,

upv 	∗M1
u′qv′ ⇔ upv 	∗M2

u′qv′,

3. for all p ∈ C2,

upv 	∗M1
Accept ⇔ upv 	∗M2

Accept. �

Observe that the assumption COM(M1) = COM(M2) implies that REQ(M1) =

REQ(M2), RES(M1) = RES(M2), REC(M1) = REC(M2), and ACK(M1) =

ACK(M2). Moreover, this is no real restriction, because whenever a communi-

cation state q ∈ COM(M1) \ COM(M2) or q ∈ COM(M2) \ COM(M1) is reached

by a component, then one of the three conditions does not hold anyway. The

communicational equivalence ensures that two automata have the same ‘global

behaviour’ within a system. It means that both components react on communica-

tions in the same manner. Now we prove that two systems with communicational

equivalent components are indeed equivalent.

Lemma 1. LetM = (M1,M2, . . . ,Mn) be a PCRA system, Mj = (Qj ,Σ,Γj, c| , $,
q
(j)
0 , k, δj) for all j ∈ {1, . . . , n}, M ′

i = (Q′
i,Σ,Γ′

i, c| , $, q
(i)
0 , k, δ′i) an automaton with

M ′
i ≡c Mi for an arbitrary i ∈ {1, . . . , n}, andM′ = (M1, . . . ,Mi−1,M

′
i ,Mi+1, . . . ,

Mn). Then for all w ∈ Σ∗, uv ∈ {c| }·(Γi∪Γ′
i)

∗ ·{$}, and q ∈ REQ(Mi)∪ RES(Mi),

q
(i)
0 c|w$ 	∗Mi,M uqv ⇔ q

(i)
0 c|w$ 	∗M ′

i ,M′ uqv.

Proof. Let γ1 be a computation of Mi inM such that γ1 = q
(i)
0 c|w$ 	∗Mi,M uqv for an

arbitrary input w ∈ Σ∗, uv ∈ {c| } · (Γi ∪ Γ′
i)
∗ · {$}, and q ∈ REQ(Mi) ∪ RES(Mi).

Further, let S(γ1) = (p1, p2, . . . , pt, q) be the sequence of request and response

states that are reached by Mi in the computation γ1 in chronological order.

By induction on the length of S(γ1), i.e. the number of reached communication

states, we show that there exists a computation γ2 of M ′
i in M′ such that γ2 =

q
(i)
0 c|w$ 	∗M ′

i ,M′ uqv with S(γ2) = S(γ1). In particular, all communications of M ′
i

in γ2 can be resolved, since the same communication states are reached as in the

computation γ1 of Mi and all the other components behave in M′ in the same

way as in M.

Basis: For S(γ1) = (q) the assumption follows directly from the first item of

the Definition 2.
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Inductive step: For S(γ1) = (p1, . . . , pt, q) with t > 0 it holds that

q
(i)
0 c|w$ 	∗Mi,M u′ptv′(= γ3) (1)

u′ptv′ 	Mi,M u′p′tv
′ (2)

u′p′tv
′ 	∗Mi,M uqv(= γ4) (3)

where pt = reqjd and p′t = recjd,c or pt = resjd,c and p′t = ackjd,c, S(γ3) = (p1, . . . , pt),

and S(γ4) = (q). From line (1) and the induction hypothesis it follows that

q
(i)
0 c|w$ 	∗M ′

i,M′ u
′ptv′(= γ5)

with S(γ5) = S(γ3) = (p1, . . . , pt). The communication step in line (2) can be

executed inM′ as well, since all previous communications are resolved (induction

hypothesis) and the other components behave in the same way as in M. From

line (3) and the second item of Definition 2 it follows that

u′p′tv
′ 	∗M ′

i ,M′ uqv(= γ6)

with S(γ6) = S(γ4) = (q), i.e. γ6 is a local computation of M ′
i . Altogether we have

q
(i)
0 c|w$ 	∗M ′

i ,M′ uqv(= γ2)

with S(γ2) = S(γ1) = (p1, . . . , pt, q). The opposite direction can be shown in the

same way because of the equivalences of Definition 2.

Corollary 1. Let M = (M1,M2, . . . ,Mn) and M′ = (M ′
1,M

′
2, . . . ,M

′
n) be two

PCRA systems with Mi ≡c M
′
i for all i ∈ {1, . . . , n}. Then L(M) = L(M′) holds.

Proof. This results immediately from Lemma 1 and the third item of Definition

2.

The next corollary is sometimes useful for technical reasons.

Corollary 2. For every restarting automaton with a communication state as the

initial state, there exists a communicational equivalent restarting automaton with

an initial state that is not a communication state.

Proof. Let M = (Q,Σ,Γ, c| , $, q, k, δ) be a restarting automaton with q ∈ REQ(M)∪
RES(M). Construct a restarting automaton M ′ = (Q ∪ {p},Σ,Γ, c| , $, p, k, δ′),
where p /∈ Q and δ′ = δ ∪ {(p, α, q) | α ∈ PC(k)} . Thus, every computation of M ′

starts with pc|w$ 	M ′ qc|w$ for any input word w ∈ Σ∗. Hence, M ≡c M
′.
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5.1.3 Restarting automata with state-change-only transitions

Usually in a restarting automaton a change into a particular state is connected

with a move of the window on the tape (MVL, MVR) or a replace operation.

In some proofs it is useful to define restarting automata in such a way that the

state can be changed without performing any operation on the tape. Here we call

transitions of the form q ∈ δ(p, u) state-change-only transitions (SCO transitions

for short), where p and q are states and u is a part of the tape content that could

possibly be read by the window. This is quite similar to spontaneous transitions

for nondeterministic finite automata or pushdown automata.

Definition 3 (SCO transition). Let M = (Q,Σ,Γ, c| , $, q0, k, δ) be an arbitrary

restarting automaton of any type. Then an SCO transition is of the form q ∈
δ(p, u), where p, q ∈ Q, and u ∈ PC(k). This means that M , being in state p and

reading the word u on the tape, may change into the state q, without changing

the tape content, keeping the window at the current position. �

If M is a component within a PC system of restarting automata, transitions

of the form q ∈ δ(p, u) are not called SCO transitions if q is a communication

state. When M changes into a communication state, this is not just a change

of the current state, but it is also connected with a communication operation.

Now we show that restarting automata with SCO transitions are equivalent to

restarting automata without SCO transitions with respect to their computational

power. Since it is clear that restarting automata without SCO transitions cannot

be more powerful than those with SCO transitions, it remains to show the opposite

direction. The first proof deals only with restarting automata not contained within

a PC system. Thereafter, it is shown that SCO transitions do not result in an

increase of the computational power even in PC systems.

Theorem 1. Let M be an arbitrary restarting automaton of any type with SCO

transitions. Then there exists an automaton M ′ of the same type without SCO

transitions such that L(M) = L(M ′).

Proof. Let M = (Q,Σ,Γ, c| , $, q0, k, δ) be a restarting automaton of any type

with SCO transitions. The following algorithm constructs an automaton M ′ =

(Q,Σ,Γ, c| , $, q0, k, δ′) of the same type without using SCO transitions such that

L(M) = L(M ′).

(1) Let P1 be the set of all SCO transitions of M :

P1 := {(p, α, q) | q ∈ δ(p, α)}.
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(2) Remove every (p, α, q) from P1 for which δ(q, α) = ∅ holds:

P2 := P1 \ {(p, α, q) | δ(q, α) = ∅}.

(3) Determine the transitive closure of P2 which is the set of computation paths

only containing SCO transitions:

P3 := {(p, α, q) | (p, α, q) ∈ P2 or ∃n ≥ 0 : ∃q1, q2, . . . , qn ∈ Q :

(p, α, q1), (q1, α, q2), . . . , (qn, α, q) ∈ P2}.

(4) Remove every (p, α, p) from P3:

P4 := P3 \ {(p, α, p) | (p, α, p) ∈ P3}.

(5) For each A ∈ δ(p, α) with A 
= q for any q ∈ Q, take A ∈ δ′(p, α).

(6) While P4 
= ∅ do:

(6.1) Choose a (p, α, q) ∈ P4.

(6.2) For each A ∈ δ(q, α), define A ∈ δ′(p, α).

(6.3) Remove (p, α, q) from P4.

The basic idea of the algorithm is to shorten the computations of M by eliminat-

ing the SCO steps successively. Now, it remains to show that for any input word

w ∈ Σ∗ holds: q0c|w$ 	∗M Accept if and only if q0c|w$ 	∗M ′ Accept.

”
⇒ “: An SCO sequence of length r is a computation consisting of r SCO

transitions. Formally this can be written as uq1v 	 uq2v 	 · · · 	 uqrv 	 uqr+1v.

By induction on the number of SCO sequences it can be shown that κ 	∗M Accept⇒
κ 	∗M ′ Accept holds for any configuration κ that is not reached directly from an SCO

transition. If the computation κ 	∗M Accept does not contain an SCO sequence,

then κ 	∗M ′ Accept follows directly from line (5) of the algorithm. Let κ 	∗M Accept

contain s + 1 SCO sequences (s ≥ 0). Then there exist states q1, q2, . . . , qr, q and

tape contents u, v, u′, v′ with

κ 	∗M uq1v 	M uq2v 	M . . . 	M uqrv 	M u′qv′ 	∗M Accept.

W.l.o.g. κ 	∗M uq1v contains no SCO sequence and uq1v 	M uq2v 	M . . . 	M uqrv is

the first SCO sequence (of length r−1) within the computation κ 	∗M Accept. More-

over, uqrv 	M u′qv′ is not an SCO transition (otherwise u′qv′ would belong to the

SCO sequence), and qi 
= qi+1 for all 1 ≤ i < r. The last part of the computation
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(u′qv′ 	∗M Accept) contains the remaining s SCO sequences. Now it follows that

qi+1 ∈ δ(qi, πk(v)) for all 1 ≤ i < r and (q,MVR) ∈ δ(qr, πk(v)) (if uqrv 	MVR
M u′qv′;

MVL, rewrite, restart, and Accept similar). Hence (qi, πk(v), qi+1) ∈ P1 and

(qi, πk(v), qi+1) ∈ P2 for all 1 ≤ i < r because of line (1) and (2) of the algorithm.

Due to line (3) (q1, πk(v), qr) ∈ P3. If q1 
= qr, then (q1, πk(v), qr) ∈ P4. (Otherwise

there exists a computation κ 	∗M uq1v 	M u′qv′ 	∗M Accept with s SCO sequences and

the induction hypothesis can be applied.). Furthermore, (q,MVR) ∈ δ′(q1, πk(v))

because of line (6.2). Subsequently it follows that

κ 	∗M ′ uq1v 	M ′ u
′qv′ 	∗M ′ Accept,

where κ 	∗M ′ uq1v follows from line (5) of the algorithm, and u′qv′ 	∗M ′ Accept results

from the induction hypothesis. In particular, if κ = q0c|w$ for some input word

w ∈ Σ∗, then q0c|w$ 	∗M Accept implies q0c|w$ 	∗M ′ Accept.

”
⇐ “: By induction on the length of the computations of M ′ it can be shown

that κ 	∗M ′ Accept ⇒ κ 	∗M Accept holds for any configuration κ. For zero com-

putation steps κ = Accept and the assumption holds. Let κ 	n+1
M ′ Accept for a

configuration κ = uqv = uqv1 . . . vt. Then there exists a state q′ such that

uqv1 . . . vt 	MVR
M ′ uv1q

′v2 . . . vt 	nM ′ Accept

(MVL, rewrite, and restart similar), and it follows that

uqv1 . . . vt 	∗M uv1q
′v2 . . . vt (1)

	∗M Accept (2)
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Line (1) holds because:

uqv1 . . . vt 	MVR
M ′ uv1q

′v2 . . . vt
⇒ (q′,MVR) ∈ δ′(q, πk(v))

⇒ (q′,MVR) ∈ δ(q, πk(v)) or ∃q′′ ∈ Q :

(q, πk(v), q′′) ∈ P4 and (q′,MVR) ∈ δ(q′′, πk(v))

⇒ (q′,MVR) ∈ δ(q, πk(v)) or ∃q′′ ∈ Q :

(q, πk(v), q′′) ∈ P3 and (q′,MVR) ∈ δ(q′′, πk(v)) and q′′ 
= q

⇒ (q′,MVR) ∈ δ(q, πk(v)) or ∃q′′ ∈ Q : ∃r ≥ 1 : ∃q1, q2, . . . , qr ∈ Q :

(q, πk(v), q1) ∈ P2, (qi, πk(v), qi+1) ∈ P2 for all 0 < i < r, qr = q′′,

and (q′,MVR) ∈ δ(q′′, πk(v))

⇒ (q′,MVR) ∈ δ(q, πk(v)) or ∃q′′ ∈ Q : ∃r ≥ 1 : ∃q1, q2, . . . , qr ∈ Q :

(q, πk(v), q1) ∈ P1, (qi, πk(v), qi+1) ∈ P1 for all 0 < i < r, qr = q′′,

and (q′,MVR) ∈ δ(q′′, πk(v))

⇒ (q′,MVR) ∈ δ(q, πk(v)) or ∃q′′ ∈ Q : ∃r ≥ 1 : ∃q1, q2, . . . , qr ∈ Q :

q1 ∈ δ(q, πk(v)), qi+1 ∈ δ(qi, πk(v)) for all 0 < i < r, qr = q′′,

and (q′,MVR) ∈ δ(q′′, πk(v))

⇒ uqv1 . . . vt 	M uv1q
′v2 . . . vt or ∃q′′ ∈ Q : ∃r ≥ 1 : ∃q1, q2, . . . , qr ∈ Q :

uqv1 . . . vt 	M uq1v1 . . . vt 	M . . . 	M uqrv1 . . . vt = uq′′v1 . . . vt
	M uv1q

′v2 . . . vt

Line (2) holds because of the induction hypothesis. In particular, if q0c|w$ 	∗M ′ Accept,

then q0c|w$ 	∗M Accept. Hence, it follows that L(M) = L(M ′).

The algorithm above terminates for every input, and it needs time O(n4) and

space O(n2), where n is the number of transitions of M . Lines (1), (2), and (5)

need linear time and space. Lines (3) and (4) need time O(n3) and space O(n2).

For this, we can use the Floyd-Warshall algorithm [Flo62, War62]. Finally, line

(6) needs time O(n4) and space O(n2).

The next theorem indicates that the use of SCO transitions has no effect on

the computational power even in PC systems of restarting automata. To show

this the concept of communicational equivalence is used.

Theorem 2. Let M be a component within a PC system of restarting automata

of an arbitrary type that includes SCO transitions. Then there exists a com-

municational equivalent component M ′ of the same type without SCO transitions

(M ≡c M
′).

Proof. The proof is nearly the same as the one of Theorem 1. By replacing κ

with the configurations q0c|w$ or xqy for an input word w and a communication

state q ∈ REC(M)∪ ACK(M) and replacing Accept with xpy for a communication
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state p ∈ REQ(M)∪ RES(M), it can be seen that the three conditions (beside the

condition L(M) = L(M ′)) of Definition 2 hold.

One problem dealing with SCO steps are loops in the computation that cannot

occur in computations of restarting automata that use only MVR steps. Such

loops can result in infinitely long computations for a given input word. But this is

no real disadvantage, since the algorithm above can be used to decide whether an

automaton can reach a loop (the automaton can reach an SCO loop if and only if

P3 contains at least one triple of the type (p, α, p)) and moreover (due to Theorems

1 and 2) a (communicational) equivalent automaton without SCO transitions can

be constructed effectively.

Furthermore, the construction within the proof of Theorem 2 has only an effect

on the currently considered component, but not on the other components of the

system. Thus, by replacing the components with SCO transitions by components

without SCO transitions successivley, we obtain the following corollary.

Corollary 3. Every system that includes components with SCO transitions can

be effectively transformed into an equivalent system without SCO transitions.

5.1.4 Multicast and broadcast

Consider the language

Lc-copy = {w(#w)c | w ∈ {a, b}+},

where c is a constant positive integer. An intuitive way to construct a system for

this language would be to have c+ 1 components each working on one of the c+ 1

syllables quite similar to the copy language of Example 9 (although Lc-copy can be

accepted by a system with only two components as we will see within the section

”
Further examples“). Comparing the first symbols of all syllables by one-to-one

communications can be very expensive. Rather a one-to-many communication

would be useful, so that one particular component sends its first symbol to all

other components that now can compare the information received with their own

currently read symbol.

Now we introduce an operation that allows a component to send a message not

only to one but to many components within the system. Therefore, the present

communication concept is extended by multicast and broadcast communication

operations. While in a broadcast a certain information is sent to all other com-

ponents, in the multicast operation the message is sent to a determined subset of

all components (except the sending component itself). In this sense the broadcast

is a special case of the multicast. Usually, if a member of a (communication)
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network sends a broadcast message, it does not necessarily require an acknowl-

edgement from the addressees. Here we limit ourself to broadcasts and multicasts

with ‘echo’, where each addressee sends an acknowledgement to the sender. Thus,

the sender knows which members have received the original message and can send

the message again if there are some members that did not obtain the message. In

the context of the PCRA systems this means that the component sending the mul-

ticast waits until every addressee reaches a corresponding communication state.

The next definitions give a formal description of broad- and multicasts within

PCRA systems.

Definition 4 (Multicast communication step). Let M = (M1,M2, . . . ,Mn) be a

PCRA system of an arbitrary type. Then, a multicast operation is a transition of

the form

res
{i1,i2,...,ir}
d,c ∈ δ(q, α),

where d is a local information, c is a message, and {i1, i2, . . . , ir} ⊂ {1, 2, . . . , n}
are the indices of the addressees not containing the index of the sender. �

Using broadcast communication we notate this also by

res∗d,c ∈ δ(q, α),

since the message is sent to all other components. Now, we extend the definition

of a computation step of a system.

Definition 5. Let K and K ′ be two configurations with K = (κ1, κ2, . . . , κn)

and K ′ = (κ′
1, κ

′
2, . . . , κ

′
n). Then K 	M K ′ iff for all i ∈ {1, 2, . . . , n} one of the

following conditions holds:

1. κi 	Mi
κ′
i (local computation step),

2. ∃j ∈ {1, 2, . . . , n} \ {i} : κi = uireq
j
di
vi, κj = ujres

i
dj ,c

vj ,

κ′
i = uirec

j
di,c

vi, κ′
j = ujack

i
dj ,c

vj (communication),

3. ∃j ∈ {1, 2, . . . , n} \ {i} : κi = uires
j
di,c

vi, κj = ujreq
i
dj
vj ,

κ′
i = uiack

j
di,c

vi, κ′
j = ujrec

i
dj ,c

vj (communication),

4. ∃j1, . . . , jr ∈ {1, 2, . . . , n} \ {i} :

κi = uires
{j1,...,jr}
di,c

vi, ∀j ∈ {j1, . . . , jr} : κj = ujreq
i
dj
vj,

κ′
i = uiack

{j1,...,jr}
di,c

vi, ∀j ∈ {j1, . . . , jr} : κ′
j = ujrec

i
dj ,c

vj (multicast),

5. κi = κ′
i, κi 
= Accept, and no local operation (MVR, MVL, Restart, replace-

ment) or communication (including multicasts) of Mi is possible. �
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Although the defined multicast operation can be a useful simplification for the

construction of a system, it does not increase the computational power, as the

next theorem shows.

Theorem 3. For every PCRA M of an arbitrary type that is allowed to use

multicast operations, there exists a PCRA system M′ of the same type that does

not use any multicast operations and accepts exactly the same language asM.

Proof. Let M = (M1,M2, . . . ,Mn) be a PCRA system of an arbitrary type that

is allowed to use multicast operations. We construct a systemM′ = (M ′
1,M

′
2, . . . ,

M ′
n) of the same type with L(M) = L(M′). Therefore every multicast operation

that appears in any component of M is eliminated. Let

res
{j1,...,jr}
d,c ∈ δi(q, α) and A ∈ δ(ack

{j1,...,jr}
d,c , α)

be an arbitrary transition of a multicast operation from the component Mi. These

are replaced with the following communication transitions in M ′
i :

resj1d,c ∈ δ′i(q, α),

resj2d,c ∈ δ′i(ack
j1
d,c, α),

resj3d,c ∈ δ′i(ack
j2
d,c, α),

...

resjrd,c ∈ δ′i(ack
jr−1

d,c , α),

A ∈ δ′i(ack
jr
d,c, α).

If any of the states resj1d,c, ack
j1
d,c, res

j2
d,c, ack

j2
d,c, . . . , resjrd,c, ack

jr
d,c already appears in

the set of states of Mi, then the local information d has to be chosen in a way

that makes the states unique. If there are several multicast operations defined

for the same state q and tape content α, then the new transitions are defined for

each multicast operation. If the initial state of a component Mi is of the form

res
{j1,...,jr}
d,c , then the initial state of M ′

i is resj1d,c and the new transitions above are

included. If the initial state of Mi is not a multicast communication state, then

the initial state in M ′
i is the same as in Mi.

To show that M and M′ accept the same language, we consider the following

multicast step within a computation of M, where the order of the components

Mi, Mj1 , Mj2 , . . . , Mjr is irrelevant:
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(. . . , κi, κj1 , . . . , κjr , . . .)

= (. . . , uiqivi, uj1qj1vj1, . . . , ujrqjrvjr , . . .)

	M (. . . , uires
{j1,...,jr}
d,c vi, uj1req

i
d1
vj1 , . . . , ujrreq

i
dr
vjr , . . .)

	M (. . . , uiack
{j1,...,jr}
d,c vi, uj1rec

i
d1,c

vj1, . . . , ujrrec
i
dr ,c

vjr , . . .)

	M (. . . , κ′
i, κ′

j1
, . . . , κ′

jr , . . .).

With the above described modifications the system M′ performs the following

computation. The symbol ∗ denotes an arbitrary successor configuration of the

according component.

(. . . , κi, κj1 , κj2 , . . . , κjr−1, κjr , . . .)

= (. . . , uiqivi, uj1qj1vj1 , uj2qj2vj2 , . . . , ujr−1qjr−1vjr−1, ujrqjrvjr , . . .)

	M′ (. . . , uires
j1
d,cvi, uj1req

i
d1
vj1, uj2req

i
d2
vj2, . . . , ujr−1req

i
dr−1

vjr−1, ujrreq
i
dr
vjr , . . .)

	M′ (. . . , uiack
j1
d,cvi, uj1rec

i
d1,c

vj1, uj2req
i
d2
vj2, . . . , ujr−1req

i
dr−1

vjr−1, ujrreq
i
dr
vjr , . . .)

	M′ (. . . , uires
j2
d,cvi, κ′

j1
, uj2req

i
d2
vj2, . . . , ujr−1req

i
dr−1

vjr−1, ujrreq
i
dr
vjr , . . .)

	M′ (. . . , uiack
j2
d,cvi, ∗, uj2rec

i
d2,c

vj2, . . . , ujr−1req
i
dr−1

vjr−1, ujrreq
i
dr
vjr , . . .)

	M′ (. . . , uires
j3
d,cvi, ∗, κ′

j2
, . . . , ujr−1req

i
dr−1

vjr−1, ujrreq
i
dr
vjr , . . .)

...

	M′ (. . . , uires
jr
d,cvi, ∗, ∗, . . . , κ′

jr−1
, ujrreq

i
dr
vjr , . . .)

	M′ (. . . , uiack
jr
d,cvi, ∗, ∗, . . . , ∗, ujrrec

i
dr ,c

vjr , . . .)

	M′ (. . . , κ′
i, ∗, ∗, . . . , ∗, κ′

jr , . . .).

Hence, each component of M′ performs the same computation as the original

component with respect to some additional communication steps. Particularly,

for each component Mi, 1 ≤ i ≤ n,

q
(i)
0 c|w$ 	∗Mi,M κ if and only if q

(i)
0 c|w$ 	∗M ′

i ,M′ κ

for each configuration κ that does not contain a communication state. Since this

holds for κ = Accept in particular, L(M) = L(M′) follows.

The following example demonstrates how multicasts can be applied usefully.

For this purpose we use our language Lc-copy defined above.

Example 11. We construct a system Mc-copy that accepts the language Lc-copy

with c+1 components M1, M2, . . . , Mc+1. Basically, each component Mi, 1 ≤ i ≤
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c+1, works on the i-th syllable of the input word. The first component M1 moves

over the c| -symbol and then communicates each symbol via multicast to the other

components M2, . . . , Mc+1 until it reads the #-symbol. Reading the first #-symbol

signalizes the end of the first syllable. Each other component Mi, 2 ≤ i ≤ c + 1,

moves its window to the right until it passes the (i−1)-th #-symbol, positions the

window on the first symbol of the i-th syllable, and requests the symbol that is

currently read by the first component. When receiving the corresponding symbol

from M1, Mi compares it with the own currently read symbol. If both symbols

match, then Mi moves the window one step to the right and requests the next

symbol from M1. At the end of a computation, that is, when each of the first c

components has reached the #-symbol, and Mc+1 has reached the $-symbol, a last

multicast communication step takes place to verify that indeed all the components

have read their whole syllable. Only if this communication can be resolved, then

all syllables of the input word are identical and M1 accepts.

We define the components of Mc-copy by

Mi = (Qi, {a, b,#}, {a, b,#}, c| , $, q0, 1, δi), 1 ≤ i ≤ c + 1,

with

• Q1 = {q0, res∗a, ack∗a, res∗b , ack∗b , res∗#, ack∗#, res∗acc, ack∗acc},

• Qi = {q0, req1, rec1a, rec1b , rec1#} ∪ {qj | 1 ≤ j ≤ i− 1} for all 2 ≤ i ≤ c + 1,

and

δ1(q0, c| ) = (q0,MVR)

δ1(q0, a) = res∗a,

δ1(q0, b) = res∗b ,

δ1(q0,#) = res∗#,

δ1(ack
∗
a, a) = (q0,MVR),

δ1(ack
∗
b , b) = (q0,MVR),

δ1(ack
∗
#,#) = res∗acc,

δ1(ack
∗
acc,#) =Accept,

δi(q0, c| ) = (q0,MVR),

δi(qj , a) = (qj,MVR) for all 0 ≤ j ≤ i− 2,

δi(qj , b) = (qj,MVR) for all 0 ≤ j ≤ i− 2,

δi(qj ,#) = (qj+1,MVR) for all 0 ≤ j ≤ i− 2,

δi(qi−1, a) = req1,

δi(qi−1, b) = req1,

δi(qi−1,#) = req1 if i < c + 1,

δi(qi−1, $) = req1 if i = c + 1,

δi(rec
1
a, a) = (qi−1,MVR),

δi(rec
1
b , b) = (qi−1,MVR),

δi(rec
1
#,#) = req1 if i < c + 1,

δi(rec
1
#, $) = req1 if i = c + 1.

Observe that no rewrite operations and no restart operations are used within the

definition of the components. An example computation of Mc-copy for c = 2 and

the input word ab#ab#ab is:
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( q0c| ab#ab#ab$ , q0c| ab#ab#ab$ , q0c| ab#ab#ab$ )

	 ( c| q0ab#ab#ab$ , c| q0ab#ab#ab$ , c| q0ab#ab#ab$ )

	 ( c| res∗aab#ab#ab$ , c| aq0b#ab#ab$ , c| aq0b#ab#ab$ )

	 ( c| res∗aab#ab#ab$ , c| abq0#ab#ab$ , c| abq0#ab#ab$ )

	 ( c| res∗aab#ab#ab$ , c| ab#q1ab#ab$ , c| ab#q1ab#ab$ )

	 ( c| res∗aab#ab#ab$ , c| ab#req1ab#ab$ , c| ab#aq1b#ab$ )

	 ( c| res∗aab#ab#ab$ , c| ab#req1ab#ab$ , c| ab#abq1#ab$ )

	 ( c| res∗aab#ab#ab$ , c| ab#req1ab#ab$ , c| ab#ab#q2ab$ )

	 ( c| res∗aab#ab#ab$ , c| ab#req1ab#ab$ , c| ab#ab#req1ab$ )

	 ( c| ack∗aab#ab#ab$ , c| ab#rec1aab#ab$ , c| ab#ab#rec1aab$ )

	 ( c| aq0b#ab#ab$ , c| ab#aq1b#ab$ , c| ab#ab#aq2b$ )

	 ( c| ares∗bb#ab#ab$ , c| ab#areq1b#ab$ , c| ab#ab#areq1b$ )

	 ( c| aack∗bb#ab#ab$ , c| ab#arec1bb#ab$ , c| ab#ab#arec1b b$ )

	 ( c| abq0#ab#ab$ , c| ab#abq1#ab$ , c| ab#ab#abq2$ )

	 ( c| abres∗##ab#ab$ , c| ab#abreq1#ab$ , c| ab#ab#abreq1$ )

	 ( c| aback∗##ab#ab$ , c| ab#abrec1##ab$ , c| ab#ab#abrec1#$ )

	 ( c| abres∗acc#ab#ab$ , c| ab#abreq1#ab$ , c| ab#ab#abreq1$ )

	 ( c| aback∗acc#ab#ab$, c| ab#abrec1acc#ab$, c| ab#ab#abrec1acc$ )

	 ( Accept , c| ab#abrec1acc#ab$, c| ab#ab#abrec1acc$ )

If the input word is not of the correct form, that is, either the number of #-symbols

is not equal to c or some syllables differ from each other in at least one symbol, then

the following happens. In the first case, at least Mc+1 gets stuck being in a state

qj with 0 ≤ j ≤ (i− 2) and reading the $-symbol or being in state qc reading the

#-symbol. Subsequently, at least one component cannot reach a communication

state and no communication of M1 is resolved. Whenever one syllable differs in

at least one symbol from the first syllable, the corresponding component will get

stuck, because δi(rec
1
x, y) is not defined for two different tape symbols x and y.

Thus, in either case M1 cannot reach the accepting configuration, and the input

word is rejected. �
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5.2 Further examples

In Section 5.1.1 a first example for the PCRA systems was given that accepts the

copy language with a middle marker. Now, some more examples are presented

for typical languages appearing in formal language contexts and computational

linguistic:

• Gladkij language:

LGladkij = {w#wR#w | w ∈ {a, b}∗},

• language of multiple agreements:

Lanbncndn = {anbncndn | n ≥ 1},

• copy language for constant many copies (c is a constant integer with c ≥ 1):

Lc-copy = {w(#w)c | w ∈ {a, b}+},

• copy language without middle marker (also called duplication language):

Lww := {ww | w ∈ {a, b}∗},

• exponential language:

Lexpo = {a2n | n ≥ 0}.

The systems for these example languages will be explained rather detailed in

order to illustrate how restarting automata work together within a PCRA system

solving various tasks.

Example 12 (Gladkij language). A PCRA system that accepts the Gladkij

language LGladkij consists of two det-mon-R-automata with window size three:

MGladkij = (M1,M2). In each cycle component M1 moves its window to the right

until the first #-symbol occurs in the middle of the window. If it reads a#a or

b#b, this string is replaced by # followed by an immediate restart. Thus, M1

checks whether the second syllable is the reversal of the first syllable. The second

component M2 behaves similarly, checking whether the third syllable is the reversal

of the second one. When both automata are successful, i.e. M1 reads c|## and

M2 reads ##$, then the one and only communication step takes place, whereafter

M1 and therefore the system MGladkij accepts the input word. If the input is not
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of the correct form, then M1 or M2 (or both) do not reach the communication

state, the communication does not happen, and the system does not accept.

Formally M1 and M2 are given by:

M1 = ({q0, qr, req, rec}, {a, b,#}, {a, b,#}, c| , $, q0, 3, δ1)

with

δ1(q0, α) = (q0,MVR) for all α ∈ {c| , a, b} · {a, b} · {a, b,#},
δ1(q0, α#α) = (qr,#) for all α ∈ {a, b},
δ1(qr, α) = Restart for all α ∈ PC(3),
δ1(q0, c|##) = req,

δ1(rec, c|##) = Accept,

and

M2 = ({q0, q1, qr, res, ack}, {a, b,#}, {a, b,#}, c| , $, q0, 3, δ2)

with

δ2(q0, α) = (q0,MVR) for all α ∈ {c| , a, b} · {a, b} · {a, b,#},
δ2(q0, α##) = (q1,MVR) for all α ∈ {c| , a, b},
δ2(q0, α#α) = (q1,MVR) for all α ∈ {a, b},
δ2(q1, α) = (q1,MVR) for all α ∈ {a, b,#} · {a, b} · {a, b,#},
δ2(q1, α#α) = (qr,#) for all α ∈ {a, b},
δ2(qr, α) = Restart for all α ∈ PC(3),
δ2(q1,##$) = res.

Observe that each computation of MGladkij contains at most one communication

step, and this communication can only be executed in one particular situation

(when M1 reads c|## and M2 reads ##$). Thus, no local information has to be

kept during the communication and no particular message has to be sent. Only the

fact is important that some communication takes place. Therefore, the subscripts

of the communication states can be omitted. Moreover, since for systems of two

components the communication partner is always unique, the superscripts of the

communication states can also be left out.

An example computation of MGladkij for the input word ab#ba#ab is given as
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follows:

(q0c| ab#ba#ab$, q0c| ab#ba#ab$) 	 (reqc|##ab$, c| abq1#b#b$)

	 (c| q0ab#ba#ab$, c| q0ab#ba#ab$) 	 (reqc|##ab$, c| ab#q1b#b$)

	 (c| aq0b#ba#ab$, c| aq0b#ba#ab$) 	 (reqc|##ab$, c| ab##qr$)

	 (c| a#qra#ab$, c| abq1#ba#ab$) 	 (reqc|##ab$, q0c| ab##$)

	 (q0c| a#a#ab$, c| ab#q1ba#ab$) 	 (reqc|##ab$, c| q0ab##$)

	 (c| q0a#a#ab$, c| ab#bq1a#ab$) 	 (reqc|##ab$, c| aq0b##$)

	 (c|#qr#ab$, c| ab#b#qrb$) 	 (reqc|##ab$, c| abq1##$)

	 (q0c|##ab$, q0c| ab#b#b$) 	 (reqc|##ab$, c| abres##$)

	 (reqc|##ab$, c| q0ab#b#b$) 	 (recc|##ab$, c| aback##$)

	 (reqc|##ab$, c| aq0b#b#b$) 	 (Accept, c| aback##$).

�

The following example shows how a system of three simple automata accepts

the language of multiple agreements. Similarly to the previous example the com-

ponents work mainly independently of each other and only at the end of a com-

putation two communications are needed.

Example 13 (Lanbncndn). Let Manbncndn = (M1,M2,M3) be a PCRA system

that accepts the language of multiple agreements

Lanbncndn = {anbncndn | n ≥ 1}.

All components work independently of each other in the following way: M1 checks

whether the input is of the form anbnc+d+, M2 verifies that the input is of the form

a+bncnd+, and M3 checks whether the input is of the form a+b+cndn. If the input

satisfies all three conditions, then two communications between M1 and M2 and

between M1 and M3 take place, whereafter M1 accepts. If the input word is not

of the correct form, then at least one of the components halts without reaching

the necessary communication state, the corresponding communication does not

take place, and finally M1 and thus the system Manbncndn do not accept. The

components are now given by the following three det-R-automata with window

size four:

M1 = ({q0, q1, qr, req2, rec2, req3, rec3}, {a, b, c, d}, {a, b, c, d}, c| , $, q0, 4, δ1) with:
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δ1(q0, α) = (q0,MVR) f.a. α ∈ {c| a3, c| a2b, a4, a3b},
δ1(q0, aabb) = (qr, ab),

δ1(q0, c| abc) = (q1,MVR),

δ1(q1, α) = (q1,MVR) f.a. α ∈ {abc2, abcd, bc3, bc2d, bcd2, c4, c3d, c2d2, cd3, d4},
δ1(q1, α) = req2 f.a. α ∈ {bcd$, cd2$, d3$},
δ1(qr, α) = Restart f.a. α ∈ PC(4),
δ1(rec

2, α) = req3 f.a. α ∈ {bcd$, cd2$, d3$},
δ1(rec

3, α) = Accept f.a. α ∈ {bcd$, cd2$, d3$},

M2 = ({q0, q1, qr, res1, ack1}, {a, b, c, d}, {a, b, c, d}, c| , $, q0, 4, δ2) with:

δ2(q0, α) = (q0,MVR) f.a. α ∈ {c| a3, c| a2b, c| ab2, c| abc, a4, a3b, a2b2, a2bc,
ab3, ab2c, b4, b3c},

δ2(q0, bbcc) = (qr, bc),

δ2(q0, abcd) = (q1,MVR),

δ2(q1, α) = (q1,MVR) f.a. α ∈ {bcd2, cd3, d4},
δ2(q1, α) = res1 f.a. α ∈ {bcd$, cd2$, d3$},
δ2(qr, α) = Restart f.a. α ∈ PC(4),

M3 = ({q0, qr, res1, ack1}, {a, b, c, d}, {a, b, c, d}, c| , $, q0, 4, δ3) with:

δ3(q0, α) = (q0,MVR) f.a. α ∈ {c| a3, c| a2b, c| abc, a4, a3b, a2b2, ab3, a2bc, b4,
ab2c, b3c, b2c2, b2cd, bc3, c4, bc2d, abcd, c3d},

δ3(q0, ccdd) = (qr, cd),

δ3(q0, bcd$) = res1,

δ3(qr, α) = Restart f.a. α ∈ PC(4).
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For the input a2b2c2d2 the system Manbncndn performs the following computation:

(q0c| a2b2c2d2$, q0c| a2b2c2d2$ , q0c| a2b2c2d2$ )

	 (c| q0a2b2c2d2$, c| q0a2b2c2d2$ , c| q0a2b2c2d2$ )

	 (c| abqrc2d2$ , c| aq0ab2c2d2$, c| aq0ab2c2d2$)

	 (q0c| abc2d2$ , c| a2q0b2c2d2$ , c| a2q0b2c2d2$ )

	 (c| q1abc2d2$ , c| a2bcqrd2$ , c| a2bq0bc2d2$ )

	 (c| aq1bc2d2$ , q0c| a2bcd2$ , c| a2b2q0c2d2$ )

	 (c| abq1c2d2$ , c| q0a2bcd2$ , c| a2b2cdqr$ )

	 (c| abcq1cd2$ , c| aq0abcd2$ , q0c| a2b2cd$ )

	 (c| abcreq2cd2$, c| a2q1bcd2$ , c| q0a2b2cd$ )

	 (c| abcreq2cd2$, c| a2bq1cd2$ , c| aq0ab2cd$ )

	 (c| abcreq2cd2$, c| a2bres1cd2$ , c| a2q0b2cd$ )

	 (c| abcrec2cd2$, c| a2back1cd2$, c| a2bq0bcd$ )

	 (c| abcreq3cd2$, c| a2back1cd2$, c| a2bres1bcd$ )

	 (c| abcrec3cd2$, c| a2back1cd2$, c| a2back1bcd$)

	 (Accept , c| a2back1cd2$, c| a2back1bcd$)

�

In Section 5.1.4 the language Lc-copy was used as an appropriate example for

broadcast communication, where each of c + 1 components work on its own part

of the input and all syllables are compared with each other concurrently. Now we

give a system with only two components with window size one. In contrast to the

previous two examples, the components of the next system work closely together

and use a high degree of communication.

Example 14 (det-global-PC-R(2,1)-system for Lc-copy). The language

Lc-copy = {w(#w)c | w ∈ {a, b}+}

with constant c ≥ 1 contains words that start with a non-empty string w over

{a, b} followed by c identical copies of w. Each copy is separated by the marker

#. A system can be defined consisting of two components with window size one:

Mc-copy = (M1,M2)

with
M1 = (Q1, {a, b,#}, {a, b,#}, c| , $, q0, 1, δ1),
M2 = (Q2, {a, b,#}, {a, b,#}, c| , $, q0, 1, δ2),
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where

Q1 = {qj , reqj, recj,a, recj,b | 0 ≤ j < c} ∪ {recj,# | 0 ≤ j < c− 1} ∪ {recc−1,$},
Q2 = {q0, q1} ∪ {resx, ackx | x ∈ {a, b,#, $}},

δ1(q0, c| ) = (q0,MVR),

δ1(qj , a) = δ1(qj , b) = δ1(qj ,#) = reqj for all 0 ≤ j ≤ c− 1,

δ1(recj,a, a) = δ1(recj,b, b) = (qj,MVR) for all 0 ≤ j ≤ c− 1,

δ1(recj,#,#) = (qj+1,MVR) for all 0 ≤ j ≤ c− 2,

δ1(recc−1,$,#) = Accept,

and
δ2(q0, c| ) = δ2(q0, a) = δ2(q0, b) = (q0,MVR),

δ2(q0,#) = (q1,MVR),

δ2(q1, a) = resa,

δ2(q1, b) = resb,

δ2(q1,#) = res#,

δ2(acka, a) = δ2(ackb, b) = δ2(ack#,#) = (q1,MVR),

δ2(q1, $) = res$.

First, M2 moves its window to the right over the first syllable until it reads the

first #-symbol. Then, both components move their windows synchronously to the

right while comparing the currently read symbols through a communication in

each step. Meanwhile, M1 counts the number of #-symbols and stores it in the

index of its state. If, at the end, each syllable is equal to its neighbouring syllable

and, moreover, the number of counted #-symbols is equal to c, then M1 accepts.

Otherwise, if there occurs a mismatch of two currently read symbols, then the

corresponding communication cannot be resolved, and thus, M1 cannot reach the

accepting configuration. Additionally, if the number of syllables is less than c,

then M1 rejects the input in a state recj,$ reading # for some j < c− 1. If there

are more than c syllables, then M1 reaches the situation (recc−1,#,#) such that no

transition is applicable. Thus, in this situation M1 rejects, too. For an input w of

the correct form, i.e. w = u(#u)c = u1u2 . . . ul(#u1u2 . . . ul)
c the system executes
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the following computation:

(q0c| u1 . . . ul# . . .#u$ , q0c| u1 . . . ul# . . .#u$ )

	 (c| q0u1 . . . ul# . . .#u$ , c| q0u1 . . . ul# . . .#u$ )

	 (c| req0u1 . . . ul# . . .#u$ , c|u1q0u2 . . . ul# . . .#u$ )

	l−1 (c| req0u1 . . . ul# . . .#u$ , c|u1 . . . ulq0# . . .#u$ )

	 (c| req0u1 . . . ul# . . .#u$ , c|u#q1u1 . . . ul# . . .#u$ )

	 (c| req0u1 . . . ul# . . .#u$ , c|u#resu1
u1 . . . ul# . . .#u$ )

	 (c| rec0,u1
u1 . . . ul# . . .#u$ , c|u#acku1

u1 . . . ul# . . .#u$ )

	 (c| u1q0u2 . . . ul# . . .#u$ , c|u#u1q1u2 . . . ul# . . .#u$ )

	 (c| u1req0u2 . . . ul# . . .#u$ , c|u#u1resu2
u2 . . . ul# . . .#u$ )

	3(l−1) (c| u1 . . . ulreq0# . . .#u$ , c|u#u1 . . . ulres## . . .#u$ )

	 (c| u1 . . . ulrec0,## . . .#u$ , c|u#u1 . . . ulack## . . .#u$ )

	 (c| u1 . . . ul#q1u1 . . . ul# . . .#u$, c|u#u1 . . . ul#q1u1 . . . ul# . . .#u$)

	(c−1)(3l+3)−3 (c| . . .#u1 . . . ulreqc−1#u$ , c|u# . . .#u1 . . . ulres$$ )

	 (c| . . .#u1 . . . ulrecc−1,$#u$ , c|u# . . .#u1 . . . ulack$$ )

	 (Accept , c|u# . . .#u1 . . . ulack$$ )

Hence L(Mc-copy) = Lc-copy. �

The systems that are used to accept the languages Lw#w and Lc-copy are globally

deterministic, since each component is deterministic and the system accepts if and

only if the first component accepts. At first sight it seems that the marker # is

responsible for the fact that determinism suffices here. But the next example

shows that this marker is not necessary.

Example 15 (Copy language without middle marker Lww). The copy language

without a middle marker

Lww = {ww | w ∈ {a, b}∗}

is accepted by a det-global-PC-R-systemMww consisting of three components M1,

M2, and M3 with window size one:
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δ1(q0, c| ) = (q0,MVR),

δ1(q0, a) = req2,

δ1(q0, b) = req2,

δ1(q0, $) = Accept,

δ1(rec
2
mvr, a) = (q0,MVR),

δ1(rec
2
mvr, b) = (q0,MVR),

δ1(rec
2
end, a) = req3,

δ1(rec
2
end, b) = req3,

δ1(rec
3
a, a) = (q1,MVR),

δ1(rec
3
b , b) = (q1,MVR),

δ1(q1, a) = req3,

δ1(q1, b) = req3,

δ1(q1, $) = Accept,

δ2(q0, c| ) = (q0,MVR),

δ2(q0, a) = (q1,MVR),

δ2(q0, b) = (q1,MVR),

δ2(q1, a) = res1mvr,

δ2(q1, b) = res1mvr,

δ2(ack
1
mvr, a) = (q0,MVR),

δ2(ack
1
mvr, b) = (q0,MVR),

δ2(q0, $) = res1end,

δ3(q0, c| ) = (q0,MVR),

δ3(q0, a) = res1a,

δ3(q0, b) = res1b ,

δ3(ack
1
a, a) = (q0,MVR),

δ3(ack
1
b , b) = (q0,MVR).

First, M2 helps M1 to find the middle of the input word. For doing so, M2 moves

to the right, and after every second move-right step, it sends a message to M1.

On receiving this message M1 moves its window one step to the right. When

M2 reaches the right delimiter $, it sends a message to M1 telling it that it has

reached the middle of the word. Then the window of M1 is positioned on the

first letter of the second half of the input, and the window of M3 is positioned on

the first symbol of the input. Now M1 and M3 read their current symbols and

compare them through a communication. If these symbols coincide, then M1 and

M3 both move their windows one position to the right. This continues until either

a mismatch is found, in which case the corresponding communication cannot be

resolved and the system halts without accepting, or until M1 reaches the right

delimiter $, which means that the input was of the form ww, and then M1 (and

therewith the system) accepts. If the input word has odd length, then M2 will

detect this when encountering the $-symbol being in the state q1 instead of q0, and

the system gets stuck as well, since there is no transition defined for this situation.
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For an input word w = w1 . . . w2l = uu, where u ∈ {a, b}∗, the system Mww

executes the following computation:

(q0c|w1...w2l$ , q0c|w1...w2l$ , q0c|w1...w2l$ )

	 (c| q0w1...w2l$ , c| q0w1...w2l$ , c| q0w1...w2l$ )

	 (c| req2w1...w2l$ , c|w1q1w2...w2l$ , c| res1w1
w1...w2l$ )

	 (c| req2w1...w2l$ , c|w1res
1
mvrw2...w2l$ , c| res1w1

w1...w2l$ )

	 (c| rec2mvrw1...w2l$ , c|w1ack
1
mvrw2...w2l$, c| res1w1

w1...w2l$ )

	 (c|w1q0w2...w2l$ , c|w1w2q0w3...w2l$ , c| res1w1
w1...w2l$ )

	4l−4 (c|w1...wlq0wl+1...w2l$ , c|w1...w2lq0$ , c| res1w1
w1...w2l$ )

	 (c|w1...wlreq
2wl+1...w2l$ , c|w1...w2lres

1
end$ , c| res1w1

w1...w2l$ )

	 (c|w1...wlrec
2
endwl+1...w2l$ , c|w1...w2lack

1
end$ , c| res1w1

w1...w2l$ )

	 (c|w1...wlreq
3wl+1...w2l$ , c|w1...w2lack

1
end$ , c| res1w1

w1...w2l$ )

	 (c|w1...wlrec
3
w1
wl+1...w2l$ , c|w1...w2lack

1
end$ , c| ack1w1

w1...w2l$ )

	 (c|w1...wl+1q1wl+2...w2l$ , c|w1...w2lack
1
end$ , c|w1q0w2...w2l$ )

	 (c|w1...wl+1req
3wl+2...w2l$ , c|w1...w2lack

1
end$ , c|w1res

1
w2
w2...w2l$ )

	 (c|w1...wl+1rec
3
w2
wl+2...w2l$, c|w1...w2lack

1
end$ , c|w1ack

1
w2
w2...w2l$ )

	 (c|w1...wl+2q1wl+3...w2l$ , c|w1...w2lack
1
end$ , c|w1w2q0w3...w2l$ )

	3l−6 (c|w1...w2lq1$ , c|w1...w2lack
1
end$ , c|w1...wlq0wl+1...w2l$ )

	 (Accept , c|w1...w2lack
1
end$ , c|w1...wlres

1
wl+1

wl+1...w2l$)

�

All the example languages that we considered above are semi-linear. Now we

define a PCRA system for the exponential language as a representative for non

semi-linear languages.

Example 16 (Exponential language Lexpo). Consider the language

Lexpo = {a2n | n ≥ 0}

that consists of all words with an exponential number of a’s. This language

can be accepted by a single det-RRWW-automaton given by the following meta-

instructions:
(c|X∗, aa→ X, a∗$),

(c| a∗, XX → a,X∗$),

(c|X$,Accept),

(c| a$,Accept).

However, the language Lexpo cannot be accepted by any restarting automaton

without auxiliary symbols3. This can easily be achieved using the correctness pre-

3Even for nonforgetting R- and RW-automata this can be found in [MO06].
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serving property for a contradiction. Assume there would exist an RLW-automaton

M accepting exactly the language Lexpo. Then M must perform at least one rewrite

step for a sufficiently large input word. Moreover, in each rewrite step M can just

delete at most constantly many a’s depending on the size of the window (no aux-

iliary symbols are allowed). But for each constant window size k, there exists an

input word w ∈ Lexpo that is larger than 2k and thus cannot be reduced to one

half in one rewrite step. Now, independently of how many symbols are deleted in

one rewrite step, the resulting tape content w′ is not contained in Lexpo. Since M

accepts Lexpo and w ∈ Lexpo, there must be an accepting computation for w. But

then w′ is also accepted by M , although w′ /∈ Lexpo. This contradicts the fact that

M accepts exactly Lexpo. Hence, there cannot exist an RLW-automaton accepting

Lexpo.

Now we construct a PCRA system Mexpo = (M1,M2) of the type det-global-PC-

R with two components and window size two accepting Lexpo. Basically, both

components work in two alternating phases: 1) read the input and 2) halve the

input. The first component starts with reading the input from left to right and for

every second input symbol it informs the other component to delete one symbol.

Thus, when M1 has read its whole input word, then M2 has halved the word on its

working tape. Then both components swap their role and work in the according

other phase. Now, M2 reads the input from left to right and for each read symbol,

M1 deletes one a. After M1 has worked exactly one time in the reading phase and

in the halving phase and M2 has in parallel worked in the halving phase and in the

reading phase, both components have reduced the words on their working tapes

exactly by one half. Now the same computation is done again with the remaining

part of the input. At the end, M1 accepts if and only if exactly one a remains on

the tape.

Technically, at the end of each reading phase one symbol is deleted to perform

a restart operation. This must be taken into account in the subsequent halving

phase. For an input word a16 the sequence of the phases can be given as follows:

M1 : a16
count−−−→ a15

delete−−−→ a8
count−−−→ a7

delete−−−→ a4
count−−−→ a3

delete−−−→ a2
count−−−→ a1

delete−−−→ a1

M2 : a16
delete−−−→ a9

count−−−→ a8
delete−−−→ a5

count−−−→ a4
delete−−−→ a3

count−−−→ a2
delete−−−→ a2

count−−−→ a1.

Moreover, some communication overhead is necessary for agreeing to the role of

each component. Particularly, after each performed restart operation a component

has to obtain the information about its current role from the other component.

Now we give the formal definition of Mexpo, and afterwards some example com-

putations are given for a better understanding of the system. The symbols used

within the subscripts have the following meaning: W stands for the question
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‘What to do?’. It signalizes that the roles of the components have to be agreed

on. The symbol R is used as a local information or is sent as a message. In the

former case it means that the first component is still in the reading (counting)

phase and in the latter case M2 informs M1 about its current role. The D as a

local information means that M1 is currently in the deleting phase. As a message

it is a call for deleting a symbol a. The message Ch is used to signalize the change

of the phases, i.e. M1 changes from the reading phase into the deleting phase.

M1 = (Q1, {a}, {a}, c| , $, resW , 2, δ1),

M2 = (Q2, {a}, {a}, c| , $, reqR, 2, δ2),

where

Q1 = {resW , ackW , req, recR, recD, p0, p1, p2, pr, resD, ackD, resCh, ackCh},
Q2 = {reqR, recR,W , recR,D, recR,Ch, resR, ackR, resD, ackD, reqD, recD,W , p1, p2, pr},

and
δ1(ackW , c| a) = req,

δ1(recR, c| a) = (p0,MVR),

δ1(p0, aa) = (p2,MVR),

δ1(p0, a$) = Accept,

δ1(p1, aa) = (p2,MVR),

δ1(p2, aa) = resD,

δ1(ackD, aa) = (p1,MVR),

δ1(p2, a$) = resCh,

δ1(ackCh, a$) = (pr, $),

δ1(recD, c| a) = (pr, c| ),
δ1(pr, α) = Restart,

δ2(recR,W , c| a) = resR,

δ2(ackR, c| a) = reqR,

δ2(recR,Ch, c| a) = (p1,MVR),

δ2(p1, aa) = (p2,MVR),

δ2(p2, aa) = reqD,

δ2(recD,W , aa) = resD,

δ2(ackD, aa) = (p2,MVR),

δ2(p2, a$) = (pr, $),

δ2(recR,D, c| a) = (pr, c| ),
δ2(pr, α) = Restart,

for all α ∈ {c| $, c| a, aa, a$, $}. For small inputs Mexpo behaves as follows. If the

input is ε, then both components get stuck immediately, since no transition can

be applied while reading c| $. If the input is a = a2
0

or aa = a2
1
, then the following
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computations are executed:

( resW c| a$ , reqRc| a$ )

	 ( ackW c| a$, recR,W c| a$ )

	 ( reqc| a$ , resRc| a$ )

	 ( recRc| a$ , ackRc| a$ )

	 ( c| p0a$ , reqRc| a$ )

	 ( Accept , reqRc| a$ )

( resW c| aa$ , reqRc| aa$ )

	 ( ackW c| aa$ , recR,W c| aa$ )

	 ( reqc| aa$ , resRc| aa$ )

	 ( recRc| aa$ , ackRc| aa$ )

	 ( c| p0aa$ , reqRc| aa$ )

	 ( c| ap2a$ , reqRc| aa$ )

	 ( c| aresCha$ , reqRc| aa$ )

	 ( c| aackCha$, recR,Chc| aa$ )

	 ( c| apr$ , c| p1aa$ )

	 ( resW c| a$ , c| ap2a$ )

	 ( resW c| a$ , c| apr$ )

	 ( resW c| a$ , reqRc| a$ )

	∗ ( Accept , reqRc| a$ ) (∗),

where the part of the computation marked with (∗) is the same as that for the

input a given at the left-hand side. For input words of the form a2
r

with r ≥ 2,

the system performs the following computation, where the vertical dots signalize

that the parts above marked with (∗) are executed all in all 2r−1 − 2 times. The

left-hand part of the computation describes the reading phase of component M1

(where the component M2 is in the deleting phase), and the right-hand part of the

computation describes M1’s deleting phase (where M2 is in the reading/counting
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phase):

(resW c| a2r$ , reqRc| a2r$ )

	 (ackW c| a2r$ , recR,W c| a2r$ )

	 (reqc| a2r$ , resRc| a2r$ )

	 (recRc| a2r$ , ackRc| a2r$ )

	 (c| p0a2
r
$ , reqRc| a2r$ )

	 (c| ap2a2
r−1$ , reqRc| a2r$ )

	 (c| aresDa2
r−1$ , reqRc| a2r$ )

	 (c| aackDa2
r−1$ , recR,Dc| a2r$ )

	 (c| a2p1a2
r−2$ , c| pra2

r−1$ )(∗)
	 (c| a3p2a2

r−3$ , reqRc| a2r−1$ )(∗)
	 (c| a3resDa2

r−3$ , reqRc| a2r−1$ )(∗)
	 (c| a3ackDa2

r−3$, recR,Dc| a2r−1$ )(∗)
...

	 (c| a2r−3ackDa
3$, recR,Dc| a2r−1+2$ )

	 (c| a2r−2p1a
2$ , c| pra2

r−1+1$ )

	 (c| a2r−1p2a$ , reqRc| a2r−1+1$ )

	 (c| a2r−1resCha$ , reqRc| a2r−1+1$ )

	 (c| a2r−1ackCha$, recR,Chc| a2r−1+1$)

	 (c| a2r−1pr$ , c| p1a2
r−1+1$ )

	 (resW c| a2r−1$ , c| ap2a2
r−1

$ )

	 (resW c| a2r−1$ , c| areqDa2
r−1

$ )

	 (ackW c| a2r−1$ , c| arecD,Wa2
r−1

$ )

	 (reqc| a2r−1$ , c| aresDa2
r−1

$ )(∗)
	 (recDc| a2r−1$ , c| aackDa2

r−1
$ )(∗)

	 (c| pra2
r−2$ , c| a2p2a2

r−1−1$ )(∗)
	 (resW c| a2r−2$ , c| a2reqDa2

r−1−1$ )(∗)
	 (ackW c| a2r−2$ , c| a2recD,Wa2

r−1−1$)(∗)
...

	 (ackW c| a2r−1+1$, c| a2r−1−1recD,Wa2$)

	 (reqc| a2r−1+1$ , c| a2r−1−1resDa
2$ )

	 (recDc| a2r−1+1$ , c| a2r−1−1ackDa
2$ )

	 (c| pra2
r−1

$ , c| a2r−1
p2a$ )

	 (resW c| a2r−1
$ , c| a2r−1

pr$ )

	 (resW c| a2r−1
$ , reqRc| a2r−1

$ ) .

If the input is not of the form a2
r
, then the configuration (resW c| at$, reqRc| at$)

appears at a point during the computation with an odd number t of a’s on the

working tape. But then M1 will get stuck while reading a$ in state p1 at some time.

For that case M1 cannot accept the input, and the whole system does not accept,

since M2 cannot reach the accepting configuration for itself. Thus, it follows that

L(Mexpo) = Lexpo. �
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5.3 Centralized versus non-centralized PCRA systems

Regarding distributed computing the question of an appropriate communication

structure is important. One crucial aspect is the issue of whether the communi-

cation is centralized or non-centralized. All components of a centralized system

are only allowed to communicate with a distinguished master component, whereas

in a non-centralized communication structure each component can communicate

with all other components.

M:

M7 M6 M5

... M M4

M1 M2 M3

Figure 5.2: A centralized system M with the master component M and client
components M1, M2, etc. The arrows show the allowed connections of communi-
cation.

That non-centralized systems are at least as powerful as centralized systems

results from the fact that a centralized system can be seen as a special case of

a non-centralized system (for systems of finite and pushdown automata see e.g.

[CMMV00, MMM02]). But does the centralization as a restriction of the commu-

nication structure yield a proper decrease in computational power? For example,

this happens for deterministic parallel communicating finite automata [BKM08]

and PC grammar systems with regular or linear components [CDKP94]. Within

this section it will be shown that in the case of PCRA systems, centralized and

non-centralized systems have the same computational power independent of the

type of the components.

A centralized PC-X-system (X ∈ T ), cPC-X-system for short, is a PC-X-system

in which every component is only allowed to communicate with the first component

(the master component). Thereby it is not important whether the communication

is initiated by the master or a client, that is, whether the master or a client sends a

request. In centralized systems the superscript of the communication states (that

denotes the receiver) of the components can be omitted (except for the master).
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The set of languages accepted by cPC-X-systems is denoted by L(cPC-X).

Theorem 4. L(cPC-X) = L(PC-X) for all X ∈ TR.

Proof. Let X ∈ TR be a type of restarting automaton that does not allow to use

MVL operations. L(cPC-X) ⊆ L(PC-X) obviously holds. It remains to show that

L(PC-X) ⊆ L(cPC-X). We prove that for every PCRA system there exists an

equivalent centralized system of the same type. Let M = (M1,M2, . . . ,Mn) be

an arbitrary PC-X-system of degree n, and let Mi = (Qi, Σ,Γi, c| , $, q(i)0 , k, δi)

(1 ≤ i ≤ n). We construct a centralized PC-X-system M′ = (M,M ′
1, M

′
2, . . . ,M

′
n)

with L(M) = L(M′), where M is a new master component that solely controls all

communications. While M1,. . . ,Mn can communicate with each other, M ′
1,. . . ,M ′

n

are not allowed to do so. Now, we first define the clients formally and then

give a description of their behaviour referring to the particular aspects of the

construction. Afterwards we do the same with the new master component. A new

component M ′
i (1 ≤ i ≤ n) is obtained by modifying the transition relation of Mi

as follows (q, q′ ∈ Qi; α ∈ PC(k); j ∈ {1, 2, . . . , n}; c, d are strings of constant

length):

A1. for all (q′,MVR) ∈ δi(q, α), (q′,MVR) ∈ δ′i(q, α) (similar for Restart and

rewrite operations),

A2. for all δi(q, α) = ∅, δ′i(q, α) = {res[⊥]},

A3. for all Accept ∈ δi(q, α),

(a) res[Accept] ∈ δ′i(q, α), if M is not globally deterministic or if i = 1,

(b) res[⊥] ∈ δ′i(q, α), if M is globally deterministic and i > 1,

A4. for reqj
d ∈ δi(q, α),

• res[req(j,d)],[req(j)] ∈ δ′i(q, α), and

• req[req(j,d)] ∈ δ′i(ack[req(j,d)],[req(j)], α)

(The local information d of the original communication state is stored within

the local information of the new communication state, but is not sent to the

master. After telling the master the current communication state, M ′
i re-

quests the information from the master whether the communication partner

has sent a corresponding communication state. If the communication part-

ner does not or will not, M ′
i is stuck like Mi in this situation.),

A5. for A ∈ δi(rec
j
d,c, α), A ∈ δ′i(rec[req(j,d)],[res(j,c)], α)

(The action A can be performed by M ′
i when the master tells M ′

i that
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the communication partner M ′
j has sent the corresponding communication

state.),

A6. for resjd,c ∈ δi(q, α),

• res[res(j,d,c)],[res(j,c)] ∈ δ′i(q, α), and

• req[res(j,d,c)] ∈ δ′i(ack[res(j,d,c)],[res(j,c)], α)

(Similar to A4.),

A7. for A ∈ δi(ack
j
d,c, α), A ∈ δ′i(rec[res(j,d,c)],[req(j)], α)

(Similar to A5.).

The operations MVR, Restart, and rewrite are retained unchanged (A1). Fur-

thermore, observe that there are exactly three ways in which a local computation

of a component can finish: accept (A3), being stuck (A2), or reaching a communi-

cation state (A4, A6). For these situations the component sends a corresponding

information to the master by entering a response state: [Accept], [⊥], [req(j)] or

[res(j, c)]. With respect to acceptance, two cases have to be distinguished: If the

accepting component is not the first one within a globally deterministic system,

this is similar to the case of being stuck, and therefore the information [⊥] is sent.

Otherwise the system should accept, hence the information [Accept] is posted. Af-

ter sending the response, the component either is stuck (if it has sent [Accept] or

[⊥]) or enters a request state to await information from the master about the cur-

rently simulated communication step, in particular if the communication partner

reaches the corresponding communication state. Moreover, the original commu-

nication states are included in the subscript (the local information) of the new

communication states in order to simulate the communication step in a unique

manner.

The sets of states of the modified components are given indirectly through the

definition of the transition function. The initial state of M ′
i is the same as that of

Mi except if it is a communication state. If the initial state of Mi is reqjd (resjd,c),

then the initial state of M ′
i is res[req(j,d)],[req(j)] (res[res(j,d,c)],[res(j,c)]).

The master component M has only communication states. In their indices (as

local information) these states contain a tuple of situations, one for each compo-

nent. E.g. the tuple 〈∗,⊥, res(1, c)〉 describes the fact that the master does not

(yet) know the current situation of M ′
1 (the master still has to ask for it), M ′

2 is

stuck, and M ′
3 wants to response to M ′

1 with the information c.

The initial state of the master component is req1〈∗,...,∗〉. Thus, the master does not

have any information about the current situations of the other components, and
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first M ′
1 is asked for the result of its local computation. Observe that the index

of the communication partner in the superscript of the communication states in-

deed refers to the index of the corresponding component and not to its position

within the tuple of the system. In the following computation the master cyclically

asks all components that did not send the information [⊥] before (see B2) or wait

in a communication situation. This means that only components are asked for

which ∗ is listed in the situation tuple. In a situation 〈t1, t2, . . . , tn〉 the succes-

sor of a component M ′
m is denoted with M ′

m′ , and is obtained as follows: Let

N1 = {i | m < i ≤ n ∧ ti = ∗} and N2 = {i | 1 ≤ i < m ∧ ti = ∗}. Then

m′ =

⎧⎨
⎩min(N1), if N1 
= ∅,
min(N2), if N1 = ∅ ∧N2 
= ∅.

If there does not exist a successor (there is no ∗ left in the situation tuple,

hence N1 = N2 = ∅), the system is stuck and rejects the input. In addition,

observe that if the successor m′ exists, it is obtained deterministically.

Since the communication in a centralized system is only allowed with the master

component, the original communication steps between two arbitrary components

have to be simulated. Now, the master controls and forwards all communication

demands. The information about the former communication demand (a compo-

nent sends a response with an information [req(j)] or [res(j, c)]) is at first stored

within the situation tuple of the master (see B3 ‘else’, B6 ‘else’). When the master

receives a corresponding message from the communication partner, it immediately

informs both communication partners about the respective other message (see B3

‘if’-B5, B6 ‘if’-B8). After performing the communication step, ∗ is stored in the

situation tuple for both communication partners, and the computation goes on

with asking the next component.

If the master receives the information [Accept] from any component, it accepts the

input itself, and therefore the whole system accepts (see B1). Now the formal def-

inition of the transition function of the master component is given (the transitions

are defined for all 1 ≤ m ≤ n):

B1. δ(recm〈t1,...,tn〉,[Accept], α) = Accept,

B2. δ(recm〈t1,...,tn〉,[⊥], α) = reqm
′

〈t1,...,tm−1,⊥,tm+1,...,tn〉,

B3. δ(recm〈t1,...,tn〉,[req(j)], α) =⎧⎨
⎩resm〈t1 ,...,tm−1,req(j),tm+1,...,tj−1,res(m,c),tj+1,...,tn〉,[res(j,c)], if tj = res(m, c),

reqm
′

〈t1 ,...,tm−1,req(j),tm+1,...,tn〉, otherwise,

B4. δ(ackm〈t1,...,tm−1,req(j),tm+1,...,tj−1,res(m,c),tj+1,...,tn〉,[res(j,c)], α) =

resj〈t1,...,tm−1,∗,tm+1,...,tj−1,∗,tj+1,...,tn〉,[req(m)],
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B5. δ(ackj〈t1,...,tm−1,∗,tm+1,...,tj−1,∗,tj+1,...,tn〉,[req(m)], α) =

reqm
′

〈t1,...,tm−1,∗,tm+1,...,tj−1,∗,tj+1,...,tn〉,

B6. δ(recm〈t1,...,tn〉,[res(j,c)], α) =⎧⎨
⎩resm〈t1 ,...,tm−1,res(j,c),tm+1,...,tj−1,req(m),tj+1,...,tn〉,[req(j)] if tj = req(m),

reqm
′

〈t1 ,...,tm−1,res(j,c),tm+1,...,tn〉 otherwise,

B7. δ(ackm〈t1,...,tm−1,res(j,c),tm+1,...,tj−1,req(m),tj+1,...,tn〉,[req(j)], α) =

resj〈t1,...,tm−1,∗,tm+1,...,tj−1,∗,tj+1,...,tn〉,[res(m,c)],

B8. δ(ackj〈t1,...,tm−1,∗,tm+1,...,tj−1,∗,tj+1,...,tn〉,[res(m,c)], α) =

reqm
′

〈t1,...,tm−1,∗,tm+1,...,tj−1,∗,tj+1,...,tn〉.

It remains to show that L(M) = L(M′) holds. First, the behaviour of the

modified components (M ′
i , i ∈ {1, 2, . . . , n}) according to the local computations

is exactly like that of the original components (because of step A1 within the

construction). This means that for all i ∈ {1, 2, . . . , n} and all configurations κ,

κ′,

κ 	Mi
κ′ ⇔ κ 	M ′

i
κ′,

and therefore

κ 	∗Mi
κ′ ⇔ κ 	∗M ′

i
κ′,

if κ′ is achieved from κ through MVR, Restart, and rewrite operations. The com-

munication between two components achieves the same result inM′ as inM. Let

Mi and Mj be two components of M that perform a communication. A compu-

tation looks as follows, where κr,s denotes a configuration (r and s stand for the

computation step and the number of the component, respectively):

(κ1,1, κ1,2, . . . , κ1,n)

	M (κ2,1, κ2,2, . . . , κ2,i−1, ureq
j
dv, κ2,i+1, . . . , κ2,j−1, u

′resid′,cv
′, κ2,j+1, . . . , κ2,n)

	M (κ3,1, κ3,2, . . . , κ3,i−1, urec
j
d,cv, κ3,i+1, . . . , κ3,j−1, u

′ackid′,cv
′, κ3,j+1, . . . , κ3,n)

	M (κ4,1, κ4,2, . . . , κ4,i−1, Ki, κ4,i+1, . . . , κ4,j−1, Kj , κ4,j+1, . . . , κ4,n).

The systemM′ simulates this communication in the following way (The anno-

tations A1, A2,. . . , B1,. . . refer to the construction of the modified components

and the new master component above. The contents of the variables t1, . . . , tn

used in the situation tuples can differ from computation step to computation step.

Due to clarity it was avoided to write t1,1, . . . , t1,n, t2,1, . . . , t2,n, . . . for the differ-

ent computation steps. Moreover, κ′ is used instead of κ for separation from the

communication step of the original system M.):
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(κ′
1,0, κ

′
1,1, κ

′
1,2, ..., κ

′
1,n)

	M′ (κ′
2,0, κ

′
2,1, ..., κ

′
2,i−1, ures[req(j,d)],[req(j)]v, κ

′
2,i+1, ..., κ

′
2,n)

(because of A4)

	∗M′ (reqi〈t1,...,ti−1,∗,ti+1,...,tn〉c|w$, κ′
3,1, ..., κ

′
3,i−1, ures[req(j,d)],[req(j)]v, κ

′
3,i+1, ..., κ

′
3,n)

	M′ (reci〈t1 ,...,ti−1,∗,ti+1,...,tn〉,[req(j)]c|w$, κ′
4,1,

..., κ′
4,i−1, uack[req(j,d)],[req(j)]v, κ

′
4,i+1, ..., κ

′
4,n)

	M′ (reqm〈t1,...,ti−1,req(j),ti+1,...,tn〉c|w$, κ′
5,1, ..., κ

′
5,i−1, ureq[req(j,d)]v, κ

′
5,i+1, ..., κ

′
5,n)

(because of B3 and A4; m ∈ {1, 2, ..., n} is used here as the index of the

successor of Mi)

	∗M′ (pc|w$, κ′
6,1, ..., κ

′
6,i−1, ureq[req(j,d)]v, κ

′
6,i+1,

..., κ′
6,j−1, u

′res[res(i,d′,c)],[res(i,c)]v
′, κ′

6,j+1, ..., κ
′
6,n)

(because of A6; p is a state of M with index 〈t1, ..., ti−1, req(j), ti+1, ..., tn〉)
	∗M′ (reqj〈t1,...,ti−1,req(j),ti+1,...,tj−1,∗,tj+1,...,tn〉c|w$, κ′

7,1, ..., κ
′
7,i−1, ureq[req(j,d)]v, κ

′
7,i+1,

..., κ′
7,j−1, u

′res[res(i,d′,c)],[res(i,c)]v
′, κ′

7,j+1, ..., κ
′
7,n)

	M′ (recj〈t1 ,...,ti−1,req(j),ti+1,...,tj−1,∗,tj+1,...,tn〉,[res(i,c)]c|w$, κ′
8,1,

..., κ′
8,i−1, ureq[req(j,d)]v, κ

′
8,i+1, ..., κ

′
8,j−1, u

′ack[res(i,d′,c)],[res(i,c)]v
′, κ′

8,j+1, ..., κ
′
8,n)

	M′ (resj〈t1 ,...,ti−1,req(j),ti+1,...,tj−1,res(i,c),tj+1,...,tn〉,[req(i)]c|w$, κ′
9,1,

..., κ′
9,i−1, ureq[req(j,d)]v, κ

′
9,i+1, ..., κ

′
9,j−1, u

′req[res(i,d′,c)]v
′, κ′

9,j+1, ..., κ
′
9,n)

(because of B6 and A6)

	M′ (ackj〈t1,...,ti−1,req(j),ti+1,...,tj−1,res(i,c),tj+1,...,tn〉,[req(i)]c|w$, κ′
10,1,

..., κ′
10,i−1, ureq[req(j,d)]v, κ

′
10,i+1, ..., κ

′
10,j−1, u

′rec[res(i,d′,c)],[req(i)]v
′, κ′

10,j+1, ..., κ
′
10,n)

	M′ (resi〈t1 ,...,ti−1,∗,ti+1,...,tj−1,∗,tj+1,...,tn〉,[res(j,c)]c|w$, κ′
11,1,

..., κ′
11,i−1, ureq[req(j,d)]v, κ

′
11,i+1, ..., κ

′
11,j−1, K

′
j, κ

′
11,j+1, ..., κ

′
11,n)

(because of B7 and A7)

	M′ (acki〈t1,...,ti−1,∗,ti+1,...,tj−1,∗,tj+1,...,tn〉,[res(j,c)]c|w$, κ′
12,1,

..., κ′
12,i−1, urec[req(j,d)],[res(j,c)]v, κ

′
12,i+1, ..., κ

′
12,n)

	M′ (reqm
′

〈t1,...,ti−1,∗,ti+1,...,tj−1,∗,tj+1,...,tn〉c|w$, κ′
13,1, ..., κ

′
13,i−1, K

′
i, κ

′
13,i+1, ..., κ

′
13,n)

(because of B8 and A5; m′ ∈ {1, 2, ..., n} is the index of the successor of Mi),

where for K ′
i one of the following conditions hold (similarly for K ′

j):

• Ki = K ′
i if Ki is a configuration uqv and q is not a communication state,

• Ki = Accept, and K ′
i contains the state res[Accept],

• Ki contains a request state reqjd, and K ′
i contains the state res[req(j,d)],[req(j)],

or

• Ki contains a response state resjd,c, and K ′
i contains the state res[res(j,d,c)],[res(j,c)].

In this simulation it was assumed that the request is sent before the correspond-

ing response and that the master communicates with the requesting component
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first. Of course, the other way around can occur. Then A6 would be interchanged

with A4, B6 with B3, B7 with B4, A7 with A5, and B8 with B5. Moreover, the

order of reaching the request state from the master or the communication state

from the component can be changed without having an effect on the result of the

communication. Furthermore, if a component is in a communication state but gets

never an answer from the communication partner or no corresponding answer, its

index does not appear within the set of successors anymore and it is stuck like in

the original system.

An important fact is that there exists exactly one situation where the master com-

ponent and therefore the whole system gets stuck. This happens if (and only if)

all components are stuck because either the transition is not defined in the original

component or a communication cannot be completed. Due to the definition of the

successor component, the master asks cyclically every component for its current

situation until it sends a stuck or communication message. Both are stored within

the situation tuple of the master. Because of A2, a component cannot get stuck

without sending a corresponding message. In particular, the master does not get

stuck because some components are in a communication deadlock (no correspond-

ing messages are sent).

Now it can be concluded that for all i ∈ {1, 2, . . . , n}, all input words w, initial

states q
(j)
0 of Mj (j ∈ {1, 2, . . . , n}), initial states p

(j)
0 of M ′

j , configurations κj , κ
′
j

of Mj , M
′
j (j ∈ {1, 2, . . . , n} \ {i}), and keeping the same conditions for Ki and

K ′
i mentioned above,

(q
(1)
0 c|w$, q

(2)
0 c|w$, ..., q

(n)
0 c|w$) 	∗M (κ1, κ2, ..., κi−1, Ki, κi+1, ..., κn)

if and only if

(req1〈∗,...,∗〉c|w$, p
(1)
0 c|w$, p

(2)
0 c|w$, ..., p

(n)
0 c|w$) 	∗M′ (κ, κ′

1, κ
′
2, ..., κ

′
i−1, K

′
i, κ

′
i+1, ..., κ

′
n).

Finally, this particularly applies to Ki = Accept and K ′
i = ures[Accept]v, and thus,

(q
(1)
0 c|w$, q

(2)
0 c|w$, ..., q

(n)
0 c|w$) 	∗M (κ1, κ2, ..., κi−1,Accept, κi+1, ..., κn)

if and only if

(req1〈∗,...,∗〉c|w$, p
(1)
0 c|w$, p

(2)
0 c|w$, ..., p

(n)
0 c|w$)

	∗M′ (κ, κ′
1,1, κ

′
1,2, ..., κ

′
1,i−1, ures[Accept]v, κ

′
1,i+1, ..., κ

′
1,n)

	∗M′ (reqi〈t1,...,ti−1,∗,ti+1,...,tn〉c|w$, κ′
2,1, ..., κ

′
2,i−1, ures[Accept]v, κ

′
2,i+1, ..., κ

′
2,n)

	∗M′ (reci〈t1,...,ti−1,∗,ti+1,...,tn〉,[Accept]c|w$, κ′
3,1, ..., κ

′
3,i−1, uack[Accept]v, κ

′
3,i+1, ..., κ

′
3,n)

	∗M′ (Accept, κ′
4,1, ..., κ

′
4,i−1, uack[Accept]v, κ

′
4,i+1, ..., κ

′
4,n).
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This means that M accepts an input word if and only if M′ accepts it, hence

L(M) = L(M′).

Theorem 4 is restricted to restarting automata without MVL operations. Now

systems are considered in which MVL operations are allowed. The use of MVL

operations together with that of MVR operations may cause infinite loops within

the computation of a component. This happens when the read/write window is

moved over the tape without changing the content of the tape, and after a finite

number of moves, the same local configuration is reached again. Such a situation

can be responsible for a deadlock of the constructed system considered in the

proof of Theorem 4. If a component is in an infinite loop, and the master sends

a request to that component (because the master wants to know the result of

its local computation), the whole system gets stuck since the request will never

be answered. Subsequently even if some other component sends the accepting

message, the master is not able to receive this and hence does not accept. Here

the input is not accepted by the centralized system, although it is accepted by

the original system. Observe that we constructed the centralized system in such

a way that only the master is allowed to accept. This is not really necessary here

but quite helpful for our further work. But even if we allowed each component to

accept the input, the described deadlock could lead to a situation where no more

communication steps can be applied because of the master’s inability to act. The

next theorem gives a solution that avoids the described deadlock situation.

Theorem 5. L(cPC-X) = L(PC-X) holds true for all X ∈ T .

Proof. Take the construction of the proof of Theorem 4. A simple modification

is necessary to avoid a deadlock of the whole system caused by an infinite loop

of a local computation. Every loop consists of at least one MVR and one MVL

step. Whenever a component wants to perform a MVL operation, it sends the

message [∗] to the master and stores the successor state within the index of the

communication state:

A8. for all (q′,MVL) ∈ δi(q, α),

• res[q′],[∗] ∈ δ′i(q, α) and

• δ′i(ack[q′],[∗], α) = {(q′,MVL)}.

When the master receives the information [∗], it just goes on by asking the suc-

cessor component:

B9. δ(recm〈t1,...,tm−1,∗,tm+1,...,tn〉,[∗], α) = {reqm′
〈t1,...,tm−1,∗,tm+1,...,tn〉}.
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Consider that tm = ∗ is not changed. Therefore, M ′
m is asked again after the

master has communicated with the other components. In between M ′
m continues

performing local computation steps. With this modification the master has still

the possibility to communicate with all components (that have not already sent

[⊥] or wait in a communication situation), although one of them (or more) is in

an infinite loop of computation. Therefore, M′ accepts an input iff M accepts

it. Similar to a single automaton with MVL operations, also a PCRA system with

MVL operations does not have to halt for all inputs. This happens if at least

one component is in an infinite loop and none of the (other) components reaches

the accepting configuration. Such an input is not a member of the language

accepted by the system. According to the construction above, this means that

if a component M in M can reach an infinite loop, then the component M ′ in

M′ does so as well, and moreover, M ′ communicates with the master component

every time it applies a MVL step.

Remark. In Theorem 5 it would not be enough to replace the RLWW-components

by equivalent RRWW-components (which exist because of L(RRWW) = L(RLWW),

see [Plá01]), because it is not clear whether this equivalence carries over to PCRA

systems, e.g. whether, for every RLWW-component, there exists a communica-

tional equivalent RRWW-component. Moreover, for deterministic components it

can be assumed that equivalent components without loops can be constructed [Sip78,

GMP07].

Remark. Theorems 4 and 5 also hold for systems with other types of restarting

automata (R, RR, RW, RRW, RWW; RL, RLW respectively) as well as for sys-

tems with deterministic or monotone components, because the new component M

is still a deterministic monotone R-automaton, and all modifications of the com-

ponents have only an effect on the communication. Therefore, the construction

preserves the type of the components and their properties of being determinisic

and/or monotone.

The centralized system considered in Theorem 4 and extended in Theorem 5

contains one additional component (the master component) in comparison to the

non-centralized system. But it can be observed that the master component applies

only communications but no local operations (no MVL, MVR, rewrite, Restart). In

other words, the computation of the master component never depends on the

content of the tape. Thus, the idea seems obvious to merge the master component

with some other component and to build the product automaton in a broader

sense. But then, the current state of the master gets lost with every restart

of the other component. To avoid this, the new resulting component has the
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nonforgetting property4. The next lemma describes the merging process in detail.

Thereafter, Lemma 3 shows, how the nonforgetting property of the first component

can be eliminated.

Lemma 2. Let M = (M1,M2, . . . ,Mn) be a centralized PCRA system of degree

n > 2 that accepts if and only if the first component accepts, and the first com-

ponent only performs communication steps and SCO transitions. Moreover, the

transitions of M1 do not depend on the tape content, that is,

A ∈ δ1(p, α)⇒ (A ∈ Q1 ∪ {Accept} ∧ ∀β ∈ PCM1 : A ∈ δ1(p, β)).

In other words, no MVR, MVL, Restart, or rewrite operation is allowed for M1.

Then there exists a centralized systemM′ of degree (n− 1) with L(M) = L(M′),

and the first component ofM′ is allowed to use the nonforgetting property5.

Proof. Let M = (M1,M2, . . . ,Mn) be a centralized system of degree n with

n > 2 that accepts if and only if M1 accept, and M1 only performs communi-

cation steps and SCO transitions. Moreover, the transitions of M1 do not depend

on the tape content. Since M1 works independently from its tape, Γ1 = Γ2

can be assumed. Now, we merge M1 = (Q1,Σ,Γ1, c| , $, q(1)0 , k, δ1) and M2 =

(Q2,Σ,Γ2, c| , $, q(2)0 , k, δ2) into a new component M = (Q,Σ,Γ, c| , $, q0, k, δ), which

simulates M1 and M2 almost simultaneously:

• Q = (Q1 × Q2) ∪ COM(M1) ∪ {reqi[d,q] | reqid ∈ Q1 ∧ q ∈ Q2} ∪ {resi[d,q],c |
resid,c ∈ Q1 ∧ q ∈ Q2} ∪ {reci[d,q],c | recid,c ∈ Q1 ∧ q ∈ Q2} ∪ {acki[d,q],c | ackid,c ∈
Q1 ∧ q ∈ Q2},

• Γ = Γ2,

• q0 = (q
(1)
0 , q

(2)
0 ).

Due to Corollary 2 it can be assumed that q
(1)
0 and q

(2)
0 are not communication

states. The construction of the transition relation δ of the new automaton M

distinguishes mainly between three cases: 1) M2 performs a local computation

(MVR, MVL, rewrite, Restart, or SCO transition), 2) M1 wants to communicate

with M2, and 3) M1 wants to communicate with another component than M2. If

M1 is not in a request or response state (for the current state p of M1 it holds that

p /∈ REQ(M1) ∪ RES(M1)), then M simulates one computation step of both, M1

and M2:

4For further information about the nonforgetting property, see Sections 4 and 5.4.
5The nonforgetting property was shortly explained in Section 4 and will be studied in more

detail in Section 5.4.
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δ((p, q), α) = {Accept | Accept ∈ δ1(p, α)}
∪{(p′, q′) | p′ ∈ δ1(p, α), q′ ∈ δ2(q, α)}
∪{((p′, q′),MVR) | p′ ∈ δ1(p, α), (q′,MVR) ∈ δ2(q, α)}
∪{((p′, q′),MVL) | p′ ∈ δ1(p, α), (q′,MVL) ∈ δ2(q, α)}
∪{((p′, q′), β) | p′ ∈ δ1(p, α), (q′, β) ∈ δ2(q, α)}
∪{(Restart, (p, q(2)0 )) | Restart ∈ δ2(q, α)}
∪{((p′, q)) | p′ ∈ δ1(p, α), δ2(q, α) = ∅}.

The first set lets M reach the accepting configuration if M1 would do so (observe

that because of our assumption M2 cannot accept). The second to the fifth sets

describe the changing of the states of M1 and M2 and in addition the tape oper-

ation of M2 (M1 never performs tape operations). If M2 performs a restart, M

performs a restart, too, but using the non-forgetting property so that the current

state of M1 is not lost. The last set deals with the situation that no more local

computation step of M2 is possible, because δ2 is not defined for the current con-

figuration of M2 or q is a communication state. In the latter case M2 waits for M1

to reach the corresponding communication state. However, if δ1 is not defined for

some configuration, then M1 is stuck andM cannot accept the input. Thus, it is

not necessary to define δ for this situation (so M is stuck andM′ does not accept

as well). A communication between M1 and M2 can be treated by the following

two cases (for all α ∈ PCM):

δ((req2d, resd′,c), α) = {(rec2d,c, ackd′,c)},
δ((res2d,c, reqd′), α) = {(ack2d,c, recd′,c)}.

If M1 wants to communicate with M2 and the latter is still not in a communication

state (the current state q /∈ COM(M2)), M keeps the communication state of M1

and simulates the computation of M2 until M2 reaches a corresponding commu-

nication state. As in the computation of M the simulation of M1 is stopped (M1

waits) until the communication can be completed.

δ((req2d, q), α) = {((req2d, q′),MVR) | (q′,MVR) ∈ δ2(q, α)}
∪{((req2d, q′),MVL) | (q′,MVL) ∈ δ2(q, α)}
∪{((req2d, q′), β) | (q′, β) ∈ δ2(q, α)}
∪{(req2d, q′) | q′ ∈ δ2(q, α)}
∪{(Restart, (req2d, q

(2)
0 )) | Restart ∈ δ2(q, α)},

δ((res2d,c, q), α) = {((res2d,c, q′),MVR) | (q′,MVR) ∈ δ2(q, α)}
∪{((res2d,c, q′),MVL) | (q′,MVL) ∈ δ2(q, α)}
∪{((res2d,c, q′), β) | (q′, β) ∈ δ2(q, α)}
∪{(res2d,c, q′) | q′ ∈ δ2(q, α)}
∪{(Restart, (res2d,c, q

(2)
0 )) | Restart ∈ δ2(q, α)}.
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In the case that M2 never reaches a corresponding communication state the sim-

ulation of M1 is stopped, and thus, M cannot reach the accepting configuration.

This is the same behaviour as in the original systemM: M1 is stuck while waiting

for a corresponding answer from M2 that is never sent, hence, M does not accept

the input.

Besides the communication from M1 with M2 the former one can communicate

with other components (but M2 cannot, as M is centralized). For all 2 < i ≤ n,

α ∈ PCM , and q ∈ Q2 define:

δ((reqid, q), α) = {reqi[d,q]},
δ(reci[d,q],c, α) = {(p, q) | p ∈ Q1, p ∈ δ1(rec

i
d,c, α)},

δ((resid,c, q), α) = {resi[d,q],c},
δ(acki[d,q],c, α) = {(p, q) | p ∈ Q1, p ∈ δ1(ack

i
d,c, α)}.

While M simulates a communication of M1, it stores the current state of M2 within

the local index of the communication state. When continuing the computation

after the communication from the corresponding receive or acknowledge state, M2

can go on with the local computation (except in case that M1 performs another

communication with a component that is not M2).

Observe that the constructed component M contains nonforgetting operations

as well as SCO transitions in general. By Corollary 3 an equivalent system without

SCO transitions exists. The next lemma deals with the nonforgetting property of

the master component.

Lemma 3. Let M = (M1,M2, . . . ,Mn) be a centralized PCRA system of degree

n > 1 such that M1 is a nonforgetting component. Then there exists a system

M′ = (M ′
1,M

′
2,M3, . . . ,Mn) of the same type but without a nonforgetting compo-

nent such that L(M) = L(M′) holds.

Proof. The basic idea for this proof is to modify M1 and M2 in such a way that

the computation of M2 is controlled by M1. For this purpose, M2 always asks M1

with a request about how it should continue its computation. Now there are two

situations when M1 instructs M2 to execute computation or communication steps.

First, M1 wants to make a restart and needs M2 for storing the restart state. And

second, to execute a communication step between both. For the latter situation

it is important that M2 can perform local operations to reach the corresponding

communication state. M ′
1 and M ′

2 are constructed by modifying M1 and M2 in

the following way.
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The new initial states are req2R for M ′
1 and res

[q
(2)
0 ],[q

(1)
0 ]

for M ′
2, where q

(1)
0 and q

(2)
0

are the original initial states of M1 and M2. This reflects the fact that M ′
1 asks M ′

2

for the restart state after a restart operation, and that M ′
2 gives the information

to M ′
1 that the current state is q

(1)
0 and stores its own current state q

(2)
0 within the

local index. Due to Corollary 2 it can be assumed that the initial states of M1

and M2 are not communication states. Together with the definition of

p ∈ δ′1(rec
2
R,[p], α) (1)

and

req[q] ∈ δ′2(ack[q],[q(1)0 ]
, β) (2)

for all p ∈ Q1, q ∈ Q2, α ∈ PCM1 , and β ∈ PCM2 every computation of M′ starts

with

(req2Rc|w$, res
[q

(2)
0 ],[q

(1)
0 ]

c|w$, q
(3)
0 c|w$, . . . , q

(n)
0 c|w$)

	M′ (rec2
R,[q

(1)
0 ]

c|w$, ack
[q

(2)
0 ],[q

(1)
0 ]

c|w$, . . . )

	M′ (q
(1)
0 c|w$, req

[q
(2)
0 ]

c|w$, . . . ).

SinceM is centralized, the components M3, . . . ,Mn work independently from M2,

and thus, they behave exactly in the same way as in the system M. In addition,

all communication steps between M1 and one of the components M3, . . . ,Mn are

realized in the systemM′ as inM, because the behaviour of M ′
1 differs only from

M1 in the two situations described above (restart, communication with M2). Thus,

the configurations of M3, . . . , Mn are disregarded in the next considerations. As

long as M ′
1 does not perform a restart operation or wants to communicate with

M ′
2, the second component M ′

2 remains within a request state the index of which

contains the last state that was reached by its local computation.

When M ′
1 wants to make a restart, it sends the restart state to M ′

2, performs

the restart, and obtains the restart state from M ′
2. Therefore, we replace every

transition of the form (Restart, r) ∈ δ1(p, α) as follows:

res2R,[r] ∈ δ′1(p, α) (3)

Restart ∈ δ′1(ack
2
R,[r], α) (4)

res[q],[r] ∈ δ′2(rec[q],[r], β) for all q ∈ Q2 and β ∈ PCM2 (5)

req[q] ∈ δ′2(ack[q],[r], β) for all q ∈ Q2 and β ∈ PCM2 (6)

Assume that M ′
1 and M ′

2 are in the configurations upv and xreq[q]y, and M ′
1 wants

to perform a restart (e.g. (Restart, r) ∈ δ1(p, πM1(v)). Then M′ executes the

following computation with the result that M ′
1 reaches the restart configuration
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with the given restart state r and M ′
2 reaches the same configuration as before the

restart of M ′
1:

(upv, xreq[q]y, . . . ) (7)

	M′ (ures2R,[r]v, xreq[q]y, . . . ) (because of 3)

	M′ (uack2R,[r]v, xrec[q],[r]y, . . . ) (comm. step)

	M′ (req2Ruv, xres[q],[r]y, . . . ) (because of 4 and 5)

	M′ (rec2R,[r]uv, xack[q],[r]y, . . . ) (comm. step)

	M′ (ruv, xreq[q]y, . . . ) (because of 1 and 6)

To simulate communications between M1 and M2 in M, it is necessary to let

M ′
2 perform the local computation that M2 does before the communication in the

systemM. To start the local computation of M ′
2 and arrange the communication,

the transition

q ∈ δ′2(rec[q],L, β) (8)

is added for all q ∈ Q2 and β ∈ PCM2, where ‘L’ stands for ‘local computation’ (see

below). When M ′
2 receives the information ‘L’ from M ′

1 it changes into the state q

via an SCO transition, where q is the last state reached by the local computation of

M ′
2 and that is stored in the local index of the communication state. All transitions

of the form req2d ∈ δ1(p, α) and resd′,c ∈ δ2(q, β) are replaced as follows:

res2req(d),L ∈ δ′1(p, α) (9)

req2req(d) ∈ δ′1(ack
2
req(d),L, α) (10)

rec2d,c ∈ δ′1(rec
2
req(d),res(c), α) (11)

res2req(d),L ∈ δ′1(rec
2

req(d),[q
(1)
0 ]

, α), (12)

res[ackd′,c],res(c) ∈ δ′2(q, β), (13)

req[ackd′,c] ∈ δ′2(ack[ackd′,c],res(c), β). (14)

With the lines (9), (10), and (11) M ′
1 asks M ′

2 for continuing the local computation,

awaits the answer from M ′
2, and changes in the original receive state if M ′

2 sends

a corresponding answer. The original communication state reqd of M1 is stored in

the local index of the used communication states. Line (12) is needed, when M ′
2

performs a restart during the local computation, thus when it is set into its initial

state res
[q

(2)
0 ],[q

(1)
0 ]

and sends M ′
1 the initial state q

(1)
0 . M ′

1 can detect this situation,

since the received information is obviously not an expected communication answer.



100 Systems of parallel communicating restarting automata

Thus, M ′
1 asks M ′

2 again to continue the local computation and awaits the answer

of the initiated communication. After the restart, M ′
2 goes on with the local

computation from the restart configuration (using line (8)). When M ′
2 reaches a

communication state, it sends this through a response to M ′
1 (line (13)), stores

the acknowledge state corresponding to the currently performed communication

in the local index, and again awaits new instructions from M ′
1 by waiting in a

request state.

In the simulated situation above M1 reaches a request state and M2 reaches

the corresponding response state. The following modifications describe the other

way around. Hence, replace res2d,c ∈ δ1(p, α) and reqd′ ∈ δ2(q, β) with:

res2res(d,c),L ∈ δ′1(p, α), (15)

req2res(d,c) ∈ δ′1(ack
2
res(d,c),L, α), (16)

res2d,c ∈ δ′1(rec
2
res(d,c),req, α), (17)

res2res(d,c),L ∈ δ′1(rec
2

res(d,c),[q
(1)
0 ]

, α), (18)

resrec(d′),req ∈ δ′2(q, β), (19)

reqrec(d′) ∈ δ′2(ackrec(d′),req, β), (20)

req[recd′,c] ∈ δ′2(recrec(d′),c, β). (21)

One additional aspect in comparison to the former direction of the communication

(lines (9) to (14)) is the fact that in this case (lines (15) to (21)) M ′
1 has to send

the information c to M ′
2. This is done through the original response state res2d,c

(line (17)) and the additional request of line (20).

As mentioned above, within the local computation of M ′
2 a restart is possible

(M ′
2 is set into its restart state), while M ′

1 is waiting for a communication answer

(see lines (10) and (16), respectively). This leads to one of the following two

computations, depending on the original communication state of M1:

(ureq2req(d)v, res[q(2)0 ],[q
(1)
0 ]

xy, . . . ) (22)

	M′ (urec2
req(d),[q

(1)
0 ]

v, ack
[q

(2)
0 ],[q

(1)
0 ]

xy, . . . ) (comm. step)

	M′ (ures2req(d),Lv, req[q(2)0 ]
xy, . . . ) (because of 12 and 2)

	M′ (uack2req(d),Lv, rec[q(2)0 ],L
xy, . . . ) (comm. step)

	M′ (ureq2req(d)v, q
(2)
0 xy, . . . ) (because of 10 and 8)
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(ureq2res(d,c)v, res[q(2)0 ],[q
(1)
0 ]

xy, . . . ) (23)

	M′ (urec2
res(d,c),[q

(1)
0 ]

v, ack
[q

(2)
0 ],[q

(1)
0 ]

xy, . . . ) (comm. step)

	M′ (ures2res(d,c),Lv, req[q(2)0 ]
xy, . . . ) (because of 18 and 2)

	M′ (uack2res(d,c),Lv, rec[q(2)0 ],L
xy, . . . ) (comm. step)

	M′ (ureq2res(d,c)v, q
(2)
0 xy, . . . ) (because of 16 and 8)

Consider a communication between M1 and M2 within a computation of M:

(ureq2dv, xresd′,cy, . . . ) 	M (urec2d,cv, xackd′,cy, . . . ).

To reach this communication step there have to exist states p ∈ Q1, q ∈ Q2 and

transitions req2d ∈ δ1(p, πM1(v)), resd′,c ∈ δ2(q, πM2(y)). Thus, M′ performs the

following computation:

(upv, x′req[q′]y
′, . . . ) (24)

	M′ (ures2req(d),Lv, x
′req[q′]y

′, . . . ) (because of 9)

	M′ (uack2req(d),Lv, x
′rec[q′],Ly

′, . . . ) (comm. step)

	M′ (ureq2req(d)v, x
′q′y′, . . . ) (because of 10 and 8)

	∗M′ (ureq2req(d)v, xqy, . . . ) (local comp. of M ′
2)

	M′ (ureq2req(d)v, xres[ackd′,c],res(c)
y, . . . ) (because of 13)

	M′ (urec2req(d),res(c)v, xack[ackd′,c],res(c)
y, . . . ) (comm. step)

	M′ (urec2d,cv, xreq[ackd′,c]
y, . . . ) (because of 11 and 14)

The communication in the opposite direction of the form

(ures2d,cv, xreqd′y, . . . ) 	M (uack2d,cv, xrecd′,cy, . . . )
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is simulated in M′ in the following way:

(upv, x′req[q′]y
′, . . . ) (25)

	M′ (ures2res(d,c),Lv, x
′req[q′]y

′, . . . ) (because of 15)

	M′ (uack2res(d,c),Lv, x
′rec[q′],Ly

′, . . . ) (comm. step)

	M′ (ureq2res(d,c)v, x
′q′y′, . . . ) (because of 16 and 8)

	∗M′ (ureq2res(d,c)v, xqy, . . . ) (local comp. of M ′
2)

	M′ (ureq2res(d,c)v, xresrec(d′),reqy, . . . ) (because of 19)

	M′ (urec2res(d,c),reqv, xackrec(d′),reqy, . . . ) (comm. step)

	M′ (ures2d,cv, xreqrec(d′)y, . . . ) (because of 17 and 20)

	M′ (uack2d,cv, xrecrec(d′),cy, . . . ) (comm. step)

	M′ (u′p′v′, xreq[recd′,c]y, . . . ) (because of 21)

Now L(M) = L(M′) can be shown by induction on the length of the computa-

tion. L(M) = L(M′) holds iff κ 	∗M1,M Accept ⇔ κ 	∗M ′
1,M′ Accept for a configu-

ration κ that can be reached from the initial configuration. For zero computation

steps κ = Accept, and the equivalence holds. For exactly one computation step

κ = uqv for a state q and a tape content uv, it is

uqv 	M1,M Accept ⇔ Accept ∈ δ1(q, πM1(v))

⇔ Accept ∈ δ′1(q, πM ′
1
(v))

⇔ uqv 	M ′
1,M′ Accept.

For more than one computation step, we have the following:

uqv 	∗M1,M Accept ⇔ ∃configuration u′q′v′ : uqv 	M1,M u′q′v′

	∗M1,M Accept

⇔ ∃configuration u′q′v′ : uqv 	∗M ′
1,M′ u

′q′v′ (*)

	∗M ′
1,M′ Accept (**)

Line (*) holds for a MVR, MVL, or rewrite operation, since M1 and M ′
1 behave in

the same way for these cases. The same argument holds for a communication with

any component except M2. For a restart operation the validity was shown in (7).

For a communication with M2 the validity was shown in (24) and (25). Line (**)

follows from the induction hypothesis. Since uqv is an arbitrary configuration,

this part of the proof also holds for κ as the inital configuration of M1. Hence,

L(M) = L(M′) can be concluded.
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Observe that independently of whether the original system M contains SCO

transitions or not, new SCO transitions can result within the proof of Lemma 3

through lines (1) and (8). Due to Corollary 3 there exists an equivalent system

without SCO transitions.

With the previous preparations we can now conclude the most important result

of this section, namely that centralization is not a restriction for PCRA systems,

that is, centralized and non-centralized PCRA systems have the same computa-

tional power. Formally, we state this in the following corollaries.

Corollary 4. For every PC-X-system M (X ∈ T ), there exists a cPC-X-system

M′ with L(M) = L(M′) such that M′ has the same number of components as

M.

Proof. Systems of degree one are per definition centralized. For every non-cen-

tralized PCRA system of a higher degree, there exists an equivalent centralized

system with an additional master component due to Theorems 4 and 5. According

to Lemma 2 this additional component can be merged with the second component

of the system, hence the new system has the same degree as the original non-

centralized system, but the nonforgetting property is necessary (in general) for

the first component of the constructed system. Using Lemma 3, we can avoid the

use of this property.

Further, the system constructed within the proofs of Theorem 4, Theorem

5, Lemma 2, and Lemma 3 accepts the input if and only if the first component

reaches the accepting configuration. Thus, we can conclude the following:

Corollary 5. For every PCRA system M, there exists a centralized system M′

of the same type and the same degree with L(M) = L(M′) such thatM′ accepts

an input if and only if the first component ofM′ accepts.

Moreover, the construction of the centralized system is deterministic, hence

the following two corollaries can be concluded.

Corollary 6. Theorem 4, Theorem 5, Lemma 2, and Lemma 3 also hold for

locally deterministic systems. Particularly, for every det-local-PC-X-system M
(X ∈ T ), a det-local-cPC-X-system M′ exists with L(M) = L(M′) such that M′

has the same number of components asM.

Corollary 7. L(det-global-PC-X) = L(det-local-PC-X) for all X ∈ T .

Proof. Every globally deterministic system is a locally deterministic system as

well. In addition, from Corollary 6 we see that, for every locally deterministic
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systemM, there exists a centralized locally deterministic systemM′ with L(M) =

L(M′). Moreover, the constructed system (see the proofs of Theorem 4, Theorem

5, Lemma 2, and Lemma 3) is globally deterministic, since the system accepts

any input if and only if the first component of the system accepts. Thus, for

every locally deterministic PCRA system, there exists an equivalent (centralized)

globally deterministic system.

Due to Corollary 7 it is not longer necessary to distinguish between locally

determinstic and globally deterministic PCRA systems. Therefore, in what follows

the term determinstic will be used for systems with deterministic components -

independent of which component is allowed to accept. Deterministic systems are

marked with the prefix ‘det-’.

Since all constructions used for centralization do not influence the rewrite steps,

the centralization results can be carried over to systems with monotone compo-

nents, and instead of distinguishing between the two types det-local-mon-PC-X and

det-global-mon-PC-X, we just use det-mon-PC-X in further considerations.

Using the constructions presented in this section, we can make another use-

ful observation concerning communication deadlocks in centralized systems. Al-

though a component of a (non-centralized) system is stuck due to an unanswered

communication, this does not give a disturbance of the communication or compu-

tation of the constructed centralized system. Mainly two basic facts are responsi-

ble for this: 1) The components are somehow ‘communicational complete’. This

means that, whenever the local computation of a component cannot be contin-

ued because of a nondefined transition or because it is waiting for an answer for

a communication, the component sends an according message to the master. 2)

The master component is programmed in such a way that it stores the situations

of all components, and thus, it is able to handle all communication situations.

We summarize this section by the following corollary.

Corollary 8. For every PCRA system M, there can be effectively constructed a

centralized systemM′ with the following properties:

1. M′ is of the same type asM,

2. M′ has the same number of components asM,

3. M′ accepts the input if and only if its first component accepts, and

4. M′ cannot reach a communication deadlock.
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5.4 Systems of nonforgetting restarting automata

The computation of a restarting automaton consists of different types of transition

steps. One type is the restart operation that puts the finite control into the

dedicated initial state and repositions the read/write window on the left end of the

working tape. Therefore, the information about the current state and the window’s

position of the last cycle is lost (‘forgotten’). At first view, it seems possible to store

the current state and window position by writing it on the tape, but this method

is quite restricted according to the type of the automaton (auxiliary symbols are

needed), the size of the read/write window (it has to be larger than one), the

length-reducing rewriting, and whether the window is allowed to move left in the

deterministic case (this is required if the information about the state and window

position is needed before it can be read from the tape).

A nonforgetting restarting automaton contains an additional set of restarting

states (that is a subset of all states), and a restart operation now allows the

automaton to change to a determined restart state (instead of the initial state) -

depending on the current configuration. If all states of the automaton are allowed

to be used as restart states, then the set of restart states can be omitted. This

type of automata was introduced in [MS04] and investigated in [JO07, Mes07,

Mes08, MO06, MO11].

It depends on the type of automaton whether the nonforgetting property yields

an increase in the expressive power or not. This also depends on other proper-

ties like monotonicity, determinism, and shrinking6. For deterministic restarting

automata Hartmut Messerschmidt shows in [Mes07] by using the copy language

that for all automata of type R(R)(W)(W), the nonforgetting property gives more

expressive power. For deterministic two-way restarting automata (RL(W)(W)) it

is open whether the nonforgetting property increases the expressive power.

Theorem 6. [Mes07] L(det-X) ⊂ L(det-nf-X) holds for all X ∈ TR .

The following results show that in the case of monotone restarting automata,

the usage of auxiliary symbols compensates for the nonforgetting property (see

[MO06, Ott06]). One-way monotone nonforgetting restarting automata without

auxiliary symbols that restart immediately after a rewriting are more powerful

than those without the nonforgetting property (see [MO06]).

6In contrast to usual restarting automata, the rewrite operation of a shrinking restarting
automaton does not necessarily have to shorten the length of the tape content. Instead, there
exists a weight function that associates a weight to the tape content, and in each rewrite step
this weight must decrease.
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Theorem 7. [MO06, Ott06]

L(mon-R) ⊂ L(mon-nf-R)

L(mon-RW) ⊂ L(mon-nf-RW)

L(mon-RWW) = L(mon-nf-RWW) (= CFL)

L(mon-RRWW) = L(mon-nf-RRWW) (= CFL)

L(mon-RLWW) = L(mon-nf-RLWW) (= CFL)

Results for restarting automata that are deterministic and monotone are sum-

marized in the following theorem.

Theorem 8. [JMPV95, Mes07, MO06, MO11]

(DCFL =) L(det-mon-R) = L(det-mon-nf-R)

(DCFL =) L(det-mon-RW) = L(det-mon-nf-RW)

(DCFL =) L(det-mon-RWW) = L(det-mon-nf-RWW)

(DCFL =) L(det-mon-RR) ⊂ L(det-mon-nf-RR)

(DCFL =) L(det-mon-RRW) ⊂ L(det-mon-nf-RRW)

(DCFL =) L(det-mon-RRWW) ⊂ L(det-mon-nf-RRWW)

(LRR =) L(det-mon-RL) = L(det-mon-nf-RL)

(LRR =) L(det-mon-RLW) = L(det-mon-nf-RLW)

(LRR =) L(det-mon-RLWW) = L(det-mon-nf-RLWW)

For shrinking nonforgetting restarting automata the equivalence to the forget-

ting variants was shown for sh-RRWW, sh-RWW, and det-sh-RLWW automata in

[JO07, Mes07, MO11].

Theorem 9. [JO07, Mes07, MO11]

L(det-sh-RLWW) = L(det-nf-sh-RLWW)

L(sh-RRWW) = L(nf-sh-RRWW)

L(sh-RWW) = L(nf-sh-RWW)

For general nondeterministic restarting automata there are no explicit results

concerning the difference between forgetting and nonforgetting automata. Never-

theless the language

L = {anbn | n ≥ 0} ∪ {anbm | m > 2n ≥ 0}

is an easy example to show that also in the (general) nondeterministic case, the

expressive power can increase due to the nonforgetting property. This language

cannot be accepted by any restarting automaton without auxiliary symbols (see
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[Ott06]), but it can be accepted by the nf-R-automaton M := ({q0, q1, q2}, {a, b},
{a, b}, c| , $, q0, 5, δ, {q0, q1, q2}) described by the following meta-instructions:

(q0, c| $,Accept),
(q0, c| ab$,Accept), (q0, c| abb · b+ · $,Accept),
(q0, c| a∗, aabb→ ab, q1), (q0, c| a∗, aabbb→ ab, q2),

(q1, c| a∗, aabb→ ab, q1), (q2, c| a∗, aabbb→ ab, q2),

(q1, c| ab$,Accept), (q2, c| abb · b+ · $,Accept).

Corollary 9. L(X) ⊂ L(nf-X) holds for all X ∈ {R,RW,RR,RRW,RL,RLW}.

Now we will prove that a nonforgetting restarting automaton of an arbitrary

type can be simulated by a PCRA system with two forgetting components of the

same type. Trivially, a nonforgetting automaton cannot be simulated in general

by a PCRA system of only one forgetting component of the same type. This holds

particularly for types X with L(X) ⊂ L(nf-X).

Theorem 10. For every type X ∈ T , L(nf-X) ⊆ L(PC-X(2)).

Proof. The proof idea is to construct, for a given nonforgetting automaton M =

(Q,Σ,Γ, c| , $, q0, k, δ, QR), an equivalent system M = (M1,M2), where the first

component works mainly like M . Only when M performs a restart, M1 sends

the corresponding restart state to the second component M2, makes the restart

(without restart state, but changing into the initial state), then requests the restart

state from M2, and changes into the received restart state immediately. M1 and

M2 are defined formally as follows:

M1 = (Q1,Σ,Γ, c| , $, req, k, δ1),
M2 = (Q2,Σ,Σ, c| , $, resq0 , 1, δ2) with

(1) Q1 = Q ∪ {req} ∪ {resq, recq, ackq | q ∈ QR},

(2) Q2 = {req} ∪ {resq, recq, ackq | q ∈ QR},

(3) for all p, q ∈ Q and α, β ∈ PC(k) define:

(p, β) ∈ δ1(q, α) ⇔ (p, β) ∈ δ(q, α),

(p,MVR) ∈ δ1(q, α) ⇔ (p,MVR) ∈ δ(q, α),

(p,MVL) ∈ δ1(q, α) ⇔ (p,MVL) ∈ δ(q, α),

Accept ∈ δ1(q, α) ⇔ Accept ∈ δ(q, α),
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(4) for all transitions (Restart, q) ∈ δ(p, α) define:

resq ∈ δ1(p, α),

δ1(ackq, α) = {Restart},

(5) for all q ∈ QR and α ∈ {c| } · (Γk−1 ∪ (Γ≤k−2 · {$})) define:

δ1(recq, α) = {q},

(6) for all q ∈ QR define:

δ2(recq, c| ) = {resq},
δ2(ackq, c| ) = {req}.

It remains to show that L(M) = L(M). Therefore, proceeding by induction

on the length of the computation of M , we prove that for all configurations κ not

containing a communication state, the following holds:

∀w ∈ Σ∗ : q0c|w$ 	∗M κ ⇔ reqc|w$ 	∗M1,M κ.

Induction basis (one computation step): Let w ∈ Σ∗ be an arbitrary input word.

Then:
q0c|w$ 	M κ

⇔ 1) κ = Accept and Accept ∈ δ(q0, πk(c|w$)), or

2) κ = c| qw$ for a q ∈ Q (MVR step) and (q,MVR) ∈ δ(q0, πk(c|w$)), or

3) κ = c|uqv$ for a q ∈ Q (rewrite step) and (q, c|u) ∈ δ(q0, πk(c|w$))

(A MVL step as well as a restart are not possible in the first computation

step, as the read/write window stands on the left border of the tape, and

there was no rewrite operation before, respectively.)

⇔ 1) κ = Accept and Accept ∈ δ1(q0, πk(c|w$)), or

2) κ = c| qw$ for a q ∈ Q and (q,MVR) ∈ δ1(q0, πk(c|w$)), or

3) κ = c|uqv$ for a q ∈ Q and (q, c|u) ∈ δ1(q0, πk(c|w$))

⇔ (reqc|w$, resq0c|w$) 	M (recq0c|w$, ackq0c|w$) 	M (q0c|w$, reqc|w$) and

1) κ = Accept and q0c|w$ 	M1,M Accept, or

2) κ = c| qw$ for a q ∈ Q and q0c|w$ 	M1,M c| qw$, or

3) κ = c|uqv$ for a q ∈ Q and q0c|w$ 	M1,M c| uqv$

⇔ reqc|w$ 	3M1,M κ
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Induction step: Let w ∈ Σ∗ be an arbitrary input word. Then:

q0c|w$ 	rM κ (r > 1)

⇔ There exists a configuration κ′ with: q0c|w$ 	r−1
M κ′ 	M κ.

The configuration κ′ does not contain a communication state, since it only

contains a state from Q. If the last computation step is a MVR, MVL,

accept, or rewrite step, then

κ′ 	M κ ⇔ κ′ 	∗M1,M κ

follows directly from line (3) of the construction. If it is a restart, then there

exist states q ∈ QR, p ∈ Q and words x, y, v with v ∈ Γ∗ and xy = c| v$ so

that κ = qc| v$, κ′ = xpy, and (Restart, q) ∈ δ(p, πk(y)).

⇔ reqc|w$ 	∗M1,M κ′ (induction hypothesis) and

δ1(p, πk(y)) � resq,

δ1(ackq, πk(y)) = {Restart},
δ1(recq, πk(xy)) = {q},

δ2(recq, c| ) = {resq},
δ2(ackq, c| ) = {req}

⇔ reqc|w$ 	∗M1,M κ′ and

(κ′, reqc|w$) = (xpy, reqc|w$) 	M (xresqy, reqc|w$)

	M (xackqy, recqc|w$) 	M (reqxy, resqc|w$) 	M (recqxy, ackqc|w$)

	M (qxy, reqc|w$) = (qc| v$, reqc|w$) = (κ, reqc|w$).

Observe that the current state of M2 is always req except at the very be-

ginning of the computation and during a restart of M1. It is reached at the

beginning of every computation of M as well as after every restart of M1.

Hence κ′ 	∗M1,M κ.

⇔ reqc|w$ 	∗M1,M κ

This holds particularly for κ = Accept. Furthermore, since M2 cannot reach

the accepting configuration, M accepts if and only if M1 accepts. Thus, L(M) =

L(M). If M can perform restarts, then M1 uses SCO transitions. With Corollary

1 and Theorem 2 there exists an automaton M ′
1 of the same type but without SCO

transitions so that M ′
1 ≡c M1 and L(M) = L(M′) with M′ = (M ′

1,M2).

At the beginning of this section we stated that for many types of restarting

automata the usage of the nonforgetting property causes a proper increase in

expressive power. Can this be carried over to systems of restarting automata? In

[HOV11] it was proved that in the case of PCRA systems with two (monotone)

deterministic RRWW-components, the nonforgetting property is of no advantage
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for the expressive power (independently of monotonicity). Within the next proof

we carry this result over the general case, that is, to arbitrary many (at least two)

components and for any type of restarting automata.

Theorem 11. L(nf-PC-X(n)) = L(PC-X(n)) for all X ∈ T and n ≥ 2.

Proof. In this proof we combine the constructions of the proofs of Theorems 4, 5,

10, Lemmata 2 and 3, and Corollary 3 as follows: In the proofs of Theorems 4 and

5, an equivalent centralized system was constructed for an arbitrary given (non-

centralized) PCRA system. This system contains an additional master component

that can also be used to store the restart states of the components like in the proof

of Theorem 10. Then, Lemmata 2 and 3 can be used to obtain an equivalent system

of the same degree, and finally Corollary 3 is used to avoid SCO transitions.

The way in which the restart state is stored by the master component of the

centralized system is described now in more detail. LetM = (M,M1,M2, . . . ,Mn)

be the centralized system that is constructed in the proofs of Theorems 4 and 5,

where M = (Q,Σ,Γ, c| , $, q0, k, δ) is the master component. With qi, δi, Γi, and

QRi we denote the initial state, the transition relation, the tape alphabet, and the

set of restart states of Mi, 1 ≤ i ≤ n, respectively. We modifyM in the following

way:

1. Before executing a restart operation, a component communicates this fact

and the corresponding restart state to the master. For this purpose, all

transitions of the form (Restart, q) ∈ δi(p, α) are replaced by the transitions

res[restart,q] ∈ δi(p, α) and δi(ack[restart,q], α) = {Restart}.

2. After performing a restart step, a component requests its restart state from

the master. Therefore, a request state is used as the new initial state. The

original initial state qi is replaced by the new initial state reqrestart, and

transitions δi(recrestart,[restart,q], α) = {q} are added for all α ∈ {c| } · (Γk−1
i ∪

(Γ≤k−2
i · {$})).

3. At the beginning of each computation of M, the master has to tell each

component its original initial state and then takes up its own original initial

state. Therefore, the new initial state of the master is res1[restart,q1], and the

following transitions are added to the master:

δ(acki[restart,qi], c| ) = {resi+1
[restart,qi+1]

} for all 1 ≤ i < n,

δ(ackn[restart,qn], c| ) = {req1〈∗,...,∗〉}.

Observe that q1, q2, . . . , qn, and req1〈∗,...,∗〉 are the original initial states of

M1, M2, . . . , Mn, and the master component M . Furthermore, all response
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and acknowledge states used in these transitions are new states (they are

not contained within the original set of states of M).

4. Receiving a restart information (which contains the fact that the component

wants to restart as well as the corresponding restart state) from a component,

the master has to store this information and to send it back to the component

immediately. Hence, we add the following transitions to the master (for all

1 ≤ m ≤ n and for all q ∈ QRm):

δ(recm〈t1 ,...,tn〉,[restart,q], c| ) = {resm〈t1,...,tn〉,[restart,q]},
δ(ackm〈t1,...,tn〉,[restart,q], c| ) = {reqm〈t1,...,tn〉}.

Here m is the index of the currently asked component, and t1, t2, . . . , tn are

the situations of M1,M2, . . . ,Mn (see the proof of Theorem 4 for further

details).

Let M′ = (M ′,M ′
1,M

′
2, . . . ,M

′
n) be the system that we obtain by applying the

modifications described above toM. The initial configuration ofM′ for an input

word w is

(res1[restart,q1]c|w$, reqrestartc|w$, . . . , reqrestartc|w$),

and each computation of M′ starts with

(res1[restart,q1]c|w$, reqrestartc|w$, . . . , reqrestartc|w$)

	M′ (ack1[restart,q1]c|w$, recrestart,[restart,q1]c|w$, reqrestartc|w$, . . . , reqrestartc|w$)

	M′ (res2[restart,q2]c|w$, q1c|w$, reqrestartc|w$, . . . , reqrestartc|w$)

	M′ (ack2[restart,q2]c|w$, ∗, recrestart,[restart,q2]c|w$, reqrestartc|w$, . . . , reqrestartc|w$)

	M′ (res3[restart,q3]c|w$, ∗, q2c|w$, reqrestartc|w$, . . . , reqrestartc|w$)
...

	M′ (resn[restart,qn]c|w$, ∗, . . . , ∗, reqrestartc|w$)

	M′ (ackn[restart,qn]c|w$, ∗, . . . , ∗, recrestart,[restart,qn]c|w$)

	M′ (req1〈∗,...,∗〉c|w$, ∗, . . . , ∗, qnc|w$).

After reaching the original initial configuration qic|w$, a component Mi starts

its local computation without waiting for the other components. In this case ∗
is used to denote an arbitrary local successor configuration. Observe that the

computation reqrestartc|w$ 	M ′
i ,M′ qic|w$ is deterministic for all components M ′

i , so

that it is assured that each component reaches its original initial configuration.

Now, we can prove

qic|w$ 	Mi,M κ ⇔ qic|w$ 	∗M ′
i ,M′ κ
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for all 1 ≤ i ≤ n, w ∈ Σ∗, and configurations κ not containing a communication

state by induction on the number of restarts in the computation. If the computa-

tion does not contain a restart, the equivalence holds, as the modifications above

only influence the application of the restart operation but not any other operation.

Moreover, the following equivalences hold:

Let qic|w$ 	∗Mi,M κ contain n + 1 restarts (n ≥ 0).

⇔ ∃p ∈ Qi, q ∈ QRi, words u, v with uv ∈ {c| } · Γ∗
i · {$} :

qic|w$ 	∗Mi,M upv 	Mi,M quv 	∗Mi,M κ,

where upv 	Mi,M quv is a restart (w.l.o.g. the last restart of the compu-

tation), qic|w$ 	∗Mi,M upv contains n restarts, and quv 	∗Mi,M κ contains no

restart.

⇔ ∃p ∈ Qi, q ∈ QRi, words u, v with uv ∈ {c| } · Γ∗
i · {$} :

qic|w$ 	∗M ′
i ,M′ upv, quv 	∗M ′

i ,M′ κ (because of the induction basis and hypoth-

esis), and (Restart, q) ∈ δi(p, πk(v)).

⇔ ∃p ∈ Qi, q ∈ QRi, words u, v with uv ∈ {c| } · Γ∗
i · {$} :

qic|w$ 	∗M ′
i ,M′ upv, quv 	∗M ′

i ,M′ κ, res[restart,q] ∈ δ′i(p, πk(v)),

δ′i(ack[restart,q], πk(v)) = {Restart},
δ′(reci〈t1 ,...,tn〉,[restart,q], c| ) = {resi〈t1 ,...,tn〉,[restart,q]},
and δ′(acki〈t1,...,tn〉,[restart,q], c| ) = {reqi〈t1,...,tn〉}.

⇔ ∃p ∈ Qi, q ∈ QRi, words u, v with uv ∈ {c| } · Γ∗
i · {$} : (here only the

interaction between M ′ and M ′
i is considered)

(res1[restart,q], . . . , reqrestart, . . . )

	∗M ′
i ,M′ (reqi〈t1,...,tn〉, . . . , ures[restart,q]v, . . . )

	M ′
i ,M′ (reci〈t1,...,tn〉,[restart,q], . . . , uack[restart,q]v, . . . )

	M ′
i ,M′ (resi〈t1,...,tn〉,[restart,q], . . . , reqrestartuv, . . . )

	M ′
i ,M′ (acki〈t1,...,tn〉,[restart,q], . . . , recrestart,[restart,q]uv, . . . )

	M ′
i ,M′ (reqi〈t1,...,tn〉, . . . , quv, . . . )

and quv 	∗M ′
i,M′ κ.

⇔ ∃p ∈ Qi, q ∈ QRi, words u, v with uv ∈ {c| } · Γ∗
i · {$} :

qic|w$ 	∗M ′
i ,M′ upv 	M ′

i ,M′ ures[restart,q]v 	M ′
i,M′ uack[restart,q]v

	M ′
i ,M′ reqrestartuv 	M ′

i,M′ recrestart,[restart,q]uv 	M ′
i ,M′ quv 	∗M ′

i ,M′ κ.

Since this holds particularly for κ = Accept, it follows that L(M) = L(M′).

Observe that due to step two of the construction, the modified components can

contain SCO transitions. By Lemmata 2 and 3 and Corollary 3, there exists an

equivalent system of the same type, the same number of components, and without
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SCO transitions.

Remark. Theorems 10 and 11 hold for deterministic and/or monotone variants

as well, since the modifications are strictly deterministic and influence only the

communicational behaviour.

Corollary 10. For all X ∈ T , if L(X) ⊂ L(nf-X), then L(X) ⊂ L(PC-X).

Above we saw that every nonforgetting automaton can be simulated by a PC

system of (forgetting) restarting automata and, moreover, the property of being

nonforgetting is of no advantage for PCRA systems. Now we take a look at

the opposite direction, that is, we ask in how far a nonforgetting automaton can

simulate a PCRA system? Compared to nonforgetting automata, PCRA systems

have important advantages:

1. more working space,

2. parallel reading and modification of the whole input at different positions,

and

3. arbitrary much communication.

The next theorem shows how the behaviour of a PCRA system can be simu-

lated by a nonforgetting automaton. For this, every component is only allowed

to execute at most a constant number of communication steps within one cycle

(independently of the length of the input). To represent the different tapes of the

components, the input of the nonforgetting automaton is encoded as

c| 1w$1c| 2w$2 . . . c| nw$n,

where w is the input of (each component of) the system, and n is the degree of

the system. The parallel computation of the system will be serialized by the non-

forgetting automaton in such a way that one cycle of a distinguished component

corresponds to one cycle of the nonforgetting automaton.

Theorem 12. LetM be a PCRA system of degree n in which every component is

of type X ∈ T and executes at most m ∈ N communication steps per cycle. Then

there exists an nf-X-automaton M that behaves as follows: whenever the input is

c| 1w$1c| 2w$2 . . . c| nw$n for a word w ∈ Σ∗, then M accepts if and only ifM accepts

w. The symbols c| i and $i, 1 ≤ i ≤ n, are the mutually different sentinels of the

i-th component ofM and are not included in Σ.
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Proof. Let M = (M1,M2, . . . ,Mn) be a PCRA system of type X, X ∈ T , and

degree n with Mi = (Qi,Σ,Γi, c| i, $i, q
(i)
0 , k, δi), where every component executes at

most m communication steps per cycle. We construct an nf-X-automaton M = (Q,

Σ,Γ, c| , $, qinit, k, δ, QR) as follows. The states of M are of the form (q, T ), where

T =

Sequences

1 (com
(1)
1 , . . . , com

(1)
m1 [, x

(1)])

2 (com
(2)
1 , . . . , com

(2)
m2 [, x

(2)])
...

...

n (com
(n)
1 , . . . , com

(n)
mn [, x(n)])

is a finite table that contains a sequence of at most m receive and acknowledge

states and possibly Accept or ⊥ at the end for each component (0 ≤ m1, m2, . . . ,

mn ≤ m, com
(i)
j ∈ REC(Mi)∪ ACK(Mi) for all i ∈ {1, . . . , n} and j ∈ {1, . . . , mi},

x(i) ∈ {Accept,⊥} for all i ∈ {1, . . . , n}). Below we write

T = ((com
(1)
1 , . . . , com(1)

m1
[, x(1)]), . . . , (com

(n)
1 , . . . , com(n)

mn
[, x(n)])) = (S1, S2, . . . , Sn)

denoting the i-th sequence with Si, and S = ∅ for an empty sequence. The

sequences can be seen as queues, where an element can only be removed from the

left and added at the right. The complete set of states of M is given indirectly

through the description of the transition relation below. The initial state of M is

qinit = (q0, (∅, . . . , ∅)). The tape alphabet is

Γ =
⋃

1≤i≤n

(Γi ∪ {c| i, $i}).

Now, we describe the way in which M simulates a computation ofM. A cycle

of M is divided into four phases:

1. Resolve communications.

2. Check whether any component reached the accepting configuration. If so,

then accept the input.

3. Choose the next component to simulate.

4. Simulate the chosen component.

An important fact is that M is not able to store the current window positions

of the simulated components in its finite control. Hence, M may not change the

simulated component during a simulation of a cycle. Otherwise, the window po-

sition of the previously simulated component is lost, and its simulation cannot
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be continued at the same tape position. Thus, M always has to simulate a com-

plete cycle of a component, which is finished by a restart operation. Then, in the

next cycle, the window position of the component simulated is the left end of the

tape section of this component. Thus, a communication step cannot be resolved

immediately, at least if the corresponding communication state has not yet been

reached by the communication partner. Therefore, M guesses a possible answer

nondeterministically, stores the chosen communication state in the corresponding

sequence, and continues with the local computation. Since each component only

applies at most m communications per cycle, all sequences have a constant max-

imal length. Having finished a cycle, the component and therewith M restarts.

Since M is a nonforgetting automaton, the sequences do not get lost during the

restart operation.

At the beginning of each cycle, M can resolve communications. This happens

through modifying the table within the current state using an SCO transition,

where two corresponding states, which are the first elements of two different se-

quences, are removed. In this phase M verifies whether the guessed communication

steps of the different components correspond to each other. Thereafter, M can

accept the input if and only if there is a sequence Si = (Accept). This means that

there is a component Mi that has reached the accepting configuration, and all of

its communications have been resolved.

Until here, the window of M remains in the leftmost position of the tape. If

M does not accept, it can now simulate another component. For this, only a

component with an empty sequence is chosen. A non-empty sequence Si means

that there are still some communications of Mi that must be resolved before the

local computation of Mi can continue.

Formally, the behaviour of M is defined by the following transitions:

1. Move right and choose a component:

((q0, T ),MVR) ∈ δ((q0, T ), α) for all T and α ∈ PCM ,

(q
(i)
0 , T ) ∈ δ((q0, T ), c| iα) for all T s.t. Si = ∅, and all c| iα ∈ PCM .

A component is chosen nondeterministically and only if its sequence is empty.

A non-empty sequence means that there is at least one communication left to

be resolved or that this component is stuck (when ⊥ occurs in the sequence).

In both cases there is no need to go on with simulating this component.

2. Simulate a component:

First we define subsets of possible window contents of M depending on the

simulated component and its window content:
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Uα,i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{α}, if α neither contains c| nor $,

{c| iβ | α = c| β}, if α contains c| but not $,

{β$iγ | α = β$ and β$iγ ∈ PCM}, if α contains not c| but $,

{c| iβ$iγ | α = c|β$ and c| iβ$iγ ∈ PCM}, if α contains c| and $.

(a) For all transitions of the form (p,MVR) ∈ δi(q, α),

((p(i), T ),MVR) ∈ δ((q(i), T ), α′)

for all possible T and all α′ ∈ Uα,i. The MVL and rewrite steps are

treated similarly although in a rewrite step it must be ensured that

only symbols of the currently simulated component are rewritten. If

the window of M contains symbols of the beginning of the tape section

of the next component, these symbols are not allowed to be replaced

or removed.

(b) For all transitions of the form Restart ∈ δi(q, α),

(Restart, (q0, T )) ∈ δ((q(i), T ), α′)

for all possible T and all α′ ∈ Uα,i.

(c) For all transitions of the form Accept ∈ δi(q, α),

i. ((qr, T
′), α′′) ∈ δ((q(i), T ), α′) for all T and all α′ ∈ Uα,i. The new

table T ′ results from T by adding Accept to Si, and α′′ results from

α′ by deleting the first symbol. Since it is not allowed for Mi to

move the window over the left and the right border of the tape,

i.e. to the left of c| and to the right of $, the first symbol of M ’s

window is contained within the tape section that belongs to Mi

during the whole simulation. Which symbol of Mi’s part of the

tape is deleted does not matter (even if it is c| i or $i), because the

local computation of Mi has finished at this point. If a rewrite step

already took place in the current cycle, then no additional rewrite

step is necessary to apply the following restart operation. Whether

a rewrite operation was already executed in the current cycle or

not can be stored within the states.

ii. (Restart, (q0, T )) ∈ δ((qr, T ), α′) for all T and all α′ ∈ PCM .

The system may not accept although the component simulated has

reached the accepting configuration. There could be some communi-

cations of the same cycle that have still not been resolved. Thus, the
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information about the acceptance of Mi is stored in Si and can be used

after all remaining communications of Mi have been resolved.

(d) For all transitions of the form reqjd ∈ δi(q, α),

((recjd,c)
(i), T ′) ∈ δ((q(i), T ), α′)

for all tables T , all α′ ∈ Uα,i, all c with resid′,c ∈ RES(Mj) and recjd,c ∈
REC(Mi), and S ′

i in T ′ results from Si in T by adding recjd,c.

(e) For all transitions of the form resjd,c ∈ δi(q, α),

((ackjd,c)
(i), T ′) ∈ δ((q(i), T ), α′)

for all tables T and all α′ ∈ Uα,i, where S ′
i in T ′ results from Si in T by

adding ackjd,c.

(f) For all undefined transitions δi(q, α) = ∅,

i. ((qr, T
′), α′′) ∈ δ((q(i), T ), α′) for all T and all α′ ∈ Uα,i. T ′ results

from T by adding ⊥ to Si, and α′′ results from α by deleting the

first symbol as described in item 2(c)i.

ii. (Restart, (q0, T )) ∈ δ((qr, T ), α′) for all T and all α′ ∈ PCM (if this

is not already given by (c)ii).

Now, Si cannot become empty again, since ⊥ cannot be removed from

a sequence. Thus, M never tries to simulate Mi again in this com-

putation. Nevertheless, all (unresolved) communications of Mi (of the

last cycle) are stored in Si, and therefore, they are available within the

simulated computations of the other components.

3. Resolve communications:

Define for all α ∈ PCM

(q0, T
′) ∈ δ((q0, T ), α)

if and only if there exist two sequences Si = (com
(i)
1 , com

(i)
2 , . . . , com

(i)
mi [, x

(i)])

and Sj = (com
(j)
1 , com

(j)
2 , . . . , com

(j)
mj [, x

(j)]) in T such that com
(i)
1 and com

(j)
1

are corresponding communication states, and T ′ results from T by replac-

ing Si and Sj with S ′
i = (com

(i)
2 , . . . , com

(i)
mi [, x

(i)]) and S ′
j = (com

(j)
2 , . . . ,

com
(j)
mj [, x

(j)]).

4. Accept the input:

Define

Accept ∈ δ((q0, T ), α)
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for all α ∈ PCM and for all T that contain a sequence Si = (Accept). If T

contains such a sequence, then Mi was simulated, it reached the accepting

configuration, and moreover, all communications within the computation of

Mi were resolved.

Now, each computation ofM is simulated by M in a sequential manner. The

currently simulated component is chosen nondeterministically. The different com-

putation phases are not necessarily executed in the given order (resolve communi-

cations, check for acceptance, simulate component). This is possible, as they are

independent of each other. If there exists an accepting computation of M, then

there exists an order of simulating the components such that M adds Accept to

the according sequence, all communications of that component are resolved, and

M accepts. If M does not accept the input, then M cannot reach the accepting

configuration either. Moreover, if the components of M are of type X, then M is

of type nf-X.

We can assume that the restriction of the constant number of communica-

tion steps per cycle in Theorem 12 is indeed essential, and that a system with

more than constantly many communications per cycle cannot be simulated by

any nonforgetting automaton. As mentioned above there are situations where a

communication cannot be resolved immediately (e.g. the communication partner

has not reached the corresponding communication state yet). On the other hand,

if the nonforgetting automaton tried to simulate the communication partner just

for resolving the communication, the information about the current window po-

sition of the first simulated component would get lost. So there are two options:

storing all communications of a cycle in the finite control or storing the current

window position on the tape for each communication step. The first approach

only works for constantly many communications per cycle as in Theorem 12. The

second approach does not work, as for storing the current window position, the

tape has to be shortened for each communication step. Thus, only at most as

many communication steps as the length of the working tape content of the sim-

ulated component can be simulated. Moreover, since the tape content should not

be erased, linearly many auxiliary symbols would be needed. This is obviously a

contradiction to the definition of nonforgetting restarting automata.
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5.5 Closure properties

In this section some typical closure properties of the language classes characterized

by PCRA systems are investigated.

Theorem 13. The language classes L((det-)PC-X) are closed under union for all

X ∈ T .

Proof. Let L1, L2 ∈ L((det-)PC-X) for any X ∈ T . Then there exist two PCRA

systems M = (M1,M2, . . . ,Mm) and N = (N1, N2, . . . , Nn) of type (det-)PC-X

with L(M) = L1 and L(N ) = L2. Now, the system A = (M1,M2, . . . ,Mm, N1,

N2, . . . , Nn) accepts exactly the language L(M) ∪ L(N ) = L1 ∪ L2, as it accepts

an input if and only if at least one component of M or N reaches the accepting

configuration (that is, if and only ifM or N accepts). Moreover, A is of the same

type asM and N , since A uses only the original components ofM and N . Thus,

L1 ∪ L2 ∈ L((det-)PC-X).

Theorem 14. The language classes L((det-)PC-X) are closed under intersection

for all X ∈ T .

Proof. Let L1 and L2 be two languages over an alphabet Σ with L1, L2 ∈ L((det-)

PC-X) for any X ∈ T . Then there exist two PCRA systemsM = (M1,M2, . . . ,Mm)

and N = (N1, N2, . . . , Nn) of type (det-)PC-X with L(M) = L1 and L(N ) =

L2. Due to Corollary 4 and Corollary 5, there exist centralized systems M′ =

(M ′
1,M

′
2, . . . ,M

′
m) and N ′ = (N ′

1, N
′
2, . . . , N

′
n) with L(M) = L(M′) and L(N ) =

L(N ′) such that M′ accepts iff M ′
1 accepts, and N ′ accepts iff N ′

1 accepts. Now,

construct a system A as follows:

A = (A,M ′
1,M

′
2, . . . ,M

′
m, N

′
1, N

′
2, . . . , N

′
n),

where A = ({reqM ′
1 , reqN

′
1 , recM

′
1 , recN

′
1},Σ,Σ, c| , $, reqM ′

1, 1, δA) with

δA(recM
′
1 , c| ) = {reqN ′

1},
δA(recN

′
1 , c| ) = {Accept}.

Transitions of M ′
1 and N ′

1 of the form Accept ∈ δM ′
1
(q, α) or Accept ∈ δN ′

1
(q, α)

are replaced by resA ∈ δM ′
1
(q, α) or resA ∈ δN ′

1
(q, α), respectively, for any state q

and possible window content α. The components M ′
1 and N ′

1 now answer to the

communication of A instead of accepting by themselves. A (and therefore A) only

accepts if both M ′
1 and N ′

1 answer the communication. On the other hand, if both

components answer, A reaches the accepting configuration and A accepts. Thus,

L(A) = L(M) ∩ L(N ) = L1 ∩ L2. In addition, the resulting system A has the

same type as M and N . Hence, L1 ∩ L2 ∈ L((det-)PC-X).



120 Systems of parallel communicating restarting automata

Since we know from [JMPV97] that even restarting automata of the weakest

type (det-mon-R) accept all deterministic context free languages, and therewith,

all regular languages, we immediately obtain:

Corollary 11. The language classes L((det-)PC-X) are closed under intersection

with regular languages for all X ∈ T .

Before we deal with the operation of complementation, we point out a problem

that may occur in connection with communication. Consider the following situa-

tion: a system is in a particular configuration, and after executing communication

steps of some components, the system reaches the same configuration again. We

will call such a situation a communication loop. If a deterministic system reaches

such a communication loop, then the computation will not finish. In this case, the

input word is not accepted. In contrast, a nondeterministic system could leave such

a loop, and moreover, such loops have no effect on whether the input is accepted

or not. Thus, if the input is accepted by a nondeterministic system, then there

exists a corresponding accepting computation without a communication loop.

In Theorem 28 of Section 5.7 the decidability of the membership problem for

deterministic systems is proved. Moreover, it is shown in detail that there exists a

constant positive integer r such that a deterministic system can perform at most

r computation steps in a row before it must reach a loop and thus an infinite

computation. This fact is used in the proof of the following theorem.

Theorem 15. The language classes L(det-PC-X) are closed under complement

for all X ∈ T .

Proof. Let L ∈ L(det-PC-X) for any X ∈ T and let M = (M1,M2, . . . ,Mn) be a

det-PC-X-system with L(M) = L and Mi = (Qi,Σ,Γi, c| , $, qi, k, δi) for all 1 ≤ i ≤
n. We can assume thatM is centralized and that it accepts an input word if and

only if the first component M1 accepts it (see Corollary 5). For a given input, M
can behave in the following three ways:

1. M halts and accepts the input,

2. M halts, but does not accept the input (because all components are stuck),

or

3. M reaches an infinite computation, and hence, does not accept the input.

Observe that M1, and therewith M, cannot get into a communication deadlock,

due to the construction of a centralized system presented in Section 5.3. The

last of the three cases above requires to consider infinite computations that are

caused either by an according combination of MVL steps and MVR steps, or by
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SCO transitions, or by a communication loop. In Theorem 28 of Section 5.7 it is

proved that the number of computation steps of each accepting computation of a

det-PC-RLWW-system M = (M1,M2, . . . ,Mn) has the upper bound

r = n ·
(

max
1≤i≤n

|Qi|
)

l2 + 5l + 4

2
·

n∏
i=1

|COM(Mi)|,

where Qi is the set of states of component Mi, COM(Mi) is the set of commu-

nication states of Mi, and l is the length of the input word. Due to this upper

bound r we know the following: whenever M1 accepts an input, then it must do

so within the first r steps of M’s computation.

Now, we construct a system M′ = (M ′
1,M2, . . . ,Mn,Mn+1) that accepts the

language L, which is the complement of L, with the modified master component

M ′
1, the (unchanged) components M2, . . . ,Mn of the systemM, and an additional

component Mn+1. Basically, M′ simulates M. If M1 reaches the accepting con-

figuration, then M ′
1 halts and does not accept. Since no other component of M

is allowed to accept, M′ does not accept. In the case that M1 gets stuck because

of an undefined transition and thus does not accept, M ′
1 and therewithM′ accept

the input. Further, M can reach an infinitely long computation. This can hap-

pen either because M1 reaches an infinite computation itself, or M1 halts without

accepting and at least one of the other components is in a computation loop. In

the latter case, M ′
1 reaches the accepting configuration as described above. In the

former case, the new component Mn+1 is used to count the steps of M ′
1. For this

purpose, M ′
1 communicates with Mn+1 after each of its computation steps, and

Mn+1 is constructed in such a way that it communicates finitely often and more

than r times with M ′
1 and then accepts the input. Thus, Mn+1 accepts if and only

if M1 reaches a computation loop. In summery, M′ accepts if and only ifM does

not accept.

The components M ′
1 and Mn+1 are formally defined as follows:

M ′
1 = (Q′

1,Σ,Γ1, c| , $, q1, k, δ′1),

where

Q′
1 = Q1 ∪ {resn+1

[p,α], ack
n+1
[p,α] | δ1(p, α) 
= ∅}

and

• for all δ1(p, α) = A with A 
= Accept, δ′1(p, α) = resn+1
[p,α] and

δ′1(ack
n+1
[p,α], α) = A,

• for all δ1(p, α) = Accept, δ′1(p, α) = ∅, and
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• for all δ1(p, α) = ∅, δ′1(p, α) = Accept.

Consider that the subscripts [p, α] of the response and acknowledge states are

interpreted as local information and no explicit message is sent. Further, let

t = n ·
(

max
1≤i≤n

|Qi|
)n+1

such that

r = n ·
(

max
1≤i≤n

|Qi|
)

l2 + 5l + 4

2
·

n∏
i=1

|COM(Mi)| ≤ t · l
2 + 5l + 4

2
.

Then the automaton Mn+1 is given by

Mn+1 = (Qn+1,Σ,Σ, c| , $, req11, 2, δn+1),

where

Qn+1 = {req1i , rec1i | 1 ≤ i ≤ 2t} ∪ {q, req1accept, rec1accept},

and

δn+1(rec
1
i , α) = req1i+1 for all 1 ≤ i < 2t and α ∈ ({c| } ∪ Σ) · (Σ ∪ {$}),

δn+1(rec
1
2t, α) = (q,MVR) for all α ∈ ({c| } · Σ) ∪ Σ2,

δn+1(q, α) = req11 for all α ∈ Σ2 ∪ (Σ · {$}),
δn+1(rec

1
2t, a$) = (q, $) for all a ∈ Σ,

δn+1(q, $) = Restart,

δn+1(rec
1
2t, c| $) = req1accept,

δn+1(rec
1
accept, c| $) = Accept.

As long as M ′
1 communicates with Mn+1, a cycle of Mn+1 consists of the fol-

lowing computation steps for an input word w = w1w2 . . . wl and l > 0:

req11c|w$

	Mn+1,M′ rec11c|w$

	Mn+1,M′ req12c|w$

	Mn+1,M′ rec12c|w$

	4t−5
Mn+1,M′ req12tc|w$

	Mn+1,M′ rec12tc|w$

	Mn+1,M′ c| qw$

	Mn+1,M′ c| req11w$

	4t−2
Mn+1,M′ c| req12tw$

	Mn+1,M′ c| rec12tw$

	Mn+1,M′ c|w1qw2 . . . wl$

	(l−2)(4t+1)
Mn+1,M′ c|w1 . . . wl−1qwl$

	Mn+1,M′ c|w1 . . . wl−1req
1
1wl$

	4t−2
Mn+1,M′ c|w1 . . . wl−1req

1
2twl$

	Mn+1,M′ c|w1 . . . wl−1rec
1
2twl$

	Mn+1,M′ c|w1 . . . wl−1q$

	Mn+1,M′ req11c|w1 . . . wl−1$.

The number of communications between M ′
1 and Mn+1 in a cycle that can be

obtained from the computation above is 2t(l+ 1). For an input ε, i.e. l = 0, Mn+1
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performs the following computation:

req11c| $
	Mn+1,M′ rec11c| $
	4t−3
Mn+1,M′ req12tc| $
	Mn+1,M′ rec12tc| $
	Mn+1,M′ req1acceptc| $
	Mn+1,M′ rec1acceptc| $
	Mn+1,M′ Accept.

The number of communications for l = 0 is 2t+ 1. For an input of length l, Mn+1

performs l cycles and a tail computation. Thus, it accepts after exactly(
l∑

j=1

2t(j + 1)

)
+ 2t + 1 = 2t

l2 + 3l

2
+ 2t + 1 = t

2l2 + 6l + 4

2
+ 1 > r

communications. Whenever M ′
1 halts (accepting or not), then Mn+1 will get stuck,

because of a missing answer. On the other hand, if M ′
1 is in a computation loop,

then Mn+1 reaches the accepting configuration. All in all, M′ accepts exactly

L. Since Mn+1 is a det-R-component, M′ is of the same type as M and thus,

L ∈ L(det-PC-X). This completes the proof that the classes of languages that are

accepted by any type of deterministic PCRA systems are closed under comple-

ment.

Theorem 16. The language classes L((det-)PC-X) are closed under marked prod-

uct for any X ∈ T .

Proof. Let L1, L2 ∈ L((det-)PC-X) for any X ∈ T . Then there exist two centralized

systems M = (M1,M2, . . . ,Mm) and N = (N1, N2, . . . , Nn) with L(M) = L1 and

L(N ) = L2. Further, let

Mi = (QMi
,ΣM ,ΓMi

, c| , $, q(Mi)
0 , kM , δMi

)

for all 1 ≤ i ≤ m and

Nj = (QNj
,ΣN ,ΓNj

, c| , $, q(Nj)
0 , kN , δNj

)

for all 1 ≤ j ≤ n. W.l.o.g. we may assume that transitions of the form MVL ∈
δ(p, c|α) are not allowed. We construct a system C = (M ′

1,M
′
2, . . . ,M

′
m, N

′
1,

N ′
2, . . . , N

′
n) with L(C) = {w1#w2 | w1 ∈ L1 and w2 ∈ L2}, where # is the

middle marker that is not contained in the tape alphabets of the components

of M and N . The main idea of this proof is to modify the transition rela-

tions of the components of M and N such that M ′
1, . . . ,M

′
m ignore the part
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of the tape to the right of the #-symbol, and N ′
1, . . . , N

′
n ignore the part of

the tape to the left of #. Thus, the #-symbol is interpreted as $, c| respec-

tively. Formally, M ′
i := (QMi

,Σ,ΓM ′
i
, c| , $, q(Mi)

0 , kM , δM ′
i
), 1 ≤ i ≤ m, and N ′

j :=

(QNj
∪ {q(N

′
j)

0 },Σ,ΓN ′
j
, c| , $, q(N

′
j)

0 , kN , δN ′
j
), 1 ≤ j ≤ n, are defined as follows:

• Σ := ΣM ∪ {#} ∪ ΣN , ΓM ′
i

:= ΓMi
∪ {#} ∪ ΣN , ΓN ′

j
:= ΣM ∪ {#} ∪ ΓNj

.

• If A ∈ δMi
(q, α) and α does not end with $, then A ∈ δM ′

i
(q, α).

If A ∈ δMi
(q, α$) and A is not a rewrite operation, then A ∈ δM ′

i
(q, α#γ)

for all γ ∈ Σ
kM−|α|−1
N ∪ (Σ

≤(kM−|α|−2)
N · {$}).

If (p, β$) ∈ δMi
(q, α$), then (p, β#γ) ∈ δM ′

i
(q, α#γ) for all γ ∈ Σ

kM−|α|−1
N ∪

Σ
≤(kM−|α|−2)
N · {$}.

• δN ′
j
(q

(N ′
j)

0 , aα) = {(q(N
′
j)

0 ,MVR)} for all a ∈ {c| } ∪ ΣM and α ∈ Σ∗
M · (({#} ·

Γ∗
Nj

)∪{ε}) with |α| = kN −1 or α ∈ Σ∗
M · {#} ·Γ∗

Nj
· {$} with |α| ≤ kN −1.

δN ′
j
(q

(N ′
j)

0 ,#α) = {q(Nj)
0 } for all α ∈ ΓkN−1

Nj
∪ (Γ

≤(kN−2)
Nj

· {$}).

If A ∈ δNj
(q, α) and α does not start with c| , then A ∈ δN ′

j
(q, α).

If A ∈ δNj
(q, c|α) and A is not a rewrite operation, then A ∈ δN ′

j
(q,#α).

If (p, c|β) ∈ δNj
(q, c|α), then (p,#β) ∈ δN ′

j
(q,#α).

With this modifications we obtain that, for all 1 ≤ i ≤ m and 1 ≤ j ≤ n,

q
(Mi)
0 c| v$ 	∗Mi,M v1qv2 ⇔ q

(Mi)
0 c| v#w$ 	∗M ′

i ,C v1qv
′
2w$

and

q
(Nj)
0 c|w$ 	∗Nj ,N w1qw2 ⇔ q

(N ′
j)

0 c| v#w$ 	∗N ′
j ,C c| vq(Nj)

0 #w$ 	∗N ′
j ,C c| vw′

1qw
′
2,

where v′2 arises from v2 by replacing $ with # and w′
1 and w′

2 arise from w1, w2

respectively, by replacing c| with # (w2 contains c| if w1 = ε). Since the system

C should only accept, if M and N accept, two more modifications are necessary

concerning the master components M1 and N1:

• Replace all transitions of the form Accept ∈ δM ′
1
(q, α) by the transitions

req
N ′

1
Accept ∈ δM ′

1
(q, α) and Accept ∈ δM ′

1
(rec

N ′
1

Accept,Accept, α) in M ′
1. Add the

new communication states req
N ′

1
Accept and rec

N ′
1

Accept,Accept to the set of states of

M ′
1.

• Replace all transitions of the form Accept ∈ δN ′
1
(q, α) by the transition

res
M ′

1
Accept ∈ δN ′

1
(q, α) in N ′

1 and add the new communication states res
M ′

1
Accept
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and ack
M ′

1
Accept to the set of states of N ′

1, where the subscript Accept denotes

the message that is sent from N ′
1 to M ′

1.

Thus, the System C accepts an input v#w if and only ifM accepts the input v and

N accepts the input w. Moreover, the construction is strictly deterministic. IfM
andN are deterministic, then so is C. Thus, L(C) = L1·{#}·L2 ∈ L((det-)PC-X).

From [JLNO04] we know, that L(RWW) and L(RRWW) are closed under prod-

uct. Now we extend this result to PCRA systems of these types and to PC-RLWW-

systems.

Theorem 17. The language classes L(PC-RWW), L(PC-RRWW), and L(PC-
RLWW) are closed under product.

Proof. Let L1, L2 ∈ L(PC-X) for X ∈ {RWW,RRWW,RLWW}, and let M = (M1,

M2, . . . ,Mm) and N = (N1, N2, . . . , Nn) be PC-X-systems with L(M) = L1 and

L(N ) = L2. We can assume that M and N are centralized systems that accept

an input if and only if their first components M1 and N1 reach the accepting

configuration (due to Corollary 4). Now, we construct a system C = (M ′
1,M

′
2,

. . . ,M ′
m, N

′
1, N

′
2, . . . , N

′
n) that consists of modified components of M and N and

that accepts the language L = L1 · L2. The main idea of this proof is to choose

nondeterministically a factorization of the input w = uv, store this factorization

by writing a marker on the tape, and then check whether u is contained in L1 and

v is contained in L2. The latter can be done quite similarly to the proof of the

closure under the marked product (see Theorem 16 for further details).

The behaviour of C can be described as follows. In the inital configuration

the input w is on the tapes of all components. Now, C works in two phases: (1)

guess the factorization and write the marker # (that is a new tape symbol for all

components) on all tapes, and (2) verify the chosen factorization.

A basic requirement is that all components work on the same factorization.

Therefore, a dedicated component determines the factorization and instructs the

other components by communication. Let M ′
1 be this component. First, it chooses

nondeterministically one of the following cases, where w = uv is the factorization

that is to be computed.

Case 1 (|u| = 0). If the first factor is ε, then all M ′
i , 1 ≤ i ≤ m, empty their tapes,

and then they change into the simulation phase. All N ′
j, 1 ≤ j ≤ n, keep their

current tape contents.

Case 2 (|u| = 1). If the first factor has length one, then all M ′
i , 1 ≤ i ≤ m, remove

all symbols of the tape except the first symbol, i.e. the symbol directly to the right

of the c| -symbol. The components N ′
j , 1 ≤ j ≤ n, remove only their first symbols.

Case 3 (|u| ≥ 2 and |v| = 0). In this case, the components M ′
i , 1 ≤ i ≤ m, keep
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their current tape contents, and all N ′
j, 1 ≤ j ≤ n, empty their tapes.

Case 4 (|u| ≥ 2 and |v| = 1). In this case, the components M ′
i , 1 ≤ i ≤ m, remove

the last tape symbol, i.e. the symbol directly to the left of the $-symbol, and all

N ′
j , 1 ≤ j ≤ n, remove all tape symbols except the last one.

Case 5 (|u| ≥ 2 and |v| ≥ 2). If M ′
1 decides that both factors have a length of at

least two, then the marker # is written on all tapes as follows. All M ′
i , 1 ≤ i ≤ m,

move their windows three steps to the right, and all N ′
j, 1 ≤ j ≤ n, move their

windows one step to the right. Then, the windows of all components are moved

simultaneously to the right. At some point in time, all components write the

marker # on the tape and change into the simulation phase. If the windows are

moved too many steps to the right, i.e. $ appears in the window, and the marker

cannot be written, then the system gets stuck. Otherwise, for an input w and

a factorization w = uv = u1 . . . ul1v1 . . . vl2 , the tape inscriptions of all M ′
i are

c|u#v3 . . . vl2$, and those of all N ′
j are c|u1 . . . ul1−2#v$. This means that all M ′

i

use the first two symbols of the second factor to write the marker, and all N ′
j use

the last two symbols of the first factor. Thus, the first factor is completely on the

tapes of all M ′
i , and the second factor is completely on the tapes of all N ′

j .

For writing the marker and preparing the tapes in the first phase, a window

size of two is necessary for all components. After determining the factorization,

all components change into dedicated states to begin the simulation phase. If

the factorization corresponds to one of the cases 1 to 4, the components M ′
i and

N ′
j behave exactly like the original components Mi and Nj in the simulation. In

case 5, the components verify the corresponding factors as shown in the proof of

Theorem 16. Since the input w = uv ∈ L1 · L2 if u ∈ L1 and v ∈ L2, the system

C must accept w if both systems M and N accept the corresponding factors. As

we have assumed that M and N accept with their first components, so C has to

accept w if M1 accepts u and N1 accepts v. For this, if M1 would accept u, then

M ′
1 communicates with N ′

1 and if N1 would accept v, then N ′
1 answers to M ′

1 by

sending a corresponding message, and afterwards, M ′
1 accepts. Hence, C accepts

an input w if there exists a factorization w = uv such that M accepts u and N
accepts v.

On the other hand, if such a factorization does not exist, then M1 or N1 (or

both) do not accept the corresponding factor, and thus, M ′
1 does not accept w for

any possible factorization. Observe that no component other than M ′
1 can reach

the accepting configuration. Therefore, it follows that L = L(C) = L(M)·L(N ) =

L1 ·L2. Moreover, since each component restarts immediately after removing tape

symbols or writing the marker in the first phase, we can state that, if M and N
are of type PC-X, then C is of the same type. Hence, L ∈ L(PC-X).
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Theorem 18. The language classes L(PC-RWW), L(PC-RRWW), and L(PC-
RLWW) are closed under Kleene closure.

Proof. Let L ∈ L(PC-RLWW), and let M = (M1,M2, . . . ,Mn) be a PC-RLWW-

system with L(M) = L. For the language classes L(PC-RWW) and L(PC-RRWW)

the proof is similar. We can assume that M is a centralized system that accepts

if and only if M1 accepts (due to Corollary 4). We now construct a system M′ =

(M ′
1,M

′
2, . . . ,M

′
n) that accepts the language L∗. The main idea is to divide an

input w nondeterministically into a factorization w = w1w2 . . . wr (w1, w2, . . . , wr

are words over the input alphabet) and check whether each factor is contained in

L. If such a factorization exists, then w ∈ L∗, otherwise w /∈ L∗. For obtaining

the factorization, sequentially one factor of a nondeterministically chosen length

is separated from the left-hand side of the tape content and is then checked by

simulating M on this factor by the modified components M ′
1,M

′
2, . . . ,M

′
n.

The behaviour of the systemM′ can be described as follows. At the beginning

of a computation, an input word w is on the tapes of all components. If the input is

ε, thenM′ accepts immediately, since ε is in the Kleene closure of every language.

Otherwise, the computation consists of three phases that can be repeated several

times in the given order: 1) write a marker on the tape to separate a new factor,

2) check whether the chosen factor is contained in L, and 3) remove the remaining

symbols of the last verified factor. The number of iterations of the three phases

depends on the nondeterministically chosen number of factors of w. The com-

putation and the progress of the phases are shown in Figure 5.3 for an arbitrary

component M ′
i , where we assume a factorization w = w1w2 . . . wr and the form

wj = wj,1wj,2 . . . wj,sj for all factors wj, 1 ≤ j ≤ r. Observe that the factorization

is not fixed at the beginning of the computation (although Figure 5.3 may seem

to imply this), but it is determined successively by repeating the three phases

above. The words w′
1, w

′
2, . . . , w

′
r in Figure 5.3 are used to denote the remain-

ing symbols after the simulation in the second phase on the words w1, w2, . . . , wr

was performed. Each of the symbols w′
1,1, w

′
1,s1, w

′
2,1, w

′
2,s2, . . . , w

′
r,1, w

′
r,sr is either

w1,1, w1,s1, w2,1, w2,s2, . . . , wr,1, wr,sr , if the corresponding stored symbol was not re-

moved during the simulation in phase two, or ε if it was removed. This will be

illustrated in more detail in the following explanations of the different phases.

Phase 1. In this phase M ′
1 first decides nondeterministically whether the whole

(remaining) tape content is interpreted as the last factor of the factorization, or

whether a new factor is separated. In the former case M ′
1 informs all the other

components by sending a corresponding message, and the system continues with

the second phase. Otherwise, all components move their windows to the right

simultaneously. This can be controlled by M ′
1 through a communication between
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c|w1,1w1,2...w1,s1w2,1w2,2...w2,s2w3w4...wr$ [−,−,−] (1)

c|w1,1w1,2...w1,s1−1#w2,2...w2,s2w3w4...wr$ [−, w1,s1, w2,1] (2)

c|w′
1#w2,2...w2,s2w3w4...wr$ [−, w′

1,s1
, w2,1] (3)

c|#w2,2...w2,s2w3w4...wr$ [w2,1,−,−] (4)

c|#w2,2...w2,s2−1#w3,2...w3,s3w4...wr$ [w2,1, w2,s2, w3,1] (5)

c|#w′
2#w3,2...w3,s3w4...wr$ [w′

2,1, w
′
2,s2, w3,1] (6)

c|#w3,2...w3,s3w4...wr$ [w3,1,−,−] (7)

c|#w3,2...w3,s3−1#w4,2...w4,s4w5...wr$ [w3,1, w3,s3, w4,1] (8)

... (9)

c|#wr−1,2...wr−1,sr−1−1#wr,2...wr,sr$ [wr−1,1, wr−1,sr−1, wr,1] (10)

c|#w′
r−1#wr,2...wr,sr$ [w′

r−1,1, w
′
r−1,sr−1

, wr,1] (11)

c|#wr,2...wr,sr$ [wr,1,−,−] (12)

c|#wr,2...wr,sr$ [wr,1,−,−] (13)

c|#w′
r$ [w′

r,1,−,−] (14)

c| $ [−,−,−] (15)
Phase 3

Phase 2

Phase 1

Phase 3

Phase 2

Phase 1

Phase 3

Phase 2

Phase 1

Phase 3

Phase 2

Phase 1

Figure 5.3: The progress of the phases for an arbitrary component M ′
i .

M ′
1 and all other components before each local computation step. When M ′

1

nondeterministically decides that the last symbol of the new factor is reached, it

sends an appropriate message to the other components, all components write the

marker # (that is a new tape symbol for all components) at the current position,

and thereafter they perform a restart immediately (see lines 2, 5, 8, and 10 of

Figure 5.3). For writing the marker the two tape symbols at the current position

have to be replaced. In order to not forget the information about these symbols,

they are stored and carried within the states during the whole computation (the

nonforgetting property and the local information of the communication states can

be used for this). Except for the first run or when checking a factor of length one

(see below), two markers are on the tape within the second phase: the marker of

the previous factor and the currently written one. This fact is important, as the

markers determine the positions of the replaced tape symbols, and these symbols

are needed for the simulation of the second phase. To store the rewritten symbols,

annotations to the states are used that have the form [a, b, c], where a is the first
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symbol of the currently considered factor combined with the first marker, b is the

last symbol of the currently considered factor, and c is the first symbol of the

following factor. The symbols b and c have been replaced by writing the second

marker. When instead of a, b, or c, a minus is used within the triple, then the

corresponding marker was not written. For example, at the beginning of phase 1, b

and c are always ‘−’, because the second marker has still to be written. Using ‘−’

is different from using ε, which means that the corresponding marker exists, but

the corresponding symbol was removed during the simulation within the second

phase.

Look for example at line 5 of Figure 5.3. This situation occurs between finishing

phase 1 and the beginning of phase 2. Two markers are currently on the tape, the

first one directly next to the c| -symbol and the second one between the symbols

w2,s2−1 and w3,2. The first symbol of w2, which is w2,1, was replaced by the first

marker in line 2 and is still stored as the first entry of the triple in line 5. In

contrast, the last symbol of w2, which is w2,s2, and the first symbol of w3, which

is w3,1, were replaced by the second marker in the previous first phase and thus,

they are stored as the second and the third entry in the triple of line 5.

Since for each factor one marker is set, whereby two symbols are replaced,

factors of length one have to be treated in a special way. Thus, if M ′
1 nondeter-

ministically chooses to separate a factor of length one, then two cases have to be

distinguished. First, if no marker is on the tape (this situation can be detected

through the triple [−,−,−] as in line 1), then a marker is written directly next

to the c| -symbol and the replaced symbols are stored in the second and the third

position of the triple (the one and only symbol of the current factor as second

entry and the first letter of the following factor as the third entry). Second, if

there is already a marker on the tape, then it must already be positioned directly

next to the c| -symbol (see line 4), so this situation can be detected immediately

(the annotation has the form [a,−,−]), and no other marker will be written. Both

situations are demonstrated in Figure 5.4. For factors of length one, M ′
1 sends a

corresponding message to all other components, thus the situation being in state

q[−, a, b] (first situation) or q[a,−,−] (second situation) with c|# . . . $ on the tape

is then treated in the second phase as having c| a$ on the tape.

Table 5.1 summarizes all situations that can appear at the end of phase 1 and

the beginning of phase 2.

Phase 2. After setting a marker or deciding whether the remaining tape con-

tent is the last factor or whether a factor of length one has to be checked, M′

checks whether the factor is contained in L. For this purpose it simulatesM, and

the components interpret the stored symbols and the marker as described above.

Moreover, the windows of all components may never be moved across the (second)
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Situation 1:
c| abc . . . $
[−,−,−]

Phase 1−−−−→ c|#c . . . $
[−, a, b]

Phase 2−−−−→ c|#c . . . $
[−, a′, b]

Phase 3−−−−→ c|#c . . . $
[b,−,−]

Situation 2:
c|# . . . $
[a,−,−]

Phase 1−−−−→ c|# . . . $
[a,−,−]

Phase 2−−−−→ c|# . . . $
[a′,−,−]

Phase 3−−−−→ c| . . . $
[−,−,−]

Figure 5.4: Choosing a factor of length one.

Situation interpretation of interpretation of

(tape content and state annotation) the first #-symbol the second #-symbol

1) c|#c . . . $, (no first marker) a$

[−, a, b]
2) c|# . . . $, a$ (no second marker)

[a,−,−]

3) c|wi,1wi,2 . . . wi,si−1#wi+1,2 . . . $, (no first marker) wi,si$

[−, wi,si, wi+1,1]

4) c|#wi,2wi,3 . . . wi,si−1#wi+1,2 . . . $, wi,1 wi,si$

[wi,1, wi,si, wi+1,1]

Table 5.1: Situations after the first phase.

#-symbol. More precisely, the second #-symbol is not allowed to appear as the

first symbol of the windows (only at the second or higher position of the windows).

This is necessary in order to enable a rewrite step and a restart operation without

deleting the # or a symbol to the right of it. But this is no problem due to the

look ahead of at least one tape cell (with a window size of at least two).

Two critical situations can appear during the simulation of M. First, a com-

ponent Mi, and thus M ′
i , (2 ≤ i ≤ n) reaches an infinite computation that is

caused by a combination of MVL and MVR steps. Second, a component Mi, and

thus M ′
i , (2 ≤ i ≤ n) gets stuck in an unanswered communication state. Consider

a scenario where w1, w2 ∈ L, u ∈ L∗ with u = w1w2, and there is no other factor-

ization of u such that all factors are containted in L. Moreover, assume that there

is exactly one accepting computation ofM on input w1 and w2, respectively, and

that there exists a component Mi that reaches one of the two above described

critical situations during the computation ofM on w1 and that further executes a

communication with M1 within the accepting computation ofM on w2. Although

M is correctly simulated byM′ on the first factor, it cannot verify the factor w2,

since M ′
i is in a critical situation and thus not available anymore. Hence, M′
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cannot accept u, although u ∈ L∗.

To avoid these situations a communication protocol is used that allows M ′
1 to

control the whole computation of M′ such that each communication is strictly

predetermined and, in addition, no arbitrary long local computations can be ex-

ecuted. For that we use a similar but simplified version of the construction from

the proof of Theorem 4. In the following the main idea is described, where the

annotations in brackets refer to the construction below.

To control the computation of M′, the master component M ′
1 not only simu-

lates M1, but communicates cyclically with all components that are still involved

in the simulation of M before each simulated local computation step. In these

communications, M ′
1 asks the components about the transitions they will apply

in the next simulation step (A1.1). Each M ′
i (2 ≤ i ≤ n) communicates with M ′

1

before each simulation step and tells it whether the next simulation step is a local

step (B1), a communication (B2 and B3), or that no transition can be applied

(B5) (observe that M ′
1 needs to expect only finitely many possible answers of M ′

i

depending on the transition mapping of Mi). In the case of a communication, it

sends information about the corresponding communication state. Thereafter, the

component requests further instructions from M ′
1. Now, if the answer of M ′

i is

‘local step’, then M ′
1 just allows M ′

i to continue its computation (A1.2), and M ′
i

performs the corresponding simulation step. In the case that M ′
i answers with

information about a communication step (this can only be a communication with

M1, since M is centralized) or an undefined situation, then M ′
1 stores this infor-

mation using ti in the subscript of its communication states and asks the next

available component M ′
m with tm = ∗ (A1.3). After all components have been

asked and the answer of the last component was computed (A1.4), M ′
1 simulates

the stored computation step (A1.5). Whenever M ′
1 wants to simulate a commu-

nication step with a component M ′
i (A is a communication state), then three

situations are possible: First, M ′
i has not reached any communication state to

simulate (ti = ∗). In this case, M ′
1 just remembers A and repeats the communi-

cation cycle. Second, M ′
i has already reached the corresponding communication

state (ti = req or ti = res(c)). Then, M ′
1 informs M ′

i that the communication can

be successfully simulated. Third, M ′
i is stuck (ti =⊥) or it has reached a commu-

nication state that does not correspond to that of M ′
1 (e.g. both communication

states are request states or response states). In the third case, M ′
1 gets stuck as

well as M1 would in this situation, and thus, the current factor is not successfully

verified.

If M1 would reach the accepting configuration, then M ′
1 sends the message

‘stop’ to all components to finish the simulation in the second phase and to start

with the third phase immediately. In the construction below this is indicated by
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reaching qphase3 as the initial state of the third phase.

Now, the modifications for the components are defined that are necessary for

implementing the described communication protocol. Here, δ̂i denotes the transi-

tion mapping of component M̂i that results from Mi by applying the modifications

of the first phase and interpreting the marker and the stored tape symbols as de-

scribed above. Moreover, we assume that M ′
1 starts the second phase always in

state q〈∗,...,∗〉, where q is the initial state of M1. The construction steps indexed by

A refer to the master component M̂1 and those indexed by B refer to all the other

components.

A1) For all A ∈ δ̂1(q, α) with A 
= Accept and all situations 〈t2, . . . , tn〉 with

tj ∈ {∗,⊥, req}∪{res(c) | c is a message of any q ∈ COM(Mj)}, 2 ≤ j ≤ n,

define:

A1.1) Ask the first available component:

reqmA〈t2,...,tn〉 ∈ δ′1(q〈t2,...,tn〉, α) such that

tm = ∗ and for all j ∈ {2, . . . , m− 1} : tj 
= ∗.

A1.2) Answer in the case of ‘local step’:

δ′1(rec
i
A〈t2,...,tn〉,localstep, α) = {resiA〈t2,...,tn〉,continue} for all 2 ≤ i ≤ n.

A1.3) Store the information in the cases of communication and undefined

situation and ask the next available component:

δ′1(ack
i
A〈t2,...,tn〉,continue, α) = {reqmA〈t2,...,tn〉},

δ′1(rec
i
A〈t2,...,tn〉,answer, α) = {reqmA〈t2,...,ti−1,answer,ti+1,...,tn〉},

with answer ∈ {⊥, req}∪{res(c) | c is a message of any q ∈ COM(Mi)},
for all 2 ≤ i ≤ n, and with i < m, tm = ∗, and for all j ∈ {i+1, . . . , m−
1}: tj 
= ∗.

A1.4) Get the answer from the last available component:

δ′1(ack
m
A〈t2,...,tn〉,continue, α) = {simA〈t2,...,tn〉},

δ′1(rec
m
A〈t2,...,tn〉,answer, α) = {simA〈t2,...,ti−1,answer,ti+1,...,tn〉},

with answer ∈ {⊥, req}∪{res(c) | c is a message of any q ∈ COM(Mm)}
and for all j ∈ {m + 1, . . . , n}: tj 
= ∗.

A1.5) Simulate the transition of M1:
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δ′1(simA〈t2,...,tn〉, α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(p〈t2,...,tn〉,MVR)}, if A = (p,MVR),

{(p〈t2,...,tn〉,MVL)}, if A = (p,MVL),

{(p〈t2,...,tn〉, β)}, if A = (p, β),

{reqmA〈t2,...,tn〉}, if A = reqid or A = resid,c

and ti = ∗,
{resiA〈t2,...,tn〉,c}, if A = reqid and ti = res(c)

or A = resid,c and ti = req,

s.t. for all j ∈ {1, . . . , m− 1}: tj 
= ∗.
In the last case the communication between M1 and Mi is simulated,

a new transition of M1 is chosen, and the first available component is

asked again:

δ′1(ack
i
A〈t2,...,tn〉,c, α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{reqmA′〈t2,...,ti−1,∗,ti+1,...,tn〉 | A
′ ∈ δ1(rec

i
d,c, α)},

if Accept /∈ δ1(rec
i
d,c, α), A = reqid, and ti = res(c),

{reqmA′〈t2,...,ti−1,∗,ti+1,...,tn〉 | A
′ ∈ δ1(ack

i
d,c, α)},

if Accept /∈ δ1(ack
i
d,c, α), A = resid,c, and ti = req,

{res2−,stop},
if Accept ∈ δ1(rec

i
d,c, α), A = reqid, and ti = res(c),

{res2−,stop},
if Accept ∈ δ1(ack

i
d,c, α), A = resid,c, and ti = req,

s.t. for all j ∈ {1, . . . , m− 1}: tj 
= ∗.

A2) For all Accept ∈ δ̂1(q, α) and all possible situations 〈t2, . . . , tn〉 define:

δ′1(q〈t2,...,tn〉, α) = {res2−,stop},
δ′1(ack

i
−,stop, α) = {resi+1

−,stop} for all 2 ≤ i ≤ n− 1,

δ′1(ack
n
−,stop, α) = {qphase3}.

B1) For all A ∈ δ̂i(q, α) and A /∈ COM(Mi) define:

res1A,localstep ∈ δ′i(q, α),

δ′i(ack
1
A,localstep, α) = {req1A},

δ′i(rec
1
A,continue, α) = {A},

δ′i(rec
1
A,stop, α) = {qphase3}.
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B2) For all req1d ∈ δ̂i(q, α) and q /∈ COM(Mi) define:

res1req(d),req ∈ δ′i(q, α),

δ′i(ack
1
req(d),req, α) = {req1req(d)},

δ′i(rec
1
req(d),c, α) = δi(rec

1
d,c, α) \ COM(Mi)

∪ {res1req(d′),req | req1d′ ∈ δi(rec
1
d,c, α)}

∪ {res1res(d′,c′),res(c′) | res1d′,c′ ∈ δi(rec
1
d,c, α)},

δ′i(rec
1
req(d),stop, α) = {qphase3}.

B3) For all res1d,c ∈ δ̂i(q, α) and q /∈ COM(Mi) define:

res1res(d,c),res(c) ∈ δ′i(q, α),

δ′i(ack
1
res(d,c),res(c), α) = {req1res(d,c)},

δ′i(rec
1
res(d,c),c, α) = δi(ack

1
d,c, α) \ COM(Mi)

∪ {res1req(d′),req | req1d′ ∈ δi(ack
1
d,c, α)}

∪ {res1res(d′,c′),res(c′) | res1d′,c′ ∈ δi(ack
1
d,c, α)},

δ′i(rec
1
res(d,c),stop, α) = {qphase3}.

B4) Transitions of the form A ∈ δ̂i(q, α) with A, q ∈ COM(Mi) are already

treated implicitly in B2 and B3.

B5) For all δ̂i(q, α) = ∅ define:

δ′i(q, α) = {res1⊥,⊥},
δ′i(ack

1
⊥,⊥, α) = {req1⊥}.

δ′i(rec
1
⊥,stop, α) = {qphase3}.

If M accepts the considered factor, that is, all components reach the state

qphase3, then M ′
1 removes one of the remaining symbols of the processed factor

at the current window position, performs a restart into a dedicated restart state,

and begins with the third phase. The fact whether or not the (RRWW-, RLWW-)

component has already made a rewrite step in the current cycle (the last cycle of

the simulation in phase 2) can also be encoded within the states. If it has already

performed a rewrite step, then only a restart without removing a symbol will be

executed. If the factor was completely deleted during the simulation in phase 2, so

that no more symbol can be deleted, then a change of the state (SCO transition)

into the restart state of the third phase will be applied (the window is then already

positioned at the leftmost border of the tape).

Additionally, for simplification of the notation we used SCO transitions in the

construction. These can easily be eliminated.
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Phase 3. In this phase all components remove the remaining symbols of the

factor they worked on in phase 2 as well as the first marker (see lines 6 and 7 of

Figure 5.3). Removing the first marker includes setting ‘−’ at the first position

of the triple. When the tape content starts with c|# and the first entry of the

triple is a minus or the triple is [−,−,−] (no marker on the tape), then the factor

is completely removed, the triples are changed from [−, b, c] to [c,−,−] (even if b

and c are minus; see lines 3 and 4), and M′ continues with the first phase again.

If the tape is empty after phase 3, then M′ has guessed a factorization, all

factors of which were accepted by M, and thus M′ accepts the input word. If

M chooses a factorization such that one factor is not accepted by M, then M ′
1

does not change from phase 2 to phase 3 for this factor, since M1 would not

reach the accepting configuration. Hence, M ′
1 gets stuck during the corresponding

second phase. If there exists a valid factorization, then M′ can guess it and

accept the input word. If the input does not have a valid factorization, then M′

fails on at least one factor of every factorization. Thus, M′ accepts w if and

only if w ∈ L∗. Moreover, the modifications of the components do not change

their type, so if L ∈ L(PC-RLWW) (L ∈ L(PC-RRWW), L ∈ L(PC-RWW)), then

L∗ ∈ L(PC-RLWW) (L∗ ∈ L(PC-RRWW), L ∈ L(PC-RWW)), too.

The positive closure L+ of a language L is quite the same as the closure L∗

with the only difference that ε ∈ L+ holds if and only if ε ∈ L (see [HU79]).

From Theorem 18 we can also conclude that the language classes L(PC-RWW),

L(PC-RRWW), and L(PC-RLWW) are closed under positive closure. The proof

only has to be modified in the following way: If the input is ε, then M′ has to

simulate M on ε and check whether M accepts ε. In the affirmative, M′ accepts

ε, otherwise it does not.

Corollary 12. L(PC-RWW), L(PC-RRWW), and L(PC-RLWW) are closed under

positive closure.

The next closure properties we want to deal with are the closure under homo-

morphisms and inverse homomorphisms. Due to the strict limit of workspace and

the length reducing property for the rewrite operations, we previously establish

some more technical features. So we first show, that it is no advantage if we allow

a restart operation without applying a rewrite step in the same cycle, additional

to the usual restart operation that can only be applied after exactly one rewrite

step was executed in the considered cycle. Then we show how to use a subsystem

in order to simulate a single restarting automaton with a bigger tape. That is, the

tapes of the subsystem’s components are put together to one tape, and the com-

munication is used to simulate a single automaton with one (imagined) window

operating on the whole common tape.
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Lemma 4. Let M be a restarting automaton of type (det-)X, X ∈ T , with the

following property: M is allowed to perform a restart operation even if no rewrite

step was performed in the same cycle. Further, let M ′ be obtained from M by

disallowing these particular restart steps. Then M ≡c M
′.

Proof. Let

q0c|w$ = w0 	M w1 	M w2 	M . . . 	M wr

be an arbitrary computation of M for an input word w. Consider a part of such

a computation

q0c|u$ 	∗M u1qu2 	Restart
M q0c|u$,

where q0c|u$ is a restart configuration and either u1 = ε and u2 = c|u$ or u1 =

c|u′
1, u2 = u′

2$, and u′
1u

′
2 = u. The tape content has not been changed, as no

rewrite step took place, and so, the same restart configuration is reached again.

If a computation of M , beginning from the initial configuration and reaching a

configuration κ, includes such a part, that is, there exists a cycle with a restart

but no rewrite

q0c|w$ 	r1M q0c| u$ 	r2M u1qu2 	Restart
M q0c| u$ 	r3M κ,

then M could also perform the computation without this cycle:

q0c|w$ 	r1M q0c|u$ 	r3M κ.

Thus, there exists a computation q0c|w$ 	∗M κ without cycles of this form. Since

M ′ is defined exactly as M , it follows that q0c|w$ 	∗M ′ κ. In particular, this holds

for κ = Accept and for configurations κ containing request and response states.

Hence, it follows that L(M) = L(M ′) and, moreover, M ≡c M
′.

For deterministic automata a cycle without a rewrite step leads immediately

to an infinite computation, since a restarting configuration is reached twice, and

the resulting computation loops. Now, we use the result from the previous lemma

and show how a PCRA (sub)system of degree n can simulate a single restarting

automaton with a tape that is n times the size of the input word. In particular, this

result shows that the available workspace within a PCRA system can be increased

by an arbitrary constant factor by increasing the number of components.

Lemma 5. A (det-)PC-X-system, X ∈ T , of degree n can be constructed that be-

haves on input w like an individual (det-)X-automaton on input wn.

Proof. Let S = (M1,M2, . . . ,Mn) be a (det-)PC-X-system with X ∈ T . Let further

MS = (Q,Σ,Γ, c| , $, q0, k, δS) be the automaton that is to be simulated by S.
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Basically, the finite control of MS is simulated by the finite control of M1, and

the tape of MS is obtained by concatenating the tapes of all components of S
as illustrated in Figure 5.5 (w1, w2, and wn are used in the picture to signalize

different tape contents, although all components start their computations with the

same input word). Sometimes the tape of MS is also called the common tape of

S. The read/write window of MS is realized in S by cooperation of the windows

of M1, . . . ,Mn through communication.

system S:

w1 tape of M1c| $

w2 tape of M2c| $

...

wn tape of Mnc| $

c| w1 $c| w2 $ . . . c| wn $

common tape of S

c| w1 w2 . . . wn $

imagined tape of MS

concatenate the tapes of S

ignore the inner c| and $

Figure 5.5: The tapes of the system S are used to simulate the tape of automaton
MS .

At the very beginning and after each restart operation, all components except

the first one move their windows one position to the right such that the windows

are placed directly to the right of the c| -symbol. Then S can execute anyone of

the following operations of MS : 1) MVR step, 2) MVL step, 3) rewrite step, 4)

restart step, 5) accept step, and 6) communication. The last item is necessary if

MS is a component within a system (then, S can be seen as a subsystem). Before

one of the operations can be performed, S has to determine the current window

content. Now, it is explained in detail how S simulates the different operations.

Reading the current content of the common window. The common window can

be positioned on an arbitrary cell of any of the component’s tapes. To determine

the current content of the common window, S proceeds as follows. If the window

of M1 does not contain the $-symbol, then the content of the common window is

the content of M1’s window. If the $-symbol appears in the window of M1, then

M1 reads some α1$ with |α1| = l < k. In this case M1 knows the first l symbols of
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the common window. But since l < k and the inner c| - and $-symbols are ignored,

at least one symbol of the common window’s content is still missing . Therefore,

M1 tries to obtain the remaining symbols from M2. It sends a message to M2

and asks for its window content. Then, M2 sends its current window content α2

(excluding c| and $). If |α1|+ |α2| < k, then some symbols of the common window

content are still missing. Thus, M1 asks M3 for its window content and so forth.

This proceeds until either M1 has obtained altogether k symbols or the obtained

string ends by $, that is, the common window has reached the right hand end of

the tape, and Mn sent a string to M1 that ends by $.

After this procedure M1 knows the current content of the common window and

can now simulate one of the above mentioned transitions.

Moving the common window. Whenever MS performs a MVL step or a MVR

step (MVL ∈ δS(q, α), MVR ∈ δS(q, α)), then S has to move the common window

one position to the left or to the right, respectively. This is controlled by M1 as

follows. If the content of M1’s window is not equal to $ (the common window

is placed on M1’s tape), then M1 just performs a MVL step or a MVR step,

respectively. If the window is already placed on the leftmost end of the tape,

then no MVL operation is possible, and M1 continous its computation without

moving its window. If the window content of M1 is equal to $, then the common

window is currently positioned on some other tape. Thus, M1 asks M2 to move

the common window and expects one of three possible answers from M2: ‘yes, I

moved the common window’, ‘no, the common window is not placed on my tape’,

or ‘yes, I moved the common window, and I reached the c| -symbol’ (only for the

MVL step). In the former case, the operation is finished, and M1 continous with

reading the current content of the common window again. In the second case, M1

asks M3. If M3 gives the second answer, too, then M1 asks M4 and so forth until

either one component sends the first answer or Mn sends the second answer, that

is, the common window only contains the $-symbol, and therefore, the window

cannot be moved to the right. The third answer is sent by a component if it

moves its window to the left and thereby reaches the c| -symbol. In this situation

the common window exceeds the border between the answering component and its

predecessor component (for a component Mi the predecessor component is Mi−1).

Thus, the window of the predecessor component that is currently placed on the

$-symbol has to perform a MVL step, too. If the predecessor component also

reaches the c| -symbol (because its tape contains only c| $), then the predecessor of

the predecessor has to perform a MVL step and so on. This procedure is controlled

by M1 through a determined communication protocol.

Rewrite step. If MS performs a rewrite operation (q, β) ∈ δS(p, α), then S
simulates it by the same rewriting at the the same position of the common tape.
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Since there are various different options for the position of the common window,

we explain now, how S works for these different cases.

Case 1: The whole common window is placed on the tape of exactly one

component Mi (1 ≤ i ≤ n). Then Mi just replaces α by β, and afterwards its

window has the correct position, that is, to the right of the currently written β.

Case 2: The common window ranges over the tapes of several components,

let us say over the m tapes of components Mi,Mi+1, . . . ,Mi+m−1. Let α =

α0α1 . . . αm−1, where αj is the part of α that is placed on the tape of Mi+j . That

means, α0 is a non-empty suffix of the tape content of Mi (without $), α1, . . . , αm−2

are the possibly empty complete tape contents of Mi+1, . . . ,Mi+m−2 (excluding c|
and $), and αm−1 is a non-empty prefix of the tape content of Mi+m−1 (without

c| ). This is illustrated in Figure 5.6. Further, let t = |{αj | 1 ≤ j ≤ m−2, αj = ε}|
be the number of empty tapes. Then, we can distinguish between two more cases:

(a) |β| ≤ |α| −m + t and (b) |α| −m + t < |β|(≤ |α| − 1).

. . . α0$ α1 · · · αm−2 c|αm−1 . . .c| $ c| $

tape of Mi tape of Mi+1 tape of Mi+m−2 tape of Mi+m−1

common window

Figure 5.6: The common window of S ranges over several tapes.

Case 2a: If |β| ≤ |α| − m + t, then β is short enough that each of Mi,Mi+1,

. . . ,Mi+m−1 can perform a length reducing rewrite operation. Then there exists a

unique factorization of β into β = β0β1 . . . βm−1 such that:

∃r ∈ {0, . . . , m− 1} : ∀j < r : |βj| = |αj | − 1, if αj 
= ε, and βj = ε, otherwise;

∧ |βr| < |αr|;
∧∀j > r : βj = ε.

Observe, the factorization of β can be obtained deterministically. All components

Mi+j , 0 ≤ j ≤ m− 1, replace αj by βj .

Case 2b: In the case that |α|−m+ t < |β|, there exists at least one component

of Mi,Mi+1, . . . ,Mi+m−1 that cannot apply a length reducing rewrite. If MS is

an R-, RR-, or RL-automaton, then it can only delete some symbols of α and the

corresponding components of S delete the relevant symbols from their tapes. In

the general case (MS is of type RW, RWW, RRW, RRWW, RLW, or RLWW) α

could be rewritten by a β that consists of completely different symbols than α,

so that all symbols of α are replaced. Therefore we have to find a solution for

those components that cannot make a length reducing rewrite step. They behave

as follows. Let Mi+j , 0 ≤ j < m, be such a component. It deletes αj from its tape
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and stores βj in the finite control. This is possible because |βj| < k, so the length

of the stored string is bounded by the constant k − 1.

Then, when a component Mi, 1 ≤ i ≤ n − 1 reads the local window content,

moves the local window, or applies further local rewrite steps, the right sentinel $

is interpreted as the string γ$ from the finite control, where γ is the string that is

currently stored within the finite control. For Mn the c| -symbol is interpreted as

c| γ. Later replacings of (a part of) γ are realized by changing it within the finite

control.

In order to not forget the stored γ within the finite control, the nonforgetting

property is needed. As described in Section 5.4 we can eliminate this property by

using some extra components.

Restart step. When MS performs a restart operation (Restart ∈ δS(q, α)), then

S behaves as follows. M1 sends the message ‘restart’ to each component and per-

forms a restart operation on its own. Whenever one of the other components

obtains the restart message, then it performs a restart operation immediately,

moves its window one cell to the right, and changes into a request state to await

further instructions from M1. Consider that there exist situations where a com-

ponent did not perform a rewrite step in the current cycle before it obtains the

restart message (e.g. if the common window was only moved over its tape without

performing any other operations). For such cases we use Lemma 4, and the com-

ponent can nevertheless perform the restart operation. Figure 5.7 demonstrates

the situation after S has executed a restart operation.

c| ←−−− w1 −−−→ $ c| ←−−− w2 −−−→ $ · · · c| ←−−− wn −−−→ $

tape of M1 tape of M2 tape of Mn

Figure 5.7: Situation of S after a restart operation.

Accept step. Whenever MS can perform an accept step (Accept ∈ δS(q, α)),

then M1 and thus S can also accept reading α with the common window.

Communication. Consider MS as a component within a system C. Then, MS
is allowed to communicate with other components of C by reaching communication

states. Our system S that simulates MS can then be interpreted as a subsystem

within the system C and has to behave exactly like MS according to the communi-

cation with other components. We call M1 the ‘representative’ of S, that is, only

M1 handles all communication between S and the other components of C. For

the simulation, this means that, whenever MS reaches a request or response state,

then M1 reaches the same communication state, too. Moreover, any transition

of MS that is based on a receive or acknowledge state is handled like any other

transition of MS .
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Summarizing, we have constructed a system S that simulates the behaviour

of an automaton MS . Thus, in the further work it suffices to describe MS that is

allowed to use a tape of length l · |w|, where l is any positive integer and w is the

input word (the degree of S depends on l).

Using the technique of Lemma 5, we can now show the closure under ε-free

homomorphisms and inverse homomorphisms.

Theorem 19. The language classes L(PC-RWW), L(PC-RRWW), and L(PC-
RLWW) are closed under ε-free homomorphisms.

Proof. Let L ∈ L(X) with X ∈ {PC-RWW,PC-RRWW,PC-RLWW} be a lan-

guage over the alphabet Σ and M = (M1,M2, . . . ,Mn) be a PCRA system

of type X with L(M) = L. Further, let h : Σ∗ → ∆∗ be an ε-free homo-

morphism, i.e. |h(a)| ≥ 1 for all a ∈ Σ, and let Σ = {a | a ∈ Σ} be a

set of copies of input symbols such that Σ ∩ ∆ = ∅. We construct a system

M′ = (M0,M1,1,M1,2,M2,1,M2,2, . . . ,Mn,1,Mn,2) that accepts exactly the lan-

guage h(L) ⊆ ∆∗.

Basically, each pair Mi,1 and Mi,2, 1 ≤ i ≤ n, represents a subsystemMi ofM′

that is used to simulate component Mi from the original system M as described

in Lemma 5.

Now, M′ works in two phases: (1) translation and (2) simulation. In the

translation phase M0 moves its window one position to the right, i.e. directly

to the right of c| , and tries to interpret the window content (or a prefix of it)

as an image h(a) for any a ∈ Σ. For this purpose, the window size of M0 is

max{|h(a)| | a ∈ Σ}. If the tape content of M0 does not begin with an image of h,

then M0 gets stuck. Otherwise, M0 choses nondeterministically a corresponding

preimage, sends it to M1,M2, . . . ,Mn, removes the read image from the tape,

executes a restart operation, and repeats these steps. Initially, allMi, 1 ≤ i ≤ n,

have placed their windows at the left-hand side of the tapes and wait in a request

state for instructions from M0. If Mi gets a message from M0 with a preimage

a ∈ Σ, then it moves its window to the right over all symbols of Σ and replaces the

first two found input symbols of the tape, i.e. symbols contained in ∆, with the

copy of the preimage a. Thereafter, it performs a restart operation immediately

and expects further instructions from M0 again, waiting in an according request

state.

If, after M0 performed the MVR step, its window contains only $, then the

whole input word was translated into its preimage, and M0 sends messages to

M1,M2, . . . ,Mn that signalize the end of translation and the beginning of the

simulation ofM. For an input word w = h(v) for any v ∈ Σ∗, the contents of the



142 Systems of parallel communicating restarting automata

tapes of M1,M2, . . . ,Mn now have the form c| vz$, where z ∈ ∆∗ consists of the

remaining input symbols. These symbols are removed from all tapes between the

translation phase and the simulation phase. Observe that each of the subsystems

M1, . . . ,Mn consists of two components and thus has a common tape size of 2·|w|.
That is indeed enough space for the translation, since at most |w| images have

to be translated, and in each translation step exactly two symbols are rewritten.

In the remaining computation of M′, M0 does not perform a computation step

anymore.

In the simulation phase, the subsystems Mi, 1 ≤ i ≤ n, behave on input

v mainly like the original components Mi on input v just as it is described in

Lemma 5. For this, all symbols of Σ within transitions of Mi are replaced with

their according copy from Σ, and whenever Mi performs a restart step, then Mi

restarts in the original initial state of Mi instead of its own initial state. For doing

this, the nonforgetting property is used that can be eliminated as described in

Theorem 11.

For any input w, if w is an image of some v, then v can be guessed during

the translation phase, M is simulated on v by M′, and M′ accepts if and only

if M accepts. Otherwise, i.e. the input is no valid image, M0 gets stuck in the

translation phase,M′ does not reach the simulation phase, and thus cannot accept

the input. Hence, L(M′) = h(L(M)). Moreover, M′ is of the same type as M,

so h(L) ∈ L(X), which completes the proof.

Theorem 20. The language classes L(det-PC-X) and L(PC-X) are closed under

inverse homomorphisms for all X ∈ {RWW,RRWW,RLWW}.

Proof. Let L ∈ L((det-)PC-X) for X ∈ {RWW,RRWW,RLWW} be a language over

the alphabet ∆. Then there exists a (det-)PC-X-system M = (M1,M2, . . . ,Mn)

with L(M) = L. Let further h : Σ∗ → ∆∗ be a homomorphism and r =

max{|h(a)| | a ∈ Σ} is the size of the longest image of h. We build a system

M′ with L(M′) = h−1(L), whose construction is nearly the same as that of the

system constructed in the proof of Theorem 19. The only difference is the oppo-

site direction of the translation, i.e. an input w ∈ Σ∗ of M′ is interpreted as a

preimage of h that is translated into the uniquely determined image h(w). For

this purpose, M′ consists of 1 + n · (r + 1) components:

M′ = (M0,M1,1,M1,2, . . . ,M1,r+1,M2,1,M2,2, . . . ,M2,r+1,

. . . ,Mn,1,Mn,2, . . . ,Mn,r+1)

and, for each 1 ≤ i ≤ n, the components Mi,1,Mi,2, . . . ,Mi,r+1 are combined to a

subsystem Mi, so that for each component Mi of M there is a subsystem Mi in

M′.
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For input w, the common tapes ofM1, . . . , Mn have a size of (r + 1) · |w|. In

each translation step r+1 symbols of the common tapes are replaced by h(a) for a

symbol a of the input word. AfterM′ executed |w| translation steps, the common

tape of M1, . . . , Mn contains the inscription c|h(w)$, and M can be simulated,

where each of the original components Mi is simulated by the subsystem Mi.

Summerizing, each input w of M′ is translated into the unique image h(w),

and then M is simulated on h(w). Thus, M′ accepts on input w if and only if

M accepts on input h(w). Hence, L(M′) = h−1(L(M)). Moreover, M′ is of the

same type as M, and thus, h−1(L) ∈ L((det-)PC-X).

The question of whether the language classes accepted by PCRA systems

are also closed under arbitrary homomorphisms, i.e. including homomorphisms

that can erase symbols, must be answered with no. We prove this fact by using

the known fact that each recursively enumerable language L can be written as

h(L1 ∩L2), where h is a homomorphism and L1, L2 are deterministic context-free

languages [Har78].

Theorem 21. The language classes L((det-)PC-X) are not closed under arbitrary

homomorphisms for each X ∈ T .

Proof. We prove this by contradiction and assume that L((det-)PC-X) is closed

under applying arbitrary homomorphisms for any X ∈ T . Let L be an arbi-

trary recursively enumerable language with the representation L = h(L1 ∩ L2),

where h is a homomorphism and L1, L2 are deterministic context-free languages

[Har78]. Since L((det-)PC-X) ⊇ DCFL, it follows that L1, L2 ∈ L((det-)PC-X).

From Theorem 14 we know that L((det-)PC-X) is closed under intersection, hence

(L1 ∩ L2) ∈ L((det-)PC-X). Because of our assumption we have h(L1 ∩ L2) ∈
L((det-)PC-X). But then RE ⊆ L((det-)PC-X) would follow, which contradicts the

fact that L((det-)PC-X) ⊆ CSL ⊂ RE (see Corollary 21). Thus, the assumption is

false, that is, L((det-)PC-X) is not closed under arbitrary homomorphisms for any

X ∈ T .

Since in the proof of Theorem 20 ∆ can include symbols that are not contained

in Σ, the translation of the input into its image according to the homomorphism

needs auxiliary symbols in general. Therefore, the result is restricted to the lan-

guage classes of PCRA systems that are allowed to use auxiliary symbols. The

following table summarizes the closure properties that we have established within

this section. The first column contains the language classes that are mainly divided

into deterministic and nondeterministic classes and classes with auxiliary symbols

and those without. The meaning of the operations are from left to right: union,
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intersection, intersection with a regular language, complementation, marked prod-

uct, product, Kleene closure, positive closure, arbitrary homomorphism, ε-free

homomorphism, and inverse homomorphism.

∪ ∩ ∩REG
c ·# · ∗ + h hε h−1

L(det-PC-R(R)(W)) + + + + + ? ? ? − ? ?

L(det-PC-RL(W)) + + + + + ? ? ? − ? ?

L(det-PC-R(R)WW) + + + + + ? ? ? − ? +

L(det-PC-RLWW) + + + + + ? ? ? − ? +

L(PC-R(R)(W)) + + + ? + ? ? ? − ? ?

L(PC-RL(W)) + + + ? + ? ? ? − ? ?

L(PC-R(R)WW) + + + ? + + + + − + +

L(PC-RLWW) + + + ? + + + + − + +

The next corollary gives a concluding result of this section, namely that the lan-

guage classes L(PC-RWW), L(PC-RRWW), and L(PC-RLWW) are so-called AFLs

(abstract families of languages).

Corollary 13. The language classes L(PC-RWW), L(PC-RRWW), and L(PC-
RLWW) are AFLs (Abstract Families of Languages).

Proof. This follows immediately from the closure under ε-free morphisms, inverse

morphisms, intersection with regular languages, union, concatenation, and positive

closure [RS97].

Corollary 14. The language classes L(PC-RWW), L(PC-RRWW), and L(PC-
RLWW) are not full AFLs.

Proof. As we have seen in Theorem 21, L(PC-RWW), L(PC-RRWW), and L(PC-

RLWW) are not closed under applying arbitrary homomorphisms. Thus, they are

not full AFLs.
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5.6 Computational power

In this section we investigate the computational power of PCRA systems and try

to find some relations to languages classes of single restarting automata and other

well-known complexity classes. The first lemma is quite obvious, as a system is at

least as powerful as a system of the same type with less components.

Lemma 6. Let X ∈ T , p ∈ {ε, det,mon, det-mon}, and n ≥ 1. Then

L(p-PC-X(n)) ⊆ L(p-PC-X(n + 1)).

In particular, a PCRA system is at least as powerful as a single restarting

automaton of the same type. The question of whether there are cases in which

the number of the components yields a strict hierarchy, is still open.

The next two lemmata result directly from the definition of acceptance for

the PCRA systems. Here, the notation L(M) for a component M describes the

language that is accepted by M without performing any communication, that is,

if we interprete M as a single restarting automaton outside the system (where

reaching a communication state just means to reject the input).

Lemma 7. Let M = (M1,M2, . . . ,Mn) be a PCRA system. Then the following

result holds:

∀i ∈ {1, . . . , n} : L(Mi) ⊆ L(M).

Proof. A PCRA system accepts an input word if and only if at least one component

reaches the accepting configuration. Thus, each input word that is accepted by

any component is also accepted by the system.

Lemma 8. Let M = (M1,M2, . . . ,Mn) be a PCRA system and let M′ = (M1,

M2, . . . ,Mn,Mn+1), that is, M′ includesM and an additional component Mn+1.

Then L(M) ∪ L(Mn+1) ⊆ L(M′).

Proof. If an input word is accepted byM or Mn+1, then it is accepted by at least

one component of M or by Mn+1. Thus, the input is accepted by at least one

component ofM′ and hence byM′. In the case that Mn+1 does not communicate

with any component of M, then L(M) ∪ L(Mn+1) coincides with L(M′). On

the other hand, if Mn+1 accepts some words only due to communications between

Mn+1 and components of M, then L(M) ∪ L(Mn+1) ⊂ L(M′) holds.

For our next consideration we will use the language of the following example.
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Example 17. The language

Lanb(2)n(+r) = {anbn | n ≥ 0} ∪ {anbm | m > 2n ≥ 0}

is accepted by the following det-mon-PC-R(2)-system Manb(2)n(+r) = (M1,M2).

Since no communication is needed, we can describe the components by their meta-

instructions:

M1 : (c| $,Accept),
(c| · a∗, aabb→ ab),

(c| ab$,Accept),

M2 : (c| · a∗, aabbb→ ab),

(c| , abbb→ b),

(c| , bb→ b),

(c| b$,Accept).

The first component just accepts the words of the first part of the language, and

the second component accepts the second part. Due to the definition, the system

accepts an input word if and only if either M1 or M2 accepts it. �

Example 17 shows that Lanb(2)n(+r) ∈ L(det-mon-PC-R(2)), and thus, it is in-

cluded in all the language classes L((det-)(mon-)PC-R(R)(W)(2)). Furthermore,

we know from [Ott06] that Lanb(2)n(+r) can in fact be accepted by a det-RWW-

automaton, but it cannot be accepted by any restarting automaton without aux-

iliary symbols. Together with Lemma 6 we can conclude the following:

Corollary 15. For all X ∈ {R,RR,RW,RRW,RL,RLW},

L(X) ⊂ L(PC-X(2)) and L(det-X) ⊂ L(det-PC-X(2)).

For restarting automata with auxiliary symbols, that is, for automata of type

RWW, RRWW, RLWW, det-RWW, det-RRWW, or det-RLWW, we have the following

results.

Theorem 22.

(a) L(RLWW) ⊆ L(PC-RLW(2)), (d) L(det-RLWW) ⊆ L(det-PC-RLW(2)),

(b) L(RRWW) ⊆ L(PC-RRW(2)), (e) L(det-RRWW) ⊆ L(det-PC-RRW(2)),

(c) L(RWW) ⊆ L(PC-RW(2)), (f) L(det-RWW) ⊆ L(det-PC-RW(2)).

Proof. Assume that the language L is accepted by an R(R)WW-automaton or det-

R(R)WW-automaton, respectively. In [NO03] it was proved by Niemann and Otto

that a language L is accepted by a (deterministic) R(R)WW-automaton if and only

if there exist a (deterministic) R(R)W-automaton M and a regular language R such

that L = L(M) ∩ R. This proof can also be applied to RLWW-automata [Ott06].

Moreover, REG is a subset of all the language classes L(det-RW), L(det-RRW),
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L(det-RLW), L(RW), L(RRW), and L(RLW) [Mrá01, Ott06]. Since all language

classes obtained from PCRA systems are closed under intersection, there exists a

PCRA system of type (det-)PC-RRW, (det-)PC-RW, or (det-)PC-RLW, respectively,

that accepts L.

Theorem 22 can be generalized as follows:

Corollary 16. For each n ≥ 2 holds:

(a) L(PC-RLWW(n)) ⊆ L(PC-RLW(n + 1)),

(b) L(PC-RRWW(n)) ⊆ L(PC-RRW(n + 1)),

(c) L(PC-RWW(n)) ⊆ L(PC-RW(n + 1)),

(d) L(det-PC-RLWW(n)) ⊆ L(det-PC-RLW(n + 1)),

(e) L(det-PC-RRWW(n)) ⊆ L(det-PC-RRW(n + 1)),

(f) L(det-PC-RWW) ⊆ L(det-PC-RW(n + 1)).

Proof. Here, we apply the proof of Theorem 3.1 of [NO03] to the components of a

PCRA system. LetM = (M1, . . . ,Mn) be a centralized system that accepts if and

only if its first component accepts, and the components of M are allowed to use

auxiliary symbols. Further, let Mi = (Qi,Σ,Γi, c| , $, qi, k, δi) for all 1 ≤ i ≤ n. We

construct a system M′ = (M ′
1, . . . ,M

′
n,Mn+1) with M ′

i = (Qi,Γi,Γi, c| , $, qi, k, δi)
for all 1 ≤ i ≤ n. Observe that each M ′

i is communicational equivalent to Mi.

Then, M ′
1 is modified such that instead of accepting the input it initiates a com-

munication with Mn+1. Finally, Mn+1 works like a finite automaton that accepts

Σ∗ and communicates with M ′
1 if and only if the input is contained in Σ∗. If

this communication step is successful, then and only then M ′
1 accepts. Thus,

L(M′) = L(M).

Theorem 23. DCFL ⊂ L(det-mon-PC-R(2)).

Proof. The inclusion follows immediately from DCFL = L(det-mon-R) [JMPV95]

and Corollary 15.

Based on the definition of the acceptance criterion for PCRA systems, we can

extend this result to finite unions and intersections of deterministic context-free

languages.

Corollary 17. Every finite union of deterministic context-free languages can be

accepted by a det-mon-PC-R-system without using communication steps.

Corollary 18. Every finite intersection of deterministic context-free languages

can be accepted by a det-mon-PC-R-system using a constant number of communi-

cation steps. Moreover, the used number of communication steps is at most the

degree of the system minus one.
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Proof. For each deterministic context-free language that takes part in the inter-

section, one component is used to check membership. Then, if the input is an

element of the first language, the first component sends a message to all the other

components. Each of the other components for which the input is an element of

the corresponding language replies to the first component. If all components reply

to the first one, then the first one accepts the input, and hence, the system accepts

the input.

Particularly, we used this for the systemsManb(2)n(+r),MGladkij, andManbncndn

accepting the languages

Lanb(2)n(+r) = {anbn | n ≥ 0} ∪ {anbm | m > 2n ≥ 0},
LGladkij = {w#wR#w | w ∈ {a, b}∗}

= {w#wR#u | w, u ∈ {a, b}∗} ∩ {u#wR#w | w, u ∈ {a, b}∗}, and

Lanbncndn = {anbncndn | n ≥ 1}
= {anbncidj | n, i, j ≥ 1} ∩ {aibncndj | n, i, j ≥ 1}∩

{aibjcndn | n, i, j ≥ 1}.

Corollary 19. The class of all finite intersections of deterministic context-free

languages is a proper subset of L(det-mon-PC-R).

Proof. The copy language Lw#w cannot be written as a finite intersection of (de-

terministic) context-free languages [Wot73]. On the other hand, we have seen in

Example 9 that this language is accepted by a det-mon-PC-R(2)-system.

Let L be a language class. The boolean closure of L is the smallest family

of languages that contains L and that is closed under (finite) union and com-

plementation [Sal73]. Thus, we have established a first lower bound for PCRA

systems, which is the boolean closure of the deterministic context-free languages.

In the next part of this section we will improve this lower bound by comparing

PCRA systems to multi-head automata and systems of parallel communicating

finite automata.

5.6.1 Comparison with multi-head automata and PC systems of finite

automata

It is already known that some particular types of restarting automata with win-

dow size one characterize exactly the set of the regular languages: R(1), RW(1),

RWW(1) (see [Mrá01]), and det-RR(1) (see [Rei07]). We want to use this fact

to compare the PC systems of finite automata with PC systems of such a sim-

ple type of restarting automata, and we will see that, although the components
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have the same computational power (accepting the regular languages), the vari-

ous approaches of communication and cooperation lead to systems with different

computational power.

The connections between the language classes characterized by multi-head au-

tomata and PCFA systems are given in Section 3. In the next theorem we put

the language classes of PCRA systems in this context. For doing so, we show by

a straightforward construction that every (deterministic) n-head automaton can

be simulated by a (deterministic) PCRA system with n components and window

size one. Moreover, there are languages accepted by det-PC-R(2,1)-systems, for

which there does not exist a (nondeterministic) one-way multi-head automaton

accepting the same language.

Theorem 24.

(a) L(1-NFA(1)) = L(PCFA(1)) = L(PC-R(1, 1))

= L(1-DFA(1)) = L(DPCFA(1)) = L(det-PC-R(1, 1)) = REG.

For all n ≥ 2,

(b) L(2-NFA(n)) ⊆ L(PC-RL(n, 1)),

(c) L(2-DFA(n)) ⊆ L(det-PC-RL(n, 1)),

(d) L(PCFA(n)) = L(1-NFA(n)) ⊂ L(PC-R(n, 1)), and

(e) L(DPCFA(n)) = L(1-DFA(n)) ⊂ L(det-PC-R(n, 1)).

Proof. Line (a) follows immediately from the equivalence of L(R(1)), L(det-R(1)),

and the class of regular languages [Mrá01, Rei07]. Statement (b) is proved by a

straightforward construction of a PC-RL(n, 1)-system from a two-way n-head au-

tomaton. Let A = (QA,Σ, n, δA, c| , $, q0, F ) be a nondeterministic two-way n-head

finite automaton. A PCRA system M = (M1,M2, . . . ,Mn) of type PC-RL(n, 1)

can simulate A as follows. The first component simulates the first head of A and

determines the transitions to be simulated, while the components M2, . . . ,Mn are

used to simulate the other n − 1 heads of A. For doing so, M1 asks M2 to Mn

for the symbols they currently read, then it determines the transition of A to

be simulated, and sends M2 to Mn the information about their head movements.

The various components of M are defined as follows. For each 2 ≤ i ≤ n, Mi =

(Qi,Σ,Σ, c| , $, q(i)0 , 1, δi), where Qi = {q(i)0 , req1, rec1−1, rec
1
1, rec

1
0} ∪ { res1a, ack1a | a ∈

Σ } and

δi(q
(i)
0 , a) = {res1a}, δi(rec

1
−1, a) = {(q(i)0 ,MVL)},

δi(ack
1
a, a) = {req1}, δi(rec

1
1, a) = {(q(i)0 ,MVR)},

δi(rec
1
0, a) = {res1a}.

for all a ∈ Σ∪ {c| , $}. The component M1 = (Q1,Σ,Σ, c| , $, req2〈q0〉, 1, δ1) is defined

as follows, where q ∈ QA and a ∈ Σ ∪ {c| , $}, and Q1 is given implicitly through
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the description of δ1:

δ1(q, a) = {req2〈q〉},
δ1(rec

2
〈q〉,c2 , a) = {req3〈q,c2〉},

δ1(rec
3
〈q,c2〉,c3, a) = {req4〈q,c2,c3〉},

...

δ1(rec
n−1
〈q,c2,c3,...,cn−2〉,cn−1

, a) = {reqn〈q,c2,...,cn−1〉},
δ1(rec

n
〈q,c2,c3,...,cn−1〉,cn , a) =

{ resn〈p,d1,d2,...,dn−1〉,dn | (p, (d1, d2, d3, . . . , dn)) ∈ δA(q, (a, c2, c3, . . . , cn)) }
∪{Accept | δA(q, (a, c2, c3, . . . , cn)) = ∅ and q ∈ F },

δ1(ack
n
〈p,d1,d2,...,dn−1〉,dn , a) = {resn−1

〈p,d1,d2,...,dn−2〉,dn−1
},

δ1(ack
n−1
〈p,d1,d2,...,dn−2〉,dn−1

, a) = {resn−2
〈p,d1,d2,...,dn−3〉,dn−2

},
...

δ1(ack
3
〈p,d1,d2〉,d3 , a) = {res2〈p,d1〉,d2},

δ1(ack
2
〈p,d1〉,d2 , a) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
{(p,MVL)}, if d1 = −1,

{req2〈p〉}, if d1 = 0,

{(p,MVR)}, if d1 = 1.

For an input word w ∈ Σ∗, the initial configuration of A is (q0c|w$, . . . , q0c|w$),

and the simulation of A by M starts with

(q
(1)
0 c|w$, q

(2)
0 c|w$, . . . , q

(n)
0 c|w$) 	M (req2〈q0〉c|w$, res1

c| c|w$, . . . , res1
c| c|w$).

A computation step of A of the form

(u1qa1v1, u2qa2v2, . . . , unqanvn) 	A (x1pb1y1, x2pb2y2, . . . , xnpbnyn)



5.6 Computational power 151

is then simulated by the following computation of M:

(u1req
2
〈q〉a1v1, u2res

1
a2a2v2, u3res

1
a3a3v3, ...

un−1res
1
an−1

an−1vn−1, unres
1
ananvn)

	M (u1rec
2
〈q〉,a2a1v1, u2ack

1
a2a2v2, u3res

1
a3a3v3, ...

un−1res
1
an−1

an−1vn−1, unres
1
ananvn)

	M (u1req
3
〈q,a2〉a1v1, u2req

1a2v2, u3res
1
a3a3v3, ...

un−1res
1
an−1

an−1vn−1, unres
1
ananvn)

	M (u1rec
3
〈q,a2〉,a3a1v1, u2req

1a2v2, u3ack
1
a3
a3v3, ...

un−1res
1
an−1

an−1vn−1, unres
1
ananvn)

...

	M (u1req
n
〈q,a2,...,an−1〉a1v1, u2req

1a2v2, u3req
1a3v3, ...

un−1req
1an−1vn−1, unres

1
ananvn)

	M (u1rec
n
〈q,a2,...,an−1〉,ana1v1, u2req

1a2v2, u3req
1a3v3, ...

un−1req
1an−1vn−1, unack

1
ananvn)

	M (u1res
n
〈p,d2,...,dn−1〉,dna1v1, u2req

1a2v2, u3req
1a3v3, ...

un−1req
1an−1vn−1, unreq

1anvn)

	M (u1ack
n
〈p,d2,...,dn−1〉,dna1v1, u2req

1a2v2, u3req
1a3v3, ...

un−1req
1an−1vn−1, unrec

1
dn
anvn)

	M (u1res
n−1
〈p,d2,...,dn−2〉,dn−1

a1v1, u2req
1a2v2, u3req

1a3v3, ...

un−1req
1an−1vn−1, xnpnbnyn)

	M (u1ack
n−1
〈p,d2,...,dn−2〉,dn−1

a1v1, u2req
1a2v2, u3req

1a3v3, ...

un−1rec
1
dn−1

an−1vn−1, xnres
1
bn
bnyn)

...

	M (u1res
2
〈p,d1〉,d2a1v1, u2req

1a2v2, x3p3b3y3, ...

xn−1res
1
bn−1

bn−1yn−1, xnres
1
bn
bnyn)

	M (u1ack
2
〈p,d1〉,d2a1v1, u2rec

1
d2
a2v2, x3res

1
b3
b3y3, ...

xn−1res
1
bn−1

bn−1yn−1, xnres
1
bn
bnyn)

	M (x1p1b1y1, x2p2b2y2, x3res
1
b3
b3y3, ...

xn−1res
1
bn−1

bn−1yn−1, xnres
1
bn
bnyn)

	M (x1req
2
〈p〉b1y1, x2res

1
b2
b2y2, x3res

1
b3
b3y3, ...

xn−1res
1
bn−1

bn−1yn−1, xnres
1
bn
bnyn),

where, for all 2 ≤ i ≤ n, pi = res1bi if di = 0, and pi = q
(i)
0 otherwise; p1 = req2〈p〉

if d1 = 0, and p1 = p otherwise; and the last computation step is only executed

if p1 = p or p2 = q
(2)
0 . Whenever A reaches an accepting configuration, that is,

A gets into a final state such that no transition is applicable anymore, then M1

can reach the accepting configuration, and therewith M can accept the input. It

follows that L(M) = L(A).
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The PCRA system M is deterministic if A is. Moreover, M consists of one-

way components only, if A is a one-way multi-head automaton. In the latter case

the inclusion is proper, as the marked mirror language Lw#wR = {w#wR | w ∈
{a, b}+ } is not accepted by any one-way multi-head automaton, but it is accepted

by the det-PC-R(2,1)-system Mw#wR that is given in the Example 18 below.

Example 18. The marked mirror language

Lw#wR = {w#wR | w ∈ {a, b}+}

is accepted by the following det-PC-R(2,1)-system Mw#wR = (M1,M2):

M1 = ({q0, q1, q2, qa, qa2, qb, qb2, qe, req, recmvr, resmvr, ackmvr, resa, resb, acka, ackb, qr,

recdel}, {a, b,#}, {a, b,#}, c| , $, q0, 1, δ1) with δ1 defined as follows:

1) δ1(q0, c| ) = (q0,MVR), δ1(q0, a) = (qa,MVR), δ1(q0, b) = (qb,MVR),

2) δ1(qa,#) = (qa2,MVR), δ1(qb,#) = (qb2,MVR),

3) δ1(qa2, a) = (qe,MVR), δ1(qb2, b) = (qe,MVR),

4) δ1(qe, $) = Accept,

5) δ1(qa, a) = δ1(qa, b) = δ1(qb, a) = δ1(qb, b) = req,

6) δ1(recmvr, a) = δ1(recmvr, b) = (q1,MVR),

7) δ1(q1, a) = δ1(q1, b) = δ1(q1,#) = resmvr,

8) δ1(ackmvr, a) = δ1(ackmvr, b) = (q1,MVR),

9) δ1(ackmvr,#) = (q2,MVR),

10) δ1(q2, a) = resa, δ1(q2, b) = resb,

11) δ1(acka, a) = δ1(ackb, b) = (qr, ε),

12) δ1(qr, a) = δ1(qr, b) = δ1(qr,#) = Restart,

13) δ1(recdel, a) = δ1(recdel, b) = (qr, ε),

M2 = ({q0, q1, qr, resmvr, ackmvr, recmvr, req, reca, recb, resdel, ackdel}, {a, b,#}, {a, b,#},
c| , $, q0, 1, δ2), where δ2 is defined as follows:

14) δ2(q0, c| ) = (q0,MVR),

15) δ2(q0, a) = δ2(q0, b) = resmvr,

16) δ2(ackmvr, a) = δ2(ackmvr, b) = req,

17) δ2(recmvr, a) = δ2(recmvr, b) = (q1,MVR),

18) δ2(q1, a) = δ2(q1, b) = req,

19) δ2(reca, a) = δ2(recb, b) = resdel,

20) δ2(ackdel, a) = δ2(ackdel, b) = (qr, ε),

21) δ2(qr, a) = δ2(qr, b) = δ2(qr,#) = Restart.

The behaviour of the system Mw#wR is described as follows, where the numbers

in brackets correspond to the transitions used.
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1. Initially M1 moves the window two steps to the right, storing the first symbol

to the right of the c| -symbol within its internal control (1). The automaton

M2 moves the window initially one step to the right (14). Now, the window

of M1 is exactly one position further to the right as the window of M2.

2. If the second symbol to the right of the c| -symbol is the #-symbol, then M1

checks whether the tape content is of the form c| a#a$ or c| b#b$. In the

affirmative M1 accepts (2-4).

3. If the second symbol to the right of the c| -symbol is not the #-symbol, then

both windows move right stepwise and synchronously until M1 reads the

#-symbol (5-8 and 15-18). The window of M2 is now exactly on the last

symbol to the left of #.

4. Then, M1 moves across the # (9), reads the first symbol of the second

syllable, and sends it to M2 (10). So M1 and M2 can compare the symbols

positioned directly before and behind the #-symbol. If both symbols are

different, then M2 gets stuck, and M1 cannot accept anymore (as we will see

later). If both symbols are equal, then M2 sends a message to M1 saying

that M1 now has to delete one symbol of the first syllable (19).

5. After comparing the two symbols positioned directly before and behind the

#-symbol, M1 deletes the first symbol of the second syllable (11), applies

a restart operation (12), moves the window again two steps to the right

(1), deletes the current symbol from the tape (5, 13), and applies one more

restart. Meanwhile M2 deletes the symbol to the left of # and applies a

restart operation (20, 21). Now the computation is repeated from the first

step.

Observe that M2 never reads or changes the second syllable, and the window of

M2 never moves across the #-symbol. On the other hand, M1 not only works on

the second syllable during the comparison, but it shortens the first syllable as well,

so that the leftmost syllables of both, M1 and M2, have the same length. This is

important for counting the number of MVR steps, so that the window of M2 is

positioned exactly one position before #. For that, M1 deletes the second symbol

of the first syllable after each comparison. Thus, the first symbol of the first

syllable remains unchanged and can therefore be used in the last cycle, where M1

compares this symbol with the last symbol of the second syllable. A computation

of Mw#wR for the input word ab#ba looks as follows:
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(q0c| ab#ba$, q0c| ab#ba$)

	M (c| q0ab#ba$, c| q0ab#ba$)

	M (c| aqab#ba$, c| resmvrab#ba$)

	M (c| areqb#ba$, c| resmvrab#ba$)

	M (c| arecmvrb#ba$, c| ackmvrab#ba$)

	M (c| abq1#ba$, c| reqab#ba$)

	M (c| abresmvr#ba$, c| reqab#ba$)

	M (c| abackmvr#ba$, c| recmvrab#ba$)

	M (c| ab#q2ba$, c| aq1b#ba$)

	M (c| ab#resbba$, c| areqb#ba$)

	M (c| ab#ackbba$, c| arecbb#ba$)

	M (c| ab#qra$, c| aresdelb#ba$)

	M (q0c| ab#a$, c| aresdelb#ba$)

	M (c| q0ab#a$, c| aresdelb#ba$)

	M (c| aqab#a$, c| aresdelb#ba$)

	M (c| areqb#a$, c| aresdelb#ba$)

	M (c| arecdelb#a$, c| aackdelb#ba$)

	M (c| aqr#a$, c| aqr#ba$)

	M (q0c| a#a$, q0c| a#ba$)

	M (c| q0a#a$, c| q0a#ba$)

	M (c| aqa#a$, c| resmvra#ba$)

	M (c| a#qa2a$, c| resmvra#ba$)

	M (c| a#aqe$, c| resmvra#ba$)

	M (Accept, c| resmvra#ba$)

�

From Theorem 24 we obtain the following lower bounds for one-way and two-

way PCRA systems.

Corollary 20. NL ⊆ L(PC-RL) and L ⊆ L(det-PC-RL).

5.6.2 CSL is an upper bound for PCRA systems

Even in PC systems of restarting automata the working space is linearly restricted,

that is, if a system has n components and the input is of length l, then the available

space is l ·n. Thus, an upper bound for the computational power of PCRA systems

is the class of all context-sensitive languages.

Corollary 21. L(PC-RLWW) ⊆ CSL.

Proof. Let M be a PC-RLWW-system of degree n. An LBA P that simulates M
uses one tape with n tracks. Any local operation of the components can easily

be simulated sequentially, and the erased cells of the tape can be marked with a

special symbol. The LBA P works like a product automaton, and the finite control

of P simulates the finite controls of the components. Thus, a communication step

in M is just a change of state for P .

It is one of the most interesting open questions whether the inclusion of Corollary

21 is proper.

5.6.3 Systems of shrinking restarting automata

Usually, a rewrite step of a restarting automaton has to be length-reducing. This

means that, for each rewrite transition (q, v) ∈ δ(p, u), |v| < |u| must hold. A



5.6 Computational power 155

shrinking restarting automaton is a generalization of the usual restarting automa-

ton, where the rewrite step does not necessarily have to be length-reducing but

weight-reducing. Shrinking restarting automata are introduced in [JO05] and con-

sidered in more detail in [JO07].

Here, a weight function ω assigns a positive integer to each symbol of the tape

alphabet:

ω : Γ→ N
+.

It is extended to words such that ω(ε) = 0 and ω(ax) = ω(a) +ω(x), where a ∈ Γ

and x ∈ Γ∗. Since the sentinels c| and $ are not allowed to be removed or to

appear more than once on the tape, they do not influence the weight of the tape

content. Now, a restarting automaton M is called shrinking, if there exists such

a weight function ω such that, for each rewrite transition (q, v) ∈ δ(p, u) of M ,

ω(v) < ω(u). Weight functions that satisfy this condition are called compatible

with M . Moreover, let # be a new tape symbol, # /∈ Γ. Then we define a

homomorphism rω : Γ→ (Γ∪{#})∗ by rω(a) = a#ω(a)−1 for all a ∈ Γ and extend

it to words by rω(ε) = ε and rω(ax) = rω(a)rω(x). It holds that |rω(u)| = ω(u)

for all u ∈ Γ∗.

Now, we consider systems of shrinking restarting automata. Let M = (M1,

M2, . . . ,Mn) be a system of shrinking restarting automata. The weight functions

of the components are denoted by ω(i), 1 ≤ i ≤ n, and the corresponding homo-

morphisms are denoted by r
(i)
ω . Systems of (deterministic) shrinking restarting au-

tomata of type X ∈ T are called of type (det-)PC-sX. The corresponding language

classes are denoted by L((det-)PC-sX). The next theorem shows that systems

of shrinking restarting automata have the same computational power as systems

of length-reducing restarting automata. For this, the methods of the proofs of

Theorem 19, Theorem 20, and Lemma 1 of [JO07] are combined.

Theorem 25. For all X ∈ {RWW,RRWW,RLWW}, L(det-PC-sX) = L(det-PC-X)

and L(PC-sX) = L(PC-X).

Proof. Let M = (M1,M2, . . . ,Mn) be a system of type (det-)PC-sX, X ∈ {RWW,

RRWW,RLWW}, and let Mi = (Qi,Σ,Γi, c| , $, qi, ki, δi). Further, let ω(1), ω(2), . . . ,

ω(n) be weight functions such that ω(i) is compatible with Mi, and let ω
(i)
max =

max{ω(i)(a) | a ∈ Γi} for all 1 ≤ i ≤ n. We construct a system

M′ = (M0,M1,1, . . . ,M1,ω
(1)
max+1

, . . . ,Mn,1, . . . ,Mn,ω
(n)
max+1

)

that behaves as follows. The components Mi,1, . . . ,Mi,ω
(i)
max+1

form a subsystem

Mi for all 1 ≤ i ≤ n in the same way as we have already seen in the proofs of the

closure under homomorphisms (see Theorems 19 and 20). Now, M′ works in two
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phases: translation and simulation. In the first phase, M0 reads the first symbol

a ∈ Σ of the input directly to the right of the c| -symbol, communicates it to all

subsystems M′
1, . . . ,M′

n, deletes it, and performs a restart step. The subsystems

receive this symbol and translate it into r
(i)
ω (a), which they write on their tapes

to the right of the previously written translations. Afterwards, the subsystems

execute a restart operation and request the next input symbol from M0.

When M0 has processed the whole input, then it sends messages to all sub-

systems in order to start with the simulation phase. Receiving such a message,

subsystem Mi simulates the original component Mi, 1 ≤ i ≤ n. For this, the

window size of the components of subsystem Mi is kiω
(i)
max + 1. At the beginning

of the simulation phase, the tape content of subsystem Mi is r
(i)
ω (w) for an input

word w. Whenever Mi reads u and moves its window one step to the left (right),

Mi reads r
(i)
ω (u) and moves the window ω(i)(u) steps to the left (right). If Mi

rewrites u by v, then Mi rewrites r
(i)
ω (u) by r

(i)
ω (v). In the cases that Mi reads

u and performs a restart, a communication, or an accept step, Mi performs the

same steps while reading r
(i)
ω (u).

Thus, Mi accepts input w inM′ if and only if Mi accepts it inM. Moreover,

if M is deterministic, then M′ is deterministic, too. Finally, since each length

reducing restarting automaton is a special case of shrinking restarting automata, it

results that L((det-)PC-sX) = L((det-)PC-X) for all X ∈ {RWW,RRWW,RLWW},
which completes the proof.
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5.7 Decidability

In this section some typical decision problems are investigated for language classes

of PCRA systems. It will be shown that even for weak types of these systems,

many of the known problems are undecidable.

In [Har67] Hartmanis used the language of valid computations of Turing ma-

chines to show some undecidability results for context-free languages in a quite

short way (see also [HU79]). Now, this technique is shortly introduced and used

for showing some first undecidability results for PCRA systems.

First, we describe formally the model of the Turing machine and the notation of

a valid computation. Since it is well-known that the classes of languages accepted

by deterministic and nondeterministic Turing machines coincide, we limit ourselves

to the deterministic variant. A deterministic Turing machine T is a 7-tuple T =

(Q,Σ,Γ, δ, q0,�, F ), where

• Q is a non-empty finite set of states,

• Σ ⊂ Γ is a non-empty finite input alphabet,

• Γ is a non-empty finite tape alphabet,

• q0 ∈ Q is the initial state with q0 /∈ F ,

• � ∈ (Γ \Σ) is the blank symbol that indicates an empty cell of the working

tape,

• F ⊂ Q is a set of final states not containing q0, and

• δ is the transition mapping from Q×Γ into Q×Γ×{L,N,R}, where L, N ,

and R denote the directions for moving the read/write head (left, no move,

right).

For later considerations we assume without loss of generality that the sets Q and

Γ are disjoint. A configuration of a Turing machine is a string uaqbv, where

u, v ∈ (Γ \ {�})∗, a, b ∈ Γ, and q ∈ Q. It specifies that the current tape content is

uabv, the current state is q, and the head is placed on the b (so that b is currently

read by the head). Since it is known that Turing machines with a one-way infinite

tape have the same computational power as Turing machines with a two-way

infinite tape, we restrict ourselves to the former one, that is, T is not allowed to

perform a move left step when reading the left-most symbol. Furthermore, we

require that T may not write the blank symbol. If the head is at the left-hand end

of the tape, then the configuration is �qbv. If it has reached the right-hand end

of the already scanned part of the tape, then the configuration is uaq�. These
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two situations are the only ones, where a and b could be the blank symbol, thus,

if a = � (b = �), then u = ε (v = ε).

For an input w ∈ Σ∗, the initial configuration is �q0w, whenever w 
= ε,

otherwise, it is �q0�. A final configuration is of the form uqv, where either u = �
or u ∈ (Γ \ {�})+, q is a final state, and either v = � or v ∈ (Γ \ {�})+. A

computation step of a Turing machine T is denoted by w1 	T w2, where w1 and

w2 are configurations such that one of the following conditions holds for some

u, v ∈ (Γ \ {�})∗, a, b ∈ Γ, c ∈ Γ \ {�} , and p, q ∈ Q:

1. w1 = uapbv, w2 = uqacv, u 
= ε, a 
= �, and δ(p, b) = (q, c, L);

2. w1 = apbv, w2 = �qacv, a 
= �, and δ(p, b) = (q, c, L);

3. w1 = uapbv, w2 = uaqcv, and δ(p, b) = (q, c, N);

4. w1 = uapbv, w2 = uacqv, a 
= �, v 
= ε, and δ(p, b) = (q, c, R);

5. w1 = uapb, w2 = uacq�, a 
= �, and δ(p, b) = (q, c, R);

6. w1 = �pbv, w2 = cqv, v 
= ε, and δ(p, b) = (q, c, R); or

7. w1 = �pb, w2 = cq�, and δ(p, b) = (q, c, R).

Observe that according to the first and the second item no move left step is allowed

for a = �, since the left-hand end of the tape has been reached.

The reflexive and transitive closure of 	T is denoted by 	∗T . A sequence of

computation steps is called a computation of T and it holds that w1 	∗T w2 if and

only if there exists a computation of T from w1 to w2. Then we can define the

language over an alphabet Σ that is accepted by the Turing machine T :

L(T ) = {w ∈ Σ∗ | �q0w 	∗T w′ (for w 
= ε) or �q0� 	∗T w′ (for w = ε),

where w′ is a final configuration}.
A computation that starts with an initial configuration and ends with a final con-

figuration is called a valid computation. Based on [Har67] we assume that each

valid computation consists of an even number of computation steps. That means

that the Turing machine T is only allowed to accept an input after processing an

even number of computation steps. For a later purpose we write a valid compu-

tation in the form

w0#wR
1 #w2#wR

3 # . . .#wR
r−1#wr#

for an even r, where ·R is the reversal operation, that is, (a1a2 . . . an)R = an . . . a2a1

for any string a1a2 . . . an. Now, the set

V C(T ) = {z | z is a valid computation}
= {z | ∃r > 1 : z = w0#wR

1 #w2#wR
3 # . . .#wR

r−1#wr#,

r is even, and ∀0 ≤ i < r : wi 	T wi+1}
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is called the language of all valid computations of the Turing machine T .

Lemma 9. V C(T ) ∈ L(det-mon-PC-R(2)). The language of all valid computa-

tions of a Turing machine T can be accepted by a det-mon-PC-R-system with two

components and window size 7.

Proof. A PCRA systemM that accepts the language V C(T ) for a Turing machine

T consists of two components M1 and M2. The first component checks whether,

for all configurations wi with an even index i, the configuration wi+1 is a valid

successor configuration (that is, whether wi 	T wi+1 holds). According to the above

defined possible forms of a computation step of a Turing machine, the encoding

of a valid computation step is as follows (here δT is the transition mapping of T ):

1. uapbv#vRcaquR with u 
= ε, a 
= �, and δT (p, b) = (q, c, L);

2. apbv#vRcaq� with a 
= � and δT (p, b) = (q, c, L);

3. uapbv#vRcqauR with δT (p, b) = (q, c, N);

4. uapbv#vRqcauR with a 
= �, v 
= ε, and δT (p, b) = (q, c, R);

5. uapb#�qcauR with a 
= � and δT (p, b) = (q, c, R);

6. �pbv#vRqc with v 
= ε and δT (p, b) = (q, c, R); or

7. �pb#�qc with δT (p, b) = (q, c, R).

Whether wi 	T wi+1, wi#wR
i+1 respectively, holds for two configurations wi and

wi+1, can be checked quite similar like testing whether a word is included in the

language {w#wR | w ∈ {a, b}∗}, which is known to be deterministic context-free,

and hence, which is accepted by a det-mon-R-automaton (see [Ott06]). First, the

window moves right until a free #-symbol appears in the middle of the window.

‘Free’ means that the symbol positioned directly to the left of # is not c| or #

and the symbol to the right of # is not $. Then the component checks whether

the string to the left of # is of the form apb and in the affirmative whether the

string to the right of # matches with a corresponding transition of T . To check

this in one step, a window of size 7 is needed: three symbols to the left of #, the

# itself, and three symbols to the right of #. If there exists no transition that

causes this computation step, then M1 halts and rejects. If the string to the left

of # is not of the form apb, the component checks whether the symbols positioned

directly before and behind the # are identical working tape symbols of T . If

one of the two described cases holds, the component replaces the checked string

with # and restarts, otherwise it halts and rejects. This is repeated until only

# is left from wi#wR
i+1. If w0#wR

1 , w2#wR
3 , . . . , wi#wR

i+1 are encodings of valid
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computation steps of T , then the content of M1’s tape now begins with c|#i+2, and

the remaining computation steps are processed in the same manner until there is

no free #-symbol left.

The second component M2 works similar to M1 except that it checks for all

configurations wj with an odd index j if wj+1 is a valid successor configuration.

Therefore, M2 always reads over the first configuration w0 in each cycle to move

to the second free #-symbol, and thereby it checks whether w0 is an inital config-

uration of T , that is, if w0 = �q0� or w0 = �q0v for a v ∈ Σ+. If it is not, then

M2 halts.

Together, M1 and M2 verify each computation step of the given input. If this

was successful, it remains to check whether the last configuration wr is a final

configuration of T . We assumed that each valid computation of T consists of an

even number of computation steps. Thus, c|#rwr#$ remains on the tape of M1

after checking the computation steps, and while searching for the next applicable

#, M1 reaches the end of the tape, where it reads a#$ for a symbol a not equal to

#. While a is not a state of T and not equal to #, a#$ is replaced by #$ followed

by a restart. If q#$ is reached for some final state q, then a communication

between both components takes place. Reading some non-final state or the #-

symbol, then M1 gets stuck. The component M2 changes into a corresponding

communication state if it reads ##$ at the end of the tape after checking all

computation steps.

Hence, if the input string is a valid computation of T , then both components

reach the according communication states, the communication can be resolved,

and M1, and therefore the whole system M, accepts. Since T is a deterministic

Turing machine, M1 and M2, and hence the system M, are deterministic.

At last there are several reasons why an input is not a valid computation of

T , e.g.: 1) the #-symbol is not used in a correct way (no free #), 2) a wi is not a

valid configuration for some i (including no or more than one states), 3) wi#wR
i+1

is not a valid computation step, or 4) the first and the last configuration are not

an initial configuration and a final configuration, respectively. Then, depending

on the location where the error appears, M1 or M2 gets stuck during the computa-

tion, the final communication does not happen, M1 does not reach the accepting

configuration, and M rejects the input.

It follows from Theorem 15 that the complement of V C(T ), namely V C(T ), is

also accepted by a det-mon-PC-R-system. Moreover, we can easily argument that

only two components suffice for this, too.

Corollary 22. V C(T ) ∈ L(det-mon-PC-R(2)).
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Proof. To construct a det-mon-PC-R(2)-systemM′ = (M ′
1,M

′
2) that accepts V C(T )

we modify the system M = (M1,M2) that accepts V C(T ) from the proof of

Lemma 9 as follows: 1) delete any transition of M1 that maps into Accept (M2

does not have such transitions), 2) add accepting transitions to M1 and M2 for

each non-defined situation except those situations, where M2 is in a communi-

cation state. Thus, if M accepts, then M1 accepts, and therefore, M ′
1, M

′
2, and

M′ do not accept. If M does not accept, then M1 or M2 (or both) do not reach

the final communication, because they got stuck somewhere. Hence, M ′
1 or M ′

2,

and therefore M′, accept. In particular, M and therefore M′ cannot reach a

communication loop (at most one communication can be executed) or a loop in

their local computation (no MVL or SCO steps are used). All in all, M′ accepts

V C(T ), and thus, V C(T ) ∈ L(det-mon-PC-R(2)).

Now we can use the languages V C(T ), V C(T ), and the fact that they are

accepted by det-mon-PC-R(2)-systems to prove some undecidability results for the

language class L(det-mon-PC-R).

Theorem 26 (Undecidabilities). Let M1 and M2 be two arbitrary det-mon-

PC-R-systems with input alphabet Σ, and let R be a regular language. Then, the

following problems are undecidable:

1. L(M1) = ∅?

2. L(M1) = Σ∗?

3. L(M1) = L(M2)?

4. L(M1) ⊆ L(M2)?

5. R = L(M1)?

6. R ⊆ L(M1)?

7. Is L(M1) finite?

Proof. Let T = (Q,ΣT ,Γ, δ, q0, B, F ) be an arbitrary (deterministic) Turing ma-

chine. Then L(T ) is empty for a Turing machine T if and only if there exists no

valid computation for T , that is,

L(T ) = ∅ ⇔ V C(T ) = ∅ ⇔ V C(T ) = (Q ∪̇Γ ∪̇ {#})∗.

1. The first result follows immediately from the well-known fact that the empti-

ness problem for recursively enumerable languages is undecidable.
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2. Assume that this problem is decidable. Then it could be decided whether,

for a system M with L(M) = V C(T ), L(M) = Σ∗ or not. Because of

the equivalences above, the emptiness problem for Turing machines could

then be decided. This is a contradiction, since the emptiness problem is not

decidable for Turing machines.

3. Assume that this is decidable. Then we construct the system M2 so that

L(M2) = ∅ and decide whether L(M1) = L(M2) = ∅. This contradicts 1.

4. If this was decidable, then we could decide whether both L(M1) ⊆ L(M2)

and L(M2) ⊆ L(M1) hold. Thus, we could decide L(M1) = L(M2) which

contradicts 3.

5. Take R = ∅ and prove this by reduction from 1.

6. Take R = Σ∗ and prove this by reduction from 2.

7. Let this be decidable. Then it would in particular be decidable whether

V C(T ) is finite for an arbitrary deterministic Turing machine T . Since for

every word w ∈ L(T ) there exists exactly one computation of a deterministic

Turing machine, it holds that V C(T ) is finite if and only if L(T ) is finite.

Thus, the question of whether a language accepted by an arbitrary determin-

istic Turing machine is finite, would be decidable. This is a contradiction,

as it is well-known that it is undecidable whether a language accepted by a

(deterministic) Turing machine is finite or not. Hence, this problem cannot

be decidable for det-mon-PC-R-systems, either.

Observe that all the questions of Theorem 26 are not even semi-decidable, since

the emptiness problem is known to be not semi-decidable for Turing machines.

Corollary 23. Theorem 26 also holds for (det-)(mon-)PC-R(R)(W)(W)-systems.

Proof. L(det-mon-PC-R) is a subset of all the language classes characterized by

these systems. Hence, Lemma 9 and with this Theorem 26 as well can be directly

applied to (det-)(mon-)PC-R(R)(W)(W)-systems.

Another important decision question is the membership problem. For any given

PC-RLWW-system M and any input word w, the question ‘Does M accept w?’

should be answered with yes or no. Although we know that the space used by our

PCRA systems is linearly bounded, and this implies an exponential time-bound

[Pap94], we give a more detailed proof for the decidability of the word problem

in exponential time, using the same typical combinatorial argument as for linear

bounded automata (see e.g. [Sip06]).
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Theorem 27 (Membership problem). LetM be an arbitrary PC-RLWW-sys-

tem and w an input word. Then it is decidable in exponential time whether w is

in L(M) or not.

Proof. Here we can use a combinatorial argument. For s = |Q| states, t = |Γ|
tape symbols, and a length l of the tape content excluding c| and $, there exist

s · tl · (l + 2) different configurations a component can be in. Concerning the

shortening of the tape, there are at most

r =

l∑
i=0

(s · ti · (i + 2))

different configurations a component can reach during a computation. If we as-

sume that s and t are the maximal numbers of states and tape symbols over all

components, then there exist at most rn different configurations for a computation

of a system of degree n. Therefore, each computation

K0 	∗M K

that is longer than rn−1 steps must contain a loop, where at least one configuration

is passed twice:

K0 	∗M K ′ 	∗M K ′ 	∗M K.

But in this case there exists a computation without the loop and hence shorter

than rn. So, for each word w ∈ L(M), there exists an accepting computation with

at most rn − 1 computation steps. To decide whether M accepts the input, all

(finitely many) possible computations that are shorter than rn can be tested.

From [JLNO04] we know that there exists a single RWW-automaton accepting

the NP-complete language L3SAT . Therefore, we can conclude the following: if

the membership problem for R(R)WW-automata is solvable in polynomial time,

then the equality
”
P=NP“ holds, which is still an open problem. Thus, it seems

improbable that this decision problem can be solved in polynomial time for PC-

R(R)WW-systems and PC-RLWW-systems.

Theorem 28 (Membership problem for deterministic systems). LetM be

an arbitrary det-PC-RLWW-system and w an input word. Then, it is decidable in

quadratic time whether w is in L(M) or not.

Proof. A computation of a single deterministic7 one-way restarting automaton

without SCO transitions takes at most about l2 steps for an input w of length l.

7This holds as well for a shortest accepting computation of a single nondeterministic automa-
ton.
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Due to the length reducing property in each cycle at least one symbol has to be

deleted, and thus, a computation can include at most l cycles. When c| a1a2 . . . ar$
is the content of the tape, then the maximal length of a cycle is r + 2 steps:

↓
c| a1a2 . . . ar$

after r−−−−−−→
MVR-steps

↓
c| a1a2 . . .ar$

rewrite−−−−→
↓

c| a1a2 . . . ar−1$

restart−−−−→
↓
c| a1a2 . . . ar−1$.

The downward arrows mark the positions of the window. Of course, the rewrite

step has not to be performed at the end of the tape, but could be done anywhere

on the tape as long as the c| -symbol and the $-symbol are not removed. Since

we are interested in the longest possible accepting computation for a given input

word, we assume that only one symbol is removed in the rewrite step, although

in general k symbols can be removed with a window of size k. If r = 0 (c| $ is the

tape content), then this is a tail of the computation, and at most two steps can

be done, one MVR step and an accepting step. All in all for the length s of any

computation of a single one-way restarting automaton without SCO transitions it

holds that

s ≤
l∑

r=0

(r + 2) = 2(l + 1) +

l∑
r=1

r =
l2 + 5l + 4

2
.

For deterministic one-way restarting automata with SCO transitions and for de-

terministic two-way restarting automata, there exist |Q| · (r + 2) many different

configurations for a set of states Q and a tape content of length r (excluding c|
and $). Thus, in each cycle the automaton can execute at most |Q| · (r + 2)− 1

computation steps without reaching a loop. Moreover, the restart step has to be

added. For the whole computation of the automaton we then have

s ≤
l∑

r=0

|Q|(r + 2) = |Q| l
2 + 5l + 4

2
.

With this inequation we also have an upper bound for the maximum number

of different configurations that can be reached by a component within a system.

In the further considerations we are interested in the largest such s over all com-

ponents, that is,

s ≤
(

max
1≤i≤n

|Qi|
)

l2 + 5l + 4

2
,

where Qi is the set of states of the i-th component. Moreover, the length of

an accepting computation of the system is the length of the shortest accepting

computation of any component. Indeed, this length is not only determined by

the number of local computation steps but also by the number of communication

steps. Observe that the length of the computation of a component can be longer

than the number of different configurations it can reach. This stems from the fact
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that a component may have to wait in a communication situation, where it keeps

the current configuration, while the computation of the system goes on. Thus,

besides the number of local computation steps, we have to consider two more

factors due to communication: 1) the degree of parallelism and 2) the number of

communication steps.

The degree of parallelism can be seen as a measure for the number of local

computation steps that are executed in parallel. We would expect that a high

degree of parallelism results in a shorter computation of the system than a lower

degree of parallelism and a more sequential computation. In fact, the degree of

parallelism is closely related to the number of waiting steps of the components

(computation steps of the form κ 	 κ). Consider the following two extremes. If no

communication takes place during the whole computation, then all components

work in parallel, and the length of the computation of the system is at most s. On

the other hand, if the communication leads to a highly sequential computation,

that is, there is only one working component at a point of time, and all other

components are waiting for communication answers, then the length of the com-

putation is at most n · s plus the number of communication steps, where n is the

degree of the system.

The number of different configurations containing a communication state is

|COM(M)| for a component M with a fixed window content and window position.

If we fix the content of all tapes and the positions of all windows, then we obtain

t = |COM(M1)| · |COM(M2)| · . . . · |COM(Mn)| =
n∏

i=1

|COM(Mi)|

different system configurations containing only communication states. Thus, we

know that if a system executes more than t communication steps without any local

step of any component in between, then the system reaches a previous configu-

ration twice, and therefore, it is in a communication loop. Hence, after at most

t communication steps at least one local computation step must follow in each

accepting computation.

To summarize, the length of an accepting computation of a det-PC-RLWW-

system of degree n for a given input word of length l is at most t · n · s ∈ O(l2).

To decide whether a deterministic system accepts a particular input or not, the

system only has to be simulated on the input for at most t · n · s computation

steps. If the system has not halted, then it is either in a communication loop or

in a loop of a local computation caused by SCO steps or the combination of MVR

and MVL steps. In this case it does not accept the input.
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The aim of this thesis was to combine the model of the restarting automaton with

the notion of parallel communicating systems and to investigate various properties

of the resulting systems, e.g. properties of the communication structure, closure

properties, computational power, and decidability questions. For this, parallel

communicating restarting automata systems were defined, and several examples

were given. Then, it was shown that centralized systems are as powerful as non-

centralized systems for each type of restarting automaton as components. This

result differs from those for other parallel communicating automata and grammar

systems, where centralization decreases the computational power in various cases.

Afterwards, the nonforgetting property was considered, and it was shown that

this property does not yield an increase in computational power in contrast to

the situation for individual restarting automata. Additionally, closure properties

of language classes of these systems were established, and it emerged that the

considered language classes are somehow robust in the sense that they are closed

under most of the usual operations. Three of the language classes, namely L(PC-

RWW), L(PC-RRWW), and L(PC-RLWW) are so-called AFLs (abstract families of

languages).

Further, the computational power of PCRA systems was investigated and com-

pared with those of individual restarting automata, with those of parallel commu-

nicating finite automata systems, with those of one-way and two-way multi-head

finite automata, with language classes of the Chomsky-hierarchy, and with other

well-known language classes. It turned out that even PCRA systems of the weak-

est type, i.e. PC-R-systems with two components, are more powerful than the

individual automata in the case of restarting automata without auxiliary sym-

bols. Individual restarting automata with auxiliary symbols can be simulated by

PCRA systems with two components of the same type without auxiliary symbols.

This result was generalized in the following way: each PCRA system with n com-

ponents and with auxiliary symbols can be simulated by a PCRA system with

n + 1 components and without auxiliary symbols. Moreover, it was shown that

systems of PC-R-automata with window size one are strictly more powerful than

one-way multi-head finite automata, and thus, than PCFA systems, although the

components for themselves have the same computational power, i.e. they accept

the regular languages. The comparison with two-way multi-head finite automata

leads to the lower bounds L and NL for deterministic and nondeterministic PCRA

167
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systems with the weakest two-way components, i.e. RL-automata. An upper bound

for all types of PCRA systems is clearly CSL. For systems of shrinking restart-

ing automata it could be shown that they have the same computational power as

systems of length-reducing restarting automata.

Then, decidability questions were considered for PCRA systems, and unfor-

tunately, it turned out that most of the interesting problems are undecidable

even for systems of two components of the weakest type, i.e. det-PC-R(2)-systems:

emptiness, universality, finiteness, containment, and equality (even with a regular

language). The membership problem is decidable in quadratic time for determin-

istic systems and in exponential time for nondeterministic systems.

Although interesting results were established in this work, a lot of open ques-

tions and approaches for further research are left. For example, we could not find

any language that cannot be accepted by a PCRA system. This may result from

the fact that already systems with few weak components can accept quite compli-

cated languages that are not even growing context sensitive (like the copy language

or the Gladkij language) and not even semi-linear (e.g. exponential language). In

this context it would also be interesting to know whether there exist strict hierar-

chies with respect to the number of components for the different types of PCRA

systems or whether there is a fixpoint such that more components do not yield

an increase in computational power. Maybe the following language representation

can be helpful to show such an infinite hierarchy at least for weak types of PCRA

systems: consider alphabets of the form

Σr =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝
x1

x2

...

xr

⎞
⎟⎟⎟⎟⎠ | xi ∈ {a, b} for all i = 1, . . . , r

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

and the Dyck language D, which consists of all words over the alphabet {a, b}
that can be generated by the rules S → ε | SS | aSb of a context-free grammar.

Now, we define the following languages:

Lr =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝
w1

w2

...

wr

⎞
⎟⎟⎟⎟⎠ ∈ Σ∗

r | wi ∈ D for all i = 1, . . . , r

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

where the concatenation of two vectors is intuitively the componentwise concate-

nation. The language Lr can in fact be accepted by a PCRA system of degree

r and of any type, since Lr is a finite intersection of deterministic context-free
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languages for any r. The assumption is that Lr cannot be accepted by any PCRA

system with r − 1 components at least without auxiliary symbols. Whenever a

component begins to try to check whether an entry of the input vector is contained

in D, then it must rewrite some infix ab (of the corresponding entry of the vector).

But then it changes the other entries, and it cannot check anymore whether any

of the other vector entries are words of D or not. Thus, each component can check

at most one entry of a vector.

Moreover, the closure of some language classes characterized by PCRA systems

under some operations is still open, e.g. product, Kleene closure, positive closure,

and non-erasing homomorphisms for deterministic two-way components. We can

expect that some more negative results can be achieved in this context when we

have more knowledge about languages that cannot be accepted by PCRA systems

of a special type.

Another open question is, on the one hand, whether systems of the most gen-

eral type, i.e. PC-RLWW-systems, are strictly more powerful than the individual

automata, and, on the other hand, whether L(PC-RLWW) is properly included

within the class of context-sensitive languages. Particularly, this is an interesting

question, since it is not even known whether L(RLWW) is a proper subset of CSL

or not.

Comparing det-PC-R-systems in which each component has window size one

with PCFA systems, the former ones are strictly more powerful than the latter

ones, although the individual components (det-R-automata with window size one

vs. finite automata) have the same computational power, i.e. they recognize the

regular languages. Thus, it seems that the communication protocol of PCRA sys-

tems is somehow stronger than that of PCFA systems. Therefore, it would be

interesting to know what happens if one carries over our communication protocol

to systems of finite automata. Surprisingly, we can assume that a nonsynchro-

nized PC system of finite automata, which communicate by request and response

states, can be simulated by a multi-head finite automaton and vice versa. Hence,

both different communication protocols lead to the same computational power for

PC systems of finite automata. For PC systems of pushdown automata a similar

communication protocol was applied in [Ott13]. There asynchronous PC systems

of pushdown automata are considered that use request symbols as particular push-

down symbols. It turns out that the computational power of these systems differs

from that of the original PCPA systems.

Most of the typical decision problems were shown to be undecidable even for

the weakest PCRA systems. Hence, it seems reasonable to consider more restricted

variants, e.g. systems with a restricted number of communications within a cycle

or within the computation, a restricted window size, etc. However, a counter-
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argument for this is that some of the typical problems are not even decidable for

(still weaker) DRCPCFA-systems (that are the weakest PCFA systems). Consid-

ering the examples in the context of restricted communication, one can observe

that for some languages only a constant number of communications was sufficient

(e.g. Gladkij language), while for other languages linearly many communication

steps were needed (e.g. copy language).

Moreover, in many proofs the constructed systems consist of more components

than the underlying systems. Here the question arises whether the results also

hold without increasing the number of components. In this context, results on the

previously mentioned hierarchy could be helpful.

Another direction for further investigation is the question of how are languages

accepted by PCRA systems instead of what languages can be accepted. On the one

hand, this leads to the research field of derivation languages (also called Szilard

languages) that are of importance within linguistic topics. On the other hand,

this may give some results about the efficiency of PCRA systems, asking how

many computation steps are needed to accept specific languages. Moreover, this

can be compared with other formal language devices. Consider, for instance, the

copy language with middle marker. A linear bounded automaton needs at least

quadratically many computation steps to accept this language (according to the

length of the input word), whereas the defined PCRA system only needs linearly

many steps.

When defining the PCRA systems, a communication protocol was chosen that

differs from those of other PC systems in the sense that there is no implicit syn-

chronisation (no global clock), and the components work absolutely independently

of each other between two communication steps. Therefore, these systems are ap-

propriate for distributed and concurrent applications. It should be investigated

whether the basic linguistic motivation (analysis by reduction) can be extended

in a parallel and distributed manner (e.g. checking several syntactic properties in

parallel).

A more theoretical application of PCRA systems is the characterization of

relations and the computation of transductions initiated in [HOV11]. One can

simply imagine that systems of two components can be modified in a way such that

one component contains the input and the other component contains the output.

Now, the system accepts if and only if the pair of input and output belongs to a

specified relation. Of course, this idea can be extended to systems that deal with

k-ary relations instead of only binary relations by using k components.
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rghe Păun. Grammar Systems: A Grammatical Approach to Distri-

bution and Cooperation. Gordon and Breach Science Publishers, Inc.,

Newark, NJ, USA, 1994.
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Friedrich Otto. Some Results on RWW- and RRWW-Automata and

their Relation to the Class of Growing Context-Sensitive Languages.

Journal of Automata, Languages and Combinatorics, 9(4):407–437,

2004.
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[JO06a] Tomasz Jurdziński and Friedrich Otto. Restarting automata with

restricted utilization of auxiliary symbols. Theoretical Computer Sci-

ence, 363(2):162–181, 2006.
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