
Relations and Transductions

Realized by

Restarting Automata

Dissertation zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

im Fachbereich Elektrotechnik/Informatik der Universität Kassel

vorgelegt von

Norbert Hundeshagen

Kassel im Januar 2013

Erster Gutachter: Prof. Dr. Friedrich Otto

Zweiter Gutachter: Prof. Dr. Martin Kutrib

Tag der Disputation: 17. Mai 2013

Zusammenfassung

Gegenstand der vorliegenden Arbeit ist die Analyse verschiedener Formalismen zur

Berechnung binärer Wortrelationen. Dabei ist die Grundlage aller hier ausgeführten

Betrachtungen das Modell der Restart-Automaten, welches 1995 von Jancar et. al. einge-

führt wurde. Zum einen wird das bereits für Restart-Automaten bekannte Konzept der

input/output- und proper-Relationen weiterführend untersucht, sowie auf Systeme von zwei

parallel arbeitenden und miteinander kommunizierenden Restart-Automaten (PC-Systeme)

erweitert. Zum anderen wird eine Variante der Restart-Automaten eingeführt, die sich

an klassischen Automatenmodellen zur Berechnung von Relationen orientiert. Mit Hilfe

dieser Mechanismen kann gezeigt werden, dass einige Klassen, die durch input/output-

und proper-Relationen von Restart Automaten de�niert werden, mit den traditionellen

Relationsklassen der Rationalen Relationen und der Pushdown-Relationen übereinstim-

men. Weiterhin stellt sich heraus, dass das Konzept der parallel kommunizierenden

Automaten äuÿerst mächtig ist, da bereits die Klasse der proper-Relationen von monotonen

PC-Systemen alle berechenbaren Relationen umfasst. Der Haupteil der Arbeit beschäftigt

sich mit den so genannten Restart-Transducern, welche um eine Ausgabefunktion er-

weiterte Restart-Automaten sind. Es zeigt sich, dass sich insbesondere dieses Modell mit

seinen verschiedenen Erweiterungen und Einschränkungen dazu eignet, eine umfassende

Hierarchie von Relationsklassen zu etablieren. In erster Linie seien hier die

verschiedenen Typen von monotonen Restart-Transducern erwähnt, mit deren Hilfe viele

interessante neue und bekannte Relationsklassen innerhalb der längenbeschränkten

Pushdown-Relationen charakterisiert werden. Abschlieÿend wird, im Kontrast zu den

vorhergehenden Modellen, das nicht auf Restart-Automaten basierende Konzept des

Übersetzens durch Beobachtung (�Transducing by Observing�) zur Relationsberechnung

eingeführt. Dieser, den Restart-Transducern nicht unähnliche Mechanismus, wird im

weitesten Sinne dazu genutzt, einen anderen Blickwinkel auf die von Restart-Transducern

de�nierten Relationen einzunehmen, sowie eine obere Schranke für die Berechnungskraft

der Restart-Transducer zu gewinnen.

iii

iv

Abstract

In the present thesis we introduce several ways of extending restarting automata to devices

for realizing binary (word) relations, which is mainly motivated by linguistics. In particular,

we adapt the notion of input/output-relations and proper-relations to restarting automata

and to parallel communicating systems of two restarting automata (PC-systems). Further,

we introduce a new model, called restarting transducer. Concerning input/output- and

proper-relations we show equivalences of relation classes de�ned by restarting automata

to the well-known classes of rational relations and pushdown relations. Further, regarding

the proper-relations realized by certain PC-systems of two restarting automata, we show

that this class includes all computable relations. The main part of this work concerns

restarting transducers. A restarting transducer is a restarting automaton equipped with

an output function. In this way we show that the hierarchy of language classes de�ned

by restarting automata can be partly transfered to a corresponding hierarchy of relation

classes. Moreover, by using results from the concepts introduced before, we prove that

monotone types of restarting transducers de�ne a hierachy of relation classes within the

length-bounded pushdown relations. We conclude this thesis by establishing an upper bound

and a di�erent point of view on relations realized by restarting transducers through the

concept of Transducing by Observing.

v

vi

Publications

Parts of this thesis have already been published in the following refereed proceedings

(chronologically ordered):

[HOV10] Norbert Hundeshagen, Friedrich Otto, and Marcel Vollweiler. Transductions

Computed by PC-Systems of Monotone Deterministic Restarting Automata. In

Michael Domaratzki and Kai Salomaa, editors, CIAA, volume 6482 of Lecture Notes

in Computer Science, pages 163�172. Springer, 2010

[HL10] Norbert Hundeshagen and Peter Leupold. Transducing by Observing. In Henning

Bordihn, Rudolf Freund, Markus Holzer, Thomas Hinze, Martin Kutrib, and Friedrich

Otto, editors, NCMA, volume 263 of books@ocg.at, pages 85�98. Österreichische Com-

puter Gesellschaft, 2010

[HO11] Norbert Hundeshagen and Friedrich Otto. Characterizing the Regular Languages

by Nonforgetting Restarting Automata. In Giancarlo Mauri and Alberto Leporati,

editors, Developments in Language Theory, volume 6795 of Lecture Notes in Com-

puter Science, pages 288�299. Springer, 2011

[HO12a] Norbert Hundeshagen and Friedrich Otto. Characterizing the Rational Functions

by Restarting Transducers. In Adrian Horia Dediu and Carlos Martín-Vide, editors,

LATA, volume 7183 of Lecture Notes in Computer Science, pages 325�336. Springer,

2012

[HL12] Norbert Hundeshagen and Peter Leupold. Transducing by Observing and Restart-

ing Transducers. In Rudolf Freund, Markus Holzer, Bianca Truthe, and Ulrich Ultes-

Nitsche, editors, NCMA, volume 290 of books@ocg.at, pages 93�106. Österreichische

Computer Gesellschaft, 2012

In addition, the following submitted works should be mentioned:

[HO12b] Norbert Hundeshagen and Friedrich Otto. Restarting Transducers, Regular Lan-

guages, and Rational Relations. Submitted for publication, June 2012

[HL13] Norbert Hundeshagen and Peter Leupold. Transducing by Observing Length-

Reducing and Painter Rules. Submitted for publication, January 2013

vii

In particular, the following list gives an overview on the already published or submitted

results that are presented in this thesis. Additionally, the main contributions of the various

co-authors to these results are named.

[HO11] contains the proceeding versions of the results shown in Subsection 2.2.1, where

the main techniques used to prove Theorem 2.2.11, Theorem 2.2.12 and Theorem 2.2.14

have been presented and are due to Friedrich Otto.

[HOV10] contains the proceeding versions of the results shown in Section 3.2 on PC-

Systems of restarting automata. There, a slightly rewritten version of Theorem 3.2.4, a

part of the equivalences derived in Corollary 3.1.14, and the technique of how to prove that

Rpal is not computable by the PC-System de�ned in this section (cf. Proposition 3.2.2) are

due to Friedrich Otto.

[HO12a] contains a proceeding version of the main part of Section 4.3, excluding the results

obtained in the Summary.

[HO12b] contains the full proofs presented in Subsection 2.2.1 and Section 4.3 (again

without the Subsection 4.3.3). There, additionally to the �rst mark in this list, some

technical formulations in Proposition 2.2.15 as well as in the Propositions 4.2.7, 4.3.4,

and 4.3.5 are due to Friedrich Otto.

[HL10] contains Theorem 5.3.3. However, the proof presented in this thesis is new.

[HL12] contains the results presented in Section 5.2, where most of the proofs are adjusted

or rewritten to �t the present scope. Additionally, the decreasing systems from [HL12]

are here called �length-reducing systems�, which refers to the more common name for the

used kind of rules (see [BO93]). Furthermore, the idea of introducing a morphism instead

of showing an equivalence of length-reducing systems and restarting transducers, directly

(cf. Proposition 5.2.5), as well as some basic suggestions on the principle of Transducing

by Observing are due to Peter Leupold.

Finally, [HL13] contains the results derived in Chapter 5.

viii

Acknowledgements

First of all, I wish to thank my supervisor Prof. Dr. Friedrich Otto for his continuous

support and guidance while working on the present topic and for providing me with the

valuable grade of freedom I needed. Moreover, he substantially improved the content of this

thesis, both, by carefully reading and correcting the manuscript as well as by participating

as a co-author in several publications.

Secondly, I would like to thank Prof. Dr. Martin Kutrib for refereeing this thesis and for

his helpful comments on the present content.

I also wish to thank my current and former colleagues for many fruitful discussions and

various work-related hints. In particular, Marcel Vollweiler for sharing the process and

the experiences made during writing a thesis, which hopefully helped him as much as

me. Especially, Dr. Peter Leupold who contributed to my time spent on this work,

scienti�cally and, equally important, non-scienti�cally. Furthermore, he suggested to com-

pare the principle of Computing by Observing and restarting transducers. And not least,

Prof. Dr. Martin Lange for giving me the opportunity to �nish this thesis in the university

environment.

In this context also the anonymous referees of the publications cited before should be

mentioned, whose comments helped to improve the content of this work.

In some sense many people should be named here. Among those, I am indebted to my

friends and family. Especially, I wish to thank my parents and my sister for supporting me

in any decision I made. And most important, I would like to thank Petra for not getting

lost on the journey.

ix

x

Contents

1 Introduction 15

2 Preliminaries 21

2.1 Words, Languages and Relations . 21

2.2 Restarting Automata . 26

2.2.1 Restarting Automata with Window Size One 39

2.3 Relation Classes and Transducers . 57

3 Relations Associated to Restarting Automata and to Parallel Communi-

cating Systems 73

3.1 Input/Output-Relations and Proper-Relations 73

3.1.1 De�nitions and Examples . 74

3.1.2 Input/Output- and Proper-Relations of Monotone Restarting Au-

tomata . 77

3.2 Parallel Communicating Systems of Restarting Automata 80

3.2.1 De�nition . 81

3.2.2 On Deterministic and Monotone PC-Systems 84

4 Restarting Transducers 97

4.1 De�nition, Examples, and General Observations 98

4.1.1 General Observations . 101

xi

Contents

4.2 Monotone Restarting Transducers . 107

4.2.1 Upper Bound . 108

4.2.2 Monotone Restarting Transducers and Pushdown Functions 111

4.3 Restarting Transducers with Window Size One 118

4.3.1 Hierarchy Results . 119

4.3.2 Characterizing Classes of Rational Relations 122

4.3.3 Summary . 130

4.4 Closure Properties . 133

4.5 Decision Problems . 142

5 Transducing by Observing - A Similar Approach 145

5.1 De�nition and Examples . 146

5.1.1 String-Rewriting Systems . 147

5.1.2 Observers . 147

5.1.3 Transducing Observer Systems . 148

5.2 Length-Reducing Systems . 149

5.3 Painter Systems . 156

6 Conclusion 163

Bibliography 168

xii

List of Figures

2.1 Schematic representation of a restarting automaton. 28

2.2 Inclusions between types of restarting automata and well-known language

classes. 37

2.3 Inclusions between the various types of monotone restarting automata. . . . 38

2.4 Hierarchy of some important classes of non-forgetting restarting automata. . 38

2.5 Example of a Finite State Transducer . 62

2.6 Sketch of the bimachine from Example 2.3.9. 64

2.7 Inclusions between the various types of rational and pushdown relations. . . 68

3.1 Taxonomy of classes of relations computed by types of monotone deterministic

restarting automata. 96

4.1 Schematic representation of a restarting transducer. 97

4.2 Hierarchy of relation classes de�ned by basic types of restarting transducers. 104

4.3 The sequential transducer from Example 4.2.6. 114

4.4 Hierarchy of classes of transductions computed by various types of restarting

transducers with window size one. 122

4.5 Sketch of the sequential transducer that simulates a bimachine. 128

4.6 Summarized hierarchy of the classes of relations computed by the various

restarting transducers with window size one. 132

5.1 Schematic representation of a transducing observer system. 146

xiii

List of Figures

xiv

Chapter 1

Introduction

In the 1950's Noam Chomsky introduced several types of generative grammars as a formal

framework for producing sentences of natural languages. It is well known that these types

of grammars describe a hierarchy of certain families of plain sets of words (i.e. formal

languages), the Chomsky Hierarchy. Since then, a multitude of mechanisms for de�ning

formal languages was invented in the �eld of Formal Language Theory. Most of them

follow the principle of either generating (e.g. grammars) or accepting (e.g. automata) a

formal language.

At about the same time that Chomsky emerged his work, several authors considered models

to de�ne sets of tuples of words (i.e. word relations). In this context, the remarkable works

of Mealy [Mea55], Moore [Moo56] and Rabin and Scott [RS59] can be seen as a starting

point of studies on mechanisms for (binary) word relations in the sense of Chomsky's hie-

rarchy of languages. However, in contrast to Chomsky's contribution, the references above

were not based on linguistic motivations. The latter fact changed as it turned out that

formal descriptions of phenomena of natural languages mostly require more complicated

structures than plain sets of words. Hence, the systematic extension of well-known models

from the Chomsky Hierarchy to mechanisms for realizing binary word relations gains much

interest in theoretical as well as practical contexts, which will be outlined in the following.

Starting from a theoretical point of view, there are several ways of associating relations to

language generating or accepting devices, according to the main principles for computing

formal languages. Mainly one might distinguish between transducers, which are automata

that realize transductions, that is, they accept an input word and produce an output word,

two tape automata, which process the input word on the �rst tape and the output word on

15

Introduction

the second tape, and grammar based approaches, as for instance grammars that generate

the output and input words in parallel. Hence, based on the capabilities of the underlying

device, which normally is a model for accepting or generating a formal language, the derived

mechanisms for computing relations yield a hierarchy of classes of relations.

From a practical point of view, several of the previously mentioned mechanisms for word

relations proved to be reasonable for certain applications in natural language processing,

speech recognition and also in formal language applications, such as compiler architecture.

Just to mention only a few examples of the �elds named above, some types of transducers

are suitable tools for morphological analyzation of natural languages [Moh97] as well as

for mirroring phonological rules [KK94].

Accordingly, the present thesis contributes to the �eld described above by investigating

several ways of associating binary word relations to a quite recent model for accepting

formal languages, the restarting automaton. In particular, the work covers three di�erent

extensions of restarting automata. Basically, these new types of machines can be classi�ed

according to the principles of how a relation can be associated to a device working on

plain sets of words, which has been introduced above. Therefore, the scope of these kinds

of automata covers restarting transducers, restarting automata accepting relations and a

type of two-tape restarting automata (i.e. parallel communicating systems of two restarting

automata). All of these extensions seem to be promising, both, from a theoretical as well

as a practical point of view, for the following reasons.

In recent years restarting automata developed as a vivid research topic in Formal Language

Theory. Many restrictions and extensions of these machines were considered and investi-

gated (e.g. [Ott06]). This led to characterizations by restarting automata for nearly every

important language class within the Chomsky Hierarchy. Consequently, a systematic study

of restarting transducers based on the various types of restarting automata might serve

as a framework for a hierarchy of relation classes according to the Chomsky Hierarchy.

Such a taxonomy seems quite reasonable, as there are only a few comprehensive works on

transducer extensions of well-known types of automata (e.g. [GR66, Ber79, CI83]).

Secondly, the connection of restarting automata to binary word relations is motivated by

the main linguistic application of these types of machines, the Analysis by Reduction. Sim-

ply, this technique is a method to verify the (syntactical) correctness of a given sentence of

a natural language. It is recommended for �free word order� languages, such as many Slavic

languages (e.g. Czech, Sorbian, Russian, etc.). Accordingly, a given sentence is stepwise

simpli�ed under the condition that every step preserves the correctness or incorrectness

16

Introduction

of the sentence processed. Therefore, restarting automata, as emerged in 1995 [JMPV95],

intend to mirror this process by applying a stepwise simpli�cation of a given input. The

computation of such a machine simply terminates by accepting or rejecting after a cer-

tain number of simpli�cation steps. From a linguistic point of view, the veri�cation of

correctness (or incorrectness) is not the only goal of performing Analysis by Reduction, as

it is also a useful tool to gain deeper information on the structure of sentences of natural

languages, such as word dependency information [LPK05] and morphological ambiguities

[PLO03]. Hence, a general study of mechanisms that mirror the analyzation as well as

the information extracting part of Analysis by Reduction seems valuable. Consequently,

investigating the possibilities of how binary word relations can be associated to restarting

automata might serve as a starting point for new linguistical insights.

Outline

The main goal of this thesis is to de�ne and investigate several ways of associating binary

word relations to restarting automata. For that we describe three scenarios, which are

mainly motivated by linguistics and/or traditional models for computing relations.

In Chapter 2, to begin with, we recall fundamental concepts necessary for reading and

understanding the thesis. In particular, we de�ne the notions of binary word relations,

transducers and restarting automata and provide their most valuable properties. Addi-

tionally, a �rst novel contribution is established, that is, we show three characterizations

of the class of regular languages by monotone and non-forgetting restarting automata.

These results somehow serve as a starting point for re�ections on restarting automata and

rational relations in Chapter 4.

Motivated by the disambiguation process of sentences in the Czech language [LPS07], we

introduce the notions of input-output relations and proper relations in Chapter 3. This

�rst concept of associating a binary word relation to a restarting automaton was suggested

by Otto in [Ott10]. Here a relation is realized by projecting each word that is accepted

by a restarting automaton to a distinguished input and output alphabet. According to

the notion of relation characterizing languages [AU69], we show that depending on the

restarting automata used, the class of proper and input-output relations coincides with

some well-known relation classes (i.e. rational relations, pushdown relations).

In the second part of Chapter 3, we introduce a di�erent perspective on relations of the

above type. Thus, we associate input-output and proper relations to parallel communi-

17

Introduction

cating systems of two restarting automata, which can be motivated as a kind of two tape

automata characterization of relations. This leads to the result that the concept of proper

relation associated to communicating automata is much too powerful, as we already are

able to characterize every computable relation by the proper relation of two monotone

machines.

Chapter 4 serves as the main part of the present thesis. There we introduce the so-called

restarting transducer as an extension of restarting automata. Based on the basic de�ni-

tions of this model we then establish some general properties, that is, error and correctness

preserving for restarting transducers and the length-boundedness of relations computed by

these machines. Further, we try to establish a hierarchy of restarting transducer rela-

tions according to the well-known hierarchy of language classes computed by restarting

automata. Due to the fact that not all results easily carry over from automata to trans-

ducers, this only partially works for non-restricted types of restarting automata. However,

the restriction to monotone restarting transducers and restarting transducers with window

size one leads to some quite interesting connections between these machines and tradi-

tional relation classes. In particular, we de�ne a restarting transducer hierarchy within

the pushdown relations, where it turns out that the restriction of the window size leads

to a restarting transducer characterization for several subclasses of the rational relations.

Finally, we discuss the property of closure under composition, which is of interest for

transducers in general, and two decision problems for the previously introduced restarting

transducers.

To �nd new approaches for a question left open in Chapter 4, we brie�y introduce a di�erent

perspective on transductions in Chapter 5 by so-called �transducing observer systems�.

The notion of Transducing by Observing is originally based on the method of Computing

by Observing, which was introduced to mirror the way in which information is gained

in biological or chemical experiments [CL03]. By extending this mechanism we derive

a quite unconventional model for realizing transductions. However, as both, restarting

automata and transducing observer systems can be interpreted as string rewriting systems

controlled by regular languages [NO00], it turns out that in some cases the latter can be

seen as a weakened version of restarting transducer. To say it in advance, the motivating

open question remains unsolved. Nevertheless, Chapter 5 o�ers new aspects on relations

computed by restarting transducers.

18

Introduction

Related Work

Concerning the topic of this thesis the following related works are known.

As already mentioned in the outline above, the notion of input/output- and proper-

relations of restarting automata (see Chapter 3) was considered in [Ott10].

Parallel to the notion of restarting transducers (see Chapter 4), the concept of restarting

automata with output can also be found in [PML10b, PML10a, LMP10]. Motivated by a

language descriptive system for the Czech language (the Functional Generative Descrip-

tion), the authors introduced a special type of restarting automaton that is enhanced to

produce tree structures, which mirror dependency trees of sentences of natural languages.

However, restarting automata that simply produce strings, as introduced in Chapter 4,

have not been introduced yet.

The idea of observing string rewriting systems was introduced in [CL06] for accepting

formal languages. To the best of the author's knowledge, using these systems to realize

transductions (see Chapter 5) has not been considered yet.

19

Introduction

20

Chapter 2

Preliminaries

In this chapter we lay the framework that is needed for reading and understanding the

present work. It is divided into three sections, where the �rst one o�ers a standardized

notation. Sections two and three concern the main de�nitions and results on restarting

automata and on the classical theory of transducers. Although all necessary terms are

explained, the present chapter is not meant to be a complete survey of the topics mentioned

above. For that and for further reading we will refer to the appropriate literature within

the text.

2.1 Words, Languages and Relations

Although we assume that the reader is familiar with basic terminology in mathematics

and formal language theory, we recall some fundamental concepts. For further reading we

recommend standard textbooks, such as [HU79], [Har78] and [RS97].

Basic Notations

In the following N denotes the set of natural numbers, where we assume that 0 ∈ N. P(M)

describes the power set of a set M and Pfin(M) are all �nite subsets of M . We call a

set of letters/symbols an alphabet, usually denoted by capital Greek letters such as Σ.

A word is de�ned as a �nite concatenation (·) of symbols from Σ. By ε we denote the

empty word. All non-empty words (Σ+) and ε form the set of all words, denoted as Σ∗.

From an algebraic point of view, Σ∗ and the binary operation · de�ne a �nitely generated

21

Preliminaries

free monoid. In this context, a monoid is a semi-group (a set paired with an associative

operation) with a neutral element, ε in our case. Therewith Σ is the �nite set of generators,

and since all elements in Σ∗ are generated in a unique manner, we call this monoid free.

Finally, let w ∈ Σ∗ be a word, then |w| denotes the length of the word, |w|a denotes the

number of occurrences of the letter a in w, and by wR we denote the reversal of a word w.

A (formal) language L is de�ned as a subset of Σ∗. As languages are sets of words, we

should name some standard operations on languages, such as union, intersection, and

complement. Further, the concatenation and reversal naturally extend from words to

languages, and the closure under concatenation (Kleene Star or star-operation) is denoted

by ∗. A not so common operation on languages is the shu�e. Let u ∈ Σ∗ and v ∈ ∆∗ be

words, then sh(u, v) denotes the set of all words of the form u1v1u2v2 · · ·unvn, where n ≥ 1,

u1, u2, . . . , un ∈ Σ∗, v1, v2, . . . , vn ∈ ∆∗, such that u = u1u2 · · ·un and v = v1v2 · · · vn. This
operation extends to languages in the usual way. Thus, sh(L1, L2) =

⋃
u∈L1, v∈L2

sh(u, v).

Finally, a morphism is a mapping between two sets of words ϕ : Σ∗ → ∆∗, where ϕ(uv) =

ϕ(u) ·ϕ(v) for all u, v ∈ Σ∗. Note that the latter property implies that also ϕ(ε) = ε holds.

Again the operation of applying a morphism extends naturally to a language L ∈ Σ∗, that

is, ϕ(L) = {ϕ(u) | u ∈ L}.

Relations over Words

Since relations instead of plain languages play the major role in this work, we already

introduce some basic facts at this point. Simply a (binary) relation over words is de�ned

as a subset of the Cartesian product of two sets of words. Formally, let Σ and ∆ be two

alphabets, then R ⊆ Σ∗ ×∆∗ is called a binary (word) relation. Obviously, R is a set of

pairs of words. In the following these objects are often simply called relations, since it is

clear from the context, when we are talking about word relations.

Several operations on languages easily extends to relations. Accordingly the de�nition for

union, intersection, and complement is clear. The notion of concatenation is extended to

pairs of words such that the concatenation of (u1, v1) and (u2, v2) is de�ned as: (u1, v1) ·
(u2, v2) = (u1u2, v1v2). This again easily extends to sets of pairs. Additionally, we should

mention another operation here, unique for relations. Let R1 ⊆ Σ∗×∆∗ and R2 ⊆ ∆∗×Γ∗,

then the composition of R1 and R2 is de�ned as: R2 ◦R1 = {(u, v) ∈ Σ∗ × Γ∗ | ∃x ∈ ∆∗ :

(u, x) ∈ R1 and (x, v) ∈ R2}.

Next we de�ne some properties of relations.

22

2.1 Words, Languages and Relations

De�nition 2.1.1. A relation R is called length-preserving if for each pair (u, v) ∈ R,

|u| = |v| holds.

De�nition 2.1.2. A relation R is called length-bounded if there is an integer c ∈ N, such
that for each pair (u, v) ∈ R with u 6= ε, |v| ≤ c · |u|.

Finally, we introduce the notion of single valued relations. For that the sets dom(R) =

{u | (u, v) ∈ R} and ra(R) = {v | (u, v) ∈ R} are called domain and range of a relation R.

De�nition 2.1.3. A relation R is called single valued if for all u in the domain of R, there

is a unique v, such that (u, v) ∈ R.

Hence, single valued relations are actually (partial) functions. Further information on

binary word relations is provided in Section 2.3.

Grammars and Automata

The main topic in formal language theory concerns the investigation of �nite represen-

tations for certain sets of words. Among the various ways of representing languages, we

introduce the most common concepts here. For that we may distinguish between generating

and accepting devices.

Grammars, which were de�ned by Chomsky in the 1950s, are the best known representative

for the concept of generating sets of words. Hence, a (generalized phrase-structure) gram-

mar is a four tuple G = (V,Σ, P, S), where V is a �nite alphabet of non-terminals, Σ is a �-

nite alphabet of terminals, V ∩Σ = ∅, S ∈ V is the start-symbol and P ⊆ (V ∪Σ)∗×(V ∪Σ)∗

is the �nite set of production rules, where for each pair (l, r) ∈ P it holds that |l|V ≥ 1.

Note that we write the ordered pairs (l, r) ∈ P as rewrite rules l→ r.

With a grammar G = (V,Σ, P, S) we associate a binary relation ⇒G, called the derivation

relation. Let u, v ∈ (V ∪ Σ)∗, then u ⇒G v if and only if there are factorizations u = xly

and v = xry, such that (l → r) ∈ P . Thus, the application of one rule transforms u into

v. The re�exive and transitive closure of ⇒G is denoted by ⇒∗G, and �nally the language

generated by G is de�ned as L(G) = {w ∈ Σ∗ | S ⇒∗G w}.

A grammar G = (V,Σ, P, S) is called

• (right-)regular, if all rules in P are of the form l→ r, with l ∈ V and r ∈ Σ∗∪Σ∗ ·V ;

23

Preliminaries

• context-free, if all rules in P are of the form l→ r, with l ∈ V and r ∈ (V ∪ Σ)∗;

• context-sensitive, if all rules in P are of the form u1lu2 → u1ru2, with l ∈ V ,

u1, u2 ∈ (V ∪ Σ)∗ and r ∈ (V ∪ Σ)+; additionally the production S → ε may be

contained in P , then S does not appear in any right-hand side of any rule.

• monotone, if all rules in P are of the form l → r, with l, r ∈ (V ∪ Σ)∗ and |l| ≤ |r|;
additionally the production S → ε may be contained in P , then S does not appear

in any right-hand side of any rule.

With each type of grammar previously introduced, we associate a language class, that is,

the set of all languages that can be generated by a grammar of a particular type. The

class of languages de�ned in that way are named according to their grammars. Hence, we

have the class of regular (REG for short), context-free (CFL for short), context-sensitive

languages (CSL for short) and the class de�ned by a general grammar, which is the class of

recursively enumerable languages (RE for short). Further note that the concepts of being

monotone and context sensitive introduced above, are equivalent from a language theoretic

point of view.

Finally we may introduce two normal forms for context-free grammars. First of all, a

context-free grammar G = (V,Σ, P, S) is in Chomsky normal form, if for all rules l→ r in

P , l ∈ V and r ∈ Σ∗ ∪ V 2 holds. Secondly a context-free grammar G = (V,Σ, P, S) is in

Greibach normal form, if for all rules l→ r in P , l ∈ V and r ∈ Σ · V ∗holds. Furthermore,

G is in quadratic Greibach normal form if G is in Greibach normal form and the number

of non-terminals on the right side of every rule is at most two. Additionally, sometimes

the rule S → ε is required in the above normal forms to derive the empty word.

Next we turn to automata. Instead of generating a word, automata accept words, that is,

they can be seen as answering the question of whether a given word belongs to a language,

which is known as the word problem. Hence, automata accept or (possibly) reject words.

This is obviously another way to characterize languages. In fact, for every language class

introduced above, there is a type of automata that characterizes this set of languages.

For REG the corresponding device is a �nite state automaton. A deterministic �nite state

automaton A = (Q,Σ, δ, q0, F) (DFA for short) is a 5-tuple, where Q is a set of states, Σ is

a �nite input alphabet, q0 is the initial state, F is the set of �nal states, and the transition

function δ is de�ned as

δ : Q× Σ→ Q.

24

2.1 Words, Languages and Relations

By δ∗ we denote the natural extension of δ to words over Σ∗, that is, δ∗(q, ε) = q and

δ∗(q, ua) = δ(δ∗(q, u), a), where u ∈ Σ∗, a ∈ Σ, and q ∈ Q. The behavior of a DFA A can

also be described by so called con�gurations. For q ∈ Q and u ∈ Σ∗, the con�guration

q · u mirrors the current status of the automaton, that is, A is in state q, and u is the

unprocessed part of the input word. By `A we denote the next-step relation, which is

de�ned as follows: if δ(q, a) = p and A is in the con�guration q · au, then A performs the

computation step q · au `A p · u. Here `∗A denotes the re�exive and transitive closure of

`A. Finally, a �nite state automaton is called non-deterministic (NFA for short) if δ is

a relation, that is, a function from Q × Σ onto P(Q).1 The language computed by A is

de�ned as L(A) = {w ∈ Σ∗ | q0 ·w `∗A q · ε and q ∈ F}. It is well known that the language

classes characterized by DFAs and NFAs coincide.

For CFL the corresponding device is a pushdown automaton. A pushdown automaton

A = (Q,Σ,Γ, δ, q0, Z0, F) (PDA for short) is a 7-tuple, where everything is described as

for �nite state automata. Additionally, Γ is the �nite stack alphabet, and Z0 is the initial

stack symbol. Finally δ is de�ned as

δ : Q× (Σ ∪ {ε})× Γ→ Pfin(Q× Γ∗).

A con�guration of a PDA A = (Q,Σ,Γ, δ, q0, Z0, F) is a tuple (q · u, γ), where q · u is

described as for �nite state automata and γ is the current stack content. Accordingly, the

next step relation `A easily extends to PDA. For that note that the stack is used as follows:

in every step A reads the last symbol on the stack and replaces it by a string over Γ. The

language accepted by A is L(A) = {w ∈ Σ∗ | (q0 · w,Z0) `∗A (q · ε, α) and q ∈ F, α ∈ Γ∗}.
Note that here we omit to de�ne a second acceptance criterion, the acceptance by empty

stack, as both ways are equivalent. Again a pushdown automaton is called deterministic

(DPDA for short) if for all q ∈ Q, α ∈ Γ and a ∈ Σ, |δ(q, ε, α)| + |δ(q, a, α)| ≤ 1 holds.

Observe that the DPDAs form a subclass of the PDAs, which accept the deterministic

context-free languages, denoted by DCFL.

Since for us characterizations of the classes CSL and RE by automata play a minor role,

we only provide little information on these types of machines here. A (non-deterministic)

Turing Machine A = (Q,Σ,Γ, δ, q0,�, F) (TM for short) is a 7-tuple, where everything

is described as for �nite state automata. Additionally, Γ is the �nite tape alphabet with

1Note that there are several variants of �nite state automata that are e.g. capable to use several initial
states or arbitrary ε-steps.

25

Preliminaries

Σ (Γ and � ∈ Γ is the blank symbol. Finally, δ is de�ned as

δ : Q× Γ→ P(Q× Γ× {L,R,N}).

The notion of con�guration, computation, and accepted language extends again from the

previously introduced automata. Informally, a Turing Machine di�ers from the automata

above, by working on an in�nite tape, by moving the head in both directions, and by

rewriting symbols. While entering a �nal state, the machine accepts the input word. The

class of languages accepted by Turing Machines is exactly the class RE.

Finally we call a Turing Machine linear bounded (LBA for short) if the size of its tape is

bounded by the length of the input word. LBAs are the automata equivalent to the class

CSL. According to the previously introduced automata, we may also de�ne a deterministic

version of a linear bounded Turing Machine. This machine accepts the class of deterministic

context-sensitive languages (DCSL for short). Note that the equivalence of CSL and DCSL

is a longstanding open question in computer science theory, known as the LBA-Problem.

In conclusion the following strict inclusions can be obtained for the classes introduced

above. This chain is known as the Chomsky Hierarchy.

Theorem 2.1.4. REG ⊂ DCFL ⊂ CFL ⊂ CSL ⊂ RE.

2.2 Restarting Automata

Since restarting automata were introduced in 1995 by Jan£ar, Mráz, Plátek and Vogel

[JMPV95], they became a vivid research topic, which lead to numerous remarkable ap-

proaches in the �eld of Formal Language Theory. Here we outline those results, which

have in�uence on the present work and provide some new �ndings for restarting automata.

For that we start with the motivation and some formal de�nitions. However, a nice survey

of restarting automata can be found in [Ott06], which also serves as the main reference for

the present section2.

Analysis by Reduction

As mentioned in the introduction a restarting automaton mirrors the linguistic technique

of Analysis by Reduction. Hence, a closer look on this technique is mandatory for under-
2Additionally some phrases have been taken from the introductions of [Mes08, Sta08].

26

2.2 Restarting Automata

standing the motivation of combining restarting automata and binary word relations in

the following chapters.

Analysis by Reduction is simply a method to verify the (syntactical) correctness of a given

sentence in natural languages. It is recommended for �free word order� languages, such as

many Slavic languages (e.g. Czech, Sorbian, Russian, etc.). Accordingly, a given sentence

is simpli�ed stepwise under the condition that every step preserves its correctness or in-

correctness. The principles of this technique can be illustrated by the following example,

taken from [Ott06].

They mean that the means she means are very mean.

Analysis by Reduction starts with reading the sentence from left to right until a phrase

is discovered that can be simpli�ed. For example the word that or the word very can be

deleted:

They mean the means she means are very mean.

They mean that the means she means are mean.

Obviously both simpli�cations are correct. Hence, that and very are independent of each

other. In summary, the following sentence is derived by sequentially applying the last two

steps.

They mean the means she means are mean.

Next, it is easy to observe that the means is not deletable, as this would result in an

incorrect sentence. The reason for which is that the phrase They mean depends on the

means. However, we can conclude that They mean and she means are independent of

each other and obsolete for the syntactical correctness of the sentence. Then, the simple

sentence

The means are mean.

is said to be a basis form of the given input sentence, which is easily veri�ed as being (syn-

tactically) correct. In addition, we have seen that some information about the dependency

structure of the sentence can be obtained.

27

Preliminaries

c| · · · · · $ �exible tape

read/write-window

�nite control

Figure 2.1: Schematic representation of a restarting automaton.

The previous example immediately gives some insights in the process of natural language

analyzation. For that we brie�y mention some facts here, which are motivating for re�ec-

tions in the following chapters.

It is easy to observe that the example sentence is highly ambiguous, as the word mean

intends three di�erent meanings. Thus, when it comes to a non-human driven Analysis by

Reduction, ambiguities have to be resolved. Without going into details, the latter might

be done by adding information about linguistic categories (i.e. morphology, syntax, etc.)

to each word. For instance, the object means, which is the plural form of mean, is a noun.

Hence, actually Analysis by Reduction is applied on sentences enriched with auxiliary

symbols that are used to disambiguate the given input. Here, we recommend [LPS07] for

further reading on the role of Analysis by Reduction (and therewith the role of restarting

automata) in the language analyzation process.

De�nition and Examples

Since Analysis by Reduction intends a cycle-wise reduction of a given sentence of a natural

language, this can be schematically depicted as shown in Figure 2.1. Hence, a restart-

ing automaton consists of a �nite-state control, a �exible tape with end markers, and a

read/write window of a �xed size working on that tape. It works in cycles, where in each

cycle it performs a single rewrite operation that shortens the tape contents. Every cycle

ends with a restart operation that forces the automaton to reset the internal state to the

initial one. After a �nite number of cycles, it halts and accepts (or rejects) the input. That

is, restarting automata are obviously language accepting devices.

De�nition 2.2.1. A restarting automaton (RRWW for short) is de�ned as an 8-tuple

M = (Q,Σ,Γ, c| , $, q0, k, δ), where Q is the �nite set of states, Σ and Γ are the �nite input

28

2.2 Restarting Automata

and tape alphabet, c| , $ /∈ Γ are the markers for the left and right border of the tape, q0 ∈ Q
is the initial state, and k ≥ 1 is the size of the read/write window. Additionally, the

transition function δ is de�ned as

δ : Q× PC(k) → P(Q× ({MVR} ∪ PC≤(k−1)) ∪ {Restart,Accept}),

where PC(k) denotes the set of possible contents of the read/write window of M , that is,

PC(i) = (c| · Γi−1) ∪ Γi ∪ (Γ≤i−1 · $) ∪ (c| · Γ≤i−2 · $) (i ≥ 0)

and

Γ≤n =

n⋃
i=0

Γi and PC≤(k−1) =

k−1⋃
i=0

PC(i).

The transition function δ of a restarting automaton describes �ve di�erent types of tran-

sition steps:

1. A move-right step is of the form (q′,MVR) ∈ δ(q, u), where q, q′ ∈ Q and u ∈ PC(k),

u 6= $. If M is in state q and sees the string u in its read/write window, then this

step causes M to shift the read/write window one position to the right and to enter

state q′. However, if the content u of the read/write window is only the symbol $,

then no shift to the right is possible.

2. A rewrite step is of the form (q′, v) ∈ δ(q, u), where q, q′ ∈ Q, u ∈ PC(k), u 6= $

and v ∈ PC≤(k−1) such that |v| < |u|. It causes M to replace the content u of the

read/write window by the string v, thereby shortening the tape and to enter state q′.

Further, the read/write window is placed immediately to the right of the string v.

However, some additional restrictions apply in that the border markers c| and $ must

not disappear from the tape nor that new occurrences of these markers are created.

Finally, the read/write window must not move across the right border marker $, that

is, if the string u ends in $, then so does the string v. After performing the rewrite

operation, the read/write window is placed on the $-symbol.

3. A restart step is of the form Restart ∈ δ(q, u), where q ∈ Q and u ∈ PC(k). It causes

M to place its read/write window over the left end of the tape, so that the �rst

symbol it sees is the left border marker c| and to reenter the initial state q0.

29

Preliminaries

4. An accept step is of the form Accept ∈ δ(q, u), where q ∈ Q and u ∈ PC(k). It causes

M to halt and accept.

If δ(q, u) = ∅ for some q ∈ Q and u ∈ PC(k), the M necessarily halts, and we say that M

rejects in this situation. Further, the letters in Γ\Σ are called auxiliary symbols.

A con�guration of M is described by a string αqβ, where q ∈ Q, and either α = ε and

β ∈ {c| } · Γ∗ · {$} or α ∈ {c| } · Γ∗ and β ∈ Γ∗ · {$}. Here q represents the current

state, αβ is the current content of the tape, where the read/write window contains the

�rst k symbols of β or all of β when |β| ≤ k. The three most important situations

that may occur during a computation of the restarting automaton M are described by the

following con�gurations. At the beginning of a computationM is in the initial con�guration

q0c|w$, where w ∈ Σ∗ is the input word. A restarting con�guration is described by q0c|w′$,
where w′ ∈ Γ∗. Observe that the initial con�guration is a particular type of restarting

con�guration. Further, we use Accept to denote the accepting con�gurations, which are

those con�gurations that M reaches by performing an accept step. A con�guration of

the form αqβ, such that δ(q, β′) = ∅, where β′ is the current content of the read/write

window, is a rejecting con�guration. Finally, a halting con�guration is either an accepting

or a rejecting con�guration.

In general, the automatonM is non-deterministic, that is, there can be two or more instruc-

tions with the same left-hand side δ(q, u). Thus, there can be more than one computation

for an input word. Obviously, if this is not the case, then the automaton is deterministic.

Here we omit further details on possible variants of the �standard� model. However, they

are summarized in the following subsection. We continue by taking a closer look on the

mode of operation of the restarting automaton.

Observe that any �nite computation of the restarting automaton M consists of certain

phases. Such a phase is called a cycle, where each cycle is a combination of a number of

move-right steps (MVR), exactly one rewrite step, and a restart- (Restart) or accept step

(Accept). Hence, a cycle of M starts in a restarting con�guration, the head moves along

the tape until somewhere a rewrite instruction can be applied. Then the head continues

moving until a restart operation is performed and thus a new restarting con�guration is

reached. If no further restart operation is performed, any �nite computation �nishes in a

halting con�guration. Such a phase is called a tail. Note that during a tail also at most

one rewrite operation may be executed.

Accordingly, an accepting computation of M consists of a �nite sequence of cycles that is

30

2.2 Restarting Automata

followed by an accepting tail computation. It can be described as

q0c|w$ `cM q0c|w1$ `cM . . . `cM q0c|wm$ `∗M Accept,

where w ∈ Σ∗ denotes the input word of M and w1, ..., wn ∈ Γ∗ are the shorter tape

contents that occur during the computation. Further `M denotes the single step relation

and `cM denotes the execution of a complete cycle. Finally `∗M and `c∗M are the re�exive

and transitive closures of these relations.3 Hence, an input w ∈ Σ∗ is accepted by M , if

there exists a computation which starts with the initial con�guration on input w and ends

in the accepting con�guration. Then, M accepts the following language:

L(M) = {w ∈ Σ∗ | q0c|w$ `∗M Accept}.

We illustrate the above de�nitions by the following example. The shown restarting au-

tomaton is taken from [Ott06], but it is slightly adapted to mirror all capabilities that are

implied by our de�nition of restarting automata.

Example 2.2.2. Let M = (Q,Σ,Γ, c| , $, q0, 4, δ) be the RRWW-automaton that is de�ned

by taking Q = {q0, qc, qd, qr}, Σ = {a, b, c, d}, Γ = {a, b, c, d, ĉ, d̂}. Further, δ is given by

the following transition table:

(1) δ(q0, c| ax) = (q0,MVR) (x ∈ {aa, ab, bb, bc}),
(2) δ(q0, aax) = (q0,MVR) (x ∈ {aa, ab, bb),
(3) δ(q0, abbb) = {(qc, ĉbb), (qd, d̂b)},
(4) δ(q0, abbd) = (qd, d̂d),

(5) δ(q0, abc$) = (qc, ĉc$),

(6) δ(qc, bbbb) = (qc,MVR),

(7) δ(qc, bbbc) = (qc,MVR),

(8) δ(qc, bbc$) = Restart,

(9) δ(qd, bbbb) = (qd,MVR),

(10) δ(qd, bbbd) = (qd,MVR),

(11) δ(qd, bbd$) = Restart,

(12) δ(q0, c| ax) = (q0,MVR) (x ∈ {aĉ, ad̂, ĉb, d̂b}),
(13) δ(q0, aax) = (q0,MVR) (x ∈ {aĉ, ad̂, ĉb, d̂b}),

3Note that we often use the single step relation to express what kind of step is performed. Thus, `MVR

or `MVR denotes a move-right step.

31

Preliminaries

(14) δ(q0, aĉbb) = (qr, ĉb),

(15) δ(q0, aĉbc) = (qr, ĉc),

(16) δ(q0, ad̂bb) = (qr, d̂),

(17) δ(qr, x) = Restart (x ∈ Σ∗ ∪ {$}),
(18) δ(q0, c| c$) = Accept,

(19) δ(q0, c| d$) = Accept,

(20) δ(q0, c| ĉc$) = Accept,

(21) δ(q0, c| d̂d$) = Accept.

We will show next that M accepts the language

L = {anbnc | n ≥ 0} ∪ {anb2nd | n ≥ 0}.

From the transitions (18) and (19) it is clear that M accepts c and d immediately. So

let w ∈ Σ+\{c, d}. Starting from the initial con�guration q0c|w$, M will get stuck (and

therewith reject) while scanning a pre�x of w unless this pre�x is of the form anb ((1) and

(2)) for some positive integer n. In this case the con�guration c| an−1q0aby$ is reached,

where y ∈ Σ+. Depending on y, M continues with (3), (4) or (5), that is, it either rewrites

a factor ab to ĉ or abb to d̂. Here we only describe the behavior of M for su�ciently

long inputs, since it is clear from the transition function how the restarting automaton

behaves if |w| ≤ 4. Thus, M guesses if the word ends with c or d. This guess is saved

while writing the auxiliary symbols ĉ (respectively d̂) on the tape. Now M is in one of

the two con�gurations c| an−1ĉbbqcy
′$ or c| an−1d̂bqdy

′$. In the �rst case the transitions (6),

(7) and (8) ((9), (10) and (11)) are used to scan the su�x y′ of w and restarting if c

(respectively d) is the last symbol on the tape. From here on the restarting automaton

acts deterministically, that is, in the following cyclesM deletes a factor ab or abb according

to the written auxiliary symbol ((12) - (16)). Finally M accepts while seeing either ĉc or

d̂d on its tape ((20) and (21)). Thus it is clear that L(M) = L.

Basic Properties

Next we restate some basic facts about computations of restarting automata.

Proposition 2.2.3 (Error Preserving Property for Restarting Automata). Let M =

(Q,Σ,Γ, c| , $, q0, k, δ) be an RRWW-automaton, and let u and u′ be words over its input

alphabet Σ. If q0c|u$ `c∗M q0c|u′$ holds and u /∈ L(M), then u′ /∈ L(M), either.

32

2.2 Restarting Automata

Proposition 2.2.4 (Correctness Preserving Property for Restarting Automata). Let M =

(Q,Σ,Γ, c| , $, q0, k, δ) be an RRWW-automaton, and let u and u′ be words over its input

alphabet Σ. If q0c|u$ `c∗M q0c|u′$ is an initial segment of an accepting computation of M ,

then u′ ∈ L(M).

The following property leads to a simple way of describing the behavior of restarting

automata.

Lemma 2.2.5. Each RRWW-automaton is equivalent to an RRWW-automaton that makes

an accept or restart step only when it sees the right border marker $ in its read/write

window.

This lemma means that in each cycle of each computation and also during the tail of each

computation the read/write window moves all the way to the right before a restart is made,

respectively, before the machine halts and accepts.

Based on this fact each cycle (and also the tail) of a computation of an RRWW-automaton

can be described through a sequence of so-called meta-instructions [NO01] of the form

(E1, u→ u′, E2), where E1 and E2 are regular languages, called regular constraints of this

instruction, and u and u′ are strings such that |u| > |u′|. The rule u → u′ stands for

a rewrite step of the RRWW-automaton. On trying to execute this meta-instruction an

RRWW-automaton will get stuck (and so reject) starting from the con�guration q0c|w$,

if w does not admit a factorization of the form w = w1uw2 such that c|w1 ∈ E1 and

w2$ ∈ E2. On the other hand, if w does have a factorization of this form, then one such

factorization is chosen non-deterministically, and q0c|w$ is transformed into q0c|w1u
′w2$.

In order to describe the tails of accepting computations we use meta-instructions of the

form (c| · E · $,Accept), where the strings from the regular language E are accepted by

the RRWW-automaton in tail computations. We illustrate this concept by describing the

RRWW-automaton from Example 2.2.2 by meta-instructions.

Example 2.2.6. Again, let M = (Q,Σ,Γ, c| , $, q0, 4, δ) be the RRWW-automaton that

is de�ned by taking Q = {q0, qc, qd, qr}, Σ = {a, b, c, d}, Γ = {a, b, c, d, ĉ, d̂}. Instead of

de�ning δ directly, we give the following sequence of meta-instructions for M :

33

Preliminaries

(1) (c| · a∗, ab→ ĉ, b∗ · c · $),

(2) (c| · a∗, abb→ d̂, b∗ · d · $),

(3) (c| · a∗, aĉb→ ĉ, Σ∗ · $),

(4) (c| · a∗, ad̂bb→ d̂, Σ∗ · $),

(5) (c| · {c, d} · $, Accept),

(6) (c| · ĉc · $, Accept),

(7) (c| · d̂d · $, Accept).

It is easily seen that this set of meta-instructions can be transformed into the transition

function δ from Example 2.2.2 and thus L(M) = {anbnc | n ≥ 0} ∪ {anb2nd | n ≥ 0}.

This way of describing RRWW-automaton will become quite important throughout the �fth

chapter of this work as in [NO00] it was shown that this corresponds to the characterization

of the class L(RRWW) by certain in�nite pre�x-rewriting systems.

Variants of Restarting Automata

In recent years a lot of di�erent restrictions and extensions of standard4 restarting au-

tomata were discussed and investigated. Here we present a selection of these modi�cations,

in fact, mainly those that are useful for our purposes.

Let us start with restrictions on the rewrite and move process. These restrictions are

expressed by the number of R's and W's in the description of the restarting automaton.

Here we distinguish between six types, that are, RRWW-, RWW-, RW-, R-, RRW- and

RR-automata. The meaning of these R's and W's can be summarized as follows:

one R [RWW-, RW- and R-automata] These types of restarting automata di�er from

the standard model in that they have to restart immediately after a rewrite operation.

In particular, this means that they cannot perform a rewrite step during the tail of

a computation.

one W [RW- and RRW-automata] Restarting automata of these types are not allowed

to use auxiliary symbols, that is, their tape alphabets coincide with the input alpha-

bets.

4Based on De�nition 2.2.1.

34

2.2 Restarting Automata

no W [RR- and R-automata] These types of restarting automata can only delete sym-

bols. Hence, the right hand side u′ of each rewrite step (q′, u′) ∈ δ(q, u) is a scattered

sub-word of the left-hand side u.

Next we present two further restrictions on the computation of restarting automata. First

of all, the pre�x det- denotes deterministic restarting automata, that is, |δ(q, u)| ≤ 1 for

all states q and all possible window contents u.

Secondly, the pre�x mon- denotes monotone restarting automata. The notion of mono-

tonicity was �rst introduced in [JMPV97]. Here we will use a slightly generalized de�nition

taken from [JMOP06]. Let M be an RRWW-automaton. Each computation of M can be

described by a sequence of cycles C1, C2, . . . , Cn, where Cn is the last cycle, which is

followed by the tail of the computation. Each cycle Ci of this computation contains a

unique con�guration of the form c|xquy$ such that q is a state and (q′, u′) ∈ δ(q, u) is

the rewrite step that is applied during this cycle. By Dr(Ci) we denote the right dis-

tance |uy$| of this cycle. The sequence of cycles C1, C2, . . . , Cn is called monotone if

Dr(C1) ≥ Dr(C2) ≥ · · · ≥ Dr(Cn) holds. A computation of M is called monotone if the

corresponding sequence of cycles is monotone. Observe that the tail of the computation is

not taken into account here. Finally, the RRWW-automaton M is called monotone if each

of its computations that starts from an initial con�guration is monotone.

Finally, we consider an extension of restarting automata, which was originally de�ned in

[MS04]. There restarting automata were introduced that must not reset their internal state

to the initial state while performing a restart operation. Hence, this ability can be used to

carry over some information from one cycle to the next. Therefore, restarting automata

of that type are called non-forgetting, which is denoted by the pre�x nf-. Observe that

in this case the notion of meta-instructions easily carries over to non-forgetting restarting

automata. Thus, a meta-instruction of a non-forgetting restarting automaton is described

as a 5 tuple (q, E1, u → u′, E2, q
′), where E1, E2 and u → u′ are de�ned as before and

q denotes the restart state of the described cycle and q′ is the state the automaton must

restart in after completing this cycle5.

In the following we summarize the main results concerning the di�erent types of restarting

automata stated above.

5In contrast to the situation for meta-instructions we use various ways of denoting restarting transitions
throughout the text. This will increase the readability of technical details in the respective context.
However, it will be clear when a particular transition denotes a restarting transition.

35

Preliminaries

General Classi�cation

On a given input of length n, clearly an RRWW-automaton can execute at most n cycles.

Thus, the following upper bounds for the computational power of restarting automata can

immediately be established, where P and NP denote the well-known complexity classes.

Proposition 2.2.7.

(a) L(RRWW) ⊆ NP ∩ CSL

(b) L(det-RRWW) ⊆ P ∩ DCSL

Obviously each type of restarting automaton is an extension of a �nite state automaton.

Therefore the regular languages (REG) form a lower bound.

However, Figure 2.2 summarizes the relations between the various types of restarting au-

tomata and well-known language classes. Here, arrows denote proper inclusions and if

there is no connection, then the classes are incomparable. Further, by GCSL we denote the

well-known class of growing context-sensitive languages introduced in [DW86], which is

de�ned by strictly monotone grammars. And CRL denotes the class of Church-Rosser lan-

guages, exposed in [MNO88]. Finally it is worth to mention that it is still open whether the

inclusion L(RWW) ⊆ L(RRWW) is proper, and whether L(RRW) is contained in L(RWW).

Both are in fact longstanding open questions (e.g. posed in [JMPV98]).

Monotone Restarting Automata

The notion of monotonicity leads to some quite interesting characterizations in terms of

restarting automata. In [JMPV97, JMPV98, JMPV99] it was shown that all language

classes accepted by deterministic restarting automata that are monotone coincide with the

deterministic context-free languages (DCFL). Further, the non-deterministic versions form

a hierarchy inside the context-free languages (CFL). Here it is also worth to notice that the

property of being monotone is decidable for any RRWW-automaton [Ott]. The mentioned

results are summarized in Figure 2.3.

Next we add the non-forgetting (nf-) property to the classes de�ned in this section. Then,

in contrast to the results above, not all deterministic classes coincide [MO11]. In particular,

the property of scanning the rest of the tape (that means two R's in the description of the

restarting automaton) makes a di�erence while increasing the power beyond DCFL. Here

most noteable is the characterization of the class of left-to-right regular languages6 (LRR

6The class LRR was introduced in [IC73].

36

2.2 Restarting Automata

NP ∩ CSL

P ∩ DCSL

L(RRWW)

L(det-RRWW)L(RWW)

L(det-RWW)

L(RRW)

L(det-RRW)

L(RW)

L(det-RW)

L(RR)

L(det-RR)

L(R)

L(det-R)

REG

CRL

GCSL

Figure 2.2: Inclusions between types of restarting automata and well-known language
classes. Proper inclusions are denoted by arrows, inclusions not known to be proper by
dashed arrows, and unknown relationships by dashed lines.

37

Preliminaries

CFL L(mon-RWW) L(mon-RRWW)

L(mon-RRW)

L(mon-RW)

L(mon-RR)

L(mon-R)

DCFL L(det-mon-R) L(det-mon-RRWW)

Figure 2.3: Inclusions between the various types of monotone restarting automata.

CFL L(mon-nf-RWW) L(mon-nf-RRWW)

LRR L(det-mon-nf-RRWW)

L(det-mon-nf-RRW)

L(det-mon-nf-RR)

DCFL L(det-mon-nf-R) L(det-mon-nf-RWW)

Figure 2.4: Hierarchy of some important classes of non-forgetting restarting automata.

38

2.2 Restarting Automata

for short) by det-mon-nf-RRWW-automata. Further, the non-deterministic classes form

exactly the same hierarchy as the forgetting variants [Mes08]. To this end we again sum-

marize the most important hierarchy results taken from [MO11] and [Mes08] in Figure 2.4.

2.2.1 Restarting Automata with Window Size One

One of the parameters that are essential for a restarting automaton is the size of the

read/write window. Mráz showed in [Mrá01] that for automata without auxiliary symbols

an increase of the size of the read/write window increases also the power of these automata.

Further, it was shown that in this context the regular languages always form a lower bound.

That is, if the size of the read/write window is restricted to 1, most types of restarting

automata characterize the regular languages. In particular, the following results have been

obtained.

Proposition 2.2.8 ([Mrá01]).

L(det-R(1)) = L(det-mon-R(1)) = L(mon-R(1)) = L(R(1)) = REG.

Reimann ([Rei07]) extended the previous results to det-RR(1)-automata.

Proposition 2.2.9 ([Rei07]).

L(det-mon-RR(1)) = L(det-RR(1)) = REG.

In fact, the authors above have only shown that the language class computed by R(1)-

respectively det-RR(1)-automata coincides with the regular languages. Since each type

of restarting automaton can compute the regular languages, and deterministic restarting

automata with window size one are necessarily monotone, also the additional equivalences

given in Proposition 2.2.8 and Proposition 2.2.9 hold. Indeed, the latter fact can easily be

veri�ed. Let M = (Q,Σ, c| , $, q0, 1, δ)
7 be a deterministic RR(1)-automaton, and assume

that M executes the cycle q0c|w$ = q0c|uav$ `cM q0c|uv$. Then starting from the con-

�guration q0c|uv$, M must move right across the pre�x c|u of the tape contents before it

can possibly detect an applicable rewrite operation, as M is deterministic. Hence, if the

7Note that restarting automata with window size one simply erase a single symbol from the tape in
each cycle. Hence, to avoid redundancy we describe them as 7-tuples, for the reason that in this case the
tape alphabet always coincides with the input alphabet.

39

Preliminaries

computation continues with the cycle q0c|uv$ = q0c|xby$ `cM q0c|xy$, then u is a pre�x of

x, that is, the right distance of the second cycle is smaller than the right distance of the

former cycle. It follows that M is monotone.

Further, it is worth to notice that already mon-RR(1)-automata can compute non-regular

languages. For that consider the following example, taken from [KO12].

Example 2.2.10. Let M = (Q, {a, b}, c| , $, q0, 1, δ) be the mon-RR(1)-automaton that is

described by meta-instructions as follow:

(1) (c| · (aa)∗ · a, a→ ε, (bb)∗ · $),

(2) (c| · (aa)∗ · a, b→ ε, b · (bb)∗ · $),

(3) (c| · (aa)∗, a→ ε, b · (bb)∗ · $),

(4) (c| · (aa)∗, b→ ε, (bb)∗ · $),

(5) (c| · $, Accept).

Clearly the automaton M processes inputs of the form ambn, and it can be easily veri�ed

that M is monotone and L(M) = {anbn, anbn+1 | n ≥ 0}. For that just observe that

it removes the �rst occurrence of the letter b and the last occurrence of the letter a,

alternatingly. To distinguish between these two cases it uses the parity of the number of

a's and the parity of the number of b's. For instance, M deletes an a if and only if the

number of a's and b's are both even or odd. Clearly b's are treated in the opposite way.

We continue by extending the above characterizations of REG to non-forgetting restarting

automata. We will see in Chapter 4 that the following results open up a quite interesting

and fruitful topic, namely relations that are de�ned by transducers of that type. Further,

the upcoming results are also fairly surprising from a language theoretic point of view,

for the reason that the property of being non-forgetting generally increases the power of

restarting automata.

Theorem 2.2.11. L(det-mon-nf-R(1)) = REG.

Proof. We mentioned already that every type of restarting automaton can accept the

regular languages just by simulating a DFA in its �nite control. Thus, it remains to

prove the inclusion from left to right. Let M = (Q,Σ,c| , $, q0, 1, δ) be a det-mon-nf-R(1)-

automaton for L ⊆ Σ∗. W.l.o.g. we may assume that Q = {q0, q1, . . . , qn−1}, and that

M executes accept-instructions only on reading the $-symbol. Below we describe a de-

terministic �nite-state acceptor (DFA) A for the language L · $. In order to illustrate the

40

2.2 Restarting Automata

main problem that we must overcome in simulating a monotone non-forgetting restarting

automaton by a �nite-state acceptor, we begin by looking at an example computation of

M .

If w ∈ L, then the computation of M on input w is accepting. Let us assume that

this computation consists of a sequence of at least two cycles that is followed by a tail

computation, that is, it has the following form:

q0c|w$ = q0c|uav$ `+
MVR c|up0av$ `M qi1c|uv$

= qi1c|xby$ `+
MVR c|xpi1by$ `M qi2c|xy$

`c∗M qimc| z$ `+
MVR c| zpim$ `M Accept,

where u, v, x, y, z ∈ Σ∗, a, b ∈ Σ, and p0, qi1 , pi1 , qi2 , qim , pim ∈ Q. The right distance of the
�rst cycle is d1 = |v|+ 2, and the right distance of the second cycle is d2 = |y|+ 2. As M

is monotone, we have d1 ≥ d2, that is, |v| ≥ |y|. Since uv = xby, this means that y is a

su�x of v.

If d1 > d2, that is, the sequence of these two cycles is strictly monotone, then y is a proper

su�x of v, and so v = x2by for a su�x x2 of x. In this case w = uav = uax2by, which

implies that the second delete operation is executed at a place that is strictly to the right

of the place where the �rst delete operation was executed. In this situation the DFA A will

�rst encounter the letter a deleted in the �rst cycle, and later it will encounter the letter

b deleted in the second cycle.

If, however, d1 = d2, that is, the sequence of two cycles considered is not strictly monotone,

then v = y, and so uv = xby = xbv implies that u = xb, which yields w = uav = xbav.

Thus, in this situation the second delete operation is executed immediately to the left of

the place where the �rst delete operation was executed. Hence, in this case we have the

problem that the DFA A will �rst encounter the letter b that is deleted in the second cycle

before it will encounter the letter a that is deleted in the �rst cycle. Somehow we must

overcome this problem.

Notice that the latter situation described above can happen only if M completes the �rst

cycle by restarting in the correct state qi1 . In fact, this situation can occur more than

once in a row. However, as M is deterministic, we see that qi1 6= q0, and more generally,

if C1, C2, . . . , Ck is a sequence of cycles such that Dr(C1) = · · · = Dr(Ck), then all these

cycles must begin in di�erent states. This implies that the length of such a sequence of

cycles is bounded from above by the number n of states of M .

41

Preliminaries

In order to simulate the computation of M on input w, the DFA A must store some

information on the computation of M it tries to simulate in its �nite-state control. In

particular, it needs to store information related to sequences of cycles of M that are not

strictly monotone. For this we assume that as a part of its internal states A stores the

following data structures:

• The current restart state CRS that contains the state q ∈ Q with which the cycle of

M started that is currently active. Initially CRS is set to q0.

• A state table T that initially contains the list of all pairs (qi, q
′
i) (0 ≤ i ≤ n − 1),

where q′i is the state that M enters from state qi on seeing the c| -symbol. If δ(qi, c|)
is unde�ned, then T contains the item (qi,−).

• A bu�er B of length at most n that is initially empty. It will be used to store

information on possible rewrite (that is, delete) operations encountered during the

current simulation.

When simulating the above computation of M , the DFA A will store the following infor-

mation:

• CRS still contains the initial state q0;

• the table T contains the pairs (qi, pi) (0 ≤ i ≤ n − 1), where pi is the state that M

reaches from the restarting con�guration qic|w$ = qic|xbav$ by moving right across

the pre�x c|x;

• on realizing that M can execute the rewrite operation δ(pi1 , b) = (qi2 , ε), A stores

the pair (b, (qi1 , pi1 , qi2)) in B, and moves right to the next letter. In fact, such a

pair is stored in B for each index j such that δ(pj , b) is a rewrite operation. Together

with these pairs, A also stores a copy of the current state table T . Recall that, for

all i, T contains the pair (qi, pi) such that, when starting in state qi, M reaches state

pi after reading across the pre�x c|x.

Next A realizes that M can execute the rewrite operation δ(p0, a) = (qi1 , ε). Hence, it has

detected that the computation of M on input w = xbav begins with a sequence of two

not strictly monotone cycles that delete the factor ba. In this case A sets CRS to qi2 , it

replaces its current state table by the table T that was stored in B together with the pair

42

2.2 Restarting Automata

(b, (qi1 , pi1 , qi2)), and it empties the bu�er B. Thus, A now simulates the computation of

M that begins with the restarting con�guration qi2c|xv$, and as M is deterministic, A can

do so by starting with the �rst letter of v and by considering the states of M that are

reached by moving right across the pre�x c|x, which are already recorded in the table T .

We now give a formal description of the DFA A = (QA,Σ∪{$}, δA, q(A)
0 , F), where we take

the fact into account that sequences of not strictly monotone cycles within a computation

of M can be of any length up to n.

Let Qr ⊆ Q be the set of restart states of M , that is, q ∈ Q belongs to Qr, if q = q0, or

if (q, ε) ∈ δ(p, a) for some p ∈ Q and a ∈ Σ. Further, let k ∈ N such that |Qr| = k + 1.

W.l.o.g. we may assume that Qr = {q0, q1, . . . , qk}. Note that the states in Qr can be seen

as the initial states of k + 1 `�nite state automata'. Now the set of states QA of the DFA

A is de�ned as

QA = {[q, T,B] | q ∈ Qr},

where T ⊆ {(qi, q′i) | qi ∈ Qr and q′i ∈ Q ∪ {−}} is a state table that mirrors a parallel

computation of these di�erent �nite-state acceptors on a pre�x of the current input of M ,

and B is the bu�er mentioned above which is realized as a (k + 1)× (k + 2) matrix. The

rows of B are indexed by the restart states qµ ∈ Qr, that is, for each µ ∈ {0, . . . , k}, row µ

corresponds to the restart state qµ. For all µ, row µ will, at each moment in time, either

contain the marker − in all entries, or it will contain a state table Tµ in its �rst entry, a

sequence of tuples

(b0, (qi0 , q
′
i0 , q

′′
i0))(b1, (qi1 , q

′
i1 , qi0)) . . . (bs−1, (qis−1 , q

′
is−1

, qis−2))(bs, (qis , q
′
is , qis−1))

in columns 2 to s+2 such that s ≥ 0, b0, . . . , bs ∈ Σ, qi0 , . . . , qis , q
′′
i0
∈ Qr, and q′i0 , . . . , q

′
is
∈

Q, where qis = qµ, possibly some entries of the form (c1) . . . (cs′), c1, . . . , cs′ ∈ Σ, in columns

s+3 to s+s′+3, and the marker − in all columns j > s+s′+3. Here the above sequence

of tuples describes a possible sequence of not strictly monotone cycles that, starting in

restart state qµ, would delete the factor b0 . . . bs, which is followed by the word c1 . . . cs′ .

Observe that the restart state qµ that corresponds to row µ occurs as the �rst state in

the last tuple (bs, (qis , q
′
is
, qis−1)), and that the third state in a tuple is just the restart

state that occurred as the �rst state in the previous tuple. This mirrors the fact that, in

the aforementioned sequence of not strictly monotone cycles, the factor b0 . . . bs would be

deleted letter by letter from right to left.

43

Preliminaries

Initially A is in state

q
(A)
0 =

q0, {(q0, 〈δ(q0, c|)〉), . . . , (qk, 〈δ(qk, c|)〉),


− · · · −
...

. . .
...

− · · · −


 ,

where 〈δ(qi, c|)〉 (0 ≤ i ≤ k) is the state that is reached by M from state qi on seeing the

c| -symbol, that is, 〈δ(qi, c|)〉 = q′i, if δ(qi, c|) = (q′i,MVR), and it is unde�ned (denoted by

−), if δ(qi, c|) is unde�ned, and all entries of the bu�er are �lled with the marker −.

The description of the transition function δA of A can be divided into three parts, where

the �rst part concerns the case that on the current input letter only move-right steps

and unde�ned transitions of M occur, the second part deals with the case that on this

particular input letter some rewrite/restart operations are possible, but none of them

concerns the currently active restart state, and the third part deals with the case that the

currently active restart state leads to a rewrite/restart step on the current input letter.

Let us assume that A has already processed a pre�x x of the given input, and now it is

to process the next letter a. While reading x, A has reached a state [qr, T, B] from its

initial state q(A)
0 , where qr ∈ Qr is the restart state in which the cycle of M started that is

currently being simulated, T = {(q0, q
′
0), . . . , (qk, q

′
k)} is the current state table, where, for

all i = 0, . . . , k, q′i is the state that M would reach starting from the con�guration qic|x by

executing |x|+1 MVR-steps, if that is possible, and otherwise q′i = −, and B is the current

bu�er that may contain information on previous rewrite/restart steps that correspond to

possible sequences of not strictly monotone cycles that would delete a factor of x.

(a) If, for all i ∈ {0, . . . , k}, δ(q′i, a) is either a MVR-step or it is unde�ned, then

δA([qr, T, B], a) =

qr, T ′,

− · · · −
...

. . .
...

− · · · −


 , (2.1)

where T ′ = {(q0, 〈δ(q′0, a)〉), ..., (qk, 〈δ(q′k, a)〉)}, and the bu�er B is completely emp-

tied. Here 〈δ(q′i, a)〉 is the state q′′i that is reached by M from state q′i on seeing

the symbol a, if δ(q′i, a) = (q′′i ,MVR), and it is unde�ned (denoted by −), if δ(q′i, a)

is unde�ned. Thus, for all i = 0, . . . , k, 〈δ(q′i, a)〉 is the state that M would reach

starting from the con�guration qic|xa by executing |x| + 2 MVR-steps, if that is

possible, and otherwise it is −.

44

2.2 Restarting Automata

(b) If, for one or more i ∈ {0, . . . , k}, δ(q′i, a) is a rewrite/restart step, then the situation

gets much more complicated. Here we consider the case that δ(q′ij , a) = (q′′ij , ε) for

some j = 1, . . . , s, that δ(q′i, a) is a MVR-step or it is unde�ned for all other values

of i, and that qr 6∈ {qi1 , . . . , qis}, that is, none of the above rewrite/restart steps

corresponds to the current restart state. Assume that

B =


T0 : l0,0 l0,1 . . . l0,k

T1 : l1,0 l1,1 . . . l1,k
...

...
...

. . .
...

Tk : lk,0 lk,1 . . . lk,k

 ,

where, for each µ ∈ {0, . . . , k}, row µ of B is either �lled with a state table Tµ in the

�rst column, tuples of the form (b, (q, p, q′)) in all columns up to some column v ≥ 2,

possibly some entries of the form (c) in all columns v < ρ ≤ v + v′, and the marker

− in all entries lµ,ρ with ρ > v + v′, or all entries of row µ contain the marker −.
Notice again that the �rst column di�ers from the others, as it contains state tables.

However, if there are no tuples in a particular row, then also this entry is set to −.
Now δA is de�ned by taking

δA([qr, T, B], a) = [qr, T
′, B′], (2.2)

where T ′ = {(q0, q
′′
0), . . . , (qk, q

′′
k)} is obtained from T = {(q0, q

′
0), . . . , (qk, q

′
k)} by

replacing, for all i = 0, . . . , k, q′i by q
′′
i as follows:

q′′i =


−, if q′i = −,
−, if δ(q′i, a) is a rewrite/restart step,

q, if δ(q′i, a) = (q,MVR),

−, if δ(q′i, a) is unde�ned.

Then, for all i = 0, . . . , k, q′′i is the state that M would reach starting from the

con�guration qic|xa by executing |x|+2 MVR-steps, if that is possible, and otherwise

q′′i = −.

The bu�er B contains information on rewrite steps that correspond to possible se-

quences of not strictly monotone cycles ofM that would delete a factor of x. The new

bu�er B′ is obtained from B by combining the information on the rewrite/restart

steps δ(q′ij , a) = (q′′ij , ε) (1 ≤ j ≤ s) with the information stored in B.

45

Preliminaries

For each j = 1, . . . , s, if the row of B that corresponds to the restart state qij is

not empty (that is, it does not only contain entries of the form −), then all entries

of the corresponding row of B′ are set to −, as in this case we have a repetition of

restart states. Otherwise, this row of B′ is de�ned as follows. If the row of B that

corresponds to the restart state q′′ij contains a sequence of entries

Tµ : (b0, (p0, p
′
0, p
′′
0)) . . . (bt, (q

′′
ij , p

′
t, p
′′
t)),

then the row of B′ that corresponds to the restart state qij is set to

Tµ : (b0, (p0, p
′
0, p
′′
0)) . . . (bt, (q

′′
ij , p

′
t, p
′′
t))(a, (qij , q

′
ij , q

′′
ij)). (2.3)

Observe how the last two tuples match in the way that the former tuple describes a

cycle of M that starts in the restart state q′′ij , and the new tuple describes a cycle of

M that ends with a rewrite/restart step that leads to this very restart state.

If the row of B that corresponds to the restart state q′′ij is empty, then the row of B′

that corresponds to the restart state qij is set to

T : (a, (qij , q
′
ij , q

′′
ij)). (2.4)

In each of these two cases, this row of B′ describes a possible sequence of not strictly

monotone cycles of M that would delete a su�x of xa. Further, if the row of B that

corresponds to the restart state q′′ij contains a sequence of entries

Tµ : (b0, (p0, p
′
0, p
′′
0)) . . . (bt, (q

′′
ij , p

′
t, p
′′
t))(bt+1) . . . (bt+t′)

for some t′ ≥ 1, then all entries in the row of B′ that correspond to the restart

state qij are set to −, as in this case the cycle ending with the rewrite/restart step

δ(q′ij , a) = (q′′ij , ε) would be followed by a sequence of cycles that would delete the

pre�x b0 . . . bt of the su�x b0 . . . btbt+1 . . . bt+t′ of x, that is, we would have a non-

monotone computation.

Finally, for all µ such that row µ does not correspond to any of the restart states qij
(1 ≤ j ≤ s), if row µ of B contains a sequence of entries

Tµ : (c0, (p0, p
′
0, p
′′
0)) . . . (ct, (qt, p

′
t, p
′′
t))(ct+1) . . . (ct+t′)

46

2.2 Restarting Automata

for some t, t′ ≥ 0, then row µ of B′ is set to

Tµ : (c0, (p0, p
′
0, p
′′
0)) . . . (ct, (qt, p

′
t, p
′′
t))(ct+1) . . . (ct+t′)(a), (2.5)

in all other cases all entries in row µ of B′ are set to −. In the former case this

row describes the fact that there exists a possible sequence of not strictly monotone

cycles that would delete the pre�x c0 . . . ct of the su�x c0 . . . ctct+1 . . . ct+t′a of xa.

(c) Finally we consider the case that δ(q′ij , a) = (q′′ij , ε) for some j = 1, . . . , s, that δ(q′i, a)

is a MVR-step or it is unde�ned for all other values of i, and that qr = qij for some

j ∈ {1, . . . , s}, that is, one of the s computations that perform the rewrite/restart

step on the current letter a corresponds to the actual computation that is currently

being simulated. In this case the current rewrite/restart step completes a cycle which

may be part of a not strictly monotone sequence of cycles that delete a su�x of xa.

To simplify the notation we assume that qr = qi1 , that is, δ(q
′
i1
, a) = (q′′i1 , ε) is the

rewrite/restart step that M would execute in the current cycle. Further, let

B =


T0 : l0,0 l0,1 . . . l0,k

T1 : l1,0 l1,1 . . . l1,k
...

...
...

. . .
...

Tk : lk,0 lk,1 . . . lk,k

 ,

where, for each µ ∈ {0, . . . , k}, row µ of B is either �lled with a state table Tµ in the

�rst column, tuples of the form (b, (q, p, q′)) in all columns up to some column v ≥ 2,

possibly some entries of the form (c) in all columns v < ρ ≤ v + v′, and the marker

− in all entries lµ,ρ with ρ > v + v′, or all entries of row µ contain the marker −.
Now δA is de�ned by taking

δA([qr, T, B], a) = [q′r, T
′, B′], (2.6)

where q′r, T
′, and B′ are described below.

First we consider the de�nition of the restart state q′r and the state table T ′. If the

row of B that corresponds to the restart state q′′i1 contains a sequence of entries

Tµ : (b0, (p0, p
′
0, p
′′
0)) . . . (bt, (q

′′
i1 , p

′
t, p
′′
t)),

then A has discovered a sequence of not strictly monotone cycles ofM that delete the

47

Preliminaries

su�x b0 . . . bta of xa. Accordingly, q′r = p′′0 and T ′ = Tµ are chosen, as Tµ describes

the behavior of M concerning MVR-steps that read across the pre�x c|x1 of c|xa that
is obtained by deleting the su�x b0 . . . bta. In all other cases, q′r = q′′i1 and T ′ = T

are chosen, as in this case the next cycle, which begins with the restart state q′′i1 ,

does not belong to a sequence of not strictly monotone cycles that would delete a

su�x of x.

The matrix B′ is de�ned as follows. If the row of B that corresponds to the restart

state q′′i1 contains a sequence of entries

Tµ : (b0, (p0, p
′
0, p
′′
0)) . . . (bt, (q

′′
i1 , p

′
t, p
′′
t)), (2.7)

then all entries in the row of B′ that correspond to the restart state q′′i1 are set to

the marker −. For any other row µ′ of B, we proceed as follows:

� if row µ′ of B contains a sequence of the form

Tµ′ : (bi, (pi, p
′
i, p
′′
i)) . . . (bs, (ps, p

′
s, p
′′
s))(bs+1) . . . (bt),

for some i ≥ 0 and some i ≤ s ≤ t, then all entries in the corresponding row of

B′ are set to −;

� if row µ′ of B contains a sequence of the form

Tµ′ : (c0, (p0, p
′
0, p
′′
0)) . . . (cs, (ps, p

′
s, p
′′
s))(cs+1) . . . (cs+s′)(b0) . . . (bt)

for some s ≥ 0 and s′ ≥ 1, then the corresponding row of B′ is set to

Tµ′ : (c0, (p0, p
′
0, p
′′
0)) . . . (cs, (ps, p

′
s, p
′′
s))(cs+1) . . . (cs+s′);

� if row µ′ of B contains a sequence of the form

Tµ′ : (c0, (p0, p
′
0, p
′′
0)) . . . (cs, (ps, p

′
s, p
′′
s))(b0, (. . .)) . . . (bt, (. . .))

for some s ≥ 0, where the subsequence (b0, (. . .)) . . . (bt, (. . .)) consists of tuples

only, or it consists of r ≥ 0 tuples that are followed by the sequence

(br)(br+1) . . . (bt), then the row of B′ that corresponds to the restart state ps is

set to

Tµ′ : (c0, (p0, p
′
0, p
′′
0)) . . . (cs, (ps, p

′
s, p
′′
s));

48

2.2 Restarting Automata

� �nally, all other rows of B′ will only contain the marker −.

If, however, the row of B that corresponds to the restart state qi1 does not have the

form as in equation (2.7), then we take B′ = B.

Finally, A enters its accepting state, if the current cycle leads M to accept on seeing the

$-symbol, that is, δA([qr, T, B], $) = [Accept] if and only if (qr, q) ∈ T for some state such

that δ(q, $) = Accept.

In summary the overall computation of A on input w proceeds as follows. Assume that A

reads the letter a.

• If, for no pair (qi, q
′
i) stored in the table T , δ(q′i, a) is a rewrite operation, then the

table T is updated by replacing (qi, q
′
i), for all i, by (qi, q̂i), if δ(q′i, a) = (q̂i,MVR),

and by (qi,−), if δ(q′i, a) is unde�ned. In this situation, CRS remains unchanged,

and the bu�er is emptied completely (see (a)).

• If CRS is qi, and for the pair (qi, q
′
i) stored in T , δ(q′i, a) = (qj , ε), then the rewrite

operation of the current cycle of M has been detected. If B is empty, then CRS is

set to qj , and T and B remain unchanged, and if B is non-empty, then A proceeds

as detailed in (c).

• If δ(q′i, a) = (qj , ε) for a pair (qi, q
′
i) stored in T , where qi is di�erent from the state

stored in CRS, then the corresponding information is pushed onto the bu�er B as

detailed in (b).

The �nite-state acceptor A keeps on reading the word w letter by letter from left to right

until it encounters the right sentinel $. Now the actual state of A is accepting, if the pair

(qi, q
′
i) in the current table T that corresponds to the current state qi of M stored in CRS

satis�es the condition that δ(q′i, $) = Accept.

Notice again that the space provided for the bu�er su�ces for the task described above.

Of course, it may happen that a row of B is completely �lled with tuples. As a not strictly

monotone sequence of cycles within any computation of M can consist of only up to k+ 1

cycles, it follows that the sequence corresponding to a completely �lled row of B cannot

be reached within any computation of M . Hence, we can adjust our construction in that

we empty any row of B as soon as it contains two tuples with the same restart state.

49

Preliminaries

As stated above our initial example mirrors only a small part of the possible computations

of M . In general the situation can be much more complicated. In fact, there are three

major cases that we need to deal with.

Case 1. The word w has a factorization of the form w = xamam−1 · · · a1y such that the

computation of M on input w begins with a sequence of m cycles such that, in the j-th

cycle (1 ≤ j ≤ m), the letter aj is deleted. Thus, while the �rst cycle has the form

q0c|w$ = q0c|xam · · · a2a1y$ `+
MVR c|xam · · · a2p0a1y$ ` qi1c|xam · · · a2y$,

the j-th cycle (2 ≤ j ≤ m) has the form

qij−1c|xam · · · aj+1ajy$ `+
MVR c|xam · · · aj+1pij−1ajy$ ` qijc|xam · · · aj+1y$.

This case is treated in analogy to the example above.

Case 2. The word w has a factorization of the form w = xam · · · as+1asy such that, for

each j = s+ 1, . . . ,m, there is a possible cycle of M of the form

qij−1c|xam · · · aj+1ajasy$ `+
MVR c|xam · · · aj+1pij−1ajasy$ ` qijc|xam · · · aj+1asy$,

but from the restarting con�guration qic|xam · · · as+1asy$, M does not apply a rewrite

operation to the letter as for any state qi ∈ Qr. While reading the pre�x xam · · · as+1, A

has collected the following information in its �nite-state control:

• CRS is q0;

• the table T contains the pairs of the form (qi, q
′
i) (i = 0, 1, . . . , k), where q′i is the

state that M reaches from the restarting con�guration qic|w$ = qic|xam · · · asv$ by

moving right across the pre�x c|x;

• the bu�er B contains the following sequence in the row is that corresponds to restart

state qis :

Tis : (am, (qim−1 , pim−1 , qim)) (am−1, (qim−2 , pim−2 , qim−1)) · · · (as+1, (qis , pis , qis+1)).

On encountering the letter as, A realizes that M cannot execute a rewrite step that com-

pletes the partial computation on input w consisting of the sequence of cycles encoded by

the is-th row of B given above in the sense of Case 1. In fact, as M cannot execute any

50

2.2 Restarting Automata

rewrite step on as, no matter in which state it starts the current cycle, monotonicity of

M implies that the partial computation encoded by the is-th row of B cannot be a part

of the computation of M on input w. Therefore, A empties the bu�er B completely (see

(a)), and T is updated by replacing each pair (qi, q
′
i) in T by the pair (qi, q̂i), if starting

from the restarting con�guration qic|xam · · · as+1asv$, M reaches state q̂i by moving right

across the pre�x c|xam · · · as (see equation (2.1)).

Case 3. This case is a combination of the two cases above. The word w has a factorization

of the form w = xam · · · as+1asas−1 · · · a1y such that all of the following properties hold:

(α) For each j = s+ 1, . . . ,m, there is a possible cycle of M of the form

qij−1c|x · · · ajas · · · a1y$ `+
MVR c|x · · · pij−1ajas · · · a1y$ ` qijc|x · · · aj+1as · · · a1y$.

(β) There is a possible cycle of the form

q′is−1
c|xam · · · as+1as · · · a1y$ `+

MVR c|xam · · · as+1p
′
is−1

as · · · a1y$

` q′isc|xam · · · as+1 · · · a1y$,

but for each such cycle, q′is 6= qis .

(γ) For each µ = 1, . . . , s− 1, there is a possible cycle of M of the form

q′iµ−1
c|xam · · · aµ+1aµy$ `+

MVR c|xam · · · aµ+1p
′
iµ−1

aµy$ ` q′iµc|xam · · · aµ+1y$

such that q′i0 coincides with the current value of CRS.

Thus, there is a possible sequence of not strictly monotone cycles that would delete the

factor am · · · as+1 of w by (α), there is a cycle that would delete the letter as by (β), but

the restart state q′is reached by the latter cycle does not coincide with the initial state qis of

the �rst of the former sequence of cycles, and there is a sequence of not strictly monotone

cycles that deletes the factor as−1 · · · a1 of w by (γ) such that the initial state q′i0 of the

�rst of these cycles coincides with the restart state of the current cycle of M that is being

simulated.

While reading the pre�x xam · · · as+1, A has collected the same information as in Case 2.

On encountering the letter as, A realizes that M cannot execute another cycle that would

extend the partial computation on input w consisting of the sequence of cycles of (α). As,

51

Preliminaries

however, there is a rewrite operation that M may apply to the letter as, A continues as

follows (see (b)):

• CRS remains unchanged;

• the table T is updated as above (see equation (2.2));

• all rows of the bu�er B that contain any entries other than − are extended by the

entry (as) (see equation (2.5)), and each row that corresponds to a restart state q′is−1

is initialized with the entries T and (as, (q
′
is−1

, p′is−1
, q′is)) (see equation (2.4)).

For each letter as−1, . . . , a2, A extends the bu�er B as described in (b). Observe that m,

the length of the factor am . . . as+1as . . . a1, must still satisfy the condition m ≤ k + 1 due

to the fact that M is deterministic. On encountering the letter a1, A realizes that it has

found a sequence of s cycles that is the �rst part of the computation of M on input w.

Accordingly, it acts similar to Case 1. However, it must delete from B all those entries

that correspond to the cycles deleting the factor as . . . a1 (see (c)). Of course, the above

situation may occur repeatedly, but the overall length of the longest sequence of possible

rewrite operations that is stored in B is always bounded in length from above by the

number k + 1 of restart states of M . This completes the description of Case 3.

It follows that L(A) = L · $. Since the class of regular languages is closed under right

quotients, this implies that the language L is regular, too. This completes the proof of

Theorem 2.2.11.

Next we extend Theorem 2.2.11 to non-deterministic nf-R-automata.

Theorem 2.2.12. L(mon-nf-R(1)) = REG.

Proof. Let M = (Q,Σ, c| , $, q0, 1, δ) be a mon-nf-R(1)-automaton for L ⊆ Σ∗. Then

M can be simulated by a non-deterministic �nite state automata (NFA) A = (QA,Σ ∪
{$}, δA, q(A)

0 , F) for the language L · $ by using exactly the same strategy as in the proof

of Theorem 2.2.11. In each step the NFA A just has to guess the transition step that M is

going to execute. However, as in the proof of Theorem 2.2.11 determinism was used as an

essential argument to obtain the upper bound for the size of the bu�er B implemented as

part of the �nite-state control of the DFA constructed, we must still verify the following

claim for the non-deterministic case.

52

2.2 Restarting Automata

Claim. Let w = xamam−1 · · · a1y be an input word such that M has a computation on

input w that begins with a sequence of m cycles such that, in the j-th cycle (1 ≤ j ≤ m),

the letter aj is deleted. Then m ≤ k+ 1, where k+ 1 is the number of restart states of M

(see above).

Proof. Consider the computation of M on input w for which the �rst cycle has the form

q0c|w$ = q0c|xam · · · a2a1v$ `+
MVR c|xam · · · a2p0a1y$ ` qi1c|xam · · · a2y$,

and the j-th cycle (2 ≤ j ≤ m) has the form

qij−1c|xam · · · aj+1ajy$ `+
MVR c|xam · · · aj+1pij−1ajy$ ` qijc|xam · · · aj+1y$.

Assume that m > k + 1 holds. Then there exist two indices 0 ≤ µ < ν ≤ m such that the

restart states qiµ and qiν are identical. Here we simply denote the initial state q0 as qi0 .

Hence, M can also perform the following computation:

q0c|xam · · · a2a1y$ `cµ−1

M qiµ−1c|xam · · · aν+2aν+1aν · · · aµ+1aµy$

`+
MVR c|xam · · · aν+2aν+1aν · · · aµ+1piµ−1aµy$

`M qiµc|xam · · · aν+2aν+1aν · · · aµ+1y$

= qiνc|xam · · · aν+2aν+1aν · · · aµ+1y$

`+
MVR c|xam · · · aν+2piνaν+1aν · · · aµ+1y$

`M qiν+1c|xam · · · aν+2aν · · · aµ+1y$.

The cycle starting with the con�guration qiµ−1c|xam · · · aν+2aν+1aν · · · aµ+1aµy$ has right

distance d1 = |y|+ 2, while the next cycle, that is, the one starting with the con�guration

qiνc|xam · · · aν+2aν+1aν · · · aµ+1y$, has right distance d2 = |y| + 2 + ν − µ > d1. This,

however, contradicts our assumption that M is monotone, which means that each and

every computation of M that starts from an initial con�guration is monotone. Thus, it

follows that m ≤ k + 1 holds as in the deterministic case considered in Theorem 2.2.11.

This completes the proof of the claim above.

Hence, it follows that, whenever in a simulation of a computation of M by A a sequence

of cycles is detected that contains a repetition of a restart state, then this sequence of

cycles cannot possibly be a part of a computation of M that begins with a proper initial

con�guration. Accordingly, the actual computation of A can be terminated in a non-

accepting state. It follows that L(A) = L · $, which in turn implies that the language L

itself is regular.

53

Preliminaries

Finally we want to extend Theorem 2.2.11 even to non-forgetting RR-automata. For doing

so we need the following technical result on deterministic two-way �nite state automata

from [AHU69] (see pages 212�213). Here note that a deterministic two-way �nite state

automaton (2DFA for short) A = (Q,Σ, δ, q0, F) is simply a DFA, where the transition

function is extended to δ : Q× Σ→ Q× {L,R} (e.g. exposed in [HU79]).

Lemma 2.2.13. Let B be a DFA. For each word x and each integer i, 1 ≤ i ≤ |x|, let
qB(x, i) be the internal state of B after processing the pre�x of length i of x. Then there

exists a 2DFA B′ such that, for each input x and each i ∈ {2, 3, . . . , |x|}, if B′ starts its
computation on x in a state corresponding to qB(x, i) with its head on the i-th symbol of

x, then B′ �nishes its computation in a state that corresponds to qB(x, i− 1) with its head

on the (i− 1)-th symbol of x. During this computation B′ only visits (a part of) the pre�x

of length i of x.

Informally, a 2DFA is able to recalculate the current state and the position of the head of

a corresponding DFA, after making an excursion to the left (end) of the tape.

Theorem 2.2.14. L(det-mon-nf-RR(1)) = REG.

Proof. Obviously it remains to prove the inclusion from left to right. So let

M = (Q,Σ, c| , $, q0, 1, δ) be a det-mon-nf-RR(1)-automaton for L ⊆ Σ∗. W.l.o.g. we may

assume that Q = {q0, q1, . . . , qn−1}, and that M executes restart- and accept-instructions

only on reading the $-symbol. Below we describe a 2DFA A = (QA,Σ∪ {c| , $}, δA, q(A)
0 , F)

for c| · L · $. Essentially, A works in the very same way as the DFA in the proof of Theo-

rem 2.2.11, but there is a technical problem that we must solve:

Whenever M executes a rewrite operation, then we need to know whether this operation

is within an accepting or a rejecting tail computation, or whether it is contained in a cycle

of M . In the latter case, we also need to know which state of M is entered by the restart

operation of this cycle.

To solve this problem A will execute a preprocessing stage given an input of the form c|w$.

Preprocessing Stage: Let w ∈ Σ∗, and let c|w$ be the input for A.

Step 1. Starting from the initial con�guration q(A)
0 c|w$, A scans its input from left to right

until it encounters the $-symbol, that is, q(A)
0 c|w$ `+

A c|wq(A)
1 $ for some state q(A)

1 ∈ QA.

Step 2. For each su�x v of w, and for each state q ∈ Q, let

Pv$(q) = {p ∈ Q | ∃p′ ∈ Q : c| pv$ `|v|MVR c| vp′$ `Restart qc| v$},

54

2.2 Restarting Automata

and let

Pv$(+) = {p ∈ Q | ∃p′ ∈ Q : c| pv$ `|v|MVR c| vp′$ ` Accept}.

The initial sets

P$(q) = {p ∈ Q | δ(p, $) = (q,Restart)} and P$(+) = {p ∈ Q | δ(p, $) = Accept},

which are easily obtained from M , are stored in A's �nite-state control.

Step 3. A reads its tape from right to left, letter by letter. Assume that w = xav, where

x, v ∈ Σ∗ and a ∈ Σ, and that A has already moved left across the su�x v thereby

computing the sets Pv$(q) for all q ∈ Q and Pv$(+). Now A moves left reading the symbol

a, and while doing so it updates the set Pv$(q) to

Pav$(q) = {p ∈ Q | ∃p′ ∈ Pv$(q) : δ(p, a) = (p′,MVR)}

for each q ∈ Q, and it updates the set Pv$(+) to

Pav$(+) = {p ∈ Q | ∃p′ ∈ Pv$(+) : δ(p, a) = (p′,MVR) }.

This process continues until A reaches the c| -symbol. At that moment it has stored the

sets Pw$(q) (q ∈ Q) and Pw$(+) in its �nite-state control.

Unfortunately, A can only store one collection (or rather, a �nite number of collections)

of these sets in its �nite state control, that is, when storing the sets Pav$(q) (q ∈ Q) and
Pav$(+), it forgets the sets Pv$(q) (q ∈ Q) and Pv$(+). Fortunately, we can now apply

Lemma 2.2.13 to the DFA realizing Steps 2 and 3 of the above preprocessing stage. Just

observe that this automaton works from right to left, and so we need the symmetric version

of the above lemma. This means that from the sets Pav$(q) (q ∈ Q) and Pav$(+), the sets

Pv$(q) (q ∈ Q) and Pv$(+) can be recomputed.

Finally, we combine the 2DFA of the preprocessing stage above with the DFA from the proof

of Theorem 2.2.11. For each rewrite operation of the form δ(q′, a) = (p, ε) encountered in

the simulation of M , we check whether p ∈ Pv$(+) or whether p ∈ Pv$(q) for some q ∈ Q,
where v is the corresponding su�x of the input word w. Based on this information the

simulation then continues as in the proof of Theorem 2.2.11.

In summary we identi�ed three new types of restarting automata that characterize the

regular languages. Further, note again that already non-deterministic RR(1)-automata

55

Preliminaries

compute non-regular languages. Hence, all other variants of restarting automata with

window size one considered in Subsection 2.2 lead to super-classes of the regular languages.

We close this subsection and therewith also the section by shortly addressing the question

why we are interested in new characterizations for regular languages in terms of restarting

automata. Without anticipating results given in Chapter 4, restarting automata of those

types above form a very fruitful basis for computing relations, both in a theoretical and

in a practical sense. One reason for that is the succinctness of their representations of

regular languages. We know from Kutrib and Reimann ([KR08, Rei07]) that in terms of

descriptional complexity, there is a bene�t in using (forgetting) restarting automata to

represent regular languages. In particular, there are exponential trade o�s for changing

from R(1)- or det-RR(1)-automata to NFA. Here, as a �rst preliminary result we can show

that non-forgetting restarting automata yield even more succinct representations than

(forgetting) restarting automata.

Proposition 2.2.15. For each n ≥ 2, there exists a language Ln ⊆ {a, b}∗ that is ac-

cepted by a det-mon-nf-RR(1)-automaton with O(n) states, but every det-RR(1)-automaton

accepting Ln has Ω(2n) many states.

Proof. For n ≥ 2, let Ln = {w ∈ {a, b}m | m > n, wn = a, and wm+1−n = b}, where wi
(1 ≤ i ≤ |w|) denotes the i-th symbol of w. A det-mon-nf-RR(1)-automaton M for Ln can

be described by the following meta-instructions, where x ∈ {a, b}:

(1) (q0, c| , x→ ε, {a, b}n−2 · a · {a, b}+ · $, q1),

(2) (q1, c| · a∗, b→ ε, {a, b}n−1 · {a, b}+ · $, q1),

(3) (q1, c| · a∗, b→ ε, {a, b}n−1 · $, Accept).

For realizing these meta-instructions O(n) states su�ce, as M must be able to count from

1 to n.

Now let M ′n = (Q′, {a, b}, c| , $, q′0, 1, δ′) be a det-RR(1)-automaton such that L(M ′) = Ln.

We consider the accepting computation of M ′n given an input of the form w = xabyabz

such that |x|+ |y|+ 2 = n−1 = |y|+ |z|+ 2. Then w ∈ Ln, and hence, the computation of

M ′n on input w is accepting. If this computation begins with a cycle, then it has the form

q0c|w$ = q0c|xabyabz `cM ′n q0c|w′$ `∗M ′n Accept.

Here w′ belongs to the language Ln, and w′ is obtained from w = xabyabz by deleting

56

2.3 Relation Classes and Transducers

exactly one symbol. However, if a symbol is deleted from the pre�x xaby, then the n-th

symbol of w′ is a b, and if a symbol is deleted from the su�x yabz, then the n-th last symbol

of w′ is an a. Thus, in either case we see that w′ 6∈ Ln, a contradiction. This means that

the accepting computation of M ′n on input w is just an accepting tail computation, that

is, M ′n behaves essentially just like a DFA, which implies that it needs Ω(2n) many states

to check the condition wm+1−n = b.

Without giving further details, the descriptional complexity of these devices forms an

interesting topic on its own. Here we will use it in further discussions on the practicability

of the machines considered later.

2.3 Relation Classes and Transducers

Analogous to the characterizations of plain sets of words (i.e. languages) by certain types

of automata or grammars, we show here what kinds of binary relations (i.e. sets of pairs

of words) are characterized by di�erent types of transducers or grammars with output.

Further, we focus on the properties of these classes of relations, necessary for the topic of

this work.

We already mentioned in the introduction of the present thesis that although the idea of

computing relations instead of plain sets of words goes back to the early times of automata

theory (e.g. [RS59]), there are only a few comprehensive studies on parts of that topic. In

a certain sense, the latter might also be the reason for the lack of a uniform framework for

studying the various types of relation classes. Here we establish such a framework according

to our needs. For that, this section mainly concerns two special classes of relations including

some of their proper subclasses, the class of rational relations and the class of pushdown

relations. An extensive study of the class of rational relations can be found in Berstel

[Ber79]. Further, hierarchy results on the subclasses of rational relations and also a study

of pushdown relations is given by Cho�rut and Culik II. [CI83]. Moreover, we mainly

follow the notations given in the latter references. Last but not least we also recommend

the books of Aho and Ullman [AU72], Eilenberg [Eil74] and more recent Sakarovitch [Sak09]

for further reading. While the �rst one provides a more grammar based investigation of

rational relations, pushdown relations and beyond, the other two o�er an algebraic overview

on rational relations and some of their subclasses.

57

Preliminaries

We start with some general terms. According to the introduction we only deal with binary

(word) relations, that is, a (binary) relation is a subset of the Cartesian product of two sets

of words. A second possible description of such a relation is in the form of a mapping from

the �rst set to the subsets of the second one, which we call a transduction. Obviously, these

two descriptions coincide and we will use them equally. Since transductions are realized by

transducers, it is natural to ask about the class of transductions that can be realized by a

type of transducer, which is a main item of the present work. In the literature the notion

of transductions, relations, mappings, and classes of relations/transductions computed by

transducers seem often quite redundant or worse, confusing. For that we try to make these

terms precise at this point.

Let T be a transducer (of any type) that realizes a transduction T : Σ∗ → P(∆∗). Note

that here T denotes both, the transducer and the transduction. Anyway, the meaning will

be clear from the context. The transduction T is a (partial) function, where the domain of

this (partial) function is de�ned as all words of Σ∗ for which there is an output word (or a

set of output words) from ∆∗, according to the transducer's de�nition. Hence, the relation

that is de�ned by T is simply the graph of its transduction. Then, the class of relations

that is realized by a type of transducer is the set of all transductions/relations de�ned by

the di�erent instances of transducers of that type. Clearly, this is a classi�cation of the

power of a type of transducer in analogy to types of automata that de�ne language classes.

Another aspect, which helps to classify types of transducers, is in terms of mappings.

Instead of considering the whole domain as the transducer's input, we may investigate

only the mappings realized by taking only a subset of the domain. In other words, we take

all words from a language of one language class and verify the resulting language. Later,

this latter question is shortly discussed under the phrase �Preservation of Languages by

Transducers� ([GR66, GR68], see p.69 �Properties�).

Rational Relations and Finite Transducers

To understand the theory of rational relations and their characterization by �nite trans-

ducers, the notion of recognizable and rational sets is mandatory. For further studies on

recognizable and rational sets we refer to [Ber79] and [Eil74]. So we start with a little bit

of algebra.

De�nition 2.3.1 (Recognizable Sets). Let M be a monoid. A subset X of M is recogniz-

able if there exist a �nite monoid N , a morphism ϕ : M → N and a subset P of N such

58

2.3 Relation Classes and Transducers

that X = ϕ−1(P). The family of all recognizable subsets of M is denoted by Rec(M).

Based on that de�nition one can show for an arbitrary alphabet Σ and the �nitely generated

free monoid Σ∗ that Rec(Σ∗) is exactly the class of regular languages (over Σ). In general,

the recognizable subsets of a �nitely generated monoid are the sets that can be recognized

by �nite automata. Next we turn to rational sets.

De�nition 2.3.2 (Rational Set). Let M be a monoid. The family Rat(M) of rational

subsets of M is the smallest set such that the following conditions hold:

• every �nite subset of M belongs to Rat(M),

• if X1, X2 ∈ Rat(M), then also X1 ∪X2 ∈ Rat(M) and X1 ·X2 ∈ Rat(M),

• if X ∈ R, then also X∗ ∈ Rat(M).

It is well known by Kleene's Theorem [Kle56] that in the case of a �nitely generated

free monoid Σ∗, the rational subsets coincide with the recognizable subsets and thus,

Rat(Σ∗) = Rec(Σ∗) = REG(Σ∗) holds. This is not true for an arbitrary monoid M .

In fact, if M is a �nitely generated monoid, then Rec(M) ⊆ Rat(M) (McKnight 1964,

[McK64]). Let this become clearer by considering the following monoid M = Σ∗ × ∆∗,

where Σ and ∆ are alphabets. Thus, M is de�ned as the Cartesian product of two �nitely

generated free monoids. Observe that M is �nitely generated by (Σ × {ε}) ∪ ({ε} × ∆),

but not free. The reason for that is, an arbitrary element (x, y) can be generated in more

than one way (e.g. (x, y) = (x, ε) · (ε, y) = (ε, y) · (x, ε)). In this case McKnights inclusion

stated above is proper. For that, consider the relation R ⊆ {a}∗ × {b}∗ that is de�ned as

R = {(an, bn) | n ≥ 0}. This relation is obviously rational (in the sense of the de�nition, by

taking (a, ε), (ε, b) as generators of {a}∗×{b}∗), but it is not recognizable. To substantiate
this fact, we should mention a consequence of Mezei's Theorem (given e.g. in [Ber79]),

that is, each recognizable subset of the product of two �nitely generated free monoids

can be expressed as the �nite union of the Cartesian products of regular languages. In

particular, if R is recognizable, then there exist �nitely many regular languages Li ⊆ {a}∗

and Lj ⊆ {b}∗, such that R =
⋃
i,j Li × Lj . Clearly R cannot be de�ned in such a way.

And in this sense �nite automata cannot recognize all sets in Rat(Σ∗ ×∆∗).

However, before we turn to the machines that exactly characterize the sets in Rat(Σ∗×∆∗)

we should adjust some of our previously mentioned notations. In the short introduction

above we de�ned recognizable and rational sets over arbitrary monoids. Clearly, in the

59

Preliminaries

following we are only interested in �nitely generated free monoids, that is, alphabets, as

a basis for our re�ections. Therefore, we will rename the rational sets over the Cartesian

product of two �nitely generated free monoids in the next de�nition.

De�nition 2.3.3 (Rational Relations). Let Σ and ∆ be alphabets. A rational relation

(RAT for short) over Σ and ∆ is a rational subset of the monoid Σ∗ ×∆∗.

Actually we should call such relations rational word relations, but since it is clear in this

context that we are only interested in words, we stick to the notion of rational relations.

We may further mention that in the following �recognizable relations� play a subordinated

role, as we are mainly interested in subclasses of rational relations here.

We continue by giving a �rst characterization of the class of rational relations in terms of

regular languages, which can be proven as a direct consequence of the algebraic properties

given above.

Theorem 2.3.4 ([Niv68]). Let R ⊆ Σ∗ × ∆∗ be a relation. R is rational if and only if

there exist a �nite alphabet Γ, a regular language L ⊆ Γ∗ and two morphisms ϕ : Γ∗ → Σ∗,

ψ : Γ∗ → ∆∗, such that

R = {(ϕ(w), ψ(w)) | w ∈ L}.

This theorem will play an important role in the present work. However, we now turn

to more machine based characterizations of rational relations with the aim to establish a

hierarchy of relation classes below RAT.

In analogy to �nite state automata we call the machines that characterize RAT �nite

state transducers. Here we follow the dynamic aspect of transductions (mentioned in the

introduction) and de�ne such a device as an NFA with an additional output tape.

De�nition 2.3.5 (Finite State Transducer). A �nite state transducer T = (Q,Σ,∆, δ, q0, F)

(FST for short) is a 6-tuple, where Q is a set of states, Σ is a �nite input- and ∆ a �-

nite output-alphabet, q0 is the initial state, F is the set of �nal states, and the transition

function δ is de�ned as

δ : Q× (Σ ∪ {ε})→ Pfin(Q×∆∗).

A con�guration of an FST T = (Q,Σ,∆, δ, q0, F) is a tuple (qu, v), where qu is the con�gu-

ration of the underlying non-deterministic �nite automaton and v is the output produced so

60

2.3 Relation Classes and Transducers

far. An accepting computation of T is described as follows, where u0, u1, . . . , uk ∈ Σ∪ {ε},
v0, v1, . . . , vk ∈ ∆∗, q0, q1, . . . , qk, qk+1 ∈ Q and qk+1 ∈ F :

(q0u0u1 . . . uk, ε) `T (q1u1 . . . uk, v0) `T (q2u2 . . . uk, v0v1) `T · · · `T (qk+1, v0v1 . . . vk).

Here the transitions are obviously de�ned as (qi, vi−1) ∈ δ(qi−1, ui−1), for all i = 1, . . . , k+1.

Observe that although the length of the input and output depends on k ∈ N in our illustra-

tion, they actually are not linked, as v0, v1, . . . , vk are words over ∆∗ and u0, u1, . . . , uk can

possibly be empty. Further, note that the next step relation (`) as well as its re�exive and
transitive closure (`∗) naturally extend to �nite state transducers. Now the transduction

T : Σ∗ → P(∆∗) that is realized by the given FST is de�ned as:

T (u) = {v | (q0u, ε) `∗T (q, v) and q ∈ F}, for all u ∈ Σ∗.

The relation computed by T is the graph of its transduction, that is, Rel(T) = {(u, v) ∈
Σ∗ ×∆∗ | v ∈ T (u)}. Finally by Rel(FST) we denote the class of relations computed by

an FST.

Example 2.3.6 ([Ber79]). Let T = ({q0, q1, . . . , q4}, {a}, {b, c}, δ, q0, {q0, q2, q3}) be an

FST, where δ is de�ned as shown in Figure 2.5. Thus, T realizes the transduction

T (an) =

bn , n even,

cn , n odd.

Hence, Rel(T) = {(a2n, b2n), (a2n+1, c2n+1) | n ≥ 0}.

We state the next result without citation as it can be found in nearly every textbook on

formal language theory.

Theorem 2.3.7. Rel(FST) = RAT.

We continue by de�ning several variants of �nite state transducers, of which it is well

known that they de�ne relation classes within the rational relations. To avoid redundancy

we use the basics given in De�nition 2.3.5 and just explain how the machines di�er.

A generalized sequential machine (GSM for short) is a �nite state transducer

T = (Q,Σ,∆, δ, q0, F) for which δ : Q × Σ → Pfin(Q × ∆∗). Observe that a GSM is

not allowed to perform ε-steps, that is, in each step it reads a single symbol. To keep

61

Preliminaries

q0

q1 q2

q3 q4

a/b

a/b

a/b

a/c
a/c

a/c

Figure 2.5: Example of a Finite State Transducer

technical things simple we require that (ε, ε) ∈ Rel(T) holds for each GSM T . By GSMRel

we denote the class of all relations that are computed by GSMs.

A deterministic generalized sequential machine (dGSM for short) ([HU69], p. 172) is a

generalized sequential machine T = (Q,Σ,∆, δ, q0, F) for which δ is a partial function

from Q × Σ into ∆∗ × Q. 8 Hence, the relation Rel(T) is a partial function. By dGSMF

we denote the class of all dGSM-functions.

A sequential transducer is a deterministic generalized sequential machine

T = (Q,Σ,∆, δ, q0, Q). Observe that all internal states of a sequential transducer are

�nal. Clearly Rel(T) is again a (partial) function f and by SeqF we denote the class of all

sequential functions.

A subsequential transducer consists of a pair Tϕ = (T, ϕ), where T = (Q,Σ,∆, δ, q0, Q) is

a sequential transducer and ϕ : Q → ∆∗ is a partial function. For u ∈ Σ∗, let q0 · u ∈ Q
denote the state that T reaches from its initial state q0 on reading u. Then the relation

Rel(Tϕ) is de�ned as

Rel(Tϕ) = {(u, z) ∈ Σ∗ ×∆∗ | ∃v ∈ ∆∗ : (u, v) ∈ Rel(T) and z = vϕ(q0 · u)}.

Obviously, Rel(Tϕ) is a partial function. Observe that (ε, ϕ(q0)) ∈ Rel(Tϕ), if ϕ(q0) is

8Note that we should also de�ne a deterministic version of a �nite state transducer. However, this
device would di�er from a dGSM by having the ability to perform ε-steps. This, in fact leads to relations
that are not functions ([AU72], p. 226).

62

2.3 Relation Classes and Transducers

de�ned, and that the word ϕ(q0) may well be non-empty. A partial function f is called

subsequential if there exists a subsequential transducer Tϕ that computes f . By SubSeqF

we denote the class of all subsequential functions.

Finally, it is worth to introduce the class of rational functions, which is actually a superclass

of all classes of functions described above. Additionally, later we will see that this class has

a lot of nice properties, which are of great practical interest. However, literally rational

functions are the rational relations that are actually functions, that is, single valued rational

relations (in the sense of the Preliminaries). By RATF we denote the class of all rational

functions. Next we will introduce two machine-like characterizations of this particular

class. The most natural one is in terms of unambiguous �nite state transducers. Informally

an unambiguous �nite state transducer is a �nite state transducer, where for every input

word there is at most one successful computation. Clearly such a transducer computes a

(partial) function. Further, due to Eilenberg [Eil74] it can be shown that every rational

function is computable by such a transducer. Actually, Berstel presented a proof of this

result in [Ber79], where every rational function τ , with τ(ε) is either ε or unde�ned, yields

an unambiguous �nite state transducer that does not perform ε-steps. Thus, in terms of

our notations every rational function τ , where τ(ε) = ε, is computable by an unambiguous

GSM. Note that it is easy to show directly that if we restrict the empty input as considered

above, there is a unambiguous GSM for every unambiguous FST that realizes the same

function. For that observe that a FST that computes a rational function will not perform

loops of ε-steps, as this would contradict the property of being unambiguous. Hence, the

output produced during a number of ε-steps can clearly be encoded in one step, which

yields an unambiguous GSM9. Therefore, we have seen that ε-steps are only needed in a

machine-like characterization, if we consider rational functions, where ε is mapped onto an

arbitrary word over the output alphabet.

The latter characterization of the class of rational functions might not be very useful for

applications, as in some sense being unambiguous is not a syntactical property10. How-

ever, Eilenberg [Eil74] introduced a special device for the class of rational functions, the

bimachine.

9A con�rmation of this statement and a few further information on rational functions and ε-free trans-
ducers can be found for instances in [RS96].

10Although it can be shown to be decidable [Sch75].

63

Preliminaries

a a a a a a a a

→ ←

q0 p0

b b b boutput:

Figure 2.6: Sketch of the bimachine from Example 2.3.9.

De�nition 2.3.8. A bimachine B = (Q1, Q2,Σ,∆, δ1, δ2, q
(1)
0 , q

(2)
0 , σ) is a 9-tuple, where

Q1, Q2 are sets of states, Σ is a �nite input- and ∆ a �nite output-alphabet, q(1)
0 ∈ Q1,

q
(2)
0 ∈ Q2 are two initial states, δ1 : Q1 × Σ→ Q1 and δ2 : Σ×Q2 → Q2 are two (partial)

transition functions and σ : Q1 × Σ×Q2 → ∆∗ is a (partial) output function.

Without going into details we describe the modes of operation of this machine by an

example taken from [Ber79].

Example 2.3.9. Let B = ({q0, q1}, {p0, p1}, {a}, {b, c}, δ1, δ2, q0, p0, σ) be a bimachine,

where δ1 and δ2 are de�ned as
δ1(q0, a) = q1,

δ1(q1, a) = q0,

δ2(a, p0) = p1,

δ2(a, p1) = p0.

Further, the output function σ is given by

σ(q0, a, p0) = c,

σ(q1, a, p1) = c,

σ(q0, a, p1) = b,

σ(q1, a, p0) = b.

Hence, according to Figure 2.6 B scans the tape from left to right and right to left, simul-

taneously. The output is produced when both heads meet at the current input symbol11,

which moves from left to right across the given input. Then it is clear that B realizes the

11In Figure 2.6 the current input symbol is marked by the arrow.

64

2.3 Relation Classes and Transducers

same function as the �nite state transducer in Example 2.3.6, that is,

B(an) =

bn , n even,

cn , n odd.

The de�nition and the example show that such a bimachine mirrors the computation of

two �nite transducers, in particular, a (left) sequential transducer and a right sequential

transducer12. Furthermore, it is well known that each rational function τ , with τ(ε) is

either ε or unde�ned, is a composition of a left sequential and a right sequential function.

Consequently, Eilenberg ([Eil74], p.325) showed that a bimachine characterizes this class

of rational functions.

A hierarchy of the various types of rational relations and functions can be found in the

next subsection (Figure 2.7), where they are also compared with subclasses of pushdown

relations.

Some properties of the relation classes introduced above can be found on page 69 in this

subsection.

Pushdown Relations

As already mentioned in the introduction, there are only a few notable works on pushdown

relations. Here [CI83] and [AU72] will serve as our main references. According to the

extension of a �nite state automaton to a transducer we start with the de�nition of a

pushdown transducer, that is a pushdown automaton with an additional output tape.

De�nition 2.3.10 (Pushdown Transducer). A pushdown transducer

T = (Q,Σ,∆,Γ, δ, q0, Z0, F) (PDT for short) is an 8-tuple, where Q is a set of states,

Σ is a �nite input- , ∆ a �nite output-alphabet and Γ a �nite pushdown-alphabet, q0 is the

initial state, F is the set of �nal states, and Z0 is the initial stack symbol. Finally δ is

de�ned as

δ : Q× (Σ ∪ {ε})× Γ→ Pfin(Q× Γ∗ ×∆∗).

A con�guration of T = (Q,Σ,∆,Γ, δ, q0, Z0, F) is a 3-tuple (qu, α, v), where (qu, α) is the

con�guration of the underlying non-deterministic pushdown automaton and v is the output

12Note that a right sequential transducer is simply a sequential transducer that scans the tape from
right to left and produces its output in the same direction

65

Preliminaries

produced so far. Again the next step relation (`) as well as its re�exive and transitive

closure (`∗) naturally extends to pushdown transducers. For (p, β, y) ∈ δ(q, a, Z), we de�ne

a computation step of T as follows, where p, q ∈ Q, Z ∈ Γ, α, β ∈ Γ∗, x ∈ Σ∗, a ∈ Σ ∪ {ε}
and v, y ∈ ∆∗:

(qax, αZ, v) `T (px, αβ, vy).

Now the transduction T : Σ∗ → ∆∗ that is realized by the given PDT is de�ned as:

T (u) = {v | (q0u, Z0, ε) `∗T (q, α, v) for α ∈ Γ∗ and q ∈ F}, for all u ∈ Σ∗.

The relation computed by T is the graph of its transduction, that is, Rel(T) = {(u, v) ∈
Σ∗ ×∆∗ | v ∈ T (u)}. Finally by PDR we denote the class of relations computed by PDT,

the pushdown relations. Note, although it is possible to de�ne this transducer such that

they accept by empty stack instead of by �nal state, we here only use the above de�nition13.

We continue by introducing two possible restrictions of the pushdown transducer. A push-

down transducer is called unambiguous (UPDT for short) if its underlying pushdown au-

tomaton is unambiguous ([Har78], p. 142). Clearly the relations computed by UPDTs are

(partial) functions. By UPDF we denote the class of all unambiguous pushdown functions.

Further, we call a pushdown transducer T = (Q,Σ,∆,Γ, δ, q0, Z0, F) deterministic (DPDT

for short), if δ is a (partial) function from Q × (Σ ∪ {ε}) × Γ onto Q × Γ∗ × ∆∗ and

|δ(q, a, Z) + δ(q, ε, Z)| ≤ 1, for q ∈ Q, a ∈ Σ and Z ∈ Γ. By DPDR we denote the class

of deterministic pushdown relations. Observe that the latter class contains relations that

are not functions. For instance, consider a DPDT that outputs symbols while performing

a cycle of ε-steps on a �nal state. To overcome this minor issue, we additionally de�ne two

classes of functions. The pushdown functions (PDF for short), that is the class of pushdown

relations that are functions, and accordingly the deterministic pushdown functions (DPDF).

Example 2.3.11. Let T = (Q, {a, b}, {a, b}, {A,B}, δ, q0, Z0, F) be a PDT with Q =

{q0, q1, qe}, F = {qe} and δ is de�ned as follows, where x, y ∈ Σ and X,Y are their

corresponding (for instance capital) symbols in Γ:

13Indeed it can be shown in analogy to automata that both de�nitions are equivalent.

66

2.3 Relation Classes and Transducers

(1) δ(q0, x, Z0) = (q0, Z0X, ε),

(2) δ(q0, y,X) = (q0, XY, ε),

(3) δ(q0, ε,X) = (q1, ε, x),

(4) δ(q1, ε,X) = (q1, ε, x),

(5) δ(q1, ε, Z0) = (qe, Z0, ε).

It is easy to see that T (w) = wR for all w ∈ Σ+, and Rel(T) = {(w,wR) | w ∈ Σ+}. Note
that T is actually an unambiguous PDT and thus, T (w) is an unambiguous pushdown

function.

According to [CI83] Figure 2.7 combines the various types of rational and pushdown re-

lations. There, arrows denote proper inclusions, and classes that are not connected are

incomparable. For that it is clear that the class GSMRel is a superclass of the class of

dGSM-functions, and that it is incomparable to the classes of subsequential and rational

functions with respect to inclusion. On the one hand, the reason for the latter is that

GSMs can compute relations that are not functions, and on the other hand, a GSM cannot

produce a non-empty output on empty input. Further, deterministic pushdown functions

are incomparable to subsequential functions for the reason that a deterministic pushdown

transducer is not able to �guess� the end of an input word without violating the property

that |δ(q, a, Z) + δ(q, ε, Z)| ≤ 1.

We continue by brie�y introducing another way to de�ne relations, namely by so called

syntax directed translation schemes. Analogue to the notion of grammars for generating

languages, a syntax directed translation scheme generates relations. An overview can be

found in the book of Aho and Ullman [AU72] and we recommend [AU69, AHU69] for more

details.

De�nition 2.3.12 (Simple Syntax Directed Translation Scheme). A simple syntax directed

translation scheme (sSDTS for short) is de�ned as a 5-tuple D = (V,Σ,∆, P, S), where V

is a �nite set of non-terminals, Σ is a �nite input- and ∆ a �nite output alphabet, P is

a �nite set of rules of the form A → α, β, where α ∈ (V ∪ Σ)∗, β ∈ (V ∪ ∆)∗ and the

non-terminals in β occur in the same order as in α.14 Finally S denotes the start symbol.

Roughly speaking a sSDTS is a combination of two context-free grammars that are con-

trolled both by the same non-terminals. Analogues to grammars for languages ⇒ denotes

14This property is actually the reason why the de�ned syntax directed translation scheme is called simple.

67

Preliminaries

PDR

PDF

RAT

UPDF

RATF GSMRel

DPDF SubSeqF

dGSMF

SeqF

Figure 2.7: Inclusions between the various types of rational and pushdown relations.

the derivation relation and ⇒∗ the re�exive and transitive closure. Without going into

further details, the relation generated by a sSDTS D = (V,Σ,∆, P, S) is de�ned as

Rel(D) = {(u, v) | (S, S)⇒∗D (u, v)}

and Rel(sSDTS) denotes the class of relations generated by syntax directed translation

schemes. The following equivalence from the cited references causes our interest in syntax

directed translation schemes:

Rel(sSDTS) = Rel(PDT) = PDR.

At the beginning of this chapter we introduced the notions of Chomsky and Greibach

normal forms for grammars. The next result extends these normal forms to sSDTS. To

keep things simple we stick to the common names.

Proposition 2.3.13 ([AU69]). A relation is a pushdown relation if and only if it is de�ned

by an sSDTS in Chomsky (Greibach) normal form.

68

2.3 Relation Classes and Transducers

Without going into details, it can be shown further that the latter result is also true for

sSDTS in quadratic Greibach normal form ([AU69], p.327).

Finally note that if we use regular grammars instead of context-free ones, the class of rela-

tions of simple syntax directed translations schemes coincides with the rational relations.

Properties

The following properties are worth to mention in the context of rational and pushdown

relations. Most of them will be frequently used to verify the performance of the types

of transducers introduced in the following chapters. However, we start by returning to

the notion of transducer mappings, which was brie�y mentioned in the introduction of

the present section. Instead of focusing on the relation classes that are computed by

certain types of transducers, here we investigate which language classes are preserved under

transducer mappings. However, to illustrate this point we provide two simple examples.

Example 2.3.14. Consider the relation R = {(w,w) | w ∈ Σ∗}. Obviously, R is a rational

relation. An FST T for R can easily be described. Let L ⊆ Σ∗ be context free, then T

maps L onto itself. Hence, we say that T preserves context-freeness.

A second example.

Example 2.3.15. Let τ : Σ∗ → Σ∗ be the function that is de�ned as follows, where

n,m > 0:

τ(w) =

ambncn ; if w = ambncn,

unde�ned ; else.

It is easy to see that there is a PDT T for τ . However, if L is the context-free language

{ambmcn | m,n > 0}, then T (L) = {ambmcm | m > 0}, which is well known to be not

context free. Hence, T does not preserve context-freeness.

Generally the following result on �nite state transducers can be shown (e.g. in [Ber79],

p.58).

Proposition 2.3.16. Each �nite state transducer preserves regular and context-free lan-

guages.

Note that the latter result does not hold for context-sensitive languages. This can be

easily shown by applying a �nite transducer mapping to the context-sensitive language

69

Preliminaries

of valid computations of a particular Turing Machine such that (roughly speaking) all

con�gurations except the initial one are deleted. In this sense a context-sensitive language

is mapped onto a recursively enumerable one.

The situation for pushdown transducers is more complicated ([RS97], p.155). An immedi-

ate consequence of Example 2.3.15 is the following corollary.

Corollary 2.3.17. The image of a context-free language under a pushdown transducer is

not necessarily context free.

In fact, it can be shown that for every recursively enumerable language L, there is a

context-free language L′ and a pushdown transducer T such that T (L′) = L. This fact

and the following two results can be found in [GR66, GR68].

Proposition 2.3.18. The image of a regular language under a pushdown transducer is

context free.

Theorem 2.3.19. 15Let T be a PDT. If L is the context-free language accepted by the

underlying PDA, then T (L) is a context-free language.

Recall in this context that the class of pushdown relations is de�ned as the class of all sets

of pairs of words that are accepted by a pushdown transducer. Thus, when we talk about

pushdown relations (transductions), we intend mappings from context-free onto context-

free languages.

Finally, we turn to some closure properties and decision problems of the present transducers

and relation classes. Admittedly, the investigation of such properties plays only a minor

role in our further re�ections. However, there are a few remarkable exceptions, namely

closure under composition and decidability of equivalence and the so called type-checking

problem (see Section 4.4 and 4.5). These properties are all known to be of major interest

for practical purposes, such as natural language processing (e.g. [KK94]) or XML document

transformation (e.g. [RS08]).

We start by brie�y addressing the main closure properties of the class of rational relations.

Here we refer to [Ber79] again for a general overview on closure properties of rational

and recognizable sets and we should also mention a technical report of Roche and Schabe

[RS96], where some nice constructive proofs for these properties are shown.16

15It is worth to mention that this result originally stems from the doctoral thesis �The Theory and
Applications of Pushdown Store Machines� of R.J. Evey (1963).

16A �rst detailed re�ection on these properties was given by Elgot and Mezei in [EM65].

70

2.3 Relation Classes and Transducers

According to the situation for regular languages we can immediately obtain the following

closure properties as a consequence of the de�nition of rational sets (De�nition 2.3.2).

Proposition 2.3.20. The class of rational relations is closed under union, concatenation,

and star-operation.

In contrast to the situation for regular languages we have the following.

Proposition 2.3.21. The class of rational relations is not closed under intersection and

complement.

For that consider the following two rational relations R1 = {(an, bncm) | n,m ≥ 0} and
R2 = {(an, bmcn) | n,m ≥ 0}. Thus, R1 ∩ R2 = {(an, bncn) | n ≥ 0}, which is clearly not

rational (Proposition 2.3.16). It follows that RAT is also not closed under complement.

Most notable is the following result.

Theorem 2.3.22 ([EM65]). The class of rational relations is closed under composition.

Observe that the latter result can be shown constructively by simulating two transducers

in parallel. Hence, this technique can easily be extended to all types of �nite transducers

previously de�ned (see Subsection 4.4). Thus, they are all closed under composition.

Concerning decision problems we should mention that most of the interesting questions

are undecidable for RAT. In this context the equivalence problem for relations stands out

and is de�ned as follows:

Instance: Given a class of relation R and two relations R1 ∈ R and R2 ∈ R.

Question: Is R1 = R2?

Although it is undecidable for RAT, it becomes decidable for single valued rational relations

(e.g. in [BH77]).

Theorem 2.3.23. Equivalence is decidable for the class of rational functions.

The latter result and the fact that being functional (as well as sequential and subsequen-

tial) is decidable (e.g. in [Sch75], [BH77], and [Cho77]) for rational relations causes the

importance of rational functions and their subclasses in many applications.

71

Preliminaries

Next we turn to pushdown relations. Clearly they are closed under union, while they are

not closed under composition. For that consider the pushdown relations

R1 = {(anbmcm, anbmcm) | n,m ≥ 0} and R2 = {(anbncm, anbncm) | n,m ≥ 0}.

Obviously

R2 ◦R1 = {(anbncn, anbncn) | n ≥ 0},

which is not a pushdown relation (cf. Theorem 2.3.19).

Further, it is neither decidable if a pushdown relation is a function nor if two pushdown

relations are equivalent. Both can easily be shown as consequences of undecidability results

of context-free languages. Nevertheless it is remarkable that equivalence is decidable for

deterministic pushdown functions [Sén99].

72

Chapter 3

Relations Associated to Restarting

Automata and to Parallel

Communicating Systems

Here we present two quite direct ways of assigning a relation to a restarting automaton.

The �rst approach, which was originally suggested by Otto in [Ott10], concerns a more

algebraic view on relations. A relation can be associated to an arbitrary automaton by

splitting its alphabet into an input and output part. Then, by using a projection onto the

input and output alphabets, the accepted language is transformed into a relation.

In the second part of this chapter we introduce Parallel Communicating Systems of

Restarting Automata that consist of only two components. Motivated by the fact that

relations are the connection of an input language and an output language, we use one

component to accept the input and the other to accept the output. In this way a relation

is de�ned. However, in older papers on computing relations instead of plain languages

often two tape automata were considered (e.g. in [RS59]). Thus, this latter approach can

be seen as an extension of the de�nition of relations in terms of two tape automata.

3.1 Input/Output-Relations and Proper-Relations

To understand the reason why we associate a relation to a restarting automaton by applying

projections to its accepted language, we have to recall the linguistic motivation of these

73

Relations Associated to Restarting Automata and to Parallel Communicating Systems

types of automata. In Section 2.2 it was shown that restarting automata are basically

the computer science equivalent to the linguistic technique of Analysis by Reduction. In

the enriched form of Analysis by Reduction an input sentence is expected, where every

word is annotated with a �nite number of auxiliary symbols17. These annotations are used

to hopefully derive a disambiguated form of the input. Then this sentence is repeatedly

simpli�ed with respect to the annotations until a basic form is reached. When taking

a closer look on the de�nition of restarting automata, one can see that not only the

simpli�cation process is implemented. Also the di�erent languages that appear in the

analyzing process of natural languages can be associated to these automata. The reason

for that is, if one considers auxiliary symbols in addition to the input alphabet, then the

language, which is actually accepted, consists of words de�ned over the input and auxiliary

alphabets. Thus, as restarting automata are forgetting machines, they cannot distinguish

in their computation between original input words and words that appear in one of their

restarting con�gurations.

Back to the motivation this means that the �actual� language of such an automaton cor-

responds to the language annotated by auxiliary symbols, which is used in the linguistic

background. Further, we had already mentioned that the focus of this work is not only on

the correctness of such a sentence but also on the information that can be extracted from it.

From this point of view, this special language of words annotated by linguistic properties

carries two types of information, that is, the actual input part itself and the annotations,

which give a deeper insight into the sentence structure. Hence, it seems quite natural to

associate a binary relation to this language by projecting onto input and auxiliary (output)

part of every word.

3.1.1 De�nitions and Examples

After the previous informal explanation, we start by presenting the formal basis of the

following chapter. Let M = (Q,Σ,Γ, c| , $, q0, k, δ) be a restarting automaton with tape

alphabet Γ, which contains the input alphabet Σ. Here we call a word de�ned over the tape

alphabet sentential form18. Recall that such a word (sentential form) w ∈ Γ∗ is accepted

by M , if there is an accepting computation which starts from the restarting con�guration

q0c|w$. Hence, we can associate three di�erent languages with M . By LC(M) we denote

17Note again that these auxiliary symbols have their origins in the di�erent phases of analyzing a sentence
of a natural language according to Section 2.2 (see �Analysis by Reduction�).

18Note that sentential forms might consist of input and auxiliary symbols.

74

3.1 Input/Output-Relations and Proper-Relations

the language consisting of all sentential forms accepted by M ; LC(M) is the characteristic

language of M , while the set L(M) = LC(M)∩Σ∗ of all input sentences accepted by M is

the input language recognized byM . Finally, LP(M) = Pr
Σ(LC(M)) is the proper language

of M , where Pr
Σ : Γ∗ → Σ∗ denotes the projection that is de�ned as a 7→ a for each a ∈ Σ

and A 7→ ε for each A ∈ Γ\Σ. Observe that the proper language forms an interesting

research topic on its own, as it can be interpreted as the set of words for which there is a

correct annotation in the characteristic language, which are (in principle) disambiguated

sentences in terms of the linguistic motivation.

Based on the latter we de�ne two di�erent relations, where the restarting automaton above

is extended by an output alphabet.

De�nition 3.1.1. Let M = (Q,Σ′,Γ, c| , $, q0, k, δ) be any type of restarting automaton

with tape alphabet Γ and input alphabet Σ′, which now contains the input alphabet Σ and

the output alphabet ∆, such that Σ′ = Σ ∪ ∆. Further we assume that Σ and ∆ are

disjoint. With M we associate two relations, where Pr
Σ : Γ∗ → Σ∗ denotes the projection

that is de�ned as a 7→ a for each a ∈ Σ and A 7→ ε for each A ∈ Γ\Σ:

Relio(M) = {(u, v) ∈ Σ∗ ×∆∗ | ∃w ∈ L(M) : u = Pr
Σ(w) and v = Pr

∆(w)},

RelP(M) = {(u, v) ∈ Σ∗ ×∆∗ | ∃w ∈ LC(M) : u = Pr
Σ(w) and v = Pr

∆(w)}.

Here Relio(M) is the input/output-relation of M , and RelP(M) is the proper-relation

of M . By Relio (RelP) we denote the class of input/output-relations (proper-relations,

respectively) de�ned by a speci�ed type of automata.

Example 3.1.2. Let M = (Q, {a, b, c}, {a, b, c,#}, c| , $, q0, 3, δ} be a det-mon-RRWW-

automaton, where the output alphabet is de�ned as ∆ = {c}. The transition function

δ is de�ned as follows:

(1) δ(q0, c| aa) = (q0,MVR),

(2) δ(q0, c| ab) = (q0,MVR),

(3) δ(q0, aaa) = (q0,MVR),

(4) δ(q0, aab) = (q0,MVR),

(5) δ(q0, abc) = (qt, ε),

(6) δ(q0, c| $) = (Accept),

75

Relations Associated to Restarting Automata and to Parallel Communicating Systems

(7) δ(q0, c|#a) = (q1,MVR), (15) δ(q2, a#b) = (q4,MVR),

(8) δ(q0, c|##) = (q3,MVR), (16) δ(q3,##b) = (q4,MVR),

(9) δ(q0, c|#b) = (q4,MVR), (17) δ(q4, abc) = (qt, ε),

(10) δ(q1,#a#) = (q2,MVR), (18) δ(q4,#bc) = (qt, ε),

(11) δ(q2, a##) = (q3,MVR), (19) δ(qt, bcb) = (qt′ ,MVR),

(12) δ(q3,###) = (q3,MVR), (20) δ(qt′ , cbc) = (qt,MVR),

(13) δ(q1,#ab) = (q4,MVR), (21) δ(qt, bc$) = (Restart),

(14) δ(q2, a#a) = (q1,MVR), (22) δ(qt, $) = (Restart).

Mainly the transition function of M leads to two di�erent computations. The �rst one is

de�ned by the left column (transitions (1) - (6)). Obviously by the �rst �ve transitions M

checks whether the word on the tape is of the form a+bc, then one substring abc is deleted,

and �nally the transitions (19) - (22) handle the right computation, where M veri�es that

the until then unseen part of the tape corresponds to (bc)∗. Thus, it is clear that with this

part of the transition function the automaton accepts the language {an(bc)n | n ≥ 0}.

The second possible computation of M starts by using one of the transitions (7) - (9).

Hence, on its tape the automaton expects a pre�x of the form (#a)∗ (transitions (7),(10)

and (14)) that is possibly followed by a number of #-symbols (transitions (8), (11) and

(12)). NowM proceeds as in the �rst computation, that is, every substring of the form abc

or #bc is deleted (transitions (9), (13) and (15) - (18)) and again the unseen part is veri�ed

(transitions (19) - (22)). Observe that # is an auxiliary symbol and that both possible

computations described above are disjunctive, which means that there is no possibility to

mix up both parts, such that words are accepted by a shu�e of both transitions. Thus,

over all the characteristic language of M is

LC(M) = {(#a)n#k(bc)2n+k | n, k ≥ 0} ∪ {an(bc)n | n ≥ 0},

the input language is L(M) = LC(M) ∩ Σ∗ = {an(bc)n | n ≥ 0} and the proper language

is Lp(M) = Pr
Σ(LC(M)) = {an(bc)m | n ≥ 0,m ≥ 2n} ∪ {an(bc)n | n ≥ 0}. Then, by

de�nition of input/output- and proper-relation

RelP (M) = {(anbn, cn), (anbm, cm) | n ≥ 0,m ≥ 2n}

and

Relio(M) = {(anbn, cn) | n ≥ 0}.

76

3.1 Input/Output-Relations and Proper-Relations

3.1.2 Input/Output- and Proper-Relations of Monotone Restarting Au-

tomata

To derive some immediate results from De�nition 3.1.1, here we recall a similar concept

taken from [AU72]. This is in fact only a generalization of Theorem 2.3.4.

De�nition 3.1.3. A language L characterizes a relation R if there exist two homomor-

phism h1 and h2, such that

R = {(h1(w), h2(w)) | w ∈ L}.

De�nition 3.1.4. A language L ⊆ (Σ∪∆′)∗ strongly characterizes a relation R ⊆ Σ∗×∆∗

if

(1) Σ ∩∆′ = ∅ and

(2) R = {(h1(w), h2(w)) | w ∈ L}, where

a) h1(a) = a for all a ∈ Σ and h1(b) = ε for all b ∈ ∆′,

b) h2(a) = ε for all a ∈ Σ and h2 is a copy isomorphism between ∆′ and ∆, that

is, h2(b) ∈ ∆ for all b ∈ ∆′ and h2(b) = h2(b′) implies that b = b′.

Also in [AU69] and [AU72] the latter de�nition was used to characterize the pushdown re-

lations by considering context-free languages as their characterizing languages and regular

languages as the characterizing languages of rational relations.

Theorem 3.1.5 ([AU69]). A relation R is a pushdown relation PDR if and only if R is

strongly characterized by a context-free language.

We state two immediate consequences of the above de�nitions and Theorem 2.3.4 here.

The �rst one concerns relations strongly characterized by regular languages.

Corollary 3.1.6 ([AU72]). A relation R is a rational relation if and only if R is strongly

characterized by a regular language.

Secondly, we should also mention the following result of Nivat, which is a corollary of

Theorem 2.3.4. It shows the similarities between the di�erent de�nitions of characterizing

relations in terms of morphisms.

77

Relations Associated to Restarting Automata and to Parallel Communicating Systems

Corollary 3.1.7. A relation R ⊆ Σ∗×∆∗ with Σ∩∆ = ∅ is rational (RAT) if and only if

there exists a regular language L ⊆ (Σ ∪∆)∗ such that R = {(PrΣ(w),Pr∆(w)) | w ∈ L}.

We continue by combining the latter de�nitions and theorems with the de�nition of

input/output-relations. First of all it is clear that the de�nition of input/output-relations,

when applied to restarting automata that characterize the regular languages, leads to the

same result as stated in Corollary 3.1.7. Thus, all these automata compute exactly the

rational relations with the restriction on disjoint input and output alphabets.

Secondly, De�nition 3.1.4 avoids this restriction (�disjoint alphabets�) by using one pro-

jection and an isomorphism instead of two projections to map onto input and output.

This leads to exact characterizations of both classes, the pushdown and rational relations

(cf. Theorem 3.1.5 and Corollary 3.1.6). However, the di�erence between De�nition 3.1.1

and De�nition 3.1.4 is marginal. It can easily be compensated for by applying a simple

isomorphism to the output alphabet. Hence, here we do not adjust our de�nitions as it is

clear that it is not of importance that the input and output alphabets are disjoint.

Then, as mentioned already, the following results are immediate consequences of the latter

theorems. For that recall from Section 2.2 the types of restarting automata that charac-

terize the regular languages and context-free languages.

Proposition 3.1.8.

RAT =



Relio(det-R(1))

Relio(mon-R(1))

Relio(R(1))

Relio(det-RR(1))

Relio(det-mon-nf-R(1))

Relio(mon-nf-R(1))

Relio(det-mon-nf-RR(1))

Proposition 3.1.9.

PDR =

Relio(mon-RWW)

Relio(mon-RRWW)

Beside these equivalences, also the following inclusion is clear.

Proposition 3.1.10 ([AU69]). Every deterministic pushdown relation (DPDR) is strongly

characterized by a deterministic context-free language.

78

3.1 Input/Output-Relations and Proper-Relations

Actually this inclusion is proper for the following reason (see [AU69]):

Lemma 3.1.11. There is a relation that is strongly characterized by a deterministic

context-free language, but that is not a deterministic pushdown relation.

Proof. Let Lpal = {wcwR | w ∈ {a, b}∗}, that is, it is a well-known deterministic context-

free language. Then it is clear that the relation Rpal = {(wwR, c) | w ∈ {a, b}∗} is strongly
characterized by Lpal. It remains to show that Rpal /∈ DPDR. Recall that a relation is

in DPDR if there exists a deterministic pushdown transducer that de�nes this particular

relation. Hence, for our example this deterministic transducer has to accept inputs of the

form wwR and produce the output c. Obviously the language L′ = {wwR | w ∈ {a, b}∗} is
not accepted by any deterministic pushdown automaton. Thus, a deterministic pushdown

transducer is not able to de�ne the relation R.

Proposition 3.1.12.

DPDR (



Relio(det-mon-R)

Relio(det-mon-RW)

Relio(det-mon-RWW)

Relio(det-mon-RR)

Relio(det-mon-RRW)

Relio(det-mon-RRWW)


(PDR

Proof. The �rst proper inclusion is the consequence of Proposition 3.1.10 and Lemma 3.1.11.

For the second inclusion consider the pushdown relation R = {(anbn, ε), (anbm, ε) | n ≥
1,m > 2n}. Let M be det-mon-RRWW-automaton such that R = Relio(M). Hence, it is

clear that the accepted language of M must be L(M) = {anbn, anbm | n ≥ 1,m > 2n}.
As it is well known that this language is not in DCFL and thus it is not accepted by any

det-mon-RRWW-automaton, it follows that there is no such automaton to compute R.

Obviously in this way we can also de�ne new classes of relations, e.g. the class of Church-

Rosser relations by input/output relations of det-RWW- and det-RRWW-automata.

Next let us turn to the so called proper relations. In contrast to the situation above, here

we restate a somewhat surprising result of Otto [Ott10]. For that, we need to mention

that obviously the concept of characteristic languages and proper relations extends to all

kinds of automata.

79

Relations Associated to Restarting Automata and to Parallel Communicating Systems

Theorem 3.1.13 ([Ott10]). RelP (DPDA) = PDR

Thus, if we consider additional auxiliary symbols in the de�nition of a DPDA, we gain some

power in terms of proper relations. For example, in the proof of the previous theorem the

auxiliary symbols are used to encode a computation of a pushdown transducer on the tape

of a DPDA. The next corollary is an immediate consequence of the latter result.

Corollary 3.1.14.

PDR =



RelP (det-mon-R)

RelP (det-mon-RW)

RelP (det-mon-RWW)

RelP (det-mon-RR)

RelP (det-mon-RRW)

RelP (det-mon-RRWW)

Proof. By Theorem 3.1.13 the pushdown relations coincide with the class of proper rela-

tions of deterministic pushdown automata.

Further, according to Section 2.2 a language is deterministic context free if and only if

there is a deterministic and monotone restarting automaton that accepts this language.

More formally, let LC(P) be the characteristic language of a DPDA P . LC(P) is clearly

a deterministic context-free language. Then RelP (P) is a pushdown relation, derived by

projecting LC(P) onto a distinguished input and output alphabet. Hence, it is clear that

there is a deterministic and monotone restarting automatonM with LC(M) = LC(P), and

therefore, RelP (M) = RelP (P). Clearly the converse direction can be treated the same.

Hence, it is clear that a relation is a pushdown relation if and only if it is computed by a

deterministic and monotone restarting automaton.

3.2 Parallel Communicating Systems of Restarting Automata

Here we want to brie�y present another way to associate relations to restarting automata.

Instead of computing input and output by a single restarting automaton, it appears to

be more natural to compute it by a pair of restarting automata that have the ability to

communicate with each other. Hence, the �rst automaton serves as the acceptor of the

80

3.2 Parallel Communicating Systems of Restarting Automata

input language and the second one as the acceptor of the output language. Further, the

communication relates particular words of both languages.

In this context parallel communicating restarting automata as language accepting devices

were �rst introduced by Vollweiler and Otto and published in [VO12].

3.2.1 De�nition

To formalize this idea, we introduce the so-called parallel communicating system of restart-

ing automata (or PC-RRWW-system, for short). Obviously, every type of restarting au-

tomaton may serve as a component of such a system, however, as this chapter only presents

an introduction that may lead to further investigations, we mainly use det-mon-RRWW-

automata as the components of our systems.

Thus, a det-mon-PC-RRWW-system consists of a pairM = (M1,M2) of det-mon-RRWW-

automata Mi = (Qi,Σi,Γi,c| , $, q(i)
0 , k, δi) (1 ≤ i ≤ 2). Here it is required that, for each

i ∈ {1, 2}, the set of states Qi of Mi contains �nite subsets Qreq
i of request states of the

form (q, req), Qres
i of response states of the form (q, res(l)), Qrec

i of receive states of the

form (q, rec(l)), and Qack
i of acknowledge states of the form (q, ack(l)). Further, in addition

to the move-right, rewrite, and restart steps, M1 and M2 have so-called communication

steps.

A con�guration of M consists of a pair K = (k1, k2), where ki is a con�guration of

Mi, i = 1, 2. For w1 ∈ Σ∗1 and w2 ∈ Σ∗2, the initial con�guration on input (w1, w2)

is Kin(w1, w2) = (q
(1)
0 c|w1$, q

(2)
0 c|w2$). The single-step computation relation (k1, k2) `M

(k′1, k
′
2) consists of local steps and communication steps:

(Communication 1) if k1 = u1(q1, res(l))v1 and k2 = u2(q2, req)v2, then

k′1 = u1(q1, ack(l))v1 and k′2 = u2(q2, rec(l))v2;

(Communication 2) if k1 = u1(q1, req)v1 and k2 = u2(q2, res(l))v2, then

k′1 = u1(q1, rec(l))v1 and k′2 = u2(q2, ack(l))v2.

In all other cases M1 and M2 just perform local computation steps, independent of each

other. If one of them is in a request or response state, but the other is not (yet) in the

corresponding response or request state, respectively, then the latter automaton keeps on

performing local steps until a communication step is enabled. Should this never happen,

then the computation ofM fails. Once one ofM1 andM2 has accepted, the other automa-

81

Relations Associated to Restarting Automata and to Parallel Communicating Systems

ton keeps on performing local steps until it either gets stuck, in which case the computation

fails, or until it also accepts, in which case the computation ofM succeeds.

According to Subsection 3.1 we again associate di�erent types of relations with a

det-mon-PC-RRWW-system. Hence,

RelC(M) = {(w1, w2) ∈ Γ∗1 × Γ∗2 | Kin(w1, w2) `∗M (Accept,Accept)}

is the characteristic relation ofM,

Relio(M) = RelC(M)∩(Σ∗1×Σ∗2) = {(w1, w2) ∈ Σ∗1×Σ∗2 | Kin(w1, w2) `∗M (Accept,Accept)}

is the input/output-relation ofM, and

RelP(M) = {(PrΣ1(w1),PrΣ2(w2)) | (w1, w2) ∈ RelC(M)}

is the proper-relation ofM.

To illustrate the de�nition above we start our re�ections on the power of these systems

with a short example.

Example 3.2.1. Let M = (M1,M2) be a det-mon-PC-RRWW-system, where M1 =

(Q1, {a, b}, {a, b, [aa], [ab], [ba], [bb]}, c| , $, q0, 3, δ1) andM2 = (Q2, {a, b}, {a, b}, c| , $, p0, 1, δ2)

and the transition functions ofM are de�ned as follows, where x1, x2, x3, x4 ∈ {a, b}:

M1 : δ1(q0, c|x1x2) = (q0,MVR),

δ1(q0, x1x2x3) = (q0, req),

δ1(q0, x1x2$) = (q0, req),

δ1(q0, c|x1[x2x3]) = (q0,MVR),

δ1(q0, x1x2[x3x4]) = (q0, req),

δ1(q0, x1[x2x3]$) = (q0, req),

δ1((q0, rec(x1)), x1x2x3) = (q0,MVR),

δ1((q0, rec(x1)), x1x2[x3x4]) = (q0,MVR),

δ1((q0, rec(x1)), x1x2$) = (q1, req),

δ1((q0, rec(x1)), x1[x2x3]$) = (q′, req),

δ1((q1, rec(x2)), x1x2$) = (qR, [x1x2]$),

δ1((q′, rec(x2)), x1[x2x3]$) = (q′′, req),

82

3.2 Parallel Communicating Systems of Restarting Automata

δ1((q′′, rec(x3)), x1[x2x3]$) = (q$, req),

δ1((q$, rec($)), x1[x2x3]$) = (Accept),

δ1(qR, $) = (Restart).

M2 : δ2(p0, c|) = (p0,MVR),

δ2(p0, x1) = (p0, res(x1)),

δ2((p0, ack(x1)), x1) = (p0,MVR),

δ2(p0, $) = (p0, res($)),

δ2((p0, ack($)), $) = (Accept).

Thus, the �rst and the second component ofM scan their tapes simultaneously letter by

letter, while each symbol of M1 is compared with the corresponding symbol ofM2. Hence,

during the �rst cycle it is clear that the head of both machines is over the same position

at the same �time�. While M1 reaches the $-symbol, it restarts and the process starts

anew. Observe that M2 only executes a tail computation. Based on the transitions ofM
it follows that

Relio(M) = Rcopy = {(w,ww) | w ∈ {a, b}∗ and |w| ≥ 3}.

More formally, on input (w1, w2) = (abba, abbaabba) M proceeds as follows:

(q0c| abba$, p0c| abbaabba$) `M (c| q0abba$, c| p0abbaabba$)

`M (c| (q0, req)abba$, c| (p0, res(a))abbaabba$)

`M (c| (q0, rec(a))abba$, c| (p0, ack(a))abbaabba$)
...

...

`M (c| abq0ba$, c| abp0baabba$)

`M (c| ab(q0, req)ba$, c| ab(p0, res(b))baabba$)

`M (c| ab(q0, rec(b))ba$, c| ab(p0, ack(b))baabba$)

`M (c| ab(q1, req)ba$, c| abbp0aabba$)

`M (c| ab(q1, req)ba$, c| abb(p0, res(a))aabba$)

`M (c| ab(q1, rec(a))ba$, c| abb(p0, ack(a))aabba$)

`M (c| ab[ba]qR$, c| abbap0abba$)

`M (q0c| ab[ba]$, c| abba(p0, res(a))abba$)

`M (c| q0ab[ba]$, c| abba(p0, res(a))abba$)

`M (c| (q0, req)ab[ba]$, c| abba(p0, res(a))abba$)
...

...

83

Relations Associated to Restarting Automata and to Parallel Communicating Systems

...
...

`M (c| a(q0, req)b[ba]$, c| abbaa(p0, res(b))bba$)

`M (c| a(q0, rec(b))b[ba]$, c| abbaa(p0, ack(b))bba$)

`M (c| a(q′, req)b[ba]$, c| abbaabp0ba$)

`M (c| a(q′, req)b[ba]$, c| abbaab(p0, res(b))ba$)

`M (c| a(q′, rec(b))b[ba]$, c| abbaab(p0, ack(b))ba$)

`M (c| a(q′′, req)b[ba]$, c| abbaabbp0a$)

`M (c| a(q′′, req)b[ba]$, c| abbaabb(p0, res(a))a$)

`M (c| a(q′′, rec(a))b[ba]$, c| abbaabb(p0, ack(a))a$)

`M (c| a(q$, req)b[ba]$, c| abbaabbap0$)

`M (c| a(q$, req)b[ba]$, c| abbaabba(p0, res($))$)

`M (c| a(q$, rec($))b[ba]$, c| abbaabba(p0, ack($))$)

`M (Accept,Accept).

Further, from the transition functions it is clear that if the input is not of the form of

(w,ww), then at some point in the computation a communication fails. Finally, it is clear

that M1 and M2 are deterministic and monotone.

3.2.2 On Deterministic and Monotone PC-Systems

Here we continue by comparing the input/output- and proper-relations of parallel commu-

nicating systems of det-mon-RRWW-automata with the relations derived in Subsection 3.1

for the single machines.

Proposition 3.2.2. The classes Relio(det-mon-RRWW) and Relio(det-mon-PC-RRWW)

are incomparable under inclusion.

Proof. Clearly Rcopy from Example 3.2.1 is not a pushdown relation for the reason that

a regular language is mapped onto a context-sensitive language (see Section 2.3, �Proper-

ties�). Hence, as the relations computed by det-mon-RRWW-automata are properly con-

tained in PDR, Rcopy is not computable by any such automaton.

Conversely, the relation Rpal from Lemma 3.1.11 is computable by a det-mon-RRWW-

automaton. But Rpal /∈ Relio(det-mon-PC-RRWW). Assume that M = (M1,M2) is a

det-mon-PC-RRWW-system and Relio(M) = Rpal. Then in an accepting computation of

M, the component automatonM2 just has tape contents c| c$. Thus, there are only �nitely
many di�erent con�gurations that M2 can reach in any accepting computation of M.

84

3.2 Parallel Communicating Systems of Restarting Automata

Accordingly a non-forgetting RRWW-automaton M can be designed that simulatesM as

follows.

Using its tape M simulates M1 step-by-step, while it simulates M2 and all communication

steps of M in its �nite control. As M executes the exact cycles of M1, it is monotone

and deterministic, and it accepts the language L(M) = {wwR | w ∈ {a, b}∗}. The class

L(det-mon-nf-RRWW) of languages accepted by non-forgetting monotone deterministic

RRWW-automata coincides with the class of left-to-right regular languages (LRR) [MO11],

which is a proper subclass of the class CRL of Church-Rosser languages. Thus, Lpal =

{wwR | w ∈ {a, b}∗} ∈ CRL follows, contradicting the fact that Lpal is not a Church-

Rosser language [JL02].

We continue with a technical and quite surprising result. It is well known that the non-

forgetting property generally increases the power of restarting automata. In contrast we

here show that this is not the case for parallel communicating systems of restarting au-

tomata.

Proposition 3.2.3. For each deterministic non-forgetting PC-RRWW-system M, there

exists a deterministic PC-RRWW-systemM′ such that RelC(M′) = RelC(M). In addition,

ifM is monotone, then so isM′.

Proof. Let M = (M1,M2) be a deterministic non-forgetting PC-RRWW-system. From

M a deterministic PC-RRWW-system M′ = (M ′1,M
′
2) can be constructed such that M ′1

and M ′2 simulate M1 and M2, respectively, cycle by cycle. However, as M ′1 and M ′2 are

reset to their respective initial state each time they execute a restart operation, they must

determine the corresponding restart state of M1 and M2, respectively, by communicating

with each other.

Here the main idea is that whenever M ′1 is about to simulate a restart step of M1, then

it determines the restart state of M1 and sends this information to M ′2. After having

performed the corresponding restart step, M ′1 requests the information about the correct

restart state from M ′2, and M
′
2 works similarly. There is, however, a serious problem with

this approach. At the time when M ′1 sends the information about the new restart state of

M1 to M ′2, the automaton M ′2 may already be waiting for a communication with M ′1 that

simulates a communication betweenM2 andM1. Then the communication newly initiated

by M ′1 will not correspond to the communication expected by M ′2, and consequently the

systemM′ may come to a deadlock. Thus,M ′1 must make sure thatM ′2 has not yet entered

85

Relations Associated to Restarting Automata and to Parallel Communicating Systems

a communication before it attempts to send the information on the new restart state of

M1. Fortunately, these problems can be overcome by executing a two-way communication

between M ′1 and M ′2 each time before a step of the computation ofM is being simulated.

This two-way communication is to ensure that both, M ′1 and M ′2, know the next step of

both, M1 and M2, that they have to simulate.

We formalize this approach in the following. Again we want to simulate a det-nf-PC-RRWW-

systemM = (M1,M2), where

M1 = (Q1,Σ,Γ1, c| , $, q0, k, δ1) and M2 = (Q2,∆,Γ2, c| , $, p0, k, δ2),

by a det-PC-RRWW-systemM′ = (M ′1,M
′
2), where

M ′1 = (Q′1,Σ,Γ1, c| , $, q′0, k, δ′1) and M ′2 = (Q′2,∆,Γ2, c| , $, p′0, k, δ′2).

As mentioned before the system M′ must somehow save the information that the com-

ponents of the non-forgetting system are able to carry from one cycle to the next. This

will be achieved by additional communication steps between M ′1 and M ′2. To this end we

introduce the sets of critical steps

I1 = {rs(q) | q ∈ Q1} ∪ {acc, com, nc}

and

I2 = {rs(p) | p ∈ Q2} ∪ {acc, com, nc}

of M1 and M2, respectively. Here rs(q) (q ∈ Q1) denotes a restart step of M1 in state q,

acc denotes an accept step, com denotes a communication step, and nc denotes all other

transition steps of M1, and analogously for I2 and M2.

The basic idea underlying our simulation is the following. Each time that M ′1 and M ′2
want to simulate a computational step of M1 and M2, respectively, they �rst execute a

�two-way handshake� in order to exchange information about the steps ofM1 andM2 they

are about to simulate. Accordingly, each step of M1 and M2 is simulated by a sequence of

steps of M ′1 and M ′2 that looks as follows, where the exact de�nition of the symbols used

will be explained below:

86

3.2 Parallel Communicating Systems of Restarting Automata

M ′1 : δ′1(q, u) = (q, req),

δ′1((q, rec(i)), u) = (q, res(j)),

δ′1((q, ack(j)), u) = δ1(q̇, u);

M ′2 : δ′2(p, v) = (p, res(i)),

δ′2((p, ack(i)), v) = (p, req),

δ′2((p, rec(j)), v) = δ2(ṗ, v).

(3.1)

Of course the last of these steps depends on i and j. According to our strategy i contains

information on M1 that M ′2 sends to M
′
1, and symmetrically j contains information on M2

that M ′1 sends to M ′2. This information is taken from the sets I1 and I2, respectively. As

M ′1 and M ′2 must store the corresponding information, we extend their sets of states by

taking

Q′1 = {[q, y] | q ∈ Q1, y ∈ I1 ∪ I2} and Q′2 = {[p, x] | p ∈ Q2, x ∈ I1}.

Further, we take q′0 = [q0, nc] and p′0 = [p0, nc].

Using these sets of states, the extended versions of the transition steps in (3.1) look as

follows, where x, x′ ∈ I1, y, y′ ∈ I2, q, q̇ ∈ Q1, p, ṗ ∈ Q2, u, u′ ∈ (Γ1 ∪ {c| , $})∗, and
v, v′ ∈ (Γ2 ∪ {c| , $})∗:

M ′1 : δ′1([q, y], u) = ([q, y], req),

δ′1(([q, y], rec(x, 〈nc, y′〉)), u) = ([q, x], res(y, 〈x′, y′〉)),

M ′2 : δ′2([p, x], v) = ([p, x], res(x, 〈nc, y′〉));
δ′2(([p, x], ack(x, 〈nc, y′〉)), v) = ([p, x], req).

(3.2)

Here x contains the possibly lost information about the last step of M1 that M ′1 has just

simulated, y denotes the last step of M2 that M ′2 has just simulated, x′ is the next step

of M1 that M ′1 is to simulate, and y′ is the next step of M2 that M ′2 is to simulate.

The latter are determined by M ′1 and M ′2 from the transition functions of M1 and M2,

respectively, based on the current state q or p and on the current window contents u or

v, respectively. Further observe that the two way �handshake� given in (3.2) is designed

such that all needed information for the respective machine M ′1 or M ′2 is (here for M1)

encoded in the state [q, x] and a triple of the form (y, 〈x′, y′〉). Finally this is done before

the corresponding step of M1 or M2 is executed.

Now the exact form of the last transitions in (3.1) depends on the actual values of x, y,

x′, and y′. Here we present these transitions and corresponding simulations for the most

87

Relations Associated to Restarting Automata and to Parallel Communicating Systems

typical cases. To increase readability we use u and v (and some indexed versions of them)

in several di�erent contexts. However, as the following construction does not depend on

the tape content it will be clear from the text in which context they are used.

1. The simplest case concerns the so-called non-critical (nc) steps. For M1 these are

the rewrite steps of the form δ1(q, u) = (q̇, u′) and the move-right steps of the form

δ1(q, u) = (q̇,MVR). As these steps do not depend in any way onM2, M ′1 transitions

continue the steps given in (3.2) as follows for all possible values of y and y′,

δ′1(([q, nc], ack(y, 〈nc, y′〉)), u) = ([q̇, y′], u′) or

δ′1(([q, nc], ack(y, 〈nc, y′〉)), u) = ([q̇, y′],MVR),

and analogously for M ′2:

δ′2(([p, x], rec(nc, 〈x′, nc〉)), v) = ([ṗ, x′], v′) or

δ′2(([p, x], rec(nc, 〈x′, nc〉)), v) = ([ṗ, x′],MVR).

To illustrate these quite general steps we here present a simulation where both com-

ponents ofM perform a MVR-step, that is,

M : · · · ` (c|u1quu2$, c| v1pvv2$) `MVR (c|u1uq̇u2$, c| v1vṗv2$) `

Thus,M′ mirrors these steps by the following computation:

M′ : . . .

` (c|u1[q, nc]uu2$, c| v1[p, nc]vv2$)

` (c|u1([q, nc], req)uu2$, c| v1([p, nc], res(nc, 〈nc, nc〉))vv2$)

` (c|u1([q, nc], rec(nc, 〈nc, nc〉))uu2$, c| v1([p, nc], ack(nc, 〈nc, nc〉))vv2$)

` (c|u1([q, nc], res(nc, 〈nc, nc〉))uu2$, c| v1([p, nc], req)vv2$)

` (c|u1([q, nc], ack(nc, 〈nc, nc〉))uu2$, c| v1([p, nc], rec(nc, 〈nc, nc〉))vv2$)

` (c|u1u[q̇, nc]u2$, c| v1v[ṗ, nc]v2$)

. . . .

Observe that these non-critical steps can only be simulated directly, if the information

x (y respectively) about the previous step that is given back during the two-way

communication to both componentsM ′1 andM
′
2 is non-critical. The following marks

will concern exactly how the critical steps are simulated.

88

3.2 Parallel Communicating Systems of Restarting Automata

2. Next we consider the restart steps. Here we distinguish between the situation that

only one of M1 and M2 is to execute a restart step, while the other component is in

a non-restart con�guration, and the situation that both components are to execute

a restart step. The former case is easily solved. If M1 is to execute the restart

transition δ1(q, u) = Restart(q̇), then

δ′1(([q, nc], ack(y, 〈rs(q̇), y′〉)), u) = Restart

for all y ∈ {rs(p), acc, com, nc} (rs(p) ∈ I2), y′ ∈ {acc, com, nc}, and if M2 is to

execute the restart transition δ2(p, v) = Restart(ṗ), then

δ′2(([p, x], rec(nc, 〈x′, rs(ṗ)〉)), v) = Restart

for all x′ ∈ {rs(q), acc, com, nc} (rs(q) ∈ I2). Observe that the latter transition

implies that the restart of M2 does not depend on M1. If, however, both, M1 and

M2, are to execute a restart step, then we must ensure that M ′1 and M ′2 do not

execute these restart steps simultaneously, as in this case the information about the

corresponding restart states of M1 and M2 would get lost. Therefore, we give M ′1 a

�busy waiting round,� during which it only communicates as shown in (3.2), that is,

we take

δ′1(([q, nc], ack(nc, 〈rs(q̇), rs(ṗ)〉)), u) = ([q, rs(ṗ)], req).

In other words, while M ′1 �waits�, M ′2 is able to restart. Then in M ′2's next cycle M
′
1

sends its restart information and restarts.

After having performed a restart step, M ′1 (or M ′2) has no information on the cor-

responding restart state of M1 (or M2). Further, it does not know anything about

the latest simulation step of M ′2 (or M ′1), either. This information must be obtained

from M ′2 (or from M ′1). For M
′
1 this is easy. Immediately after having performed a

restart step it receives the information x = rs(q̇) as shown in (3.2). Accordingly it

can continue as follows:

δ′1(([q0, rs(q̇)], ack(nc, 〈x′, y′〉)), u) = ([q̇, y′], u),

where x′ depends on δ′1([q̇, y′], u).

For M ′2 the situation is more complicated. During the �two-way-handshake� imme-

diately after the restart operation, M ′2 does not yet know the correct restart state of

89

Relations Associated to Restarting Automata and to Parallel Communicating Systems

M2 when it sends the new value of y′ toM ′1 (see (3.2)). Hence, this value will in gen-

eral be incorrect. M ′2 can determine the correct value only after it has received the

information about the correct restart state from M ′1. Therefore, M
′
2 has to execute

an additional round of communication similar to the �busy waiting round� mentioned

before, that is,

δ′2(([p0, nc], rec(rs(ṗ), 〈x′, y′〉)), v) = ([ṗ, x′], res(x′, 〈nc, ŷ〉)),

where ŷ ∈ I2 depends on δ′2([ṗ, x′], v).

To illustrate the step that both component automata are to execute a restart oper-

ation we describe the corresponding simulation in detail. Thus, let M perform the

following computation:

M : . . .

` (c|u1quu2$, c| v1pvv2$)

`Restart of M1,M2 (q̇c|u1uu2$, ṗc| v1vv2$)

. . . .

According to its transition functions,M′ behaves as described next:

. . .

` (c|u1[q, nc]uu2$, c| v1[p, nc]vv2$)

` (c|u1([q, nc], req)uu2$, c| v1([p, nc], res(nc, 〈nc, rs(ṗ)〉))vv2$)

` (c|u1([q, nc], rec(nc, 〈nc, rs(ṗ)〉))uu2$, c| v1([p, nc], ack(nc, 〈nc, rs(ṗ)〉))vv2$)

` (c|u1([q, nc], res(nc, 〈rs(q̇), rs(ṗ)〉))uu2$, c| v1([p, nc], req)vv2$)

` (c|u1([q, nc], ack(nc, 〈rs(q̇), rs(ṗ)〉))uu2$, c| v1([p, nc], rec(nc, 〈rs(q̇), rs(ṗ)〉))vv2$)

` (c|u1([q, rs(ṗ)], req)uu2$, [p0, nc]c| v1vv2$) (Restart of M ′2)

` (c|u1([q, rs(ṗ)], req)uu2$, ([p0, nc], res(nc, 〈nc, y′〉))c| v1vv2$)19

` (c|u1([q, rs(ṗ)], rec(nc, 〈nc, y′〉))uu2$, ([p0, nc], ack(nc, 〈nc, y′〉))c| v1vv2$)

` (c|u1([q, nc], res(rs(ṗ), 〈rs(q̇), y′〉))uu2$, ([p0, nc], req)c| v1vv2$)

` (c|u1([q, nc], ack(rs(ṗ), 〈rs(q̇), y′〉))uu2$, ([p0, nc], rec(rs(ṗ), 〈rs(q̇), y′〉))c| v1vv2$)

` ([q0, nc]c|u1uu2$, ([ṗ, rs(q̇)], res(rs(q̇), 〈nc, y〉))c| v1vv2$) (Restart of M ′1)

19Here y′ has not been determined correctly yet, and soM ′2 has to take another round of communication.

90

3.2 Parallel Communicating Systems of Restarting Automata

` (([q0, nc], req)c|u1uu2$, ([ṗ, rs(q̇)], res(rs(q̇), 〈nc, y〉))c| v1vv2$)

` (([q0, nc], rec(rs(q̇), 〈nc, y〉))c|u1uu2$, ([ṗ, rs(q̇)], ack(rs(q̇), 〈nc, y〉))c| v1vv2$)

` (([q0, rs(q̇)], res(nc, 〈x′, y〉))c|u1uu2$, ([ṗ, rs(q̇)], req)c| v1vv2$)

` (([q0, rs(q̇)], ack(nc, 〈x′, y〉))c|u1uu2$, ([ṗ, rs(q̇)], rec(nc, 〈x′, y〉))c| v1vv2$)

` ([q̇, y]c|u1uu2$, [ṗ, x′]c| v1vv2$)

. . . .

3. Another critical situation occurs when M1 or M2 executes a communication step,

as the simulation of this communication step must not interfere with the communi-

cation steps involved in the �two-way handshake.� In this situation the component

automaton that is to simulate this regular communication step announces this fact

by choosing x′ = com or y′ = com, and then it executes �busy waiting rounds�

until the other component automaton reaches a regular communication step, too.

Let us exemplarily show how the transition functions for M ′1 and M ′2 are derived if

M1 is to execute a regular request step δ1(q, u) = (q̇, req) and M2 a response step

δ2(p, v) = (ṗ, res(i)).

As mentioned before, both components ofM′ must enter the communication at the

same time. Thus, if y′ 6= com, M ′1 takes a busy waiting by

δ′1(([q, nc], ack(y, 〈com, y′〉)), u) = ([q, y′], req),

respectively for x′ 6= com, M ′2 also waits by

δ′2(([p, x], rec(nc, 〈x′, com〉)), v) = ([p, x′], res(x′, 〈nc, com〉)).

Now both components announce that they are ready to communicate by the following

two transitions:

δ′1(([q, nc], ack(nc, 〈com, com〉)), u) = ([q̇, nc], req),

δ′2(([p, nc], rec(nc, 〈com, com〉)), v) = ([ṗ, nc], res(i)).

Obviously in terms ofM also δ1((q̇, rec(i)), u) and δ2((ṗ, ack(i)), v) must be de�ned

and can be treated like every other step before, that is, after entering the regular

communicationM′ continues the two-way handshake in equation (3.2) with

91

Relations Associated to Restarting Automata and to Parallel Communicating Systems

δ′1(([q̇, nc], rec(i)], u) = ([q̇, nc], req)

and

δ′2(([ṗ, nc], ack(i)), v) = ([ṗ, nc], res(nc, 〈nc, y′〉)).

In this case we describe an exemplary computation of M, where M2 waits in a

response state until M1 enters the corresponding communication state. Here c and

ĉ denote arbitrary (no communication) con�gurations of M1;

M : . . .

` (c, c| v1pvv2$)

` (ĉ, c| v1(ṗ, res(i))vv2$)
...

` (c|u1quu2$, c| v1(ṗ, res(i))vv2$)

` (c|u1(q̇, req)uu2$, c| v1(ṗ, res(i))vv2$)

` (c|u1(q̇, rec(i))uu2$, c| v1(ṗ, ack(i))vv2$)

. . . .

M′ mirrors the above computation by a sequence of transition steps of the following

form, where c′, ĉ′ are the corresponding con�gurations to c, ĉ of M ′1 and x, x′ 6= com:

M′ : . . .

` (c′, c| v1[p, x]vv2$)

` (. . . , c| v1([p, x], res(x, 〈nc, com〉))vv2$)
... 20

` (ĉ′, c| v1[p, x′]vv2$)

` (. . . , (c| v1[p, x′], res(x′, 〈nc, com〉))vv2$)
... 20

` (c|u1([q, nc], ack(nc, 〈com, com〉))uu2$, c| v1([p, nc], rec(nc, 〈com, com〉))vv2$)

` (c|u1([q̇, nc], req)uu2$, c| v1([ṗ, nc], res(i))vv2$)

` (c|u1([q̇, nc], rec(i))uu2$, c| v1([ṗ, nc], ack(i))vv2$)

` (c|u1([q̇, nc], req)uu2$, c| v1([ṗ, nc], res(nc, 〈nc, y′〉)))vv2$)

` . . .

20Here M ′2 waits by performing continually the two-way handshake until M ′1 reaches com, either.

92

3.2 Parallel Communicating Systems of Restarting Automata

We omit to describe the other communication direction, as it is similar to the one

shown above.

4. When one of M1 or M2 executes an accept step, then the corresponding component

automaton M ′1 or M ′2 cannot simply accept, as that might again interfere with the

�two-way handshakes.� Accordingly, the component automaton that is to simulate

this accept step announces this fact by choosing x′ = acc or y′ = acc, and then

it executes �busy waiting rounds� until the other component automaton reaches an

accept step, too. The transition function in that case is de�ned exactly the same as

shown in mark 3. Hence, we omit further details here.

This covers all major cases. Now based on the above outline the transition functions δ′1 and

δ′2 for all remaining cases can be easily de�ned, and by the composition of the simulation

parts above it is clear that M′ does indeed simulate M step by step. In particular, it

follows that RelC(M′) = RelC(M), and as the simulation is in some sense quite direct it

also follows thatM′ is monotone, ifM is.

Observe again that the previous proof is a quite direct simulation of a non-forgetting

PC-system by a forgetting one and that it does not depend in any way on the tape content.

Therefore, we strongly suspect that the proof also works for any type of (non-deterministic)

PC-system of restarting automata. Anyway, we here omit further investigations, as the next

result already shows that every computable relation can be characterized by the proper

relations of two deterministic and monotone devices.

Theorem 3.2.4. Let R ⊆ Σ∗ ×∆∗ be a relation. Then R ∈ RelP(det-mon-PC-RRWW) if

and only if it is computable.

Proof. Certainly a PC-RRWW-system can be simulated by a Turing machine. Thus, given a

pair (u, v) ∈ RelP(M), whereM is a monotone deterministic PC-RRWW-system, a Turing

Machine T can non-deterministically guess words x ∈ Γ∗1 and y ∈ Γ∗2 satisfying Pr
Σ(x) =

u and Pr
∆(y) = v, and then it can simulate M starting from the initial con�guration

Kin(x, y). Thus, the transduction RelP(M) is computable.

Conversely, let R ⊆ Σ∗ × ∆∗ be a relation that is computable. Thus, there exists a

Turing Machine T for R. Actually there are several ways to associate a relation to un-

restricted Turing Machines that obviously all coincide. Here T = (Q,Σ,Γ, δ, q
(T)
0 ,�, F)

93

Relations Associated to Restarting Automata and to Parallel Communicating Systems

is a non-deterministic device, where ∆ ⊆ Γ, that, given u ∈ Σ∗ as input, has an ac-

cepting computation that ends with the result v ∈ ∆∗ on the tape if and only if the

pair (u, v) belongs to R. For our purposes we need to convert T to a Turing Machine

T ′ = (Q′, Σ̄,Γ′, δ′, q
(T ′)
0 ,�, qF) as follows:

• The input alphabet Σ is replaced by a new alphabet Σ̄ = {ā | a ∈ Σ}, that is a

marked copy of Σ.

• The output alphabet ∆ is also replaced by a new alphabet ∆̄ = {c̄ | c ∈ ∆}.

• The original alphabets Σ and Γ are disjoint from the new tape alphabet Γ′.

• Instead of having a set of �nal states F , qF is the only �nal state for T ′.

• Each accepting computation of T ′ consists of an odd number of steps.

Clearly, there is a Turing Machine T ′ for every Turing Machine T , such that, given ū ∈ Σ̄∗

(that is the encoded version of u ∈ Σ∗) as input, it accepts with the result encoded as

v̄ ∈ ∆̄∗ as output.

From this Turing machine we now construct a monotone deterministic PC-RRWW-system

M = (M1,M2) such that RelP(M) = R, where M1 = (Q1,Σ,Γ1, c| , $, q0, k1, δ1) and M2 =

(Q2,∆,Γ2, c| , $, p0, k2, δ2). Because of Proposition 3.2.3 we can describe M as a non-

forgetting PC-RRWW-system. Let Γ1 = Σ∪Q′ ∪ Γ′ ∪ {#} and Γ2 = ∆∪Q′ ∪ Γ′ ∪ {#} be
the tape alphabets of M1 and M2, respectively.

We de�ne the transition functions δ1 and δ2 such that the characteristic transduction

RelC(M) of M will consist of all pairs of words (x, y) ∈ Γ∗1 × Γ∗2 that mirror a valid

computation of T ′. Hence, for (x, y) the following conditions must be satis�ed:

For u ∈ Σ∗ and v ∈ ∆∗ there is an accepting computation of T ′ of the form

q
(T ′)
0 ū `T ′ x1q1y1 `T ′ · · · `T ′ xn−2qn−2yn−2 `T ′ xn−1qn−1yn−1 `T ′ qF v̄,

if and only if

(i) x = #u##x1q1y1##x3q3y3## . . .##xn−2qn−2yn−2##qF v̄, and

(ii) y = ##q
(T ′)
0 ū##x2q2y2## . . .##xn−1qn−1yn−1#v.

Next we describe the behavior of the non-forgetting restarting automata M1 and M2:

94

3.2 Parallel Communicating Systems of Restarting Automata

1. Starting from its initial state M1 expects to have a tape contents x from the regular set

E1 = # · Σ∗ · (## · Γ′∗ ·Q′ · Γ′∗)∗ ·## · qF · ∆̄∗, and M2 expects to have a tape contents

y from the regular set E2 = ## · q(T ′)
0 · Σ̄∗ · (## · Γ′∗ ·Q′ · Γ′∗)∗ ·# ·∆∗. During its �rst

cycleM1 erases the �rst occurrence of the symbol # from its tape, it checks that the factor

u ∈ Σ∗ on its tape corresponds to the factor from Σ̄∗ on M2's tape using communications,

and it veri�es that its tape contents belongs to the regular language E1. Analogously, M2

also erases the �rst occurrence of the symbol # from its tape, and it veri�es that its tape

contents belongs to the regular set E2. If all these tests are successful, then both M1 and

M2 restart in particular non-initial states; otherwise, the computation fails.

2. In the next cycle M1 and M2 check by communication that the �rst factor marked by

on M1's tape is an immediate successor con�guration of the factor marked by a single

symbol # on M2's tape with respect to the computation relation of the Turing Machine

T ′. During this process each ofM1 andM2 erases the leftmost occurrence of the symbol #

from its tape. In the a�rmative, both M1 and M2 restart in non-initial states; otherwise,

the computation fails.

3. In the next cycle the roles of M1 and M2 are interchanged.

4. The last two steps are repeated until the syllable qF v̄ on M1's tape is reached. In this

case the words x and y do indeed describe an accepting computation of T2 that produces

the result v̄ starting from ū. Now in a tail computation M1 and M2 compare the factor

v̄ on M1's tape to the su�x v ∈ ∆∗ on M2's tape by communications. If v̄ = v, then

both M1 and M2 accept, as in this case x and y satisfy all the conditions stated above;

otherwise, the computation fails.

Based on the description above it is obvious how δ1 and δ2 have to be de�ned. It follows

from this description that RelC(M) is indeed the transduction de�ned above. Hence, the

projection of RelC(M) onto Σ and ∆ yields that RelP(M) = R holds. Further, observe

that M1 and M2 are both monotone and deterministic, which completes the proof.

Together with Proposition 3.2.2 this result yields the following proper inclusions.

Corollary 3.2.5.

(a) RelP (det-mon-RRWW) (RelP (det-mon-PC-RRWW).

(b) Relio(det-mon-PC-RRWW) (RelP (det-mon-PC-RRWW).

95

Relations Associated to Restarting Automata and to Parallel Communicating Systems

CR
=

RelP (det-mon-PC-RRWW)

PDR
=

Relio(RACFL)
=

RelP (RADCFL)

Relio(det-mon-PC-RRWW)

Relio(det-mon-RRWW)

DPDR

RAT
=

Relio(RAREG)

Figure 3.1: Taxonomy of classes of relations computed by types of monotone deterministic restart-

ing automata. Here RAREG, RADCFL and RACFL denote the sets of restarting automata that

characterize the regular, deterministic context-free and context-free languages, respectively.

We summarize the relationships between the various classes of transductions considered in

this chapter by the diagram in Figure 3.1, where an arrow denotes a proper inclusion, and

classes that are not connected are incomparable under inclusion.

96

Chapter 4

Restarting Transducers

According to Berstel ([Ber79], p.53) relations and transductions simply o�er two di�erent

perspectives of the same object. In his sense relations (i.e. sets) provide a more �static�

point of view, while transductions (i.e. mappings) follow the �dynamic� aspect, implied by

pairing words. Although we know that, from a set theoretic point of view, both concepts

are equivalent, there is a di�erence when we turn to machines that realize relations or

transductions. The present work illustrates these di�erent perspectives. While in the

previous chapter we associated relations with restarting automata such that they expect

pairs of words as input, here we change our perspective to the dynamic aspect of relations.

In the spirit of traditional transducing devices (see Section 2.3) we consider a new model of

transducer, based on restarting automata. We call these machines �restarting transducers�.

A restarting transducer is a restarting automaton with explicit output (see Figure 4.1).

c| · · · · · $ �exible tape

read/write-window

�nite control

output

Figure 4.1: Schematic representation of a restarting transducer.

97

Restarting Transducers

4.1 De�nition, Examples, and General Observations

Here we extend the de�nition of restarting automata to transducers. For that we mainly

refer to the formal de�nitions given for restarting automata in Section 2.2. As, however,

most of the presented formalisms carry over to restarting transducers, we shorten some of

the already known formal aspects in the following.

Concerning the di�erent types of restarting automata we take the RRWW-automaton to be

the basis of the formal de�nition of the respective transducer. Thus, a restarting transducer

(RRWW-Td for short) is described as a 9-tuple T = (Q,Σ,∆,Γ, c| , $, q0, k, δ). Again we

have Q as the �nite set of states, Σ and Γ as the �nite input and tape alphabet (Σ ⊆ Γ),

c| , $ /∈ Γ as the markers for the left and right border of the tape, q0 ∈ Q as the initial state

and k ≥ 1 as the size of the read/write window. Additionally the description contains the

�nite output alphabet ∆, and the transition function δ extends to

δ : Q× PC(k) → Pfin(Q× ({MVR} ∪ PC≤(k−1)) ∪ {Restart,Accept} ×∆∗).

Based on the de�nition of δ, it is obvious that the transducer, just like the automaton,

is in general non-deterministic. It works in cycles, where each cycle is a combination of

a number of move-right steps, one rewrite step, and a restart or accept step21. Output

letters, that is, a word from ∆∗, are produced at the end of every cycle (during a restart

step) and during an accept step. Actually the latter causes the only di�erence in the

formal de�nition of transducers. Thus, the restart and accept steps are now of the form

(Restart, y) ∈ δ(q, x) ((Accept, y) ∈ δ(q, x), respectively), where q ∈ Q, x ∈ PC(k) and

y ∈ ∆∗ is the output assigned to the restart or accept step. In the following we give a

detailed explanation of these signi�cant steps. For that we �rst introduce the notion of

con�gurations.

A con�guration of a restarting transducer T = (Q,Σ,∆,Γ, c| , $, q0, k, δ) is described as a

pair (αqβ, z), where αqβ (αβ ∈ c| · Γ∗ · $, q ∈ Q) is the con�guration of the underlying

restarting automaton22 and z ∈ ∆∗ is the output produced so far. Initially T is in the

con�guration (q0c|u$, ε) (called the initial con�guration,), where u ∈ Σ∗ is the input word

and the output is empty. The restarting con�guration is described by (q0c|u′$, v), where

u′ ∈ Γ∗ and v ∈ ∆∗ is the current output. Finally (Accept, z) denotes an accepting

con�guration, where z ∈ ∆∗ is the output word of T .

21In case of a tail computation the rewrite step is optional.
22Observe that the underlying restarting automaton can easily be obtained from the transducer.

98

4.1 De�nition, Examples, and General Observations

Accordingly, an accepting computation of T on input u ∈ Σ∗ consists of a �nite sequence

of cycles that is followed by an accepting tail computation. It can be described as

(q0c|u$, ε) `cT (q0c|u1$, v1) `cT . . . `cT (q0c|un$, v1 · · · vn) `∗T (Accept, v1 · · · vnvn+1),

where u1, ..., un ∈ Γ∗ and v1, ..., vn+1 ∈ ∆∗. Obviously `T denotes the extended23 single

step relation and `cT denotes the execution of a complete cycle, known from restarting

automata. Finally, `∗T and `c∗T are the re�exive and transitive closures of these relations.

Note that within a cycle the behavior of the restarting transducer coincides with the

behavior of the corresponding restarting automaton, hence, we here omit further details.

Now the restarting transducer T = (Q,Σ,∆,Γ, c| , $, q0, k, δ) realizes the transduction

T : Σ∗ → ∆∗ that is de�ned as follows, for every u ∈ Σ∗:

T (u) = {v ∈ ∆∗ | (q0c|u$, ε) `∗T (Accept, v)}.

Clearly the image of a language L ⊆ Σ∗ under T is de�ned as T (L) =
⋃
u∈L T (u) and the

preimage of a language L′ ⊆ ∆∗ is T−1(L′) = {u ∈ Σ∗ | T (u) ∩ L′ 6= ∅}. From a static

point of view, the relation computed by T is the graph of its transduction, that is,

Rel(T) = {(u, v) | v ∈ T (u)}.

Finally the class of relations de�ned by a type of restarting transducer (here RRWW-Td)

is denoted by Rel(RRWW-Td).

Before we come to a �rst example we should recall the notion of meta-instructions. Meta-

instructions were used to increase the readability of the behavior of restarting automata

(see Section 2.2, �Basic Properties�). Hence, a tuple of the form (E1, u 7→ u′, E2) mirrors

one cycle of an RRWW-automaton, where it reads across the tape content E1, rewrites a

sub-word u by the shorter sub-word u′ and �nally veri�es that the remaining su�x on the

tape corresponds to E2. As these meta-instructions describe the rewriting behavior of an

automaton, they can easily be extended to restarting transducers. Here

(E1, u 7→ u′, E2; v)

is a meta-instruction of a restarting transducer, where E1, E2, u, u′ are de�ned as for the

corresponding automaton, and v is the output word produced at the end of this cycle.
23The relation is now de�ned on tuples to additionally mirror the behavior of the output function.

99

Restarting Transducers

Accordingly, (c| · E · $,Accept; v) denotes an accepting meta-instruction.

Example 4.1.1. Let T = (Q, {a, b, c}, {â, b̂, ĉ}, {a, b, c, B,C}, c| , $, q0, 3, δ) be the

RRWW-Td that is described by the following meta-instructions:

(1) (c| ·(abc)∗, abc→ Bc, (Bc)∗·$; â),

(2) (c| ·(Bc)∗, Bc→ C, C∗·$; b̂),

(3) (c| ·C∗, C → ε, $; ĉ),

(4) (c| · $, Accept; ε).

Obviously T consumes only words from the input language L = {(abc)n|n ≥ 0}. Thus,

at the beginning of the computation it scans the tape from left to right while checking

the correct order of a's, b's and c's. Next T deletes stepwise all a's from right to left and

produces the same number of â's. Then, the transducer proceeds to do the same for b's

and c's. In order to do so it is clear that T (L) = {ânb̂nĉn | n ≥ 0} and the graph of

that transduction is Rel(T) = {((abc)n, ânb̂nĉn)|n ≥ 0}. From the meta-instructions it is

clear how the transition function can be designed. Implicitly we describe δ by exemplarily

showing how T proceeds on input abcabcabc:

(q0c| abcabcabc$, ε) `MVR (c| q1abcabcabc$, ε) `MVR (c| aq2bcabcabc$, ε)

`MVR (c| abq3cabcabc$, ε) `MVR (c| abcq1abcabc$, ε)

`∗MVR (c| abcabcq1abc$, ε) `Rewrite (c| abcabcBcq′1$, ε)

`Restart (q0c| abcabcBc$, â) `∗MVR (c| abcq1abcBc$, â)

`Rewrite (c| abcBcq′1Bc$, â) `Restart (q0c| abcBcBc$, ââ)

`MVR (c| q1abcBcBc$, ââ) `Rewrite (c|Bcq′1BcBc$, ââ)

`MVR (c|BcBq′2cBc$, ââ) `MVR (c|BcBcq′1Bc$, ââ)

`Restart (q0c|BcBcBc$, âââ)

`c (q0c|BcBcC$, âââb̂) `c (q0c|BcCC$, âââb̂b̂)

`c (q0c|CCC$, âââb̂b̂b̂) `c∗ (q0c| $, âââb̂b̂b̂ĉĉĉ)
`Accept (Accept, âââb̂b̂b̂ĉĉĉ).

Observe that T is non-deterministic, that is, it guesses the correct position of every rewrite

step.

100

4.1 De�nition, Examples, and General Observations

Modes of Operation

All the modi�cations presented in Section 2.2 (see �Variants of Restarting Automata�) for

restarting automata naturally carry over to transducers. Hence, we distinguish between R,

RR, RW, RRW, RWW, RRWW, deterministic (det-), monotone (mon-) and non-forgetting

(nf-) restarting transducers. Note that in contrast to the situation for pushdown trans-

ducers (see Section 2.3, �Pushdown Relations�) the relation computed by any deterministic

restarting transducer is actually a (partial) function.

We here introduce a further property, unique for restarting transducers and useful for the

following re�ections. A restarting transducer is called proper (prop- for short) if all its

accept instructions are of the form (Accept, ε), that is, in the last step of an accepting

computation it can only output the empty word.

Concerning all the modi�cations introduced above, it will be one of the major topics of the

present work to investigate the e�ect of these di�erent mechanisms on the computational

power of restarting transducers.

4.1.1 General Observations

Before we turn to more restricted versions of restarting transducers we will establish some

general observations. The �rst ones are the corresponding versions of the repeatedly used

error and correctness preserving properties (cf. Propositions 2.2.3 and 2.2.4) for restarting

automata.

Proposition 4.1.2 (Error Preserving Property for Restarting Transducers). Let T =

(Q,Σ,∆,Γ, c| , $, q0, k, δ) be an RRWW-transducer, and let (u, v) and (u′, v′) be pairs of

words over Σ∗×∆∗. If (q0c|u$, v) `c∗T (q0c|u′$, v′) holds and (u, v) /∈ Rel(T), then (u′, v′) /∈
Rel(T), either.

Proposition 4.1.3 (Correctness Preserving Property for Restarting Transducers). Let

T = (Q,Σ,∆,Γ, c| , $, q0, k, δ) be an RRWW-transducer, and let (u, v) and (u′, v′) be pairs

of words over Σ∗ ×∆∗. If (q0c|u$, v) `c∗T (q0c|u′$, v′) is an initial segment of an accepting

computation of T , then (u′, v′) ∈ Rel(T).

A property introduced for relations in general (see De�nition 2.1.2) helps us to achieve a

�rst classi�cation of restarting transductions. Thus, the following result is based on the

101

Restarting Transducers

fact that a restarting transducer is not able to perform arbitrary many restart steps24.

Proposition 4.1.4. Every relation computed by a restarting transducer is length bounded.

Observe that the property of being length-bounded does not depend on the length of the

output produced in a single step. In fact, it only depends on whether a transducing system

is able to produce output symbols without consuming any input symbols.

An immediate consequence of this observation is the next corollary.

Corollary 4.1.5. There is no restarting transducer that computes the relation

R = {(ε, cn) | n ≥ 0}.

Not surprisingly, Proposition 4.1.4 will lead in the following to some important incompa-

rability results, as most of the classical types of transducers are not bounded in the use of

ε-steps in their computations. Anyway, here we continue with a general classi�cation of

some subclasses of RRWW-transducers.

Proposition 4.1.6. Let X2 be any type of restarting automaton, and let X1 be a type of

restarting automaton that is a restricted version of X2
25. Now let X1-Td, X2-Td be the

corresponding transducer classes. If L(X1) (L(X2), then Rel(X1-Td) (Rel(X2-Td).

Proof. The proof of Proposition 4.1.6 is quite obvious. Nevertheless it is worth to give a

deeper inside as it is a good example to restate some basic facts on the connection between

languages and relations.

By de�nition it is clear that one relation class includes the other. This inclusion is proper

for the following reason. Let L be a language that can be computed by M2 ∈ X2 and

there exists no restarting automaton M1 ∈ X1 that is able to do so. Hence, L ∈ L(X2)

and L /∈ L(X1). The semi-characteristic function of L is de�ned as

χ′L(w) =

1 ;w ∈ L

undefined ;w /∈ L
.

Obviously a restarting automaton for L can easily be extended to a restarting transducer

that computes χ′L by writing the symbol 1 on the output tape during an accept step.

24In fact the number of restart steps is bounded by the length of the input, as at least one symbol has
to be deleted in any cycle.

25For instance, an RW-automaton is a restricted version of an RWW-automaton.

102

4.1 De�nition, Examples, and General Observations

It follows that there exists a restarting transducer of type X2-Td that computes χ′L and

further on, there is no restarting transducer of type X1-Td for χ′L. Notice that the same

technique does not work for computing the characteristic function

χL(w) =

1 ;w ∈ L

0 ;w /∈ L

of any language L. For that, let L be accepted by a non-deterministic restarting automaton.

Hence, for a word w ∈ L, there might exist several paths in the computation tree, some

accepting, some not. Observe that when we convert this automaton into a transducer for

the characteristic function, then all paths must be accepting, some with 0 and some with 1

as output. Now, as considered above, we can clearly assign the corresponding output to the

accept steps or reject steps. But then, obviously, the transducer produces on input w (from

above) two di�erent outputs. Hence, it computes a relation that is not a function.26

For the same reason the following result holds.

Corollary 4.1.7. Let X1, X2 be two di�erent classes of restarting automata. If L(X1)

and L(X2) are incomparable, so are Rel(X1-Td) and Rel(X2-Td).

Note that the converse direction of the previous statement does not hold in general. In

summary these observations and the results for the di�erent language classes of restarting

automata (see Figure 2.2) lead to the inclusion diagram given in Figure 4.2. For that, re-

call that deterministic types of automata only compute functions, while non-deterministic

ones compute �real� relations. Therefore, a class of restarting transducers of type det-X

is naturally a proper subclass of the non-deterministic version X. Further, if two types

of restarting automata are equivalent, then the classes of relations computed by the cor-

responding transducers need not coincide. Hence, it is not clear whether the equivalence

L(det-RWW) = L(det-RRWW) carries over to relations or not. In addition the open

questions whether the inclusion Rel(RWW-Td) ⊆ Rel(RRWW-Td) is proper and whether

Rel(RRW-Td) is contained in Rel(RWW-Td) are variants of the corresponding questions

for restarting automata (see Section 2.2, �General Classi�cations�). Discussions on these

question can be found in Chapters 5 and 6.

26Indeed the word problem is decidable for any type of restarting automaton, but this does not imply
that the characteristic function of a restarting automaton of a certain type is computable by a restarting
transducer of the corresponding type.

103

Restarting Transducers

Rel(RRWW-Td)

Rel(det-RRWW-Td)

Rel(RWW-Td)

Rel(det-RWW-Td)

Rel(RRW-Td)

Rel(det-RRW-Td)

Rel(RW-Td)

Rel(det-RW-Td)

Rel(RR-Td)

Rel(det-RR-Td)

Rel(R-Td)

Rel(det-R-Td)

Figure 4.2: Inclusions between the relation classes de�ned by the basic types of restarting
transducers. Proper inclusions are denoted by arrows, inclusions not known to be proper
by dashed arrows, and unknown relationships by dashed lines.

104

4.1 De�nition, Examples, and General Observations

An upper bound (NP ∩ CSL) for the power of restarting automata was given in Proposi-

tion 2.2.7. One might say that this class, in some sense, also serves as an upper bound

for the corresponding transducer classes. However, here we present a di�erent criterion,

unique for transducers, that serves as an indicator for the computational power of restarting

transducers. We start our observations by focusing on the output language classes of these

machines. For that the following de�nition as well as a result on det-R-automata from

[NO99] (see p.10) is needed.

De�nition 4.1.8. A language class C is called a quotient basis for the recursively enu-

merable languages if, for each language L ∈ RE, there exists a language L′ ∈ C and a

regular set R such that L = R\L′. Here R\L′ denotes the left-quotient of L′ by R, that is,
R\L′ = {w | ∃x ∈ R : xw ∈ L′}.

Proposition 4.1.9 ([NO99]). L(det-R) is a quotient basis for the recursively enumerable

languages.

The next result is an immediate consequence of the latter proposition.

Proposition 4.1.10. For each recursively enumerable language L, there is a det-RWW-

transducer T such that L is the output language of T , that is, ra(Rel(T)) = L.

Proof. Here we use a slightly di�erent perspective on De�nition 4.1.8 also taken from

[NO99]. A language class C is a quotient basis for the r.e. languages if, for each language

L ∈ RE over some alphabet Σ, there exist a language L′ ∈ C over some alphabet Σ′ ⊃ Σ,

a symbol # ∈ Σ′\Σ and a regular set R ⊆ (Σ′\{#})∗ such that L = cut#(L′ ∩ R · # ·
(Σ′\{#})∗). Here cut# is the operation which removes the pre�x of a string x that ends

with the unique occurrence of the symbol #.

Observe that already a �nite state transducer is able to compute the intersection with

R ·# ·(Σ′\{#})∗ and the cut#-operation. Hence, it is easy to show that every r.e. language

can be obtained by applying a �nite state transduction on a language L′ taken from a

language class that is known to be a basis for RE.

Note that we here want to show a stronger result. Based on a language L′ ∈ det-R we

show that every language L ∈ RE is the output language of a det-RWW-transducer. Next

we describe this particular transducer.

Let M ′ be the det-R-automaton for L′. From M we de�ne a det-RWW-automaton M ′′

that accepts the language L′′ = L′ ∩ R · # · (Σ′\{#})∗. Clearly this is possible as the

105

Restarting Transducers

languages computed by det-RWW-automata are closed under taking intersections with

regular languages (e.g. in [Ott06], p.10).

Due to the fact that a transducer for L′′ must additionally compute the cut#-operation,

its transitions cannot be taken directly from M ′′. Actually we need to slightly adjust the

language L′′. Hence, from L′′ we construct a language L′′& such that a word w = w1...wn ∈
L′′ if and only if w& = &&w1&&w2...&&wn&& ∈ L′′& (w1, w2, ..., wn ∈ Σ′). Here & is

a new symbol, not in Σ′. Obviously L′′& ∈ L(det-RWW) holds27. Note that this special

symbol is needed to proceed the cut#-operation.

From the automaton M ′′ we now obtain the det-RWW-Td T , that is, every transition of

M ′′ is a transition for T and all restart or accept steps of M ′′ are extended by the empty

output. W.l.o.g assume that k ≥ 3 is the window size of M ′′. Now the computation of T

consists of three phases.

(1) First, T computes the cut#-operation and it additionally veri�es whether the input

word w is correctly annotated by &&. For that, observe that T expects a word of

the form

&&x1&&x2&& . . . xk&&#&&y1&&y2&& . . . yl&&,

where x1, . . . , xk, y1, . . . yl ∈ Σ′ and l, k ≥ 0 on the tape. Starting in its initial

con�guration, T rewrites every factor &&xi to &′xi, &&# to &′#, &&$ to &′$ and

&&yi to &′yi, where &′ is a new auxiliary symbol. Additionally, it outputs every yi
during the latter rewrite steps. Observe that if the input w was of the form given

above, then T has produced the output y1y2 . . . yl. If not, it gets stuck.

(2) The second phase describes the behavior of T on

&′x1&′x2&′ . . . xk&
′#&′y1&′y2&′ . . . yl&

′,

which is the word obtained in the �rst phase. Note that a deterministic RWW-

automaton is weakly monotone (e.g. in [Ott06], p.23). That is, informally speaking,

a deterministic RWW-automaton cannot perform a rewrite step before it sees at

least the �rst symbol of the previously rewritten substring in its read/write window.

Thus, the auxiliary symbol &′ is needed to �reset� the transducer onto the left end

of the tape. However, after phase one is completed, T naturally shifts the window

27Roughly speaking a det-RWW-automaton for L′′& can be easily obtained from M ′′ by adding the
transitions that delete an occurrence of && whenever it appears in the read/write-window.

106

4.2 Monotone Restarting Transducers

to the right end of the tape. Hence, when seeing &′$ it observes that no sub-words

&& remain on the tape. So it proceeds as follows: beginning with &′$, T deletes

every symbol &′ from right to left. For that, a sub-word &′yiyi+1 (respectively for

all possible occurrence of xi and #) is the unique indicator that &′ is the right most

auxiliary symbol on the tape.

(3) Clearly phase two leads to a tape content of the form

x1x2 . . . xk#y1y2 . . . yl.

Hence, we are back in the initial con�guration ofM ′′, the automaton for the language

L′′. From here on T acts like M ′′.

It is obvious how to derive the transition function from the description of T . Further, T

accepts only words from the languages L′′ or L′′&. Observe that for every word w ∈ L′′, T
produces empty output and for every word w& ∈ L′′&, T produces a word of the recursively

enumerable language L. Hence, for every language L ∈ RE, there is a det-RWW-Td such

that L is the output language of this particular transducer.

A similar result will not hold for det-R-transducers. For that observe that such a transducer

is not capable of using auxiliary symbols. Hence, no information about the computation

can be saved onto the tape. Therefore, it can be veri�ed that the output language of such

a transducer is in some sense �su�x-closed�, that is, certain su�xes of a word w in the

output language belong also to the output language. However, already the previous result

implies that many closure properties and decision problems have to be answered negatively

for transducers of the above type.

4.2 Monotone Restarting Transducers

According to the previous section, the general model of a restarting transducer is quite

powerful. Therefore, we turn to more restricted versions. Here we study monotone

restarting transducers. Observe that the notion of monotonicity naturally carries over

from restarting automata. Hence, a restarting transducer is called monotone if every com-

putation of the underlying restarting automaton is monotone (see Section 2.2, �Variants of

Restarting Automata�). Further, recall from the Preliminaries that being monotone has a

107

Restarting Transducers

major in�uence on the computational power of restarting automata. Thus, all monotone

restarting automata that are also deterministic accept the deterministic context-free lan-

guages, and their non-deterministic counterparts form a hierarchy such that mon-RWW and

mon-RRWW both accept the context-free languages. Hence, it is natural to ask whether

monotonicity has the same in�uence on transducers, that is, are monotone restarting trans-

ducers somehow related to pushdown relations?

4.2.1 Upper Bound

To establish an upper bound for the computational power of monotone restarting trans-

ducers we return to the concepts of proper- and input/output-relations, introduced in Chap-

ter 3. The following result forms the basis of our re�ections (cf. Proposition 3.1.9 and

Corollary 3.1.14):

PDR =



Relp(det-mon-R)

Relp(det-mon-RRWW)

Relio(mon-RWW)

Relio(mon-RRWW).

In the following these facts will lead to a rough classi�cation of the relations computed by

monotone restarting transducers.

Proposition 4.2.1. The class of relations that are computed by monotone restarting trans-

ducers of type X is included in the class of input/output-relations of monotone restarting

automata of the same type X. Furthermore, this is also true for the corresponding deter-

ministic versions of type X. Here X = {R, RR, RW, RRW, RWW, RRWW}.

Proof. 28Let T = (Q,Σ,∆,Γ, c| , $, q0, k, δ) be a mon-RRWW-Td that computes the relation

Rel(T). Thus, a pair (u, v) ∈ Σ∗ × ∆∗ belongs to Rel(T) if and only if there exists a

computation of the form (q0c|u$, ε) `c∗T (Accept, v) (with u ∈ Σ∗ and v ∈ ∆∗).

Without loss of generality we may assume that the output alphabet ∆ is disjoint from

the input alphabet Σ and the tape alphabet Γ. Further, T performs restart and accept

instructions only on the $-symbol.

28The proof is based on joined work with Friedrich Otto.

108

4.2 Monotone Restarting Transducers

From here on the main idea is to de�ne a mon-RRWW-automaton that accepts input

words w that belong to the shu�e of u and v. Observe that u and v may not be simply

concatenated, as the result derived from all pairs (u, v) may not necessarily be context

free.

More formally we now construct a mon-RRWW-automaton M = (Q,Σ′,Γ′, c| , $, q0, k
′, δ′)

by meta-instructions from a description of T by meta-instructions, where Σ′ = Σ ∪ ∆,

Γ′ = Γ∪∆ and the window size k′ is the sum of the window size k and the longest output

string z, which can be taken from the description of T . Further, sh(E2,∆
∗) denotes the

shu�e of the languages E2 ⊆ Γ∗ and ∆∗. Now each rewriting meta-instruction

(c| · E1, x→ y, E2 · $; z)

of T yields a rewriting meta-instructions

(c| · E1, xz → y, sh(E2,∆
∗) · $)

for M , where x, y ∈ Γ∗, z ∈ ∆∗. Finally, each accepting meta-instructions (c| · E ·
$, Accept; z) of T leads to an accepting meta-instruction (c| · E · z · $, Accept) for M .

Here observe that a mon-RRWW-Td is able to perform a non-monotone rewrite step in

the tail of a computation, which is not exactly mirrored by accepting meta-instructions.

Clearly this leads only to a minor adjustment in the construction above. If T performs

such a non-monotone rewrite step in a tail, M will perform the same rewrite. Further,

M scans the remainder of the tape, while expecting the output produced by T during the

accept-step to the left of the $-symbol.

Based on this description it is clear how to derive the transition function δ′ of M from the

transition function δ of T .

It remains to show that Rel(T) = Relio(M) holds. Let (u, v) ∈ Rel(T), that is, there

exists an accepting computation of T that consumes the input u ∈ Σ∗ and produces the

output v ∈ ∆∗. This computation consists of a sequence of cycles C1, C2, ..., Cm−1, where

Ci (1 ≤ i ≤ m− 1) is of the form

(q0c|uixiwi$, vi) `∗MVR (c|uiqixiwi$, vi) `∗Rewrite (c|uiyiq′iwi$, vi)
`∗MVR (c|uiyiwiq′′i $, vi) `Restart (q0c|uiyiwi$, vizi) = (q0c|ui+1xi+1wi+1$, vi+1)

109

Restarting Transducers

and a tail computation is of the form

(q0c|um$, vm) `∗MVR (c|umqm$, vm) ` (Accept, vmzm).

Obviously, for all i = 1, ...,m−2, uiyiwi = ui+1xi+1wi+1, and as T is monotone, we see that

|xiwi| ≥ |xi+1wi+1| holds. This inequality further implies that wi+1 is a (not necessarily

proper) su�x of wi. Therefore, xi+1 can be decomposed to αiyiβi, where αi is a su�x of

ui and βi is a pre�x of wi.

Consequently, M simulates the computation of T as follows. It expects an input of the

form uixiziw
′
i, where the current output zi of T is inserted immediately to the right of the

string xi and w′i, w
′
i+1 ∈ sh(wi,∆

∗). Now M will execute the following sequence of steps

by using the meta-instructions that have been obtained from T :

q0c|uixiziw′i$ `∗MVR c|uiqixiziw′i$ `∗Rewrite c|uiyiq′iw′i$
`∗MVR c|uiyiw′iq′′i $ `Restart q0c|uiyiw′i$ = q0c|ui+1xi+1zi+1w

′
i+1$

.

Here, the interesting part is how the outputs zi and zi+1 of the i-th and i + 1-th cycle of

T are composed in the restart con�guration of the i-th cycle of M . For that notice again

that xi+1 = αiyiβi, which is the part of the tape content that will be rewritten in the

following cycle. Due to the fact that T is monotone, there are two di�erent cases for the

computation of T that M has to deal with.

Case 1: If |xiwi| > |xi+1wi+1|, that is, we are in a strictly monotone part of the computa-

tion, then wi+1 is a proper su�x of wi and it follows that |βi| ≥ 1, and |αi| ≥ 0. As βi is a

non-empty pre�x of wi, the restart con�guration of the i'th cycle ofM can be decomposed

to

q0c|ui+1αixiziβizi+1w
′
i+1$,

where xizi will be rewritten to yi.

Case 2: The situation for |xiwi| = |xi+1wi+1| is an immediate consequence of Case 1.

Thus, wi+1 = wi and it follows that |βi| = 0, and |αi| ≥ 1. Then xi+1 is a su�x of uiyi
and the restart con�guration of the i'th cycle of M can be decomposed to

q0c|uixizizi+1w
′
i+1$ = q0c|ui+1αixizizi+1w

′
i+1$,

where the current output zi and the output of the next cycle of T zi+1 are inserted imme-

diately to the right of the string xi.

110

4.2 Monotone Restarting Transducers

By combining these two cases we obtain a word w ∈ sh(u, v) such that the computa-

tion of M on input w mirrors the computation of T on input u and it follows that

(u, v) ∈ Relio(M). Conversely, it is obvious that (u, v) ∈ Rel(T) holds for each pair

(u, v) ∈ Relio(M). In addition, as this proof does not depend on auxiliary symbols,

non-determinism or right computations, it holds for all types of monotone restarting au-

tomata.

In the following the technique used to prove the last proposition will appear again to

establish an upper bound for some simpler types of restarting transducers. Initially, the

result puts all monotone machines in the context of pushdown relations.

Corollary 4.2.2. Rel(mon-X-Td) (PDR and Rel(det-mon-X-Td) (PDR, where X =

{R, RR, RW, RRW, RWW, RRWW}.

The previous inclusions are actually proper for the reason that Proposition 4.1.4 (�length-

bounded�) does not hold for pushdown transducers in general, that is, a pushdown trans-

ducer is able to produce an arbitrarily long output on empty input.

4.2.2 Monotone Restarting Transducers and Pushdown Functions

In the following we focus on the question whether we can make the results derived by

Proposition 4.2.1 more precise, that is, are there any other well-known classes within

the pushdown relations that can be characterized in terms of restarting transducers? An

overview of the most important subclasses of pushdown relations can be found in Section 2.3

(see �Pushdown Relations�).

Initially, we focus on subclasses of pushdown relations that contain instances that can be

accepted only by a pushdown transducer where the underlying pushdown automaton is

non-deterministic. Obviously this is true for PDR, PDF and UPDF. Unfortunately, being

functional or unambiguous is neither a syntactical property nor decidable for a pushdown

transducer. Thus, a connection between these classes and common restarting transducers

seems to be highly unlikely29. To verify this conjecture we consider the following example

inspired by [JMPV99] (cf. Lemma 4.2).

29Certainly, and for further re�ections we might investigate unambiguous or functional restarting trans-
ducers.

111

Restarting Transducers

Example 4.2.3. Let

L1 = {f, fg} · {anbmcmdn | n,m ≥ 0},
L2 = {g, fg} · {anbncmdm | n,m ≥ 0},

and L = L1 ∪ L2 be a slightly di�erent version of the context-free language

{anbmcmdn | n,m ≥ 0} ∪ {anbncmdm | n,m ≥ 0} that is well known for being inherently

ambiguous (e.g. in [HU79]). Of course L is still context free and inherently ambiguous,

as words of the sub-language {fg · anbncndn | n,m ≥ 0} lead to two di�erent accepting

computations. The semi-characteristic function χ′L of L is de�ned as follows

χ′L(w) =

1, w ∈ L

unde�ned, w /∈ L
.

Here we describe a mon-R-transducer T = (Q, {a, b, c, d, f, g}, {1},Γ, c| , $, q0, 3, δ) by meta-

instructions that computes the function χ′L:

T : (c| , fg → f ; ε),

(c| , fg → g; ε),

(c| · f · a∗b∗, bcx→ x; ε), x ∈ {c, d, $},
(c| · f · a∗, adx→ x; ε), x ∈ {d, $},
(c| · f · $, Accept; 1),

(c| · g · a∗, abx→ x; ε), x ∈ {b, c, $},
(c| · g · c∗, cdx→ x; ε), x ∈ {d, $},
(c| · g · $, Accept; 1).

Thus, on input fg · a∗b∗c∗d∗, T guesses non-deterministically whether the input word

belongs to L1 or L2 and saves the guess by deleting one of the marker symbols f or g.

From here on T deletes all factors bc or ab, respectively, then continues with ad or cd. T

accepts and outputs the symbol 1 while seeing c| · f · $ or c| · g · $. Additionally, as T is not

able to save information on the tape also the sub-languages {f ·anbmcmdn | n,m ≥ 0} and
{g · anbncmdm | n,m ≥ 0} are accepted. Based on the description above it is clear that for

every w ∈ Σ∗, T (w) = χ′L(w) holds.

Example 4.2.3 shows that already monotone R-transducers can compute functions that are

not unambiguous. Thus, we derive the following result.

112

4.2 Monotone Restarting Transducers

Proposition 4.2.4. The class of unambiguous pushdown functions (UPDF) and the rela-

tions computed by mon-X-transducers are incomparable under inclusion. Here X denotes

transducers of type {R,RR,RW,RRW}.

Proof. In Example 4.2.3 we presented a function that is computable by a mon-R-Td. As

the set of input words of this particular function is known to be inherently ambiguous,

there is no unambiguous pushdown transducer that computes this function.

Conversely in [JMPV99] it was shown that the context-free language

L = {anbn | n ≥ 0} ∪ {anbm | m > 2n ≥ 0} is not accepted by any mon-RRW-automaton.

Further, L is unambiguous. A pushdown automaton for L initially guesses whether the

input is of the form anbn or anbm and then veri�es its guess. Clearly such an automaton

has a unique accepting computation for every word of the language L.

It follows that any relation, where the output depends on checking whether a word belongs

to L is not computable by a mon-RRW-transducer, but there are functions of this form

that are computable by an unambiguous pushdown transducer.

Admittedly, from a computational point of view using Example 4.2.3 to prove the previous

proposition was a bit arkward, as non-deterministic restarting transducers can compute

relations that are not functional. Anyway, we know now that even the functions computed

by restarting transducers of the latter type are incomparable to UPDF. The next result

follows immediately from the hierarchy of pushdown relations.

Corollary 4.2.5. The class of pushdown functions (PDF) and the relations computed by

mon-X-transducers are incomparable under inclusion. Here X denotes transducers of type

{R,RR,RW,RRW}.

We can even strengthen the previous incomparability results to more general classes of

restarting transducers. For that consider the following example.

Example 4.2.6. Let τ : {a, b}∗ 7→ {a, b}∗ be a function that is de�ned by

τ(u) =


ε , for u = ε,

ban , for u = abn (n ≥ 0),

unde�ned , else.

A sequential transducer for τ is shown in Figure 4.3.

113

Restarting Transducers

q0 q1

a/b

b/a

Figure 4.3: The sequential transducer from Example 4.2.6.

Proposition 4.2.7. SeqF rRel(RRW-Td) 6= ∅

Proof. Let τ be the function from Example 4.2.6. Assume T is an RRW-transducer that

computes τ . On input abn it must produce the output ban, that is, the �rst output produced

in an accepting computation on input abn is of the form bai for some constant i. If n is

large enough, then it is clear that T is not able to compute τ in a tail computation, that is,

any accepting computation on a su�ciently long input word has at least one cycle. Due to

the fact that an RRW-transducer cannot use auxiliary symbols and has to be correctness

preserving (cf. Proposition 4.1.3), T must shorten the input word by deleting b's. Thus,

after the �rst restart the current input word is abm, where m < n. From here on T must

produce the output bj , but that would violate the correctness preserving property for the

reason that also pairs of words of the form (abn, bx) (x ∈ ∆∗) are computed by T .

The latter results have shown that restarting transducer that are not capable of using

auxiliary symbols are incomparable to most of the well-known relation classes. Therefore,

we now turn to machines with an additional set of auxiliary symbols, that is, mon-RWW-

and mon-RRWW-transducers. As stated above, there are pushdown relations that can-

not be computed by any mon-RWW- (or mon-RRWW-)transducer and additionally, there

are non-functional relations that can be computed by these devices. Thus, the question

arises whether at least all pushdown functions can be computed by mon-RWW-Td or

mon-RRWW-Td.

To answer the latter question we show an even stronger result. For that we de�ne a new

class of pushdown relations, called length-bounded PDR (lbPDR for short) in the sense of

De�nition 2.1.2.

De�nition 4.2.8. A pushdown relation R is length bounded if there is an integer c ∈ N,
such that for each pair (u, v) ∈ R with u 6= ε, |v| ≤ c · |u|. The class of all length-bounded

114

4.2 Monotone Restarting Transducers

pushdown relations is denoted by lbPDR.

The following result is based on the notion of simple syntax directed translation schemes

(sSDTS), which were introduced in Section 2.3 (see De�nition 2.3.12) as the grammatical

analogues to pushdown transducers.

Theorem 4.2.9. lbPDR = Rel(mon-RWW-Td)

Proof. Obviously the inclusion from right to left holds for the reason that a mon-RWW-Td

can only compute PDR (cf. Proposition 4.2.1) and ful�lls the length-bounded property (cf.

Proposition 4.1.4). It remains to show that for any length-bounded pushdown relation

R ∈ lbPDR there is a mon-RWW-transducer T such that R = Rel(T).

In [JMPV99] Jancar et al. simulated a pushdown automaton by a mon-RWW-automaton.

Here we extend their proof to transducers. To establish our construction we must use a

pushdown transducer that is of the same special form as the pushdown automaton used in

the original paper. That is:

(1) the pushdown transducer is non-deterministic and accepts by empty pushdown,

(2) before it increases the height of its pushdown by one symbol, it must read at least

two input symbols,

(3) it reads at least one symbol in every step.

In terms of languages it is easy to verify that there is a pushdown automaton for any

context-free language that ful�lls the three conditions. This special machine is derived by

using a grammar in Greibach normal form and standard compressing techniques to control

the height of the pushdown store.

As it is not straightforward to verify that there is a pushdown transducer of the above

type for any length-bounded pushdown relation, we �rst explain how a transducer of such

a special form can be obtained.

By Proposition 2.3.13 it is clear that every pushdown relation can be de�ned by a syntax

directed translation scheme S in quadratic Greibach normal form, that is, all rules are of

the form A→ (aα, bα), where a is a symbol of the input alphabet or the empty word, b is

a symbol of the output alphabet or the empty word, a and b are not both the empty word

and α is a string of non-terminals of length at most two.

115

Restarting Transducers

Now let us assume that S = (V,Σ,∆, P, S) is a sSDTS in quadratic Greibach normal form

that generates a length-bounded relation. Thus, we can make some additional assumptions

about the form of the rules in S. That is, any derivation that produces non-empty output

on empty input has to be of bounded length. More formally, there is a positive integer k

such that for any derivation of the form (A,A) ⇒∗S (XA, yXA), where A ∈ V , XA ∈ V ∗

and y ∈ ∆∗, the length of the output string y is bounded by k (and therefore also the

number of non-terminals |XA|), that is |y| ≤ k. The latter statement holds for the reason

that if there is no such integer k, this would violate the property of being length-bounded.

From here on it is clear that for every k ∈ N there exists a sSDTS S1 = (V,Σ,∆, P1, S)

that is derived from S by eliminating rules of the form A→ (α, bα). Thus P1 contains all

rules of P with the following exception:

• If A→ (α, bα) is in P , then it is not in P1, where α ∈ V ∪ V 2 and b ∈ ∆.

• If there is a left most derivation of the form

(A,A)⇒k′≤k
S (XA, yXA)⇒S (aBX ′A, ybBX

′
A),

then the rule A → (aBX ′A, ybBX
′
A) is in P1, where A ∈ V , a ∈ Σ, b ∈ ∆, y is an

output word, B is a non-terminal or empty and �nally X ′A is a non-empty string of

non-terminals.30

Admittedly, in a strict sense S1 is not a syntax directed translation scheme, as here one

derivation step possibly produces a string instead of one output symbol. Further, S1 is not

necessarily in quadratic Greibach normal form. Anyway, Rel(S) = Rel(S1) is easily proved

if done by induction on the length of a derivation.

Continuing, let M1 be a pushdown transducer for S1, similar to the one exposed in e.g.

[AU72], that simulates left most derivations of S1 in its pushdown store. Thus, if M1's

topmost pushdown symbol is an A and the sSDTS S1 has a rule of the form A→ (aα, yα),

then M1 replaces A by α, checks whether the current input symbol is an a, and outputs

y. Recall that α ∈ V ∗, a is a single input symbol and y is an output word or the empty

word. Notice that M1 already ful�lls the conditions (1) and (3) from above and further

on, it is clear that in any accepting computation the height of its pushdown store in step

i is at most k · i.

30Clearly the construction of S1 depends on the knowledge of k.

116

4.2 Monotone Restarting Transducers

From here on it is easy to see that M1 can be transformed into a pushdown transducer

M which uses a smaller pushdown store, that is, in step i the height of the pushdown

store is at most i
2 + 1. This can be done by a standard compressing technique, where one

pushdown symbol of M encodes 2k pushdown symbols of M1. The machine M derived in

this way also ful�lls the condition (2) from above. Additionally notice that a pushdown

transducer of this form will in general not exist for a pushdown relation that is not length

bounded, as the height of the pushdown stack will not necessarily be bounded.

We have seen that for any length-bounded pushdown relation there is a pushdown trans-

ducerM of such a special form. NowM can easily be simulated by a mon-RWW-transducer

T . For that the basic idea (taken from [JMPV99]) is that the current state of M and the

content of the pushdown store is encoded on the tape of T to the left of the current input

symbol of M. Without loss of generality the pushdown alphabet is disjoint from the input

alphabet, i.e. T can distinguish a restarting con�guration from an initial con�guration.

Finally one cycle of T corresponds to two steps of M , that is, two symbols are removed

from the list and replaced by at most one pushdown symbol. During this step T produces

the concatenated output that M has produced in its two consecutive steps.

Further, if a lbPDR also contains pairs of the form (ε, y), where y ∈ ∆∗, then T can be

modi�ed to compute these pairs as follows; started on the empty tape T outputs y during

the accept step. This completes the proof.

Recall that we are looking for a classi�cation of the relations computed by mon-RWW-Td

among the pushdown functions. For that the latter result forms an appropriate basis, as

it is clear that the class of single valued relations generated by sSDTS coincides with the

class of pushdown functions. Here our �rst aim is to verify that there are no instances

within the PDF that violate the length-bounded property. Therefore, we make use of the

following properties of simple syntax directed translations, which were stated by Aho and

Ullman.

Proposition 4.2.10 ([AU69]). If R is a relation generated by an sSDTS, then there is a

constant c, such that for all u 6= ε in the domain of R, there is a v such that (u, v) is in R

and |v| ≤ c · |u|.

Let S be the syntax directed translation scheme (sSDTS) in Chomsky normal form that

realizes R, thus Rel(S) = R. The basic idea of the proof is to substitute all rules in S of

the form A → (ε, b) (where A is a non-terminal and b is an output symbol) as they are

117

Restarting Transducers

�responsible� for violating the length-bounded property. Finally a new sSDTS S′ is derived

that is not able to produce output strings of arbitrary length and by construction of S′ it

holds that Rel(S′) ⊆ R.

Here we omit further details on the proof and continue with an immediate consequence of

the latter proposition.

Corollary 4.2.11 ([AU69]). Let R be a single valued relation generated by an sSDTS.

Then there is a constant c, such that if u 6= ε and (u, v) is in R then |v| ≤ c · |u|.

Thus, every single-valued relation generated by an sSDTS is length bounded. It follows that

this is also true for the class of pushdown functions. Hence, from the previous interesting

properties and Theorem 4.2.9 we can immediately obtain the following result.

Proposition 4.2.12. PDF (Rel(mon-RWW-Td)

Proof. The inclusion from left to right is obvious for the reason that every pushdown

function is length bounded (cf. Corollary 4.2.11). The properness of the inclusion can be

derived from the fact that mon-RWW-Td can compute relations that are not functions (cf.

Corollary 4.2.5).

Moreover, as the relations computed by mon-RRWW-transducers are also included in the

length-bounded pushdown relations the following consequence holds.

Corollary 4.2.13. Rel(mon-RRWW-Td) = Rel(mon-RWW-Td)

We strongly expect that we can obtain a similar result for deterministic monotone restarting

transducers in relation to the class DPDF. Further re�ections on this suggestion can be

found in the Open Questions Section.

4.3 Restarting Transducers with Window Size One

One of the main goals of the present work is to identify transductions that might be of

practical interest. In this sense, relations computed by restarting transducers with window

size one form an interesting topic on their own. It is well known (see Subsection 2.2.1, �Des-

criptional Complexity�) that there are several types of restarting automata with window

118

4.3 Restarting Transducers with Window Size One

size one, which characterize the regular languages, while o�ering quite succinct represen-

tations for some instances. This is a hint that there is not only a theoretical bene�t in

using restarting automata instead of �nite state acceptors for practical purposes. Based

on these observations it seems to be gainful to extend these results to transducers of the

same type.

Therefore here we focus only on restarting transducers where the underlying automata

characterize the regular languages. In Subsection 2.2.1 we presented some older results

from Mráz and Reimann [Mrá01, Rei07]:

L(det-R(1)) = L(mon-R(1)) = L(R(1)) = L(det-RR(1)) = REG.

There, also the following new characterizations of the regular languages by restarting

automata can be found:

L(det-mon-nf-R(1)) = L(mon-nf-R(1)) = L(det-mon-nf-RR(1)) = REG.

Especially the latter equivalences will lead to some interesting results for transducers.

4.3.1 Hierarchy Results

Unsurprisingly, the equivalences shown at the beginning of this chapter do not neces-

sarily hold for transducers. In fact, we immediately obtain the following inclusions. Just

observe that each det-R(1)- and each det-RR(1)-transducer is necessarily monotone (see

Subsection 2.2.1, p.39).

Proposition 4.3.1.

(a) Rel(det-R(1)-Td) ⊆ Rel(det-mon-nf-R(1)-Td) ⊆ Rel(det-mon-nf-RR(1)-Td).

(b) Rel(det-R(1)-Td) ⊆ Rel(det-RR(1)-Td) ⊆ Rel(det-mon-nf-RR(1)-Td).

(c) Rel(det-R(1)-Td) ⊆ Rel(det-mon-nf-R(1)-Td) ⊆ Rel(mon-nf-R(1)-Td).

(d) Rel(det-R(1)-Td) ⊆ Rel(mon-R(1)-Td) ⊆ Rel(R(1)-Td).

Obviously, the above inclusions also hold for the corresponding types of proper transducers.

Further, Rel(prop-X) ⊆ Rel(X) holds obviously for each type X of restarting transducers.

In fact, we can show that several of the inclusions above are actually strict. For that we

use the following two examples.

119

Restarting Transducers

Example 4.3.2. The function τ1 : a∗ → {b, c}∗ that is de�ned for n ∈ N by

τ1(an) =

bn ; if n is even,

cn ; if n is odd,

is computed by the proper det-mon-nf-RR(1)-transducer T1 = (Q, {a}, {b, c}, c| , $, q0, 1, δ)

that is described by the following meta-instructions:

(1) (q0, c| , a→ ε, a · (aa)∗ · $, q1; b),

(2) (q0, c| , a→ ε, (aa)∗ · $, q2; c),

(3) (q0, c| · $, Accept; ε),

(4) (q1, c| , a→ ε, a∗ · $, q1; b),

(5) (q1, c| · $, Accept; ε),

(6) (q2, c| , a→ ε, a∗ · $, q2; c),

(7) (q2, c| · $, Accept; ε).

Example 4.3.3. The function τ2 : {0, 1}∗ → {0, 1}∗ that is de�ned by

τ2(w) =

0|x|, if w = x0 and x ∈ {0, 1}∗,

1|x|, if w = x1 and x ∈ {0, 1}∗,

is computed by the proper det-RR(1)-transducer T2 = (Q, {0, 1}, {0, 1}, c| , $, q0, 1, δ) that is

described by the following meta-instructions, where y ∈ {0, 1}:

(1) (c| , y → ε, {0, 1}∗ · 0 · $; 0),

(2) (c| , y → ε, {0, 1}∗ · 1 · $; 1),

(3) (c| · 0 · $, Accept; ε),

(3) (c| · 1 · $, Accept; ε).

Proposition 4.3.4. The function τ1 can neither be computed by a det-RR(1)-, nor by an

R(1)-, nor by a det-mon-nf-R(1)-transducer.

Proof. Let T be an R(1)- or a det-RR(1)-transducer, and let n be a large positive integer.

Then on input an, the transducer T cannot simply compute τ1(an) in a tail computation.

Hence, its accepting computation on input an begins with a cycle of the form (q0c| an$, ε) `cT
(q0c| an−1$, v), where v is either of the form bm or of the form cm for a small value ofm. If n is

even, then τ1(an) = bn, and if n is odd, then τ1(an) = cn. Starting from the con�guration

120

4.3 Restarting Transducers with Window Size One

(q0c| an−1$, v), T computes the word v · τ1(an−1). However, from the de�nition of τ1 it

follows immediately that τ1(an) 6= v · τ1(an−1). Thus, τ1 is not computed by any R(1)- or

det-RR(1)-transducer.

Finally, let T be a det-mon-nf-R(1)-transducer. The accepting computation of T on input

an consists of a �nite sequence of cycles that is followed by an accepting tail computation.

As T restarts immediately on executing a delete operation, it can read the end marker $

only in a tail computation. Thus, during the above sequence of cycles T does not see the

input an completely, and so it cannot produce any non-empty output. However, during

the accepting tail computation it cannot produce the complete output, if n is large. Thus,

it follows that τ1 is not computed by any det-mon-nf-R(1)-transducer, either.

Proposition 4.3.5. The function τ2 can neither be computed by an R(1)- nor by a

det-mon-nf-R(1)-transducer.

Proof. As in the proof of Proposition 4.3.4 it follows that a det-mon-nf-R(1)-transducer

cannot compute the function τ2, as it does not see its input completely before it executes a

tail computation. On the other hand, if T is an R(1)-transducer for computing τ2, then on

input 0n0 it must produce the output 0n, while on input 0n1 it must produce the output 1n.

As in an accepting tail computation T can only produce an output of �xed �nite length,

each accepting computation of T on input 0n0 has the form

(q0c| 0n0$, ε) `ciT (q0c| 0n+1−i$, 0j) `∗T (Accept, 0n),

where the i-th cycle is the �rst one in which a non-empty output is produced. Then,

0 < i < c and 0 < j < c hold for some constant c. However, T would then also execute

the accepting computation

(q0c| 0n0 · 1$, ε) `ciT (q0c| 0n+1−i1$, 0j) `∗T (Accept, 0j1n+1−i),

which shows that T does not compute the function τ2.

From these propositions and Proposition 4.2.7 we obtain the hierarchy shown in Figure 4.4,

where τ3 is the function described in Proposition 4.2.7. Here the properness of the inclu-

sions of the deterministic classes and the corresponding non-deterministic classes follows

from the simple fact that deterministic transducers can only compute functions, while non-

121

Restarting Transducers

Rel(mon-nf-R(1)-Td)
Rel(det-mon-nf-RR(1)-Td)

Rel(det-RR(1)-Td) Rel(det-mon-nf-R(1)-Td) Rel(mon-R(1)-Td)

Rel(det-R(1)-Td)

τ3(ab
n) = ban

τ3(ab
n) = ban

τ2(w) =

{
0|x|, w = x0;

1|x|, w = x1;

τ1(a
n) =

{
bn, n even

cn, n odd

Figure 4.4: Hierarchy of classes of transductions computed by various types of restarting
transducers with window size one. Here arrows denote proper inclusions, dashed lines
denote unknown relationships, and no arrows denote incomparability.

deterministic transducers can also compute relations that are not functions. Additionally,

incomparability results can easily be derived as a combination of the latter results.

Finally, the class Rel(R(1)-Td) is not taken into account yet, as up to now we are not able

to derive some proper results on it. Later we will see that this particular class is for some

reason of its own interest.

4.3.2 Characterizing Classes of Rational Relations

To relate our transducers to well-known classes of transductions, we again use the technique

based on the input/output relations, which has been applied to prove that the monotone

restarting transducers are included in the pushdown relations (cf. Proposition 4.2.1). In

the following this will lead to an upper bound for all monotone types of transducers with

window size one.

In Chapter 3 it was shown that the class of input/output-relations (Relio) of any type of

restarting automaton that characterizes the regular languages, coincides with the rational

relations (RAT). Thus, if we are able to adapt Proposition 4.2.1 to restarting transducers

with window size one, we put the relations of these machines in the context of rational

relations.

122

4.3 Restarting Transducers with Window Size One

Proposition 4.3.6. Rel(det-mon-nf-RR(1)-Td) (Relio(det-mon-nf-RR(1))

Proof. The proposition is proved in quite the same way as the corresponding result for

monotone transducers with an arbitrary window size. There, the automaton, which simu-

lates the transducer, accepts a language where the output of the transducer is shu�ed into

the input, such that in every rewrite step of the automaton a part of the input and the

corresponding output occurs in the window. Thus, one cycle of the automaton mirrors one

cycle of the transducer. Hence, if the window size is restricted to one, then the situation

is slightly more complicated, as the latter idea does not work anymore. However, we can

�x this problem by using the non-forgetting property.

Accordingly, let T = (Q,Σ,∆, c| , $, q0, 1, δ) be a det-mon-nf-RR(1)-transducer that com-

putes a relation Rel(T) ⊆ Σ∗×∆∗. Thus, a pair (u, v) ∈ Σ∗×∆∗ belongs to Rel(T) if and

only if there exists a computation of the form (q0c|u$, ε) `c∗T (qic|u′$, v′) `∗T (Accept, v′v′′)

such that v = v′v′′.

Without loss of generality we can assume that T performs restart and accept instructions

only on the $-symbol. Also we may assume that Σ and ∆ are disjoint. We now de�ne

a det-mon-nf-RR(1)-automaton M by meta-instructions from a description of T by meta-

instructions. In contrast to the situation described in Proposition 4.2.1 here each rewriting

meta-instruction of T is translated into �nitely many rewriting meta-instructions of M .

However, in order to increase readability we just consider the case that the output b

produced in a single step is of length at most one, but this construction is easily extended

to the case of output words of any positive length by using additional rewriting meta-

instructions and additional restart states.

Let (qi, E1, a → ε, E2 · $, qj ; b) be a rewriting meta-instruction of T , where a ∈ Σ and

b ∈ ∆. It is translated into the rewriting meta-instructions

(qi, E1, a→ ε, sh(E2,∆
∗) · $, q′i) and (q′i, E1, b→ ε, sh(E2,∆

∗) · $, qj)

of M , where q′i is a new state. If b = ε, that is, the rewriting meta-instruction of T

considered is of the form (qi, E1, a → ε, E2 · $, qj ; ε), then we simply take the rewriting

meta-instruction (qi, E1, a → ε, sh(E2,∆
∗) · $, qj) for M . Finally, each accepting meta-

instruction (qi, E ·$,Accept; b) of T yields an accepting meta-instruction (qi, E · b$,Accept)

of M . Based on this description the transition function of M can be derived from the

transition function of T .

123

Restarting Transducers

It remains to show that Rel(T) = Relio(M) holds. Let (u, v) ∈ Rel(T), that is, there

exists an accepting computation of T that consumes input u ∈ Σ∗ and produces output

v ∈ ∆∗. This computation consists of a sequence of cycles C1, C2, . . . , Cm−1, where Ci
(1 ≤ i ≤ m− 1) is of the form

(qic|xiaiyi$, vi) `∗MVR (c|xipiaiyi$, vi) `Delete (c|xip′iyi$, vi)
`∗MVR (c|xiyip̂i$, vi) `Restart (qi+1c|xiyi$, vibi),

and a tail computation of the form

(qmc|wm$, vm) `∗MVR (c|wmq′m$, vm) `Accept (Accept, vmb
′).

In the above cycle a meta-instruction (qi, E1, ai → ε, E2$, qi+1; bi) is applied, where

c|xi ∈ E1 and yi ∈ E2, and in the above tail computation an accepting meta-instruction

(qm, E · $,Accept; b′) is applied, where c|wm ∈ E holds. Obviously, for all i = 1, . . . ,m− 2,

xiyi = xi+1ai+1yi+1, and as T is monotone, we see that |yi| ≥ |yi+1| holds.

M simulates the above cycle of T as already presented in Proposition 4.2.1. However, for

the sake of completeness we will again outline the main idea.

Case 1. If |yi| > |yi+1|, then ai+1yi+1 is a su�x of yi. Thus, if we insert the letter bi
immediately to the right of the letter ai, thenM will execute the following sequence of two

cycles using the meta-instructions that have been obtained from the above meta-instruction

of T , where y′i is from the shu�e of yi with a word from ∆∗:

(qic|xiaibiy′i$) `∗MVR (c|xipiaibiy′i$) `Delete (c|xip′ibiy′i$)

`∗MVR (c|xibiy′ip̂i$) `Restart (q′ic|xibiy′i$)

`∗MVR (c|xip′′i biy′i$) `Delete (c|xip̃iy′i$)

`∗MVR (c|xiy′ip̂′i$) `Restart (qi+1c|xiy′i$).

Case 2. If |yi| = |yi+1|, then yi = yi+1 and xi = xi+1ai+1. In this situation we insert

the word bibi+1 immediately to the right of the factor ai+1ai. Then M will execute the

following sequence of two cycles using the meta-instructions that have been obtained from

the above meta-instruction of T , where y′i is from the shu�e of yi with a word from ∆∗:

124

4.3 Restarting Transducers with Window Size One

(qic|xiaibibi+1y
′
i$) `∗MVR (c|xipiaibibi+1y

′
i$) `Delete (c|xip′ibibi+1y

′
i$)

`∗MVR (c|xibibi+1y
′
ip̂i$) `Restart (q′ic|xibibi+1y

′
i$)

`∗MVR (c|xip′′i bibi+1y
′
i$) `Delete (c|xip̃ibi+1y

′
i$)

`∗MVR (c|xibi+1y
′
ip̂
′
i$) `Restart (qi+1c|xibi+1y

′
i$)

= (qi+1c|xi+1ai+1bi+1y
′
i+1$).

By combining these two cases we obtain a word w ∈ sh(u, v) such that the computation

of M on input w mirrors the computation of T on input u, and it follows that (u, v) ∈
Relio(M). Conversely, it can be checked easily that (x, y) ∈ Rel(T) holds for each pair

(x, y) ∈ Relio(M). Thus, Rel(T) = Relio(M) follows. In addition, as T is deterministic

and monotone, so is M .

Finally the inclusion is proper for the fact that Corollary 4.1.5 holds for restarting trans-

ducers and the relation presented there is obviously rational.

Analogously also the following inclusion can be derived.

Lemma 4.3.7. Rel(mon-nf-R(1)-Td) (Relio(mon-nf-R(1)).

Up to now we have seen that most of the inclusions given in Proposition 4.3.1 collapse into

the rational relations. In summary, together with Proposition 3.1.8 from Chapter 3 the

latter facts yield the following results.

Corollary 4.3.8.

(a) Rel(det-mon-nf-RR(1)-Td) ⊆ RATF.

(b) Rel(mon-nf-R(1)-Td) (RAT.

Observe that (b) is a strict inclusion for the reason that RAT contains relations that are

not length bounded in the sense of Proposition 4.1.4.

Thus, we have obtained numerous relation classes within the rational relations that are

characterized by restarting transducers. Naturally, the question arises whether (a) is a

strict inclusion and secondly, whether there are any restarting transducer characterizations

for some traditional subclasses of the rational relations and/or rational functions, which

were introduced in the Preliminaries.

Our �rst characterization result shows that the dGSM-mappings correspond to a particular

class of restarting transducers.

125

Restarting Transducers

Theorem 4.3.9. A function f : Σ∗ → ∆∗ is a dGSM-function if and only if it can be

computed by a proper det-mon-nf-R(1)-transducer.

Proof. Let D = (Q,Σ,∆, δ, q0, F) be a dGSM. We de�ne a det-mon-nf-R(1)-transducer

M = (Q,Σ,∆, c| , $, q0, 1, δ) such that Rel(M) = Rel(D) holds. The transducer M is

obtained from D by converting every transition step (q, x)→ (p, y) (q, p ∈ Q, x ∈ Σ, and

y ∈ ∆∗) of D into the transition steps δ(q, c|) = (q,MVR) and δ(q, x) = (p,Restart, y)31.

As M is an R(1)-transducer, its restart operations are combined with delete operations.

Thus, M simulates D by erasing its tape inscription letter by letter from left to right, for

each letter producing the corresponding output. Finally, M accepts restarting from the

restarting con�guration (qc| $, w) producing the empty output if and only if q is a �nal

state of D. It follows that Rel(M) = Rel(D), and that M is proper, monotone, and

deterministic.

Conversely let M be a proper det-mon-nf-R(1)-transducer that computes a transduction

t : Σ∗ → ∆∗. In Theorem 2.2.11 it is shown that each det-mon-nf-R(1)-automaton can

be simulated by a deterministic �nite-state acceptor (DFA). During the simulation the

DFA has to store a bounded number of possible delete/restart operations of the restarting

automaton in its �nite-state control in order to verify that it has detected a correct sequence

of cycles within the computation being simulated. Now, by storing the possible output

word together with each delete/restart operation, a dGSM can be designed that simulates

the transducer M .

More formally, let D = (QD,Σ,∆, δD, q
(D)
0 , F) be the dGSM that simulates the restarting

transducer M . The description of D is taken from the description of the corresponding

DFA given in the proof of Theorem 2.2.11. Thus, the set of states is de�ned as

QD = {[qr, T, B] | qr ∈ Q, and qr is a restart state of M},

where T is the state table that mirrors the computations that correspond to the di�erent

restart states in parallel, and B is the bu�er de�ned as a matrix in which possible sequences

of restarts are saved. Recall that the entries of B are tuples that mirror restarting steps.

Here we extend these tuples by an additional component that contains the corresponding

output word, that is, we now have tuples of the form (a, (q, p, q′), v). This tuple records

a possible cycle of M , in which M , starting from the restart state q, performs a number

31Note, to increase readability we use this slightly di�erent representation for restarting transitions,
which were introduced in Subsection 2.2.1 in the form of δ(q, x) = (p, ε, y).

126

4.3 Restarting Transducers with Window Size One

of move-right steps until it reaches state p, and when reading the symbol a in state p,

M executes a delete/restart step which takes it to the restart state q′ while producing

output v. Based on the proof of Theorem 2.2.11, it is quite clear that the dGSM D is able

to produce the correct output for a given input. For example, let

(ai, (qji−1 , pi, qji), vi), . . . , (a1, (qj0 , p1, qj1), v1), (a0, (qj , p0, qj0), v0)

be a sequence of restart steps of M that is saved in the bu�er B, and let δ(pi+1, ai+1) =

(qj ,Restart, v′) be the current step that D wants to simulate, which completes a cycle of

M that started in state qr. As the next cycle of M begins in state qj , D realizes that

M actually performed a sequence of i + 2 cycles during which it produced the output

v′v0v1 · · · vi. Accordingly, in the next step D removes this sequence from the bu�er B and

produces the complete output v′v0v1 · · · vi. Of course, in all previous steps of D during

which the above sequence was stored in B, the dGSM just produced the empty output.

Continuing in this way, it follows that Rel(D) = Rel(M).

If the given det-mon-nf-R(1)-transducer T is not proper, that is, if it produces non-empty

outputs during some of its accept transitions, then the above construction yields a sub-

sequential transducer. On the other hand, it can easily be seen that a subsequential

transducer can be simulated by a det-mon-nf-R(1)-transducer that is allowed to produce

non-empty outputs during its accept instructions. Thus, we have the following conse-

quence.

Corollary 4.3.10. A function f : Σ∗ → ∆∗ is a subsequential function if and only if it

can be computed by a det-mon-nf-R(1)-transducer.

Further, as the GSM is the non-deterministic version of the dGSM also the following result

holds.

Theorem 4.3.11. A relation R ⊆ Σ∗ × ∆∗ is a GSM-relation if and only if it can be

computed by a proper mon-nf-R(1)-transducer.

Proof. Based on the proof of Theorem 2.2.12, the proof of Theorem 4.3.9 easily extends

to mon-nf-R(1)-transducers.

Finally, we want to characterize the class of rational functions in terms of restarting trans-

ducers. To this end we need the following result of Santean [San04].

127

Restarting Transducers

a1 a2 . . . ak $ a2 . . . ak $. . . $ ak $

→

v1 v2 vk−1 vk. . .output:

Figure 4.5: Sketch of the sequential transducer that simulates a bimachine.

Here µ$: Σ∗ → (Σ ∪ {$})∗ denotes the function de�ned by

µ$(ε) = ε and µ$(a1 . . . ak) = a1 . . . ak$a2 . . . ak$. . . $ak−1ak$ak$,

for k ≥ 1 and a1, . . . , ak ∈ Σ.

Theorem 4.3.12 ([San04]). If f : Σ∗ → ∆∗ is a rational function such that f(ε) = ε,

then there exists a sequential function fL : (Σ ∪ {$})∗ → ∆∗ such that f = fL ◦ µ$.

Proof. Here we only want to explain the main idea of Santeans proof. Basically it is based

on a result on bimachines presented in the same paper. Recall that a bimachine is a �nite

automaton with two heads. One scans the tape from left to right and the other scans

the tape in the opposite direction. The output is produced when both heads meet at

the current input symbol (see Section 2.3). However, it can be shown that the scanning

direction of the heads of a bimachine is not of importance as long as the machine has seen

the whole input before outputting the corresponding symbols.

Hence, from a bimachine a sequential transducer can be obtained that computes the same

function while working on an extended input word given by µ$. Figure 4.5 illustrates the

sequential transducer used to compute the given rational function. There it can be seen

that the transducer scans the input completely and produces its output only while seeing

the $-symbol.

Of course, µ$ is not rational, and in fact, it is not even a pushdown function. However,

the restarting transducers are somehow naturally equipped to simulate this preprocessing

stage.

128

4.3 Restarting Transducers with Window Size One

Theorem 4.3.13. RATF ⊆ Rel(det-mon-nf-RR(1)-Td).

Proof. Let f : Σ∗ → ∆∗ be a rational function. Let us �rst assume that f(ε) = ε

holds. By Theorem 4.3.12 there exists a sequential function fL : (Σ ∪ {$})∗ → ∆∗ such

that f = fL ◦ µ$. As the function fL is sequential, it can be computed by a proper

det-mon-nf-RR(1)-transducer T (cf. Theorem 4.3.9).

Now this transducer can be extended to a det-mon-nf-RR(1)-transducer Tf for computing f .

The sequential transducer for fL that is given in the proof of Theorem 4.3.12 produces

a non-empty output only on seeing the $-symbol. Now Tf proceeds as follows. During

the �rst cycle on input u = a1 . . . ak, it erases the letter a1 and simulates the internal

transitions of the sequential transducer for fL until it reaches the $-symbol. At this time it

restarts and produces the corresponding output. Now the next cycle starts with the tape

content a2 . . . ak. Continuing in this way f(u) = fL ◦ µ$(u) is computed. Thus, Tf is a

proper det-mon-nf-RR(1)-transducer that computes the function f .

Finally, if f(ε) 6= ε, then we apply the construction above to the partial function f ′

that is de�ned by f ′(u) = f(u) for all u ∈ Σ+ and f ′(ε) = ε. This yields a proper

det-mon-nf-RR(1)-transducer T ′f for computing f ′. We then extend T ′f such that, starting

from its initial state, it accepts on empty input producing the output f(ε).

Together with Corollary 4.3.8 (a) this yields the main result in this section.

Corollary 4.3.14. RATF = Rel(det-mon-nf-RR(1)-Td).

We conclude this subsection by answering the open question whether

Rel(det-mon-nf-RR(1)-Td) is included in Rel(mon-nf-R(1)-Td) (see Figure 4.4). From

Theorem 4.3.11 we know that the classes GSMRel and Rel(prop-mon-nf-R(1)-Td) coin-

cide. Further, in Section 2.3 (see p.63) we discussed the fact that every rational function

τ , with τ(ε) = ε, is computable by a GSM and thus, by a proper mon-nf-R(1)-transducer.

Then, clearly, there is a non-proper mon-nf-R(1)-transducer for every rational function,

particularly for those that contain a mapping from the empty word ε to an arbitrary

word v over the output alphabet. This, and the fact that mon-nf-R(1)-transducer compute

non-functional relations, immediately yield the following proper inclusion.

Corollary 4.3.15. Rel(det-mon-nf-RR(1)-Td) (Rel(mon-nf-R(1)-Td).

129

Restarting Transducers

4.3.3 Summary

In the previous two subsections we compared the relations computed by restarting trans-

ducers, where the underlying automata characterize the regular languages, with each other

and also to traditional relation classes. In this context Rel(R(1)-Td) forms an exception.

Somehow surprisingly, this particular class contains relations that are not rational. For

that consider the following example.

Example 4.3.16. Let T = (Q, {a, b,#}, {a, b}, c| , $, q0, 1, δ) be the R(1)-transducer that

is described by the following meta-instructions:

(1) (c| , #→ ε; ε),

(2) (c| , b→ ε; b),

(3) (c| · $, Accept; ε),

(4) (c| ·# · b∗, a→ ε; a).

T computes the relation Rel(T) = R ⊆ {a, b,#}∗ × {a, b}∗.

It might be possible to give an exact description for R. However, for our purposes the

following result su�ces.

Lemma 4.3.17. T ({# · (ab)n | n ≥ 0}) = {anbn | n ≥ 0}.

Proof. Let u = #·(ab)n be an input word for the restarting transducer T of Example 4.3.16,

where n ≥ 0. It remains to show that T (# · (ab)n) = anbn.

Assume that n ≥ 1, as n = 0 implies that in an accepting computation only the meta-

instructions (1) and (3) from the example above are applicable. Thus T produces the

wanted output v = ε. When starting in the con�guration (q0c|# · (ab)n$, ε) (n ≥ 1), there

are two meta-instructions of T that can be used to begin the computation. Here we want

to list all possibilities and the corresponding consequences. Applying meta-instruction:

(1) This leads to the con�guration (q0c| (ab)n$, ε). From here on there is no way to delete

any symbol a, thus T can never reach an accepting con�guration.

(4) Meta-instruction (4) can be applied as long as there are a's on the tape. This leads

to the con�guration (q0c|# · bk(ab)n−k$, ak), where 1 ≤ k ≤ n. Further on, for any

k < n there exists the possibility to use meta-instruction (1), but then we are in the

situation described before. Hence, no accepting con�guration is reachable.

130

4.3 Restarting Transducers with Window Size One

For k = n, applying (1) leads to the con�guration (q0c| bn$, an). The computation can

only continue with using (2). However, this leads to the con�guration (q0c| $, anbn),

and so by (3), T accepts the input and produces the output v = anbn.

These are all possible computations on input u = # · (ab)n, and thus it is shown that

T ({# · (ab)n | n ≥ 0}) = {anbn | n ≥ 0}.

Proposition 4.3.18. Rel(R(1)-Td) is incomparable to RAT with respect to inclusion.

Proof. In Lemma 4.3.17 it was shown that there exists a R(1)-transducer that computes

the transduction T ({# · (ab)n | n ≥ 0}) = {anbn | n ≥ 0}. Obviously {# · (ab)n | n ≥ 0}
is a regular language, while {anbn | n ≥ 0} is context free. From Proposition 2.3.16 we

know that rational transductions preserve regular languages. Hence T is not a rational

transduction, that is, there exist relations that are computable by an R(1)-Td but not by

a �nite state transducer.

Conversely there are rational relations, more precisely sequential functions, that are not

computable by R(1)-Td. This was shown in Proposition 4.2.7.

We strongly suspect that the latter incomparability result carries over even to pushdown re-

lations. For that consider an R(1)-Td T ′ that realizes the transduction

T ′({# · (abc)n | n ≥ 0}) = {anbncn | n ≥ 0}. Clearly if T ′ exists, then by Proposi-

tion 2.3.18 we derive the incomparability to pushdown transductions. Further, it might be

interesting to compare R(1)-transducers to two-way �nite state transducers (e.g. exposed

in [EY71]), as both machines show a similar behavior. A discussion on this topic can be

found in the Open Question Section.

In conclusion Figure 4.6 gives an overview on the results of Section 4.3.

131

Restarting Transducers

RAT

Rel(mon-nf-R(1)-Td) Rel(R(1)-Td)

RATF
=

Rel(det-mon-nf-RR(1)-Td)

SubSeqF
=

Rel(det-mon-nf-R(1)-Td)

GSMRel
=

Rel(prop-mon-nf-R(1)-Td)

Rel(det-RR(1)-Td)
dGSMF

=
Rel(prop-det-mon-nf-R(1)-Td)

Rel(mon-R(1)-Td)

Rel(det-R(1)-Td)

Figure 4.6: Summarized hierarchy of the classes of relations computed by the various
restarting transducers with window size one. Here arrows denote proper inclusions, and
no arrows denote incomparability.

132

4.4 Closure Properties

4.4 Closure Properties

This section is not meant to be a comprehensive study on the closure properties of restarting

transducers. We rather want to point out the most interesting property.

Closure under Composition

We stated already in the Preliminaries Section that the composition operation is of major

importance for transductions in practical applications. Here we mainly focus on restarting

transducers with window size one. The reason for that is the following proposition.

Proposition 4.4.1. The relations computed by proper det-mon-R-transducers are not

closed under composition.

Proof. Here we mainly follow the well-known fact that the pushdown relations are not

closed under composition. Let

T1 = (Q1, {a, b, c, â,#}, {a, b, c, b̂,#},Σ, c| , $, q0, 4, δ1) and

T2 = (Q2, {a, b, c, b̂,#}, {a, b, c},Σ, c| , $, p0, 3, δ2)

be two det-mon-R-Td that are described by meta-instructions as follows:

T1 : (1) (c| , #âax→ âax; #), x ∈ {â, b},
(2) (c| · a∗, âaâ→ aâ; a),

(3) (c| · a∗, âab→ ab; a),

(4) (c| · a∗, abx→ x; b̂b), x ∈ {b, c},
(5) (c| , cx→ x; c), x ∈ {c, $},
(6) (c| · $, Accept; ε).

T2 : (1) (c| ·#, a→ ε; a),

(2) (c| ·# · b∗, b̂bb̂→ bb̂; b),

(3) (c| ·# · b∗, b̂bc→ bc; b),

(4) (c| ·# · b∗, bcx→ x; c), x ∈ {c, $},
(5) (c| ·# · $, Accept; ε).

Next we describe the behavior of T1. If an input word starts with the pre�x #âa then, by

the meta-instructions (1), (2) and (3) T1 enables a computation, where every â is followed

133

Restarting Transducers

by an a and additionally T1 produces the symbol # and an a for every â. The computation

of T1 continues with meta-instruction (4), where the transducer checks if the remaining

pre�x of the input word is in the form of anbn. Further it outputs the word b̂b for every

subword ab on the tape. Finally, every c on the tape leads to a c in the output language

(meta-instructions (5) and (6)). Hence, it is clear that, among others, Rel(T1) = R1

contains the following subset:

R′1 = {(#(âa)nbncm,#an(b̂b)ncm) | n,m ≥ 1}.

Observe that there is no other subset in R1 that contains a pair in the form of (u,#v).

The behavior of T2 is similar. First of all T2 only accepts words that starts with the #-

symbol. Then, it deletes every occuring a and produces an a (1). The remaining tape

content of T2 must be in the form of # · b∗ · (b̂b)∗ · c∗. Thus, T2 continues like T1, that is,

one b is produced for every b̂ ((2) and (3)) and �nally, one c is produced for every bc on

the tape ((4) and (5)). Again, these meta-instructions ensure that a subset of the relation

Rel(T2) = R2 is:

R′2 = {(#am(b̂b)ncn, ambncn) | n,m ≥ 0}.

Note that the somehow arti�cial symbols â and b̂ are needed for the reason that transducers

of type R are not able to compute an �identity� mapping and verify the correctness of the

input at the same time. This is also the reason for the fact that the languages accepted

by the underlying automata of T1 and T2 have this somehow fuzzy structure. However, it

is clear from the descriptions of T1 and T2 that the composition of both transducers leads

to the following relation:

R = R2 ◦R1 = {(#(âa)nbncn, anbncn) | n ≥ 1}.

In particular, T2 only enables computations on input words that starts with #. The #-

symbol is the pre�x of an output word of T1 if and only if T1 computes a pair from R′1.

Hence, it is clear that R only contains the shown pairs. R is clearly not a pushdown

relation, as its range is a context-sensitive language. Further, by Corollary 4.2.2 it is also

not a relation computed by any proper det-mon-R-transducer.

Moreover, the latter result immediately extends to all kinds of restarting transducers, for

which it is known that their class of relations is a superclass of Rel(prop-det-mon-R-Td)

and which is included in the class of pushdown relations.

134

4.4 Closure Properties

Corollary 4.4.2. The classes of relations de�ned by (proper) (deterministic) monotone

restarting transducers are not closed under composition.

As already mentioned in Subsection 4.1.1, more general types of restarting transducers

(i.e. non-monotone) seem to be way too powerful to establish nice closure properties.

Therefore, we omit further discussions on these types of machines, here. Instead, we turn

directly to restarting transducers with window size one. Especially we focus on det-R(1)-Td,

mon-R(1)-Td and det-RR(1)-Td for the reason that all other types somehow coincide with

some well-known transducer models. Obviously, all these types of restarting transducers

inherit the closure properties of their classical counterparts.

Unfortunately, we will see next that mon-R(1)-Td, det-RR(1)-Td and det-R(1)-Td do not

provide the property of being closed under composition.

Proposition 4.4.3. The class of relations computed by mon-R(1)-transducers is not closed

under composition.

Proof. Here we give an example of two mon-R(1)-transducers, such that their composi-

tion is not a mon-R(1)-Td. For that T1 = (Q1, {0, 1}, {0, 1}, c| , $, q(1)
0 , 1, δ1) and T2 =

(Q2, {0, 1}, {0, 1}, c| , $, q(2)
0 , 1, δ2) are de�ned by meta-instructions as follows:

T1 : (c| , {0, 1} → ε; 0),

(c| , {0, 1} → ε; 1),

(c| · 0 · $, Accept; 0),

(c| · 1 · $, Accept; 1),

T2 : (c| · 0, {0, 1} → ε, 0),

(c| · 1, {0, 1} → ε, 1),

(c| · 11 · $, Accept; 1),

(c| · 00 · $, Accept; 0).

It is easy to verify that T1 just maps the input word onto an arbitrary output word of the

same length such that the last letter of the input equals the last letter of the output, that

is,

R1 = Rel(T1) = {(ux, vx) | u, v ∈ {0, 1}∗, x ∈ {0, 1} and |u| = |v|}.

T2's behavior is a little bit more involved. It outputs a word over 0 (respective 1) that is

one letter shorter as the input word if and only if the �rst and the last letter of the input

135

Restarting Transducers

coincide. Thus,

R2 = Rel(T2) = {(xwx, x|w|+1) | w ∈ {0, 1}∗, x ∈ {0, 1}}.

Next we claim that the composition of both is

R = R2 ◦R1 = {(wx, x|w|) | w ∈ {0, 1}∗}.

Let us show the following equivalence exemplary for the letter 0: a pair (z · 0, z′ · 0) ∈ R1

and (z′ · 0, 0|z′|) ∈ R2 if and only if (z · 0, 0|z|) ∈ R. For that assume that the input word z

is of length n. Actually z can be mapped under T1 onto exponential many outputs (with

respect to n) z′ and so there are these numbers of pairs of the form (z · 0, z′ · 0) in R1.

Hence, all possible z′ · 0 are the input of T2. Now T2 only accepts inputs where the �rst

and last letter coincide and so all the possible outputs of z · 0 under T2 are split into two

sets, the set of accepted and the set of non-accepted inputs of T2. Finally, T2 obviously

accepts all words of the form z′ · 0, where z′ = 0 ·u and maps them all onto the same word

0|z
′|. As the length of z′ equals the length of z, we have the pair (z · 0, 0|z|) pair in R2.

Obviously the converse direction can be shown in the same way.

However, by Proposition 4.3.5 we know that R is not even in Rel(R(1)-Td), so this com-

pletes the proof.

Proposition 4.4.4. The class of relations computed by det-RR(1)-transducers is not closed

under composition.

Proof. Consider the following det-RR(1)-transducers T1 = (Q1, {a}, {b, c}, c| , $, q(1)
0 , 1, δ1)

and T2 = (Q2, {b, c}, {b, c}, c| , $, q(2)
0 , 1, δ2). Both are de�ned by the following meta-

instructions:
T1 : (c| , a→ ε, a · (aa)∗; b),

(c| , a→ ε, (aa)∗; c),

(c| · $, Accept; ε).

T2 : (c| · b, {b, c} → ε, {b, c}∗; b),

(c| · c, {b, c} → ε, {b, c}∗; c),

(c| · b · $, Accept; b),

(c| · c · $, Accept; c).

136

4.4 Closure Properties

Clearly T1 maps an even number of a's to an output word that begins with b and an odd

number of a's to an output word that begins with c. In particular

R1 = Rel(T1) = {(a2n, (bc)n), (a2n+1, (cb)nc) | n ≥ 0}.

In contrast T2 outputs a word over b (or c) according to the �rst letter of the input. Equally

to T1 the output word is of the same length as the input.

Hence,

R2 = Rel(T2) = {(xw, x|w|+1) | x ∈ {b, c}, w ∈ {b, c}∗}.

Next consider the composition of both machines, that is, R2 ◦ R1. As mentioned T1

outputs a string beginning with b (respective c) if the input word over a had an even (odd,

respectively) length . Hence, when T2 computes this output, it maps the output of T1 onto

a word over b (respective c), according to the �rst letter. Thus, the composed relation is

R2 ◦R1 = R = {(a2n, b2n), (a2n+1, c2n+1) | n ≥ 0},

which is not a det-RR(1)-transducer's relation (cf. Proposition 4.3.4).

Proposition 4.4.5. The class of relations computed by det-R(1)-transducers is not closed

under composition.

Proof. Here we give an example of two det-R(1)-transducers, such that their composi-

tion is not a det-R(1)-Td. For that T1 = (Q1, {a, b}, {c1, c2}, c| , $, q(1)
0 , 1, δ1) and T2 =

(Q2, {c1, c2}, {a, b}, c| , $, q(2)
0 , 1, δ2) are de�ned by meta-instructions as follows:

T1 : (c| · a, b→ ε; c1c2),

(c| · a · $, Accept; ε),

T2 : (c| · c1, c2 → ε, ba),

(c| · c1c1, c2 → ε, a),

(c| · c1c1, c1 → ε, ε),

(c| · c1c1 · $, Accept; ε).

Clearly T1 computes the relation

R1 = Rel(T1) = {(abn, (c1c2)n) | n ≥ 0}.

137

Restarting Transducers

Further, on input (c1c2)∗, T2 is only able to apply the �rst meta-instruction, that is, it

deletes the �rst c2 and produces ba. From that on, the pre�x of the input is of the form

c1c1 and thus, only the last three instructions are applicable. Hence, T2 maps every further

c2 to a and c1 to ε. Then, obviously

T2({(c1c2)n}) = {ban}

and with R2 = Rel(T2) we have

R = R2 ◦R1 = {(abn, ban) | n ≥ 0},

which is known to be not computable by any RRW-transducer (cf. Proposition 4.2.7.).

Observe that we actually used a proper det-R(1)-transducer in the latter proof and that

Proposition 4.4.3 and 4.4.4 can be adjusted in the same way. Thus, being non-proper is

not the reason why these simple types of machines are not closed under composition.

However, we will show next what causes the previous results, at least for det-R(1)-trans-

ducers. For that we start our investigation by introducing a new model for computing

transductions.

De�nition 4.4.6. A deterministic generalized sequential machine M = (Q,Σ,∆, δ, q0, F)

is called output-forgetting (of-dGSM for short) if for every transition of the form δ(q, a) =

(p, β), where p, q ∈ Q, a ∈ Σ and β ∈ ∆+, q = p holds. Hence, an of-dGSM is a dGSM

that is not allowed to change the state while producing a non-empty output.

Lemma 4.4.7. Rel(of-dGSM) = Rel(prop-det-R(1)-Td)

Proof. Let M = (Q,Σ,∆, δ, q0, F) be a of-dGSM. From the description of M we build a

proper det-R(1)-Td T = (Q,Σ,∆, c| , $, q0, 1, δ
′) such that Rel(M) = Rel(T). First recall

that every computation of a det-R(1)-transducer is strictly monotone (see Subsection 2.2.1).

This means that in each sequence of con�gurations the right distance is always shortened

due to the fact that this machine is deterministic. Secondly, an of-dGSM M is fully de�ned

by three kinds of transitions, that are, either M changes the state, then δ(q, a) = (p, ε), or

it does not change the internal state, then δ(q, a) = (q, β) or δ(q, a) = (q, ε).

Now for every p, q ∈ Q, a ∈ Σ and β ∈ ∆+, the transition function of T is described as

follows:

138

4.4 Closure Properties

• If δ(q, a) = (p, ε), then δ′(q, a) = (p,MVR).

• If δ(q, a) = (q, β), then δ′(q, a) = (Restart, β).

• If δ(q, a) = (q, ε), then δ′(q, a) = (Restart, ε).

• For every q ∈ F we add a transition δ′(q, $) = (Accept, ε).

• As the restarting transducer begins every computation with its head over the c| -
symbol we �nally add δ′(q0, c|) = (q0,MVR).

Hence, T is fully de�ned and it remains to show that Rel(M) = Rel(T).

For an input word u ∈ Σ∗, let (q0u, ε) be the initial con�guration of M . Accordingly, T

starts with the con�guration (q0c|u$, ε), and it performs a move-right step that leads to

(c| q0u$, ε). T is now in the con�guration that corresponds to the initial con�guration of

M .

From here on the computation of M consists of a sequence of computation steps where

for every step, there are three cases according to the transition function δ. Next these

three cases are described for the i'th step of the sequential machine. Hence, M is in

the con�guration (u1u2...ui−1qiui...un, v1v2...vm) (n > 0, m ≥ 0), where all indexed let-

ters u are from the input alphabet and all indexed letters v are words over the output

alphabet. Furthermore, assume that T is in the corresponding con�guration, that is,

(c|u′qiui...un$, v1v2...vm), where u′ is possibly a scattered sub-word of u1u2 · · ·ui−1.

Case 1: There is a transition of the form δ(qi, ui) = (qi+1, ε), where qi 6= qi+1. Then, the

computation step of M is

(u1u2...qiui...un, v1v2...vm) `M (u1u2...uiqi+1ui+1...un, v1v2...vm).

Hence the restarting transducer performs the following step:

(c|u′qiui...un$, v1v2...vm) `MVR
T (c|u′uiqi+1ui+1...un$, v1v2...vm).

Case 2: There is a transition of the form δ(qi, ui) = (qi, vm+1). Then, the computation

step of M is

(u1u2...qiui...un, v1v2...vm) `M (u1u2...uiqiui+1...un, v1v2...vmvm+1).

139

Restarting Transducers

To mirror this step, T �rst performs a restart-step, that is,

(c|u′qiui...un$, v1v2...vm) `RestartT (q0c|u′ui+1...un$, v1v2...vmvm+1).

Now to make sure that this restarting con�guration leads to the corresponding con�gura-

tion ofM , we have to explain how T behaves on the pre�x u′. As mentioned u′ is a scattered

sub-word of u1u2 · · ·ul−1ulul+1 · · ·ukuk+1 · · ·ui−1, that is, possible substrings ul · · ·uk are
cut out by restart-steps of T . Now according to T 's transition function, letters can only

be deleted if and only if the of-dGSM performs a step without changing the state. Thus,

on the substring ul−1ul · · ·ukuk+1, M applied the transition steps δ(ql−1, ul−1) = (ql, ε),

δ(ql, uj) = (ql, vi) (l ≤ j ≤ k) and δ(ql, uk+1) = (qk+2, ε), where all indexed q's are

states from Q, and vi are output words that occur consecutively k − l times in v1 · · · vm.
Clearly δ′ has in this case the following MVR-instructions: δ′(ql−1, ul−1) = (ql,MVR) and

δ′(ql, uk+1) = (qk+2,MVR). Hence, started in the restarting con�guration above, T per-

forms the following computational steps:

(q0c|u′ui+1...un$, v1v2...vmvm+1) `MVR∗

T (c|u′qi+1ui+1...un$, v1v2...vmvm+1).

This means that it reaches a con�guration that corresponds to the current con�guration

of the of-dGSM. Further on, if M accepts, that is, while reading the last letter from the

tape, M switches into an accepting state, then T performs an additional move-right step

and accepts while seeing the $-symbol. In conclusion it is shown that there is a det-R(1)-

transducer T for every of-dGSM M such that Rel(M) = Rel(T).

Conversely, let T = (Q,Σ,∆, c| , $, q0, 1, δ) be a proper det-R(1)-transducer. W.l.o.g assume

that T only accepts while seeing the $-symbol. Hence, it is clear how a dGSM M =

(Q,Σ,∆, δ′, q0, F), has to be build, such that Rel(T) = Rel(M) holds. For that recall

again that a det-R(1)-transducer is necessarily monotone (see Subsection 2.2.1). Then

the transition function δ′ of M can be taken quite direct from the transition function

δ of T . This, for instance, can be found in [Mrá01] or [Rei07]. Furthermore, when T

restarts, M will not change its internal state. Thus, we derive a dGSM that is obviously

output-forgetting.

Again the overall construction of M is fundamentally based on the following observation.

Whenever a rewrite step occurs, then, as T is deterministic, in the following cycle it reaches

exactly the letter next to the deleted letter in exactly the same state. According to the

construction, this corresponds to a non-empty output transition where no change of state

140

4.4 Closure Properties

happens. The proof of correctness is obvious and so clearly there is a of-dGSM M for every

det-R(1)-transducer T such that Rel(T) = Rel(M).

We already know from Proposition 4.4.5 that proper det-R(1)-transducers are not closed

under composition. It follows that of-dGSMs are not closed under composition, either.

The reason for that is the possibillity to output more than one letter in each step, which

will be shown by the next result.

Theorem 4.4.8. The class of relations de�ned by of-dGSM that are only able to produce

single-letter outputs is closed under composition.

Proof. We here apply the standard cross-product technique exposed for instance in [Moh97].

Let M1 = (Q1,Σ,Γ, δ1, q
(1)
0 , F1) and M2 = (Q2,Γ,∆, δ2, q

(2)
0 , F2) be two of-dGSM with

R1 = Rel(M1) and R2 = Rel(M2). We want to show that R2 ◦ R1 is again an of-dGSM-

relation. For that let M = (Q1 ×Q2,Σ,∆, δ, 〈q(1)
0 , q

(2)
0 〉, F1 × F2) be a new machine where

for every q(1) ∈ Q1, q(2) ∈ Q2 and a ∈ Σ, δ is de�ned as follows:

δ
(
〈q(1), q(2)〉, a

)
=
(〈
δs1(q(1), a), δs2(q(2), δo1(q(1), a))

〉
, δo2(q(2), δo1(q(1), a))

)
,

Here δs1, δ
o
1 (for δ2 respectively) are used to increase readability, that is, the upper s

denotes the mapping onto the state and the upper o onto the output component of the

transition function. Further, if δo1(q(1), a) = ε, that is, M1 produces empty output, then

δs2(q(2), δo1(q(1), a)) = q(2). The reason for that is, M2 is not able to perform ε-steps and

therefore whenever M1 produces empty output M2 will not change its con�guration.

Clearly and according to the literature the so de�ned transducer realizes the composition

of M1 and M2, that is, Rel(M) = R2 ◦R1. It remains to show that M still is an of-dGSM,

that is, it does not change the state while producing non-empty output. For that observe

that from a dynamical point of view M2 only produces non-empty output if M1 has done,

too. Thus, let δ1(q, a) = (q, b), that is, while scanning an a in state q, M1 produces a

b. Then this b is the input of the second machine M2. Hence, there are two possible

steps for M2 on b: δ2(p, b) = (p, c) or δ2(p, b) = (p′, ε), where p, p′ are states and c is an

arbitrary output. Obviously only the �rst transition leads also to an output of M , that is,

M performs the following combined step δ(〈q, p〉, a) = (〈q, p〉, c), where no change of state

happens. Thus, it is clear that M still is an of-dGSM.

141

Restarting Transducers

An immediate consequence of the equivalence of proper det-R(1)-transducers and of-dGSM

and Theorem 4.4.8 is the next corollary.

Corollary 4.4.9. The class of relations de�ned by prop-det-R(1)-transducers that are only

able to produce single-letter outputs is closed under composition.

Clearly we might extend the latter results to non-proper det-R(1)-transducers by con-

sidering subsequential transducers instead of dGSMs. We omit further extensions for the

reason that the functions computed by det-R(1)-transducers with single-letter output are

fairly simple, regardless the condition of being proper or non-proper. However, we assume

that these machines are able to compute every dGSMF up to a morphism, that is, the

morphism is used to add auxiliary symbols to every word in the domain of a dGSMF.

Whenever a dGSM changes its state while producing non-empty output, an of-dGSM ex-

pects an input that is annotated by auxiliary symbols such that this machine is able to

change its internal state to the state of the dGSM, when scanning the auxiliary symbols.

4.5 Decision Problems

This last section in Chapter 4 should be seen more as a starting point for further re�ections

than as a complete investigation of decision problems. Thus, we shortly address one trivial

and one more involved result on the two propably most important decision problems for

transducers.

The Equivalence Problem:

Instance: Given two restarting transducers T1 and T2.

Question: Is Rel(T1) = Rel(T2)?

Secondly we introduce a not so well-known problem unique for transducers, which concerns

practical purposes (eg. exposed in [FRR+10, RS08]).

The Type-Checking Problem:

Instance: Given a restarting transducer T and two languages L1 from the language class

C1 and L2 from the language class C2.

Question: Is T (L1) ⊆ L2?

142

4.5 Decision Problems

The Equivalence Problem for single-valued �nite state transducers is decidable (see Sec-

tion 2.3) and Corollary 4.3.14 together with Theorem 4.3.9 yield an e�ective construction

of a single-valued �nite state transducer from a det-mon-nf-RR(1)-transducer. Therefore

the following result holds.

Corollary 4.5.1. The Equivalence Problem for det-X(1)-transducer is decidable, where

X ∈ {R,RR,mon-nf-R,mon-nf-RR}.

Now we turn to the so called Type-Checking Problem. Clearly an interesting property,

especially for transducers that are used in practical applications. For instance, determinis-

tic pushdown transducers are common in the �eld of compiler construction and therefore,

decidability of type-checking against context-free languages seems a worthy question. Al-

though it is not clear whether deterministic and monotone restarting transducers form a

subclass of deterministic pushdown transducers, they are for sure related. Hence, type-

checking might also be of interest for these machines.

Proposition 4.5.2. The Type-Checking Problem for det-mon-X-transducer against de-

terministic context-free languages is undecidable, where X ∈ {R,RR,RW,RWW,RRW,

RRWW}.

Proof. This result is an immediate consequence of the fact that inclusion is not decidable for

deterministic context-free languages. Nevertheless we will give a short outline of the argu-

ment. Let (u1, v1), (u2, v2), ..., (un, vn) (n ≥ 1) be an instance of the Post Correspondence

Problem (PCP) de�ned on the �nite alphabet Σ.32 With the given instance we associate

two deterministic context-free languages L′1, L2 ⊆ Σ′ ∪ {#}, where Σ′ = Σ∪ {1, ..., n} and
Σ ∩ {1, ..., n} = ∅. Now

L′1 = {ui1 ...uik#ik...i1 | i1, ..., ik ∈ {1, ..., n}} and
L2 = {vi1 ...vik#ik...i1 | i1, ..., ik ∈ {1, ..., n}},

for some k ≥ 1. Obviously the PCP has no solution if and only if L′1 ⊆ L2. Clearly L2 is

computable by a det-mon-R-automaton as these types of automata characterize DCFL and

clearly DCFL is closed under complementation.

To establish our result we have to de�ne a language L1 such that T (L1) = L′1. Let

T = (Q,∆ ∪ {#,&},Σ′,∆, c| , $, q0, 3, δ) be det-mon-R-Td working on the input alphabet

32For the undecidability of inclusion as well as for a de�nition of the PCP we refer to a standard text
book, such as [HU79].

143

Restarting Transducers

∆ = {[ui] | for every pair (ui, vi) included in the given instance of the PCP}, that is an

encoding of the words ui to single letters [ui]. Now δ is de�ned by meta-instructions as

follows, where i ∈ {1, ..., n}:

(c| ·∆∗, &[ui]&→ [ui]&; ui),

(c| ·∆∗, [ui]&#→ [ui]#; ui#),

(c| ·∆∗, [ui]#i→ #; i),

(c| ·∆∗ ·# · $, Accept; ε).

Based on that description it is clear that the transition function of T can be designed such

that T is monotone and deterministic. Hence, the machine transduces the input language

L1 = {x&[ui1]&[ui2]&...[uik]&#ik...i1 | i1, ..., ik ∈ {1, ..., n}, x ∈ ∆∗}

such that in the �rst phase it uses the &-symbol to generate a clone of every [ui] and in the

second phase it checks whether a corresponding sequence of the symbols [ui] and the indices

i are given. Thereby the output language L′1 = {ui1 ...uik#ik...i1 | i1, ..., ik ∈ {1, ..., n}} is
produced. Clearly as the PCP is undecidable and therefore also inclusion for deterministic

context-free languages, we achieve the undecidability of type-checking. This completes the

proof.

144

Chapter 5

Transducing by Observing - A

Similar Approach

The basis for the following re�ection is the paradigm of Computing by Observing, which

is inspired by the way in which experiments are conducted in the natural sciences. It was

originally introduced by Cavaliere and Leupold under the name of Evolution and Obser-

vation [CL03]. This model somehow breaks with the classical computer science paradigm

of processing an input directly into an output, which is the result of the computation.

Computing by Observing intends to model the way in which information is gained via ex-

periments. While the actual experiment is running, the results are produced by repeatedly

measuring certain quantities like temperature, population size, etc.

Originally introduced for generating [CL04] and accepting formal languages [CL06], the

idea of observing and writing a protocol translates very naturally into transductions. Here,

we will use its basic structure to de�ne transducers. It consists of an underlying basic

system, which evolves in discrete steps from one con�guration to the next. An observer

reads these con�gurations and transforms them into output words; a type of classi�cation.

This abstracts the protocol of an experiment in biology or chemistry, and for us it is

the result of the computation. Figure 5.1 depicts how a sequence of con�gurations is

transformed into a simple sequence of symbols. Obviously one can combine several kinds

of formalisms within this architecture. Here we use string rewriting systems as the basic

systems and a kind of �nite transducer as the observer.

Understandably, the question arises why we introduce these systems in the context of

the present work. Besides their unconventional structure, which is worth to investigate

145

Transducing by Observing - A Similar Approach

con�guration 1 con�guration 2 con�guration 3 con�guration 4

observer

output: [observation 1] [observation 2] [observation 3] [observation 4]

input

Figure 5.1: Schematic representation of a transducing observer system.

for its own, they o�er a di�erent perspective on transductions than exposed in the pre-

ceding chapters. Here relations are de�ned by string rewriting systems that are somehow

controlled by a �nite state transducer. Restarting transducers can be illuminated in the

same way. In contrast, we will see in the following that transducing observer systems o�er

less control in their computation and more freedom in their de�nition. Hence, we hope

to gain new information on the principles of these mechanisms that use controlled string

rewriting systems to realize transductions. In detail, we pursue two aims. First of all, we

hope that transducing observer systems somehow form an upper bound for the restarting

transductions, for the reason that we can easily gain more power by changing our basic

system. Secondly and more importantly, it will turn out that a special type of transducing

observer systems seems to be a good candidate for a class of transductions between the

ones de�ned by RRWW- and RWW-transducers. RWW-Td have to restart immediately

after a rewrite step and thus cannot read the remainder of the tape. It is an open problem,

whether these two classes are equal (see Figure 4.2).

5.1 De�nition and Examples

As the present chapter concerns a somehow self-contained topic, we need to de�ne some

basic notions, not included in the Preliminaries.

146

5.1 De�nition and Examples

5.1.1 String-Rewriting Systems

The observed systems in our architecture will be string-rewriting systems. Concerning

them we follow notations and terminology as exposed by Book and Otto [BO93].

De�nition 5.1.1. A string-rewriting system (SRS for short) W on an alphabet Σ is a

subset of Σ∗ × Σ∗. Its elements are called rewrite rules, and are written either as ordered

pairs (`, r) or as `→ r for `, r ∈ Σ∗.

The single-step reduction relation induced by W is de�ned for any u, v ∈ Σ∗ as u ⇒W v

if and only if there is an (`, r) ∈ W and words w1, w2 ∈ Σ∗, such that u = w1`w2 and

v = w1rw2. The reduction relation ⇒∗R is the re�exive, transitive closure of⇒W . A string

w is called irreducible with respect to W , if no rewrite rule from W can be applied to it,

i.e. it does not contain any factor that is the left hand side of a rule. The set of all such

strings is denoted by IRR(W).

By imposing restrictions on the set of rewriting rules, many special classes of rewriting

systems can be de�ned. Here we are only interested in the following two special types of

rewriting systems.

De�nition 5.1.2. A string-rewriting system is called a length-reducing system if for all its

rules (`, r), we have |`| > |r|, that is, every rule shortens the string by at least one symbol.

De�nition 5.1.3. A string-rewriting system is called a painter system if for all its rules

(`, r), we have |`| = |r| = 1, that is, every rule just replaces one letter by another one.

5.1.2 Observers

In the role of observers we use a slightly di�erent version of the devices that have become

standard in this function: monadic transducers. They map strings into single letters.

Observe that in combination with length-reducing string-rewriting systems this imposes a

very strict limit on the right-hand sides of relations. Since every derivation step has to

delete at least one symbol, the computed relations are at most length preserving. This

would make these relations incomparable even to simple classes like the one de�ned by

GSM's; the di�erence, however could be eliminated by a simple morphism. Therefore, we

introduce a slightly modi�ed device, generalized monadic transducers, which work just like

monadic transducers except for the fact that they output strings. However, we will see

that in the observation of painter systems, there is no di�erence between these two models.

147

Transducing by Observing - A Similar Approach

De�nition 5.1.4. A generalized monadic transducer (gMT for short) is a tuple O =

(Q,Σ,∆, δ, q0, φ), where the set of states Q, the input alphabet Σ, the transition function

δ, and the start state q0 are the same as for deterministic �nite automata. ∆ is the output

alphabet, and φ is the output function, a mapping Q 7→ ∆∗ which assigns an output string

or the empty word to each state. The class of all generalized monadic transducers is denoted

by gMT .

The mode of operation is that the monadic transducer reads the input word, and then

the image under φ of the state it stops in, is the output. Note that for every input word

there is only one possible output, because the de�nition is based on deterministic �nite

automata. Looking at the motivation for the Computing by Observing architecture, this

translates as the feature that a given con�guration of the underlying system will always

be classi�ed in the same way. From a formal point of view this is not necessary, but from

the point of view of the motivating examples it seems desirable.

We introduce a few notations that will be convenient in describing the interactions between

monadic transducers and string-rewriting systems. For a set of string-rewriting rules W ,

we will use the notationW (w1) to denote all sequences of words (w1, w2, . . . , wk) that form

terminating derivations w1 ⇒W w2 ⇒W · · · ⇒W wk of W . For such a sequence σ and a

monadic transducer O, we will denote by O(σ) the result of concatenating all the images

of the words in the sequence, that is, O(σ) = O(w1) · O(w2) · · · O(wk).

5.1.3 Transducing Observer Systems

Now we combine the two components, a string-rewriting system and a monadic transducer

in the way described in the introduction.

De�nition 5.1.5. A transducing observer system (T/O-system for short) is a triple Ω =

(Σ,W,O), where Σ is the input alphabet, W is a string-rewriting system over an alphabet

Γ such that Σ ⊆ Γ which consists of all the symbols that occur in the rule set W , and O is

a generalized monadic transducer, whose input alphabet is Γ.

The mode of operation of a transducing observer system Ω = (Σ,W,O) is as follows: the

string-rewriting system starts to work on an input word u. After every reduction step

the observer reads the new string and produces the corresponding output which is called

the observation. The concatenation of all observations of a terminating derivation forms

148

5.2 Length-Reducing Systems

the output word v. The relation that Ω computes consists of all pairs (u, v) that can be

computed in this fashion. Note that already the input string results in the �rst observation.

Thus, there can be an output even if no rewriting rule can be applied to the �rst string.

Further, the observer is equipped with an important feature: By outputting the special

symbol ⊥ it can abort a computation. In that case no output is produced. The other

way in which no output might be produced is that the string-rewriting system does not

terminate. Formally, a system like in the de�nition computes the relation

Rel(Ω) = {(u, v) | ∃σ ∈W (u) : v = O(σ) and |v|⊥ = 0},

that is, all pairs formed by an input word and the observations of possible terminating

derivations on this input word. Finally, the class of relations de�ned by a special type X

of transducing observing system is denoted by Rel(X).

5.2 Length-Reducing Systems

We start our investigations by focusing on the relations that are computed by observer

systems, where the underlying string rewriting system only uses length-reducing rules

(lr-T/O for short). Therefore, it is quiet clear that all pairs of words (u, v) within such a

relation ful�ll the length-bounded property (see De�nition 2.1.2), that is, |v| ≤ c · |u| for a
positive integer c.

Example 5.2.1. Let Ω = (Σ,W,O) be the lr-T/O-system with Σ = {a}, W = {aa →
A,AA→ B,BB → C} and the observer O that is de�ned as:

O(w) =



ε w ∈ (a8)∗

a2 w ∈ A+a∗

b4 w ∈ B+A∗

c8 w ∈ C+B∗

⊥ else

.

Starting from any word from a∗, only the rule aa→ A can be applied until all a have been

consumed from left to right. Every other rule would lead to a string containing B at the

same time as a; the observer will output ⊥ and thus invalidate the transduction. For every

two a that are deleted, also two a are output.

149

Transducing by Observing - A Similar Approach

In the same way, all A are reduced to B, then all B to C. Every time the number of

symbols is divided by two. So for one C there must be two B, four A, and eight a as

predecessors. During the computation, eight copies of each a, b, and c are produced. If

the original number of a is not divisible by eight, then the observer rejects the input.

Thus, the relation computed by the transducing observer system is

R = Rel(Ω) = {(an, anbncn) | n ≡ 0(mod 8)}.

An immediate consequence of the previous example is the following corollary.

Corollary 5.2.2. The class of pushdown relations is incomparable to the class of relations

computed by lr-T/O-systems.

Proof. Clearly PDR contains relations that do not ful�ll the property that the length of

the output word is somehow bounded by the length of the input word. Recall the relation

R = {(ε, cn) | n ∈ N}, which is obviously a pushdown relation but it is not computable by

any lr-T/O-system.

Conversely, in Example 5.2.1 a lr-T/O-system is described that computes the relation

R = {(an, anbncn) | n ≡ 0(mod 8)}. This relation is derived by �accepting� the regular

language an (n ≡ 0(mod 8)) and outputting the context-sensitive language anbncn. It is

well known that pushdown transducers are only capable to map regular languages onto

context-free languages (cf. Proposition 2.3.18).

However, as mentioned in the introduction, we want to relate the transducing observer

systems to restarting transducers. Thus, to establish a classi�cation of the power of such

systems we �rst compare them to monotone restarting transducers. In Proposition 4.2.12

it was shown that the class of pushdown functions is included in the class of relations

computed by monotone RWW-transducers and monotone RRWW-transducers. In the same

spirit we can additionally show the following.

Theorem 5.2.3. PDF (Rel(lr-T/O).

Proof. Obviously the inclusion is proper as the relation shown in Example 5.2.1 is not

computable by any functional pushdown transducer. It remains to show that for any

pushdown function R ∈ PDF, there is a lr-T/O-system Ω such that R = Rel(Ω).

150

5.2 Length-Reducing Systems

Here we again use the technique presented in Theorem 4.2.9. Thus, we construct a push-

down transducer of a very special type by using the notion of simple syntax directed

translations scheme (see De�nition 2.3.12). However, here we omit further details and

proceed directly to the construction of the lr-T/O-system from the mentioned pushdown

transducer.

Assume that M is the pushdown transducer presented in the proof of Theorem 4.2.9,

which computes a length-bounded pushdown relation. Now M can easily be simulated by

a lr-T/O-system Ω=(Σ,W,O). Here the basic idea is that the current state of M and the

content of the pushdown store is encoded in the input string of Ω to the left of the current

input symbol of M . Without loss of generality the pushdown alphabet is disjoint from

the input alphabet. Let t1 : (q1, a, A) → (q2, A, v1) and t2 : (q2, b, A) → (q3, BC, v2) be

two consecutive transitions of M , where qi is a state, a, b are input symbols, A,B,C are

pushdown symbols and v1, v2 is the current output. So this transition can be applied in

a con�guration, where the head of the pushdown transducer is over a letter a in state q1,

and the top of the pushdown store is A. In our representation this corresponds to a string

U [A, q1, v]abx, where U is a string of pushdown symbols, v is the output associated to the

previous step, and x is a string of input symbols. Then these two steps of the pushdown

transducer correspond to one derivation step of our string rewriting system W , that is:

U [A, q1, v]abx⇒ UC[B, q3, v1v2]x.

Note that the state is represented in a compound symbol with the last pushdown symbol

A next to the current input a.

After this we are back in a con�guration equivalent to the one before we started the simu-

lation. Thus, the next transition can be simulated. The length-reducing rules necessary for

the simulation are obvious from the derivation. Further, it is clear that a derivation of the

above form is only possible if and only if there are corresponding transitions for the push-

down transducer, because all the corresponding symbols must be present in the required

positions. The observer is constructed in a way that it executes the following tasks: it has

to verify the correct occurrence of pushdown and input symbols within the given string and

outputs the output string v1v2 given in the compound of the last pushdown symbol. Thus,

a generalized monadic transducer O can control the correct simulation of the transitions

by admitting strings of the forms described and by rejecting the computation, if any other

type of string appears.

151

Transducing by Observing - A Similar Approach

Finally, if the pushdown function contains a pair (ε, v), then we set O(ε) = v.

Observe that the latter result does not immediately imply that Rel(mon-RRWW-Td) is

properly included in Rel(lr-T/O). Monotone restarting transducer compute not only push-

down functions but also all types of pushdown relations that are length bounded (cf.

Theorem 4.2.9). This is not true for length-reducing observer systems. For that, consider

the fairly simple example relation {(ε, a), (ε, b), (a, a), (a, b)}, which is obviously length

bounded and computable by a pushdown transducer. For two reasons, this particular rela-

tion is not de�nable by a lr-T/O-system. First of all, on empty input such a system is not

able to make a non-deterministic choice for the output. As the observers are deterministic

devices, possible non-deterministic steps must be realized by the string rewriting system.

That means, we simply use auxiliary symbols to express non-deterministic decisions. Re-

call that a length-reducing observer system consists only of rules that shorten the length

of the input string. Hence, we can determine secondly that on an input of length one a

lr-T/O-system is not able to produce more than one output, either. We might overcome

this minor issue by introducing non-deterministic observers. However, this would somehow

contradict our motivation. Otherwise we strongly expect that we can establish a weaker

result, by focusing only on relations where the length of the input is always greater than

one, as then the non-determinism can be encoded in the rules of the rewriting system.

Anyway, we omit further discussions on the latter observation, as the corner case mentioned

above does not con�ict with our basic motivation. So we might assume in the following

that we only focus on relations for which every input word has at least length two.

Accordingly, we can show that a restarting transducer that is not monotone is at least as

powerful as a length-reducing observer system.

Proposition 5.2.4. Rel(lr-T/O) ⊆ Rel(RRWW-Td)

Proof. Let Ω = (Σ,W,O) be a lr-T/O system, where the observer is O = (Q,Γ,∆, δ, q0, φ)

and the string rewriting system W is de�ned as a �nite set over Γ∗×Γ∗. From Ω we build

an RRWW-transducer T = (Q′,Σ,∆,Γ′, c| , $, q0, k, δ
′) where k is at least as large as the

longest left hand side of a rule l→ r in W and Γ′ = Γ ∪ {ā | a ∈ Γ}.

The main idea of the simulation is that T combines the application of a rule and the

observer's behavior. In every cycle T scans the whole tape and determines the output of

O for the current input, that is actually the result of an application of a rule of W to the

152

5.2 Length-Reducing Systems

tape content of the previous cycle, which belongs to the description of O. Meanwhile non-

deterministically T somewhere also shortens the tape content by a rule from W . It is easy

to verify that a restarting automaton for the latter behavior is fully described by meta-

instructions of the form (c| ·Γ∗, l 7→ r,Γ∗ · $) for every rule l→ r in W . Further on, adding

the observer to these instructions by applying a standard technique for the intersection of

two automata we derive the intended transducer T . Obviously the output of T , when seeing

the $-symbol corresponds to the output function of O, that is (Restart, v) ∈ δ′(q′, $) if and

only if φ(q) = v. Here q′ denotes a state of T that corresponds to q of the observer. Note

that in case φ(q) = ⊥, T is simply designed such that it gets stuck, that is, δ′(q′, $) = ∅ is
taken.

Finally we have to verify accepting conditions for T . Notice that in terms of transducing

observer systems, acceptance means that no rule of the string rewriting system is applicable,

that is, the current string belongs to IRR(W). It is well known that IRR(W) is a regular

language. Hence, the set of meta-instructions of T described above simply has to be

extended such that also the regular language IRR(W) is taken into account. Then T

recognizes if the current tape content belongs to IRR(W). In this case it accepts while

seeing the $-symbol and it outputs the corresponding symbols that O has produced.

The simulation of the transducing observer system Ω by the RRWW-transducer T is quite

direct. Thus it is straightforward to see that the same input/output pairs are produced.

Despite of the re�ections outlined before the previous result (�length of the input is always

greater than one�), we strongly suspect that the inverse of Proposition 5.2.4 does not hold.

This would mean that there are non-trivial relations that can be computed by RRWW-

transducers but not by length-reducing T/O-systems. The latter cannot directly connect

the output to the rule that has been applied. Typically an intermediate step is used to

indicate to the observer, which rule has been applied and where. This trace must then be

deleted. If all rules are shortening, only about every second one can be used to produce

output in this way, while an RRWW-transducer can rewrite and output (even more than one

symbol) in every step. However, we can prove a weakened variant of the inverse inclusion

of the one in Proposition 5.2.4. The following result is inspired by the construction of a

pre�x-rewriting system33 from an RRWW-automaton, which was shown in [NO00]. Instead

of adding a pre�x to every rewriting rule we here use a uniform morphism to somehow save

33A pre�x-rewriting system contains of rewriting rules of the form xu→ xv where x belongs to a regular
language.

153

Transducing by Observing - A Similar Approach

the information which instruction was applied to the string. In this context a morphism

ϕ : Σ∗ → Γ∗ is called uniform if |ϕ(a)| = |ϕ(b)| for every a, b ∈ Σ (e.g. in [RS97], p.339).

Proposition 5.2.5. For every relation R ∈ Rel(prop-RRWW-Td) there is a uniform mor-

phism ϕ and a relation S ∈ Rel(lr-T/O) such that R = {(u, v) | (ϕ(u), v) ∈ S}.

Proof. The basic idea of this proof is to simulate the rewriting steps of a restarting trans-

ducer by the rules of a length-reducing system and the pre�x (and also su�x) parts, which

belong to a regular language, by the observer. For that, the morphism ϕ transforms words

into a redundant representation with a copy of each letter. This allows us to do more

than one step in the deletion of a letter by deleting also the copy. The latter is needed to

�clean up� after applying a rule. In this way, the lr-T/O-system can simulate the RRWW-

transducer in a very direct way.

Let T = (Q,Σ,∆,Γ, c| , $, q0, k, δ) be an RRWW-transducer. The morphism is de�ned as

ϕ(x) = xx̂ for all x ∈ Γ, where the x̂ is a copy of the original symbol. Thus, every letter

is mapped into two copies. The string-rewriting rules that the T/O-system Ω uses are

derived from the meta-instructions of T . Let

t : (E1, u · x→ u′, E2; v)

be such a transition for u, u′ ∈ Γ∗ and x ∈ Γ. We associate to each transition a unique

label, here t. From this description we build a lr-T/O-system Ω = (Σ,W,O) as follows,

where W ⊆ Γ′∗ × Γ′∗ and Γ′ consists of Γ ∪ {x̂ | x ∈ Γ} as well as some special symbols

described below. The string-rewriting rule, which is added to W , for the meta-instruction

t is ϕ(ux) → ϕ(u′) · t. Thus, the additional space induced by ϕ is used to assign the

corresponding label to the applied instruction.

Further we add t → ε. While xx̂ is deleted, the observer produces the string that T

outputs in the execution of t. As described in the meta-instruction, this string is v. For

every meta-instruction of T the observer's mapping includes the clause

O(w) = v; if w ∈ ϕ(E1) · ϕ(u′) · t · ϕ(E2).

In this clause, we check whether t was really applicable. This means that T can reach the

state in which the rewrite operation of t is applied after reading the pre�x of the current

string until the application site of the rule. Of course, the part ux is not there anymore,

when this clause is applied. But since there is the symbol t, a monadic transducer can

154

5.2 Length-Reducing Systems

recognize this symbol and act as if ux was there, that is, the current string must belong

to the language ϕ(E1) · ϕ(u′) · t · ϕ(E2) rather than to E1 · u · E2, which are the strings

that allow application of the meta-transition t. This is still a regular condition to check.

Note that all the clauses, which describe the observer, are disjoint, due to the presence

of t. Thus, the observer always produces the desired output. Additionally after applying

a meta-instruction the label t has to be deleted by the rule t → ε and in this case the

observer has a clause of the form

O(w) = ε; if w ∈ ϕ(Γ∗).

In an analogous way we treat accepting cycles. In the case that a computation of T accepts

with empty tape such that the observer system has also no symbols left, then clearly, Ω

stops as well, with the same output as T . The second case is more problematic, where T

accepts and Ω has still symbols left. As long as there are symbols left, we can rewrite any

of them to a symbol of an accepting transition ta as above.

Observe that Ω will not stop, when the symbol ta is introduced. But the computation of

a T/O-system is complete only when no more rule can be applied. That is why we use the

special symbol ta to delete every remaining symbol, that is, we add rules xta → ta and

tax→ ta for all symbols x in the alphabet of W . That is, ta absorbs all the symbols that

are left. With the presence of ta the observer maps any further string to the empty output.

So when there is only ta left, the system stops and has output the same string as T .

Finally, we explain how Ω behaves on rejecting computations of T . Note, that T rejects

an input word simply by getting stuck, that is, no transition is applicable in the current

con�guration. As the clauses of the observer mirror directly the move-right steps of T , it

will also get stuck. In this situation we have to output ⊥ to abort the computation of Ω.

This can be done by making the observer �complete�, that is, the transition function of O is

extended such that every input word w, which is not described by the regular expressions

above leads to the following output:

O(w) = ⊥.

This completes the proof.

Of course, we would like to be able to do the simulation without any morphism and thus

show the equivalence of the two models. But with the techniques used here this seems not

155

Transducing by Observing - A Similar Approach

to be possible, as brie�y shown by the latter proof. The introduction of the symbol t is

necessary to signal to the observer which instruction is simulated and what needs to be

output, then another step is needed to clean up this trace. But in a length-reducing system,

every step consumes at least one symbol. Thus, we could only simulate RRWW-transducers

whose rules shorten the string at least by two in every step.

5.3 Painter Systems

As mentioned in the introduction, by adjusting the rules of transducing observer systems we

are able to establish an upper bound for the relations computed by restarting transducers.

To this end, we now concentrate on painter systems (pnt-T/O for short). Recall that a

string rewriting system that uses painter rules is only allowed to rename symbols, that is,

for every rule l → r, the length bound |l| = |r| = 1 holds. Note again that we might run

into the same problem as exposed in the previous section. On empty input the observer is

not able to produce several outputs. As we do not want to change our de�nitions for now,

we avoid this very special case by focusing on proper restarting transducers.

Proposition 5.3.1. Rel(prop-RRWW-Td) ⊆ Rel(pnt-T/O)

Proof. Recall that we stated a similar result in Proposition 5.2.5. There we applied a

uniform morphism on the input to gain some space. This additional space was needed to

save the trace of which meta-instruction was applied. Here, as the rules of the current

observer system are not length reducing, all tape cells can be rewritten any number of

times. Hence, there is no need for additional space. Thus, we can save the trace directly

together with the current input string.

Without loss of generality let T = (Q,Σ,∆,Γ, c| , $, q0, k, δ) be a proper RRWW-Td that

restarts and accepts only on the $-symbol. Further, assume that T is described by labeled

meta-instructions, where each rewriting meta-instructions of T is de�ned as follows:

t : (E1, u1u2...uk → u′1u
′
2...u

′
k, E2; v),

where ui ∈ Γ and u′i ∈ Γ ∪ {ε} (i ∈ {1, . . . , k}) is the corresponding symbol that occurs in

the string produced by the current meta-instruction. Note that we here use a slightly dif-

ferent representation of meta-instructions, that is, each rewriting rule u→ u′ is described

as a unique letter to letter mapping, where at least one letter is mapped to the empty word.

156

5.3 Painter Systems

For instance, let u = u1u2...uk and u′ = u′1u
′
2...u

′
k, where ui, u

′
i ∈ Γ ∪ {ε} (i ∈ {1, ..., k}),

then the rule u → u′ can be depicted as u1u2...uk → u′1u
′
2...u

′
k, which implies that u1 is

rewritten to u′1 and so on. Further, each accepting meta-instruction is also uniquely labeled

by ta : (E,Accept; ε). From the description of T we build a pnt-T/O-system Ω = (Σ,W,O),

where the observer is de�ned as O = (Q′,Γ′∪{c| , $},∆, δ′, p0, φ) and we consider the string

rewriting system W as a set of rules over (Γ′ ∪ {c| , $})∗ × (Γ′ ∪ {c| , $})∗, where Γ′ consists

of Γ, the set {at, att, ata | a ∈ Γ ∪ {c| , $} and t, ta are labels of rewriting or accepting meta

-instructions of T}, the special auxiliary symbols λ and f , which denote erasing rules, and

the set {λa, aλ | a ∈ Γ∪{$}}, which is needed to �remove� erased symbols. In the following,

the latter set is needed to simulate accepting meta-instructions by the observer system.

Additionally we assume that every input string ofW is also bounded by the markers c| and
$. At the end of the proof we will show that this is not a necessary assumption. Anyway

it increases the readability of the technical details.

Here we show for one concrete case how the set of rewriting rules W is de�ned, and how

the observer is used to control the derivation of W .

For each meta-instruction t : (E1, u1u2...uk → u′1u
′
2...u

′
k, E2; v) of T , we add the rules

ui → uti, u
t
i → utti and utti → u′i (i ∈ {1, ..., n}) to W . If u′i = ε, then we add the

rule utti → λ, where λ is an auxiliary symbol. Now the observer's mapping for an input

w ∈ (Γ ∪ {c| , $})∗ includes the clauses

O(w) =



ε; if w ∈ E1 · u1u2 · · ·uk · E2,

ε; if w ∈ E1 · ut1u2 · · ·uk · E2,
...

...

ε; if w ∈ E1 · ut1ut2 · · ·utk · E2,

ε; if w ∈ E1 · utt1 ut2 · · ·utk · E2,
...

...

v; if w ∈ E1 · utt1 utt2 · · ·uttk · E2,

ε; if w ∈ E1 · u
′
1u
tt
2 · · ·uttk · E2,

...
...

ε; if w ∈ E1 · u
′
1u
′
2 · · ·u

′
k · E2.

Let t : (E1, u1u2...ui . . . uk → u′1u
′
2...u

′
i . . . u

′
k, E2; v) be a meta-instruction that is applicable

to a restarting con�guration (q0c|xu1u2 · · ·uky$, v′), where c| · x ∈ E1, y · $ ∈ E2, u′i = ε,

157

Transducing by Observing - A Similar Approach

and v′ ∈ ∆∗. Hence, this leads to a cycle of the form:

(q0c|xu1u2 . . . uky$, v′) `cT (q0c|xu′1u′2 . . . u′ky$, v′v).

Then the transitions of T are simulated by Ω as follows:

c|xu1u2 . . . ui . . . uky$ ⇒ c|xut1u2 . . . ui . . . uky$ ⇒
. . .⇒ c|xut1ut2 . . . uti . . . utky$ ⇒ c|xutt1 ut2 . . . uti . . . utky$ ⇒
. . .⇒ c|xutt1 utt2 . . . utti . . . uttk y$ ⇒ c|xu′1utt2 . . . utti . . . uttk y$ ⇒
. . .⇒ c|xu′1u′2 . . . λ . . . u′ky$

.

After this we are back in a situation similar to the one before we started the simulation.

The only di�erence is that after the �rst simulation of a meta-instruction, the con�guration

of W is interspersed with the λ-symbol. These special symbols have to be �removed�,

as otherwise possible rewriting rules of W , which are taken from the description of the

restarting transducer, might not be applicable. Recall that a painter system is not allowed

to delete any symbol. Hence, we need to introduce additional rules for W and clauses for

the observer such that every occuring λ is shifted to the right of the $-symbol before the

next rule of T is applied. This can be done by applying a technique exposed in [CL06]

to simulate context-sensitive rules in the form of AB → BA by painter systems. Hence,

without going into details we can obviously add rules to W such that the observer enables

the following derivation

λa⇒W λaa⇒W λaaλ ⇒W aaλ ⇒W aλ,

for every a ∈ Γ ∪ {$}. Clearly every clause, which has to be added to the observer to

enable the previous derivation, leads to an empty output. Further, the special λ-symbols

right of the $-symbol must be ignored by the observer, that is, it reads over them without

a change of state. Thus, the next transition can be simulated. Further notice, that all

the intermediate con�gurations can be described by disjoint regular expressions that are

speci�c to the transition t, or the symbols λa, aλ, because they contain some versions of

these symbols.

By exhaustive checking, we can verify that application of these rules in any other order,

or the application of a rule stemming from another transition will lead to a string not des-

cribed by these expressions. Therefore, it is shown that a generalized monadic transducer

can control the correct simulation of these transitions by admitting strings of the forms

158

5.3 Painter Systems

described and by rejecting the computation and outputting ⊥, if any other type of string

appears.

Further, for each accepting meta-instruction ta : (E,Accept; ε), we add the rules a → ata

and ata → f to W , where a ∈ Γ ∪ {c| , $}. Then the observer only has to check whether

ta occurs in its input and whether the input corresponds to the regular language E. The

special symbol f is again needed to force the system to stop, that is, when f is introduced,

there are no rules to �delete� f . Thus, after f occurs in a con�guration, there possibly is

a �nite number of additional rewrite steps. Hence, the observer is de�ned such that all

con�gurations where the symbol f is included lead to the empty output.

Finally, by adding additional symbols and rewriting rules to Ω that mark the �rst and last

letter of the input string at the beginning of the computation, we can omit the assumption

that every input string contains the special symbols c| and $. Clearly, then every rule in

W and the accepting conditions have to be adjusted. So, it is shown that for every proper

RRWW-transducer T , there is a pnt-T/O-system Ω such that Rel(T) = Rel(Ω).

Actually, the previous inclusion is proper, as it is clear that the relation {(a, an) | n ≥ 1}
is computable by the pnt-T/O-system Ω = (Σ,W,O), where W = {a→ a, a→ f} and

O(w) =


a; if w = a,

ε; if w = f,

⊥; if w 6= a and w 6= f.

Note that this particular relation violates the length-bounded property. Thus, the next

corollary holds.

Corollary 5.3.2. Rel(prop-RRWW-Td) (Rel(pnt-T/O)

The latter example shows that relations computed by painter systems are not necessarily

length bounded. Hence, in contrast to restarting transducers we can show that nearly

every rational relation is computable by such a system.

Theorem 5.3.3. Each rational relation R ⊆ Σ∗ ×∆∗ that contains only one pair in the

form of (ε, v) (v ∈ ∆∗) is computable by a pnt-T/O-system Ω = (Σ,W,O).

Proof. This result seems quite obvious. Nevertheless, it is not an immediate consequence

of the results presented in this Chapter. By Proposition 5.3.1 and by the fact that mono-

159

Transducing by Observing - A Similar Approach

tone RRWW-transducer characterize the length-bounded pushdown relations (cf. Theo-

rem 4.2.9) it is clear that there is a pnt-T/O-system for every relation R ∈ lbPDR, where

(ε, v) /∈ R for any word v over the output alphabet. Further, as lbPDR is obviously a super-

class of the rational relations for which the length-bounded property holds, we only have

to show how a pnt-T/O system works on rational relations that are not length bounded.

Note that the violation of this property is caused, for instance, by �nite state transducers

that produce non-empty output, when performing cycles without reading any symbol.

To begin with, we may assume that Ω = (Σ,W,O) is a pnt-T/O-system that simulates

a �nite state transducer T = (Q,Σ,∆, δ, q0, F) that computes a length-bounded rational

relation. We further assume that Ω is designed similar to the lr-T/O system that simulates

a pushdown transducer shown in the proof of Theorem 5.2.3. Thus, when T performs a

step (qabu, v) `T (q′bu, vα) with a transition in the form of t : δ(q, a) = (p, α), where

q, p ∈ Q, a, b ∈ Σ, u ∈ Σ∗ and v, α ∈ ∆∗, then Ω simulates this step by the following

derivation,

λ∗[q, a]bu⇒W λ∗[q, a, p, α]tbu⇒W λ∗[q, a, p, α]tb
tu⇒W λ∗[q, a, p, α]t[p, b]u⇒W λ∗λ[p, b]u,

where λ, [q, a], [q, a, p, α]t, bt and [p, b] are auxiliary symbols not in Σ. Admittedly, this

representation might be quite redundant, but it is clear from the derivation, how the rules in

W have to be obtained from the transitions of T . Further, the di�erent con�gurations in a

derivation can obviously be described by disjoint regular expressions, which is the de�nition

of the observer O. Additionally, the observer outputs α when scanning the con�guration

λ∗[q, a, p, α]tbu. Up to now, this simulation is simply a consequence of previous results, as

stated above.

We next describe how Ω mirrors possible ε-steps of a �nite state transducer, which causes

the violation of the length-bounded property. For that we add a transition in the form of

tε : δ(q, ε) = (q′, β) to the transition function of T , where q is the state used above, q′ ∈ Q
and β ∈ ∆∗. Thus, we have to extend the string rewriting systems by rules that are in

some sense derived by calculating the ε-closure34 of a state of T . Here, for q we have to

add the rules [q, a] → [q, a, p, α]t, [q, a] → [q, a, q′, β]tε and, [q, a, q′, β]tε → [q′, a], which

mirrors the returning to the actual con�guration of the �nite state transducer. Clearly,

by introducing the special symbol tε the observer can be adjusted, such that it enables

34The ε-closure of a state q is the set of states that are reachable from q by zero or more ε-transitions
(e.g. in [RS97], p.52).

160

5.3 Painter Systems

derivations of W in the form of

λ∗[q, a]bu⇒W λ∗[q, a, q′, β]tεbu⇒W λ∗[q′, a]bu,

and that it outputs β when reading λ∗[q, a, q′, β]tεbu. Further, observe that the example

transition tε already covers all cases of ε-transitions occuring in a description of a �nite

state transducer. Finally, if the rational relation R contains one pair (ε, v) (v ∈ ∆∗) we

simply add the clause O(ε) = v to the observer. For that note, a �nite state transducer

that computes such a relation R is not able to perform a cycle of ε-steps on empty input,

as this would violate the property that only one pair is in the form of (ε, v). Hence, v can

easily be obtained by calculating a kind of ε-closure for the initial state q0 of T . Thus, it

is shown that for every relation R ∈ RAT, which is restricted in the above way, there is a

pnt-T/O-system Ω such that R = Rel(Ω).

The previous result cannot be adapted to compute pushdown relations by pnt-T/O-systems.

Proposition 5.3.4. The class of pushdown relations is incomparable to Rel(pnt-T/O).

Proof. Clearly by Proposition 5.3.1 there are relations computed by pnt-T/O that are not

pushdown relations. Conversely, besides the trivial example of producing several outputs

on the empty input, consider the relation R = {(c, anbn) | n ≥ 0}. Obviously R is a

pushdown relation. A pushdown transducer for R uses ε-steps to push a number of symbols

on the stack while outputting the same number of a's. At some point of the computation

it decides non-deterministically to pop all stack symbols while again outputting the same

number of b's. Finally it just has to check that there is only one c on the tape.

A pnt-T/O-system for R gets c as input string. Hence, it must rewrite c to produce an

output. As there is only a �nite number of rewriting rules, c has to be rewritten in a

form of cycle-rules to produce an arbitrary number of a's. Thus, it is obvious that there

is no possibility to save the number of rules that were used to produce a's. Therefore, the

pnt-T/O-system is not able to output the same number of b's. Hence, R /∈ Rel(pnt-T/O).

On the other hand the mode of operation of painter systems suggests that possibly a class

of relations that is de�nable by linear bounded automata could be simulated by these

systems. Changing a state and rewriting adjacent cells in the string in a coordinated

manner could su�ce for this. However, in the literature little can be found on relations

161

Transducing by Observing - A Similar Approach

computed by linear bounded automata35, and furthermore, there is no uniform theory on

these relations. That is maybe because starting from the context-sensitive languages, the

distinction of transductions and plain sets is not so signi�cant anymore.

We conclude by stressing that, from a theoretical point of view, this chapter was meant

to be a starting point for gaining a di�erent perspective on relations that can be somehow

associated to string rewriting systems. For that observe again that it seems to be appro-

priate to disregard the original motivation of observer systems and change our de�nitions

such that the corner case (output on empty input) is avoided. However, this does not solve

our main problem: Is there a non-trivial witness relation between lr-T/O and RRWW-Td?

Such a relation might also be a guide to �nd a relation between RWW-Td and RRWW-Td.

35An exception is the paper of Ginsburg and Rose [GR66], which indeed implies that there might
be a connection between relations computed by LBA and pnt-T/O-systems, with respect to the results
established in the present section.

162

Chapter 6

Conclusion

We conclude by giving some thoughts on the results of this thesis. For that, we �rst discuss

theoretical results and then turn to some re�ections on possible applications. We end our

discussion by posing a list of questions left open, which are attractive from the author's

subjective point of view.

Even though the results on restarting transducers presented in the preceding chapters are

far from complete, they have shown that extending restarting automata to transducers

proved to be �natural� in the sense that there are restarting transducer characterizations

for several traditional relation classes. Mainly, we may summarize that the behavior of

restarting transducers is comparable to well-known types of transducers, which are not

capable of performing ε-steps. In that context relations computed by restarting trans-

ducers with window size one have to be emphasized. These models gave a new insight

into the well-known hierarchy of subclasses of rational relations. By investigating those

types of restarting transducers where the underlying automata characterize the regular

languages, we were able to show how the decrease or increase of power imposed by the

various restrictions and extensions (i.e. mon-, det-, nf-) leads to equivalences to the rational

functions (RATF), general sequential machine relations (GSMRel), subsequential functions

(SubSeqF), and deterministic general sequential machine functions (dGSMF). This o�ers a

di�erent perspective on both, the capabilities needed to compute instances of these classes,

and on the power gained by the above restarting automata restrictions or extensions.

According to the Introduction, the results on restarting transducers further imply that

these machines are a promising tool for establishing a complete framework for transductions

based on this singular model only. In general, we have de�ned a hierarchy of length-

163

Conclusion

bounded relations along the traditional notions of pushdown relations (PDR) and rational

relations (RAT). Furthermore, we derived some new relation classes above the length-

bounded pushdown relations (lbPDR), characterized uniquely by restarting transducers.

In retrospective, Chapter 3 (�Relations Computed by Restarting Automata and Parallel

Communicating Systems�) and Chapter 5 (�Transducing by Observing�) play some kind

of supporting role for results on restarting transducers. In particular, we mainly used

these chapters to establish some upper bounds for the computational power of di�erent

types of restarting transducers. Nevertheless, the additional results obtained show already

that realizing transductions by the notion of input/output- and proper relations, PC-

systems of restarting automata and by the principle of observing a string rewriting system

is reasonable for several reasons. Fruitful tasks for these mechanisms seem to be, for

instance, de�ning new classes of relations in the spirit of Aho and Ullman's notion of

characterizing languages [AU69] or gaining deeper insights into traditional relation classes

itself by representing them from an unconventional perspective.

Finally, we want to outline a few thoughts on possible applications in the �eld of linguistics

of the previously introduced models. In general, it is well known that models for realizing

subclasses of rational relations play an important role in natural language processing and

speech recognition [KK94, Moh97, JM09]36. Hence, restarting transducers of the type in-

vestigated in Subsection 4.3 might also �t these tasks. In particular, several of the authors

mentioned above described usage scenarios of types of �nite state transducers in the process

of morphological analyzation, that is, roughly speaking, realizing relations between sur-

face and lexical forms of words. Hence, for instance subsequential transducers are used to

o�er succinct representations of morphological dictionaries [Moh97]. As mentioned in the

preliminaries it is known from Kutrib and Reimann [KR08, Rei07] that in terms of descrip-

tional complexity, there is a bene�t in using (forgetting) restarting automata to represent

regular languages. Furthermore, we have shown in Proposition 2.2.15 that non-forgetting

restarting automata yield even more succinct representations than (forgetting) restarting

automata. Obviously, this e�ect carries over to the corresponding classes of transducers

by extending the witness languages to relations. Therefore, restarting transducers with

window size one (especially det-mon-nf-R(1)-Td) might be a reasonable alternative for cer-

tain �nite state transducer applications in natural language processing, such as realizing

morphological dictionaries.

36Admittedly, as applications of transducers play a minor role in this work, the selected citations are
only meant to be a starting point for further reading.

164

Conclusion

Another possible application directly concerns the original motivation of restarting au-

tomata. We already mentioned in the introduction that one of our main motivations for

extending this model to a transducing device was to extract information on the given in-

put sentence during the process of analyzation. In Section 2.2 we brie�y pointed out that

Analysis by Reduction applied on a sentence of a natural language additionally provides

morphological and dependency information on the input. Hence, presenting this informa-

tion in a certain form might be a suitable task for a restarting transducer. In recent years

this latter scenario was substantiated by Lopatkova et al. [LPS07, LMP10] and Plátek et

al. [PML10b, PML10a]. They considered restarting automata that serve as a formal model

for the Functional Generative Description (FGD), that is, a dependancy based descriptive

system based on the notion of Analysis by Reduction. This framework includes a four step

analyzation of sentences in Czech. In the �rst three steps a given input is annotated with

linguistic categories such as morphological and syntactical informations, with the aim of

disambiguation. Then this (at least in principle) disambiguated sentence is translated by

Analysis by Reduction into a tectogrammatical representation, that is, a dependency tree

(so to say, a kind of semantic structure). The above authors have shown that restarting

automata are capable of mirroring this enriched form of Analysis by Reduction (applied

before the fourth step), where in [PML10b, PML10a, LMP10] a type of restarting au-

tomaton is suggested which additionally outputs a dependency tree like structure. Hence,

general investigations on restarting automata with output (i.e. restarting transducers) are

mandatory.

Open Problems

Finally, we present a list of questions left open throughout this work as well as some

suggestions on resolving them. The order of the di�erent problems stated here mirrors the

grade of attraction to the author.

• Is the inclusion Rel(det-RWW-Td) ⊆ Rel(det-RRWW-Td) presented in Figure 4.2

proper? It is well known that this question has to be answered negatively for the

corresponding types of automata. However, the proof does not carry over to trans-

ducers. The equivalence L(det-RWW) = L(det-RRWW) of the language classes is a

direct consequence of the fact that both types of automata characterize the Church-

Rosser languages. A summary of this topic can be found in [Nie02]. There the

author mainly showed that the classical model for the Church-Rosser languages,

165

Conclusion

the shrinking deterministic two pushdown automaton (sDTPDA for short), coincides

with its length-reducing counterpart (lrDTPDA for short). Additionally a det-RWW-

automaton can simulate a lrDTPDA, and a det-RRWW-automaton can be simulated

by a sDTPDA.

For our purposes it seems to be inappropriate to extend these proofs in terms of

transducers, as it is not clear whether for a transducer (restarting or pushdown)

being shrinking instead of being length-reducing does not lead to more complicated

transductions. For that note that a shrinking restarting transducer can be obtained

from the de�nition of the shrinking restarting automaton, that is, such a device has

the additional ability to rewrite according to a weight function (see [JO07]). Recall

that �normal� restarting transducers are only able to apply length-reducing rewrite

steps. In fact, we suspect that shrinking is more powerful than length-reducing

in terms of deterministic RRWW-transducers. This guess is substantiated by the

following simple counting argument. On a given input of length n, a shrinking

restarting transducer of this type is able to perform k · n many restarts, where k

depends on the used weight function. Clearly, non-shrinking transducers can only

perform n restarts. If it is possible to encode the additional number of restarts in a

meaningful output, the so-de�ned relation classes do not coincide.

Furthermore, returning to the actual question, we might show the equivalence di-

rectly. Thus, a det-RWW-Td has to be constructed that simulates a det-RRWW-Td.

Here the method of choice would be to force the det-RWW-Td to collect all the in-

formation that can occur in a right-computation37 of a det-RRWW-Td and verify it

within the tail of its computation. This works for automata, as it is well known

that these types of machines are weakly monotone. A proof which uses the above

technique can be found for instance in [Sch10]. Unfortunately, this technique does

not carry over to restarting transducers, as it is not possible for a det-RWW-Td to

collect additionally all the outputs produced during all the right-computations of a

det-RRWW-Td and outputting them in the tail of its own computation. Hence, a

more involved technique seems to be needed, such as a preprocessing of the input

from right to left by using some compression arguments in order to collect all infor-

mations on possible right-computations �rst. However, after presenting a sketch of

the thoughts spent on this question, we are still not quite sure about the answer.

37Here a right-computation denotes the part of one cycle of a RR(W)(W)-machine that follows after
rewriting.

166

Conclusion

• Is there a (non-trivial) witness relation between Rel(lr-T/O) and Rel(RRWW-Td)?

Recall from Chapter 5 that there is a trivial relation R with R /∈ Rel(lr-T/O) and

R ∈ Rel(RRWW-Td), where simply the empty word is mapped to several non-empty

outputs. Nevertheless, when we restrict the search for a witness to relations, where

the input is at least of length two, the problem becomes di�cult. Although we

strongly suspect that both classes can be non-trivially separated, we do not even have

a candidate. We assume that �nding such a witness might be promising for another

open question; do the classes Rel(RRWW-Td) and Rel(RWW-Td) coincide or not?

The reason is that a technique that proves a relation to be in Rel(RRWW-Td) and

not to be in Rel(lr-T/O) might be a useful framework in the general context of rela-

tions de�ned by regular language controlled string rewriting systems. Furthermore,

observe that Rel(RRWW-Td)
?
= Rel(RWW-Td) is an instance of the longstanding

open question L(RRWW)
?
= L(RWW) for the corresponding types of restarting au-

tomata (e.g. posed in [JMPV98]). Therefore, getting some new arguments for the

�rst question might also bring us closer to answering L(RRWW)
?
= L(RWW).

• This point generally concerns closure properties and decision problems of restarting

transducers, as they are only sparsely studied in the present thesis. In particu-

lar, except for prop-det-R(1)-transducers that output only single symbols (cf. Corol-

lary 4.4.9), we have shown in Section 4.4 that all other types of restarting transducers

considered in this work are not closed under composition. As mentioned before, com-

position is a crucial property in certain applications. Hence, are there any types of

restarting transducers that are closed under composition? Furthermore, the composi-

tion operation itself might help to put certain types of restarting transducers, which

are not taken into account yet, in relation to well-known classes of transductions.

For instance, we suspect that general non-forgetting restarting transducer are closed

under composition with some length-bounded subclasses of the rational relations.

A proof for this seems quite obvious; a �nite state transducer is simply simulated

in the �nite control of the non-forgetting machine. Hence, according to results on

composing pushdown functions with certain types of rational relations, which were

presented by Cho�rut and Culik II [CI83], such investigations seem valuable to derive

further classi�cation results for restarting transducers.

Up to now, we only know little about relation classes between dGSMF and DPDF,

which are de�ned by restarting transducers. According to Section 2.3 equivalence

is decidable for the class of deterministic pushdown functions (see [Sén99]). Hence,

167

Conclusion

are there further relation classes that are de�ned by restarting transducers, for which

equivalence is decidable?

• A motivation of this work is linguistics. Further, we have shown that from a theo-

retical point of view restarting transducers with window size one o�er some suitable

properties for applications in natural language processing. Thus, is there a rea-

sonable example from linguistic applications that proves the worthiness of restarting

transducers with window size one in this context?

• Last but not least, we have seen in Subsection 4.3.3 that R(1)-transducers are able

to map regular languages to context-free ones. Moreover, we assume that this result

even extends to context-sensitive languages. This seems surprising, at �rst sight, as

it is well known that R(1)-automata characterize the regular languages. Obviously,

the mentioned results are based on the fact that these types of transducers are able to

delete symbols �anywhere� from the tape. This can be interpreted as the possibility

of moving the head freely. Therefore, the comparison of R(1)-transducers to two-

way �nite state transducers (e.g. exposed in [EY71]) seems to be promising, as both

machines show a similar behavior in terms of their non-preservation of language

classes.

Of course, the previous list is only a selection of questions left open throughout this work.

Additionally, besides the restrictions and extensions of restarting automata considered in

the present thesis, this research area includes a variety of conventional and unconventional

mechanisms based on this model, such as two-way restarting automata [Plá01], restarting

tree automata [Sta08], or cooperating distributed systems of (simple) restarting automata

[Mes08, NO12]. From a linguistic point of view the extension of restarting tree automata

to transducers, for instance, might be a good starting point for further research.

168

Bibliography

[AHU69] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. A General Theory of

Translation. Mathematical Systems Theory, 3(3):193�221, 1969.

[AU69] Alfred V. Aho and Je�rey D. Ullman. Properties of Syntax Directed Transla-

tions. J. Comput. Syst. Sci., 3(3):319�334, 1969.

[AU72] Alfred V. Aho and Je�rey D. Ullman. The Theory of Parsing, Translation, and

Compiling. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1972.

[Ber79] Jean Berstel. Transductions and Context-Free Languages. Leitfäden der ange-

wandten Mathematik und Mechanik. Teubner, 1979.

[BH77] Meera Blattner and Tom Head. Single-Valued a-Transducers. Journal of Com-

puter and System Sciences, 15(3):310 � 327, 1977.

[BO93] Ronald V. Book and Friedrich Otto. String-Rewriting Systems. Texts and

monographs in computer science. Springer, 1993.

[Cho77] Christian Cho�rut. Une Caracterisation des Fonctions Sequentielles et des Fonc-

tions Sous-Sequentielles en tant que Relations Rationnelles. Theor. Comput.

Sci., 5(3):325�337, 1977.

[CI83] Christian Cho�rut and Karel Culik II. Properties of Finite and Pushdown

Transducers. SIAM J. Comput., 12(2):300�315, 1983.

[CL03] Matteo Cavaliere and Peter Leupold. Evolution and Observation: A New

Way to Look at Membrane Systems. In Carlos Martín-Vide, Giancarlo Mauri,

Gheorghe Paun, Grzegorz Rozenberg, and Arto Salomaa, editors, Workshop

on Membrane Computing, volume 2933 of Lecture Notes in Computer Science,

pages 70�87. Springer, 2003.

169

Bibliography

[CL04] Matteo Cavaliere and Peter Leupold. Evolution and Observation � A Non-

Standard Way to Generate Formal Languages. Theoretical Computer Science,

321:233�248, 2004.

[CL06] Matteo Cavaliere and Peter Leupold. Observation of String-Rewriting Systems.

Fundam. Inform., 74(4):447�462, 2006.

[DW86] Elias Dahlhaus and Manfred K. Warmuth. Membership for Growing Context-

Sensitive Grammars is Polynomial. J. Comput. Syst. Sci., 33(3):456�472, 1986.

[Eil74] Samuel Eilenberg. Automata, Languages, and Machines, volume A. Academic

Press, Inc., Orlando, FL, USA, 1974.

[EM65] Calvin C. Elgot and Jorge E. Mezei. On Relations De�ned by Generalized

Finite Automata. IBM J. Res. Dev., 9(1):47�68, January 1965.

[EY71] Roger W. Ehrich and S. S. Yau. Two-Way Sequential Transductions and Stack

Automata. Information and Control, 18(5):404�446, 1971.

[FRR+10] Emmanuel Filiot, Jean-François Raskin, Pierre-Alain Reynier, Frédéric Servais,

and Jean-Marc Talbot. Properties of Visibly Pushdown Transducers. In MFCS,

pages 355�367, 2010.

[GR66] Seymour Ginsburg and Gene F. Rose. Preservation of Languages by Trans-

ducers. Information and Control, 9(2):153�176, 1966.

[GR68] Seymour Ginsburg and Gene F. Rose. A Note on Preservation of Languages by

Transducers. Information and Control, 12(5/6):549�552, 1968.

[Har78] Michael. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1978.

[HL10] Norbert Hundeshagen and Peter Leupold. Transducing by Observing. In

Henning Bordihn, Rudolf Freund, Markus Holzer, Thomas Hinze, Martin

Kutrib, and Friedrich Otto, editors, NCMA, volume 263 of books@ocg.at, pages

85�98. Österreichische Computer Gesellschaft, 2010.

[HL12] Norbert Hundeshagen and Peter Leupold. Transducing by Observing and

Restarting Transducers. In Rudolf Freund, Markus Holzer, Bianca Truthe,

and Ulrich Ultes-Nitsche, editors, NCMA, volume 290 of books@ocg.at, pages

93�106. Österreichische Computer Gesellschaft, 2012.

170

Bibliography

[HL13] Norbert Hundeshagen and Peter Leupold. Transducing by Observing Length-

Reducing and Painter Rules. Submitted for publication, January 2013.

[HO11] Norbert Hundeshagen and Friedrich Otto. Characterizing the Regular Lan-

guages by Nonforgetting Restarting Automata. In Giancarlo Mauri and Alberto

Leporati, editors, Developments in Language Theory, volume 6795 of Lecture

Notes in Computer Science, pages 288�299. Springer, 2011.

[HO12a] Norbert Hundeshagen and Friedrich Otto. Characterizing the Rational Func-

tions by Restarting Transducers. In Adrian Horia Dediu and Carlos Martín-

Vide, editors, LATA, volume 7183 of Lecture Notes in Computer Science, pages

325�336. Springer, 2012.

[HO12b] Norbert Hundeshagen and Friedrich Otto. Restarting Transducers, Regular

Languages, and Rational Relations. Submitted for publication, June 2012.

[HOV10] Norbert Hundeshagen, Friedrich Otto, and Marcel Vollweiler. Transductions

Computed by PC-Systems of Monotone Deterministic Restarting Automata. In

Michael Domaratzki and Kai Salomaa, editors, CIAA, volume 6482 of Lecture

Notes in Computer Science, pages 163�172. Springer, 2010.

[HU69] John E. Hopcroft and Je�rey D. Ullman. Formal Languages and Their Relation

to Automata. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 1969.

[HU79] John E. Hopcroft and Je�rey D. Ullman. Introduction to Automata Theory,

Languages and Computation. Addison-Wesley, 1979.

[IC73] Karel Culik II and Rina S. Cohen. LR-Regular Grammars - an Extension of

LR(k) Grammars. J. Comput. Syst. Sci., 7(1):66�96, 1973.

[JL02] Tomasz Jurdzinski and Krzysztof Lorys. Church-Rosser Languages vs. UCFL.

In Peter Widmayer, Francisco Triguero Ruiz, Rafael Morales Bueno, Matthew

Hennessy, Stephan Eidenbenz, and Ricardo Conejo, editors, ICALP, volume

2380 of Lecture Notes in Computer Science, pages 147�158. Springer, 2002.

[JM09] Dan Jurafsky and James H. Martin. Speech and Language Processing: An

Introduction to Natural Language Processing, Computational Linguistics and

Speech Recognition. Prentice Hall series in arti�cial intelligence. Prentice Hall,

Pearson Education International, Englewood Cli�s, NJ, 2. edition, 2009.

171

Bibliography

[JMOP06] Tomasz Jurdzinski, Frantisek Mráz, Friedrich Otto, and Martin Plátek. Degrees

of Non-Monotonicity for Restarting Automata. Theor. Comput. Sci., 369(1-

3):1�34, 2006.

[JMPV95] Petr Jancar, Frantisek Mráz, Martin Plátek, and Jörg Vogel. Restarting Au-

tomata. In Horst Reichel, editor, FCT, volume 965 of Lecture Notes in Com-

puter Science, pages 283�292. Springer, 1995.

[JMPV97] Petr Jancar, Frantisek Mráz, Martin Plátek, and Jörg Vogel. On Restart-

ing Automata with Rewriting. In Gheorghe Paun and Arto Salomaa, editors,

New Trends in Formal Languages, volume 1218 of Lecture Notes in Computer

Science, pages 119�136. Springer, 1997.

[JMPV98] Petr Jancar, Frantisek Mráz, Martin Plátek, and Jörg Vogel. Di�erent Types of

Monotonicity for Restarting Automata. In Vikraman Arvind and Ramaswamy

Ramanujam, editors, FSTTCS, volume 1530 of Lecture Notes in Computer

Science, pages 343�354. Springer, 1998.

[JMPV99] Petr Jancar, Frantisek Mráz, Martin Plátek, and Jörg Vogel. On Monotonic

Automata with a Restart Operation. Journal of Automata, Languages and

Combinatorics, 4(4):287�312, 1999.

[JO07] Tomasz Jurdzinski and Friedrich Otto. Shrinking Restarting Automata. Int. J.

Found. Comput. Sci., 18(2):361�385, 2007.

[KK94] Ronald M. Kaplan and Martin Kay. Regular Models of Phonological Rule

Systems. Computational Linguistics, 20(3):331�378, 1994.

[Kle56] Steven C. Kleene. Representation of Events in Nerve Nets and Finite Au-

tomata. In Automata studies, Annals of mathematics studies, no. 34, pages

3�41. Princeton University Press, Princeton, N. J., 1956.

[KO12] Martin Kutrib and Friedrich Otto. On the Descriptional Complexity of the Win-

dow Size for Deterministic Restarting Automata. In Nelma Moreira and Rogério

Reis, editors, CIAA, volume 7381 of Lecture Notes in Computer Science, pages

253�264. Springer, 2012.

[KR08] Martin Kutrib and Jens Reimann. Succinct Description of Regular Languages

by Weak Restarting Automata. Inf. Comput., 206(9-10):1152�1160, 2008.

172

Bibliography

[LMP10] Markéta Lopatková, Frantisek Mráz, and Martin Plátek. Towards a Formal

Model of Natural Language Description Based on Restarting Automata with

Parallel DR-Structures. In Dana Pardubská, editor, ITAT, volume 683 of CEUR

Workshop Proceedings, pages 25�32. CEUR-WS.org, 2010.

[LPK05] Markéta Lopatková, Martin Plátek, and Vladislav Kubon. Modeling Syntax of

Free Word-Order Languages: Dependency Analysis by Reduction. In Václav

Matousek, Pavel Mautner, and Tomás Pavelka, editors, TSD, Lecture Notes in

Computer Science, pages 140�147. Springer, 2005.

[LPS07] Markéta Lopatková, Martin Plátek, and Petr Sgall. Towards a Formal Model

for Functional Generative Description: Analysis by Reduction and Restarting

Automata. Prague Bull. Math. Linguistics, 87:7�26, 2007.

[McK64] J. D. McKnight, Jr. Kleene Quotient Theorems. Paci�c J. Math., 14:1343�1352,

1964.

[Mea55] George H. Mealy. A Method for Synthesizing Sequential Circuits. Bell System

Technical Journal, 34(5):1045�1079, 1955.

[Mes08] Hartmut Messerschmidt. CD-Systems of Restarting Automata. PhD thesis,

Fachbereich Elektrotechnik/Informatik, Universität Kassel, 2008.

[MNO88] Robert McNaughton, Paliath Narendran, and Friedrich Otto. Church-Rosser

Thue Systems and Formal Languages. J. ACM, 35(2):324�344, 1988.

[MO11] Hartmut Messerschmidt and Friedrich Otto. A Hierarchy of Monotone De-

terministic Non-Forgetting Restarting Automata. Theory Comput. Syst.,

48(2):343�373, 2011.

[Moh97] Mehryar Mohri. Finite-State Transducers in Language and Speech Processing.

Computational Linguistics, 23(2):269�311, 1997.

[Moo56] Edward F. Moore. Gedanken Experiments on Sequential Machines. In Au-

tomata Studies, pages 129�153. Princeton U., 1956.

[Mrá01] Frantisek Mráz. Lookahead Hierarchies of Restarting Automata. Journal of

Automata, Languages and Combinatorics, 6(4):493�506, 2001.

173

Bibliography

[MS04] Hartmut Messerschmidt and Heiko Stamer. Restart-Automaten mit mehreren

Restart-Zuständen. In H. Bordihn, editor, Workshop 'Formale Sprachen in der

Linguistik' und 14. Theorietag 'Automaten und Formale Sprachen', Proc., pages

111�116, Institut für Informatik, Universität Potsdam, 2004.

[Nie02] Gundula Niemann. Church-Rosser Languages and Related Classes. PhD thesis,

Fachbereich Mathematik/Informatik, Universität Kassel, 2002.

[Niv68] Maurice Nivat. Transductions des Langages de Chomsky. Ann. Inst. Fourier,

18(1):339�456, 1968.

[NO99] Gundula Niemann and Friedrich Otto. Restarting Automata, Church-Rosser

Languages, and Representations of R.E. Languages. In Grzegorz Rozenberg and

Wolfgang Thomas, editors, Developments in Language Theory, pages 103�114.

World Scienti�c, 1999.

[NO00] Gundula Niemann and Friedrich Otto. Further Results on Restarting Au-

tomata. In Masami Ito and Teruo Imaoka, editors, Words, Languages & Com-

binatorics, pages 352�369, 2000.

[NO01] Gundula Niemann and Friedrich Otto. On the Power of RRWW-Automata. In

Masami Ito, Gheorghe Paun, and Sheng Yu, editors, Words, Semigroups, and

Transductions, pages 341�355. World Scienti�c, 2001.

[NO12] Benedek Nagy and Friedrich Otto. On CD-Systems of Stateless Deterministic

R-Automata with Window Size One. J. Comput. Syst. Sci., 78(3):780�806,

2012.

[Ott] Friedrich Otto. Formale Sprachen und Automaten. Skript zur gleichnamigen

Vorlesung, Universität Kassel.

[Ott06] Friedrich Otto. Restarting Automata. In Zoltán Ésik, Carlos Martín-Vide, and

Victor Mitrana, editors, Recent Advances in Formal Languages and Applica-

tions, volume 25, pages 269�303. Springer, 2006.

[Ott10] Friedrich Otto. On Proper Languages and Transformations of Lexicalized Types

of Automata. In M. It	o, Y. Kobayashi, and K. Shoji, editors, Automata, Formal

Languages and Algebraic Systems - Proceedings of A�as 2008, pages 201�222.

World Scienti�c, 2010.

174

Bibliography

[Plá01] Martin Plátek. Two-Way Restarting Automata and J-Monotonicity. In Leszek

Pacholski and Peter Ruzicka, editors, SOFSEM, volume 2234 of Lecture Notes

in Computer Science, pages 316�325. Springer, 2001.

[PLO03] Martin Plátek, Markéta Lopatková, and Karel Oliva. Restarting Automata:

Motivations and Applications. In M. Holzer, editor, 13. Theorietag 'Automaten

und Formale Sprachen', Proc., pages 90 � 96, Technische Universität München,

2003.

[PML10a] Martin Plátek, Frantisek Mráz, and Markéta Lopatková. (In)Dependencies

in Functional Generative Description by Restarting Automata. In Henning

Bordihn, Rudolf Freund, Markus Holzer, Thomas Hinze, Martin Kutrib, and

Friedrich Otto, editors, NCMA, volume 263 of books@ocg.at, pages 155�170.

Austrian Computer Society, 2010.

[PML10b] Martin Plátek, Frantisek Mráz, and Markéta Lopatková. Restarting Automata

with Structured Output and Functional Generative Description. In Adrian

Horia Dediu, Henning Fernau, and Carlos Martín-Vide, editors, LATA, volume

6031 of Lecture Notes in Computer Science, pages 500�511. Springer, 2010.

[Rei07] Jens Reimann. Beschreibungskomplexität von Restart-Automaten. PhD thesis,

Naturwissenschaftliche Fachbereiche, Justus-Liebig-Universität Giessen, 2007.

[RS59] Michael O. Rabin and Dana Scott. Finite Automata and Their Decision Prob-

lems. IBM J. Res. Dev., 3(2):114�125, April 1959.

[RS96] Emmanuel Roche and Yves Schabes. Introduction to Finite-State Devices in

Natural Language Processing. Technical report, Mitsubishi Electric Research

Laboratories, 1996.

[RS97] Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Languages,

Vol. 1: Word, Language, Grammar. Springer-Verlag New York, Inc., New York,

NY, USA, 1997.

[RS08] Jean-François Raskin and Frédéric Servais. Visibly Pushdown Transducers. In

ICALP (2), pages 386�397, 2008.

[Sak09] Jacques Sakarovitch. Elements of Automata Theory. Cambridge University

Press, 2009.

175

Bibliography

[San04] Nicolae Santean. Bimachines and Structurally-Reversed Automata. Journal of

Automata, Languages and Combinatorics, 9(1):121�146, 2004.

[Sch75] Marcel Paul Schützenberger. Sur les Relations Rationnelles. In H. Brakhage,

editor, Automata Theory and Formal Languages, volume 33 of Lecture Notes in

Computer Science, pages 209�213. Springer, 1975.

[Sch10] Natalie Schluter. On Lookahead Hierarchies for Monotone and Deterministic

Restarting Automata with Auxiliary Symbols (Extended Abstract). In Yuan

Gao, Hanlin Lu, Shinnosuke Seki, and Sheng Yu, editors, Developments in

Language Theory, volume 6224 of Lecture Notes in Computer Science, pages

440�441. Springer, 2010.

[Sén99] Géraud Sénizergues. T(A) = T(B)? In Jirí Wiedermann, Peter van Emde Boas,

and Mogens Nielsen, editors, ICALP, volume 1644 of Lecture Notes in Computer

Science, pages 665�675. Springer, 1999.

[Sta08] Heiko Stamer. Restarting Tree Automata. PhD thesis, Fachbereich Elektrotech-

nik/Informatik, Universität Kassel, 2008.

[VO12] Marcel Vollweiler and Friedrich Otto. Systems of Parallel Communicating

Restarting Automata. In Rudolf Freund, Markus Holzer, Bianca Truthe, and

Ulrich Ultes-Nitsche, editors, NCMA, volume 290 of books@ocg.at, pages 197�

212. Österreichische Computer Gesellschaft, 2012.

176

	Introduction
	Preliminaries
	Words, Languages and Relations
	Restarting Automata
	Restarting Automata with Window Size One

	Relation Classes and Transducers

	Relations Associated to Restarting Automata and to Parallel Communicating Systems
	Input/Output-Relations and Proper-Relations
	Definitions and Examples
	Input/Output- and Proper-Relations of Monotone Restarting Automata

	Parallel Communicating Systems of Restarting Automata
	Definition
	On Deterministic and Monotone PC-Systems

	Restarting Transducers
	Definition, Examples, and General Observations
	General Observations

	Monotone Restarting Transducers
	Upper Bound
	Monotone Restarting Transducers and Pushdown Functions

	Restarting Transducers with Window Size One
	Hierarchy Results
	Characterizing Classes of Rational Relations
	Summary

	Closure Properties
	Decision Problems

	Transducing by Observing - A Similar Approach
	Definition and Examples
	String-Rewriting Systems
	Observers
	Transducing Observer Systems

	Length-Reducing Systems
	Painter Systems

	Conclusion
	Bibliography

