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Abstract

The aim of this work is to find simple formulas for the moments y,, for all families of
classical orthogonal polynomials listed in the book by Koekoek, Lesky and Swarttouw [30].
The generating functions or exponential generating functions for those moments are given.
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Chapter 1

Introduction

The xyz-axes of three-dimensional space are pairwise orthogonal with each other. This is
very convenient since for that reason many formulas are extremely simple. Every point of
three-dimensional space is written as linear combination of such orthogonal coordinates.
In a similar fashion, many functions can be written as linear combinations of orthogonal
polynomials which play the role of the coordinates. For this reason orthogonal polynomials
play a very prominent role in applications.

Monic polynomial families orthogonal with respect to the measure dua(x)

b lif n=m
/ Pn(x)Pm(x)d“(x) - kn 51/”;1, kn # O, 57”71 - ,h,m S IN,
a 0if n #m

b
are given explicitly in terms of the moments p,, = / x"da(x), n >0, by [49]
a

Ho M1 -+ Hn
I N
1
P _ . S
n (X) dnfl 7
Hn—1 Hnt1 " Hon—1
1 x - X"
where
Ho M1 -+ Hn
L R
d, = : : : : #0,n>0.
Hn—1 Hn - Hon-1
Un HUn+1-°° Hon
The previous representation shows that the moments characterize fully the orthogonal fam-
ily (Py)n.
Also, the moments are involved in the representation of the Stieltjes series
_y
S(x) - n;J X1’

which is useful for the characterization of families of orthogonal polynomials via the Riccati
equation and also for the determination of the measure da(x) by means of the Stieltjes



inverse formula [48]
t

a(t) —a(s) = _7177yli>%1+ i Im(S(x +iy)dx.

For the moments (y,,),en of an orthogonal family, the generating function is defined by

Mz

Go(z) = Y  unz",

n=0

while the exponential generating function is defined by
i z
="l

and the g-exponential generating functions are defined by

_ = Zn
G(2) 7,1;0”" @9)n’
Gs(z) =Y [5] ,

n=0 q:

Generating functions, exponential generating functions and g-exponential generating func-
tions contain the information of all moments of the orthogonal polynomial family at the
same time.

Despite the important role that the moments play in various topics of orthogonal poly-
nomials and applications to other domains such as statistics and probability theory, no ex-
haustive repository of moments for the well-known classical orthogonal polynomials can
be found in the literature. The book by Koekoek, Lesky and Swarttouw [30] which is one of
the best and most famous documents containing almost all kinds of formulas and relations
for various classical orthogonal polynomials does not provide information about the mo-
ments. It becomes therefore imperative to investigate this topic in order to complete such
missing important information.

Classical orthogonal polynomials of a continuous, discrete and g-discrete variable are
known to be orthogonal with respect to a weight function p satisfying respectively the
Pearson, the discrete Pearson and the g-discrete Pearson equation

(0(x)p(x)) = T(x)p(x), (L1)
A (e(x)p(x)) = T(x)p(x), (12)
Dy (0(x)p(x)) = T(x)p(x), (13)

where o(x) = ax? + bx + c is a non-zero polynomial of degree at most two, T(x) =dx+e
is a first degree polynomial, Dy is the Hahn operator D, f(x) = Hgx)—fx), g#1,and Ais

S @-Dx
the forward difference operator Af(x) = f(x+1) — f(x). "
In addjition, classical orthogonal polynomials of a continuous, discrete and g-discrete
variable satisfy the following second-order hypergeometric differential, difference or g-
difference equations, respectively,

o(x)y" (x) + T(x)y'(x) + Auy(x) =0, (1.4)
a(x)AVy(x) + t(x)Ay(x) + Any(x) =0, (1.5)
U(x)DqD%y(x) +7(x)Dgy(x) + Auqy(x) =0, (1.6)

where A, and )\n,q are constants given by

Ap=-—n((n—1)a+d), Ang=—aln]yln—1]g—dnlg,



with [n],; = 121" and V is the backward difference operator

1—q/
Vi(x)=fx) = flx=1).

The corresponding moments of these three classical families (called here “very classical
orthogonal polynomials”) satisfy a second-order recurrence relation of the form

Hunr1 = a(n)pn +b(n)pn—1,

where a(n) and b(n) are rational functions of n or g".
There are other classes of classical orthogonal polynomials whose variable x(s) is a
quadratic or g-quadratic lattice of the form

x(s) =c1q °+c2q° +c3, (1.7)
or
x(s) = cy 8% +c55 + o (1.8)

These polynomials are known to satisfy a second-order divided-difference equation [8),
17]
¢(x(s)) DI Pu(x()) + (x(5)) SxDxPu(x(s)) + Au Pa(x(s)) =0, (1.9)

where A, is a constant term, ¢ and ¥ are polynomials of degree at most two and of degree
one, respectively, and the divided-difference operators D, and Sy are defined by [17]

flx(s +3)) = f(x(s = 3)) flx(s+ ) +f(x(s—3))

D f(x(s) = 2 AT S () = ;

(1.10)
Combining all the previous orthogonal families leads to the families of the so-called Askey-
Wilson scheme, defined explicitly in [30].

The work is presented in five chapters.
Chapter 1 is the introduction.

In Chapter 2, we give many definitions and recall known and useful results concern-
ing special functions and orthogonal polynomials. Some useful difference operators are
introduced and some of their properties are proved.

In Chapter 3, using some classical well known formulas, we compute canonical mo-
ments of some orthogonal polynomials, next, interesting generating functions for some of
these moments are provided. It is seen for example that the function

22/4 ad Zn
Vre it =) n—
="

generates the Hermite moments that are

1+ (=) n+1
Hn = (2 )I,(n

or the function ( )
I'a+1 = z"
- Z Hn—y
(1—2z) = n!
generates the canonical Laguerre moments that are

pn =T(n+a+1).

It is not always easy to get those canonical moments by direct computations.



In Chapter 4, we provide results for the inversion problem for all the polynomials in the
Askey scheme. These inversion formulas will enable in Chapter 5 to get explicit represen-
tations of generalized moments.

In Chapter 5, we compute explicitly canonical moments for all the fifty one polynomials
listed in [30]. The fundamental idea here is to use Theorem [50} which gives a link between
the inversion coefficients and the generalized moments combined with the obvious links
(see pages [13| and between canonical and generalized moments to get the canonical
moments.

In order to get those links, we have proved Taylor formulas with respect to particular
bases, for example:

n k
flx)=1Y% (Dski!)(o)ék(x,s), see page 52

k=0
_ - (DR k
f(x) = kgo % DFf (z (11 + 2)) 1k(a,x), see page[53)
where
Def(x) = A];(;l((;))), u(x) = —x(x+e),
and

Df(x) = f (er;) - (x ;) , with i =-1.
Combining these results we get for example the following explicit formulas for the
canonical moments:

e canonical Wilson moments (see page

Fa+b)I'(a+c)T(b+c)I'(b+d)T(c+d)

Hn =21 T(a+b+c+d)
n K (—k) (a+b)(a+c)(a+d) (—2a—2k+20) 2
k— 12"
nglg AL (atbtctdr  (—2a—2k+Dp, “HE=D

e canonical Racah moments (see page

= o 35 D M (0 + 1B+ 4 Det 1)

= ! (e +B+2)

4

where
(=BIn(r+d+2)Nn

(=B+7r+1n(+1)N
(—a+d)n(y++2)N
(—DC+’)/+5+1)N(5+1)N
(a+B+2)N(—0)N
=3+ Dn(B+ 1)n

The contribution of this work can be seen at three levels:

if a+1=-N

o = if p+o+1=—N

if y+1=—-N.

* the work is a good database for the inversion formula of all the orthogonal families
listed in [30]; the inversion formulas

— for the quadratic case (the Wilson polynomials, the Continuous Dual Hahn poly-
nomials, the Racah polynomials, the Continuous Hahn polynomials, the Dual
Hahn polynomials and the Meixner Pollaczek polynomials),



— for the g-quadratic case (the Continuous g-Hahn polynomials, the Dual g-Hahn
polynomials, the Al-Salam-Chihara polynomials, the g-Meixner-Pollaczek poly-
nomials, the Continuous g-Jacobi polynomials, the continuous g-Ultraspherical
polynomials, the Continuous g-Legendre polynomials, the Dual g-Krawtchouk
polynomials, the Continuous big g-Hermite polynomials and the Continuous
g-Laguerre polynomials)

are new,

¢ the work is a good database for all the moments of all the orthogonal families listed
in [30]; as far as we know, all the generalized moments given in Chapter 5 are new.
Concerning the canonical moments

— for the classical continuous orthogonal polynomials, two new representations
for the Jacobi canonical moments are given;

— for the classical discrete orthogonal polynomials, the representations of the
canonical Hahn moments and the canonical Krawtchouk moments we have given
are new;

— for the classical g-discrete orthogonal polynomials, the representations of the
canonical Big g-Jacobi moments, the canonical g-Hahn moments, the canoni-
cal Big g-Laguerre moments, the canonical g-Meixner moments, the canonical
Quantum g-Krawtchouk moments, the canonical g-Krawtchouk moments and
the canonical Affine g-Krawtchouk moments we have given are new.

— for the classical quadratic orthogonal polynomials, the representations of the
canonical Wilson moments, the canonical Racah moments, the canonical Con-
tinuous Dual Hahn moments, the canonical Continuous Hahn moments, the
canonical Dual Hahn moments, the canonical Meixner-Pollaczek moments are
new.

— for the classical g-quadratic orthogonal polynomials, as far as we know, we
have encountered only the canonical Askey-Wilson moments in the literature,
the rest seems to be new;

¢ important generating functions for those moments are provided.



Chapter 2

Definitions and Miscellaneous
Relations

2.1 Special functions

2.1.1 Gamma and Beta functions

Definition 1. [30} P. 3] The Gamma function is defined by
I'(z) :/ #le7tdt, z € C, Re(z) > 0. @2.1)
0

Note that for a complex number z such that Re(z) > 0,
['(z+1) =2zI(z) (2.2)
and particularly, for a nonnegative integer n, the following relation is valid
I'(n+1)=nl

Note that formula (2.2) is used to extend progressively the validity of the Gamma function
to any complex number which is not a negative integer by writing

o= TEHD),

Definition 2. [30) P. 3] The Beta function is defined by
1
B(z,w) = / 11— *'dt z,w e C, Re(z) > 0, Re(w) > 0.
J0
The connection between the Beta function and the Gamma function is given by the relation

B(x,y) = m, Re(x) >0, Re(y)>0.
2.1.2 Hypergeometric functions
Definition 3. [30, P. 4] The Pochhammer symbol or shifted factorial is defined by
(a)g:=1 and (a),=a(a+1)(a+2)---(a+n—-1), a#0 n=123,....
The following notation (falling factorial) will also be used:
=1 and a"=a(a—-1)a—-2)---(a—n+1), n=1,23,....

It should be noted that the Pochhammer symbol and the falling factorial are linked as fol-
lows:



2.1 Special functions 7

Definition 4. [30] P. 5] The hypergeometric series ,F; is defined by
ay, - ,4ar

rFs
bl/ Tty bs

(a1,...,a:)n = (a1)n - - (ar)n-

where

An example of a summation formula for the hypergeometric series is given by the binomial
theorem ([30, P. 71)

—z) = i (Z)z” =(1+2)" |z|]<1, (2.3)

n=0

where

2.1.3 Basic hypergeometric functions

An important extension of the hypergeometric function is the g-hypergeometric function
(general references for g-hypergeometric functions are [19], [3] or [50], [46]).

Definition 5. [30] P. 11] The g-variant of the shifted factorial is defined by
(ﬂ,’ q)O = 1/
(q)n=01—-a)1—aq) - (1—ag"™h), n=1,2,....

When n = oo, we set
[ee]

(@4;9)0 = ljo(l —aq"), |q] < 1.

Definition 6. [30, P. 15] The g-hypergeometric function denoted by »¢s is defined by
ay,az,- - ,ar

r47s
bl/bZI' o /bs

(a1,a2, -, 0m;q)n = (a1, 9)n (a2, Q)n - -+ (Am; §)n-

(9, 9)n

. B 00 (ﬂlz"' /ﬂnﬂ)n n () 1+s—r N
qlz) _r;)(bl,,bs,q>n |:(_]') q2j| 7

where

We will also use the following common notations

[a]qzli , acC, g#1, (2.4)

LnL GO @G @nm’ = (2.5)

called the g-bracket and the g-binomial coefficient, respectively.
A g-analogue of the binomial theorem (2.3) is called the g-binomial theorem [30, P. 16]:

5 (@ 0)n o _ (1% 900 x| <1, 0< g <1. (2.6)



2.2 Difference operators 8

Some consequences of the g-binomial theorem are the Euler formulas:

2 x" 1
Z (@ Dn = (% 0)eo” x| <1, |ql <1, (2.7)
n=0 ’ s )o0
© (_1)" (g)xn
3 ELIEE (g, gl <1, )
n=0 4

The Ramanujan summation formula [3, P. 502] is also valid for || < 1and |ba~!| < |x| < 1,

5 (@ 0)n n _ (0%0)c0(9/0%; 1) co (43 7)o (/8 7)o (2.9)
10 (b:)n (4;9)oo (b/ 2, 9)c0 (b3 7)o (/5 9)c0
Another important formula is the Jacobi triple product identity [3] P. 497]
> k
Y (159 = (5 )e(@/x )o@ D), lol <1, xeC—{0}.  (210)
k=—o00

In order to deal with some families of orthogonal polynomials and other basic hyper-
geometric functions, the following notation (see [28])

(xoy)y=@x-—y(x—qy)---(x—q"y), (2.11)

which is the so-called g-power basis, will be used.

2.1.4 g-Exponential functions

For the exponential function, we have two different natural g-extensions, denoted by e, (z)
and E;(z) which can be defined by [30, P. 22]

0 o n
eq(z) == 140 9.9 =) —— 0<ll<1 [z]<1, (212)
_ n=0 (q’ Q)n
and
- x40
Eq(z) == o¢o .-z =Y, ", 0<|q| <1 (2.13)
_ n=0 (@:9)n
Note that by Euler’s formulas and (2.8), we have
1
e;(x) = , and E;(x) = (—2;0)co.
17( ) (Z;q)oo '7( ) ( ‘1)

These g-analogues of the exponential function are therefore related by

eq(z)Eq(—2z) = 1.

2.2 Difference operators

2.21 The operators A and V

Definition 7. Let f be a function of the variable x. The forward and the backward operators A and
V are, respectively, defined by:

Af(x)=f(x+1)—f(x),  Vf(x)=f(x)—f(x—1).
Form € N* ={1,2,3,...}, one sets

A f(x) = A(AT £(x)).



2.2 Difference operators 9

It should be noted that A and V transform a polynomial of degree n (n > 1) in x into a
polynomial of degree # — 1 in x and a polynomial of degree 0 into the zero polynomial.
The operator A fulfils the following properties

Proposition 8. Let f and g be two functions in the variable x, a and b be two complex numbers.
The following properties are valid.

1. Alaf(x) +bg(x)) =alAf(x) +bAg(x) (linearity);
2. Alf(x)g(x)] = fx +1)Ag(x) + g(x)Af(x)= f(x)Ag(x) +&(x + 1)Af(x), (product

rule);
] - )

Note that these operators play an essential role for orthogonal polynomials of a discrete
variable.

2.2.2 The operator D,
Definition 9. Let f be a function of the variable x. The q-difference operator Dy is defined as:

Dyf(x) = L =110

and Dy f(0) = f'(0) provided that f is differentiable at x = 0.
If m is a nonnegative integer, we have

Dyl f =D, (Dyf);  DYf = f.

The operator D, fulfils the following properties

if x #0,

Proposition 10. Let f and g be two functions in x, a and b be two complex numbers. The g-
difference operator Dy fulfil the following rules.

1. Dg(af(x) +bg(x)) = aDyf(x) +bDyg(x) (linearity);
2. Dy(f(x)g(x)) = f(qx)Dyg(x) + &(x)Dygf (x) = g(qx) Dy f(x) + §(x)Dgf(x) (product

rule);
f(x)\ _ 8(x)Daf(x) = f(x)Dyg(x) _ g(qx)Dyf (x) — f(qx)Dyg(x) ,
3. Dql )(g(x)> - g(x)g(gx) - 2(x)g (%) (quotient
rule).

One should note that the operator D; plays an important role for the polynomials of a
g-discrete variable.

2.2.3 The operators D and S

Definition 11. Let f be a function of the variable x. The difference operator D and its companion
operator S are defined as follows:

Df(x)=f<x+;>f<x;> Sf(x):f(”é);f("_é),

where i2 = —1.

The operator D transforms a polynomial of degree n (n > 1) in x into a polynomial of
degree n — 1 in x, and a polynomial of degree 0 into the zero polynomial. The operator S
transforms a polynomial of degree # in x into a polynomial of degree 7 in x.

Note that the operators D and S play an important role for the Continuous Hahn and the
Meixner-Pollaczek polynomials.



2.3 g-integration 10

2.2.4 The operators D and S

Definition 12. Let f be a function of the variable x. The difference operator D and its companion
operator S are defined as follows:

x 1\2) _ X — 2 i i
o) = LEEIDAEDY gy : ,

NI~

where i2 = —1.

The operator D transforms a polynomial of degree n (n > 1) in x? into a polynomial of
degree n — 1 in x2, and a polynomial of degree 0 into the zero polynomial. The operator S
transforms a polynomial of degree 7 in x? into a polynomial of degree n in x2.

Note that the operators D and S play an important role for the Wilson polynomials and the
Continuous Dual Hahn polynomials.

2.2.5 The operator D,

Definition 13. Let € be a complex number, u be the polynomial of the variable x defined by u(x) =
—x(x +¢€). Let f bea function of the variable x. We define the difference operator Dy as follows:

_ Af(u(x) _ flu(x)) = fu(x+1))
Def (u(x)) = Au(x) 2x+1+e ’

The operator D, transforms a polynomial of degree n (n > 1) in —x(x + ¢) into a polynomial
of degree n — 1in —x(x + ¢) and a polynomial of degree 0 into the zero polynomial.

Note that the operators D, plays an important role for the Racah and the Dual Hahn poly-
nomials.

2.2.6 The operators D, and S,

Definition 14. Let f be a function of the variable x(s). The difference operator Dy and its com-
panion operator Sy are defined as follows:

flx(s+3)) = fx(s = 3))
x(s+4)—-x(s-1)
where x(s) is a lattice defined by or (1.8).

The operators ID, and Sy play an important role for the polynomials of quadratic and g-
quadratic lattices.

fx(s+3)) + flx(s — 3))

1
Dy f(x(s)) = Sxf(x(s)) = 2 > 2,

2.3 g-integration

In this section, we recall the definition of the concept of the g-integration with the assump-
tion 0 < g < 1 and give some properties. More details can be found in [27], [19], [28] and
[43].

2.3.1 The g-integration in the interval (0;a),a > 0

Let f be a real function defined in the interval (0;a) and P;((0;a)) the g-partition of the
interval (0;a) defined by

Pe((0;a)) = {+- <ag"t! <ag" < --- < aq <a}.
For any integer N, consider the Riemann type sum
N

N
AN(f) = Y (aq" — ag"™) f(ag") = a(1—q) Z

n=0
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If the limit of Ay(f) when N — oo is finite, then f is said to be g-integrable and the g-
a
integral of f in the interval (0;a), denoted / f(s)dys, is given by
0

[} 7= Jim An(r) = a1 -9) 3" flag”) @14

2.3.2 The g-integration in the interval (2;0),a < 0

Let f be a real function defined in the interval (a;0) and P;((a;0)) the g-partition of the
interval (0;a) defined by

Py((1:0) ={a<ag< - <aq" <ag""' <..} ={ag",n € N}.

For any integer N, consider the Riemann type sum

M=

N
AN(f) =Y (ag"™" —ag™)f(aq") = —a(1 —q) Zoq”f (aq")

n=0

If the limit of Ay(f) when N — oo is finite, then f is said to be g-integrable and the g-
0
integral of f in the interval (a;0), denoted / f(s)dys, is given by
a

[ $5)gs = tim Ax() = ~al1-g) 3 (o). 215

N—oo

2.3.3 The g-integration in the interval (a;00),a > 0

Let f be a real function defined in the interval (a;c0) and P;((a;0)) the g-partition of the
interval (a; o) defined by

Py((@;0)) ={a<ag'<---<ag "' <..}={ag", n € N}

For any integer N, consider the Riemann type sum

N
AN(f) = Y (aqg " ' —aqg ") f(ag " V) =a(g”' - 1) Zoq’”f(aq 1

If the limit of Ay(f) when N — oo is finite, then f is said to be g-integrable and the g-
integral of f in the interval (a; o), denoted / f(s)dys, is given by

[ F6)ys = Jim An(r) =atg™ 1) T g7 Flag ) @16

2.3.4 The g-integration in the interval (—o0;a),a < 0

Let f be a real function defined in the interval (—oo;a) and P;((—o0;a)) the g-partition of
the interval (—co;a) defined by

Py((—o;a) ={a>ag ' > >ag" ' > ..} ={ag", n € N}.

For any integer N, consider the Riemann type sum

N
=Y (ag7" —aqg " V) f(ag ) = —a(q = 1) Y g " f(ag ™).

n=0 n=0
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If the limit of Ay(f) when N — oo is finite, then f is said to be g-integrable and the g-
a
integral of f in the interval (—oo;a), denoted / f(s)dys, is given by

[ Fs)dgs = lim An(f) = ~alg ™ 1) io 7" Flag ). 217)

N—o0

Remark 15. The g-integration is extended to the whole real line by using relations -2.17)
and the following rules

/'hf(s)dqs — /'Of(s)dqs + /Obf(s)d,,s Va,b € R
/aoof(s)dqs:/abf(s)dqs—l—/boof(s)dqs Va,beR, a<0,b>0
b a b

lwf(s)dqs:me(s)dqs+A F(s)dgs Va,b €R, a<0,b>0

/7 Z F(s)dgs = L F(s)dgs+ / " (s)dgs + /h " F(s)dgs Va,bER.

Like the usual integration, the g-integration enjoys several important properties. We
give some of them in the following proposition.

Proposition 16. [28]

1. If f is a real function continuous at 0, then we have
X
| Daf(s)dgs = £(x) = £(0)
2. For any function f g-integrable in (0; x), we have

X
Dy [ f(s)dys = £(),
assuming that the operator Dy acts on the variable x.

3. If f is a real function continuous in the interval (0;a), then f is q-integrable on (0;a) and
obeys
a a
lim/ f(s)dys = / f(s)ds.
0 0

q—1
4. If f and g are two real functions, g-integrable in the interval (0; a), then we have

a 1 a4
0" 7 86D F(s)ds

| F©)Dg)gs = fs|) ~ [ Daf)glasidys = F(s/a)g(s)
with fg|| = fla)g(a) - F(0)3(0).

2.4 Orthogonal polynomials

Let P be the linear space of polynomials with complex coefficients. A polynomial sequence
{Py}n>0in P is called a polynomial set if and only if deg P, = n for all nonnegative integers
n.

Let & denote a nondecreasing function with a finite or an infinite number of points of in-
crease in the interval (a; b). The latter interval may be infinite. We assume that the numbers
un defined by

fn = /ab x"da(x) (2.18)
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existforn =0,1,2,.... These numbers are called canonical moments of the measure du(x).
The integral can be considered as a Riemann-Stieltjes integral (with nondecreasing
a(x)) or equivalently as measure integral with measure da(x). In the continuous case,
da(x) = &’ (x) dx. In the discrete case, the measure da(x) is a weighted sum of Dirac mea-
sures (point measures) €, at the points of increase x; of a(x),

N
da(x) =) agey,
k=0

where a; denotes the increment of w(x) at x;, N € IN or N = oo. In this case, the integral
can be computed as the sum

b N
/ xMdu(x) =) apxf .
a k=0

Note that the Dirac measure €y at the point y is defined by
lif y=x
ex(y) = .
0if y # x.

Definition 17. [3, P. 244, Def. 5.2.1] We say that a polynomial set {p,(x)}§’ is orthogonal with
respect to the measure da(x) if Vn,m € N

/ h P (%) pm(x)da(x) = hpdmn, hn # 0. (2.19)

Definition 18. Let 6,,(x) be a polynomial set. The numbers

b
i (6 (%)) = / 0,(x)da(x), n=0,1,2,... (2.20)

are the moments with respect to 6, (x) of the family {p,(x) }§°, they are called generalized moments.

Note that it is possible to obtain the canonical moments from the generalized moments if
one can find explicit representations for Cy, (1) and D,, (1) in the expansions

=Y Cu(n)bu(x), (2.21)
m=0
and .
6n(x) = ) Dp(n)x". (2.22)
m=0

In these cases, we have the obvious relations

pn = Zocm(”).“m(ek(x))r (2.23)
and )
pn (B (x)) = ZO Dy (1) tim. (2.24)

2.4.1 Classical continuous orthogonal polynomials

A polynomial set

y(x) =pn(x) =kux"+... (meNy={0,12,...}, ky, #0) (2.25)
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is a family of classical continuous orthogonal polynomials if it is the solution of a differen-
tial equation of the type

a(x)y" (x) + T(x)y'(x) + Auy(x) =0, (2.26)

where o(x) = ax? + bx + c is a polynomial of at most second order and 7(x) = dx +eisa
polynomial of first order. Here, the measure da(x) takes the form

da(x) = p(x)dx,
where p is the non-negative solution on (a, b) of the Pearson equation

2 (o)) = T(x)p(x).

The function p(x) is called weight function. Up to a linear change of variable, these poly-
nomials can be classified as (see e.g. [30], [33]):
1—x
> |-

(a-1) The Gegenbauer / Ultraspherical polynomials [30] P. 222]
They are Jacobi polynomials fora = = A — %

(@) The Jacobi polynomials [30, P. 216]

PP (x) =

(@ +1)n (—”/”+“+ﬁ+1
p 151

a+1

Special cases are:

n
(A+1)
n
2/\ —n/n+2)t 1_
. 1
A+l

(a-2) The Chebyshev polynomials [30, P. 225]
The Chebyshev polynomials of the first kind can be obtained from the Jacobi
polynomials by taking & = g = —1:

and the Chebyshev polynomials of the second kind can be obtained from the
Jacobi polynomials by taking « = p = %:

N—

(1) amtal1os
Un(x)—(n—i—l)w—(n—i—l)zﬂ( SRRES )
D) 3

(a-3) The Legendre polynomials
They are Jacobi polynomials with « = 8 = 0:

—n,n+1
Py(x) = P" (x) = oF (
1

1—x
5 .
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(b) The Laguerre polynomials [30} P. 241]

Ly (x) = L—Fl)nlﬂ ( -

n!

(c) The Hermite polynomials [30, P. 250]

Ho(x) = (2%)"3Fo (

(d) The Bessel polynomials [30) P. 244]

Usually, Bessel polynomials fulfil an orthogonality relation on a unit circle. However, it
should be mentioned that they also fulfil a real orthogonality. In this case, the family ob-
tained is finite. In this work, we consider the real orthogonality provided by Lesky and
Masjed-Jamei [39, 40, 41 [42].

2.4.2 Classical discrete orthogonal polynomials

A polynomial set p,(x), given by (5.27), is a family of discrete classical orthogonal poly-
nomials (also known as the Hahn class) if it is the solution of a difference equation of the

type
a(x)AVy(x) + T(x)Ay(x) + Apy(x) = 0. (2.27)
Here the measure du(x) takes the form

N
da(x) =) p(k)e,, NEN or N =oo,
k=0

where p is the non-negative solution of the Pearson type equation

Ao(x)p(x)) = T(x)p(x).

The function p(x) is again called weight function.
These polynomials can be classified as (see e.g. [30], [33]):

(a) The Hahn polynomials [30} P. 204]

-nn+a+p+1,—x
Qn(x}“/ﬁ/N) :3F2

1).

x+1,—N

)

(b) The Krawtchouk polynomials 30, P. 237]

-n,—x

Ky(x;p,N) =F (

—N

(c) The Meixner polynomials [30, P. 234]

Mn(x/'ﬁlc) =1k (
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—i)

2.4.3 Classical g-discrete orthogonal polynomials

(d) The Charlier polynomials [30, P. 247]

—n, —x

Cu(x;a) = 2Fy (

A polynomial set p,(x) given by (5.27), is a family of classical g-discrete orthogonal poly-
nomials (also known as the polynomials of the g-Hahn tableau) if it is the solution of a
g-difference equation of the type

0(x)DgDy-1y(x) 4+ T(x)Dgy(x) + Any(x) = 0. (2.28)
Here the polynomials o(x) and 7(x) are known to satisfy a Pearson type equation
Dy((x)p(x)) = T(x)o(x),

where the function p(x) is the g-discrete weight function associated to the family. Here,
once more, the measure da(x) takes the form

dn(x) = Y (0(g)ey +p(—4)e ).

kez
These polynomials can be classified as (see e.g. [18], [30]):
(a) The Big g-Jacobi polynomials [30} P. 438]

q—n’ abqn—i-l, X

pu(x;a,b,¢;9) = 3¢2 (

‘7/"7)

A special case when a = b = 1 are the Big g-Legendre polynomials
q; ’7) :

q—n’ Dcﬁqn+1, q—x

&q,4

aq,cq
—n, qn—&-l, X

Py(x;¢;q) =3¢ (
q,¢q

(b) The g-Hahn polynomials [30, P. 445]

Qu(g %, B,N;q) = 3¢ (

9; ‘7)
(c) The Big g-Laguerre polynomials [30} P. 478]

1 ¢ q_nf“qx_l
V9 = a3 2P
(b 1q ’q)n aq

(d) The Little g-Jacobi polynomials [30) P. 482]
q; qx) .

A special case when a = b = 1 are the little g-Legendre polynomials given by

q;qx) .

q7",0,x

S R

Py(x,a,b;q9) = 3¢2 ( 7

aq,bq )

—nl ﬂbqn+1

q
pn(%;a,0l9) = 261 (
aq

— 1
n,qn+

pn(X;q) = 21 (
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(e) The g-Meixner polynomials [30, P. 488]

q "9

Mu(q77%b,69) =21
bg

(f) The Quantum g-Krawtchouk polynomials [30} P. 493]

—n —X

m, —x q
K™% p,N;q) = o1 (

q9; ‘1)

_ (qfo,.q)n o ( q—”,q—x

@ N;q)ug"™? N3

q

(h) The g-Krawtchouk polynomials [30, P. 496]

N "9 —pq"
Ki(g7%p,N;q) =3¢2 (

q;—Pq”NH), n=0,12,...,N.
(g) The Affine g-Krawtchouk polynomials [30, P. 501]

q; ’1)

_Cr® 97" g N .
(Pg;9)n g N

qfnloqux

Ki(g7 p, N;q) =3¢2 (
pa.4

(i) The Little g-Laguerre polynomials [30, P. 518]

0 1 q‘”,x‘l
x| = =
i (@i mq),°% 0

(j). The g-Laguerre polynomials [30, P. 522]

a+1. —n M, —x
L}(q“)(x) _ (q /‘7)7114)1 q ql,_qn+a+1x _ 1 P q
(4:9)n 0

(4 )n o+l
(k) The Alternative g-Charlier (also called g-Bessel) polynomials [30] P. 526]

q;qx)
7 uq"“x)

—n
7

pn(x,alq) = 21 (q

aq

q; qn+uc+l) .

—n —n

7 —11‘7

Kn(x;a;9) =201 (q

0

—n

= (g% q)mpr (

q—n-i-lx

= (—agx)"21 (q
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(D The g-Charlier polynomials [30| P. 530]

—X

4
0

qfn
Cu(q % a;9) =201

(m) The Al Salam-Carlitz I polynomials [30) P. 534]

n.(5 q
ul (x;q) = (—a)"q )y (

(n) The Al Salam-Carlitz II polynomials [30} P. 537]

a n_—(" q_
Vi (x:q) = (—a)"q By (

q; — qn—H x) .
(p) The Discrete g-Hermite I polynomials [30, P. 547]

. -, 1 —n, —n+1 2n—1
hn(x;9) = 42 2y (q ; q;—qx) = 2" 2o (q 7 \qz;q)-

x2

(0) The Stieltjes-Wigert polynomials [30, P. 544]

1 -n
Su(x;q) = wﬂpl (q()

(q) The Discrete g-Hermite II polynomials [30, P. 550]

q’”,' q7n+1 2
q;—q”> =x" z¢1( 0 7 )

2.4.4 Classical orthogonal polynomials on a quadratic lattice

—n. Z'x

ha(x;9) = i*”q*@ 2¢0 (q ’

A family p,(x) of polynomials of degree 1, given by (5.27), is a family of classical quadratic
orthogonal polynomials (also known as orthogonal polynomials on non-uniform lattices)
if it is the solution of a divided difference equation of the type [8} 16} 17]

¢(x2)D2y(x2) + 1[1(x2)SDy(x2) + /\ny(xz) =0. (2.29)

1).

1), n=20,1,2,...,N,

These polynomials can be classified as:

(a) The Wilson polynomials [30} P. 185]

Wy (x%a,b,¢,d) E -nn+a+b+c+d—1a+ix,a—ix
(@a+b)p(at+onatd, *°

a+ba+ca+d
(b) The Racah polynomials [30} P. 190]

—-mntat+p+l-xx+y+o+1
Rn(A(x); 2, B,7,6) = 4F3 (

a+1,B+6+1,7+1
(2.30)
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where
AMx)=x(x+v+d6+1)

and
«+1=-N, or +6+1=—-N or y+1=-—-N

1).

(atu(a+d)y (—n,n+a+b+c+d—1,a+ix
-, 312

with N a non-negative integer.

(c) The Continuous Dual Hahn polynomials [30, P. 196]

Sn(x%a,b,c) —n,a —ix,a+ix
(a+bulatc), 2

a+b,a+c

(d) The Continuous Hahn polynomials [30, P. 200]

pu(x;a,b,c,d) =i ]

1).

(2.31)

a+c,a+d

(e) The Dual Hahn polynomials [30, P. 208]

—n,—x,x+7v+5+1
Ru(A(x);7,6,N) = 3F

1], n=0,1,2,...,N, (2.32)
v+1,—-N

where
Ax)=x(x+7y+5+1).
(f) The Meixner-Pollaczek polynomials [30} P. 209]

(2M), —n, A +ix

Pr(l/\)(x; ¢) = e, Fy (

n!

1—e 20, (2.33)
21

2.4.5 Classical orthogonal polynomials on a g-quadratic lattice

A family p,(x) of polynomials of degree 1, given by (5.27), is a family of classical g-
quadratic orthogonal polynomials (also known as orthogonal polynomials on non uniform
lattices) if it is the solution of a divided difference equation of the type

¢(x(s))Diy(x(s)) + (x(s))SxDxy (x(s)) + Any (x(s)) =0, (2:34)
where ¢ is a polynomial of maximal degree two and  is a polynomial of exact degree one,
Ay is a constant depending on the integer n and the leading coefficients ¢, and ¢, of ¢ and
P

A = =Yn(Yu-192 + an1)
and x(s) is a non uniform lattice defined by

S 7S+
x(s) = {Clq toq e (2.35)

6452 + €55 + Ce

These polynomials can be classified as:

(a) The Askey-Wilson polynomials [30} P. 415]

(ab,ac,ad; q), ab, ac,ad

apu(x;a,b,c,d|q) q_”,abcdq”_l,aeie, ae~ 10
= 4¢3

q;q), x = cos .
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(b) The g-Racah polynomials [30, P. 422]

n+1 ,—x x+1
Bg" 9", 0

q "
Ru(p(x); e, B,7,9|q) = 4¢3
ag, og,vq

q/Q)/ Tl:o,l,z,...,N

where
u(x) =g~ +oyg*™!
and
ag=q~" or pig=q" or yg=q",
with N a non-negative integer.
q,q), x = cos®f.

(ae'®)py(x;a,b,c,d|q) q~", abedq" 1, ae'(0+29) o=
(abe?® ac,ad;q), ‘7"

(c) The Continuous Dual g-Hahn polynomials [30} P. 429]

@ palxiabylg) (07" aae
(ab,ac;q)n 3%2

ab,ac

(d) The Continuous g-Hahn polynomials [30} P. 434]

q,q) , x=cos(0+¢).

abe®®  ac,ad

(e) The dual g-Hahn polynomials [30, P. 450]

q—n, q—x, ,Yéqx-i-l

Ru(p(x),7,6,N|q) = 3¢2 (
49,9

q/Q)/ 11:0,1,2,...,N

where
u(x) = q % + g
(f) The Al-Salam-Chihara polynomials [30, P. 455]

ab; ", ae'®, ge—i®
Qn(x;a,blq) = (ainq)"ypz
ab,0

q,q), X = cosf.

Y 1 0ol (0+29) o—ib
Py(x;alg) =a e (@ q)n ¢ (q

(h) The g-Meixner-Pollaczek polynomials [30, P. 460]

(@@ " 2.0

q, q) , x=cos(0+¢).

q;q), X = cos®f.

(g) The continuous g-Jacobi polynomials [30} P. 463]

a+1.

P (x]q) = =4 ,q)n4¢3 (

g", grratBEl q%zx+%ei9’q%a+%e—i9

(@ q)n

qa+1l _q%(a-&-ﬁ-&-l)’ _q%(a+ﬁ+2)

As special cases there are:
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2. )
Cu(x; Blg) = Mﬁf%%

- g9, x=cosé.
@) pat, B, o’ )

(g-2) The Continuous g-Legendre polynomials a = 8 = 0 [30, P. 475]

(g-1) The Continuous g-Ultraspherical (Rogers) polynomials [30} P. 469]
( g, B2q", ﬁ%eier ﬁ%e—ie

1 - 1 :
qfn’ quJrl’ qzezel qufze

4, —q%,—q

Py(x|q) = a¢3 ( q;q), x = cos 6.

(h) The dual g-Krawtchouk polynomials [30} P. 505]

,qfx,cqfo

g N,0

—n

q

Kn(AM(x);¢,Nlg) = 3¢2 ( q,q), n=0,1,2,...,N,

where
Ax) =q 7" +og* .

(i) The continuous big g-Hermite polynomials [30, P. 509]

aezQ, aeﬂe

_ q",
Hu(x;a,|q) = a "3¢2 (

q,9|, x=cos6.
0,0

(j). The continuous g-Laguerre polynomials [30}, P. 514]

- a4l o 1laql g
Pr(la)(xlq) = M3¢2 q nlq2“+4el ,q2“+4€ 1
i 7“t1,0

q,q), x = cos 6.

(k) The continuous g-Hermite polynomials [30} P. 540]

) g "0
Hy(x]q) = ™20 (

q, q”e_m) , X =cosb.

2.5 Generating functions

Let (a,),eN be a sequence of complex numbers.

1. The generating function of the sequence (ay,), is the function
F(z) =) anz".
n=0
2. The exponential generating function of the sequence (a;), is the function
= a
G(z) =Y -z
@=r

3. The g-exponential generating function (of first kind) of the sequence (a, ), is the func-
tion
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4. The g-exponential generating function (of second kind) of the sequence (a,); is the

function
o0

Ha(z) = n;ou” (@ 9)n

i .

Note that the convergence of the right-hand sides of the above sums is required. Through-
out this text, both g-exponential generating functions of first kind and of second kind will
be called for short g-exponential generating function.

More details on generating functions are available in [52].



Chapter 3

Moments of Orthogonal
Polynomials: Easy Cases

In this chapter, using various computational methods, and various well-known summation
formulas, we give the canonical moments of some orthogonal polynomial families.

3.1 Classical continuous orthogonal polynomials

3.1.1 Jacobi polynomials

For « > —1 and B > —1, the Jacobi polynomials Py(za’ﬁ ) (x) are orthogonal in the interval
(—=1;1) and fulfil the orthogonality relation [30} P. 217]

mn-

(3.1)

1 atptl T 1)T(n 1
Y Bp(@h) [\ plap) _ 2 (m+ta+1I(n+p+1)
/_1(1 0 (14 2P )PP () = o e

The canonical Jacobi moments are therefore defined by

Hn = /1 X1 —x)*(1 4 x)Pdx.

-1

Proposition 19. The canonical Jacobi moments have the representation

n=

I'(a+1)n! —B,n+1
T(a+n+2) 2h
&+n+2

B o (B4 D)n! —a,n+1
1)+( 1 r(5+n+2)2F1 (ﬁ+n+2

—1), n=20,12,...

(3.2)

Proof. We first write
1 1
fn = / (1= x)%(1 + x)Pdx 4 (—1)" / X1+ x)%(1 — x)Pdx.
0 0

Next, the use of the integral representation for the Gauss hypergeometric function [30] P. 8]

, 1
2F z | = 7/ xP71(1 = %) (1 — 2x) dx, Re(c) > Re(b) >0, |arg(1—z)| < 7,
0

1
with z = —1 gives the desired result. In fact, for the first integral / x"(1— x)%(1 4 x)Pdx,
0

using the integral representation of the Gauss hypergeometric function with b = n +1,



3.1 Classical continuous orthogonal polynomials 24

_1).

The second integral is computed in the same manner. O

¢ =« +n+2anda = —p, it follows that

(e +n+2) w4 B+2

Another form of these moments will be given in Chapter 5 (5.48)-(5.49).
For special cases of Jacobi polynomials, those moments can be further simplified.

(a) Gegenbauer polynomials

Proposition 20. The canonical Gegenbauer moments have the representation

T(A+3 2p)
oy = \/E r((/\+1)) 22Pp( §+1 if n=2p.
0 if n=2p+1.

(3.3)

Proof. By definition one has

1
Un = / 21— xz))‘_%dx.
-1

It is straightforward to see that if 7 is odd, then i, = 0. We assume that n is even and write
n = 2p. u, can be rewritten as

1
Hap = / (xz)’”(l — xz)A_%dx.
-1
Now, we make the change of variable X = x? and it follows that:

1
yz,,:/O XP3(1— X)M 2dx

:B<p+;,/\+;>
_rpe)r (e

o T(p+A+1)

The desired results follows by simplification. O

Proposition 21. The canonical Gegenbauer moments have the following exponential generating

function
ey (A + ;) (i) Z PL' : (3.4)

where 1) (z) is the modified Bessel function of first kind (see [1l], Chapter 9).

Proof. Using Algorithm 2.2 from [32] P. 20] for the conversion of sums into hypergeometric
notation (command Sumtohyper of the hsum package), we get the result. This result can
also be obtained by direct computation. O

(b) Chebyshev polynomials of first kind
Proposition 22. The canonical moments of the Chebyshev polynomials of the first kind have the

representation:
2Pt ey — 0
P = { S (35)

0 ifn=2p+1.
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Proof. If we take A = 0 in the Gegenbauer polynomials, we get the Chebyshev polynomials
of the first kind. Therefore, the canonical moments of the Chebyshev polynomials of the

first kind are K yr(1)
P+2
y = 4 T =2p
0 ifn=2p+1.

Now, using the Legendre duplication formula [3, P. 22]

r'(2a)T G) =2%~1I1(a)T (a + ;) ,

ey -p r(3)-ve

the desired result follows. O

and the relations

Proposition 23. The canonical moments of the Chebyshev polynomials of the first kind have the
following generating function:

T > "
=Y wz", |zl <1 (3.6)
vV 1 *22 n=0

Proof. Using Algorithm 2.2 from [32] P. 20] for the conversion of sums into hypergeometric
notation (command Sumtohyper of the hsum package), we get

Taking a = 1 and z = —22 in the binomial theorem 1 , we get:
1
mk | °

(c) Chebyshev polynomials of second kind

1

Y unx" = mFy 2
n=0

Proposition 24. The canonical moments of the Chebyshev polynomials of the second kind have the

representation:
(2p
e if n=2p,
Uy = 227 pl( p-‘rl f p (37)
0 if n=2p+1.
Proof. Take A = 1 in the canonical Gegenbauer moments. O

Proposition 25. The canonical moments of the Chebyshev polynomials of the second kind have the
following generating function:

2
- r;)ynz |z| < 1. (3.8)

Proof. We set

NI—

F(z) =

E\H

= R = L s

Ho
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Then it follows that
2z

V1= 22
22F(z) = —2V/1-22+C,

where C is the integration constant. Taking z = 0 on both sides, it happens that C = 2 and

therefore
F(Z)_Z(l—\/l—zz)_ 2
22 1+ /1 — ZZ'

hence

(d) Legendre polynomials

Proposition 26. The canonical Legendre moments have the representation:

2 _if n=2
iy = w1 lf P (3.9)
0 ifn=2p+1

Proof. By definition, we have

-1

n+1 0 ifn=2p+1.
O
An immediate consequence is
Proposition 27. The canonical Legendre moments have the following generating function:
1 14z e
-1 = " 1. 3.10
LI R WENCE 610

3.1.2 Laguerre polynomials

The Laguerre polynomials L (x) are orthogonal on the interval (0, o) with respect to the

weight function p(x) = x*e~* and fulfil the following orthogonality relation [30} P. 241]

IFn+a+1)

- Spm, &> —1. (3.11)

/ x“e*xL,ga)(x)LSf)(x)dx:
0
The canonical moments are
e} (e}
Hy = / o(x)x"dx = / X" dx.
0 0
Proposition 28. The canonical Laguerre moments have the representation

p=T(n+a+1), n=0,12,... (3.12)

Proof. By the definition of the canonical moments, and the use of the Gamma function (2.1,
we have

o o0
Uy = / X" dx = / xmt et ) =1o=Xgy — T (n+a+1).
0 0

Note that the canonical Laguerre moments appeared in [13] and [26].
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Proposition 29 (Exponential generating function). The canonical Laguerre moments have the
following exponential generating function

(r("‘ +3+1 Z y,ﬁ.. (3.13)

Proof. We have, by the use of the binomial theorem (2.3):

n=0 = M (1 —z)at1

i n+¢x+1) o F(a+1)iwz”:r(a+1)lﬁ)(“+l ) o T+
O

Another generating function for the canonical Laguerre moments appears in [13] in the

form: (—1)
- 0 —1)" n_ 1 —x/4
¢(x) - 7;)2a+2n+1r(n_|_a+1)1“(“_’_1)”!]’[713( - 2a+1r(06+1)e .

3.1.3 Bessel polynomials

Let N > 0 be an integer. The Bessel polynomials B,(f‘) (x),0 < n < N, fulfil the following
orthogonality relation [30] P. 245]

21X+1

®© 2
/0 xwe’?B’(fé) (x)B,(,‘l")(x)dx = —mr(—n —)nopn, < —-2N-1, 0< m,n(§ N).
3.14

Note that, since B,({X) (x) B,(,f‘ ) (x) is a polynomial of degree n 4 m, it is enough that the integral
/oo X =3 gy
0

converges.
A problem could appear in the neighbourhood of 0. For this integral to converge, it is

necessary that lirn+ xtmtne—% 0, this implies that m +n+a < —1forall0 < m,n < N.
x—0

The last inequality will be satisfied if 2N + « < —1, thatisa < —2N —1.

Proposition 30. The canonical moments of the Bessel polynomials have the representation:
po =2 (—p—a—1); n=0,1,2,...,N, a< —2N—1. (3.15)

Proof. By taking n = m = 0 in the orthogonality relation, we get

/OO X idx = — 2 [(—a) =2 (—a —1)
0 a+1 !

and this makes sense since « < —2N — 1 reads —a« — 1 > 2N.
Now replacing « by « + n it follows that

Hy = / X~ dy = nte DLy g — 1),
0

and this makes sense since

(k<-2N-1 and 0<n<N)=-n—a—1>N.

Proposition 31. The canonical Bessel moments have the following generating function

T a1
sin (71 (« +2)) (_22)%1‘”1 ( _22) Z.un ol (3.16)
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Proof. Using Algorithm 2.2 from [32] P. 20] for the conversion of sums into hypergeometric
notation (command Sumtohyper of the hsum package), we get
—22) .

Zyn 72"‘+1r( a—1)1Fl<

a+2

Next, using the relations (see [32] Eq (1.5),(1.9)])

(Z)k = r(l%(—;)k)r

we write

2T (—a — 1)1 F (

o) ety 3 (22)F
22) =2""T(—a 1)]§k!(a+2)k

a+2
= 21T (—a = T (w + 2) Zk'r((ajzk)+z>
_ o+l i [1(2\/_722) }
sin(7(w +2)) (= kT ((a +1) +k +1)
- pa+1

sin (71(a + 2)) (3ev-—2)

1 a+1 oo [l 2 _2Z)Z]k
% (2(2” ZZ)) ng!r(ta+1)+k+1)
T 2‘”1“ - (2 —2z).

~ sin ((x + 2)) (—22)F

3.1.4 Hermite polynomials

The Hermite polynomials H,(x) are orthogonal in the interval (—oo, +0c0) with respect to
the weight function p(x) = e and fulfil the following orthogonality relation [30} P. 250]

/ e~ Hyy (x) Hy (x)dx = /722" 116 . (3.17)
—0o0
Proposition 32. The canonical moments of the Hermite polynomials have the representation:
1 —-1)" 1 ifn=2
hy = +(=1) r<”+ ): \FZQ”'f P uz012,... (3.18)
2 2 0 ifn=2p+1

Proof. By the definition of the moments, we have y, = / X dx. By the change of

variable t = x2, and the use of the Gamma function ﬂ Uy reads:

yn:/xexdx+/ X dx
0
—/ xexdx+( )/ X dx

/ tVI+1 -1 7tdt

:1+(271) F(n;l)
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The canonical moments of the Hermite polynomials were given in [13] (see also [26]).

Proposition 33 (Exponential generating function). The canonical Hermite moments have the
following exponential generating function

22/4 - z"
Vet =Y Pt (3.19)
n=0 :

Proof.

1+(2—1)” T (HTH)
n

Since

we finally have

3.2 Classical g-discrete orthogonal polynomials

3.2.1 Little g-Jacobi polynomials
For 0 < aq < 1and bg < 1, the Little g-Jacobi polynomials p,(x, 4, b|q) fulfil the following
orthogonality relation [30, P. 482]

[e9)

k;) m(“‘”k%(qk; a,b|q)pn(q%;a,b|q)

_ (abg% ) (1= abg)(aq)" (q,b4;9)n
(a9; @)oo (1 — abg®"*1) (aq,abg;q)u "

Therefore, the canonical Little g-Jacobi moments are:

v Dk ke nk
= k;, (@ 9) (aq)q™

Proposition 34. The canonical Little g-Jacobi moments have the representation

(abg"*%;q9)e0  (abg%; q)eo (aq; 9)n
L — . 3.20
: (ag"; q)co (a0;9)0  (abg®; q)n (3.20)

n+1

Proof. The proof follows by taking a = bg and z = ag""" in the g-binomial theorem (2.6).

O

Proposition 35. The canonical moments of the Little g-Jacobi polynomials have the following gen-
erating function:

(ab?,a92; ) oo
(29,2 9) o

= 3 abg?; .
nX:jOﬂn( q q)n(q;q)n
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Proof. We have

e z" (abg?; q)00 = aq,
abg?; =
L G = e 5 G
By the g-binomial theorem (2.6), the results follows. O

3.2.2 Little g-Legendre polynomials

The Little g-Legendre polynomials p, (x|q) are special cases of the Little g-Jacobi polynomi-
als with a = b = 1. They fulfil the orthogonality relation [30, P. 487]

[ Pty = (=) T don @ la)patale) = i3

Therefore, the canonical g-Legendre moments are

Mn—qu nk

Proposition 36. The canonical Little g-Legendre moments have the representation:

1
}ln:m,nzo,l,Z,... (321)
Proof. Since |q| < 1, we have
) 1— (anrl)k 1
k nk _ —
Zq Rl pyerrs el g

O

Note that these moments could be deduced from the canonical Little g-Jacobi moments by
settinga = b = 1.

Proposition 37. The canonical Little g-Legendre moments have the following g-exponential gener-

ating function
-1 =
( =) yn (3.22)

n=0

where e is the g-exponential function deﬁned by (2.12).
Proof.

3

3.2.3 g-Krawtchouk polynomials
The g-Krawtchouk polynomials K, (§~%; p, N; ) fulfil the following orthogonality relation
[30] P. 497]

N

ZM(_ ) K (q~ % 1, N; 9)Kn(q~%; p, N3 q)
x=0 (q’q)x F m\q " P, N q)Rakq 5 PN G

_ (@ =pg"thn 1+p
(=p,a N;q)n 1+ pg*"

x(—pg;q)np N q‘<N2+ 1)q"25mn, p>0. (3.23)
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Therefore, the canonical g-Krawtchouk moments are
N ( —N.
99k —k _—kn
pn = (=p) g™
’ kgo (a:9)x

Proposition 38. The canonical g-Krawtchouk moments have the representation

(=pg )n (=" q)n 1
- —, n=0,12,...,N. (3.24)

B NG (Cpman g
Proof. By the g-binomial theorem (2.6), it follows that
(=p " M)
(=p~1q7"q)o

In order to simplify this expression, we compute the ratio

Hn =

pusr _ 1+ pgN g
pn (14 pgq™)gN

It follows that
= P D
(=pg; @)ng"™
1io is obtained by taking m = n = 0 in the orthogonality relation (3.23). O

The g-Krawtchouk moments with respect to the basis (§~%;¢), are given in Chapter and
another proof of (3.24) is provided.

Proposition 39. The canonical q-Krawtchouk moments have the following g-exponential generat-
ing function

Cpan (“piziq)e 2"
; : (3.25)
pNg(2h (207N g)e ; =P (M)n
Proof. We have
- 2 _ gy 3 (=pa ) < z )
; PG, p q<N“ EO @) \q¥
Then, using the g-binomial theorem (2.6), we have
i NHL ) <Z>” (=p4zi Q)
=0 ‘Ml) ) (@)
This completes the proof. O

3.2.4 Little g-Laguerre (Wall) polynomials
The Little g-Laguerre polynomials p,(x; a; q) fulfil the orthogonality relation [30| P. 519]

PM(qk2ﬂ|q)Pn(qk;a|q) = M (@ @)n

S, 0 < aq < 1. 3.6
)k (aq; @)oo (ag; )n ™" 1 (3.26)
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Proposition 40. The canonical Little g-Laguerre moments have the representation:

_ 1 _ (agq)n
b= e~ e " -0,1,2,... (3.27)

Proof. The use of the g-binomial formula with z = ag"*! gives the result. O

Proposition 41. The canonical Little g-Laguerre moments have the following g-exponential gener-
ating function

azq;
((aq"z L 2 ooy (3.28)
7 n= /

Proof. By the g-binomial theorem (2.6), we have

ad 2" 1 ad aq, B (azq; 9) oo
D e P e P DR pers il Frp e

3.2.5 g-Laguerre polynomials

The g-Laguerre polynomials L,(f‘) (x; q) fulfil the following orthogonality relation [30} P. 522]

) q(szrl)k

Y BT L (cqs )Ly (eqs )

k=—co !

_ a—i—l e a+1.

_ (3, 759 (s 1 s0. (329)

(q““,—c,—c 100 (0:9)nq"

Therefore, the canonical g-Laguerre moments are

0 (a+1)k

Hn = Z 1

4 (e k n
Pl (—cq";q)oo( 7)

Proposition 42. The canonical g-Laguerre moments have the representation:

Y (q/ _antherl, _Cfqunfzx; q)oo
(q”+"‘“ —¢,—c714;9)oo

@t =l e (@ e
_ (Wl’_C’_C o 6] (3.31)

Un=¢ (3.30)

Proof. By definition, we have

) (n+at1)k n n 0

_ q __ ¢ (—c; q)qmrar Dk
n = = ;q )k .
: k:z—oo (—cq5 )0 (=69 kzz_oo i

Next using the Ramanujan identity for the bilateral sum (2.9) where we take the lower
parameter equal to 0, we obtain the desired formula. Another way to get the result is to
take in the orthogonality relation m = n = 0, and then replace « by a + n. O

Note that the canonical g-Laguerre moments with the normalization py = 1 were given in
[10] P. 49].

Proposition 43. The canonical g-Laguerre moments have the following g-exponential generating
function

(Qz—th’l—i-l,—c_lq—a;q)oo (Z;q)oo B 0 q(;) )
@, =6 G0 (2@ q)m ; 2" (3.32)
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Proof. By using the q—binomial theorem (2.6), we have
_ @ =g =g §> (g g (2
rg)yn 9:9 ) @ e~ ) n;) (9 9)n (q(ﬂcﬂ))
_ (g = e (5)w
@ =, =)0 (2 ;)0

3.2.6 g-Bessel polynomials
The g-Bessel polynomials v, (x; a; q) fulfil the following orthogonality relation [30, P. 527]

(=] ak ) . a q(n+1) 5 .
2 . — 1
k;)(q 702 @@ a)yn(aa) = (ga)n(-a" ) A+ age) o >0
Therefore the canonical g-Bessel moments are
had Elk k+1
= & 05 gk
. kgo @aoe” 1
Proposition 44. The canonical g-Bessel moments have the representation:
—a4;q )
fy = % (3.33)

Proof. Using the Euler summation formula li and the relation (kgl) (g) + k, we get:

_ (Za4:q)e

o (_1yky(3)
(k;_'l) nk _ ( 1) ¥,
1 L ( (—aq;q)n

n+1)k
7 9)k = (@9)k

aq = (—aq""; 7)o

Proposition 45. The canonical q-Bessel moments have the following generating function

7,0 -
(—aq; )02 ( z) =Y . (3.34)

—aq n=0
Proof. Using the g-version of Algorithm 2.2 from [32] for the conversion of sums into g-
hypergeometric notation (sum2ghyper) we get the result. O

Proposition 46. The canonical q—Bessel moments have the following generating function
(= aq, Zy —aq;q)nz", |z| < 1.

Proof. The proof follows by simple computation using the geometric series. O

3.2.7 g-Charlier polynomials
The g-Charlier polynomials C, (x; a; q) fulfil the following orthogonality relation [30} P. 530]

q(z Cu(q75a:9)Cu(g %5 0;9)

L

=7 "(~8Q)eo(—a 9, G ) nSn, a > 0. (3.35)

Therefore, the canonical g-Charlier moments are
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Proposition 47. The canonical g-Charlier moments have the representation

n
— (—a g LA
pn = (=0;)oo (=1 M)n(q> g2 (3.36)
Proof. We have
® gk © o6 kS (=1)F *) ok
=) gk = ¥ gy y CUEE gyt

=0T = (@) = @k
Now applying the Euler formula , with x := —ag™", we get
pn = (=g " q)co-

Next combining the relations

(aq?\;q)oo _ ({le,' ) and (a,'q),n =

it follows that

_ (g (4w . a\" _m
o = (_a;Q)fn C_(alg) . _( ﬂ,Q)oo< ¢ q’q)n 9
(—a1g:q)n

The g-Charlier moments with respect to the basis (x;g), are given in Chapter |5, Note that
the canonical g-Charlier moments with the normalization yy = 1 were given in [10, P. 50].

Proposition 48. The canonical q-Charlier moments have the following g-exponential generating
function

[ n

(—a,-7z,9)e q'2)z"
(49712 q)eo n;)”" (@)

laz| < |q. (3.37)

Proof. We have

© B © (_a-1g. n
7'z (=4~ g q)n <a2)

=(—4,9)o0 — =] -
n;o”"(q;q)n (=a:q) n;o (4;9)n q

The result follows by using the g-binomial theorem (2.6). O



Chapter 4

Inversion Formulas

Let (6,(x))n and (Py(x)), be two polynomial sets such that for each 1, we have the expan-
sion

Py(x) = io Dy (1)60(x).

The inversion problem is the problem of finding the coefficients I, (n) in the expansion

() = f01m<n>Pm(x>- @)

Note that when the coefficients D,,(n) and I,,(n) are known, one can determine the
coefficients Cy, (1) of the connection problem between two polynomial sets

Pa(x) = iocmmmm(x),

and the coefficients of the linearization problem

n+m
Pn(x)Qm(x) = Z Lk(mrn)Rk(x)'

k=0
Many methods have been used to determine the inversion coefficients in the literature,
see for example [5], [6] and the references therein. In [33], Koepf and Schmersau used
an algorithmic approach to determine those coefficients for the classical continuous and
the classical discrete orthogonal polynomials. In [18], following this method, we solved the
inversion problem for the orthogonal polynomials of the g-Hahn class, therefore recovering
the results given by Area et al. in [5].

In this chapter, we present two methods for the determination of the inversion coef-
ficients for all the classical orthogonal polynomial sets. The importance of the inversion
coefficients appears in Theorem [50/on page 45| In what follows, the inversion coefficients
are provided.

4.1 The methods

4.1.1 The algorithmic method

We assume that the polynomial P, (x) has in the basis (6, (x)), the expansion
n
Py(x) = Y Du(n)0n(x).
m=0

It is well-known that every orthogonal polynomial set (P,), fulfils a three-term recurrence
relation of the form (see [34],[40])

xPy(x) = anPyiq(x) + byPy(x) + cyPy_1(x), n>1. (4.2)
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Classical orthogonal polynomials satisfy further structure equations. One of those is given
by the differential / difference / g-difference rule (see e.g [34],[33],[35])

o (x) Py (x) = anPur1(x) + BuPu(x) + 1uPu-1(x) (1 >1), (4.3)
U(x)vpn(x) = “npn-&-l(x) +ﬁnpn(x) +’ann—1(x) (Vl > 1)/ (4.4)
or
0(x)D1Pu(x) = onPra (%) + PuPu(x) + 1uPua(x) (1 21), (4.5)
respectively.

Another useful structure relation used here is the three-term recurrence relation for the first
derivative, that is

xPy (x) = &, Py g1 (X) + BBy (x) + 73 Py 1 (%) (n 2 1), (4.6)
XAPy(x) = aj APy 1(x) + BAP,(x) + y3AP,—1(x) (n>1), 4.7)
or
XDan(x) = ’XZDan+1 (x) + ,BZDan(X) + ')’ZDanfl(x) (n>1), (4.8)
respectively.

When similar structure relations can be established for the basis 6,,(x), one can then use
them to get two or three cross rules for the coefficients I,(n) which can be determined by
linear algebra. More details on this method can be found in [18] and [33].

4.1.2 Inversion results from Verma’s bibasic formula

In [6], Area et al. used Verma's g-extension [51]] of Fields and Wimp [14] expansion of

r+t¢s+u ( <ar)/ <Ct>

S)rs u

i ]u+3—t—k

o (o) (ee): @) ir i)
) ;‘7/ du)’Yq]‘J)y[( AN
yqj(quZtk))

(ci?), (exd’)
stk Pu1 4 ‘
Y97, (dug))
7]'/ ')’ j/ (ai’)
-r+2¢s+k (q 1
(bs), (ex)

in powers of yw as given in [19, (3.7.9)] to find the solution of the inversion problem (4.1)
for polynomials of the Askey scheme and its g-analogue. Here, the notation (a,) means r
parameters of the type ay, a,- - -, a, and the notation (a,4’) means r parameters of the form
a1q/, a2q/, -+, a,q/. The method is the following.

7 qx) .

M _1\,(5) s—r+l
(7:9)n(bs; 9)n [( D" } - (4.10)

q, WLI> (4.9)

We choose u =t =0, and k = 1 in (4.9). Then for w = x and y = 0, we obtain

, o [(_1)igd2 . 0| . =, (a
rPs ((a) q;yx) = ZMWNH ( q;qu) r+1¢s (q (ar)
(bs) 0 (bs)

=0 (7:9) j
Expanding the left-hand side, the coefficient of " is
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q;qx) ,

% qx) : (4.11)

q; qx) .

(4.12)
Application of appropriate limit relations (g 17 1) between basic hypergeometric and hyper-

geometric series to (4.12)) leads to the formula
x) (4.13)

+1
H]P:2 (a]')n " n e —k,&lz,...,ap,aerl
sib,x = Z(_l) k p+1Fs
]:1( ])n k=0 bl,bz,...,bs

It should be mentioned that until now, the coefficients ag and bs appearing in (4.13) are
independent of the summation index k. However, in some families belonging to the Askey
scheme and its g-analogue, one of the numerator parameters depends on k in the form
a, + k (Askey scheme) or a,4* (g-analogue). In these situations and in case of polynomials
belonging to the g-analogue of the Askey scheme, the following formula (see [6]) should be
used:

Moreover, the right-hand side can be rewritten as

i i ( q]h [ )jq(é)r[(_l.)hq(g)} hﬂ) s (qf, (ar)
j=0h=0

7:q) j (@:9)n (bs)

so that the coefficient of y" in this expression is now

EO CTCT)

n— 4 n—{ n—0)/ 7
1 (1@ (q o
bs

From {#.10) and (#.11) we get

—1)" n(n—1)/2\s—r I T n k q*k,az,...,a +1
( ) a (b b> (bz. ) rlod Z [ } )r+1¢s '
1,02,...,05;,4 k=0 q b1/b21-~-/bs

((_1)11‘7”(”71)/2)377(‘13/ cees ur-i—l)n X"
(bll bZ/ ceey bS/ Q)n

n —1)kg) q_k,azqk,ag;,...,arﬂ
B e

uzq a2q2k+1 bl/ b2/ cery bS

q; qx) . (4.14)

Once again, application of appropriate limit relations but now to (4.14) leads to the formula

1
H]pi3 (ﬂ]')n X — i (n) (—1)k E _kr ap + k/ as,...,ap, ap+l X
]S‘:l(bj)n =0 k (az+k)k(a2+2k+1)nfkp+l ’ by, bo, ..., bs

(4.15)

4.2 Explicit representations of the inversion coefficients for
the classical orthogonal polynomials

4.2.1 The classical continuous case

The following results are from [33].
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The Jacobi polynomials

(1-x)"

2'T(a+n+1)
i (a+B+2m+1DI(a+p+m+1)
= Ta+m+1DT(a+p+n+m+2)
(I4+x)"=2"T(B+n+1)
“ L

X

(=) mPYP) (2), (4.16)

rx+,3+2m+l) (a+B+m+1)
rB+m+1)T(a+p+n+m+2)

(—n)wPy P (x).  (417)

The Laguerre polynomials

=(1+a) i =) (4.18)
n = (1 +(X>m m . .
The Hermite polynomials
nt 120
n_ " _—
ST k§0 ki — 2 () (4.19)

The Bessel polynomials

¥t = (=2)" i(Zm—i—a—f—l)(

m=0

)m T(Dc—i—m—i—l)B()
Thn+m+a+2) "

(x). (4.20)

4.2.2 The classical discrete case

The following results are obtained using the formulas (4.13) and (4.15). Another form of
these results appeared in [33] where another standardlzatlon for Krawtchouk, Meixner and
Charlier is used.

The Hahn polynomials

w W (n (=1)""™(a+1)y(=N)n .
' 7m§0 <m) ("‘+5+m+1)m(“+ﬁ+2m+2)n,QO(x'“'/3'N)~ (4.21)

The Krawtchouk polynomials

¥ = (—p)" (=N, mf_o(—nm <Z> Ko (x;p, N). (4.22)

The Meixner polynomials
L ey I MC A EHET @23)

The Charlier polynomials
Xt = mf_o(—mm <1’;> a"C(x; ). (4.24)

4.2.3 The classical g-discrete case

Part of the following results are from [5] and [18] and have been converted following the
standardization of this work. The results for the Quantum g-Krawtchouk, the g-Krawtchouk
and the Affine g-Krawtchouk polynomials are obtained using (4.12) and (4.14).
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The Big g-Jacobi polynomials
- n 912 (aq, cq; 9).
(% q)n = n;O(_l)m [mL (abg™+1, abg?"+2; q) Py (x;a,b,¢;q). (4.25)
The g-Hahn polynomials
- Lon] (=1)"%) (ag,q N9 -
X 0), = Yo, B,N|q). 4.26
5 mgo {mL(wﬁq’”+1;q)m(a/3q2m+z;q)nm Qnla i BNIG) 20
The Big g-Laguerre polynomials
L n m
(x;q)n = Z(—l)m{ } 9) (aq, bq; 9)u P (x;a,b;9). (4.27)
m=0 mlg
The Little g-Jacobi polynomials
Lo (=1)"q?) (aq; q)n
x" = x;a,blqg). 4.28
m;o LnL(aqu“;q)m(aqu“;q)nm P (3, ble) (429
The Little g-Legendre polynomials
- n] _ (=1"9%) (g9
Kt = 1" P (x|q). 4.29
rr:X::()( ) {m]q(qmﬂ?‘”m(qzmﬂ}‘ﬂnm n(xla) ( )
The g-Meixner polynomials
—x < n—m an(erl) n| " —x
@ 5@ =Y (=1)" g 2 c (bg; q)nMm(q~ b, ;4). (4.30)
m=0 mdlg
The Quantum g-Krawtchouk polynomials
—x & m| ™ q(’;’) -N —npAtm . _—x
(@ %= ) (=1) Gy (43 (p) " K (g p Ng). (4.31)
m=0 mlg
The g-Krawtchouk polynomials
- L] (1" N ) -
X, _ K *.p,N;q). 4.32
@5 m;o {mL(—pq’”:q)m(—pqzm“;q)nm mlap N30) (432
The Affine g-Krawtchouk polynomials
n n m _ _
(0% q)n = Z(—l)’”[ ] 42 (pa, 97N K (g7 p. N3 ). (433)
m=0 mlg
n n B
(@)@ N =} { ] (p)" " (N D (pg; KR (g% p, Nig). (4.34)
q
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The Little g-Laguerre polynomials
1 n m
v = 30" " (B aga)upn(aly) (439)
m=0 mdlq
L n n m
(xol)j= ) (—1)”’”{ ] g2~ ()" (@ g " ) mpm(x;alg). (4.36)
m=0 nmdlg
The g-Laguerre polynomials
n n (m—n)(2a4-3m+n+1)
= Z (_1)m[ } qg m(m—M)(q?Q)M(qm+a+1?‘7)nfinLi(vzé)(x;q)/ (4.37)
m=0 mlq
The Alternative g-Charlier/g-Bessel polynomials
L (-1)"g®
X" = [ } (x;alq). (4.38)
mZ::o m q(_aqm;q)m(_aqszrl;Q)nfmym 1
The g-Charlier polynomials
n m(m
(qfx’, Q)n _ Z (_1)n7man [7’1:| g (2+1) 7n(m+1)cm(qfx’, a; q) (4.39)
m=0 mdq
The Al Salam-Carlitz I polynomials
n n—m _ )
Xt = 2 {n] Z {n m} al U,Sf)(x;q) (4.40)
m=0 LMlg i=0 i q
n_ oy e[ @
(xol);=) a Up' (x;9) (4.41)
m=0 mlg
The Al Salam-Carlitz IT polynomials
n n < (a)
(xl,q)n — Z (1)n|: :| an—mqm(m—n)-‘r(z)vm (X}Q)- (4.42)
m=0 mdlg
The Stieltjes-Wigert polynomials
1 n (m—n)(Bm+n+1)
V=L (_1)m{ } g7 @ nSn(x0): (4.43)
m=0 mlg
The Discrete g-Hermite I polynomials
n 1 + _1 n—m n
X = EO (27) [m} (9 9%) (n—m) 21 (x;9) (4.44)
m= q
1 n
o1y = 3 1" | hixig). (.45)
q

m=0 m
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The Discrete g-Hermite II polynomials

(x;9)n = i(—l)m{n] g+ @y (x; ). (4.46)
q

m=0 m

4.2.4 The classical quadratic case

The following results are obtained using the formulas (4.13) and (4.15). We provide the
proof for the Wilson case, the other cases being similar.

The Wilson polynomials

Wm (xzr a/ b/ C/ d)/

i ( > 1) (ﬂ+b+n1)n m(a+C+m)n m(a+d+m>n m
=0 (a+b+c+d4+m—1)u(a+b+c+d+2m)y_pn
(4.47)
where
0n(x) = (a —ix)y(a+ix),.

Proof. In order to derive this result, we recall that the Wilson polynomials [30, P. 185] have
the hypergeometric representation
1) |

Therefore, by @.15) with p = s =3, x = L,ap = a+b+c+d—-1,a3 =a—it, a4 =
a+it, by =a+b, by =a+c, b3 =a+d,it follows that

(a+Db)y(a+c)p(a+d),

Wy (t%;a,b,c,d) —nn+a+b+c+d—1,a+ita—it
=453
a+ba+ca+d

O (t) _ i (n> (=)™
(a+b)p(a+c)u(a+d)y, m)(@a+b+ct+d—1+m)ula+b+c+d+2m)y—m

m=0
1).

—-m,m-+a+b+c+d—1,a+it,a—it
X 4F3

a+ba+ca+d
This leads to
:fz() (=1)"(a+b)u(a+)u(atd)n
= (a+b+c+d—14+m)p(a+b+c+d+2m)p_m
X

(a4+b)m(a+c)m(a+d), F (—m,m+a+b+c+d—1,a+it,a—it

1),

Wm(tz; a,b,c,d).

a+ba+ca+d

and this last relation reads

i < > " a+b+m)p—m(a+c+m)y_m(a+d+m)y_m
(a+b+c+d—14+m)yla+b+c+d+2m)y_pn

O

Remark 49. It should be noted that we recover this result in [36l] using the algorithm method
described in sectiond.1.]

The Racah polynomials

% “D)™(a+1)n(B+9+1)n(y +1)n
Z( ) (a+B+m+1)m(a+p+2m+2)y—m

Ru(Mx);, B,7,6),  (448)

where
0n(x) = (—xX)u(x+7v+6+ 1)y
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The Continuous Dual Hahn polynomials

0,(x) = i (=)™ (Z) (@a+b+m)y_m(a+c+m)y_mSm(x%a,b,c), (4.49)

m=0

where
0n(x) = (a —ix)y(a+ix),.

The Continuous Hahn polynomials

o ! n (—i)mm!(ﬂ‘\—C-i-m)nfm(a+d+m)n7m .
Ou(x) = 2, (m) (ﬂ+b+C+d—1+m)m(ﬂ+b+C+d+2m)n—mpm(XIa/b,C,d), #.50)

0n(x) = (a+ix),
The Dual Hahn polynomials

6u(x) = 3 (1" (%) + D= M) R A7, ), @5)

m=0
where
0n(x) = (—=xX)u(x+7v+6+1)y.

The Meixner-Pollaczek polynomials

&\ ()" m A+ M)y (A,
o = 3 () S i (i), @5)

where
On(x) = (A +ix)y.

4.2.5 The classical g-quadratic case

In this part, since 8 will denote an angle, we will denote the basis involved in the inversion
formula by B, instead of 6,,.
The following results are obtained using the formulas (4.12) and (4.14).

The Askey-Wilson polynomials

s []

n —a)™(abg™,acq™,adq™; q)n—m
mdq

abcdqm_l; q)m (abcdqz’”; Q)nfm

e E pm(xa,b,c,d),  (4.53)

where ‘ '
Bu(x) = (ae®,ae7%;q),, x = cosé.

The g-Racah polynomials

v ("] L (=1)"™(aq, PG, VG q)n ,
By (u(x)) = mX::o [qu (@B L ) (PP @) Ry(p(x);a,B,0,7v|q), (454

where

Bu(u(x)) = (75 v0q" 5 q)n,  p(x) = q "+ Syq*t1.
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The Continuous Dual g-Hahn polynomials

n n n
Bur) = ¥ (—a)’"[ ] 4 (abg™, acq”; @) u—mpm(x;a, b, c|q), (455)
q

m=0 m

where . '
By (x) = (ae’g, ae_le;q)n, X = cos 6.

The Continuous g-Hahn polynomials

n _ i \m 5 (%) m ,2ip m m.
Bu(x) =) { ] (zae'?)"q 2 (abq™e™, acq™, adq 'q>n_um(x;a,b,C,d|q), (4.56)
m=0

n
mlg (abedq™; q)m(abedq®™; q)n—m

where ' '
Bu(x) = (ae®+2) qe=1, 4, x = cos(6 + ¢).

The Dual g-Hahn polynomials

Balu(x)) = . (~1)" H 1O a N R 16N, (A57)
q

m=0 m

where
Bu(u(x)) = (g5, v0qq)n,  n(x) =g+ 6yq" .

The Al-Salam-Chihara polynomials

n n m
Bu(x) =) (—a)’”[ } q2) (abq™; q)n—mQm(x;a,b]q), (4.58)
m=0 mlg
where
i0 —if

Bn(x) = (ae’,ae™";q)n, x = cosb.

The g-Meixner-Pollaczek polynomials

By (x) = i (—ae?)™ [m

2} 4 (8 @) (20" G P (x;lq), (4.59)
m=0 q

where , ,
Bu(x) = (ae®+2) qe=1,4),,  x = cos(6 + ¢).

The Continuous g-Jacobi polynomials

o] (=)™ (g q)mg ) (g g (—qR O, —gh 6P ),
Bu(x) =), { L (BT ) (2 a B, ) m

m=0 Lm n—m

where o
Bu(x) = (g% 16, g2 17, ), x = cos.

The Continuous g-Ultraspherical (Rogers) polynomials

&[] ()™ @ a)nd (Bat, B, BT D ~
B =0 [mL B 0 P B P (46D

where Lo
Bu(x) = (B2e", Bze;q),, x=cosb.
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The Continuous g-Legendre polynomials
"] (=1)"™(q,—9%, 39
By(x) = [ } Py (x|qg), (4.62)
" m;o mlg @ q)m (@42 9)nm m(lA)
where ) .
By (x) = (q4elg,qle ’g,q)n, X = cos#.
The Dual g-Krawtchouk polynomials
n n m
B3 = L (-0 "] 4B )kl (x)ic,Nlg), @63)
m=0 mlg
where
Bu(Ax) = (4%, 00" N;q)n,  Alx) =g " +cq* .
The Continuous big g-Hermite polynomials
n m n (m)
Bu(x) =) (—a) q'2) Hy (x;alq), (4.64)
m=0 mlq
where ‘ ‘
By (x) = (aele, uefle;q)n, x = cosf.
The Continuous g-Laguerre polynomials
n n m
Bu(x) = 2(_1)"1{ } 9 (@ D)@ g w Py (x]g), (4.65)
q

m=0 m

where L
By(x) = (qf”‘ﬁe“’,qf“le‘l";q)n, X = cos#.



Chapter 5

Moments of Orthogonal
Polynomials: Complicated Cases

5.1 Introduction

In Chapter (3} we have computed some moments. The computations were easy and we
could do them directly by using some well-known results in the literature. But, we were
not able to get the moments of all the classical families listed in Chapter 2. In this chapter,
we establish a powerful link between the inversion formula for a family (see Chapter [)
and the moments of this family. This enables us to deduce the moments of the families
mentioned earlier.

5.2 Inversion formula and moments of orthogonal polyno-
mials
In Chapter [} using previous works by Koepf and Schmersau (see [33])), Area, Godoy, Ron-

veaux and Zarzo (see [5],[6]), Foupouagnigni, Koepf, Tcheutia, Njionou (see [18]), we have
given explicit expressions of I, (n) (for a suitable choice of 6, (x)) in the expansion

n
On(x) = 2 Ly (1) Py (). (6.1)
m=0
The following theorem establishes a link between the inversion problem for a family and
the generalized moments of this family.

Theorem 50. Forall n € IN, the generalized moments of the family (P,), with respect to the basis
0, (x) can be computed by the formula

pn (6 (x)) = Io(n)Popo- (5.2)
Proof. Using the expansion (5.1), we have

1

i (6(3) = - (Bul), P) = ;Olizofun)(wo) — i o() (Po, o) = lo(r) oo,

where (f, g) is the inner product defined by

(F.8) = [ Fx)gdalo).
O

It should be mentioned that the term g is easily obtained by taking m = n = 0 in the
orthogonality relation for each family and therefore does not depend on the chosen basis.
Note also that this result was announced in [22]].
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5.3 Some connection formulas between some bases

In order to obtain canonical moments from generalized moments, we need some connec-
tion formulas as pointed out in Section[2.4} First, we introduce some famous numbers.

5.3.1 Elementary symmetric polynomials
Definition 51. (see [37, P. 159]) The elementary symmetric polynomials ey (ay, . ..,a,) in n vari-
ables ay, ..., a, fork =0,1,...,n can be defined as

60(111,612, s /an) = 1/

and

ex(ar, az, ... ay) = Z ajaj,---aj, 1<k<n (5.3)
1§j1<j2<~~~<jk§n

For example, we have

e1(ar, ap,...,an) =01 +ay+---+ay,

ex(ar, a, ..., an) = Z a;aj,
1<i<j<n

en(ay, an, ..., ay) =ayay - - - ay,.
Proposition 52. Let a1, ay, ..., a, be n complex numbers. Then, the following expansion is valid.

n

[TA—a) =A"+ i(—l)kek(al,az, o ag) AR (5.4)
k=1 k=1

Definition 53. Let ay, ay,...,a, be n complex numbers. We define the elementary symmetric
polynomials of second kind as the coefficients Ex(ay,az, . . .,a,) in the expansion

n
)\n = ZEk(al,az,...,an)Pk(/\), (55)
k=0

where the polynomials P (A) are defined as

Py(A) =1
k

P(A)=A—a)Pi(A) =[[(A—a)), k=1,...,n
j=1

Proposition 54. If a; # aj for i # j, then the elementary symmetric polynomials of the second
kind in the variables aq, . .., a, can be computed by induction using the following algorithm

Eo(ay, ..., an) =af, (5.6)
1 . 2 .
E]-(al,...,an) = m aj g — 2 Ek(al,...,an)Pk(ajH) , j=1,...,n—1. (57)
JA\RH1 k=0
E,(a1,...,ap)=1.
Proof. We have
n n
A = Z Ek({ll,. ..,an)Pk(/\) = Eo(al,. . .,Eln) + Z Ek(al,. . .,an)Pk()\).

k=0 k=1

Taking A = a1 on both sides of the previous equation gives

Eo(ay,...,an) = af.
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Next, taking A = a4, provides the relation
a5 = Eo(ay,...,an) + E1(ay,...,a,)Pi(a2),

and therefore we get

El(m,...,an) =

Now let us assume that we have found Eo(al,...,an),...,E]-,l(al,...,an), then, taking
A = ajyq, it follows that

j—1

a;'l+1 = Z Ek(all sy an)Pk()\) J’_ Ej(all sy an)Pj(aj+1)'

k=0

Thus, the relation (5.7) follows by a simple computation. O

We have for example

E,1(ay,...,an) =a1 +ax+-- - +ay.

5.3.2 Connection between x" and x*

Definition 55. [1] P. 824]

1. The Stirling numbers of first kind are the coefficients S,,(n) in the expansion

=x(x—1)(x—2)---(x—n+1) = i S (n)x™. (5.8)
m=0

2. The Stirling numbers of second kind are the coefficients Sy, (n) in the expansion
X" =Y Sp(n)xt. (5.9)

Those numbers fulfil several interesting properties. Here we recall some of them.

Proposition 56. [1, P. 824] The Stirling numbers of first kind fulfil the following recurrence
Su(n+1)=S,_1(n) —nSyu(n) n>m>1.
Some special values are

So(n) = b, S1(n) = (~1)"1(n—1), Sn_l(n):—<;l>, Su(n) = 1.

Proposition 57. The Stirling numbers of first kind can be expressed in terms of the elementary
symmetric polynomials as follows

Se(n) = (=1)ker(0,1,2,...,n—1), 0<k<n. (5.10)
Proposition 58. [1} P. 824] The Stirling numbers of second kind fulfil the following recurrence
Sun+1) =mSy(n)+Sy_1(n), n>m>1,

and have the following representation
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5.3.3 Connection between x" and (x;¢)y
Lemma 59. [5,130] The following g-derivative formulas are valid.
Dq(x?‘ﬂn = _[”]q(xq?Q)n—l} (6.11)
Dy (x;9)n = [n]q(x; q)n-1- (5.12)
Proof. The proof of these relations follows by direct computations. O

Lemma 60. Let k and n be two non-negative integers such that 0 < k < n. Then, the following

derivative rules are valid.

nly! k
Di(ria)s = (-t g i)
kon Mgtk
qu _7[n—k}q!x .

Proof. The proof is obtained by induction with respect to #.

Proposition 61. The following connection formulas are valid.

m=0

(x;9)n = f (—1)m {ZLquxm

L n (Ml
=Z<—1>m[ }q SERIT
m=0 mlq

(5.13)

(5.14)

O

(5.15)

(5.16)

Proof. Many proofs of these two relations can be found in the literature. We give here a

proof, which is based on Lemma 60}
For the relation (5.15), we first write

(G0 = Y Du(n)"

m=0

Taking k times the g-derivative in this equation and using Lemma|60} it follows that

(—1)F [n[ ]k] 4% (xq*; ). Z D (n

(]!
[m — k]

Now we substitute x = 0 and obtain

This reads

For the relation (5.16), we write

n
= Z Gu(n
m=0

As previously, taking k times the g-derivative in this equation and using once more Lemma

(60), it follows that

[n[n]f]q!xnk -y (_Dka(n)mq(g)(qu?Q)mk
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Next, for x = ¥, this equation reduces to

[n]! 70 = (1)K O Gy(n).

The desired representation follows by simplification. O

Remark 62. Once equations and (5.16) are known, they can easily be established automat-
ically applying q-Zeilberger’s algorithm (see [32l) to the right-hand sides. These computations are
contained in the Maple file attached to this work.

5.3.4 Connection formula between x" and (x © 1)¢

Lemma 63. [47, Table 2] The following derivative rule is valid.
Dy(xoy); = nlg(xon)y™, n>1, (5.17)
where Dy acts on the variable x.

Proof. The proof follows by direct computation. O

Lemma 64. The following derivative rule is valid.

[”]q'

k n__ n—k
Dy(x©y)y = [nik]‘f(x@y) , 0<k<n. (5.18)
Proof. The proof is obtained by induction with respect to n using (5.17). O

Proposition 65. The bases (x ©y); and x" fulfil the following connection formulas

n —m
xoyr=Y (-y)" " ){n] " (5.19)
m=0 mdiq
n n
=) yn’”{ ] (xey). (5.20)
m=0 miqg
Proof. For relation we write
(x @y 2 C(n

Next, we apply D’q‘ to both sides of this relation and use 1D to get

[”}q'
[n — Kk]g!

(xoy); "= ZC m[]k'] "= Gk ) Cm(n)[m_]q!q!xmk.

Now, substituting x = 0, it follows that

M[Tlhlf].,ﬂ(—ﬂ)"kq(nzk) = Ci(n) [k,

Simplification gives the desired result. Relation (5.20) follows in the same manner. O

Remark 66. Once equations and are known, they can easily be established automat-
ically applying g-Zeilberger’s algorithm (see [32l]) to the right-hand sides. These computations are
contained in the Maple file attached to this work.
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5.3.5 Connections between (x © y)7 and (x;q)»

Proposition 67. The bases (x ©y)j and (x; q)n fulfil the following connection formulas

(xoy)g= Y. (~1)"g H " S Pl (5 4w (5.21)
m=0 m q
()0 = Y (—1)"g) H V7" nm (xS P (5.22)
m m q

Proof. The proof is done as the proof of (5.19) using the relation

Di(wia)s = g, G5

O

Remark 68. Once equations and are known, they can easily be established automat-
ically applying g-Zeilberger’s algorithm (see [32l]) to the right-hand sides. These computations are
contained in the Maple file attached to this work.

5.3.6 Connection between (x?)" and (a — ix),(a + ix),
Note that
n—1
On(a,x) = (a—ix)p(a+ix)y = [[(x**+ (a+k)?), 6o(a,x) =1
k=0
The following proposition holds.
Proposition 69. The following connections are valid.
n

(a—ix)p(a+ix), =) (—1)kex (—aZ, —(a+1)>2---,—(a+n— 1)2) (22, (5.23)
k=0

n
(x2)" =Y E (faZ, (a1, —(atn— 1)2) (a—ix)p(a+ ix)p. (5.24)
k=0
Proof. The proof follows from the definition of the elementary symmetric polynomials and
the elementary symmetric polynomials of the second kind. O

In order to get explicit formula for Ej (—az, —(a+ 1)2,~ o, —(a+n— 1)2), we state the
following results.

Proposition 70 (see [36]). The basis 6, (a, x) fulfills the following relations

DOy (a,x) =nb, 4 (a + ;,x) , (5.25)
D6, (a,x) = LG o la+ ¢ x),0< < n. (5.26)
! (n—D1"" 27 )T T T

Theorem 71. If f is a polynomial of degree n in x?, then

£ =Y fibela ),
k=0

where

kf(i(a+ K
P (R )
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Proof. First remark that 6y (a,ai) = 0 for all k > 0. Hence

D/f(x ifk O ;(a+ = fiji'+ 2 fk )Gk ](ﬂ+é x)

k=j k=j+1

and forx =i (a+ é),we get

(i)

This proves the proposition. O

Theorem 72 (see [11]]). Let k be a nonnegative integer. Then

k
k k) (2ix —k—2I) k-2l
D*f(x ; 0 21x—k+l)k+1f X+ ——i). (5.27)

Corollary 73. The following result is valid.

k .
—k); (2ix —k+2I) k—21
D2 =y (2Kl (2 ( —= ) . 5.28

* ,;) I 2ix—k+ Do T2 (5:28)

Proof. Take f(x) = x?" in (5.27) to get the result. O

Corollary 74. The following connection formula is valid.

"1 & (—k) (—2a—2k+21)
2n n ! 2n
x "= (-1 — a+k—1)""6(a,x). (5.29)
g S CHEE oo
Proof. The proof follows from Theoremand Theoremwith fx) = x?". O

5.3.7 Connection between (x(x +¢))"” and (—x),(x + €) .

We recall the definition of the difference operator D

Def(u(x)) = Ai%ﬁ)) _ fw() ~ flux+1)

2x+1+¢

and define the polynomial basis (for the Racah and the Dual Hahn polynomials) &, (x, €)

by
n(x,€) = (=x)n(x +€)n
which are the appropriate basis to consider for the operators De.

Proposition 75. The basis {,(x, €) fulfils the following relations.

Degn(xre) :ngn—l(x/€+ 1) (5.30)

D&, (x,€) = (nilk)!gn_k(x,e + k). (5.31)

Proof. We prove the first relation. The second one is obtained by induction. First remark
that
Cnlx+1e)=(—x—1Dp(x+14+e)p=—(x+1)(x+e+n)g—1(x,e+1)

Gn(xve) = (x+n—1)(x+e+n-1)¢1(xe+1)

Thus
Cn(x+1e) —Cn(x,€) = —n(2x+1+¢€)Cy—1(x, e+ 1).

The result follows by dividing by —(2x + 1 +¢). O
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Theorem 76. If f is a polynomial of degree 2n in x, then

n k
fo =y CNO o

]
= K

Proof. Since f is a polynomial of degree 211, we can write

£ = Y adelxe).
k=0

Clearly,
DLF(X) = Yo il et ) =gt + Y Gl (et )
= =it S et
Taking x = 0, it happens that
(DLF)(0) =
This proves the theorem. O
Corollary 77. The following connection formula is valid.
k n
(x(x+¢)" = i Mgk(x,e). (5.32)

P k!

5.3.8 Connection between x" and (a + ix),

We recall the difference operator D defined as follows:

Df(x):f(x—i—;)—f(x—;),

and define the polynomial basis
n(a,x) = (a+ix),
which is the appropriate basis to consider for the operators D.

Proposition 78. The basis 17,(a, x) fulfils the following relations.
1
Diu(a, x) = —nipy—q (‘1 + 21x> (5.33)

Driyy(a, x) = (_1)k(ni!k)!;7”k (a + I;,x> . (5.34)

Proof. We prove the first relation. The second one is obtained by induction.
By definition, we have

Dnp(a, x) =1y <a,x+ ;) — 1 (a,x ;)
=la+i x—i—i —la+i x—i
B : 2 n 2 n
—(a-tii) —(avlqi
=(a-5+ix ) a+ 5 +ix )
—(a-Ltyi N (e tvivrn—1) (e tai
=(a—5+ix){at+5+ix . a+ 5 +ix+n a+ 5 +ix .
1
et

= —nfy_1 (11 + ;,x) .
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Proposition 79 (Power of D). Let k be a nonnegative integer, then the following relation holds.

DFf(x i ( ) (x + "_2211> . (5.35)

Proof. The proof is done by induction. The relation is obvious for k = 1. Assume it is true
for a fix integer k > 0. Then, we have

D f(x) =D(D"f(x))
(1) <Il‘ Df <x+ k—2211>

(7 (v =50) = (x4 55570))

f
(o 22 R () (22

k—21+1i>
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Theorem 80. If f is a polynomial of degree n in x, then

= Y funela %),
k=0

fi = (*kl!)kpkf (i (a+ ’;)) :

Proof. First remark that 7, (a,ai) = 0 for all k > 0. Hence

where

n [

DIf() = YD i sesila+ 50 = (CDIfi+ Y g la+ 4,0

k=j k=j+1

andforxzz(a+ ) we get

Dif <i (a + é)) = (=1)jf;.

This proves the proposition. O

Corollary 81. The following connection formula is valid.

X" = — -1 a-+0Di)"n(a,x). 5.3
kgok!lgo( )<1)<( +1)i)" (2, %) (5.36)

Proof. First, we apply theorem 80| with f(x) = x to get
n

_1)k
=Y <( kll) DkxTx—i(qu'z‘)) 1k (a, x).

k=0

Next, using proposition[79] we have

- lio(_nl(’l‘) <x+ k—221i>”.
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Then, we have
it = X0 () (k=i
|l(ﬂ+§) 1=0 l
k . 1 k
0 L () e
=0
This completes the proof. O
5.3.9 Connection between cos” § and (ae®®, ae=%;q),,.
We first make the following remark
) ) n n—1
(ae®,ae™"; q) = (—2)"q @ T (cos 6 — x;),
k=0
where
1+ azqzk
X = Y
2aq
The following proposition follows.
Proposition 82. The following connection formulas are valid.
(ae®®,ae™"; q), = (—2a) q(z) Z Y¥er(xo, x1,- -+, Xy_1) cos" k6, (5.37)
n . .
cos" =) (—Za)*kqf(Z)Ek(xo, X1, Xpo1)(ae, ae™; q), (5.38)
k=0
with ) ok
= k0,1, 1, (5.39)
2aq
In what follows, we give explicit formula for Ex(xo, x1, -+, X;—1)-
Proposition 83 (see [11]). The following gq-derivative rule is valid.
(1) y
2n n k(n—k) ,2k—n (n—2k)/2,2
(PiPE) = a7y }: 7" ) (5.40)
q (q1/2 — g~ 1/2)n & qUn=2k22; 0) (2R 1272 ),
where f(z) = f((z+1/2)/2),z = €, x = cosb.
Proposition 84 (see [23]). If f(x) is a polynomial in x = cos 6 of degree n, then
n . .
x) =Y filae®,ae™;q); (5.41)
k=0

where

(g1 — K1)
fre= mq (sz)(xk),

with ,
% = 500 4472 /a)
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Corollary 85. If f(x) is a polynomial of degree n in x = cos 0, then
n . .
x) =) felae® ae™;q)y,
k=0

with . i 200 }
—(k=1)? 2G=K) £ ( gak—i
q a”V=" f(aqg"/)
_ . . (5.42)
fr=4 Z < (3, q1+2(k a2, q)]’(q,q_l_z(k_])ﬂ’2;¢7)k—j

Remark 86. Note that, by a change of variable j := k — j, the py’s in corollary[85|can be written as

i g a"%f(ag)) . '
= (9,9"Ha%;9)— (9,97 Ha"2;q),;

Corollary 87. The following connection formula is valid.

k a2 (agi + a—1g—ik . .
k (aq +a q ) 0 _—if
=21 - (ae®,ae7;q);, x=cosf.  (543)
k;o ]Zo (q, quaz Dik-j(q,97Ha"2;q);

5.4 Moments and generating functions

As previously announced, we now use the inversion formula to compute the moments of
orthogonal polynomials (see Theorem 50). Connections between the bases enable us to get
the canonical moments from the generalized ones.

5.4.1 The continuous case
The Jacobi polynomials
From the orthogonality relation (3.1), it follows that

1o = o LEEDTE LD
F(a+p+2)

e For 6,(x) = (1 — x)", we have from (4.16)

Ta+14n)T(a+p+2) _ o (a+1),

o) = B n+ e+ 1) 2 @+ BT

e For 6,(x) = (1+ x)", we have from (4.17)

T(B+1+n)T(a+B+2) _on (B+ 1),

Ip(n) :an(“+ﬁ+n+2)r(ﬁ+1) T Wt B2

Therefore, the following proposition is valid.
Proposition 88.

1. The generalized Jacobi moments with respect to the basis (1 — x)" have the representation

nratpri L@+DIB+1)  (a+1),
1 (1 — x)k) = gntatptl () e (5.44)

2. The generalized Jacobi moments with respect to the basis (1 + x)" have the representation

roaep LU DT D) (61,

(14 2)) = Ta+B+2) (a+p+2)n

(5.45)
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Remark 89. Note that these moments could be computed directly as follows. For (5.44), we start
by remarking that

/11(1 — ) (14 x)Pdx = po = 2“+ﬁ+1r<1"f(z -11-)1';(52—)1)

Next, we replace o by o + n to get

! e ~oatprna L+ n+1DI(B+1)
(L= = [ (L= 0 (1 4 )Py = 280 e P

_ utpEntl Fla+DI(B+1) (a+1)n
F(uc+,3+2) (D(+,B+2)n‘

For the relation (5.45), just replace B by B + n and proceed as previously.

Proposition 90. The generalized Jacobi moments have the following exponential generating func-
tions:

Ta+DO(B+1) 2P & by (@B +2)n o1
=2 #n((1=x)%) (22)",
T(a+B+2) (1—z)t! 7;) ! n!
Cla+DO(B+1) 24P & by (@B +2)n o1
=2 (14 x)%) (22)".
Fa+p+2) (1—z)~FH1 nX::O " n!
Proof. Using the binomial theorem (2.3), we get the results. O

In Chapter 3] we gave a representation of the canonical Jacobi moments involving the sum
of two hypergeometric functions. Here, using the inversion formula, we derive another
representation of those moments. We first recall the following relations which are other
ways to write the binomial theorem.

m (Z) (1—x)" (5.46)

xfl
xi’l

L (-1
ZO(—l) - <m> (1+x)™. (5.47)

From (5.44), (5.45), (5.46) and (5.47), we have the following proposition.

Proposition 91. The canonical Jacobi moments have the following representations

yn:2a+ﬁ+1r(“+1)r(ﬁ+1)2 ] (_”'“+1

T(a+p+2) 2 2) (compare [131), (5.48)

2) (5.49)

Note that these two representations are simpler than the one we obtained in Chapter

Remark 92. In [13], the formula is written as

— <n>(_1)m2mr(b+m)l"(a+b) - (—n,b

g D@+ DIT(B+1) -n,B+1
(—=1)"2 NCEYES) 2F ‘g

= \m ['(a)T(a+b+m) aib

2),7120 a,b>0.

Duran seems to set a = a + 1, b = B+ 1 and he uses a different standardization.

Remark 93. It should be mentioned that the Laguerre moments, the Hermite moments and the
Bessel moments computed in Chapter [3|can be recovered by this method.
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5.4.2 The discrete case

For the classical discrete orthogonal polynomials, the measure da(x) in the definition[17]is
a discrete measure. Therefore the moments with respect to the basis x* are given by

. (xk) = Y p(k)k, (5.50)
k=0
and the canonical moments are given by
o =) p(k)K", (5.51)
k=0

where p(x) is the discrete weight function associated to the family. These sums can be finite
(as in the Hahn and the Krawtchouk cases) or infinite (as in the Meixner and the Charlier
cases).

The Hahn polynomials
The Hahn polynomials Qy (x; , 8, N) fulfil the following orthogonality relation [30} P. 204]

i (uc—i—x) (ﬂ;ﬁ )Qn(x(x B, N)Qum(x;2,B,N)

x=0 x
(D (et Dna(B+ Dt
2n+a+B+1)(a+1),(=N),Nt “"
for «# > —-land § > —lora < —Nand 8 < —N.
With m = n = 0, it follows that

(5.52)

_ (@+B+ DN
MO wr p+1)NT

From the inversion formula {.21)), for 6, (x) = x™, we have

lo(n) = (—1)r & (=N

(@+pB+2)n
Therefore, the following proposition is valid.

Proposition 94. The generalized Hahn moments with respect to the basis x™ have the representa-
tion

k n @+ B+ 1)N4 (a+1)n(=N)n
) =(-1 . 5.53
"”(x) D T gF N @t L2 (5:59)
Proposition 95. The generalized Hahn moments with respect to x™ have the following generating
function:
(@+B+1)N (x+B+2)uz"
(1 —— .54
(oc+,[3+1)N' +2)" Z””( ) (a+1), n! (5:54)

Proof. We have

Z””( ) a(ﬁjz ni' ni

Using the binomial theorem (2.3), the result follows. O

Proposition 96. The canonical Hahn moments have the following representation
(a+B+1)N+1 & m (DC+1)m(fN)m

=Tl -1)"S —_— 5.55

12"k (a4 1)m ( N)w

_ @+ B+Nn
~ (a+B+1)N +. mZOkZ k'm k! (a+B+2)m

Proof. The proof follows from (2.21), (2.23), (5.9) and (5.53). O

(5.56)
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The Krawtchouk polynomials

The Krawtchouk polynomials K, (x; p, N) fulfil the following orthogonality relation [30, P.
237]

NOINY k N—k (=1)"n! <1—P)n
- w(k; p, m(k;p, = S, .
L ()t Kt N) = (g (1 0<p<1
(5.57)

With m = n = 0, it follows that
Ho = 1.
From the inversion formula {.22), for 6, (x) = x”, we have

Io(n) = (=N)a(=p)".
Therefore, the following proposition is valid.

Proposition 97. The generalized Krawtchouk moments with respect to the basis x™ have the repre-
sentation

Un (xk> = (=N)u(—p)". (5.58)

Proposition 98. The generalized Krawtchouk moments with respect to the basis x* have the fol-
lowing exponential generating function:

k

o U X~
1+p)N=Y" ”( >z", Ipz| < 1. (5.59)
n=0

Proof. Using the binomial theorem (2.3), we have

) -N
3= 3 S ) —1Fo(

—pz) = (1+p2)N.

n=0 0
O
Proposition 99. The canonical Krawtchouk moments have the representation
n
pn =3, Su()(=N)m(=p)". (5.60)
m=0
Proof. The proof follows from (2.21), (2.23), and (5.59). O

Proposition 100. The canonical Krawtchouk moments have the following exponential generating
function:

N_yv, 2
(pf+1—p)" = n;)yna. (5.61)
Proof. By definition, the canonical Krawtchouk moments are given by
N
=3 K (N) Pra—pN
k=0 k

Therefore, it follows that

o Z' _ NOa(NY ko) #
E(]ﬂnn!—):()(kxok (k)p(l p) )m

k=0 n=0
-3 (3)eera-pr
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Proposition 101. The canonical Krawtchouk moments y,, can be computed by the formula y, =
fn(1) where (fn)n is the sequence of functions defined by

fol) = (tp+1=p)N,  fasr(t) =tfs(t) n>0.

N

Proof. We prove by induction that f,,(t) = Y. K*(¥)p*(1 — p)N-FtX. Finally, we have the
k=0

proposition by computing f, (1) = . 0O

The Meixner polynomials

The Meixner polynomials M, (x; B, c) fulfil the following orthogonality relation [30, P. 234]

ad n!
Z (i?xCan(x},B,C)Mm(x;ﬁfc) = —Cn(ﬁ) (1 — c)ﬁénm, ﬁ > 0, 0 <c< 1 (562)
x=0 : n
For m = n = 0, it follows that
1
o= (1—c)P

Therefore, the following proposition is valid.

Proposition 102. The generalized Meixner moments with respect to the basis x™ have the repre-

sentation
o () =G0 (51) 669

Proposition 103. The generalized Meixner moments with respect to the basis x™ have the following
exponential generating function:

k
1 e, |
= , 1. 5.64
(l—c—cz)ﬁ n;) n! z ‘1—C < ( )
Proof. The proof follows from the binomial theorem (2.3). O

Proposition 104. The canonical Meixner moments have the representation

fn = 1_Cﬁ2 1)" S (n ﬁ)m<ccl)m. (5.65)

Proof. The proof follows from (2.21), (2.23), (5.9) and (5.63). O

Note that the canonical Meixner moments appear in [26].

Proposition 105. The canonical Meixner moments have the following exponential generating func-
tion:

A= )P 2 yn , ee®| < 1. (5.66)

Proof. By definition, the canonical Meixner moments are given by
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It therefore follows that
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_ - )k z\k _ 1
_k;) k! (ce®)" = (1 — ce)P
O
Remark 106. From the definition of the canonical Meixner moments
0 k
c
pn = pn(B,c) = Z (ﬁl)cl,( k",
k=0 :
it follows that
] 1
ot (Bre) = Zpnra(Bro). (5.67)
Therefore, the moments iy, (B, c) can be represented by

_ Py(B,c)
pn(Bic) = (A= )f+n’

where Py, is a polynomial in two variables c and B and can be computed recursively by the recurrence
d
Pupi(Bc) =c|(L—c)z5 PulBc) + (B+n)Pu(Bc)|, Do(Bc)=1  (568)

The Charlier polynomials
The Charlier polynomials C,(x; a) fulfil the following orthogonality relation [30, P. 247]

o X
Y %Cn(x;a)cm(x;a) =a "e"nléyn, a>0. (5.69)
x=0 """

With m = n = 0, it follows that
Ho = €.
From the inversion formula (4.24), we have

Ip(n) =a".
Therefore, the following proposition is valid.

Proposition 107. The generalized Charlier moments with respect to the basis x™* have the repre-
sentation

Un (xk) = e%a". (5.70)

Proposition 108. The generalized Charlier moments with respect to the basis x™ have the following
generating functions:

—_
|
S
N
Il
018
=
=
N
=
i
—
N
=
=
N
A
=

(5.71)

a5 () 572
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Proposition 109. The canonical Charlier moments have the representation

n
Uy =e" 2 Sp(n)a™. (5.73)
m=0
Proof. The proof follows from (2.21)), (2.23), and (5.70). O

Note that (5.73) appears in [44] and [26] without the constant yg = €.

Proposition 110. The canonical Charlier moments have the following exponential generating func-
tion

oy, 2
=Y (5.74)
n=o

Proof. By definition, the canonical Charlier moments are given by
oo _k
a
k=0 ™"

Therefore, we have:

5.4.3 The g-discrete case
The Big g-Jacobi polynomials

The Big g-Jacobi polynomials P, (x;a,b, c; q) fulfil the following orthogonality relation [30,
P. 438]

aq (g1 1y, )
/ WX e Xl p (0,b,c0)Pa(xi0,b, 6 9)dqx
Ci

g (x,bc1x;9) e
(aqu,a’lc, ac’lq;q)OQ
(aq,bq, cq,abc14;q) o

1_abq (q’ bq1abc_lq}5])n _ 2\n (n)
1— abg?*+1  (ag,abq,cq; q)n (—caq”)"q'? . (5.75)

=aq(1—q)

Let us write
(a x,c7 ')

P(XIQ) = (x,bcflx;q)oo :

The g-integral in (5.75) can be written as

aq
/p(x;q)Pm(x;a,b,c;q)Pn(x;a,b,c;q)dqx
cq
=aq(1—q) Y p(aqq";q)Pu(aqq;a,b,c;q)Pu(aqq’;a,b,c; q)
k=0
—cq(1—q) Y_ p(cqq";q)Pu(cqq";a,b,c; q) Pa(cqq®;a,b,c; q)
k=0
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We have:
aq [eS) (=)
/C q () (x;9)ndgx = aq(1 —q) Y p(ag"*';q) (ag" ' ;q)n — cq(1 —q) Y (g5 9) (cd** T ).
k=0 k=0
Define the discrete measures y, and y. as

[e9)

pa=aq(1—q) Y p(aqg";9)q % g

k=0
pe=cq(q—1) Y p(cd;9)q € e,
k=0
and put
H = Ha+ He
We then have

[ e e = [ (xapudn(o).
cq —

It follows by taking m = n = 0 in the orthogonality relation that

(abg?, a" cac'q;9)eo
(aq,bq, cq,abc=1q;q) oo

po = aq(l —q)
From the inversion formula (.25), for 6,,(x) = (x;4),, we have

_ (ag,cq;q9)n
o) = b g

Therefore, the following proposition is valid.

Proposition 111. The generalized Big g-Jacobi moments with respect to the basis (x;q), are given
by

(abg?, 0" e,ac”'q;9)0 (24, 04;)n
X; =ag(l— . 5.76
Fn(( q)k) q( ) (aq/erCq/ﬂbC_lq,'Q)oo (abqg;q)n ( )
Note that the Big g-Jacobi moments with respect to (x; q), were given in [4, P. 91] with the
normalization po = 1.

Proposition 112. The generalized Big g-Jacobi moments with respect to (x;q), have the following
generating functions

(abg®,a”"c,ac'q;9) oo (cqz q)o (aqu;q)n z"
a —_— , lzl <1 (5.77)
q(aq,bq,cq,abflq,q) (2 7)o ,12” " (aq;q)n (@9)n d
(abg?,a"c,ac1q;q) o (0923 9) oo (ﬂqu;q)n z"
a 2 z] < 1. (5.78)
T (aq,bg,cq,abc G 9)00 (2:0)eo ,12” " (cq:)n (4:9)n d
Proof. The proof follows by the use of the g-binomial theorem (2.6). O

Proposition 113. The canonical Big q-Jacobi moments have the representation

— — n .
AL LI L L (- { ] e (5.79)
m=0 mdiq

(aq,bq, cq, abc~ 1q, (abq?; q)m

Proof. Using 2.27), 2.23), (6.16) and (5.76), we get the result. O
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The g-Hahn polynomials

For0 < ag < 1and 0 < Bg, or fora > g N and B > g~V the g-Hahn polynomials
Qn(9~% &, B, N|q) fulfil the following orthogonality relation [30] P. 445]

Y- A8 o)X Qu (g0, B NIl NI

=0 @B 1N q)x

_ (apa%a)n (9,2BaN 2, By q)n (1 — apq)(—aq)"
(Br )N (aq)N (aq,aBg,q N;q)n 1 —apg?!

From the relation (5.80), with m = n = 0, it follows that

o — (xBa*;q)n
(Bg; q)n ()N

From the inversion formula (4.26), for 6,,(x) = (47%;9)», we have

g@—Nng, o (5.80)

—N.
ton) =

Therefore, the following proposition is valid.

Proposition 114. The generalized q-Hahn moments with respect to the basis (q~*;q)n have the
representation

vy (@BgoN (aq,q N9
mn((q ,q)k>—(ﬁq;q)N(aq)N B n=0,1,...,N. (5.81)

Proposition 115. The generalized q-Hahn moments with respect to (4~
generating function

X.

;q)n have the following

N

(@Pg N (24 o _ 5> oy ) (BT D 2"
(B a)n(eg)N  (z:9)e _n;o”"«q S0k @ D)n @D (5.82)

Proof. We have

Z (g5 BT 2" (@B 5 ()
(fw,q)n (@a)n  Bron(a))N = (g9)n
By the g-binomial theorem (2.6), the result follows. O

Proposition 116. The canonical g-Hahn moments have the following representation

(xBa*; q ¢ { ] S ) (@, N
= Rk A A VUL (5.83)
= Baan( ; mlq (@Ba?; q)m
Proof. The proof follows by using 2.21)), 2.23), (6.16) and (5.81). O

The Big g-Laguerre polynomials

For 0 < ag < 1and b < 0, the Big g-Laguerre polynomials P, (x;a, b; q) fulfil the following
orthogonality relation [30] P. 479]

27 (1%, b7 1x;0) oo
/bq ((x;q)c>oq>Pm(x;a,b;q>Pn<x;arbw>dqx

,ﬂilb,ﬂbil 7 q ) ; n
. (aq bqﬁ)zoq) (a;qbZ?;)n(—aqu)”q(z)émn. (5:84)




5.4 Moments and generating functions 64

Let us write
(a %, b7 1'% 9) o

p(x;q) = TN

The g-integral in (5.84) can be written as

aq
/b 0(x;q)Pu(x;0a,b;9) Py (x;a,b; q)dgx
q

=aq(1—q) Y p(aqq";9)Pu(aqq";a, b;q) Pu(aqq"; a, b;q)
k=0

[e)

—bq(1—4q) Y_ p(bqq*; q) Pu(bqq*; a,b;q) Py (bqq*;a,b; q).
We have:
aq o0 [}
/bq p(x;9)(x; Q)ndgx = aq(1—q) Y p(ag"*';9) (ag" ™5 9)n — bg(1 — q) Y p(bg" % 9) (bg" ;).
Define the discrete measures y, and p, as
pa=aq(1—q) Y p(aqd";q)q e s,

k=0
o =cq(q—1) Y p(bg" " 9)q epgenn,
k=0

and put
M= Ha + Hp.
We then have

i ploaCoadye= [ oan().

With m = n = 0, it follows that

La b, ab7 g 9) oo
1ty — ag 1 i),

(aq, bq;9)o0
From the inversion formula .27), we have

Io(1) = (aq, bq; q)n.
Therefore, the following proposition is valid.

Proposition 117. The generalized Big q-Laguerre moments with respect to the basis (x;q), have

the representation

(g,a~1b,ab™"4;9) oo
(a9, bq;9)eo

Note that the generalized Big g-Laguerre moments with respect to (x;¢), were given in [4]

P. 91] with the normalization o = 1.

in((x:9)k) = aq (aq,bq;q)n- (5.85)

Proposition 118. The generalized Big q-Laguerre moments with respect to (x; q)n have the follow-
ing g-exponential generating function

n

(q,07'b,ab™q;9) (492, 0)00 &
= n{{X;
13,000 (219)e0 ,;)” L ey
(q,07'b,ab7'q;9) 0 (092; @) & z
a — X; - -
(19,00:9)0  (24)e0 ,1;0” (00,

.z <1, (5.86)

, 2] < 1. (5.87)
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Proof. The proof follows by the use of the g-binomial theorem (2.6). O

Proposition 119. The canonical Big q-Laguerre moments have the representation

(‘71 a~'p, ab_lq; q)0° g m |: n ] —nm+("1)
=a -1 2 (aq,bq; q)m. (5.88)
b= g 2 L ) (9 b0
Proof. Using (.21), (2.23), (5.16) and (5.85), we get the desired result. O

The g-Meixner polynomials

For 0 < bg < 1 and ¢ > 0, the g-Meixner polynomials M, (x;b,c;q) fulfil the following
orthogonality relation [30, P. 489]

00 b ; k _ —
Z%qu<z>Mm(q b,¢;q)Mu(g7;0,¢;9)
k=0 \'1” ’

(=G (@ —c"'qq)n
(~beg;q)eo (b;9)n o 65
From (5.89), with m = n = 0 it follows that

_ (=69)
0 “bog )’
From the inversion formula (4.30), we have
n
c
o) = (=) G

Therefore, the following proposition is valid.
Proposition 120. The generalized g-Meixner moments with respect to the basis (§~*;q), have the
representation
(=€) ( ¢ > !
() = ~S) (bgi ) (5.90)
D) = peg)m \ g) GTD

Note that the g-Meixner moments with respect to (§%; ), were given in [4] P. 91] with the
normalization yg = 1.

—X

n((q

Proposition 121. The generalized q-Meixner moments with respect to (q~*; q), have the following
g-exponential generating function

(—c,=bez;g)es & . z
(—bcg, —cq1z;9) oo m;o”"((”’ 'q)k)(q;q)n'

(5.91)

Proof. First we write

Then, we use the g-binomial theorem (2.6) to get

e b o .
(—¢q)oo . ( q —cqlz) _ (—c, —bcz;9) oo

(—bcq; 9)eo (—beq, —cq1z;q)e0”
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Proposition 122. The canonical g-Meixner moments have the representation

(=9 © [n:| —nm+("y) m
= c"™(bg; q)m- (5.92)
fin (—beq; 9)e mZ:;O m qq (ba;
Proof. The proof follows by using (2.21), 2.23), (5.16) and (5.90). O

The Quantum g-Krawtchouk polynomials

The Quantum g-Krawtchouk polynomials Kztm(q’x ; 7, N;q) fulfil the following orthogo-
nality relation [30} P. 493]

% (Pq?’i)ka ( 1)N kq( )thm(qfk.p Nq)KZtm(qfkp Nq)
= (@ Di(0: )Nk A A
_ "N @ )N-n(q, P9 D g CD=C1) N
(4.9:9)N
From (5.93), with m = n = 0 it follows that
_N@an v
Ho = 3 q :
(9, 9;9)n

From the inversion formula .31)), we have

o, P> g N, (5.93)

-N.
Io(n) = 7D
(pq)
Therefore, the following proposition is valid.
Proposition 123. The generalized Quantum q-Krawtchouk moments with respect to the basis
(9%, q)n have the representation

N(,. -N.
O NS T ) (5.94)

@aoN (p)"
Proposition 124. The generalized Quantum q-Krawtchouk moments with respect to (q7%;q)n
have the following g-exponential generating function

N+1 —1g-N-1, z
~ypN (@ N (p g ZV

—X

un((q 5 9)k) =

. (5.95)
T @aon () 12 q (q;rm
Proof. First we write
ad Zz" N+1 ad z\"
oo -3
L@ o = (M/ ; ,q) pq
VAU I AR
CN pq
Then, we use the g-binomial theorem to get
—-N 1 —-N—
q<N2+1)PN(q;q)N1¢O Tl e pN(@@a)n (p~'q N1 '2; 7)o
@49)N _ | pa @aan  ((pg) 7'z 9)e
0

Proposition 125. The canonical Quantum q-Krawtchouk moments have the following representa-
tion

N
_PE@aN Y v m{”] S (Y (4 ) m 5.96)
M= ggan mZ::o( ) mly ( ©

pa)"
Proof. The proof follows from (2.21), (2.23), (5.16) and (5.94). O
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The g-Krawtchouk polynomials
From the g-Krawtchouk orthogonality relation (3.23), with m = n = 0, it follows that

N+1
2,

Ho = (—pg;q)np Mg~
From the inversion formula (4.32), we have

n) = (qu?Q)n
o) = g

Therefore, the following proposition is valid.

Proposition 126. The generalized g-Krawtchouk moments with respect to the basis (§~; q), have
the representation
—N.
_ _ _(N+1 ;
(@500 = p~ Vg4 (- pg gy L (5.97)

(=pg:9)n

Remark 127. The canonical q-Krawtchouk moments are already given by (3.24). These moments
can be recovered by using (2.21), (2.23), (5.16) and (5.97), combined with q-Zeilberger’s algorithm
[32]] implemented the gsum package.

Proposition 128. The g-Krawtchouk moments with respect to (q~*;q), have the following g-
exponential generating function

_ . —N 7(N;—1) (Zqi ;q)oo — " —X. —pa;9)y, Z ) 5.98
(—pg:q)np g NET ngou (% @) (—pg;9) @ (5.98)
Proof. We have
00 n (=] —N.
o .y z N NPy @ @)n _n
mX::O( pa; Dutin ((47%50)k) A ( pq,q)wg)i(q;q)n
By the g-binomial theorem (2.6), it follows that
00 —N. —N.
yo i@ (2 e
This completes the proof. O

The Affine g-Krawtchouk polynomials

The Affine g-Krawtchouk polynomials KAf(q=; p, N; ) fulfil the following orthogonality
relation [30, P. 501]

N . .
D W(W)k%ﬁ (775 p, N K2 (g7 p, N3 )
k=0 \'l" ’ -

n-N (@ D4 9)N-n
(Pg:0)n(4:9)N

From (5.99), with m = n = 0 it follows that

= (pq) Sy, 0 < pg<1. (5.99)

po = (pq)~N.

From the inversion formulas (4.33) and (4.34), we have:

e for0,(x) = (7% 9)n,
Io(n) = (4,9 ";9)n-
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o for 0,(x) = (g7 )" (" N9 = (a0 g7 N,
Io(n) = (pq)" (a7~ N;9)n-

Therefore, the following proposition is valid.
Proposition 129. The generalized Affine g-Krawtchouk moments
1. with respect to the basis (§~%; q)n have the representation

X

(0 %)) = (p0) N(pa, a7 N @)n, (5.100)

2. with respect to the basis 6, (x) = (g7*©q™N )q have the representation
Hn ((q"‘ © q‘N)Z) = (p))" N N pn. (5.101)

Proposition 130. The generalized Affine g-Krawtchouk moments have the following g-exponential
generating functions

—N. 0 —x. n

N (20775 g)e w05 q)) 2
B ) ) (5.102)

U ET m;o (Pg;Dn - (g D)n
1-N 0 n

NP1z ) —x o N

_ o . (5.103)
() ) n;o#n (4 ea™) @

Proof. The proof of (5.103) follows from the g-binomial theorem (2.6). O

Proposition 131. The canonical Affine g-Krawtchouk moments have the following representation

_ n n _ m+1 _
n = (pg) ™" Z(—l)’"[ } g2 (pg, 7N 9) e (5.104)
m=0 mlg
Proof. The proof follows from (2.21), (2.23), (5.16) and (5.100). O

The Little g-Laguerre polynomials

The Little g-Laguerre polynomials fulfil the orthogonality relation (3.26). Withm =n =0,

it follows that .

aq;q)eo
From the inversion formulas (4.35) and (4.36), we have

1402(

o for0,(x) = x",
Io(n) = (aq;q)n

o forb,(x) = (xo1)7,
Io(n) = (—aq)"q?.
Therefore, the following proposition is valid.
Proposition 132. The Little g-Laguerre moments
1. with respect to the basis x" have the representation (compare to (3.27)),

Un = M, compare with [4, P. 91] (5.105)

(ag; 7)o
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2. with respect to the basis (x © 1) have the representation

(—aq)"q"?

. 5.106
(a9;9) oo (5.106)

pn((x © 1)5) =

The canonical moment y;, is given in [4, P. 91] with the normalization yy = 1.

Proposition 133. The generalized Little q-Laguerre moments with respect to the basis (x © 1)y
have the following generating function

e m(en))
(ﬂqu q)oo - ng%) (q’ q)n .

Proof. The result is obtained by the use of the Euler formula 2.8). O

(5.107)

The g-Laguerre polynomials
The g-Laguerre polynomials L,(f‘) (x; q) fulfil the following orthogonality relations
Discrete orthogonality For the discrete orthogonality, see Equation (3.29).
Continuous orthogonality [30, P. 522]
RS () (w)
—— Ly, (x;9)L;, 7 (x;9)dx
b Emat mand )

IO ) Y Gttt )RS . )
= Ge (@aa NCOT@F Do, a1 (5.108)

With m = n = 0, it follows that

e For the discrete orthogonality

@ _ (g, —cqg"", —cg7% 9)eo
Ho = o+l _ . 1.
(g, —c,—c713;q) e

e For the continuous orthogonality
(© _ (0% 9w
= —T(—a)['(a+1).
w = e a1
From the inversion formulas (4.37), for 8,,(x) = x", we have:

(121)_"(“'1'1) (qa+1, q)n

Io(n) =q~
The following proposition is therefore valid.
Proposition 134. The canonical g-Laguerre moments have the representation

d ,—C a+1/ _C71 70‘/. o (M
i = (q(qa:1 — —c‘quWI)Zj g~ BT (g )., (5.109)

for the discrete orthogonality (compare to (3.30)), and
—. n
p! = Wr(—ww +1)q” DT (g ), (5.110)
9;9)
for the continuous orthogonality.

Remark 135. The moments (5.109) obtained using the inversion formula for the discrete orthogo-
nality are of course the same as the ones obtained by direct computations in Chapter[3| The generat-
ing function is already given.
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The g-Charlier polynomials

The g-Charlier polynomials fulfil the orthogonality relation . Withm = n = 0, it
follows that

po = (—4;9)eo-
From the inversion formula (¢.39), for 6, (x) = (97%;4)x, we have

Therefore, the following proposition is valid.

Proposition 136. The generalized q-Charlier moments with respect to the basis (q~*; q), have the
representation

(075 9)k) = (—a;9) e (—Z)n. (5.111)

Remark 137. The canonical g-Charlier moments are already given by (3.36). These moments can

be recovered by using (2.21), (2.23), (5.16) and (5.111), combined with the g-Zeilberger’s algorithm
[32]] implemented in the qsum package.

Proposition 138. The generalized q-Charlier moments with respect to (§~%; q), have the following
g-exponential generating function:
(—a 2"
- iq : (5.112)
(—aq 12 9)oo n;y" D
Proof. The proof follows from Euler’s formula (2.7). O

The Al Salam-Carlitz I polynomials

The Al-Salam-Carlitz I polynomials U,(lu)(

[30, P. 534]

x;q) fulfil the following orthogonality relation

1
/(QX,a‘qu;q)oollr(,f)(x,'q)u:(f)(x;‘J)dqx
= (=) (1= q)(3:9)n(9,8,8'3;9)00q O, @ < 0. (5.113)

Let us write
p(x;q) = (42,0792, 9) -
The g-integral in (5.113) can be written as

/alp(x Uy (x; U (x; q)dg

quq U (@5 Ul (6 9)

—a(1-) Y o(ad; U (ag; ) U (agsq).
k=0

Define the discrete measures y1 and p, as

m=0-9) Y p@a5a)a e
k=0
a=aq(q—1) Y 0(4%9)q € e,
k=0

and put
H=H+Ha
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We then have .
/a p(x;q)(x@l)gdqx:lw(xel)gdy(x).

With m = n = 0, it follows that

o= (1-4)(q,8,07"4;q)co.
From the inversion formulas (4.41) and (.40),
e for 0,(x) = (x ©1)f, we have

e for 0,(x) = x", we have

Therefore, the following proposition is valid.
Proposition 139. The Al-Salam-Carlitz I moments

1. with respect to the basis (x © 1)§ (generalized moments) have the representation

un((x© 1)) = (1= 9)(q,0,071;9)o0n” (5.114)

2. with respect to the basis x" (canonical moments) have the representation

pn = (1=q)(q,8,07'4:q)e Y, m a'. (5.115)
i=0 q

Note that these canonical moments appear in [9, Eq. (10.8), P. 197]
Proposition 140. The generalized Al-Salam-Carlitz I moments with respect to (x © 1)§ have the
following g-exponential generating function

[e0]

_ 1—
(q,a,a 1q;q)oo1 — Zz =Y m((xo 1)’;)2”, laz| < 1. (5.116)
n=0

The Al-Salam-Carlitz II polynomials

The Al-Salam-Carlitz II polynomials V,Ea) (q~%; q) fulfil the following orthogonality relation
[30, P. 537]

(] kZ k
) g a (@), —k. v (), —k.
i (g v 4 4) Va .
= (@:9)k(ag; 9)k (@5 a)Va (a759)

. n
_ @ <ag<1. (5.117)

(aq;9)coq™
Therefore, the canonical Al-Salam-Carlitz II moments are

[e9)

2
Z qukn
= (@ 9)k(ag; q)k
From (5.117), with m = n = 0, it follows that

Hn =

_ 1
MO~ (g )

From the inversion formula (4.42), for 6, (x) = (g7%;9)», we have
Io(n) = (—a)"qs).

Therefore, the following proposition is valid.
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Proposition 141. The generalized Al-Salam-Carlitz Il moments with respect to the basis (q=*; q)n
have the representation

—a)a®
JDk) = ((agl?q?w : (5.118)

Note that the Al-Salam-Carlitz Il moments with respect to (§7%;7), are given in [4, P. 91]
without the term .

un((q~

Proposition 142. The generalized Al-Salam-Carlitz II moments with respect to (9~*; q), have the
following g-exponential generating function

(az;q) 0 z"
(x;q . (5.119)
(ag; ) Z p (q; Dn
Proof. The proof follows from Euler’s formula (2.8). O

Proposition 143. The canonical Al-Salam-Carlitz Il moments have the representation

1y = 1 i [Tl] . qm(m n) (5.120)
(@4;9) o y=o L],
Proof. The proof follows from (2.21), (2.23), (5.16) and (5.118). O

Note that these moments appear in [9, Eq. (10.10), P. 197]

The Stieltjes-Wigert polynomials
The Stieltjes-Wigert polynomials S, (x;¢) fulfil the following orthogonality relation [30, P.
544]
[ Een (o, (o, —_—
0

—X, =X 1;9)eo q" (4 )n
With m = n = 0, it follows that

o = —Ing(q;q)co-

From the inversion formula {.43), for 6, (x) = x", we have

(n+l)

Io(n) =q~
Therefore, the following proposition is valid.
Proposition 144. The canonical Stieltjes-Wigert moments have the representation

n+l)

pn = —Inq(q;9)e0q ¢ (5.122)

Note that these moments appeared in [4, P. 91] and [10} P. 223].

Proposition 145. The canonical Stieltjes-Wigert moments have the following g-exponential gener-
ating function:

Ing~! Z }ln

(q‘lz q

(5.123)

Proof. First we remark that ("+1) (3) + n and then we apply Euler’s formula . O
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The Discrete g-Hermite I polynomials

The Discrete g-Hermite I polynomials £, (x;q) fulfil the following orthogonality relation
[30, P. 547]

1
[ 0%, =)ol ) )

= (1-9) @ Dn(q ~L —:9) g uun. (5.124)
Let us write
p(x;q) = (4%, —q%;) -
The g-integral in can be written as

1
[ o)) ()
= (1 —=q) Y 4@ )hu(q" 9)ha (45 q)
k=0
+(1=q) Y q0(=q D hm (=45 9)ha (=45 9).
k=0
Define the discrete measures 1 and y_1 as

p=1—9) ) e(d5 9 e s
k=0

por=(1-q) ¥ p(—45 )%y,
k=0

and put
H=p+Hp-a.
We then have .
/_1 p(x;q)(x ©1)gdgx = /_oo(x © 1)gdu(x).
With m = n = 0, it follows that
o= (1-19)(q,0,a7'q;q)-
From the inversion formulas (4.44) and (£.45),
e for 0,(x) = (x ©1)f, we have

e for 0,(x) = x", we have
1+ (=1)"
Ip(n) = f(q; 9 )n/2-
Therefore, the following proposition is valid.
Proposition 146. The Discrete g-Hermite I moments

1. with respect to the basis (x © 1)§ (generalized moments) have the representation

un((x01)8) = (1= q)(q, —1, —:9)e(—1)" (5.125)
2. with respect to the basis x" (canonical moments) have the representation

1+(-1)", , .
un = (1-19)(gq, -1, —q;q)oof(q;q Jn/2, compare with [4, P. 91].  (5.126)

Proposition 147. The generalized Discrete q-Hermite I moments with respect to (x © 1)3 have the
following generating function

1-— ad "
@ -1 -G e = L m((xo ), |2 <1 (5.127)
n=0
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The Discrete g-Hermite II polynomials

The Discrete g-Hermite II polynomials 7, (x;q) fulfil the following orthogonality relation
[30, P. 550]

© (%) (9) (@ =9, 89 ) (@ 9)n
./—oo (=% %) o0 Ao = (P~ %) g™ O (5-128)
Let us write
(rig) = — 1
T )
The g-integral in can be written as
)i (i ) (x; )y =
=(1-q9) Y ") hn(d";9)hn(d"; )
k=—o00
+(1-q) ¥ qo(=a"a)hm(—q" ha(—q5 ).
k=—o00

Define the discrete measures y1 and pp as

m=(1-4q) Y p(d59)q%

k=—00
ne=1-0q) ¥ p(=q5q)7% g,
k=—00
and put
W=+ pa.
We then have - -
| et pndgr = [ (rahdp(x).

It follows that

(4% 9~ 49w
(4% =4 0% 9%
From the inversion formula , for 6, (x) = (x;9)n, we have

Fo =

Io(n) = q.
Therefore, the following proposition is valid.

Proposition 148. The generalized Discrete g-Hermite II moments with respect to the basis (x; q)n
have the representation

(@ 99w

. (5.129)
I T
Note that these moments appeared in [4] P. 91] with the normalization yy = 1.

i ((x59)k) = (

Proposition 149. The generalized Discrete q-Hermite II moments with respect to (x; q), have the
following g-exponential generating function:

n

— 2 — —q, 2 -
(—z,9% —q, q'q)"o:Z‘un((X}Q)k) i

. (5.130)
@ =0 0% %) 5 (@ @)n
Proof. The proof follows from the Euler formula (2.8). O
Proposition 150. The canonical Discrete q-Hermite I moments have the representation
(qzl 49 —q;qz)oo 5 m [Tl:| m(m—n)
= -1 . (5.131)
R mgo( " )

Proof. The proof follows from (2.21), (2.23), (5.16) and (5.129). O
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5.4.4 The quadratic case
The Wilson polynomials

The Wilson polynomials W, (x?%;a,b,c,d) fulfil the following orthogonality relation [30, P.
186]

/WIWHJmNb+mﬂﬂHJﬂHd+M)2
0 I'(2ix)
_2nlf(n+a+b)I(n+a+c)l(n+b+c)I(n+b+d)T(n+c+ d)n!5 (5.132)
T(2n+a+b+c+d)(n+a+b+c+d—1);" "
With m = n = 0, it follows that

Ia+b)T(a+c)l'(b+c)I'(b+d)T(c+4d)

Wm(xz; a,b,c, d)Wn(xz;a, b,c,d)dx

Ho =27 T(a+b+c+d)
From the inversion formula (4.47), for 6,,(x) = (a + ix),(a — ix),, we have
To(n) = (@a+b)u(a+c)u(a+d),
0 (a+b+c+d)y,

The following proposition is therefore valid.

Proposition 151. The generalized Wilson moments with respect to the basis 0, (a,x) have the
representation

T(a+b)T(a+c)T(b+c)T(b+d)(c+d) (a+b)y(a+c)y(a+d)n
T(a+b+c+d) (a+b+c+d),
(5.133)

Proposition 152. The generalized Wilson moments with respect to 68, (a, x) have the following
generating function

Un(Bn(a,x)) =21

n
(atbtctd)nz (5.134)
a+c)p(a+d), n!

(

( )
o(1 — 2)7+¢ = Z 1 (0 (a, ))((+b+c+d))nz”’ (5.135)

(a

(

(5.136)
with
TFa+b)'(a+c)T(b+c)I'(b+d)T(c+d)
T(a+b+tctd) '
Proof. Using the binomial formula we get the result. O

po =21

Proposition 153. The canonical Wilson moments have the representation

Ta+b)(a+c)L(b+c)T(b+d)(c+4d)
w+b+c+®

i —(a+1)2,--,—(a+n—-1)3

YPn = 277

(a4+b)ym(a+c)m(a+d),
(a+b+c+d)m

Proof. Combining

T(a+b)T(a+c)T(b+c)T(b+d)T(c+d) (a+b)ula+c)ula+d)y
Fa+b+c+d) (a+b+c+d)y

Un(Bn(a,x)) =2m
with
(x*)" = Y En(—a®,—(a+1)% -, —(a+n—1)%)0u(a,x),

we get the result. O
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Proposition 154. The canonical Wilson moments have the following representation

)i (a+b)(a+c)(a+d) (—2a—2k+21) o
un—quZ k,l, bt 2 okiD @tk 6137

Proof. The result is obtained using relations (2.21)), (2.23), (5.29) and (5.133). O

The Racah polynomials

The Racah polynomials R, (A(x); &, B,, ) fulfil the following orthogonality relation [30, P.
191]

o (@D (B+0+1)(r+1)u(y+5+Da((v+5+3)/2)s
Z%) (—a+7+0+Dx(=B+7+Dx((v++1)/2)x(6 + 1)xx!Rm()‘(">>R”(A(x)>

m+a+B+Du(a+B—7+ (e —6+1)u(B+1)un!

xX=

(4 B+1)2u(a+Du(B+0+1)u(y + 1) o (5139
where
Ru(A(x)) = Ru(A(x);, B,7,9)
e (BIn(y +5+2)
—P)N{Y N . _
(_(/3+Z(‘5">1)(N(£}‘_|1_)21\I) if a+1=-N
_ —a N (Y N . _
M = ((7“+ﬁ7+2()571)£§(5+1)1\[ if B+0+1=—-N
a+p+2)N(—90)N . _
@ otnprDy TN
It follows that
(=BIN(Y+5+2)N . o
(_(/S‘F_Z;‘)l)(N(i}‘i)é\f) if a+1=-N
_ & N{Y - _
o = ((_“+ﬁ7+2(§+(1)5)(5+1) if p+o+1=-N
a+pbp+ .
@—0+ In(B+1)n if y+1=-N.
From the inversion formula (#.48), for 6,,(x) = (—x)u(x 4+ v+ 6+ 1),, we have
_ @ FDa(B+0+1)a(y + D
lo(n) = (a+ p+2)s '

Therefore, the following proposition is valid.

Proposition 155. The generalized Racah moments with respect to the basis
0 (x) = (—=x)n(x + v + 6 + 1), have the representation

(=BIN(Y+3+2)ny (@a+1)u(B+6+1)u(y+ 1)

T N S ey e

_ —ato)n(r+o+ a+1)u(B+o+Duly+1)n . B

Wn0n(2) = T e NG T TN CETETIR if p+o+1=-N
(¥ +B+2)N(=0)N (&+1)u(B+35+1)u(y +1)n foyile N
(@a—0+1)N(B+1) (a+B+2)n v (5—139) :

Proposition 156. The canonical Racah moments have the following representation

n DELe(x+ )] g (a+ 1)(B+ 6+ 1)ely + )i

””:ﬂok:O k! (0 + B+2)k

(5.140)

wheree =y + 0+ 1.
Proof. The result is obtained using relations (2.21)), (2.23), (5.32) and (5.139). O
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The Continuous Dual Hahn polynomials

The Continuous Dual Hahn polynomials S, (x?;a,b,c) fulfil the following orthogonality
relation [30, P. 196]

2
S (xz; a,b,c)Sy (xz,' a,b,c)dx

®|T(a+ix)T'(b+ix)T(c+ix)
/O ’ I'(2ix)
=Tn+a+b)Il(n+a+c)I'(n+b+c)n'dy. (5.141)

With m = n = 0, it follows that
po=T(a+b)I'(a+c)T(b+c).
From the inversion formula (4.49), for 6,,(a,x) = (a — ix),(a + ix),, we have
Ip(n) = (a+c)n(a+d),.
Therefore, the following proposition is valid.

Proposition 157. The generalized Continuous Dual Hahn moments with respect to the basis
0n(a,x) = (a —ix),(a + ix), have the following representation

Hn(O(a,x)) =T(a+b)T(a+c)T(b+c)(a+c)p(a+d)n. (5.142)

Proposition 158. The generalized Continuous Dual Hahn moments with respect to 6, (a, x) have
the following generating functions:

)t = 7
Ho(1-2) go pa(B(a ) (5.143)
n
1—2)" = ¥ (B0, %)) ———. 144
Ho ( Z n‘é‘b#n kax))(ﬂ—l—C)nT’l! 6 )
with
pwo=T(a+b)I'(a+c)T(b+c).
Proof. Using the binomial theorem (2.3) we get the result. O

Proposition 159. The canonical Continuous Dual Hahn moments have the following representa-
tion

n
Un = VOZ Em(—az,—(a+1)2,...,—(a+n — 1)2)(a+c)m(a+d)m. (5.145)
m=0
with

po=T(a+b)T(a+c)T(b+c).

Proof. Since
1n(0k(a,x)) =T(a+b)[(a+c)T(b+c)(a+c)u(a+d),

and ;
Z —(a+1)>2,...,—(a+n—1)"0u(a,x),
the result follows. O

Proposition 160. The canonical Continuous Dual Hahn moments have the following representa-
tion

ii 'l‘ (—2a—2k+2l)(a+c)(a+d)

2n
ST (a+k—102".  (5.146)

Proof. The result is obtained using relations (2.21)), (2.23), (5.29) and (5.142). O
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The Continuous Hahn polynomials

The Continuous Hahn polynomials p,(x;a,b,c,d) fulfil the following orthogonality rela-
tion [30, P. 200]

/ T(a+ix)['(b+ix)T(c—ix)['(d —ix)pm(x;a,b,c,d)pu(x;a,b,c,d)dx

_F(n+a+c)F(n+a+d)1"(n+b+c)l"(n+b+d)5 (5.147)
T (@ntatbtctd-D)I(n+atb+c+d—1)n " ’

With m = n = 0, it follows that

Ia+c)l(a+d)T(b+c)T(b+d)
T(a+b+c+d) '

From the inversion formula (.49), with 77, (x) = (a + ix),, we have:

(a+c)p(a+d)y,
(a+b+c+d),

Ho =

Ip(n) =

Therefore, the following proposition is valid.

Proposition 161. The generalized Continuous Hahn moments with respect to the basis (a + ix),
have the representation

T(a+c)l(a+d)T(b+c)T(b+d) (a+c)n(a+d),

. 5.148
F(a+b+c+4d) (a+b+c+d)y ( )

pu((a +ix)y) =

Proposition 162. The generalized moments of the Continuous Hahn polynomials with respect to
(a + ix),, have the following exponential generating function:

oy — (a+b+ctd)z"
po(1— ; (@ i)i) I (5.149)
oo (a+b+ctd)z"
po(1 — ng)yn a-+ix)g) T (5.150)
with
_Ta+olr(a+d)T(b+c)I'(b+4d)
Ho = T(a+b+c+d) ‘
Proof. The proof uses the binomial theorem (2.3). O
Proposition 163. The canonical Continuous Hahn moments have the following representation
LA . . ~(a+o)u(a+d)m
— _j\m —
Hn = Ho m;o( i)"Ep(ai, (a+1)i,...,(a+n—1)i) @+ btctd (5.151)
with
I'a+c)l(a+d)T(b+c)T(b+d)
Ho = :
F(a+b+c+4d)
Proof. Using
n—1
(a+ix), =i"[[(x— (a+k)i),
k=0

we get
n

X" = Y (=i)"Em(ai, (a +1)i,..., (a+n—1)i)(a+ix)m.

m=0
The proposition is proved using the fact that
Ta+)T(a+d)T(b+c)I(b+d)(a+c)n(a+d)n
T(a+b+c+d) (a+b+c+d),

pn((@+ix)y) =
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Proposition 164. The canonical Continuous Hahn moments have the following representation

K (=) KN (a4 c)i(a+d)g
= Ni)", 5.152
Hn ”‘),;)lg k! <l)(u+b+c+d)k((a+)l) (5.152)
with
_Ta+ol(a+d)I(b+c)l'(b+d)
Ho = T(a+b+c+d) ‘
Proof. The result is obtained using relations (2.21)), (2.23), (5.36) and (5.148). O

The Dual Hahn polynomials

Fory > —1and § > —1, or for v < —N and 4 < —N, the Dual Hahn polynomials
Ry (A(x); 7,6, N) fulfil the following orthogonality relation [30, P. 209]

Z 2x+7+(5+1)(7+1) NN A ()70, N)Ru(A(x); 7,6, N)

=0 Y(x+r+0o+1)Np1(0+ 1)
5"’111
= (5.153)
S+N—
("CNS
With m = n = 0, it follows that
1

Ko = iy

%)

From the inversion formula (4.51), we have
Io(n) = (v +1)u(=N)n.
Therefore, the following proposition is valid.

Proposition 165. The generalized Dual Hahn moments with respect to the basis 6, (x) = (—x),(x +
¥ + 0 + 1), have the representation

pn(Ok(x)) = M%(7+1)n(fN)n. (5.154)
N

Proposition 166. The generalized Dual Hahn moments with respect to 0, (x) = (—x)n(x + v+
0 + 1), have the following exponential generating function:

1 —N,a+1
R

N

[e9) Zn
z| = 20 P (5.155)
n=

Proposition 167. The canonical Dual Hahn moments have the following representation

1 & DElx(x+ o)l

0
n = 5N =y + (=N (5.156)
( N ) k=0 :
wheree = v+ 6 + 1.
Proof. The result is obtained using relations (2.21), (2.23), (5.32) and (5.154). O

The Meixner-Pollaczek polynomials

The Meixner-Pollaczek polynomials P,S/\)

[30, P. 213]

(x; ¢) fulfil the following orthogonality relation

/ " @m0\ + i) 2P (x; )PV (1 )

I'(n+2A)
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With m = n = 0, it follows that

['(22)
(2sin¢)??

From the inversion formula (4.52), for 6, (x) = (A + ix),, we have

Mo = 27

(2M)n

Io(l’l) = m

Therefore, the following proposition is valid.

Proposition 168. The generalized Meixner-Pollaczek moments with respect to the basis (A + ix),
have the representation

rey) 2\

pn (A +ix)g) = 2”(2 sin )24 (1 — e~ 291"

(5.158)

Proposition 169. The generalized Meixner-Pollaczek moments with respect to the basis (A + ix),
have the following exponential generating function

r'(2A) z —2A e NN z
" 2sing)2t (1 1o e—2i¢) = L (A B0 |7

<1 (5.159)

Proof. We have

2 " o z " [ (2A) 21 z
2 _on Ak A .
HX::() o (2 smcp Z:: ( — 6_219) 7r(2 sing)2A Y ( | 1—ee
Using the binomial theorem (2.3), we get the result. O

Proposition 170. The canonical Meixner-Pollaczek moments have the following representation

r'(24)
(2sin¢)??

(2A)m

=t (5.160)

Uy = i (=))"Ep(ai, (a+1)i,...,(a+n—1)i)

Proof. The proof is similar to the proof of Proposition [163] O

Proposition 171. The canonical Meixner-Pollaczek moments have the following representation

2T(2)) L & K\ (2A)i((a+1)i)"
= . . 5.161
= @sing)?t ; ; ( > (1— e 2id)k (46D
Proof. The result is obtained using relations (2.21)), (2.23), (5.36) and (5.161). O]

5.4.5 The g-quadratic case
In this part, since 8 will denote an angle, we will denote the basis involved in the inversion
formula by B, instead of 6,,.
The Askey-Wilson polynomials

Ifa, b, ¢, d are real, or occur in complex conjugate pairs if complex, and max(|al, |b|, |c|, |d]) <
1, then the Askey-Wilson polynomials p,(x;a, b, ¢, d|q) fulfil the following orthogonality re-
lation

1 1
— / ) \/Zf(xi)zpn(x; a,b,c,d|q)pm(x;a,b,¢,d|q)dx = hydyn, x = cosb, (5.162)
- —x
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where

w(x) = w(x;a,b,c,d|g) = Sl ‘2 _ e D g )i, _1)h(x'_q1/2).

(ae®®, bet®, cel®, de'?; q) h(x,a)h(x,b)h(x,c)h(x,d)

with
_ _ k| .2 2 i0 i, .
h(x,a) = k|:|0 (1 2axq" +a°q ) ( ae', ae ,q)oo,

and
o (abedq®; q) oo (abedq™ 15 q)n
" (g1, abg", acq”, adq", beg™, bdg™, cdg'; q)o

With m = n = 0, it follows that

_ 27t(abed; q) oo
to= (g;ab,ac,ad, be,bd, cd; q) e

From the inversion formula (4.53), for By (x) = (ae’,ae=?;q),, we have

(ab,ac,ad; q),

lo(m) = (abed; q)n

Therefore, the following proposition is valid.

Proposition 172. The generalized Askey-Wilson moments with respect to By (x) = (ae'®,ae="; q),,
have the representation
27t(abed; q) oo (ab,ac,ad; q)p
Hn(Ba(x) = (g;ab,ac,ad, bc,bd, cd; q)ee  (abed;q)y (5.163)
Proposition 173. The generalized Askey-Wilson moments with respect to By (x) = (ae'®,ae="%; q),

have the following generating functions

27t(abed, abz; q) o Z (B (abcd;q)n z"
(q;ab,ac,ad, bc,bd, cd, z; 4 ) oo (B (aC,ad;q)n (@9)n’

m=0
27t(abed, acz; 4) oo B (abed; q), 2"

(q;ab,ac,ad, be,bd, cd, z; 4) oo o Z (B (x (ab,ad; q)n (4:9)n”
27t(abed, adz; 4) oo B (abed; q)n 2"

(g;ab,ac,ad, bc,bd, cd, z;q)es mgo i (Bu(x (ab,ac;q)n (3;9)n

z| <1, (5.164)

z| <1, (5.165)

|zl < 1. (5.166)

Proof. The results are obtained using the g-binomial theorem (2.6). O

Proposition 174. The canonical Askey-Wilson moments have the following representation

27t(abed; ) oo

B (ab,ac,ad; q)m
Hn = (g;ab,ac,ad, bc,bd, cd; q)co

(abed; q)m
(5.167)

n
Z —2a)~ )Em(xo, e Xpo1)

where the numbers xi, k = 0,...,n — 1 are defined by (5.39).

Proposition 175. The canonical Askey-Wilson moments have the following representation

oy — 27t(abed; ) oo L i (ab,ac,ad; q)y qkq_fza‘zj(uqf +a g7k
" (q;ab,ac,ad,bc,bd,cd;q)ook 010 (abed; q) (q,q”z]‘az;q)kfj(q,q‘l 21&1_2/4)1'.
(5.168)
Proof. The result is obtained using relations 2.21), 2.23), (6.43) and (5.163). O

Note that formula (5.168)) appears in [12] and the proof is done using a direct computation.
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The g-Racah polynomials
The g-Racah polynomials R, (y(x); &, B, v, 8|q) fulfil the following orthogonality relation
N

(aq, oq, 79, 700;9)x (1= voq™*") R s 5.169
x;) (9,07 1739, B717q,6q;9)x (2Bg)*(1 — 7dq) DRG0 = b (5:169)

where
Ry (p(x)) = Ru(p(x); 2, B, 7, 6]9)
and
oo (BTl a0 B 0e% )., (1 apa)(voq)" (9,07, 007"q, pa;q),

(a~1p~tq~t,a"1v6q, B~ 1v9,00;9)0 (1 —apg®tl)  (ag,apq, Boq,vq:9),
With m = n = 0, it follows that
(a 1B~ Ly, a1, 71, v00%q)
a1plg=t a~lydq, B1vq,09;9)o
From the inversion formula , for B, (u(x)) = (g7, 754" ; q)n, we have

1402(

,BSq, 7q9)n
i) = CELLAD,

Therefore, the following proposition is valid.

Proposition 176. The generalized q-Racah moments with respect to the basis
Bu(u(x)) = (7%, v6¢**1; q) n have the representation

(«p 1,010, b 100% ) o (aq, B30, V0D

Bi(u(x))) = (5.170)
B C) = (g1, 0 b, BT, 00 0) - (B
Proposition 177. The generalized q-Racah moments with respect to By, (u(x)) = (37, v64" 1, q)n
have the following generating function:
—1p-1 : 15 , (5 n
(a P . B 1007, 79%9) o _ 5 i Blp)) b 25y
(@~ 1p=1g~1a"190q,87174,60, %) 1 wqrﬁéq, o (@)
(5.172)

Now, we give the canonical g-Racah moments in terms of the elementary symmetric
polynomials of second kind.

Proposition 178. The canonical q-Racah moments have the following representation

o = (oc—lﬁ_lfy,uc—l(s,rg—l,ry&qZ; q)oo i Em (%0, 8n1) (ag, BS9, Yq)m
(a=1B71g=1, a=1vdq, B~ 199,00 9) oy = . (2Bg2;q)m
(5.173)
with
gn=q " +y5q", m=0,...,n-1. (5.174)

Proof. We first observe that
Ba(u(x)) = (7%, 700" ) = (=1)"9% [T (n(x) — (47 + v54"1)),
where y(x) = g7* + v3¢* ! (see [30, P. 422]). It follows that

i Em(xo,...,xn,l)Bm(y(x)).

The proof of the proposition follows using (5.170). O
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The Continuous Dual g-Hahn polynomials

If a, b, c are real or one is real and the other two are complex conjugates, and max(|al, |b], |c]) <
1, the Continuous Dual Hahn polynomials p, (x; a, b, c|q) fulfil the following orthogonality
relation [30, P. 429]

1 1 wx
7 /_1 \/%pn(x,‘ a,b,clq)pm(x;a,b,c|g)dx = hpémn, x = cosb, (5.175)

where

w(x) =w(x;a,b,clg) =

(%9).., ’2 _ D, g 2, ~Dh(x, ')

(ae®®, bet®, cei®; q) h(x,a)h(x,b)h(x,c)
with
h(x,a) = zﬁ (1 —2axq* + a2q2k) ( ae e,ae_ie;q)m;
and B 1
hy =

(q"+1,abq", acq", beq"; q)eo
With m = n = 0, it follows that

27T

Ho = (q,ab,ac,bc; q)oo

From the inversion formula , for B, (x) = (ae'®,ae~"%; q),, we have
Ip(n) = (ab,ac;q)y.
Therefore, the following proposition is valid.
Proposition 179. The generalized Continuous Dual q-Hahn moments with respect to the basis

Bu(x) = (ae®,ae=%;q), is given by

(Be(x)) = 2 e

(q,ab, ac,bc; ) (5.176)

Proposition 180. The generalized Continuous Dual q-Hahn moments with respect to By (x) =
(ae'®, ae=; q),, have the following generating functions

27t(abz; q)oo z"
(z,9,ab,ac,bc; q) oo n; pn(Bi(x (ac 7 9)n (>177)
27(acz; q) oo z"
) ——. 5.178
(z,q,ab,ac,bc; q) s Eoy” (ab,q;q)n ( :
Proof. The results are obtained using the g-binomial theorem (2.6). O

Proposition 181. The canonical Continuous Dual q-Hahn moments have the following represen-
tation

2r Z
(q,ab,ac,bc; ) =
where the numbers x;. are defined by .

Proof. The proof is similar to the proof of (5.167). O

iy = (=1)"q~ @ Ep(xo, ..., xp_1)(ab,ac;q)m, (5.179)

Proposition 182. The canonical Continuous Dual q-Hahn moments have the following represen-
tation

27 R o e (b
(g, ab, ac,be; q)eo (=5 (0,9 Ha%9)i—i(q,97 " 2a~%q),
Proof. The result is obtained using relations (2.21)), (2.23), (5.43) and (5.176). O

Uy = (ab,ac; q)y. (5.180)
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The Continuous g-Hahn polynomials

If c =aand d = b, if a and b are real and max(|al,|b|) < 1, orif b = d and |a| < 1, then the
Continuous g-Hahn polynomials p,(cos(6 + ¢); a, b, ¢, d|q) fulfil the following orthogonal-
ity relation

1 T
/ w(cos(0 + ¢))pn(cos(0+ ¢);a,b,c,d|q)pm(cos(6 + ¢);a,b,c,d|q)dx = hybmn,

ar |-
i (5.181)
where

(ezi(9+4>)); q) ) 2

w(x) = w(x;a,b,c,d|q) = (el @429), pel020) ceif dei; )

h(x, Dh(x, g2 h(x, ~1)h(x, ~g/2)
(x, e (x, b (x, ce~ 9 x, de~ )

with x = cos(6 + ¢),

[e9)

h(x,a) =]] (1 — 2axq" + a2q2k) = (aei(9+¢’),ae_i(9+¢);q)
k=0

[e0]

and
(abedg®™; q)eo(abedq™ ;)
(g"*1,abg"e??, acq™, adq", beg™, bdg", cdqe%%; q) o

With m = n = 0, It follows that

n =

B 47t(abed; q)oo
Ho = (q,abe??,ac,ad, be,bd, cde=29;q)c

From the inversion formula l| with B, (x) = (aei({”z"’), ae ; q)n, we have

(abe??,ac,ad; q),
(abed; q)n

Io(n) =

Therefore, the following proposition is valid.

Proposition 183. The generalized Continuous g-Hahn moments with respect to the basis
By (x) = (ae'®+20), qe=10; q),, have the representation

47t(abed; g) oo (abe®?,ac,ad; q),
B = : . . 5.182
n(Bi(x)) (q,abe*?,ac,ad, be, bd, cde=%9; ) oo (abed; q)n ( )

Proposition 184. The canonical Continuous g-Hahn moments have the representation

n ok 2i . ko —2 —2j ,2i —ip i 1 o—1,ip —j\k
abe*?,ac, ad; I a=2e?9 (ge I +a e ]
i = Mo Z Z ( Dx 99 ( q q7)

y : . _ , (5.183
o= (abed;q) (%%”m%ﬂww»4WM**m”¥%wj( :

where
4rt(abed; q)oo

Ho= (qr abEZi(p/ ac,ad, bc, bd, cde—2i¢; q)oo ’
Proof. From (5.43), we have

n k —a=2i(a I AL
N ) R (ag q9)

iz @9 ek q)-j(q,97 a2 q);

i

(ae ,ae_ie;q)k.
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Replacing 6 by 0 + ¢, it follows that

T (ag +a g )k i(0+) 1 ,—i(0+9)
1t = (ae ,ae 5Dk
Z%)q Z 1+2]a2 D _,(q,q 1-2j,— 2;‘7)]‘ q

Next taking a = ae~¥ we get

T R S i L I
o — q T 5 —1_97 __ -
P (q, q1+21a2e 214),. Q)kfj(qr q 1 2]a 26214); q)]

(ae'®+29) qe=10,0), . (5.184)

(5.183) is obtained using relations (2.21), (2.23), (5.182) and (5.184). O

The Dual g-Hahn polynomials

For0 < yg <land 0 < ég < 1,or fory > g— N and § > g — N, the Dual g-Hahn
polynomials R, (y(x); 7,6, N|q) fulfil the following orthogonality relation [30, P. 451]

N 2141
2 (12,709,9 ";a)x (L= ") e
Ry(u(x);v,6, N|g)Ry (1(x); v, 6, N|g) = hybun,
& (0,709872,54;9). (1= 76q) (—r9)* " ()i 7,8 NIg)Ron ((x); 7,6, Nlg)
(5.185)

with ) LN
_ (5N, N30T e
hn - ( ‘7) —N
(vq;9)n (r9,97N:q)n
For m = n = 0, it follows that

(voq)".

(v64% a)n
(Y 9)N

From the inversion formula (4.57), for By, (u(x)) = (7%, v6¢**1;q)n, we have

-N

o = (79)

Io(n) = (73,9 ";@)n.
Therefore, the following proposition is valid

Proposition 185. The generalized Dual q-Hahn moments with respect to the basis
Bu(u(x)) = (975, v69° ;) n have the representation

2.
pn(Bi(u(x))) = (vq)Nm(vq,qN;q)n. (5.186)

Proposition 186. The generalized Dual q-Hahn moments with respect to B, (u(x)) = (q7%, v54* 1, 9)u
have the following generating function:

R = e

Proof. Using the g-binomial theorem (2.6) we get the result. O
Proposition 187. The canonical Dual g-Hahn moments have the following representation

pn = (yq) ™ gyl q i DEu(go, - 8- (10,0 N0, (5.188)

(r)/q’ m=0
with the numbers gy defined by (5.174).
Proof. The proof is similar to the proof of (5.173). O
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The Al-Salam-Chihara polynomials

If 2 and b are real or complex conjugates and max(|al, |b|) < 1, then the Al-Salam-Chihara
polynomials fulfil the following orthogonality relation [30} P. 455]

1 /1 w(x) ' . B Smn B
7 [1 T Qn(x;a,b|q)Qm(x;a,blq)dx = @ bt a0’ x = cosb, (5.189)
where

w(x) = w(xa,blg) = | D rzm Dh(x,q"/2)h(x, ~1)h(x, /%)

(ae', ae=1;q) h(x,a)h(x,b) !
with -
h(x,a) = H (1 — 2aqu + a2q2k) ( eie,ae*ie;q) .
k=0 «©
For m = n = 0, it follows that
o = 2
O (qabg)e’

From the inversion formula (4.58), for B, (x) = (ae’®,ae~"; ), we have
In(n) = (ab; q)n.

Therefore, the following proposition is valid.

Proposition 188. The generalized Al-Salam-Chihara moments with respect to the basis
By(x) = (ae'®,ae=; q), are given by

27t(ab; q)n
(,ab;4)cc”

Proposition 189. The generalized Al-Salam-Chihara  moments — with  respect  to
Bu(x) = (ae®,ae=®;q), have the following q-exponential generating function:

tn(By(x)) = (5.190)

27t(abz; 4o z"
STIZ )0 o (By( (5.191)
(z,ab, 4;q)eo Z Bl o

Proof. Using the relation (5.190), we have
2 . (ab}Q)nzn.

n;oy" GOn @40 = (@0
By the g-binomial theorem (2.6), we get the result. O

Proposition 190. The canonical Al-Salam-Chihara moments have the following representation

n

= g abi9) ab 7w (7207 "D En(xo, . x0-1) (@b ), (5.192)
! ® m=0
with xy defined by
2 .2k
xk:H#, k:olll._.’n_L
2aq
Proof. The proof is similar to the proof of (5.167). 0

Proposition 191. The canonical Al-Salam-Chihara moments have the following representation
2 ¢ i g'q a2 (ag +a"'q )"
(9.ab;9)e0 (= =5 (0,4 0% )k (q, 971 Ya~%q);
Proof. The result is obtained using relations (2.21)), (2.23), (5.43) and (5.190). O

Mn = (ab; q)x- (5.193)




5.4 Moments and generating functions 87

The g-Meixner-Pollaczek polynomials

The g-Meixner-Pollaczek polynomials P, (cos(8 + ¢); a|q) fulfil the following orthogonality
relation [30, P. 460]

1 /T[ 511/”1
— w(cos(0+ ¢))Py(cos(0+ @); a|lq) Py, (cos(0+ ¢);alg)dx = , O<axl,
sz | wlcos(8-+9))Pu(cos(6+ )ialg) P (cos(6+ )l = (M
(5.194)
where
2i(0+9). 1/2 _ 12
w(x;alq) = (e ,q)oo _ h(x,D)h(x,q ')h(x, 1)7h'(x, q ),
(aei(0+20)  geif; g) o h(x,ae®)h(x, ae~'9)
with
hix,a) =]] (1 — 2axq* + a2q2k> = (aei(“‘f’),ue*i(e*‘/’);q) , x=cos(6+¢).
k=0 «
With m = n = 0, it follows that
o = 271
P (@)

From the inversion formula l| for By, (x) = (aei(9+24’),ae_i9; q)n we have

lo(n) = (a,4;9)n-
Therefore, the following proposition is valid.

Proposition 192. The generalized gq-Meixner-Pollaczek moments with respect to the basis
By (x) = (ae'®+29) ae=1%; q),, have the representation

2 .
pn(By(x)) = ZHW (5.195)

Proposition 193. The generalized q-Meixner-Pollaczek moments with respect to (ae'(®+29) ae=1%; ),
have the following generating function

271(a%z;9) 00 & z"
SR Sdje Bi(x (5.196)
(2,02, ) n;oy”( D g

Proof. The proof of (5.196) uses the g-binomial theorem (2.6). O

Proposition 194. The canonical q-Meixner-Pollaczek moments have the following representation
2T n k qkq—jza—ZjeZi(p(ae—iq)qj +a—lei¢q—j)k
(@%,4;9)e0 (=5 =5 (9,9"Ha2e 205 q)_i(q,q7 ' Fa—2e29;q);

Proof. The result is obtained using relations (2.21)), (2.23), (5.184) and (5.195).

(@%,q;9)r. (5.197)

Hn =

The Continuous g-Jacobi polynomials

Fora > —1 and B > —} the Continuous g-Jacobi polynomials pF) (x|g) fulfil the orthog-
onality relation [30, P. 464]

1
: / ) _ple) (21g) P (x])dx = hub

E 1 1—«x2
where
1 1 1 .
. (qf('x+ﬂ+2), qj(ac+ﬁ+3),.q)oo 1— qa+,8+1 (qa+1,qﬁ+1, _qj(a+/3+3,q)n) q(a+%)n
" (g, qlx+1,qﬁ+1, _q%(aﬂsﬂ), _q%(a+5+2) ) oo 1— q2”+“+ﬁ+1 (4, qa+/3+1, _q%(aJr,BJrl) Dn !

4 4
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h(x, 1)h(x,g'/2)h(x, ~1)h(x, —4')
B, g2 (g2 3 h(x, 2P ) (x, 2P )

w(x) = w(x;q"%, qP|q) =

with

oo

_ B k K\ _ (i 6. _
h(x,a)_g(l 2axq +a2q2) (ael,ael,q)oo, x = cos#.

With m = n = 0, it follows that
(q%(oc+,5+2), q%(a+ﬁ+3),. 7)o
(g, g+, gb+1, —g2(@tBtD) _g3(atpt2), gy

o =27

. : Tatl jo latl i
From the inversion formula , for By(x) = (q2**1e?,q2%T1¢7%,4),, we have

(qa+1’ _q%(ﬂé+ﬁ+l)’ _q%(oc+/5+2);q)n
Io(n) = (2 q), :

Therefore, the following proposition is valid.

Proposition 195. The generalized Continuous q-Jacobi moments with respect to the basis
Bu(x) = (q2%+ 161, 2% 5710, 0), have the representation

1 1 1 1
Hn(Be(x)) = 27(q2 TP, g2 (TS, ) (g1, g2 TP, g2 (B2 ),
n (g,%+1, gP+1, _q%(wﬁﬂ), —q%(“ﬁ*z);q)m (P42 9),,
(5.198)

Proposition 196. The canonical Continuous g-Jacobi moments have the following representation

zﬂ(q%(aJrﬁJrZ), q%(tx+/5+3) oo

7

T (gt g, g, gl )
n 1\ —m (qlirl _q%(a+ﬁ+1) _q%(a+ﬁ+2).q)m
+ 7 7 7
mZ::O(—Zqz"‘ 4) En(X0,- ) Xn_1) (Earn (5.199)

where the numbers xy are given by (5.39).

Proof. The proof is similar to the proof of where we take a = q%’”%. O

Proposition 197. The canonical Continuous g-Jacobi moments have the following representation
zn(q%(wmz)’ q%(a+ﬁ+3); 7)oo

(9,q%+1, gP+1, _q%(wﬁﬂ), _q%(a+ﬁ+2); D)oo

Hn =

n ok qk—jz—(a-&-%)j(qj—«-%-«—%_,_q—j—f—z)k (qwrl,_q%(zx—&-ﬁ—&-l),_q%(a+ﬁ+2)/.q)
$4)j (P25 )k

— 7 £ (5.200)
k=0j=0 (4,97 2;q)—j(q,9777%

Proof. The result is obtained using relations dZ.ZlI), d2.23l), d5.43|) witha = q%‘”}i and .
O

The Continuous g-Ultraspherical (Rogers) polynomials

The generalized Continuous g-Ultraspherical polynomials C,(x; B|g) fulfil the following
orthogonality relation [30] P. 469]

1 w(x) . . _ (B P19 (B q)n 1-B
3 |y s Cul la) o la)dx = o e L 2, g <1,

where
2

(621'9,.[7)00
(Beq)co

w(x) =
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with -
h(x,a) = H (1 - Zaqu +a2q2k) = ( e? e, q) , X =cosb.
k=0 e
For m = n = 0, it follows that
(B, B; 7)o
o0 = 2~ P /e
: (B%3:9)o

From the inversion formula l| for By (x) = ( ,82 e'?, ,32 e~ 4),, we have

To(n) = (Ba?, (/sﬁq, [;qz q)n

Therefore, the following proposition is valid.

Proposition 198. The generalized Continuous q-Ultraspherical moments with respect to the basis
— (B30 ghp—if. ;
Bn(x) = (B2, B2e"; q) have the representation

o (B,BE: ) (BYE,—B, —Ba% D
un(Br(x)) =2m (B 0:7) B0 . (5.201)

Proposition 199. The canonical Continuous g-Ultraspherical moments have the representation

yn:27((22‘32’ o Z< ) (’2”>Em(x0,...,xn_l)(ﬁqz’(_ﬁfl’]:ﬁf;q)m, (5.202)

where the numbers xy are given by (5.39).
Proof. The proof is similar to the proof of |i where we take 2 = ,Bq% O

Proposition 200. The canonical Continuous g-Ultraspherical moments have the representation

o — 20 B P fi(ﬁq%,—ﬁ,—ﬁq%;m P (prg B R

(B 3:9)~ (255 (B3 9)x (9,80 %; q)k—j(q,B71q7 7% q);

Proof. The result is obtained using relations dZ.Zlb, dz.zsb, 45.43|) witha = ,Bq% and .
O

The Continuous g-Legendre polynomials

The continuous g-Legendre polynomials Py, (x|q) fulfil the following orthogonality relation
[30, . 475]

1 /1 w(x;1]q) (9% D)oo 92"
o= | —=—==Pu(x]q) Pu(x|q)dx = i T Omn
1 V1I-x? (9,9, —92,—4:9)ec 1 — "2
where
w(xalg) = (@% 0o | _ h(x,1)h(x,q"?)h(x, ~1)h(x, —4'/?)
(2q2e20;q)es | h(x,a1})h(x,aq7q?)h(x, ﬁ%>h<x —ﬁ%q%>
with -
hix,a)=]] (1 — 2axgk + azqzk) ( ae'®, ae™ ", q) , x=cosb.
k=0 o0

With m = n = 0, it follows that

1
27 (92;9) e
1 1
1-92 (9,9, 9%, —49)

Ho =
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From the inversion formula l| for B, (x) = (q4e , q4 e~ ), we have

Therefore, the following proposition is valid.
Proposition 201. The generalized Continuous g-Legendre moments with respect to the basis

Bn(x) = (q%eie, q}Ie 9; 4)n have the representation

2 (q%’q)"o (_qzl_q}EI)n
pn(Bi(x)) = : ' . (5.204)
1-q2 (9,4, —q92, -G Qe (0549

Proposition 202. The canonical Continuous g-Legendre moments have the representation

2m (q% q)oo < "o my (=92, — 4 9)m
]/ln: T Z ( 2q4> 2 Em(xO,.../xnfl)W/
— 47 (9,0, 9%, ~;q)eo =0 9% 9)m
(5.205)
where the numbers xy are given by (5.39).
Proof. The proof is similar to the proof of 1} where we take 2 = q%. O

Proposition 203. The canonical Continuous g-Legendre moments have the representation

n

1 | A — j+3 i~%
o (b (b, —gay g @ T

Hn = T 7. 3
— 47 (4,9,—9%, —g; Q) i=0j=0 @ Dx (4,099 i(q.975 %))

Proof. The result is obtained using relations dZ.ZlI), (12.23|), d5.43|) witha = qf and (5.204). O

The Dual g-Krawtchouk polynomials

The Dual g-Krawtchouk polynomials K, (A(x);c, N|q) fulfil the following orthogonality
relation [30, P. 505]

2x—N)

i (cg™™,g7N;9)x (1—cq

= (q.cq:9)x (1—cq™N) ¢ g PN TIK (A (%)) K (A (%))

= (LN B eV, e <0, (5207
(@ N )n
where
Kin(A(x)) := Km(A(x);¢,NIq),  A(x) =g +eq* N
For m = n = 0, it follows that
Ho = (c LN
From the inversion formula , with B, (A(x)) = (7%, ¢ N;q),, we have

Therefore, the following proposition is valid.

Proposition 204. The generalized Dual q-Krawtchouk moments with respect to the basis
Bu(A(x)) = (7%,¢4%N; q)y have the representation

un(Be(A(x))) = ()N (g N ). (5.208)

Proposition 205. The generalized Dual g-Krawtchouk moments with respect to
Bu(A(x)) = (7%,¢4%N; )y have the following g-exponential generating function.

(C_l;q)NL Z pn (B (A ( (5.209)



5.4 Moments and generating functions 91

Proof. We have, by the g-binomial theorem (2.6):

ad ad /q n n —1 (ZqiN’q)oo
N = S 9YIN—F——.
g, = o L S
O
Proposition 206. The canonical Dual g-Krawtchouk moments have the representation
n
o Dy Y (1" DEnllo, - L) (N ), (5210)
m=0
where
=g +cqNg, k=0,...,n—1. (5.211)
Proof. First, we remark that
N mi k N _k
Bu(M(x)) = (77%,e0* ;00 = (=)@ [T (Ax) = (47 + ™))
k=0
This implies
n
Ax)" = Y (=1)"q @ En (0, ..., ly_1)Bu(A(x)).
m=0
Therefore, the proposition follows. O

The Continuous Big g-Hermite polynomials

The Continuous big g-Hermite polynomials Hy(x;a|q) fulfil the following orthogonality
relation [30, P. 510]

1 1 wx 1)
—/71 \/%Hm(x;aw)Hn(x,'aM)dx = m, (5.212)
where
o (@) [P (D), —1)h(x, 2)h(x, —q2)
R e h(x,a) '
with .
h(x, ) :=]] (1 — 2axgk + a2q2k) (zxeie,ae*ie;q)w, x = cosf.
k=0
With m = n = 0, it follows that
27
M= 49w

From the inversion formula (4.64), for B, (x) = (ae’®,ae~"%;7),, we have
10(1’1) =1.
Therefore, the following proposition is valid.

Proposition 207 The generalized Continuous Big q-Hermite moments with respect to the basis
By (x) = (ae'®,ae="; q), have the representation

pn(Bi(x)) = ( (5.213)

7 q)o
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Proposition 208. The generalized Continuous Big q-Hermite moments have the following gener-
ating function:

(q;zj;)oo 1 iz = ;)ﬂn(Bk(X))Z”, 2l <1, (5.214)
Crome WLl 6219

Proof. The proof of follows from the binomial theorem and the proof of (5.215)
follows from the g-binomial theorem (2.6). O

Proposition 209. The canonical Continuous g-Hermite moments have the representation

n

2 m
Hn = (q;-() Z (72a)_mq_(z)E’rﬂ(x0/ ceey Xn_l), (5216)
717 m=0

where the numbers xy are given by .
Proof. The proof is similar to the proof of (5.167). O

Proposition 210. The canonical Continuous g-Hermite moments have the representation

_2 _
ii q'q "a M (agl +a g D)t (5.217)
142f 2. 1-2j,-2.4)." )
k=00 (0,4 0% q)k— (9,97 "%a=%q);

Proof. The result is obtained using relations (2.21)), (2.23), (5.43) and (5.213). O]

The Continuous g-Laguerre polynomials

The Continuous g-Laguerre polynomials P (x|q) fulfil the following orthogonality rela-
tion [30, P. 514]

o [ LBl ala) Y (el

141
T @“"™Yn s
T @ )e (@D g2 6. (5.218)
where
2 1 2
219, 60 ,—el?. g2
w(x) = w(x;q“lq)=' la+—(9 Zl o - | p qu)
(2 1eif, g3+ Teit; ), (2% Eeif; 92 )
_ e, Dh(x, ~Dh(x,q})hx, ~q%)
h(x, 3 5)h(x, q204)
where o
h(x,a) ::H(l—Zaqu+a2q2k) (aeie,ae*ie;q> , X =cosf.
k=0 *©
With m = n = 0, it follows that
" 27T
0= 77— 1.
(9,9 7)o

From the inversion formula l| for B, (x) = (q%’”%eie q2“+4e ©; 4)n, we have

Io(n) = (4“5 q)n-

Therefore, the following proposition is valid.
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Proposition 211. The generalized Continuous q-Laguerre moments with respect to the basis
Bu(x) = (q2%+ie®,g2% ie=19; ), have the representation

2 06+1/.

2™ ), (5219)
(3,45 0o

Proposition 212. The generalized Continuous q-Laguerre moments with respect to

pn(Br(x)) =

Bu(x) = (q2%+iei®, g2% 5e=1%; ), have the following g-exponential generating function:

27(q" 1z 9)e0 & z"
i M Vi Bi(x)) ———. (5.220)
Cad e~ 5 G,

Proof. The proof follows from the g-binomial theorem (2.6). O

Proposition 213. The canonical Continuous g-Laguerre moments have the representation
n

@ qachl Z ( 2024 ) 0@ Eu(x0,. ., X0 1) (@ )m, (5.221)

where the numbers xy are given by .

Hn =

Proof. The proof is similar to the proof of |i where we take a = q%’”éli. O

Proposition 214. The canonical Continuous g-Laguerre moments have the representation

1

2 NN g g it )R g ),
(@05 0o (2125 (4,053, q)_i(q, 975 3, 9); ‘

1y = (5.222)

Proof. The result is obtained using relations dZ.Zlb, d2.23l), d5.43b witha = q%‘”% and (5.219).
O

The Continuous g-Hermite polynomials

The continuous g-Hermite polynomials Hy, (x|q) fulfil the following orthogonality relation
[30, P. 541]

1 1 w(x|q) Omn
— H H, dx = —————, 5.223
[ A Hxla) B ) = (5229
h
wnere ”o » . .
wxlg) = | (2%q) |7 = hixDh(x,~1)h(x,q))h(x,~q?),
with
T (1 ek o 22K (0 b, _
h(x,a)fH 1—2axq"+a°q™ ) = (ae”,ae""";q) , x=cosb.
k=0 *©

The canonical moments of the Continuous g-Hermite polynomials are given for every non-
negative integer n by

1 yn 7T . )

fn = / %x'qz)dx = / (cos )™ (e*?,e729; 3) o db. (5.224)
-1 V1—x Jo

Proposition 215 (See Lemma 13.1.4 in [25])). The following relation is valid

/0” e21]9(6219 —2i6, q) do = (q(q)l)(l + q])q](]_l)/z_ (5.225)
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Proof. Let
T .
I = /0 Q218 (210 =210, ) ).
The Jacobi triple product identity (2.10) gives
T . . .
Ij — /O 621]6(1 o 6219)(q6219’67219;q)wd9
_/nezﬁg((l_)ew) 3 (_1)nqn(n+l)/2€2in9d9
0 4:9)c0 n=—oo

) _1\n n(n+1)/2  ,x ) o
:n; ( 12)(:;q)oo Ln(l —619)61(1+n)9d9.

The result follows from the orthogonality of the trigonometric functions on [—7t; 7t]. O

Proposition 216. The canonical Continuous q-Hermite moments have the following representation

m(—=1)" & 2n gy (=R (n—k-1)
Hont1 =0, pon = (' ) Z(l)k<k)(1+q” Mgz —, n=0,1,2,--- (5.226)
(@ 0) =

Proof. Note that y;, = 0 when n is odd. We start by writing

2
_ 21”,(;) <’Z> oik0 p—i(n—k)o
_ 21”,;) <Z> o (2k—n)
_ 21”; <Z>e‘(n2k)'

Next, we use the the relation (5.225) to get:
T . .
o = /0 (cos 8)2" (€%, e72%; 1) odB

2
_ 2% Zn: (2;) /0” 2i(n—) (20 0218, 0 g

k=0
n(—=1)" & k(2”> ks (1R k1)
= -1 1+ 2 .
@7 kgo( W I Al



Conclusion and Perspectives

We have provided in this thesis representations for the moments (canonical and general-
ized) of all classical orthogonal polynomials listed in [30]. Next, interesting generating
functions for those moments are given. In order to obtain those moments, we have stated
the inversion formulas (see Chapter 4) for all those families, also, we have developed many
connection formulas between specific polynomial bases.

Some of those moments (canonical and generalized) were already known, however as men-
tioned in the introduction, many of them appear for the first time.

Note that only the classical orthogonal polynomials listed in [30] have been studied. There
are other classes of orthogonal polynomials that are obtained by a modification of the three
term recurrence relations of the classical orthogonal polynomials listed in [30], we have for
example [16]: the associated orthogonal polynomials, the co-recursive and the generalized
co-recursive orthogonal polynomials, the co-recursive associated and the generalized co-
recursive associated orthogonal polynomials, the co-dilated and the generalized co-dilated
orthogonal polynomials, the generalized co-modified orthogonal polynomials. The next
step of this work could consist to find the corresponding moments for these orthogonal
polynomials.
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