
Diese Arbeit wurde mit organisatorischer Unterstützung des Zentrums für Lehrerbildung der Universität Kassel veröffentlicht. Informationen zum ZLB finden Sie unter folgendem Link:

www.uni-kassel.de/zlb
Wissenschaftliche Hausarbeit im Rahmen der Ersten Staatsprüfung für das Lehramt an Grundschulen im Fach Mathematik, eingereicht dem Amt für Lehrerbildung - Prüfungsstelle Kassel-

Thema:
Veränderung der Sichtweise von Grundschulkindern zur Mathematik durch Modellierung? - Ergebnisse eines Unterrichtsversuchs

Verfasserin: Anna Christina Nadler

Gutachterin: Frau Prof. Dr. Rita Borromeo Ferri

November 2011
Danksagung

Zuallererst möchte ich mich bei Frau Prof. Dr. Rita Borromeo Ferri für die Überlassung des Themas, die umfangreiche Unterstützung und die hilfreiche Betreuung bedanken.

Letztlich bin ich meinen Freunden sehr dankbar, die mir immer mit guten Ratschlägen zur Seite standen und mein Studentenleben bereicherten.
Inhaltsverzeichnis

1. Einleitung ... 5

2. Theoretische Grundlagen ... 8
 2.1 Der Begriff „Sichtweise“ im Hinblick auf Mathematik 8
 2.2 Aspekte mathematischer Weltbilder .. 11
 2.3 Was ist mathematisches Modellieren? ... 14
 2.3.1 Mathematisches Modellieren in den Bildungsstandards 16
 2.3.2 Der Modellierungskreislauf ... 20
 2.3.3 Ziele des mathematischen Modellierens .. 24
 2.3.4 Modellierungskompetenzen ... 26
 2.3.5 Mathematisches Modellieren in der Grundschule 28
 2.4 Forschungsfragen .. 32

3. Methodik .. 33
 3.1 Qualitative Forschung .. 33
 3.2 Datenerhebung und Sampling .. 34
 3.3 Erhebungsmethoden .. 35
 3.3.1 Fragebogen .. 35
 3.3.2 Interview ... 41
 3.3.3 Hospitation .. 44
 3.4 Auswertungsmethoden .. 44

4. Praktische Umsetzung ... 46
 4.1 Übersicht des Unterrichtsversuchs .. 46
 4.2 Lerngruppe ... 47
 4.3 Modellierungsaufgaben ... 49
 4.3.1 „Die Rutsche“ ... 49
 4.3.1.1 Stoffdidaktische Analyse .. 49
 4.3.1.2 Durchführung .. 51
 4.3.1.3 Reflexion der Aufgabe „Die Rutsche“ 54
4.3.2 „Der große Fuß“ .. 56
 4.3.2.1 Stoffdidaktische Analyse .. 56
 4.3.2.2 Durchführung .. 59
 4.3.2.3 Reflexion der Aufgabe „Der große Fuß“ .. 62
4.3.3 „Der Stau“ .. 65
 4.3.3.1 Stoffdidaktische Analyse .. 65
 4.3.3.2 Durchführung .. 67
 4.3.3.3 Reflexion der Aufgabe „Der Stau“ ... 71
5. Ergebnisse .. 73
 5.1 Fragebogen 1 .. 73
 5.2 Fragebogen 2 .. 83
 5.3 Die beiden Fragebögen im Vergleich .. 91
 5.4 Interview 1 ... 97
 5.5 Interview 2 ... 98
 5.6 Die Interviews im Vergleich .. 99
 5.7 Hospitation .. 101
6. Schlussbetrachtung .. 102

Abbildungsverzeichnis .. 105
Balkendiagrammverzeichnis .. 106
Tabellenverzeichnis ... 107
Literaturverzeichnis .. 108
Anhang .. 114
1. Einleitung

Auch den Sichtweisen oder Vorstellungen der Lernenden bezüglich der Mathematik kam in den vergangenen Jahren ein reges Interesse der mathematikdidaktischen Diskussion entgegen, in deren Verlauf sich der Begriff „Belief“ manifestierte, der eine filternde Funktion aufweist und in Kapitel 2.1 aufgegriffen wird.

Im Rahmen meines Grundschullehramtsstudiums konnte ich theoretische Erfahrungen über Modellierungen sammeln, die mein Interesse an dieser Thematik

1 Dieser Begriff wird im weiteren Verlauf der Arbeit definiert.
weckten. Es ergab sich jedoch nicht die Möglichkeit, Modellierungen im Rahmen meines Studiums in der Praxis zu erproben, obwohl die Untersuchung der Korrespondenz von Theorie und Praxis sicherlich interessant gewesen wäre. Umso mehr freute ich mich über die Möglichkeit, meine Examensarbeit diesem Thema widmen zu können. Es bot sich eine Verbindung mit der Beliefs-Diskussion an, da diese die aktuellen didaktischen Diskussionen anführte und dies immer noch tut. Ferner kann die Auswahl der Thematik darin begründet werden, dass die Grundschule bis zum Anfangszeitpunkt meiner Examensarbeit noch wenig Beachtung im angesprochenen Forschungsfeld fand, wie bereits weiter oben erwähnt wurde.

Um dem Hinweis von Katja Maaß nachzukommen, in dem sie auf die Notwendigkeit von Studien in der Grundschule verweist, beschäftigt sich diese Studie mit dem Einsatz von Modellierungen in der Grundschule und dem etwaigen Einfluss auf die Beliefs der Kinder.

beschrieben werden sollten. Es schließt sich eine Diskussion der Ziele mathematischer Modellierung an, die in eine Beschreibung der Modellierungs-

Das dritte Kapitel beschäftigt sich mit der in dieser Arbeit relevanten Methodik. Der allgemeinen Beschreibung qualitativer Forschung folgt eine Darstellung der Datenerhebung, indem auf das Sampling eingegangen wird. Der nachfolgenden Beleuchtung der Erhebungsmethoden - Fragebogen, Interview, Hospitation - schließt sich eine Auseinandersetzung mit den Auswertungsmethoden an.

Die abschließende Schlussbetrachtung fasst die Hauptaussagen der Arbeit noch einmal zusammen und beantwortet die Forschungsfragen, um somit ein Fazit zu ziehen und einen Ausblick geben zu können.

Die Forschungsfragen leiten sich von der Hauptfrage dieser Arbeit ab, die sich folgendermaßen stellt:

- Veränderung der Sichtweise von Grundschulkindern zur Mathematik durch Modellierung?

Die Komplexität der Forschungsfragen ergibt sich im weiteren Verlauf der Arbeit und wird an passender Stelle festgehalten.
2. Theoretische Grundlagen

2.1 Der Begriff „Sichtweise“ im Hinblick auf Mathematik

In den letzten Jahren entwickelte sich eine verstärkte Diskussion über die mathematische Sichtweise von Lernenden und Lehrenden, die eine Mannigfaltigkeit an unterschiedlichen Definitionen hervorbrachte. Eine Auseinandersetzung mit einigen ausgewählten Definitionen soll einen Einblick in die Diskussion gewähren und die theoretische Grundlage diesbezüglich in dieser Arbeit darstellen.

(1) Beliefs about mathematics
(2) Beliefs about learning mathematics
(3) Beliefs about teaching mathematics
(4) Beliefs about ourselves as practitioners of mathematics“

Die Unterschiedlichkeit der Positionen verlangt eine Zuwendung zu einer relevanten Position, die im nun folgenden Abschnitt dargelegt werden soll.

2.2 Aspekte mathematischer Weltbilder

Grigutsch (1998) formulierte verschiedene Aspekte mathematischer Weltbilder, um die Antworten von Schülerinnen und Schülern in einem Fragebogen kategorisieren zu können, der sich unter anderem auf die mathematische Sichtweise der Schülerinnen und Schüler bezog. Da diese Studie ebenfalls mit Fragebögen zur mathematischen Sichtweise der Kinder arbeitet, ist eine darauf bezogene Auseinandersetzung sinnvoll. Er formulierte die folgenden fünf Aspekte:

1. Prozessorientierte Beliefs („Process-Aspect“)
2. Schemaorientierte Beliefs („Schema-Aspect“)
3. Formalismusorientierte Beliefs („Formalism-Aspect“)
4. Anwendungsorientierte Beliefs („Application-Aspect“)

„Mathematics can be described as logical and precise thinking in an exactly defined language with exact argumentations“ (Grigutsch 1998, 175). Diese Auffassung von Mathematik wird unter (3) vertreten. Ferner zählt dazu, dass „eine Mathematikaufgabe ein genaues […] eindeutiges Ergebnis haben muss“ (Maaß 2004, 156).

Punkt (5) bezieht sich demnach auf die folgende Erkenntnis der Lernenden: „It is sufficient to learn what is tested in exams“ (Grigutsch 1998, 176). Daraus folgt, dass sich Lernende auf das Wissen konzentrieren, das in Klausuren abgefragt wird. Wissen, das von einer Lehrkraft mit dem Zusatz, dass es nicht klausurrelevant ist, versehen wird, erscheint den Lernenden in diesem Fall als nicht beachtungswürdig. Eine weiterführende Prüfung einer Regel oder das Verstehen dieser stehen beispielsweise außer Frage, denn: „It is important that he [the pupil] can use routines – even if he doesn’t understand them“ (Grigutsch 1998, 176).

Diese Arbeit versucht, die mathematische Sichtweise von Grundschulkindern und deren mögliche Veränderung durch Modellierung unter anderem anhand von Fragebögen nachzuweisen. Damit es diese Fragebögen ermöglichen, die eben erwähnte Veränderung feststellen zu können, beinhalten sie Fragen, die durch
Beantwortung der Schülerinnen und Schüler auf die mathematischen Beliefs und somit Aspekte mathematischer Weltbilder schließen lassen. Eine genauere Auseinandersetzung mit dem Aufbau der Fragebögen wird im weiteren Verlauf der Arbeit unter Kapitel 3 stattfinden. An dieser Stelle sei zunächst angemerkt, dass die Aspekte mathematischer Weltbilder, auf die die Fragebögen abzielen, die folgenden seien:

Im Folgenden seien nun aus Übersichtlichkeitsgründen die in dieser Arbeit relevanten Aspekte mathematischer Weltbilder noch einmal aufgelistet, die nach Maaß (2004) in fachspezifische sowie nicht-fachspezifische Aspekte gegliedert werden:

- Prozessorientierte Beliefs („Process-Aspect“)
- Schemaorientierte Beliefs („Schema-Aspect“)
- Formalismusorientierte Beliefs („Formalism-Aspect“)
- Anwendungsorientierte Beliefs („Application-Aspect“)
- Starre schemaorientierte Beliefs („Rigid Schema-Orientation“)
Nicht-fachspezifische Aspekte (Maaß 2004, 157f):

- „Beliefs mit kognitivem Schwerpunkt - Vorstellungen von Mathematik“
- „Beliefs mit affektivem Schwerpunkt - Einstellungen zur Mathematik“

Ferner ist es wichtig anzumerken, dass die hier genannten Aspekte lediglich einen Versuch darstellen, das um einiges komplexere mathematische Weltbild zu beschreiben. Um diese Komplexität greifbar machen zu können und eine Übersicht zu bekommen, wird hier auf die Verwendung der bereits erwähnten Aspekte zurückgegriffen.

Trotz Beschäftigung mit einer der Hauptkomponenten dieser Arbeit, den Beliefs, ist immer noch unklar, was sich hinter der zweiten Hauptkomponente, der mathematischen Modellierung, verbirgt. Die nächsten Abschnitte setzen sich mit dieser auseinander und versuchen so, diese Unklarheit aufzulösen.

2.3 Was ist mathematisches Modellieren?

In den letzten Jahren nahm das Interesse der aktuellen Forschung an der mathematischen Modellierung enorm zu, nicht zuletzt durch das Erscheinen der Bildungsstandards, auf die im folgenden Punkt 2.3.1 eingegangen wird. Das zunehmende Interesse führte zu einem Anstieg der themenbezogenen Literatur. Sicherlich ist es hilfreich, viel Literatur zu einem Thema zur Verfügung zu haben, um somit ein möglichst ganzheitliches Bild zu erlangen. Diese Literaturvielfalt kann jedoch auch zu einer Reizüberflutung führen und die Auseinandersetzung mit dem Thema erschweren.

So verwundert es nicht, dass sich zahlreiche Autoren mit der Beschreibung des mathematischen Modellierens befassten und somit auch den Term „Modell“ definierten.

Ein Modell ist eine vereinfachende Darstellung der Realität, die 'nur gewisse, einigermaßen objektivierbare Teilaspekte' berücksichtigt“ (Hinrichs 2008, 8). Diese relativ offene Beschreibung eines Modells lässt es zu, Modelle mit unterschiedlichen Schwerpunkten zu formulieren. So nennt Hinrichs (2008) mit Bezug auf Henn, Davis und Hersh „Modelle, die vorhersagen [...], erklären [...] beschreiben [...] vorschreiben“ (Hinrichs 2008, 8f).

„Mathematical Modelling is the activity of translating a real problem into a mathematical form. The mathematical form (or model) is solved and then interpreted back to help explain the behaviour of the real problem“ (Hamson 2003, 220).

2.3.1 Mathematisches Modellieren in den Bildungsstandards

Um den Stellenwert des mathematischen Modellierens in den Bildungsstandards nachvollziehen zu können, ist es sinnvoll, zunächst die Bildungsstandards an sich zu erläutern.

Die Kultusministerkonferenz (KMK) beschloss 2003 die Einführung nationaler Bildungsstandards, die als „normative Vorgaben für die Steuerung von Bildungssystemen verstanden [werden können]“ (KMK 2005, 8). Sie formulieren Kompetenzen², die die Schülerinnen und Schüler bis zu einem gewissen Zeitpunkt erreicht haben sollen. Um die Erlangung der Kompetenzen zu veranschaulichen, führen sie konkrete Aufgabenbeispiele auf. Die verbindliche Einführung der

² Eine allgemein anerkannte Definition des Begriffs stammt von Weinert (2001) und beschreibt Kompetenzen als „die bei Individuen verfügbaren oder durch sie erlernbaren kognitiven Fähigkeiten und Fertigkeiten, um bestimmte Probleme zu lösen, sowie die damit verbundenen motivationalen, volitionalen und sozialen Bereitschaften und Fähigkeiten, um die Problemlösungen in variablen Situationen erfolgreich und verantwortungsvoll nutzen zu können“ (27f).

Erwähnenswert ist zudem, dass die Verabschiedung der Bildungsstandards aus den wenig zufriedenstellenden Ergebnissen deutscher schulischer Bildung resultierten, die vorangegangene Studien wie TIMSS, PISA und IGLU aufzeigten (vgl. Bundesministerium für Bildung und Forschung 2007).

Dieser Beschreibung der Bildungsstandards und der Faktoren, die diese hervorriefen, soll nun die Darlegung der darin beschriebenen mathematischen Modellierung folgen.

- Darstellen von Mathematik
- Argumentieren
- Problemlösen
- Kommunizieren
- Modellieren

Wird also von mathematischer Modellierung in den Bildungsstandards gesprochen, bezieht sich diese auf die darin formulierten allgemeinen Kompetenzen. Weiterhin werden in dem neuen Kerncurriculum für Hessen Kompetenzen formuliert, die die Lernenden im Bereich der Modellierung erwerben sollen. Diese seien nun wortgetreu wiedergegeben:
„Die Lernenden können

- kurzen Sachtexten und einfachen Darstellungen aus der Lebenswirklichkeit Informationen entnehmen,
- Sachprobleme in die Sprache der Mathematik übersetzen,
- innermathematische Aspekte der Problemstellung sachgerecht bearbeiten,
- Probleme mathematisch lösen und diese Lösungen wieder auf die Ausgangssituation beziehen,
- das gewählte Modell bewerten,
- zu Termen, Gleichungen und bildlichen Darstellungen Sachaufgaben formulieren“ (Hessisches Kultusministerium 2010, 18).

Die bereits erwähnten inhaltsbezogenen Kompetenzen stützen sich auf die folgenden Leitideen:

- „Zahlen und Operationen
- Raum und Form
- Muster und Strukturen
- Größen und Messen

Im Folgenden seien die bereits erwähnten „überfachlichen Kompetenzen“ genannt:

- „Personale Kompetenz
- Sozialkompetenz
- Lernkompetenz
- Sprachkompetenz“ (Hessisches Kultusministerium 2010, 8f).

Diese werden ebenfalls bei der Bearbeitung von Modellierungen in unterschiedlicher Intensität angesprochen. Da es sich oftmals anbietet, Modellierungen in Gruppenarbeit zu lösen, wird beispielsweise die unter der Sozialkompetenz verortete „Kooperation und Teamfähigkeit“ (Hessisches Kultusministerium 2010, 8) trainiert.

2.3.2 Der Modellierungskreislauf

Abbildung 1: (Henn 2008, 161)
Wie bereits in der Abbildung deutlich wird, kann in der Literatur eine Vielfalt an Bezeichnungen für den „Rest der Welt“ gefunden werden, Beispiele dafür sind „extra-mathematical world“ (Niss, Blum & Galbraith 2007, 4) oder „real world“ (Henn 2008, 161).

Idealtypischer Kreislauf (Blum/Leiß 2005):

Zu Beginn einer jeden Modellierung steht die **Realsituation**, die in der Aufgabe gegeben ist und verstanden beziehungsweise konstruiert (Schritt 1) werden muss. „Schüler entwickeln dabei eine Vorstellung von der Situation der Aufgabe“ (Hinrichs 2008, 20). Um eine Vorstellung entwickeln zu können,

Wurde Schritt 1 vollzogen, so resultiert daraus das Situationsmodell, das anschließend vereinfacht beziehungsweise strukturiert wird (Schritt 2). Borromeo Ferri ersetzt das Situationsmodell durch den Begriff „mentale Situationsrepräsentation“ (Borromeo Ferri 2007, 310), sodass die Individualität des Schülers oder der Schülerin in den Vordergrund gerückt wird. Laut Borromeo Ferri (2007) kann die mentale Repräsentation bildlich, formal oder, wie bereits erwähnt, durch persönliche Erfahrungen gekennzeichnet sein.

Schritt 2 bezieht sich auf das Treffen von angemessenen Annahmen und das Einholen von Informationen, die ausschlaggebend für die jeweilige Modellierung sind. Beinhaltet die Aufgabenstellung relativ wenig Informationen, so kann an dieser Stelle eine zusätzliche Recherche oder Ähnliches vorgenommen werden, um somit ein aussagekräftiges Realmodell zu erhalten (vgl. Hinrichs 2008).

Anschließend werden die getroffenen Annahmen mathematisiert (Schritt 3). Darunter kann ein Übersetzen in die Sprache der Mathematik in Form eines Graphen, einer Tabelle oder Ähnlichem verstanden werden (vgl. Hinrichs 2008). Daraus folgt ein mathematisches Modell. „In der Grundschule gilt auch die Entwicklung einer Rechenvorschrift zu einer gegebenen Situation bereits als mathematisches Modell“ (Hinrichs 2008, 23).

Dieses führt im Anschluss durch mathematisches Arbeiten (Schritt 4), sprich das Lösen der aufgestellten Gleichung oder Ähnlichem, zu einem mathematischen Resultat. Nachfolgend wird dieses Resultat wieder auf die Realsituation bezogen und interpretiert (Schritt 5), sodass ein reales Resultat, also ein Ergebnis, entsteht (vgl. Hinrichs 2008).

Im Unterschied zu anderen Mathematikaufgaben schließt eine Modellierung nicht mit dem Erhalt eines Ergebnisses ab, da darauf der wichtige Schritt der Validierung (Schritt 6) folgt. Das reale Resultat wird hierbei bezüglich der Angemessenheit überprüft. Die obige Abbildung des Kreislaufes zeigt, dass die
Modellierung nach der Validierung zwei unterschiedliche Verläufe einschlagen kann. Erscheint das Ergebnis als glaubwürdig, so folgt darauf das **Darlegen** (Schritt 7) des realen Resultats durch die Schülerinnen und Schüler, worunter eine Präsentation des Ergebnisses verstanden werden kann. Wird durch die Validierung jedoch die Unangemessenheit des Ergebnisses festgestellt, so kann ein erneutes Durchlaufen des Kreislaufes, beispielsweise mit erweiterten Annahmen, die Folge sein (vgl. Tenz 2010).

Nachdem nun eine Auseinandersetzung mit dem Ablauf der Modellierung stattgefunden hat, stellt sich nach und nach die Frage, was den Einsatz von Modellierungen in der Schule rechtfertigt. Der folgende Abschnitt versucht diese
Fragen zu beantworten, indem die Ziele beschrieben werden, die der Einsatz von Modellierungen verfolgt.

2.3.3 Ziele des mathematischen Modellierens

Maaß (2004) nennt einige Ziele, die sie im Rahmen der von ihr durchgeführten Studie aufstellte und in die folgenden fünf Kategorien gliederte:

- methodologisch
- kulturbezogen
- pragmatisch
- lernpsychologisch
- pädagogisch

- Das Erlangen von Kompetenzen, die es den Kindern ermöglichen, Mathematik anzuwenden.
- Die Ausbildung eines ausgewogenen Bildes der Mathematik als Wissenschaft.
- Die Entwicklung heuristischer Strategien (darunter fallen Fähigkeiten bezogen auf Problemlösen und Argumentieren oder Kreativität).
- Das Herausbilden von Motivation, sich mit Mathematik zu beschäftigen.
- Das Verstehen mathematischer Inhalte.
Dass Maaß nach fünf Jahren stets an diesen Zielen festhält, verdeutlicht deren Stellenwert.

Sachrechnen als

1) Lernstoff
2) Lernprinzip
3) Lernziel

Unter 1) fallen Aspekte wie das Gewinnen und Darstellen von Daten oder die Auseinandersetzung mit Maßen.

Punkt 2) rückt die persönlichen Erfahrungen der Kinder in den Vordergrund und sieht diese und die damit verbundenen Sachsituationen als Ausgangspunkt für das weitere Lernen.

Punkt 3) bezieht sich auf Modellierungsprozesse und appelliert daran, den Problemlösecharakter dieser zu erkennen (vgl. Maaß 2009).

Findet eine Betrachtung der soeben genannten Funktionen des Sachrechnens statt, so fällt der Bezug zu der Modellierung umgehend auf. Es sei jedoch angemerkt, dass die größte Übereinstimmung in Punkt 3) zu finden ist.

Ferner ist die Entwicklung von Modellierungskompetenzen besonders bedeutend, wenn von den Zielen mathematischen Modellierens gesprochen wird. Diese werden im folgenden Abschnitt näher beschrieben.

2.3.4 Modellierungskompetenzen

Weiterhin hebt Maaß (2009) die Argumentation, die innerhalb des Modellierungs- prozesses von den Kindern durchgeführt werden muss, und die dazugehörige Verschriftlichung hervor. Zudem spricht sie die Metaebene an, die mit den Kindern behandelt werden sollte, indem über Lösungsstrategien diskutiert wird, beispielsweise durch das Herausstellen verschiedener Vorgehensweisen, um eine Modellierungsaufgabe zu lösen. In dieser Studie wurde unter anderem auf der Metaebene gearbeitet, als der Begriff „Modellierungsaufgaben“ den Lernenden mitgeteilt und über die Bedeutung des Begriffes gesprochen wurde. Der Model-
lierungskreislauf als solches wurde nicht thematisiert, um die Kinder nicht zu überfordern. Es ist jedoch denkbar, diesen zu besprechen, wenn die Lernenden weiterführende Erfahrungen mit Modellierungen gesammelt haben.

Nicht zu vergessen sind die Modellierungskompetenzen, die in den Bildungsstandards erwähnt und bereits unter Punkt 2.3.1 aufgeführt wurden. Werden diese zum wiederholten Male betrachtet, so fällt der hohe Grad an Affinität zu den von Maaß formulierten Kompetenzen auf.

gezeigt werden, dass Modellierungskompetenzen durch Unterrichtsangebote grundsätzlich gefördert werden können (vgl. Kaiser & Schwarz 2006).

Wie Modellierungen in der Grundschule eingesetzt werden sollten, um den Schülerinnen und Schülern die soeben thematisierte Entwicklung ermöglichen zu können und warum dies noch viel zu selten in deutschen Schulen zur Realität gehört, wird im Folgenden beschrieben.

2.3.5 Mathematisches Modellieren in der Grundschule

Hinrichs (2008) führt als Ursache die breite Zerstreuung der Unterrichtsanregungen in der Literatur auf, die es den Lehrkräften erschwert, fündig zu werden.
Maaß (2004) fasst unterschiedliche Hindernisse zusammen, die in der aktuellen Diskussion als ausschlaggebend angesehen werden. Zu diesen zählen folgende:

- **Organisation**, da die Unterrichtszeit zu gering ist und sich viele Schulen an der 45-Minuten Einteilung der Schulstunden orientieren,
- **Schülerinnen und Schüler**, da die Integration von Modellierungen durch die Offenheit einen Anstieg des Anspruchs zu Folge hat,
- **Lehrkräfte**, da der Einsatz von Modellierungen zunächst einen hohen Zeitaufwand mit sich bringt und sich die Lehrkräfte als nicht kompetent ansehen,
- **Material**, da die Textquellen eventuell nicht bekannt sind.

Auch Henn (2008) verweist bezüglich der Hinderungsgründe auf die Lehrkräfte, räumt jedoch ein, dass diese zugleich einen positiven Aspekt innerhalb der Modellierungen darstellen können.

Trotz dieser Hindernisse finden Modellierungen allmählich Einzug in deutschen Schulen, was durchaus sinnvoll ist, denn: „Mathematical modeling takes children beyond the usual form of problem solving they meet in the elementary school“ (English 2008, 181). Weiterhin fordert English (2008), Kinder vermehrt mathematischen Problemen auszusetzen, da ihrer Meinung nach folgendes zutrifft: „The level of complexity children experience in their world is increasing rapidly - we need to ensure they can deal effectively with this complexity“ (English 2008, 187). Das Modellieren stellt einen möglichen Faktor dar, den Kindern eine sinnvolle Handhabung der Komplexität zu ermöglichen. Auch die Aufnahme der Modellierung in die Primarstufen-Bildungsstandards verdeutlicht die enorme Wichtigkeit dieser und zeigt, dass ein gewisses Maß an mathematischer Kompetenz von den Schülerinnen und Schülern in diesem Bereich verlangt wird. Modellierungen besitzen viel Potential, nicht zuletzt durch ihre selbst-differenzierenden Eigenschaften, die es den Kindern ermöglichen, die Modellierung ihren Fähigkeiten entsprechend auszuführen, was keineswegs
selbstverständlich ist⁴.

Damit positive Erfahrungen, wie sie oben beschrieben wurden, bezüglich Grundschulmodellierungen eintreten können, sollte der Modellierungsunterricht in der Primarstufe detailliert geplant werden. Maaß (2009) schlägt folgende Gliederung vor:

- Einstieg
- Lösungsansätze finden
- Erarbeitungsphase
- Ergebnis sicherung

⁴ Ein weiteres Aufgabenformat, das es den Schülerinnen und Schülern ermöglicht, die Aufgabe nach dem individuell vorliegendem Niveau zu lösen, sind „Rich Assessment Tasks“ (RAT), die das Können der Schülerinnen und Schüler durch fünf Ausprägungsgrade beschreiben.

Die Sozialform in der anschließenden Erarbeitsphase ist variabel, es bieten sich jedoch Partner- und Gruppenarbeiten an. Für das Arbeiten in Gruppen spricht die deutlich höhere Aktivität der Lernenden im Gegensatz zum Frontalunterricht sowie die Ermöglichung eines angstfreien Arbeitens, da sich die Lehrkraft zurückzieht (vgl. Maaß 2009).

Der hier gegebene Gliederungsvorschlag diente auch dieser Studie als Orientierung, wie in Kapitel 4 ersichtlich wird. Im folgenden Abschnitt stehen zunächst die Forschungsfragen im Interessenzentrum. Bereits in der Einleitung dieser Arbeit wurde vermerkt, dass die Komplexität der Forschungsfragen an passender Stelle aufgeführt wird. Im bisherigen Verlauf der Arbeit tauchten zu verschiedenen Zeitpunkten Fragen auf, die im nächsten Abschnitt zusammengesfasst werden.
2.4 Forschungsfragen

Die vorliegende Studie dient als Beitrag zur aktuellen mathematikdidaktischen Diskussion, da sie die darin vertretenen Tendenzen aufgreift, indem Modellierungen in den Unterricht integriert werden und der Einfluss auf die Beliefs der Lernenden untersucht wird.

Die Hauptfrage, ob eine Veränderung der Sichtweise von Grundschulkindern zur Mathematik durch Modellierung stattfindet, erfährt im Folgenden eine Präzisierung:

- Ist es möglich, die Schülerinnen und Schüler durch den geplanten Unterricht in das Arbeiten mit Modellierungen einzuführen?
- Gelingt es, mithilfe der Fragebögen mathematische Weltbilder der Kinder zu analysieren?
- Entspricht die Verteilung der mathematischen Weltbilder der von Grigutsch (1998) für höhere Klassen analysierten Verteilung oder variiert sie?
- Welche Aspekte mathematischer Weltbilder dominieren in einer vierten Klasse?
- Verändern sich diese mathematischen Weltbilder und somit die Beliefs im Verlauf der Studie durch den Einsatz von Modellierungen?

Die entsprechenden Antworten werden im weiteren Verlauf diskutiert und festgehalten. Zunächst wird allerdings ein Methodenüberblick gegeben, da die Methodik einen wichtigen Bestandteil der Studie darstellt und wesentlich zur Beantwortung der Forschungsfragen beiträgt.
3. Methodik

3.1 Qualitative Forschung

Der methodische Teil dieser Arbeit stützt sich auf die qualitative Forschung, die sich im breiten Feld empirischer Forschungsmethoden trotz Kritik etabliert und konsolidiert hat (vgl. Flick, von Kardoff & Steinke 2007). Die qualitative Forschung hat es sich zum Gegenstand gemacht, Lebenswelten aus der Perspektive handelnder Menschen heraus zu beschreiben, ohne die Wirklichkeit lediglich abzubilden. „Vielmehr nutzt sie das Fremde […] als Erkenntnisquelle und Spiegel“ (Flick, von Kardoff & Steinke 2007, 14). Weiterhin zeichnet sich die qualitative Forschung durch ihre Offenheit der Zugangsweisen aus. Unter dem Begriff subsumieren sich verschiedene Forschungsansätze, die sich in drei Hauptströmen zusammenfassen lassen (vgl. Flick, von Kardoff & Steinke 2007):

- **Symbolischer Interaktionismus, Phänomenologie**, in denen der Fokus auf subjektiven Bedeutungen liegt,

- **Ethnomethodologie, Konstruktivismus**, die sich auf Alltagsroutinen beziehen,

- **Strukturalistische oder psychoanalytische Positionen**, in denen unter anderem das Unbewusste Forschungsgegenstand ist.

Die Hauptströme unterscheiden sich in den Methoden der Datenerhebung, der Interpretation sowie in den Anwendungsfeldern. Nichtsdestotrotz gibt es in den Annahmen Überschneidungen, die als Grundannahmen der qualitativen Forschung bezeichnet werden können:

2. Prozesscharakter und Reflexivität sozialer Wirklichkeit.
3. <Objektive> Lebensbedingungen werden durch subjektive Bedeutungen für die Lebenswelt relevant.
4. Der kommunikative Charakter sozialer Wirklichkeit lässt die Rekonstruktion von Konstruktionen sozialer Wirklichkeit zum Ansatzpunkt der Forschung werden“ (Flick, von Kardoff & Steinke 2007, 22).
In Abgrenzung zu der qualitativen Forschung existiert die quantitative Forschung, die sich in Abhängigkeit der Fragestellung auch miteinander verbinden lassen. Dennoch unterscheiden sich die beiden Forschungsrichtungen durch grundlegende Annahmen. Im Gegensatz zur qualitativen Vorgehensweise weist die quantitative Forschung beispielsweise einen hohen Grad an Standardisierung auf. Da sich diese Studie jedoch um die Erschließung eines bislang, auf Grundschule bezogenen, wenig erforschten Bereich der Wirklichkeit bemüht, wird auf die qualitative Forschung zurückgegriffen, die sich dies zum Gegenstand gemacht hat (vgl. Flick, von Kardoff & Steinke 2007).

3.2 Datenerhebung und Sampling

Die Bearbeitung der Fragebögen ist für die gesamte Klasse konzipiert. Auf der Basis des ersten Fragebogens werden zwei für die Studie interessante Schülerinnen oder Schüler ausgesucht, die zusätzlich an zwei Interviews teilnehmen. Ausschlaggebend für die Auswahl der Kinder waren einzig und allein die gegebenen Antworten in dem ersten Fragebogen, Faktoren wie das Geschlecht oder das Alter wurden nicht beachtet. Weiterhin wird in der Klasse hospitiert, sodass Beobachtungen im Klassenverband angestellt werden können.

5 Dieser Begriff bezeichnet das verwendete Auswahlverfahren.
Die soeben genannten Erhebungsmethoden - Fragebogen, Interview, Hospitation - werden im Folgenden analysiert, um den methodischen Teil dieser Arbeit zu vervollständigen.

3.3 Erhebungsmethoden

3.3.1 Fragebogen

Zum Aufbau kann folgendes festgehalten werden:

Fragebogen 1 beinhaltet sieben Fragen, die auf die Beliefs beziehungsweise die Aspekte mathematischer Weltbilder der Schülerinnen und Schüler abzielen und somit ihr mathematisches Denken beleuchten. Die Fragestellungen werden im Folgenden kursiv wiedergegeben.

Frage 1: Stell dir vor, ein Marsmännchen kommt auf die Erde. Wie würdest du ihm erklären, was Mathematik ist?

6 Das Schreiben an die Erziehungsberechtigten befindet sich im Anhang. Eine Schülerin gab dieses nicht wieder ab, sodass sie an der Studie nicht teilnehmen konnte.
7 Der Fragebogen 1 orientiert sich an einem Fragebogen, der von Frau Prof. Dr. Rita Borromeo Ferri entwickelt wurde und den Karoline Quast in ihrer Examensarbeit verwendet hat, sowie an einem von Maaß (2004) entwickelten Fragebogen. Die Fragen 1, 2 und 6 gingen aus meinen eigenen Ideen hervor. Die Fragen 3, 4 und 5 wurden der Arbeit von Frau Quast entnommen, Frage 7 hingegen stammt von Frau Maaß.
Es wird versucht, die Kinder dahingehend zu motivieren, über ihre mathematische Sichtweise nachzudenken. Die Bezugnahme auf das Marsmännchen knüpft an womögliche Interessen der Schülerinnen und Schüler an und stellt einen Schreibanlass dar. Ich stelle die Hypothese auf, dass die meisten Kinder Mathematik erklären, indem sie auf den Zusammenhang mit Rechnungen verweisen. Ob diese Hypothese zutreffend ist, kann in Kapitel 5 festgestellt werden.

Frage 2: Denke nach und kreuze einen Satz an, dem du zustimmst.

- In Mathematik muss ich eigene Ideen zum Lösen von Aufgaben haben.
- Es gibt immer nur einen Lösungsweg.
- In Mathematik muss ich logisch denken.
- Im späteren Leben werde ich Mathematik brauchen.
- In Mathematik lerne ich das, was im Test vorkommt.

Frage 3: „Was machst du im Mathematikunterricht gerne?“ (Quast 2004, 46)

Frage 4: „Was machst du im Mathematikunterricht nicht gerne?“ (Quast 2004, 46)

Frage 5: „Fallen dir Situationen im täglichen Leben ein, in denen du Mathematik gebraucht hast?“ (Quast 2004, 47)

Diese Frage spricht den Realitätsbezug der Mathematik an und ob dieser den Schülerinnen und Schülern bewusst ist, sodass sie Beispiele dafür nennen können. Es kann die Hypothese aufgestellt werden, dass die meisten Kinder das Beispiel des Einkaufens nennen werden, da der mathematische Aspekt in dieser Situation offensichtlich ist.

**Frage 6: Gehören die folgenden Aufgaben zur Mathematik? Kreuze an.

- „Max will an seinem 8. Geburtstag mit seinen Gästen Schokoküsse essen. Wie viele Schachteln muss er mit seiner Mutter einkaufen?“ (Maaß 2009, 74)

Mit dieser Frage soll ermittelt werden, welche Aufgabentypen die Kinder der Mathematik zuordnen und wie umfangreich ihr Mathematikbild ist. Die obigen Aufgaben gehören beide zur Mathematik, die erste Aufgabe wird in Walther et al. (2009) als Aufgabenbeispiel für eine dritte Klasse genannt, die zweite Aufgabe

Frage 7: „Hast du Angst vor dem Mathematikunterricht? Begründe.“ (Maaß 2004, 316)

- sehr viel
- viel
- manchmal weil
- kaum
- nie

Der Fragebogen 2 gliedert sich in sechs Fragen auf, die ebenfalls auf die Beliefs beziehungsweise Aspekte mathematischer Weltbilder der Schülerinnen und Schüler abzielen. Ein zusätzliches Themengebiet, die Modellierung, wird in den Fragebogen aufgenommen. Weiterhin liegt der Fokus auf der Feststellung einer womöglich Veränderung der mathematischen Beliefs.

Frage 1: Stell dir vor, du wärst der Lehrer einer ersten Klasse. Wie würdest du den Kindern deiner Klasse erklären, was Mathematik bedeutet?

Das Ziel dieser Frage ist identisch mit Frage 1 des Fragebogens 1. Lediglich der Kontext des Marsmännchens erfuhr eine Substitution durch den Lehrer, um somit den Schülerinnen und Schülern das Gefühl zu nehmen, dass sie diese Frage bereits beantwortet haben. Es ist zu erwarten, dass die Majorität der Kinder stets
Mathematik mit bloßem Zusammenrechnen beschreibt. Zu hoffen bleibt jedoch, dass bei einigen Lernenden eventuell eine Änderung in der Denkweise zu verzeichnen ist.

Frage 2: Denke nach und kreuze **einen Satz** an, dem du zustimmst.

<table>
<thead>
<tr>
<th>In Mathematik muss ich logisch denken.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Im späteren Leben werde ich Mathematik brauchen.</td>
</tr>
<tr>
<td>In Mathematik lerne ich das, was im Test vorkommt.</td>
</tr>
<tr>
<td>Es gibt immer nur einen Lösungsweg.</td>
</tr>
<tr>
<td>In Mathematik muss ich eigene Ideen zum Lösen von Aufgaben haben.</td>
</tr>
</tbody>
</table>

Tabelle 1: Beliefsorientierung

Diese Frage ist, ausgehend von der inhaltlichen Seite, identisch mit Frage 2 des ersten Fragebogens. Es wurden keine Veränderungen vorgenommen, um durch die Setzung eines Kreuzes eventuelle Abweichungen im Denken der Kinder feststellen zu können. Lediglich die Darbietung der Aufgabe wurde verändert, damit die Schülerinnen und Schüler nicht sofort erkennen, dass sie diese Aufgabe bereits einmal beantwortet haben. Es bleibt zu beobachten, ob durch den Einsatz der Modellierungsaufgaben eine Verschiebung hin zu Satz eins und/oder Satz fünf zu verzeichnen ist, wovon ich ausgehe.

Frage 3: In den letzten Mathematikstunden hast du Modellierungsaufgaben kennengelernt. Welche hat dir am besten gefallen? Begründe.

Hier wird das Thema „Modellierung“ aufgegriffen. Die Antworten der Kinder sollen Aufschluss darüber geben, ob sie sich auf das Aufgabenformat einlassen können und Gefallen daran finden. Es ist zu vermuten, dass die „Der große Fuß“-Aufgabe oftmals genannt wird, da diese viel Spannung aufbaut und die Lernenden begeistern könnte.

Frage 4: Denkst du noch genauso über Mathematik wie vor zwei Wochen? Warum/Warum nicht?

Diese Frage kann als schwierig eingestuft werden, da die Kinder explizit gefragt werden, ob sie persönlich Veränderungen in ihrem Denken über Mathematik bemerkt haben und woran dies liegen könnte. Generell fällt es den Lernenden in

Frage 5: Kannst du dein Wissen über Mathematik auch in deiner Freizeit brauchen? Begründe.

Hier kann eine Parallele zu Frage 5 des ersten Fragebogens gezogen werden. Es wird erneut der Realitätsbezug angesprochen, allerdings mit Forderung einer Begründung. Es ist anzunehmen, dass wiederum das Einkaufen als Beispiel dominieren wird. Zu hoffen ist, dass sich die Schülerinnen und Schüler durch die Modellierungsaufgaben neue Berührungspunkte von Mathematik und Realität zu Eigen machen.

Frage 6: Gehören die folgenden Aufgaben zur Mathematik? Kreuze an.

Abbildung 3: Foto einer Bierzeltgarnitur

Die zweite Aufgabe dient hingegen als Aufgabenbeispiel für eine vierte Klasse bei Walther et al. (2009). Durch den wiederholten Einsatz dieser Frage kann ermittelt werden, inwiefern sich das Mathematikbild der Schülerinnen und Schüler erweitert oder verändert hat. Es kann die Hypothese aufgestellt werden, dass alle Kinder in der Lage sind, die erste Aufgabe dem Bereich der Mathematik zuzuordnen, die erste Aufgabe dem Bereich der Mathematik entspricht, die die Lernenden in den Tagen vor Beantwortung des Fragebogens bearbeiteten. Ob die zweite Aufgabe als Mathematikaufgabe eingeschätzt wird, ist fraglich, da die Kinder gebeten werden, etwas zu erklären und nicht zu rechnen, was für sie eher untypisch für Mathematik ist. Somit kann behauptet werden, dass ein großer Anteil der Schülerinnen und Schüler die Aufgabe nicht der Mathematik zuordnen wird.

3.3.2 Interview

In der qualitativen Forschung wird zwischen verschiedenen Interviewformen unterschieden, zu denen das fokussierte, halbstandardisierte, problemzentrierte, ethnographische oder auch das Experten-Interview zählen (vgl. Flick 2007). Die hier entwickelten Interviews können der fokussierten Interviewform zugeordnet werden, die sich durch den Einsatz eines Reizes auszeichnet, dem der Interviewte vor Beginn des Interviews ausgesetzt werden, die sich durch den Einsatz eines Reizes auszeichnet, dem der Interviewte vor Beginn des Interviews ausgesetzt wird. Im Rahmen dieses Unterrichtsversuchs werden die Reize durch die Fragebögen repräsentiert.

Es werden gezielt Interviews verwendet, um Lernende, die für die Beantwortung der Forschungsfragen interessant erscheinen, näher beschreiben zu können. Im Rahmen dieser Studie stellten sich zwei Schülerinnen auf Grund ihrer gegebenen Antworten im Fragebogen 1 als besonders interessant heraus, sodass sie nach der ersten Einführungsstunde und nach Beendigung der gesamten Einheit interviewt wurden. Dass es sich um zwei Mädchen handelte, war reiner Zufall. Das Geschlecht konnte anhand der Fragebögen zunächst nicht ermittelt werden, da lediglich Zahlen anstelle von Namen als Erkennung zur Verfügung standen. Die
Interviews und die dazugehörigen Transkripte können im Anhang eingesehen werden.

Die Interviews beinhalten jeweils vier Fragen, **Interview 1** wurde zu Beginn der Studie mit Kind Nr.15 und Kind Nr.16 durchgeführt und beinhaltet folgende Fragen:

Frage 1: *In dem Fragebogen, den ihr am Donnerstag beantwortet habt, war auch die folgende Frage: „Stell dir vor, ein Marsmännchen kommt auf die Erde. Wie würdest du ihm erklären, was Mathematik ist?“. Bitte beantworte die Frage jetzt noch einmal.*

Frage 2: *Weiterhin hast du den Satz angekreuzt, dass du Mathematik im späteren Leben brauchen wirst (Kind Nr.15) beziehungsweise dass du in Mathematik logisch denken musst (Kind Nr.16). Nenne mir bitte Beispiele dafür.*

Die Fragestellung innerhalb des Fragebogens liegt in Multiple-Choice Form vor. Die Kinder haben somit keine Möglichkeit, Begründungen oder Beispiele anzubringen. Weiterhin kann nicht festgestellt werden, ob die Lernenden das, was sie angekreuzt haben, wirklich verstanden haben. Das Aufgreifen innerhalb des Interviews soll diese Defizite ausräumen.

Frage 3: *Im Fragebogen hast du angekreuzt, dass die Frage, wie viele Schachteln Schokoküsse Max für seine Geburtstagsgäste kaufen muss, (nicht) zur Mathematik gehört. Warum? Denkst du jetzt auch noch so darüber?*

Hier soll die Möglichkeit geboten werden, das Ankreuzen zu begründen, was durchaus als interessant erscheint. Es kann ein differenzierteres Bild der Mathematik durch die Begründung entstehen.

8 Die Bezeichnung der Kinder entspricht den Zahlen, mit denen sie ihre Fragebögen versehen haben.

Da das erste Interview zu Beginn der Studie durchgeführt wird, ist es interessant, einen möglichen Lösungsweg der Schülerinnen zu erfahren. Wie gehen sie mit der Offenheit der Frage um, ohne auf Erfahrungswerte zurückgreifen zu können?

Das **Interview 2** wurde nach Abschluss der Einheit mit denselben Schülerinnen durchgeführt und enthält diese Fragen:

Frage 1: *In dem Fragebogen, den ihr am Donnerstag beantwortet habt, war auch die folgende Frage: „Stell dir vor, du wärst der Lehrer einer ersten Klasse. Wie würdest du den Kindern deiner Klasse erklären, was Mathematik ist?“. Bitte beantworte die Frage jetzt noch einmal.*

Hier kann die Argumentation von Interview 1 übernommen werden. Weiterhin besteht die Möglichkeit, eine Veränderung beziehungsweise Weiterentwicklung innerhalb der Erklärungen festzustellen.

Frage 2: *In den letzten zwei Wochen hast du Modellierungsaufgaben kennengelernt. Was versteht man unter Modellierungsaufgaben? Nenne ein Beispiel.*

Diese Frage greift das für die Schülerinnen und Schüler neue Aufgabenformat auf und soll zeigen, ob die Kinder den Begriff „Modellierungsaufgaben“ zuordnen können. Des Weiteren kann die Frage Aufschluss darüber gewähren, ob die Lernenden generell das neue Aufgabenformat verstanden haben.

Frage 3: *In dem Fragebogen war auch die folgende Aufgabe: „Du willst 12 Kinder zu deinem Geburtstag einladen. Bekommt jeder einen Platz am Tisch?“ (Maaß 2009, 25). Ich zeige dir nun noch einmal das dazugehörige Bild. Wie würdest du die Aufgabe lösen?*

Das zweite Interview wurde, wie bereits erwähnt, nach Abschluss der gesamten Einheit durchgeführt. Nun wächst das Interesse zu erfahren, inwiefern die
Schülerinnen in der Lage sind, Modellierungsaufgaben angemessen zu lösen und wie sich die möglichen Lösungen der Schülerinnen verändert haben.

Frage 4: Denkst du noch genauso über Mathematik wie vor zwei Wochen? Warum/Warum nicht?

Die Erhebung der Daten soll allerdings nicht nur anhand der Fragebögen sowie der Interviews erfolgen. Eine zusätzliche Methode stellt die Hospitation dar, die im Folgenden beschrieben wird.

3.3.3 Hospitation

3.4 Auswertungsmethoden

Nachdem die Daten mithilfe der unterschiedlichen Methoden erhoben wurden, konnten sie interpretiert werden und somit eine Beantwortung der Forschungsfragen stattfinden.

Zunächst gaben in Kapitel 5.1 die beantworteten ersten Fragebögen Aufschluss über die Beliefs und Aspekte mathematischer Weltbilder der Kinder. Die Ergebnisse wurden einzeln betrachtet und zwei interessante Schülerinnen ausgesucht, die im weiteren Verlauf interviewt wurden. Beispielsweise die
Antwort von Kind Nr.15 zu Frage 2 des ersten Fragebogens repräsentiert die Mehrheit der gegebenen Antworten. Kind Nr.16 fällt bei dieser Frage aus dem Rahmen und steht für die selteneren Antworten. Auch bezüglich der sechsten Frage des ersten Fragebogens unterscheiden sich die Antworten der beiden Schülerinnen, da Kind Nr.15 die gegebene Modellierungsaufgabe der Mathematik zuordnet, Kind Nr.16 jedoch nicht.

Der zweite Fragebogen, der im Verlauf der Studie konstruiert wurde, bot in Kapitel 5.2 erneut Einsichten, die zunächst einzeln interpretiert und anschließend mit den Antworten aus dem ersten Fragebogen in Kapitel 5.3 verglichen wurden. Die einzelnen, beantworteten Fragebögen wurden untereinander verglichen, um die Beliefs voneinander abgrenzen oder Gemeinsamkeiten feststellen zu können.

Um nicht ausschließlich breitgefächerte Ergebnisse festzuhalten, wurden zwei Schülerinnen aufgrund der Antworten innerhalb der ersten Fragebögen ausgesucht, die an zwei Interviews teilnahmen. Diese Teilnahme sollte eine detaillierte Beschreibung zweier Fälle und die Auseinandersetzung mit der Hauptfrage dieser Arbeit auf individueller Basis ermöglichen.

Nachdem die beiden Schülerinnen aufgrund der Fragebögen jeweils einer Beliefsrichtung zugeordnet wurden, interessierte, ob sich diese Zuordnung in den Interviewangaben wiederfinden ließ und somit statischer Natur ist oder ob sich die Beliefs änderten und somit dynamisch sind.

Um anhand der Interviews Beliefs ausmachen zu können, wurden die angefertigten Transkripte theoretisch kodiert. „Ziel des theoretischen Kodierens ist das Aufbrechen des Textes durch Kodieren, um hierdurch ein tieferes Verständnis für die Inhalte zu erlangen“ (Maaß 2004, 139). Nachdem also einzelnen Textabschnitten sogenannte Kodes zugeordnet wurden, die den jeweiligen Inhalt beschreiben, wurden diese wiederum zu unterschiedlichen Kategorien zusammengefasst.

Weiterhin kann den Hospitationen eine Rahmenfunktion zugeschrieben werden, da diese die erhobenen Daten vervollständigen und einen ganzheitlichen Blick ermöglichen.
4. Praktische Umsetzung

4.1 Übersicht des Unterrichtsversuchs

<table>
<thead>
<tr>
<th>Stunde</th>
<th>Thema der Stunde</th>
<th>Zielsetzung/angestrebter Kompetenzzuwachs</th>
</tr>
</thead>
</table>

Tabelle 2: Übersicht des Unterrichtsversuchs
Der Verlauf der Einheiten orientiert sich an der bereits erwähnten Gliederungsempfehlung von Maaß (2009), wie auch in den Verlaufsplänen ersichtlich wird, die sich im Anhang dieser Arbeit befinden.

4.2 Lerngruppe

Zu einem durchschnittlichen Klassenbild gehört es, dass es auffällige Kinder gibt, was auch auf diese Klasse zutrifft. Im Folgenden sollen die auffälligen Schülerinnen und Schüler kurz beschrieben werden, um ein ganzheitliches Bild der Klasse zu erlangen. Zu den auffälligen Kindern gehört Manuel, der seit über einem Jahr mit Ritalin behandelt wird. Wenn er seine Medikamente nicht genommen hat, zeigt er ein aufgedrehtes Verhalten, was auf seine Mit-

9 Der Name dieses Kindes sowie der folgenden Kinder wurde aus Anonymitätsgründen geändert.

Für diese Arbeit sind des Weiteren die Vorerfahrungen der Klasse bezüglich der Modellierungsaufgaben relevant. Diese sind nicht vorhanden, sodass die geplante

Einführung tatsächlich für alle Lernenden eine Einführung darstellt. Zudem rechnet die Klasse noch im Zahlenraum bis 1000.

4.3 Modellierungsaufgaben

4.3.1 „Die Rutsche“

4.3.1.1 Stoffdidaktische Analyse
Die stoffdidaktische Analyse orientiert sich sowohl bei dieser als auch bei den folgenden Aufgaben an dem unter 2.3.2 beschriebenen Modellierungskreislauf mit Beachtung des Einwandes von Frau Prof. Dr. Borromeo Ferri. Es empfiehlt sich, die Aufgaben in den Schritten a) bis f) zu analysieren (vgl. Tenz 2010).

a) Reale Situation:

Passen alle Kinder der Klasse auf die Rutsche des Pausenhofs?

b) Mentale Situationsrepräsentation (Borromeo Ferri):

Die Lernenden stellen sich die Rutsche bildlich vor und überlegen, wie groß sie im Verhältnis zu der Rutsche sind beziehungsweise wie viel Platz sie auf der Rutsche jeweils einnehmen würden.

c) Reales Modell:

Die Kinder ermitteln die Länge der Rutsche und den Platz, den sie jeweils auf der Rutsche einnehmen würden. Es muss bedacht werden, ob sich die Schülerinnen und Schüler auf die Rutsche legen und somit viel Platz einnehmen oder ob sie sich so klein wie möglich machen. Der jeweilige Körperbau ist ebenfalls ausschlaggebend.
d) **Mathematisches Modell:**

Die Aufgabe ermöglicht es, ein mathematisches Modell durch verschiedene Möglichkeiten zu erstellen. Eine Möglichkeit besteht darin, dass die Kinder ihren Platz auf der Rutsche schrittweise aufaddieren, bis die Länge der Rutsche erreicht ist. Vereinfachend kann der jeweilige Platz auf der Rutsche beispielsweise mit zwei multipliziert werden, bis die Rutschenlänge erreicht ist. Weiterhin bietet es sich an, dass die Kinder die Länge der Rutsche durch ihren Platz auf der Rutsche dividieren, um so ein Ergebnis zu erhalten.

e) **Mathematische Resultate:**

Diese können je nach Körperbau der Lernenden variieren. Es ist anzunehmen, dass ein Kind im Durchschnitt etwa 30 Zentimeter auf der Rutsche einnimmt, wenn es sich kleinmacht. Bei einer angenommenen Rutschenlänge von sieben bis acht Metern bedeutet dies:

\[700/30 \approx 23,3333\quad 800/30 \approx 26,6666\]

Die Zahl 700 resultiert aus der Umrechnung der oben erwähnten sieben Metern in 700 Zentimeter, damit diese mit den 30 Zentimetern verrechnet werden können, die den durchschnittlichen Platz eines Kindes auf der Rutsche repräsentieren. Gleichermaßen lässt sich das Erscheinen der Zahl 800 in obiger Rechnung erklären. Das Ergebnis kann also bei sinnvoller Rundung lauten, dass 23 bis 27 Kinder auf die Rutsche passen. Da die Klassenstärke 25 Kinder beträgt, hängt die positive beziehungsweise negative Beantwortung der Frage von dem Körperbau der Kinder sowie der Position auf der Rutsche ab.

f) **Reale Ergebnisse:**

Alle Kinder der Klasse passen auf die Rutsche, wenn sie sich eng aneinanderreihen.

Die Modellierungsaufgabe „Die Rutsche“ weist einen hohen Bezug zur Gegenwart auf. Wie in den obigen Schritten a) bis f) gezeigt wurde, kann die Aufgabe mit Hilfe von Mathematik gelöst werden. Weiterhin besteht die Möglichkeit, die Aufgabe durch eigenständiges Handeln zu lösen, indem sich die Lernenden auf die Rutsche des Pausenhofs begeben und ausprobieren, wie viele

4.3.1.2 Durchführung

Um die zu dem Anfangszeitpunkt der Studie vorherrschende mathematische Sichtweise der Kinder unverfälscht festhalten zu können, begann die Einheit mit dem Ausfüllen des Fragebogens12. Auf die anschließend geplante Auflockerungsphase konnte verzichtet werden, da die Schülerinnen und Schüler noch voll konzentriert waren.

Im Anschluss an den Fragebogen wurde die Tafel aufgeklappt, die mit drei Mathematikaufgaben versehen worden war13. Den Kindern wurde erklärt, dass sie diese Aufgaben rechnen sollten. Besonders interessant sei dabei nicht nur das Ergebnis, sondern auch der Rechenweg. Eine Schülerin behauptete, dass sie solche Aufgaben nicht kenne und somit noch nicht gemacht habe. Die Aussage wurde jedoch von ihrer Sitznachbarin entkräftet, die lautstark entgegnete: „Na klar haben wir das schon gemacht, bis 1000“.

Nachdem die Lernenden die Aufgaben berechnet hatten, wurde zunächst jeweils ein Kind an die Tafel gebeten, um den Rechenweg und die Lösung zu notieren. Noch während die Kinder schrieben, meldete sich ein Schüler, der auf den Lösungsweg der Kastanien-Aufgabe eines Schülers sehr irritiert reagierte: „Das habe ich aber ganz anders gemacht!“. Diese Aussage spielte genau den Aspekt an, der den Schülerinnen und Schülern sichtbar gemacht werden sollte, nämlich dass es sich bei den Aufgaben um solche handelt, die zwar mehrere Lösungswege haben können, das Ergebnis jedoch stets eindeutig bleibt. Es durfte also zu jeder Aufgabe ein weiteres Kind einen anderen Rechenweg an die Tafel schreiben. Anschließend wurde die Frage gestellt: „Was fällt euch denn auf, wenn ihr die Aufgaben anschaut?“. Eine Schülerin bemerkte, dass die Aufgaben unterschiedlich lang seien, da sie verschiedene Lösungswege aufweisen. Als das Ergebnis angesprochen wurde, merkte die Schülerin sofort an, dass dieses trotz unterschiedlicher Lösungswege selbstverständlich immer gleich sei und es somit nur ein Ergebnis gäbe.

Diese Aussage wurde zum Anlass genommen, um auf die „Schokokuss“-Aufgabe zu sprechen zu kommen, die die Lernenden aus dem Fragebogen kannten. Im Interessenzentrum stand die Frage, wie es denn bei dieser Aufgabe mit dem Ergebnis aussähe. Die Meinungen gingen auseinander. Ein Schüler äußerte, dass es verschiedene Ergebnisse geben könne, wurde aber von einem anderen Schüler

12 Der Fragebogen befindet sich im Anhang.

13 Die Idee stammt aus der Examensarbeit von Ronja Tenz. Die hier verwendeten Aufgaben können im Anhang nachgeschlagen werden.
unterbrochen, der behauptete, man könne die Aufgabe gar nicht berechnen, da man nicht wisse, wie viele Kinder auf den Geburtstag kommen. Wir hielten gemeinsam fest, dass man verschiedene Dinge festlegen/vermuten/annehmen muss, um diese Aufgabe lösen zu können. Daraus folgt, dass es mehrere Lösungswege und Ergebnisse gibt.

Im weiteren Verlauf der Stunde wurde den Lernenden erklärt, dass wir uns nun mit einer Aufgabe beschäftigen würden, bei der man verschiedene Sachen annehmen muss und die unterschiedlichen Ergebnisse aufweisen kann.

14 Das Foto wurde aus Anonymitätsgründen aus dem Anhang entfernt.

Die Stunde wurde mit dem Ausblick beendet, dass in der nächsten Stunde erneut solch spezielle Aufgaben behandelt werden würden, was bei einigen Kindern zu einem vorfreudigen „Jaaaa!“ führte.

4.3.1.3 Reflexion der Aufgabe „Die Rutsche“

Wie bereits in dem Abschnitt 4.3.1.2 erwähnt wurde, gliedern sich die Ziele der Einheit unter anderem wie folgt auf: Die Kinder sollen sich mit ihrer eigenen mathematischen Sichtweise beschäftigen. Weiterhin sollen sie ein neues Aufgabenformat, die Modellierungsaufgaben, kennenlernen und ihre mathematische Sichtweise durch die Einführung von Modellierungsaufgaben erweitern. Des Weiteren sollen die Kinder durch die „Die Rutsche“-Aufgabe einen möglichen Realitätsbezug der Mathematik kennenlernen. Inwiefern die oben beschriebene Einheit zur Erreichung der Ziele beigetragen hat, soll die nun folgende Reflexion darlegen.
Statt wie geplant um 8 Uhr 30 begann ich die Einheit um 10 Uhr 35, da die Klasse zunächst noch Sportunterricht hatte und die Klassenlehrerin anschließend organisatorische Dinge besprechen musste. Die ersten drei Phasen (Begrüßung, Hinführung zum Thema 1, Organisation 1) verliefen wie geplant. Die Arbeitsphase 1 dauerte fünf Minuten kürzer als geplant, da alle Schülerinnen und Schüler bereits nach 20 Minuten ihren Fragebogen bearbeitet hatten. Nichtsdestotrotz bot sich den Lernenden durch die Bearbeitung der Fragebögen die Möglichkeit der Auseinandersetzung mit ihrer mathematischen Sichtweise.

Die Auflockerungsphase konnte, wie bereits in Abschnitt 4.3.1.2 erwähnt, vernachlässigt werden, da die Schülerinnen und Schüler in der vorigen Doppelstunde im Fach Sport sowie der darauffolgenden großen Pause ihre überschüssige Energie freisetzten konnten.

Meine Befürchtung, dass die Arbeitsphase 3 durch einen Mangel an Meldungen geprägt sei, wurde glücklicherweise nicht bestätigt, da sich viele Kinder beteiligten. Die Arbeitsphase 3 diente der Sensibilisierung der Lernenden für die Vielfalt der Aufgabentypen und der Tatsache, dass sich ihre Beschäftigung bisher auf Aufgaben beschränkte, die durch mehrere Lösungswege zu einem eindeutigen Ergebnis führen. Ausnahmen bilden hier beispielsweise Aufgaben nach folgendem Schema: \[\boxed{} < 986 \]. Hier gibt es mehrere Möglichkeiten, eine Zahl in das Kästchen einzutragen, die kleiner als 986 ist.

Die Diskussion, die in der Erarbeitungsphase entstand, machte auf das fehlende Vorwissen der Lernenden bezüglich der Modellierung aufmerksam und verdeutlichte, dass einige Kinder die Offenheit der Aufgabe als Anlass nahmen, diese als nicht lösbar einzuschätzen. Dies sollte keineswegs als negativ gewertet werden, sondern vielmehr als Chance gesehen werden, den Kindern tatsächlich ein neues Aufgabenformat von Beginn an beizubringen zu können. Das Ziel dieser Einheit, die

Der unaufdringliche mathematische Charakter der „Die Rutsche“-Aufgabe ermöglichte es, die Lernenden zunächst unbewusst zu mathematischen Überlegungen anzuspornen. Es musste herausgefunden werden, ob alle Kinder der Klasse für das Foto auf die Rutsche passten. Ein Problem, das nicht gestellt wirkte, da es in der entsprechenden Situation ein tatsächliches Problem darstellte. Somit konnte ein möglicher Realitätsbezug der Mathematik an die Kinder herangetragen werden. Weiterhin beinhaltet die Möglichkeit der handelnden Lösung eine Erleichterung seitens der Bearbeitung und Lösung der Aufgabe, sodass die „Die Rutsche“-Aufgabe eine sinnvolle Einführungsaufgabe zur Modellierung darstellte.

Die Ergebnissicherung half den Lernenden bei der Reflexion der Aufgabe, sodass sich bereits ein gewisses Bewusstsein für die Modellierungsaufgaben entfalten konnte. Es zeigte sich, dass sich die Schülerinnen und Schüler auf das ihnen neue Aufgabenformat einließen. Jedoch hätte der mathematische Aspekt der Aufgabe eventuell noch einmal aufgegriffen werden sollen, da zu dem Zeitpunkt nicht klar war, ob dieser allen Kindern tatsächlich bewusst geworden ist. Ob sich die Einführung anhand der „Die Rutsche“-Aufgabe letztendlich dazu eignet, die mathematische Sichtweise der Kinder zu erweitern, kann nur vermutet werden. Es ist allerdings anzunehmen, dass den Lernenden durch die Heranführung an ein neues Aufgabenformat mit Realitätsbezug bewusst geworden ist, dass der Begriff Mathematik mehr umfasst, als sie bis zu diesem Zeitpunkt dachten.

Dass es sich bei der „Die Rutsche“-Aufgabe um eine Einführungsaufgabe handelt wird insbesondere deutlich, wenn die folgende „Der große Fuß“-Aufgabe im Zentrum der Betrachtung steht.

4.3.2 „Der große Fuß“

4.3.2.1 Stoffdidaktische Analyse
Auch hier findet eine stoffdidaktische Analyse anhand der Schritte a) bis f) statt.

a) Reale Situation:
 Wie groß ist der Dieb?
b) *Mentale Situationsrepräsentation (Borromeo Ferri):*

Die Lernenden betrachten den Fußabdruck und vergleichen ihn mit anderen Fußabdrücken, beispielsweise ihren eigenen. Anschließend machen sie sich die Proportionalität zwischen Körpergröße und Fußlänge zu Nutzen, schließen von ihrer Schuhgröße auf ihre Körpergröße und übertragen dies auf den Dieb, sodass sich die Entwicklung eines mentalen Bildes des Diebes vollziehen kann.

c) *Reales Modell:*

d) *Mathematisches Modell:*

e) *Mathematische Resultate:*

Diese können je nach Körperbau und Schuhgröße der Schülerinnen und Schüler oder der Personen, auf die sie sich beziehen, variieren. Es ist anzunehmen, dass ein Kind zu Beginn der vierten Klasse durchschnittlich etwa 1,36m bis 1,46m groß ist und die Schuhgröße 32 bis 40 besitzt. Um nun ein mathematisches Resultat zu erlangen, wird eine Verhältnisgleichung bezüglich der eigenen Körpermaße und denen des Diebes aufgestellt (vgl. Blum & Borromeo Ferri 2009). Ein Beispiel kann wie folgt lauten:

15 Um eine Veranschaulichung der Aufgabe zu ermöglichen, habe ich zwei Fußabdrücke hergestellt, deren Foto im Anhang eingesehen werden kann. Die entsprechende Schuhgröße wurde den Kindern nicht mitgeteilt.

$x/1,41=43/36$

Das x steht für die gesuchte Körpergröße des Diebes, die Zahl 1,41 repräsentiert die durchschnittliche Körpergröße eines Kindes in der vierten Klasse. Die Zahl 43 stellt die Schuhgröße des Diebes in diesem Fall dar, mit 36 wird die durchschnittliche Schuhgröße eines Kindes in der vierten Klasse beschrieben.

Die Auflösung der Gleichung kann folgendermaßen nachvollzogen werden:

$x/1,41\approx1,1944 \quad | \quad \cdot1,41$

$x\approx1,6842$

Der hier aufgestellten Gleichung zufolge besitzt der Dieb eine sinnvolle gerundete Körpergröße von 1,68 Metern, was durchaus denkbar wäre. Es ist anzumerken, dass eine Rechnung von Grundschulkindern voraussichtlich in den Ausführungen variiert.

\textit{f) Reale Ergebnisse:}

Der Dieb besitzt eine ungefähre Körpergröße von 1,68 Metern.

4.3.2.2 Durchführung

Die soeben beschriebene Aufgabe war Bestandteil der zweiten Einheit (Stunde 3 & 4) des Unterrichtsversuchs, die unterschiedliche Ziele verfolgte. Zunächst sollen die Lernenden erkennen, dass sich die „speziellen Aufgaben“ durch mehrere Lösungsmöglichkeiten und unterschiedliche Ergebnisse auszeichnen. Weiterhin diente das Ausdenken eigener „spezieller Aufgaben“ dazu, die Kinder das Aufgabenformat aus einem anderen Blickwinkel erkunden zu lassen. Der Einsatz der Modellierungsaufgabe soll die Einführungsarbeit weiterführen und das Bewusstsein der Schülerinnen und Schüler für Modellierungen festigen.

Nachdem die Lernenden begrüßt worden waren, wurden sie gebeten, sich im Sitzkreis einzufinden. Die Kinder wurden an die letzte gemeinsame Mathematikstunde erinnert, die zu dem Zeitpunkt bereits vier Tage zurücklag. Auf die Frage, was wir in dieser Stunde gemacht hatten, wurde unvermittelt geantwortet, dass Fragebögen ausgefüllt wurden und wir gemeinsam Überlegungen anstellten, ob alle Kinder für ein Foto auf die Rutsche passten. Dies probierten wir auch aus. An die Aussagen wurde angeknüpft, indem die Lernenden mit der Frage konfrontiert wurden, worin der mathematische Aspekt der Aufgabe liege. Eine Schülerin meldete sich und sagte, dass man das nicht nur ausprobieren, sondern auch berechnen kann. Ein weiterer Schüler half ihr aus, indem er anbrachte, dass bedacht werden muss, wie viele Schülerinnen und Schüler auf die Rutsche passen. Dies impliziert die Frage, wie breit ein Kind ist beziehungsweise wie viel Platz es auf der Rutsche einnimmt und wie lang die Rutsche ist. Es entstand eine Diskussion darüber, wie viel Platz ein Kind denn nun tatsächlich einnimmt. Dadurch wurde den Lernenden noch einmal ins Gedächtnis gerufen, dass sich genau diese Diskussion mit verschiedenen Annahmen und somit verschiedenen Möglichkeiten, die Aufgabe zu lösen, beschäftigt. Auf die Frage, was das für das Ergebnis bedeutet, wurde sofort geantwortet, dass die Möglichkeit unterschiedlicher Ergebnisse besteht.

Es wurde erläutert, dass auch weiterhin eine Beschäftigung mit solch „speziellen Aufgaben“ angedacht sei und mit den Kindern zum wiederholten Mal erarbeitet, dass sich die speziellen Aufgaben durch 1) verschiedene Lösungsmöglichkeiten und 2) unterschiedliche Ergebnisse auszeichnen. Unter 1) finden somit auch die

17 Der dazugehörige Verlaufsplan befindet sich ebenfalls im Anhang.
Annahmen, die die Kinder treffen, Beachtung. Die Ankündigung, dass sich die Lernenden nun selbst Aufgaben dieses Typs ausdenken sollen18, wurde von einigen freudig aufgenommen. Um den Schülerinnen und Schülern ihre Aufgabe zu erklären, wurde der Text des Arbeitsblattes19 vorgelesen. Um sicher zu gehen, dass die Kinder verstanden, welche Aufgabenart sie sich ausdenken sollten, wurden als Beispiele noch einmal die „Die Rutsche“-Aufgabe und die „Schokokuss“-Aufgabe genannt. Weiterhin sollten die Lernenden darüber nachdenken, ob die Frage „Wie viele Kinder sitzen auf der Bank?“ ebenfalls eine spezielle Aufgabe repräsentiert. Die Lernenden verneinten dies, da es nur ein richtiges Ergebnis gäbe. Es wurde festgehalten, dass jedoch die Frage „Wie viele Kinder passen auf eine Bank?“ eine spezielle Aufgabe sei, da sie die Bedingungen 1) und 2) erfüllt. Den Kindern wurde erklärt, dass sie zunächst einzeln arbeiten sollen. Läge jedoch ein Mangel an Ideen vor, so bestünde die Möglichkeit, mit dem Sitznachbarn gemeinsam zu arbeiten. Falls die Schülerinnen und Schüler anschließend immer noch keine Ideen haben sollten, wurden sie darauf hingewiesen, dass sich hinter dem rechten Teil der Tafel zwei Bilder20 befinden, die ihnen bei der Formulierung etwaiger Fragen helfen könnten.

Die Lernenden begannen zügig mit der Bearbeitung der Aufgabenstellung. Soweit es innerhalb meines Beurteilungsrahmen liegt, kann behauptet werden, dass nur vereinzelte Kinder hinter die Tafel blickten, um ihre Ideen durch die Bilder voranzutreiben.

Als sich die Klasse wieder im Sitzkreis zusammenfand, war der Andrang seitens der Lernenden sehr groß, eine Aufgabe vorlesen zu dürfen. Die erste Frage, die von einem Kind vorgelesen wurde, lautete wie folgt: „Wie viele Vögel passen auf ein zwei Meter langes Seil?“. Die Kinder wurden ermuntert, zu überlegen, ob diese Frage die zwei Bedingungen (siehe oben) erfüllte, was sie bejahten. Die nächste Frage „Wie viele Kinder passen in ein Flugzeug?“ wurde von den Schülerinnen und Schülern ebenfalls als eine „spezielle Aufgabe“ eingestuft, da man annehmen müsse, um welchen Flugzeugtyp es sich handle, wie breit das Flugzeug sei und wie viele Sitze sich darin befänden. Eine Schülerin äußerte zudem, dass es wieder darauf ankäme, wie groß beziehungsweise breit die Kinder

18 Die Idee stammt von Tenz (2010).
19 Das Arbeitsblatt kann im Anhang eingesehen werden.
20 Die Bilder befinden sich im Anhang.
seien. Sie wurden jedoch darauf aufmerksam gemacht, dass ein Flugzeug stets eine bestimmte Anzahl an Sitzen aufweist und jeweils nur ein Kind auf einem Sitz platznehmen dürfe, auch wenn vielleicht zwei darauf passen würden. Die anschließende Frage „Wie viele Stifte passen in einen Wäschekorb?“ wurde ebenfalls kritisch hinterfragt und als „spezielle Aufgabe“ bezeichnet, da man die Größe des Wäschekorbs annehmen müsse. Weiterhin sei die Art der Stifte entscheidend. Handelt es sich um Buntstifte, so können diese beispielsweise bereits abgenutzt sein und somit nur noch sehr klein sein. Ein Kind nannte zudem die Frage „Wie viele Kinder passen auf eine Bank?“, die bereits zuvor als Beispiel angeführt wurde. Im Hinblick auf die Zeit wurde es dabei belassen, die vier Fragen der Lernenden als Beispiele anzuführen, auch wenn sich noch einige Kinder meldeten, um ihre Fragen vorlesen zu dürfen.

Die folgende Phase der Auflockerung konnte wiederum entfallen, da die Kinder noch sehr interessiert und konzentriert wirkten. Somit folgte dem Abschnitt „Erarbeitung 2“ gleich im Anschluss die „Hinführung zum Thema 2“. Es wurden die zwei Fußabdrücke21 in die Kreismitte gelegt und es musste kaum gewartet werden, bis die Kinder die ersten Äußerungen anstellten. Sie vermuteten zunächst, dass es darum ginge, die Schuhgröße herauszufinden. Ein Schüler erklärte, man könne auch das Gewicht der Person berechnen, in dem man schaut, wie weit die Person in den Matsch hinein gesunken ist. Nachdem die Kinder einige Vermutungen angestellt hatten, wurde erzählt, dass es sich um Fußabdrücke eines Diebes handle und der entsprechende Text auf dem Arbeitsblatt 22 wurde vorgelesen. Auf die anschließende Frage, was die Lernenden nun tun sollen, antwortete zunächst eine Schülerin zum wiederholten Mal, dass man auch das Gewicht berechnen könne. Es wurde darauf verwiesen, dass es hier um etwas anderes ginge. Ein Schüler wiederholte, dass die Körpergröße von Interesse sei. Die Frage, wie man das herausfinden könne, beantwortete ein Schüler damit, dass die eigenen Füße zum Vergleich genommen werden könnten. Weiterhin wurde angemerkt, dass nicht nur das Ergebnis interessiere, sondern auch die Annahmen, also der Lösungsweg der Kinder. Des Weiteren fand Erwähnung, dass Plakate zur Darstellung ihrer Ergebnisse erstellt werden sollten, die dann in Gruppen der

21 Schuhgröße: 43, Körpergröße: 1,87m, männlich, Foto befindet sich im Anhang.
22 Das Arbeitsblatt befindet sich ebenfalls im Anhang.
gesamten Klasse präsentiert werden. Nachdem geklärt wurde, dass die Kinder in ihren Tischgruppen arbeiten, begannen sie mit der Bearbeitung der Aufgabe.

Auffallend in der „Arbeitsphase 2“ war, dass sich die Fußabdrücke großer Beliebtheit erfreuten. Viele Kinder testeten, ob ihre Füße der Passform des Fußabdrucks entsprachen. Einige Jungen besaßen fast so große Füße wie der Fußabdruck, sodass sie beschlossen: „Die Person ist so um die 1,50 Meter groß“. Als ich mich jedoch auf den Fußabdruck stellte, sahen sie, dass meine Füße um einiges kleiner waren, obwohl ich eine Körpergröße von 1,70 Meter besitze. Dies ließ sie darüber nachdenken, dass das Geschlecht eine wichtige Rolle spielt, wenn es um die Fußabdrücke eines Menschen geht.\footnote{An dieser Stelle muss darauf hingewiesen werden, dass Männer häufig größere Füße als Frauen besitzen. Dennoch gibt es stets Ausnahmen, welche die Regel bestätigen.}

Um 9 Uhr 45 begann die erste Gruppe, ihr Plakat vorzustellen. Der Rest der Klasse wurde dazu aufgefordert, die Ausführungen nachzu vollziehen und zu überlegen, ob das Ergebnis sinnvoll sei. Anschließend konnte lediglich eine weitere Gruppe ihr Plakat erläutern, da die Pause begann. Es wurde erklärt, dass die Präsentationen am nächsten Tag weitergingen und die Stunde wurde beendet.

4.3.2.3 Reflexion der Aufgabe „Der große Fuß“

Wie bereits in dem Abschnitt 4.3.2.2 erwähnt wurde, lauten die Ziele der Einheit unter anderem wie folgt: Die Kinder sollen erkennen, dass sich die „speziellen Aufgaben“ durch mehrere Lösungsmöglichkeiten und unterschiedliche Ergebnisse auszeichnen. Weiterhin sollte die Möglichkeit geschaffen werden, die Lernenden das Aufgabenformat aus einem anderen Blickwinkel erkunden zu lassen. Der Einsatz der Modellierungsaufgabe soll die Einführungsarbeit weiterführen und das Bewusstsein der Schülerinnen und Schüler für Modellierungen festigen. Ob die

\footnote{Die Fotos der unkorrigierten Plakate befinden sich im Anhang dieser Arbeit.}
oben beschriebene Einheit die Erreichung der Ziele zur Folge hatte, wird die folgende Reflexion zeigen.

Die Begrüßung der Schülerinnen und Schüler startete um 8 Uhr 35, also fünf Minuten später als geplant, was jedoch kein Problem darstellte. Dass ich in der „Hinführung zum Thema 1“ noch einmal auf die „Die Rutsche“-Aufgabe und deren mathematischen Gehalt einging, erschien mir sinnvoll, da ich nicht sicher sein konnte, ob alle Schülerinnen und Schüler dies in der letzten Stunde begriffen hatten. Die Diskussion zeigte zudem, dass sich die Schülerinnen und Schüler auf das neue Aufgabenformat einließen und sich damit arrangierten, eine Aufgabe nicht sofort als „nicht lösbar“ einzustufen, obwohl einige essentielle Informationen nicht gegeben waren. So zeigte sich bereits in dieser Phase, dass sich sukzessiv ein Bewusstsein der Lernenden für Modellierungen entwickelte.

Durch das gemeinsame Festhalten der zwei Bedingungen der „speziellen Aufgaben“, nämlich dass diese 1) verschiedene Lösungsmöglichkeiten und 2) unterschiedliche Ergebnisse besitzen, konnte den Schülerinnen und Schülern die hinter den Modellierungsaufgaben liegende Thematik nähergebracht werden.

Als didaktische Reserve hatte ich, wie bereits in Abschnitt 4.3.2.2 erwähnt, ein Arbeitsblatt vorbereitet, welches zwei Fotos enthielt und den Kindern somit Denkanstöße geben sollte. Der Einsatz des Arbeitsblattes ist sinnvoll, auch wenn diese Gruppe die zusätzliche Hilfe nur wenig benötigte.

Während sich die Schülerinnen und Schüler selbst „spezielle Aufgaben“ ausdachten, fiel besonders eine Unsicherheit der Kinder auf, die sich durch vermehrtes Fragen, ob ihre Ausführungen sowohl Frage als auch Rechnung und Antwort beinhalten sollen, äußerte. Der Aspekt, dass zunächst nur die Fragen formuliert werden sollten, ist anscheinend bei der Besprechung nicht deutlich geworden. Ein erneutes Durchlesen des Arbeitsblattes zog die Realisation nach sich, dass dort lediglich die Aufforderung, sich Mathematikaufgaben auszudenken, vermerkt war. Die Fragen der Kinder waren somit berechtigt und gaben Anlass zu der Überlegung, in Zukunft einen Satz zu ergänzen, der darauf hinweist, lediglich die Fragen aufzuschreiben. Positiv überrascht wurde ich von der Kreativität der Schülerinnen und Schüler, mit der sie sich eigene „spezielle Aufgaben“ aus-
dachten. Die Kinder orientierten sich nicht nur an genannten Beispielen, sondern dachten sich vielfältige andere Fragen aus. In der Menge der selbstentwickelten Fragen konnten jedoch einige ausfindig gemacht werden, die nicht die zwei genannten Bedingungen für Modellierungsaufgaben erfüllen. Ein Kind notierte beispielsweise die Frage „Wie viele Fenster sind in dem Raum?“, die offensichtlich nur eine richtige Antwort zulässt. Das Auftauchen von nicht zutreffenden Fragen ist nicht verwunderlich, da die Thematik zu diesem Zeitpunkt relativ neu für die Lernenden war. Durch die unterschiedlichen Lerntempi haben einige Kinder die Thematik und die dazugehörigen Aufgaben schneller verstanden als andere.

Die „Erarbeitung 2“ verdeutlichte, dass die Schülerinnen und Schüler das Angebot, die Modellierungsaufgaben aus einem anderen Blickwinkel zu betrachten, annahmen und den anderen ihre Ergebnisse mitteilen wollten. Es kann hier wiederum von einer Festigung des Bewusstseins bezüglich der Modellierungsaufgaben gesprochen werden.

Während die Kinder die Aufgabe bearbeiteten, bemerkte ich, dass sich einige Lernende dem Problem allein oder in Partnerarbeit stellten. Dies entsprach jedoch nicht meiner Anweisung, in Gruppen zu arbeiten. Daraufhin beschloss ich, dieses Thema in der nächsten Einheit noch einmal anzusprechen, um den Kindern zu verdeutlichen, was Gruppenarbeit bedeutet.
Das Erstellen der Plakate verlief problemlos. Im Vorfeld hatte ich befürchtet, dass die Schülerinnen und Schüler einen enormen Zeitaufwand für die Gestaltung der Plakate betrieben und so in Zeitdruck geraten würden. Dies war jedoch nicht der Fall. Auch die Tatsache, dass die Lernenden in Gruppen vor die Klasse traten und ihr Plakat erläutern mussten, schien kein allzu großes Hindernis darzustellen.

Werden nun die unter 4.3.2.3 getätigten Ausführungen betrachtet, so kann festgehalten werden, dass die Einheit die gesetzten Ziele erreichte. Auf die Aufgabe „Der große Fuß“ folgte „Der Stau“, die im Fokus des folgenden Kapitels steht.

4.3.3 „Der Stau“

4.3.3.1 Stoffdidaktische Analyse
Wie bereits bei den beiden vorigen Aufgaben, gliedert sich die stoffdidaktische Analyse auch hier zunächst in die Schritte a) bis f) auf.

a) Reale Situation:

Wie viele Personen befinden sich in einem fünf Kilometer langen Stau?

b) Mentale Situationsrepräsentation (Borromeo Ferri):

Die Kinder stellen sich einen fünf Kilometer langen Stau und die davon betroffenen Fahrzeuge vor. Weiterhin überlegen sie, wie viele Personen sich in den Fahrzeugen insgesamt befinden könnten.

c) Reales Modell:

Die Schülerinnen und Schüler holen Informationen über verschiedene Daten ein. Die durchschnittliche Länge eines Autos wird ermittelt sowie die durchschnittliche Anzahl von Personen, die sich in einem Auto befinden. Der Abstand zwischen den Fahrzeugen muss beachtet werden. Ferner bedarf die Anzahl der Fahrspuren einer Festlegung.

d) Mathematisches Modell:

Es besteht die Möglichkeit, dass die Kinder an ihr Weltwissen anknüpfen und verschiedene Annahmen bezüglich der Autolänge etc. treffen, sodass die angenommenen Werte miteinander verrechnet werden.
e) Mathematische Resultate:

Wie bereits erwähnt, können diese variieren. Nimmt ein Kind beispielsweise an, dass ein Auto durchschnittlich eine Länge von vier Metern aufweist, dann muss dazu zusätzlich ein Abstand von etwa einem Meter addiert werden. Somit lautet die erste Rechnung 4m+1m=5m. Weiterhin kann nun die Länge des Staues (5km=5000m) mit der angenommenen Länge eines Autos und dem dazu gehörigen Abstand verrechnet werden: 5000m/5m=1000. Die Zahl 1000 bezeichnet die Anzahl der Autos auf einer Länge von fünf Kilometern. Da die Frage jedoch lautet, wie viele Personen sich in dem Stau befinden, muss weiterhin angenommen werden, wie viele Menschen sich durchschnittlich in einem Auto befinden. Wir nehmen an, dass dies drei Menschen sind, sodass gilt: 1000·3=3000. Die Antwort lautet in diesem Fall, dass sich 3000 Personen in einem fünf Kilometer langen Stau befinden. Allerdings sind alle Größen, abgesehen von den fünf Kilometern Stau, anzunehmen, sodass das Ergebnis variieren kann.

f) Reale Ergebnisse:

Es befinden sich 3000 Personen in einem fünf Kilometer langen Stau.

Die Aufgabe kann ebenfalls in den Bildungsstandards verortet werden, in diesem Fall im Kompetenzbereich „Größen und Messen“, da die Kinder mit verschiedenen Größen und unterschiedlichen Maßeinheiten umgehen müssen (vgl. Hessisches Kultusministerium 2010).
Die Aufgabe kann weiterhin für die Zukunft der Kinder bedeutsam sein, da sie wahrscheinlich weitere Stauerfahrungen sammeln werden. Die generelle Fähigkeit, eine Personenanzahl auf einer gewissen Strecke einschätzen zu können, kann ebenso von Vorteil sein, um beispielsweise eine Wartezeit abzuschätzen.

Eine Differenzierung kann mit wenig Aufwand durch die Varierung der Kilometeranzahl gegeben werden. Weiterhin ist eine Intentionsveränderung der Frage denkbar, indem nach der Anzahl der Autos und nicht der Personen gefragt wird, sodass sich der Schwierigkeitsgrad der Aufgabe verringert.

4.3.3.2 Durchführung

26 Der dazugehörige Verlaufsplan befindet sich ebenfalls im Anhang.
Allgemeinen und somit auch die Schuhgrößen der Kinder voneinander abweichen, kann das Ergebnis ebenfalls differieren.

welche Annahmen getroffen werden müssen, wurden die Schülerinnen und Schüler darauf aufmerksam gemacht, dass sie erneut in Gruppen arbeiten sollen. Da dies in der vorherigen Stunde nur eingeschränkt funktioniert hatte, sollten die Kinder erklären, was Gruppenarbeit eigentlich bedeute. Wir arbeiteten gemeinsam heraus, dass alle Lernenden einer Gruppe gemeinsame Überlegungen in einem „Flüsterton“ treffen. Daraufhin wurde verkündet, dass wieder Plakate30, die die Annahmen sowie die Lösung der Gruppe aufweisen, erstellt werden sollten.

Die anschließend geplante Phase der Auflockerung konnte, wie bereits in den vorigen Stunden, übersprungen werden. Somit folgte zunächst der Abschnitt „Organisation 2“ und darauf die „Arbeitsphase 2“, in der einigen Gruppen dabei geholfen wurde, angemessene Annahmen zu treffen und Rechnungen durchzuführen. Die Kinder vermittelten den Eindruck, dass sie verstanden hatten, was die Aufgabenstellung von ihnen verlangte. Lediglich die Umsetzung bedurfte teilweise einer Unterstützung.

Die „Arbeitsphase 3“ wurde nicht wie geplant um 9 Uhr 36 begonnen, sondern um 9 Uhr 50, da die Kinder in der „Arbeitsphase 2“ mehr Zeit benötigten als geplant, was unter anderem an der Gestaltung der Plakate gelegen haben könnte. Während der Präsentationen waren die restlichen Kinder dazu angehalten, den Präsentierenden zuzuhören und zu überlegen, ob die Annahmen sowie das Ergebnis stimmen könnten. Wir schafften es nicht, wie geplant, alle Präsentationen bis 10 Uhr durchzuführen. Daraus resultierte, dass die Klasse nach der halbstündigen Pause die Präsentationen fortführte. Dann schloss sich nahtlos die Besprechung der Ergebnisse an, die laut Planung erst am nächsten Tag stattfinden sollte. Der Flexibilität der Klassenlehrerin war es zu verdanken, dass der Ablauf geändert werden konnte. Die Ergebnisse der Gruppen differierten in einer Spannbreite von 1000 bis 6250 Personen. Da die Schülerinnen und Schüler das Zustandekommen der Ergebnisse bereits während der Präsentationen erklärt hatten, waren sich alle einig, dass alle richtig sein könnten. Die Ermittlung der tatsächlichen Anzahl wäre ohnehin nicht mehr möglich gewesen, da der Stau am Vortag stattfand und sich somit bereits wieder aufgelöst hatte.

30 Die Fotos der unkorrigierten Plakate befinden sich im Anhang dieser Arbeit.
4.3.3.3 Reflexion der Aufgabe „Der Stau“

Die Ziele der Einheit wurden bereits in dem Abschnitt 4.3.3.2 erwähnt, sollen hier jedoch noch einmal aufgegriffen werden: Die Kinder sollen den Begriff „Modellierungsaufgaben“ kennenlernen und diesen mit den bisherigen „speziellen Aufgaben“ assoziiern. Weiterhin soll die Aufgabe „Der Stau“ die Kinder anregen, sich mit Modellierungen zu beschäftigen. Die folgende Reflexion setzt sich unter anderem damit auseinander, ob diese Ziele erreicht wurden.

erwartet, dass eines der Kinder die Fragestellung -„Wie viele Personen befinden sich in einem fünf Kilometer langen Stau?“- herausfinden würde. Doch wie im Verlaufsplan ersichtlich wird, war mir bewusst, dass dies nicht eintreffen muss, da ich alternativ vermerkt hatte, die Fragestellung selbst zu äußern beziehungsweise die Kinder durch vermehrte Hilfestellung heranzuführen.

Die Veranschaulichung des Modells anhand der DIN-A4 Papiere erleichterte es den Kindern, die zur Berechnung der Personenanzahl im Stau zu treffenden Annahmen zu formulieren und sich mit der Modellierung auseinanderzusetzen. Die Herausarbeitung der Aspekte, die eine Gruppenarbeit ausmachen, resultierte aus dem Ablauf der Gruppenarbeit in der Stunde zuvor und schien auf fruchtbaren Boden gefallen zu sein, da das Arbeiten in Gruppen anschließend einwandfrei ablief.

Die Fotografien der Plakate im Anhang dieser Arbeit zeigen, dass einige Gruppen die Miteinbeziehung des Abstands zwischen den Fahrzeugen beachteten, andere jedoch nicht. Da der Aspekt im Kreisgespräch angesprochen wurde, müsste davon ausgegangen werden, dass alle Schülerinnen und Schüler diesen auch beachten. Die Realität zeigte jedoch das Gegenteil. Ich entschied mich dennoch dagegen, die Schülerinnen und Schüler noch einmal darauf aufmerksam zu machen, da so das Modell widerspiegelt wurde, welches sich die Lernenden selbst überlegt hatten.

Die Auseinandersetzung mit der praktischen Umsetzung der Studie lässt die Frage offen, welche Ergebnisse mithilfe dieser verzeichnet werden können. Das folgende Kapitel legt die Ergebnisse dar und diskutiert sie im Hinblick auf die Forschungsfragen.
5. Ergebnisse

5.1 Fragebogen 1

Es folgt zunächst die Darstellung der Ergebnisse des Fragebogen 1:

1. Stell dir vor, ein Marsmännchen kommt auf die Erde. Wie würdest du ihm erklären, was Mathematik ist?

![Balkendiagramm 1: Antwortverhalten 1 bezüglich Fragebogen 1](image)

Ergebnisse

Mathematik aufbauen. Eine Assoziation der Lernenden von Mathematik mit Rechnen erscheint somit als eine logische Schlussfolgerung.

Ergebnisse
dieser Arbeit entschied ich mich jedoch für eine schemaorientierte Einordnung, da diese adäquater erschien.

2. Denke nach und kreuze einen Satz an, dem du zustimmst.

Es gibt immer nur einen Lösungsweg.	Anzahl Kinder Schema-orientierung
In Mathematik lerne ich das, was im Test vorkommt.	Anzahl Kinder starre Schema-orientierung
In Mathematik muss ich eigene Ideen zum Lösen von Aufgaben haben.	Anzahl Kinder Prozess-orientierung
In Mathematik muss ich logisch denken.	Anzahl Kinder Formalismus-orientierung
Im späteren Leben werde ich Mathematik brauchen.	Anzahl Kinder Anwendungs-orientierung

Balkendiagramm 2: Antwortverhalten 2 bezüglich Fragebogen 1

Wird lediglich Frage 2 als Quelle herangezogen, so kann von einer Dominanz der anwendungsorientierten Beliefs ausgegangen werden.

3. „Was machst du im Mathematikunterricht gerne?“ (Quast 2004, 46)

Wie das obige Diagramm verdeutlicht, werden vier verschiedene Antworten der Prozessorientierung zugeschrieben. Fünf Kinder stellen sich gern Herausforderungen in Form von Knobelaufgaben. Drei Kinder beschäftigen sich gern mit

Ein Kind sprach die Zeitdauer an, ein Aspekt, dem ein affektiver Schwerpunkt zugeordnet werden kann.

4. „Was machst du im Mathematikunterricht nicht gerne?“ (Quast 2004, 46)

5. „Fallen dir Situationen im täglichen Leben ein, in denen du Mathematik gebraucht hast?“ (Quast 2004, 47)
Das Balkendiagramm verdeutlicht, dass sieben unterschiedliche Antworten der Anwendungsorientierung zugeordnet werden können, sodass diese in mehrere Dimensionen aufgefächerter wiedergegeben wird.

Da die Fragestellung auf den Anwendungsaspekt von Mathematik abzielt, ist es nicht verwunderlich, dass die meisten Antworten einer Anwendungsorientierung zugeordnet werden können.

- „Schreibe Rechnungen, die 1000 ergeben.“ (Walther et al. 2009, 74).

![Balkendiagramm 6: Antwortverhalten 6.1 bezüglich Fragebogen 1]
Ergebnisse

- „Max will an seinem 8. Geburtstag mit seinen Gästen Schokoküsse essen. Wie viele Schachteln muss er mit seiner Mutter einkaufen?“ (Maaß 2009, 74)

Balkendiagramm 7: Antwortverhalten 6.2 bezüglich Fragebogen 1

7. „Hast du Angst vor dem Mathematikunterricht? Begründe.“ (Maaß 2004, 316)

- sehr viel _____________________________
- viel _____________________________
- manchmal weil _____________________________
- kaum _____________________________
- nie _____________________________
Es ist eine Tendenz zu verzeichnen, dass die Kinder nur sehr selten oder nie Angst vor dem Mathematikunterricht haben. Die Vermutung, dass die Extreme keine Beachtung finden, trifft lediglich für den Bereich „viel“ und „sehr viel“ zu. Die meisten Kinder geben an, nie Angst vor dem entsprechenden Unterricht zu haben. Die häufigste Begründung lautet, dass die Schülerinnen und Schüler niemals Angst besitzen. Drei weitere Kinder geben an, Mathematik zu mögen, zwei andere
Schülerinnen und Schüler beteuern, dass ein Kind keine Angst haben muss. Wieder zwei weitere Lernende geben zu, Spaß an dem Fach zu haben und gut darin zu sein. Das Ergebnis spiegelt eine weitestgehend angstfreie und somit ideale Situation wider. Es ist wichtig, eine angstfreie Atmosphäre zu schaffen, um den Schülerinnen und Schülern das Lernen zu erleichtern.

Nun konnte ein Überblick bezüglich der Antworten des ersten Fragebogens gegeben werden. Es kann eine geringfügige Dominanz der Schema- sowie Anwendungsorientierung verzeichnet werden. Es ist weiterhin interessant, welche Ergebnisse der zweite Fragebogen darlegt. Um dies transparent machen zu können, seien im Folgenden die Ergebnisse des \textbf{Fragebogen 2} dargelegt.

\textbf{5.2 Fragebogen 2}

1. \textbf{Stell dir vor, du wärst der Lehrer einer ersten Klasse. Wie würdest du den Kindern deiner Klasse erklären, was Mathematik bedeutet?}

\begin{center}
\includegraphics[width=\textwidth]{Balkendiagramm9.png}
\end{center}

Balkendiagramm 9: Antwortverhalten 1 bezüglich Fragebogen 2

Es herrscht eine Dominanz der Schemaversagen vor, da beispielsweise die Nennung und Erklärung von Rechenarten auf diese schließen lässt. Es wird ein Bezug zur Anwendung gelernter Schemata aufgebaut, was laut Maaß (2004) auf eine Schemaversagen hindeutet.
2. Denke nach und kreuze einen Satz an, dem du zustimmst.

Balkendiagramm 10: Antwortverhalten 2 bezüglich Fragebogen 2

Die Aufgabe „Der große Fuß“ gefiel den Schülerinnen und Schülern am besten, gefolgt von der „Der Stau“-Aufgabe. Dies entspricht der unter 3.3.1 aufgestellten Hypothese. Sowohl die Aufgabe „Die Rutsche“ und „Der Schokokuss“ wurden genannt. Ein Kind konnte sich nicht zwischen „Der große Fuß“ und „Der

4. Denkst du noch genauso über Mathematik wie vor zwei Wochen? Warum/Warum nicht?

Balkendiagramm 12: Antwortverhalten 4 bezüglich Fragebogen 2

Das Balkendiagramm zeigt, dass die Anwendungsorientierung dominiert und durch acht verschiedene Antworten repräsentiert wird. Die Schülerinnen und Schüler sind sich somit durchaus einer Relevanz der Mathematik in ihrer Freizeit bewusst.

Bis auf fünf Kinder sind alle fest davon überzeugt, ihr Mathematikwissen in der Freizeit gebrauchen zu können. Fünf Lernende nennen als Beispiel das Einkaufen,
zwei weitere das Spielen, sodass die zuvor aufgestellte Hypothese (Kapitel 3.3.1) bestätigt werden kann. Auffallend sind zwei unter „Sonstige“ verortete Antworten. „Wenn ich später groß bin“ begründet nicht die Antwort. „Ja, ich glaube es“ vermittelt Unsicherheit, die Antwort wird jedoch nicht zu „vielleicht“ gezählt, da eindeutig ein „ja“ darin enthalten ist. Nichtsdestotrotz sind sich zwei Kinder unsicher. Insgesamt drei Schülerinnen und Schüler sind der Meinung, ihr Mathematikwissen nicht in ihrer Freizeit gebrauchen zu können, zwei davon können ihre Meinung nicht begründen. Da sich die Frage auf die Anwendungsorientierung bezieht, ist es nur logisch, dass die Antworten der Kinder am häufigsten dieser zugeordnet werden können.

6. **Gehören die folgenden Aufgaben zur Mathematik? Kreuze an.**

 Balkendiagramm 14: Antwortverhalten 6.1 bezüglich Fragebogen 2

 Balkendiagramm 15: Antwortverhalten 6.2 bezüglich Fragebogen 2
Alle Kinder, bis auf zwei, ordnen die erste Aufgabe der Mathematik zu, was richtig ist. Die aufgestellte Hypothese kann jedoch nicht bestätigt werden, da sich diese auf alle Kinder bezog. Die Ergebnisse bezüglich der zweiten Aufgabe deuten auf allgemeine Unsicherheit hin. Fünf Lernende sind der Meinung, es handle sich um eine Mathematikaufgabe, neun sind einer gegenteiligen Meinung. Die Mehrheit, zehn Schülerinnen und Schüler, kann sich nicht entscheiden. Die zuvor geäußerte Behauptung, dass ein Großteil der Kinder die Aufgabe nicht der Mathematik zuordnet, erhält somit Bestätigung.

Werden die Ergebnisse des zweiten Fragebogens insgesamt betrachtet, ist eine fortschreitende Ausprägung der Anwendungsorientierung zu verzeichnen, sodass diese die Schemaorientierung sukzessiv verdrängt.

5.3 Die beiden Fragebögen im Vergleich

Interessant ist, ob sich eine Veränderung im Antwortverhalten der Schülerinnen und Schüler im Vergleich der beiden Fragebögen abzeichnet. Um dies herauszufinden, werden die Antworten der Kinder und die daraus resultierenden Kategorien einander gegenübergestellt.

Bezüglich der ersten Frage der beiden Fragebögen kann verzeichnet werden, dass zu der Schema- und Formalismusorientierung eine Prozess- und Anwendungsorientierung hinzugekommen ist, wie die folgenden Balkendiagramme verdeutlichen:

<table>
<thead>
<tr>
<th>Frage 1 des Fragebogen 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonstige</td>
</tr>
<tr>
<td>Formalismusorientierung</td>
</tr>
<tr>
<td>Schemaorientierung</td>
</tr>
</tbody>
</table>

Balkendiagramm 16: Frage 1 Fragebogen 1
Die Orientierung an der Addition wurde durch eine generelle Aufgabenorientierung und eine Erklärung anhand der Rechenarten abgelöst. Auffallend ist, dass der Lebensweltbezug Beachtung findet, was als Einfluss der Modellierungen gesehen werden kann. Insgesamt kann festgehalten werden, dass die beiden ersten Fragen der Fragebögen eine hauptsächliche Ausrichtung an schemaorientierten Beliefs aufweisen.

Auf Grundlage der zweiten Frage kann keine erhebliche Veränderung festgestellt werden. Die Abweichungen sind minimal und lediglich bei den Behauptungen „In Mathematik muss ich logisch denken“ (4 Kinder → 2 Kinder) und „In Mathematik muss ich eigene Ideen zum Lösen von Aufgaben haben“ (1 Kind → 3 Kinder) zu verzeichnen, was in den anschließenden Balkendiagrammen ersichtlich wird:

Die Fragen drei und vier sind in den beiden Fragebögen nicht deckungsgleich, sodass ein Vergleich unangebracht wäre.

Beispielen, die angeführt werden, ist in Fragebogen 2 eine größere Variation zu verzeichnen, denn den 14 unterschiedlichen Antworten stehen lediglich zehn in Fragebogen 1 entgegen. Als ein Indikator kann die Einführung der Modellierung gesehen werden, was sich beispielsweise in der Aussage, dass Mathematik gebraucht wird, um Menschen zu zählen, verdeutlicht. Hier kann eine Verbindung zu der durchgeführten „Der Stau“-Aufgabe gesehen werden, in der die Anzahl der Personen herausgefunden werden sollte. Es scheint, dass die Lernenden beginnen, verstärkt über Mathematik und die Relevanz in der Realität nachzudenken. Werden die verschiedenen Kategorien insgesamt gesehen, so folgt daraus diese Verteilung:

Frage 5 des Fragebogen 1

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Anzahl Kinder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonstige</td>
<td>2</td>
</tr>
<tr>
<td>Kognitiver Schwerpunkt</td>
<td>5</td>
</tr>
<tr>
<td>Anwendungsorientierung</td>
<td>13</td>
</tr>
</tbody>
</table>

Balkendiagramm 20: Frage 5 Fragebogen 1

Die hier zu verzeichnende Abnahme von Antworten, die der Anwendungsorientierung zuzuordnen sind, kann mit der Zunahme der Kategorie „Sonstige“ erklärt werden, die unter anderem zwei Antworten beinhaltet, die nicht zuzuordnen sind. Nichtsdestotrotz dominiert die Anwendungsorientierung in dieser Frage deutlich.
Weiterhin ist es von großem Interesse, was Frage sechs ergab, die in beiden Fragebögen von den Lernenden wissen wollte, ob die aufgeführten Aufgaben - darunter jeweils eine Modellierungsaufgabe - der Mathematik zugeschrieben werden können.

Im ersten Fragebogen waren lediglich acht Schülerinnen und Schüler davon überzeugt, dass die „Schokokuss“-Aufgabe zum Bereich der Mathematik gehört. Den sieben Lernenden, die gegenteiliger Meinung waren, standen neun Kinder entgegen, die sich nicht entscheiden konnten. Die folgenden Diagramme stellen dies übersichtlich dar:

Frage 6 des Fragebogen 1: Erste Aufgabe

<table>
<thead>
<tr>
<th>Antwort</th>
<th>Anzahl Kinder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ja</td>
<td>20</td>
</tr>
<tr>
<td>Nein</td>
<td>2</td>
</tr>
<tr>
<td>Weiß ich nicht</td>
<td>1</td>
</tr>
</tbody>
</table>

Balkendiagramm 22: Frage 6.1 Fragebogen 1

Frage 6 des Fragebogen 1: Zweite Aufgabe (Modellierung)

<table>
<thead>
<tr>
<th>Antwort</th>
<th>Anzahl Kinder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ja</td>
<td>9</td>
</tr>
<tr>
<td>Nein</td>
<td>9</td>
</tr>
<tr>
<td>Weiß ich nicht</td>
<td>1</td>
</tr>
</tbody>
</table>

Balkendiagramm 23: Frage 6.2 Fragebogen 1

Im zweiten Fragebogen zeichnet sich eine eindeutigere Verteilung ab, da bis auf zwei Kinder alle Lernenden die Modellierungsaufgabe als Mathematikbestandteil ansahen. Dieser Verdienst kann dem durchgeführten Unterrichtsversuch zugeschrieben werden, da die Kinder in diesem mit Modellierungsaufgaben vertraut gemacht wurden. Somit fand eine Erweiterung des Mathematikbildes der
Kinder statt, da sie in ihre Sichtweise die Modellierung integriert haben. Auch diese Verteilung soll anhand der folgenden Diagramme veranschaulicht werden:

Frage 6 des Fragebogen 2: Erste Aufgabe
(Modellierung)

<table>
<thead>
<tr>
<th>Antwort</th>
<th>Anzahl Kinder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weiß ich nicht</td>
<td>1</td>
</tr>
<tr>
<td>Nein</td>
<td>7</td>
</tr>
<tr>
<td>Ja</td>
<td>20</td>
</tr>
</tbody>
</table>

Balkendiagramm 24: Frage 6.1 Fragebogen 2

Frage 6 des Fragebogen 2: Zweite Aufgabe

<table>
<thead>
<tr>
<th>Antwort</th>
<th>Anzahl Kinder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weiß ich nicht</td>
<td>16</td>
</tr>
<tr>
<td>Nein</td>
<td>12</td>
</tr>
<tr>
<td>Ja</td>
<td>2</td>
</tr>
</tbody>
</table>

Balkendiagramm 25: Frage 6.2 Fragebogen 2

Da der zweite Fragebogen sechs Fragen beinhaltet, kann die siebte Frage des Fragebogen 1 hier nicht verglichen werden.

bogens eine Schema- und Anwendungsorientierung. Die Antworten des zweiten Fragebogens bringen eine Dominanz der Anwendungsorientierung hervor. Insgesamt gesehen kann also eine Dominanz zweier Belieftypen für die hier untersuchte vierte Klasse vermerkt werden. Hierbei handelt es sich um schema- sowie anwendungsorientierte Beliefs, sodass eine Abweichung von Grigutschs festgestellten Beliefs für die Sekundarstufe vorliegt. Im Verlauf der Studie hat die Anwendungsorientierung an Relevanz gewonnen, was neben anderen Faktoren durch den Einsatz der Modellierungsaufgaben hervorgerufen wurde. Um repräsentative Ergebnisse erhalten zu können, sollten mehrere Klassen untersucht werden, was im Rahmen der Bearbeitungszeit der Examensarbeit bedauerlicherweise nicht möglich war. Dennoch soll versucht werden, im Rahmen der Möglichkeiten fundierte Ergebnisse hervorzubringen.

Um nun eine individuelle Betrachtung der Thematik zu ermöglichen, werden im Folgenden die durchgeführten Interviews analysiert.

5.4 Interview 1

Wie in Kapitel 3.4 bereits vermerkt wurde, fand eine Analyse der Interviews anhand der theoretischen Kodierung statt, durch die sich für das erste Interview einige Kodes, die zu Kategorien zusammengefasst wurden, ergaben. Dabei fiel, wie bereits bei den Fragebögen, eine Überschneidung zu den von Grigutsch formulierten Beliefs auf, sodass sich unter anderem auf diese bezogen wurde. Die Kategorien, die sich ergaben, sind im Folgenden einzusehen.

Den Transkripten der ersten Interviews konnte ich drei Kategorien entnehmen: Formalismus-, Schema- und Anwendungsorientierung. Auf eine Formalismusorientierung kann durch folgende Antworten geschlossen werden:

Formalismusorientierung:

- *Mathematik besteht aus Rechenaufgaben.*
- *In Mathematik muss logisch gedacht werden.*
- *Logisch denken spiegelt sich beispielsweise in dem Treffen geeigneter Annahmen bei Modellierungen wider.*

Andere Antworten lassen auf eine Schemaorientierung schließen, was in diesen Antworten ersichtlich wird:
Schemaorientierung:

- Mathematik hat mit Zahlen zu tun.
- Die Rechenarten sind ausschlaggebend.

Die folgenden Aussagen können hingegen einer Anwendungsorientierung zugeordnet werden:

Anwendungsorientierung:

- Im späteren Beruf wird Mathematik gebraucht.
- Wenn ich meinem kleinen Bruder in Mathematik helfen will, muss ich es können.

Weiterhin kann eine beginnende Erweiterung des Mathematikbildes vermutet werden, da die ausgewählten Schülerinnen die Meinung vertreten, dass Modellierungsaufgaben der Mathematik zugeschrieben werden können und dass innerhalb von Modellierungen Annahmen getroffen werden können, um fehlende Informationen zu erhalten.

5.5 Interview 2

Auch das zweite Interview bot eine Basis zur Herausfilterung einiger Kodes, die anschließend in Kategorien gefasst werden konnten. Auffallend war wiederum die Ähnlichkeit zu den von Grigutsch formulierten Beliefs. Hinzu kommt, dass das zweite Interview zudem Überschneidungen zu den Beliefs von Maaß aufweist.

Den Transkripten der zweiten Interviews konnten insgesamt vier Kategorien entnommen werden: Formalismus- und Schemaorientierung sowie Beliefs mit kognitivem und affektivem Schwerpunkt. Auf eine Formalismusorientierung kann durch die folgende Antwort geschlossen werden:

Formalismusorientierung:

- Mathematik besteht aus Rechenaufgaben (Plus).

Eine weitere Antwort deutet auf eine Schemaorientierung hin, da der Zahlenaspekt angesprochen wird:
Schemaoorientierung:

- Zahlen stellen einen wichtigen Aspekt innerhalb der Mathematik dar.

Die von Maaß genannten Beliefs werden ebenfalls durch zwei Aussagen in den Interviews vertreten. Die folgende Antwort deutet auf einen kognitiven Schwerpunkt hin:

Kognitiver Schwerpunkt:

- Mathematik macht Spaß.

Ein affektiver Schwerpunkt lässt sich in dieser Aussage vermuten:

Affektiver Schwerpunkt:

- Mathematisches Arbeiten kann durch Zuhilfenahme der Finger vereinfacht werden.

Des Weiteren kann bei einer der beiden Schülerinnen eine Erweiterung des Mathematikbildes durch Modellierungen festgestellt werden. Ihre Aussagen lassen darauf schließen, dass sie nun das Wissen, Dinge annehmen zu können, in ihr Mathematikbild integriert.

Die zweite Schülerin konnte selbst keine bewusste Veränderung feststellen, da ihr Mathematik genauso viel Spaß macht wie zu Beginn der Studie.

5.6 Die Interviews im Vergleich

In beiden Interviews treten formalismus- und schemaoorientierte Beliefs auf. Eine Anwendungsorientierung liegt ausschließlich in Interview 1 vor. Die Ursachen können unterschiedlich sein, eine naheliegende Ursache wird durch die unterschiedlichen Intentionen der Interviews deutlich. Wird in Interview 1 eine Anwendungsorientierung direkt angesprochen, so kommt diese in Interview 2 nicht zum Tragen.

Nachdem nun die in den Interviews zu findenden Beliefs beschrieben wurden, kann eine individuelle Beschäftigung mit den zwei interviewten Schülerinnen stattfinden. Es werden jeweils die Antworten auf die Frage, was Mathematik ist, betrachtet, da diese Fragen in den Fragebögen und den Interviews identisch sind und ein hohes Maß an Offenheit aufweisen. Verschiedene andere Fragen zielen direkt auf eine bestimmte Orientierung ab, sodass sie dafür nicht geeignet erschienen.

Kind Nr. 15 bezieht sich innerhalb der ersten Frage des ersten Fragebogens auf die Relevanz von Aufgaben und Zahlen innerhalb der Mathematik, sodass eine Schemaoorientierung verortet werden kann. Auch im ersten Interview hält sie an dieser Orientierung fest, die jedoch durch die Aufführung der Rechenarten komplementiert wird. In Fragebogen zwei hebt sie die Methode des Fingerzählens hervor, was einem affektiven Schwerpunkt zugeordnet werden kann. Weiterhin rückt sie erneut die Relevanz von Aufgaben ins Interessenzentrum, wodurch wiederum eine Schemaoorientierung Beachtung findet. Auch im Interview verweist sie auf das Zählen mithilfe der Finger und die Relevanz der Aufgaben. Insgesamt kann die Schemaoorientierung in diesem Fall als statisch beschrieben werden. Diese Orientierung wird innerhalb der Studie durch einen affektiven Schwerpunkt ergänzt.

Kind Nr. 16 bezieht sich, ähnlich wie Kind Nr. 15, innerhalb des ersten Fragebogens auf das Vorkommen von Aufgaben und Zahlen innerhalb der Mathematik, sodass auch hier eine Schemaoorientierung festgehalten werden kann. Diese Orientierung kann auf das erste Interview übertragen werden, jedoch finden hier die Rechenarten zusätzlich Erwähnung. Der Fragebogen 2 zeichnet sich erneut durch das Hinweisen auf die Relevanz der Zahlen und der Aufgaben aus. Diese Orientierung trifft ebenfalls für das zweite Interview zu. Die Ausführungen zeigen, dass die Schemaoorientierung bei Kind Nr. 16 ebenfalls als statisch beschrieben werden kann. Insgesamt kann also festgehalten werden, dass sich individuelle Veränderungen nicht oder nur minimal abzeichnen. Eine mögliche Hauptursache kann die kurze Durchführungszeit der Studie sein.
5.7 Hospitation

6. Schlussbetrachtung

Damit jedoch eine Veränderung der Sichtweise hervorgerufen werden kann, müssen einige Faktoren beachtet werden. Um garantieren zu können, dass die Schülerinnen und Schüler mit dem Format der Modellierung vertraut sind, empfiehlt sich eine sinnvolle Einführung diesbezüglich. Als Beispiel kann die durchgeführte Einführung im Rahmen dieses Unterrichtsversuchs genannt werden, da die Ausführungen in Kapitel 4 vermuten lassen, dass durch die geplanten Einheiten ein Heranführen der Lernenden an die Thematik gelang. Maßgeblich daran beteiligt ist die Angemessenheit der verwendeten Aufgaben, die bei jedem Einsatz erneut überdacht werden sollte. Damit sich die mathematische Sichtweise, also die Beliefs, verändern können, bedarf es einer gewissen Zeitspanne. Diese
Schlussbetrachtung

Einen wichtigen Teil der Studie stellt die Methodik dar, ohne die keine Ergebnisse festgestellt werden könnten. Die Fragebögen eignen sich im Rahmen des Unterrichtsversuchs Beliefs und somit auch mathematische Weltbilder zu analysieren, wie in Kapitel 3 und 5 ersichtlich wurde. Die Interviews sowie die Hospitation dienen der Komplementierung der Daten, sodass ein vielseitiges Bild entstehen konnte.

Abbildungsverzeichnis

<table>
<thead>
<tr>
<th>Abbildung</th>
<th>Beschreibung</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Henn 2008, 161)</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>(Borromeo Ferri, Leiss & Blum 2006, 54)</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>Foto einer Bierzeltgarnitur</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>Eine der Mathematikaufgaben mit einer Kinderlösung</td>
<td>A-23</td>
</tr>
<tr>
<td>5</td>
<td>Eine der Mathematikaufgaben mit drei Kinderlösungen</td>
<td>A-23</td>
</tr>
<tr>
<td>6</td>
<td>Eine der Mathematikaufgaben mit zwei Kinderlösungen</td>
<td>A-23</td>
</tr>
<tr>
<td>7</td>
<td>Die Lernenden auf der Rutsche</td>
<td>A-23</td>
</tr>
<tr>
<td>8</td>
<td>Foto eines Hochhauses</td>
<td>A-31</td>
</tr>
<tr>
<td>9</td>
<td>(Blum & Borromeo Ferri 2009, 148)</td>
<td>A-32</td>
</tr>
<tr>
<td>10</td>
<td>Beispiel einer Schülerlösung</td>
<td>A-33</td>
</tr>
<tr>
<td>11</td>
<td>Die Fußabdrücke</td>
<td>A-35</td>
</tr>
<tr>
<td>12</td>
<td>Plakat 1</td>
<td>A-35</td>
</tr>
<tr>
<td>13</td>
<td>Plakat 2</td>
<td>A-36</td>
</tr>
<tr>
<td>14</td>
<td>Plakat 3</td>
<td>A-36</td>
</tr>
<tr>
<td>15</td>
<td>Plakat 4</td>
<td>A-37</td>
</tr>
<tr>
<td>16</td>
<td>Plakat 5</td>
<td>A-37</td>
</tr>
<tr>
<td>17</td>
<td>Plakat 6</td>
<td>A-38</td>
</tr>
<tr>
<td>18</td>
<td>Die Plakate an der Tafel</td>
<td>A-38</td>
</tr>
<tr>
<td>19</td>
<td>Die Gruppenlösungen an der Tafel</td>
<td>A-39</td>
</tr>
<tr>
<td>20</td>
<td>Stau</td>
<td>A-44</td>
</tr>
<tr>
<td>21</td>
<td>Autolängen</td>
<td>A-45</td>
</tr>
<tr>
<td>22</td>
<td>Beispiel einer Schülerlösung</td>
<td>A-46</td>
</tr>
<tr>
<td>23</td>
<td>Erste Anordnung der Autos durch einen Schüler</td>
<td>A-48</td>
</tr>
<tr>
<td>24</td>
<td>Erneute Anordnung unter Beachtung des Abstandes zwischen den Autos</td>
<td>A-48</td>
</tr>
<tr>
<td>25</td>
<td>Plakat 1</td>
<td>A-49</td>
</tr>
<tr>
<td>26</td>
<td>Plakat 2</td>
<td>A-49</td>
</tr>
<tr>
<td>27</td>
<td>Plakat 3</td>
<td>A-50</td>
</tr>
<tr>
<td>28</td>
<td>Plakat 4</td>
<td>A-50</td>
</tr>
<tr>
<td>29</td>
<td>Plakat 5</td>
<td>A-51</td>
</tr>
<tr>
<td>30</td>
<td>Plakat 6</td>
<td>A-51</td>
</tr>
<tr>
<td>31</td>
<td>Die Plakate an der Tafel</td>
<td>A-52</td>
</tr>
<tr>
<td>32</td>
<td>Die Gruppenlösungen an der Tafel</td>
<td>A-52</td>
</tr>
</tbody>
</table>
Balkendiagrammverzeichnis

Balkendiagramm 1: Antwortverhalten 1 bezüglich Fragebogen 1 74
Balkendiagramm 2: Antwortverhalten 2 bezüglich Fragebogen 1 76
Balkendiagramm 3: Antwortverhalten 3 bezüglich Fragebogen 1 77
Balkendiagramm 4: Antwortverhalten 4 bezüglich Fragebogen 1 78
Balkendiagramm 5: Antwortverhalten 5 bezüglich Fragebogen 1 79
Balkendiagramm 6: Antwortverhalten 6.1 bezüglich Fragebogen 1 80
Balkendiagramm 7: Antwortverhalten 6.2 bezüglich Fragebogen 1 81
Balkendiagramm 8: Antwortverhalten 7 bezüglich Fragebogen 1 82
Balkendiagramm 9: Antwortverhalten 1 bezüglich Fragebogen 2 83
Balkendiagramm 10: Antwortverhalten 2 bezüglich Fragebogen 2 85
Balkendiagramm 11: Antwortverhalten 3 bezüglich Fragebogen 2 86
Balkendiagramm 12: Antwortverhalten 4 bezüglich Fragebogen 2 87
Balkendiagramm 13: Antwortverhalten 5 bezüglich Fragebogen 2 89
Balkendiagramm 14: Antwortverhalten 6.1 bezüglich Fragebogen 2 90
Balkendiagramm 15: Antwortverhalten 6.2 bezüglich Fragebogen 2 90
Balkendiagramm 16: Frage 1 Fragebogen 1 ... 91
Balkendiagramm 17: Frage 1 Fragebogen 2 ... 92
Balkendiagramm 18: Frage 2 Fragebogen 1 ... 92
Balkendiagramm 19: Frage 2 Fragebogen 2 ... 93
Balkendiagramm 20: Frage 5 Fragebogen 1 ... 94
Balkendiagramm 21: Frage 5 Fragebogen 2 ... 94
Balkendiagramm 22: Frage 6.1 Fragebogen 1 ... 95
Balkendiagramm 23: Frage 6.2 Fragebogen 1 ... 95
Balkendiagramm 24: Frage 6.1 Fragebogen 2 ... 96
Balkendiagramm 25: Frage 6.2 Fragebogen 2 ... 96
Tabellenverzeichnis

Tabelle 1: Beliefsorientierung ... 39
Tabelle 2: Übersicht des Unterrichtsversuchs ... 46
Tabelle 3: Verlaufsplan 1 .. A-19
Tabelle 4: Verlaufsplan 2 .. A-24
Tabelle 5: Verlaufsplan 3 .. A-40
Tabelle 6: Verlaufsplan 4 .. A-54

Literaturverzeichnis

Internet

Anhang

Anhang A-Datenerhebung

A-1 Einverständniserklärung zur Teilnahme an der Studie
A-2 Fragebogen 1
A-3 Fragebogen 2
A-4 Interview 1
A-5 Transkriptionsregeln
A-6 Transkript 1 des Interview 1
A-7 Transkript 2 des Interview 1
A-8 Interview 2
A-9 Transkript 1 des Interview 2
A-10 Transkript 2 des Interview 2

Anhang B-Einheit 1 des Unterrichtsversuchs

B-1 Verlaufsplan 1
B-2 Drei Mathematikaufgaben
B-3 Fotos der Einheit 1

Anhang C-Einheit 2 des Unterrichtsversuchs

C-1 Verlaufsplan 2
C-2 Arbeitsblatt 1
C-3 Selbstausgedachte Aufgaben der Kinder
C-4 Arbeitsblatt mit Hilfsbildern
C-5 Arbeitsblatt 2
C-6 Beispiel einer Schülerlösung
C-7 Fotos der Einheit 2
Anhang D-Einheit 3 des Unterrichtsversuchs

D-1 Verlaufsplan 3
D-2 Arbeitsblatt 1
D-3 Arbeitsblatt mit Autolängen
D-4 Beispiel einer Schülerlösung
D-5 Fotos der Einheit 3

Anhang E-Einheit 4 des Unterrichtsversuchs

E-1 Verlaufsplan 4
Anhang A-1

Einverständniserklärung zur Teilnahme an der Studie

Liebe Eltern,

Mit freundlichen Grüßen,

Anna Nadler

☐ Hiermit bin ich einverstanden, dass mein Kind ________________________ an der oben genannten Studie teilnimmt.

☐ Hiermit bin ich nicht einverstanden, dass mein Kind _____________________ an der oben genannten Studie teilnimmt.

Datum, Unterschrift der/des Erziehungsberechtigten
Anhang A-2

Der folgende Fragebogen orientiert sich an einem Fragebogen, der von Frau Prof. Dr. Rita Borromeo Ferri entwickelt wurde und den Karoline Quast in ihrer Examensarbeit verwendet hat, sowie an einem von Maaß (2004) entwickelten Fragebogen. Die Fragen 1, 2 und 6 gingen aus meinen eigenen Ideen hervor. Die Fragen 3, 4 und 5 wurden der Arbeit von Frau Quast entnommen, Frage 7 hingegen stammt von Frau Maaß.

Fragebogen 1

1. Stell dir vor, ein Marsmännchen kommt auf die Erde. Wie würdest du ihm erklären, was Mathematik ist?

__

__

__

__

__

2. Denke nach und kreuze einen Satz an, dem du zustimmst.

- In Mathematik muss ich eigene Ideen zum Lösen von Aufgaben haben. ○
- Es gibt immer nur einen Lösungsweg. ○
- In Mathematik muss ich logisch denken. ○
- Im späteren Leben werde ich Mathematik brauchen. ○
- In Mathematik lerne ich das, was im Test vorkommt. ○

3. „Was machst du im Mathematikunterricht gerne?“ (Quast 2004, 46)

__

__

__

__
4. „Was machst du im Mathematikunterricht nicht gerne?“ (Quast 2004, 46)

5. „Fallen dir Situationen im täglichen Leben ein, in denen du Mathematik gebraucht hast?“ (Quast 2004, 47)

6. Gehören die folgenden Aufgaben zur Mathematik?

<table>
<thead>
<tr>
<th>Aufgabe</th>
<th>Ja</th>
<th>Nein</th>
<th>Weiß ich nicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Schreibe Rechnungen, die 1000 ergeben.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Max will an seinem 8. Geburtstag mit seinen Gästen Schokoküsse essen. Wie viele Schachteln muss er mit seiner Mutter einkaufen?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. „Hast du Angst vor dem Mathematikunterricht? Begründe.“ (Maaß 2004, 316)

- sehr viel
- viel
- manchmal weil
- kaum
- nie
Fragebogen 2

1. Stell dir vor, du wärst der Lehrer einer ersten Klasse. Wie würdest du den Kindern deiner Klasse erklären, was Mathematik bedeutet?

2. Denke nach und kreuze einen Satz an, dem du zustimmst.

 | In Mathematik muss ich logisch denken. | |
 | Im späteren Leben werde ich Mathematik brauchen. | |
 | In Mathematik lerne ich das, was im Test vorkommt. | |
 | Es gibt immer nur einen Lösungsweg. | |
 | In Mathematik muss ich eigene Ideen zum Lösen von Aufgaben haben. | |

4. Denkst du noch genauso über Mathematik wie vor zwei Wochen? Warum/Warum nicht?

6. Gehören die folgenden Aufgaben zur Mathematik?

 Kreuze an.

 Du willst 12 Kinder zu deinem Geburtstag einladen. Bekommt jeder einen Platz am Tisch?

Anhang A-4

Interview 1

1. In dem Fragebogen, den ihr am Donnerstag beantwortet habt, war auch die folgende Frage: „Stell dir vor, ein Marsmännchen kommt auf die Erde. Wie würdest du ihm erklären, was Mathematik ist?“. Bitte beantworte die Frage jetzt noch einmal.

2. Weiterhin hast du den Satz angekreuzt, dass du Mathematik im späteren Leben brauchen wirst (Kind Nr. 15) bzw. dass du in Mathematik logisch denken musst (Kind Nr. 16). Nenne mir bitte Beispiele dafür.

3. Im Fragebogen hast du angekreuzt, dass die Frage, wie viele Schachteln Schokoküsse Max für seine Geburtstagsgäste kaufen muss, (nicht) zur Mathematik gehört. Warum? Denkst du jetzt auch noch so darüber?

Anhang A-5

Transkriptionsregeln

Die Transkripte orientieren sich in ihrer Form an einigen Transkriptionsregeln, die bei Maaß aufgeführt werden und wie folgt lauten:

„I“ Interviewerin

S Schüler(in)

… Sprechpausen von mehr als 5 Sekunden werden durch drei Punkte gekennzeichnet.

[…]

Anhang A-6

Transkript 1 des Interview 1

Kind Nr. 15

I Dann fangen wir doch einfach mal an … So, ich habe hier nämlich vier Fragen und die frage ich dich jetzt und du antwortest einfach. Okay?

S Ja.

I Ja? Los geht’s. Und zwar…in dem Fragebogen, den ihr am Donnerstag beantwortet habt, war ja auch die folgende Frage: „Stell dir vor, ein Marsmännchen kommt auf die Erde … Wie würdest du ihm erklären, was Mathematik ist?“. Bitte beantworte die Frage jetzt noch einmal.

S Also ich würde ihm erstmal sagen … so zwei und zwei … oder eins und eins … dann muss er erstmal zählen. Und dann … ähm … würde ich ihm alle Aufgaben bis zur zehn erstmal beibringen … und dann … ja gehe ich die anderen mit ihm durch … und ja.

I Was meinst du mit „die anderen“?

S Ei die ganzen anderen Aufgaben.

I Die ganzen Plusaufgaben oder wie?

S Plus … Mal.

I Okay. So würdest du Mathematik erklären?

S Ja.

I Okay …so … Und weiterhin hast du den Satz angekreuzt, dass du Mathematik im späteren Leben brauchen wirst … ja … Nenne mir bitte Beispiele dafür.

S Also wenn man Lehrerin sein will … also Grundschullehrerin, da muss man ja auch Mathe können.

I Mhhmhh.
S Und … ähm … ja … dann kann man ja nicht Mathe einfach versäumen, dann kann man ja später gar nicht Lehrerin werden. Das geht ja nicht.

I Genau. Und hast du noch mehr Beispiele?

S Ähm, wenn ich meinem kleinen Bruder bei … ähm … Mathe beibringen will, dann muss ich auch Mathe können, weil wenn ich ihm das falsche Ergebnis sage, dann macht er es auch falsch.

I Okay … So, und im Fragebogen hast du angekreuzt, dass die Frage, wie viele Schachteln Schokoküsse Max für seine Geburtstagsgäste kaufen muss, zur Mathematik gehört.

S Ja.

I Warum?

S Weil … ähm … ei da muss man erstmal wissen, wie viele Kinder man braucht aber das ist trotzdem ne Rechenaufgabe. Weil man nämlich … ähm … Schokoküsse ausrechnen muss, wie viele man braucht.

I Genau. Also denkst du jetzt auch noch so darüber, dass das zur Mathematik gehört?

S Ja.

I Und wie würdest du denn die Schokokuss-Aufgabe lösen? Ich lese sie dir zur Erinnerung nochmal vor: „Max will an seinem 8. Geburtstag mit seinen Gästen Schokoküsse essen. Wie viele Schachteln muss er mit seiner Mutter einkaufen?“.

S Also … wenns ähm zum Beispiel 18 Kinder jetzt sind, dann bräuchte er … in einer normalen Schokokuss-Schachtel sind … ähm, neun Stück drin, dann brauch er zwei Schachteln für seine Gäste, weil … ähm … zweimal neun ist ja 18.

I Okay. Und du bist dann davon ausgegangen, dass jeder Gast einen Schokokuss isst? Oder wie bist du jetzt auf die 18 dann gekommen?
S Ei dann ähm darf jeder zwei essen, weil es sind ja nur neun Kinder … äh 18 Kinder und ähm … mhhh \textit{lacht} es können neun Kinder trotzdem sein und jeder kriegt dann zwei.

I Wanns neun Kinder sind darf jeder zwei und wenn es 18 Kinder sind?

S Kriegt jeder nur einen.

I Genau. Außer, man kauft dann noch mehr.

S Ja.

I Gut, das war´s auch schon. Dankeschön.
Anhang A-7

Transkript 2 des Interview 1

Kind Nr. 16

I Und zwar … ähm … habt ihr in dem Fragebogen, den ihr am Donnerstag beantwortet habt, ja auch die folgende Frage darin gehabt: „Stell dir vor, ein Marsmännchen kommt auf die Erde. Wie würdest du ihm erklären, was Mathematik ist?“. Bitte beantworte die Frage jetzt noch einmal.

S Also als erstes würde ich ihm sagen, dass Mathematik mit Zahlen zu tun hat. Danach würde ich ihm … die Zahlen auch sagen und dann mit den leichtesten Rechenaufgaben … eins plus eins und immer so weiter … und dann, wenn er´s gut kannte, die schwierigeren Aufgaben.

I Was sind denn die schwierigeren Aufgaben?

S Zum Beispiel jetzt wenn er es gut kann 480 durch dreihundert soundsoviel. Das schriftliche Subtrahieren … also alle Rechenmöglichkeiten.

I Gut … und weiterhin hast du den Satz angekreuzt, dass du in Mathematik logisch denken musst. Nenne mir bitte Beispiele dafür. Oder was bedeutet das?

S Also logisch denken bedeutet jetzt nicht zum Beispiel wenn man jetzt sagt, Schokoküsse, also, Max … zum Beispiel jetzt hat seinen siebten Geburtstag. Er lädt fünf Leute ein und dann kann man ja nicht … in einer Schachtel sind neun Schokoküsse … wenn man dann Quatsch sagt … also wenn man nicht logisch denkt, dann könnte man sagen, weil für jeden Gast dann zwei Schokoküsse sind ja fünf dann sagen die, wenn man unlogisch denken würde, man nimmt aus der einen Schachtel einen rein und quetscht ihn auf die andere drauf. Das wäre dann unlogisch denken für mich.

I Gut, und im Fragebogen hast du angekreuzt, dass die Frage, wie viele Schachteln Schokoküsse Max für seine Geburtstagsgäste kaufen muss, nicht zur Mathematik gehört. Warum?

S Weil ich nicht wusste, dass man das annehmen kann.

I Also denkst du jetzt nicht mehr so darüber?

Also jetzt würde ich sagen … zum Beispiel, er lädt zehn Gäste ein. In einer Schachtel sind neun Schokoküsse … ähm … und er selber ist dann ja der elfte. Er kauft sich eine Schachtel und noch ne Schachtel und dann gibt er also jedem einen, er selber nimmt sich auch einen und wer noch einen unbedingt haben möchte, dann kann er ja die anderen aus der Schachtel noch verteilen.

Gut, das war`s auch schon. Ich danke dir.
Anhang A-8

Interview 2

1. In dem Fragebogen, den ihr am Donnerstag beantwortet habt, war auch die folgende Frage: „Stell dir vor, du wärst der Lehrer einer ersten Klasse. Wie würdest du den Kindern deiner Klasse erklären, was Mathematik ist?“. Bitte beantworte die Frage jetzt noch einmal.

4. Denkst du noch genauso über Mathematik wie vor zwei Wochen? Warum/Warum nicht?
I Du kennst das ja schon vom letzten Mal, dann fangen wir gleich an. Es sind wieder vier Fragen und die erste heißt so: In dem Fragebogen, den ihr am Donnerstag beantwortet habt, war auch die folgende Frage: „Stell dir vor, du wärst Lehrerin einer ersten Klasse. Wie würdest du den Kindern deiner Klasse erklären, was Mathematik ist?“. Bitte beantworte die Frage jetzt noch einmal.

S Also ich würde … ähm … erstmal mit den Fingern zeigen, zum Beispiel eins und eins und dann müssen sie halt zählen, was das ist und dann würde ich das bis zehn machen und … ja … nee … also … ja bis zehn würde ich machen und dann … ja. Was würde ich dann noch machen? Nix mehr.

I Okay. In den letzten zwei Wochen hast du Modellierungsaufgaben kennengelernt. Was versteht man unter Modellierungsaufgaben?

S Öh … ähm … weiß ich nicht.

I Kannst du ein Beispiel nennen?

S Ja, das mit der Rutsche.

I Okay und in dem Fragebogen war auch die folgende Aufgabe: „Du willst 12 Kinder zu deinem Geburtstag einladen. Bekommt jeder einen Platz am Tisch?“. Ich zeige dir nun noch einmal das dazugehörige Bild. Wie würdest du die Aufgabe lösen?

S Ja, ähm … dann würde ich erstmal … drei Bänke kaufen und dann drei Bänke nehmen und auf jede Bank ein Kind also auf jede Bank vier Kinder drauf.

I Schau dir das Bild nochmal genau an.

S Auf so ´ne Bank passen … vielleicht sechs Kinder. Sechs oder vier.

I Und auf was kommt das an, wie viele Kinder da drauf sitzen können?

I Hier sind ja zwei Bänke. Es geht ja um das Bild. Meinst du, da passen alle zwölf Kinder drauf?

S Ja, auf jede Bank sechs, wenn sie sich quetschen.

I Wenn sie sich quetschen? Mhhhmmhhh, gut. Und jetzt noch die letzte Frage. Denkst du denn noch genauso über Mathematik wie vor zwei Wochen?

S Ja.

I Ja? Warum?

I Und daran hat sich nichts geändert?

S Nö.

I Auch nicht, dass du durch die Modellierungsaufgaben Mathematik vielleicht ein bisschen anders siehst?

S Nein.

I Okay, dann war´s das schon wieder. Vielen Dank.
Anhang A-10

Transkript 2 des Interview 2

Kind Nr. 16

I Es sind wieder vier Fragen, ja, und dann fangen wir gleich an. In dem Fragebogen, den ihr am Donnerstag beantwortet habt, war auch die folgende Frage: „Stell dir vor, du wärst Lehrerin einer ersten Klasse. Wie würdest du den Kindern deiner Klasse erklären, was Mathematik ist?“. Bitte beantworte die Frage jetzt noch einmal.

S Also als erstes würde ich ihnen die Zahlen von eins bis 20 beibringen, damit sie auch Rechenaufgaben von eins bis 20 können und dann würde ich anfangen von eins plus eins, zwei plus eins, zwei plus zwei. Und dann würde ich auch schon fragen, wer weiß das denn vielleicht schon.

I Gut. Und in den letzten zwei Wochen hast du Modellierungsaufgaben kennengelernt. Was versteht man unter Modellierungsaufgaben?

S Also das sind Aufgaben, wo man annehmen kann, zum Beispiel jetzt wie viele Kinder passen in einen Kreis, wo 24 Stühle drin stehen. Dann könnte man ja auch sagen … ähm … man baut da jetzt noch fünf Stühle dazu, wenn man die Stühle weiter auseinanderstellt, man kann die enger zusammen … dann passen mehr rein, wenn man nicht mehr Platz im Raum hat. Aber wenn man mehr Platz im Raum hat, dann kann man weiter auseinanderstellen, dann hat man auch.

I Kannst du noch ein Beispiel nennen?

S Mhh … wenn man einen Baum zum Beispiel ganz nah an einen anderen pflanzt, dann gibt es glaube ich weniger Früchte, weil dann alle abfallen, wenn sie sich berühren und wenn man die aber weiter auseinanderpflanzt würde, würden da auch mehr Kastanien oder Äpfel dranhängen.

I Und was wäre da deine Frage für die Aufgabe?

S Ähn, wie viele Äpfel oder Kastanien können an einem 50cm Abstand wachsen?
Mhmh … in dem Fragebogen war auch die folgende Aufgabe: „Du willst 12 Kinder zu deinem Geburtstag einladen. Bekommt jeder einen Platz am Tisch?“. Ich zeige dir nun noch einmal das dazugehörige Bild. Wie würdest du die Aufgabe lösen?

Also ich würde … wenn nicht alle draufpassen, würde ich noch zwei Stühle dazustellen.

Und wenn du jetzt nur die zwei Bänke hättest, woher weißt du, ob alle Kinder draufpassen?

Also ich gucke mir die Bank an und ich schätze dann so ungefähr, dass sie zwei, so zwei Meter lang ist und dann teile ich das einfach durch sechs und dann habe ich halt dann das Ergebnis. Und dann schätze ich dann mal, okay, wenn die sich etwas quetschen, wenn zu wenig Platz ist, dann passen sie auch noch da drauf.

Gut, denkst du noch genauso über Mathematik wie vor zwei Wochen?

Nein, weil ich jetzt die Modellierungsaufgaben kann und auch … weil ich dann mehr Sachen verstehe wenn man so Aufgaben macht.

Kannst du mir das nochmal erklären, was du gerade gesagt hast?

Also wenn man Modellierungsaufgaben hat, dann kann man ja besser Sachen lösen, weil wenn man es annehmen könnte, dann … dann ist es ja vielleicht viel einfacher, die Aufgabe zu lösen, als wie wenn man jetzt sagen würde … ähm … Tom hat acht Kinder eingeladen, es ist eine zwei Meter lange Rutsche, dann kann man ja nicht einfach sagen, drei Kinder passen drauf, vier müssen unten stehen … im Sandkasten. Da kann man ja auch schätzen, so ungefähr sechs Kinder passen da drauf oder so.

Und von was hängt das ab, dass du dann sagst, ich schätze, sechs Kinder passen drauf?

Umso länger die Rutsche, umso mehr Kinder passen auch drauf. Und wenn die … wenn alle acht Kinder draufpassen und noch mehr, dann kann ich ja auch schreiben, es passen sogar noch so viele Kinder drauf.
I Und kommt es auch auf die Kinder drauf an?

S Ja, wie groß die sind.

I Okay, vielen Dank, das war´s schon.

S Okay
<table>
<thead>
<tr>
<th>Zeit</th>
<th>Phase</th>
<th>Unterrichtsgeschehen</th>
<th>Sozialform/Methode</th>
<th>Material/Medien</th>
<th>Bemerkungen/Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.30-8.32h</td>
<td>Begrüßung</td>
<td>● L.(^1) begrüßt SuS(^2) und fordert sie auf, in den Sitzkreis zu kommen.</td>
<td>● Frontalunterricht</td>
<td>● Klangschale</td>
<td></td>
</tr>
<tr>
<td>8.37-8.42h</td>
<td>Organisation 1</td>
<td>● SuS setzen sich an ihre Plätze.</td>
<td></td>
<td>● Fragebögen</td>
<td></td>
</tr>
<tr>
<td>8.42-9.07h</td>
<td>Arbeitsphase 1</td>
<td>● SuS bearbeiten die Fragebögen.</td>
<td>● Einzelarbeit</td>
<td>● Fragebögen</td>
<td></td>
</tr>
<tr>
<td>9.07-9.09h</td>
<td>Ende der Arbeitsphase 1</td>
<td>● L. bittet SuS, das Ausfüllen zu beenden und sammelt die Fragebögen ein.</td>
<td>● Frontalunterricht</td>
<td>● Klangschale</td>
<td></td>
</tr>
<tr>
<td>9.09-9.14h</td>
<td>Auflockerung</td>
<td>● L. gibt Anweisung, dass die SuS zur Auflockerung eine Runde um die Tischtennisplatte rennen bzw. zehn Kniebeugen machen.</td>
<td>● Frontalunterricht</td>
<td>● Klangschale</td>
<td>Auflockerung tritt nur ein, wenn die 90 Minuten ohne längere Pause stattfinden.</td>
</tr>
</tbody>
</table>

\(^1\) L. steht als Abkürzung für „Lehrer/in“

\(^2\) SuS steht als Abkürzung für „Schülerinnen und Schüler“
<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Aktivität</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frontalunterricht</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tafel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aufgaben</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tom hat 350 Kastanien ge-</td>
<td>Kastanien gesammelt und Nina 472. Wie viele Kastanien hat Nina mehr? 298 + 386 3-299</td>
</tr>
<tr>
<td></td>
<td>Einzelarbeit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematikhefte der SuS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frontalunterricht</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ergebnisse der SuS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tafel, Kreide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frontalunterricht</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tafel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aufgaben</td>
<td></td>
</tr>
<tr>
<td>Zeitraum</td>
<td>Aktivität</td>
<td>Aufgaben/Unterlagen</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>9.31-9.41h</td>
<td>Arbeitsphase 4</td>
<td></td>
</tr>
</tbody>
</table>
• SuS lösen die Aufgabe handelnd.
• L. fotografiert das Geschehen.
| | |
• Gruppenarbeit
• Rutsche, Fotoapparat
• Alternativ: Tische |
| 9.41-9.43h | Organisation 2 |
• L. bittet SuS im Kreis Platz zu nehmen.
• SuS nehmen im Kreis Platz. |
| 9.43-9.58h | Ergebnis-sicherung |
• Ergebnisse werden besprochen und Gründe für die Unterschiede festgehalten.
| | |
• Kreisgespräch |
| 9.58-10.00h | Erarbeitung 2 |
• L. gibt Ausblick auf nächste Stunde.
• L. beendet die Stunde.
| | |
• Frontalunterricht |
Anhang B-2

Drei Mathematikaufgaben

- Tom hat 350 Kastanien gesammelt und Nina 472. Wie viele Kastanien hat Nina mehr?
- 298 + 386
- 3 · 299
Anhang B-3

Fotos der Einheit 1

Abbildung 4: Eine der Mathematikaufgaben mit einer Kinderlösung

Abbildung 5: Eine der Mathematikaufgaben mit drei Kinderlösungen

Das Foto wurde aus Anonymitätsgründen aus dem Anhang entfernt.

Abbildung 6: Eine der Mathematikaufgaben mit zwei Kinderlösungen

Abbildung 7: Die Lernenden auf der Rutsche
<table>
<thead>
<tr>
<th>Zeit</th>
<th>Phase</th>
<th>Unterrichtsgeschehen</th>
<th>Sozialform/Methode</th>
<th>Material/Medien</th>
<th>Bemerkungen/Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.30-8.32h</td>
<td>Begrüßung</td>
<td>- L.³ begrüßt SuS⁴ und fordert sie auf, in den Sitzkreis zu kommen.</td>
<td>Frontalunterricht</td>
<td>Klangschale</td>
<td></td>
</tr>
</tbody>
</table>
| 8.32-8.37h | Hinführung zum Thema 1 | - L. fragt, was letzte Mathematikstunde gemacht wurde.
- SuS fassen Inhalt der vergangenen Stunde zusammen.
- L. arbeitet gemeinsam mit SuS heraus, dass es u.a. um Aufgaben ging, die durch verschiedene Möglichkeiten gelöst werden können und mehrere Lösungen haben. | Kreisgespräch | | |
- L. fordert SuS auf, sich auf ihre Plätze zu begeben und anzu-fangen.
| 8.42-8.52 | Arbeitsphase 1 | - SuS denken sich eigene Aufgaben aus.
- L. steht als Ansprechperson zur Verfügung. | Einzelarbeit bzw. Partnerarbeit | ABs | Die SuS sollen zunächst einzeln arbeiten, bei Problemen können sie auch in Partnerarbeit vorgehen. |

³ L. steht als Abkürzung für „Lehrer/in“
⁴ SuS steht als Abkürzung für „Schülerinnen und Schüler“
<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Aktivität</th>
<th>Beschreibung</th>
</tr>
</thead>
</table>
| 8.52-8.54h | Organisation 1 | • L. bittet SuS in den Kreis zu kommen und ihre ABs mitzunehmen.
• SuS begeben sich mit ihren ABs in den Kreis. |
| 8.54-9.09h | Erarbeitung 2 | • L. bittet 3-5 Kinder, je eine Aufgabe vorzulesen, die restlichen SuS sollen darauf achten, ob die zwei Bedingungen erfüllt sind.
• L. regt SuS dazu an, mögliche Lösungsansätze zu finden.
• L. erklärt, dass die Aufgaben der SuS eingesammelt werden und auf Computer getippt werden. |
| 9.09-9.14h | Auflockerung | • L. gibt Anweisung, dass die SuS zur Auflockerung eine Runde um die Tischtennisplatte rennen bzw. zehn Kniebeugen machen.
• SuS rennen um die Tischtennisplatte bzw. machen zehn Kniebeugen und nehmen anschließend wieder im Kreis Platz. |

Die auf Computer geschriebenen und laminierten Aufgaben können in weiteren Mathematikstunden gelöst werden oder als didaktische Reserve dienen.
<table>
<thead>
<tr>
<th>Zeit</th>
<th>Hinsichtlich Themen 2</th>
<th>Ablauf des Unterrichts 2</th>
<th>Ablauf des Unterrichts 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.21-9.23h</td>
<td>Organisation 2</td>
<td>SuS setzen sich an ihre Plätze.</td>
<td></td>
</tr>
<tr>
<td>9.23-9.43h</td>
<td>Arbeitsphase 2</td>
<td>SuS bearbeiten die Aufgabe und bereiten Plakate vor. L. steht als Ansprechperson zur Verfügung.</td>
<td>Gruppenarbeit</td>
</tr>
<tr>
<td>9.43-9.45h</td>
<td>Organisation 3</td>
<td>L. bittet SuS ihre Arbeiten zu beenden und die erste Präsentationsgruppe wird bestimmt.</td>
<td>Frontalunterricht</td>
</tr>
<tr>
<td>9.45-9.58h</td>
<td>Arbeitsphase 3</td>
<td>Gruppen präsentieren ihre Plakate, Rest der SuS überprüft die Sinnhaftigkeit.</td>
<td>Frontalunterricht</td>
</tr>
<tr>
<td>9:58-10:00h</td>
<td>Erarbeitung 3</td>
<td>Frontalunterricht</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L. erklärt, dass die Präsentationen sowie deren Besprechung in der nächsten Mathematikstunde fortgesetzt werden.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L. beendet die Stunde.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anhang C-2
Arbeitsblatt 1

Name: ___________________________ Datum: _______________________

Aufgabe:
Überlege dir Mathematikaufgaben, die durch verschiedene Möglichkeiten gelöst werden können und verschiedene Lösungen haben können.
Anhang C-3

Selbstausgedachte Aufgaben der Kinder

- Wie viele Kinder passen an einen Tisch?
- Wie viele Kinder passen auf eine Parkbank?
- Wie viele Kinder passen auf eine fünf Meter lange Rutsche?
- Wie viele Kinder passen in einen Raum?
- Wie viele Kinder passen in ein Flugzeug?
- Wie viele Kinder passen an einen ein Meter langen Tisch?
- Wie viele Kinder können die Tafel putzen?
- Wie viele Kinder können aus dem Fenster schauen?
- Wie viele Erwachsene passen auf ein Sofa?
- Wie viele Menschen leben in Hungen?
- Wie viele Vögel passen auf ein zwei Meter langes Seil?
- Wie viele Vögel passen auf einen Ast?
- Wie viele Stifte passen in ein Mäppchen?
- Wie viele Fußball passen in ein Fußballstadion?
- Wie viele Bücher passen in einen Wäschekorb?
- Wie viele Stifte passen in einen Wäschekorb?
- Wie viele Äpfel passen in einen zehn Liter Eimer?
- Wie viele Kirschen passen in einen Korb?
- Wie viele Eier passen in einen Einkaufskorb?
- Wie viele Blumen passen in eine Vase?
- Wie viele Fenster sind in der Schule?
- Wie viele Autos gibt es?
- Wie viele Haare hat ein Mensch?
- Wie viele Haare hat ein Bär?
- Wie viele Federn hat ein Vogel?
- Wie viele Blätter sind an einem Baum?
- Wie viele Blüten hat eine Blume?
- Wie lange hält eine Patrone?
- Wie hoch ist die Schule?
Aber auch:

- Wie groß sind Zähne?
- Was ist so hart wie ein Stein?
- Wie viele Stockwerke hat ein Hochhaus?
- Wie viele Fenster sind in dem Raum?
- Wie viele Lampen sind in dem Raum?
- Wie viele Bilder sind in dem Raum?
Anhang C-4

Arbeitsblatt mit Hilfsbildern

Diese beiden Fotos sollen dir dabei helfen, Aufgaben selbst auszudenken. Schau sie dir genau an. Fallen dir Fragen dazu ein?

Abbildung 8: Foto eines Hochhauses
Quelle: http://immobilien.trovit.de/index.php/cod.frame/url.http%253A%252F%252Fforward.immobilienscout24.de%252F5075%252F44491817/id_ad.IxA141k1g1px/type.1/what.achim%20nord/pos.2/org.1/publisher_id./referer_id.1/t.1
„Der große Fuß (Lesh/Doerr 2003)

Die Polizei konnte den Dieb nicht mehr fangen. Alle Juwelen und Diamanten wurden geklaut. Das Einzige, was die Polizisten am Tatort finden konnten, war ein Fußabdruck des Diebes, den du am Bild sehen kannst.

• Helft mit bei der Spurensicherung und findet mit Hilfe des Fußabdrucks heraus, wie groß der Dieb wohl ist. Begründet Eure Antwort.

• Wenn ihr andere Fußabdrücke betrachtet, wie findet ihr dann die Größe heraus? Helft der Polizei weiter und entwickelt eine Idee.“ (Blum & Borromeo Ferri 2009, 148).

Abbildung 9: (Blum & Borromeo Ferri 2009, 148)
Der große Fuß (Lesh/Doerr 2003)

Die Polizei konnte den Dieb nicht mehr fangen. Alle Juwelen und Diamanten wurden geklaut. Das Einzige, was die Polizisten am Tatort finden konnten, war ein Fußabdruck des Diebes, den du am Bild sehen kannst.

- Wenn ihr andere Fußabdrücke betrachtet, wie findet ihr dann die Größe heraus?
Helft der Polizei weiter und entwickelt eine Idee.

Ich könnte mal überlegen, das seine oder ihre Schuhgröße 49 ist und dann wäre sein, Größe 1,80 m.
Anhang C-7

Fotos der Einheit 2

Abbildung 11: Die Fußabdrücke

Abbildung 12: Plakat 1
Abbildung 13: Plakat 2

Abbildung 14: Plakat 3
Abbildung 15: Plakat 4

Abbildung 16: Plakat 5
Abbildung 17: Plakat 6

Abbildung 18: Die Plakate an der Tafel
Abbildung 19: Die Gruppenlösungen an der Tafel
<table>
<thead>
<tr>
<th>Zeit</th>
<th>Phase</th>
<th>Unterrichtsgeschehen</th>
<th>Sozialform/Methode</th>
<th>Material/Medien</th>
<th>Bemerkungen/Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.30-8.32h</td>
<td>Begrüßung</td>
<td>• L. ⁵ begrüßt SuS ⁶ und erinnert sie daran, dass die noch ausstehenden Präsentationen nun gehalten werden.</td>
<td>• Frontalunterricht</td>
<td>• Klangschale</td>
<td></td>
</tr>
<tr>
<td>8.32-8.42h</td>
<td>Arbeitsphase 1</td>
<td>• Gruppen präsentieren ihre Plakate.</td>
<td>• Frontalunterricht</td>
<td>• Plakate</td>
<td></td>
</tr>
<tr>
<td>8.42-8.47h</td>
<td>Reflexion</td>
<td>• Ergebnisse werden an der Tafel gesammelt und besprochen.</td>
<td>• Frontalunterricht</td>
<td>• Tafel, Kreide</td>
<td>U.a. sind die Ergebnisse realistisch?</td>
</tr>
<tr>
<td>8.47-8.49h</td>
<td>Organisation 1</td>
<td>• L. bittet SuS, in den Kreis zu kommen.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• SuS kommen in den Kreis.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.49-8.55h</td>
<td>Erarbeitung 1</td>
<td>• L. legt Zettel mit der Aufschrift „Modellierungsauflagen“ in die Kreismitte</td>
<td>• Stummer Impuls</td>
<td>• Modellauto</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• SuS erkennen, dass „Modellierungsauflagen“ das neue Aufgabenformat bezeichnen.</td>
<td>• Kreisgespräch</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• L. fragt, warum die Aufgaben diesen Namen tragen.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• SuS geben korrekte Antwort,</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

⁵ L. steht als Abkürzung für „Lehrer/in“
⁶ SuS steht als Abkürzung für „Schülerinnen und Schüler“
<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Thema</th>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>- SuS stellen Vermutungen an.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- L. knüpft an diese an und erzählt Staugeschichte.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- L. fragt, wo der Zusammenhang zu Mathematik besteht.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Aktivität</th>
<th>Inhalt</th>
<th>Didaktische Reserve</th>
<th>Anmerkung</th>
</tr>
</thead>
</table>
| 9.07-9.12h | Auflockerung | • L. gibt Anweisung, dass die SuS zur Auflockerung eine Runde um die Tischtennisplatte rennen bzw. zehn Kniebeugen machen.
• SuS rennen um die Tischtennisplatte bzw. machen zehn Kniebeugen und nehmen anschließend wieder im Kreis Platz. | • Frontalunterricht
• Gruppenarbeit | Auflockerung findet nur statt, wenn die 90 Minuten ohne längere Pause stattfinden. |
• L teilt ABs mit Fragestellung aus. | • ABs | |
| 9.14-9.34h | Arbeitsphase 2 | • SuS bearbeiten die Fragestellung, die zusätzlich von L. an die Tafel geschrieben wird.
• SuS erstellen Plakate.
• L. steht als Ansprechperson zur Verfügung. | • Gruppenarbeit
• ABs
• Linierte/kaarierte Blätter
• Plakate | Frage: Wie viele Personen befinden sich in einem 5 km langen Stau?
Didaktische Reserve: AB mit Autolängen. |
| 9.34-9.36h | Organisation 3 | • L. bittet SuS ihre Arbeiten zu beenden und die erste Präsentationsgruppe wird bestimmt. | • Klangschale | |
| 9.36-9.58h | Arbeitsphase 3 | • Gruppen präsentieren ihre Plakate, Rest der SuS überprüft die Sinnhaftigkeit. | • Frontalunterricht
• Plakate | |
<table>
<thead>
<tr>
<th>Zeit</th>
<th>Aktivität</th>
<th>Details</th>
</tr>
</thead>
</table>
| 9.58-10.00h | Erarbeitung 3 | • L. erklärt, dass die Besprechung in der nächsten Mathematikstunde stattfindet.
• L. beendet die Stunde. |
| | | • Frontalunterricht |
Abbildung 20: Stau

Quelle:
http://upload.wikimedia.org/wikipedia/de/2/26/Stau.jpg

Frage: Wie viele Personen befinden sich in einem 5km langen Stau?

__
__
__
__
__
Anhang D-3

Arbeitsblatt mit Autolängen

Hier findest du Angaben zu den Längen verschiedener PKWs:

<table>
<thead>
<tr>
<th>Typ</th>
<th>Länge</th>
</tr>
</thead>
<tbody>
<tr>
<td>VW Golf</td>
<td>4,20m</td>
</tr>
<tr>
<td>Ford Fiesta</td>
<td>3,95m</td>
</tr>
<tr>
<td>Audi A3</td>
<td>4,20m</td>
</tr>
<tr>
<td>BMW 3er</td>
<td>4,52m</td>
</tr>
<tr>
<td>Opel Corsa</td>
<td>4,00m</td>
</tr>
<tr>
<td>Renault Clio</td>
<td>3,99m</td>
</tr>
</tbody>
</table>

Abbildung 21: Autolängen

Quelle: http://www.auto-tenzler.de/pics/Autos.jpg
Abbildung 22: Beispiel einer Schülerlösung
Diese Schülerin nimmt an, dass ein Auto eine durchschnittliche Länge von vier Metern besitzt. Ein Abstand wird nicht berücksichtigt.

Diese Annahme nutzt sie, um die Autoanzahl in fünf Kilometern, also 5000 Metern, Stau zu berechnen.

Weiterhin wird die Annahme ersichtlich, dass sich jeweils fünf Personen in einem Auto befinden.

Die Anzahl der Autos sowie die angenommene, durchschnittliche Personenanzahl in einem Auto stellen die nötigen Informationen dar, um die Personenanzahl in dem fünf Kilometer langen Stau zu berechnen.
Anhang D-5

Fotos der Einheit 3

Abbildung 23: Erste Anordnung der Autos durch einen Schüler

Abbildung 24: Erneute Anordnung unter Beachtung des Abstandes zwischen den Autos
Abbildung 25: Plakat 1

Abbildung 26: Plakat 2
Abbildung 27: Plakat 3

Wir haben vom Kreisel zur Schule gerechnet, in dieser km passen 500 Autos. Das haben wir als 5 gerechnet und sind auf 2500 gekommen.

Abbildung 28: Plakat 4
Abbildung 29: Plakat 5

Abbildung 30: Plakat 6
Abbildung 31: Die Plakate an der Tafel

Abbildung 32: Die Gruppenlösungen an der Tafel
<table>
<thead>
<tr>
<th>Zeit</th>
<th>Phase</th>
<th>Unterrichtsgeschehen</th>
<th>Sozialform/Methode</th>
<th>Material/Medien</th>
<th>Bemerkungen/Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.30-8.32h</td>
<td>Begrüßung</td>
<td>• L. ⁷ begrüßt SuS ⁸ und erinnert sie daran, dass nun die Besprechung der Präsentationen stattfindet.</td>
<td>Frontalunterricht</td>
<td>Klangschale</td>
<td></td>
</tr>
<tr>
<td>8.32-8.39h</td>
<td>Reflexion 1</td>
<td>• Ergebnisse werden an der Tafel gesammelt und besprochen.</td>
<td>Frontalunterricht</td>
<td>Tafel, Kreide</td>
<td>U.a. sind die Ergebnisse realistisch?</td>
</tr>
<tr>
<td>8.39-8.41h</td>
<td>Hinführung zum Thema</td>
<td>• L. erklärt, dass die SuS einen Fragebogen erhalten, der noch einmal Fragen zum Thema „Mathe-matik“ enthält.
• L. bespricht die Fragen mit den SuS.
• L. teilt Fragebogen aus.</td>
<td>Frontalunterricht</td>
<td>Fragebögen</td>
<td></td>
</tr>
<tr>
<td>8.41-9.04h</td>
<td>Arbeitsphase</td>
<td>• SuS bearbeiten die Fragebögen.
• L. steht als Ansprechperson zur Verfügung.</td>
<td>Einzelarbeit</td>
<td>Fragebögen</td>
<td>Didaktische Reserve: Die fertigen Kinder können die selbstausgedachten Aufgaben lösen, die auf dem Computer getippt wurden.</td>
</tr>
<tr>
<td>9.04-9.06h</td>
<td>Organisation</td>
<td>• L. bittet SuS das Ausfüllen zu beenden und sammelt die Fragebögen ein.
• SuS kommen in den Kreis.</td>
<td>Frontalunterricht</td>
<td>Klangschale</td>
<td></td>
</tr>
</tbody>
</table>

⁷ L. steht als Abkürzung für „Lehrer/in“
⁸ SuS steht als Abkürzung für „Schülerinnen und Schüler“
<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Aktivität</th>
<th>Inhalte</th>
</tr>
</thead>
</table>
| 9.06-9.13h | Reflexion 2 | - L. fragt SuS nach ihrem Eindruck über die Aufgaben, wie das Arbeiten geklappt hat etc.
- SuS reflektieren. |
| | Kreisgespräch | |
| | Frontalunterricht | |
Ich versichere hiermit, dass ich die Arbeit selbstständig verfasst, keine anderen, als die angegebenen Hilfsmittel verwandt und die Stellen, die anderen benutzten Druck- und digitalisierten Werken im Wortlaut oder dem Sinn nach entnommen sind, mit Quellenangaben kenntlich gemacht habe. Dies gilt auch für bildliche Darstellungen.

(Anna Christina Nadler)
Kassel, November 2011