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Abstract
Context prediction is used to proactively adapt, e.g. services in a
ubiquitous environment to users’ needs. Due to the fact that context
prediction enables proactiveness, the significance for ubiquitous
computing systems is high. To the best of our knowledge, well-
known approaches in context prediction only focus on a user’s his-
tory as a database whose next contexts have to be predicted. In case
a user suddenly changes her behaviour in an unexpected way and
does not follow her routine anymore, the context history of the user
does not contain appropriate context information to provide reliable
context predictions. Hence, context prediction algorithms that only
rely on the user’s context history whose context has to be predicted,
might fail. To overcome the gap of missing context information
in a user’s context history, the Collaborative Context Prediction
(CCP) approach is proposed. CCP takes advantage of existing
direct and indirect relations, which may exist among the context
histories of various users and therefore provides the possibility to
forecast a user’s next context even if the user suddenly changes
her expected routine. CCP is based on the Higher-order Singular
Value Decomposition, which has already successfully been applied in
existing recommendation systems. To provide an evaluation of CCP,
it is assessed in three different experiments. In these experiments,
results are carried out with respect to prediction accuracy. These
results are compared to the results received by three state of the
art context prediction approaches: the Alignment predictor, the
StatePredictor and the ActiveLeZi prediction approach. In all
three experiments, collaborative data sets are used as a basis for
evaluation.

Moreover, CCP is applied to a realistic collaborative use case,
the proactive protection of pedestrians. CCP is used to proactively
detect pedestrians that might be at risk to collide with a car
nearby, using real movement data, measured by smartphones the
pedestrians carried in their trouser pocket.

Due to the fact that context prediction approaches primarily use
personal contexts such as location data or users’ behaviour patterns,
legal evaluation criteria are derived considering the principles of



a user’s right to informational self-determination. Based on the
derived legal evaluation criteria, the CCP approach and the state of
the art context prediction approaches are examined. The evaluation
results outline the compatibility of different context prediction
approaches to a user’s right to informational self-determination.
Finally, an approach for distributed and collaborative context
prediction is presented in this thesis. This approach presents
a possibility to overcome the identified legal problems caused
by context prediction, especially by collaborative-based context
prediction.



Zusammenfassung
Mit Hilfe der Vorhersage von Kontexten können z. B. Dienste
innerhalb einer ubiquitären Umgebung proaktiv an die Bedürf-
nisse der Nutzer angepasst werden. Aus diesem Grund hat die
Kontextvorhersage einen signifikanten Stellenwert innerhalb des
’ubiquitous computing’. Nach unserem besten Wissen, verwenden
gängige Ansätze in der Kontextvorhersage ausschließlich die Kon-
texthistorie des Nutzers als Datenbasis, dessen Kontexte vorhersagt
werden sollen. Im Falle, dass ein Nutzer unerwartet seine gewohnte
Verhaltensweise ändert, enthält die Kontexthistorie des Nutzers
keine geeigneten Informationen, um eine zuverlässige Kontextvor-
hersage zu gewährleisten. Daraus folgt, dass Vorhersageansätze, die
ausschließlich die Kontexthistorie des Nutzers verwenden, dessen
Kontexte vorhergesagt werden sollen, fehlschlagen könnten. Um die
Lücke der fehlenden Kontextinformationen in der Kontexthistorie
des Nutzers zu schließen, führen wir den Ansatz zur kollaborativen
Kontextvorhersage (CCP) ein. Dabei nutzt CCP bestehende direkte
und indirekte Relationen, die zwischen den Kontexthistorien der
verschiedenen Nutzer existieren können, aus. CCP basiert auf der
Singulärwertzerlegung höherer Ordnung, die bereits erfolgreich in
bestehenden Empfehlungssystemen eingesetzt wurde. Um Aussa-
gen über die Vorhersagegenauigkeit des CCP Ansatzes treffen zu
können, wird dieser in drei verschiedenen Experimenten evaluiert.
Die erzielten Vorhersagegenauigkeiten werden mit denen von drei
bekannten Kontextvorhersageansätzen, dem ’Alignment’ Ansatz,
dem ’StatePredictor’ und dem ’ActiveLeZi’ Vorhersageansatz, ver-
glichen. In allen drei Experimenten werden als Evaluationsbasis
kollaborative Datensätze verwendet.

Anschließend wird der CCP Ansatz auf einen realen kollabo-
rativen Anwendungsfall, den proaktiven Schutz von Fußgängern,
angewendet. Dabei werden durch die Verwendung der kollaborativen
Kontextvorhersage Fußgänger frühzeitig erkannt, die potentiell Ge-
fahr laufen, mit einem sich nähernden Auto zu kollidieren. Als kolla-
borative Datenbasis werden reale Bewegungskontexte der Fußgänger
verwendet. Die Bewegungskontexte werden mittels Smartphones,
welche die Fußgänger in ihrer Hosentasche tragen, gesammelt.



Aus dem Grund, dass Kontextvorhersageansätze in erster Linie
personenbezogene Kontexte wie z.B. Standortdaten oder Verhal-
tensmuster der Nutzer als Datenbasis zur Vorhersage verwenden,
werden rechtliche Evaluationskriterien aus dem Recht des Nutzers
auf informationelle Selbstbestimmung abgeleitet. Basierend auf den
abgeleiteten Evaluationskriterien, werden der CCP Ansatz und
weitere bekannte kontextvorhersagende Ansätze bezüglich ihrer
Rechtsverträglichkeit untersucht. Die Evaluationsergebnisse zeigen
die rechtliche Kompatibilität der untersuchten Vorhersageansätze
bezüglich des Rechtes des Nutzers auf informationelle Selbstbestim-
mung auf. Zum Schluss wird in der Dissertation ein Ansatz für die
verteilte und kollaborative Vorhersage von Kontexten vorgestellt.
Mit Hilfe des Ansatzes wird eine Möglichkeit aufgezeigt, um den
identifizierten rechtlichen Probleme, die bei der Vorhersage von
Kontexten und besonders bei der kollaborativen Vorhersage von
Kontexten, entgegenzuwirken.
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Chapter 1

Introduction

The surroundings, users of ubiquitous computer systems live and
work in, are constantly changing. Beginning with the vision of
Mark Weiser [1] in the early nineties that predicts that the most
profound technologies will be those that disappear, the basic idea
and motivation to begin the journey to ubiquitous computing has
been started. In 1994, Schilit et al. [2] proposed first ideas how
context aware applications and techniques that utilise contexts of
users, gained from inconspicuous technologies in intelligent spaces,
can look like. In 1999, Dey and Abowd [3] defined the meaning
of context to be "any information that can be used to characterise
the situation of an entity. An entity is a person, place or object
that is considered relevant to the interaction between a user and
an application, including the user and applications themselves."
This definition extends the term context-aware, first outlined by
Schilit and Theimer [4], who understand the term context in a
way that it describes locations, identities of nearby people and
objects and changes to those objects. Based on the definition
of Dey and Abowd, GPS information was used by Asbrook and
Starner [5] to represent context as location of a user in 2002. In
2003 the increasing use of personal context information by location-
aware applications inspired researches such as Beresford et al.
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1 Introduction

[6] for the first time, to start investigations how pervasive and
ubiquitous computing affects the user’s privacy. In the same year,
research in smart homes using environmental context information
to support the user by letting the house act as an intelligent agent
became more and more popular. On the basis of the idea of the
neural network house, Cook et al. [7] presented an agent-based
smart home using contexts to automatically assist their inhabitants.
To extend the possibilities of ubiquitous environments to derive
user context information, sensors became wearable. For instance,
through wearable acceleration sensors to derive a user’s movement
activity even if the user is not inside a smart home [8], outlined
by Bao and Intille in 2004. An extension of wearable sensors has
been provided by smartphones. In contrast to wearable sensors that
are placed on a user’s body for a specific purpose, a smartphone is
carried by the user mostly all the time. Additionally, a smartphone
provides access to contexts that describe the current situation of a
user such as her calendar. In 2005 Mika Raento et al. proposed
a platform [9] to provide access to these contexts by context-
aware mobile applications. Through the continuous improvement
of smartphones they have become more and more important for
context-aware applications that run in ubiquitous environments.
Smartphones are not limited to only provide access to software-
based context information but can also provide access to hardware-
based context information gained from built-in hardware sensors
such as an accelerometer, a gyroscope, or a barometer. Using
hardware sensors, context information, such as a user’s movement
behaviour [10] as shown by Sian Lun Lau et al. or the floor a
user is currently located [11] presented by Salvatore Vanini et al.,
can be automatically inferred. Moreover, today’s smartphones are
equipped with sufficient power that context data can be processed
directly on the smartphone without transmitting the context data to
an external server system. Nowadays smartphones find applications
in nearly every ubiquitous computing environment because they
enable the user to be always available and online, which allows
applications to continuously access contexts of a user. Hence, the
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1 Introduction

vision of ubiquitous computing outlined nearly 20 years ago emerged
a wide range of real and ubiquitous implementations that strongly
influence our daily routines.

Examples of ubiquitous computing at the present time are
systems that automatically adapt to a user’s need without requiring
a user’s explicit input. These can be environments like intelligent
and smart spaces such as meeting rooms, smart homes, cars, or
public places like hospitals, shopping malls, transit stations or
airports. Depending on a user’s perspective, even a first person
shooter can be considered as a ubiquitous environment. The
automated adaption to the needs of the users is basically achieved
by deriving, processing and utilising user related contexts collected
by a variety of unobtrusive sensor technologies. Sensors can be
mounted hardware-based sensors (infrared, motion, temperature,
wlan, etc.), wearable hardware-based sensors (RFID, GPS, sensors
provided by smartphones, etc.) or software-based sensors such as
calendars, notes or digital phone books, etc. According to the high
presence of ubiquitous environments and the high amount of sensors
used in them, it would be true to say that ubiquitous computing
becomes more and more ubiquitous.

To apply user related information that has been gathered by
unobtrusive sensors to assist the user in a ubiquitous environment,
approaches for context recognition and context prediction are
required. Context recognition is used to interpret raw sensor data
by transforming them to a higher abstraction level. An example
is the transformation of acceleration values of the x-, y-, and z-
axis, derived from an acceleration sensor integrated in a smartphone
carried by a user, to the current movement behaviour of the user
(sitting, standing, walking) [10]. The recognised contexts can be
used to automatically adapt an application or a service that run in
the ubiquitous environment to the user’s needs. With the usage of
context prediction approaches it is possible to proactively adapt
an application or a service. This enables an application or a
service to be adapted before the appropriate context of the user
has been recognised by context recognition approaches. Hence, it
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1 Introduction

grants a certain time advantage to the system. An application
example is the proactive adaption of energetic consumers like the
PC, the lighting or the heater based on the predicted movement
behaviours of a user [12]. To enable the prediction of a user’s next
context, knowledge, represented by previously recognised contexts,
is needed. The knowledge is stored in the context history of the
user. Subsequently, the next context of a user can be predicted
by appropriate context prediction approaches using a user’s context
history and a user’s last recognised contexts. Well known context
prediction approaches like Alignment [13] or ActiveLeZi [14] utilise
explicit knowledge of a user which is stored in the context history
of the user. If the history of the user whose next context has
to be predicted does not provide sufficient context data, this is
the case, if the user suddenly changes her behaviour patterns,
current prediction approaches will fail to predict the next context.
The goal of this thesis is to examine a collaborative-based context
prediction approach to provide valid context prediction results even
if the user’s own context history does not provide sufficient context
data. The objective of the collaborative-based context prediction
approach is not only to use the context history of the user whose
next context has to be predicted but to use context histories of
additional users whose context histories show sufficient correlations.
Due to the implicit usage of correlated and personal context in
the collaborative-based context prediction process, the thesis also
discusses and evaluates resulting legal consequences to existing
context prediction approaches and the proposed colloborative-based
context predictor.

1.1 Problem statements

In contrast to existing state of the art context prediction approaches,
the research in this thesis concentrates on collaborative-based
context prediction. In this thesis the term collaboration is defined as
follows: Collaboration means the explicit utilisation of contexts of
multiple users who are located in the same ubiquitous environment
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1 Introduction

to provide a more robust context prediction to an individual user.
Further, collaboration differs to the term cooperation. In our
opinion cooperation defines a process whereby a user’s individual
context does not necessarily depends from contexts of other users
but from aggregated or fused context information from local sensors.

Until now, present approaches neglected the integration of context
histories of additional users into the context prediction process
for a user that behaves in a ubiquitous environment. Thereby, it
might be obvious that users in the same ubiquitous environment
or users using the same ubiquitous computing application may
assist each other because they have similar objectives and therefore
behave the same way. Assistance can be achieved by providing own
context information to the context prediction process of another
user. The usage of additional information provided by other users is
already commonly used in existing crowed sourcing approaches used
for example for tag recommendation in social systems like Flickr,
Last.fm, delicious, amazon, etc. Hence, mostly interests of a user
are compared to the interest of other users to identify additional
information a user might also be interested in but has not taken into
consideration so far. To evolve context prediction to collaborative-
based context prediction, indirect and latent information of other
users has to be utilised. This is can be achieved by comparing
context data stored in a user’s context history to context data
of other users stored in their context histories using appropriate
mechanisms.

In ubiquitous computing not only technical considerations like
availability, accuracy, scalability or for example efficiency are
important to gain a user’s trust. Also legal implications caused by
ubiquitous computing systems should be taken into consideration.
That privacy in ubiquitous computing systems is not only a legal
or social issue, due to the reason that privacy and technology are
closely intertwined, has already been outlined by Marc Langheinrich
in [15, 16]. Rene Mayrhofer has also called attention to privacy
issues caused by context prediction processes [17]. Even Mark
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Weiser has already identified a user’s privacy as one of the biggest
challenges in the realisation of his vision of ubiquitous computing
in 1991 [1]. In particular, the unobtrusiveness of getting personal
context data, provided by inconspicuous sensors placed all over in
a ubiquitous environment and the automated usage of the received
context data by services or applications, prevents existing solutions
to become publicly reality. This is because the German privacy
law simply prohibits the implicit or explicit usage of personal data
without the consent of the user the data belongs to. Hence, the only
possibility would be to ask the user for her consent if her private
data has to be collected, which would drastically limit the power
of context awareness. Due to the reason that privacy is a complex
issue in ubiquitous computing this thesis focuses on the analysis
of how current context prediction approaches and the extension to
collaborative-based context prediction affects the German privacy
law. In detail the right to informational self-determination is
considered and used to evaluate context prediction approaches with
respect to their compatibility.

1.2 Contributions

This thesis contributes to the motivation and understanding of
collaborative-based context prediction. Further, it raises the
reader’s awareness for challenges regarding privacy and trust
that come along with collaborative-based context prediction.
Besides, the thesis outlines a possible solution that tries to bring
collaborative-based context prediction in line with the right to
informational self-determination.

Based on existing approaches to context prediction, the
collaborative-based context prediction (CCP) is motivated and its
mathematical definitions are outlined and discussed. Next, CCP is
practically illustrated and evaluated in three different experiments.
The used data sets in the experiments differ with regard to their
sizes, their use cases and the way they have been collected in.

Apart from the evaluation of context prediction approaches, the
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basic motivation of context prediction is discussed and examined
with respect to its compatibility to the right to informational
self-determination. Consequently, legal evaluation criteria are
derived from the right to informational self-determination. The
criteria are used to legally assess existing context prediction
approaches. Further, KORA, a method to integrate and consider
legal requirements in the design process of informational technology,
is used. As a result of KORA, technical design proposals are
derived. These technical design proposals are further used to
produce a context prediction approach that can be considered as
legally acceptable.

To provide an example of the usefulness of CCP, it is applied
to a real world use case. In this use case CCP is utilised to
proactively filter endangered pedestrians out of potentially many
pedestrians. Therefore, realistic movement data have been collected
using smartphones. Later, the derived movement behaviours of the
pedestrians have been used to proactively predict their next step on
the pavement. Collision avoidance systems can profit of the time
advantage gained by proactively detecting endangered pedestrians.

Based on the derived design proposals received by using the
KORA method, an approach for distributed and collaborative
context prediction has been developed. This approach consists of
two architectures. The first architecture enables users to collect
their own context data using their own smartphones. Based on
the collected context data the second architecture enables the users
to collaboratively predict their next contexts, without disregarding
their right to informational self-determination.

The results of this thesis have been tested and published in
two national projects: Pervasive Energie durch internetbasierte
Telekommunikationsdienste (Pinta) [18] and Gestaltung technisch-
sozialer Vernetzung in situativen ubiquitären Systemen (Venus)
[19].
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1.3 Outline of the thesis

This thesis includes the content of all the research work I have
submitted and presents their contributions within a logical context.
The thesis is organised in seven chapters. The first chapter provides
the introduction of the thesis and gives a motivating overview
of the problem definition, Chapter 2 outlines the background of
context prediction and summarises the state of the art. First,
existing context prediction approaches are outlined and discussed
with regard to location-based context prediction. Second, existing
frameworks for context prediction are presented. Finally, research
works with focus on trust and privacy in ubiquitous computing
systems are introduced. Results outlined in this chapter are
partially based on [20].

Chapter 3 introduces the approach of collaborative-based context
prediction. Findings presented in this chapter are based on [21, 22].
In the beginning of the chapter the mathematical fundamentals of
the approach are presented. Next, the approach is illustrated and
afterwards it is evaluated in three different experiments.

Chapter 4 introduces the right to informational self-determination.
Further, legal evaluation criteria are derived and used to legally
evaluate existing context prediction approaches. Later, design
principles for a compatible context prediction approach are created
using the KORA method. Results and findings presented in this
chapter are based on [23, 24].

In the next chapter the collaborative-based context predictor is
applied in a real use case, which is based on [25]. The predictor
is used to proactively filter pedestrians whose next step brings
them close to the street, to provide collision avoidance systems, e.g.
installed in cars, with an extra time advantage.

Finally, in Chapter 6 an approach for distributed and
collaborative context prediction is presented. The presented
approach is based on [26]. It addresses the legal implications
caused by existing context predictors, before Chapter 7 concludes
the findings of this thesis.

8



1 Introduction

1.4 Publications

The publications conducted within the scope of this thesis have been
published in conferences and workshops. These publications are as
follows:

• C. Voigtmann, K. David, J. Zirfas, H. Skistims, and A.
Roßnagel, "Prospects for Context Prediction Despite the
Principle of Informational Self-Determination," in Advances in
Human-Oriented and Personalized Mechanisms, Technologies
and Services (CENTRIC), Nice, 2010, pp. 89–92.

• C. Voigtmann, S. L. Lau, and K. David, "An approach to Col-
laborative Context Prediction," in Pervasive Computing and
Communications Workshops (PerCom Workshops) CoMoRea,
Seattle, USA, 2011, pp. 438–443.

• C. Voigtmann, S. L. Lau, and K. David, "A Collaborative
Context Prediction Technique," in Vehicular Technology Con-
ference (VTC2011-Spring) 73rd, Budapest, Hungary, 2011,
pp. 1–5.

• H. Skistims, C. Voigtmann, K. David, and A. Roßnagel,
"Datenschutzgerechte Gestaltung von kontextvorhersagenden
Algorithmen," vol. Datenschutz und Datensicherheit 36, pp.
31–16, 2012.

• C. Voigtmann, and K. David, "A Survey To Location-Based
Context Prediction", Workshop on recent advances in behav-
ior prediction and pro-active pervasive computing (Aware-
Cast) in conjunction with the 10th International Conference
on Pervasive Computing (Pervasive 2012), New Castle, UK,
June 19th, 2012.

• C. Voigtmann, S. L. Lau, and K. David, "Evaluation of
a collaborative-based filter technique to proactively detect
pedestrians at risk," in Vehicular Technology Conference
(VTC2012-Fall), Quebec City, QC, 2012, pp. 1–5.
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• C. Voigtmann, K. David, H. Skistims, and A. Roßnagel, "Legal
assessment of context prediction techniques," in Vehicular
Technology Conference (VTC Fall), Quebec City, QC, 2012,
pp. 1–5.

• C. Voigtmann, C. Schütte, A. Wacker, and K. David, "A
new approach for distributed and collaborative context pre-
diction," at the 10th IEEE Workshop on Context Modeling
and Reasoning (CoMoRea), San Diego, USA, March 2013.
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Chapter 2

Context prediction in
ubiquitous computing
systems

First, this chapter motivates context prediction and its use-
fulness to ubiquitous computing systems. Second, the basic
functionalities of context prediction and its components
are presented. Following, the most common state of the
art in context prediction is introduced by the visualisation
and the discussion of present prediction approaches. In
addition, research works with focus on location-based
context prediction are outlined in this chapter. The
approaches are evaluated with regard to various aspects
concerning the data sets used by the authors to evaluate
their applied prediction approaches. At the end of this
chapter, existing frameworks for context prediction as well
as existing considerations of trust and privacy in ubiquitous
computing systems are presented.
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2.1 Background to context prediction

To motivate the basic idea and the usefulness of predicting a
user’s next context in a ubiquitous computing system, background
information to context prediction is provided in this section. In
the beginning, context prediction is introduced as a component of a
ubiquitous computing system. Finally, the first presence of context
prediction in ubiquitous computing systems is outlined and a short
introduction to the functionality of context prediction is provided.

2.1.1 Components of a ubiquitous computing
system

In our view, a ubiquitous computing system consists of several
components. First, a ubiquitous computing system consists of an
environment in which the interactions between users and computers
are handled implicitly. Implicitly means that the user provides
information, so called contexts, without giving attention to it.
Examples for environments are smart spaces like smart homes,
meeting rooms or even cars. To receive information of a user
located in a ubiquitous environment, sensors are needed. These
sensors are placed unobtrusively without distracting the users in
the environment. A sensor can be every entity that can be used to
collect any kind of information to characterise a user’s behaviour.
Examples for sensors are phidgets [1] or enocean sensors [2] for smart
spaces as well as an on-board computer for a car. Furthermore, a
communication infrastructure that can be Wi-Fi-based, cable-based
or based on Bluetooth is needed to transmit the collected sensor data
to a database structure. Subsequently, processing tasks are needed
to interpret the gathered sensor data of the user. Tasks can be the
fusion of sensor data [3, 4] to gain information with a lower entropy.
The fusion of sensor data can be better than using the gathered
sensor information individually. Another task can be the abstraction
of gathered sensor data to a higher abstraction level, to shrink the
underlying information space [5]. Further tasks that can be applied
on the received data are the extraction of a user’s current context [6]
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using appropriate context recognition approaches and the predicting
of a user’s next context based on previously recognised contexts
[7], applying context prediction algorithms. Finally, a ubiquitous
computing system consists of services or applications. These services
and applications utilise the inferred context information to adapt
their behaviour to the contexts of the user, located in the respective
ubiquitous computing system.

An example for a ubiquitous computing system, is given by
the application scenario outlined in Figure 2.1. The application
scenario has been developed and implemented during the Venus
project [8] at the University of Kassel. The scenario outlines a
ubiquitous computing system used to support elderly people to
live independently. The system provides a user, who is in charge
of taking care of an elderly person, the opportunity to open an
information window from her current position straight into the
apartment of the elderly person, using a smart device. Using this
information window, the user is able to get a quick overview of
whether the elderly person is doing well or if the person needs
medical support [9].

The concept to exchange context information between people
that already know each other and live apart, is called SoLin (Social
Link) [10]. To fulfil the task to support an elderly person to
live independently, the flat of this person (the kitchen and the
living room) has been equipped with unobtrusive sensor technology.
These sensors, whose positions are highlighted in cyan colour
in the figure, collect data in order to receive information about
the current status of the person and the flat. The data are
continuously transmitted and stored to a database using a cable-
based connection. Afterwards, the received sensor information are
interpreted using algorithms for sensor data fusion and context
recognition to infer contexts that characterise the current situation
of the person and the flat. Finally, the inferred contexts such as "did
the person move sufficiently today", "are the hotplates still switched
on although the person sits in front of the TV" can be displayed
by the application. Also context prediction algorithms such as the
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application or service

database

context
recognition

context
prediction

sensor data
fusion

smart space kitchen

smart space living room

Figure 2.1: Ubiquitous computing system developed during the
Venus project [8].

Alignment predictor [11] are integrated to predict the next action of
the elderly person, utilising her already inferred context data stored
at the database. Related to Support-U, the usage of a context
prediction approach offers the possibility to proactively infer an
upcoming critical situation that affects the elderly person.

For this reason the application of context predictors provides a
time advantage for ubiquitous computing systems, which is a fact
that cannot be underestimated.

2.1.2 Context prediction in ubiquitous comput-
ing systems

Context awareness is one of the main features of ubiquitous comput-
ing systems. Predicting a user’s upcoming context even enhances
context awareness in a way that applications or services can adapt
their behaviour proactively to the user’s needs. To the best of our
knowledge, the first project that considered context prediction to
proactively adapt a ubiquitous environment using previously seen
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contexts, was the adaptive house project [12] conducted by Micheal
C. Mozer in 1998. Figure 2.2 illustrates a picture of the so called
neural network house in Boulder, Colorado.

Figure 2.2: The Adaptive House at Boulder, Colorado [13].

In contrast to standard computerised homes, the neural network
house used an adaptive control home environment system, called
ACHE. This system monitored the environment, collected specific
information of the inhabitants’ lifestyle (e.g. adjusting the ther-
mostat; turning on a particular configuration of lights; preferred
sound levels or the inhabitant motion activity) and attempted to
find regular behaviour patterns of the inhabitants. These contexts
were used by ACHE to anticipate the inhabitants’ needs to save
energy costs by proactively adapting light or air temperature or
by heating rooms in advance that are likely to be occupied in the
near future. The used predictors to predict the next actions of the
inhabitants were implemented as feed forward neural networks.

To provide proactiveness using context prediction, previously
sensed and stored context data are needed that describe a user’s
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behaviours in the past. The data set that stores the context data of a
person is called context history. Different types of abstraction levels
of context data can be stored in a user’s context history. Overall
there exist three different abstraction levels of context data. Raw
context data represent uninterpreted and directly gathered sensor
values. Low-level context data represent a first abstraction of the
gathered raw sensor data. High-level context data represent a higher
interpretation level of low-level context data. High-level context
data are mostly related to a person or even characterise a person (cf.
Definition 1). An example for a transformation of raw data, received
form a sensor, to high-level context data is illustrated in Figure 2.3.
The measured voltage of the temperature sensor represents the raw
sensor data. The low-level context is obtained by the conversion of
the voltage into a temperature. The high-level context "warm" can,
e.g. be defined by the subjective interpretation of the calculated
temperature.

Definition 1 (High-level context)
Represents a high-level context element c that describes or

characterises a person or a person’s action at a certain point
in time located in a ubiquitous environment.

voltage
(421mV)

temperatur sensor raw sensor data

acquisition interpretation

degree
(32.4°C)

low-level context

interpretation room
condition
(warm)

high-level context

Figure 2.3: Different abstraction levels of contexts, illustrated using
a phidget temperature sensor.

In our opinion, low-level and high-level context data are most
suitable for the prediction of a user’s next context. In contrast,
raw data are more useful for context recognition approaches used to
automatically infer higher interpretations of contexts that are based
on the available raw sensor data. Examples are given in [14, 15].

In contrast to high-level context data, low-level context data
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offer more precise information [16]. Therefore, low-level contexts
derived from different sensors are mostly stored separately. This,
e.g. offers the opportunity to utilise existing relations between the
contexts of the different sensor sources [17]. Furthermore, the order
of gathered low-level contexts can be maintained, which can be
important because different context sources most probably gather
and interpret sensor data at different points in time [18]. The high-
level representation of context data is the representation that is
commonly used in literature related to context prediction. Examples
can be found in [7, 19, 20, 21, 22]. Different high-level context data
derived from various sensors in the same ubiquitous environment are
mostly stored in one context history that belongs to a certain user
(cf. Definition 2). In this thesis, we focus on high-level context
data to predict a user’s upcoming context. From now on, the
terms context history and high-level context history are considered
synonymously. An example of a user’s context history with respect
to the contexts derived by the ubiquitous computing system that
is outlined in Section 2.1.1, is given in Figure 2.4. Basically, a
context history of a user that consists of high-level contexts describes
the lifestyle or the habits of a user in a ubiquitous environment.
In Figure 2.4 the life habits of a person are stored using already
interpreted high-level contexts. The high-level contexts are sorted
by time.

Definition 2 (High-level context history)
Let H be a high-level context history of a user. H is called

high-level context history if all contexts stored in this history are
sorted by time and if all contexts c ∈ H stored in this history
are high-level contexts.

Contexts stored in a user’s context history are mostly represented
by a string that characterises the context at a certain point in
time. The number of contexts that are stored in a history are only
limited by the available storage space. The more contexts have been
saved to the history of a user the more information can be utilised
by a context prediction approach to predict a user’s next context.
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stay in
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t = 1 t = 2 t = 3 t = 4 t = 5 t = n t = n+1 t = n+2

Figure 2.4: Example of a user’s context history with respect to the
scenario outlined in Section 2.1.1.

Therefore, a context history represents the knowledge base that is
used by a context prediction approach to infer a user’s next context,
based on her current available contexts. To train and to validate
a context prediction approach, a context history is divided into a
training context data set and a test context data set (cf. Definition
3).

Definition 3 (Training and test data set)
A training data set TR and a test data set TS consist of high-
level contexts c ∈ TR ∨ c ∈ TS. The training and the test data
set form a subset of the context history TR ⊂ H∨TS ⊂ H of the
user. Therefore, TR ∪ TS = H. The training and the test data
set can be used to evaluate a context prediction approach with
respect to its prediction accuracy, its needed prediction time or
its needed memory consumption. The complete context history
TR ∪ TS = H of a user is used to train a prediction model if a
user’s next contexts have to be predicted under real conditions
in a ubiquitous environment.

For the application and evaluation of context prediction ap-
proaches the context history of the user is segmented. The
segmentation of the context history is used to create various context
parts that characterise the behaviour of a user during different time
periods. A context part consists of a context pattern and a future
context. The definition of a context pattern and a future context
is given in Definition 4. The definition of the process of context
prediction using the terms context patterns and future contexts is
given in Definition 5.
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Definition 4 (Context pattern and future context)
Let Cp be the context pattern that is used to identify the future
context Fc of a user using her context history H. Cp consists
of contexts c ∈ H. Whereby the size of Cp is determined by
2 ≤ |Cp| ≤ 7 and the size of fc ∈ H is determined by |Fc| = 1.

The size of the context patterns depend on the number of high-
level contexts, the prediction of a user’s next context is based on.
In other words, the size of a context pattern characterises how
much information from the past of a user is taken into account
to provide a reliable prediction of a user’s next context. In the
experiments performed later in this thesis, the minimum size of
a context patterns can be 2 and the maximum size of a context
patterns can be 7.
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Figure 2.5: Segmentation of the user’s context history using sliding
window with |Cp|−1

|Cp| overlapping.
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The segmentation of a user’s context history is performed using
the sliding window approach [23]. The sliding window approach
has already been used in previous investigations with concern to
ubiquitous computing [24, 25, 26]. This algorithm is used in order
to ensure that all available context patterns can be utilised in the
prediction process. If a context history of a user is segmented
without using the sliding window approach, information can get
lost because the resulting context parts do not represent all possible
context sequences gathered of the user in the past.

Definition 5 (Context prediction)
Context prediction is performed by algorithms that are trained
using a given knowledge base, e.g. a training data set that
has been extracted of a user’s context history TR ⊆ H or the
context history H itself to generate a prediction function f(Cp).
Subsequently, f(Cp) → Fc is used to abstract from the given
context pattern Cp to predict the future context Fc ∈ TR or
Fc ∈ H of a user.

An example of a segmentation of a context history applying the
sliding window approach, using an overlapping interval of |Cp|−1

|Cp|
is illustrated in Figure 2.5. In this figure the context history
belonging to the person in the ubiquitous computing system outlined
in Section 2.1.1 was split into several context parts. Each result
window, respectively each context part consists of three contexts.
That implies |Cp| = 2 and |Fc| = 1. The resulting context patterns
are used to be matched either against context patterns of a test
data set to evaluate a prediction approach or to be matched against
a current context pattern to predict a user’s next context in a
ubiquitous environment. In both cases the context Fc that follows
the context pattern Cp in the training data set or in the context
history that most probably matches will be predicted as a user’s
next context.
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2.2 Existing approaches in context pre-
diction

In this subsection the most relevant context prediction techniques
are presented. Furthermore, a detailed overview of location-based
context prediction is given.

2.2.1 Context prediction techniques

In this thesis the Alignment predictor, the ActiveLeZi predictor
and the StatePredictor approach are presented and discussed in
more detail. Basically, most supervised learning approaches like,
e.g., Markov Models, Support Vector Machines, Bayesian Networks,
etc. can be used to predict a user’s next context. An overall
implementation of usable prediction approaches can, e.g. be found
in the Weka framework [27] or in the rapid-i framework [28]. In this
thesis the three above-mentioned context prediction approaches are
used for evaluation because they are well known and have been
developed for context prediction tasks in ubiquitous environments
in particular. Further, the prediction accuracy of these approaches
with regard to different data sets is compared to the Collaborative-
based Context Predictor in Chapter 3.

Alignment Alignment is a context time series prediction algo-
rithm that is inspired by algorithms with focus on computational
biology. The Alignment prediction techniques have already been
successfully proposed in [16, 18, 11, 29]. The algorithm is based
on local Alignment techniques, such as the Smith and Waterman
algorithm. Alignment compares two context sequences. Therefore,
it belongs to the family of pattern-matching algorithms. The first
sequence represents the context history H of the user whose next
context has to be predicted. The second sequence represents the
current context pattern of the user. During the matching process,
a context pattern in H will be identified whose similarity to the
given current context pattern is the highest and therefore results in
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the lowest penalty costs for a given cost matrix. As a result, the
context that follows the identified context pattern in the history of
the user will be predicted as the next context. For the calculation
of the alignment of a given context pattern Cp and a user’s context
history H, the formula presented in 2.1 has been used. The formula,
which has already been outlined in [11], has been adopted to our
mathematical alphabet. Using the formula in 2.1, a matrix will be
created that holds the penalty costs for the alignment of H and Cp.
Finally, the context that is most probable to predict is given out
using backtracking.

Cp1...i, H1...j =

max(Cp1...i−1, H1...j−1 + δ(Cpi, Hj),

Cp1...i−1, H1...j + δ(Cpi,−),
Cp1...i, H1...j−1 + δ(−, Hj),

0)

(2.1)

Figure 2.6 outlines the matrix that contains the calculated penalty
costs for the given example. The columns represent the contexts of
H and the rows represent the contexts of Cp. To provide a better
understanding, the context history outlined in Figure 2.4 is utilised.
The context pattern is given by the sequence {watch TV, heating,
turning light off}.

To calculate the overall penalty cost matrix, which is presented in
Figure 2.6, a penalty cost of −1 is given if a context does not match,
if a context has to be deleted or if a context has to be inserted. If a
context matches, 1 is added. With regard to the matrix presented
in Figure 2.6 for a given context history and for a given context
pattern, the context go to bed is predicted.

ActiveLeZi The ActiveLeZi context predictor presented by
Gopalratnam et al. in [30, 31, 32] and improved by Fang et al.
in [33] is based on the Jacob Ziv and Abraham Lempel’s LZ78
dictionary-based data compression algorithm that incrementally
parses a given input sequence. ActiveLeZi further extends LZ78
by exploiting all the information in the context history of a user
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Figure 2.6: Matrix that holds the penalty costs. Less is worse.

using a sliding window approach. While ActiveLeZi parses the
given context history of a user it forms a trie and calculates the
probabilities for every possible context transition. The maximum
depth of the trie corresponds to the length of the longest context
pattern in the history of a user that has been found by ActiveLeZi.
To predict a user’s next context the generated trie receives the
current pattern Cp as input and calculates the probability for all
possible contexts that might follow after the given context pattern.
The context with the highest probability will finally be predicted
next.

To provide an illustrative example, a trie created by ActiveLeZi
with regard to the context history presented in Figure 2.4 is outlined
in Figure 2.7. For better reading, the contexts of the user such as
cooking or heating have been converted into symbols. The context
stay in kitchen is represented by the symbol "a", the context cooking
is represented by the symbol "b" and so on. Furthermore, the
history of the user has been expanded by duplicating the history
three times, not to provide more information but to enlarge the
context history. Finally, the history is represented by the following
concatenated symbols "abcdefghabcdefghabcdefgh". According to
the trie presented in Figure 2.7 the prediction of a user’s next
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a(3) b(3) (3) d(3) e(3) f(3) g(3) h(3) 

ab(2) bc(2) cd(2) de(2) ef(2) fg(2) gh(2) ha(1) 

abc(1) bcd(1) cde(1) def(1) efg(1) fgh(1) 

^ 

Figure 2.7: Trie formed by the ActiveLeZi approach parsing the
string "abcdefghabcdefghabcdefgh", which represents the user’s
context history.

context can only be based on the last two recognised contexts of a
user. This is because the size of the longest context pattern that
was found by ActiveLeZi is three. If this trie is used to predict
the next context e.g, of a given pattern "ab" that corresponds to
the user’s actions stay in kitchen and cooking, ActiveLeZi would
predict "c", which corresponds to the context "do the dishes" with
a probability of approximately 52%.

StatePredictor Jan Petzold at the University of Augsburg de-
veloped the StatePredictor approach. The approach was published
in [34, 35, 36, 37, 38]. The StatePredictor is inspired by branch
prediction techniques of microprocessors [39]. These techniques
were transformed to handle context prediction tasks. Petzold
distinguishes between a 1-state and a 2-state context predictor.
The 1-state context predictor works the same way a one-bit branch
predictor works.

Each possible context that can be predicted is presented by a
state. According to each context there exists a 1-state prediction
graph. The different states in the graph represent the different
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contexts that can be predicted after perceiving the contexts respec-
tively the state the prediction graph is associated with. The state
that is currently activated in the graph will be predicted. If the
predicted state/context is correct, the graph remains in that state;
otherwise it changes to the state that should have been predicted.
To provide a simple example the history of a user presented in
Figure 2.4 is limited to the following five contexts watch TV, stay in
kitchen, cooking, heating, go to bed. The graph presented in Figure
2.8 outlines the prediction-graph associated with the context stay
in kitchen of the user’s history. The states indicate which future
context of the user can be predicted after seeing the context stay in
kitchen. The 2-state predictor presents a modification of the two-
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Figure 2.8: Prediction graph a of 1-state predictor or the context
stay in kitchen.

bit branch predictor. Just like the 1-state predictor there exists
one prediction graph for each different state in a user’s context
history that can be predicted. In contrast to a 1-state prediction
graph, the 2-state prediction graph represents all contexts with two
states. One weak state and one strong state. If the prediction of
a user’s next context is correct, the StatePredictor switches into
the strong state. If a prediction is incorrect and it is in a strong
representation of a state, it switches to the weak representation of
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the state. If it is already in the weak representation of a state and
the prediction turned out to be wrong, it automatically switches to
the weak representation of the state it should have been predicted.
Figure 2.9 presents the 2-state modification of the prediction graph
with regard to the history shown in Figure 2.4.
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Figure 2.9: Prediction graph a of 2-state predictor for the context
stay in kitchen.

Discussion To the best of our knowledge the three presented
context prediction approaches have been solely used in literature
to provide context predictions that are only based on the user’s
own context history so far. Therefore, the approaches have not
been used with additional context histories of other users that
show similar behaviours to the user whose next context has to
be predicted. In our opinion, there are two possibilities to apply
these algorithms to multiple context histories of several users. On
the one hand, the different context histories can be concatenated
to one big history. This history can then be used as an overall
knowledge base for the different context predictors. On the other
hand, the algorithms can be applied to the different context histories
of the users separately. Subsequently, a majority voting is used
to achieve the final prediction result. Both possibilities have the
disadvantage that they do not take advantage of existing direct
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or indirect relations, which may exist among the users’ context
histories. Following to the idea presented in [40], the Higher-order
Singular Value Decomposition is applied to utilise the direct and
indirect information that exist between the context histories of the
users. This is only possible, if the context histories of the users are
put into relation to each other.

All three presented approaches have the substantial disadvantage
that they will probably fail to predict a user’s next context if her
behaviour changes and no information is provided by the user’s
context history. In Section 3.3 the CCP approach is introduced,
which tries to overcome this drawback of existing context prediction
approaches that only take the user’s own history into consideration
during the prediction process.

2.2.2 Location-based context prediction

Over the past few years, a high number of interesting research work
with focus on context prediction techniques has been published.
These scientific works have covered a wide range of different
application fields. The prediction of future vehicular traces [41],
the prediction of pedestrians’ next paths [42], the development and
the investigation of new suitable approaches to predict next context
information [30, 35, 11] and the examination and the development
of so-called context prediction frameworks [20, 18]. Further, there
exist several research works that discusses other aspects that are of
concern for context prediction like, e.g. its legal effects [7]. This
section describes the existing state of the art in context prediction
with focus on the prediction of a user’s next location. The section
is divided into location-based context prediction using outdoor and
indoor locations of a user as contexts. Furthermore, the presented
research is evaluated with respect to the aspects presented in Table
2.1. These aspects focus on the data sets used by the authors to
evaluate their prediction approaches. Most of the work outlined in
this section has been published in [43] by the author of this PhD
thesis.
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Table 2.1: Describes the different aspects for the evaluation of the
used data sets.

abbreviation aspect

own data collected did the authors collect their own data?
data set is exten-
sive

did the authors specify how extensive their used data
set is?

pub. data used did the authors use publicly available data sets?
sim. data used did the authors use simulated data?
prob. did the authors mention problems they faced during

the data collection process?
data is published did the authors publish their data set?
approach
compared

did the authors compare the approach to existing
approaches?

approach published did the authors make their approach available for the
public?

Indoor Location Prediction

So-called smart homes represent a possible applicability for indoor
location prediction. Smart homes are self-contained ubiquitous en-
tities that offer the ideal space for observing and collecting persons’
behaviours and environmental features. The Neural Network House
project presented in Section 2.1.2 was one of the first smart home
projects. The house included a device called ACHE to predict user
actions based on their collected context information. The evaluation
of the ACHE system showed that the collected behaviour patterns
of the inhabitants did not show as much regularities as expected.
Unfortunately, the authors did not outline an exact probability of
correctness in their contributions.

Similar to the Neural Network House project is the MavHome
project conducted by Diana J. Cook et. al [44, 45]. The goal of
the project was to collect environmental context information of the
inhabitants that lived in the smart home. These collected context
data contain the movement behaviours of the inhabitants inside
the house. Afterwards, these histories were used to predict the
inhabitants’ next location to minimize maintaining costs of the home
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and to maximize the comfort of the inhabitants. The next location
predictions were made using the ActiveLeZi context prediction
approach presented in Section 2.2. Evaluation results showed
a prediction accuracy of 87%. Another approach developed in
conjunction with the MavHome project was the Episode Discovery
algorithm [46]. The Episode Discovery approach was used to pre-
process the context data received of the inhabitants by filtering
excessive noise.

In the field of indoor location prediction, a vision of smart
doorplates within an office building were introduced in [47]. Smart
doorplates were used to notify a visitor about the potential return of
an absent office owner. Based on the smart doorplates a collection of
movement data of four persons over a period of several months were
collected and were published in [37]. The so called "Augsburger
Indoor Location Tracking Benchmark" data set is publicly available
at the institute for pervasive computing [48] together with additional
context data sets. The data has been used in [37], [38] and [49]
and to evaluate and compare several data mining techniques like,
e.g., Multilayer Perceptrons, Bayesian Network or Markov Models
with the StatePredictor approach presented in Section 2.2. The
accuracy received by the StatePredictor showed that this prediction
approach is a competitive technique compared to well-known data
mining approaches. Furthermore, the Augsburger data set was used
in [36] to evaluate a context prediction technique that bases on
neuronal networks. The prediction results received by the proposed
techniques were quite similar to the results presented in [37], [38]
and [49].

An approach to infer a user’s next position that additionally uses
future knowledge derived from contextual sources such as a user’s
calendar was presented in [50]. The proposed approach extends
a O(k) Markov predictor that directly operates on states derived
from past user movements by adding knowledge of a user’s potential
presence at a future location. The potential presence time has been
extracted from the user’s calendar. The extended Markov model
was evaluated in comparison to Markov models that only used the

33



2 Context prediction in ubiquitous computing systems

user’s movement history using the Dartmouth movement traces1

data set. The gained results showed that the proposed extended
Markov model could outperform classical Markov models by 6% to
30%.

A comparison of the different introduced indoor location predic-
tion approaches with regard to the aspects outlined in Table 2.1 is
presented in Table 2.2.

Outdoor Location Prediction

One of the first approaches that used GPS data in order to make
reliable outdoor location predictions was presented in [19]. The data
have been collected for a period of four months using an external
GPS receiver. Afterwards, the authors used a modified k-means
approach to cluster the data to meaningful locations. The location
history of the user was used to infer the most likely place the user
will go next.

Another approach that inferred high-level movement behaviours
from tracked GPS data was outlined in [5]. The authors created a
data file that contains 12 hours of GPS coordinates collected over a
period of three months. This data were used to train a Bayes filter
approach combined with an Expectation Maximization approach to
learn the parameter of the Bayesian model. The trained model was
used to recognise the current transportation mode (driving by bus,
driving by car or walking) of a user. Afterwards, the information
was used to predict the most likely path the user will go next.

One of the first approaches that collected location-based context
data in form of GSM data using a mobile phone was developed in
[21] during the Context Project. The main focus of the project
was the examination and the understanding of the user’s current
context and the usage of these context data to provide automatic
inferences. Kari Laasonen et al. developed two consecutively
arranged approaches for the prediction of user movements within
a GSM-Network. The first approach [21] described the automatic
recognition of cell transitions, the learning of important locations

1http://crawdad.cs.dartmouth.edu
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Table 2.2: Evaluation of the different aspects related to the state of the art in indoor location prediction.

ref. own data
collected

data set
is
extensive

pub. data
used

sim. data
used

prob. data is
published

approach
compared

approach
published

[12] yes no no no no no no no
[44] yes no no no no no no no
[45] yes no no yes no no yes no
[30] yes yes no yes no no no no
[46] no yes no yes N/R N/R yes no
[36] no yes yes yes N/R N/R no no
[37] no yes yes no N/R N/R yes no
[38] no N/R yes no N/R N/R yes no
[49] no yes yes no N/R N/R yes no
[50] no N/R yes yes N/R N/R yes no

35



2 Context prediction in ubiquitous computing systems

and the prediction of possible important locations the user is going
to next. Therefore, the proposed prediction approach took a
sequence of recent cell transitions to find the most probable cell the
user will enter next. The data have been collected for six months
with software that runs continuously on a mobile phone. The second
approach outlined in [22] extends the first one. Instead of only
predicting the possible next important location (cell) the presented
approach tries to predict the whole path that a user will probably
go next. The gained prediction accuracy varied between 70% and
90%.

While cell-based location prediction is limited to the arrange-
ment of radio cells of the cellular network and therefore cannot
consider the exact geometry and the topology of the user’s path,
network-based location prediction using GPS can detect the user’s
position more precisely as outlined in [51]. In this paper two
prediction approaches that use synthetic trajectory data sets,
containing GPS information to predict a user’s next path, were
presented. The first approach adopts probabilistic information
while the second approach adopts a regression-based classification
technique for the trajectory prediction. The results showed that
both approaches received better prediction accuracy than random
predictions.

Not the prediction of a pedestrian’s next movement or location
was the objective in the following paper [41], but the prediction
of a driver’s possible next destination. Therefore, the authors
collected GPS waypoints from about 200 drivers for a couple of
weeks. Beyond the consideration of previously visited destinations,
the proposed Bayesian algorithm, which was performed to run
directly on a vehicle’s navigation system, also considered trends
in the data. The prediction accuracy of the algorithm improved,
the closer the driver came to his desired destination. A comparison
between different machine learning approaches for outdoor location
prediction was presented in [52]. The authors compared a spatial
context model with a Bayesian Network, a Decision Tree, a Rule-
Induction and an Instance-based classification algorithm. Further-
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more, the different approaches were combined using voting, bagging
and boosting mechanisms. The best prediction result with regard
to accuracy was achieved by applying the voting approach to the
spatial context model.

In most cases, existing approaches to outdoor location prediction
try to predict only the next behaviour or the next important place
of a user. Therefore, they do not try to look further into the
future. In [53] an approach called NextPlace is described that uses
nonlinear time series not only to predict the next location but also
to predict the user’s arrival and residence time at the next location.
To evaluate the NextPlace approach the authors used four different
data sets. Two contain GPS-based data and two contain registration
patterns of WiFi access points. The proposed approach extracted
the significant locations from the GPS data and the WiFi data.
Afterwards, two time series were derived, one that contains all start
times and one that contains all duration times related to visited
significant locations. Subsequently, these two histories were used to
predict a user’s next place, her arrival time and her residence time
with an overall prediction accuracy up to 90%.

A comparison of the different introduced outdoor location
prediction approaches with regard to the aspects outlined in Table
2.1 is presented in Table 2.3.

Interpretation of the aspects

The different indoor and outdoor location prediction approaches
presented in this section have been examined with regard to the
aspects outlined in Table 2.1. The results are presented in Table 2.2
for the indoor location prediction approaches and in Table 2.3 for
the outdoor location prediction approaches.

The most interesting fact that can be noticed is that neither in
the indoor prediction area nor in the outdoor prediction area a newly
collected data set or a developed prediction approach have been
made publicly available. Hence, it is quite difficult for interested
researchers to evaluate and reproduce the presented results. Due to
this, it is also hardly possible to compare own results with published
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Table 2.3: Evaluation of the different aspects related to the state of the art in outdoor location prediction.

ref. own data
collected

data set
is
extensive

pub. data
used

sim. data
used

prob. data is
published

approach
compared

approach
published

[19] yes yes no no yes no no no
[5] yes yes no no yes no yes no
[21] yes yes no no N/R no no no
[22] yes yes no no N/R no no no
[51] no yes no yes yes no no no
[41] yes yes no no N/R no no no
[52] no N/R no yes N/R N/R yes no
[53] no yes yes no N/R N/R yes no
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ones. The only data sets that are publicly available and that
have been used in the presented research works are the Augsburger
Location Tracking Benchmark data set, the data set created during
the Context Project and the data sets used in [53]. An additional
and extensive indoor data set containing automated recognised user
activities that might be useful for context prediction, is described
in [54].

2.3 Frameworks for context prediction

In this section two frameworks for context prediction are presented
and compared with each other.

The first framework that enables context prediction was pro-
posed by Mayrhofer in 2004 [20, 55]. The motivation of this work
was to provide a basis for the evaluation of different context predic-
tion approaches using the proposed context prediction framework.
The approaches can be loaded at runtime due to a plugin-in concept.
The proposed framework supports the context prediction task in an
online and unsupervised manner and works directly on a Win32
system as well as on WinCE, POSIX and SymbionOS. Overall
the architecture consists of four steps as presented in Figure 2.10.
The first step combines the data acquisition phase and the feature
extraction phase, which is closely coupled with the acquisition of the
sensor data. Supported sensors of mobile devices are the window
of an active application, the current audio stream, bluetooth, GSM,
network connectivity, battery power, WiFi and the video signal from
simple built-in CCD cameras.

Subsequently, in the second step, the extracted features of the
derived sensor data are classified into a set of classes. Therefore,
the "Lifelong Growing Neural Gas classification approach" first
introduced in [56] was implemented in the framework. An extended
version of the approach was published by Mayrhofer in [57]. The
classes found by the classifier will be assigned to descriptive names
given manually by the user in the labeling step. In the last step
prediction algorithms like e.g. ARMA, MLP, HMM, SVM can be
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used to enable proactivity by predicting future contexts. A practical
demonstration of the proposed context prediction framework was
given in [55] and [58]. A data set used for the demonstration of
the usefulness of the framework has been collected over a period of
two months. The data set consists of real data received from the
above-mentioned sensors of a mobile device. The focus was not to
evaluate the received prediction results of the prediction approaches
but to give a proof of concept that the proposed context prediction
architecture is able to provide context prediction in an unobtrusive
way and also performs well on devices with a weaker performance
such as mobile devices.

Figure 2.10: Context prediction architecture presented by
Mayrhofer in [58].

The second context prediction framework was published by Sigg
[16, 18] in 2007. Sigg introduced a modular context prediction
architecture that could be applied to low-level contexts as well as to
high-level contexts. The proposed context architecture outlined in
Figure 2.11 consists of three different layers. The first layer is the
acquisition layer, which is able to gather the data of different sensor
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types. Subsequently, the gathered sensor data are constantly saved
to the user’s context history. The prediction layer includes a learning
component and a prediction component. The learning component
extracts behaviour rules that base on the data stored in the context
history of the user. Based on the extracted rules and the recently
observed contexts, the prediction component predicts the user’s
context that most likely follows next. The third layer represents
the interpretation step. In this step, noise from the predicted
contexts is removed and reasoning, based on the predicted contexts,
is performed. But the main focus of the author was on context
prediction not on context reasoning. The prediction architecture

Figure 2.11: Context prediction architecture presented by Sigg in
[16].

was used to examine whether high or low-level contexts are more
suitable for predicting future contexts. Therefore, several studies
have been provided that concern the error probability and the sizes

41



2 Context prediction in ubiquitous computing systems

of search spaces with respect to high-level and low-level contexts.
The results demonstrate that the usage of low-level context resulted
in better prediction accuracies [59, 18]. For the prediction of future
contexts Sigg compared several approaches, e.g., ARMA, Markov
models and the Alignment predictor using the proposed prediction
architecture. The author applied the three approaches to two
different context histories. The first history contains data from wind
turbines, the second data set contains location based data [16]. The
ARMA approach is the dominating prediction method when using
low prediction horizons, while for longer prediction horizons the
Alignment method becomes more competitive and outperforms the
ARMA approach in context prediction studies.

The difference between the two proposed context prediction
frameworks is the way they process the sensed context data. The
architecture proposed in [20] aggregates low-level context data to
high-level context data by using unsupervised methods before the
context prediction process. In contrast to the aforementioned
approach, the proposed framework in [16] aggregates low-level to
high-level context data after the prediction process. Thus, the
prediction process showed by Sigg can be less erroneous. First,
the search space offers more information because it has not been
shrunk by calculating high-level contexts. Second, it is obvious that
clustering processes, which are used to derive high-level contexts,
can also include errors, which negatively affect the overall prediction
process. A further difference of the two prediction frameworks is
that the architecture proposed in [20] by Mayrhofer can be executed
directly on mobile devices. In contrast the architecture proposed in
[16] by Sigg has been optimised for stationary systems like desktop
or server computers. The idea of collaborativeness is not supported
by any of the two context prediction frameworks. In this thesis a
possible approach that addresses the integration of collaborativeness
in an architecture for context acquisition and prediction is outlined
in Chapter 6.
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2.4 Collaboration in associated research
fields

The aspect of collaboration is not only limited to the field of context
prediction but also finds its application in associated research fields
like activity recognition. In this section we focus on two applications
of activity recognition where collaboration has already been applied
to. These applications are, on the one hand, pedestrian dead
reckoning (PDR) to allow, e.g. self-navigation without reference
points and, on the other hand, research related to single user (SAR),
multi user (MAR) and group activity recognition (GAR).

Kloch et al. considered collaborative PDR systems to improve
the correctness of location estimation of users. In [60] the authors
used additional location information of a second user to reduce the
error rate of the determination of a user’s indoor location derived
by a PDR systems. The error results due to the double integration
needed to recognise a user’s location based on her acceleration
data. Data have been derived utilising a foot-mounted inertial
measurement unit that includes an acceleration sensor, a gyroscope
and a compass. In the conducted experiments each time two users
were less than 1m apart from each other the location information
of both users were combined to correct their individual location
estimation. The simulation results outlined by the authors showed
the dependence between the collaborative location error and the
number of users used to correct the location error. Compared to
the location error derived by using raw PDR location recognition,
which is 8m in average, the error rate could decrease to almost 2m
using location information of 600 people in their simulations.

In a consecutive paper by Kloch et al. a smartphone-based PDR
system, which uses collaboration in a real crowded public space to
prevent unbounded PDR error, was presented [61]. As presented
in the first paper the authors used the proximity information of
two users if they are near to each other to improve their location
estimation using PDR. The data set containing real movement
traces used for evaluation were collected by 12 users who attended
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to a festival. As ground truth GPS coordinates of the attendees were
used. The evaluation showed that the PDR error using raw data
could be reduced from up to 100m to 25m using the collaborative
estimation approach.

Another collaborative PDR approach using location information
of clustered groups to adjust erroneous trajectories was presented in
[62, 63]. In contrast to Kloch et al. who used location information
of user pairs to correct their location estimation, the authors used
group-based error correction whereby a group consists of several
users who are in close distance to each other and whose moving
traces are similar. In a real world experiment with 20 examinees
a relative position accuracy of 3.51m could be demonstrated by
correct PDR deviations using traces of other members belonging to
the same group.

Compared to the way collaboration is used in this thesis and
has been introduced in Section 1 the presented research works that
utilise PDR focus on the recognition of present contexts instead
of predicting upcoming contexts of a user. Furthermore, the work
presented by Kloch et al. utilises information of several users but
only combines information of two users at the same time to correct
their location estimation errors. In contrast, the idea of using
information gained by groups that include an unspecified number
of users used to correct their location estimation error presented by
Yamaguchi et al. corresponds to the way collaboration is used in
this thesis.

In the research field of detecting single and multi user activities
Gu et al. proposed an activity recognition system that is capable
to determine both SAR and MAR simultaneously [64]. SAR defines
the activity recognition of a single user whereas the activity is
only inferred from the user’s own contexts. MAR defines multiple
activity recognitions of multiple users at the same time. The
results, which base on contexts gathered from two users who acted
in a smart home environment for two weeks, showed an overall
recognition accuracy for both SAR and MAR of 89.72%.
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Gordon et al. introduced group activity recognition GAR as the
recognition of a single activity which is inferred from activities of
multiple individuals [65]. Further, the authors present a definition
of collaboration, which states that the activity recognition process
fundamentally depends on information of multiple subjects and
therefore data of multiple users have to be used to infer the activity,
which corresponds with the definition of collaboration used in this
thesis. To evaluate the proposed system for GAR an experiment
using an office scenario was conducted. To detect resulting group
activities common data mining techniques (C4.5, k-NN, Naive-
Bayes) were applied to the collected data. Using locally extracted
features a GAR accuracy of 96% was achieved.

MAR and GAR as outlined above differ in the way they utilise
the recognised context from the way the predicted context is used in
this thesis. In this thesis context information of the available users
are used to provide information to a single user. In contrast to that
MAR uses contexts of several users to simultaneously recognise
separate activities of multiple users and GAR uses contexts of
several users to detect a single context of a whole group.

2.5 Trust and privacy in ubiquitous com-
puting systems

Privacy and trust are without no doubts two important challenges
with respect to ubiquitous computing. Mark Weiser pointed out
this opinion as he formulated his vision of ubiquitous computing in
1991. Privacy and trust are closely intertwined. It is obvious that
if any kind of system respects a user’s privacy, e.g. by providing
transparency from a legal perspective, a user is most willingly to
trust a system. If a system uses, stores and processes personal data
without the knowledge of the user, it is probable that a user’s trust
in the ubiquitous computing system might decrease. Ubiquitous
computing, according to the vision of Weiser, provides transparency
to the user from the technical perspective. That implies that the aim
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of ubiquitous computing systems is to use mostly personal context
data without explicitly informing the user about this process. The
only way a user is able to recognise that her personal data have
been utilised is by noticing the autonomous adaptions, reactions
or decisions of a ubiquitous computing system according to her
behaviours. Techniques in ubiquitous computing that particular
rely on these personal context data are, e.g. context recognition
or context prediction. Both techniques are used to accomplish
autonomous adaptions, reactions or decisions of ubiquitous com-
puting systems. Therefore, the unobtrusive collection of personal
context data and the fact that users are not explicitly requested
and informed that their data are collected and used are two major
drawbacks that cause privacy issues. The third major drawback of
ubiquitous computing systems is the fact that contexts are mostly
processed on a server, e.g. due to performance aspects. This implies
that the user loses control of her data.

In the following, principles and guidelines how trust and privacy
could be fulfilled in ubiquitous computing are outlined. These
principles have been published in [66] by Langheinrich first:

• notice, which means that users should receive a simple
notification, if they are monitored or if their personal data
are collected. Langheinrich, e.g. proposed some kind of
announcement system similar to a radio traffic announcement
system, RFID tags that passively announce data collection
or the usage of the P3P developed at the World Wide Web
Consortium.

• choice and consent, means that it is not sufficient to simply
notify the user whose data are collected, but also her explicit
consent for the data collection process is required. This can,
e.g. be achieved by signing a contract. Langheinrich also
mentioned the ineffectiveness of confirming a data transfer,
e.g. via a user’s smartphone because it always requires the
attention of the user. Further, the author remarked that
even if a single person declines a service it should be able
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to selectively disable certain functionality without disabling
the whole ubiquitous computing system.

• anonymity and pseudonymity, means that a user can not
be identified by her data because no link exists between a
user and her personal context data. This would guarantee
100% security to the user. Langheinreich has already identified
that anonymity prevents applications in ubiquitous computing
to support the user based on her personal data because of
the missing link between the user and her data. The author
proposed that the pseudonymisation of the data could be an
alternative.

• proximity and locality, means that data of other persons
can only be collected by a sensor if the sensor owner is in close
proximity to the sensor. This could prevent the intentional
and unintentional collection of others personal data. Re-
garding locality, Langheinreich proposed the possibility that
context data should be bound to the location the data were
collected in.

• adequate security, means that the communication channel
used to transmit personal context data of a person to the
surrounding ubiquitous computing system should be secure.
Langheinrich identified a bunch of constraints to security
with respect to ubiquitous devices. An example is the power
consumption of such devices, which could be quite insufficient
to ensure a secure communication.

The presented principles outlined by Langheinrich offer good
and visionary guidelines to establish and strengthen trust and
privacy in ubiquitous computing in general. Actually, the
investigation of direct consequences for techniques that are used
in ubiquitous computing such as context prediction is still missing.
An investigation how well existing algorithms used for context
prediction satisfy existing legal requirements is presented in Chapter
4.
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Another paper of Langheinrich [67] discusses the very interesting
fact that there are situations, when users feel invaded in their
privacy by ubiquitous computing systems. One situation occurs, if
personal context information are constantly recorded and stored
externally. These data can, e.g. easily be "played back" by
third parties. This possibility might influence users in the way
they behave. The second situation derives from the possibility to
constantly store and access personal data. This enables the creation
of personal user profiles. These profiles could result in a "glassy
user" whose privacy can barely be protected. Today, there are
plenty of services in the World Wide Web that are able to easily
create user profiles. Another reason where users feel being invaded
in their privacy is the fact that their personal information may cross
social borders. This includes, e.g. information shared between a
user and her doctor that are transmitted to the user’s employer.
A further interesting example is the possibility of inferring a user’s
next action based on her already collected context data. This reason
urgently emphasises that context prediction, as one technique in
ubiquitous computing system, affects a user’s privacy.

A privacy and trust architecture for context aware systems
was developed during the Awareness project [68]. The architecture
ensures that a person will be informed if her personal data are
sensed and transferred to an external party. But more important,
a user has to give her explicit consent before personal data can
be transmitted. Further, the architecture takes trust relationships
into account. That basically means if user X trusts user Y and
user Z trusts user X than user Z also automatically trusts user Y.
One important aspect of privacy and trust, the pseudonymisation
of contexts, to prevent third parties of creating profiles has not
been taken into account. The resulting architecture finally offers an
infrastructure for context-aware mobile applications while aspects
of privacy and trust are considered. The overall aspects are user
controlled privacy, context-aware security and context-aware trust
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management. The architecture was validated through prototyping
with mobile health applications.

A conceptual framework of privacy management to enable
social awareness in ubiquitous systems was presented by Raento
et al. in [69]. The authors applied a descriptive instead of a
normative definition of privacy and trust. Therefore, their ideas to
trust mainly grounded on social psychology. The authors identified
constituents for trust such as control, which is similar to giving
consent, accountability, plausible deniability, reciprocity and utility.
These constituents have been considered during the implementation
of an application called ContextContacts. The application enriches
mobile phone contacts with additional information e.g. the current
and the last position of the contact, the phone usage activity of the
contact, the presence status and the phone profile of the contacts
[69].

Control as one identified constituent of trust has been
implemented in the ContextContacts application by providing
the user with a so called self-view, which shows every context
information that has been sent to other users. Further, the user
can decide whether she wants to be visible to other users or not.
Accountability, the possibility to see the users who had access
to a user’s contexts, has been implemented to ContextContacts
to overcome the feeling of being monitored by other users. The
aspect of plausible deniability has not been implemented in the
application but shows a really interesting and challenging idea:
"how is it possible that a context aware system offers white lies,
e.g. the automatic denial of a user’s presence?". The aspect of
reciprocity has been achieved by only showing the presence status
of other contacts in the application, if the contact’s own status is
visible too, which is an important aspect because it automatically
puts all contacts on the same level. The aspect of utility has been
mentioned by the authors in theory: "Design of technical systems
cannot rely on utility only. Requirements from privacy management
should instead be seen the same way legal requirements are seen...".
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In total the paper presents some motivating ideas how trust and
privacy can be implemented in real-world applications. Further, it
sensitises the reader that the consideration of trust constituents is
as important as the implementation of technical functionalities.

To the best of our knowledge, the first who basically discussed
possible privacy and trust implications regarding the user whose
contexts have been used during the context prediction process were
Nurmi et al. [7]. They identified the acquisition and the storage
of user contexts as one possible step in the context prediction
process, which raises privacy and security issues. As reasons they
mentioned the scattered collection of data by various sensors in
an heterogeneous environment and the possibility to access these
collected data by third parties. As a possible solution they indirectly
mentioned the framework of Mayrhofer, which is able to overcome
these problems because it directly runs on a user’s mobile device
and it gathers only data from built-in sensors (cf. Section 2.3).

Furthermore, the authors proposed two interesting ideas how
the prediction process can be extended. First, they proposed the
usage of P2P communication not to provide trust but to overcome
possible scalability concerns. Second, they proposed prediction
sharing, which enables other users to use predicted information of
friends or trustful persons. In our opinion, this indicates an initial
idea to collaboration in the field of context prediction. Nevertheless,
there still does not exist a solution for a prediction process that
uses several histories of different users in a collaborative way using
P2P communication to provide more trustfulness for the users. A
first possible solution is presented and discussed in this doctoral
thesis in Chapter 6.

An extensive overview of privacy and its challenges in ubiquitous
computing is given in [70]. Despite understanding privacy in terms
of ubiquitous computing, the authors of the book chapter present
existing technical solutions for privacy in ubiquitous computing.
Existing privacy solutions to common ubiquitous computing
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challenges are motivated using examples from smart spaces (Confab
Toolkit [71], PawS system [72]), RFID (tags as identifier [73]) and
location-based services (survey to location privacy [74]). Further,
the authors try to provide an introduction for the reader respectively
to the application provider of how privacy can be addressed. The
conclusion of the authors is that there are no simple answers to this
question, because so far, there do not exist algorithms or routines
that fix the privacy issue. In this thesis this fact is adressed with
respect to context prediction by providing a first evaluation in
Section 4.4 of existing context prediction algorithms regarding
their legal implications on the user introduced in Section 4.3. To
create ubiquitous computing applications that address privacy,
the author proposes three steps: understanding the impact of the
application on the user, understanding how the users interact with
the application and understanding the limits of current security
technology used by the application. The proposed steps only reflect
general guidelines, which indicate that application development in
ubiquitous computing is quite challenging due to its far-reaching
implications on the users.

Addressing trust and privacy in ubiquitous computing,
applications are important points to enable software to become more
socially acceptable. The Venus project [8] at Kassel University has
the goal to explore a development method that allows to develop
socially acceptable software in ubiquitous computing systems by
design. User requirements in terms of usability, trust and legal
regulations are considered in an interdisciplinary manner during
the technical development process. In the following, publications
from the Venus project are presented.

In [9] a ubiquitous computing application called Support-U is
evaluated with respect to its social acceptability. Socially acceptable
means whether the application development process considers, e.g.
a user’s right to informational self-determination respectively trust
as a determinant of technology usage. Support-U addresses the
field of Ambient Assisted Living (AAL) and combines it with
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the field of ubiquitous computing to enable elderly persons to live
autonomously. The evaluation outlined in the paper basically shows
that considerations of social aspects during the development process
likely improve the acceptability of ubiquitous computing systems.

In [75] interdisciplinary patterns to address challenges in
the development of context aware applications in ubiquitous
environments with respect to their social acceptability are outlined.
Two patterns the so called "TrustParency pattern" and the "Self-
determination pattern" were presented in more detail. By utilising
the Self-determination pattern it can be ensured that the user
can decide whether she wants to provide her personal contexts
for, e.g. a context prediction process, which is similar to the
principle "choice and consent" mentioned by Langheinrich. If the
user declines the functionality she can explicitly prevent the system
from storing her personal data used for the prediction process.
Therefore, the user may not lose control of her personal data.
The application of the TrustParency pattern enables the user to
receive information about the sensors installed in the ubiquitous
environment that surrounds her. For this reason, the presented
pattern primarily supports the transparency. It is not about
the transparency from a technical point of view but it is about
the transparency from a legal point of view, which enables the
user to understand the system that utilises her personal contexts.
By enabling transparency the TrustParency pattern encourages
a user’s trust in using context aware application. Both patterns
were identified during the interdisciplinary development process of
the Support-U application. Finally, an evaluation that included a
user survey in form of a questionnaire was performed to determine
whether the used patterns could improve a user’s trust and privacy.
The evaluation showed that the current version of Support-U, which
has been developed by using the aforementioned interdisciplinary
patterns, resulted in a stronger feeling of trust and privacy of the
users compared to previous versions of Support-U.
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A further example how to design socio-technical applications
for ubiquitous computing was presented in [76]. First, requirements
to design socio-technical ubiquitous computing applications, e.g.
risks of data transmissions and the usage of personal data, were
defined. Subsequently, a development proposal how socio-technical
ubiquitous computing application can be designed was outlined.
The proposed development approach consists of an iteration of
analysis, conceptual and software design, as well as implementation
and evaluation. A detailed description of the method is provided
in the paper. To give a proof of concept, the authors applied their
development proposal on the smart mobile application Meet-U. The
case study outlines that the resulted version of Meet-U considers
legal aspects, is more usable and more trustworthy than the first
version.

A detailed introduction to a method supporting trust for socio-
technical ubiquitous applications is given in [77]. So-called trust-
supporting components were derived to encourage a user’s trust in
ubiquitous computing applications. To examine the effectiveness
of the trust-supporting components, the authors integrated
the components to an application for the recommendation of
restaurants. Finally, the application, which has been developed
being based on the derived trust components, was evaluated with
the help of 166 test persons. The evaluation results show that a
user’s trust and a user’s willingness to use the application could be
increased significantly using trust-supporting components.

2.6 Conclusions

In this chapter the background to context prediction was introduced
first. Subsequently, the Alignment predictor, the StatePredictor
and the ActiveLeZi context predictor were presented, as well as an
overview to existing location-based context prediction approaches
was outlined. The presented approaches were evaluated with
respect to different criteria. Furthermore, existing frameworks for
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context prediction and existing research works concerning trust and
privacy in ubiquitous computing systems were presented and shortly
discussed.

The wide diversity of research work focussing on trust and
privacy with respect to ubiquitous computing applications shows
the significance and the importance of this topic. This is even more
the case if personal data of several users are combined and used
in a collaborative manner. Therefore, in this thesis the state of
the art context prediction approaches, as well as the collaborative-
based context prediction approach that is presented in the following
chapter, will be evaluated with regard to their compatibility to
the right to informational self-determination. Later in this thesis,
a possible solution to receive a prediction process that can be
considered to be legally acceptable will be discussed.
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Chapter 3

Collaborative-based
Context Prediction

Context prediction is used to proactively adapt, e.g. ser-
vices to users’ needs. Due to the fact that context
prediction enables proactiveness, it has a high significance
for ubiquitous computing systems. To the best of our
knowledge, research literature on context prediction only
focuses on the history of the user whose next context has
to be predicted. In case a user suddenly changes her
behaviour in an unexpected way, the context history of
the user does not contain appropriate context information
to provide reliable context predictions. Hence, context
prediction algorithms that only rely on the user’s context
history whose context has to be predicted, will fail to predict
the appropriate future context. To overcome the gap of
missing context information in the user’s context history,
the Collaborative Context Prediction (CCP) approach is
proposed. CCP takes advantage of existing direct and
indirect relations, which may exist among the context
histories of various users. Thereby, CCP bases on the
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Higher-order Singular Value Decomposition, which has al-
ready been successfully applied in existing recommendation
systems. To provide an evaluation of CCP the approach is
compared to state of the art context prediction approaches
with respect to prediction accuracy. For the evaluation
collaborative data sets are used. These data sets consist of
context histories of different users which are located in the
same ubiquitous environment.

3.1 Motivation

One interesting research issue in the field of context-aware systems
and environments is context prediction. Based on the available
context data, such systems predict future contexts of a user.
With the help of these predicted contexts, users in ubiquitous
environments can be assisted to a greater extend in different ways.
Taking for example, a research assistant who presents the progress
of her work in the same room every week. Before she enters
the room for her next presentation, the context-aware system
automatically adapts the designated services in the room to be ready
for her presentation using a prediction system spanning the whole
university. Possible context information useful for the prediction are
her movement patterns or devices she has already interacted with
in the past. A common approach to enable the prediction of future
context is to make use of the gathered and stored contexts related
to the user’s actions or to the user’s environment. The information
is needed by a context prediction algorithm to predict contexts for
a given context pattern. Thereby, a context pattern is a sequence of
contexts. However, if the research assistant gives her presentation
in a room she has not been before, her present movement patterns
might be unknown to the context prediction system. It can therefore
be considered that, context prediction approaches that only rely on
the context history of a single user might fail to predict the user’s
next context. Therefore, the proactive adaptations of the services
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would not take place [1]. For this reason the information space
is expanded by also considering users that are located in nearby
surroundings or show sufficient similarity to the user whose context
pattern is currently unknown. Based on the upcoming collaborative
relations among these users, the term ubiquitous environment is
extended to the term Collaborative Ubiquitous Environment. As
already successfully demonstrated in the work of recommender
systems, existing user profiles in collaborative environments like,
e.g. Last.fm1 or Flickr2 can be used to support other users in these
environments. A recommendation of interesting items to buy, using
for example similar user profiles is just one possibility. If this aspect
is transferred to the field of context prediction, it can be can assumed
that users, which are located in the same Collaborative Ubiquitous
Environment as the user whose current context pattern is unknown,
may have similar interests. For this reason their context histories
might show similarities, too. The similarities in the context histories
of the users are used to bypass the currently unknown context
pattern of the individual user. A Collaborative-based Context
Prediction (CCP) approach is proposed that increases the possibility
to make a currently unknown context pattern of a user available to
predict the next future context. The CCP approach utilises the
Higher-order Singular Value Decomposition (HOSVD) technique,
which is introduced in Section 3.3. To find similarities HOSVD is
applied to the context histories of the user whose present context
is unknown and to the context history of at least one additional
user who is in the same Collaborative Ubiquitous Environment.
The Higher-order Singular Value Decomposition method has already
been successfully applied in the research field of tag recommendation
[2]. CCP utilises HOSVD to enrich the context histories of the users
with additional latent information. Latent information comprises
new context parts in the context history of the user that were
formally unknown and that can additionally be used to infer future
contexts. A combination of a context pattern and a future context is

1http://www.last.fm, last accessed: 2013-04-20
2http://www.flickr.com/, last accessed: 2013-04-20
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User Context History

Collaborative Ubiquitous Environment
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Figure 3.1: Presents n users of a Collaborative Ubiquitous Envi-
ronment with n different context histories. Equal context parts
are marked in the same colour. Every context part in the context
history Hi of the user Ui consists of two elements. Cp ∈ CP indicates
the context pattern and Fc ∈ FC indicates the future context that
follows the previous context pattern.

called a context part. HOSVD uses existing relations (equal context
parts) between the context histories of the users to find possible
latent information. The Collaborative Ubiquitous Environment
presented in Figure 3.1 that forms the foundation for the CCP
approach consists of three different entities. The first entity is
represented by the users U ∈ U of the Collaborative Ubiquitous
Environment, the second entity by the set of possible context
patterns Cp ∈ CP and the third entity by the set of predictable
future contexts Fc ∈ FC. Equal context parts in the collaborative
ubiquitous environment are marked in the same colour. Further, a
context history Hi ∈ H of a user Ui is described by Hi ⊆ CP ×FC.
Altogether the Collaborative Ubiquitous Environment consists of n
different users, m different context patterns and j different future
contexts.
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3.2 Mathematical derivation of HOSVD
for collaborative-based context pre-
diction

In this section the mathematical derivation of the Higher-order
Singular Value Decomposition (HOSVD), which forms the basis
for the Collaborative-based Context Prediction (CCP) approach
is outlined. Therefore a short introduction to the Singular Value
Decomposition (SVD) and to the tensor data structure is given.
The presented mathematical derivations outlined and used in this
section are based on the descriptions given in the master thesis [3]
of the author of this PhD thesis.

The notation of the matrices and the tensors that are used to
store the data for the prediction process which have been derived
from a ubiquitous environment is determined by Kiers [4]. Hence,
matrices are presented in capital and bold letters, e.g. A. Vectors
are presented in lower case letters, e.g. a and elements of a matrix
are represented by aij . Tensors are illustrated by bold and capital
letters with an underscore T ∈ 	I1×I2×...×In . An element of a third
order tensor T ∈ 	|I1|×|I2|×|I3| is for example determined by ti1i2i3 .

3.2.1 Singular Value Decomposition

By applying the Singular Value Decomposition, square matrices
and non-square matrices can be decomposed in a product of three
matrices. The decomposition of a given matrix A in the product of
the matrices U,Σ,VT is given in Definition 6.

According to the unitary characteristic of the matrices UI1×I1

and VT
I2×I2

the column vectors of both matrices are orthogonal
to each other. Furthermore, the length of the column vectors
of both matrices is standardised. Therefore, the column vectors
of both matrices are also orthonormal to each other. Based
on the orthogonal characteristic of both matrices the simplified
calculation outlined in equation 3.1 and 3.2 can be used, whereby
E symbolises the unit matrix. HOSVD takes advantage of the
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simplified calculation of the inverse matrix to decompose a given
higher-order tensor structure outlined in Section 3.2.3.

Definition 6 (SVD)
The Singular Value Decomposition is used to decompose a
given matrix A ∈ 	I1×I2 into a product consisting of three
matrices. The resulting decomposition of A is A ∈ 	I1×I2 =

UI1×I1ΣI1×I2V
T
I2×I2

.
• UI1×I1 is an unitary matrix.

• ΣI1×I2 is a diagonal matrix whose values can not be
negative.

• VT
I2×I2

is the transposed matrix of the unitary matrix
VI2×I2 .

UTU = UUT = E (3.1)

VTV = VVT = E (3.2)

Both matrices U and V result from the calculation of the
eigenvectors (cf. Definition 7) of AAT and ATA. The singular
values stored in Σ represent the square root of the calculated
eigenvalues (cf. Definition 8) of U and V. U and V do have the
same eigenvalues. The eigenvalues are stored on the diagonal of
the matrix Σ according to their significance in a descending order,
∀σ ∈ Σ |σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0. The column vectors of U are
referred to as left singular vectors and the column vectors of VT are
referred to as right singular vectors.

In general, the SVD can be used to weight data that has
been stored in a matrix A according to their generality and their
significance. Thereby, the column vectors of the matrices U and V

encode the weighted data of the matrix in their column vectors. The
first column vector v1 holds the most relevant data. The singular
value σ1 with the highest number accordingly represents the square
root of the eigenvalue λ1 which satisfies Av1 = λ1v1.
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Definition 7 (Eigenvector)
An eigenvector s a non-zero vector that is mapped by a given
linear transformation of a vector space onto a vector that is the
product of a scalar multiplied by the original vector.

Definition 8 (Eigenvalue)
Given a matrix A and a corresponding eigenvector v the scalar
λ is called eigenvalue of A if it satisfies Av = λv.

As a result that the SVD decomposes a given matrix into a
product of three matrices where the data of the given matrix is
stored in U and VT according to their relevance, SVD can be used as
a possible option for data reduction. This is possible by calculating
an approximation A′ of A by A′ = UΣVT by only considering the
eigenvectors of U and VT whose singular values are higher than a
given threshold ξ. If A′ is calculated by a reduced number of column
vectors of U and VT the rank of the matrix A′ is also reduced to
the number of singular values that exceeds the given threshold ξ (cf.
Definition 9). Despite A′ has been calculated only considering the
most relevant data of U and VT the dimensions of A′ are still the
same size as A. Hence, it is possible to filter noise in the matrix A

which can be caused by irrelevant data. A well known approach that
utilises SVD to filter relevant data, e.g. to provide spam detection
is Latent Semantic Indexing [5].

Definition 9 (Rank of a matrix)
The rank r of a given matrix A is determined by its number of
non zero singular values.

Picture 3.2 visualises the decomposition of the matrix A with its
dimensionality I1×I2 in its product UΣVT and the approximation
of A′ by reducing its rank.

3.2.2 Discussion of the tensor data structure

A tensor represents a multidimensional array and is defined as
follows:
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A U=

A = U
^

^

Figure 3.2: Decomposition of matrix A using SVD.

Definition 10 (Tensor)
A tensor with an order of n is an element of a tensor product
that consists of n vector spaces. Each vector space has its own
coordinate system [6].

In contrast to a matrix, a tensor can be used to represent
existing relations with a higher order than 2. However, for further
consideration, third-order tensor structures are used to store and
represent the relations of the three relevant entities of a ubiquitous
environment: the users U ∈ U their context patterns Cp ∈ CP
and their possible next contexts Fc ∈ FC as outlined in more
detail in Section 3.3. Picture 3.3 presents a third-order tensor
T ∈ 	|U|×|CP|×|FC|. The represented tensor consists of three
dimensions and can be pictures as a cuboid.

The presented tensor T ∈ 	|U|×|CP|×|FC| consists of |FC|
matrices A

(1)
|U|×|CP| . . .A

(|FC|)
|U|×|CP| that hold the relations between

the users U and the different context patterns CP of a ubiquitous
environment.
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Figure 3.3: Third-order tensor T ∈ 	|U|×|CP|×|FC|.

A tensor data structure can be decomposed in fibers and
slices. Fibers can be determined as different vector representations.
A third-order tensor can be decomposed in three different fiber
representations as outlined in Figure 3.4. Column fibers can be
determined by t:CpFc, row fibers can be determined by tU :Fc and
tube fibers can be determined by tU Cp :.

Figure 3.4: Different fiber representations of a third-order tensor
[6].

Further, a given third-order tensor can be decomposed in so
called slices. In contrast to slices, which represent matrices where
two dimensions of the third-order tensor are fixed, fibers represent
vectors and therefore one dimension has to be fixed. Overall
there exist three different slice representations as outlined in Figure
3.5. Frontal slices are given by T: :Fc, lateral slices by T:Cp : and
horizontal slices by TU : :.
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Figure 3.5: Different slice representations of a third-order tensor [6].

The presented decompositions of a tensor are relevant because
the SVD can only by applied to matrices. As presented, a third-
order tensor can be decomposed in three different matrix represen-
tations also called modes. Therefore, a tensor T ∈ 	|U|×|CP|×|FC|

can be transformed into the following three modes TU TCp and TFc

which are presented in the equations 3.3, 3.4 and 3.5:

T ∈ 	|U|×|CP|×|FC| −→ TU ∈ 	|U|×|CP|∗|FC| (3.3)

T ∈ 	|U|×|CP|×|FC| −→ TCp ∈ 	|CP|×|U|∗|FC| (3.4)

T ∈ 	|U|×|CP|×|FC| −→ TFc ∈ 	|FC|×|U|∗|CP| (3.5)

A further prerequisite to apply the HOSVD presented in Section
3.2.3 to reduce data stored in a tensor structure is the n-Mode
product outlined in [7]. The n-Mode product is used to multiply an
n-order tensor structure with a given matrix. The n-Mode product
is defined as follows:
Definition 11 (n-Mode Product)

Is A a tensor with a dimensionality I1×I2×. . . In×. . . IN and U

a matrix with a dimensionality of J × In , the n-Mode Product
of A and U is defined by A×n U.

The result of the n-Mode product is given by tensor A′. It
has a dimensionality of I1 × I2 × . . . J × . . . IN . Using the n-
Mode product the matrix U has been multiplied with the nth mode
A

In×I1∗...In−1∗In+1∗...IN
n of the tensor A. The usage of the n-mode
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product illustrates that it can be used to reduce or to enlarge the size
of the nth mode of the given tensor A. In order to be more precise
the the size of nth dimension of the tensor A has been changed to
the size of the first dimension of the matrix U.
In the following the n-Mode product is applied to the 3-order tensor
T ∈ 	|U|×|CP|×|FC|. Thereby, the first mode of T is multiplied with
a given matrix A1 ∈ 	I1×|U|, the second mode with a given matrix
A2 ∈ 	I2×|CP| and the third mode is multiplied with a given matrix
A3 ∈ 	I3×|FC|. The resulting 3-Mode product looks as follows:

T ∈ 	|U|×|CP|×|FC| ×1 A1 ∈ 	I1×|U|

×2 A2 ∈ 	I2×|CP| ×3 A3 ∈ 	I3×|FC| (3.6)

For the calculation of the 3-mode product the first mode of T is
multiplied with the matrix A1. Subsequently, the second mode of
the resulting tensor T′ is multiplied with the matrix A2. Finally,
the third mode of T′′ is multiplied with A3. 3.7 and 3.8, 3.9, 3.10
presents the calculation of the 3-mode product in detail.

(((
T ∈ 	|U|×|CP|×|FC| ×1 A1 ∈ 	I1×|U|

)

×2 A2 ∈ 	I2×|CP|
)
×3 A3 ∈ 	I3×|FC|

) (3.7)

T′ ∈ 	I1×|CP|×|FC| = A
(1)
I1×|U| ∗T ∈ 	|U|×|CP|∗|FC| (3.8)

T′′ ∈ 	I1×I2×|FC| = A
(2)
I2×|CP| ∗T ∈ 	|CP|×I1∗|FC| (3.9)

T′′′ ∈ 	I1×I2×I3 = A
(3)
I3×|FC| ∗T ∈ 	|FC|×I1∗I2 (3.10)

T′′′ ∈ 	I1×I2×I3 in 3.10 represents the result of the 3-mode
product. With respect to T ∈ 	|U|×|CP|×|FC| the size of the
dimensions of the resulting tensor changed accordingly to the size
of the first dimension of A(1), A(2) and A(3). The possibility
to adapt the sizes of the dimensions of a given tensor applying
the n-Mode product is utilised by the Higher-order Singular Value
Decomposition, which is shortly introduced next.
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3.2.3 Higher-order Singular Value Decomposi-
tion

As basis for the Higher-order Singular Value Decomposition
(HOSVD) the SVD and the tensor decomposition have been
already discussed. Both techniques are utilised by the HOSVD
to approximate data in a given tensor structure. The HOSVD
has been first published in [7]. HOSVD represents a generalisation
of the proposed decomposition method for three-way arrays [8].
In contrast to the proposed method presented by Tucker the
HOSVD approach can also be applied to n-order tensors. Essential
components of HOSVD are the SVD, the tensor decomposition
and the n-Mode product. Assumed a tensor T ∈ 	|U|×|CP|×|FC| is
given, it is shown that the approximation of T calculated with the
HOSVD (cf. Equation 3.11) is defined by the n-Mode product of T
with the transposed of the left-singular matrices calculated from its
n different modes using the SVD.

Σ = T×N
n=1 A

(n) (3.11)

It is assumed that a matrix T ∈ 	I1×I2 is represented as a
tensor T ∈ 	I1×I2×1 with order 2. Further, it is assumed that T is
decomposed in its two modes M(1) and M(2) as shown in equation
3.12 and 3.13.

M(1) = T ∈ 	I1×I2∗1 (3.12)

M(2) = T ∈ 	I2×I1∗1 (3.13)

Subsequently, the two modes M(1) and M(2) will be decomposed
in a product of the three matrices U,Σ,VT using the SVD as
outlined in Section 3.2.1. The decompositions are outlined in 3.14
and 3.15.

SVD
(
M

(1)
I1×I2

)
= U

(1)
I1×I1

Σ
(1)
I1×I2

V
(1)T
I2×I2

(3.14)

SVD
(
M

(2)
I2×I1

)
= U

(2)
I2×I2

Σ
(2)
I2×I1

V
(2)T
I1×I1

(3.15)
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If Σ(1) ∈ 	I1×I2 is represented as a tensor Σ(1) ∈ 	I1×I2×1 and
if Σ(1) is further inserted with the two left-singular matrices U(1)

I1×I1

and U
(2)
I2×I2

in the n-Mode product presented in definition 11 the
following equation can be outlined:

TI1×I2×1 = Σ
(1)
I1×I2×1 ×1 U

(1)
I1×I1

×2 U
(2)
I2×I2

(3.16)

Due to the orthogonality of U(1) and U(2) the equation in 3.16
can be transposed into the equation outlined in 3.17.

Σ
(1)
I1×I2×1 = TI1×I2×1 ×1 U

(1)T
I1×I1

×2 U
(2)T
I2×I2

(3.17)

Equation 3.17 shows that the approximation Σ of a given tensor
T can be calculated by using the n-Mode product whereby T is
multiplied with the transposed left-singular matrices calculated from
its different modes. According to the 3-order tensor structure used
to store the data of a ubiquitous environment, the following equation
results:

T|U|×|CP|×|FC| = Σ|U|×|CP|×|FC| ×1 U
(1)
|U|×|CP|∗|FC|×2

U
(2)
|CP|×|U|∗|FC| ×3 U

(3)
|FC|×|U|∗|CP|

(3.18)

To calculate the approximation of the tensor T|U|×|CP|×|FC|, the
equation presented in 3.18 is finally transposed into the equation
outlined in 3.19.

Σ|U|×|CP|×|FC| = T|U|×|CP|×|FC| ×1 U
(1)T
|U|×|CP|∗|FC|×2

U
(2)T
|CP|×|U|∗|FC| ×3 U

(3)T
|FC|×|U|∗|CP|

(3.19)

A visualisation of the HOSVD is given in Figure 3.6. The picture
represents a visualisation of the equation outlined in 3.18. The
cuboid T represents the tensor T|U|×|CP|×|FC| which is reduced to
the tensor Σ|U|×|CP|×|FC| by only considering the column vectors
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of the left-singulars matrices U(1), U(2), U(3) whose corresponding
singular values exceed a given threshold ξ, which is symbolised by
dashed lines.

Figure 3.6: Visualisation of the decomposition of the tensor
T|U|×|CP|×|FC| using the HOSVD.

A complete calculation of Σ of a given tensor T using the reduced
left-singular matrices U

(1)
c1 ∈ 	|U |×c1 , U

(2)
c2 ∈ 	|CP |×c2 , U

(3)
c3 ∈

	|FC|×c3 is provided as follows:
Using the 3-mode product outlined in the equation 3.19 results

in the equation 3.20.

Σc1×c2×c3 = T|U|×|CP|×|FC| ×1 U
(1)T
|U|×c1

×2

U
(2)T
|CP|×c2

×3 U
(3)T
|FC|×c3

(3.20)

In 3.21 the stepwise calculation of Σ is presented.
(
T|U|×|CP|×|FC| ×1 U

(1)T
|U|×c1

)
∈ 	c1×|CP|×|FC|

((
T|U|×|CP|×|FC| ×1 U

(1)T
|U|×c1

)
×2 U

(2)T
|CP|×c2

)
∈ 	c1×c2×|FC|
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Σ =
(((

T|U|×|CP|×|FC| ×1 U
(1)T
|U|×c1

)
×2 U

(2)T
|CP|×c2

)
×3

U
(3)T
|FC|×c3

)
∈ 	c1×c2×c3

(3.21)

In 3.22 the stepwise calculation of the tensor T′ is presented. T′

holds the original relations plus additional latent relations between
U , CP and FC.

(
Σc1×c2×c3 ×1 U

(1)
|U|×c1

)
∈ 	|U|×c1×c2

((
Σc1×c2×c3 ×1 U

(1)
|U|×c1

)
×2 U

(2)
|CP|×c2

)
∈ 	|U|×|CP|×c3

T′ =
(((

Σc1×c2×c3 ×1 U
(1)
|U|×c1

)
×2 U

(2)
|CP|×c2

)
×3

U
(3)
|FC|×c3

)
∈ 	|U|×|CP|×|FC|

(3.22)

As can be seen, the sizes of the three dimensions of T′ are
the same as the sizes of the dimensions of the original tensor T.
Therefore it can be ensured that the approximated tensor T′ still
holds the original relations and therefore the application of the
HOSVD does not result in losing original relations that have been
stored in T.

3.2.4 Efficient calculation of latent relations us-
ing HOSVD

The equation to calculate the approximated tensor T′ presented
in 3.22 always calculates all possible latent relations between the
entities U , CP , FC of a ubiquitous environment. This has two
major drawbacks. First the calculation of T′ might be time
consuming depending on the sizes of the three entities. Second
the needed memory storage of T′ might be quite high because the
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resulting tensor is dense and contains solely 64-bit floating values.
Assumed that the size of |U| = |CP| = |FC| = 1000, then the
overall size of T′ will be 109 ∗ 8 byte ≈ 7.45 GB. The algorithm
presented in pseudocode snippet 1 shows a possibility to overcome
the above mentioned draw-backs by only calculating all possible
latent relations that exist between exactly one U ∈ U and Cp ∈ CP
and ∀Fc ∈ FC. In other words, the result of the algorithm is a tube
fiber tU Cp : as presented in Figure 3.4. The presented algorithm
1 has six input parameters. The core tensor Σ ∈ 	c1×c2×c3

whose dimension sizes have been reduced to c1, c2 and c3, the
reduced left-singular matrices Uc1 ∈ 	|U|×c1 , Uc2 ∈ 	|CP|×c2 and
Uc3 ∈ 	|FC|×c3 calculated from the three different modes of the
original tensor T|U|×|CP|×|FC| and used to calculate Σ. Further
parameters are the user U ∈ U and her context pattern Cp ∈ CP.
The output parameter of the algorithm is a tube fiber of T′ that
holds all possible relations of U ∈ U and Cp ∈ CP and ∀Fc ∈ FC.

In line 1 of the proposed algorithm the core tensor Σ is
decomposed in its first mode Σc1 . Lines 6 to 12 show the first two
steps of the 3-Mode product outlined in equation 3.22 in a simplified
form. Thereby, the while loop iterates over the column vectors of
the first mode. Line 11 ensures that only the column vectors of
the first mode will be considered that contain information about
the given context pattern Cp ∈ CP. Line 7 represents the first
calculation step of the proposed 3-Mode product. Thereby only
these parts of Uc1 that are relevant for the calculation of the latent
relations with respect to U are considered. The result is given by
a1 ∈ 	1×c2 . Line 8 represents the second calculation step of the
proposed 3-Mode product. Again, only the parts of the matrix Uc2

are considered that are relevant for the calculation of the latent
relations with respect to Cp. The result is given by a2 ∈ 	1×1 and
stored in b. After the while loop b has the form 	c3×1. In lines 14
to 16 the final latent relations for a given U and Cp with ∀Fc ∈ FC
will be determined. Thereby, the for loop iterates |FC| times and
calculates at each run the possible value of the relation for a given
U and Cp with the respective Fc ∈ FC. The result resi has the
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form 	1×1 and holds the value of the relation. The final tube fiber
resU Cp : has the form 	1×|FC|. Compared to the size of T ′ which
is 7.41 GB for an assumed size of |U| = |CP| = |FC| = 1000 the
resulting size of resU Cp : is 103 ∗ 8 byte ≈ 7.81 kB.

Data: Σ ∈ 	c1×c2×c3 , Uc1 ∈ 	|U|×c1 , Uc2 ∈ 	|CP|×c2 ,
Uc3 ∈ 	|FC|×c3 , U , Cp

Result: res ∈ 	FC×1

1 Σc1 ∈ 	c1×c2∗c3 ← Σ ∈ 	c1×c2×c3 ;
2 b← [ ];
3 start← 1;
4 end← c2;
5 counter ← 0;
6 while end ≤ c2 ∗ c3 do
7 a1 ← Uc1(U, :)×Σc1(:, start : end);
8 a2 ← Uc2(Cp, :)× aT1 ;
9 b[counter]← a2;

10 start← start+ c2;
11 end← end+ c2;
12 end
13 res← [ ];
14 for i← 1 to |FC| do
15 res[i]← Uc3(i, :)× b;
16 end
Algorithm 1: Algorithm for the calculation of all possible
relations between exactly one U ∈ U and Cp ∈ CP and
∀Fc ∈ FC given a tensor Σ ∈ 	c1×c2×c3 .

3.3 Illustration of the CCP approach

For the storage of the data that is used to calculate possible new
context pattern in the history of a user, a 3-order tensor is used for
its representation as outlined in Section 3.2.2. The tensor consists of
three dimensions and stores the relations between the users U ∈ U
their context patterns Cp ∈ CP and their possible future contexts
Fc ∈ FC. Figure 3.7 illustrates an example how data from the
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collaborative ubiquitous environment as presented in Figure 3.1 can
be mapped to a 3-order tensor data structure T ∈ 	|U|×|CP|×|FC|.

U1

U2

U3

Un

Cp1Cp2Cp3 Cpm

Fc1

Fc2

Fcj

1
1

1

1

1

1

Figure 3.7: 3-order tensor T ∈ 	|U|×|CP|×|FC| to store data of a
collaborative ubiquitous environment [9, 1].

The existing relations between U , CP , FC, that are stored in
the tensor, are given by S ⊆ U × CP × FC. Every existing relation
in S is marked with a 1 in the tensor structure. All relations that
do not exist between the users, the context patterns and the future
contexts are given by R := (U×CP×FP)\S. All possible relations
that do not exist are treated as zeros and are not displayed in the
tensor data structure. As can be seen in Figure 3.7 every user has
only stored a few context patterns in her history. That is because
users have different and a limited amount of behaviour patterns that
they follow periodically. In the context history of, e.g. the user U3,
two relations in the tensor T can be seen. Context pattern Cpm
leads to the future context Fc1 and context pattern Cp1 leads to
the future context Fcj . HOSVD is applied to use existing relations
between the context histories of the users to minimize the size of
R the number of unknown context pattern in the user’s history
by finding latent relations. Therefore, the presented equations in
3.21 are used to calculate the 3-order core tensor Σ ∈ 	c1×c2×c3

whose three dimension are reduced to the information that span
the space that contains the most relevant information, i.e., the data
whose corresponding singular values are higher than a freely chosen
threshold for each dimension. Figure 3.8 shows the core tensor -
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painted in red - as it can look like. The core tensor symbolises
the approximation of the tensor T ∈ 	|U|×|CP|×|FC|. The size of
the dimension U is reduced to c1, the size of the dimension CP is
reduced to c2 and the third dimension FC is collapsed to the size of
c3.

c1

c2

c3

Figure 3.8: 3-order core tensor Σc1×c2×c3 structure that contains
the ci most relevant data of every dimension [9, 1].

After calculating the core tensor Σ, HOSVD retransforms the
core tensor to the initial dimension size of the tensor T by reusing
the n-mode product outlined in 11. Afterwards, the resulting tensor
T′ ∈ 	|U|×|CP|×|FC| concludes new information in terms of new
relations between the three different entities U , CP , FC.

In order to visualise the Collaborative Context Predictor, an
illustrative example is given in this section. Please note that the
algorithm presented in 1 is not used to partially calculate T’ in
this example. To provide a better understanding T’ is completely
calculated. This example consists of three users of a collaborative
ubiquitous environment. The gathered high-level contexts of a
user are respectively stored in her own context history. In total,
there exist five different contexts: W = W alking, S = S itting,
T = sTanding, D = going stairs Down, U = going stairs Up.
The context histories represent parts of real gathered high-level
contexts and characterise a user’s movement behaviour. Section
3.4.1 provides detailed information on the data set.

Figure 3.9 presents the collaborative ubiquitous environment
which consists of the three context histories of the users. As
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outlined, the collaborative ubiquitous environment consists of three
entities: the users, their context patterns and their possible future
contexts. Equal context parts in the histories of the users are
marked the same colour. As illustrated in Figure 3.1, every context
part consists of exact one context pattern Cp ∈ CP and exact one
future context Fc ∈ FC. The size of the context parts is equally
determined to a window size of four in this example. In general the
chosen window size depends on the number of contexts stored in a
user’s context history and on the number of different contexts. The
length of |Cp| = 3 and the length of |Fc| = 1. Overall, there are
five different contexts, five different context parts and each context
history includes eight context parts in this example.

User (U)

Context Pattern (CP)

WWW|T WWW|T W T S|W WWW|T S T U|U W T S|W S T U|U S T U|U

D W D|W U UW|U D W D|W U UW|U U UW|U D W D|W DW D|W U UW|U

W T S|W U UW|U W T S|W U UW|U S T U|U U U W|U S T U|U S T U|U

Future Contexts (FC)

Figure 3.9: Collaborative Ubiquitous Environment consisting of
three different users. Each history of a user comprises contexts
that describe a user’s different movement behaviours.

As it can be seen the context history of U1 does not provide
information for the context pattern {DWD, UUW}, the history of
U2 does not provide information for the context pattern {WWW,
WTS, STU} and in the history of U3 the context patterns {WWT,
DWD} haven’t been stored yet. Hence, e.g. it is not possible to
provide a prediction for next sensed context pattern to U1 if this
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context pattern is either DWD or UUW. To ensure the prediction
of the users’ unknown context patterns the CCP approach to find
existing latent relations between the histories is applied. The
approach takes advantage of direct and indirect relations between
the histories of the users. Direct relations are characterised by
equal context parts between two users. Indirect relations between
two users, e.g. U1 and U2 exist if the following two conditions are
fulfilled:

• U1 and U2 do not have the same context pattern,

• U3 features similarities of both U1 and U2.
To be more precise:

• A direct relation Ui ⊕ Uj between two users Ui ∈ U and
Uj ∈ U exists if Ui ⊕ Uj ⇐ ∃Cpn ∈ CP ∨ ∃Fcm ∈ FC :

T (Ui, Cpn, F cm) �= 0 ∧T (Uj , Cpn, F cm) �= 0.

• An indirect relation between two users Ui and Uj exists if
¬ (Ui ⊕ Uj) ∧ (Ui ⊕ Uk ∧ Uj ⊕ Uk).

The direct and indirect relations between the three users are
further visualised by Figure 3.10. The context parts located in the
intersection between two users represent an existing direct relation
between the two users. As a result, U1 ⊕ U3 and U2 ⊕ U3 and
¬ (U1 ⊕ U2). The indirect relation between U1 and U2 implies
that both users share different context parts with another user U3,
which can be understood as a friend of a friend relationship. These
indirect respectively latent relations between the users can be used
to additionally enrich the context histories of a user. If for example
the current inferred context pattern of U1 is DWD or UUW, both
are unknown to U1, the CCP approach can be used to automatically
extract possible indirect relations between U1 and the other users in
a collaborative ubiquitous environment to enrich the context history
of U1. As a result, a possible predict of the next walking behaviour
of U1 based on a previously unknown movement pattern DWD can
be provided.

85



3 Collaborative-based Context Prediction

DWD|W

User Context History
Collaborative Ubiquitous Environment

WWW|T WWW|T WTS|W WWW|T STU|U WTS|W STU|U STU|U

DWD|W UUW|U DWD|W UUW|U UUW|U DWD|W DWD|W UUW|U

WTS|W UUW|U WTS|W UUW|U STU|U UUW|U STU|U STU|U

WWW|T

WTS|W

STU|U
UUW|U

Figure 3.10: Exemplarily outlines the existing direct and indirect
relations between three users in an collaborative ubiquitous envi-
ronment.

To enrich the histories of the users with further information,
that can be used to predict suitable future contexts for so far
unknown context patterns, e.g. for U1, the context histories of
the users of an collaborative ubiquitous environment are mapped
to a 3-order tensor structure. The tensor represents the existing
direct relations between the different entities. With regard to
the collaborative ubiquitous environment outlined in Figure 3.9
a 3-order tensor structure with size T ∈ 	3×5×3 results that
represents the information of 3 users, five different context pattern
and 3 different future contexts. The mapping of the information
of the collaborative ubiquitous environment to the 3-order tensor
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structure is outlined in Figure 3.11. The first dimension of the
tensor represents the users U , the second dimension represents
the different context patterns CP existing in the collaborative
ubiquitous environment and the third dimension represents the
different existing future contexts FC.

Mapping
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Figure 3.11: Mapping of the existing relations between the entities of
a collaborative ubiquitous environment to a 3-order tensor structure.

Afterwards, the HOSVD is applied on the 3-order tensor to
calculate the core tensor Σ that spans the information space that
only contains the most relevant information of the collaborative
ubiquitous environment. The resulting core tensor structure is
Σ ∈ 	1×5×3 in this example. Subsequently, based on the
reduced information space, the tensor T′ that includes additional
latent relations between the entities of the collaborative ubiquitous
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environment, is calculated. The latent relations in T′ are symbolised
by new existing values. Because context patterns do not map
to multiple future contexts in this example the relations between
users, context patterns and future context in the resulted tensor
T′ are unique. Otherwise, the future context with the highest
value, that forms a relation to a given user and context pattern,
forms the most probable relation. The transformation of tensor T

to T′ is presented in Figure 3.12. In the top of the picture the
transformation of the underlying information space that changes
during the calculation process is outlined for further visualisation.
In the beginning, the original information space whose dimensions
are weighted according to their corresponding singular values can be
seen. Subsequently, the information space is reduced to the amount
of eigenvectors that contain the most relevant information (Σ).
Finally, the reduced eigenspace is expanded to the size of the original
information space, whereby the calculation of the relations between
the entities only bases on the reduced eigenspace. As a result
an enriched information space is received that contains additional
latent relations between the entities of the collaborative ubiquitous
environment. The increase of information in tensor T′ can be seen
by its additional values that represent new existing relations. To
provide a prediction for the context pattern DWD and UUW to U1,
the new relations, provided by the resulted tensor T′, can now be
utilised. For the pattern DWD, W alking can be predicted and for
UUW, going stairs Up can be predicted. The resulting prediction
for DWD is plausible, because U1 shares the same context patterns
STU, WTS with U3 and therefore has a direct relation. The same
applies to the prediction for pattern UUW, because U1 has a direct
relation to U3 and U3 has a direct relation to U2. For this reason
U1 and U2 have an indirect relation. The example shows that CCP
can be used to enrich the context histories of users by using existing
direct or indirect relations to context histories of other users.

88



3 Collaborative-based Context Prediction

Applying HOSVD
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Figure 3.12: Outlines the tensor T and the resulting tensor T′ after
applying the HOSVD.

3.4 Evaluation

In this section a proof-of-concept of the CCP approach is given.
CCP is evaluated in three different experiments. In the first
experiment, which is outlined in Section 3.4.1, CCP is compared
with the state of the art context prediction approaches introduced
in Section 2.2. For the evaluation a data set that contains movement
data of different users derived from a smartphone is used. In the
second experiment (cf. Section 3.4.2) the number of algorithms
that are compared to CCP is extended by three well-known data
mining algorithms. For the evaluation the Augsburger data set
[10] and a modification of the Augsburger data set is used. In the
third experiment, which is presented in Section 3.4.3, a first person
shooter is used to generate large synthetic and highly collaborative
data sets including in-game movement behaviours of controlled
characters. Subsequently, these data sets are used to evaluate the
proposed context predictors.
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3.4.1 Experiment 1

In this section the CCP approach is compared with the ActiveLeZi
predictor, the Alignment predictor and the StatePredictor regarding
the prediction accuracy using a real world context data set. The
data set contains acceleration data, which has been recorded using
the accelerometer in a smartphone. The acceleration data has
been annotated with the movements performed by users, similar
to the experiments performed in [11]. Smartphones used to
record the accelerations of the users include a Nokia N95 8GB,
a 5730 Xpressmusic and a N900. Each user was equipped with
a smartphone, kept in the trouser pocket. The users performed
five different movements {sitting, standing, walking, go upstairs,
go downstairs}. The annotation of a user’s movement behaviour
was performed with a Nokia N800 Internet Tablet using a graphical
logging tool. Afterwards, the recorded acceleration data and
the performed annotations for each user were combined using a
script. To transform the recorded time series (acceleration data)
to a string representation, the Symbolic Aggregate approXimation
(SAX) proposed by Lin et. al [12] was used. The transformation is
necessary because the context prediction approaches utilised in the
evaluation only work on contexts, which are represented as strings.
The magnitude of the raw acceleration data was transformed into
a sequence of alphabetical symbols, to transform the numerical
data to data described by strings. In order to achieve this,
each time series was normalised and split into windows with a
length of four seconds. Next, each window was transformed into
a piecewise aggregate approximation (PAA) representation of the
given normalised time series. Finally, the PAA representation was
converted into strings, consisting of different symbols, using the
distance matrix defined in Lin’s work. After applying SAX to the
acceleration data, strings that represent the movement behaviour
of a user with a length of 32 are obtained. Each string represents
exactly one movement of a user, e.g. sitting. In total, the string
consists of six different symbols {a, b, c, d, e, f}. To gain a
higher number of possible different contexts the different movement
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behaviours of the users were subdivided. This was achieved by using
a simple clustering approach that clusters each string sequence into
three sub clusters. Sub clusters of the string representations for
"go downstairs" are, e.g. represented by {B0, B1, B2}, sub clusters
of the string representations for "go upstairs" are represented by
{C0, C1, C2}, etc. To cluster the string representations gained
by SAX, the applied clustering algorithm uses the distance matrix
presented in [12]. As a result, each context history of a user consists
of 15 different high-level contexts that finally characterise the
movement behaviours of the respective user. Figure 3.13 illustrates
an exemplary time series, each with a window size of four seconds.
The left time series characterises the movement pattern "going
upstairs" and the right time series "going downstairs". The red
curves represent the time series of the recorded acceleration data.
The blue curves indicate the transformation of the raw acceleration
data into the alphabetical symbols. The data snippet below shows
the label, the SAX transformation of the acceleration data and the
respective sub cluster label of a user’s recorded movement pattern.

For the experiments four context histories of different users
were used. Every context history contains approximately 1000 sub-
clustered and time ordered context information, resulting from the
recorded movement behaviours of the users. The labels represent
the contexts, which form a basis for a prediction approach to
predict a user’s next context. To provide a representative number
of different evaluation sets, the context histories were split using
different sizes three, five and seven for the length of the context
parts (cf. Section 3.3). A context part with a size of three for
example, consists of two sub cluster labels representing the context
pattern Cp ∈ CP and one sub-cluster label representing the future
context Fc ∈ FC. That means that the prediction of a user’s next
context bases on the two last seen contexts of a user. Moreover,
additional evaluation sets were generated by removing context parts
that occurred successively. Data sets without successive context
parts are called single-mode data sets, data sets with successive
context parts are called all-mode data sets. Altogether, there are six
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different types of data sets generated from a user’s context history
used to evaluate the prediction accuracy of the different approaches.

GoDownstairs - baecdbbbeedfebceeaceebabfeaceeda - B1

GoDownstairs - cdcccccccbcdfaacddefbbcefacdcddb - B0

...

GoDownstairs - bacbfbabddebabbfdabdfdcabbfabcfe - B2

GoUpstairs - ebebbcefadebbdfeafebdfcaeccccddb - C1

...

GoUpstairs - ccdcdccbcefdcabfccbcfddaafdccbfd - C1

GoUpstairs - eafbbbceccbbfddbcdeabfcbfaaedccb - C2

...

...

Figure 3.13: Transformation of the acceleration data into a symbolic
representation using the SAX approach. Below, a snippet of a user’s
movement history is outlined [1].

The CCP, the Alignment predictor, the ActiveLeZi predictor and
the StatePredictor approaches were applied to various test data sets
for the evaluation. A test data set consists of the intersections of
the context histories Hi ∩ Hj = {Hi, Hj |Hi ∈ H ∨ Hj ∈ H} of
two users Ui, Uj . Intersections represent equal context parts that
occur in both histories Hi, Hj . For every test data set, there are
three training data sets that are used to build the prediction models
for the respective context prediction approach. The first training
data set contains the information of the context histories of the
two users; the test data set has been generated from. The second
training data set extends the information of the first one by adding
the context history of a third user. The third data set extends the
second by adding the history of a fourth user. For the prediction
process the "leave-one-out" strategy was used for the three context
prediction approaches. For this reason, each single context part of
the test data set is removed temporally one after the other from
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the context history of the corresponding user in the current training
data set. Every time a single context part is removed temporally,
the prediction model is constructed anew with the reduced training
data set and the built model is used to predict the future context
of the context pattern given by the current context part of the test
data set. Finally, the predicted context is compared with the future
context also given by the current context part afterwards.

Altogether, 24 different test data sets were generated. The
test data sets result from the calculation of the intersections of
different combinations of context history pairs. The intersection
of the context histories of U1 and U2, U2 and U3, U1 and U3

and U2 and U4 were calculated. In addition, each combination
was combined with the aforementioned three lengths of the context
parts and the two different data set modes single-mode and all-
mode. The prediction accuracy of CCP compared with the accuracy
gained by the ActiveLeZi predictor, the Alignment predictor and the
StatePredictor is presented in the following.

Interpretation of the results

In this section, the prediction results received by the different
approaches are compared and interpreted. Figures 3.14, 3.15, 3.16,
3.17, 3.18, 3.19, 3.20 and 3.21 present and compare the gained
prediction accuracy of CCP and ActiveLeZi. The accuracy results
of CCP compared with the results of the Alignment predictor are
presented in Figures 3.22, 3.23, 3.24, 3.25, 3.26, 3.27, 3.28 and
3.29. Finally, Figures 3.30, 3.31, 3.32, 3.33, 3.34, 3.35, 3.36 and
3.37 present the results of CCP compared to the StatePredictor ap-
proach. Each figure presents the gained accuracy of the approaches
on the y-axis. On the x-axis the different sizes of the context parts
are outlined. For each context part size three, five and seven, there
exist three accuracy results for each prediction approach. In total,
there are six bars for each context part size.

1. How does the accuracy of the approaches evolve depending on
the number of context histories used to train the prediction
model?
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2. How does the accuracy of the approaches evolve according to
the chosen context part size?

3. How do the different data set modes (single, all) affect the
prediction accuracy of the approaches?

4. How does CCP perform compared with the respective state of
the art prediction approaches?

The only exception can be found in the presentation of the
accuracy results of the alignment predictor. Each figure contains
a legend, which outlines the colour of the respective prediction
approach according to the applied number of user context histories
that are used to build the prediction model. The results of the
CCP approach are presented in different shades of blue. The
results of the ActiveLeZi approach in different shades of red. The
results of the Alignment predictor in light red and the results of the
StatePredictor approach are presented in different shades of green.
The results gained by the CCP approach vary depending on the
different used data sets. Compared to the different state of the art
predictors they remain the same. Table 3.1 presents the different
sizes of the tensor structures (T1,T2,T3) used by the CCP approach
to store the relations of the collaborative ubiquitous environment
that consists of the users, their different movement behaviours and
their possible next movements. The sizes of the dimensions vary
because the number of used context histories differs from data set
to data set. For the calculations of the core tensor Σ only the
dimensionality of the users has been reduced. A larger number of
experiments, where all of the three dimension U , CP ,FC have been
reduced to different sizes, showed that the reduction of U to a size of
one, while the sizes of CP ,FC remain constant, always leads to the
best prediction results. Therefore, the calculation of T′ always bases
on the core tensor Σ ∈ 	1×|CP|×|FC|. Further, Table 3.1 outlines the
different amounts Ψ of context patterns (intersections between the
context histories of a user pair) stored in the respective test data
set used to evaluate the prediction approaches. In the following,
the prediction results of CCP compared with the three state of the
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Table 3.1: Tensor dimensionality for the different context part sizes of the four test data sets.
context part size = 3 context part size = 5 context part size = 7

Fig. T1 T2 T3 Ψ T1 T2 T3 Ψ T1 T2 T3 Ψ

3.14,
3.15,
3.22,
3.23,
3.30,
3.31

2x44x11 3x63x11 4x68x11 54 2x104x11 3x136x11 4x183x11 34 2x123x11 3x184x11 4x250x11 18

3.16,
3.17,
3.24,
3.25,
3.32,
3.33

2x53x11 3x64x11 4x66x11 48 2x130x10 3x180x10 4x232x10 32 2x142x10 3x209x10 4x275x10 12

3.18,
3.19,
3.26,
3.27,
3.34,
3.35

2x54x11 3x59x11 4x67x11 44 2x125x11 3x160x11 4x205x11 28 2x125x11 3x176x11 4x239x11 10

3.20,
3.21,
3.28,
3.29,
3.36,
3.37

2x61x11 3x68x11 4x75x11 68 2x143x10 3x188x10 4x232x10 38 2x153x11 3x221x11 4x277x11 16
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art context predictions will be discussed according to the following
points:

CCP compared to ActiveLeZi predictor Figure 3.14 and
Figure 3.21 compare the gained prediction results of CCP and the
ActiveLeZi predictor. According to point 1 the prediction accuracy
of the CCP and ActiveLeZi predictor increases in nearly all cases if
the number of context histories, that can be used as knowledge
bases, exceed the amount of context histories the test data set
has been generated from. An exception to this rule is given by
the outline of the prediction result of CCP for the context part
size of three in Figure 3.21. In this case no improvement of the
prediction accuracy was achieved. ActiveLeZi always increases its
prediction accuracy if additional context histories are used. It
can be recognised that the usage of four context histories does
not automatically lead to better prediction results. Figures 3.18,
3.16 exemplarily show this effect. Some reasons for this effect are
discussed later in this section. According to point 2 both, the CCP
and the ActiveLeZi approach, received better prediction results the
higher the size of the context parts is. This is due to the fact that
the higher the size of the context part the less is the number of the
available context parts that can be created from the context histories
of the users. According to point 3 it can be recognised that the
prediction of CCP for the all-mode data sets achieves better results
than for the single-mode data sets. This is due to the fact that the
repeated occurence of equal context parts can be utilised by CCP to
make a more profound prediction decision. The prediction decisions
of the ActiveLeZi approach, however, are only barely effected by the
repeated occurence of equal context parts. The results presented
in Figure 3.16 and Figure 3.17 even show no differences in the
achieved prediction accuracy of ActiveLeZi. According to point 4
the results presented on the eight figures indicate that the CCP
approach outperforms ActiveLeZi in predicting the future context
of a user based on unknown context patterns by 20% to 50%, varying
from the data set.
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Figure 3.14: Test data sets generated from the intersections of U1

and U2. Single data mode used. Number of context parts is 54, 34
and 18.

 0

 20

 40

 60

 80

 100

CP=3 CP=5 CP=7

A
c
c
u
r
a
c
y
 
i
n
 
%

Size of Context Parts

Based on test dataset of user 2 and user 3 (single data)

2User(CCP)
2User(AL)

3User(CCP)
3User(AL)

4User(CCP)
4User(AL)

Figure 3.16: Test data sets generated from the intersections of U2

and U3. Single data mode used. Number of context parts is 48, 32
and 12.
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Figure 3.15: Test data sets generated from the intersections of U1

and U2. All data mode used. Number of context parts is 54, 34 and
18.
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Figure 3.17: Test data sets generated from the intersections of U2

and U3. All data mode used. Number of context parts is 48, 32 and
12.
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Figure 3.18: Test data sets generated from the intersections of U1

and U3. Single data mode used. Number of context parts is 44, 28
and 10.
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Figure 3.19: Test data sets generated from the intersections of U2

and U3. All data mode used. Number of context parts is 44, 28 and
10.
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Figure 3.20: Test data sets generated from the intersections of U2

and U4. Single data mode used. Number of context parts is 68, 38
and 16.
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Figure 3.21: Test data sets generated from the intersections of U2

and U4. All data mode used. Number of context parts is 68, 38 and
16.
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CCP compared to Alignment predictor Figure 3.22 to Fig-
ure 3.29 compare the gained prediction results of CCP and the
Alignment predictor. In the following, only the results received
by the Alignment predictor are discussed. The results of CCP have
already been presented in Figures 3.14 to 3.21. According to point
1 the received results show that the Alignment predictor always
gets the same prediction results, regardless whether it uses two,
three or four context histories. This indicates that the Alignment
approach gets most of the information it needs to make a reliable
prediction from the two context histories the test data set has been
generated from. Therefore, in this experiment, it does not benefit
from additional context histories of the users. The light red bar
in the figures represents the prediction accuracy of Alignment for
all three different knowledge base sizes. According to point 2 the
Alignment predictor continuously increases its prediction accuracy
the higher the size of the context parts is. The distribution of the
context histories in context parts with different sizes show that the
prediction accuracy is less accurate for smaller context parts sizes
and is getting more accurate for higher context part sizes. That
is because the smaller the chosen context part size, the higher the
number of entries in the test data set and the more ambiguous is
the data in the data set. Point 3 shows that the single-mode data
sets mostly lead to less accurate prediction results by the Alignment
predictor in comparison to its prediction results received by using
the all-mode data sets. CCP provides more accurate prediction
results than the Alignment approach for all examined test data sets,
as can be seen in point 4. CCP outperforms Alignment depending
on the chosen data set by 20% to 40%.
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Figure 3.22: Test data sets generated from the intersections of U1

and U2. Single data mode used. Number of context parts is 54, 34
and 18.
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Figure 3.23: Test data sets generated from the intersections of U1

and U2. All data mode used. Number of context parts is 54, 34 and
18.
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Figure 3.24: Test data sets generated from the intersections of U2

and U3. Single data mode used. Number of context parts is 48, 32
and 12.
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Figure 3.25: Test data sets generated from the intersections of U2

and U3. All data mode used. Number of context parts is 48, 32 and
12.
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Figure 3.26: Test data sets generated from the intersections of U1

and U3. Single data mode used. Number of context parts is 44, 28
and 10.
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Figure 3.27: Test data sets generated from the intersections of U1

and U3. All data mode used. Number of context parts is 44, 28 and
10.
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Figure 3.28: Test data sets generated from the intersections of U2

and U4. Single data mode used. Number of context parts is 68, 38
and 16.
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Figure 3.29: Test data sets generated from the intersections of U2

and U4. All data mode used. Number of context parts is 68, 38 and
16.
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CCP compared to StatePredictor Figure 3.30 to Figure 3.37
compare the gained prediction results of CCP with the results
received by the StatePredictor. In the following, only the results
received by the StatePredictor are discussed.

According to point 1 the received results of the StatePredictor
outline that in contrast to the CCP, the Alignment predictor and
the ActiveLeZi predictor, that could mostly increase their prediction
accuracy using additional context histories, the accuracy of the
StatePredictor mostly decreases while using additional context
histories. This effect can exemplarily be seen in Figure 3.30, 3.31
and 3.35.

Point 2 shows that the StatePredictor always receives the worst
results while using the smallest size for the context parts compared
with the Alignment, ActiveLeZi and the CCP approach. If a context
part size of five or seven is used, the StatePredictor is competitive
to Alignment and ActiveLeZi.

The single-mode data sets mostly lead to less accurate predic-
tion results by the StatePredictor approach in comparison to its
prediction results received using the all-mode data sets, as can be
seen in point 3. An exception is given by the results in Figure 3.36.
Here, the predictor receives better results on the single-mode data
set than on the all-mode data set.

According to point 4 CCP provides more accurate prediction
results than the StatePredictor approach for all examined test data
sets except for the single-mode data set created of the intersections
of U2 and U4 using a context part size of seven (cf. Figure 3.36).
CCP outperforms the StatePredictor approach depending on the
chosen data set up to 50% cf. Figure 3.33.
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Figure 3.30: Test data sets generated from the intersections of U1

and U2. Single data mode used. Number of context parts is 54, 34
and 18.
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Figure 3.31: Test data sets generated from the intersections of U1

and U2. All data mode used. Number of context parts is 54, 34 and
18.
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Figure 3.32: Test data sets generated from the intersections of U2

and U3. Single data mode used. Number of context parts is 48, 32
and 12.
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Figure 3.33: Test data sets generated from the intersections of U2

and U3. All data mode used. Number of context parts is 48, 32 and
12.
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Figure 3.34: Test data sets generated from the intersections of U1

and U3. Single data mode used. Number of context parts is 44, 28
and 10.
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Figure 3.35: Test data sets generated from the intersections of U1

and U3. All data mode used. Number of context parts is 44, 28 and
10.
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Figure 3.36: Test data sets generated from the intersections of U2

and U4. Single data mode used. Number of context parts is 68, 38
and 16.

 0

 20

 40

 60

 80

 100

CP=3 CP=5 CP=7

A
cc

ur
ac

y 
in

 %

Size of Context Parts

Based on test dataset of user 2 and user 4 (all data)

2User(CCP)
2User(ST)

3User(CCP)
3User(ST)

4User(CCP)
4User(ST)

Figure 3.37: Test data sets generated from the intersections of U2

and U4. All data mode used. Number of context parts is 68, 38 and
16.
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Summary of Experiment 1 In the presented experiment, the
CCP approach has been compared to three state of the art context
prediction approaches that have been introduced in Section 2.2. To
compare the approaches, they have been used to predict a user’s
next movement based on her own context history and based on
additional context histories of other users. The used movement data
have been recorded using the acceleration sensor of a smartphone
carried in the users’ trouser pockets. The numerical acceleration
data were pre-processed using the SAX approach to receive string
representations of the contexts. The context histories have been
segmented into context parts using different window sizes of three,
five and seven. Afterwards, the intersections (equal context parts)
between different pairs of context histories were determined and
stored in different test data sets. Each context part of a test
data set is removed temporally one after the other by the context
history of the corresponding user in the appropriate training data
set to simulate missing context information in a user’s context
history. Altogether, 24 different test data sets were generated.
The experiment showed that CCP is able to obtain quite accurate
prediction results, even if the underlying context information is
missing in the context history of the respective user. Furthermore,
the results indicate that CCP almost consistently receives better
prediction accuracy than the ActiveLeZi predictor, the Alignment
predictor and the StatePredictor approach.

Finally, it can be noticed that the prediction accuracy of the
different approaches is not consistantly getting better if additional
context histories are added. The reason for this can be the increase
of ambiguity meaning that a context pattern induces to different
future contexts, which makes a decision for a context prediction
approach even more difficult.

3.4.2 Experiment 2

In this section the CCP approach and the three state of the art
context prediction techniques presented in Section 2.2 are compared
with three common data mining classification techniques. The
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reason is to evaluate, on the one hand, which technique performs
best and, on the other hand, to evaluate if common and well-known
classification techniques outperform algorithms specifically used in
the field of context prediction. A further aspect of this experiment
is the evaluation of the CCP approach using a publicly available
and well-known context data set. As data mining classifiers a J48
tree classifier, a Bayesian Network classifier and a classifier based on
Decision Tables have been used. The context prediction approaches
have been implemented in Java. The data mining algorithms were
used from the Weka Data Mining Software [13].

For the evaluation of the algorithms two data sets were used.
The first data set is the Augsburger data set introduced in [10, 14].
The second data set is a slightly modified version of the Augsburger
data set, called Augsburger_2 in this experiment. In this modified
version a sliding window approach with a window size of four was
used to add additional data to the data set. The aim was to increase
the number of existing direct relations between the context histories
of the different users that are encapsulated in this data set. The
coefficient Θ outlined in Table 3.2 indicates the average similarity
between the four context histories of the users that are encapsulated
in the Augsburger data set and in its modified version.

The Augsburger data set basically consists of location informa-
tion of four different persons. The location data were collected
manually by using a graphical user interface implemented on a PDA.
With the help of this graphical user interface, each user labels her
current location. Locations are different rooms in an office building
(cf. Figure 3.38). For each person two data sets have been recorded.
One data set contains data collected in the summer period one data
set contains the data that were collected in the fall period. In this
experiment the summer and the fall data of a user were combined to
one history. Hence, each user has exactly one data set respectively
one context history that contains the user’s location contexts.

Afterwards, each data set was segmented using a windows size
of four. Consequently, every context history of a user consists
of context parts with a size of four, whereby the fourth context
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Figure 3.38: Graphical user interface used to label the locations of
the users and a map of the office building the data were collected in
[14].

symbolises the future contexts that should be predicted after seeing
the first three contexts (context pattern). In contrast to the
presented evaluation in [15], which used the summer data sets
of the users to train the prediction models and the fall data set
to evaluate the trained prediction models, in this experiment the
test data were extracted from each context history to evaluate the
prediction accuracy of the context prediction approaches and the
data mining algorithms. In total, approximately 8% of the context
data of each context history of a user were randomly picked and
stored in a test data set. For the evaluation of the prediction
accuracy of the different approaches the context histories of the users
were concatenated to one history. All algorithms, except the CCP
approach, used the concatenated histories as data basis to train or
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to create their prediction models. The final prediction accuracy of
the different approaches result from calculating the average value of
the four prediction accuracies received by applying the approaches
to the four test data sets. The prediction results are outlined in
Table 3.2.

The first three rows present the results of the data mining
techniques. The second four rows the results of the context
prediction approaches and Θ presents the similarity coefficient of
the related data set. This coefficient specifies the similarity of
the different user context histories of a data set. To calculate the
similarity coefficient, the context histories of the users have been
split into contexts parts using the sliding window approach outlined
in Figure 2.5 in Chapter 2 first. Subsequently, the occurrences of
the context parts in the different context histories were compared
to each other. Finally, Θ results from average accordances of the
context parts in the histories of the users.

Table 3.2: Prediction accuracies of the different evaluated prediction
and data mining approaches.

Augsburger Augsburger_2
BayesNet 55.6% 60%

DecissionTable 44.9% 57.5%

J48 Tree 54% 58%

ActiveLeZi 55% 13%

Alignment 55% 11%

StatePredictor 61% 57%

CCP 28% 63%

Θ 0.6% 32%

The results show that the evaluated context prediction ap-
proaches ActiveLeZi, Alignment and StatePredictor achieved results
that are slightly higher than those received by the well-known data
mining approaches for the not modified version of the Augsburger
data set. CCP received the lowest accuracy rate on the Augsburger
data set. An explanation for this result can be given considering the
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similarity coefficient Θ. As outlined, the average similarity of the
four context histories is approximately 0.6%, which is extremely low.
With respect to the average number of context parts (approximately
132) that are stored in the context histories of the users in the
Augsburger data set, an average similarity of 0.6% indicates that
there exist only three to four equal context parts in a pair of
context histories on average. Apparently, this is a not sufficient
direct relations for the CCP approach to make reliable predictions.
With respect to the Augsburger_2 data set the CCP approach
received the best prediction accuracy. This is due to the fact that
the Θ coefficient of the modified Augsburger_2 is higher than the
Θ coefficient of the Augsburger data set. Therefore, the number
of existing relations (equal context parts) between the context
histories of the users is higher, because of adding data using a
sliding window approach. The data mining approaches could also
improve their prediction results. However, the prediction accuracy
of the Alignment and the ActiveLeZi approach dropped drastically.
The reason for this can be the fact that using the sliding window
approach comes along with adding ambiguous information to the
data set.

3.4.3 Experiment 3

In this section an evaluation of the CCP approach and the ap-
proaches presented in Section 2.2 using a synthetic data set,
extracted from a first person shooter, is presented. One of the most
challenging aspects in context prediction, besides the considerations
of a user’s trust and privacy, is the collection of context data,
needed to evaluate context prediction approaches. This is due to
different reasons. One reason is that public environments, private
houses and working places become more and more ubiquitous but
the installation of sensors and access to the data derived by these
sensors is not easy and not always possible. This is the case, because
personal data is mostly private and can not be accessed. And even
if the collection is permitted, the infrastructure to collect these data
often does not exist or is heterogeneous. Therefore, the collection of
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context data often takes place in controlled environments and is also
limited to a certain use case. Examples can be found in [14], [16] and
[17]. A further reason that complicates the acquisition of context
data is the time and the manpower needed to collect sufficient data.
A possibility to generate context data in a short period of time and
with nearly no need of manpower is to simulate a certain use case.
Therefore, e.g. Siafu [18], an open source context simulator tool,
can be used. The disadvantage of using context simulation tools is
the fact that the generated context data is simply simulated and
provides no evidence that persons would act the same way if they
were in the same situation in real life. The same problem may occur
if real persons act in a controlled and closed environment, because
people tend to behave unnaturally if they feel observed.

A possible solution to the above mentioned challenges can be
given by computer games, e.g. by so-called first person shooters.
These games have some characteristics that can be considered as
advantages for the simple simulation of contexts or the acquisition
of contexts by persons in controlled environments. The most
significant advantages are the following:

• Computer games, e.g. first person shooter games are valid
candidates to be considered as ubiquitous environments. First,
a first person shooter provides an environment users can
move around in, they perform actions and interact with other
users. Second, first person shooters contain a large number of
information that can be considered as users’ contexts such as
locations, behaviour patterns, scores, used items, locations of
items, etc. One very prominent ’computer game’ not a shooter
game but a good example to motivate the consideration of
computer games to be seen as ubiquitous environments can
be "Second Life" [19].

• Gathered contexts such as, e.g. locations, velocity or used
items in first persons shooter games are not simulated but
correspond to the actual behaviour of a character in the game.

• Characters are intuitively and naturally controlled by users.
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• Users follow realistic goals. These goals can be, e.g. to win
against an opponent, to defend or to attack certain points in
the game or to follow certain movement behaviours.

• Games, e.g. first person shooter games are highly collabora-
tive. This includes group behaviours and tactics.

• People around the world play computer games, respectively
first person shooter games. For this reason, a high amount of
context data can be generated rapidly.

In [20] a first person shooter game called ’Quake III Arena’ has
already been used to demonstrate and test context-aware services.
In detail, the authors used the first person shooter to overcome
the problem of missing location-based context data to test their
service during the development process. To broadcast the sensor
values derived from the game to the service, the authors encapsulate
their Quake III Arena modification as a sensor in the well-known
Context Toolkit widget [21]. The broadcasted sensor values, in this
specific case, the location of the character in the game, is used
to simulate the current GPS coordinate of a user utilised by the
service that is under development. To provide an evaluation of
the CCP approach using a collaborative data set with a greater
extend, a version of Quake III Arena has been modified to extract
in-game locations of different characters as contexts during their
gameplay [22]. Subsequently, the extracted contexts have been used
to predict a character’s next in-game position. One implementation
has provided real time location-based context prediction of the
characters in the game, based on their previously collected location
contexts. A second implementation has used a higher number of
collected in-game location contexts of the characters to predict their
next in-game location offline. The second implementation has been
used to provide an evaluation of the prediction accuracy of the
different approaches.

For the collection of the context data using Quake III Arena,
six users played two different maps. The maps did not include
teleports or jump pads to ensure realistic movement behaviour
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of the characters controlled by the users. Table 3.3 presents the
characteristics of the games on the two different maps.

Table 3.3: Characteristics of the two games.

properties map 1 map 2
map name am_lavactf ps37ctf2
play time (train) 30 min. 37.5 min.
play time (test) 20 min. 15 min.
ratio train/test 3:2 5:2
# of different contexts 1242 1599
players 6 6

Each position, respectively context, extracted from the charac-
ters in the game consists of a x-, y-, and z-coordinate. In the game,
the position of a character is determined nearly pixel wise. To gain
a manageable number of different in-game location contexts, the
raster that determines the different location points of the characters
in the game has been increased. This is achieved by dividing the
different coordinates by a variable factor. The higher the factor is
chosen the coarser the division of the map. In the two experiments,
each coordinate has been divided additionally by a factor of 300.
As a result on map 1, in total, 1242 different location contexts
were collected by the users and on map 2, in total 1599 different
location contexts were collected by the users (cf. Table 3.3). The
contexts derived from the training and the test game for each map
were stored in the training and test data set of the respective user.
The training data sets served as knowledge bases for the context
prediction approaches and the test data sets were used to evaluate
the context prediction approach with respect to their prediction
accuracy.

For the evaluation of the prediction approaches the six context
histories, containing the training data, were merged to one training
history and the six histories containing the test data were also
merged into one test history (cf. Table 3.4). Based on these two
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Table 3.4: Number of instances in the training and test context data
sets.

user map 1 map 2
train test train test

U1 1514 951 1592 592
U2 1552 975 1554 633
U3 1620 964 1728 689
U4 1638 966 1607 619
U5 1490 953 1476 627
U6 1518 967 1562 679

Σ 9332 5776 9519 3839

training and test data sets, the prediction results of the approaches
were carried out. The prediction accuracies achieved by the context
predictors on map 1 are outlined in Figure 3.39, the prediction
accuracies on map 2 are outlined in Figure 3.40.

On both maps, the CCP approach outperforms the state of
the art prediction approaches. The Alignment predictor and the
ActiveLeZi predictor have the most difficulties with the high number
of different possible future contexts that might follow a given context
sequence. The same effect could have already be seen in the
results of the second experiment after increasing the number of
existing relations between the users in the Augsburger data set
in Section 3.4.2. Remarkable are the reliable prediction results
of the StatePredictor, which also outperform the Alignment and
the ActiveLeZi predictors although the StatePredictor is the most
simple prediction approach from all the evaluated approaches. The
CCP approach is able to predict almost 80% of the characters’ next
steps correctly on map 1 and almost 68% on map2. The achieved
results of the CCP approach demonstrate that it can take advantage
of the existing relations between the movement behaviours of the
six played characters in the game best. The results have also shown
that the extraction and usage of synthetic in-game location data of
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first person shooters is a promising approach to evaluate context
prediction approaches.

Further, the contexts in the data sets were split into instances of
four contexts. That implies that the fourth location context of a user
is predicted based on her three previously seen location contexts.
Table 3.4 presents the number of instances of each training and test
data base for each user depending on the map.
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Figure 3.39: Prediction accuracies using the extracted location data
of map 1 in Quake III Arena.

3.5 Conclusions

In this chapter, the Collaborative Context Predictor (CCP) method
was introduced. This approach overcomes the problem of unknown
or missing context information in a single user’s context history.
This is possible because CCP takes advantage of existing direct and
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Figure 3.40: Prediction accuracies using the extracted location data
of map 2 in Quake III Arena.

indirect relations between the context histories of several users in the
same collaborative ubiquitous environment. Experiments on real
world movement data gathered by smartphones showed that CCP
is able to obtain accurate prediction results. Furthermore, CCP
was evaluated using a publicly available data set, the Augsburger
data set. The results showed that CCP outperforms all prediction
approaches, if a sliding window approach has been applied to the
data set (cf. the similarity coefficient Θ) to increase the number
of existing relations between the context histories of the users.
In the last experiment, a first person shooter was used to create
large synthetic in-game location data. The data was retrieved by
extracting the location data of six different characters controlled by
users, playing the game Quake III Arena. Thus, a large and a highly
collaborative data set have been created. The prediction results
showed that the CCP, which obtained a next location prediction
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accuracy up to 80%, is the most promising approach.
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Chapter 4

Legal assessment of
context prediction
approaches

Context data, e.g. location-based context data, have
been used in different application fields such as home
automation or even pedestrian safety. Often, location-
based context data represents sensitive personal user data.
In most cases the context data are processed on external
servers, e.g. to receive a better performance or due
to needed storage space. This may offer the possibility
to unauthorised third parties to gain access to these
data. This chapter presents legal issues that arise with
the usage of context prediction. Hence, the right to
informational self-determination is discussed and applied
to the context prediction process. From this discussion,
criteria are derived, which are used to legally assess various
context prediction approaches. Finally, KORA, a method
to consider legal requirements in the design process of
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informational technology, is outlined and used to combine
the conflicting objectives of context prediction and the right
to informational self-determination.

4.1 Motivation

Nowadays, various sensors pervade our daily life and affect us in
different situations and areas. In the field of health care, e.g. in
the matrix project, possibilities were elaborated to give patients the
opportunity to be monitored even if they are outside of a hospital
using ubiquitous sensors [1]. So called smart homes and smart rooms
adapt their services to the lifestyle habits of occupants and the
working routines of clerks by observing and learning their behaviour
patterns [2, 3]. The automotive application domain represents
another area, which is strongly influenced by ubiquitous sensors.
A more detailed discussion of this area is given in Chapter 5. These
sensors are, e.g. used for collision detection [4] and [5]. With
the aid of smart badges, conference attendees can be grouped by
their interests. They can be automatically informed about similar
activities of other members [6]. Further, RFID sensors can be
used to detect whether conference attendees are talking to each
other, how long their conversation took and which talks participants
have visited to provide them with additional information. This
information can, e.g. be other interesting talks at the conference
or other attendees with similar interests based on a user’s profile
[7, 8]. Another scope for the application of sensors in ubiquitous
environments is the gathering and the usage of location-based
context information of the users to adapt or to proactively adapt
services. An overview in context prediction using location-based
context information is presented in Section 2.2.2.

An important constituent of context based applications in
ubiquitous environments is represented by context prediction. Con-
text prediction is used, e.g. to predict future actions or future
whereabouts of users. As a result, adaptive systems can customise
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themselves to future situations without requiring the users’ actions.
To infer future contexts, an enormous number of already gathered
history of sensor data are needed. The more data, the more
reliable the context prediction can be. Due to the fact that most
of the sensors utilised in ubiquitous environments are not visible
respectively unobtrusive, the user does not know, which of her
data are actually implicitly sensed and utilised by the ubiquitous
environment. In addition, these data are mostly personal and can
easily be used to clearly identify a user by a third party, e.g. by
using a user’s different locations over time. These concerns are well
known problems of context prediction and have also been mentioned
but not further investigated in literature [9, 10, 11].

Among other problems, it is this gathering of history data
that especially contradicts the German right to informational self-
determination, whose principles have also found their way into
European legislation through the Data Protection Directive1 in
recent years. Therefore, it is essential to recognise conflicts between
context prediction and data protection early enough to develop
proposals for solutions.

4.2 The right to informational self-
determination

At first it is important to clarify that the German right to
informational self-determination differs in respect of its scope to
the right to privacy ([12] at page 86). Privacy is interpreted as
the "right to be let alone" ([13] at page 193, as well: [12] at
page 86). In contrast, the German right to informational self-
determination is to protect every process where personal data are
used. However, the basic idea is always the same: The data subject
is to maintain control of his or her own data ([12] at page 86). This
right has been developed by the German Federal Constitutional
Court within a widely observed final judgement, the population

1Directive 95/46/EC, Official Journal L 281 , 23/11/1995, 0031 - 0050.
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census decision (Volkszählungsurteil), in 1983.2 In this judgement
the court developed several principles. These principles have to be
fulfilled to make sure that the aggrieved party persons are able to
carry out their right to informational self-determination. First, users
need to be aware of data processing tasks running in a ubiquitous
environment. Further, the users have to have the possibility to
explicitly agree or to disagree with the data processing task, which
collects or processes their data. This consent, however, can only
be related to a specific purpose. This also applies to cases where
the data processing is approved by the legislator. Relating to the
collection of data for other purposes than the specified, additional
consent is needed.

To fulfill this purpose only data, which are really essential, e.g.
for a certain context prediction task, are allowed to be collected
and processed. Furthermore, the user must have the possibility to
influence the processing of data by correction, blocking or deletion.
Additionally, principles of transparency and participation rights
have been adopted. Finally, the data processing has to be controlled
by an independent authority. Altogether, these principles can be
summarised by the avoidance of building a profile of a user, by
providing transparency to the user, by providing the possibility of
giving consent by the user, considering the necessity of data and
by giving information about the parties that are responsible for the
data collection process.

These principles can be considered as the key principles of
data protection in Europe, since they were all implemented in the
Data Protection Directive 95/46/EC ([14] at pages 63 - 108 and
[12] at page 87). In the following, the problems that may arise
when techniques of context prediction compete with principles and
rules regarding the right to informational self-determination are
discussed.

2BverfGE 65, 1. http://www.servat.unibe.ch/dfr/bv065001.html. (last
accessed: 2013-04-06)
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Profiles To the best of our knowledge, all state of the art outlined
in Section 2.2.2 uses personal context data of the users, to provide
reliable context predictions. Location information and current
activities of the users can, e.g. be used to predict daily routines.
The context information stored in a user’s context history may be
sufficient enough to result in a complete profile of a person, which
can be easily used to identify a certain person or even to identify
key elements of one’s personality (e.g. political and religious or
sexual orientation etc.). For this reason, predicted context may be
sensitive. Informational self-determination gives the user the right
to decide whether the user wants her information disclosed or not. In
a situation where the concerns of individuals have only insufficient
means of controlling either the veracity or the usage of gathered
and inferred context data [15], it leads into the restriction of the
users’ decision making autonomy3. Thus, this autonomy will be
undermined by the use of context information for context prediction,
if no transparency can be guaranteed.

Transparency The principle of transparency requires the data to
be collected directly from the affected person. Further, the person
whose data are collected, has to be aware of this process. The
goal of ubiquitous systems or ubiquitous environments, however, is
to support the user by being unobtrusive, respectively invisible, to
the user [16]. Therefore, the data collection and data processing
task of such a system or environment is not to be considered as a
deficiency for the user from the technical point of view. From a legal
perspective the form of transparency used in ubiquitous computing
systems is precisely the opposite. The context prediction process
should be transparent in a way that the user is able to understand
the collection and processing of her data at any time. Nevertheless,
it would contradict the principle of transparency if the user will
receive a notification during every instance of data that has been
collected or processed. Nevertheless, a minimum of transparency
can be ensured, if the user has access to her context data.

3BverfGE 65, 1

129



4 Legal assessment of context prediction approaches

Consent Even though every use of personal data are seen as
interfering with the right to informational self-determination, the
violation of the right may be justified, if the user has given her
consent to the use of her personal data.4 This consent must be
based on the user’s own opinion and shall be given voluntarily.5

Consequently, the question arises whether the principle of giving
consent is compatible with the idea of unobtrusiveness and therefore
adaptable to the process of context prediction. In this connection,
it might be difficult to find solutions to the questions when consent
should be given for which specified purpose of context prediction and
whether it is possible to identify each purpose of context prediction
at any time.

Necessity While a more extensive context history of a user may
lead to a higher flexibility, operability and reliability of context
prediction systems [18, 17, 19], it might interfere with the principles
of data reduction. During the process of context data collection,
the purpose why the context data have been collected must not be
changed. Moreover, the variety of context data must be adequate
to the prediction purpose the context data have been collected for.
For example if a user’s indoor locations have to be predicted, the
additional collection of outdoor location data would disregard the
principle of necessity.

Responsibility Context prediction can be a complex task. It
can consist of different aggregated steps, which are responsible for
the collection of context data, the preprocessing of the data, the
transformation of the data from low-level contexts to high-level
contexts and finally the performance of the actual prediction of a
user’s context (cf. Section 2.3). Moreover, this task can be provided
by several external service providers. Accordingly, it is difficult to
determine which component or which provider has transmitted the
data and which communication path the data have been taken.

4Article 7 (a) Directive 95/46/EC.
5Article 2 (h) Directive 95/46/EC, see also: [17], at page 115.
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Thus, the use of some described systems ([20] and [21]) can lead
to a disregard of responsibility ([22] at page 74). Altogether, as
soon as context data have been collected, transmitted or processed
externally by a system that is unknown to the user, the compliance
with the principle of responsibility may be difficult.

As discussed above, the process of context prediction, which
mostly utilises personal context information without the knowledge
of the respective user, contradicts the right to informational
self-determination and its principles. Based on the outlined
principles, legal evaluation criteria are derived and discussed next.
These criteria are applied to assess the algorithms presented in
Section 2.2 and in Section 3.3. A solution how context prediction
approaches can be implemented and utilised while taking the right
to informational self-determination and its principles into account,
is outlined in Chapter 6.

4.3 Legal evaluation criteria

The technique, which is unable to cause privacy problems, is the
most effective technique to ensure data protection. The need to
enforce law would be reduced.6 To enhance privacy by design,
privacy protection rules should be used to create legal requirements.
Context prediction algorithms must ensure compliance with data
protection law, respectively with the user’s right to informational
self-determination. Normally, for this purpose, the separate laws
of each country have to be considered. To enlarge the scope to a
European range, mainly the data-protection rules of the European
Union will be contemplated in the following. These data-protection
rules are expressed by several data-protection principles. They were
first developed by the German Constitutional Court in the final
census decision.7. They can be considered as the key principles

6Roßnagel, in: Roßnagel Handbuch Datenschutzrecht, München 2003, Kap.
3.4, Rn. 47.

7Federal Constitutional Court of Germany (Bundesverfassungsgericht)
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of data protection in Europe, since they were all implemented in
the Data Protection Directive 95/46/EC [12]. In general, most
algorithms used for context prediction tasks process personal data.
The predictions of contexts are related to an identified or identifiable
natural person. Consequently, context can be described as personal
data as defined in Art. 2 (a) of the Data Protection Directive
95/46/EC. In the following, the evaluation criteria are outlined
that can be used to assess in how far existing context prediction
algorithms fulfil the data-protection rules of the European Union
respectively the user’s right to informational self-determination.

To avoid the creation of user profiles as one principle of
the right to informational self-determination, an anonymous or
pseudonymous processing of data has to be considered. The
anonymisation of personal data requires that it is impossible to
establish a relation between the context data and the affected
person. Information, respectively context data that cannot be
linked to a person by legal definition cannot violate personal privacy.
Despite this desirable goal it is unlikely that anonymisation could
be implemented in practice. The purpose of context prediction is
to support the user on the one hand or to automatically adapt
services with regard to given context information on the other
hand. Anonymous processing of the context would hinder the
support or prevent adaption by the application. This does not mean
that the prediction output could not be used in a pseudonymous
way. Pseudonymisation refers to replacing the identifiers with
pseudonyms known only by the processor. The collected context-
information itself can be pseudonymised. This pseudonymisation
should prevent third parties from reconstructing the behaviour of
an identified or identifiable natural person.

Unfortunately, there is no anonymisation or pseudonymisation
that would satisfy legal requirements. Nevertheless, this method
would hinder conclusions regarding the user’s behavior and therefore
enhances privacy. In the following, this type of processing will be
called context-data pseudonymisation (cdp). Further, it is in the
user’s interest that as little personal data as possible are collected
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to fulfil the obligation in Art. 6 (e) Data Protection Directive
95/46/EC. The obligation signifies that personal data must be
kept in a form that ensures the identification of data subjects
for no longer than for the purposes the data have been collected
for. Moreover, this guarantees the principle of necessity and the
earmarking of the collected data to a specific purpose, published
in Art. 6 (b) Data Protection Directive 95/46/EC. In addition,
collected data that have no effects on the context prediction have to
be erased. The principle of necessity is evaluated by examining
whether the applied context prediction approaches are able to
support indexing to delete unnecessary context data (indexing),
the context prediction approaches work in a collaborative manner
(collaborative) and whether a context prediction approach needs a
high number of context data (necessity) to make reliable predictions.

The reduction of the data volume enables data processing on a
user’s client, e.g. on a user’s own smartphone. This would comply to
the principle of transparency, because the history data of a user are
stored on her own device. Further, it would comply to the principles
of consent and responsibility. This is because, context data that are
directly processed and predicted on a user’s own device do not evoke
any concerns according to these principles. In contrast, the process
of data on the server side would raise several data protection issues
because the external processing of data may offer the possibility to
unauthorised third parties to gain access to these data.

The identified evaluation criteria is used in the next section to
indicate if existing context prediction approaches meet the proposed
principles to the right to informational self-determination.

4.4 Evaluation

In the following, the derived evaluation criteria (cdp, necessity,
collaborative, data processing, indexing) as outlined in the previous
section, will be applied to the algorithms presented in the Sections
2.2 and 3.3. Further, the results are evaluated and discussed
with regard to the possible consequences for the used prediction
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approaches.
Table 4.1 shows the different prediction approaches and the

criteria used to assess these approaches from a legal perspective.
If a prediction approach satisfies a legal criterion it gains one point.
If an approach partially satisfies a criterion it gains half a point. The
maximum score that can be obtained by the examined algorithms is
five points. The more points a prediction approach receives the more
it satisfies the criteria outlined in Section 4.3. A prediction approach
receives a point if it is able to handle pseudonymised context data,
if its necessity of data is low and if it utilises only the context data
of the person whose next context has to be predicted. Further, an
approach receives a point if it can be directly used on a person’s
smartphone and if it supports indexing to be able to automatically
delete context data that is not frequently used. The points received
in total by the prediction approaches are shown by Σ.

Table 4.1: Legal assessment of different context prediction ap-
proaches.

cdp necessity collaborativeness data processing indexing Σ

AL yes mid non runnable yes 4.5

ALZ yes high non not runnable yes 3.0

SP yes high non runnable yes 4.0

CCP yes high colab. runnable yes 3.0

Tree yes low non runnable yes 5.0

BN yes low non runnable yes 5.0

Context-data pseudonymisation Context-data pseudonymisa-
tion means that arbitrary placeholders are used to replace the
contexts stored in a user’s context history. The name of the user the
history belongs to will not be replaced. How this criterion effects
the accuracy of the prediction approaches is exemplarily elaborated
using the freely available Augsburger data set8. The prediction
approaches have been applied to the original data and the context

8http://www.pervasive.jku.at/Research/Context_Database/index.php
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histories whose contexts have been replaced by pseudonyms. The
number and order of context information remained unchanged. The
results have shown that the prediction results for all approaches
have remained the same of the given data set. For this reason, each
algorithm satisfies this criterion. The Augsburger data set, however,
consists of nominal data, which represents a person’s current
location. The replacement of context data through pseudonyms
is not possible if the data are stored ordinally or numerically. In
case that context data are, e.g. represented in GPS coordinates,
the data could be pseudonymised by adding a global threshold to
disguise the context data. Still, transformed contexts may have
side affects, which can, e.g. affect the runtime behaviour of the
prediction approach but this has not been further investigated in
this thesis.

Necessity of data It can be assumed that the higher the number
of context data that can be utilised to train a context prediction
approach, the more accurate the approach can potentially be.
Nevertheless, there are approaches that need a larger amount of
training data to be able to make reliable predictions and there are
approaches that can work with a smaller amount of training data.
With regard to the legal assessment of the prediction approaches
those, which can achieve higher prediction accuracy on a smaller
size of training data, perform better. In order to find the approach,
which performs best using only a small amount of data to train its
prediction model, the Augsburger data set has been used again. The
different sub data sets of the Augsburger data set have been merged
into one data set. The resulting data set has been split into a test
data set (10%) and a train data set (90%). Following, three small
training data sets with a size of 10%, 20%, and 30% were randomly
drawn from the 90% training set. This selection was performed five
times for all data set sizes in order to obtain a mean and variance
of the results. Figure 4.1 presents the averaged results, obtained by
the different algorithms using the different training data sets.

The results obtained by the Tree-based classifier (C4.5) and by
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Figure 4.1: Testing the necessity of data of the different prediction
approaches using small training set to classify a given test data set
[23].

the classifier based on a Bayesian Network are quite similar. Both
achieved prediction accuracy up to 58%. Alignment achieved a
prediction accuracy up to 53% and ActiveLeZi up to 51%. The
most inaccurate classifier is the StatePredictor whose accuracy rate
was lower than 50%. CCP has not been evaluated. Due to its
collaborative character it is only suitable for using multiple context
histories, which automatically requires a high necessity of personal
context data. But, if the needed "personal" context data are
appropriately pseudonymised the usage of CCP may be lawful.

Collaborativeness Basically, all presented prediction algorithms
can be used in a collaborative manner by simply concatenating the
context histories of different users or by using the histories of the
users separately and by combining the results by a voting approach.
The Collaborative Context Prediction (CCP) approach, however,
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is the only approach that specifically requires context histories of
additional users. Consequently, the approach explicitly relies on
personal context information of other persons. Accordingly, the
CCP approach failed this criterion.

Data processing From the perspective of law it would be best to
process context data directly on the user’s smartphone in order to
ensure that the user’s data keep private. This would also meet the
principles of transparency, consent and responsibility as mentioned
above. To elaborate whether the presented prediction approaches
are suited for the direct execution on a smartphone, a benchmark
with respect to the following aspects has to be performed: measuring
the time needed to train the prediction model; measuring the time
needed to perform a single prediction and measuring the time needed
for all prediction for a given data set.

It has to be considered that the performance of algorithms
depends on their implementation and on the size of the data
set that is used for the evaluation. The higher the number of
attributes (contexts) and the higher the number of characteristics
an attribute can have, the more complex will be the creation of a
reliable prediction model. The applied Augsburger data set consists
of 2120 training instances and 200 test instances. Each instance
consists of four contexts whereas each context can have 16 different
characteristics.

Table 4.2 shows the times of the several approaches needed to
be trained on a smartphone. It shows the overall prediction time
needed to make a prediction for all 200 test instances and it outlines
the average prediction time per instance. For a better comparison,
the values received on the smartphone are opposed with the values
received using a PC. As smartphone, a Samsung Galaxy S III and
as PC, an Intel Core i7 with 2 GHz and 8 GB RAM has been used.

It is obvious that all prediction times received on the Samsung
Glaxy S III are higher than the prediction times on the PC. With
regard to the training time needed to construct the respective
prediction models, all approaches received suitable results except
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Table 4.2: Training and prediction times of the approaches using the Augsburger data set.
Algorithms Smartphone PC

training prediction prediction p.i. training prediction prediction p.i.
Alignment 92 ms. 47.12 sec. 0.24 sec. 69 ms. 424 ms. 2.12 ms.
ActiveLeZi 320.4 sec. 241.7 sec. 1.21 sec. 20.51 sec. 5.28 sec. 26.4 ms.

StatePredictor 0.24 sec. 6 ms. 0.03 ms. 97 ms. 6 ms. 0.03 ms.
CCP 3.9 sec. 696.75 sec. 3.48 sec. 332 ms. 19.1 sec. 95.17 ms.

Tree-based (J48) 364 ms. 22 ms. 0.11 ms. 74 ms. 15ms. 0.02 ms.
Bayesian Net 194 ms. 40 ms. 0.2 ms. 53 ms. 7 ms. 0.035 ms.
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for the ActiveLeZi approach. It needs 320.4 sec. to be trained on
the smartphone. For this reason, the used implementation of the
approach is not applicable on the test smartphone. With regard to
the overall prediction time and to the needed prediction time per
instance, the CCP approach took longest. If no real time context
prediction is needed, CCP is still usable on a smartphone with its
average prediction per instance of 3.48 seconds. The best results
were achieved by the Weka implementations of the J48 and the
Bayesian Net classifier and by the StatePredictor approach.

An approach, which outlines the applicability of different context
prediction approaches for distributed and collaborative context
prediction using P2P communication that is directly executed on
a person’s smartphone and therefore considers legal perspectives
has been presented in [24].

Indexing In order to store as little personal context data of a
person as possible, the indexing of context data is considered. The
idea is to mark context data that is frequently used by prediction
approaches to predict a next context as important. In contrast,
context data that is not often used is marked as less important.
The easiest way to fulfil the principle is to implement a counter
that remembers how frequently a certain context is used during
the prediction process. Using the example of a decision tree, the
frequency of traversing a certain node or a sub-tree in order to
achieve a prediction can be counted. With regard to the examined
algorithms, it is possible to implement an additional code in all
algorithms, using a technique called "hooking", to enhance the
predictors by providing counter functionality to additional indexing
context information. Subsequently, the indexed context information
can be used to weaken certain contexts during the prediction
process or to pre-filter less important context information before
the prediction process. Table 4.1 indicates that all algorithms can
support a functionality to index context information.

The evaluation of the different legal aspects shows that
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Alignment, the Tree-based approach and the approach based on
Bayesian Networks receive the highest scores (cf. Table 4.1). That
implies that these prediction approaches mostly satisfy the legal
aspects demanded in Section 4.3. CCP and the ActiveLeZi approach
disregard the identified legal criteria the most. Reasons are the
collaborative character and the high necessity of data of the CCP
approach and the slow learning time of ActiveLeZi on modern
smartphones.

4.5 Inferring a legally compatible context
prediction process using KORA

In this chapter legal problems of context prediction techniques
with respect to the right to informational self-determination were
outlined and discussed. Further, an evaluation was presented,
which determines how well existing context prediction approaches
fulfil certain legal evaluation criteria that were derived from the
principles of a user’s right to informational self-determination. In
this section, KORA (Konkretisierung rechtlicher Anforderungen)
[25] an approach to integrate and consider legal requirements in
the design process of informational technology is outlined. It will
be exemplarily demonstrated how KORA can be used to help to
design a context prediction process to be more compatible with
the right to informational self-determination by outlining technical
design proposals.

If informational technology has to be developed in a way that it
is legally acceptable it becomes obvious that legal norms mostly
do not include concrete guidelines how a piece of informational
technology, e.g. the process of context prediction, can be developed
to be consistent with a certain law or directive. The reason for this
is that legal requirements for example the right to informational
self-determination, which is presented in Section 4.2 are mostly
formulated in a very generic way. KORA tries to close this lack
in description by gradually inferring technical design requirements
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from the underlying abstract legal requirements.

steps of KORA technical requirement legal requirement

Figure 4.2: Supposing a technical solution for a socially acceptable
context prediction process using KORA.

KORA can be used to infer technical design proposals from legal
requirements in four different steps as outlined in [26]. Also KORA
can be used to derive technical design proposals from technical
non-functional requirements. In this example, a technical design
proposal is derived from one technical non-functional requirement
and from one legal requirement at the same time using the KORA
approach. In doing so, the underlying legal requirement and
the underlying non-functional technical requirement are becoming
step by step more and more technically realisable. Hence, it can
be illustrated how a technical and a legal requirement lead to
quite contrary criteria, which can be agreed by inferring suitable
technical requirements afterwards. In the following, KORA is
applied to the technical requirement "provide proactiveness by
utilising context prediction" with respect to the consideration of
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the legal requirement "informational self-determination". As a
result, a technical design proposal is received that enables a context
prediction process to be more legally acceptable by design. Figure
4.2 shows the four different steps of KORA regarding the technical
requirement and the legal requirement. Next, the four different steps
of KORA are outlined.

Normative requirements The normative requirement from a
technical point of view is the provision of proactiveness, e.g. by
proactively enabling services or applications in a ubiquitous environ-
ment, required to adapt to a user’s needs using context prediction.
From the legal perspective the normative requirement that is consid-
ered is the user’s right to informational self-determination. If there
are no legal requirements that can be explicitly considered with
regard to the respective technical requirement, the requirements of
the respective national constitution will automatically be taken into
consideration.

Normative criteria Normative criteria that can be derived from
the process of predicting users’ contexts are a high prediction
accuracy to provide reliable predicts and the possibility to clearly
identify the user whose context data are used to make a prediction.
Otherwise, the predicted contexts cannot be assigned to the user.
Additional criteria are collaboration to provide suitable predictions,
even if the user’s own context history does not provide sufficient
context information, and the normative criteria that as many
data as possible can be utilised. It is obvious that the more
context data can be provided to train a prediction model the more
reliable the prediction results may be. Finally, to obtain prediction
results, already gathered sensor data have to be transmitted and
preprocessed on a suitable computer system. The prediction process
itself has to run on a suitable computer system too.

Normative criteria that can be derived from the right to informa-
tional self-determination are the principles providing transparency,
providing the possibility of giving consent, providing information
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about the responsibility of components of a certain step in the
prediction process. Further criteria are to avoid the building of
user profiles and to focus only on data that are needed for a certain
prediction process. All principles have been outlined in more detail
in Section 4.2.

By comparing the normative criteria derived from the technical
and the legal requirement it becomes obvious that the different cri-
teria pursue contrary goals. On the technical side a high prediction
accuracy while using collaborative techniques and as much context
data as possible are important and on the legal side, the avoidance
of user profiles and the prevention of uncontrolled data collection
are dominant aspects. In addition, to the best of our knowledge, the
clear identification of the user the context data belongs to without
her knowledge is required by most applications and services that
apply context prediction techniques. This contradicts the criteria
of enabling the user of giving consent, if her personal data are
processed. Further, to work efficiently, data processing tasks as
the pre-processing of sensor and low-level context data as well as the
prediction process are performed on a server structure in most cases.
Therefore, the user has no further control of her personal context
data. In contrast, there are the legal criteria of transparency and
responsibility.

Technical requirements Technical requirements represent ab-
stract design goals, which are used to fulfil the derived normative
criteria. It has to be considered that technical requirements do not
represent concrete technical implementation requirements.

To solve the derived contrary goals of the technical and le-
gal requirement, client-based processing of the context data, the
pseudonymisation of context data, the deletion of not relevant
context data and the avoidance of transmitting personal context
data to third parties is proposed. Using client-based processing
and client-based context prediction, it can be ensured that the user
does not loose control of her data and for this reason no service
provider has to ensure transparency or to provide the possibility of
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giving consent which may additionally weaken the idea of ubiquitous
computing. With the pseudonymisation of the context data, it can
be ensured that even if the data are transmitted to third parties,
they are not able to build a profile of the user. Adding of the support
of indexing enables the possibility to delete context data that is not
required for the context prediction process.

With the consideration of these technical requirements it is
possible to fulfil both the normative criteria of the technical
and the legal requirement. The proof of concept that existing
context prediction approaches can be developed according to these
requirements has been given in Section 4.4.

Technical design proposal To ensure a technical solution that
is socially acceptable, the derived technical requirements have
to be specified into a technical design proposal in the last step
of the KORA approach. To ensure that the personal context
data, derived from various sensors that surround the user in a
ubiquitous environment, can be client-based processed, the user’s
own smartphone is used to process the data. The same refers to
ensure client-based context prediction.

In case the collaborative-based context prediction is used as
outlined in Section 3.3, a P2P-based communication between
the smartphones of the users is proposed to prevent a server-
based structure that centralised stores the context data. If no
collaborative context prediction is used, no data of other users
has to be transferred. If context data have to be transferred to
other users, they have to be pseudonymised first. In the case
of collaborative-based context prediction, similar users have to be
identified. Therefore, context histories of users are not compared
directly to each other but similar context histories are identified
by only comparing anonymised characteristic values, whereby a
characteristic value represents a user’s context history.

A concrete implementation of a context prediction process based
on this technical design proposal to be more legally reliable is
presented in Chapter 6 in detail.
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4.6 Conclusions

In this chapter the collaborative-based context predictor and other
well-known context prediction techniques have been evaluated with
regard to their compatibility to the user’s right to informational
self-determination, respectively to the Data Protection Directive.
Therefore, problems have been presented that arise when context
prediction competes with principles and rules regarding the right
to informational self-determination. Subsequently, legal evaluation
criteria have been derived, considering the principles to infor-
mational self-determination. Based on these legal criteria, the
context prediction approaches were evaluated. The evaluation shows
that the Alignment predictor and predictors based on a Decision
Tree and on a Bayesian Network most likely fulfil the required
criteria. On account of its collaborative character, the CCP often
disregards the identified legal criteria. Furthermore, KORA, a
method to consider legal requirements in the design process of
informational technology, was outlined. Finally, KORA has been
applied to the technical requirement "provide proactiveness by
utilising context prediction" with respect to the consideration of
the legal requirement "informational self-determination" to infer a
concrete technical design proposal that enables a context prediction
process to be more legally compatible and therefore acceptable by
design.

References

[1] S. L. Lau, I. König, K. David, B. Parandian, C. Carius-Düssel,
and M. Schultz, “Supporting patient monitoring using activity
recognition with a smartphone,” in The Seventh International
Symposium on Wireless Communication Systems (ISWCS’10),
(York, UK), pp. 810–814, 2010.

[2] R. Andrich, V. Gower, A. Caracciolo, G. D. Zanna, and
M. D. Rienzo, “The dat project: A smart home environment
for people with disabilities.,” in ICCHP (K. Miesenberger,

145



4 Legal assessment of context prediction approaches

J. Klaus, W. L. Zagler, and A. I. Karshmer, eds.), vol. 4061
of Lecture Notes in Computer Science, Springer, 2006.

[3] M. Danninger and R. Stiefelhagen, “A context-aware virtual
secretary in a smart office environment,” in MM ’08: Proceeding
of the 16th ACM international conference on Multimedia, (New
York, NY, USA), pp. 529–538, ACM, 2008.

[4] T. Gandhi and M. M. Trivedi, “Pedestrian protection systems:
Issues, survey, and challenges,” IEEE Transactions on Intelli-
gent Transportation Systems, vol. 8, no. 3, pp. 413–430, 2007.

[5] K. David and A. Flach, “Car-2-x and pedestrian safety,”
Vehicular Technology Magazine, IEEE, vol. 5, no. 1, pp. 70–
76, 2010.

[6] J. A. Paradiso, J. Gips, M. Laibowitz, S. Sadi, D. Merrill,
R. Aylward, P. Maes, and A. Pentland, “Identifying and
facilitating social interaction with a wearable wireless sen-
sor network,” Personal and Ubiquitous Computing, vol. 14,
pp. 137–152, February 2010.

[7] M. Atzmüller, D. Benz, S. Doerfel, A. Hotho, R. Jäschke, B.-
E. Macek, C. S. Mitzlaff, Folke, and G. Stumme, “Enhancing
social interactions at conferences,” it - Information Technology,
pp. 101–107, 2011.

[8] M. Atzmueller, S. Doerfel, A. Hotho, F. Mitzlaff, and
G. Stumme, “Face-to-face contacts at a conference: Dynamics
of communities and roles,” in Modeling and Mining Ubiquitous
Social Media, LNAI, pp. 21–39, Heidelberg, Germany: Springer
Verlag, 2012.

[9] M. Satyanarayanan, “Pervasive computing: Vision and chal-
lenges,” IEEE Personal Communications, vol. 8, pp. 10–17,
2001.

[10] R. Mayrhofer, “Context prediction based on context histories:
Expected benefits, issues and current state-of-the-art,” Cogni-

146



4 Legal assessment of context prediction approaches

tive Science Research Paper-University of Sussex csrp, vol. 577,
p. 31, 2005.

[11] P. Nurmi, M. Martin, and J. A. Flanagan, “Enabling proactive-
ness through context prediction,” in Proceedings of the Work-
shop on Context Awareness for Proactive Systems, Helsinki,
vol. 53, 2005.

[12] G. Hornung and C. Schnabel, “Data protection in germany:
The population census decision and the right to informational
self-determination,” Computer Law & Security Report, vol. 25,
no. 1, pp. 84–88, 2009.

[13] B. o. Warren, “The right to privacy,” Harvard Law Review,
vol. 4, no. 5, pp. 193–220, 1890.

[14] C. Kuner, European Data Protection Law, Corporate Compli-
ance and Regulation. Oxford University Press, 2007.

[15] G. M. Rehm, “Just judicial activism? privacy and informational
self-determination in U.S. and German constitutional law,”
2000.

[16] M. Weiser, “The computer for the 21st century,” Scientific
American, vol. 265, pp. 66–75, Sept. 1991.

[17] A. Roßnagel, Datenschutz in einem informatisierten Alltag.
Friedrich-Ebert-Stiftung, 2007.

[18] M. Langheinrich, V. Coroama, J. Bohn, and F. Mattern,
“Living in a smart environment – implications for the coming
ubiquitous information society,” Telecommunications Review,
vol. 15, p. 132–143, feb 2005.

[19] H. Skistims, C. Voigtmann, K. David, and A. Roßnagel,
“Datenschutzgerechte Gestaltung von kontextvorhersagenden
Algorithmen,” Datenschutz und Datensicherheit - DuD, vol. 36,
no. 1, pp. 31–36, 2012.

147



4 Legal assessment of context prediction approaches

[20] K. L. Mika, M. Raento, and H. Toivonen, “Adaptive on-
device location recognition,” in In Proceedings of the Second
International Conference on Pervasive Computing, pp. 287–
304, Springer Verlag, 2004.

[21] K. Laasonen, “Clustering and prediction of mobile user routes
from cellular data,” in in PKDD. 2005, pp. 569–576, Springer
Verlag, 2005.

[22] A. Roßnagel, “Modernisierung des Datenschutzes für eine Welt
allgegenwärtiger Datenverarbeitung,” Multimedia und Recht,
no. 2, pp. 71 – 75, 2005.

[23] C. Voigtmann, K. David, H. Skistims, and A. Roßnagel, “Legal
assessment of context prediction techniques,” in Vehicular
Technology Conference (VTC Fall), (Quebec City, QC), pp. 1–
5, IEEE, 2012.

[24] C. Voigtmann, C. Schütte, A. Wacker, and K. David, “A new
approach for distributed and collaborative context prediction,”
in 10th IEEE Workshop on Context Modeling and Reasoning
2013 (CoMoRea 2013), (San Diego, USA), pp. 20–24, IEEE,
Mar. 2013.

[25] A. Roßnagel and V. Hammer, “Kora. eine Methode
zur Konkretisierung rechtlicher Anforderungen zu
technischen Gestaltungsvorschlägen für Informations- und
Kommunikationssysteme,” Infotech, vol. 1, pp. 21–24, 1993.

[26] A. Roßnagel, Rechtswissenschaftliche Gestaltung der Informa-
tionstechnik, ch. Rechtswissenschaftliche Gestaltung der Infor-
mationstechnik, pp. 381–390. Wissen, Vernetzung, Virtual-
isierung, Festschrift zum 65. Geburtstag von Udo Winand, Köln
2008, 2008.

148



Chapter 5

Pedestrian safety as a use
case for CCP

Unfortunately, traffic accidents involving pedestrians or cy-
clists cause thousands of road casualties and serious injuries
worldwide every year. Therefore, improving the safety of
vulnerable road users is an international demand. Currently,
passive as well as active collision avoidance systems have
already been installed in cars to protect pedestrians. To
design an "ideal" protection system, several challenges
have to be tackled. In this chapter, the CCP approach
is used to proactively filter pedestrians whose next step
brings them close to the street to provide an extra time
advantage for collision avoidance systems. In this use case,
CCP takes advantage of the movement patterns extracted
from contexts such as acceleration or orientation in 3D
of the pedestrians received by sensors installed in their
smartphones. To evaluate the CCP approach, comparisons
with the state of the art context prediction approaches,
already outlined in the previous chapters, are performed.
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5.1 Motivation

Road traffic crashes and injuries are a serious public health problem.
Every year, more than one million people are killed as a result of
traffic accidents [1] worldwide. 400,000 of them are pedestrians [2].
The reasons for accidents between pedestrians and cars are various.
In some cases, car drivers or pedestrians are simply inattentive. In
other cases complex spots such as curves or parking spots prevent
direct visual contact between the road users and might lead to
dangerous situations.

In order to reduce accidents between cars and pedestrians,
several research groups use different technologies to develop passive
and active pedestrian protection systems. The target of passive
pedestrian protection is the reduction of the impact on a pedestrian
when the accident is no longer avoidable. This is achieved by
mechanisms like rising hoods or pedestrian airbags that are under
investigation to prevent the pedestrian from hitting the engine
block respectively the windshield [3]. First passive systems are also
provided in products of car manufactures like BMW, Audi or Honda.

Passive pedestrian protection is a first step to improve pedestrian
safety, however, the better solution is to actively avoid a collision.
Current approaches use vehicle-based sensors such as infrared, radar
or laser to detect pedestrians that might collide with a vehicle.
In [4], an automotive night vision system for pedestrian detection
based on infrared sensors is illustrated. The authors present a pre-
processing technique based on a Support Vector Machine classifier
that filters pedestrians out of a given picture. A comprehensive
overview of different methods using laser, video and infrared sensors
to avoid pedestrian-vehicle collisions is given in [5]. First active
systems, enabling a car "to see what is on the road", have already
been introduced in products of e.g. Mercedes and Toyota to detect
pedestrians. All these approaches are promising, but they need a
direct line of sight and do not use any contextual information of the
pedestrians they are trying to protect.

The main challenges to provide an optimum solution to prevent
car pedestrian accidents are the following [6]: Providing an overview
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about the scenario (car, the pedestrian, street, other pedestrians,
etc.); filtering pedestrians at risk (out of potentially many); and
finally a way to communicate this information and providing a
mechanism to warn the relevant road users.

First approaches that try to prevent possible pedestrian-vehicle
accidents using car systems and information from pedestrians are
outlined in [7] and [8]. The proposed systems use a pedestrian’s
mobile phone and a car navigation system. GPS coordinates
of the pedestrian and the car are sent to a server. Then, the
collision risk is calculated and the driver will be alerted of the
likelihood of an accident. Another method uses radio frequency
tags to avert collisions between pedestrians and cars. [9] and [10]
describe strategies based on RF-communication between a long
power transponder that is attached to a pedestrian and a receiver
placed in a vehicle. Thus, pedestrians can be detected for a distance
up to 60m by the car without a direct line of sight and without
transferring additional information of the pedestrian to the car. In
[11] the pedestrian’s spatial location, velocity and heading angle
are used to predict her long term movement behaviour. This
information is used by the vehicle to find the optimal path to prevent
a possible vehicle-pedestrian accident.

The above mentioned approaches show possibilities of detecting
pedestrians that are walking on the pavement or even pedestrians
obscured by objects, but they do not filter the pedestrians that
may be at risk in advance. For this reason, these approaches
may be inefficient in terms of needed calculation time and battery
consumption.

A technique to filter pedestrians that may be at risk from
those who are not is proposed in [13] and [6]. The authors present
various filters differing by input information like movement speed,
movement directions and possible intersection points between cars
and pedestrians. Figure 5.1 presents possible architectures to filter
pedestrians. The first architecture uses ad hoc communication (3)
between the pedestrian’s mobile phone (2) and the navigation sys-
tem of a car (1), the second architecture uses cellular communication
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Figure 5.1: Filtering pedestrians at risk [12].

(4) between the pedestrian’s mobile phone, a central server unit (5)
and a car navigation system.

In this chapter CCP is applied to a realistic and collaborative
use case, the protection of pedestrians, to demonstrate its usefulness.
Therefore, the following contributions, which have been published
in [12], are presented:

(i) Extending the idea of filtering pedestrians by predicting a
pedestrian’s next step using her context information (movement and
orientation). Hence, it is possible to proactively filter pedestrians
and provide a collision avoidance system with an additional time
advantage.

(ii) Using simulated and real movement data. The real movement
data were measured by a Samsung Galaxy S II smartphone the
pedestrians carried in their left trouser pocket to gather realistic
input data.
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(iii) Finally, the results of the CCP approach, predicting the
pedestrian’s next step are compared to the algorithms introduced
in Section 2.2.

5.2 Use case description

The scenario, which describes the presented use case consists of
a pavement beside a street that has been segmented into several
parts (cf. Figure 5.2). The different parts are used to locate a
pedestrian’s current position on the pavement. The size of one part
of the pavement is 0.75cm × 0.75cm and results from the average
length of a step of pedestrians. Hence, with each step, a pedestrian
reaches a new part on the pavement. This segmentation has
been used because current GPS technologies do not offer sufficient
accuracies that are needed to precisely locate the current position
of a pedestrian on a pavement. Current standard implementations
of GPS devices only achieve accuracies of 3 to 5 meters [14]. In
our experiment the average speed of a pedestrian is determined as
1.34m

s [15]. Hence, a pedestrian needs approximately 0.56 seconds
to move from one part to another.

In order to describe the pedestrian’s current position on the
pavement the different parts have been labelled horizontally with
numbers and vertically with letters. The pavement is divided into
two areas. One area close to the street A0 till A14 is marked in red
and indicates that a pedestrian might be at risk. The other area,
marked in black, has more distance from the street and indicates
that pedestrians inside this area are currently not at risk.

In Figure 5.2 paths in different colours can be seen. The position
where the pedestrian enters the pavement is known a priori and
is not in the focus of the examination outlined in this thesis. A
technology for relative positioning of a pedestrian on a pavement
that can be used to detect her entrance point on the pavement is,
e.g. presented in the AMULETT project [9].

In this scenario according to [16], it is assumed that the way
taken by the pedestrians is always the path that requires the smallest
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Figure 5.2: The underlying scenario consists of a pavement aside a
street divided in several labelled parts. Dangerous spots are marked
in red [12].

number of steps to reach a destination. Hence, the assumption is
made that pedestrians only change their movement direction after
three steps. The parts that can be reached by a pedestrian with the
next step is either the closest part in front of the pedestrian or the
closest part diagonally to the left or to the right of the pedestrian’s
current position. Each path as, e.g. outlined in Figure 5.2 belongs
to a pedestrian and indicates her recorded movement sequence on
the pavement using a smartphone. A set of different runs of a
pedestrian represents her movement history, respectively her context
history. Hence, the context history consists of the different parts
that form the paths walked by the pedestrian. The context histories
are used by the prediction algorithms to predict the pedestrian’s
next step. As can be seen in Figure 5.2 the movement behaviours
of the pedestrians show similarities. These similarities between the
movement patterns in the context histories of the pedestrians are
utilised by the CCP to make a reliable next step prediction even
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if the pedestrian’s current movement behaviour is untypical and is
not represented in her own history.

The outlined scenario forms the basis that is used to evaluate
the CCP approach with regard to its ability to proactively filter
pedestrians at risk.

5.3 Evaluation Method

Figure 5.3 gives a description of the method used to evaluate the
accuracy of the context prediction algorithms using simulated data
as outlined in Section 5.4 and using realistic data as outlined in
Section 5.5.

In step one, the movement data histories are generated by
using a simulator or they are gathered by using a smartphone the
pedestrians carry in their trouser pockets. Afterwards, the data are
stored in a data pool. In step two, the histories in the data pool
are pre-processed using a sliding window approach as introduced in
Section 2.1. In Step three the training data and the test data used

Figure 5.3: Used evaluation method.
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for the evaluation are prepared. For the simulation-based evaluation
ten movement histories are selected. For the evaluation based on
realistic data, movement data from eight pedestrians are collected.
Out of these ten respectively eight histories, three histories are
selected by chance and are utilised as test histories. The remaining
histories represent the training data. Training and test histories
are split into instances. Each instance represents a movement part
of a pedestrian on the pavement and consist of four parts of the
pavement (cf. Section 5.2).

In Step four, the training histories are weighted regarding their
similarity to the selected test histories. Therefore, the Needleman-
Wunsch algorithm is used. During the evaluation process the leave-
one-out method is applied. Hence, the instance used for prediction
is temporarily erased form the movement history (test data set) of
the respective pedestrian.

To further elaborate the prediction accuracy of the algorithms,
different numbers of training data sets are used. The first training
data set is represented by the histories of the three pedestrians the
test data set is generated from. Afterwards, the training data set
is increased by adding the histories of the remaining pedestrians
regarding their obtained similarity score. Each time the number
of used training data sets is changed, the prediction model is built
anew in step five. In step six the accuracy modification depending
on the chosen number of training data sets is outlined.

5.4 Evaluation using simulated data

To get an impression of how different context predictors perform
under ideal circumstances with respect to the use case outlined in
Section 5.2, they were applied to simulated data. Ideal circum-
stances mean that the movement data of the pedestrians do not
have to be recognised and preprocessed by a smartphone first, as it
is performed in Section 5.5. Altogether, two different environments
were used to simulate movement data. The environments differ
with respect to the segmentation of the pavement and the number
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Table 5.1: Used Simulation settings.
Name Size of Pavement Nr. of paths Instances

Figure 5.4 5× 15 3 - 5 138

Figure 5.5 5× 15 5 - 10 315

Figure 5.6 10× 30 3 - 5 247

Figure 5.7 10× 30 5 - 10 830

of movement paths a history of a pedestrian contains. The higher
the number of paths stored in a pedestrian’s history, the higher the
resulting number of instances. The different simulation settings are
presented in Table 5.1.

Figure 5.4 and 5.5 present the results gained by CCP, ActiveLeZi
and Alignment for a pavement dimension size of 5 × 15 parts.
Utilising the histories of the three pedestrians as training data the
test data set has been generated from, CCP and ActiveLeZi receive
a prediction accuracy of less than 5%. This is due to the fact that
none of the three histories contains useful information since the
movement pattern whose next step should be predicted is completely
deleted from all of the three histories because the the leave-one-
out strategy was used. Only the Alignment predictor receives a
reliable prediction result. This might indicate that Alignment is
more suitable to make reliable predictions for training data sets that
contain unambiguous information. The similar affect has already
been observed in the experiment outlined in Section 3.4.2. In
this experiment, Alignment performed better than other prediction
approaches on a less unambiguous data set, which has not been
preprocessed using the sliding window approach.

While context histories that contain additional simulated move-
ment paths were added to the training data set one after another, the
prediction accuracy of CCP increases constantly and outperforms
the accuracy of the two other prediction approaches. If the accuracy
tends of Alignment and ActiveLeZi are considered it can be seen that
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the enlargement of the information space does not automatically
improve the prediction accuracy of the two approaches. Rather,
Figure 5.4 and 5.5 illustrate that the prediction accuracy can even
drop, if the number of movement paths in a history is increased (cf.
the results in Figure 5.4 using nine and ten simulated histories). In
contrast, the prediction results of CCP remain nearly constant.

Figures 5.6 and 5.7 outline the results of the context prediction
algorithms using a pavement size of 10 × 30 parts. First, it can be
recognised that a higher search space, i.e., increasing the number
of parts on a pavement from 5 × 15 to 10 × 30, does not decrease
the prediction accuracy of CCP and ActiveLeZi. Only the overall
accuracy of the Alignment approach decreases. Similar to the
first two results, Alignment reaches the best accuracy considering
only the histories as training data the test data set has been
generated from. After adding additional simulated movement data
the accuracy of the Alignment predictor only slightly increases. In
contrast, CCP and ActiveLeZi are nearly able to constantly increase
their prediction accuracy. In the case of five or more simulated
histories of pedestrians, CCP always receives the highest prediction
accuracy for all settings presented in Table 5.1.

The obtained prediction results up to 95% of CCP on the
simulated data look quite promising. Next, realistic movement
data obtained from pedestrians are used to evaluate the proposed
prediction approaches.

5.5 Evaluation using realistic data

In this section, the context predictors have been used to predict
next positions of a pedestrian based on realistic movement data.
To collect the pedestrians’ movements and direction changes on a
pavement a Samsung Galaxy S II smartphone with Android 2.3.3
operating system, the pedestrians were wearing in their trouser
pocket, has been used. Three ground truth annotations (W = walk
straight ahead, L = turns left and then continues walking, R =
turns right and then continues walking) were made with a Nokia
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Figure 5.4: Prediction results using simulated data (cf. Table 5.1).

Figure 5.5: Prediction results using simulated data (cf. Table 5.1).
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Figure 5.6: Prediction results using simulated data (cf. Table 5.1).

Figure 5.7: Prediction results using simulated data (cf. Table 5.1).
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N800 Tablet during the measurement process of the sensor data.
The annotated movement data has been saved to the respective
context history of the pedestrian called CHannotated.

The following software sensors available on the Samsung Galaxy
S II smartphone have been selected: gravity, accelerometer, mag-
netic field, gyroscope, rotation and orientation. These sensors are
derived from available hardware sensors installed in the smartphone,
such as accelerometer, magnetometer and gyroscope sensors. The
sensors deliver values in the x-, y-, and z-axis, which are relative to
the screen of the phone in its default orientation. The gravity sensor
provides a three dimensional vector that indicates the direction
and magnitude of gravity. The accelerometer sensor measures the
acceleration of the pedestrian. If the pedestrian is not moving, the
accelerometer delivers only the value of 9.81m

s2 , which is the influence
of gravity. Therefore, if the smartphone is stationary, the output
of the accelerometer sensor should be identical to the output of the
gravity sensor.

The magnetic field sensor measures the ambient magnetic field
of each axis, while the gyroscope provides the angular speed around
each axis. The rotation sensor provides a vector x∗sin( θ2 ), y∗sin( θ2 ),
z ∗ sin( θ2 ), where θ is the rotation angle and x, y, z are the axes
relative to the device. The orientation sensor delivers three types
of values, which are Yaw, Pitch and Roll. Yaw represents the
compass heading in degrees. Pitch represents the tilt of the top
of the smartphone while Roll represents the side-way tilt of the
smartphone. The sensor values for each sensor were measured at a
sampling rate of 32 Hz.

The gravity and accelerometer sensors were expected to capture
the motion of the pedestrian. The other sensors were used to detect
direction changes of the pedestrian. The measured sensor data
and the corresponding movement patterns are presented in Figure
5.8. To reduce the dimensionality of the sensor data and to allow
classification of the movement patterns, features were extracted
from the obtained sensor data. Mean and standard deviation values
were computed for each axis of every sensor. Further, the magnitude
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of all three axes was calculated. The sliding window technique was
used to compute features. Each window consisted of one second
of measurement data, which is equivalent to 32 instances of sensor
values. No overlapping of windows was used for the computation of
features. As a result, a total of 48 features were received.

To extract the movement paths of the pedestrians from the
recorded sensor information, a Java implementation of the C4.5
decision tree learning algorithm was used. A partial depiction of
the generated decision tree is outlined in Figure 5.9. The decision
tree classifier automatically recognises the movement patterns of
the pedestrians based on the computed features. As input for the
learning algorithm, the computed features were combined with the
ground truth annotations. The generated decision tree produced a
recognition accuracy of 96.64%, while the training data was also
used as test data. The outputs (W, L, R) were saved in the
respective context history of the pedestrian called CHrecognised.
If the classifier performs perfectly, the history CHrecognised of a
pedestrian corresponds to the history CHannotated of the respective
pedestrian.

In order to use the recognised movement patterns to proactively
filter pedestrians at risk, the recognised patterns have been mapped
to the coordinate system, outlined in Section 5.2. The mapping is
needed to assign the recorded and annotated movement patterns to
the locations on the pavement where the movement of the pedestri-
ans actually happened. A converter has been used to map the data
stored in the context histories CHannotated and CHrecognised to the
actual coordinate representation of the pavement. In relation to the
movement path depicted in Figure 5.10 the mapping results in "A0,
A1, A2, A3, B4, B5, B6, B7, A8, A9, A10". Later, the resulted
movement path is segmented into movement patterns (instances),
using the sliding window approach.
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Figure 5.8: Different measured sensor values provided by a smart-
phone [12].
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Figure 5.9: A partial depiction of the generated decision tree.

Figure 5.10: Example of the movement pattern recognition output
[12].

5.6 Evaluation and Discussion

In this section the evaluation results of CCP, which has been used
to proactively filter pedestrians at risk, are discussed. Next, the
results of CCP are compared with the results gained by ActiveLeZi,
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Figure 5.11: Maximum prediction baseline using CHannotated [12].

Figure 5.12: Prediction results using CHrecognised [12].
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Alignment and the StatePredictor. According to the evaluation
method, outlined in Section 5.3, three different CHannotated histories
have been picked by chance from the eight available histories. These
data have been used to represent the test instances.

Afterwards, the CHannotated histories as well as the CHrecognised

histories were used to classify the test instances. The results
outlined in Figure 5.11 present the maximum prediction baseline of
the four context predictors using the CHannotated histories to train
the prediction models. The results presented in Figure 5.12 show
the prediction accuracies of the algorithms using the recognised
movement data in CHrecognised to train the prediction models.

The results presented in the Figures 5.11 and 5.12 show that CCP
clearly outperforms ActiveLeZi, Alignment and the StatePredictor.
In both cases, the gained accuracy of CCP is nearly 30% higher than
the accuracy gained by the state of the art context predictors. The
accuracy achieved by ActiveLeZi and Alignment is almost the same.
The StatePredictor slightly obtains better results than Alignment
and ActiveLeZi. Compared to state of the art context predictors,
which try to find the best possible match for a given movement
sequence, the utilisation of existing relations in the movement
behaviours of the different pedestrians result in better prediction
accuracies.

Comparing the results obtained by CCP using CHannotated and
CHrecognised, it can be recognised that the prediction accuracy
only slightly decreases using the recognised movement patterns
of the pedestrians. The highest accuracy gained by CCP using
CHannotated is 82% and 77% using CHrecognised. Due to the
fact that the prediction accuracy of CCP using CHrecognised

only decreases by approximately 5% compared to the baseline
given by CHannotated, the obtained prediction results of CCP on
CHrecognised are quite promising. Consequently, the results indicate
that the approach used to recognise a pedestrian’s movement works
reliable. The reduction of the accuracy can result from errors during
the recognition of the realistic movement data of the pedestrians,
e.g. due to incorrect movement annotations.
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Altogether, the feasibility to automatically infer pedestrians’
movements, using sensor information provided by a smartphone, has
been proven. A recognition rate of 96.64% applying a C4.5 classifier
has been achieved. Further, CCP was applied to the automatically
recognised movement patterns to proactively filter pedestrians at
risk. An accuracy rate of approximately 80% was achieved. With
regard to the experiments outlined in this section, CCP needed
0.01 seconds to predict a pedestrian’s next step on average. If
the time needed to predict a pedestrian’s next step is subtracted
from the time a pedestrian needs to make a step (cf. Section 5.2)
a significant time advantage of 0.55 seconds can be obtained. The
time advantage can be used by a collision avoidance system to detect
a possible collision between a pedestrian and an approaching vehicle
in advance. Supposing the nearby car has a speed of 50 km

h and the
driver could have been alerted 0.55 seconds earlier by a collision
avoidance system, under ideal circumstances, the driver may react
6.21 meters earlier to prevent a possible collision with a pedestrian.

5.7 Conclusions

In this chapter CCP is used to proactively filter pedestrians at
risk by predicting their next step on the pavement in advance.
As contexts, acceleration and orientation data, that describe the
movements of the pedestrians, were used. The contexts were
extracted from various sensors provided by a smartphone the
pedestrians carried in their trouser pockets.

CCP was evaluated using two experiments. In the first ex-
periment simulated context data were used and in the second
experiment realistic movement data of the pedestrians were used.
The prediction accuracy of CCP was compared to the state of the art
context predictors introduced in Section 2.2. The results gained on
the simulated data, showed that CCP is able to constantly increase
its accuracy adding additional simulated context histories. CCP
obtained a next step prediction accuracy up to 95%. In contrast,
the accuracy of Alignment and ActiveLeZi is only up to 75% on the
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simulated movement data.
In the second experiment realistic movement data of pedestrians

were used. CCP obtained a prediction accuracy of 82% using
CHannotated histories and 77% using CHrecognised histories. In
contrast, the prediction accuracy of Alignment, ActiveLeZi and the
StatePredictor only obtained results around 50%. The prediction
accuracy of CCP only decreases by approximately 5% using the
recognised movement data. Therefore, the obtained prediction
result on the recognised movement data is quite promising.

With regard to the performed evaluation, the correct predict of a
pedestrian’s next step can offer a collision avoidance system a time
advantage of approximately 0.55 seconds under ideal circumstances.
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Chapter 6

Distributed and
Collaborative Context
Prediction

In this chapter the collaborative-based context prediction
approach as well as the state of the art context predictors
are directly applied on users’ smartphones. The approaches
utilise context information from various users collabora-
tively. The communication between the smartphones of
the users is realised using peer-2-peer. Consequently, no
centralised server unit is needed to process the context
information of the users externally. Hence, most of the
legal problems associated with context prediction, identified
in this thesis, can be addressed. Finally, an evaluation of
the proposed P2P-based context prediction architecture is
provided and its possibilities to ensure a user’s right to
informational self-determination are discussed.
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6.1 Motivation

With the evolution of today’s smartphones into powerful and ubiq-
uitous computing devices, it is possible to predict future contexts
in a distributed and collaborative way. Up-to-date smartphones
offer additional sensors like an accelerometer, a gyroscope or even a
barometer or a sensor for near field communication that can be
used to collect additional contexts of a user. Due to improved
battery and processing power, collected context data can directly
be processed on smartphones. Moreover, the increased available
mobile bandwidth enables the user to send and receive data almost
continuously.

The extension of the context prediction process by the additional
usage of distributed and collaborative mechanisms increases the
benefit for the user and for services that proactively adapt to the
user’s needs equally. Thus, for example, shopping places, a user
is going to visit next, can be automatically predicted using the
user’s context history and the context histories of other users whose
shopping interests show sufficient similarities. If the user makes her
predicted shopping interest visible to her environment, personalised
advertising can be displayed on her smartphone.

In addition, the proposed distributed and collaborative context
prediction approach combines all tasks required to make existing
applications in context prediction, like Car-2-Pedestrian scenarios
[1] or users’ next place prediction [2, 3] more suitable for daily live
usage. From a technical perspective, gathered contexts must not be
transferred and pre-processed on a server anymore, which is in most
cases complex, time consuming and typically prevents just-in-time
prediction. From the user’s perspective, the prevention of external
data processing hinders unauthorised third parties to gain access
to personal data to create profiles. Hence, the principle in a user’s
right to informational self-determination, to avoid building profiles,
can be satisfied.

Figure 6.1 shows the proposed distributed and collaborative
context prediction approach. Distribution and collaboration in
the context prediction process can be achieved by using peer-to-
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P2P
1

2

3

4

Figure 6.1: Collaborated and distributed context prediction process
[4].

peer (P2P) communication (1) for the exchange of context data
between different users, collected (2) and pre-processed (3) by their
smartphones. Moreover, these contexts are utilised by prediction
algorithms (4) that are directly executed on the smartphone to
forecast a user’s next context.

A first solution that uses a hybrid server and P2P approach
for context monitoring, reasoning and prediction is proposed in [5].
The limitations of the used mobile devices prevented a standalone
P2P solution. Another approach that built up a P2P-based
context-aware information system using data gathered by mobiles
is introduced in [6]. Mobile data is directly collected and shared by
mobile phones of users. Due to limited battery and processing power
of the mobile phones the devices cannot be used for the processing
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part of the context data.
An approach that proposes a P2P infrastructure to derive high-

level context data from low-level context data is outlined in [7]. The
main focus presented in this research work is the evaluation of the
proposed P2P infrastructure with regard to memory consumption
and query processing. In contrast to the above-mentioned research,
current smartphones have been used directly to perform the context
prediction tasks. Furthermore, no centralised server is used to
handle communication between devices but P2P is used to enable
direct communication. Next, following to the technical design
proposals outlined in Section 4.5, to derive a legally acceptable
context prediction implementation, the system model to describe
the distributed and collaborative context prediction approach is
characterised. Subsequently, the developed architecture is presented
in more detail. Finally, the prediction times of the different
approaches using the described architecture are evaluated and the
impact of the proposed architecture to the right to informational
self-determination is discussed.

6.2 System Model

To determine the requirements for the distributed and collabora-
tive context prediction approach, a system model is defined that
describes the technical design proposals outlined in Section 4.5 in
more detail. The resulting system model describes the underlying
environment of the proposed approach, characterises the approach
and outlines its objectives. In total, the system model comprises
three different dimensions, as shown in Figure 6.2 and detailed
below.

The first dimension of the system model specifies the components
the environment consists of (structure model). It is assumed that the
algorithms to predict a user’s next context are used in a distributed
and collaborative manner. Supported context prediction algorithms
are the CCP approach and the state of the art context predictors
introduced in Section 2.2. Furthermore, it is assumed that the
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knowledge base to train a prediction model is not restricted to the
user’s own context history but also uses additional knowledge in
context histories of other users. Additionally, it is assumed that no
centralised server unit is used to perform the prediction of a user’s
next context. Hence, the users do not have to trust one central
processing unit.

Figure 6.2: System model for distributed and collaborative context
prediction [4].

The hardware model describes the assumptions about the hard-
ware components used in the distributed and collaborative context
prediction approach. It is assumed that in the environment only
smartphones are utilised. Hence, smartphones are utilised to gather
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the contexts of a user. Further, it is used for the prediction process.
Objectives of the distributed and collaborative context prediction

approach are that the prediction of a user’s next context always has
to be possible, even if a user’s own context history does not provide
sufficient context information. Therefore, it should also use context
information of other users whose context histories show sufficient
similarities. Further objectives are that current whereabouts of the
users, whose context histories are used for the prediction process,
are not important for the distributed and collaborative context
prediction approach. For this reason, a geographical proximity of
users is not necessary. Context data of a user is only stored on the
user’s smartphone. If context information has to be transmitted,
it has to be pseudonymised. Additionally, only context information
that is necessary for the prediction process is stored. Any contexts
that are not relevant have to be deleted. Finally, the achieved
prediction accuracy of a used algorithm has to be sufficiently
accurate.

6.3 Requirements

Based on the system model outlined in the previous section,
technical and general requirements are derived in this section.
These requirements provide the basis for a realistic implementation
of the distributed and collaborative context prediction approach.

In the system model a user’s smartphone is proposed as a
computational device for the distributed and collaborative context
prediction scenario. In the proposed approach, smartphones
utilise built-in soft- and hardware sensors, e.g., accelerometer,
magnetometer, gyroscope, etc. to automatically collect context
information of a user. Collected context information is only stored
on the user’s smartphone. Further, smartphones serve as processing
units. Hence, context prediction algorithms run directly on the
smartphone to predict a user’s next context.

In order to use smartphones for these tasks, the devices
have to be up-to-date with respect to their processor unit and
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internal memory size. Otherwise, the time needed to predict
a user’s next context directly on the device might take too
long to provide just-in-time context prediction. Collaboration,
respectively the combined usage of context information of different
users, is used to achieve high prediction accuracy and to provide
context prediction even if the context history of the user does not
contain suitable information. This implies that contexts located
in histories belonging to other users that are stored on their own
smartphones must also be utilised by the prediction process if
necessary. Therefore, smartphones require a stable connection to
the internet. If a context predictor needs context information from
other users to make a reliable prediction, required context data
must be transmitted pseudonymised. A centralised server unit
must not handle the communication between the smartphones of
the users during a prediction process. A prerequisite is the usage of
P2P communication between the smartphones of the users. Thus,
context information is not concentrated on a processing unit of a
single service provider.

As context prediction approaches, Alignment, ActiveLeZi,
StatePredictor and the Collaborative Context Predictor (CCP)
have to be supported. All approaches are state of the art
context prediction algorithms. Regarding their different working
methods, the following requirements have to be considered: To
use Alignment, ActiveLeZi or the StatePredictor in a collaborative
manner, the context sequence which is used to predict a user’s
next context is sent to the smartphones of appropriate users using
P2P communication. Subsequently, the user who sends the context
sequence and the users who also receives her context sequence use
Alignment, ActiveLeZi or the StatePredictor to make a prediction
on their own devices using their own context histories. Afterwards,
each user returns the predicted context to the user the context
sequence originally came from. Finally, voting is used to determine
the context that follows up the given context sequence. In contrast
to the other algorithms, CCP needs at least one additional context
history of another user on the same smartphone of the user whose
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next context has to be predicted, to work properly. For this reason,
the context histories of the users, which will also be used, have to
be completely transmitted to the smartphone of the user. At that
time, a distributed calculation of the prediction model of the CCP
is not implemented. Consequently, CCP is executed on the user’s
smartphone whose next context has to be predicted.

To limit the number of additional context histories used to make
reliable predictions, those who are most appropriate have to be
identified first. Hence, it is necessary to compare the history of the
user whose context has to be predicted with those histories available
in the P2P network of the other users. Context histories do not
need to be compared directly to each other to avoid additional
communication traffic and to avoid that context histories are
processed in plain text centrally.

6.4 Our Approach

In this section, the approach for the distributed and collaborative
context prediction is presented. The underlying architecture is
outlined in Figure 6.3. The proposed architecture is divided into two
parts: The Context Recognition Architecture describes how high-
level context information of a user can be automatically received
and processed using the built-in sensors of a user’s smartphone. It
was developed in the course of the following master thesis [8]. The
P2P-based Context Prediction Architecture describes the P2P-based
context prediction process which is executed on users’ smartphones
and was developed in the course of the following bachelor thesis [9].

6.4.1 Context Recognition Architecture

To provide an easy-to-use-possibility for a user to collect context
information, a web application is provided. By using this web
application the user is able to create profiles, respectively templates,
to automatically gather high-level context data. Defined profiles
can be simultaneously accessed and used by arbitrary smartphones.
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After a profile has been chosen on smartphone s1, it automatically
starts the tasks specified in the profile.

A profile determines which built-in sensors of a smartphone are
utilised to collect context information of a user. All available hard-
and software sensors are supported. It is also possible to specify
the pre-processing of collected sensor data. An example can be
the deletion of redundant sensor information or clustering sensor
information to meaningful high-level context information using,
e.g. k-Means or other appropriate algorithms. In addition, low-
level sensor data can be mapped to high-level sensor data using
annotations predefined in the profile. Annotations can, e.g. be
walking, sitting, standing, if built-in sensors are used to recognise
the movement behaviours of a user. These annotations can be used
by another smartphone, which accesses the same profile to label the
sensor information currently collected by the smartphone s1.

Annotations and collected sensor information are automatically
merged after s1 has stopped its data collection process. The merging
result represents the context history of the user. The history can be
used by context recognition approaches also defined in the profile
to automatically derive high-level sensor data from low-level sensor
data, gathered by built-in sensors using supervised approaches.
Then, no manual annotation of the gathered sensor data is needed.

6.4.2 P2P-based Context Prediction Architec-
ture

The second part of the architecture performs the prediction process
to forecast a user’s next context based on her most recently
recognised sensor data. The user’s most recent context data
is automatically derived from the sensor data using her context
history located on s1 and a supervised learning approach specified
in the profile. Before the prediction process starts, the context
history of the user is pseudonymised. In addition, the Fast Fourier
Transformation (FFT) of the user’s context history is calculated on
s1. Subsequently, the FFT representation is transferred in a vector
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of quantifiers where each FFT floating-point value is transferred
into a value of discrete range between 0 and 4. This vector of
quantifiers represents the context history of a user and is used to
identify similar context histories of other users without comparing
the histories directly but by comparing the vectors.

The usage of a server-based register would be the simplest way
to perform the similarity check of the vectors. However, this would
violate the requirement of a pure decentralised architecture with no
single-point-of-failure. Thus, a register service, which is distributed
among all users by using a distributed hash table (DHT) as the
underlying architecture for a P2P network, is proposed. Each
device that is available in the P2P network can be used to predict
a user’s next context. Therefore, it registers, with the register
service, its current IP-address, with its vector of quantifiers and
with the profile ID the context history of the user has been generated
with. Thus, the used key for storing this information in the DHT-
based register service must be derived from its vector of quantifiers
while preserving order to enable other devices to search for similar
histories. A device can also be registered with several vectors
that belong to different context histories that have been generated
using different profiles. As soon as the user selects the preferred
context prediction approach on device s1, the smartphone sends a
prediction request to the register service, i.e., the P2P network. The
prediction request includes the profile ID, the IP address of s1 and
the quantifier as the key. The responsible device in the DHT for the
requested vectors returns the IP addresses of the devices to s1 whose
quantifiers are most similar to the quantifiers sent from s1, i.e., all
values found in the keyspace around the requested key (k±c, with k

being the requested key and c a constant). After that, s1 initialises
connections to the devices of the users, whose context histories show
the most sufficient similarities, using socket communication.

If the user chooses Alignment, ActiveLeZi or the StatePredictor
to perform the prediction task, s1 sends the pseudonymised context
pattern, whose next context has to be predicted, the chosen
prediction approach and the profile ID of the current context history
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to the devices a connection has been established with. Subsequently,
all devices connected to s1 and s1 itself perform the prediction
task for the current context pattern using their own pseudonymised
context history.

After the prediction task has been finished, all devices return
their prediction to s1. The final prediction results from a majority
vote of all incoming prediction results. If the user chooses the CCP
approach, the pseudonymised context histories of the connected
users have to be sent to s1 first. Afterwards, the prediction task is
performed directly on s1. A distributed calculation of the HOSVD
has not been implemented, so far. If the prediction task is finished,
the received context histories are deleted. The proposed P2P-
based Context Prediction Architecture complies to the requirements
described in Section 6.3 for the distributed and collaborative context
prediction approach: mobile devices instead of PCs are used for
the calculation tasks; context prediction approaches are directly
executed on the mobile devices; recognised context data are solely
stored on a user’s mobile device; context histories do not have to
be transferred to other user’s devices except if CCP is used for pre-
diction; transferred context data, e.g. the current context pattern
or context histories for CCP are pseudonymised; only devices of
users are used whose context histories show sufficient similarities to
the user whose next context has to be predicted; communication
between devices is handled using P2P-based communication, no
centralised server unit is needed.

6.5 Experimental Evaluation

In this section, the experimental evaluation of the P2P-based
Context Prediction Architecture is discussed. Experiments to
determine the prediction time needed by the distributed and
collaborative context prediction approach and the three state of the
art approaches using Wi-Fi and UMTS connectivity are outlined.
In the scenario, four users were involved. Each user had its own
smartphone. On each smartphone, training data belonging to three
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different context data sets have been stored. The first data set
consists of movement behaviours (sitting, standing, walking, etc.)
of four persons, as described in Section 3.4.1. Here, a data set
is called mov. The second data set contains outdoor movement
paths of four pedestrians derived from various sensors built-in a
smartphone carried by pedestrians, as described in Chapter 5. Here,
the data set is called ped. Further, the modified version of the
Augsburger data set, as described in Section 3.4.2, was used. Here,
it is called augs. Each data set consists of training- and test data.
The training data is used to build the prediction model for a chosen
context predictor. The test data is used to evaluate the results
of the predictors using their trained model for a certain data set.
The training data belonging to a certain context data set is unique
on all smartphones. Hence, each user provides different context
information for a certain context data set. During the experiments
the prediction tasks in the P2P environment were performed on
Motorola DROID RAZR MAXX smartphones. Each smartphone
has a dual-core 1.2 GHz Cortex-A9 processor and 1 GB RAM. In
the experiments, the required time to make various forecasts with a
user’s smartphone s1 was proposed.

First, a baseline is given by measuring the needed prediction
times of the predictors for the three different data sets on a server
unit (pc). The server unit has an Intel Core i7 with 2 GHz and 8 GB
RAM. In addition, the needed prediction times are also measured
using only the smartphone of one user (s1 local) that holds the test
data of the three data sets. In both cases, the training data of
all four users are previously merged to one big training data for
each data set. This is because no P2P communication has been
used for this experiment to derive additional context information of
other users. Moreover, the prediction time, needed to predict the
contexts for all instances of a given test data belonging to a certain
data set using P2P communication, was measured.

The measurements have been performed while the four smart-
phones have been connected using Wi-Fi (p2p wi-fi) respectively
using UMTS (p2p umts). If all devices are located in the same Wi-
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Fi network, a direct connection between devices can be established.
Otherwise, if the devices use the UMTS network, they have to share
the same VPN connection. A direct connection between mobile
devices using UMTS is not possible because the telecommunication
provider blocks it. Furthermore, the accuracy (acc) gained by
the prediction approaches and the number of test instances (ins)
included in a test data set are outlined.

Table 6.1: Measured prediction times in seconds using the P2P-
based context prediction architecture.

CCP
data pc s1 local p2p wi-fi p2p umts acc ins
mov 0.74 13.9 13.5 49.1 90% 20

ped 0.30 1.39 3.9 41.2 87.5% 24

augs 5.3 166 162 471 74% 50

Alignment
data pc s1 local p2p wi-fi p2p umts acc ins
mov 90 ms. 0.96 16.1 86.9 75% 20

ped 61 ms. 0.59 4.5 73.7 66.6% 24

augs 167ms. 12.3 75.4 196.2 8% 50

ActiveLeZi
data pc s1 local p2p wi-fi p2p umts acc ins
mov 160 ms. 5.43 19.6 62.45 80% 20

ped 94 ms. 1.13 7.8 49.1 66.6% 24

augs 1.7 82 750 −−− 10% 50

StatePredictor
data pc s1 local p2p wi-fi p2p umts acc ins
mov 1 ms. 4 ms. 4.5 14.3 84% 20

ped 1 ms. 5 ms. 4.9 14.1 78.3% 24

augs 2 ms. 9 ms. 18.1 40.3 65.3% 50

The results of the experiments are shown in Table 6.1. The
baseline presented by (pc) shows that the server always needs the
shortest execution times for all prediction approaches and all data
sets. The same experiments needed longer execution times when
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performed directly on the smartphone s1 (local s1 ). In both cases
CCP required the longest execution time because of its complex
mathematical computations. P2P-Wi-Fi and P2P-UMTS show the
execution times of the algorithms on the two data sets using P2P
for direct communication between the four devices. The measured
execution times are significantly higher than the execution times
measured without P2P communication. The reason is the additional
cost of communication needed to send the context pattern to the
other smartphones respectively to receive the prediction results and
the context histories from the other smartphones. Nevertheless,
the average prediction times per instance for the algorithms are
quite promising. They range between 0.16 and 0.98 seconds in p2p
wi-fi and between 1.72 and 4.34 seconds in p2p umts for a single
prediction, depending on the chosen algorithm and on the chosen
data set. The faster prediction times of CCP on the mov and ped
data sets compared to Alignment and ActiveLeZi result from the less
demand of communication needed between the smartphones. CCP
needs to establish a P2P communication to the other three devices
only once to get the context histories of the users. ActiveLeZi and
Alignment establish a P2P communication to the other devices for
every test instance. The highest prediction accuracy for all data
sets has been achieved by CCP.

6.6 Legal considerations

In this section it is discussed if the proposed distributed and
collaborative context prediction approach ensures the user’s right
to informational self-determination and if it can therefore be
considered to be legally acceptable.

To come straight to the point - all aspects which have to be
fulfilled that the presented approach can be considered as fully
legally acceptable can not be addressed in this thesis. Thus, for
example, current decryption strategies that can be used to secure
the communication channels between the smartphones as well as
the complete decryption of the context data on a user’s smartphone
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are not considered. However, the missing consideration to secure
the communication channels has been addressed implicitly because
VPN has been utilised to establish the communication while using
UMTS connectivity (cf. Section 6.5).

Nevertheless, the presented approach for distributed and collab-
orative context prediction addresses four of the five principles of
a user’s right to informational self-determination. The principles
have been outlined in Figure 4.2 in Section 4.5 as conflicting
legal requirements with respect to the technical requirements of
a context prediction process. In Table 6.2 the different technical
implementations of the approach are mapped to the principles of a
user’s right to informational self-determination:

The mapping of the provided functions to the according princi-
ples outlines that the presented approach also considers the princi-
ples to informational self-determination in addition to collaborative-
based and distributed context prediction. Therefore, the design
proposals, suggested by KORA (cf. Figure 4.2), have been
implemented successfully. For this reason, the proposed approach
can be considered as a first step to provide context prediction in a
way that it is legally acceptable for the users. Only the principle of
giving consent has not been addressed by the approach to make sure
that it remains unobtrusively. Otherwise, the user would be forced
each time to confirm if her smartphone is allowed to be utilised
during the prediction process of a user’s next context.

6.7 Conclusions

In this chapter, an approach for distributed and collaborative
context prediction has been presented. The idea of the approach is
to provide a solution for the legal implications caused by existing
context prediction approaches and architectures as outlined in
Chapter 4. For this reason, the presented approach implements
the design proposals, which have been figured out by the KORA
method in this thesis.

First, a system model based on the design proposals has been
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Table 6.2: Mapping the principles of a user’s right to informational
self-determination to the different technical implementations.
principles technical implementations
transparency Contexts are solely stored on a user’s smartphone.

For this reason, the user is able to look at her data
at any time.

necessity Solely context histories of other users are used
in the collaborative-based prediction process that
show sufficient similarity to the history of the
user whose next context has to be predicted.
Therefore, it is ensured that only data, which are
needed are utilised.

profile Histories are not compared in plain text but by
their vector representations. As a result, context
histories do not have to be transferred form a
user’s device to another.

profile If context data have to be transmitted, e.g. for
the CCP approach, the data are transmitted
pseudonymised.

transparency The processing of the context data and the
prediction process is only performed on a user’s
smartphone.

responsibility No centralised server unit is used to handle
the communication between the smartphones but
p2p. Therefore, no additional service provider is
needed.

transparency The user has access to the context collection pro-
file used to collect certain context data. Further,
the user also has the possibility to configure the
profile as described in Section 6.4.1.
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presented to determine the requirements for the approach in more
detail. Subsequently, the architecture the approach consists of has
been outlined. The architecture consists of two parts, the context
recognition architecture and the p2p-based context prediction
architecture. The evaluation given in this chapter showed that
the algorithmic approaches presented in this thesis could provide
context prediction results in a reasonable time, using the p2p-based
context prediction architecture.

Finally, the different functions of the approach have been
mapped to the principles of the right to informational self-
determination. It could be shown that the approach can be
considered as a first step to provide context prediction in a way
that it is legally acceptable to the users.
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Chapter 7

Conclusions and Outlook

In this PhD thesis, a contribution to the understanding
and development of a collaborative-based context predic-
tion approach has been given. Further, the presented
collaborative-based context prediction approach has been
evaluated by comparing the approach with state of the
art context predictors. Evaluation results have been pre-
sented regarding their prediction accuracies and considering
their compatibility with the right to informational self-
determination. Finally, an architectural approach, that pro-
vides collaborative-based context prediction in a way that
it is legally acceptable to the users, has been introduced.
This chapter summarises the thesis and provides an outlook
to open research questions.

7.1 Conclusions

Context prediction is one important technique used in ubiquitous
computing systems. Context prediction enables ubiquitous
computing systems to proactively adapt its services, applications,
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algorithms, etc. proactively to the user’s needs. To provide
predictions, appropriate algorithms are used. As knowledge base,
the algorithms utilise the context history of a user. If the history of
a user does not provide sufficient context data, current prediction
approaches will fail in predicting the next context.

As reviewed in Chapter 2, there do not exist approaches that
provide context prediction in a collaborative manner. Considering
the fact that most ubiquitous computing environments, e.g. smart
homes, meeting rooms, cars or public places like shopping malls and
airports are highly collaborative, it might be obvious that users who
share the same environment may assist each other by also sharing
their context information. This additional information can be used
in the context prediction process to provide reliable prediction, even
if the history of the user does not provide sufficient information.

Context data used to predict a user’s next context are in
most cases highly personal. A user’s context data can, e.g.
provide information to her locations in the past and the time
the user has been at a certain place, her habits, her contacts,
etc. All these contexts are mostly collected unobtrusively by
a ubiquitous environment and also used unobtrusively, e.g. by
context prediction approaches. This contradicts with the German
right to informational self-determination as well as it contradicts
with the European Data Protection Directive. The contradiction
will be considerably greater, if context histories of other users are
automatically integrated in a collaborative-based context prediction
process.

Therefore, in this thesis, an approach to collaborative-
based context prediction, its technical and legal evaluation and
an architectural approach to bring collaborative-based context
prediction approach in line with the right to informational self-
determination are presented in the Chapters 3-6.

A possible solution, not solely to apply the user’s history to
predict her next context but to integrate the histories of the users
that share the same ubiquitous environment, is given with the

192



7 Conclusions and Outlook

Collaborative-based Context Predictor (CCP). In Chapter 3, the
term Collaborative Ubiquitous Environment has been introduced.
The Collaborative Ubiquitous Environment consists of three
different entities, the users U ∈ U , the possible context patterns
Cp ∈ CP and the predictable future contexts Fc ∈ FC. The
Collaborative Ubiquitous Environment represents the knowledge
base used by CCP to make its predictions. CCP utilises the Higher-
order Singular Value Decomposition (HOSVD) technique to enrich
the context histories of the users with additional latent information.
Consequently, the knowledge base is represented by a 3-order tensor
structure. HOSVD is applied on the 3-order tensor to calculate the
core tensor Σ that spans the information space that only contains
the most relevant information of the Collaborative Ubiquitous
Environment. Afterwards, based on the reduced information space,
the tensor T′ that includes additional latent relations between the
entities of the collaborative ubiquitous environment, is calculated.
This additional latent information are further used to provide a
more reliable and collaborative-based context prediction to the
user. A proof-of-concept of CCP is given in three evaluations.
First, CCP has been used to forecast a user’s next step based on
the context data retrieved of her and other users’ smartphones.
Second, the CCP approach has been applied to the freely available
Augsburger data set. Finally, CCP has been utilised on a synthetic
data set, retrieved by extracting the location data of six different
characters controlled by users, applying the game Quake III Arena.
In all experiments, CCP has been evaluated against state-of-the-art
context predictors. The promising results obtained by the CCP
approach show, that it is able to provide predictions even if the
user whose context has to be predicted does not provide sufficient
contexts. Furthermore, CCP achieved quite accurate prediction
results.

A major concern in context prediction is the fact that used
context data is mostly highly personal. Hence, the assumption
can be made that it might be difficult to utilise context prediction
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approaches in real world services or products, in everyday use. On
the one hand personal context data are unobtrusively collected
form sensors in the ubiquitous environment and mostly stored and
processed externally by a service provider. On the other hand the
data, e.g. collected by a user’s smartphone have to be transferred
to an external server that provides the context prediction. In
both cases, the user looses control of his data. To identify legal
problems of the context prediction process, it has been applied
to the principles of the right to informational self-determination.
Altogether, these principles can be summarised by the avoidance
of building a profile of a user, by providing transparency to the
user, by providing the possibility of giving consent by the user,
considering the necessity of data and by giving information about
the parties that are responsible for the data collection process.
From the principles legal evaluation criteria have been derived.
The criteria have been used to legally assess different prediction
algorithms. The evaluation results showed that Bayesian networks
and the Tree-based classifier satisfy the legal criteria the most.
Due to its collaborative character CCP often disregards the derived
legal criteria. To bring collaborative-based and non collaborative-
based context predictors in line with the right to informational
self-determination KORA has been used. Applying the KORA
method, concrete technical design proposals to enable context
prediction processes to be more legally compatible by design, have
been inferred.

In Chapter 5 a realistic and collaborative use case, the protection
of pedestrians, has been used to demonstrate the practical usefulness
of CCP. In order to provide a possibility to reduce accidents between
cars and pedestrians, CCP has been applied to proactively filter
endangered pedestrians out of potentially many. Endangered
pedestrians are those, whose next step brings them close to
the street. Hence, it might be possible to provide a collision
avoidance system with an additional time advantage. To evaluate
the prediction accuracy of CCP, simulated and realistic movement
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data have been used to forecast a pedestrian’s next step. To derive
realistic context data of pedestrians, their movement patterns have
been extracted from low-level contexts such as acceleration or
orientation in 3D, which have been received by smartphones. Using
the simulated and the realistic context data, CCP obtained the
most accurate prediction results. Further, the evaluation results
have shown that the accuracy increased almost continuously, while
using additional context histories of pedestrians.

The final Chapter outlines an approach for distributed and
collaborative context prediction. The aim of this approach is
to enable collaborative-based context prediction to be used in
real world applications. This is received by regarding the design
proposals derived by the KORA method to bring collaborative-
based context prediction in line with the right to informational
self-determination.

Hence, a system model that describes the technical design
proposals in more detail has been presented first. Afterwards,
requirements such as the processing of context data directly on a
user’s smartphone, the fact that contexts have to be solely stored
on a user’s smartphone, the integration of context histories of
user’s that show sufficient similarities in the prediction process, the
pseudonymised transfer of context data and the transmission of
context data without using a central server unit, have been derived.

The requirements have been implemented by developing two
architectures. The Context Recognition Architecture, which
describes the automatic receiving and processing of low-level
context data using the built-in sensors of a user’s smartphone.
The P2P-based Context Prediction Architecture, which describes
the P2P-based context prediction process that is directly executed
on users’ smartphones. Experiments to determine the prediction
time needed by different prediction approaches using Wi-Fi and
UMTS connectivity have also been outlined.

The results look quite promising and serve as evidence
that collaborative-based context prediction using the proposed
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architectures to collect and predict context data is feasible. Finally,
it has been outlined that the proposed distributed and collaborative
context prediction approach satisfies the principles of the right to
informational self-determination and therefore can be considered as
a first step to provide context prediction in a way that it is legally
acceptable for the users.

7.2 Outlook

The thesis shows the applicability of collaborative-based context
prediction in ubiquitous computing systems, utilising the proposed
CCP approach. Furthermore, the thesis outlines a possibility to
bring collaborative-based context prediction in line with the right
to informational self-determination and therefore provides context
prediction in a way that it is legally acceptable for the users.
Nevertheless, there are additional interesting research questions that
have been not addressed in this phd thesis so far. In the following,
they are summarised.

First, the runtime of CCP needed to make its prediction on a PC
but especially on smartphone-based devices, needs to be reduced.
Although the algorithm introduced in Section 3.2.4 presents a first
opportunity, the needed prediction times of CCP compared to, e.g.
the SatePredictor are quite high. A possibility to reduce the runtime
can be a distributed calculation of the CCP approach.

Second, with regard to the distributed and collaborative context
prediction approach presented in Chapter 6, a real distributed
calculation of the prediction model of the CCP approach would
avoid the necessity to transfer the pseudonymised histories of
the other users to the device of the user, which calculates the
collaborative-based prediction model.

Third, context prediction as well as collaborative-based context
prediction cannot be considered to be a native task on a user’s
smartphone. For this reason, their affect on the battery of the
smartphone has to be investigated.

Fourth, investigations on the scalability of the CCP approach
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are still missing and have to be performed to provide a reliable
statement of how many histories of different users can be integrated
in the prediction process at most.

Finally, it would be interesting to see how the proposed dis-
tributed and collaborative prediction approach effects a user’s trust
and privacy concerns in reality. This can, e.g. be achieved by
performing a representative user survey.
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