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Abstract
We show that optimizing a quantum gate for an open quantum system requires
the time evolution of only three states irrespective of the dimension of Hilbert
space. This represents a significant reduction in computational resources com-
pared to the complete basis of Liouville space that is commonly believed
necessary for this task. The reduction is based on two observations: the target is
not a general dynamical map but a unitary operation; and the time evolution of
two properly chosen states is sufficient to distinguish any two unitaries. We
illustrate gate optimization employing a reduced set of states for a controlled

phasegate with trapped atoms as qubit carriers and a i WAPS gate with
superconducting qubits.

Keywords: quantum dissipative systems, entanglement creation, optimal control
theory

1. Introduction

Quantum effects such as entanglement and matter interference are predicted cornerstones of
future technologies. Their exploitation requires the ability to reliably and accurately control
complex quantum systems. A major obstacle is that a quantum system can never completely be
isolated from its environment, and the interaction with the environment causes decoherence [1].
This is particularly true for condensed phase settings as encountered in, e.g., solid-state
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quantum devices. A number of concepts, such as decoherence-free subspaces [2], and noiseless
subsystems [3], dynamical decoupling [4], and spectral engineering [5], have been developed to
cope with decoherence. The applicability of these strategies is tied to specific conditions on the
interaction between system and environment and, in practice, is often limited to systems that
can be described by simple models. For complex quantum systems, numerical optimal control
offers an alternative approach. It calculates the external controls that implement a desired target
operation by performing an iterative search in the parameter space of the controls [6].

For quantum systems that are subject to decoherence, numerical optimal control was first
employed to realize laser cooling of internal degrees of freedom in molecules [7]. Further
applications, also utilizing a Markovian master equation to describe the open system dynamics,
include controlling coherences [8], automatic protection against noise [9], selective
photoexcitation of charge transfer [10], electric current in a molecular junction [11], quantum
gates [12], and quantum memories [13]. Due to the formal equivalence between Markovian
dissipation and quantum measurements, optimized observations can be determined using the
same set of tools [14]. Numerical optimal control can also be applied to non-Markovian
quantum systems [15–18] provided the dynamics can be calculated with sufficient efficiency.

The question of numerical effort becomes particularly important in the optimization of
high-fidelity quantum gates. High fidelities, or small errors, are best achieved with
monotonically convergent optimization algorithms that utilize gradient information and thus
require repeated forward and backward propagation [19, 20]. Gate optimization under coherent
dynamics implies propagation of a set of states that span the Hilbert (sub)space on which the
target is defined [21, 22]. For open system dynamics, this was generalized to a set of states that
span the corresponding Liouville (sub)space [9, 12, 18, 23]. It requires not only propagation of
density matrices instead of wavefunctions but also a significantly larger number of states since
Liouville space dimension is the square of Hilbert space dimension. Realistically, this limits
quantum gate optimization to but the simplest examples, i.e., one-qubit and two-qubit
operations.

The direct extension from Hilbert to Liouville space [9, 12, 23] overlooks the fact that in
quantum gate optimization, the target is a unitary operation and not a general dynamical map.
The latter would indeed require a basis that spans the full Liouville space. However, much less
information is required to assess how well a desired unitary is implemented. This observation is
not only relevant for optimal control but also provides the basis for all current attempts at
reducing the resources for estimating the average gate error [24–28]. In fact, only two states are
necessary to distinguish any two unitaries, irrespective of Hilbert space dimension [29]. We
show here that these two states, together with a third state enforcing the dynamical map on the
optimization subspace to be contracting and population conserving, can be utilized to construct
an optimization functional that attains its optimal value only if the desired gate is implemented
with unit fidelity.

The two states that are required for unitary identification are constructed such that the first
one consists of non-degenerate contributions from each Hilbert (sub)space direction. This
corresponds to choosing a basis, and probing the gate error within this basis. In order to
determine the error of gates that are diagonal in the chosen basis, i.e., phase errors, the second
state is needed. For Hamiltonians, which due to their inherent structure allow for nothing but
diagonal gates, only the second state together with the third one is required, enforcing the
dynamical map on the optimization subspace to be contracting and norm conserving. In our
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application, we thus distinguish between gates which are diagonal and those that are
nondiagonal in the logical basis.

Our optimization functional is closely related to the gate error. While two states represent
the minimal set of states required to distinguish any two unitaries, it is impossible to deduce
bounds on the gate error from the two states [29]. This is due to the state corresponding to the
choice of basis being a totally mixed thermal state. Meaningful bounds on the gate error can be
derived numerically when replacing the totally mixed state by a set of d pure states where d is
the dimension of Hilbert space, i.e., by choosing a separate basis state for each Hilbert space
direction [29, 30]. The resulting set consists of +d 1 states. Analytical bounds are obtained
when also the second state of the minimal set is expanded [31]. The corresponding set is built
out of the d2 states of two mutually unbiased bases [29]. This observation from process
verification motivates the choice of optimization functionals, which utilize these extended sets
of states. Although the number of states then depends on Hilbert space dimension, this choice
still comes with very significant savings in the computational resources. For example, already
for a two-qubit gate, both d2 and +d 1 represent a significant reduction in the number of states
that need to be propagated, namely a reduction from 16 for the full Liouville space basis to 8
and 5, respectively.

We demonstrate below that two states are sufficient to optimize diagonal gates and three
states to optimize nondiagonal two-qubit gates. We also show that, depending on the desired
gate error, +d 1, respectively, d2 states in the optimization functional correspond to the
numerically most efficient choice. We consider a controlled phasegate with neutral trapped

atoms that are excited into a Rydberg state and a iSWAP gate with superconducting qubits. In
both examples, our optimization identifies gate implementations for which the error is limited
by decoherence. This proves that all reduced sets of states are sufficient for determining the
fundamental limit to the gate error and thus for quantum gate optimization.

The paper is organized as follows. Section 2 defines the optimization functional and
presents the optimization algorithm. Optimization of a controlled phasegate for neutral atoms is
discussed in section 3, whereas optimization of a nondiagonal gate for superconducting qubits
is studied in section 4. Section 5 concludes. The algebraic framework and the proofs required
for the construction of the three states employed in the optimization functional are presented in
appendix A.

2. Optimal control theory for a unitary operation under dissipative evolution

2.1. Optimization functional

In order to employ optimal control theory to determine a high-fidelity implementation of

quantum gates, one needs to define a distance measure JT between the desired unitary Ô and the
actual evolution. We show here that

R∑
ρ

ρ ρ= −
ˆ

ˆ ˆ ˆ ˆ
=

†

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦{ }( )J

w
e O O T1

Tr (0)
Tr (0) (1)T

i

n
i

i

i i
1

2

with n = 3 and specific initial states ρ̂ (0)
i

represents a suitable choice for JT . This is in contrast to

[9, 12, 23], where n was taken to be the Liouville space dimension corresponding to Ô, i.e.,
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=n 2 N2 for N qubits, and ρ̂
i
an orthonormal basis (under the Hilbert–Schmidt product) of

Liouville space. In equation (1), wi are weights, normalized as ∑ == w 1
i

n
i1

. In order to evaluate

JT , the time evolved states ρ̂ ( )T
i

need to be obtained by solving the equation of motion

describing the open systemʼs evolution for ρ̂
i
. While in general the dynamics can be non-

Markovian, we will restrict ourselves to a Markovian master equation in the examples below.
We assume the coherent part to include coupling to an external control, i.e., the Hamiltonian, is

of the form εˆ = ˆ + ˆH t H t H( ) ( )0 1, and generalization to several controls ε t( )i is straightforward.
The functional JT needs to be minimized with respect to ε t( ). Further constraints can be

added, for example,

∫λ ε ε= − −[ ]J J t t S t t( ) ( ) ( ) d , (2)T a

T

0
ref

2

where ε t( )ref denotes a reference field, S(t) enforces the field to be smoothly switched on and
off, and the second term in equation (2) ensures a finite pulse fluence [22]. More complex
additional constraints, for example, restricting the spectral width of the pulse or confining the
accessible state space [32, 33], are also conceivable.

Mathematically, our claim that only three states are sufficient to determine proper

implementation of the desired unitary Ô is equivalent to the conjecture that the optimization
functional attains its global minimum if and only if

ρ ρˆ = ˆ ˆ ˆ †( )T O O(0) (3)
i i

for the three states ρ̂
i
. The three states are constructed such that the first one fixes a basis, and the

corresponding Hilbert–Schmidt product in equation (1) checks whether the gate is correctly
implemented in this basis. It misses errors for gates that are diagonal in the basis, i.e., phase
errors [29]. The second state is therefore chosen to detect phase errors with its Hilbert–Schmidt
product in equation (1) [29]. The Hilbert–Schmidt product of the third state determines whether
the dynamical map attained at time T conserves the population within the optimization
subspace. This is necessary since the time evolution can be nonunitary due to decoherence or
due to leakage into states other than the logical basis1.

In more technical terms, ρ̂ (0)
1

is a density matrix with N nondegenerate, nonzero

eigenvalues. Spanning the d-dimensional Hilbert space ( =d 2N for N qubits) by an arbitrary

complete orthonormal basis, φ{ }i
, ρ̂ (0)

1
is expressed in terms of a complete set of d one-

dimensional orthogonal projectors φ φˆ =Pi i i
, i.e., ρ λˆ = ∑ ˆ

= P(0)
i

d
i i1 1

with λ λ≠ ∀ ≠i ji j and

λ ⩾ 0i [29]. The second state, ρ̂ (0)
2

, is constructed to be totally rotated with respect to ρ̂ (0)
1

, i.e.,

ρ̂ = P̂(0) TR2
where P̂TR is a one-dimensional projector obeying ˆ ˆ ≠P P 0TR i for i = 1,…, d [29].

ρ̂ (0)
3

is the identity in the optimization subspace. A possible choice for the initial states reads
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ρ δˆ =
− +

+( ) ( )
( )

d i

d d
a(0)

2 1

1
, (4 )

ij
ij1

ρ̂ =( )
d

b(0)
1

, (4 )
ij2

ρ δˆ =( )
d

c(0)
1

, (4 )
ij

ij3

where the matrix elements are given in the optimization subspace, all other elements are zero.
We show in appendix A that the optimization reaches its target if and only if condition (3) is
fulfilled. Specifically, we prove that propagation of three states is sufficient, irrespective of the
dimension of the optimization subspace. Already for a small number of qubits, this represents a
significant computational saving compared to the propagation of 2 N2 initial states deemed
necessary in the literature [9, 12, 23].

The states ρ̂
1
and ρ̂

2
of equation (4), while sufficient in principle to distinguish any two

unitaries, do not allow for stating bounds on the gate error [29]. Meangingful bounds on the
gate error can be obtained numerically by replacing ρ̂

1
, ρ̂

2
by a set of +d 1 states, whereas

analytical bounds can be deduced from d2 states [29–31]. Motivated by this fact, we define two
additional sets of states that can be employed in equation (1). When n in equation (1) is taken to
be equal to +d 1, the totally mixed state of equation (4a) is replaced by d pure states,

ρ φ φˆ =(0) , (5)
j j j

with j = 1,…, d and φ{ }j
the logical basis. ρ̂ + (0)

d 1
is simply equal to ρ̂ (0)

2
of equation (4b). In

this case, equation (4c) is not required since the +d 1 pure states are sufficient to enforce the
dynamical map on the optimization subspace to be contracting and norm conserving. Similarly,
the functional (1) employing =n d2 states is constructed by replacing ρ̂ (0)

1
of equation (4a) by

ρ̂
j
, j = 1,…, d of equation (5) and ρ̂ (0)

2
of equation (4b) by

ρ φ φˆ = ˜ ˜+ (0) , (6)
d j j j

with =j d1,..., , where the states φ
j

form a mutually unbiased basis with respect to the

canonical basis φ{ }j
. For two qubits (d = 4), an example for such a basis is given by

φ̃ = + + +( ) a
1
2

00 01 10 11 , (7 )
1

φ̃ = − + −( ) b
1
2

00 01 10 11 , (7 )
2

φ̃ = + − −( ) c
1
2

00 01 10 11 , (7 )
3

φ̃ = − − +( ) d
1
2

00 01 10 11 . (7 )
4

New J. Phys. 16 (2014) 055012 M H Goerz et al

5



2.2. Optimization algorithm

We assume in the following a coupling to the external field that is linear in the field and
equations of motion that are linear in the states2. Moreover, the full optimization functional,
equation (2), is linear in the states ρ̂ ( )T

i
and does not depend on the states at intermediate times

t. In this case, the linear version of Krotovʼs method is sufficient to yield a monotonically
convergent optimization algorithm [34]. It is given in terms of coupled control equations that
need to be solved simultaneously. Here, we model the dissipative time evolution by a
Markovian master equation,

ρ
ρ ρ ρ

ˆ
= ˆ = − ˆ ˆ + ˆ⎡⎣ ⎤⎦( ) ( )d

dt
i H t( ), . (8)D 

The control equations then read

ρ
ρ ρ

ˆ
= − ˆ ˆ + ˆ⎡⎣ ⎤⎦ ( )

d

dt
i H a, , (9 )i

i D i


σ
σ σ σ

ρ
ρ

ˆ
= − ˆ ˆ − ˆ ˆ = =

ˆ
ˆ ˆ ˆ †⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦( ) ( )d

dt
i H t T

w
O O b, and

Tr (0)
(0) , (9 )i

i D i i
i

i

i2


I∑Δε
λ

σ= ˆ ρ

ε
ρ ε=

∂ ˆ

∂
ˆ

⎡
⎣⎢

⎤
⎦⎥{ }t

S t
m t c( )

( )
Tr ( ) (9 )( )

a i

n

i
1

old

,

i

i
new new



with =i 1, 2, 3 when the initial conditions ρ̂ (0)
i

of equation (4) are employed or

= …i d1, , 2 with d the dimension of Hilbert space when a full basis of Liouville space
is propagated. In equation (9c), the states σ̂i

old are backward-propagated with the pulse of
the previous iteration (‘old’), whereas the states ρ̂

i
new are forward-propagated with the

updated pulse (‘new’). The derivative with respect to the field is given by the
commutator

ρ
ε ε

ρ
∂ ˆ

∂
= − ∂ ˆ

∂
ˆ

⎡
⎣⎢

⎤
⎦⎥

( )
i

H
, (10)



and has to be evaluated for the ‘new’ field and the states ρ̂ propagated under the ‘new’
field. For a complex control, which occurs for example when using the rotating wave
approximation (RWA), equation (9c) holds for both the real and the imaginary part
of ε t( ).

The value of the optimization functional in equation (1) depends on the number and the
specific choice of initial states as well as the choice of weights. It is therefore not suitable to
compare the convergence behavior between different sets of states. Instead, we employ the
average gate fidelity,
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∫ Ψ Ψ Ψ Ψ Ψ= ˆ ˆ† ( )F O O d , (11)avg 
for the comparison. In equation (11),  denotes the dynamical map describing the time
evolution of the open quantum system, i.e., ρ ρˆ = ˆ( ) ( )T (0) . The gate fidelity, respectively
the gate error, − F1 avg, is easily evaluated as [35]

∑ φ φ φ φ

φ φ φ φ

=
+

ˆ ˆ

+ ˆ ˆ

=

†

†⎡
⎣⎢

⎤
⎦⎥)

( ( )

( )
( )

F
d d

O O

O O

1
1

Tr . (12)

i j

d

i i j j

i i j j

avg
, 1





3. Example I: Diagonal gates

It is quite common that a two-qubit Hamiltonian allows only for diagonal gates, such as a
controlled phasegate. A prominent example are noninteracting qubit carriers that interact only
when excited into an auxiliary state where they accumulate a nonlocal phase [36]. Neutral
trapped atoms with long-range interaction in a Rydberg state, present a physical
implementation of this setting [36, 37]. Optimal control theory has been employed before
to determine the minimum time in which a controlled phasegate can be implemented [38] and
the optimum distribution of the single-qubit phases [39]. These optimizations were carried
out, however, without explicitly accounting for decoherence. It is thus not clear whether the
best solutions to avoid decoherence have indeed been identified. While the logical basis
states and the Rydberg state are typically very long-lived, the main source of decoherence is
spontaneous decay from an intermediate state, which is necessary to access the Rydberg state.
Due to experimental feasibility, the excitation to the Rydberg state proceeds by a near-
resonant two-photon process. The corresponding single atom Hamiltonian in the basis

{ }i r0 , 1 , , , cf. figure 1, and employing a two-color rotating wave approximation is

given by
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Figure 1. Atomic levels for two-photon near-resonant excitation to a Rydberg state.



Ω

Ω Δ Ω

Ω Δ

ˆ =

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

H

t

E

t t

t

a

0 0
1
2

( ) 0

0 0 0
1
2

( ) 0
1
2

( )

0 0
1
2

( )

. (13 )

R

R B

B

1

1

1

2

The total Hamiltonian for two atoms includes an interaction when both atoms are in the
Rydberg state,

ˆ = ˆ ⊗ + ⊗ ˆ − H H H U rr rr b. (13 )1 1

Spontaneous emission from the intermediate level is accounted for by the dissipator

ρ γ ρ ρˆ = ˆ ˆ ˆ − ˆ ˆ ˆ ˆ =
† †⎜ ⎟⎛

⎝
⎞
⎠{ }( ) A A A A A i

1
2

, with 0 , (14)D
and γ the decay rate, γ τ= 1/ . The parameters correspond to optically trapped rubidium atoms

and are summarized in table 1. Since qubit level 1 remains decoupled throughout the time
evolution, cf. equation (13a) and figure 1, the Hamiltonian (13) admits only diagonal gates. The
update equations for real and imaginary part of the red and blue pulses are obtained by
evaluating equation (9c) for the Hamiltonian given in equation (13),

R I∑ΔΩ
λ

σ ρ= ˆ ˆ ˆ
=

⎡⎣ ⎡⎣ ⎤⎦ ⎤⎦{ }{ }e t
S t

m t H t t a( )
( )

Tr ( ) ( ), ( ) (15 )R B
a i

n

i R B i,
1

old
,

new

I I∑ΔΩ
λ

σ ρ= ˆ ˆ ˆ
=

⎡⎣ ⎡⎣ ⎤⎦ ⎤⎦{ }{ }m t
S t

m i t H t t b( )
( )

Tr ( ) ( ), ( ) , (15 )R B
a i

n

i R B i,
1

old
,

new

where ĤR B, represents the control Hamiltonians coupling to the red and blue laser, respectively,
obtained by rewriting equation (13) as the sum of a diagonal drift Hamiltonian and the two
control Hamiltonians,

Ω Ωˆ = ˆ + ˆ + ˆH H t H t H( ) ( ) . (16)R R B Bdrift

Figure 2 shows the gate error of the controlled phasegate versus iteration of the
optimization algorithm when using a full basis, i.e., 16 states, or using three, respectively, two,
states in equation (15). The minimum number of states in this example is two since the
Hamiltonian admits only diagonal gates, i.e., only phase errors and norm conservation within

New J. Phys. 16 (2014) 055012 M H Goerz et al

8

Table 1. Parameters of the Hamiltonian, equation (13), for implementing a controlled
phasegate with two rubidium atoms.

single-photon detuning Δ1 600MHz
two-photon detuning Δ2 0
excitation energy E1 6.8 GHz
Rabi frequencies ΩR, ΩB 300MHz
interaction energy U 50MHz
lifetime τ γ= 1/ 25 ns



the logical subspace have to be checked. Therefore, ρ̂
1
in equation (4a) can be omitted, and the

two remaining states are ρ̂
2
(phase errors) and ρ̂

3
(norm conservation) of equations (4b, 4c). The

relative weights w2 and w3 in equation (1) can be modified to emphasize one of the two aspects.
Figure 2 therefore also compares two states with equal and unequal weights in equation (1),
cf. green dotted and orange solid lines. The fastest convergence was obtained for =w w 102 3 .
The panels from top to bottom show the optimization without any dissipation, starting from a
well-chosen guess pulse; an optimization starting with a bad guess pulse of insufficient fluence;
and an optimization taking into account spontaneous decay from the intermediate level. As the
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Figure 2. Optimizing a controlled phasegate for two trapped neutral atoms that are
excited to a Rydberg state. The convergence is shown as the gate error, − F1 avg, over
OCT iterations, using the full basis of 16 states (solid black lines), as well as a reduced
set of three states (red dashed lines) and a reduced set of two states (green dotted and
orange solid line). The calculations employ equal weights of all states, except for those
shown in orange where =w w 102 3 . The top and middle panels show optimizations
without any dissipation; the middle panel shows a calculation with the same parameters
as the top panel except for the guess pulse, which is badly chosen. The optimization
shown in the bottom panel takes into account spontaneous emission from the
intermediate state, with a lifetime of τ = 25 ns. The gate duration is =T 50 ns for the
top and middle panels, and =T 75 ns for the bottom panel. The number of iterations
and the reached gate error differ significantly in all three situations, cf. the different x-
and y-axes scales.



main observation, figure 2 clearly demonstrates that only two states are sufficient to optimize a
quantum gate for a Hamiltonian of this kind. The optimization for coherent time evolution (top
panel) shows that while the use of three states converges to gate errors as small as those
obtained with the full basis, the convergence rate is only about half that of the full basis. This is
due to two factors: (i) For the optimization with three states, there is no bound on the distance
between the value JT and the gate error, such that the path in the optimization landscape may be
less direct until an asymptotic value is reached. Since without dissipation, there is no limit to the
gate error, the convergence of JT and that of − F1 avg stay on different trajectories. (ii) The

reduced sets of states are constructed specifically to take into account decoherence. In
particular, the third state contributes significantly less information that is relevant for reaching
the optimization target than the second state. The convergence can be improved dramatically by
weighting the three states according to the relevance of the information they carry. In this
respect, the use of only two initial states can be seen as choosing =w 01 . Taking >w w2 3

addresses the issue of ρ̂
3
contributing less to the optimization. Choosing proper weights allows

for ensuring the convergence of optimization with a reduced set of states to be as fast as the
optimization using the full basis.

The importance of choosing weights appropriate to the optimization problem becomes
even more evident when the optimization starts from a bad guess pulse of insufficient fluence,
as shown in the center panel of figure 2. The features observed in figure 2 are typical: The
plateau near the beginning corresponds to the optimization increasing the intensity of the pulse
without any significant improvement in the gate error, before converging quickly once the pulse
is sufficiently intense. The end of the plateau can be significantly influenced by the choice of
weights, cf. solid orange and dotted green curves in the middle panel of figure 2. Remarkably,
the optimal choice of using two properly weighted initial states outperforms the use of the full
basis. This might be explained by the fact that each of the three states in the reduced set has a
specific physical role to play in the optimization, and this role can be emphasized by choice of
the weight. In contrast, all states in the full basis fulfill the same role in the optimization, and
thus there is no way in which different weights on individual states would improve the
convergence.

One should point out that even in the cases where the use of two or three initial states
shows a slower convergence than that of the full basis, they still outperform the full basis in
terms of numerical resources. Since both CPU time and the required memory scale linearly with
the number of initial states in the optimization, using only two states compared to 16 has a 1:8
advantage, which more than offsets the factor of two in the convergence rate in the middle panel
of figure 2.

Naturally, without the presence of decoherence, there is no reason to perform the
optimization in Liouville space. Therefore, the results shown here only serve to illustrate the
general convergence behavior of a reduced set of initial states. The more relevant case of
noncoherent dynamics is shown in the bottom panel of figure 2. The presence of decoherence
implies the existence of an asymptotic bound on the gate error. This constraint on the
optimization landscape (together with the further constraint that only diagonal gates are
reachable) ensures that all sets of reduced states converge at a similar rate, once the asymptotic
region is approached. We expect that all choices reach the same asymptotic value; which choice
yields the best fidelity after a specific number of iterations cannot be predicted in general.
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Factoring in all necessary resources, optimization using two states with unequal weights
dramatically outperforms optimization using the full basis in this example.

The optimized pulse and spectrum in the case of coherent dynamics is presented in
figure 3. The result shown here is obtained from the optimization using two initial states with
unequal weights. However, the pulse is indistinguishable from the one obtained using the full
basis, consistent with the identical convergence behavior for the two sets in the upper panel of
figure 2. The optimized pulses only show relatively small amplitude modulations compared to
the guess pulse (dotted line). These modulations appear as small side-peaks in the spectrum. In
the time interval in which there is a significant pulse amplitude, the complex phase only
deviates by about π

10
from zero. This phase evolution is reflected in the asymmetry of the

spectrum for the red and the blue pulse (bottom panel). The spectrum nicely illustrates the
mechanism of control: while each spectrum by itself is asymmetric, the red pulse showing
negative frequencies, the blue pulse showing positive frequencies, the sum of both pulses is
again symmetric, i.e., positive and negative frequencies cancel out. This means that the
combination of both pulses is two-photon resonant with the transition → r0 , providing
multiple pathways for the same transition whose interference might be exploited by the
optimization.

The population dynamics induced by the optimized pulses are shown in figure 4. The two-
photon resonance of the pulse expresses itself in a direct Rabi cycling between 0 and r on the

left qubit in the propagation of 01 (top panel). The population shows roughly a π4 Rabi flip
due to the relatively high pulse intensity. The nearly 25% of the population in the intermediate
states in the propagation of 00 (bottom panel) is due to the fact that the decay from these levels
was not included in the optimization, and thus the optimization algorithm makes no attempt at
suppressing population in these states.
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Figure 3. The optimized pulses Ω t( )B R, , cf. figure 1, resulting from optimization using
two states with unequal weights without spontaneous decay (corresponding to the
orange solid line in the top panel of figure 2). The pulse amplitudes are shown in the top
panel, the complex phase in the center panel, and the pulse spectrum in the bottom
panel. The guess pulse, indicated by the black dotted line in the top panel, is identical
for both the red and the blue laser. In the spectrum, frequency 0 corresponds to the
carrier frequencies of the laser pulses.



For the optimization with dissipation, the optimized pulse and pulse spectrum is shown in
figure 5. The characteristics of the pulses are quite different compared to the coherent case. The
red pulse remains close to the single Gaussian peak of the guess pulse, except for being slightly
narrower. The blue pulse has a more complex structure. It is overall broader than the red pulse
and consists of three distinctive features: an initial peak that overlaps but precedes the red pulse,
followed by some amplitude oscillations in the center of the pulse, and lastly another peak
symmetric to the first, thus following the red laser pulse, with some overlap. For both pulses, the
complex phase, shown in the center panel, is close to zero when there is significant pulse
amplitude. In the spectrum (bottom panel), the overall narrowing and broadening of the red and
blue pulse, respectively, is reflected in a broadening and narrowing of the central peak in the
spectrum. The amplitude modulations on the blue pulse appear as side-lobes in the spectrum.
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Figure 4. Population dynamics under the pulse shown in (3), for the logical basis states
01 (top) and 00 (bottom). The intermediate population (‘int’) is integrated over all

levels with decay, i.e., i0 , i0 , ii , ir , and ri .

Figure 5. The optimized pulses resulting from optimization using two weighted states
and including spontaneous decay (orange solid line in the bottom panel of figure 2),
using the same conventions as figure 3.



The initial and final peak of the blue pulse, together with the red pulse are reminiscent of
the counter intuitive pulse scheme of STIRAP, with the blue laser acting as the ‘Stokes’ pulse
and the red laser as ‘pump’. The STIRAP-like behavior appears also in the population
dynamics, shown in figure 6, as a population inversion between level 0 and r , without any
population in the intermediate decaying state. The amplitude modulations in the central region
of both pulses then induce some additional dynamics, generating the entanglement needed for
the gate. Note that the pulse duration for the dissipative process ( =T 75 ns) is longer than that
of the coherent process ( =T 50 ns). This is necessary to allow for an adiabatic time evolution
that is essential to the STIRAP-like behavior. Overall, the decaying intermediate state
population (red lines in figure 6) is almost completely suppressed, which is in contrast to the
optimization not taking into account the dissipation, cf. the red lines in figure 4. Both figures 4
and 6 show a significant population of the rr state. This is not surprising, since the parameters
of table 1 are not in the regime of the Rydberg blockade [36, 37].

4. Example II: Nondiagonal gates

Superconducting qubits represent a physical realization of a quantum processor where the
Hamiltonian admits both diagonal and nondiagonal entangling gates. In fact, there exist
superconducting architectures that admit several two-qubit gates simultaneously [40, 41]. We
consider here the example of two transmon qubits coupled via a shared transmission line
resonator. In the dispersive limit, the interaction of each qubit with the resonator leads to an
effective coupling J between the two qubits, and the cavity can be integrated out [40].
The resulting Hamiltonian reads

ω
δ δ
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Figure 6. Dissipative population dynamics under the pulse shown in figure 5, for the
initial states ρ̂ =(0) 01 01 (top) and ρ̂ =(0) 00 00 (bottom). The intermediate

population (‘int’) is integrated over all levels with decay, i.e., i0 , i0 , ii , ir , and ri .



where b̂1,2, ˆ †
b1,2 are the ladder operators for the first and second qubit, ω1,2 and δ1,2 represent the

frequency and anharmonicity, J is the effective qubit-qubit-interaction, and Ω t( ) and ωd are
amplitude and frequency of the drive, respectively. The two most relevant dissipation channels
are energy relaxation and pure dephasing of the qubits, described by the decay rate γ = T1 1

and dephasing rate γ = *
ϕ T1 2 for each qubit. The corresponding dissipator reads
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and each qubit, =q 1, 2, truncated at level N. The parameters of the coupled transmon qubits
are summarized in table 2. We employ a RWA, centered at the drive frequency ωd.

The Hamiltonian in equation (17) can generate a large number of entangling two-qubit

gates; we find iSWAP to be a fast converging nondiagonal perfect entangler, and thus choose
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(20)

as the optimization target. Figure 7 shows the convergence behavior for several choices of
initial states: the 16 canonical states of the full basis of Liouville space; the 3 states given in
equation (4) with equal weight and with = =w w w w 201 2 1 3 ; a set of 5 states consisting of ρ̂

1

expanded into 4 pure states, cf. equation (5) plus ρ̂
2
of equation (4b); and lastly a set of 8 states,

cf. equations (5) and (6), consisting of the expansion of ρ̂
1
and the 4 pure states of a mutually

unbiased basis, as explained in section 2. As seen in the top panel, all choices show good
convergence. A plateau corresponding to a slowing of convergence is observed only for the 3
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Table 2. Parameters of the transmon Hamiltonian, equation (17), and Liouvillian,
equation (18), taken from [40].

qubit frequency ω1 4.3796 GHz
qubit frequency ω2 4.6137 GHz
drive frequency ωd 4.4985 GHz
anharmonicity δ1 −239.3MHz
anharmonicity δ2 −242.8MHz
effective qubit-qubit coupling J −2.3 MHz
qubit 1 decay time T1 38.0 μs
qubit 2 decay time T1 32.0 μs

qubit 1 dephasing time *T2
29.5 μs

qubit 2 dephasing time *T2
16.0 μs



states with equal weights. But even in this case, the same asymptotic value for the gate error is
obtained as for the other choices; see also figure 7(d). The advantage of employing the reduced
sets of states in the optimization functional, equation (1), becomes most apparent in figure 7(b)
which shows the gate error over the number of state propagations. Since optimization requires
two propagations per iteration and state, i.e., the backward and forward propagation in equation
(9), the number of state propagations corresponds directly to the CPU time that is required to
obtain a given fidelity. Figures 7(c) and (d) shows a zoom on the same data, once for the initial
phase of the optimization and once for the asymptotic behavior. All reduced sets except for the
three states with equal weights perform better than the full set during the initial phase. Also, for
this specific optimization problem, all reduced sets reach a slightly better asymptotic value than
the full set, although we expect that ultimately all curves will converge to the same value.
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Figure 7. Optimizing a iSWAP gate for two transmons in the presence of energy
relaxation and pure dephasing (with the rates given in table 2): Convergence for five
choices of sets of initial states, as described in the text. The gate duration is =T 400 ns.
The panels from top to bottom show the gate error over the number of iterations; the gate
error over the number of state propagations, indicative of the required CPU time; a zoom
on the initial phase of the optimization; and a zoom on the asymptotic convergence
(panels (c) and (d) both using a linear scale). The number of propagations (x-axis in
panels (b)–(d) is a linear rescaling of the number of OCT iterations (x-axis in panel (a)),
with 2 propagations per iteration and state, i.e., the lines of panel (a) are rescaled
differently depending on the respective number of states. Since all panels only show
different views on the same data, the line colors and styles are the same in all of them.



Figure 7 suggests that the reduced sets have a significant advantage in reaching a good fidelity
with a given amount of resources, especially since in practice, an optimization is usually
stopped near the beginning of the asymptotic regime. Indeed, the full set shows an advantage
only in the intermediate regime between gate errors of 10 and 1 percent, and only over the sets
of three states. The choice of 5 or 8 states outperforms the full set in all cases. One should note
that the savings in computational resources due to the use of a reduced set of states also extend
to the amount of memory required, which is proportional to the number of states. Since in the
optimization algorithm, propagated states over the entire time grid need to be stored, these
savings can be very substantial.

For the three states with equal weights the gate error shows a non-monotonic behavior in the
upper-left corner of figure 7(c). This is due to the optimization functional, equation (1), not being
equivalent to the gate error Favg, equation (11). Specifically, for a set of three states, no bound on

the distance between JT and − F1 avg can be derived [29]. Thus, the gate error might increase even

though JT decreases. In fact, the behavior of JT is fully monotonic as expected (data not shown).
With an increasing number of states in the chosen set, the value of the optimization functional is
more closely connected to the gate fidelity; and for 5 and 8 states numerical, respectively
analytical, bounds can be found [29, 31]. For this reason, we expect the sets of 5 and 8 states to
show a faster convergence than the 3 states, when measured in OCT iterations, although not
necessarily in CPU time. This expectation is confirmed by figure 7. The weak correspondence
between the optimization functional and the gate error for three states is most likely also the reason
for the plateau observed for the red dashed line in figures 7(a) and (b). However, the use of three
states can still be a good choice since weighting the states properly improves the convergence
significantly. The weights have to be chosen empirically, but the choice can be guided by physical
intuition. The three states are responsible for ensuring that the realized gate is diagonal in the
correct basis, that the relative phases match the target once the correct basis has been found, and
that the gate is unitary on the logical subspace, respectively. The weights should reflect which of
these requirements is most difficult to realize. In the present example this is finding the correct
basis in which the gate is diagonal. Therefore the choice of = =w w w w 201 2 1 3 gave the best
convergence rate. This is in contrast to the optimization of the Rydberg gate in section 3, in which
the gate was already known to be diagonal, and the first state could be left out of the optimization
entirely. Generally, using the set of three states with equal weights is not recommended.

Comparing figure 7 with the bottom panel of figure 2 for the Rydberg gate shows that the
different choices of basis sets show a slightly wider range of the convergence rate. This can be
attributed to the fact that for the Rydberg gate, the optimization landscape is severely
constrained since only diagonal gates can be reached. In contrast, the transmon Hamiltonian can
generate both diagonal and nondiagonal gates, resulting in a more complex optimization
landscape. Different choices of initial states can thus take more strongly varying pathways.

Figure 8 shows the optimization of a iSWAP gate for two transmons in the case of weak
dissipation, where the decay and dephasing times from table 2 have been increased by a factor
of 10. A comparison of figure 8(a) with figure 7(a) shows that the convergence behavior is
essentially the same except for the value of the asymptote. We find an asymptotic gate error of
approximately × −7 10 3 with full dissipation, × −7 10 4 with weak dissipation, and no asymptote
without dissipation (data not shown). The value of the asymptote is logarithmically proportional
to the decay and dephasing rates. This is as expected since the pulse duration is kept constant at
400 ns and the gate fidelity is solely limited by dissipation. Our claim that the dissipation only
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affects the asymptotic convergence is supported by a comparison of the initial convergence in
figures 7(c) and 8(c), which remarkably are completely identical. Furthermore, the crossing
between the black solid and red dot-dashed lines for the full basis and the three states with
unequal weights near 1000 propagations and that between the blue dotted and orange dash-
dash-dotted lines for the sets of 5, respectively 8, states near 1300 propagations in figure 8(d)
can also be seen in figure 7(d). There are however some slight differences in the asymptotically
reached values, in that the choice of 3 states (with both equal and unequal weights) reaches a
slightly smaller gate error than in the case of full dissipation. Again, we expect that ultimately,
all curves will converge to the same value. Which set of states reaches the best gate error at a
specific point near the beginning of the asymptotic region seems to depend on the slope of the
convergence curve as the limit is approached. This can depend on any number of factors
including, e.g., the choice of λa in equation (2). Again, empirically, the reduced sets of states
show a significant numerical advantage over the full basis also for weak dissipation.

As an example, the optimized pulse obtained using a set of three states with unequal
weights, taking into account the full dissipation, is presented in figure 9, along with the pulse
spectrum. The population dynamics that this pulse induces when propagating the logical basis
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Figure 8. Optimizing a iSWAP gate for two transmons with weak dissipation, using
decay and dephasing times increased by a factor of 10 compared to figure 7 (with all
quantities and labels as defined in figure 7). The gate duration is =T 400 ns. The
weaker dissipation results in an asymptotic gate error of approximately × −7 10 4

compared to × −7 10 3 in figure 7, cf. the y-axis scales in both figures.



states ρ̂ = =( )t 0 01 01 and ρ̂ = =( )t 0 11 11 is shown in figure 10. As can be seen in
the top panel of figure 9, the optimized pulse shows small oscillations around the guess peak
amplitude of 35MHz. The complex phase, shown in the middle panel, stays relatively close to
zero, indicating that the optimization employs mainly amplitude modulation. The pulse
amplitude is roughly time-symmetric. The pulse spectrum shown in the bottom panel of figure 9
relates easily to the pulse shape. The strongest frequency component remains the driving
frequency of the guess pulse (zero in the spectrum). The small oscillations in the pulse shape are
approximately 8 ns apart, corresponding to a frequency of ±125MHz, which is present in the
spectrum. There are peaks with exponentially decaying amplitude in the spectrum at multiples
of these values. The width of the central peak is due to the 20 ns switch-on and switch-off time
of the pulse, and is unchanged from the guess pulse. The fact that there is not a single, but a
double peak around ±125MHz corresponds the slow beats in the pulse shape. The slight
asymmetry of the spectrum is caused by the complex phase of the optimized pulse.

The spectrum of the optimized pulse is very instructive in understanding the population
dynamics in figure 10. The most relevant transition frequencies from the logical subspace are
indicated by vertical lines in the spectrum in the lower panel of figure 9. Clearly, the peaks
around ±125MHz are nearly resonant with the excitation of the left and right qubit, and the
excitation to level 2 of the right qubit. There is no significant component in the spectrum that

could excite to the level 2 of the left qubit. Consequently, in the population dynamics of both

the 01 01 and 11 11 state, the right qubit (top panel) leaves the logical subspace

(expectation value >j 1.0) to a much more significant extent than the left qubit (middle
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Figure 9. Shape and spectrum of an optimized pulse, from optimization with 3 weighted
states, with strong dissipation. The panels from top to bottom show the amplitude,
complex phase, and spectrum of the optimized pulse Ω t( ). The spectrum is shown in
the rotating frame, with zero corresponding to the driving frequency wd of the field. The
transition frequencies from the logical subspace are indicated by vertical dashed lines.
These are Δ = − = −w w 118.88 MHzd1 1 and Δ δ− = −358.18 MHz1 1 in red for the
left qubit, and Δ = − =w w 115.20 MHzd2 2 and Δ δ− = −127.58 MHz2 2 in blue for
the right qubit. The central peak in the spectrum has been cut off to show the relevant
side-peaks, and would extend to a value of approximately 10.0. For all quantities, the
values for the guess pulse are shown as a dotted line.



panel). This behavior is slightly more pronounced for 11 11 , which is the only state for
which the total subspace population (gray curve in bottom panel) drops below 80% for a
significant amount of time. The fact that for all logical basis states, most of the dynamics occurs
within the logical subspace is due to the presence of decoherence, where higher levels have
faster decay and faster dephasing due to a stronger coupling to the cavity. In an optimization
without dissipation (data not shown), the optimized dynamics would generally veer farther
outside the logical subspace. Lastly, the population dynamics show the expected behavior for

the iSWAP gate: the 01 state ends up in a coherent superposition between 01 and 10 ,

whereas 11 returns to its original state at the end of the gate.
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Figure 10. Population dynamics for ρ̂ = =( )t 0 01 01 (a) and ρ̂ = =( )t 0 11 11
(b) under the pulse shown in figure 9. For each of the two propagated states, the
expectation value of the right qubit excitation quantum number j is shown in the top
panel, with the standard deviation in gray, the expectation value for the corresponding
quantum number i for the left qubit is shown in the center panel, and the population
dynamics for all the logical subspace states is shown in the bottom panel (colored lines),
along with the total population in the logical subspace (black line).



5. Conclusions

We have utilized the fact that the average error of a quantum gate can be estimated from
the time evolution of a reduced set of states [28, 29] to construct a dedicated functional for
quantum gate optimization in open quantum systems. Our optimization functional consists of
Hilbert–Schmidt products that compare the actual and ideal time-evolved states from the
reduced set. The minimal number of states that need to be forward and backward propagated
during optimization is two for Hamiltonians that admit only diagonal gates and three for
Hamiltonians that allow for both diagonal and nondiagonal gates. Remarkably, the size of the
minimal set of states is independent of Hilbert space dimension.

While the minimal number of states allows for determining whether a quantum gate has
been implemented, it is insufficient to deduce bounds on the gate error [29]. Numerical bounds
require +d 1 states in the reduced set, where d is the dimension of the Hilbert space on which
the optimization target is defined. In order to obtain meaningful analytical bounds on the gate
error, d2 states are necessary. Employing the sets of +d 1, respectively d2 , states in quantum
gate optimization is still significantly more efficient, both with respect to CPU time and memory
requirements, than utilizing a full basis of Liouville space, with d2 elements [9, 12, 23].

We have demonstrated the power of our approach in the optimization of a diagonal and a
nondiagonal two-qubit gate. Specifically, we have optimized a controlled phasegate for trapped
neutral atoms that are excited into a Rydberg state and subject to fast spontaneous emission
from an intermediate state. The best performance was achieved by two states in the reduced set
and a large weight of the Hilbert–Schmidt product for the state responsible for detecting phase

errors. In the optimization of a iSWAP gate for two transmons coupled to the same
transmission line cavity and subject to both energy relaxation and pure dephasing, we have
found the best, and roughly identical, performance for the reduced sets consisting of +d 1,
respectively d2 , states. In all cases, the final gate error was limited by the decoherence rates.
This confirms that employing a reduced set of states in quantum gate optimization is sufficient
to determine the physical limit for the gate error.

The significant reduction in computational resources that we report here opens the door for
a large-scale, systematic investigation of the fundamental limits of high-fidelity quantum gates
in the presence of decoherence. Our approach is not tied to a specific decoherence model. It
therefore allows to explore, using optimal control theory, settings for extended Hilbert spaces
and beyond Markovian master equations, where a quantum systemʼs complexity may possibly
be exploited for control.
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Appendix A. Three states are sufficient to assess whether a desired target unitary is
implemented

In the following we discuss the functional Jdist,

∑ ρ ρ= ˆ ˆ ˆ − ˆ
=

†⎡
⎣⎢

⎤
⎦⎥( )( )J O O TTr (0) , (A1)dist

i
i i

1

3 2

which is built on the distance between the ideal and actual states at time T. It attains its global
minimum, =J 0dist , if and only if the initial states defined in section 2, ρ̂ (0)

i
for =i 1, 2, 3, are

mapped to their correct target states, i.e., fulfill condition (3). This functional motivates the use
of the optimization functional JT , equation (1), which is also built on only three states, as
discussed in section A1. JT and Jdist differ in that JT evaluates the Hilbert–Schmidt products, i.e.,
the projections of the actual onto the ideal states instead of the trace distance. The construction
of Jdist, and subsequently JT , is rationalized by a theorem for unital, i.e., identity preserving,
dynamical maps. Specifically, the theorem states that a complete and totally rotating set of
density matrices is sufficient to determine whether a given time evolution is unitary. The
functional (A1) exploits the further property of a complete and totally rotating set of density
matrices to differentiate any two unitaries [29]. The theorem for unital dynamical maps is
proven in section A2.

It should be stressed that we use JT , equation (1), instead of Jdist, equation (A1), as
optimization functional. This is motivated by the convexity of JT which implies a much more
favorable convergence behavior than would be obtained with a nonconvex functional3.
Mathematically, however, the two functionals are not equivalent. This is illustrated by rewriting
a single summand of Jdist, equation (A1), and comparing it to the corresponding term in JT ,
equation (1),
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The first term on the rhs of equation (A2) is constant and thus irrelevant. The second term
corresponds to the Hilbert–Schmidt overlap as used in JT , equation (1), up to a prefactor. The
main difference between JT and Jdist is due to the third term, the purity of the propagated density
matrix. JT neglects this term. This could potentially disturb convergence, because the functional
value of JT can be decreased by (artificial) purification of the totally mixed states ρ̂

1
and ρ̂

3
, cf.

equation (4), instead of being decreased due to the desired approach to the target. Note that this
problem can only arise for mixed states, i.e., when using the minimal set of states. For the
reduced sets consisting of +d 1, respectively d2 , states, propagation starts from pure states, and
the global minimum of JT is identical to the global minimum of Jdist. Note that the problem of
artificial purification is purely hypothetical and was never encountered in our optimizations
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field to preserve monotonicity of the convergence [34].



–‘artificial purification traps’ in the optimization landscape of the functional JT with mixed
states are apparantly avoided.

A.1. Construction of the functional

We first define the concept of complete and total rotation, which we then use to formulate the
required theorem. Let  be a Hilbert space with dimension N. Let  be a set of N one-
dimensional orthogonal projectors. A one-dimensional projector is a projector with rank one,
which means that its spectrum consists of a single eigenvalue equal to one with all remaining
eigenvalues being zero.

Definition: A one-dimensional projector P̂TR is called totally rotated with respect to the set

 if ∀ ˆ ∈ ˆ ˆ ≠P P P: 0TR .

Definition: A set of density operators, ρ̂{ }i with ρ̂ ∈ ⊗
i

  , is called complete if the set

 of projectors onto the eigenspaces of ρ̂{ }i contains exactly N one-dimensional orthogonal

projectors.

Definition: A set of density operators, ρ̂{ }i with ρ̂ ∈ ⊗
i

  , is called complete and

totally rotating if it is complete and there exists a one-dimensional projector in  that is totally
rotated with respect to the orthogonal set of one-dimensional orthogonal projectors necessary
for completeness.

Theorem 1. Let ( )DM N be the space of N × N density matrices and ↦( ) ( ): DM N DM N a
dynamical map. The following three statements are equivalent:

1.  is unitary, i.e., ρ ρ= †( ) U U ρ∀ ∈ ( )DM N and U some element of the projective

unitary group, ∈ ( )U PU N .

2.  maps a set  of N one-dimensional orthogonal projectors onto a set of N one-

dimensional orthogonal projectors as well as a totally rotated projector P̂TR (with respect
to ) onto a one-dimensional projector.

3.  is unital and leaves the spectrum of a complete and totally rotating set of density
matrices invariant.

We now explain how Theorem 1 can be used to prove the claim that Jdist, equation (A1),
attains its global minimum if and only if condition (3) is fulfilled for the three states defined in
section 2. We first discuss the role of ρ̂ = 

N3

1 . It is used to check whether the evolution

corresponds to a dynamical map in the optimization subspace and whether it is unital. This
dynamical map is obtained by projecting the action of the dynamical map, defined on the total
Hilbert space, onto the optimization subspace. The term in the functional (A1) involving
ρ̂ = 

N3

1 becomes minimal, and so does the total functional, only if the identity in the

optimization subspace is mapped onto itself. Minimization of Jdist thus ensures a unital
dynamical map on the subsystem such that Theorem 1 is applicable.
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We now discuss the role of ρ̂
1
and ρ̂

2
which by construction form a complete and totally

rotating set of density matrices. The functional (A1) becomes zero only if ρ ρˆ = ˆ ˆ ˆ †( ) O O
1 1

 and

ρ ρˆ = ˆ ˆ ˆ †( ) O O
2 2

 . This requires the actual evolution to be unitary. Unitary evolution leaves the

spectrum of a density matrix invariant. Due to the equivalence relation ⟺( ) ( )1 3 in Theorem 1,
preservation of the spectrum of a complete and totally rotating set of density matrices, i.e., the
two states ρ̂

1
and ρ̂

2
, is sufficient to ensure unitarity. Furthermore, it was proven in [29] that the

density matrices ρ̂
1
and ρ̂

2
are unitary differentiating, i.e., it is possible to distinguish any two

unitary evolutions by inspection of ρ̂ ( )T
1

and ρ̂ ( )T
2

only. In particular there is only one unitary

dynamical map, ρ ρˆ = ˆ ˆ ˆ †( ) U U , which leads to ρ ρˆ = ˆ ˆ ˆ †( ) O O(0)
i i

 for both i = 1,2, namely the

one induced by the target unitary Ô. Therefore the functional (A1) becomes minimal if and only

if the target gate Ô is implemented.
To summarize, Jdist is additively composed of three terms, each corresponding to a distance

measure between the desired result, ρˆ ˆ ˆO O
i
, and the actually implemented evolution, ρ̂( )i . For

the total functional to be minimal, the evolutions of all three states have to match. This is the
case only if a unital dynamical map on the optimization subspace is implemented and if this is

the unitary evolution according to Ô. More explicitly, the distance measure formed by the
density matrices i = 1,2 is only meaningful provided the evolution within the optimization
subspace corresponds to a unital dynamical map. However, this is ensured by the third density
matrix. Consequently, the global minimum of the functional (A1) will only be attained if this
condition is fulfilled, too.

Note that the functional (A1) weights all three states equally. This is not a unique choice.
In fact, all crucial properties of the functional remain unchanged when scaling the three terms
with different positive factors, which has been done in the main text for example when
discussing the optimisation using three states with weighting which significantly improved the
performance of the optimization.

A.2. Proof

We utilize in the following the representation of operators by N × N matrices and therefore omit
the operator notation. In order to prove Theorem 1, it is useful to first show the validity of the
following lemma.

Lemma 1. Let  be a unital dynamical map, i.e.,  is completely positive and maps identity
onto itself, acting on ×N N density matrices. If and only if there exists a set of N one-
dimensional, orthogonal projectors that is mapped by onto another set of N one-dimensional
orthogonal projectors, there exists a complete set of density matrices whose spectrum is
invariant under .

Proof of Lemma 1: (⟹ direction) We denote the set of N one-dimensional projectors Pi

by . By assumption, we know that
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∀ = ˜( )i P P: ,i i
where the P̃i also form a set of N one-dimensional, orthogonal projectors. Clearly,

= ˜( )( )P Pspec speci i , hence ∀ ∈Pi 
= =( )( ) ( )P Pspec spec (1, 0 ,..., 0).i i

Obviously,  itself corresponds to a specific complete set of density matrices, ρ = P
i i .

(⟸ direction) This part of the proof proceeds as follows: First we show that the
assumption, a dynamical map leaving the spectrum of a given density matrix invariant, implies
that  maps projectors onto the eigenspaces of the initial density matrices into projectors onto
the eigenspaces of the resulting density matrix with the same eigenvalue. As a consequence, a
one-dimensional projector onto a corresponding one-dimensional eigenspace is mapped into a
one-dimensional projector. We then repeat this argument for all density matrices in the
complete set. In this set, by definition, there exist density matrices with N one-dimensional,
orthogonal projectors onto one-dimensional eigenspaces which, according to the first step of the
⟸ proof, is mapped onto another set of one-dimensional projectors. We show in a second step
that the set of the mapped one-dimensional projectors is also orthogonal.

We start by assuming that  leaves the spectrum of a given density matrix, ρ, invariant,

∑ρ ρ ρ= =†( )( )( ) ( )E Espec spec spec ,
k

k k
where we have expressed  in terms of Kraus operators Ek. We can write ρ λ= ∑ ′P

i i i where

′ = ′{ }Pi is a set of M orthogonal projectors onto the eigenspaces of ρ with M the number of
distinct eigenvalues of ρ. We assume the λi to be ordered by magnitude with λ1 corresponding to

the largest eigenvalue. Since we know that the spectrum of ρ( ) to be identical to that of ρ, we

can decompose ρ( ) ,

∑ρ λ= ˜′( ) P
i

i i

with ˜′{ }Pj another set of M orthogonal projectors. Note that neither the ′Pi nor the ˜′Pi have to be

one-dimensional but for a given i, ˜′Pi has the same dimensionality as the corresponding ′Pi .
Specifically,

∑ ∑ ∑ρ λ λ λ= = = ˜′ ′ ′
⎛
⎝⎜

⎞
⎠⎟( ) ( )P P P .

i
i i

i
i i

j
j j  

Multiplying by another projector ˜′Pp from the set, where p can take integer values between 1 and

M, we obtain

∑ ∑λ λ λ˜ = ˜ ˜ = ˜′ ′ ′ ′ ′( )P P P P P , (A3)
i

i i p
j

j j p p p

since ˜′Pj , ˜′Pp are orthogonal. Using proof by (transfinite) induction we now show that

= ˜ ∀ =′ ′( )P P i k M,..., .k k
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The idea of the induction is the following: To show that indeed the projectors onto the
eigenspaces of ρ, ′Pi , are mapped into projectors onto the eigenspaces of ρ( ) with the same
eigenvalue, we start with the projector onto the eigenspace with the largest eigenvalue and then
inductively proceed to increasingly smaller eigenvalues. Furthermore, to prevent having to deal
with a possible smallest eigenvalue of 0, we treat the lowest eigenvalue case separately. Calling
the induction variable k, we have to show that = ˜′ ′( )P Pk k follows from the assumption

= ˜ ∀ <′ ′( )P P i ki i . Note that if k = M, i.e., for the smallest eigenvalue,

∑ ∑= = =′ ′
⎛
⎝⎜

⎞
⎠⎟  ( ) ( )P P , (A4)

i
i

i
i  

since, by definition, a unital dynamical map maps identity onto itself. So assume ≠k M . Then
λ > 0k since it is not yet the smallest eigenvalue because each λk corresponds by construction to
a different eigenspace, hence they are different, and we assumed them to be ordered. For k = p,
we can rewrite equation (A3), multiplying by an arbitrary normalized eigenvector ⃗ ∈ xk

N of ˜′Pk

from the left and right,

∑λ λ⃗ · · ⃗ =′( )x P x . (A5)
i

i k i k k
By assumption of the induction, = ˜ ∀ <′ ′( )P P i ki i , therefore

⃗ · · ⃗ = ∀ <′( )x P x i k0 .k i k
Introducing ≡ ⃗ · · ⃗′( )d x P x( )

kk
i

k i k , equation (A5) can be written as

∑λ λ=
⩾

d . (A6)( )

i k
i kk

i
k

Due to equation (A4) and the assumption of the induction,

∑ ∑ ∑= = ⃗ · · ⃗ =′
⩾

( )d d x P x 1,( ) ( )

i
kk

i

i k
kk

i

i
k i k

and, since ′( )Pi is the image of a positive semidefinite matrix which has to be positive
semidefinite itself,

= ⃗ · · ⃗ ⩾ ∀′( )d x P x i0 .( )
kk

i
k i k

Now remember that λ ≠ 0k is strictly larger than all the other λi with >i k since the eigenvalues

are assumed to be ordered. In addition, ⩾ ∀d i0( )
kk

i and at least one d ( )
kk

i with ⩾i k must be

nonzero, otherwise the d ( )
kk

i would not sum up to 1. Then

∑ ∑λ λ λ⩽ =
⩾ ⩾

d d ,( ) ( )

i k
i kk

i
k

i k
kk

i
k

with equality if and only if =d 0( )
kk

i for ≠i k. In fact, equality has to hold since otherwise we
would contradict equation (A6). We conclude that

δ= ⃗ · · ⃗ =′( )d x P x .( )
kk

i
k i k ik
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Since ⃗xk is normalized and arbitrary as long as it lies in the eigenspace ˜
k of ˜′Pk , ⃗xk must be an

eigenvector of ′( )Pk with eigenvalue 1. Consequently, the operator ′( )Pk maps the

eigenspace of ˜′Pk onto itself. Now we are almost done with showing that ′( )Pk and ˜′Pk are

indeed identical. Since ˜
k is mapped by  into itself, ′( )Pk has at least ˜( )dim k eigenvalues

equal to 1. The fact that ′( )Pk has exactly ˜( )dim k eigenvalues equal to 1 follows from 
being trace-preserving: = =′ ′⎡⎣ ⎤⎦ [ ]( ) ( )P PTr Tr dimk k k  and = ˜( )( )dim dimk k  , where

′⎡⎣ ⎤⎦( )PTr k is the sum over the eigenvalues of ′( )Pk . Since all eigenvalues of ′( )Pk are non-

negative, all other eigenvalues must vanish. Hence = ˜′ ′( )P Pk k . This completes the induction
and concludes the first step of the ⟸ proof, i.e., we have shown that a unital dynamical map
that leaves the spectrum of a given arbitrary density matrix invariant, maps projectors onto the
eigenspaces of this density matrix onto projectors of the same rank. This is specifically true for
one-dimensional projectors. Iterating the argument for all density matrices in the complete set
and selecting a set  of N orthogonal, one-dimensional projectors, it follows that these
projectors will be mapped by  onto another set of one-dimensional projectors.

In the second step of the ⟸ proof we still need to show that the mapped set is also
orthogonal. We denote the complete set of projectors by { }Pi . From the first step of the ⟸
proof we know that the P̃i ,

= ˜( )P P,i i
need to be one-dimensional projectors. Using the unitality of , we see that

∑ ∑ ∑= = = = ˜
⎛
⎝⎜

⎞
⎠⎟ ( ) ( )P P P.

i
i

i
i

i
i  

The unit matrix can only be summed by N one-dimensional projectors if these are orthogonal.
Hence we have accomplished the second step, and the lemma follows.

Proof of Theorem 1: The equivalence relation of statement ⟺( ) ( )1 2 has already been
proven in [29]. To complete the proof of the more general Theorem 1, we are left with proving

⟺( ) ( )2 3 .

⟹( ) ( )2 3 : If maps a set of N one-dimensional orthogonal projectors onto another set of
N one-dimensional orthogonal projectors, it leaves the spectrum of the projectors invariant. This
can be seen as follows. Projectors are idempotent and positive semidefinite, hence their
spectrum can only consist of zeros and ones. Since the projector is one-dimensional, its image
under  has to be one-dimensional, too, and there can only be one eigenvalue equal to one.
Thus any one-dimensional projector has the spectrum …{ }1, 0, 0, which must be invariant
under a mapping between one-dimensional orthogonal projectors. We now use the linearity of
dynamical maps to show that  must be unital. Specifically, let { }Pi be the initial set of

orthogonal projectors that is mapped to another set of orthogonal projectors, ¯{ }Pi . We find for

the image of the totally mixed state, ρ = 
M N

1 ,
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∑ ∑

∑

ρ

ρ

= =

= ¯ =

= =

=

⎛
⎝⎜

⎞
⎠⎟( ) ( )

N
P

N
P

N
P

1 1

1
,

M
i

N

i
i

N

i

i

N

i M

1 1

1

  

i.e.,  maps identity onto itself, making it unital. We can thus use Lemma 1 to obtain that the
spectrum of a complete set of density matrices is invariant under . We now just have to add
ρ = P

TR TR to realize a complete and totally rotating set. The spectrum of ρ = P
TR TR is also

invariant under  since it is a one-dimensional projector that is mapped onto another one-
dimensional projector.

⟹( ) ( )3 2 : From Lemma 1, we obtain that maps a set of N one-dimensional, orthogonal
projectors onto another set of N one-dimensional orthogonal projectors. We are thus only left
with showing that  maps a totally rotated projector onto a one-dimensional projector: There
always exists a density matrix with a one-dimensional eigenspace corresponding to a totally
rotated projector PTR whose spectrum is invariant under the action of . In the proof of Lemma
1, we have shown that a dynamical map that leaves the spectrum of projectors invariant maps
these projectors onto projectors of the same rank. Repeating the steps of the proof of Lemma 1,
we see that the image of PTR has to be a one-dimensional projector. This completes the proof of
Theorem 1.

References

[1] Breuer H-P and Petruccione F 2007 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[2] Lidar D A, Chuang I L and Whaley K B 1998 Phys. Rev. Lett. 81 2594
[3] Viola L, Fortunato E M, Pravia M A, Knill E, Laflamme R and Cory D G 2001 Science 293 2059
[4] Viola L, Knill E and Lloyd S 1999 Phys. Rev. Lett. 82 2417
[5] Clausen J, Bensky G and Kurizki G 2010 Phys. Rev. Lett. 104 040401
[6] Rice S A and Zhao M 2000 Optical Control of Molecular Dynamics (New York: Wiley)
[7] Bartana A, Kosloff R and Tannor D J 1997 J. Chem. Phys. 106 1435
[8] Ohtsuki Y, Zhu W and Rabitz H 1999 J. Chem. Phys. 110 9825
[9] Kallush S and Kosloff R 2006 Phys. Rev. A 73 032324

[10] Tremblay J C and Saalfrank P 2008 Phys. Rev. A 78 063408
[11] Li G-Q and Kleinekathöfer U 2010 Eur. Phys. J. B 76 309
[12] Schulte-Herbrüggen T, Spörl A, Khaneja N and Glaser S J 2011 J. Phys. B 44 154013
[13] Gorman D J, Young K C and Whaley K B 2012 Phys. Rev. A 86 012317
[14] Shuang F, Pechen A, Ho T-S and Rabitz H 2007 J. Chem. Phys. 126 134303
[15] Rebentrost P, Serban I, Schulte-Herbrüggen T and Wilhelm F K 2009 Phys. Rev. Lett. 102 090401
[16] Asplund E and Klüner T 2011 Phys. Rev. Lett. 106 140404
[17] Schmidt R, Negretti A, Ankerhold J, Calarco T and Stockburger J T 2011 Phys. Rev. Lett. 107 130404
[18] Floether F F, de Fouquieres P and Schirmer S G 2012 New J. Phys. 14 073023
[19] Somlói J, Kazakovski V A and Tannor D J 1993 Chem. Phys. 172 85
[20] Zhu W, Botina J and Rabitz H 1998 J. Chem. Phys. 108 1953
[21] Palao J P and Kosloff R 2002 Phys. Rev. Lett. 89 188301
[22] Palao J P and Kosloff R 2003 Phys. Rev. A 68 062308
[23] Ohtsuki Y 2010 New J. Phys. 12 045002

New J. Phys. 16 (2014) 055012 M H Goerz et al

27

http://dx.doi.org/10.1103/PhysRevLett.81.2594
http://dx.doi.org/10.1126/science.1064460
http://dx.doi.org/10.1103/PhysRevLett.82.2417
http://dx.doi.org/10.1103/PhysRevLett.104.040401
http://dx.doi.org/10.1063/1.473973
http://dx.doi.org/10.1063/1.478036
http://dx.doi.org/10.1103/PhysRevA.73.032324
http://dx.doi.org/10.1103/PhysRevA.78.063408
http://dx.doi.org/10.1140/epjb/e2010-00206-3
http://dx.doi.org/10.1088/0953-4075/44/15/154013
http://dx.doi.org/10.1103/PhysRevA.86.012317
http://dx.doi.org/10.1063/1.2711806
http://dx.doi.org/10.1103/PhysRevLett.102.090401
http://dx.doi.org/10.1103/PhysRevLett.106.140404
http://dx.doi.org/10.1103/PhysRevLett.107.096602
http://dx.doi.org/10.1088/1367-2630/14/7/073023
http://dx.doi.org/10.1016/0301-0104(93)80108-L
http://dx.doi.org/10.1063/1.475576
http://dx.doi.org/10.1103/PhysRevLett.89.188301
http://dx.doi.org/10.1103/PhysRevA.68.062308
http://dx.doi.org/10.1088/1367-2630/12/4/045002


[24] Bendersky A, Pastawski F and Paz J P 2008 Phys. Rev. Lett. 100 190403
[25] Flammia S T and Liu Y-K 2011 Phys. Rev. Lett. 106 230501
[26] Magesan E, Gambetta J M and Emerson J 2011 Phys. Rev. Lett. 106 180504
[27] da Silva M P, Landon-Cardinal O and Poulin D 2011 Phys. Rev. Lett. 107 210404
[28] Reich D M, Gualdi G and Koch C P 2013 Phys. Rev. Lett. 111 200401
[29] Reich D M, Gualdi G and Koch C P 2013 Phys. Rev. A 88 042309 (arXiv:1305.3222)
[30] Fiurášek J and Sedlák M 2014 Phys. Rev. A 89 012323
[31] Hofmann H F 2005 Phys. Rev. Lett. 94 160504
[32] Reich D M, Palao J P and Koch C P 2013 J. Mod. Opt. doi:10.1080/09500340.2013.844866
[33] Palao J P, Reich D M and Koch C P 2013 Phys. Rev. A 88 053409
[34] Reich D M, Ndong M and Koch C P 2012 J. Chem. Phys. 136 104103
[35] Pedersen L H, Møller N M and Mølmer K 2007 Phys. Lett. A 367 47
[36] Jaksch D, Cirac J I, Zoller P, Rolston S L, Côté R and Lukin M D 2000 Phys. Rev. Lett. 85 2208
[37] Saffman M, Walker T G and Mølmer K 2010 Rev. Mod. Phys. 82 2313
[38] Goerz M H, Calarco T and Koch C P 2011 J. Phys. B 44 154011
[39] Müller M M, Reich D M, Murphy M, Yuan H, Vala J, Whaley K B, Calarco T and Koch C P 2011 Phys. Rev.

A 84 042315
[40] Poletto S et al 2012 Phys. Rev. Lett. 109 240505
[41] Chow J M et al 2011 Phys. Rev. Lett. 107 080502

New J. Phys. 16 (2014) 055012 M H Goerz et al

28

http://dx.doi.org/10.1103/PhysRevLett.100.190403
http://dx.doi.org/10.1103/PhysRevLett.106.230501
http://dx.doi.org/10.1103/PhysRevLett.106.180504
http://dx.doi.org/10.1103/PhysRevLett.107.210404
http://dx.doi.org/10.1103/PhysRevLett.111.200401
http://dx.doi.org/10.1103/PhysRevA.88.042309
http://arXiv.org/abs/1305.3222
http://dx.doi.org/10.1103/PhysRevA.89.012323
http://dx.doi.org/10.1103/PhysRevLett.94.160504
http://dx.doi.org/10.1080/09500340.2013.844866
http://dx.doi.org/10.1103/PhysRevA.88.053409
http://dx.doi.org/10.1063/1.3691827
http://dx.doi.org/10.1016/j.physleta.2007.02.069
http://dx.doi.org/10.1103/PhysRevLett.85.2208
http://dx.doi.org/10.1103/RevModPhys.82.2313
http://dx.doi.org/10.1088/0953-4075/44/15/154011
http://dx.doi.org/10.1103/PhysRevA.84.042315
http://dx.doi.org/10.1103/PhysRevLett.109.240505
http://dx.doi.org/10.1103/PhysRevLett.107.080502

	1. Introduction
	2. Optimal control theory for a unitary operation under dissipative evolution
	2.1. Optimization functional
	2.2. Optimization algorithm

	3. Example I: Diagonal gates
	4. Example II: Nondiagonal gates
	5. Conclusions
	Acknowledgments
	Appendix A.
	A.1. Construction of the functional
	A.2. Proof

	References



