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1. Introduction

In the theory of the Navier-Stokes equations, the proofs of some basic known results,
like for example the uniqueness of solutions to the stationary Navier-Stokes equations
under smallness assumptions on the force (Theorem 22 in sec. 5.1) or the stability of
certain difference schemes (Theorems 49 and 50 in sec. 6.1), actually only use a small
range of properties and are therefore valid in a more general context. In the present
thesis this context is made concrete by means of the concept of SST space. A vector
space V over the field R is called an SST space if it is equipped with two scalar
products ((·, ·)) and (·, ·) and a trilinear form (·, ·, ·) such that the norm ‖·‖ = ((·, ·))

1
2

is stronger than the norm |·| = (·, ·)
1
2 and such that the trilinear form is continuous

with respect to the norm ‖·‖ and skew-symmetric in the last two components.1 The
acronym SST stands for scalar product, scalar product, trilinear form. In the special
case of the Navier-Stokes equations, V is the set of solenoidal vector fields on an
open bounded subset of R3 with zero boundary values, (·, ·) is the L2 scalar product
and ((·, ·)) the Dirichlet scalar product (∇·,∇·).2 Other examples of SST spaces
include the SST space V = R2 from Theorem 24 in sec. 5.1.2 and the weighted
SST spaces on Z\ {0} from Lemma 37 in sec. 5.3.2. The principal relevance of these
non-Navier-Stokes SST spaces is that they serve as counterexamples to disprove
uniqueness and stability conjectures which are open questions in the special case
of the Navier-Stokes equations. Each time such a counterexample is invoked in the
present thesis, it proves that the corresponding statement does not hold in SST
spaces in general. Of course in each such situation the corresponding statement
might nevertheless be true for the special case of the Navier-Stokes equations which
is why the counterexample doesn’t answer the open question. But it shows that it
is impossible to prove the corresponding statement for the Navier-Stokes equations
when using only the tools available in SST spaces. These tools are not as weak
as one might believe: The above-mentioned basic known uniqueness and stability
results, as well as several uniqueness results in sec. 5.3.1 which are to our knowledge
new, are proven for general SST spaces.

Chapter 2 is an introduction to SST spaces. After the definition of the term SST
space and some related notions and properties in sec. 2.1, it is shown in sec. 2.2
that the concept is a generalization of the functional setting for the Navier-Stokes
equations. In so doing we derive explicit optimal constants for Hölder inequalities

1For more details see Definition 1 in sec. 2.1.
2Precise definitions are given in sec. 2.2.
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Chapter 1 Introduction

related to the convective term. To our knowledge these constants have not been
determined before.

Chapter 3 provides a list of equations and difference schemes that occur in the
present thesis. A table at the end of the chapter gives an overview of the theorems
concerning the listed equations and difference schemes sorted by type of result.

The theorems from chapter 4 cover existence and non-existence results. First a gen-
eral existence theorem that applies to all equations and schemes listed in chapter 3
except for the explicit Euler scheme (Theorem 18) is established for SST spaces that
have additional completeness and compactness properties and the trilinear form of
which is, roughly speaking, continuous with respect to a seminorm ‖·‖∞ that cor-
responds to the norm |∇·|L∞ in the special case of the Navier-Stokes equations.3
The proof is based on the Galerkin method. After that it is shown in Theorem 21
that an existence result for the explicit Euler scheme proven in [Tem84, page 335,
Scheme 5.4] for the spatially discretized case does not hold if the SST space’s norms
are not equivalent, which includes the case of the spatially continuous Navier-Stokes
equations. The lack of existence is due to the fact that the Dirichlet norm can in
general not be controlled by the L2 norm.

Chapter 5 is dedicated to uniqueness questions. Its first section concerns the SST-
generalized stationary Navier-Stokes equations. It is shown in Theorem 22 that the
proof of a known uniqueness result for the stationary Navier-Stokes equations under
smallness assumptions on the force (see e. g. [Tem84, page 167, Theorem 1.3]) carries
over to the general SST setting. The question whether uniqueness can be established
without this smallness assumption seems to be an open question in the special case of
the stationary Navier-Stokes equations according to [Tem84, page 168, Remark 1.1].
As far as general SST spaces are concerned, the question has a negative answer: By
means of a counterexample it is shown in Theorem 24 that the smallness assumption
on the force is indispensable in the general SST setting. After that, in sec. 5.2, the
well-known fact that the uniqueness of solutions to linear difference schemes can
be proven without smallness assumptions on the data in the case of the Navier-
Stokes equations (see e. g. [GR79, page 171, Lemma 2.1]) is shown to generalize
to SST spaces. Nonlinear difference schemes are discussed in sec. 5.3. All results
are first established for the implicit Euler scheme and subsequently transferred to
other nonlinear schemes. To our knowledge, the uniqueness of solutions to nonlinear
difference schemes for the Navier-Stokes equations has only been studied in the case
of spatial discretizations. In that case the Dirichlet and L2 norms are equivalent,
the consequence being that smallness assumptions on the time step size alone are
sufficient for uniqueness [HR90, page 366]. However, when it comes to SST spaces
the Dirichlet norm of which can not be controlled by their L2 norm, there are
counterexamples that show that smallness assumptions on the time step size alone
are insufficient. More precisely, if the Dirichlet norm of the previous approximation
is too large (Theorem 39) or if its L2 norm is different from zero (Theorem 41), non-

3See the assumptions of Theorem 18 for the specific continuity requirements.
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Introduction

uniqueness can occur in SST spaces for arbitrary forces and arbitrary small time step
sizes. Yet uniqueness results are not entirely out of reach in the general SST setting:
They are established in sec. 5.3.1 under smallness assumptions on the Dirichlet norm
of the previous approximation combined with either smallness assumptions on the
product of the time step size and the squared L2 norm of the force, or smallness
assumptions on the H−1 norm of the force.

Chapter 6 addresses the stability of difference schemes. First the well-known sta-
bility proofs for two versions of the implicit Euler scheme and two versions of the
Crank-Nicolson scheme (see e. g. [Tem84, page 336ff, Lemma 5.1 and 5.2]) are shown
to carry over to general SST spaces. Then in sec. 6.2 we prove that a version of the
explicit Euler scheme, a version of the Crank-Nicolson scheme, and the fractional
step theta scheme are not stable in the SST setting.4 For each of these schemes there
are examples of SST spaces where the L2 norm of the first approximation v1 can be
arbitrarily large even if the L2 norm of the initial value v0 and the time step size
are required to be smaller than ε. According to [MPRT95, page 5], the use of the
fractional step theta scheme for the Navier-Stokes equations was first proposed in
[BGP87]. A sketch of proof of its second order convergence for ϑ = 1− 1

2

√
2 when ap-

plied to the linear Stokes equations with error constants that grow exponentially in
time can be found in [MU93, page 23, Satz 3.1]. A sketch of proof of the same result
but with error constants that are time-independent, due to the proof avoiding dis-
crete Grönwall inequalities, is given in [Zan12].5 The above-mentioned non-stability
proof for the fractional step theta scheme (Theorem 53) does not contradict the sec-
ond order convergence result for the fractional step theta scheme given in [MU93,
Kapitel 4] for the nonstationary Navier-Stokes equations since the counterexample
used to show non-stability is a non-Navier-Stokes SST space.

Chapter 7 contains two convergence results for versions of the implicit Euler and
Crank-Nicolson schemes. They are proven for SST∞ spaces – a concept more spe-
cific than SST spaces but still more general than the Navier-Stokes equations.6 In
Theorem 60 we provide a new proof of a first order convergence result for a ver-
sion of the implicit Euler scheme that is already known for the special case of the
Navier-Stokes equations [GR79, page 179, Theorem 2.2]. Our proof differs from
that cited in that it uses different estimations of the convective term.7 Conditions
on the data that are sufficient for the existence of a solution of the nonstationary
Navier-Stokes equations that satisfies the regularity assumptions for convergence
are given in Theorem 59. As a corollary of the established convergence result we
recover a uniqueness result that is known for the special case of the nonstationary
Navier-Stokes equations (see Corollary 62). After that the convergence of a version

4In the present thesis we use the same version of the fractional step theta scheme as studied in
[MU93, page 50], see chapter 3.

5In the cited paper the error constants are mistakenly stated to depend on nothing but α, but
actually they depend also on the viscosity ν.

6The term SST∞ space is defined in Definition 54.
7For more details see page 60.
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Chapter 1 Introduction

of the Crank-Nicolson scheme is studied in sec. 7.2. To our knowledge, its second
order convergence when applied to the nonstationary Navier-Stokes equations has
until now only been shown for spatial discretizations where the Dirichlet and the
L2 norms are equivalent.8 In Theorem 65 we establish the second order conver-
gence of the said version of the Crank-Nicolson scheme for general SST∞ spaces.
As in the case of the Euler scheme in the preceding section, conditions on the data
that guarantee the existence of a solution that satisfies the assumptions of the con-
vergence theorem in the special case of the nonstationary Navier-Stokes equations
are provided. Due to the higher regularity requirements, these conditions involve
a compatibility condition on the initial acceleration. It is shown via prescription
of the initial acceleration that nontrivial data satisfying the compatibility condition
actually exist.

8See page 66 for a number of known convergence results for Crank-Nicolson type schemes.
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2. SST spaces

2.1. Definitions

Definition 1 (SST space). If V is a vector space over R, if ((·, ·)) and (·, ·) are scalar
products on V , and if (·, ·, ·) is a trilinear form on V then we call

(V, ((·, ·)) , (·, ·) , (·, ·, ·))

an SST space if there are real numbers cp > 0 and ct > 0 such that for all u, v, w ∈ V

|u| 6 cp ‖u‖ (Poincaré inequality), (2.1)
|(u, v, w)| 6 c3

t ‖u‖ ‖v‖ ‖w‖ (continuity), and (2.2)
(u, v, v) = 0 (orthogonality relation), (2.3)

where ‖u‖ = ((u, u))1/2 and |u| = (u, u)1/2. The acronym SST stands for scalar
product, scalar product, trilinear form. We will often call V itself an SST space if
there is no doubt about which scalar products and trilinear form we refer to.

Remark 2. We are interested in SST spaces for the following reason: The space of
solenoidal vector fields with zero boundary values on an open bounded subset of R3

equipped with the Dirichlet and L2 scalar products and the trilinear form (u · ∇v, w)
– which is of central importance in the theory of the Navier-Stokes equations – is
an SST space (see sec. 2.2). This is why we refer to ‖·‖ as the Dirichlet norm, to
|·| as the L2 norm, or use the term Poincaré inequality as a pars pro toto even if
the SST space in consideration is not the Navier-Stokes SST space. The property
(u, v, v) = 0 is called orthogonality relation because in the case of the Navier-Stokes
SST space it states that the two vector fields u·∇v and v are orthogonal with respect
to the L2 scalar product.

Lemma 3 (Skew-symmetry). The trilinear form of an SST space is always skew-
symmetric in the last two components, i. e.

(u, v, w) + (u,w, v) = 0 (u, v, w ∈ V ) .

Proof. For all u, v, w ∈ V the orthogonality relation 2.3 yields

(u, v, w) + (u,w, v) = (u, v, v + w) + (u,w, v + w)
= (u, v + w, v + w) = 0.

5



Chapter 2 SST spaces

Definition 4. If V is an SST space, by the dual space V ′ we understand the space
of linear forms on V continuous with respect to the Dirichlet norm ‖·‖. The norm
on V ′ is defined by

‖f‖V ′ = sup {|f (v)| ; ‖v‖ = 1} .

By H ′ we understand the space of linear forms on V continuous with respect to the
norm |·|. The norm on H ′ is defined by

|f | = sup {|f (v)| ; |v| = 1} .

These definitions imply that

|f (ϕ)| 6 ‖f‖V ′ ‖ϕ‖

for all f ∈ V ′ and ϕ ∈ V and

|f (ϕ)| 6 |f | |ϕ|

for all f ∈ H ′ and ϕ ∈ V .
We haveH ′ ⊂ V ′ and ‖f‖V ′ 6 cp |f | for all f ∈ H ′ due to the Poincaré inequality 2.1.

Definition 5. The imbedding V ↪→ H ′ is defined by

V 3 v 7→ (V 3 ϕ 7→ (v, ϕ) ∈ R) ∈ H ′.

It is an isometry from (V, |·|) to (H ′, |·|).

2.2. The Navier-Stokes SST space

It is proven in this section that the space of solenoidal vector fields with zero bound-
ary values on a bounded domain of R3 equipped with the Dirichlet and L2 scalar
products and the trilinear form (u · ∇v, w) is an SST space.
Throughout this section let n ∈ N>1, and let G ⊂ Rn be an open, bounded set.

Definition 6 (C∞0,σ and V ). A vector field u : G → Rn is called divergence free or
solenoidal, if u ∈ C1 (G)n with

∇ · u =
∑
i

∂iui = 0.

By C∞0,σ (G) we denote the space of all divergence free C∞ vector fields u : G→ Rn

that have compact support in G.
By V we denote the closure of C∞0,σ (G) in H1 (G)n with respect to the H1 norm.
Note that V ⊂ H1

0 (G)n since C∞0,σ (G) ⊂ C∞0 (G)n.1

1Here H1 (G) and H1
0 (G) stand for the Sobolev spaces W 1,2 (G) and W 1,2

0 (G), respectively, see
e. g. [AF03, page 60, Definition 3.2(b,c)].
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2.2 The Navier-Stokes SST space

Definition 7 (Scalar products and Dirichlet norm). The positive semidefinite sym-
metric bilinear form

(∇u,∇v) :=
∑
i,j

ˆ
G

∂jui∂jvi

is defined on H1 (G)n × H1 (G)n. The following theorem shows that (∇·,∇·) and
its associated seminorm |∇·|L2 , if restricted to H1

0 (G)n, are a scalar product and a
norm. The norm |∇·|L2 is called the Dirichlet norm. The scalar product

(u, v) :=
∑
i

ˆ
G

uivi

is defined on L2 (G)n × L2 (G)n, its associated norm is the L2 norm.

Theorem 8 (Poincaré inequality). There is a number cp depending on the width of
G such that for every vector field u ∈ H1

0 (G)n the inequalities

|u|H1 6 cp |∇u|L2

and

|u|L2 6 cp |∇u|L2

hold. Both are referred to as the Poincaré inequality.

Proof. The proof for the scalar case can for example be found in [AF03, page 184,
Corollary 6.31 for m = 1, p = 2]. Note that the definition of the term domain used
there doesn’t require connectedness [AF03, page 1]. The generalization to vector
fields reads

|u|2H1 =
∑
i

|ui|2H1 6 c2
p

∑
i

|∇ui|2L2 = c2
p

∑
i,j

|∂jui|2L2 = c2
p |∇u|

2
L2 .

To our knowledge the explicit optimal constants for the Hölder inequalities in the
following three lemmas are new.

Lemma 9 (Hölder’s inequality for the convective term). Let 1 6 p, q, r 6 ∞ with
1
p

+ 1
q

= 1
r
, u ∈ Lp (G)n, and v ∈ W 1,q (G)n. Then the convective term defined by

u · ∇v :=
∑
i

ui∂iv

is an element of Lr (G)n and satisfies

|u · ∇v|Lr 6 n1− 1
q |u|Lp |∇v|Lq .

The inequality is sharp in the sense that the constant n1− 1
q cannot be improved.

7



Chapter 2 SST spaces

Proof. We only prove the case∞ /∈ {p, q, r} because the other cases are similar. The
exponential triangle inequality A.1 is used in the second and Hölder’s inequality in
the third line of the estimation

|u · ∇v|Lr =
ˆ

G

∑
j

∣∣∣∣∣∑
i

ui∂ivj

∣∣∣∣∣
r
 1

r

6

ˆ
G

∑
j

nr−1∑
i

|ui∂ivj|r
 1

r

6 n1− 1
r

ˆ
G

∑
i,j

|ui|p
 1

p
ˆ

G

∑
i,j

|∂ivj|q
 1

q

= n1− 1
r

(ˆ
G

n
∑
i

|ui|p
) 1

p

|∇v|Lq .

The example ui (x) = 1, vi (x) = ∑
i xi shows that the inequality is sharp.

Lemma 10 (Hölder’s inequality for dot product). Let 1 6 p, q, r 6∞ with 1
p
+1
q

= 1
r
,

u ∈ Lp (G)n, and v ∈ Lq (G)n. Then the dot product defined by

u · v :=
∑
i

uivi

is an element of Lr (G) and satisfies

|u · v|Lr 6 n1− 1
r |u|Lp |v|Lq .

The inequality is sharp.

Proof. We only proof the case∞ /∈ {p, q, r} because the other cases are similar. The
exponential triangle inequality A.1 is used in the second and Hölder’s inequality in
the third line of the estimation

|u · v|Lr =
(ˆ

Ω

∣∣∣∣∣∑
i

uivi

∣∣∣∣∣
r) 1

r

6

(ˆ
Ω
nr−1∑

i

|uivi|r
) 1

r

6 n1− 1
r

(ˆ
Ω

∑
i

|ui|p
) 1

p
(ˆ

Ω

∑
i

|vi|q
) 1

q

.

The example ui (x) = vi (x) = 1 shows that the inequality is sharp.
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2.2 The Navier-Stokes SST space

Lemma 11 (Hölder’s inequality for (u·∇v)·w). Let 1 6 p, q, r, s 6∞, 1
p
+ 1
q
+ 1
r

= 1
s
,

u ∈ Lp, v ∈ W 1,q, and w ∈ Lr. Then (u · ∇v) · w ∈ Ls and

|(u · ∇v) · w|Ls 6 n2− 1
s
− 1

q |u|Lp |∇v|Lq |w|Lr .

The inequality is sharp.

Proof. Lemma 9 is used for the first and Lemma 10 for the second inequality in the
estimation

|(u · ∇v) · w|Ls 6 n1− 1
s |u · ∇v|

L( 1
p + 1

q )−1 |w|Lr

6 n1− 1
sn1− 1

q |u|Lp |∇v|Lq |w|Lr .

As sharpness of inequalities is not transitive,2 we give another example: ui (x) =
wi (x) = 1, vi (x) = ∑

i xi.

Lemma 12 (Sobolev imbedding L4). If n = 3, then H1
0 (G)3 ⊂ L4 (G)3 and there

is a number cs such that for every u ∈ H1
0 (G)3

|u|L4 6 cs |u|H1 .

Proof. The result for scalar valued functions can be found in [AF03, page 85, The-
orem 4.12, part III applied to part I, imbedding (5) for n = 3, m = 1 , p = 2,
q = 4]. Note that the definition of the term domain used there doesn’t require
connectedness [AF03, page 1]. The generalization to the vector valued case reads

|u|L4 =
(∑

i

|ui|4L4

) 1
4

6 cS

(∑
i

|ui|4H1

) 1
4

6 csc̃

(∑
i

|ui|2H1

) 1
2

= csc̃ |u|H1 ,

where for the second inequality we use that norms on finite dimensional spaces are
equivalent and thus there is c̃ ∈ R such that |a|`4 6 c̃ |a|`2 for all a ∈ R3.

Lemma 13. Let n = 3 and κ ∈ R.3 Then the integral in the definition of the
trilinear form

(u, v, w) := κ

ˆ
G

(u · ∇v) · w (u, v, w ∈ V )

exists and the trilinear form has continuity property 2.2, i. e.

|(u, v, w)| 6 c3
t |∇u|L2 |∇v|L2 |∇w|L2

holds for all u, v, w ∈ V , where c3
t =
√

3 |κ| c2
sc

2
p.

2For example, if |·| denotes the euclician norm on R2 and A : R2 → R2, (x0, x1) 7→ (2x0, x1), each
of the inequalities |x| 6 |Ax| and |Ax| 6 2 |x| is sharp but the inequality |x| 6 2 |x| is not.

3See Remark 16 on the parameter κ below.

9



Chapter 2 SST spaces

Proof. The second, the third, and the fourth inequality in the estimation

|(u, v, w)| 6 |κ| |(u · ∇v) · w|L1

6 3 1
2 |κ| |u|L4 |∇v|L2 |w|L4

6 3 1
2 |κ| c2

s |u|H1 |∇v|L2 |w|H1

6 3 1
2 |κ| c2

sc
2
p |∇u|L2 |∇v|L2 |∇w|L2 .

are based on Hölder’s inequality from Lemma 11 with n = 3, p = r = 4, q = 2, and
s = 1, on the Sobolev inequality from Lemma 12, and on the Poincaré inequality
from Theorem 8, respectively.

Lemma 14 (Orthogonality relation). Let n = 3 and κ ∈ R. Then the trilinear form
defined in Lemma 13 satisfies orthogonality relation 2.3, i. e.

(u, v, v) = 0 (u, v ∈ V ) .

Proof. See [Tem84, page 163, Lemma 1.3] and note that the assumption v ∈ L3 (G)3

made there is satisfied because the Sobolev imbedding H1
0 ⊂ Lq used in the proof of

Lemma 12 with q = 4 also holds with q = 3 [AF03, page 85, Theorem 4.12, part III
applied to part I, imbedding (5) for n = 3, m = 1 , p = 2, q = 3].

Definition 15 (Navier-Stokes SST space). Let n = 3 and κ ∈ R. The space V from
Definition 6 equipped with the scalar products ((·, ·)) = (∇·,∇·)L2 and (·, ·) = (·, ·)L2

from Definition 7 and the trilinear form (·, ·, ·) from Lemma 13 is called the Navier-
Stokes SST space. It is an SST space because of the Poincaré inequality from
Theorem 8, the continuity established in Lemma 13, and the orthogonality relation
from Lemma 14.

Remark 16 (on the parameter κ). The nonstationary Navier-Stokes equations as
stated in their weak form in chapter 7, Definition 56 can also be stated in an appar-
ently more general way with viscosity ν > 0 in the form

∂t (u, ϕ) + κ (u · ∇u, ϕ) + ν ((u, ϕ)) = f (ϕ) (ϕ ∈ V ) . (2.4)

However, if κ 6= 0, solving equation 2.4 amounts to solving the same equation with
κ = ν = 1 because the equations have the following scaling property: Whenever
u : R→ V and f : R→ V ′, if ũ and f̃ are defined by

ũ : R → V f̃ : R → V ′

τ 7→ κν−1u (ν−1τ) τ 7→ κν−2f (ν−1τ) ,

u is a solution of equation 2.4 with force f if and only if ũ is a solution of the same
equation with force f̃ but with κ = ν = 1. Nevertheless there is a benefit in not
omitting the parameter κ: Every result obtained for the Navier-Stokes equations
with κ ∈ R also applies to the linear Stokes equations by setting κ = 0. The same

10



2.2 The Navier-Stokes SST space

could be done by allowing the viscosity ν to vanish which corresponds to the Euler
equations. But since pretty much all of the results in the present thesis rely on the
regularizing effect of the viscous term, the case ν = 0 would have to be excluded
in the assumptions of most of the results anyway, hence we can just as well assume
that ν = 1.
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3. List of equations and difference
schemes

This chapter lists the equations and difference schemes discussed in the present
thesis. All equations and schemes as well as the SST-generalized nonstationary
Navier-Stokes equations (see Definition 56 in chapter 7) are stated in a weak and
thus pressure-free formulation. It is shown in [Tem84, pages 21-23, 160-161, 252-253,
280-281] that in the special case of the Navier-Stokes SST space the pressure-free
formulations are equivalent to their corresponding formulations with pressure in
both the stationary and nonstationary cases.1

Throughout the chapter let V be an SST space.
By the stationary Navier-Stokes equations we understand the weakly formu-
lated equation

(v, v, ϕ) + ((v, ϕ)) = f (ϕ) (ϕ ∈ V ) , (3.1)

where f ∈ V ′ is given and v ∈ V searched-for. However we will refer to equation 3.1
as the SST-generalized stationary Navier-Stokes equations whenever it is
not clear from the context that the considered SST space is not necessarily the
Navier-Stokes SST space.
By the explicit Euler scheme we understand the weakly formulated scheme

1
h

(
vk − vk−1, ϕ

)
+
(
vk−1, vk−1, ϕ

)
+
((
vk−1, ϕ

))
= fk (ϕ) (ϕ ∈ V ) , (3.2)

by the almost explicit Euler scheme the weakly formulated scheme

1
h

(
vk − vk−1, ϕ

)
+
(
vk−1, vk−1, ϕ

)
+
((
vk, ϕ

))
= fk (ϕ) (ϕ ∈ V ) , (3.3)

by the almost implicit Euler scheme the weakly formulated scheme

1
h

(
vk − vk−1, ϕ

)
+
(
vk−1, vk, ϕ

)
+
((
vk, ϕ

))
= fk (ϕ) (ϕ ∈ V ) , (3.4)

by the implicit Euler scheme the weakly formulated scheme

1
h

(
vk − vk−1, ϕ

)
+
(
vk, vk, ϕ

)
+
((
vk, ϕ

))
= fk (ϕ) (ϕ ∈ V ) , (3.5)

1Note in this context that we assume space dimension n = 3 in Definition 15.
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Chapter 3 List of equations and difference schemes

by the sum Crank-Nicolson scheme the weakly formulated scheme
1
h

(
vk − vk−1, ϕ

)
+ 1

2
(
vk−1, vk−1, ϕ

)
+ 1

2
(
vk, vk, ϕ

)
+1

2
((
vk−1 + vk, ϕ

))
= fk (ϕ) (ϕ ∈ V ) ,

(3.6)

by the linear Crank-Nicolson scheme the weakly formulated scheme
1
h

(
vk − vk−1, ϕ

)
+ 1

2
(
vk−1, vk−1 + vk, ϕ

)
+1

2
((
vk−1 + vk, ϕ

))
= fk (ϕ) (ϕ ∈ V ) , (3.7)

and by the product Crank-Nicolson scheme the weakly formulated scheme
1
h

(
vk − vk−1, ϕ

)
+ 1

4
(
vk−1 + vk, vk−1 + vk, ϕ

)
+1

2
((
vk−1 + vk, ϕ

))
= fk (ϕ) (ϕ ∈ V ) , (3.8)

where in the case of each scheme the step size h > 0, the initial value v0 ∈ V , and a
sequence (fk)k>1 of evaluations of the force with fk ∈ V ′ are given, and a sequence
(vk)k>1 of solutions with vk ∈ V is searched-for.
Note that the four names chosen for the Euler schemes can be inappropriate in a
context where additional Euler schemes are considered: If, for example, the scheme
1
h

(
vk − vk−1, ϕ

)
+
(
vk, vk−1, ϕ

)
+
((
vk, ϕ

))
= fk (ϕ) were also in the list of schemes, it

would merit the name almost implicit Euler scheme to the same extent as scheme 3.4
does. Therefore, in such a case, more specific names would have to be found.
By the fractional step theta scheme we understand the scheme each step of
which consists of the three weakly formulated substeps

1
ϑh

(
vk−1+ϑ − vk−1, ϕ

)
+
(
vk−1, vk−1, ϕ

)
+
((

(1− α) vk−1 + αvk−1+ϑ, ϕ
))

= fk−1+ϑ (ϕ) (ϕ ∈ V ) , (3.9)

1
(1− 2ϑ)h

(
vk−ϑ − vk−1+ϑ, ϕ

)
+
(
vk−ϑ, vk−ϑ, ϕ

)
+
((
αvk−1+ϑ + (1− α) vk−ϑ, ϕ

))
= fk−ϑ (ϕ) (ϕ ∈ V ) ,

(3.10)

and
1
ϑh

(
vk − vk−ϑ, ϕ

)
+
(
vk−ϑ, vk−ϑ, ϕ

)
+
((

(1− α) vk−ϑ + αvk, ϕ
))

= fk (ϕ) (ϕ ∈ V ) (3.11)

14



List of equations and difference schemes

of size ϑh, (1− 2ϑ)h, and ϑh respectively, where the parameters 0 < ϑ < 1
2

and 1
2 < α < 1, the step size h > 0, the initial value v0 ∈ V , and a sequence

fϑ, f 1−ϑ, f 1, f 1+ϑ, f 2−ϑ, . . . ∈ V ′ of evaluations of the force are given, and a se-
quence vϑ, v1−ϑ, v1, v1+ϑ, v2−ϑ, . . . ∈ V of solutions is searched-for. The parameter
ϑ is usually chosen as ϑ = 1 − 1

2

√
2 so as to obtain second order convergence, see

[MU93, MPRT95, Zan12].2

The following table provides quick reference to results relative to the equations and
difference schemes in the present thesis. The numbers in the table are the numbers
of the theorems where the corresponding result is proven.

Ex
ist

en
ce

N
on

-e
xi
st
en

ce

U
ni
qu

en
es
s

N
on

-u
ni
qu

en
es
s

St
ab

ili
ty

N
on

-s
ta
bi
lit
y

C
on

v e
rg
en

ce

Stationary NSE 19 22 24
Explicit Euler 21 26
Almost explicit Euler 19 26 51
Almost implicit Euler 19 26 49 60
Implicit Euler 19 29, 30, 32, 33 39, 41 49
Sum Crank-Nicolson 19 35 45 52
Linear Crank-Nicolson 19 26 50
Product Crank-Nicolson 19 34 43 50 65
Fractional step theta 19 26, 36 47 53

2The error constants in [Zan12] are mistakenly stated to depend on nothing but α although they
also depend on the viscosity ν.
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4. Existence-related results

4.1. Existence

In this section we prove a general existence theorem based on the Galerkin method
and apply it to all the equations and schemes from chapter 3 except for the explicit
Euler scheme 3.2. The existence result is well-known for the special case of the
Navier-Stokes SST space and λ = η = 0 and can for example be found in [Tem84,
page 164, Theorem 1.2]. Then we show that the Navier-Stokes SST space satisfies
the assumptions made in the existence theorem. The section starts with a lemma
based on the Brouwer fixed point theorem.

Lemma 17. Let X be a finite-dimensional vector space over R with scalar product
and associated norm noted by ((·, ·)) and ‖·‖. If P : X → X is continuous and if
there is a number r > 0 such that

((P (v) , v)) > 0

for all v ∈ X with ‖v‖ = r, then there is a vector u ∈ X with P (u) = 0.

Proof. As it can be found in [Tem84, page 164, Lemma 1.4], the proof is omitted.

Theorem 18 (General existence). Let V be an SST space and let C ⊂ V be a
subspace dense in V with respect to the Dirichlet norm ‖·‖. Let ‖·‖∞ be a seminorm
on C such that there is a number cH∞H with

|(u, v, w)| 6 cH∞H |u| ‖v‖∞ |w| (4.1)

for all u,w ∈ V and all v ∈ C. Moreover suppose that (V, ((·, ·))) is a separable
Hilbert space and that the imbedding (V, ‖·‖) ↪→ (H ′, |·|) from Definition 5 is com-
pact. Let g ∈ V ′, w ∈ V , λ > −c−2

p , and µ, η ∈ R. Then the weakly formulated
equation

λ (v, ϕ) + µ (v, v, ϕ) + η (w, v, ϕ) + ((v, ϕ)) = g (ϕ) (ϕ ∈ V ) (4.2)

has at least one solution v ∈ V the Dirichlet norm of which satisfies

‖v‖ 6
(
min

{
1, 1 + λc2

p

})−1
‖g‖V ′ .
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Proof. We consider the form

V × V → R
(v, ϕ) 7→ Rvϕ := λ (v, ϕ) + µ (v, v, ϕ) + η (w, v, ϕ) + ((v, ϕ))− g (ϕ) .

The continuity of (v, ϕ) 7→ Rvϕ on V × V with respect to the Dirichlet norm ‖·‖
is a consequence of the Cauchy-Schwarz-Bunyakovsky and the Poincaré inequality
for the term λ (v, ϕ), of the trilinear form’s continuity with respect to ‖·‖, of the
Cauchy-Schwarz-Bunyakovsky inequality for the term ((v, ϕ)), and of the definition
of V ′ for the term g (ϕ).
Due to the assumed separability of V and the density of C in V there is a sequence

w0, w1, w2, · · · ∈ C

such that {wi; i ∈ N} is dense in V with respect to ‖·‖. For every m ∈ N,

Xm := Span {w0, . . . , wm−1}

equipped with the restriction of the scalar product ((·, ·)) to Xm × Xm is a Hilbert
space of dimension at most m. For every v ∈ Xm the linear form

Rv
m : Xm → R

ϕ 7→ Rvϕ

is continuous since it is the restriction of V 3 ϕ 7→ Rvϕ to Xm.1 The Riesz repre-
sentation theorem implies the unique existence of an element of Xm that we note
by Pm (v), such that ((Pm (v) , ϕ)) = Rv

mϕ for all ϕ ∈ Xm. The mapping

Pm : Xm → Xm, v 7→ Pm (v)

thereby defined is continuous since Xm 3 v 7→ Rv
m ∈ X ′m and the Riesz mapping

are continuous. In the sequel we can assume that g 6= 0 because if g = 0, zero is
a solution of equation 4.2. The next step is the application of Lemma 17 to the
finite-dimensional space Xm and the continuous map Pm. For every v ∈ Xm we
have

((Pm (v) , v)) >
(
min

{
1, 1 + λc2

p

}
‖v‖ − ‖g‖V ′

)
‖v‖ (4.3)

because

((Pm (v) , v)) = Rv
mv = Rvv

= λ |v|2 + ‖v‖2 − g (v)
> min {0, λ} c2

p ‖v‖
2 + ‖v‖2 − ‖g‖V ′ ‖v‖ .

1One could of course just as well point out that the form Rv
m is linear on a finite-dimensional

space in order to establish its continuity.
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4.1 Existence

If we fix some

r >
(
min

{
1, 1 + λc2

p

})−1
‖g‖V ′ > 0,

it follows from inequality 4.3 that every v ∈ Xm with ‖v‖ = r satisfies ((Pm (v) , v)) >
0. Hence due to Lemma 17 there is um ∈ Xm with Pm (um) = 0. Choosing v = um
in inequality 4.3 we obtain

‖um‖ 6
(
min

{
1, 1 + λc2

p

})−1
‖g‖V ′ .

The sequence (um)m obtained in this way is bounded in the Hilbert space V and
therefore possesses a subsequence we also denote by (um)m that ((·, ·))-weakly con-
verges to some u∞ ∈ V . The estimation of the norms ‖um‖ carries over to the weak
limit:

‖u∞‖ 6
(
min

{
1, 1 + λc2

p

})−1
‖g‖V ′ .

Since the imbedding (V, ‖·‖) ↪→ (H ′, |·|) is compact and an isometry from (V, |·|) to
(H ′, |·|) (see Definition 5), the sequence (um)m converges to u∞ in the norm |·|.
We now show that u∞ is a solution of equation 4.2. For that we have to show that
Ru∞ϕ = 0 for every ϕ ∈ V . Let ϕ ∈ V . It is sufficient to show that |Ru∞ϕ| < δ for
every δ > 0. Let δ > 0. Since {wi; i ∈ N} is dense in V and x 7→ Ru∞x is continuous
on V , there is some k ∈ N such that

|Ru∞ϕ−Ru∞wk| <
δ

2 .

For this number k ∈ N, we would like to show that

Rumwk = λ (um, wk) + µ (um, um, wk) + η (w, um, wk) + ((um, wk))− g (wk)

converges to Ru∞wk asm→∞. This is easy to see for the first term of the right hand
side (with Cauchy-Schwarz-Bunyakovsky and because um m→∞−−−→ u∞ with respect to
the norm |·|) and for the penultimate term of the right hand side (because of the
((·, ·))-weak convergence um ⇀ u∞). If we knew that um m→∞−−−→ u∞ with respect to
the norm ‖·‖ (which we don’t), this would also be easy to see for the trilinear terms
due to the continuity of the trilinear form with respect to ‖·‖. Instead, we argue as
follows:

|(u∞, u∞, wk)− (um, um, wk)|
= |(um, wk, um)− (u∞, wk, u∞)|
6 |(um, wk, um)− (um, wk, u∞)|+ |(um, wk, u∞)− (u∞, wk, u∞)|
= |(um, wk, um − u∞)|+ |(um − u∞, wk, u∞)|
6 cH∞H (|um|+ |u∞|) ‖wk‖∞ |um − u∞|

m→∞−−−→ 0
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and

|(w, u∞, wk)− (w, um, wk)|
= |(w,wk, u∞ − um)|
6 cH∞H |w| ‖wk‖∞ |u∞ − um|

m→∞−−−→ 0.

As desired we now know that Rumwk
m→∞−−−→ Ru∞wk and this is why there is a number

M ∈ N such that both

|Ru∞wk −RuMwk| <
δ

2

and

M > k.

The latter implies wk ∈ XM and therefore RuMwk = ((PM (uM) , wk)) = 0. We
conclude

|Ru∞ϕ| 6 |Ru∞ϕ−Ru∞wk|︸ ︷︷ ︸
< δ

2

+ |Ru∞wk −RuMwk|︸ ︷︷ ︸
< δ

2

+ |RuMwk|︸ ︷︷ ︸ .
= 0

Theorem 18 applies to all equations and schemes from chapter 3 except for the
explicit Euler scheme 3.2:

Theorem 19 (Existence). Let V be an SST space that satisfies the assumptions of
Theorem 18 (general existence). Then each of
• the stationary Navier-Stokes equations 3.1,
• the almost explicit Euler scheme 3.3,
• the almost implicit Euler scheme 3.4,
• the implicit Euler scheme 3.5,
• the sum Crank-Nicolson scheme 3.6,
• the linear Crank-Nicolson scheme 3.7,
• the product Crank-Nicolson scheme 3.8, and
• the three substeps 3.9, 3.10, and 3.11 of the fractional step theta scheme

have at least one solution v ∈ V (resp. vk ∈ V , vk−1+ϑ ∈ V , vk−ϑ ∈ V ) for given
force f ∈ V ′ (resp. fk ∈ V ′, fk−1+ϑ ∈ V ′, fk−ϑ ∈ V ′), previous approximation
vk−1 ∈ V (resp. vk−1+ϑ ∈ V , vk−ϑ ∈ V ), step size h > 0, and parameters 0 < ϑ < 1

2
and 1

2 < α < 1.
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4.1 Existence

Proof. Theorem 18 (general existence) applies to
• the stationary Navier-Stokes equations 3.1 setting λ = 0, µ = 1, η = 0, and
g = f ,
• the almost explicit Euler scheme 3.3 setting λ = 1

h
, µ = η = 0, and

g (ϕ) = fk (ϕ) + 1
h

(
vk−1, ϕ

)
−
(
vk−1, vk−1, ϕ

)
,

• the almost implicit Euler scheme 3.4 setting λ = 1
h
, µ = 0, η = 1, w = vk−1 ,

and

g (ϕ) = fk (ϕ) + 1
h

(
vk−1, ϕ

)
,

• the implicit Euler scheme 3.5 setting λ = 1
h
, µ = 1, η = 0, and

g (ϕ) = fk (ϕ) + 1
h

(
vk−1, ϕ

)
,

• the sum Crank-Nicolson scheme 3.6 setting λ = 2
h
, µ = 1, η = 0, and

g (ϕ) = 2fk (ϕ) + 2
h

(
vk−1, ϕ

)
−
(
vk−1, vk−1, ϕ

)
−
((
vk−1, ϕ

))
,

• the linear Crank-Nicolson scheme 3.7 setting λ = 2
h
, µ = 0, η = 1, w = vk−1,

and

g (ϕ) = 2fk (ϕ) + 2
h

(
vk−1, ϕ

)
−
(
vk−1, vk−1, ϕ

)
−
((
vk−1, ϕ

))
,

• the product Crank-Nicolson scheme 3.8 setting λ = 2
h
, µ = 1, η = 0, and

g (ϕ) = fk (ϕ) + 2
h

(
vk−1, ϕ

)
(and obtaining vk = 2v − vk−1 as a solution where v is a solution to equa-
tion 4.2),
• the first substep 3.9 of the fractional step theta scheme setting λ = 1

αϑh
,

µ = η = 0, and

g (ϕ) = 1
α
fk−1+ϑ (ϕ)+ 1

αϑh

(
vk−1, ϕ

)
− 1
α

(
vk−1, vk−1, ϕ

)
− 1− α

α

((
vk−1, ϕ

))
,

• the middle substep 3.10 of the fractional step theta scheme setting
λ = 1

(1−α)(1−2ϑ)h , µ = 1
1−α , η = 0, and

g (ϕ) = 1
1− αf

k−ϑ (ϕ)+ 1
(1− α) (1− 2ϑ)h

(
vk−1+ϑ, ϕ

)
− α

1− α
((
vk−1+ϑ, ϕ

))
,

and
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• the last substep 3.11 of the fractional step theta scheme setting λ = 1
αϑh

,
µ = η = 0, and

g (ϕ) = 1
α
fk (ϕ) + 1

αϑh

(
vk−ϑ, ϕ

)
− 1
α

(
vk−ϑ, vk−ϑ, ϕ

)
− 1− α

α

((
vk−ϑ, ϕ

))
because the Cauchy-Schwarz-Bunyakovsky inequality, the Poincaré inequality, and
the continuity of the trilinear form with respect to the Dirichlet norm yield that in
each of the enumerated cases the chosen right hand side g is in V ′.

Theorem 20. The Navier-Stokes SST space from Definition 15 satisfies the ad-
ditional assumptions made in Theorem 18 (general existence) or more specifically
there is a subspace C ⊂ V dense in V with respect to the Dirichlet norm ‖·‖, there
is a seminorm ‖·‖∞ on C and a number cH∞H such that inequality 4.1 holds for all
u,w ∈ V and all v ∈ C, the space (V, ((·, ·))) is a separable Hilbert space, and the
imbedding (V, ‖·‖) ↪→ (H ′, |·|) from Definition 5 is compact.

Proof. Let C be the space C∞0,σ (G) from Definition 6. By definition it is dense in
V with respect to the H1 norm. The H1 and the Dirichlet norms being equivalent
on V ⊂ H1

0 (G)3, the chosen space is also dense in V with respect to the Dirichlet
norm. Choose

‖u‖∞ := |∇u|L∞ = ess sup
x∈G

max
i,j
|∂iuj (x)| (u ∈ C)

as a seminorm on C.2 Lemma 11 with p = r = 2, q = ∞, and s = 1 is used in the
second inequality of the estimation

|(u, v, w)| 6 |(u · ∇v) · w|L1

6 3 |u|L2 |∇v|L∞ |w|L2 ,

valid for all u,w ∈ V and v ∈ C. Hence inequality 4.1 holds with cH∞H = 3.
The Sobolev spaceH1 (G)3 is separable with respect to theH1 norm, see for example
[AF03, page 61, Theorem 3.6]. Hence its subspace V is separable with respect
to the same norm as well. As the Dirichlet and the H1 norms are equivalent on
V ⊂ H1

0 (G)3, the space V is also separable with respect to the Dirichlet norm.
The Sobolev space H1 (G)3 is complete with respect to the H1 norm, see [AF03,
page 60, Theorem 3.3]. Being closed in H1 (G)3 with respect to the H1 norm, V is
complete with respect to the same norm as well. The Dirichlet and the H1 norms
are equivalent on V ⊂ H1

0 (G)3, thus V is also complete with respect to the Dirichlet
norm. Altogether (V, ((·, ·))) is a separable Hilbert space.
In order to prove that the imbedding (V, ‖·‖) ↪→ (H ′, |·|) is compact, suppose (τk)k>0
is a sequence of vector fields τk ∈ V that is bounded with respect to ‖·‖. As a conse-
quence of the Poincaré inequality in Theorem 8, the sequence is bounded in H1

0 (G)3

2In fact, ‖·‖∞ = |∇·|L∞ is even a norm on C but the proof of Theorem 18 also works if ‖·‖∞ is
only a seminorm.
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with respect to the H1 norm. The imbedding H1
0 (G) ↪→ L2 (G) is compact, see

[AF03, page 168, Theorem 6.3, part IV applied to imbedding (3) for n = k = 3,
Ω = Ω0 = G, j = 0, m = 1, p = q = 2] and note that the definition of the term
domain used there doesn’t require connectedness [AF03, page 1]. Moreover, note
that the assumption that G be bounded can be replaced by weaker conditions that
are also sufficient for the compactness of the imbedding [AF03, page 175, para-
graph 6.14]. As a consequence of the compactness, there is a subsequence of (τk)k>0
that is convergent with respect to the L2 norm. In particular it is a Cauchy sequence
with respect to the L2 norm. The image of the subsequence under the imbedding
V ↪→ H ′ from Definition 5 is a Cauchy sequence in (H ′, |·|) because the imbedding is
an isometry from (V, |·|) to (H ′, |·|). As a dual space, (H ′, |·|) is complete. Therefore
the image of the subsequence is convergent. This proves the compactness of the
imbedding (V, ‖·‖) ↪→ (H ′, |·|).

4.2. Non-existence

The following theorem shows that the explicit Euler scheme lacks existence of so-
lutions in the case of the Navier-Stokes SST space and more generally for every
SST space the Dirichlet norm of which can not be controlled by its L2 norm. How-
ever, existence can be established if the norms are equivalent, as proven in [Tem84,
page 335, Scheme 5.4] for spatial discretizations of the Navier-Stokes SST space.

Theorem 21. Let V be an SST space the norms ‖·‖ and |·| of which are not equi-
valent. Then for every h > 0 and vk−1 ∈ V there is some fk ∈ V ′ such that the
explicit Euler scheme 3.2 has no solution vk ∈ V .

Proof. Let h > 0 and vk−1 ∈ V . So as to prove the theorem by contradiction,
suppose that for every fk ∈ V ′ the explicit Euler scheme 3.2 has a solution vk ∈ V .
First we show that under this assumption the imbedding

I : V → H ′

v 7→ (V 3 ϕ 7→ (v, ϕ))

from Definition 5 is onto and that not only H ′ ⊂ V ′ (which holds for every SST
space) but actually H ′ = V ′. Let g ∈ V ′. Then the linear form fk : V → R defined
by

fk (ϕ) = g (ϕ)− 1
h

(
vk−1, ϕ

)
+
(
vk−1, vk−1, ϕ

)
+
((
vk−1, ϕ

))
is in V ′ because of the Cauchy-Schwarz-Bunyakovsky and the Poincaré inequality
and the continuity of the trilinear form with respect to ‖·‖. Hence, due to the
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reductio assumption, there is a solution vk ∈ V to the explicit Euler scheme 3.2
with step size h and data vk−1, fk. This yields

g (ϕ) = fk (ϕ) + 1
h

(
vk−1, ϕ

)
−
(
vk−1, vk−1, ϕ

)
−
((
vk−1, ϕ

))
= 1
h

(
vk, ϕ

)
=
(
I
(1
h
vk
))

(ϕ) ,

which implies both the surjectivity of I and H ′ = V ′. The space (V, |·|) is a Banach
space because it is isometrically isomorphic to (H ′, |·|) via I and because dual spaces
are always complete. For every e ∈ V the linear operator

Te : V → R, ϕ 7→ ((e, ϕ))

is continuous from (V, |·|) to R because Te ∈ V ′ due to the Cauchy-Schwarz-Bunya-
kovsky inequality and because H ′ = V ′. The collection

F := {Te; e ∈ V, |e| = 1}

of continuous linear operators from (V, |·|) to R is pointwise bounded because for
every point ϕ ∈ V and every Te ∈ F

|Te (ϕ)| = |Tϕ (e)| 6 |Tϕ| |e| = |Tϕ| ,

where |Tϕ| denotes the norm of Tϕ in (H ′, |·|). Meeting the requirements of the uni-
form boundedness principle (see e. g. [Rud73, page 44, Theorem 2.6]), the collection
F is uniformly bounded, i. e. there is a number C ∈ R such that

|Te| 6 C

for all Te ∈ F . This allows for the estimation

‖v‖2 = |v|
(( v
|v|
, v
))

= |v|T v
|v|

(v) 6 |v|
∣∣∣T v
|v|

∣∣∣ |v| 6 C |v|2

valid for all v ∈ V \ {0}, which, combined with the Poincaré inequality 2.1, implies
the equivalence of the norms ‖·‖ and |·|.
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5. Uniqueness-related results

5.1. The SST-generalized stationary Navier-Stokes
equations

This section contains uniqueness and non-uniqueness results for the SST-generalized
stationary Navier-Stokes equations.

5.1.1. Uniqueness

The following result is well-known for the special case of the Navier-Stokes SST
space and can for example be found in [Tem84, page 167, Theorem 1.3]. The proof
applies, as we will see, also in the general SST setting.

Theorem 22. Let V be an SST space with ct > 0 and f ∈ V ′ with norm

‖f‖V ′ < c−3
t .

Then the stationary Navier-Stokes equations 3.1, i. e. the weakly formulated equation

(v, v, ϕ) + ((v, ϕ)) = f (ϕ) (ϕ ∈ V ) ,

have at most one solution v ∈ V .

Proof. We first establish an a priori estimate on all solutions of equation 3.1. Let
v be such a solution. Choosing ϕ = v we obtain ‖v‖2 = f (v). From the estimate
|f (v)| 6 ‖f‖V ′ ‖v‖ we can now deduce the a priori estimate ‖v‖ 6 ‖f‖V ′ .
Suppose u and v are both solutions of equation 3.1. Then we obtain

0 = f (u− v)− f (u− v)
= (u, u, u− v) + ((u, u− v))− (v, v, u− v)− ((v, u− v))
= (u, v, u)− (v, v, u) + ‖u− v‖2

= (u− v, v, u− v) + ‖u− v‖2 .

From this we deduce

‖u− v‖2 6 c3
t ‖u− v‖

2 ‖v‖ .
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Chapter 5 Uniqueness-related results

If we now suppose that u and v are different, the a priori estimate and the assumption
that ‖f‖V ′ < c−3

t yield the contradiction
1 6 c3

t ‖f‖V ′ < 1.

5.1.2. Non-uniqueness

We can now ask the question whether or not uniqueness of solutions to the SST-
generalized stationary Navier-Stokes equations 3.1 can also be proved for larger
values of ‖f‖V ′ . This seems to be an open question in the special case of the Navier-
Stokes SST space according to [Tem84, page 168, Remark 1.1]. In this subsection
we show that there is no hope to prove uniqueness inside the SST setting if the
smallness assumptions on the data are too weak.
Conjecture 23. Let V be an SST space with ct > 0. Then there is a number
Nf > c−3

t such that for every f ∈ V ′ with ‖f‖V ′ = Nf , the stationary Navier-Stokes
equations 3.1 have at most one solution v ∈ V .

As the following theorem shows, Conjecture 23 is in general false. This means that
a proof for the special case of the Navier-Stokes SST space, if such exists, must
inevitably make use of more than only the properties of SST spaces.
Theorem 24. Conjecture 23 is false. There are counterexamples for all cp, ct > 0.

Proof. Let cp, ct > 0. Consider V = R2 with the scalar products ((u, v)) = u0v0+u1v1
and (u, v) = c2

p ((u, v)) and the trilinear form

(u, v, w) = c3
tu0 (v0w1 − v1w0) .

The only non-obvious property when checking that V is an SST space might be the
continuity of the trilinear form with respect to the Dirichlet norm. To show this
continuity, we essentially use the Cauchy-Schwarz-Bunyakovsky inequality in R2:

|(u, v, w)| 6 c3
t |u0| |((

(
v0

−v1

)
,

(
w1

w0

)
))|

6 c3
t

(
u2

0 + u2
1

) 1
2 |((

(
v0

−v1

)
,

(
w1

w0

)
))|

6 c3
t

(
u2

0 + u2
1

) 1
2
(
v2

0 + v2
1

) 1
2
(
w2

1 + w2
0

) 1
2 = c3

t ‖u‖ ‖v‖ ‖w‖ .

Let now Nf > c−3
t . Set f : V → R, v 7→ Nfv1. Then f ∈ V ′ with ‖f‖V ′ = Nf . A

short calculation shows that the vectors

u =
(

0
Nf

)
, v =

(
c−3
t (c3

tNf − 1)
1
2

c−3
t

)
, and w =

(
−c−3

t (c3
tNf − 1)

1
2

c−3
t

)
are three different solutions to equation 3.1 which contradicts the conjectured unique-
ness.
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5.2 Uniqueness for linear difference schemes

5.2. Uniqueness for linear difference schemes

It is well-known that the uniqueness of solutions to linear difference schemes can be
proven without smallness assumptions on the data in the case of the Navier-Stokes
SST space (see e. g. [GR79, page 171, Lemma 2.1]). The same is true for general
SST spaces:

Theorem 25. Let V be an SST space, g : V → R, w ∈ V , λ > 0, η ∈ R, and
µ > 0. Then the weakly formulated equation

λ (v, ϕ) + η (w, v, ϕ) + µ ((v, ϕ)) = g (ϕ) (ϕ ∈ V )

has at most one solution v ∈ V .

Proof. Suppose that v, ṽ ∈ V are two solutions. Then

λ (v − ṽ, ϕ) + η (w, v − ṽ, ϕ) + µ ((v − ṽ, ϕ)) = 0

for all ϕ ∈ V . Choosing ϕ = v − ṽ yields

λ |v − ṽ|2 + µ ‖v − ṽ‖2 = 0.

The assumptions λ > 0 and µ > 0 imply v = ṽ.

Theorem 25 applies to all linear schemes:

Theorem 26. Let V be an SST space. Then each of

• the explicit Euler scheme 3.2,

• the almost explicit Euler scheme 3.3,

• the almost implicit Euler scheme 3.4,

• the linear Crank-Nicolson scheme 3.7, and

• the first substep 3.9 and the last substep 3.11 of the fractional step theta scheme

have at most one solution vk ∈ V (resp. vk−1+ϑ ∈ V ) for given force fk ∈ V ′ (resp.
fk−1+ϑ ∈ V ′), previous approximation vk−1 ∈ V (resp. vk−ϑ ∈ V ), step size h > 0,
and parameters 0 < ϑ < 1

2 and 1
2 < α < 1.

Proof. Theorem 25 applies to

• the explicit Euler scheme 3.2 setting λ = 1
h
, η = µ = 0, and

g (ϕ) = fk (ϕ) + 1
h

(
vk−1, ϕ

)
−
(
vk−1, vk−1, ϕ

)
−
((
vk−1, ϕ

))
,
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• the almost explicit Euler scheme 3.3 setting λ = 1
h
, η = 0, µ = 1, and

g (ϕ) = fk (ϕ) + 1
h

(
vk−1, ϕ

)
−
(
vk−1, vk−1, ϕ

)

• the almost implicit Euler scheme 3.4 setting λ = 1
h
, η = µ = 1, w = vk−1, and

g (ϕ) = fk (ϕ) + 1
h

(
vk−1, ϕ

)
,

• the linear Crank-Nicolson scheme 3.7 setting λ = 1
h
, η = µ = 1

2 , w = vk−1, and

g (ϕ) = fk (ϕ) + 1
h

(
vk−1, ϕ

)
− 1

2
(
vk−1, vk−1, ϕ

)
− 1

2
((
vk−1, ϕ

))
,

• the first substep 3.9 of the fractional step theta scheme setting λ = 1
ϑh
, η = 0,

µ = α, and

g (ϕ) = fk−1+ϑ (ϕ) + 1
ϑh

(
vk−1, ϕ

)
−
(
vk−1, vk−1, ϕ

)
− (1− α)

((
vk−1, ϕ

))
,

and

• the last substep 3.11 of the fractional step theta scheme setting λ = 1
ϑh
, η = 0,

µ = α, and

g (ϕ) = fk (ϕ) + 1
ϑh

(
vk−ϑ, ϕ

)
−
(
vk−ϑ, vk−ϑ, ϕ

)
− (1− α)

((
vk−ϑ, ϕ

))
.

5.3. Nonlinear difference schemes

In this section we consider uniqueness questions in the context of nonlinear difference
schemes. If the underlying SST space’s norms ‖·‖ and |·| are equivalent – which is the
case if spatial discretizations of the Navier-Stokes SST space are used – the choice
of a small step size in time is sufficient for uniqueness as noted in [HR90, page 366]
for the case of the product Crank-Nicolson scheme. However, in the case of the
spatially continuous Navier-Stokes SST space, where the Dirichlet norm can not be
controlled by the L2 norm, establishing uniqueness for nonlinear difference schemes
under smallness assumptions on the step size alone is either impossible or can only
be achieved by means of properties that are not available in general SST spaces, see
the Theorems 39 and 41 and their transfer to other nonlinear schemes below. The
implicit Euler scheme 3.5 seems to be the simplest scheme where both uniqueness
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5.3 Nonlinear difference schemes

and non-uniqueness phenomena can be observed. As we study uniqueness questions
in a single time step, it is convenient to use the superscript-free notation

1
h

(v − w,ϕ) + (v, v, ϕ) + ((v, ϕ)) = f (ϕ) (ϕ ∈ V ) (5.1)

for the implicit Euler scheme 3.5, where h > 0 is the step size, w ∈ V the previous
approximation, v ∈ V the searched-for approximation (noted respectively by vk−1

and vk when using the customary index notation), and f ∈ V ′ the evaluation of
the force. The results obtained for the implicit Euler scheme 5.1 are subsequently
transferred to more complex schemes.

5.3.1. Uniqueness

Lemma 27. Let V be an SST space with ct > 0, let h > 0, w ∈ V , and f ∈ V ′.
Suppose that all solutions v ∈ V of the implicit Euler scheme 5.1 satisfy the a priori
estimate

‖v‖ 6 c−3
t . (5.2)

Then the scheme has at most one solution.

Proof. Suppose u and v are two solutions to scheme 5.1. Then we have

0 = f (u− v)− f (u− v)

= 1
h

(u− w, u− v) + (u, u, u− v) + ((u, u− v))

− 1
h

(v − w, u− v)− (v, v, u− v)− ((v, u− v))

= 1
h
|u− v|2 + (u, v, u)− (v, v, u) + ‖u− v‖2

= 1
h
|u− v|2 + (u− v, v, u− v) + ‖u− v‖2 .

This implies

1
h
|u− v|2 + ‖u− v‖2 6 c3

t ‖u− v‖
2 ‖v‖ .

With a priori estimate 5.2 we obtain

1
h
|u− v|2 + ‖u− v‖2 6 ‖u− v‖2 ,

which implies u = v.

In the proofs of Theorem 29 and Theorem 30 we use the following lemma.
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Lemma 28. Let V be an SST space, h > 0, w ∈ V , and f ∈ H ′. Then every
solution v ∈ V of the implicit Euler scheme 5.1 satisfies

(
1− c3

t ‖w‖
) (
‖v‖2 + ‖v − w‖2

)
6 ‖w‖2 + h

2 |f |
2 .

Proof. Let v ∈ V be a solution of scheme 5.1. Testing with ϕ = 2 (v − w) and using
the identity 2 ((v, v − w)) = ‖v‖2 − ‖w‖2 + ‖v − w‖2 we obtain

2
h
|v − w|2 + 2 (v, v, v − w) + ‖v‖2 − ‖w‖2 + ‖v − w‖2 = 2f (v − w) .

We use Young’s inequality A.4 in both the estimation of the right hand side

|2f (v − w)| 6 2 |f | |v − w| 6 h

2 |f |
2 + 2

h
|v − w|2

and the trilinear term

|2 (v, v, v − w)| = |2 (v, v, w)| = |2 (v, v − w,w)|
6 2c3

t ‖v‖ ‖v − w‖ ‖w‖
6 c3

t ‖w‖
(
‖v‖2 + ‖v − w‖2

)
.

All in all we obtain

‖v‖2 + ‖v − w‖2 6 ‖w‖2 + h

2 |f |
2 + c3

t ‖w‖
(
‖v‖2 + ‖v − w‖2

)
,

which simplifies to the claimed inequality.

The following theorems supply sufficient conditions on the data h, w, and f for a
priori estimate 5.2 to be satisfied.

Theorem 29. Let V be an SST space with ct > 0, let h > 0, w ∈ V , and f ∈ H ′
such that

‖w‖ 6 1
2c
−3
t

and

h |f |2 6 1
2c
−6
t .

Then the implicit Euler scheme 5.1 has at most one solution v ∈ V .

Remark. No matter how large |f | is, the smallness assumption h |f |2 6 1
2c
−6
t can

always be satisfied by choosing a small step size h. Unfortunately this is not the
case for the smallness assumption ‖w‖ 6 1

2c
−3
t . We will see in sec. 5.3.2 that this

difficulty can not in general be overcome in SST spaces.
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5.3 Nonlinear difference schemes

Proof. We prove the theorem by establishing a priori estimate 5.2. Suppose v ∈ V
is a solution of the implicit Euler scheme 5.1. Due to Lemma 28 we have

(
1− c3

t ‖w‖
) (
‖v‖2 + ‖v − w‖2

)
6 ‖w‖2 + h

2 |f |
2 .

The smallness assumptions ‖w‖ 6 1
2c
−3
t and h |f |2 6 1

2c
−6
t imply

1
2
(
‖v‖2 + ‖v − w‖2

)
6 ‖w‖2 + h

2 |f |
2

6
1
4c
−6
t + 1

4c
−6
t = 1

2c
−6
t

and therefore ‖v‖ 6 c−3
t , i. e. a priori estimate 5.2. Now Lemma 27 applies.

At the price of having a more technical proof, the following theorem improves
Theorem 29 to the extent that the smallness assumption on the previous approxi-
mation w is less restrictive.

Theorem 30. Let V be an SST space with ct > 0, let w ∈ V with norm

‖w‖ < 1
2
(
3−
√

3
)
c−3
t , (5.3)

and f ∈ H ′. Then the smallness assumption

h |f |2 6
(
1− c3

t ‖w‖
) (

3c−6
t − 2 ‖w‖2

)
− 2 ‖w‖2 (5.4)

can always be satisfied by choosing a sufficiently small step size h > 0. If both 5.3
and 5.4 hold, the implicit Euler scheme 5.1 has at most one solution v ∈ V .

Proof. A straight forward estimation using exclusively smallness assumption 5.3
shows that the upper bound in smallness assumption 5.4 is positive. Therefore a
sufficiently small step size h > 0 can be found no matter how large |f | is. This shows
the first claim of the theorem. To show uniqueness we proceed by establishing a
priori estimate 5.2. Let v ∈ V be a solution of scheme 5.1. Due to Lemma 28 we
have

(
1− c3

t ‖w‖
) (
‖v‖2 + ‖v − w‖2

)
6 ‖w‖2 + h

2 |f |
2 .

The first parenthesis (1− c3
t ‖w‖) is positive because c3

t ‖w‖ < 1
2

(
3−
√

3
)
< 1. The

second parenthesis
(
‖v‖2 + ‖v − w‖2

)
can, because of

1
2 ‖v‖

2 = 1
2 ‖(v − w) + w‖2 6 ‖v − w‖2 + ‖w‖2 ,
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be estimated from below by
(

3
2 ‖v‖

2 − ‖w‖2
)
. This leads to

3
2 ‖v‖

2 6 ‖w‖2 +
(
1− c3

t ‖w‖
)−1

(
‖w‖2 + h

2 |f |
2
)
.

Bearing in mind that (1− c3
t ‖w‖) is positive and using smallness assumption 5.4,

we obtain

‖v‖2 6
2
3 ‖w‖

2 + 2
3
(
1− c3

t ‖w‖
)−1

(
‖w‖2 + 1

2
((

1− c3
t ‖w‖

) (
3c−6
t − 2 ‖w‖2

)
− 2 ‖w‖2

))
= 2

3 ‖w‖
2 + 2

3
(
1− c3

t ‖w‖
)−1 1

2
(
1− c3

t ‖w‖
) (

3c−6
t − 2 ‖w‖2

)
= 2

3 ‖w‖
2 + 1

3
(
3c−6
t − 2 ‖w‖2

)
= c−6

t .

A priori estimate 5.2 holds, Lemma 27 applies, and there is at most one solution.

Theorems 29 and 30 assume that f ∈ H. In what follows we establish uniqueness
results for the more general case f ∈ V ′. The following lemma serves in the proofs
of the Theorems 32 and 33.

Lemma 31. Let V be an SST space, h > 0, w ∈ V , f ∈ V ′, and 0 < λ < 1. Then
every solution v ∈ V of the implicit Euler scheme 5.1 satisfies

2
h
|v − w|2 +

(
1− λ− 1

2 c3
t ‖w‖

) (
‖v‖2 + λ ‖v − w‖2

)
6 ‖w‖2 + (1− λ)−1 ‖f‖2

V ′ .

Proof. Let v ∈ V be a solution of scheme 5.1 and let 0 < λ < 1. Testing with
ϕ = 2 (v − w) and using the identity 2 ((v, v − w)) = ‖v‖2 − ‖w‖2 + ‖v − w‖2 we
obtain

2
h
|v − w|2 + 2 (v, v, v − w) + ‖v‖2 − ‖w‖2 + ‖v − w‖2 = 2f (v − w) .

We use Young’s inequality A.4 in both the estimation of the right hand side

|2f (v − w)| 6 2 ‖f‖V ′ ‖v − w‖ 6 (1− λ)−1 ‖f‖2
V ′ + (1− λ) ‖v − w‖2

and the trilinear term

|2 (v, v, v − w)| = |2 (v, v, w)| = |2 (v, v − w,w)|
6 2c3

t ‖v‖ ‖v − w‖ ‖w‖
6 c3

t ‖w‖
(
λ−

1
2 ‖v‖2 + λ

1
2 ‖v − w‖2

)
= λ−

1
2 c3
t ‖w‖

(
‖v‖2 + λ ‖v − w‖2

)
.
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All in all we obtain
2
h
|v − w|2 + ‖v‖2 − ‖w‖2 + ‖v − w‖2

6 (1− λ)−1 ‖f‖2
V ′ + (1− λ) ‖v − w‖2 + λ−

1
2 c3
t ‖w‖

(
‖v‖2 + λ ‖v − w‖2

)
,

which first simplifies to

2
h
|v − w|2 +

(
‖v‖2 + λ ‖v − w‖2

)
6 ‖w‖2 + (1− λ)−1 ‖f‖2

V ′ + λ−
1
2 c3
t ‖w‖

(
‖v‖2 + λ ‖v − w‖2

)
and then to the claimed inequality.

Theorem 32. Let V be an SST space with ct > 0, let h > 0, w ∈ V , and f ∈ V ′
such that

‖w‖ 6 1
3c
−3
t

and

‖f‖V ′ 6
1
6
√

6c−3
t .

Then the implicit Euler scheme 5.1 has at most one solution v ∈ V .

Remark. In contrast to the Theorems 29 and 30, arbitrary large norms of f can
not be compensated by small step sizes h here.

Proof. Like before the proof is based on Lemma 27. Suppose v ∈ V is a solution of
the implicit Euler scheme 5.1. Lemma 31 with λ = 1

4 yields

(
1− 2c3

t ‖w‖
)(
‖v‖2 + 1

4 ‖v − w‖
2
)
6 ‖w‖2 + 4

3 ‖f‖
2
V ′ .

The smallness assumptions ‖w‖ 6 1
3c
−3
t and ‖f‖V ′ 6 1

6

√
6c−3
t imply

1
3

(
‖v‖2 + 1

4 ‖v − w‖
2
)
6 ‖w‖2 + 4

3 ‖f‖
2
V ′

6
1
9c
−6
t + 2

9c
−6
t = 1

3c
−6
t

and therefore ‖v‖ 6 c−3
t , i. e. a priori estimate 5.2. Now Lemma 27 applies.

The smallness assumptions on ‖w‖ as well as on ‖f‖V ′ in the following theorem are
superior to those in Theorem 32. Therefore the only reason to prefer Theorem 32
to Theorem 33 is that it has a shorter proof.
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Theorem 33. Let V be an SST space with ct > 0, let h > 0, w ∈ V , and f ∈ V ′
such that

‖w‖ 6 2
5c
−3
t

and

‖f‖V ′ 6
13
45
√

2c−3
t .

Then the implicit Euler scheme 5.1 has at most one solution v ∈ V .

Proof. So as to establish an a priori estimate, let v ∈ V be a solution of scheme 5.1.
Lemma 31 with λ = 4

9 implies(
1− 3

2c
3
t ‖w‖

)(
‖v‖2 + 4

9 ‖v − w‖
2
)
6 ‖w‖2 + 9

5 ‖f‖
2
V ′ .

Due to the inequality 1
2 ‖v‖

2 = 1
2 ‖(v − w) + w‖2 6 ‖v − w‖2 + ‖w‖2 we have(

1− 3
2c

3
t ‖w‖

)(11
9 ‖v‖

2 − 4
9 ‖w‖

2
)
6 ‖w‖2 + 9

5 ‖f‖
2
V ′ .

The assumption ‖w‖ 6 2
5c
−3
t ensures that the first parenthesis is bounded from

below by 2
5 , thus

11
9 ‖v‖

2 − 4
9 ‖w‖

2 6
5
2 ‖w‖

2 + 9
2 ‖f‖

2
V ′ .

Finally the assumption ‖f‖V ′ 6 13
45

√
2c−3
t yields ‖v‖2 6 c−6

t , and Lemma 27 implies
the claimed uniqueness.

In what follows, some of the uniqueness results obtained for the implicit Euler
scheme 5.1 are transferred to the other nonlinear schemes. To begin with we transfer
Theorem 30 to the product Crank-Nicolson scheme:

Theorem 34. Let V be an SST space with ct > 0, let w ∈ V with norm

‖w‖ < 1
2
(
3−
√

3
)
c−3
t , (5.5)

and f ∈ H ′. Then the smallness assumption

h |f |2 6 2
(
1− c3

t ‖w‖
) (

3c−6
t − 2 ‖w‖2

)
− 4 ‖w‖2 (5.6)

can always be satisfied by choosing a sufficiently small step size h > 0. If both 5.5
and 5.6 hold, the product Crank-Nicolson scheme 3.8 in superscript-free notation

1
h

(v − w,ϕ) + 1
4 (w + v, w + v, ϕ) + 1

2 ((w + v, ϕ)) = f (ϕ) (ϕ ∈ V )

has at most one solution v ∈ V .
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5.3 Nonlinear difference schemes

Proof. As the upper bounds in the smallness assumptions 5.4 and 5.6 differ only
by a factor of two, the existence of a sufficiently small step size h > 0 as stated in
Theorem 34 follows from Theorem 30.
In order to prove the claimed uniqueness, suppose that the assumptions of Theo-
rem 34 are satisfied and that there are two different solutions v0 and v1 to the
product Crank-Nicolson scheme in superscript-free notation with step size h and
data w, f . The calculation

2
h

(1
2
(
w + vj

)
− w,ϕ

)
+
(1

2
(
w + vj

)
,
1
2
(
w + vj

)
, ϕ
)

+
((1

2
(
w + vj

)
, ϕ
))

= 1
h

(
vj − w,ϕ

)
+ 1

4
(
w + vj, w + vj, ϕ

)
+ 1

2
((
w + vj, ϕ

))
= f (ϕ)

valid for both j ∈ {0, 1} shows that 1
2 (w + v0) and 1

2 (w + v1) are two different
solutions to the implicit Euler scheme 5.1 with step size 1

2h and data w, f . This
contradicts the fact that the step size 1

2h and the data w, f satisfy the assumptions
of Theorem 30.

Next we transfer Theorem 33 to the sum Crank-Nicolson scheme:

Theorem 35. Let V be an SST space with ct > 0, let h > 0, w ∈ V , and f ∈ V ′
such that

2 ‖f‖V ′ + c3
t ‖w‖

2 + ‖w‖ 6 2
5c
−3
t . (5.7)

Then the sum Crank-Nicolson scheme 3.6 in superscript-free notation

1
h

(v − w,ϕ) + 1
2 (w,w, ϕ) + 1

2 (v, v, ϕ) + 1
2 ((w + v, ϕ)) = f (ϕ) (ϕ ∈ V )

has at most one solution v ∈ V .

Proof. Suppose that the assumptions of Theorem 35 are satisfied and that v0 and
v1 are two different solutions to the sum Crank-Nicolson scheme in superscript-free
notation with step size h and data w, f . The linear form

g : V → R, ϕ 7→ 2f (ϕ)− (w,w, ϕ)− ((w,ϕ))

is an element of V ′ with norm

‖g‖V ′ 6 2 ‖f‖V ′ + c3
t ‖w‖

2 + ‖w‖

due to the continuity of the trilinear form and the Cauchy-Schwarz-Bunyakovsky
inequality. Now smallness assumption 5.7 and the fact that 2

5 < 13
45

√
2 yield that

g satisfies the smallness assumption on the force in Theorem 33. Aside from that,
smallness assumption 5.7 also implies that w satisfies the smallness assumption on
the previous approximation in Theorem 33. Therefore the implicit Euler scheme 5.1
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with data w, g has at most one solution regardless of the step size. This is in
contradiction to the calculation

2
h

(
vj − w,ϕ

)
+
(
vj, vj, ϕ

)
+
((
vj, ϕ

))
= 2

(1
h

(
vj − w,ϕ

)
+ 1

2 (w,w, ϕ) + 1
2
(
vj, vj, ϕ

)
+ 1

2
((
w + vj, ϕ

)))
− (w,w, ϕ)− ((w,ϕ))

= 2f (ϕ)− (w,w, ϕ)− ((w,ϕ)) = g (ϕ)

valid for both j ∈ {0, 1} that shows that v0 and v1 are two different solutions to the
implicit Euler scheme 5.1 with step size 1

2h and data w, g.

Finally we transfer Theorem 33 also to the middle time step 3.10 of the fractional
step theta scheme:

Theorem 36. Let V be an SST space with ct > 0, let 0 < ϑ < 1
2 ,

1
2 < α < 1, h > 0,

w ∈ V , and f ∈ V ′ such that

(1− α)−2 (‖f‖V ′ + α ‖w‖) 6 2
5c
−3
t . (5.8)

Then the middle time step 3.10 of the fractional step theta scheme in superscript-free
notation

1
(1− 2ϑ)h (v − w,ϕ) + (v, v, ϕ) + ((αw + (1− α) v, ϕ)) = f (ϕ) (ϕ ∈ V )

has at most one solution v ∈ V .

Proof. Suppose that v0 and v1 are two different solutions to the middle time step 3.10
in superscript-free notation with step size h and data w, f , even though the assump-
tions of Theorem 36 are satisfied. The Cauchy-Schwarz-Bunyakovsky inequality im-
plies that the linear form

g : V → R, ϕ 7→ (1− α)−2 (f (ϕ)− α ((w,ϕ)))

is an element of V ′ with norm

‖g‖V ′ 6 (1− α)−2 (‖f‖V ′ + α ‖w‖) .

As a consequence of smallness assumption 5.8, g satisfies ‖g‖V ′ 6 2
5c
−3
t . Like in

the proof of Theorem 35, the fact that 2
5 <

13
45

√
2 now implies that g satisfies the

smallness assumption on the force from Theorem 33. Furthermore, α > 1
2 and

smallness assumption 5.8 allow for the estimation∥∥∥(1− α)−1w
∥∥∥ 6 α

(1− α)2 ‖w‖ 6
2
5c
−3
t
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5.3 Nonlinear difference schemes

which states that (1− α)−1w satisfies the smallness assumption on the previous
approximation from Theorem 33. Therefore the implicit Euler scheme 5.1 with data
(1− α)−1w and g has at most one solution no matter what step size is chosen. But
the calculation

1
(1− α) (1− 2ϑ)h

(
(1− α)−1 vj − (1− α)−1w,ϕ

)
+
(
(1− α)−1 vj, (1− α)−1 vj, ϕ

)
+
((

(1− α)−1 vj, ϕ
))

= 1
(1− α)2

[
1

(1− 2ϑ)h
(
vj − w,ϕ

)
+
(
vj, vj, ϕ

)
+
((
αw + (1− α) vj, ϕ

))
− α ((w,ϕ))

]
= (1− α)−2 (f (ϕ)− α ((w,ϕ))) = g (ϕ)

valid for both j ∈ {0, 1} shows that (1− α)−1 v0 and (1− α)−1 v1 are two different
solutions to the implicit Euler scheme 5.1 with step size (1− α) (1− 2ϑ)h and data
(1− α)−1w and g.

5.3.2. Non-uniqueness

The uniqueness results established in sec. 5.3.1 raise the question to what extent the
smallness assumptions can be relaxed without losing uniqueness. In what follows
we show that there is no hope to prove uniqueness for the implicit Euler scheme 5.1
inside the SST setting if the smallness assumptions are too weak. Afterwards we
transfer the results to more complex schemes.

Lemma 37 (Weighted SST space on Z\{0}). Let cp > 0, ct > 0, and

δ, λ : Z\ {0} → R>0

with δ > λ. Then

V :=

v : Z\ {0} → R;
∑
i6=0
|δivi|2 <∞

 ,

((u, v)) :=
∑
i6=0

δ2
i uivi (u, v ∈ V ) ,

(u, v) := c2
p

∑
i6=0

λ2
iuivi (u, v ∈ V ) ,
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and

(u, v, w) := c3
t

∑
n>1

δ2
nδ−nun (vnw−n − v−nwn) (u, v, w ∈ V )

defines an SST space.

Proof. The counting measure weighted with δ makes Z\ {0} a measure space. V
is the space of square integrable functions with respect to this measure and ((·, ·))
is the associated scalar product. Hence V is a vector space and the series in the
definition of ((u, v)) converges absolutely for all u, v ∈ V . The absolute convergence
of the series in the definition of (u, v) and the validity of the Poincaré inequality
are a consequence of the assumption δ > λ. The observation that (u, v, v) = 0 for
all u, v ∈ V is immediate. The continuity of the trilinear form and the absolute
convergence of the series in its definition result from the estimation

|(u, v, w)| 6 c3
t

∑
n>1
|δnun| (|δnvnδ−nw−n|+ |δ−nv−nδnwn|)

6 c3
t ‖u‖

∑
n>1

(|δnvnδ−nw−n|+ |δ−nv−nδnwn|)

6 c3
t ‖u‖

∑
n>1

(
|δnvn|2 + |δ−nv−n|2

) 1
2
(
|δ−nw−n|2 + |δnwn|2

) 1
2

6 c3
t ‖u‖

∑
n>1

(
|δnvn|2 + |δ−nv−n|2

) 1
2
∑
n>1

(
|δ−nw−n|2 + |δnwn|2

) 1
2

= c3
t ‖u‖ ‖v‖ ‖w‖ ,

where the last two inequalities are the Cauchy-Schwarz-Bunyakovsky inequality in
R2 and `2 (N>0), respectively.
Conjecture 38. Let V be an SST space with ct > 0. Then there are numbers
Nw > c−3

t , Nf > 0, and h0 > 0 such that for every w ∈ V with ‖w‖ = Nw, f ∈ V ′
with ‖f‖V ′ = Nf , and 0 < h 6 h0, the implicit Euler scheme 5.1 has at most one
solution v ∈ V .

The following theorem shows that Conjecture 38 is in general false. Of course this
doesn’t admit the conclusion that it is false for the special case of the Navier-Stokes
SST space. But it shows that if there exists a proof of Conjecture 38 for the special
case of the Navier-Stokes SST space, such a proof would have to use techniques
beyond those available in SST spaces.
Theorem 39. Conjecture 38 is false. There are counterexamples for all cp, ct > 0.

Proof. Let cp, ct > 0. Consider the weighted SST space on Z\ {0} from Lemma 37
with weights δn = n, δ−n = λn = λ−n = 1 (n ∈ N>0), i. e.

V =

v : Z\ {0} → R;
∑
n>1

(
|nvn|2 + |v−n|2

)
<∞


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5.3 Nonlinear difference schemes

with

((u, v)) =
∑
n>1

(
n2unvn + u−nv−n

)
,

(u, v) = c2
p

∑
i6=0

uivi,

and

(u, v, w) = c3
t

∑
n>1

n2un (vnw−n − v−nwn)

for all u, v, w ∈ V . Under the reductio assumption that Conjecture 38 holds, there
are numbers Nw > c−3

t , Nf > 0, and h0 > 0 such that for every w ∈ V with
‖w‖ = Nw, every f ∈ V ′ with ‖f‖V ′ = Nf , and every 0 < h 6 h0, the implicit Euler
scheme 5.1 has at most one solution v ∈ V . It is now, because of Nw > c−3

t , possible
to choose a step size h > 0 with

h < min
{
h0, c

2
p

(
c3
tNw − 1

)}
and after that a number m ∈ N>0 with

m2 >
c2
p

(
1 + 1

h
c2
p

)
c2
p (c3

tNw − 1)− h.

Setting

wi := δi,−mNw (i ∈ Z\ {0})

(δ with two indices denotes the Kronecker delta and not the weight δ) and

f : V → R, ϕ 7→ Nfϕ−m

defines w ∈ V and f ∈ V ′ with ‖w‖ = Nw and ‖f‖V ′ = Nf . The proof proceeds
with the specification of three different solutions to the implicit Euler scheme 5.1.
The choice of h and m ensures that the radicand in the definition of

π0 := 0,

π1 := h−
1
2 c−3
t m−2

√(
hc3

tNf + c2
p (c3

tNw − 1)− h
)
m2 − c2

p

(
1 + 1

h
c2
p

)
, and

π2 := −π1

is positive. For every j ∈ {0, 1, 2} let

νj :=
(

1 + 1
h
c2
p

)−1 (
Nf + 1

h
c2
pNw − c3

tm
2π2

j

)
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and with this

vji := δi,mπj + δi,−mνj (i ∈ Z\ {0}) .

The elements v0, v1, and v2 hereby defined are solutions to the implicit Euler
scheme 5.1 because for every j ∈ {0, 1, 2} and every ϕ ∈ V

1
h

(
vj − w,ϕ

)
+
(
vj, vj, ϕ

)
+
((
vj, ϕ

))
= 1
h
c2
p

∑
i6=0

(
vji − wi

)
ϕi + c3

t

∑
n>1

n2vjn
(
vjnϕ−n − v

j
−nϕn

)
+
∑
n>1

(
n2vjnϕn + vj−nϕ−n

)
= 1

h
c2
pπjϕm − c3

tm
2πjνjϕm +m2πjϕm︸ ︷︷ ︸

=: Φm

+ 1
h
c2
p (νj −Nw)ϕ−m + c3

tm
2π2

jϕ−m + νjϕ−m︸ ︷︷ ︸
=: Φ−m

,

Φm =
(

1
h
c2
pπj − c3

tm
2πj

(
1 + 1

h
c2
p

)−1 (
Nf + 1

h
c2
pNw − c3

tm
2π2

j

)
+m2πj

)
ϕm

= πj

(
1 + 1

h
c2
p

)−1 ((
1 + 1

h
c2
p

) 1
h
c2
p − c3

tm
2
(
Nf + 1

h
c2
pNw − c3

tm
2π2

j

)

+
(

1 + 1
h
c2
p

)
m2
)
ϕm

= πj

(
1 + 1

h
c2
p

)−1 (1
h
c2
p

(
1 + 1

h
c2
p

)
−
(
c3
tNf + 1

h
c2
p

(
c3
tNw − 1

)
− 1

)
m2

+ c6
tm

4π2
j

)
ϕm

= 0,

and

Φ−m =
((1

h
c2
p + 1

)
νj −

1
h
c2
pNw + c3

tm
2π2

j

)
ϕ−m

=
((
Nf + 1

h
c2
pNw − c3

tm
2π2

j

)
− 1
h
c2
pNw + c3

tm
2π2

j

)
ϕ−m

= Nfϕ−m

= f (ϕ) .

The existence of three different solutions contradicts uniqueness.
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As Theorem 39 shows, uniqueness can be violated if the Dirichlet norm ‖·‖ of the
previous approximation w exceeds c−3

t . When it comes to the norm |·|, the situation
is even worse: Theorem 41 shows that uniqueness can be violated for arbitrary small
but non vanishing |w|.

Conjecture 40. Let V be an SST space with ct > 0. Then there are numbers
Nw > 0, Nf > 0, and h0 > 0 such that for every w ∈ V with |w| = Nw, f ∈ V ′

with ‖f‖V ′ = Nf , and 0 < h 6 h0, the implicit Euler scheme 5.1 has at most one
solution v ∈ V .

As the following theorem shows, Conjecture 40 is in general false.

Theorem 41. Conjecture 40 is false. There are counterexamples for all cp, ct > 0.

Proof. Let cp, ct > 0. Consider the weighted SST space on Z\ {0} from Lemma 37
with weights δn = 2n, δ−n = n, λn = λ−n = 1 (n ∈ N>0), i. e.

V =

v : Z\ {0} → R;
∑
n>1

(
|2nvn|2 + |nv−n|2

)
<∞


with

((u, v)) =
∑
n>1

(
4n2unvn + n2u−nv−n

)
,

(u, v) = c2
p

∑
i6=0

uivi,

and

(u, v, w) = c3
t

∑
n>1

4n3un (vnw−n − v−nwn)

for all u, v, w ∈ V . If Conjecture 40 were true, there would be numbers Nw > 0,
Nf > 0, and h0 > 0 such that for every w ∈ V with |w| = Nw, every f ∈ V ′

with ‖f‖V ′ = Nf , and every 0 < h 6 h0, scheme 5.1 would have at most one
solution v ∈ V . Under these assumptions a step size 0 < h 6 h0 satisfying both

h 6

(
1− 1√

2

)2

c2
p (5.9)

and

h 6
1
18c

2
pc

6
tN

2
w (5.10)
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can be chosen. Inequality 5.9 implies

h−
1
2 cp − (2h)−

1
2 cp = h−

1
2 cp

(
1− 1√

2

)
> 1.

Hence there is a number m ∈ N>0 with

(2h)−
1
2 cp < m 6 h−

1
2 cp. (5.11)

The previous approximation w ∈ V and force f ∈ V ′ defined by

wi := δi,−mNw (i ∈ Z\ {0})

(note that δ with two indices denotes the Kronecker delta and not the weight δ) and

f : V → R, ϕ 7→ Nfmϕ−m

satisfy |w| = Nw and ‖f‖V ′ = Nf . The number

B := c3
tm

2hNf + c2
p

(
c3
tmNw − 1

)
− hm2 (5.12)

satisfies B > c2
p which can be seen using first the nonnegativity of Nf , then both

inequalities 5.11, and after that inequality 5.10 as follows:

B > c2
p

(
c3
tmNw − 1

)
− hm2

> c2
p

(
c3
t (2h)−

1
2 cpNw − 1

)
− c2

p

> c2
p.

The positivity of the number

P := 4hm2B − c2
p

(
c2
p + hm2

)
(5.13)

results from the inequalityB > c2
p established a moment ago and from inequality 5.11

as follows:

P > c2
p

(
3hm2 − c2

p

)
>

1
2c

4
p.

Hence setting

π0 := 0,

π1 := 1
4h
−1c−3

t m−3
√
P , and

π2 := −π1
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defines three different numbers. For every j ∈ {0, 1, 2} set

νj :=
(
c2
p + hm2

)−1 (
c2
pNw + hmNf − 4hc3

tm
3π2

j

)
.

The three elements v0, v1, and v2 defined by
vji := δi,mπj + δi,−mνj (i ∈ Z\ {0} , j ∈ {0, 1, 2})

are solutions to the implicit Euler scheme 5.1 because for every j ∈ {0, 1, 2} and
every ϕ ∈ V it holds

1
h

(
vj − w,ϕ

)
+
(
vj, vj, ϕ

)
+
((
vj, ϕ

))
= 1
h
c2
p

∑
i6=0

(
vji − wi

)
ϕi + 4c3

t

∑
n>1

n3vjn
(
vjnϕ−n − v

j
−nϕn

)
+
∑
n>1

(
4n2vjnϕn + n2vj−nϕ−n

)
= 1

h
c2
pπjϕm − 4c3

tm
3πjνjϕm + 4m2πjϕm︸ ︷︷ ︸

=: Φm

+ 1
h
c2
p (νj −Nw)ϕ−m + 4c3

tm
3π2

jϕ−m +m2νjϕ−m︸ ︷︷ ︸
=: Φ−m

with (using equations 5.12 and 5.13 in the last two lines)

Φm =
(1
h
c2
p − 4c3

tm
3
(
c2
p + hm2

)−1 (
c2
pNw + hmNf − 4hc3

tm
3π2

j

)
+ 4m2

)
πjϕm

=
(
c2
p + hm2

)−1
(1
h
c2
p

(
c2
p + hm2

)
− 4c3

tm
3
(
c2
pNw + hmNf − 4hc3

tm
3π2

j

)
+ 4m2

(
c2
p + hm2

) )
πjϕm

=
(
c2
p + hm2

)−1
(1
h
c2
p

(
c2
p + hm2

)
− 4m2

(
mc2

pc
3
tNw + hm2c3

tNf − c2
p − hm2

)
+ 16hc6

tm
6π2

j

)
πjϕm

=
(
c2
p + hm2

)−1
(1
h
c2
p

(
c2
p + hm2

)
− 4m2B + 16hc6

tm
6π2

j

)
πjϕm

=
(
c2
p + hm2

)−1
(
−1
h
P + 16hc6

tm
6π2

j

)
πjϕm = 0

and

Φ−m =
((1

h
c2
p +m2

)
νj −

1
h
c2
pNw + 4c3

tm
3π2

j

)
ϕ−m

=
(1
h

(
c2
pNw + hmNf − 4hc3

tm
3π2

j

)
− 1
h
c2
pNw + 4c3

tm
3π2

j

)
ϕ−m

= mNfϕ−m

= f (ϕ) .
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The existence of three different solutions contradicts uniqueness.

In what follows, Theorem 39 is transferred to the other nonlinear schemes. We begin
with the product Crank-Nicolson scheme:

Conjecture 42. Let V be an SST space with ct > 0. Then there are numbers
Nw > c−3

t , Nf > 0, and h0 > 0 such that for every w ∈ V with ‖w‖ = Nw, f ∈ V ′
with ‖f‖V ′ = Nf , and 0 < h 6 h0, the product Crank-Nicolson scheme 3.8 in
superscript-free notation

1
h

(v − w,ϕ) + 1
4 (w + v, w + v, ϕ) + 1

2 ((w + v, ϕ)) = f (ϕ) (ϕ ∈ V )

has at most one solution v ∈ V .

Theorem 43. Conjecture 42 is false. There are counterexamples for all cp, ct > 0.

Proof. Let cp, ct > 0. In consequence of Theorem 39 there is an SST space V that
is a counterexample to Conjecture 38. We prove that V is also a counterexample
to Conjecture 42. Let Nw > c−3

t , Nf > 0, and h0 > 0. As V is a counterexample
to Conjecture 38, there are w ∈ V with ‖w‖ = Nw, f ∈ V ′ with ‖f‖V ′ = Nf ,
0 < h 6 1

2h0, and two different solutions v0, v1 ∈ V to the implicit Euler scheme 5.1
with step size h and data w, f . Now 2v0−w and 2v1−w are two different solutions
to the product Crank-Nicolson scheme 3.8 in superscript-free notation with step size
2h 6 h0 and data w, f as the following calculation with j ∈ {0, 1} shows:

1
2h

((
2vj − w

)
− w,ϕ

)
+ 1

4
(
w +

(
2vj − w

)
, w +

(
2vj − w

)
, ϕ
)

+ 1
2
((
w +

(
2vj − w

)
, ϕ
))

= 1
h

(
vj − w,ϕ

)
+
(
vj, vj, ϕ

)
+
((
vj, ϕ

))
= f (ϕ) .

The existence of two different solutions contradicts uniqueness.

Next, we transfer Theorem 39 to the sum Crank-Nicolson scheme:

Conjecture 44. Let V be an SST space with ct > 0. Then there are numbers
Nw > c−3

t and h0 > 0 such that for every w ∈ V with ‖w‖ = Nw, f ∈ V ′ with
‖f‖V ′ 6

1
2c

3
tN

2
w + 1

2Nw, and 0 < h 6 h0, the sum Crank-Nicolson scheme 3.6 in
superscript-free notation

1
h

(v − w,ϕ) + 1
2 (w,w, ϕ) + 1

2 (v, v, ϕ) + 1
2 ((w + v, ϕ)) = f (ϕ) (ϕ ∈ V )

has at most one solution v ∈ V .

Theorem 45. Conjecture 44 is false. There are counterexamples for all cp, ct > 0.
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Proof. Let cp, ct > 0. By Theorem 39 there is an SST space V that is a counterex-
ample to Conjecture 38. We prove that V is also a counterexample to Conjecture 44.
Let Nw > c−3

t and h0 > 0. As V is a counterexample to Conjecture 38, there are
w ∈ V with ‖w‖ = Nw, f ∈ V ′ with ‖f‖V ′ = 0, 0 < h 6 1

2h0, and two different
solutions v0, v1 ∈ V to the implicit Euler scheme 5.1 with step size h and data w,
f . The linear functional

g : V → R, ϕ 7→ 1
2 (w,w, ϕ) + 1

2 ((w,ϕ))

is in V ′ with

‖g‖V ′ 6
1
2c

3
tN

2
w + 1

2Nw

because of the continuity of the trilinear form and the Cauchy-Schwarz-Bunyakovsky
inequality. As the following calculation with j ∈ {0, 1} shows, v0 and v1 are two
different solutions to the sum Crank-Nicolson scheme 3.6 in superscript-free notation
with step size 2h 6 h0 and data w, g:

1
2h

(
vj − w,ϕ

)
+ 1

2 (w,w, ϕ) + 1
2
(
vj, vj, ϕ

)
+ 1

2
((
w + vj, ϕ

))
= 1

2f (ϕ) + 1
2 (w,w, ϕ) + 1

2 ((w,ϕ)) = g (ϕ) .

The existence of two different solutions contradicts uniqueness.

Finally we transfer Theorem 39 to the middle time step of the fractional step theta
scheme as well:

Conjecture 46. Let V be an SST space with ct > 0, let 0 < ϑ < 1
2 , and

1
2 < α < 1.

Then there are numbers Nw > (1− α) c−3
t and h0 > 0 such that for every w ∈ V

with ‖w‖ = Nw, f ∈ V ′ with ‖f‖V ′ = αNw, and 0 < h 6 h0, the middle time
step 3.10 of the fractional step theta scheme in superscript-free notation

1
(1− 2ϑ)h (v − w,ϕ) + (v, v, ϕ) + ((αw + (1− α) v, ϕ)) = f (ϕ) (ϕ ∈ V )

has at most one solution v ∈ V .

Theorem 47. Conjecture 46 is false. There are counterexamples for all cp, ct > 0,
0 < ϑ < 1

2 , and
1
2 < α < 1.

Proof. Let cp, ct > 0, 0 < ϑ < 1
2 , and

1
2 < α < 1. Due to Theorem 39 there is an

SST space V that is a counterexample to Conjecture 38. We prove that V is also
a counterexample to Conjecture 46. Let Nw > (1− α) c−3

t and h0 > 0. As V is a
counterexample to Conjecture 38 and because of (1− α)−1 Nw > c−3

t , there are w ∈
V with ‖w‖ = (1− α)−1Nw, f ∈ V ′ with ‖f‖V ′ = 0, 0 < h 6 (1− α) (1− 2ϑ)h0,
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Chapter 5 Uniqueness-related results

and two different solutions v0, v1 ∈ V to the implicit Euler scheme 5.1 with step size
h and data w, f . The linear functional

g : V → R, ϕ 7→ α (1− α) ((w,ϕ))

is in V ′ with

‖g‖V ′ = α (1− α) ‖w‖ = αNw.

The calculation

(1− α) (1− 2ϑ)
(1− 2ϑ)h

(
(1− α) vj − (1− α)w,ϕ

)
+
(
(1− α) vj, (1− α) vj, ϕ

)
+
((
α (1− α)w + (1− α)2 vj, ϕ

))
= (1− α)2

[1
h

(
vj − w,ϕ

)
+
(
vj, vj, ϕ

)
+
((
vj, ϕ

))]
+ α (1− α) ((w,ϕ))

= (1− α)2 f (ϕ) + α (1− α) ((w,ϕ)) = g (ϕ)

valid for both j ∈ {0, 1} shows that (1− α) v0 and (1− α) v1 are two different solu-
tions to the middle time step 3.10 of the fractional step theta scheme in superscript-
free notation with step size (1− α)−1 (1− 2ϑ)−1 h 6 h0 and data (1− α)w and g
where ‖(1− α)w‖ = Nw and ‖g‖V ′ = αNw. The existence of two different solutions
contradicts uniqueness.
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6. Stability-related results

In the following definition, with “difference scheme” we mean the difference schemes
defined in chapter 3.

Definition 48 (V -stability). Let V be an SST space. A difference scheme is said
to be V -stable if for every S > 0 there is D > 0 such that for every step size h > 0,
every index n ∈ N>1, every initial value v0 ∈ V , and every sequence of evaluations
of the force f 1, f 2, . . . , fn ∈ V ′ (resp. fϑ, f 1−ϑ, f 1, f 1+ϑ, . . . , fn−ϑ, fn ∈ V ′ in the
case of the fractional step theta scheme 3.9-3.11) satisfying∣∣∣v0

∣∣∣2 +
n∑
k=1

h
∥∥∥fk∥∥∥2

V ′
6 D

(resp. |v0| + ∑n
k=1 ϑh

∥∥∥fk−1+ϑ
∥∥∥
V ′

+ (1− 2ϑ)h
∥∥∥fk−ϑ∥∥∥

V ′
+ ϑh

∥∥∥fk∥∥∥
V ′

6 D), every
sequence of solutions to the scheme v1, v2, . . . , vn ∈ V (resp. vϑ, v1−ϑ, v1, v1+ϑ, . . . ,
vn−ϑ, vn ∈ V ) satisfies

|vn|2 6 S.

The following sec. 6.1 treats difference schemes that are V -stable for every SST space
V , whereas sec. 6.2 treats schemes that lack this property.

6.1. Stable schemes

The stability results in this section are known for the special case of the Navier-
Stokes SST space [Tem84, page 336ff, Lemma 5.1 and 5.2]. It is shown in this
section that their proofs apply in general SST spaces as well.

6.1.1. The almost implicit and implicit Euler schemes

Theorem 49. Let V be an SST space. Then for every initial value v0 ∈ V , ev-
ery step size h > 0, every n ∈ N>1, every sequence of evaluations of the force
f 1, . . . , fn ∈ V ′, and every sequence v1, . . . , vn ∈ V that solves the almost implicit
Euler scheme 3.4 (resp. the implicit Euler scheme 3.5), the a priori estimate

|vn|2 +
n∑
k=1

∣∣∣vk − vk−1
∣∣∣2 +

n∑
k=1

h
∥∥∥vk∥∥∥2

6
∣∣∣v0
∣∣∣2 +

n∑
k=1

h
∥∥∥fk∥∥∥2

V ′
.
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Chapter 6 Stability-related results

holds. In particular the almost implicit and the implicit Euler schemes are V -stable
for every SST space V .

Proof. Suppose the assumptions of the theorem are satisfied. Then for every k ∈
{1, . . . , n}, using ϕ = 2hvk as a test function, the orthogonality relation yields(

vk − vk−1, 2vk
)

+ 2h
((
vk, vk

))
= 2hfk

(
vk
)

for the almost implicit Euler scheme as well as for the implicit Euler scheme. The
identity 2 (a− b, a) = |a|2 − |b|2 + |a− b|2 and Young’s inequality A.4 then yield

∣∣∣vk∣∣∣2 − ∣∣∣vk−1
∣∣∣2 +

∣∣∣vk − vk−1
∣∣∣2 + 2h

∥∥∥vk∥∥∥2

= 2hfk
(
vk
)
6 2h

∥∥∥fk∥∥∥
V ′

∥∥∥vk∥∥∥ = 2
(
h

1
2
∥∥∥fk∥∥∥

V ′

) (
h

1
2
∥∥∥vk∥∥∥)

6 h
∥∥∥fk∥∥∥2

V ′
+ h

∥∥∥vk∥∥∥2

which simplifies to
∣∣∣vk∣∣∣2 − ∣∣∣vk−1

∣∣∣2 +
∣∣∣vk − vk−1

∣∣∣2 + h
∥∥∥vk∥∥∥2

6 h
∥∥∥fk∥∥∥2

V ′
.

When adding these inequalities for all k ∈ {1, . . . , n}, telescopic canceling yields the
claimed a priori estimate.

6.1.2. The linear and product Crank-Nicolson schemes

Theorem 50. Let V be an SST space. Then for every initial value v0 ∈ V , ev-
ery step size h > 0, every n ∈ N>1, every sequence of evaluations of the force
f 1, . . . , fn ∈ V ′, and every sequence v1, . . . , vn ∈ V that solves the linear Crank-
Nicolson scheme 3.7 (resp. the product Crank-Nicolson scheme 3.8), the a priori
estimate

|vn|2 + 1
4

n∑
k=1

h
∥∥∥vk−1 + vk

∥∥∥2
6
∣∣∣v0
∣∣∣2 +

n∑
k=1

h
∥∥∥fk∥∥∥2

V ′
.

holds. In particular the linear and the product Crank-Nicolson schemes are V -stable
for every SST space V .

Proof. Let the assumptions of the theorem be satisfied. Using ϕ = h
(
vk−1 + vk

)
as

a test function in the k-th time step, the orthogonality relation yields

(
vk − vk−1, vk−1 + vk

)
+ 1

2h
((
vk−1 + vk, vk−1 + vk

))
= hfk

(
vk−1 + vk

)
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6.2 Non-stable schemes

for the linear Crank-Nicolson scheme as well as for the product Crank-Nicolson
scheme. The identity (a+ b, a− b) = |a|2 − |b|2 and Young’s inequality A.4 then
yield

∣∣∣vk∣∣∣2 − ∣∣∣vk−1
∣∣∣2 + 1

2h
∥∥∥vk−1 + vk

∥∥∥2

= hfk
(
vk−1 + vk

)
6 h

∥∥∥fk∥∥∥
V ′

∥∥∥vk−1 + vk
∥∥∥ = 2

(
h

1
2
∥∥∥fk∥∥∥

V ′

)(1
2h

1
2
∥∥∥vk−1 + vk

∥∥∥)
6 h

∥∥∥fk∥∥∥2

V ′
+ 1

4h
∥∥∥vk−1 + vk

∥∥∥2

which simplifies to
∣∣∣vk∣∣∣2 − ∣∣∣vk−1

∣∣∣2 + 1
4h

∥∥∥vk−1 + vk
∥∥∥2

6 h
∥∥∥fk∥∥∥2

V ′
.

When adding these inequalities for all k ∈ {1, . . . , n}, telescopic canceling yields the
claimed a priori estimate.

6.2. Non-stable schemes

It is proven in this section that the almost explicit Euler, the sum Crank-Nicolson,
and the fractional step theta schemes are not V -stable for a family of weighted SST
spaces on Z\ {0}. Of course, this does not necessarily prevent the said schemes from
beeing V -stable for the special case that V be the Navier-Stokes SST space.1 But
it shows that a proof of V -stability for the Navier-Stokes SST space, if such exists,
would have to rely on properties that are not available in general SST spaces.

6.2.1. The almost explicit Euler scheme

Theorem 51. For every cp, ct > 0 there is an SST space V such that for every
ε > 0, S ∈ R, and step size h > 0 there is an initial value v0 ∈ V with∣∣∣v0

∣∣∣ 6 ε

and a solution v1 to the first step of the almost explicit Euler scheme 3.3 with force
f 1 = 0 such that∣∣∣v1

∣∣∣ > S.

In particular the almost explicit Euler scheme is not V -stable.
1See Definition 15 for the Navier-Stokes SST space.
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Proof. Let cp, ct > 0. Consider the weighted SST space on Z\ {0} from Lemma 37
with weights δn = n, δ−n = λn = λ−n = 1 (n ∈ N>1), i. e.

V =

v : Z\ {0} → R;
∑
n>1

(
|nvn|2 + |v−n|2

)
<∞


with

((u, v)) =
∑
n>1

(
n2unvn + u−nv−n

)
,

(u, v) = c2
p

∑
i6=0

uivi,

and

(u, v, w) = c3
t

∑
n>1

n2un (vnw−n − v−nwn)

for all u, v, w ∈ V . Let ε > 0, S ∈ R, and h > 0. There is m ∈ N>1 with(1
h
c2
p + 1

)−1
c−1
p c3

tm
2ε2 > S.

As initial value choose v0 ∈ V defined by

v0
i = δimc

−1
p ε (i ∈ Z\ {0})

where δim denotes the Kronecker delta, not the weight δ. The chosen initial value
satisfies∣∣∣v0

∣∣∣ = ε.

Now define v1 ∈ V by setting

v1
i = δim

(1
h
c2
p +m2

)−1 1
h
cpε− δi,−m

(1
h
c2
p + 1

)−1
c−2
p c3

tm
2ε2 (i ∈ Z\ {0}) .

The calculation
1
h

(
v1 − v0, ϕ

)
+
(
v0, v0, ϕ

)
+
((
v1, ϕ

))
=
(1
h
c2
p

(
v1
m − c−1

p ε
)

+ 0 +m2v1
m

)
ϕm

+
(1
h
c2
p

(
v1
−m − 0

)
+ c3

tm
2c−2
p ε2 + v1

−m

)
ϕ−m

=
((1

h
c2
p +m2

)
v1
m −

1
h
cpε
)
ϕm +

((1
h
c2
p + 1

)
v1
−m + c−2

p c3
tm

2ε2
)
ϕ−m

= 0
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6.2 Non-stable schemes

valid for all ϕ ∈ V shows that v1 is a solution to the first step of the almost explicit
Euler scheme 3.3 with step size h > 0, initial value v0 and force f 1 = 0. Furthermore
v1 satisfies∣∣∣v1

∣∣∣ > cp
∣∣∣v1
−m

∣∣∣ =
(1
h
c2
p + 1

)−1
c−1
p c3

tm
2ε2 > S

due to the choice of m.

6.2.2. The sum Crank-Nicolson scheme

Theorem 52. For every cp, ct > 0 there is an SST space V such that for every
ε > 0, S ∈ R, and step size h > 0 there is an initial value v0 ∈ V with∣∣∣v0

∣∣∣ 6 ε

and a solution v1 to the first step of the sum Crank-Nicolson scheme 3.6 with force
f 1 = 0 such that∣∣∣v1

∣∣∣ > S.

In particular the sum Crank-Nicolson scheme is not V -stable.

Proof. Let cp, ct > 0. Consider the weighted SST space on Z\ {0} from Lemma 37
with weights δn = n, δ−n = λn = λ−n = 1 (n ∈ N>1), i. e. the same SST space as in
the proof of Theorem 51. Let ε > 0, S ∈ R, and h > 0. There is m ∈ N>1 with(1

h
c2
p + 1

2

)−1 1
2c
−1
p c3

tm
2ε2 > S.

As initial value choose v0 ∈ V defined by

v0
i = δimc

−1
p ε (i ∈ Z\ {0})

where δim denotes the Kronecker delta, not the weight δ. The chosen initial value
satisfies∣∣∣v0

∣∣∣ = ε.

There is a number π ∈ R such that

1
h
c2
p

(
π − v0

m

)
+ 1

2c
3
tm

2π
(1
h
c2
p + 1

2

)−1 1
2c

3
tm

2
((
v0
m

)2
+ π2

)
+ 1

2m
2
(
v0
m + π

)
= 0

because the expression is a third order polynomial in π. The element v1 ∈ V defined
by

v1
i = δimπ − δi,−m

(1
h
c2
p + 1

2

)−1 1
2c

3
tm

2
((
v0
m

)2
+ π2

)
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is a solution to the first step of the sum Crank-Nicolson scheme 3.6 with step size
h, initial value v0 and force f 1 = 0 because for every ϕ ∈ V

1
h

(
v1 − v0, ϕ

)
+ 1

2
(
v0, v0, ϕ

)
+ 1

2
(
v1, v1, ϕ

)
+ 1

2
((
v0 + v1, ϕ

))
=
(

1
h
c2
p

(
π − v0

m

)
+ 1

2c
3
tm

2π
(1
h
c2
p + 1

2

)−1 1
2c

3
tm

2
((
v0
m

)2
+ π2

)

+ 1
2m

2
(
v0
m + π

))
ϕm

+
(1
h
c2
p

(
v1
−m − 0

)
+ 1

2c
3
tm

2
((
v0
m

)2
+ π2

)
+ 1

2
(
0 + v1

−m

))
ϕ−m

=
((1

h
c2
p + 1

2

)
v1
−m + 1

2c
3
tm

2
((
v0
m

)2
+ π2

))
ϕ−m = 0.

The solution v1 ∈ V satisfies

∣∣∣v1
∣∣∣ = cp

((
v1
m

)2
+
(
v1
−m

)2
) 1

2
> cp

∣∣∣v1
−m

∣∣∣
= cp

(1
h
c2
p + 1

2

)−1 1
2c

3
tm

2
(
c−2
p ε2 + π2

)
>
(1
h
c2
p + 1

2

)−1 1
2c
−1
p c3

tm
2ε2 > S.

6.2.3. The fractional step theta scheme

Theorem 53. For every cp, ct > 0 there is an SST space V such that for every pair
of parameters 0 < ϑ < 1

2 ,
1
2 < α < 1, every ε > 0, S ∈ R, and step size

0 < h 6 c2
p,

there is an initial value v0 ∈ V with∣∣∣v0
∣∣∣ 6 ε

and there are solutions vϑ, v1−ϑ, and v1 to the first, the middle, and the last substep
3.9, 3.10, and 3.11 of the first step of the fractional step theta scheme with force
fϑ = f 1−ϑ = f 1 = 0 such that∣∣∣vϑ∣∣∣ > S,

∣∣∣v1−ϑ
∣∣∣ > S,

∣∣∣v1
∣∣∣ > S.

In particular the fractional step theta scheme is not V -stable.
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6.2 Non-stable schemes

Proof. Let cp, ct > 0. Consider the weighted SST space on Z\ {0} from Lemma 37
with weights δn = n, δ−n = λn = λ−n = 1 (n ∈ N>1), i. e. the same SST space as
in the proofs of Theorem 51 and Theorem 52. Let 0 < ϑ < 1

2 ,
1
2 < α < 1, ε > 0,

S ∈ R, and 0 < h 6 c2
p. The numbers

σ+ :=
( 1
ϑh
c2
p + α

)−1

and

τ+ :=
(

1
(1− 2ϑ)hc

2
p + (1− α)

)−1

are positive. The number

τ− := 1
(1− 2ϑ)hc

2
p − α

is positive due to the assumptions h 6 c2
p, ϑ > 0, and α < 1. The number

σ− := 1
ϑh
c2
p − (1− α)

is larger that 3
2 due to the assumptions h 6 c2

p, ϑ < 1
2 , and α > 1

2 . Hence there is
m ∈ N>1 such that

σ+c
−1
p c3

tm
2ε2 > S,

τ+τ−σ+c
−1
p c3

tm
2ε2 > S, and

σ2
+σ−τ+τ−c

−1
p c3

tm
2ε2 > S.

As initial value choose v0 ∈ V defined by

v0
i = δimc

−1
p ε (i ∈ Z\ {0})

where δim denotes the Kronecker delta, not the weight δ. The chosen initial value
satisfies∣∣∣v0

∣∣∣ = ε.

Now first define vϑ ∈ V by setting

vϑi = δim

( 1
ϑh
c2
p + αm2

)−1 ( 1
ϑh
c2
p − (1− α)m2

)
v0
m − δi,−mσ+c

−2
p c3

tm
2ε2.

The fact that

vϑ−m < 0 (6.1)
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will be used later. As for every ϕ ∈ V

1
ϑh

(
vϑ − v0, ϕ

)
+
(
v0, v0, ϕ

)
+
((

(1− α) v0 + αvϑ, ϕ
))

=
( 1
ϑh
c2
p

(
vϑm − v0

m

)
+ 0 + (1− α)m2v0

m + αm2vϑm

)
ϕm

+
( 1
ϑh
c2
p

(
vϑ−m − 0

)
+ c3

tm
2
(
v0
m

)2
+ 0 + αvϑ−m

)
ϕ−m

=
(( 1

ϑh
c2
p + αm2

)
vϑm −

( 1
ϑh
c2
p − (1− α)m2

)
v0
m

)
ϕm

+
( ( 1

ϑh
c2
p + α

)
︸ ︷︷ ︸

= σ−1
+

vϑ−m + c−2
p c3

tm
2ε2
)
ϕ−m

= 0,

vϑ is a solution to the first substep 3.9 of the first step of the fractional step theta
scheme with initial value v0 and force fϑ = 0. The norm of vϑ satisfies

∣∣∣vϑ∣∣∣ = cp

((
vϑm
)2

+
(
vϑ−m

)2
) 1

2
> cp

∣∣∣vϑ−m∣∣∣ = σ+c
−1
p c3

tm
2ε2 > S.

There is a number π ∈ R such that

1
(1− 2ϑ)hc

2
p

(
π − vϑm

)
−c3

tm
2πτ+

(
τ−v

ϑ
−m − c3

tm
2π2

)
+αm2vϑm+(1− α)m2π = 0

because the expression is a third order polynomial in π. Now define v1−ϑ ∈ V by
setting

v1−ϑ
i = δimπ + δi,−mτ+

(
τ−v

ϑ
−m − c3

tm
2π2

)
(i ∈ Z\ {0}) .

The fact that

v1−ϑ
−m < 0 (6.2)

is a consequence of 6.1 and will be used later. Inequality 6.1 is also used in the first
line of the estimation

∣∣∣v1−ϑ
−m

∣∣∣ = τ+
(
τ−
∣∣∣vϑ−m∣∣∣+ c3

tm
2π2

)
> τ+τ−

∣∣∣vϑ−m∣∣∣
= τ+τ−σ+c

−2
p c3

tm
2ε2. (6.3)
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Since for every ϕ ∈ V
1

(1− 2ϑ)h
(
v1−ϑ − vϑ, ϕ

)
+
(
v1−ϑ, v1−ϑ, ϕ

)
+
((
αvϑ + (1− α) v1−ϑ, ϕ

))
=

(
1

(1− 2ϑ)hc
2
p

(
π − vϑm

)
− c3

tm
2πv1−ϑ

−m + αm2vϑm + (1− α)m2π

)
︸ ︷︷ ︸

= 0 due to the choice of π

ϕm

+
(

1
(1− 2ϑ)hc

2
p

(
v1−ϑ
−m − vϑ−m

)
+ c3

tm
2π2 + αvϑ−m + (1− α) v1−ϑ

−m

)
ϕ−m

=
((

1
(1− 2ϑ)hc

2
p + (1− α)

)
v1−ϑ
−m −

(
1

(1− 2ϑ)hc
2
p − α

)
vϑ−m + c3

tm
2π2

)
ϕ−m

=
(
τ−1

+ v1−ϑ
−m − τ−vϑ−m + c3

tm
2π2

)
ϕ−m

= 0,

v1−ϑ is a solution of the middle substep 3.10 of the first step of the fractional step
theta scheme with previous approximation vϑ and force f 1−ϑ = 0. The norm of v1−ϑ

satisfies∣∣∣v1−ϑ
∣∣∣ = cp

((
v1−ϑ
m

)2
+
(
v1−ϑ
−m

)2
) 1

2
> cp

∣∣∣v1−ϑ
−m

∣∣∣
> τ+τ−σ+c

−1
p c3

tm
2ε2 > S,

where 6.3 was used in the second line. Finally define v1 ∈ V by setting

v1
i = δim

( 1
ϑh
c2
p + αm2

)−1 ( 1
ϑh
c2
p − (1− α)m2 + c3

tm
2v1−ϑ
−m

)
v1−ϑ
m

+ δi,−mσ+

(
σ−v

1−ϑ
−m − c3

tm
2
(
v1−ϑ
m

)2
)

(i ∈ Z\ {0}) .

Then v1 is a solution of the last substep 3.11 of the first step of the fractional step
theta scheme with previous approximation v1−ϑ and force f 1 = 0 because for every
ϕ ∈ V

1
ϑh

(
v1 − v1−ϑ, ϕ

)
+
(
v1−ϑ, v1−ϑ, ϕ

)
+
((

(1− α) v1−ϑ + αv1, ϕ
))

=
( 1
ϑh
c2
p

(
v1
m − v1−ϑ

m

)
− c3

tm
2v1−ϑ
m v1−ϑ

−m + (1− α)m2v1−ϑ
m + αm2v1

m

)
ϕm

+
( 1
ϑh
c2
p

(
v1
−m − v1−ϑ

−m

)
+ c3

tm
2
(
v1−ϑ
m

)2
+ (1− α) v1−ϑ

−m + αv1
−m

)
ϕ−m

=
(( 1

ϑh
c2
p + αm2

)
v1
m −

( 1
ϑh
c2
p − (1− α)m2 + c3

tm
2v1−ϑ
−m

)
v1−ϑ
m

)
ϕm

+
( ( 1

ϑh
c2
p + α

)
︸ ︷︷ ︸

= σ−1
+

v1
−m −

( 1
ϑh
c2
p − (1− α)

)
︸ ︷︷ ︸

= σ−

v1−ϑ
−m + c3

tm
2
(
v1−ϑ
m

)2
)
ϕ−m

= 0.
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Furthermore
∣∣∣v1
∣∣∣ = cp

((
v1
m

)2
+
(
v1
−m

)2
) 1

2
> cp

∣∣∣v1
−m

∣∣∣
= cpσ+

(
σ−
∣∣∣v1−ϑ
−m

∣∣∣+ c3
tm

2
(
v1−ϑ
m

)2
)
> cpσ+σ−

∣∣∣v1−ϑ
−m

∣∣∣
> cpσ+σ−τ+τ−σ+c

−2
p c3

tm
2ε2

= σ2
+σ−τ+τ−c

−1
p c3

tm
2ε2 > S,

where 6.2 was used in the second line and 6.3 in the third line.
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7. Convergence results

The convergence proofs for the almost implicit Euler and the product Crank-Nicolson
schemes in this chapter are valid for a class of SST spaces called SST∞ spaces defined
in Definition 54 below. The additionally required properties are related to Bochner
integrability and estimates involving a further norm |·|∞ that corresponds to the L∞
norm in the case of the Navier-Stokes SST space.1

Definition 54 (SST∞ space). Let V be an SST space that is a Hilbert space with
respect to the scalar product ((·, ·)). Let L∞ be a vector space over R such that
the vector space operations of V and L∞ coincide on the non-empty intersection
V ∩ L∞. Let |·|∞ be a norm on L∞ that makes L∞ a Banach space. Suppose that
there are numbers c∞, c∞V H , and cHV∞ such that for all u ∈ V ∩ L∞ and v, w ∈ V

|u| 6 c∞ |u|∞ ,
|(u, v, w)| 6 c∞V H |u|∞ ‖v‖ |w| , and
|(w, v, u)| 6 cHV∞ |w| ‖v‖ |u|∞ .

Then (V, ((·, ·)) , (·, ·) , (·, ·, ·) , L∞, |·|∞) is called an SST∞ space. We will also use the
short notation (V, L∞).

The following theorem is the reason why the convergence theorems 60 and 65 are
valid for the Navier-Stokes SST space in particular.

Theorem 55. The Navier-Stokes SST space from Definition 15 and the space
L∞ (G)3 of essentially bounded vector fields equipped with the norm

|u|∞ := |u|L∞ = ess sup
x∈G

max
j
|uj (x)| (u ∈ C)

form an SST∞ space.

Proof. It has been shown in sec. 2.2 that the Navier-Stokes SST space is an SST
space and in Theorem 20 that (V, ((·, ·))) is a Hilbert space. As V and L∞ (G)3

are function spaces on the same domain G, the vector space operations coincide on
their intersection. The identically zero function lies in both spaces. The norm |·|L∞

1For Bochner integrability see sec.A.2.
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Chapter 7 Convergence results

makes L∞ (G)3 a Banach space, see for example [AF03, page 29, Theorem 2.16]. Let
u ∈ V ∩ L∞ (G)3 and v, w ∈ V . The estimation

|u|2 =
∑
j

ˆ
G

|uj|2 6
∑
j

ˆ
G

|u|2∞ = 3λ (G) |u|2∞

shows that |u| 6 c∞ |u|∞ holds with c∞ = (3λ (G))
1
2 where λ (G) denotes the

Lebesgue measure of G. Hölder’s inequality from Lemma 11 is used with n = 3,
p =∞, q = r = 2, and s = 1 for the second inequality of the estimation

|(u, v, w)| 6 |(u · ∇v) · w|L1

6 3 1
2 |u|L∞ |∇v|L2 |w|L2

and with n = 3, p = q = 2, r = ∞, and s = 1 for the second inequality of the
estimation

|(u, v, w)| 6 |(u · ∇v) · w|L1

6 3 1
2 |u|L2 |∇v|L2 |w|L∞ .

This shows that |(u, v, w)| 6 c∞V H |u|∞ ‖v‖ |w| and |(w, v, u)| 6 cHV∞ |w| ‖v‖ |u|∞
hold with c∞V H = cHV∞ = 3 1

2 .

Definition 56 (SST-generalized nonstationary Navier-Stokes equations). Let V be
an SST space, T > 0, u0 ∈ V and f : [0, T ] → V ′. Then u : [0, T ] → V is called a
solution of the SST-generalized nonstationary Navier-Stokes equations with initial
value u0 and force f if u is differentiable (considered as a V ′-valued function via
the imbedding V ↪→ H ′ ⊂ V ′, see Definition 5) with respect to the norm ‖·‖V ′ , if
u (0) = u0, and if the weakly formulated equation

ut (ϕ) + (u, u, ϕ) + ((u, ϕ)) = f (ϕ) (ϕ ∈ V ) (7.1)

holds for every τ ∈ [0, T ].2

Remark 57 (Weak solution). Note that if V is the Navier-Stokes SST space from
sec. 2.2, the notion of solution defined above is related to the notion of weak solution
of the nonstationary Navier-Stokes equations as defined in [Tem84, page 280, Prob-
lem 3.1] as follows: If u0 ∈ V and f ∈ L2 (0, T, V ′), then u ∈ L2 (0, T, V ) is a solution
as defined in Definition 56 if and only if it is a weak solution of the nonstationary
Navier-Stokes equations.

In the following definition the term “difference scheme” means the difference schemes
defined in chapter 3.

2The argument of time-dependent functions is omitted so as not to overload the notation whenever
possible. For example, in Definition 56, ut stands for ut (τ) and u for u (τ) in the weakly
formulated equation but of course not in the equation u (0) = u0.
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7.1 The almost implicit Euler scheme

Definition 58 (Superscript notation, approximation error). Let V be an SST space,
T > 0, and let u : [0, T ] → V be a solution to the SST-generalized nonstationary
Navier-Stokes equations with initial value u0 ∈ V and force f : [0, T ] → V ′. Let
N ∈ N>1, h := T

N
, and let v0, v1, . . . , vN be a sequence of solutions to some difference

scheme with initial value v0 = u0 and some sequence of evaluations of the force
f 1, f 2, . . . , fN . Then for k ∈ {0, 1, . . . , N} the notations

uk := u (kh) and ukt := ut (kh)

are used to denote the values of the function u and its derivative ut at time τ = kh.
The corresponding notation is used for higher derivatives utt, uttt, . . . if they exist.
For k ∈ {0, 1, . . . , N} the notation

tk := kh

is used and

ek := vk − uk ∈ V

denotes the approximation error. Note that although the notations vk and uk are
identical, there is a fundamental difference: vk is the value of {0, 1, . . . , N} 3 i 7→ vi

at i = k and uk is the value of [0, T ] 3 τ 7→ u (τ) at τ = tk.

7.1. The almost implicit Euler scheme

This section contains a proof of the first order convergence of the approximations
of the almost implicit Euler scheme towards solutions of the SST-generalized non-
stationary Navier-Stokes equations provided the solutions are sufficiently regular.
More precisely the regularity assumptions on the solution in Theorem 60 below are3

u ∈ L∞ (0, T, L∞) and ut ∈ L2 (0, T, V ) . (7.2)

The following Theorem 59 specifies conditions on the data u0 and f that ensure the
existence of such a solution in the case of the Navier-Stokes SST space.

Theorem 59. Let V be the Navier-Stokes SST space from sec. 2.2 and suppose
G ⊂ R3 has a C4 boundary. Let u0 ∈ V ∩ H2 (G)3, T ′ > 0, f ∈ C ([0, T ′] , H),
and ft ∈ L2 (0, T ′, V ′). Then there is some 0 < T 6 T ′ such that the nonstationary
Navier-Stokes equations with initial value u0 and force f have one and only one
solution u ∈ C

(
[0, T ] , V ∩H2 (G)3

)
with ut ∈ L2 (0, T, V ) ∩ C ([0, T ] , H).4

3For the spaces Lp (0, T,G) and Ck ([0, T ] , G) see sec. A.2.
4Note that u ∈ C

(
[0, T ] , V ∩H2 (G)3

)
implies u ∈ C

(
[0, T ] , L∞ (G)3

)
due to the Sobolev

imbedding H2 (G) ↪→ CB (G) (see [AF03, page 85, Theorem 4.12 for n = k = 3, j = 0, m = 2,
p = 2 ]) and hence u ∈ L∞

(
0, T, L∞ (G)3

)
.
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Chapter 7 Convergence results

Proof. The result is obtained from [Tem82] as follows: Statement (3.8) on page 86
of [Tem82] implies the unique existence of a solution u ∈ C ([0, T ] , V ) for some
0 < T 6 T ′. The regularity assumptions of Theorem 3.1 for m = 2 on page 86 of
[Tem82] are satisfied. The compatibility condition−Au0−B (u0, u0)+f 0 ∈ H (state-
ment (3.11) on page 87 of [Tem82]) holds because Au0 ∈ H due to statement (1.13)
on page 75 of [Tem82], because B (u0, u0) ∈ H ∩ H1 (G)3 due to statement (3.5)
on page 86 of [Tem82], and because f 0 ∈ H. Therefore the sufficiency part of the
cited Theorem 3.1 yields u ∈ C

(
[0, T ] , V ∩H2 (G)3

)
with ut ∈ C ([0, T ] , H). The

property ut ∈ L2 (0, T, V ) is not part of the assertions of the cited Theorem 3.1 but
it is established in its proof [Tem82, page 88, statement (3.19)].

A proof of the first order convergence of the almost implicit Euler scheme for the non-
stationary linear Stokes equations can be found in [Var92, page 44, Theorem 3.2].5
It is based on energy methods and holds for solutions with regularity

u ∈ C
(
[0, T ] , V ∩H2 (G)3

)
and ut ∈ C ([0, T ] , H) ∩ L2

(
0, T,H1 (G)3

)
.

The same convergence order is proven for the case of the nonstationary Navier-Stokes
equations in [Rau95, page 1083, Theorem 2] with semigroup methods for solutions
with regularity

u ∈ C
(
[0, T ] , V ∩H2+2ζ (G)3

)
where ζ ∈

(
0, 1

4

)
and f = 0.6 When applied to the Navier-Stokes SST space,

Theorem 60 below assumes less regularity since already u ∈ C
(
[0, T ] , V ∩H2 (G)3

)
is sufficient for its regularity assumptions 7.2 to hold as a consequence of Theorem 59.
The first order convergence of the almost explicit Euler scheme for the nonstationary
Navier-Stokes equations is also proven in [GR79, page 179, Theorem 2.2] with energy
methods under the regularity assumptions

ut ∈ L2 (0, T, V ) and utt ∈ L2 (0, T, V ′) . (7.3)

The proof makes use of Hölder’s inequality with 1
3 + 1

2 + 1
6 = 1, the inequality

|·|2L3 6 |·|L6 |·|L2 , and Sobolev imbeddings for the estimation of the trilinear form
whereas the proof of Theorem 60 uses Hölder’s inequality with 1

2 + 1
2 + 1

∞ = 1 and
1
∞+ 1

2 + 1
2 = 1 for the estimation of the trilinear form. Every solution of regularity 7.3

satisfies the regularity assumptions 7.2 on the local time interval from Theorem 59 if
f ∈ C ([0, T ] , H) and ft ∈ L2 (0, T, V ′). This can be seen as follows: ut ∈ L2 (0, T, V )
and utt ∈ L2 (0, T, V ′) imply ut ∈ C ([0, T ] , H) [GR79, page 151, Theorem 1.1].
Hence u0

t ∈ H. As u0 is a solution of the stationary Navier-Stokes equations with
right hand side −u0

t + f 0 ∈ H, Theorem 3.6.1 on page 173 of [Soh01] yields u0 ∈
5In the linear case, there is in fact no difference between the almost explicit, the almost implicit
and the implicit Euler schemes since there is no nonlinear term.

6See [AF03, page 250] for fractional order Sobolev spaces Hs with noninteger s > 0.
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7.1 The almost implicit Euler scheme

V ∩H2 (G)3. Finally Theorem 59 applies and yields the asserted regularity. When
applied to the Navier-Stokes SST space, the following theorem asserts the first order
convergence of the almost implicit Euler scheme for the nonstationary Navier-Stokes
equations.
Theorem 60 (Convergence of Almost Implicit Euler). Let (V, L∞) be an SST∞
space, T > 0, and let u : [0, T ] → V ∩ L∞ be a solution of the SST-generalized
nonstationary Navier-Stokes equations 7.1 with initial value u0 ∈ V and force f ∈
L1 (0, T, V ′). Let N ∈ N>1, h := T

N
, and let v0, v1, . . . , vN be a sequence of solutions

to the almost implicit Euler scheme 3.4 with initial value v0 = u0 and evaluation of
the force defined by7

fk := 1
h

ˆ tk

tk−1

f dτ (k ∈ {1, 2, . . . , N}) .

Then, if u is of regularity 7.2, the approximation error satisfies

|en|2 +
n∑
k=1

∣∣∣ek − ek−1
∣∣∣2 + h

∥∥∥ek∥∥∥2

6 h2
(

4
(
c2
HV∞ + c2

∞V H

)
|u|2L∞(0,tn,L∞)

ˆ tn

0
|ut|2 dτ + 4

ˆ tn

0
‖ut‖2 dτ

)
exp

(
4c2
HV∞ |u|

2
L∞(0,tn,L∞) tn

)
for every n ∈ {1, 2, . . . , N}, i. e. the almost implicit Euler scheme is first order
convergent.

Proof. The values of all Bochner integrals in this proof don’t depend on whether
they are interpreted as to be defined with respect to the norm |·| or ‖·‖ because of
Lemma 73 from sec.A.2. For every τ ∈ [0, T ], due to ut ∈ V and the imbedding
V ↪→ H ′ ⊂ V ′ from Definition 5, the equation ut (ϕ) = (ut, ϕ) holds, where ut is
interpreted as an element of V ′ on the left and as an element of V on the right hand
side of the equation. Let 1 6 k 6 N . Then for every ϕ ∈ V the fact that vk−1, vk,
and fk solve the almost implicit Euler scheme 3.4, the fact that u and f solve the
Navier-Stokes equations 7.1, and the fundamental theorem of calculus 75 yieldˆ tk

tk−1

((
u− uk, ϕ

))
dτ

=
(
vk − vk−1, ϕ

)
+ h

(
vk−1, vk, ϕ

)
+ h

((
vk, ϕ

))
− hfk (ϕ)︸ ︷︷ ︸

= 0

− h
((
uk, ϕ

))
−
ˆ tk

tk−1

((ut, ϕ) + (u, u, ϕ)− f (ϕ)) dτ

=
(
ek − ek−1, ϕ

)
+
ˆ tk

tk−1

((
vk−1, vk, ϕ

)
− (u, u, ϕ)

)
dτ + h

((
ek, ϕ

))
.

7See sec. A.2 for the notion of Bochner integral.
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Choosing ϕ = 2ek as a test function and taking
(
ek − ek−1, 2ek

)
=
∣∣∣ek∣∣∣2 − ∣∣∣ek−1

∣∣∣2 +∣∣∣ek − ek−1
∣∣∣2 into account yields

∣∣∣ek∣∣∣2 − ∣∣∣ek−1
∣∣∣2 +

∣∣∣ek − ek−1
∣∣∣2 + 2h

∥∥∥ek∥∥∥2

= 2
ˆ tk

tk−1

(
u, u, ek

)
−
(
vk−1, vk, ek

)
dτ︸ ︷︷ ︸

=: Ikconvective

+ 2
ˆ tk

tk−1

((
u− uk, ek

))
dτ︸ ︷︷ ︸ .

=: Ikviscous

We split

Ikconvective = 2
ˆ tk

tk−1

(
u− uk−1, u, ek

)
dτ︸ ︷︷ ︸

=: Ikc1

+ 2
ˆ tk

tk−1

(
uk−1, u− uk, ek

)
dτ︸ ︷︷ ︸

=: Ikc2
+ 2h

(
uk−1 − vk−1, uk, ek

)
︸ ︷︷ ︸

=: Ikc3

+ 2h
(
vk−1, uk − vk, ek

)
︸ ︷︷ ︸ .

= −
(
vk−1, ek, ek

)
= 0

The following estimations are valid for every K ∈ N>0. The fundamental theorem of
calculus 75, Young’s inequality A.4, and the case r = 2 of the exponential triangle
inequality for integrals A.3 are used in the estimation

∣∣∣Ikc1∣∣∣ 6 2cHV∞
ˆ tk

tk−1

∣∣∣u− uk−1
∣∣∣ ∥∥∥ek∥∥∥ |u|∞ dτ

6 2cHV∞
ˆ tk

tk−1

∣∣∣∣∣
ˆ τ

tk−1

utdϑ

∣∣∣∣∣ dτ ∥∥∥ek∥∥∥ |u|L∞(0,tk,L∞)

6 2
(
cHV∞K

1
2h−

1
2 |u|L∞(0,tk,L∞)

ˆ tk

tk−1

ˆ τ

tk−1

|ut| dϑdτ
)(

K−
1
2h

1
2
∥∥∥ek∥∥∥)

6 c2
HV∞Kh

−1 |u|2L∞(0,tk,L∞)

(
h

ˆ tk

tk−1

|ut| dϑ
)2

+K−1h
∥∥∥ek∥∥∥2

6 c2
HV∞Kh

2 |u|2L∞(0,tk,L∞)

ˆ tk

tk−1

|ut|2 dτ +K−1h
∥∥∥ek∥∥∥2

,

the estimation∣∣∣Ikc2∣∣∣ 6 2c∞V H
ˆ tk

tk−1

∣∣∣uk−1
∣∣∣
∞

∥∥∥ek∥∥∥ ∣∣∣u− uk∣∣∣ dτ
6 2c∞V H |u|L∞(0,tk−1,L∞)

∥∥∥ek∥∥∥ˆ tk

tk−1

∣∣∣∣∣
ˆ tk

τ

utdϑ

∣∣∣∣∣ dτ
6 c2

∞V HKh
2 |u|2L∞(0,tk−1,L∞)

ˆ tk

tk−1

|ut|2 dτ +K−1h
∥∥∥ek∥∥∥2 (

as for Ikc1
)
,
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7.1 The almost implicit Euler scheme

the estimation∣∣∣Ikc3∣∣∣ 6 2hcHV∞
∣∣∣uk−1 − vk−1

∣∣∣ ∥∥∥ek∥∥∥ ∣∣∣uk∣∣∣
∞

6 2
(
cHV∞K

1
2h

1
2
∣∣∣ek−1

∣∣∣ |u|L∞(0,tk,L∞)

) (
K−

1
2h

1
2
∥∥∥ek∥∥∥)

6 c2
HV∞Kh |u|

2
L∞(0,tk,L∞)

∣∣∣ek−1
∣∣∣2 +K−1h

∥∥∥ek∥∥∥2
,

and the estimation
∣∣∣Ikviscous

∣∣∣ 6 2
ˆ tk

tk−1

∥∥∥u− uk∥∥∥ dτ ∥∥∥ek∥∥∥
= 2
ˆ tk

tk−1

∥∥∥∥∥
ˆ tk

τ

utdϑ

∥∥∥∥∥ dτ ∥∥∥ek∥∥∥
6 2

(
K

1
2h−

1
2

ˆ tk

tk−1

ˆ tk

tk−1

‖ut‖ dϑdτ
)(

K−
1
2h

1
2
∥∥∥ek∥∥∥)

6 Kh−1
(
h

ˆ tk

tk−1

‖ut‖ dϑ
)2

+K−1h
∥∥∥ek∥∥∥2

6 Kh2
ˆ tk

tk−1

‖ut‖2 dτ +K−1h
∥∥∥ek∥∥∥2

.

Setting K = 4 yields∣∣∣ek∣∣∣2︸ ︷︷ ︸−
=: αk

∣∣∣ek−1
∣∣∣2 +

∣∣∣ek − ek−1
∣∣∣2 + h

∥∥∥ek∥∥∥2

︸ ︷︷ ︸
=: bk

6 h2
(

4
(
c2
HV∞ + c2

∞V H

)
|u|2L∞(0,tk,L∞)

ˆ tk

tk−1

|ut|2 dτ + 4
ˆ tk

tk−1

‖ut‖2 dτ

)
︸ ︷︷ ︸

=: ck

+ 4c2
HV∞h |u|

2
L∞(0,tk,L∞)︸ ︷︷ ︸

=: dk

∣∣∣ek−1
∣∣∣2 .

Application of the following Lemma 61 proves the asserted error bound.

Lemma 61 (Discrete Grönwall for Almost Implicit Euler). Let N ∈ N>0, α0 = 0,
and αk, bk, ck, dk > 0 for k ∈ {1, 2, . . . , N}. If the inequality

αk − αk−1 + bk 6 ck + dkαk−1

is satisfied for every k ∈ {1, 2, . . . , N}, then for every n ∈ {1, 2, . . . , N} we have

αn +
n∑
k=1

bk 6

(
n∑
k=1

ck
)

exp
(

n∑
k=1

dk
)
.
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Proof. Telescopic canceling and α0 = 0 yield

αn +
n∑
k=1

bk 6
n∑
k=1

(
ck + dkαk−1

)
. (7.4)

The proof is complete if we prove that
n∑
k=1

(
ck + dkαk−1

)
6

(
n∑
k=1

ck
)

exp
(

n∑
k=1

dk
)
,

which can be accomplished by induction: The case n = 1 holds due to α0 = 0 and
d1 > 0. Inequality 7.4 is used for the first and the inductive hypothesis for the
second estimation of the inductive step

n+1∑
k=1

(
ck + dkαk−1

)

6

(
n∑
k=1

(
ck + dkαk−1

))
+ cn+1 + dn+1

n∑
k=1

(
ck + dkαk−1

)

6
(
1 + dn+1

)
︸ ︷︷ ︸

(∑n
k=1 c

k
)

6 exp (dn+1)

exp
(

n∑
k=1

dk
)

+ cn+1︸ ︷︷ ︸
6 cn+1 exp

(∑n+1
k=1 d

k
)

6

(
n+1∑
k=1

ck
)

exp
(
n+1∑
k=1

dk
)
.

The following uniqueness result is a corollary of Theorem 60. If applied to the
Navier-Stokes SST space, the corollary’s assertion is a special case of an already
known uniqueness result for the nonstationary Navier-Stokes equations [Tem84,
page 297, Theorem 3.4].

Corollary 62 (Uniqueness). Let (V, L∞) be an SST∞ space, T > 0, u0 ∈ V and
f ∈ L1 (0, T, V ′). Then there is at most one solution u : [0, T ] → V ∩ L∞ of
regularity 7.2 to the SST-generalized nonstationary Navier-Stokes equations 7.1 with
initial value u0 and force f .

Proof. Suppose r : [0, T ] → V ∩ L∞ and s : [0, T ] → V ∩ L∞ are two different
solutions of regularity 7.2 with initial value u0 and force f . Then there is ϑ ∈ (0, T ]
with |r (ϑ)− s (ϑ)| =: ε > 0 and thus a number N ∈ N>1 such that h := ϑ

N
is small

enough as to satisfy the inequality

ε2

4 > h2
(

4
(
c2
HV∞ + c2

∞V H

)
|u|2L∞(0,ϑ,L∞)

ˆ ϑ

0
|ut|2 dτ + 4

ˆ ϑ

0
‖ut‖2 dτ

)
exp

(
4c2
HV∞ |u|

2
L∞(0,ϑ,L∞) ϑ

)
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7.2 The product Crank-Nicolson scheme

for both u ∈ {r, s}. Theorem 19 implies that there is a sequence v0, v1, . . . , vN

of solutions to the almost implicit Euler scheme 3.4 with step size h, initial value
v0 = u0, and evaluation of the force defined as in Theorem 60. The solution r
with the sequence v0, v1, . . . , vN as well as the solution s with the same sequence
v0, v1, . . . , vN satisfy the assumptions of Theorem 60 on the time interval [0, ϑ].
Hence, due to the above choice of h > 0, the approximation errors satisfy

∣∣∣vN − r (ϑ)
∣∣∣2 < ε2

4 and
∣∣∣vN − s (ϑ)

∣∣∣2 < ε2

4 ,

which contradicts |r (ϑ)− s (ϑ)| = ε.

7.2. The product Crank-Nicolson scheme

In this section the approximations of the product Crank-Nicolson scheme are proven
to converge of second order towards solutions of the SST-generalized Navier-Stokes
equations under stronger regularity assumptions on the solutions than those used for
the almost implicit Euler scheme in the last section. More precisely the regularity
assumptions on the solutions are ut ∈ L2 (0, T, L∞) and utt ∈ L2 (0, T, V ).8 The
following Theorem 63 specifies conditions on the data u0 and f that ensure the
existence of such a solution in the case of the Navier-Stokes SST space.

Theorem 63. Let V be the Navier-Stokes SST space from sec. 2.2 and suppose G ⊂
R3 has a C6 boundary. Let u0 ∈ V ∩H4 (G)3, T ′ > 0, f ∈ C

(
[0, T ′] , H ′ ∩H2 (G)3

)
,

ft ∈ C ([0, T ′] , H ′), and ftt ∈ L2 (0, T ′, V ′). Moreover suppose that the initial value
and the force at time τ = 0 satisfy the compatibility condition

(a, ϕ) +
(
u0, u0, ϕ

)
+
((
u0, ϕ

))
= f 0 (ϕ) (ϕ ∈ V ) (7.5)

with some initial acceleration a ∈ V . Then there is some 0 < T 6 T ′ such that the
nonstationary Navier-Stokes equations with initial value u0 and force f have one and
only one solution u ∈ C

(
[0, T ] , V ∩H4 (G)3

)
with ut ∈ C

(
[0, T ] , H ′ ∩H2 (G)3

)
and utt ∈ L2 (0, T, V ) ∩ C ([0, T ] , H ′).9

Proof. The result is obtained from [Tem82] as follows: Like in the proof of Theo-
rem 59, statement (3.8) on page 86 of [Tem82] implies the unique existence of a
solution u ∈ C ([0, T ] , V ) for some 0 < T 6 T ′. The regularity assumptions of
Theorem 3.1 for m = 4 on page 86 of [Tem82] are satisfied. The compatibility

8For the spaces Lp (0, T,G) and Ck ([0, T ] , G) see sec. A.2.
9Note that ut ∈ C

(
[0, T ] , H ′ ∩H2 (G)3

)
implies ut ∈ C

(
[0, T ] , L∞ (G)3

)
due to the Sobolev

imbedding H2 (G) ↪→ CB (G) (see [AF03, page 85, Theorem 4.12 for n = k = 3, j = 0, m = 2,
p = 2 ]) and hence ut ∈ L2

(
0, T, L∞ (G)3

)
.
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condition on the first time derivative −Au0−B (u0, u0) + f 0 ∈ V (first line of state-
ment (3.11) on page 87 of [Tem82]) holds because it corresponds to compatibility
condition 7.5, where a = −Au0 − B (u0, u0) + f 0. Statement (1.13) on page 75
of [Tem82] yields Au0 ∈ H ∩ H2 (G)3 and statement (3.5) on page 86 of [Tem82]
yields B (u0, u0) ∈ H ∩ H3 (G)3. Since also f 0 ∈ H ∩ H2 (G)3, it follows that
a = −Au0 − B (u0, u0) + f 0 ∈ H ∩ H2 (G)3. The compatibility condition on the
second time derivative −Aa − B (a, u0) − B (u0, a) + f 0

t ∈ H (second line of state-
ment (3.11) on page 87 of [Tem82]) holds becauseAa ∈ H due to statement (1.13) on
page 75 of [Tem82], because B (a, u0) ∈ H∩H1 (G)3 and B (u0, a) ∈ H∩H1 (G)3 due
to statement (3.5) on page 86 of [Tem82], and because f 0

t ∈ H. Therefore the suf-
ficiency part of the cited Theorem 3.1 yields u ∈ C

(
[0, T ] , V ∩H4 (G)3

)
with ut ∈

C
(
[0, T ] , H ′ ∩H2 (G)3

)
and utt ∈ C ([0, T ] , H ′). The property utt ∈ L2 (0, T, V ) is

not part of the assertions of the cited Theorem 3.1 but it is established in its proof
[Tem82, page 88, statement (3.19)].

Remark 64. It is natural to ask whether nontrivial data u0 and f that satisfy the
compatibility condition 7.5 actually exist because otherwise Theorem 63 would be
pointless. The answer is yes: First of all for every f 0 ∈ V ′ and a ∈ V there is
at least one u0 ∈ V such that compatibility condition 7.5 is satisfied because of
Theorem 18 with g : V → R, ϕ 7→ f 0 (ϕ) − (a, ϕ), w = 0, λ = η = 0, and µ = 1.10

Under the additional assumptions that f 0 ∈ H2 (G)3 and a ∈ H2 (G)3 it can be
shown that every such u0 ∈ V satisfies u0 ∈ H4 (G)3, see e. g. [Soh01, page 173,
Theorem 3.6.1 for k = 2]. The idea to prescribe an initial acceleration a instead of
an initial velocity u0 also appears in [VZ13, pages 156-158].

The second order convergence of the Crank-Nicolson scheme for the nonstationary
linear Stokes equations is proven with energy methods for solutions with regularity
u ∈ C

(
[0, T ] , V ∩H4 (G)3

)
in [Var92, page 51, Theorem 4.3].11 A proof of the

second order convergence of a family of linearized two-step methods for the nonsta-
tionary Navier-Stokes equations can be found in [GR79, page 191, Theorem 3.1].
The second order convergence of the product Crank-Nicolson scheme for a spa-
tial discretization of the nonstationary Navier-Stokes equations is proven in [HR90,
page 367, Theorems 4.1 and 4.2]. To our knowledge, the second order convergence
of the product Crank-Nicolson scheme in the spatially continuous case where the
Dirichlet norm can not be controlled by the L2 norm has not been proven yet.

Theorem 65 (Convergence of Product Crank-Nicolson). Let (V, L∞) be an SST∞
space, T > 0, and let u : [0, T ] → V ∩ L∞ be a solution of the SST-generalized
nonstationary Navier-Stokes equations 7.1 with initial value u0 ∈ V and force f ∈
L1 (0, T, V ′). Let N ∈ N>1, h := T

N
, and let v0, v1, . . . , vN be a sequence of solutions

10It is shown in Theorem 20 that the Navier-Stokes SST space satisfies the assumptions of
Theorem 18.

11In the linear case, there is no difference between the sum, the linear and the product Crank-
Nicolson schemes.
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to the product Crank-Nicolson scheme 3.8 with initial value v0 = u0 and evaluation
of the force defined by12

fk := 1
h

ˆ tk

tk−1

f dτ (k ∈ {1, 2, . . . , N}) .

Moreover let

ut ∈ L2 (0, T, L∞) and utt ∈ L2 (0, T, V ) .

Then, if

h 6
1
4c
−2
HV∞ |u|

−2
L∞(0,T,L∞) , (7.6)

the approximation error satisfies

|en|2 + 1
4

n∑
k=1

h
∥∥∥ek−1 + ek

∥∥∥2

6 h4
(

2c2
HV∞ |ut|

2
L∞(0,tn,|·|)

ˆ tn

0
|ut|2∞ dτ

+ 8 (cHV∞ + c∞V H)2 |u|2L∞(0,tn,L∞)

ˆ tn

0
|utt|2 dτ

+ 8
ˆ tn

0
‖utt‖2 dτ

)
exp

(
8c2
HV∞ |u|

2
L∞(0,tn,L∞) tn

)

for every n ∈ {1, 2, . . . , N}, i. e. the product Crank-Nicolson scheme is convergent
of second order.

Proof. The values of all Bochner integrals in this proof don’t depend on whether
they are interpreted as to be defined with respect to the norm |·|, ‖·‖, or |·|∞
because of Lemma 74 from sec.A.2. The assumption that u be differentiable with
respect to |·|∞ implies that u ∈ C (0, T, L∞) which in turn implies u ∈ L∞ (0, T, L∞)
because [0, T ] is compact. The assumption that ut be differentiable with respect to
the Dirichlet norm ‖·‖ implies that u ∈ C1 (0, T, V ), which, again because of the

12See sec. A.2 for the notion of Bochner integral.
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compactness of [0, T ], implies ut ∈ L∞ (0, T, V ). Let 1 6 k 6 N . The representation

h−1
ˆ tk

tk−1

(
(tk − τ)

ˆ τ

tk−1

(ϑ− tk−1)uttdϑ+ (τ − tk−1)
ˆ tk

τ

(tk − ϑ)uttdϑ
)
dτ

= h−1
ˆ tk

tk−1

 (tk − τ) [ϑut − u− tk−1ut]τϑ=tk−1

+ (τ − tk−1) [tkut − ϑut + u]tkϑ=τ

dτ
= tku

k−1 − tk−1u
k + h−1

ˆ tk

tk−1

(
−hu− τuk−1 + τuk

)
dτ

=
ˆ tk

tk−1

(1
2
(
uk−1 + uk

)
− u

)
dτ

based on the fundamental theorem of calculus 75 yields the estimate (valid if |||·|||
stands either for the norm |·| or for the Dirichlet norm ‖·‖)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
ˆ tk

tk−1

(1
2
(
uk−1 + uk

)
− u

)
dτ

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

6 h−1
ˆ tk

tk−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣(tk − τ)

ˆ τ

tk−1

(ϑ− tk−1)uttdϑ
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

+
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣(τ − tk−1)

ˆ tk

τ

(tk − ϑ)uttdϑ
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
dτ

6
ˆ tk

tk−1

(ˆ τ

tk−1

|||(ϑ− tk−1)utt|||dϑ+
ˆ tk

τ

|||(tk − ϑ)utt|||dϑ
)
dτ

6 h

ˆ tk

tk−1

(ˆ τ

tk−1

|||utt|||dϑ+
ˆ tk

τ

|||utt|||dϑ
)
dτ

= h2
ˆ tk

tk−1

|||utt|||dτ. (7.7)

For every τ ∈ [0, T ], due to ut ∈ V and the imbedding V ↪→ H ′ ⊂ V ′ from
Definition 5, the equation ut (ϕ) = (ut, ϕ) holds, where ut is interpreted as an ele-
ment of V ′ on the left and as an element of V on the right hand side of the equation.
For every ϕ ∈ V the fact that vk−1, vk, and fk solve the product Crank-Nicolson
scheme 3.8, the fact that u and f solve the Navier-Stokes equations 7.1, and the
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fundamental theorem of calculus 75 yieldˆ tk

tk−1

((
u− 1

2
(
uk−1 + uk

)
, ϕ
))
dτ

=
(
vk− vk−1, ϕ

)
+ h

4
(
vk−1+ vk, vk−1+ vk, ϕ

)
+ h

2
((
vk−1+ vk, ϕ

))
− hfk (ϕ)︸ ︷︷ ︸

= 0

− h
((1

2
(
uk−1 + uk

)
, ϕ
))
−
ˆ tk

tk−1

((ut, ϕ) + (u, u, ϕ)− f (ϕ)) dτ

=
(
ek − ek−1, ϕ

)
+
ˆ tk

tk−1

(1
4
(
vk−1 + vk, vk−1 + vk, ϕ

)
− (u, u, ϕ)

)
dτ

+ h

2
((
ek−1 + ek, ϕ

))
.

Choosing ϕ = ek−1 + ek as a test function and taking
(
ek − ek−1, ek−1 + ek

)
=∣∣∣ek∣∣∣2 − ∣∣∣ek−1

∣∣∣2 into account yields∣∣∣ek∣∣∣2 − ∣∣∣ek−1
∣∣∣2 + 1

2h
∥∥∥ek−1 + ek

∥∥∥2

=
ˆ tk

tk−1

(
u, u, ek−1 + ek

)
− 1

4
(
vk−1 + vk, vk−1 + vk, ek−1 + ek

)
dτ︸ ︷︷ ︸

=: Ikconvective

+
ˆ tk

tk−1

((
u− 1

2
(
uk−1 + uk

)
, ek−1 + ek

))
dτ︸ ︷︷ ︸ .

=: Ikviscous

We split

Ikconvective =
ˆ tk

tk−1

(
u− 1

2
(
uk−1 + uk

)
, u, ek−1 + ek

)
dτ︸ ︷︷ ︸

=: Ikc1

+
ˆ tk

tk−1

(1
2
(
uk−1 + uk

)
, u− 1

2
(
uk−1 + uk

)
, ek−1 + ek

)
dτ︸ ︷︷ ︸

=: Ikc2

+ h
(1

2
(
uk−1 + uk

)
− 1

2
(
vk−1 + vk

)
,
1
2
(
uk−1 + uk

)
, ek−1 + ek

)
︸ ︷︷ ︸

= −h
(

1
2

(
ek−1 + ek

)
, 1

2

(
uk−1 + uk

)
, ek−1 + ek

)
=: Ikc3

+ h
(1

2
(
vk−1 + vk

)
,
1
2
(
uk−1 + uk

)
− 1

2
(
vk−1 + vk

)
, ek−1 + ek

)
︸ ︷︷ ︸

= −1
2

(
1
2

(
vk−1 + vk

)
, ek−1 + ek, ek−1 + ek

)
= 0
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and sub-split

Ikc1 =
ˆ tk

tk−1

(
u− 1

2
(
uk−1 + uk

)
, u− uk−1, ek−1 + ek

)
dτ︸ ︷︷ ︸

=: Ikc1.1

+
ˆ tk

tk−1

(
u− 1

2
(
uk−1 + uk

)
, uk−1, ek−1 + ek

)
dτ︸ ︷︷ ︸

=: Ikc1.2

.

The following estimations are valid for every K ∈ N>0. The fundamental theorem
of calculus 75, Young’s inequality A.4, the case r = 2 of the exponential triangle
inequality for integrals A.3, estimate 7.7, and inequality A.2 are used in the estima-
tions

∣∣∣Ikc1.1∣∣∣ 6 cHV∞

ˆ tk

tk−1

∣∣∣∣u− 1
2
(
uk−1 + uk

)∣∣∣∣ ∥∥∥ek−1 + ek
∥∥∥ ∣∣∣u− uk−1

∣∣∣
∞
dτ

= 2
(

1
2cHV∞K

1
2h−

1
2

ˆ tk

tk−1

∣∣∣∣∣12
(ˆ τ

tk−1

utdϑ−
ˆ tk

τ

utdϑ

)∣∣∣∣∣
∣∣∣∣∣
ˆ τ

tk−1

utdϑ

∣∣∣∣∣
∞
dτ

)
(
K−

1
2h

1
2
∥∥∥ek−1 + ek

∥∥∥)
6

1
4c

2
HV∞Kh

−1
(ˆ tk

tk−1

1
2

(ˆ τ

tk−1

|ut| dϑ+
ˆ tk

τ

|ut| dϑ
)ˆ τ

tk−1

|ut|∞ dϑdτ
)2

+K−1h
∥∥∥ek−1 + ek

∥∥∥2

6
1
16c

2
HV∞Kh

−1
(
h2 |ut|L∞(0,tk,|·|)

ˆ tk

tk−1

|ut|∞ dτ
)2

+K−1h
∥∥∥ek−1 + ek

∥∥∥2

6
1
16c

2
HV∞Kh

4 |ut|2L∞(0,tk,|·|)

ˆ tk

tk−1

|ut|2∞ dτ +K−1h
∥∥∥ek−1 + ek

∥∥∥2
,
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∣∣∣Ikc1.2∣∣∣+ ∣∣∣Ikc2∣∣∣
6 cHV∞

∣∣∣∣∣
ˆ tk

tk−1

(
u− 1

2
(
uk−1 + uk

))
dτ

∣∣∣∣∣ ∥∥∥ek−1 + ek
∥∥∥ ∣∣∣uk−1

∣∣∣
∞

+ c∞V H

∣∣∣∣12
(
uk−1 + uk

)∣∣∣∣
∞

∥∥∥ek−1 + ek
∥∥∥ ∣∣∣∣∣
ˆ tk

tk−1

(
u− 1

2
(
uk−1 + uk

))
dτ

∣∣∣∣∣
6 2

(
1
2K

1
2h−

1
2h2
ˆ tk

tk−1

|utt| dτ
(
cHV∞

∣∣∣uk−1
∣∣∣
∞

+ c∞V H

∣∣∣∣12
(
uk−1 + uk

)∣∣∣∣
∞

))
(
K−

1
2h

1
2
∥∥∥ek−1 + ek

∥∥∥)
6

1
4Kh

−1h4
(ˆ tk

tk−1

|utt| dτ
)2 (

(cHV∞ + c∞V H) |u|L∞(0,tk,L∞)

)2

+K−1h
∥∥∥ek−1 + ek

∥∥∥2

6
1
4 (cHV∞ + c∞V H)2Kh4 |u|2L∞(0,tk,L∞)

ˆ tk

tk−1

|utt|2 dτ +K−1h
∥∥∥ek−1 + ek

∥∥∥2
,

∣∣∣Ikc3∣∣∣ 6 1
2cHV∞h

∣∣∣ek−1 + ek
∣∣∣ ∥∥∥ek−1 + ek

∥∥∥ ∣∣∣∣12
(
uk−1 + uk

)∣∣∣∣
∞

= 2
(1

4cHV∞K
1
2h

1
2
∣∣∣ek−1 + ek

∣∣∣ ∣∣∣∣12
(
uk−1 + uk

)∣∣∣∣
∞

) (
K−

1
2h

1
2
∥∥∥ek−1 + ek

∥∥∥)
6

1
16c

2
HV∞Kh |u|

2
L∞(0,tk,L∞)

∣∣∣ek−1 + ek
∣∣∣2 +K−1h

∥∥∥ek−1 + ek
∥∥∥2

6
1
8c

2
HV∞Kh |u|

2
L∞(0,tk,L∞)

(∣∣∣ek−1
∣∣∣2 +

∣∣∣ek∣∣∣2)+K−1h
∥∥∥ek−1 + ek

∥∥∥2
,

and

∣∣∣Ikviscous

∣∣∣ 6 ∥∥∥∥∥
ˆ tk

tk−1

(
u− 1

2
(
uk−1 + uk

))
dτ

∥∥∥∥∥ ∥∥∥ek−1 + ek
∥∥∥

6 h2
ˆ tk

tk−1

‖utt‖ dτ
∥∥∥ek−1 + ek

∥∥∥
= 2

(
1
2K

1
2h

3
2

ˆ tk

tk−1

‖utt‖ dτ
)(

K−
1
2h

1
2
∥∥∥ek−1 + ek

∥∥∥)

6
1
4Kh

3
(ˆ tk

tk−1

‖utt‖ dτ
)2

+K−1h
∥∥∥ek−1 + ek

∥∥∥2

6
1
4Kh

4
ˆ tk

tk−1

‖utt‖2 dτ +K−1h
∥∥∥ek−1 + ek

∥∥∥2
.
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Setting K = 16 yields∣∣∣ek∣∣∣2︸ ︷︷ ︸−
=: αk

∣∣∣ek−1
∣∣∣2 + 1

4h
∥∥∥ek−1 + ek

∥∥∥2

︸ ︷︷ ︸
=: bk

6 h4
(
c2
HV∞ |ut|

2
L∞(0,tk,|·|)

ˆ tk

tk−1

|ut|2∞ dτ

+ 4 (cHV∞ + c∞V H)2 |u|2L∞(0,tk,L∞)

ˆ tk

tk−1

|utt|2 dτ

+4
ˆ tk

tk−1

‖utt‖2 dτ

)
︸ ︷︷ ︸

=: ck

+ 2c2
HV∞h |u|

2
L∞(0,tk,L∞)︸ ︷︷ ︸

=: dk

(∣∣∣ek−1
∣∣∣2 +

∣∣∣ek∣∣∣2) .

Since dk 6 1
2 due to smallness assumption 7.6, the following Lemma 66 is applicable

and yields the asserted error bound.

Lemma 66 (Discrete Grönwall for Product Crank-Nicolson). Let N ∈ N>0, α0 = 0,
and αk, bk, ck, dk > 0 for k ∈ {1, 2, . . . , N}. If the inequalities

αk − αk−1 + bk 6 ck + dk
(
αk−1 + αk

)
, (7.8)

dk 6
1
2 (7.9)

are satisfied for every k ∈ {1, 2, . . . , N}, then for every n ∈ {1, 2, . . . , N} we have

αn +
n∑
k=1

bk 6

(
2

n∑
k=1

ck
)

exp
(

4
n∑
k=1

dk
)
.

Proof. For every k ∈ {1, 2, . . . , N}

αk − αk−1 + bk = 1
1− dk

(
αk − αk−1 + bk − dkαk + dkαk−1 − dkbk

)
6

1
1− dk

(
ck + dk

(
αk−1 + αk

)
− dkαk + dkαk−1 − dkbk

)
6 2ck + 4dkαk−1,

where the first estimation is based on inequality 7.8 and the second on smallness
assumption 7.9. Telescopic canceling and α0 = 0 yield

αn +
n∑
k=1

bk 6
n∑
k=1

(
2ck + 4dkαk−1

)
. (7.10)
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The proof is complete if we prove that
n∑
k=1

(
2ck + 4dkαk−1

)
6

(
2

n∑
k=1

ck
)

exp
(

4
n∑
k=1

dk
)
,

which can be accomplished by induction: The case n = 1 holds due to α0 = 0 and
d1 > 0. Inequality 7.10 is used for the first and the inductive hypothesis for the
second estimation of the inductive step

n+1∑
k=1

(
2ck + 4dkαk−1

)

6

(
n∑
k=1

(
2ck + 4dkαk−1

))
+ 2cn+1 + 4dn+1

n∑
k=1

(
2ck + 4dkαk−1

)

6
(
1 + 4dn+1

)
︸ ︷︷ ︸

(
2∑n

k=1 c
k
)

6 exp (4dn+1)

exp
(

4
n∑
k=1

dk
)

+ 2 cn+1︸ ︷︷ ︸
6 cn+1 exp

(
4∑n+1

k=1 d
k
)

6

(
2
n+1∑
k=1

ck
)

exp
(

4
n+1∑
k=1

dk
)
.

Remark 67. Of course, Theorem 65 admits a uniqueness corollary analogous to
Corollary 62. But as the assumptions for the convergence of the product Crank-
Nicolson scheme are stronger than those for the almost implicit Euler scheme, this
corollary is a special case of Corollary 62 and therefore not stated.

73





A. Appendix

A.1. Inequalities

Lemma 68 (Exponential triangle inequality). Let n ∈ N>1, 1 6 r < ∞, and
x1, . . . , xn ∈ R. Then

|x1 + · · ·+ xn|r 6 nr−1 (|x1|r + · · ·+ |xn|r) . (A.1)

Proof. If r > 1, apply Hölder’s inequality in Rn with exponents (1− r−1)−1 and r
to the product of the two vectors (1)ni=1 and (xi)ni=1.

Remark 69. If (V, |·|) is a normed space, the inequality

|a+ b|2 6 2
(
|a|2 + |b|2

)
(A.2)

can be deduced from the above exponential triangle inequality A.1. But if |·| is
induced by a scalar product (·, ·), it can also be deduced from the identity

|a+ b|2 + |a− b|2 = 2
(
|a|2 + |b|2

)
.

Lemma 70 (Exponential triangle inequality for integrals). Let a < b, 1 6 r < ∞,
and f ∈ Lr (a, b). Then f ∈ L1 (a, b) and∣∣∣∣∣

ˆ b

a

f dτ

∣∣∣∣∣
r

6 (b− a)r−1
ˆ b

a

|f |r dτ. (A.3)

Proof. If r > 1, apply Hölder’s inequality on [a, b] with exponents (1− r−1)−1 and
r to the product of the two functions τ 7→ 1 and τ 7→ f (τ).

Lemma 71 (Young’s inequality). If a, b ∈ R, then

2 |ab| 6 |a|2 + |b|2 . (A.4)

Proof. Young’s inequality is a consequence of the identity

2 |ab|+ (|a| − |b|)2 = |a|2 + |b|2 .

75



Chapter A Appendix

A.2. Bochner integration

Definition 72 (Bochner integrability). Let a, b ∈ R with a < b and let (G, |·|) be a
Banach space. Then L1 (a, b,G, |·|) denotes the space of all functions u : [a, b]→ G
that are Bochner integrable with respect to the norm |·| and the Lebesgue measure
on [a, b].1 For u ∈ L1 (a, b,G, |·|),

ˆ |·|
[a,b]

u dt

denotes the Bochner integral with respect to the norm |·|. The shorter notations

L1 (a, b,G) and
ˆ b

a

u dt

are used if there is no doubt about which norm is meant or if the value of the integral
is the same for each norm in the particular context.

If a vector space is equipped with different norms there is a priori no reason why the
notions of Bochner integrability and Bochner integral with respect to the different
norms should coincide. The following two lemmas justify why it is possible to ignore
the role of the norm in Bochner integration under certain conditions.

Lemma 73. Let (G, |·|G) be a Banach space with a subspace F ⊂ G and |·|F a norm
on F such that (F, |·|F ) is a Banach space as well. Furthermore suppose that there
is C ∈ R such that for all x ∈ F

|x|G 6 C |x|F .

Let a, b ∈ R with a < b. Then L1 (a, b, F ) ⊂ L1 (a, b,G) and for every u ∈ L1 (a, b, F )

ˆ |·|G
[a,b]

u dt =
ˆ |·|F

[a,b]
u dt. (A.5)

Proof. Let u ∈ L1 (a, b, F ), i. e. let u be integrable with respect to |·|F . Then there
is a sequence (ϕj)j>0 of simple functions ϕj : [a, b]→ F that

1. is a Cauchy sequence with respect to the seminorm that maps every simple
function ϕ : [a, b]→ F to the number

ˆ b

a

|ϕ|F dt

and
1See [AE01, pages 87 and 90] for the notions of Bochner integrability and Bochner integral.
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A.2 Bochner integration

2. such that |ϕj (t)− u (t)|F
j→∞−−−→ 0 for almost every t ∈ [a, b].

The inequalities
ˆ b

a

|ϕi − ϕj|G dt 6 C

ˆ b

a

|ϕi − ϕj| dt

and |ϕj (t)− u (t)|G 6 C |ϕj (t)− u (t)|F show that the same is true with respect
to |·|G, i. e. u ∈ L1 (a, b,G). Therefore not only∣∣∣∣∣

ˆ b

a

ϕjdt−
ˆ |·|F

[a,b]
u dt

∣∣∣∣∣
F

j→∞−−−→ 0 (A.6)

but also∣∣∣∣∣
ˆ b

a

ϕjdt−
ˆ |·|G

[a,b]
u dt

∣∣∣∣∣
G

j→∞−−−→ 0

(note that the value of the integral of a simple function is a finite sum and hence
does not depend on the chosen norm). As A.6 implies∣∣∣∣∣

ˆ b

a

ϕjdt−
ˆ |·|F

[a,b]
u dt

∣∣∣∣∣
G

6 C

∣∣∣∣∣
ˆ b

a

ϕjdt−
ˆ |·|F

[a,b]
u dt

∣∣∣∣∣
F

j→∞−−−→ 0

and because limits in (G, |·|G) are unique, A.5 holds.

There is a similar result for the case of three norms:

Lemma 74. Let (H, |·|H) be a Banach space with two subspaces F,G ⊂ H, |·|F a
norm on F , and |·|G a norm on G such that (F, |·|F ) and (G, |·|G) are Banach spaces
as well. Suppose that there is C ∈ R such that for all x ∈ F and all y ∈ G

|x|H 6 C |x|F and |y|H 6 C |y|G .

Let a, b ∈ R with a < b and u ∈ L1 (a, b, F ) ∩ L1 (a, b,G). Then
ˆ |·|F

[a,b]
u dt =

ˆ |·|G
[a,b]

u dt.

Proof. Lemma 73 applied to each of the inclusions F ⊂ H and G ⊂ H yields
ˆ |·|F

[a,b]
u dt =

ˆ |·|H
[a,b]

u dt =
ˆ |·|G

[a,b]
u dt.
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The following is the fundamental theorem of calculus for Banach space valued func-
tions with Bochner integrable derivative.

Theorem 75 (Fundamental theorem of calculus). Let (G, |·|) be a Banach space,
a, b ∈ R with a < b and u : [a, b]→ G a function that is differentiable at each point
τ ∈ [a, b]. Suppose that the derivative ut : [a, b]→ G is Bochner integrable. Then

u (b)− u (a) =
ˆ b

a

ut dτ.

Proof. Set x = u (b)−u (a)−
´ b
a
ut dτ . The Hahn-Banach theorem (see e. g. [Rud73,

page 58, Corollary of Theorem 3.3]) implies the existence of a continuous linear
form T : G→ R with T (x) = |x|. Thus it is sufficient to show that T (x) = 0. Due
to Theorem 2.11(iii) in [AE01, page 92], the form T commutes with the Bochner
integral. Since T also commutes with derivation, it is sufficient to prove that

f (b)− f (a) =
ˆ b

a

ft dτ

where f := T ◦u. The fundamental theorem of calculus for real-valued differentiable
functions with Lebesgue integrable derivative, the proof of which can be found in
[Rud87, Satz 7.21, page 179], completes the proof.

Definition 76 (Bochner and Ck spaces). Let (G, |·|) be a Banach space, a, b ∈ R
with a < b, and k ∈ N. Then L2 (a, b,G, |·|) denotes the space of all functions
u ∈ L1 (a, b,G) with |u|2 ∈ L1 (a, b,R) equipped with the seminorm

|u|L2(a,b,G,|·|) :=
(ˆ b

a

|u|2 dt
) 1

2

,

L∞ (a, b,G, |·|) the space of all functions u ∈ L1 (a, b,G) such that |u| is essentially
bounded equipped with the seminorm

|u|L∞(a,b,G,|·|) := ess sup
t∈[a,b]

|u (t)| ,

and Ck (a, b,G, |·|) the space of all functions u : [a, b]→ G that are k times contin-
uously differentiable with respect to the norm |·|. The shorter notations

L2 (a, b,G) , L∞ (a, b,G) orL∞ (a, b, |·|) , andCk (a, b,G)

are used in contexts where it is clear which norm or space is meant.2

2Usually, L1-integrability is not required in the definition of L2 or L∞. But as [a, b] is of finite
measure, L2 ⊂ L1 and L∞ ⊂ L1 hold anyway. The benefit of requiring L1-integrability is that
Bochner measurability doesn’t have to be made a subject of discussion.
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Nomenclature

((·, ·)) Dirichlet scalar product

(·, ·) L2 scalar product

(·, ·, ·) trilinear form

‖·‖ Dirichlet norm

|·| L2 norm

κ parameter κ, see Lemma 13

u · ∇v convective term

V SST space

H ′ dual space w. r. t. |·|, see Definition 4

V ′ dual space w. r. t. ‖·‖, see Definition 4

C∞0,σ see Definition 6

ut, utt, . . . time derivatives of u, see Definition 56

∂t differential operator with respect to time

vk, uk superscript notation, see Definition 58
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