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Abstract

The theoretical model and underlying physics described in this thesis are about the

interaction of femtosecond-laser and XUV pulses with solids. The key to understand the

basics of such interaction is to study the structural response of the materials after laser

interaction. Depending on the laser characteristics, laser-solid interaction can result

in a wide range of structural responses such as solid-solid phase transitions, vacuum

phonon squeezing, ultrafast melting, generation of coherent phonons, etc. During my

research work, I have modeled the systems irradiated by low-, medium- and high-laser

intensities, and studied different types of structural dynamics of solids at various laser

fluences.

In the high fluence regime, I have studied warm dense matter [F. Cheenicode

Kabeer, E. S. Zijlstra, and M. E. Garcia, Phys. Rev. B 89, 100301(Rapid Commu-

nication) (2014); E. S. Zijlstra, F. Cheenicode Kabeer, B. Bauerhenne, T. Zier, N.

S. Grigoryan, and M. E. Garcia, Appl. Phys. A 110, 519 (2013)]. The changes in

the bonding properties of warm dense noble metals, in particular copper and silver,

are analyzed by performing electronic-temperature-dependent density functional the-

ory (DFT) calculations using the all-electron full-potential linearized augmented plane

wave code WIEN2k. I found that the extreme hardening of phonon modes shown by

noble metals in the warm dense regime cause their relaxation processes to be 3 to 6

times faster than the theoretically expected values. I also found that such a system

relaxes thermally (not nonthermally) into a plasma state.

Vacuum phonon squeezed states can be generated at intermediate laser intensities

depending upon the electron-phonon coupling and bonding properties of the systems

upon laser excitation [F. Cheenicode Kabeer, N. S. Grigoryan, E. S. Zijlstra, and M. E.

Garcia, Phys. Rev. B 90, 104303 (2014)]. I have computed the laser-excited potential

energy surfaces of noble metals, namely, copper and silver, by all-electron ab initio

theory and analyzed the resulting quantum lattice dynamics. The incoherent lattice

heating due to electron-phonon interactions are considered using the generalized two-

temperature model. I found phonon hardening, which I attribute to the excitation

of s electrons. I demonstrate that this may result in phonon vacuum squeezed states

with an optimal squeezing factor of ∼ 0.001 at the L-point longitudinal mode. This

finding implies that ultrafast laser-induced bond hardening may be used as a tool to

manipulate the quantum state of opaque materials, where, so far, the squeezing of

phonons below the zero-point motion has only been realized in transparent crystals

by a different mechanism. On the basis of my finding I further propose a method for

directly measuring bond hardening.
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I have studied the coherent phonon dynamics of antimony in the low fluence regime

from molecular dynamics simulations using our in-house DFT code ’Code for Highly-

excIted Valence Electron Systems (CHIVES)’. I have computed the A1g phonon mode

decay constant for the laser fluence leading to electronic temperature, Te = 3000 K

for supercells with N = 72, 144, and 192 atoms and I found that our results are in

perfect agreement with experimental data [T. K. Cheng et al., Appl. Phys. Lett, 59,

1923 (1991)]. I Have extended my studies about the A1g phonon mode decay using

the 72 atom supercell for different laser fluences (Te =1000, 2000, 3000, and 4000 K),

in order to analyze the temperature-dependent A1g phonon decay in antimony. The

decay channel(s) of the A1g mode are analyzed from phonon-phonon coupling.



Zusammenfassung

Das theoretische Modell und die zugrunde liegende Physik, welche in dieser Arbeit

beschrieben werden, befassen sich mit der Interaktion von Femtosekunden Laserpulsen

und XUV Pulsen mit Festkörpern. Der Schlüssel zum Verständnis der Grundlagen

solcher Interaktionen ist, sich mit der strukturellen Antwort von Materialien nach

der Laseranregung auseinanderzusetzen. Abhängig von der Charakteristik des Laser-

pulses können vielseitige strukturelle Antworten nach solchen Laseranregung auftreten,

z.B. solid-solid Phasenübergänge, vacuum phonon squeezing, ultrafast melting, oder die

Erzeugung kohärenter Phononen. Während meiner wissenschaftlichen Arbeit habe ich

Anregungen von verschiedenen Systemen mit niedriger, mittlerer und hoher Laserinten-

sität simuliert und dabei verschiedene strukturelle Dynamiken in Festkörpern studiert.

Bei der Anregung mit relativ hoher Intensität habe ich mich mit dem Phänomen

warm dense matter ausseinandergesetzt [F. Cheenicode Kabeer, E. S. Zijlstra, and M.

E. Garcia, Phys. Rev. B 89, 100301(Rapid Communication) (2014); E. S. Zijlstra, F.

Cheenicode Kabeer, B. Bauerhenne, T. Zier, N. S. Grigoryan, and M. E. Garcia, Appl.

Phys. A 110, 519 (2013)]. Die Änderungen in den Bindungseigenschaften von Edel-

metallen, vor allem von Kupfer und Silber, im warm dense Zustand, wurden mit der

electronic-temperature dependent density functional theory (DFT) untersucht, indem

Berechnungen mit dem Code WIEN2k gemacht wurden. Ich habe dabei festgestellt,

dass das extreme Hartwerden der Phononen-Moden in Edelmetallen, die sich im warm

dense Zustand befinden, dazu führt, dass die Relaxionsprozesse 3 bis 6 mal schneller

sind, als theoretisch vorausgesagt. Ich habe außerdem herausgefunden, dass solch ein

System thermisch in einen Plasma-Zustand übergeht.

Vacuum phonon squeezed Zustände können mit mittlerer Laserintensität, abhängig

von der Elektron-Phonon-Kopplung und den Bindungseigenschaften des Systems nach

der Laseranregung, generiert werden [F. Cheenicode Kabeer, N. S. Grigoryan, E. S.

Zijlstra, and M. E. Garcia, Phys. Rev. B 90, 104303 (2014)]. Ich habe die laseran-

geregten Potentialenergieoberflächen der Edelmetalle Kupfer und Silber mit Hilfe von

all-electron ab initio Theorie berechnet und die durch die Laseranregung enstande-

nen quantenmechanischen Gitterbewegungen analysiert. Das inkohärente Aufheizen

des Gitters wurde durch die Elektron-Phonon-Kopplung und durch das generalisierte

two-temperature model berücksichtigt. Ich habe herausgefunden, dass durch die An-

regung der s-Elektronen die Phononen Hartwerden, was dazu führt, dass das System

in einen vacuum squeezed Zustand übergeht. Der optimale squeezing factor ist am

größten für die longitudinale Mode am L-Punkt und ist von der Größenordnung ∼
0.001. Diese Erkenntnis eröffnet die Möglichkeit der Manipulation von opaquen Mate-

rialien mit Hilfe von laserinduzierten Änderungen der Bindungsstärke. Das squeezing

der Phononen unterhalb der Nullpunktbewegung wurde bis jetzt nur in transparenten
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Materialien beobachtet, wobei dort andere Mechanismen zu Grunde liegen. Auf der

Basis meiner Erkenntnisse schlage ich außerdem eine neue Methode zur direkten Mes-

sung von hartwerdenden Bindungen vor.

Des Weiteren habe ich kohärente Phononen-Dynamik in Antimon nach einer Laser-

anregung mit niedriger Intensität untersucht. Dazu habe ich unseren in-house Code

“Code for Highly excIted Valence Electron Systems (CHIVES)” benutzt und die Zer-

fallskonstante der A1g Phononen für Superzellen mit N = 72, 144 und 192 Atomen bei

einer laserinduzierten Temperatur von Te = 3000 K berechnet. Die Resultate sind in

perfekter Übereinstimmung mit den experimentell gewonnenen Daten [T. K. Cheng et

al., Appl. Phys. Lett, 59, 1923 (1991)]. Ich habe die Studie über die A1g Phononen

hierbei noch ausgeweitet, indem ich die Zerfallskonstante für die Zelle mit N = 72

Atomen auch für verschiedene elektronische Temperaturen (Te = 1000, 2000, 3000

und 4000 K) berechnet habe. Die Zerfallskanäle der A1g Phononen habe ich aus der

Phonon-Phonon-Kopplung gewonnen.
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CHAPTER 1

Introduction

The field of high-intensity laser-interaction with matter, although barely two decades

old, is already bursting with enough exotic phenomena to keep researchers buzy for

years to come. Pulse duration have come down from picoseconds (10−12s) to femtosec-

onds (10−15s) and less, and its contributing fields are numerous and diverse: They

include atomic physics, plasma physics, astrophysics, laser physics, etc. The extreme

conditions existing during the laser-matter interactions have posed a continual chal-

lenge to both theoreticians and experimentalists alike.

The developments in ultrafast laser techniques offer a considerable number of ap-

plications. A complete and exact understanding of the ultrafast dynamical processes

which take place during and after an intense excitation of materials still remains a sci-

entific and technological challenge. New and developing experimental techniques such

as time-resolved diffuse x-ray diffraction and reflectivity measurements allow to follow

the detailed dynamics of solids within the timescale on which the effect of a laser pulse

is considered.

The theoretical model and underlying physics described in the present research

work are about the interaction of femtosecond-laser and extreme ultraviolet (XUV)

pulses with solids. The key to understand the basics of such interaction is to study

the structural response of the materials after the laser interaction. By exciting solids

appropriately, many different structural changes can be induced. In fact, depending on

the laser characteristics (frequency, pulse duration and energy) and density of excited

carriers, laser-solid interaction can result in a wide range of reversible and irreversible

structural changes such as solid-solid phase transitions, vacuum phonon squeezing,

ultrafast melting, generation of coherent phonons, etc. Femtosecond-laser pulses create

an extreme nonequilibrium condition in solids in which electrons acquire very high

temperatures while the lattice remains cold. This is due to the fact that on the timescale
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Figure 1.1: Illustration of possible structural responses of solids to femtosecond-laser pulses

as a function of its fluences.

on which the laser interacts with solids, the laser energy is initially coupled with the

carriers yielding to the creation of electron-hole pairs (the excited electrons and holes

thermalize on a very short timescale). The relaxation between electrons and ions takes

place usually in some picoseconds after the laser excitation. The electron-phonon

coupling time causes delayed heating of the lattice. Therefore, the immediate change

of the lattice structure after laser excitation is entirely due to the presence of a hot

electron-hole plasma and no thermal heating effects are involved. The presence of

hot electrons and holes created by the laser pulse leads to a change in the bonding

properties of the solid. The structural response of solids is determined by the rate

of energy transfer from the excited electrons to the lattice and the change on the

interatomic potential energy landscape. The degree of potential changes depends on

the amount of laser energy absorbed by the solid.

The structural response of solid after laser excitation can be divided into three

main classes as a function of laser fluences (figure 1.1), namely at low-, medium- and

high-intensities. In the case of low laser energy, depending on the symmetry of the

system, coherent phonons can be generated. At higher laser energies, vacuum phonon

squeezed states can be generated, if the system shows laser-excited bond hardening

and has a low electron-phonon coupling constant. When a certain fluence threshold is

exceeded, the interaction may give rise to the creation of an extreme transient state,

warm dense matter, which afterwards relaxes either thermally into the plasma state or

by nonthermal melting.

Among the theoretical and experimental studies regarding structural responses of

solids to femtosecond-laser excitation done so far, the following examples attract our

attention and are part of the motivations of this theoretical work:

1. In 2011, using time-resolved x-ray absorption spectroscopy, B. I. Cho et al. [1]

investigated the electronic density of states of warm dense copper produced iso-
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chorically through the absorption of an ultrafast optical pulse. The dynamics of

the electronic and lattice temperatures were studied with the two-temperature

model, using a temperature-dependent electron-phonon coupling parameter [2].

The fast-changing XANES (x-ray absorption near-edge spectroscopy) data indi-

cates that the electron temperature peaks (∼ 10,000 K) with optical excitation,

then drops and reaches equilibrium with the lattice (∼ 5000 K) in 10 ps. This

is faster than the known electron-phonon coupling constant of copper (> 20 ps).

The results suggested that in the WDM regime, the energy exchange rate be-

tween electron and atomic vibration is temperature dependent and is about 3 -

6 times faster than previously assumed.

2. In recent years there has been a growing interest in the study of dynamical proper-

ties of phonons. 17 years ago, the generation of squeezed phonons by second-order

Raman scattering has been predicted [3] and the signature of phonon squeezing

has been observed by pump-probe spectroscopy in transmission geometry [4] as

well as recently by femtosecond x-ray diffraction [5].

Garrett et al. [4] have shown that in a transparent KTaO3 crystal, a femtosecond-

laser pulse can induce a squeezed phonon state. The maximum reported squeezing

factor was of the order of 10−6.

Recently, squeezed state of an opaque medium namely, bismuth have been studied

by Johnson et al. [5] close to room temperature. Bismuth exhibits laser-induced

bond softening [6,7]. It was found that the variance of the atomic displacements

first grows relative to the thermal motion, and then performs a damped oscilla-

tions, both processes caused by the laser-induced changes of bond strength. This

time evolution is superimposed on a nearly linear increase due to lattice heating

produced by incoherent electron-phonon coupling.

3. Excitation of coherent lattice vibrations by an impulsive perturbation of the

atomic equilibrium position has been studied in variety of materials [8–12]. In

these experiments, femtosecond-laser excitation was used to detect the atomic

motion by measuring the oscillations in the optical reflectivity at the phonon

frequency that are predicted by the lattice vibrations.

The first observation of coherent A1g phonons in antimony (Sb) was reported by

Cheng et al. [8]. Two years later, Zeiger et al. [9] observed that in Sb a single

exponential decay fails to fit the coherent phonon data, especially for long times.

They measured two time constants for coherent phonon decay and reported the

short decay time upto 5 ps [9] and the long decay time is not reported yet.

The study on the dynamics of coherent phonons in bismuth generated by ul-

trashort laser pulses by Hase et al. [11] revealed that the main channel of the



28 Introduction

relaxation process of the coherent A1g phonon in bismuth is originating from the

phonon-phonon interactions caused by anharmonicity of the lattice potential.

Motivated by the above works, I have studied the ultrafast structural responses of

solids after intense femtosecond-laser excitation in three intensity regimes. The aim

of this thesis is to provide theoretical approaches combined with simulation tools to

study and explain structural dynamics of solids at different laser fluences:

1. Intense ultrashort XUV pulses can be used to create warm dense matter in the

laboratory, which then develops to a plasma state. So far, however, it is unknown,

whether this transition occurs via heat transfer from hot electrons to cold atoms

or nonthermally due to a lattice instability. Here we computed the response of the

phonon spectra of noble metals, namely, copper and silver in the presence of XUV-

excited core holes and core holes together with very hot electrons. We found that

copper and silver show extreme bond hardening in the warm dense regime, which

causes faster electron-phonon coupling than the theoretically expected values. We

discuss why these findings support the above-mentioned heat transfer scenario,

meaning that such a system relaxes thermally (not nonthermally) into a plasma

state.

2. Ultrashort optical pulses can both be used to create fundamental quasiparticles

in crystals and to change their properties. In noble metals, femtosecond lasers in-

duce bond hardening, but little is known about its origin and consequences. Here

we simulate ultrafast-laser excitation of noble metals, in particular copper and

silver, at high fluences leading to electronic temperature 6000 K. We find phonon

hardening, which we attribute to the excitation of s electrons. We demonstrate

that this may result in phonon vacuum squeezed states, with an optimal squeezing

factor of ∼ 0.001 at the L-point longitudinal mode. The possibility to generate

such a quantum mechanical state depends on the electron-phonon coupling and

on the bonding properties of the systems. Our finding implies that ultrafast laser-

induced bond hardening may be used as a tool to manipulate the quantum state

of opaque materials, where, so far, the squeezing of phonons below the zero-point

motion has only been realized in transparent crystals by a different mechanism,

see [4]. We have explained vacuum phonon squeezing as a direct evidence of bond

hardening in noble metals.

3. The third and last purpose of the thesis is the description of the dynamical re-

sponse of antimony to femtosecond-laser excitation. When a femtosecond-laser

pulse interacts with an antimony crystal, due to the presence of hot electrons,

large amplitude coherent phonons are excited. At the low fluence laser excita-

tion regime, we have generated and studied the coherent phonon dynamics in
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antimony. We analyzed the temperature-dependent A1g phonon decay time on

supercells with upto 192 atoms. We have also analyzed the phonon-phonon cou-

pling to know the decay channel(s) of the A1g mode in antimony. To this aim we

have performed molecular dynamic simulations using density functional theory.

Although the existing ultrafast x-ray diffraction techniques and time-resolved re-

flectivity measurements allow monitoring of atomic motions in femtosecond timescales,

there is still a considerable uncertainty in the correspondence between the macroscopic

quantities and the atomic scale properties of solids. Therefore, there is need to go

through the theoretical description of the response of materials to laser excitation. A

realistic theoretical description of laser heating of solids must take into account explic-

itly the electronic as well as the atomic degrees of freedom. The reason is that the

system subjected to intense laser excitation will respond strongly to the modification

of the interatomic potential or potential energy surface due to the significant elec-

tronic excitation. To calculate the potential energy surface which governs the atomic

motion, various theoretical methods exist at various level of sophistication: Density

functional theory, Hartree-Fock theory, model Hamiltonians (like tight-binding) etc.

Among these methods the most accurate ones are the first principle ab initio methods

based on density functional theory.

Before presenting the results, in Chapter 2 I describe the density functional theory

and the codes used for the present research work. I present the results in Chapter 3,

4 and 5. Finally in Chapter 6 I give conclusions and discuss about the future work

perspectives.
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CHAPTER 2

Theory of ab initio calculations to

describe laser-excited solids

In the last decades many developments have set the stage for new theoretical under-

standing of condensed matter physics on the atomic length scale. Four major devel-

opments are the basis for most current research in theory and computational methods

for electronic structure theory, which are the following:

1. Density functional theory for the electronic ground state and its extension for

excited states.

2. Molecular dynamics simulation methods, which can deal directly with the inter-

acting many-body systems of electrons and nuclei.

3. Many-body perturbation methods for the excitation of electronic systems.

4. Computational advances that make realistic calculations feasible and in turn

influence the very development of the field.

The study of the electronic structure and properties of laser-irradiated materials is

one of the most important subjects in condensed-matter physics for fundamental ex-

plorations. At present, a lot of theoretical schemes have been proposed to interpret

experimental measurements on laser-excited properties of solids and to predict new

effects from first principles (ab initio). A calculation is said to be ab initio if it starts

from the basic equations of motion without the use of any empirical parameters.

This chapter gives an overview of ab initio theoretical approaches outlining the

general aspects to describe laser-excited solids.
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2.1 Many-body systems

A solid is a collection of heavy, positively charged nuclei and lighter, negatively charged

electrons. The nuclei and electrons are treated as electromagnetically interacting point

charges and the exact nonrelativistic many-body hamiltonian becomes:

Ĥ = −~2

2

∑
i

∇2
~Ri

Mi

− ~2

2

∑
i

∇2
~ri

me

+
1

8πε0

∑
i6=j

e2

|~ri − ~rj|
− 1

4πε0

∑
i,j

e2Zi

| ~Ri − ~rj|
+

1

8πε0

∑
i6=j

e2ZiZj

| ~Ri − ~Rj|
.

(2.1)

The mass of the nucleus at ~Ri is Mi and of the electrons at ~ri is me. The first and second

terms correspond to the kinetic energy operator of the nuclei and of the electrons,

respectively. The last three terms describes the Coulomb interaction between electrons,

between electrons and nuclei, and between nuclei, respectively.

In general, it is impossible to solve this problem exactly, without introducing some

approximations.

2.2 Level 1: The Born-Oppenheimer approxima-

tion

The physical basis for the Born-Oppenheimer approximation [13] is the fact that the

masses of atomic nuclei are much larger than the mass of electrons (more than 1000

times). Because of this difference, the electronic motion (≈ 106m/s) is considerably

faster than the nuclear motion (≈ 103m/s). Since the nuclei move so slowly compared

to the electrons, it is usually justified to assume that at any moment the electrons

will be in their ground state with respect to the instantaneous nuclear configuration.

If the nuclei do not move any more, their kinetic energy is zero and the first term in

equation 2.1 disappears. The last term reduces to a constant. We are left with the

kinetic energy of the electron gas (T̂ ), the potential energy due to electron-electron

interactions (V̂ ) and the potential energy of the electrons in the potential of the nuclei

(V̂ext). The resulting Hamilonian can be written as:

Ĥ = T̂ + V̂ + V̂ext. (2.2)

equation 2.2 is called the electron Hamiltonian. From now on, electrons and nuclei can

be treated separately. This decoupling of the electronic and nuclear motion is known

as the Born-Oppenheimer or adiabatic approximation.
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2.3 Level 2: Density functional theory

Density functional theory is the most widely used approach for quantitative calculations

on realistic problems. The quantum many body problem obtained after the Born-

Oppenheimer approximation is much simpler than the original one, but still far too

difficult to solve. In order to deal with realistic materials, relevant in solid state physics,

further approximations have to be made. A historically very important approximation

method is the Hartree-Fock method (HF) [14]. It performs very well for atoms and

molecules, but for solids it is less accurate. Another breakthrough for computational

physics was reached with the development of the density functional theory (DFT) by

Hohenberg and Kohn [15] and Kohn and Sham [16].

2.3.1 The theorems of Hohenberg and Kohn

In 1964 Hohenberg and Kohn stated two theorems on which DFT has been built:

First theorem: There is a one-to-one correspondence between the ground state den-

sity ρ(r) of a many-electron system (atom, molecule, solid) and the external potential

Vext. An immediate consequence is that the ground state expectation value of any ob-

servable Ô is a unique functional of the exact ground state electron density:

〈Ψ|Ô|Ψ〉 = O[ρ]. (2.3)

Second theorem: For Ô being the hamiltonian Ĥ, the ground state total energy func-

tional H[ρ] ≡ EVext [ρ] is of the form

EVext = 〈Ψ|T̂ + V̂ |Ψ〉+ 〈Ψ|V̂ext|Ψ〉,

= FHK[ρ] +

∫
ρ(~r)Vext(~r)d(~r).

(2.4)

where the Hohenberg-Kohn density functional FHK [ρ] is universal for any many-

electron system. EV ext[ρ] reaches its minimal value (equal to the ground state total

energy) for the ground state density corresponding to Vext.

Here I want to discuss their meaning only, not to prove the theorems: The one-to-

one correspondence between the ground state density and the external potential has

some important implications. It is obvious that, given the external potential of the

system, it is possible to find a unique ground state density for the system. Solving the

Schrödinger equation yields the ground state wave function, out of which the ground

state density can be calculated. Intuitively, the ground state density seems to contain

less information than the ground state wave function. If this were true, the inverse
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correspondence (from ground state density to external potential) would not hold. The

first theorem of Hohenberg and Kohn, however, states that this correspondence holds

as well. In other words: the density contains as much information as the wave function.

As a consequence of the second theorem, and more precisely of the fact that the

ground state density minimizes EVext [ρ], the Rayleigh-Ritz variational method can be

used to obtain the ground state density. It is important to note that EVext [ρ] evaluated

for the ground state density corresponding to Vext equals the ground state energy. Only

this value of EVext [ρ] has a physical meaning.

And finally, in the second theorem the Hohenberg-Kohn-functional FHK contains

no information on the nuclei and the nuclear positions. Consequently, the functional is

the same for all many-electron systems (universal). Unfortunately FHK is not known.

2.3.2 The Kohn-Sham equations

An important step towards applicability of DFT has been made by Kohn and Sham [16].

They proposed to rewrite FHK as follows:

FHK = T0[ρ] + VH [ρ] + (Vx[ρ] + Vc[ρ])︸ ︷︷ ︸
Vxc[ρ]

, (2.5)

where T0[ρ] is the kinetic energy functional for noninteracting electrons and VH [ρ]

is the Hartree contribution, which describes the interaction with the field obtained

by averaging over the positions of electrons. Although no on-site electron-electron

interaction is taken into account, VH [ρ] is already a good approximation for the electron

interaction. Assuming we know the exchange-correlation functional Vxc[ρ], we can now

write EVext as:

EVext = T0[ρ] + VH [ρ] + Vxc[ρ] + Vext[ρ]. (2.6)

equation 2.6 can be interpreted as the energy functional of noninteracting particles

submitted to two external potentials Vext[ρ] and Vxc[ρ], with corresponding Kohn-Sham

hamiltonian:

ĤKS = T̂0 + V̂H + V̂xc + V̂ext,

= − ~2

2me

∇i
2 +

e2

4πε0

∫
ρ(~r′)

|~r − ~r′|
d~r′ + V̂xc + V̂ext,

(2.7)

with the exchange-correlation operator given by the functional derivative:

V̂xc =
∂Vxc[ρ]

∂ρ
. (2.8)
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The Kohn-Sham theorem can now be stated as follows: The exact ground state density

ρ(r) of an N-electron system is

ρ(~r) =
N∑
i=1

ψ∗i (~r)ψi(~r), (2.9)

where the single-particle wave functions ψi(~r) are the N lowest-energy solutions of the

Kohn-Sham equation

ĤKSψi = εiψi. (2.10)

To obtain the ground state density of the many-body system the Schrödinger-like single-

particle equation must be solved. The only unknown contributor to this problem is

the exchange-correlation functional. Available approximations for this functional will

be treated in the following section.

Two additional remarks have to be made. First, one has to realize that the single-

particle wave functions ψi(~r) as well as the single-particle energies εi are no physical

electron wave functions or electron energies. They are merely mathematical functions

without a physical meaning. Only the total ground state density calculated from these

quasi-particles equals the true ground state density. And second, the Kohn-Sham

Hamiltonian depends on the electron density through the Hartree and the exchange-

correlation term, while the electron density depends on the ψi to be calculated. This

means that we are actually dealing with a self-consistent problem: The solutions deter-

mine the original equation. An iterative procedure is thus needed to solve the problem.

In the first iteration a pondered guess is made for the starting density. The latter al-

lows for the construction of the initial Kohn-Sham Hamiltonian. Solving the equation

results in a new set of ψi and a new electron density. The new density will differ

strongly from the previous one. With this density a new ĤKS can be produced. In the

end succeeding densities will converge, as will the Hamiltonians. A solution consistent

with the Hamiltonian has been reached.

The Kohn-Sham equation proves to be a practical tool to solve many-body prob-

lems.

2.3.3 The exchange-correlation functional

As mentioned in the previous section, the Kohn-Sham equation can be solved if the

exchange-correlation functional is known. Given the fact that an exact expression is

not available and the introduction of an approximation is needed to solve it. Two

such often used approximations are LDA (Local Density Approximation) and GGA

(Generalized Gradient Approximation). The oldest approximation is the LDA [15–17]
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which defines the exchange-correlation functional as:

V LDA
xc [ρ] =

∫
ρ(~r) εxc(ρ(~r)) d~r, (2.11)

here εxc(ρ(~r)) stands for the exchange-correlation function (not functional) for the ho-

mogeneous electron gas with interacting electrons. The underlying idea is very simple.

At each point in space the exchange-correlation energy is approximated locally by the

exchange-correlation energy of a homogeneous electron gas with the same electron den-

sity as present at that point. LDA is based on the local nature of exchange-correlation

and the assumption that the density distribution does not vary too rapidly. In spite

of its simplicity, LDA performs quite well even for realistic systems, where the density

distribution is a rapidly varying function.

A more sophisticated approach is made with GGA [18,19]. While LDA only depends

on the local density ρ(~r) itself, GGA also incorporates the density gradient:

V GGA
xc [ρ] =

∫
ρ(~r) εxc(ρ(~r), |∇ρ(~r)|) d~r. (2.12)

For GGA, because the density gradient can be implemented in various ways, several

versions exist. Moreover, many versions of GGA contain free parameters which have

to be fitted to experimental data. Strictly spoken, these GGA versions are no longer

ab initio.

In the present work we are using the LDA approximation to study the structural

dynamics of laser-irradiated solids.

2.4 Level 3: Solving the equations

The final task is to solve the Kohn-Sham equation that resulted from DFT:(
− ~2

2me

∇m
2 +

e2

4πε0

∫
ρ(~r′)

|~r − ~r′|
d~r′ + V̂xc + V̂ext

)
︸ ︷︷ ︸

ĤKS

ψm(~r) = εmψm(~r), (2.13)

where m is an integer number that count the number of states. An important step

towards the final solution will be to expand the single-particle wave functions in a

suitable basis set, say {φbp}p=1,...,P :

ψm =
P∑
p=1

cmp φ
b
p. (2.14)
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The wave functions ψm belong to a function space which has an infinite dimension:

P is therefore in principle infinite. In practise one works with a limited set of basis

functions. Note however that the use of a limited basis set makes it impossible to

describe ψm exactly. It is therefore important to search for suitable limited basis sets,

from which good approximations of ψm can be constructed. More details on such basis

sets will be given further on in this chapter.

By substituting equation 2.14 into equation 2.13 an eigenvalue problem appears:· · · · · · · · ·
... 〈φbi |ĤKS|φbj〉 − εm〈φbi |φbj〉

...

· · · · · · · · ·


c

m
1
...

cmp

 =

0
...

0

 . (2.15)

Diagonalization of the hamiltonian matrix will lead to P eigenvalues and P sets of

coefficients that express each of the P eigenfunctions in the given basis. The larger

P , the better the approximation of the eigenfunction, but the more time-consuming

the diagonalization of the matrix in equation 2.15. Thus the many-body problem of

equation 2.1 has thus been reduced to a solvable problem.

As mentioned before, the choice of a good basis set will be very important. The

accuracy of the approximation as well as the needed computation time will strongly

depend on the basis set. Every system needs its own optimized basis set. Such a basis

is very efficient for a specific system. The art of theoretical condensed matter physics

is to find an efficient basis set. In the following sections, two families of basis sets will

be described — augmented plane waves and Gaussians — that each in their own way

describe the wave function.

2.5 Augmented plane wave method (LAPW)

According to the Bloch theorem, eigenfunctions of a periodic Hamiltonian can be ex-

panded in a plane wave basis. However, too many plane wave basis functions are

needed to describe the rapidly oscillating behavior of the eigenfunctions near the nu-

cleus, which makes it a very time consuming method. For this reason another approach

is needed for the region around atomic nuclei.

The Augmented Plane Wave basis (APW) has been proposed by Slater in 1937

[20]. The APW method is based on the knowledge that the strongly varying, nearly

spherical potential and wave functions near an atomic nucleus are very similar to

those of an isolated atom. In the region between the atoms the potential is almost

constant and hence the wave functions are better described by plane waves. Based on

this observation, space is divided in two regions where different basis expansions are
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used. Centered around the atomic nuclei (α) nonoverlapping muffin-tin (MT ) spheres

(SMT,α) of radius RMT,α are constructed. The region in between the spheres is called

the interstitial region (I). An APW basis function can be defined as:

φ
~k
~K

(~r, E) =

{
1√
V
ei(

~k+ ~K)·~r ~r ∈ I∑
l,mA

α,~k+ ~K
lm uαl (ri, E)Y l

m(r̂i) ~r ∈ SMT,α

(2.16)

where ~k is the wave vector in the first Brillouin zone, ~K is the reciprocal lattice vector

and V the unit cell volume. The Y l
m(r̂i) are spherical harmonics with {l,m} angular

momentum index and ~ri = ~r − ~rα where ~rα is the atomic position of atom α within

the unit cell. Aα,
~k+ ~K

lm are expansion coefficients and uαl (ri, E) is a solution of the radial

Schrödinger equation with spherical averaged crystal potential V (r) centered on the

atom, at given energy E:[ d2

dr2
+
l(l + 1)

r2
+ V (r)− E

]
ruαl (r, E) = 0. (2.17)

Imposing continuity of uαl (r, E) and the corresponding plane wave on the muffin-tin

sphere determines the coefficients Aα,
~k+ ~K

lm .

In order to describe an eigenfunction ψm of the Kohn-Sham equation 2.13 properly,

the corresponding eigenvalue εm must be used for E. Since εm is not known yet a guess

must be made for the value of E. For this value the APW basis can be constructed

and the Kohn-Sham equation can be solved. The guessed E should be a root of this

equation. If not, a new value for E must be tried until the chosen value turns out to be

an eigenvalue of the equation. This procedure has to be repeated for every eigenvalue.

A general solution to this problem consists in some kind of enhancement of the

basis in the muffin-tin spheres in order to remove the energy dependence.

2.5.1 Linearized augmented plane wave method

The eigenenergy (E) problem from the APW method can be solved using the linearized

augmented plane wave method (LAPW) [21]. The solution consists of making the

energy independent within a certain energy region, where the resulting secular equation

2.15 will become linear in E. An LAPW basis function has the same form as an

APW basis function, but to the part of the basis function in the muffin-tin region, the

augmentation, has been applied:

φ
~k
~K

(~r) =

{
1√
V
ei(

~k+ ~K)·~r ~r ∈ I∑
l,m

[
Aα,

~k+ ~K
lm uαl (ri, E0) +Bα,~k+ ~K

lm u̇αl (ri, E0)
]
Y l
m(r̂i) ~r ∈ SMT,α

(2.18)
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The APW augmentation has been replaced by a linear combination of the original

function uαl and its energy derivative
∂uαl (ri,E)

∂E
, evaluated at a fixed linearization energy

E0. One can interpret the new term between square brackets (equation 2.18) as a first

order Taylor expansion around a fixed energy E0:

uαl (ri, E) = uαl (ri, E0) + (E − E0)u̇
α
l (ri, E0) +O(E − E0)

2. (2.19)

If the energy E0 differs slightly from the true band energy E, such a linear combination

will reproduce the APW radial function at the band energy. This yields a basis set that

is flexible enough to represent all eigenstates in a region around E0. The coefficients

Aα,
~k+ ~K

lm and Bα,~k+ ~K
lm can be determined by imposing continuity of the LAPW on the

muffin-tin sphere.

At this stage, E0 is still the same for all values of l. We can go one step further by

choosing a different E0, say Eα
l , for every l-value of atom α. In this case Eα

l is normally

chosen at the center of the corresponding band. This gives the final definition for an

LAPW:

φ
~k
~K

(~r) =

{
1√
V
ei(

~k+ ~K)·~r ~r ∈ I∑
l,m

[
Aα,

~k+ ~K
lm uαl (ri, E

α
l ) +Bα,~k+ ~K

lm u̇αl (ri, E
α
l )
]
Y l
m(r̂i) ~r ∈ SMT,α

(2.20)

If the energy parameters Eα
l are carefully chosen for each value of the angular momen-

tum, a single diagonalization will yield an entire set of accurate energy bands for the

corresponding ~k-point. This is a major improvement in comparison with the APW

method, where a diagonalization is needed for every energy band.

Two additional parameters have to be introduced to limit these sizes of the basis

set as well as the basis functions. The first parameter, lmax, controls the size of the

LAPW augmentation which consists of an infinite sum over angular momenta l. While

the second parameter, the plane wave cutoff Kmax, determines the size and accuracy of

the basis set. A better quantity to judge the accuracy is the dimensionless Rmin
MTKmax,

between the smallest muffin-tin radius and Kmax. If the smallest muffin-tin radius is

increased, the closest point a plane wave can come to a nucleus moves farther away

from the nucleus. Less plane waves are needed to describe the remaining, smoother

parts of the wave function. Rmin
MT cannot be too large on the other hand, as the spherical

harmonics are not suited to describe the wave functions in the region far away from

the nuclei. As a consequence, lmax and Kmax control the accuracy of the calculations.

2.5.2 LAPW with local orbitals (LAPW+LO)

An even more efficient method is the Local Orbital (LO) extension to the LAPW

method [21]. The electron states located closest to the nucleus (core states) are strongly
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bound to the nucleus and behave almost as if they were free atom states. They do not

participate in chemical bonding and are entirely contained inside the muffin-tin sphere,

which are subjected to the potential of all the other states. States that cross the muffin-

tin sphere and thus participate in chemical bonding are called valence states. Unlike

the core states, these valence states are treated with LAPW. The LAPW method works

very well for describing valence states as long as all states have a different l-value. But

the LAPW method fails in a situation, in which two valence states exist with the same

l quantum number, say l′, but different principle quantum number n. In such a case

the state with the lowest n-value lies far below the Fermi level and is a core-like state

which is not completely contained inside the muffin-tin sphere. It is called a semi-core

state. Constructing a suitable LAPW basis set for this case is difficult, because it is

not clear how to choose Eα
l′ . This problem is solved in the LAPW+LO method where

a new type of basis function, a Local Orbital, is added to the LAPW basis:

φlmα,LO(~r) =


0 ~r /∈ SMT,α[
Aα,LOlm uαl (ri, E

α
1,l) +Bα,LO

lm u̇αl (ri, E
α
1,l)

+Cα,LO
lm uαl (ri, E

α
2,l)
]
Y l
m(r̂i) ~r ∈ SMT,α

(2.21)

A Local Orbital basis function is independent of ~k and ~K. It belongs to only one

atom (α) and has a specific l-character. For a specific l-value 2l+ 1 Local Orbitals are

added (m = −l,−l + 1, ..., l). The Local Orbitals are local in the sense that they are

identically zero outside the muffin-tin spheres. The three coefficients Aα,LOlm , Bα,LO
lm and

Cα,LO
lm are determined by imposing the constraint that the Local Orbital is normalized

and has zero slope at the muffin-tin boundary. The uαl (ri, E
α
1,l) and u̇αl (ri, E

α
1,l) are the

same as in the regular LAPW method with as linearization energy Eα
1,l, an energy value

for the highest of the two valence states. Since the lowest valence state, or semi-core

state, resembles a free atom state it will be sharply peaked at an energy Eα
2,l. A single

radial function uαl (ri, E
α
2,l) is therefore included in the Local Orbital, which is sufficient

to describe this state.

Adding Local Orbitals will increase the basis set size and consequently also the

computation time. Moreover, the slight increase in computation time is largely com-

pensated by the gain in accuracy.

2.5.3 Wien2k-code

The theory of ab initio calculations using plane wave basis function has been discussed.

To perform the calculation a software package is needed in which the theory is imple-

mented. More than half of the calculations performed for this thesis were executed

with the Wien2k-code, an Augmented Plane Wave + Local Orbitals Program.
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The code is divided in two parts: the first part processes the input files while the

second part performs a self-consistent calculation. The input routine starts from a

structure file containing information on the atomic configuration of the system: lattice

parameters, atomic species, atomic positions, muffin-tin radii, etc. In the next step

LSTART calculates the atomic densities for all atoms in the unit cell and in combi-

nation with the other input files KGEN determines a suitable ~k-mesh. And in the

final initialization step, DSTART, a starting electron density ρ is constructed based

on a superposition of the atomic densities. During this initialization all the necessary

parameters are fixed as well: the exchange-correlation approximation (LDA, GGA,

LSDA), RMTKmax, lmax and the energy parameter that separates the core states from

the valence states. For an optimal use of computation time a good choice of RMTKmax

and the ~k-mesh is needed.

Once the starting density is generated, the self-consistent calculation can start.

This process is divided into several subroutines which are repeated over and over un-

til convergence is reached and the calculation is self-consistent. LAPW0 starts with

calculating the Coulomb and the exchange-correlation potential. LAPW1 solves the

secular equation for all the ~k-values in the ~k-mesh by diagonalization of the Kohn-Sham

equation. The following subroutine, LAPW2, determines the Fermi-energy. Once this

energy is known the eigenfunctions resulting from LAPW1 can be used to construct a

valence density:

ρval(~r) =
∑

ε~k,i<EF

φ∗~k,i(~r)φ~k,i(~r). (2.22)

The states and energies of the core electrons are calculated separately in a regular

atomic calculation in the LCORE subroutine, which results in a total core density

ρcore. Both densities, ρcore and ρval, together give the total density, ρtot = ρcore + ρval.

Since this density often differs a lot from the old density (the density from previous

step) ρold , they are mixed by MIXER to avoid large fluctuations between iterations

that would lead to divergence: ρnew = ρold⊗ (ρcore + ρval). Once the end of the cycle is

reached Wien2k checks for convergence between the old and the new density. If they

differ from each other a new iteration is started with a new density as input density.

This procedure is repeated until the old and new densities are consistent.

2.6 A method based on Pseudopotential and Gaus-

sian basis set

The basic idea that motivates the use of pseudopotentials is that mostly the valence

electrons govern the chemical and physical properties of a crystalline system. The
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Figure 2.1: Schematic plot of the concept of pseudopotentials in real space [22].

valence electrons in the outermost shells of the atoms are nearly free and involved in

bonding with neighboring atoms. Due to screening of the nucleus by the filled core

shells, valence electrons are not affected by the full nuclear charge. The lower lying

core electrons, however, are rigid and inert, which is typically described as the frozen

core approximation. This implies that the low energy electronic states are insensitive

to neighbouring atoms, and that they closely resemble the core orbitals of an isolated

atom. Such atomic orbitals are known to have a highly oscillatory shape due to the

strong interaction with the atomic nucleus, which makes them highly unsuitable to

expand in a finite basis set of limited spatial resolutions. As a consequence, it would be

convenient to exclude the core states from the many electron problem, subtracting out

core-core and core-nucleus energy terms. This is done by replacing the nuclear potential

by a pseudopotential, that models the core-valence and valence-nucleus interactions.

As a result, there are no orbitals needed for the core states, and the valence is replaced

by the so called pseudovalence, which diagonalizes the pseudo-Hamiltonian, i.e. the

Hamiltonian that contains the pseudopotential. Since the nucleus is electrostatically

shielded by the core states treated via the pseudopotential, the attractive interaction

resulting from the pseudopotential is much weaker than the bare nuclear potential

with its singularity. This is one reason why the pseudovalence is expected to be much

smoother and easier to resolve near the nucleus than the true valence orbitals.
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The concept of pseudization is illustrated in figure 2.1. The upper two curves show

the radial density distribution of a valence orbital Ψ and its pseudovalence counterpart

Ψpseudo, which is smoother near the nucleus. The pseudopotential Vpseudo reproduces

the central potential V outside of the core region rc , but the singularity in the origin

is smoothened out. With the pseudopotential method, the computational effort is

decreased significantly, not only since the number of orbitals is lowered, but mainly

because smaller basis sets can be employed.

2.6.1 Goedecker-Teter-Hutter Pseudopotentials

The norm conserving pseudopotentials proposed by Goedecker, Teter and Hutter

(GTH) [23] have some unique properties that make them highly efficient and reliable.

A key feature of the GTH pseudopotentials is their purely analytic form with a small

number of free parameters. In contrast to most other semilocal pseudopotentials, there

is no need to tabulate a radial grid for the local part or any of the projector elements

that constitute the separable part. The analytic form is well localized with a smooth

shape in both real space and Fourier space. Gaussians serve as a natural choice for the

radial functions in the separable part to achieve optimal dual space decay properties.

This is why the GTH pseudopotentials are referred as dual-space Gaussian pseudopo-

tentials. As a direct consequence, efficient real space integration of the separable part

is possible, which results in only a quadratic scaling with respect to the system size, in

contrast to the cubic scaling of a Fourier space integration scheme [24]. The local part

uses an error function term (equation 2.23) to cut away the singularity from the central

potential within the local radius rloc. Furthermore, a short range potential is added in

form of a spherical Gaussian times an even polynomial with up to four coefficients.

The local part Vloc(r) of the GTH pseudopotential is given by,

Vloc(r) = −Zion
r

erf
( r√

2rloc

)
+ exp

[
−1

2

( r

rloc

)2]
×
[
C1 + C2

( r2
rloc

)2
+ C3

( r2
rloc

)4
+ C4

( r2
rloc

)6]
,

(2.23)

where erf denotes the error function, Zion is the ionic charge, rloc is the local radius,

which gives the range of the gaussian ionic charge distribution leading to the erf po-

tential, and C1, C2, C3 and C4 are pseudopotential parameters.

The nonlocal part takes a separable form, where each l component contains several

projectors. For a GTH pseudopotential, the weights hlij for summing up the projectors

as well as a radial length scale rl are the free parameters of each l- channel in the
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separable part. The non-local contribution Vnl(r̂, r̂′) is

Vnl(r̂, r̂′) =
3∑
i=1

3∑
j=1

+l∑
m=−l

Yl,m(r̂)P l
i (r)h

l
ij P

l
j(r
′)Y ∗l,m(r̂′), (2.24)

where Ylm are the spherical harmonics and l is the angular momentum quantum num-

ber. The separable pseudopotentials are computationally much more efficient than

conventional forms.

The radial projectors P l
i (r) are atom centered gaussians, where l takes on the values

0,1,2,... for s,p,d,... orbitals,

P l
i (r) =

√
2 rl+2(i−1) exp

[
−1

2
( r
rl

)2
]

r
l+

(4i−1)
2

l

√
Γ
[
l + (4i−1)

2

] , (2.25)

here Γ denotes the gamma function. The projectors satisfy the normalization condition,∫ ∞
0

P l
i (r)P

l
i (r) r

2 dr = 1. (2.26)

The nonlocal potential converges rapidly to zero outside the core region.

2.6.2 Cartesian Gaussian functions

For our atomic DFT code that solves the Kohn Sham equations in the presence of a

pseudopotential, a Gaussian basis set is employed. As discussed before, the pseudopo-

tential method results in smooth wavefunctions, such that the discretization of the

Kohn Sham orbitals with some ten to thirty Gaussians centered on the atom is per-

fectly accurate. The use of the Gaussian basis set allows to tackle a general eigenvalue

problem of conveniently low dimensionality. This has to be done iteratively to solve

the Kohn Sham equations self consistently.

We can write an unnormalized cartesian gaussian function [25,26] centered at A =

{Ax, Ay, Az} as

φ(r, α, n, A) = (x− Ax)nx (y − Ay)ny (z − Az)nz exp
[
−α(r − A)2

]
, (2.27)

with the coordinates of electrons r = (x, y, z), orbital exponents α and n = nx + ny +

nz is a non-negative integer, which denotes the angular momentum index, such that

nx + ny + nz = 0,1,2,... for s,p,d,...
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Properties of Gaussian functions:

1). Product of two Gaussian functions located at A and B is another Gaussian located

at a point P , somewhere between A and B. It can be expressed as,

φ(r, α, a, A) · φ(r, β, b, B) = (x− Ax)ax (y − Ay)ay (z − Az)az exp
[
−α(r − A)2

]
× (x−Bx)

bx (y −By)
by (z −Bz)

bz exp
[
−β(r −B)2

]
,

= exp
[
− αβ

α + β
| A−B |2

]
exp
[
−(α + β) | r − P |2

]
.

(2.28)

with P = αA+βB
α+β

.

2). The derivative of a Gaussian function can be expressed as a sum of Gaussians of

higher and lower angular values.

∂

∂A
φ(r, α, a, A) = 2α φ(r, α, a+ 1, A)−N(a) φ(r, α, a− 1, A). (2.29)

Two-center overlap integrals:

Two-center overlap integrals over unnormalized cartesian Gaussian functions are of the

form:

〈a | b〉 =

∫ +∞

−∞
φ(r, α, a, A) φ(r, β, b, B)dr, (2.30)

and are located at A and B having orbital exponents α and β respectively.

The recurrence formula for 〈a+ 1 | b〉 which will be used to generate the two-center

overlap integrals over s, p and d cartesian Gaussian functions (see Appendix A for the

derivation) is given by,

〈a+ 1 | b〉 = (P − A) 〈a | b〉+
N(a)

2(α + β)
〈a− 1 | b〉+

N(b)

2(α + β)
〈a | b− 1〉. (2.31)

Recurrence relations let us efficiently calculate two-center overlap integrals of higher

angular values using previously obtained results with lower angular values (see Ap-

pendix A). The overlap integral between two s orbitals centered at A and B, can be

written as the following,

〈s | s〉 =

∫ +∞

−∞
φ(r, α, 0, A) φ(r, β, 0, B) dr,

=
( π

α + β

) 3
2

exp
[
− αβ

α + β
| A−B |2

]
.

(2.32)
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The overlap integral between s orbital centered at A with the projector of s orbital

centered at B can be calculated by,

〈s | r2s〉 =
∂

∂β

(
〈s | s〉

)
. (2.33)

2.6.3 Code for Highly-excIted Valence Electron Systems

(CHIVES)

During the last years, our group (mainly Eeuwe S. Zijlstra) has developed a density-

functional-theory code, ’Code for Highly-excIted Valence Electron Systems’ (CHIVES),

based on localized basis functions, which provides a more natural description of laser-

excited solids and is orders of magnitude faster than other existing codes [27]. This

is an essential advantage, since it permits us to perform ab initio molecular dynamics

simulations on relatively large supercells and to analyze the pathways of the atoms

immediately after laser excitation.

Treatment of core electrons

In CHIVES the electrons are subdivided into core electrons and valence electrons. The

electronic structure of the core electrons is not explicitly computed in CHIVES, but

their effects on the valence electrons are described by pseudopotentials. we imple-

mented a relativistic pseudopotential of [24], which is of the Goedecker-Teter-Hutter

type.

Treatment of valence electrons

Valence electrons in CHIVES are described in terms of an uncontracted atom-centered

Gaussian basis set. The basis functions are characterized by Gaussian exponents. By

multiplying a Gaussian function, e−βr
2
, by 1, by x, y, and z, or by xy, xz, yz, x2 − y2,

and 2z2 − x2 − y2 we obtain one s-type, three p-type, or five d-type Gaussian basis

functions in which the angular momentum is included for in the exponent β. The basis

set defines, how many different exponents and which types of Gaussian functions for

every exponent are included.
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Figure 2.2: Periodic table with elements for which pseudopotentials are presently imple-

mented in CHIVES.

Optimization of basis sets

An uncontracted atom-centered Gaussian basis set can be fully specified by its Gaussian

exponents. In order to perform fast, large-scale molecular dynamics simulations for a

given system, we first have to find a basis set that is relatively small but still describes

all physical effects of interest with sufficient accuracy, which is a nontrivial and rather

cumbersome task. The exponents were optimized in the following way [28]: To begin

with we choose a small increment, typically 0.01 or 0.1 a−20 . In a loop we first increase

and then decrease each of the exponents from its present value. Every time when

the total energy of the reference system decreased, the change in the exponents are

accepted, otherwise they are rejected. We continued to loop over all exponents until

none of them would vary any more. Then the increment is halved and the whole

procedure is repeated. We stop optimizing the exponents when the increment become

smaller than 10−7a−20 .

Usually Gaussian basis set exponents are optimized for atoms. Two recent pub-

lications [28, 29] have, however, indicated that molecular-optimized basis sets tend to

be more localized and less linearly dependent. Besides these advantages, it is elegant

that one can use the same reference system for all s-, p- and d-type basis functions and

polarization orbitals.

Total energies were computed nonrelativistically and nonmagnetically in the local

density approximation [30]. Electronic occupation numbers were assigned according

to a Fermi-Dirac distribution with electronic temperature Te. Naturally, the electronic

Helmholtz free energy term −TeSe, where Se is the electronic entropy, was included in

the expression for total energy.

During my PhD, I have implemented the pseudopotential and Two-center overlap

integrals upto d orbitals (see Appendix A for the expressions) in CHIVES. The list of

elements that can currently be treated by CHIVES is given in figure 2.2. In this thesis,

I present recent remarkable results obtained using WIEN2k and CHIVES.
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2.7 Laser-excited potential energy surfaces

The structural response of a material to an ultrashort laser pulse is mostly indirect,

i.e., via electrons and can best be understood by introducing the concept of a laser-

excited potential energy surface. In the Born-Oppenheimer approximation, the ground-

state potential energy surface U0({ ~Ri}) is obtained after solving the electron problem,

i.e., from the ground state energy of the electronic system. Now, in the laser-excited

solid the electrons will have a well-defined temperature Te. Thus, solving the electron

problem in this case means determining the function which uniquely describes electron

at a given temperature, which is no longer the ground-state energy but the Helmholtz

free energy of the electrons Fe({ ~Ri}, Te(t)), which in temperature-dependent density

functional theory is given by

Fe({ ~Ri}, Te(t)) =
∑
m

n(εm, t)εm + Exc[ρ(r)]−
∫
Vxc(r)ρ(r)dr

−1

2

∫
ρ(r)ρ(r′)

|r − r′|
drdr′ + VII({Ri})− Te(t)Se(t),

(2.34)

where n(εm, t) are the occupations of the electronic Kohn-Sham levels εm. Due to the

presence of a laser pulse, these occupations are time dependent. The electronic charge

density of the excited state, ρ(r) is

ρ(r) =
∑
m

n(εm, t)ψ
∗
m(r)ψm(r), (2.35)

with ψm(r) the Kohn-Sham orbitals.

The first term of equation 2.34 is an attractive contribution from the valence elec-

trons, which is also present in tight-binding theory, and which is called band energy.

The second, third and fourth terms are additional contributions from the valence elec-

trons, which appear in density functional theory as a consequences of the fact that the

Kohn-Sham orbitals are not physical single-electron wave functions, even though they

are often interpreted as such. The fifth term refers to the ion-ion repulsive interaction,

and the sixth term contains the electronic temperature and the electronic entropy ,

which is given by

Se = −kB
∑
m

[
n(εm, t) log(n(εm, t)) + (1− n(εm, t)) log(1− n(εm, t))

]
. (2.36)

Now, in view of the above discussion the laser-excited potential energy surface is

just U0({ ~Ri}, Te(t)) = Fe({ ~Ri}, Te(t)). This represents a generalization of the Born-

Oppenheimer approximation. The resulting energy for a given Te, represented as a

function of all ionic coordinates, is called a laser-excited potential energy surface. The
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Figure 2.3: Illustration of the microscopic picture of laser-excited solids, adapted from

figure 1 in [31].

usual Born-Oppenheimer approximation is recovered for Te = 0K. Note that the func-

tional dependence of U0({ ~Ri}, t) on the atomic coordinates {Ri} is strongly dominated

by the electronic occupations n(εm, t) present in the first and sixth terms of equation

2.34 and also depends, albeit less strongly, on the self-consistent electronic charge den-

sity ρ(r) present in the second, third and forth terms of equation 2.34. This implies

that, if the electronic occupations undergo strong changes, then the potential energy

landscape will change significantly.

A cartoon of the physical concepts involved in laser-induced structural changes is

shown in figure 2.3. This figure also illustrate the role played by the laser-excited po-

tential energy surface on structural changes in solids. Before the action of the laser

pulse (see left side of figure 2.3) the solid is in thermodynamic equilibrium. At low

temperature, electrons fill the states upto the Fermi level and the atoms are at the

equilibrium positions of the ground state potential energy surface. The laser pulse

changes (right side of figure 2.3) the electronic occupations by exciting a substantial

fraction of electrons from bonding to anti-bonding states in a time that is short com-

pared to the period of the fastest lattice vibration. This leads to a rapid changes in the

potential energy landscape. As a consequence, the lattice may become unstable and

forces appear on the atoms, driving a structural change.

In this thesis, I have modelled the systems irradiated by low-, medium- and high-

laser intensities, and present results of ab-initio electronic-temperature dependent

DFT calculations using all-electron full-potential linearized augmented plane wave
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code WIEN2k and molecular dynamic simulations performed using our in-house code

CHIVES for systems, which each show a distinctly different structural response to

femtosecond-laser pulses at various fluences.



CHAPTER 3

Road of warm dense noble metals to

the plasma state

3.1 Introduction

Warm Dense Matter (WDM) is a new state of matter, which constitutes a challenge to

modern physics and whose investigation offers excellent means to understand strongly

correlated multiparticle systems and their fast dynamics. The strong excitation of

electrons in solids by an extreme ultraviolet (XUV) pulse results in a two-temperature

WDM state [32–35], a regime that is of great interest in high-pressure science [36],

the geophysics of large planets [37], astrophysics [38], plasma production, inertial con-

finement fusion [39], and condensed-matter physics [40, 41]. In the astrophysical con-

text, WDM exists under stable and extreme density-temperature conditions, while in

the laboratory, during the laser-matter interaction, WDM is generated as a transient

(quasi-stationary for a short time) state between the condensed-matter and hot plasma

regimes and its characterization involves ultrafast techniques and experimental facili-

ties. While retaining the solid state density, it has two temperatures: The electronic

temperature is of the order of tens of eV and the ions remain cold and keep their

original crystallographic positions [42]. WDM is a partially degenerate state. Since

WDM is encountered in high density systems, the kinetic energies of the electrons in

the plasma is comparable to the Fermi energy. In addition, an XUV pulse may excite

core-level electrons [43–46]. So, WDM is an intermediate state between condensed

matter and the plasma, and the electrons effectively store the energy for times of the

order of several picoseconds, where the exact time is governed by the electron-phonon

coupling. Here we study the atomic pathways followed during the first few hundred

femtoseconds in warm dense copper and silver and their role in the relaxation of WDM
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Figure 3.1: Illustration of core hole generation.

to equilibrium, i.e., into the plasma state [1,40,47–49]. This is an interesting problem,

because it is in general not known, whether this process occurs by nonthermal melting,

where the atoms accelerate in the direction of a lattice instability [50], or thermally

via the incoherent coupling of electrons and phonons, when the lattice has become

sufficiently hot.

The study of WDM has drawn increasing attention during the last decade because

of its importance in understanding the convergence between condensed matter and

plasma physics. Recent experiments on thin gold films have suggested that electrical

and optical properties of metals in the WDM regime can be measured by performing

time-resolved measurements after the excitation of a metallic thin film by an XUV

pulse [33]. A deeper understanding of the ultrafast dynamics of phonons is essential

to study the above-mentioned relaxation of WDM to equilibrium, i.e., into the plasma

state. In this chapter we present microscopic calculations of the nonequilibrium phonon

spectra in the warm dense noble metals copper and silver, and discuss the implications

on their relaxation processes. Our observations are complementary to the previous

theoretical [48] and experimental [1, 40] studies, and provide a more comprehensive

view of the relevant structural dynamics of WDM. The main goal of this work is to

demonstrate that it is possible to study the information on femtosecond nonequilibrium

phonon dynamics of WDM.

3.2 Creation of warm dense matter by core-hole ex-

citation

Insight into the dynamical properties of WDM can be obtained by studying the XUV-

pulse-induced potential energy surface of the solid. As mentioned above, under strong



3.3 Theoretical modelling of the warm dense state 53

XUV excitation, the electronic temperature Te of solid dense copper and silver increases

to the order of 10,000 K (corresponding to the laser energy deposited) while the lattice

temperature Tl remains roughly unchanged. In addition, core holes may be generated.

We assumed that the interaction of an XUV pulse with copper and silver generates

one core hole per primitive unit cell by the excitation of core-level electrons [48]. At

room temperature and under ambient pressure, copper (silver) has a filled shell ionic

core [Mg] 3p6 ([Zn] 4p6). We simulated the excitation of core holes by removing one

core electron from a 3p3/2 orbital for copper and one electron from a 4p3/2 orbital for

silver, respectively, and adding it to the conduction band in order to maintain charge

neutrality (see figure 3.1). The schematic illustration of core hole generation from 2p

core state is sketched in figure 3.1. Core holes are very unstable and short lived, and

are expected to decay via Auger processes on a femtosecond-time scale. However, they

are excited again and again by the XUV pulse, making their influence non-negligible

during the pulse duration. For an ultrashort XUV pulse we expect copper and silver

atoms with one core hole to be close to their original lattice positions. So, at the

instant an XUV pulse interacts with copper or silver, the system is in an exotic, highly

ionized, yet crystalline state, of which the phonon spectrum is unknown.

3.3 Theoretical modelling of the warm dense state

Theoretically and computationally, recent advances in finite-temperature ab initio elec-

tronic structure methods enable to study the phonon dynamics of WDM. Taking into

account the above mentioned facts on core hole generation (Section 3.2), we explored

the dynamic evolution of the potential energy surface of WDM using accurate first

principle density functional theory (DFT) calculations. As the excited electrons and

the other electrons in the system feel the potential produced by the core hole, we

used the all-electron full-potential linearized augmented plane wave ab initio program

WIEN2k [51], which explicitly includes the core electrons, in order to compute self-

consistently screening effects and other changes in the total energy and atomic force

constants (AFC) of the system.

In order to obtain the AFC one must assume that interactions between the atoms

beyond a certain range are negligible. In our systems we neglected the forces beyond

the sixth nearest neighbor distance and an additional assumption, that fifth-neighbour

constants are negligible, was made since the sublattice containing the atom at (1
2
1
2
0)

contains two other atoms of the type (3
2
1
2
0) within the stipulated range. The force

constants were calculated by displacing an arbitrary (ith) atom from its equilibrium

position (Ri) along the α = z -direction by uαi = 0.122 and 0.139 a0 (a0 = Bohr radius)

in copper and silver, respectively. Then the AFC on the jth (Rj) atom Aijαβ can be
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obtained by,

Aijαβ = −
∂F β

j

∂uαi
, (3.1)

where F β
j is the force on the jth atom produced due to the displacement uαi of the ith

atom. The dynamical matrix of face-centered cubic (fcc) copper and silver over the

first Brillouin zone (BZ), Dαβ(q) was computed from the AFC within a supercell of

fixed volume containing 32 atoms using,

Dαβ(q) =
∑
j

Aijαβ exp(−iq . (Ri −Rj)), (3.2)

where q is the phonon wave vector. Diagonalization of Dαβ(q)/M , where M is the

atomic mass of copper or silver, gave us phonon frequencies ω2
i (q), i=1,. . .,3.

To study the effect of Te on the potential energy surface of WDM, the evolution of

the phonon spectrum as a function of Te was analyzed. We note that the electronic

occupation numbers immediately following XUV excitation may be different from the

Fermi distribution assumed in our present work. Even though electron-electron inter-

actions quickly thermalize the electrons, the initial nonthermal occupancies may have

a transient effect on the lattice properties that would be interesting to investigate but

is outside the scope of the present study. We performed our calculations with muffin-

tin radii of 2.11 a0 and 2.58 a0 on the basis of the criterium that no more than 0.01

core electrons should “leak out” of their muffin-tin spheres, and RKmax = 8 and 7 to

fix the size of the basis sets for copper and silver, using a sufficiently fine k grid of

14x14x14. We calculated the effects of various laser fluences by changing Te within the

framework of electronic-temperature-dependent DFT [52]. In addition, we analyzed

the nonequilibrium state existing in the presence of one core hole per atom as well as

hot electrons for the noble metals copper and silver.

3.4 Results

In order to study the structural dynamics of warm dense noble metals, we computed

both electronic and phonon band structures, densities of states, etc. The discussion

about the properties are the following:

3.4.1 Atomic force constants (AFC)

The theory of the lattice dynamics of crystals can be discussed in terms of AFC, the

force constants between different atoms in the lattice. The model is exact, in the sense
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Figure 3.2: Face centered cubic structure of a Cu crystal. The purple arrows indicate the

directions of atomic forces upto sixth nearest neighbors when the reference atom at (0,0,0)

is moved along the z direction to (0,0,u) by a small displacement u. The labels indicate

atomic force constants and are the same as in Table 3.I (room temperature).

that from a given complete and unique set of force constants, complete knowledge of the

eigenvalues and eigenvectors of the phonon spectrum can be derived. However, atomic

force constants are the best way of representing all the interactions in the crystal lattice

that give rise to its dynamics, particularly in metals.

We studied the phonon dynamics of noble metals in warm dense regime using the

AFC in the presence of core holes. Our computed AFC for copper and silver with

and without a core hole at two different Te are presented in Table 3.I. There are in

total eleven inequivalent AFC acting in our supercells [53], whose directions we show

in figure 3.2. Other than the fifth-neighbour constants, which are incorporated into

the first neighbour values, the 3XZ, 4XY and 6Y Z force constants do not appear in

the results because of cancellation as a consequence of symmetry about the reference

atom. Comparison of AFC in mHa/a20 determined by interplanar force constant de-

composition (Svensson et al [54]) and by decoupling transformation (Vanderwal [53])

with our computed AFC at room temperature (Table 3.I) indicates that they are in

very good agreement. The AFC label nαβ in Table 3.I refers to the displacement of the

reference atom in the direction α and the resulting force on the nth nearest-neighbor

atom in the direction β.

We further observed that all force constants upto sixth nearest neighbors are

changed in the core hole state, especially the forces on the first nearest neighbors
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Elements AFC
Svensson et al

(1967) results

Vanderwal

(1977) results

DFT results

Room

temperature
Cold core hole

Hot core hole

(30,000 K)

Cu

1ZZ -0.91 -0.74 -0.62 -2.80 -4.63

1XY 9.52 9.57 8.71 17.15 19.56

1XX 8.42 8.35 7.75 13.48 15.18

2XX 0.23 0.29 0.72 3.72 3.59

2YY -0.15 -0.07 -0.27 -0.74 -0.34

3XX 0.41 0.36 0.41 0.22 0.07

3YY 0.20 0.15 0.09 0.56 0.03

3YZ 0.12 0.17 0.15 0.05 -0.02

4XX 0.08 0.02 0.01 -0.55 0.04

4ZZ -0.19 -0.15 -0.02 -0.01 -0.01

6XX 0.09 -0.04 -0.01 0.31 -0.01

Ag

1ZZ -0.99 -3.16 -3.98

1XY 6.95 14.55 16.37

1XX 6.15 11.48 12.65

2XX 0.63 2.85 2.19

2YY -0.24 -0.58 -0.28

3XX 0.38 0.12 0.18

3YY 0.09 0.35 0.08

3YZ 0.13 -0.03 0.00

4XX 0.12 -0.38 0.04

4ZZ -0.02 -0.02 -0.01

6XX -0.02 0.18 -0.01

Table 3.I: Comparison of atomic force constants (AFC) in mHa/a20.
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Figure 3.3: Phonon dispersion spectrum of (a) copper and (b) silver. Black solid curves

show our results for room temperature, red solid curves at Te = 30,000 K without core hole.

Blue dashed curves represent the state with one core hole per atom and red dotted curves

are for the core-hole state with hot electrons at Te = 30,000 K.

(1ZZ, 1XY and 1XX) are affected most by the presence of a core hole and are play-

ing an important role in the phonon dynamics of noble metals. Apparently, the drastic

increase with Te in the AFC of the first neighbors are responsible for the phonon hard-

ening in warm dense copper and silver. From our Te-dependent calculations we found

that: The higher the excitation fluence, the greater the potential energy gradient and

the more intense the AFC, and thus results in the hardening of the potential energy

surface.

3.4.2 Phonon dispersion spectrum and bond hardening

In order to analyze the electronic-temperature-dependent potential energy surface, we

determined the phonon dispersion spectra of our systems with one core hole per atom

at various Te upto 30,000 K. In figure 3.3 we see that the presence of core holes affects
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Figure 3.4: Transverse (a) and longitudinal (b) acoustic phonon mode frequencies of

copper at the L-point in the BZ with one core hole per atom as a function of the electronic

temperature.

the materials in the same way as the presence of hot electrons alone [48], i.e., the AFC

of both copper and silver increase and all phonon modes harden. In the presence of a

core hole, however, the Te affects the bonds differently: Most of the phonon modes are

hardening and few of them are softening. In both copper and silver, all longitudinal

modes are showing hardening in the core-hole-excited state when Te is raised from

room temperature to 30,000 K (figure 3.3), but the transverse modes near the L- and

X-points in the BZ of copper and near the L-point in the BZ of silver are showing bond

softening compared to the spectrum with a core hole. In more detail, figure 3.4 shows

the temperature-dependent transverse and longitudinal acoustic phonon frequencies of

copper at the L-point in the first BZ with one core hole per atom. The transverse

acoustic (figure 3.4a) mode shows an increasing degree of softening with increasing Te
while the longitudinal acoustic (figure 3.4b) mode shows hardening upto 3000 K, then

undergoes a weak softening until 12,000 K and a sharp hardening afterwards. Averaged

over all modes in the first BZ the potential energy surface of both copper and silver

harden in the warm dense regime as a function of Te.

3.4.3 Electronic band structure

In solid-state physics, the electronic band structure of a solid describes the ranges of

band energy, that an electron within the solid may have. It successfully uses a mate-

rial’s band structure to explain many physical properties of solids, such as electrical

resistivity, optical absorption, etc. We have studied the electronic band structure of

copper and silver at room temperature without and with core holes [48]. We found that
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Figure 3.5: Electronic band structure of (a) copper and (b) silver in the electronic ground

state (black dashed) and in the presence of one core hole per atom (blue solid).

the electronic band structures of copper and silver are strongly affected by the core

hole. In figure 3.5 we plotted the influence of the presence of core holes on the elec-

tronic band structure of copper and silver with respect to the ground state. The ionic

coordinates are assumed to be in the initial crystal structure. The observed changes

due to the excitation are relative to the position of the bottom of the s bands, which

we keep fixed. In the presence of an extra positive charge, appreciable changes can be

mainly observed in the position of the core levels, which undergo a strong red shift of

several eV, which is almost independent of the wave vector q. The core levels of copper

(3p states) are showing significant red shift than that of silver (4p states). Moreover,

the s conduction band as well as the d bands are also strongly affected by the core

holes. The chemical potentials (EF ) are shifted upward in the presence of core hole

(µ).

3.4.4 Electronic and phonon densities of states

The strengthening of bonds in the warm dense regime of noble metals can be explained

from the AFC and densities of states. In figure 3.6 we plotted our computed electronic
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Figure 3.6: Electronic and phonon densities of states of copper (a and b) and silver (c and

d) at room temperature (black solid), in the presence of cold (blue dashed) and hot, Te =

30,000 K (red dotted) electrons with one core hole per atom.

and phonon DOS of copper and silver, both at room temperature and with cold and hot

core-hole states. The comparison reveals that the DOSs change considerably. In the

case of the electronic DOS (figure 3.6a and c), each of which we plotted with reference

to its own Fermi level, the presence of a core hole shifts the d bands towards lower

energies, while its width becomes significantly smaller, implicating that the 3d states

of copper and silver become more localized, when a core hole is excited [46]. The Fermi

levels move towards higher energy regions.

The noble metals show dramatic changes in the phonon DOS upon core hole and

its excited states. A blue shift appears in both longitudinal and transverse acoustic

modes (figure 3.6b and d) of copper and silver in the presence of core hole, however

there also appear a redistribution of weight resulting in a reduction of phonon DOS,

which means the phonon modes become less degenerate in the presence of cold and hot

core hole.
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3.5 Road of warm dense noble metals to the plasma

state

In many materials, when electrons are excited, the average bonding force is weakened

and the solid cannot maintain its crystal structure [10, 55]. In contrast, Mazevet et

al. [56] simulated a superheated state of ordered, electronically stabilized warm dense

gold and also found that its melting temperature increases in the laser-excited state [57].

From our work we realized that the average AFC of copper and silver become stronger

both in the cold and hot core-hole-excited state compared to the ground state. figure 3.3

shows that the lattice remains stable even at Te = 30,000 K. In general, the variation of

the effective interatomic potential should change the mechanical stability of the lattice,

but in the case of noble metals we found no indication of any phonon mode instability

both in the presence of core holes alone, and with core holes and hot electrons. So,

it is clear that nonthermal melting cannot be the pathway for the relaxation of warm

dense copper and silver. Instead, the laser-excited hardening of the phonon modes in

warm dense noble metals leads to conclude that these systems relax thermally into a

plasma state.

For the description of the plasma properties of WDM, the presence of an ordered

crystal lattice should be taken into account. We can expect that the crystal structure

will have an influence on the plasma properties that are related to the highly excited

lattice vibrations. In the case of WDM with a highly ordered crystal, the relaxation

is a faster process than in the gaseous plasma [58]. The experiments performed on

warm dense silicon [59] and aluminum [60] samples suggest a very low electron-phonon

coupling time. The electronic excitation of silicon weakens the covalent bonding, softens

the lattice, and results in an electronically driven disordered lattice [57]. Such a laser-

induced instability induces ultrafast nonthermal melting in silicon [50]. In the case

of nearly free-electron metals like aluminum, the lattice stability appears to be mostly

unaffected by the electronic excitation [57] and such solids shows thermal melting on the

picosecond time scale after the excitation [61]. In contrast, it is observed that in warm

dense copper, which was created without a core hole in Ref. [1], the energy exchange

rate between electrons and lattice vibrations is temperature dependent and is about 3

to 6 times faster [1] than the theoretically computed electron-phonon coupling constant

[2]. In analogy to the above-mentioned finding, that the electron-lattice relaxation is

more efficient in the solid than in the plasma phase [58], we suggest that the excess

stability of the lattice attained in copper and silver at higher Te due to an XUV or

laser excitation may be responsible for the fast energy exchange rate (electron-phonon

coupling constant) in warm dense noble metals.

We have theoretically studied a very transient, exotic state of highly ionized crys-

talline noble metals copper and silver. We observed how the electronic and phonon
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DOS as well as the electronic band structure and phonon dispersion spectra are changed

in core-hole states, both with cold and hot electrons. We found that the change in the

AFC of the first nearest neighbors due to the presence of core holes and hot electrons

cause the hardening of the potential energy surface. Redistribution of the electron

densities of states in the presence of core hole and after the increase of Te cause the

system to gain extra stability. Our observations demonstrate that the relaxation of

WDM and the equilibrium state reached after the relaxation depends on the structural

dynamics. This work is a first step towards a more complete theoretical understanding

of ultrafast structural dynamics of warm dense noble metals. The method presented

here is applicable to study the potential landscape and temperature relaxation in highly

nonequilibrium solids and WDM systems.



CHAPTER 4

Transient phonon vacuum squeezing

due to femtosecond-laser-induced

bond hardening in noble metals

4.1 Introduction

Vacuum squeezing is a fundamental quantum mechanical effect involving a state in

which the uncertainty in one of two conjugate variables drops below that of the vac-

uum state. It is mathematically characterized by a nonpositive Glauber-Sudarshan P

distribution [62] and has no classical analogue. At absolute zero the atoms in a crystal

undergo quantum oscillations about their equilibrium positions, in which the motions

obey Heisenberg uncertainty principle. These oscillations are equivalent to vacuum

fluctuations which is the fundamental limit of any measurements.

Photons have been squeezed strongly with squeezing factors close to 1 [64] towards

applications in the fields of quantum communication [65] and gravitational wave detec-

tion [66,67]. A variety of squeezed states were proposed for other bosons, in particular,

those associated with atomic vibrations in quantum dots [68,69], quantum wells [70,71],

molecules [72,73], and polaritons [74,75]. In crystals, the excitation and measurement

of squeezed phonons can be of great importance for fundamental explorations and for

studying the ultrafast dynamics of excited states on atomic length scales [76, 77], but

it is hard to achieve.

Seventeen years ago it has been shown that in transparent solids, femtosecond-

laser excitation can lead via second-order Raman scattering to a squeezed phonon

state [3, 4, 78]. However, this excitation mechanism is very weak, which explains why
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Figure 4.1: Illustration of real-space squeezing. Black curves represent potential energy

surfaces and blue shaded are phonon wave packets.

the maximum reported squeezing factor is only of the order of 10−6 [4, 78]. Recently,

squeezed states have also been observed in an opaque semimetal, where, however, as

a consequence of laser-induced bond softening the variance of the atomic displace-

ments (the expectation value of the square of the displacement minus the square of

the expectation value of the displacement — mean-square displacement) increases and

consequently does not drop below that of the vacuum state [5]. In the present study,

we theoretically explore the possibility of generating vacuum squeezed longitudinal

phonons at different points in the Brillouin Zone (BZ) of copper and silver (point group

Oh), which is shown in the inset of figure 4.2, in contrast to semimetals, bond hard-

ening after ultrashort laser excitation [48]. After presenting the quantum mechanical

origin of the femtosecond-laser-induced increase of phonon frequencies, we demonstrate

under which excitation conditions a sizeable vacuum squeezing effect results and we

point out how this phenomenon could provide the first direct experimental evidence of

femtosecond-laser-induced bond hardening in metals.

4.2 Physical picture of vacuum phonon squeezing

In general, the interaction of a femtosecond-laser pulse with a solid produces hot elec-

trons and holes, which lead to changes in the interatomic potential. Consequently

the vibrational spectrum changes, giving rise to many interesting ultrafast structural

phenomena [79, 80]. In metals, an intense laser pulse typically excites the electrons to

temperatures of the order of 10,000 K, which thermalize with the lattice within a few

picoseconds by electron-phonon collisions.
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Microscopically, vacuum phonon squeezing means a breathing of the width of the

phonon wave packet. In bond-softening materials, for example, semiconductors and

semimetals [6,81] the laser-induced potential is shallower than in the electronic ground

state. So, the phonon wave function, whose width is at sufficiently low ionic temper-

ature initially equal to the zero-point motion 〈Q2
0K(0)〉 and which is afterwards char-

acterized by the expectation value 〈Q2(t)〉, where Q is the phonon normal coordinate,

is immediately following the femtosecond-laser pulse too narrow for the laser-modified

potential. Therefore, it starts to broaden in an oscillatory fashion as follows from the

time-dependent Schrödinger equation. After a quarter of a phonon period, the wave

packet expanse in real space, the mean-square width, reaches a maximum and after

half a phonon period, the wave packet reaches its minimum width, which, however, is

not narrower than the initial state. Therefore the squeezing factor

S = 1−

√
〈Q2(t)〉
〈Q2

0K(0)〉
(4.1)

with respect to the 0 K mean-square width before laser excitation 〈Q2
0K(0)〉 cannot

become positive in this case, which is the hallmark of vacuum phonon squeezing in

real space. We note that the variance of the conjugate variable of Q, the phonon

momentum P , which behaves oppositely, might squeeze below its 0 K width follow-

ing femtosecond-laser-induced bond softening. In contrast, noble metals show laser-

induced bond hardening, which is equivalent to a laser-modified potential that is nar-

rower than the ground-state potential. In this case we found that the wave packet may

initially squeeze in real space with S > 0, depending on the degree of phonon hardening

and the incoherent rate of energy transfer from the hot electrons to the lattice, which

are both functions of the excitation fluence. If the phonon is not squeezed the variance

should be a constant.

A cartoon of the physical concepts discussed before about the vacuum phonon

squeezing in the case of laser-induced bond hardening materials is shown in figure

4.1. (A) Initially, the probability distribution corresponds to the ground state. (B)

At a time t =0 the frequency of the oscillation suddenly changes to a higher value

due to change in potential energy surface. (C) Now the wavefunction is no longer an

eigenstate of the initial state, and the width of the probability distribution in real-

space is “squeezed” to a smaller value than the width of the ground state probability

distribution for the new, hardened potential. (D-F) The wavefunction evolves in time,

resulting in an oscillation in the width of the probability distribution, depending on

anharmonicities and phonon-phonon coupling.
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4.3 Origin of bond hardening in noble metals

Figure 4.2: Ab initio computed longitudinal L- and X-point phonon frequencies in

femtosecond-laser excited silver as a function of the laser-induced electronic temperature.

The inset shows the first Brillouin zone of silver.

Recent theoretical [27, 57] and experimental [40] studies on noble metals predict a

hardening of phonon modes after electronic excitation on extremely short timescales,

shorter than the equilibration between the excited electrons and the lattice, which lasts

picoseconds [82], in contrast to most of the materials, in which electronic excitation

either softens or does not substantially effect the interatomic potential. figure 4.2 il-

lustrates this for the longitudinal L- and X-point phonons in silver. Since the lattice

vibrational frequencies have changed after excitation, the system no longer evolves in

the ground-state potential and a perturbing potential arises from the atomic displace-

ments. In particular, the atomic motions along longitudinal phonon directions cause

the electronic distributions from neighboring atoms to increase their overlaps. As a

result the bands broaden and the electronic density of states (DOS) changes. In order

to quantify these changes we computed the DOS of silver in the ground state with and

without atomic displacements along a longitudinal phonon direction. In both cases a

high DOS peak between -6.5 and -2.5 eV below the Fermi level arising from the disper-

sion of the 4d electrons is superimposed on a lower and broader distribution starting

at -8 eV belonging to the half-filled 5s band. We studied the difference in DOS in

the central region of the s band (figure 4.3). The negative difference in DOS indicates

that electrons in the 5s band are distributed over a wider energy range, away from

the Fermi energy, when the atoms are displaced. Before laser excitation the phonon

potential energy is a parabola, whose second derivative is proportional to the square

of the phonon frequency. After femtosecond-laser excitation, the atoms move on a
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laser-excited potential energy surface, viz, Mermin’s free energy of the electrons at a

constant high electronic temperature Te. The relationship between the ground-state

potential energy surface and the laser-excited phonon potential can be approximately

described by a Sommerfeld expansion [84],

U(Te) ≈ U(0)− π2

6
(kBTe)

2 DOS(EF ), (4.2)

where kB is Boltzmann’s constant and DOS(EF ) is the electronic DOS at the Fermi

energy. Because of the smaller electronic DOS at finite displacement, Mermin’s free

energy decreases less with increasing displacement after laser excitation leading to a

steepening of the potential energy versus displacement, which is the origin of bond

hardening in noble metals. It illustrates the strong correlation between electronic

structure and lattice bonding. At electronic temperatures Te ∼ 2000−8000 K, at which

our studies are concentrated, we found that the excitation of 5s electrons dominates

the phonon hardening. This is in agreement with the finding of Ref. [2] that at these

electronic temperatures, the electronic structures of noble metals resemble the free

electron gas model, where only the s-band electrons overlap. At higher Te, of the order

of ∼ 10,000 K or more, a significant amount of d-band electrons is additionally excited,

which — we found — contributes also to the bond hardening at very high fluences.
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Figure 4.3: The difference in electronic ground-state DOS of silver around the centre

of the half-filled 5s band, between without (black dashed) and with (green solid) atomic

displacements in the direction of the L-point longitudinal phonon mode. Grey vertical line

indicate the Fermi energy.

If the change of phonon frequency after femtosecond-laser excitation occurs on a

time scale much faster than the period of lattice vibrational modes, dynamics of the

variance of the atomic positions from their average values can result.
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4.4 Time-dependent variance

For studying the possibility of vacuum phonon squeezing in laser-excited noble metals,

it is necessary to calculate the time-dependent variance of the atomic displacements

for coherent lattice oscillations and incoherent electron-phonon coupling.

4.4.1 Coherent atomic displacements

Time-dependent variance of the coherent laser-induced atomic displacements in the

direction of particular phonon modes with wavevector q and branch index λ quantum

mechanically using [5]:

〈Q2(t)〉coh =
~M

2

∑
λ′

ωiqλ′
∣∣ε∗qλ · εiqλ′∣∣2 [(cosωqλt

ωiqλ′

)2

+

(
sinωqλt

ωqλ

)2]
, (4.3)

where ~ is Planck’s constant, M is the atomic mass of copper or silver, and ωiqλ (ωqλ)

and εiqλ (εqλ) are phonon frequencies and eigenvectors in the ground (laser-excited)

state, which we calculated using state-of-the-art all-electron DFT methods.

The interatomic force constants of ground and excited states are computed by per-

forming electronic-temperature dependent DFT [85] calculations using the all-electron

full-potential linearized augmented plane wave code WIEN2k [51]. The calculations

are done within a supercell of 32 atoms [53] by displacing an arbitrary atom from its

equilibrium position along the z -direction by 0.122 and 0.139 a0 (a0 = Bohr radius)

in copper and silver, respectively. We chose the muffin-tin radii of 2.11 a0 and 2.58

a0, and RKmax = 8 and 7 to fix the size of the basis sets for copper and silver with a

14x14x14 k grid. The phonon eigenvalues and eigenvectors are obtained from the re-

sulting dynamical matrix. For more converged results we have calculated the phonon

frequencies upto 5 million k-points by using a computationally less time consuming

non-self-consistent method [7, 84].

4.4.2 Incoherent electron-phonon coupling

In addition to the coherent oscillations of equation 4.3 there is an incoherent heat

transfer from the hot electrons to the lattice, which we included by simulating the

evolution of the lattice and electronic temperatures, Tl and Te, in laser-excited copper

and silver using the coupled equations of the two temperature model (TTM) [2,86],

Ce
∂Te
∂t

= −G(Te − Tl), (4.4)
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Figure 4.4: (a) Electron and lattice heat capacities of (a) copper and (b) silver as a function

of their respective temperatures.

Cl
∂Tl
∂t

= G(Te − Tl), (4.5)

where Cl(Tl) and Ce(Te) are respectively the lattice and electronic heat capacities

and G(Te) is the electron-phonon coupling factor. Note that Ce and G depend on

the electronic temperature and that equations 4.4 and 4.5 consider only the temporal

dependencies Tl(t) and Te(t) and do not include their depth dependence, describing

noble metals in a thin film geometry [40].

TTM model accounts for the laser excitation of the conduction band electrons and

subsequent energy relaxation process. To solve the equations of the TTM, we computed

the heat capacities of electrons and phonons from our DFT results. The electronic heat

capacity Ce(Te) calculated from the band energy Eband using:

Ce(Te) =
∂Eband
∂Te

, (4.6)

in which Eband is calculated by Eband =
∑

m n(εm) · εm, where n(εm) is the occupation

number of the electronic Kohn-Sham level εm. The lattice heat capacity Cl(Tl) is given

by

Cl(Tl) =
∂E

∂Tl
. (4.7)

The total energy of phonons E at temperature Tl in a crystal can be written as the

sum of the energies over all phonon modes, E =
∑

qp〈nqp〉~ωp(q), where 〈nqp〉 is the

occupancy of phonons of wave vector q and mode p (p=1,. . ., 3N) with N number

of atoms in a unit cell. figure 4.4 shows the temperature-dependent heat capacities of

copper and silver. According to Dulong-Petit theory, when the temperature is above the
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Figure 4.5: Evolution of electron and lattice temperatures after a laser excitation heating

the electrons to 3750 (5500) K for (a) copper ((b) silver). The insets show the indicated

regions enlarged.

Debye temperature (TD = 343.5 K for copper and 215 K for silver), the heat capacity

is very close to the classical value 3NkB. For temperatures below TD, quantum effects

become important and Cl(Tl) decreases to zero. From figure 4.4 one can see that the

lattice heat capacities approaches to classical limit when the temperature is raised

above TD. The electron-phonon coupling data to solve the TTM used from Lin et

al. [2, 87].

From the time-dependent lattice temperature we estimated the increase of the vari-

ance of phonons with quantum numbers {q, λ} due to incoherent lattice heating in the

harmonic approximation to be

∆〈Q2(t)〉incoh =
~

2Mωqλ

[
coth

(
~ωqλ

2kBTl(t)

)
−1

]
. (4.8)

We found that the lattice heats rather rapidly. For example, in copper (silver) a

particular laser excitation heating the electrons to 3750 (5500) K, heats the lattice to

178 (124) K with an average heating rate of 0.18 (0.12) K/fs during the first 1 ps. See

insets of figure 4.5(a) and (b)

4.4.3 Total variance

The total variance of squeezing and lattice heating is given by

〈Q2(t)〉tot = 〈Q2(t)〉coh + ∆〈Q2(t)〉incoh. (4.9)
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20,000 K, red solid curve) intense femtosecond-laser excitation.

Clearly, the incoherent lattice heating leads to an increase of the mean-square atomic

displacements counteracting the squeezing effect. As we will show below, our cal-

culations indicate that vacuum phonon squeezing can nevertheless be induced by a

femtosecond-laser pulse.

4.5 Results

Femtosecond-laser pulses are known to induce bond hardening in noble metals [40,57],

but little is known about its origin and consequences. The following are the discussion

on bond hardening and important results obtained, as a consequence of bond hardening

in copper and silver.

4.5.1 Phonon dispersion spectrum

In order to confirm femtosecond laser-induced bond hardening in copper and silver over

all points on the Brillouin zone (BZ), we calculated the full phonon spectra before and
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after laser excitation by performing first principles density functional theory (DFT)

calculations. We calculated the effects of various laser fluences by changing Te within

the framework of electronic-temperature dependent DFT, and found that all phonon

modes of both copper and silver harden as a function of Te in the laser-excited potential

(see figure 4.6). This is opposite to the behavior of most materials, which soften when

electrons are excited. We obtained the greatest hardening at the L-point longitudinal

mode, which frequency changes from 7.072 THz to 8.002 THz in copper and from

4.81 THz to 5.24 THz in silver, as Te is elevated from room temperature to 20,000 K.

Copper and silver are group 11 elements in the periodic table together with gold, which

is so far the only element for which substantial laser-induced bond hardening has been

observed [40].

4.5.2 Vacuum phonon squeezing: Average over first BZ

The time-dependent variance of the atomic displacement is observable from the time-

resolved diffraction intensities through structure factors using time-dependent Debye-

Waller theory [5, 40, 88]. Averaging over the first BZ, from equation 4.9 we found

that the phonon squeezing is completely swamped by the effect of lattice heating. For

example, in the case of silver after a laser excitation heating the electrons to 6000
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K (figure 4.7), we found that coherent displacement 〈Q2(t)〉coh decreases by 0.07%

(green line in figure 4.7) due to phonon squeezing after 54 fs, whereas lattice heating

∆〈Q2(t)〉incoh increases it by 14.48% (red line in figure 4.7) relative to the zero-point

motion of the ground state potential. So, the incoherent lattice heating dominates the

phonon squeezing.

4.5.3 Vacuum phonon squeezing: L- and X-points of longitu-

dinal acoustic mode

Recent progress in time-resolved diffuse X-ray scattering techniques permits to ex-

plore the non-equilibrium lattice dynamics of particular phonon modes as well [89], by

tracking both the average and mean-square displacement of atoms after intense laser

excitation. Encouraged by this new development we studied the possibility of observ-
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ing vacuum squeezing of longitudinal phonon modes at the L- and X-points in the BZ,

which show a relatively large hardening after femtosecond-laser excitation (figure 4.6).

The atomic displacements of the above mentioned points are illustrated in the insets

of figure 4.8, whose main figures show the variance of the atomic displacements at the

L- and X-point longitudinal modes of copper (silver) for an intense femtosecond-laser

excitation leading to Te = 3750 and 2500 (5500 and 4500) K. We see that immediately

after the laser excitation 〈Q2(t)〉tot dips below the zero-point motion (shaded regions

in figure 4.8). The lowest values of 〈Q2(t)〉tot have been reached after 30 (L-point) and

25 (X-point) fs in copper, and in both points after 40 fs in silver, they are denoted

by filled symbols, which are the points with the greatest squeezing factors. Here we

would like to mention that the TTM allows us to estimate the temperatures of the

electrons and phonons averaged over all q vectors. However, the coupling strength of

electrons with the lattice varies from point to point in the BZ and it is impossible to

resolve a particular phonon mode using the TTM. In addition, even 40 fs are far too

short for reaching thermal equilibrium among the lattice degrees of freedom [50, 89].

Consequently, at some points in the BZ, our approach based on the TTM is bound to

underestimate the effects of lattice heating, while at other points it may overestimate

∆〈Q2(t)〉incoh. As our results indicate that vacuum phonon squeezing can be induced

at different points in the BZ of copper and silver, we expect that the TTM, which pro-

vides the best currently available theoretical description of incoherent lattice heating,

yields at least qualitatively correct order of magnitude predictions.

4.5.4 Squeezing factor

We repeated our simulations of femtosecond-laser-induced phonon squeezing for differ-

ent excitation densities. The dependencies on electronic temperature of the momentum-

resolved maximal squeezing factors for copper and silver at the L- and X-point longi-

tudinal modes are shown in figure 4.9. We see that the squeezing factors increase with

Te up to a certain maximum value, after which they start to decrease. This decline is

caused by the Te dependencies of the electron-phonon coupling factor, which is nearly

constant up to the temperature of ∼ 3500 K for copper and ∼ 5000 K for silver, and

shows a significant strengthening at higher temperatures due to the thermal excitation

of d band electrons (see figure 4.10) [2]. Vacuum squeezing in real space takes place

only if S > 0. We found an optimal squeezing factor of 0.0019 (0.0014) at the L-point

longitudinal mode of copper (silver) at Te = 3750 (5500) K, which are three orders of

magnitude greater than the previously reported quantum squeezing in a transparent

KTaO3 crystal [4]. From figure 4.8 it is clear, that the total variance dips steeper below

the zero-point motion for the L-point than for the X-point in both copper and silver.

In agreement, the greatest hardening occurs at the L-point compared to other phonon
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wave vectors (see figure 4.6). In addition to the ultrafast bond hardening, which is a

necessary condition for the achievement of vacuum squeezing, it is important to realize

that squeezing can only overcome the lattice heating if copper (silver) is excited by an

ultrafast pulse clearly shorter than the timescale of phonon squeezing, i.e., below 30

(40) fs.
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4.5.5 Direct evidence of bond hardening

Previously, ab initio calculations have predicted that hardening of phonon modes in

gold due to increased Te results in an increase of the melting time [40, 57], which

provides strong evidence of bond hardening. The above mentioned observed delay in

the melting time is small for aluminum, but has been shown to become large for gold

[40]. We expect that such significant delay in melting should also be observable in silver.

The conclusion that there is bond hardening on the basis of delayed melting relies,

however, on electronic and lattice heat capacities and on the electron-phonon coupling

parameter, which are calculated functions of the electronic excitation, and is therefore

indirect. In contrast, the time-dependent variance of the atomic displacement is directly

observable from the time-resolved diffraction intensities through structure factors using

time-dependent Debye-Waller theory [5,40,88]. Recent progress in time-resolved diffuse

X-ray scattering techniques permits to explore the non-equilibrium lattice dynamics of

particular phonon modes as well [89, 90]. Measuring vacuum squeezing in real space

by means of diffuse background scattering would thus provide direct evidence of bond

hardening, because the coherent part of the squeezing (equation 4.3) depends only on

the laser-modified potential.

Ultrafast electron and X-ray diffraction enable the direct observation of atomic mo-

tions with a time resolution of a few hundred femtoseconds or better. Using the above

technique, it was found that the variance of the atomic displacements in bismuth [5]

after femtosecond-laser excitation first grows and then performs a damped oscillation,

both processes caused by the laser-induced changes of bond strengths. The above men-

tioned experiments were performed close to room temperature, so that the product of

the variances of the conjugate phonon variables stayed well above the limit provided

by the Heisenberg uncertainty principle (see figure 2(c) in [5]), but it has been antici-

pated that ultrafast-laser induced changes in the bond strengths at low temperatures

may induce a vacuum phonon squeezed state [5]. Bismuth, however, exhibits laser-

induced bond softening [6,81], which leads to an initial broadening of the phonon wave

packet preventing vacuum squeezing in real space. Based on this and on the general

fact that intense laser pulses produce a rapid lattice heating through electron-phonon

interactions [86], one might be tempted to conclude that vacuum phonon squeezing

in absorbing materials is not possible. Nevertheless, we found that copper and silver

show, in contrast to bismuth, bond hardening upon ultrashort-laser excitation [48,91].

Our maximum predicted vacuum phonon squeezing factor in noble metals is of the

order of 10−3. Provided one could find materials with greater bond hardening or a

smaller electron-phonon coupling factor it might be possible to improve this result by

one or two orders of magnitude. Although we have in this work concentrated on copper

and silver, because the behaviour of their bonding properties upon laser excitation was
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unknown, based on their chemical and physical similarities we expect that vacuum

phonon squeezing could also be achieved in gold.
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CHAPTER 5

Decay of coherent phonons in anti-

mony

5.1 Introduction

Developments in time- and angle-resolved optical spectroscopy [92, 93], and time-

resolved diffraction techniques [94] using powerful femtosecond-pulsed lasers now allow

direct time domain investigations of phonon motion, and phonon-phonon and electron-

phonon couplings. The interaction of a femtosecond-laser pulse with a material leading

to sudden changes in the potential energy surface, may give rise to many interesting

ultrafast structural phenomena, such as, generation of coherent phonon oscillations,

thermal phonon squeezing, nonthermal melting, etc.

Irradiating a solid with an ultrashort laser pulse will make the selected phonons,

which normally vibrate with random phases, oscillate in phase. This is called the

coherent excitation of phonons, which is a general phenomenon occurring whenever

ultrashort laser pulses interact with solids. A necessary condition to produce coherent

phonons is the availability of Raman-active transitions and a laser pulse with pulse

duration less than the oscillation period of phonons. In quantum mechanics, the co-

herent state is a minimum uncertainty state and its fluctuation properties are like those

of the vacuum state. However, laser-excited coherent phonons involve the motion of

all or a macroscopic number of atoms in a solid and can safely be treated classically.

In crystals, the excitation and measurement of coherent oscillations can be of great

importance for fundamental explorations and for studying the ultrafast dynamics of

the excited states on atomic length scales. The magnitude and dynamics of coherent

phonons will depend on the specifics of the electronic structure and electron-phonon,

and phonon-phonon interactions of the material.
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Figure 5.1: (a) Crystal structure of antimony. The second atom along the trigonal axis is

marked in green color. (b) In the A1g phonon mode the atoms move in the direction of the

trigonal axis. (c) In the two doubly degenerate E1g phonon modes the atoms move in the

perpendicular plane.

Antimony (Sb) has been the focus of many studies of high amplitude coherent

phonon generation because it has higher melting point than for example Bi, which

makes Sb more resilient to ultrashort laser irradiation. In Sb the coherent phonon

generation is due to a displacement of A1 symmetry of the ion quasi-equilibrium coor-

dinate produced by electronic excitation, which is the displacive excitation of coherent

phonons. The aim of this work is to provide a better description of phonon dynamics

in laser-excited Sb on the picosecond time scale.

5.2 Crystal structure of Antimony (Sb)

Sb is group Vb semimetal with rhombohedral A7 [95] crystal structure, with lattice

parameters a = 4.3007 Å, c = 11.2221 Å and α = 57.1075◦, which can be derived from

a simple cubic lattice rombohedrally distorted along the body diagonal. The direction

of the trigonal axis is usually chosen as the z-axis. There are two atoms in the unit

cell, the second located a fractional distance z along the trigonal axis. The center

of the inversion symmetry lies midway between these two atoms. In its equilibrium

configuration the internal displacement parameter, z = 0.2336, instead of 0.25 in the
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original cubic lattice. If z = 0.25, i.e., half way along the trigonal axis and α = 60◦,

this would be a simple cubic structure with one atom per cubic unit cell. The observed

deviation from cubic symmetry is caused by the so-called Peierls distortion, introducing

a small band gap over a certain range in the Brillouin zone, which is responsible for

several characteristic properties of Sb. A unit cell of Sb is shown in figure 5.1(a).

5.3 Phonon modes in Sb

Having two atoms in each unit cell, Sb has six phonon branches, three acoustic and

three optical phonons. The optical phonon modes are Raman active, namely one totally

symmetric A1g mode, which is the Peierls distortion mode parallel to the trigonal axis

and two doubly degenerate Eg modes, which are perpendicular to the trigonal axis. The

motion of atoms in a unit cell corresponding to each mode are schematically shown in

figure 5.1(b) and (c).

5.4 Coherent phonon generation

The strong coupling between the A1g phonon mode and the excited electrons lead to

a predominantly displacive generation of coherent A1g phonon in Sb [96]. Displacive

excitation (see figure 5.2) was proposed for the totally symmetric modes in opaque ma-

terials. Because of the Peierls distortion, which is of electronic origin, the equilibrium

structure of Sb is very sensitive to the excitation of electrons. When the electrons are

excited, the structure relaxes towards the more symmetric configuration. That means

the value of z shifts towards the value 0.25, with increased excitation. This cause the

changes in atomic position in Sb after laser excitation, so that the atoms oscillate about

their new equilibrium positions. The strong coupling between the A1g phonon and the

excited electrons leads to the generation of large amplitude coherent phonons. The

phonon-phonon interaction processes can cause a gradual decay of coherent phonon

oscillations. This is because of the interaction between the phonon modes result in

the decay of a phonon into other phonon modes. The rate of decay depends on how

strongly the phonon modes are coupled.

The coherent phonon generation is schematically illustrated in figure 5.2. Before

the laser excitation the atoms are at the equilibrium positions (z) of the ground state

potential. Interaction of a femtosecond laser pulse with a solid results in an abrupt

change in the free energy of the crystal lattice, which responds to the new excited

electronic state by moving towards a new equilibrium position z
′
. Such atomic dis-

placement in a crystal after laser excitation induces the coherent oscillations of the
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Figure 5.2: Schematic illustration of coherent phonon generation. (a) The curves show

the potential energy surface of ground and excited electronic states along the trigonal axis.

The vertical arrow indicates the transition of the atom from the ground to excited state.

(b) The atom starts to oscillate coherently around the new equilibrium position z
′

in the

excited state.

atoms around their new equilibrium positions. Figure 5.2(b) represents the coherent

phonon oscillation around new equilibrium position z
′
.

We performed studies on the decay of coherent phonons in femtosecond-laser-excited

Sb. The dynamic evolution of the excited state potential energy surface along the A1g

phonon coordinate is explored using accurate molecular dynamic simulations. In our

work, the oscillations of the A1g mode are calculated from the variation of the parameter

z.

5.5 Methods

We performed a microscopic theoretical study of the coherent phonon in Sb upon

laser excitation using electronic-temperature-dependent density functional theory. In

order to be able to study a sufficiently large supercell we developed our own Code for

Highly-excIted Valence Electron Systems (CHIVES) (see section 2.6.3) [28], which uses

norm conserving Goedecker-Teter-Hutter relativistic pseudopotentials [23]. CHIVES

provides a more natural description of ultrafast phenomena and is orders of magnitude

faster than other existing codes [97]. We used a primitive Gaussian basis set for Sb
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with exponents a1 = 1.73466 a−20 (s orbital), a2 = 1.17728 a−20 (s and p orbitals), a3

= 0.24788 a−20 (s p and d orbitals) and a4 = 0.06955 a−20 (s and p orbitals) together

with a regular three dimensional grid to describe the Hartree, exchange and correlation

potentials, and the local density approximation. For our systems we used 2x2x2 k-grid.

Two approaches based on an ab-initio calculations [6, 27] have been proposed to

describe the nonequilibrium electron distributions. In Ref. [6] it was assumed that

electrons and holes can be described by two Fermi-Dirac distributions with the same

temperature but different chemical potential. While in Ref. [27] it has been assumed

that electrons and holes can be described by a unique Fermi-Dirac distribution. For Sb

we used the second method with single chemical potential for both electrons and holes

because Giret et al. [98] firmly establish that a single chemical potential approach,

which is reliable for describing the excited electrons and provides a complete scenario

for the generation of coherent phonons in solids with A7 crystal structures.

Figure 5.3: Antimony supercell with 192 atoms.

To study the coherent phonon dynamics we performed molecular dynamics simula-

tions on supercells with N = 72, 144 and 192 atoms. In figure 5.3 we show the atomic

positions of our 192 atom supercell. To get the equilibrium positions, we relaxed each

supercell to the minimum potential energies possible. All phonon modes of Sb are cal-
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culated by displacing an arbitrary atom from its equilibrium position by 0.001 a0 along

x, y and z directions. Using the computed forces on all the atoms and the symmetry

of the lattice we constructed the 3Nx3N dynamical matrix, whose orthonormal eigen-

vectors ei are phonon directions, which are directly related to the phonon eigenvectors

εi, and obtained the phonon frequencies νi from the eigenvalues. Using the computed

forces in the velocity Verlet scheme, we performed molecular dynamics simulations with

a time step of 5 fs. We initialized and scaled the atomic velocities υ and displacements

u in the direction of εi, using inverse transform sampling and 6N true random numbers

ri lying uniformly on [0,1] so as to reproduce a Maxwell-Boltzmann distribution with

initial lattice temperature T
(i)
l = 0.95 mHa (300 K), using

υ
(i)
i =

√
2kBT

(i)
l f(2ri − 1), i = 1, ....., 3N (5.1)

u
(i)
i =

√√√√2kBT
(i)
l

ω
(i)2
i

f(2ri+3N − 1), i = 1, ....., 3N (5.2)

where f is the inverse error function, ω = 2πν and the superscript (i) represent the

initial values before laser excitation. And are scaled by

υ
(i)
i = α υ

(i)
i , (5.3)

u
(i)
i = αu

(i)
i , (5.4)

where α is the scaling factor calculated from the total energy of the system,

α =

√√√√ 3
2
(N − 1) kB T

(i)
l

M
2

∑
i [ υ

(i)
i

2
+ ωi2 u

(i)
i

2
]
. (5.5)

Before applying a femtosecond-laser pulse, we thermalized each supercell at room

temperature using initialized atomic velocities and displacements. Then, we let the

system evolve for a sufficiently long time, until the initial kinetic energy is fairly dis-

tributed between kinetic and potential degrees of freedom. The lattice temperature Tl
and its time average 〈Tl(0 : t)〉 (figure 5.4) are calculated at each step of thermalization

using,

Tl(t) =

∑N
i=1

1
2
Mv2i (t)

3
2
(N − 1)kB

. (5.6)

The evolution of interatomic coordinate z(t) during the thermalization process are

studied from:

z(t) =
1

N

N∑
i=1

(−1)i ∆zi(t). (5.7)



5.5 Methods 85

0 50 100 150 200 250

250

300

350

0 50 100

250

300

350

L
a

tt
ic

e
 t

e
m

p
e

ra
tu

re
 (

K
)

0 50 100

Time (ps)

250

300

350

72 atoms

144 atoms

192 atoms

Figure 5.4: Thermalization dynamics: Time-averaged lattice temperature for different

supercells. Thermal equilibrium is reached after ∼ 20 ps (filled symbols).

The time average of interatomic coordinate 〈z(0 : t)〉 is shown in figure 5.5. We found

that the systems thermalized after ∼ 20 ps (see figure 5.4 and 5.5). We performed

molecular dynamics simulations at every 1 ps snapshots from themalization after 20

ps. Starting from these snapshots we increased the electronic temperature Te in order

to simulate the effects of femtosecond-laser excitation on Sb at various fluences. We

averaged our results of molecular dynamics simulations over the number of independent

runs (Nruns),

z̄(t) =
1

Nruns

Nruns∑
i=1

zi(t), (5.8)

where z̄(t) is the mean value of the internal coordinate z at a time t and zi(t) is the

value in the ith run at time t. The time-dependent errors ∆z̄(t) for the displacement

were calculated from

∆z̄(t) =

√∑Nruns
i=1 [zi(t)− z̄(t)]2

Nruns(Nruns − 1)
. (5.9)
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Figure 5.5: Thermalization dynamics: Time-averaged internal coordinate z for different

supercells.

In our simulations, the initial Tl was set to 300 K and Te after femtosecond-laser

excitation varied from 1000 to 4000K. We used the frozen phonon method to investigate

the effect of anharmonicity of the A1g phonon mode. The laser-induced shift (z
′′
)

of potential minimum along the z-direction is studied from the anharmonic coupling

between the phonon modes using the equation (see Appendix B for derivation),

dV ph−ph =
1

2
kBTl

3N−1∑
i=4

1

(ω2
i )

∂(ω2
i )

∂(z′′)
dz
′′
, (5.10)

by integrating equation 5.10 with respect to z
′′

one will get the potential energy of the

phonon modes V ph−ph as the following,

V ph−ph =
1

2
kBTl

3N−1∑
i=4

ln(ω2
i ) + C , (5.11)

where ω is the coherent phonon frequency, and C is an integration constant. Here

we would like to mention that the higher harmonics [99] arising from the coupling
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between phonon modes in Sb would be interesting to investigate but is out of the scope

of present study.

As mentioned before, the coherent phonon oscillation can be directly determined by

plotting z as a function of time, which is equivalent to projecting the atomic coordinates

onto the A1g phonon eigenvector. The frequencies, amplitudes, shifts in z and decay

times of the coherent A1g mode at various Te for different supercells were determined by

fitting the time-domain data to a damped harmonic oscillation with a single exponential

decay:

Φ(t) = A0 + A exp(
−t
τ

) cos(ωt), (5.12)

where A0 is the shift in z, A is the amplitude, ω is the frequency and τ is the decay

time of the coherent phonon oscillations.

5.6 Results

Femtosecond-laser induced changes in potential energy surfaces, coherent phonon dy-

namics and phonon-phonon coupling of Sb are studied from molecular dynamics sim-

ulations using the code CHIVES. The following are the important results obtained:

5.6.1 Femtosecond-laser induced Coherent phonon dynamics

From thermalization dynamics we observed that the system reaches thermal equilib-

rium after a particular time (∼ 20 ps). After 20 ps the equilibrium ionic temperature

reached a constant value in the range of 294-296 K (see figure 5.4). We investigated the

phonon dynamics in laser-excited Sb below the limit of a structural phase transition.

Table 5.I: The single exponential fitting parameters of A1g phonons for different supercells

at Te = 3000 K.

Supercell

(N)

Number of

runs Nruns

Shift (A0)

z

Amplitude (A)

z

Frequency ( ω
2π

)

THz

Decay time (τ)

ps

72 240 0.2358 -0.00185 3.2135 2.8454

144 120 0.2359 -0.00195 3.2137 2.8069

192 90 0.2362 -0.00185 3.2066 2.6991

In order to understand the decay of coherent phonons and phonon-phonon interac-

tion in our systems after femtosecond-laser excitation, we studied the time-dependent

coherent oscillation and kinetic energy of the A1g mode (see figure 5.6) during the first
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Figure 5.6: Ab-initio molecular dynamics results: Time-dependent atomic coordinates

along the direction of the A1g mode (first column) and kinetic energies (second column) for

different supercells ((a) and (b) for N = 72 atoms (red), (c) and (d) for 144 atoms (pink),

and (e) and (f) for 192 atoms (blue)) at Te = 3000 K. The shaded areas are the standard

deviations of the averages and the solid curves represent the exponential fit of the data.

10 ps after femtosecond-laser excitation leading to electronic temperature Te = 3000

K. In order to obtain good statistics, the results of 72 atom supercell is averaged over

240 runs, 144 atom supercell is averaged over 120 runs and of 192 atom supercell is

averaged over 90 runs. We plotted the results z̄(t) ±∆z̄(t) in figure 5.6. The shaded

areas represent the standard deviations of the averages and the solid curves are the

exponential fits. Fitting the damped oscillation with a single exponential decay gives

the phonon decay time τ = 2.85, 2.81, and 2.70 ps for supercells N = 72, 144 and 192,

respectively, which are in reasonable agreement with the experimentally observed de-

cay time for antimony τ = 2.9ps [8,9,100,102]. The decay rate obtained from the work

indicates that the decay of coherent phonons in Sb is dominated by anharmonic decay.
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Figure 5.7: Time-dependent internal coordinates along the direction of A1g mode for

different laser excitation leading to Te = 1000 (grey), 2000 (blue), 3000 (cyan) and 4000

(green) K. The shaded areas represent standard deviations of the averages and the solid

curves represent the single exponential fits.

The fitting paremeters of the damped harmonic oscillation with a single exponential

decay are tabulated in Table 5.I.

In order to analyse the temperature-dependent coherent phonon dynamics in Sb,

we have studied the A1g phonon mode decay at different laser fluences (Te =1000, 2000,

3000 and 4000 K) using a supercell having 72 atoms. In figure 5.7 we have drawn the

displacement z of the A1g mode. As above, we fitted the coherent oscillations to a

damped harmonic oscillator with a single exponential decay. The fitted parameters are

tabulated in Table 5.II. From Table 5.II one can see that the decay times τ for A1g

coherent phonons in Sb vary with the laser fluence. The shift (A0) in z increases with

Te. Peierls distortion disappears when z reaches the value 0.25, where the system un-

dergoes solid-solid phase transition [101]. The frequency of coherent phonon oscillation

ω decreases with Te.
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Table 5.II: The single exponential fitting parameters of A1g phonons for 72 atom supercells

at different Te.

Te
K

Shift (A0)

z

Amplitude (A)

z

Frequency ( ω
2π

)

THz

Decay time (τ)

ps

1000 0.2341 -0.0009 4.3241 3.4471

2000 0.2347 -0.0071 3.9857 2.9195

3000 0.2358 -0.0185 3.4872 2.8454

4000 0.2379 -0.0411 2.7714 1.7277

5.6.2 Laser-excited potential energy surfaces

Table 5.III: The internal coordinate for ground state (z), laser-excited state (z
′
) and shifted

(z
′′
), calculated from equation 5.11, due to anharmonic coupling at Te = 3000 K.

Supercell (N) z z
′

z
′′

72 0.2335 0.2349 0.2358

144 0.2337 0.2350 0.2359

192 0.2340 0.2353 0.2362

We observed that the coherent phonon oscillations, starting from the equilibrium

reduced atomic coordinates z, are not oscillating around the new reduced coordinates

z
′

after laser excitation (figures 5.6 and 5.7). For a detailed description, in the case

of the 72 atom supercell at Te = 4000 K (figure 5.8), the reduced atomic coordinates

at the ground state z and laser-excited state z
′

are 0.2335 and 0.2363 respectively.

But from figure 5.8 it is clear that the coherent phonon of the above system oscillates

around a new value z
′′

= 0.2379 (Table 5.II) instead of 0.2363, which is because there

is a strong anharmonic coupling between the phonon modes in Sb.

Insight into the phonon coupling of Sb can be gained by considering the laser-

induced evolution of the potential energy surface of crystalline Sb along the direction

of the Peierls distortion. The shift in z due to anharmonic coupling was calculated

using equation 5.11 for a range of values of z about its equilibrium, at Te = 3000 K for

all supercells and are in perfect agreement with the single exponential fitting data of

our molecular dynamics simulations (Table 5.I and 5.III).

For detailed description about the properties of potential energy surfaces, we an-

alyzed 72 atom supercell using equation 5.11 at different laser fluences (Te = 1000,

2000, 3000 and 4000 K), see figure 5.9. From figure 5.9 it is clear that the minimum of

potential energy surface shifted from 0.2341 to 0.2379 after laser excitation leading to
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Figure 5.8: Coherent A1g phonon oscillation in the 72 atom supercell at Te = 4000 K.

z and z
′

are the internal lattice parameter at the ground state and laser-excited state,

respectively. The coherent A1g mode oscillats around a new value z
′′

due to anharmonic

coupling.

Te from 1000 to 4000 K. As mentioned above, the coherent A1g phonons of Sb oscillate

around new equilibrium positions, which are additionally shifted due to phonon-phonon

coupling. The laser-induced shift of potential minimum along the z-direction gives the

driving force to the coherent A1g phonon oscillations. We found that the position

of minimum shifts linearly with Te, as the minimum approaches equidistant from two

neighboring atoms, i.e., z = 0.25 with an accompanying loss of Peierls distortion. Based

on the Te dependence of potential energy surface we can establish a correlation between

ultrafast phonon dynamics and dynamical evolution of the potential energy surface of

Sb upon laser excitation.

In the electronic ground state the total energy of the system was minimized for z =

0.2335. At this equilibrium state we obtained A1g and Eg phonon frequencies of 4.6832

and 3.2304 THz, respectively, which are in reasonable agreement with the experimen-

tally observed values 4.5 and 3.3 THz [8,102]. The femtosecond-laser excitation hardly

affects the potential energy surface of the solid. The excited state potential energy

surfaces are flatter than that of ground state. As a consequence all phonon modes

of Sb are softened. From figure 5.9 one could observe that potential energy surface

softens with Te. In figure 5.10 we plot the Te-dependent A1g mode frequency upto
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6000 K and we found that with increasing Te the frequency redshifts. The change in

equilibrium value of internal coordinate z in the excited state is the dominating factor

in the softening of the optical modes in Sb [103].

5.6.3 Thermal squeezing

Figure 5.11: Time-dependent variance, 〈∆x2 + ∆y2〉 of the atomic displacements at the

electronic temperature of 4000 K for super cells having N = 72 (red), 144 (pink), 192 (blue)

and 288 (green) atoms. The shaded areas represent standard deviations of the averages

(solid curves).

When an ultrashort laser pulse softens the interatomic bonds of a solid without

changing the crystal structure, the atoms will, after the laser pulse, on average move

further away from their ground state position than before laser excitation, which man-

ifests itself as a decrease of X-ray- or electron-diffracted Bragg intensities [5]. In ad-

dition, as a function of time, some oscillations in the Bragg peak intensities can be

observed [5]. This process is called thermal phonon squeezing [50].

The microscopic mechanism of femtosecond-laser-induced thermal squeezing [50]

for an ensemble of nearly degenerate phonon modes is the following: Before laser

excitation the thermal distribution of the atomic displacements is in equilibrium with
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the harmonic potential. Through a femtosecond-laser pulse the potential softens almost

instantaneously rendering the initial distribution function too narrow (squeezed) for the

actual potential, so that, on average, the atoms start to move outward, After a quarter

of a phonon period the distribution reaches its maximum width, which is wider than

the equilibrium distribution of the laser-excited potential. Thereupon the distribution

narrows again and after half a period, the displacements are back near their initial

absolute values, albeit with opposite signs. The narrowness of the initial distribution

is however not fully regained due to anharmonicities and phonon-phonon interactions.

Depending on the strength of these effects, further oscillations may be observed.

In Sb, the laser pulse changes the equilibrium z coordinate. As a consequence,

by measuring ultrafast changes in Bragg peaks that are only sensitive to the variance

〈∆x2 + ∆y2〉 of the in-plane atomic positions, Johnson et al. [5] could observe thermal

phonon squeezing in Bi, which is isostructural to Sb. Here we analyzed the variance

〈∆x2 + ∆y2〉 of our molecular dynamics runs for Sb after femtosecond-laser excitations

of moderate intensities (Te = 1000 - 4000 K). See figure 5.11, for further insight into the

nature of atomic motions for different supercells (N = 72, 144, 192, and 288) after laser

excitation leading to Te = 4000 K. We expect that the same pathways are follow during

the initial stages of thermal phonon squeezing at low excitation densities and during

nonthermal melting at high excitation densities. So, the studies of thermal phonon

squeezing at low fluences should help to understand the ultrafast structural changes in

Sb at higher excitation fluences. Such studies between thermal phonon squeezing and

nonthermal melting in Sb are important and have not been studied.

5.7 Discussion

Using CHIVES we simulated for the first time the full atomic dynamics of Sb after

femtosecond-laser excitation without approximations to the number of atomic degrees

of freedom or the maximal degree of their coupling. In particular, we studied the A1g

phonon decay time and time evolution of the atomic paths on laser-excited potential

energy surfaces.

Twenty years ago it has been experimentally observed [9, 100] that the decay time

of 2.9 ps for coherently excited A1g phonon in Sb at room temperature during the

first 5 ps after femtosecond-laser excitation and for further oscillations the decay time

surprisingly increases. The precise value of the decay time after 5 ps of femtosecond-

laser excitation has not been reported. From our molecular dynamics study we observed

only one decay time upto 10 ps after laser excitation, which is in agreement with first

decay time of Ref. [9, 100].
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Misochko et al. [104, 105] observed that in Bi after a few ps of laser excitation the

coherent phonon oscillations die out and then revive, and proposed that such collapse-

revival is the direct consequence of the spatially inhomogeneous electronic softening.

Later Diakhate et al. [106] demonstrated that for large systems the oscillation ap-

proached the classical limit without collapse-revival. In agreement, in the present

study we found that the average over a sufficient number of runs gives a good statistics

and the collapse-revival was not observed in any of the system sizes.

Atomic motion can be studied from the time-dependent variance of the atomic

displacement from which we notice that N = 72 already gives a sufficient sampling

of all phonon modes in the first Brillouin zone. Previous studies on Bi [11] shows

that, even if the pure dephasing contributes to the decay process, the decay of the

coherent phonons are dominated by anharmonic coupling (energy relaxation). Since

Sb is isostructural to Bi and As, these elements can exhibit similar electronic and lattice

properties under femtosecond-laser excitation.

In conclusion, we have developed a thermodynamical model to simulate the time

evolution of the A1g phonon coordinate following the arrival of the laser pulse of a given

fluence on Sb. We show that intense ultrashort laser pulses not only induce coherent

phonons in Sb but also interactions between them. The phonon-phonon interaction

is strongly dependent on the laser fluence. We have analyzed the coherent phonon

dynamics on supercells having upto 192 atoms for a particular laser excitation and

on 72 atom supercell for different laser fluences near and below the structural phase

transition. We found that our results are in perfect agreement with and can be helpful

to understand previous experimental results [9, 100]. We also studied the changes in

the potential energy surface after femtosecond-laser excitation and found laser-induced

phonon softening in Sb. Due to rapid improvements in laser technology and the ability

to produce very short (∼ 10 - 100 fs) and powerful (∼ 1 - 10 mJ/cm2) laser pulses,

there is an increasing need for theoretical insight into the interactions for such laser

pulses with matter. For the duration of the application of such a laser pulse, its

electromagnetic field generates a coherent superposition of excited electron and hole

states in the material.

Our work demonstrates that the fast equilibrium dynamics of the laser excited

nonequilibrium carrier population can induce a significant structural response in crys-

talline solids. The magnitude and dynamics of this effects depends on the electronic

structure and electron-phonon interactions of the material.
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CHAPTER 6

Conclusion and outlook

In this thesis we have discussed theoretical models to describe the ultrafast structural

response of different solids to an intense femtosecond-laser excitation on the basis

of density functional theory. Our approaches provide theoretical frameworks for the

treatment of non-equilibrium states in solids and the calculation of the time-dependent

potential energy surfaces. We have studied the structural responses of copper, silver and

antimony upon femtosecond-laser excitation at different laser fluences. Quantitative

agreements have been found with the existing experimental and theoretical results and

predictions have also been made.

The interaction of an intense femtosecond-laser pulse with solids has remained an

active area of research. Laser-induced structural responses on variety of materials are

addressed in this thesis. In this final chapter, we review some of the key conclusions

of this thesis and briefly discuss areas where further work is needed. The following are

the main results obtained:

• Warm dense noble metals: We have theoretically studied the changes in the

bonding properties of transient, exotic state of highly ionized warm dense noble

metals, in particular copper and silver by performing electronic-temperature-

dependent density functional theory calculations. The electronic and phonon

densities of states and band structures are studied for cold and hot electronic

states of noble metals in the presence of core hole. We found that the system

gains extra stability in warm dense regime due to the hardening of potential

energy surface. Such extreme hardening of phonon modes cause the relaxation

processes of warm dense noble metals to be faster than the theoretically expected

values. We also found that in such a system there is no indication of any phonon

mode instability, which indicates that the system relaxes thermally into a plasma

state.
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• Vacuum phonon squeezing: The fundamental quantum mechanical effect

called vacuum phonon squeezing as well as the conditions under which a sig-

nificant squeezing effect can be obtained were studied using density functional

theory. We found that at low electronic excitation the phonon hardening in noble

metals is due to the overlapping of excited valence s electrons. We also found

that vacuum squeezed states can be produced in copper and silver at various

points of the Brillouin zone and we analyzed the momentum-resolved squeezing

factors for both copper and silver at the X- and L-point longitudinal mode. The

maximal squeezing factors obtained for copper (0.0019) and silver (0.0014) at

L-point longitudinal mode are three orders of magnitude greater than the ones

previously obtained in KTaO3 (10−6) [4]. We have indicated, how measuring

vacuum phonon squeezing in real space through momentum- and time-resolved

x-ray scattering would provide direct evidence of bond hardening in noble metals.

• Coherent phonon dynamics: We have developed a thermodynamical model to

simulate the time evolution of the coherent A1g phonon coordinate following the

arrival of the laser pulse of a given fluence on antimony. We shown that intense

ultrashort laser pulses not only induce coherent phonons in antimony but also

interactions between them. The phonon-phonon interaction is strongly dependent

on the laser fluence. We have studied the phonon dynamics of antimony in

the low fluence regime from molecular dynamics simulations using our in-house

density functional theory code CHIVES [97]. We computed the A1g phonon mode

decay constant for different laser fluences in supercells upto 192 atoms. We have

analyzed the temperature-dependent decay constant and decay channel(s) of A1g

phonon mode using the 72 atom supercell of antimony. The decay channel(s)

were studied from phonon-phonon coupling.

Our work demonstrates that the fast equilibration dynamics of the laser excited

nonequilibrium carrier population can induce a significant structural response in crys-

talline solids. The future of this work lies in developing the code CHIVES, the most

efficient and fast basis of any future density functional theory calculation for a precise

description of the nonequlibrium states of materials. Then to study the structural

dynamics after different excitation fluences on large material classes (semiconductors,

insulators, metals, rare earth metals) using the codes WIEN2k and CHIVES. The

following are some specific problems to study:

• Warm dense aluminum and life time of core hole: In nearly free-electron

metals like aluminum, the electron density of states and lattice stability appears

to be mostly unaffected by the electronic excitation. It is suggested that such

solids show very low electron-phonon coupling in the warm dense regime com-

pared to that of warm dense noble metals [60]. Warm dense aluminum is expected



99

   W L Γ X W K

Wave vector

-5

0

5

10
P

h
o

n
o

n
 f

re
q

u
e

n
c
y
 [

T
H

z
]

                   Al

Room temperature
Laser excited 30000 K

Cold core hole

Figure 6.1: The phonon dispersion spectra of aluminum. Black solid curves show at room

temperature, red solid curves at Te = 30,000 K without core hole and blue dashed curves

represent the state with one core hole per atom at room temperature.

to relax via nonthermal melting on a picosecond time scale after the excitation.

It will be very interesting to study the structural dynamics of warm dense alu-

minum: Bonding properties, relaxation process, decay time of core holes, etc.,

because to the best of our knowledge the above mentioned properties are not yet

studied in a free-electron like metals. As a preliminary step towards this work,

we have analyzed the phonon dispersion spectra of aluminum (see figure 6.1) at

laser-excited (Te = 30,000 K) and core-hole excited states (1 core-hole per atom).

From figure 6.1 it clear that in the electronic excited state, even at Te = 30,000

K, the phonon modes are effected negligibly small (red solid curves in figure 6.1),

but there is a significant effect due to the presence of core hole. The system

becomes unstable in the core hole state. This is an indication of warm dense

aluminum relaxes through nonthermal melting.

• Vacuum squeezing factor in gold and to find other materials with im-

proved squeezing factor: Based on the chemical and physical similarities of

noble metals, we expect that vacuum phonon squeezing could also be achieved

in gold. From the trend of maximal squeezing factor we obtained in copper and

silver at L-point longitudinal mode, we expect that the maximal squeezing will

be less in gold than in copper and silver (see figure 6.2). It will be very interesting
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Figure 6.2: Maximum obtained squeezing factor for noble metals at L-point longitudinal

mode.

to find the maximal squeezing factor for gold by studying various points in the

Brillouin zone.

From our studies on copper and silver we found that bond hardening is respon-

sible for the generation of vacuum phonon squeezed states and electron-phonon

coupling will control the size of squeezing effect. Our maximum predicted vacuum

phonon squeezing factor is of the order of 10−3. One could find materials with

greater bond hardening or a smaller electron-phonon coupling factor to improve

this result by one or two orders of magnitude. For example, we expect that alkali

metals show greater bond hardening because their valence band contains only s

electrons. From the present research work we found that at low fluence excitation

s electrons are responsible for bond hardening in noble metals.

• Solid-solid structural phase transition and nonthermal melting in an-

timony: The study of ultrafast reversible and irreversible structural changes

has attracted attention in the last years, mainly due to recent advances in time-

resolved x-ray and electron diffraction techniques [107]. Sb shows a sequence of

phase transitions as a function of pressure. At low temperatures and normal

pressure, Sb crystallizes in the Peierls distorted A7 structure, at 8.6 GPa there

is a transition to a complex host-guest structure through simple cubic structure

and at 28 Gpa, Sb assumes the body-centerd cubic structure [108].

Different pump-prob experimentals have been performed on antimony: The exci-

tation of A1g and Eg coherent phonons have been confirmed [109,110]. From one

of those studies, the existence of a laser-induced solid-solid transition to a so far

unknown phase has been suggested [110]. In order to study possible phase tran-
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Figure 6.3: Illustration of the mechanism of an ultrafast phase transition through laser-

induced modification of potential energy surfaces.

sitions that can be induced by a femtosecond-laser pulse far out of equilibrium,

we intended to perform molecular dynamics simulations and to compare the free

energies of antimony in the A7, simple cubic, host-guest, and bcc structures.

In Sb we expect that a femtosecond-laser pulse can undo the Peierls distortion,

while its structure transform from A7 to complex host-guest structure. The phase

transition should occur to the undistorted phase on a timescale faster than the

time required for electron-phonon thermalization. Characteristics of this phase

transition is that the value of internal coordinate increases towards 0.25. By

performing molecular dynamics simulations using CHIVES, one can study the

laser-induced structural effects, such as, phonon squeezing, nonthermal melting,

laser-induced undoing of the Peierls-Jones distortion, etc. Thus, antimony con-

tinues a fascinating solid, in which all so far known laser-induced nonthermal

structural effects are expected to occur.

The mechanism of laser-induced ultrafast solid-to-solid phase transitions is visu-

alized in figure 6.3. Two different structural phases of a given material in thermo-

dynamical equilibrium correspond to two minima of the potential energy surface.

A thermal transition between both minima is an extremely slow process, because

a high potential barrier has to be overcome. However, a femtosecond-laser ex-
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citation (i.e., an almost instantaneous electron heating) can effect both minima

differently, like it is sketched in figure 6.3. Instance, the minimum corresponding

to the initial state might become unstable at high electron temperatures, while

the other minimum is less affected. Consequently a very fast phase transition

takes place.

The study of the interaction of intense laser pulses with solids will undoubtedly

continue for time. It is clear that for reasons related to new technological applications,

study of laser-matter interaction remains an active and exciting research subject for

both theoreticians and experimentalists.
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APPENDIX A

A.1 Two-center overlap integrals

Two-center overlap integrals over unnormalized cartesian Gaussian function [25,26] are

of the form:

〈a | b〉 =

∫ +∞

−∞
φ(r, α, a, A) φ(r, β, b, B) dr (A.1)

and are located at A and B having orbital exponents α and β respectively. We first

separate the integral into its orthogonal components:

S = EAB Sx(ax, bx) Sy(ay, by) Sz(az, bz), (A.2)

where the notation Sx(ax, bx) expresses its functional dependence on the cartesian

angular components. The x component can be expressed as,

Sx(ax, bx) =

∫ +∞

−∞
(x− Ax)ax (x−Bx)

bx e−(α+β)(x−Px)
2

dx. (A.3)

where EAB = e−
αβ
α+β
|A−B|2 and Px = αAx+βBx

α+β
.

Using a binomial expansion in the polynomial part,

(x−Ax)ax (x−Bx)
bx =

ax∑
i=0

bx∑
j=0

(
ax
i

)(
bx
i

)
(x−Px)i+j(Px−Ax)ax−i(Px−Bx)

bx−j, (A.4)

which gives:

Sx(ax, bx) =
ax∑
i=0

bx∑
j=0

(
ax
i

)(
bx
i

)
(Px − Ax)ax−i (Px −Bx)

bx−j

∫ +∞

−∞
(x− Px)i+j e−(α+β)(x−Px)

2

dx.

(A.5)
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Odd values of i + j results in odd function whose integral part will vanish. For even

values of i+ j, the solution for integral part is,∫ +∞

−∞
(x− Px)i+j e−(α+β)(x−Px)

2

dx =

(
π

α + β

) 1
2
(

(i+ j − 1)!!

[2(α + β)]
i+j
2

)
. (A.6)

In such case Sx(ax, bx) becomes,

Sx(ax, bx) =

(
π

α + β

) 1
2

ax∑
i=0

bx∑
j=0

(
ax
i

)(
bx
i

)
(Px − Ax)ax−i (Px −Bx)

bx−j
(

(i+ j − 1)!!

[2(α + β)]
i+j
2

)
.

(A.7)

One should keep in mind that the summation term exists only for the even values of i+j.

equation A.7 can be written as a generalized form for x, y and z components. However,

further reductions in the number of operations can be obtained using a recurrence

relation. Recurrence relations let us efficiently calculate the overlap integrals of higher

angular values from previously obtained results with lower angular values.

A.2 Recurrence relations

One of the properties of cartesian Gaussian function is: The derivative of a Gaussian

function can be expressed as a sum of Gaussians of higher and lower angular values

(see Section 2.6.2),

φ(r, α, a+ 1, A) =
1

2α

∂

∂A
φ(r, α, a, A) +

N(a)

2α
φ(r, α, a− 1, A). (A.8)

In the previous section we derived two expressions for Sx(ax, bx), equation A.3 and

equation A.7. To get the recurrence relation for x component, we have to compare the

first derivative of Sx(ax, bx) from equation A.3 and equation A.7.

• Derivative from equation A.3:

∂

∂Ax
Sx(ax, bx) =

∫ +∞

−∞
(x−Bx)

bx
∂

∂Ax

[
(x− Ax)ax e−(α+β)(x−Px)

2

]
dx

⇒ −axSx(ax − 1, bx) + 2α(x− Px)Sx(ax, bx).
(A.9)

equation A.9 ± 2α Sx(ax, bx) gives:

∂

∂Ax
Sx(ax, bx) = −axSx(ax − 1, bx) + 2αSx(ax + 1, bx) + 2α(Ax − Px)Sx(ax, bx).

(A.10)
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• Derivative from equation A.7:

∂

∂Ax
Sx(ax, bx) = K

∂

∂Ax

[
(Px − Ax)ax−i (Px −Bx)

bx−j
]
, (A.11)

where K =

(
π

α+β

) 1
2 ∑ax

i=0

∑bx
j=0

(
ax
i

)(
bx
i

)(
(i+j−1)!!

[2(α+β)]
i+j
2

)
is a constant. For simplic-

ity of further derivation, we can assume i = j = 0 in equation A.11.

Therefore,

∂

∂Ax

[
(Px − Ax)ax (Px −Bx)

bx

]
= −ax

β

α + β
Sx(ax − 1, bx)

+bx
α

α + β
Sx(ax, bx − 1).

(A.12)

By comparing equation A.10 and equation A.12, one can write the recurrence relation

for x component as the following:

Sx(ax + 1, bx) = (Px − Ax)Sx(ax, bx) +
ax

2(α + β)
Sx(ax − 1, bx)

+
bx

2(α + β)
Sx(ax, bx − 1).

(A.13)

The generalized form of recurrence relation 〈a + 1 | b〉 for all three components x, y

and z, which will be used to generate the two-center overlap integrals over s, p and d

cartesian Gaussian functions is given by

〈a+ 1 | b〉 = (P − A) 〈a | b〉+
N(a)

2(α + β)
〈a− 1 | b〉+

N(b)

2(α + β)
〈a | b− 1〉. (A.14)

The overlap integral between an orbital (a = s, p, d, etc) centered at A with the pro-

jector of another orbital (b = s, p, d, etc) centered at B can be calculated by

〈a | r2b〉 =
∂

∂β

(
〈a | b〉

)
(A.15)

The force integrals can be calculated as

∇ 〈a | b〉 =
∂

∂A

(
〈a | b〉

)
(A.16)

Example: The overlap integral between two s (a = b = 0) orbitals centered at A

and B is

〈s | s〉 =

∫ +∞

−∞
φ(r, α, 0, A) φ(r, β, 0, B) dr,

⇒
( π

α + β

) 3
2

exp
[
− αβ

α + β
| A−B |2

]
.

(A.17)
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The overlap integral between s orbital centered at A and the projector of another s

orbital centered at B

〈s | r2s〉 =
∂

∂β

(
〈s | s〉

)
,

⇒
[ 3

2(α + β)
+
α2(A−B)2

(α + β)2

]
〈s | s〉.

(A.18)

A.3 The expressions implemented in CHIVES

From the recurrence relation 〈a + 1 | b〉 for two-center overlap integrals [equation

A.14] one can obtain the functional forms of overlap integrals for s, p and d orbitals,

which is tabluted in Table A.I. The expressions for overlap integrals between orbital

and projectors are derived from equation A.15 (see Table A.II). The force intergrals

between the orbitals (Table A.III) and between orbitals and projectors (Table A.IV)

were formulated from equation A.16 and are implemented in our code CHIVES.

〈s | s〉
(

π
α+β

) 3
2

exp
[
− αβ
α+β
| A−B |2

]
〈s | pj〉 (Pj −Bj) 〈s | s〉

〈s | dij〉 (Pi −Bi) 〈s | pj〉+
δij

2(α+β)
〈s | s〉

〈pi | s〉 (Pi − Ai) 〈s | s〉

〈pi | pj〉 (Pi − Ai) 〈s | pj〉+
δij

2(α+β)
〈s | s〉

〈pi | djk〉 (Pk −Bk) 〈pi | pj〉+
δjk

2(α+β)
〈pi | s〉+ δik

2(α+β)
〈s | pj〉

〈dij | s〉 (Pj − Aj) 〈pi | s〉+
δij

2(α+β)
〈s | s〉

〈dij | pk〉 (Pj − Aj) 〈pi | pk〉+ δjk 〈pi | s〉

〈dij | dkl〉 (Pi − Ai) 〈pj | dkl〉+ δik
2(α+β)

〈pj | pl〉+ δil
2(α+β)

〈pj | pk〉+
δij

2(α+β)
〈s | dkl〉

Table A.I: Two-center overlap integrals over s, p and d cartesian Gaussian functions.
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〈s | r2s〉
[

3
2(α+β)

+ α2(A−B)2

(α+β)2

]
〈s | s〉

〈s | r4s〉
[

3
2(α+β)

+ α2(A−B)2

(α+β)2

] (
〈s | r2s〉+ 〈s|s〉

α+β

)
〈pi | r2s〉 (Pi − Ai) 〈s | r2s〉+ (Pi−Bi)

α+β
〈s | s〉

〈pi | r4s〉 (Pi − Ai) 〈s | r4s〉+ 2 (Pi−Bi)
α+β

[
〈s | r2s〉+ 〈s|s〉

α+β

]
〈dij | r2s〉 (Pj − Aj) 〈pi | r2s〉+

(Pj−Bj)
α+β

〈pi | s〉

〈dij | r4s〉 (Pj − Aj) 〈pi | r4s〉+ 2
(Pj−Bj)
α+β

[
〈pi | r2s〉+ 〈pi|s〉

α+β

]
〈s | r2pj〉 (Pj −Bj)

[
〈s | r2s〉+ 〈s|s〉

α+β

]
〈pi | r2pj〉 (Pi − Ai) 〈s | r2pj〉+ (Pi−Bi)

α+β
〈s | pj〉+

δij
2(α+β)

[
〈s | r2s〉+ 〈s|s〉

α+β

]
〈dij | r2pk〉 (Pj − Aj) 〈pi | r2pk〉+

(Pj−Bj)
α+β

〈pi | pk〉+ δik
2(α+β)

[
〈pi | r2s〉+ 〈pi|s〉

α+β

]

Table A.II: The overlap integrals between orbitals and projectors for s, p and d orbitals.
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∇i 〈s | s〉 2α 〈pi | s〉

∇i 〈s | pj〉 (Pj −Bj) ∇i 〈s | s〉+ δij
α

α+β
〈s | s〉

∇i 〈s | djk〉 (Pj − Aj) ∇i 〈s | pk〉+ δij
α

α+β
〈s | pk〉

∇i 〈pj | s〉 (Pj − Aj) ∇i 〈s | s〉 − δij β
α+β
〈s | s〉

∇i 〈pj | pk〉 (Pj − Aj) ∇i 〈s | pk〉 − δij β
α+β
〈s | pk〉+

δjk
2(α+β)

∇i 〈s | s〉

∇i 〈pj | dkl〉 (Pj − Aj) ∇i 〈s | dkl〉 − δij
2(α+β)

[
2〈s | dkl〉+∇i 〈s | pl〉

]
+

δjl
2(α+β)

〈s | pk〉

∇i 〈djk | s〉 (Pj − Aj) ∇i 〈pk | s〉 − δij β
α+β
〈pk | s〉+

δij
2(α+β)

∇i 〈s | s〉

∇i 〈djk | pl〉 (Pk − Ak) ∇i 〈pj | pl〉 − δik β
α+β
〈pj | pl〉 − δkl β

2α(α+β)
∇i 〈s | pj〉

∇i 〈djk | dlm〉 (Pj − Aj) ∇i 〈pk | dlm〉 − δij β
α+β
〈pk | dlm〉+

δjl
2(α+β)

∇i 〈pk | pm〉

+
δjm

2(α+β)
∇i 〈pk | pl〉

Table A.III: Force integrals for s, p and d orbitals.
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∇i 〈s | r2s〉
[

3
2(α+β)

+ α2(A−B)2

(α+β)2

]
∇i 〈s | s〉+ 2α2(A−B)

(α+β)2
〈s | s〉

∇i 〈s | r4s〉
[

3
2(α+β)

+ α2(A−B)2

(α+β)2

]
∇i 〈s | r2s〉+

[
3

2(α+β)
+ 2α2(A−B)2

(α+β)2

]
∇i 〈s|s〉
α+β

+2α2(A−B)

(α+β)2

[
〈s | r2s〉+ 2〈s|s〉

α+β

]
∇i 〈pj | r2s〉 (Pj − Aj) ∇i 〈s | r2s〉+

(Pj−Bj)
α+β

∇i 〈s | s〉+
δij

Aj−Bj 〈pj | r
2s〉

∇i 〈pj | r4s〉 (Pj − Aj) ∇i 〈s | r2s〉+
2(Pj−Bj)
α+β

[
∇i 〈s | r2s〉+ ∇i 〈s|s〉

α+β

]
+

δij
Aj−Bj 〈pj | r

2s〉

∇i 〈djk | r2s〉 (Pj − Aj) ∇i 〈pk | r2s〉+
(Pj−Bj)
α+β

∇i 〈pk | s〉+
δij

Aj−Bj 〈djk | r
2s〉

∇i 〈djk | r4s〉 (Pj − Aj) ∇i 〈pk | r4s〉+
2(Pj−Bj)
α+β

[
∇i 〈pk | r2s〉+ ∇i 〈pk|s〉

α+β

]
+

δij
Aj−Bj 〈djk | r

4s〉

∇i 〈s | r2pj〉 (Pj −Bj) ∇i 〈s | r2s〉+
∇i 〈s|pj〉
α+β

+ δij
α

α+β
〈s | r2s〉

∇i 〈pj | r2pk〉 (Pj − Aj) ∇i 〈s | r2pk〉+
Pj−Bj
α+β

∇i 〈s | pk〉+
δij
α+β

[
−β〈s | r2pk〉

+ α
α+β
〈s | pk〉

]
+

δjk
2(α+β)

[
∇i 〈s | r2s〉+ 〈s|s〉

α+β

]
∇i 〈djk | r2pl〉 (Pj − Aj) ∇i 〈pk | r2pl〉+

Pj−Bj
α+β

∇i 〈pk | pl〉+
δij
α+β

[
−β〈pk | r2pl〉

+ α
α+β
〈pk | pl〉

]
+

δjl
2(α+β)

[
−β
α
∇i 〈s | r2pk〉+ 〈s|pk〉

α+β

]

Table A.IV: The force integrals between orbital and projectors for s, p and d orbitals.
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APPENDIX B

B.1 Potential energy of phonon-phonon interaction

Consider a crystal formed by N number of atoms having mass M and the equilibrium

position of the atoms is at z. But the actual position of the atoms is z
′′

= z+u, where

u is a shift from the equilibrium position and the atoms oscillate around z
′′
.

The interaction potential among the atoms can be expressed as a function of the

shift u:

V (z
′′
) = V0(z

′′
) +

3N−1∑
i=1

1

2
Mω2

i u
2
i , (B.1)

where ω is the phonon frequency around the actual position of the atoms z
′′
.

One can expand equation B.1 using Taylor’s series,

V (z
′′
) = V0(z

′′
) +

3N−1∑
i=1

1

2
Mω

(0)
i

2
u2i +

3N−1∑
i=1

1

2
M

∂(ω2
i )

∂z′′

∣∣∣∣∣
z
′′
=z

(z
′′ − z) u2i , (B.2)

where ω(0) is the phonon frequency at equilibrium position z.

The total force exerted on the system due to shift in equilibrium position can be

calculated as,

Fz′′ = − ∂V
∂z′′

. (B.3)

From equation B.1, the expression for force becomes,

Fz′′ = −∂V0(z
′′
)

∂z′′
−

3N−1∑
i=1

1

2
M
∂(ω2

i )

∂z′′

∣∣∣∣∣
z′′=z

u2i (B.4)
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= −∂V0(z
′′
)

∂z′′
−

3N−1∑
i=1

1

2
kBTl

1

(ω2
i )

∂(ω2
i )

∂z′′

∣∣∣∣∣
z′′=z

(B.5)

= −∂V0(z
′′
)

∂z′′
− 1

2
kBTl

3N−1∑
i=1

∂ ln(ω2
i )

∂z′′

∣∣∣∣∣
z′′=z

(B.6)

where kB is the Boltzmann constant and Tl is the lattice temperature.

When all atoms are at equilibrium, the force of the system must be zero, since

there can be no net force at equilibrium. So one can neglect the term 1
2
Mω

(0)
i

2
u2i in

equation B.2. From equation B.2 and B.6, one can write the expression for interaction

potential as the following:

V (z
′′
) = V0(z

′′
) +

1

2
kBTl

3N−1∑
i=1

1

(ω2
i )

∂(ω2
i )

∂z′′

∣∣∣∣∣
z′′=z

(z
′′ − z)︸ ︷︷ ︸

V ph−ph

. (B.7)

The second term on right-hand side of equation B.7 is the phonon-phonon coupling

potential V ph−ph,

dV ph−ph =
1

2
kBTl

3N−1∑
i=4

1

(ω2
i )

∂(ω2
i )

∂(z′′)
dz
′′
, (B.8)

by integrating with respect to z
′′
,

V ph−ph =
1

2
kBTl

3N−1∑
i=4

ln(ω2
i ) + C, (B.9)

where C is the integration constant and the integer i starts from four, since by omitting

three translational modes (ω = 0) and the A1g mode.
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Abbreviations Details

XUV Extreme ultraviolet

DFT Density functional theory

LA Longitudinal acoustic

CHIVES Code for Highly-excIted Valence Electron Systems

WDM Warm dense matter

HF Hartree-Fock

LDA Local density approximation

GGA Generalized gradient approximation

MT Muffin-tin

I Interstitial region

APW Augmented plane wave

LAPW Linearized augmented plane wave

LO Local orbital

GTH Geodecker-Teter-Hutter

AFC Atomic force constants

FCC Face centered cubic

BZ Brillouin zone

DOS Density of state

TTM Two-temperature model
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Symbols Details

Te Electronic temperature

Tl Lattice temperature

N Number of atoms in supercell

t Time

s Seconds

ps Picoseconds

fs Femtoseconds

K Kelvin

m Meter

cm Centimeter

J Joules

R Atomic coordinate

r Electronic coordinate

M Atomic mass

me Electronic mass

T̂ Kinetic energy

V̂ Potential energy

FHK Hohenberg-Kohn functional

ĤKS Kohn-Sham Hamiltonian

Vxc Exchange-correlation potential

ρ Density

ψ Wave function

φ Single-particle wavefunction

ψpseudo Pseudowavefunction

Vpseudo Pseudopotential

RMT Muffin-tin radius

SMT Muffin-tin sphere

l Angular momentum quantum number

εm Kohn-Sham energy

kmax Plane wave cutoff

erf Error function

Zion Ionic charge

rloc Local radius

Se Electronic entropy

a0 Bohr units

Fe Helmholtz free energy

n(εm, t) Occupation of Kohn-Sham level
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D(q) Dynamical matrix

q Phonon wavevector

ω Phonon frequency

ε Phonon eigenvector

Q Phonon normal coordinate

P Phonon momentum

〈Q2〉 Variance of the atomic displacement

S Squeezing factor

kB Boltzmann’s constant

EF Fermi energy

~ Planck’s constant

Ce Electronic heat capacity

Cl Lattice heat capacity

G Electron-phonon coupling

Eband Band energy

A1g Totally symmetric mode of Peierls distorted structure

TD Debye temperature

z Internal coordinate of A7 crystal structure

v Velocity

u Displacement

Nruns Number of runs

τ Decay time

V ph−ph Potential energy of phonon modes

THz Terahertz

GPa Gigapascals

δ Kronecker delta function
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