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1. Einleitung

1.1. Motivation

Priferenzen stellen ein zentrales Element der Okonomik im konzeptionellen Rahmen der
Analyse menschlichen Verhaltens dar. Priferenzen beziehen sich auf eine Menge von Annahmen
die Rangfolge von Wahlmoglichkeiten betreffend. Formal mathematisch wurde das Konzept
erstmalig von Frisch (1926) formuliert und spater von Arrow (1951) perfektioniert.
Priferenzrelationen mit denen Priferenzen modelliert werden, bilden die Grundlage der Rational-
Choice Theorie. Rational Choice ist definiert durch die Bestimmung der Wahlmoglichkeiten und
die anschlieBende Wahl der besten Alternative anhand bestimmter Konsistenzbedingungen.
Rational-Choice Theorie basiert auf einer stark vereinfachten Beschreibung des Wahlproblems
(Ziele und Nebenbedingungen). Das Wahlentscheidungen von vielen weiteren Faktoren
abhingen wird beispielsweise von psychologischen Theorien propagiert und von zahlreichen
Laborexperimenten unterstiitzt (Hogarth und Einhorn 1992; Hoffman et al. 1994; Kahneman
und Frederick 2002, um nur einige zu nennen). Derartige Faktoren beinhalten zum Beispiel die
Art und die Reihenfolge wie Informationen zur Verfiigung gestellt werden. Die empirischen
Befunde in der Okonomik und in psychologischen Experimenten welche den Vorhersagen der
Rational-Choice Theorie widersprechen, haben intensive Forschungen auf dem Gebiet der
Entscheidungstheorie nach sich gezogen und eine Vielzahl alternativer Verhaltensmodelle wurde
entwickelt. Das Verstehen individuellen Verhaltens ist eine der grundlegenden Aufgaben
o6konomischer Forschung. Meine Dissertation trigt zur Bewiltigung dieser Aufgabe insofern bei,
als das die Entstehung bestimmter charakterisierender Merkmale von Priferenzen und deren
Auswirkung auf das Verhalten ein iibergeordnetes Thema der drei konstituierenden Artikel dieser
Arbeit bildet. Neben diesem verbindenden Themenkomplex, der fiir mich von zentralem
Interesse in meiner Forschung ist, ist jeder der Artikel durch eine konkrete Forschungsfrage
motiviert. Dies wird in den nichsten Abschnitten genauer herausgestellt.

Der methodologische Individualismus und das Konzept des Homo Oeconomicus bilden die
Basis der traditionellen 6konomischen Theorie. Priferenzen und der zuldssige Handlungsraum
bestimmen in diesem Rahmen das individuelle Verhalten. Zur Operationalisierung der
grundlegenden Annahmen der Rationalitit und der Eigennutzen-Orientierung wird
angenommen, dass Priferenzen im Zeitverlauf stabil sind. Zeitinvariante Priferenzen sollen dabei
allerdings kein deskriptives Modell fiir real existierende Individuen darstellen. Selbst wenn
Priferenzen kurzfristig fix wiren, stellt sich die Frage wie und warum bestimmte Charakteristika
wie Altruismus, Risiko- oder Verlustaversion, die sich wiederholt in Experimenten zeigten, in den
Menschen ,,eingepflanzt® wurden. Die evolutionire Perspektive bietet einen mdglichen
Analyserahmen fiir die Beantwortung dieser Fragen. Innerhalb dieses Rahmens versuchen
Okonomen besondere Aspekte menschlicher Priferenzen zu rationalisieren. Spitestens mit den
bedeutenden Arbeiten von Fehr und Schmidt (1999) und Bolton und Ockenfels (2000) stellt das
Konzept der Ungleichheitsaversion als eine Form von Priferenzen, welche die Situation andere
Individuen in die Bewertung der eigenen mit einbezieht, eine prominente Erklirung fur
zahlreiche empirische und experimentelle Ergebnisse dar, welche von der Vorhersage der
traditionellen 6konomischen Theorie abweichen. Aufgrund der zunehmenden Bedeutung bedarf
es einer Rationalisierung derartiger Priferenzen, da sie sonst lediglich eine ad-hoc Anpassung
herkémmlicher Priferenzen darstellen, um empirische Befunde besser erkliren zu kénnen. Guth

und Napel (2006) weisen darauf hin, dass derartige Priferenzen insbesondere mit der physischen
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Notwendigkeit nach materielle Bedtrfnisbefriedigung in einer Welt knapper Ressourcen
vereinbar sein sollten. Mit anderen Worten, derartige Priferenzen sollten aus evolutionidrer Sicht
rationalisierbar sein. Die Autoren argumentieren tiberzeugend, dass jede Art von Untersuchung,
die sich mit der Evolution von Priferenzen beschiftigt in einem Rahmen ausgefiithrt werden
sollte, der alle Klassen menschlicher Interaktion enthilt, da sonst spiel-spezifische Ergebnisse
erzielt werden, deren Verallgemeinerbarkeit zumindest fragwiirdig ist. Sie bezeichnen eine solche
Umwelt als das ,,game of life”. In dem Artikel “The evolution of inequality aversion in a
simplified game of life’ unternehme ich einen ersten Schritt diese Notwendigkeit zu erfiillen.

Priferenzen werden jedoch nicht nur durch evolutionire Krifte geformt, die langfristig wirken
und den genetisch fixierten Teil der Priferenzen verindern. Formelle und informelle
Institutionen ermoglichen und beschrinken individuelles Handeln. Werden informelle
Institutionen internalisiert, so werden sie Teil der Priferenzen eines Individuums. Die
Internationalisierung sozialer Normen findet in viel kurzerer Frist statt und hingt von
zahlreichen Faktoren ab. Ich verstehe unter sozialen Normen innere Handlungs“empfehlungen®
sich in einer bestimmten Art und Weise zu verhalten. Externe Anreize wie die mit einer
Handlung verbundenen Kosten und Ertrige koénnen sozialen Normen komplementir oder
substitutiv gegentiberstehen. Diese Kosten und Ertrige sind Teil der zuvor erwihnten externen
Beschrinkungen des Handelns. In modernen Volkswirtschaften findet der Grof3teil menschlicher
Interaktionen auf Mirkten statt. Somit materialisiert sich die  Mehrzahl der
Verhaltensrestriktionen auf Mirkten. Durch die Aggregation individuellen Verhaltens,
aggregieren Mirkte auch individuelle externe Effekte. Viele der heutigen Umweltprobleme
werden durch das Konsumverhalten privater Haushalte verursacht. Individualverkehr,
Nutzwirme und Nahrungsmittelproduktion tragen substantiell zur Emission von CO, und
andere Umweltschadstoffe bei. Die Wahl zwischen mehr oder minder zur Umweltverschmutzung
beitragender Produkte hingt von der Verfiigbarkeit derartiger Produkte und sozialen Normen
und anderer Institutionen ab. Lésungen von Umweltproblemen hingen somit nicht nur von
Produktinnovationen sondern auch von den bestehenden sozialen Normen ab, wobei erstere die
Mirkte um nachhaltige Produkte erweitern und letztere nachhaltigen Konsum férdern. In
Anbetracht des Einflusses sozialer Normen auf individuelle Priferenzen ist es augenscheinlich,
dass Mirkte und soziale Normen nicht getrennt voneinander untersucht werden kénnen. Die
existierende Literatur enthilt zahlreiche Studien iber die Wechselwirkungen zwischen Mirkten
und soziale Normen in beide Richtungen — wie soziale Normen Mirkte beeinflussen und wie
Mirkte soziale Normen (z.B. Hong und Kacperczyk 2009; Johnson 2004; Ek und Soderholm
2008; Fehr und Gichter 2001 und Gneezy und Rustichini 2000). Simtliche dieser Ansitze
beschrinken sich auf die monetiren Anreize, die von Mirkten gegeben werden und deren
Regulierung. Dies allerdings reduziert Mirkte auf ihre Preis-Mengen-Dimension und
vernachlissigt vollig deren Innovationskapazitit. Die Produktvariationen, die aus
nachhaltigkeitsrelevanten Innovationen hervorgehen sind ein wichtiges Element in der
Wechselwirkung zwischen Mirkten und Normen. Diese Wechselwirkung steht im Zentrum des
Artikels “The impact of market innovations on the evolution of social norms: the sustainability

case”.

Der Aspekt der Nachhaltigkeit weist auf die allgemeine Klasse sozialer Dilemmata hin. Soziale
Dilemmata zeichnen sich dadurch aus, dass individuell rationales Verhalten zu kollektiv
irrationalen Ergebnissen fiihrt. Okonomen haben in Experimenten (fiir einen Uberblick der
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Ergebnisse siche Roth 1995) und Feldbeobachtungen (Fey und Meier 2004; Cunha und
Augenblick 2014) Kooperation in dem Sinne beobachtet, dass die kollektive Irrationalitit
zumindest teilweise iberwunden wird. Aus Sicht der klassischen 6konomischen Perspektive ist
dies tiberraschend insbesondere da kooperatives Verhalten auch dann zu beobachten ist, wenn
jetziges Verhalten keinerlei Auswirkungen auf zukiinftige Interaktionen hat (Cooper et al. 1996).
Die zahlreichen Erklirungsansitze basieren gewohnlich auf mindestens einer von zwei
Einschrinkungen. Die erste Einschrinkung besteht darin, dass Erklirungsversuche strukturierte
Populationen untersuchen, in denen Interaktionen nicht vollstindig anonym sind sondern
Individuen die Moglichkeit haben Informationen tiber das Verhalten andere oder deren Identitit
zu sammeln und zu verarbeiten. Die zweite Einschrinkung zeigt sich darin, dass
Erklirungsansitze von der nicht motivierten Fihigkeit sozialer Normen ausgehen, individuelle
Handlungsriume zu beschrinken, insbesondere hinsichtlich des Missbrauchs von
Bestrafungsmechanismen. Der Artikel “Evolution of cooperation in social dilemmas: signaling
internalized norms.” prasentiert eine neue Erklirung kooperativen Verhaltens welche ohne beide

Einschrankungen auskommt.

1.2.  Einordnung der Dissertation: der weite Blickwinkel
Die drei Artikel, welche meine Dissertation bilden, setzen drei Gebiete der
Wirtschaftswissenschaften in Beziehung: Verhaltens6konomik, formale Institutionenékonomik
und evolutiondre Spieltheorie. Die folgende Abbildung veranschaulicht dies grafisch.
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Verhaltens6konomik: Das Einbeziehen psychologischer, kognitiver und emotionaler Faktoren
ist das charakterisierende Merkmal der Verhaltens6konomik. Die Verhaltens6konomik versucht
dadurch den Erklirungsgehalt der Wirtschaftswissenschaften zu erhohen. Der Versuch die
Wirtschaftswissenschaften auf eine realistischere psychologische Basis zu stellen impliziert jedoch
nicht die Ablehnung neoklassischer Ansitze. Tatsichlich werden in den meisten Artikeln auf
diesem Gebiet nur ein oder zwei Annahmen der Standardtheorie angepasst, um einen grof3eren
Grad psychologischen Realismus zu erreichen. Camerer und Loewenstein (2004) weisen darauf
hin, dass es nichts im Kern neoklassischer Theorie gibt, was besagt, dass Individuen keine
Riicksicht auf Fairness nehmen oder das riskante Ereignisse linear gewichtet werden sollten.
Einige der zuvor genannten Modifikationen schwichen diese vereinfachenden Annahmen ab.
Andere Abwandlungen des neoklassischen Rahmens berticksichtigen kognitive Schranken des
Menschen. Derartige Annahmen beziechen sich auf das was Herbert Simon ,,prozedurale
Rationalitit“ nennt (Simon 1976). Unter methodologischen Gesichtspunkt griff die
Verhaltens6konomik anfinglich vor allem auf experimentelle Ergebnisse zurtick. In der jungeren
Forschung finden auch Feldexperimente (Gneezy und Rustichini 2004) und
Computersimulationen (Angeletos et al. 2001) Anwendung.

Laut Camerer und Loewenstein (2004) kann die behavioristische Forschung zu menschlichen
Entscheidungen, welche die Hauptquelle der Verhaltens6konomik hinsichtlich relevanter
psychologischer Aspekte darstellt, in zwei Kategorien klassifiziert werden: Einschitzung und
Wahl. In der ersten Kategorie geht es im Kern darum wie Menschen
Wahrscheinlichkeitseinschitzungen treffen. Wie Menschen zwischen verschiedenen Alternativen
wihlen ist Gegenstand der zweiten.

Der Artikel zum FEinfluss von Marktinnovationen ldsst psychologische Aspekte in den
Verbreitungsprozess sozialer Normen einflieen. Nachdem ein Produkt, welches sich durch ein
relativ hohes Maf3 an Normkompatibilitit auszeichnet, am Markt angeboten wird, verindert sich
der Verbreitungsprozess in zweierlei Hinsicht. Erstens sind die Marktteilnehmer nun in der Lage
im Einklang mit der sozialen Norm zu konsumieren, was vor der Innovation nicht moglich war.
Zweitens ermoglicht die neue Produktvariation soziale Einflisse wie den Druck zur
Verhaltenskonformitit (Boyd und Richerson 1985) ihre Wirkung zu entfalten.

Der Artikel zur Evolution von Ungleichheitsaversion beinhaltet verhaltens6konomische
Elemente da diese Priferenzeigenschaft ein realistischeres Bild menschlichen Verhaltens zeichnet.
Das Papier liefert eine evolutionire Grundlage fiir eine Erklirungsvariable in der
behavioristischen Forschung zu menschlichen Entscheidungen.

Evolutionire Spieltheorie: Bis heute gibt es keine Ubereinkunft dariiber was genau mit der
evolutioniren Perspektive auf dem Gebiet der Wirtschaftswissenschaften gemeint ist. Witt (2008)
reflektiert fur die Verhaltens6konomik tber die drei Ebenen wissenschaftlichen Arbeitens: die
ontologische, die heuristische und die methodologische Ebene. Im Folgenden werde ich kurz
seine Erkenntnisse wiedergeben, da dies hilfreich sein wird, die beiden Artikel mit hohem
evolutions6konomischen Gehalt einzuordnen. Auf der ontologischen Ebene identifiziert Witt
(2008) einerseits den monistischen, anderer den dualistische Standpunkt. Im ersten wird
unterstellt, dass die 6konomische Sphire und die Nature in Wechselwirkung stehen. Die
dualistische Betrachtungsweise verneint diese Sichtweise und behandelt die 6konomische und die
biologische Evolutionsdynamiken als Teil von einander getrennter Sphiren der Realitit. Auf
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heuristischer Ebene unterscheidet Witt (2008) die verallgemeinerte darwinistische Heuristik und
allgemeine evolutiondre Heuristik. Im ersten Fall werden die drei Prinzipien der Evolution,
welche durch abstrakte Reduktion aus Darwins® Theorie zur natirlichen Auslese folgen
(Variation, Vererbung und Selektion), zur Konzeptualisierung der Evolution von Technologien
(Ziman 2000), der Wissenschaft (Hull 2001), der Wirtschaft (Nelson 1995) und anderen
herangezogen. Die allgemeine evolutiondre Heuristik basiert nicht auf einer Analogie zwischen
okonomischen und biologischen Evolutionsdynamiken, sondern auf einem allgemeinen
Evolutionskonzept. Dieses Konzept beschreibt Evolution als einen Prozess der
Eigentransformation mit der endogenen FErzeugung von Neuheiten und der bedingten
Verbreitung als konstituierende Merkmale (Witt 2003, Kap. 1). Die zwei ontologischen und die
zwei heuristischen Standpunkte erméglichen die Einordnung evolutions6konomischer Ansitze in
eine 2x2 Matrix.

Laut Witt (2008) lassen sich die Anwendungen evolutionirer Spieltheorie auf dem Gebiet der
Wirtschaftswissenschaften entlang dieser Dimensionen unterscheiden und haben im
Wesentlichen zwei Interpretationen. In der ersten Interpretation werden Selektionsprozesse
beschreibende Modelle der Evolutionsbiologie in 6konomischen Kontexten angewandt um
Lernprozesse abzubilden (siche Brenner 1999, Kap. 6). Diese Interpretation bedient sich der
heuristischen Strategie eine Analogie zwischen biologischer Adaption und Okonomischer
Adaption durch nicht-kognitive Lernprozesse. Aus ontologischer Sicht beantwortet die
Analogiekonstruktion regelmifig die Fragen danach ob und wie Okonomische Prozess in
Verbindung mit der naturalistischen Fundierung menschlichen Verhaltens stehen (Witt 2008).
Die erste Interpretation entspricht somit der Position in der zuvor erwihnten 2x2 Matrix zur
Strukturierung der Evolutionskonomik hinsichtlich des ontologischen Standpunkts und der
angewendeten heuristischen Strategie, welche der Neo-Schumpeter‘schen Synthese von Nelson
und Winter (1982) entspricht. Die zweite Interpretation basiert nicht auf einer Analogie sondern
der biologische Kontext ist dabei von direkter Bedeutung fiir Anwendungen in den
Wirtschaftswissenschaften. Autoren die diese Position vertreten gehen davon aus, dass die
grundlegenden Charakteristika menschlichen Verhaltens genetische verankert sind und somit am
besten vom Standpunkt der natiirlichen Auslese verstanden werden koénnen. Zu diesen
grundlegenden Eigenschaften menschlichen Verhaltens zihlen Altruismus, Fairness und Moral
(sieche bspw. Giith und Yaari 1992a; Binmore 1998; Gintis 2007). Diese direkte Ubertragung von
der Biologie auf die Wirtschaftswissenschaften setzt offenbar eine monistische Ontologie voraus.
Witt (2008) argumentiert, dass die heuristische Strategie, welche in der Forschung, die der
zweiten Interpretation folgt, Anwendung findet, einige Gemeinsamkeiten mit Hayek’s Theorie
zur gesellschaftlichen Evolution teilt.

Unter dieser Betrachtung, folgt der Artikel zur Evolution von Ungleichheitsaversion, welcher in
Kapitel 4 vorgestellt wird, der zweiten Interpretation, wohingegen die Arbeit, die sich mit der
Signalisierung internalisierter Normen beschiftigt, der ersten folgt. Ich untersuche die Evolution
von Ungleichheitsaversion in einer Umwelt, die ich als vereinfachtes ,game of life” (Giith und
Napel 2006) bezeichne. Diese Umwelt vereint drei Klassen von Spielen, die reprasentativ fiir die
Mehrheit menschlicher Interaktionen sind. Der Artikel zur Evolution von Kooperation
betrachtet ein konkretes Spiel, das Gefangenendilemma, und untersucht die Signalisierung einer
Kooperationsnorm als einen Mechanismus zur Férderung von Kooperation.
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Formelle Institutionenékonomik: Der Begriff der ,Institutionsékonomik® findet fiir eine
Vielzahl 6konomischer Ansitze und Schulen Anwendung. In der Regel bezieht er sich auf den
Bereich der Okonomik, welcher in der Tradition von Thorstein Veblen, John R. Commons, und
Wesley Mitchell steht. In den letzten Jahren hat sich der Begriff der ,Neuen
Institutionendkonomik® etabliert. Dieser Begriff bezieht sich auf 6konomische Forschung in der
Tradition des Transaktionskostenansatzes von Ronald Coase, Oliver Williamson, und Douglas
North. In jingster Vergangenheit wird dieser Begriff oft um spieltheoretische Ansitze zur
Evolution gesellschaftlicher Konventionen und manchmal auch um Institutionen im Verstindnis
der Osterreichischen Schule erweitert (sieche Rutherford 2001). In dieser Dissertation folge ich
dem spieltheoretischen Ansatz. Um diesen Ansatz von der traditionellen Institutionenékonomik
und den meist nicht-formalen Ansitzen der Neuen Institutionenékonomik zu unterscheiden,
bezeichne ich ihn als formelle Institutionentkonomik. In der den spieltheoretischen Rahmen
anwendenden Literatur konnen zwei Ansitze zur Definition des Begriffs |, Institution®
unterschieden  werden: der  Gleichgewichtsansatz  und  der  Spielregelansatz.  Im
Gleichgewichtsansatz stellt der Gleichgewichtscharakter individuellen Verhaltens das zentrale
definierende Element von Institutionen dar. Meist tibersetzt sich der Gleichgewichtscharakter in
ein Stabilititskonzept. Einige Autoren ziehen Konzepte der evolutorischen Spieltheorie (Sugden
1986; Sugden 1989; Young 1998; Aoki 2000; Bowles 2000), andere die Theorie wiederholter
Spiele der klassischen Spieltheorie heran (Greif 1989; Greif 1997; Greif 1998, Milgrom et al.
1990, Calvert 1995). Der Spielregelansatz versteht Institutionen als externe Faktoren, welche den
Strategienraum und die Auszahlungen des Spiels formen (North 1990; Hurwicz 1993; Hurwicz
1996). Es besteht eine groe Liicke zwischen der weiten Definition in der Neuen
Institutionenckonomik und der engen Definition innerhalb des Gleichgewichts- und des

Spielregelansatzes.

Diese Liicke wird durch den indirekten evolutorischen Ansatz von Giith und Yaari (1992)
verkleinert. Innerhalb dieses Ansatzes wird zwischen Verhaltenspayoffs und Fitness- oder
materiellen Payoffs unterschieden. Die Fitnesspayoffs einer bestimmten Verhaltensweise sind
entscheidend fiir die Verbreitung dieser innerhalb der Population. Verhaltenspayoffs spiegeln die
innere Bewertung dieser Fitnesspayoffs wider. Die Verhaltenspayoffs sind relevant fur die
Entscheidungsfindung, haben aber keinen Einfluss auf die Adoptionsrate fir diese Strategie
durch andere Individuen.

Der indirekte evolutorische Ansatz ermoglicht damit eine komplexere Modellierung von
Institutionen, die tber eine einfache VerhaltensregelmiBigkeit oder die Regeln eines Spiels
hinausgeht. Insbesondere die informelle Institution einer sozialen Norm kann durch diesen
Ansatz abgebildet werden. Somit liefert dieser Ansatz einen ersten Schritt um die zuvor erwihnte
Licke hinsichtlich der Komplexitit unterschiedlicher Definitionen von ,Institutionen® zu
verringern. Dies ist der Grund dafiir, warum dieser Ansatz in den beiden Artikeln, die eine
evolutorische Perspektive einnehmen, Anwendung findet (Kap. 3 und 4).

1.3.  Einordnung der Dissertation: der enge Blickwinkel
In diesem Abschnitt werde ich jeden der Artikel in die bestehende Literatur einordnen und die
Forschungsfragen herausarbeiten. Wie bereits erwahnt bilden ,,Priferenzen das iibergreifende
Thema meiner Dissertation.
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Ich betrachte soziale Normen als wichtigen individuelle Priferenzen formenden Faktor. Der
Artikel, der in Kap. 2 vorgestellt wird, untersucht die Wechselwirkung zwischen Mirkten und
dem Verbreitungsprozess von sozialen Normen. Dabei flieit die grolere psychologische
Realititsndhe  der  Verhaltens6konomik in  den  Analyserahmen  der  formalen
Institutionen6konomik ein. Dartiber hinaus liefert der Artikel FErkenntnisse fir die
industrie6konomische Forschung hinsichtlich der Wirkung sozialer Normen auf Produktmairkte.
Der Finfluss von sozialen Normen auf Mirkte wurde aus theoretischer, empirischer und
experimenteller Sicht untersucht. Mehrere Versuche wurden unternommen, um norm-
motiviertes Verhalten in die neoklassische Konsumtheorie einzubauen (siche z.B. Nyborgs et al.
2006; Brekke et al. 2003). Trotz dieser Bemuhungen gibt es keine auf norm-motivierten
Verhalten basierende allgemeine oder partielle Gleichgewichtstheorie, was ursichlich dafiir sein
konnte, dass die Mehrheit der Forschung auf diesem Gebiet empirischer Natur ist. Wie soziale
Normen einen bestimmten Typ von Mirkten, die Finanzmirkte, beeinflussen, wird durch Hong
und Kacperczyk (2009) und Johnson (2004) untersucht. Kim (2007) zeigt, dass Normen auch fir
die Mirkte privater Eigentumsrechte relevant sind. Eine Reihe von Fehr et al. (1998)
durchgefiihrten Experimenten zu Wettbewerbsmirkten und bilateralen Verhandlungen weisen
darauf hin, dass Wettbewerb nur einen begrenzten Einfluss auf Marktergebnisse hat, wenn die
Norm der Reziprozitit wirksam ist. Die Rolle fir die Nachfrage nach ,,griiner* Elektrizitit des
psychologischen Bediirfnisses eine positive Selbstwahrnehmung als sozial
verantwortungsbewusste Person zu erhalten, wurde von Ek und Soderholm (2008) untersucht.

Die Forschung zum Einfluss von Mirkten auf die Evolution von Normen beschiftigt sich
hauptsichlich mit der Analyse der Beziehungen zwischen normgeleiteter intrinsischer Motivation
und markt- oder preisgeleiteter extrinsischer Motivation. Es gibt empirische Befunde (Fehr und
Gichter 2001), welche belegen, dass Anreizvertrige reziprozititsgeleitete freiwillige Kooperation
verdringen. Einen Uberblick tiber diesen Teil der Literatur, der sich mit Verdringungseffekten
beschiftigt, geben Frey und Jegen (2001). Dartiber hinaus gibt es auch theoretische Forschung.
Benabou und Tirole (2006) entwickeln eine Theorie prosozialen Verhaltens in der Belohnungen
und Strafen Zweifel iber die wahren Motive guter Taten wecken. Dies kann zur teilweisen oder
volligen Verdringung prosozialen Verhaltens fiihren. Die Wechselwirkung zwischen sozialen
Normen und 6konomischen Anreizen in Unternehmen wird durch Huck et al. (2012) modelliert.
Die Arbeit von Bohnet et al. (2001) enthilt sowohl ein theoretisches Modell als auch
Beobachtungen aus Laborexperimenten. Sie untersuchen die Verbindung zwischen der
Durchsetzbarkeit von Vertrigen und individueller Leistungserbringung. Thre Ergebnisse zeigen,
dass Vertrauenswiirdigkeit durch schwache Durchsetzung geférdert und bei mittlerer
Durchsetzung verdringt wird. Diesen Ansidtzen ist gemein, dass sie sich auf marktinduzierte
monetire Anreize beschrinken. Dies jedoch reduziert Mirkte auf ihren Preis-Mengen Aspekt
und ldsst deren Innovationsvermogen vollig auller Acht. Produktvariationen die durch derartige
Innovation hervorgebracht werden sind ein wichtiger Baustein der Markt-Norm-Beziehung.
Diese Forschungsliicke hinsichtlich der Wechselwirkung zwischen Produktinnovationen und der
Verbreitung sozialer Normen wird in Kapitel 2 behandelt.

Das dritte Kapitel stellt ein Papier vor, welches die Sichtweise der formellen
Institutionenékonomik auf den Analyserahmen der evolutorischen Spieltheorie tibertrigt. Es hat
eine konkrete soziale Norm und deren Potential ein soziales Dilemma zu 16sen zum Inhalt, die
Norm sich kooperativ zu verhalten. Genauer gesagt, beschiftigt sich die Arbeit mit dem Ritsel
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tber die Entstehung von Kooperation in gro3en, unstrukturierten Populationen in einem Umfeld
in dem nicht-kooperatives Verhalten individuell rational ist. Die meisten Erklirungsansitze
weisen eine oder beide von zwei Einschrinkungen auf. Entweder werden strukturierte
Populationen untersucht oder soziale Normen haben die nicht begriindete Fahigkeit den
individuellen Handlungs- oder Strategienraum zu beschrinken.

Beziiglich der ersten Art der Beschrinkung verdienen einige Zweige der Literatur eine besondere
Aufmerksamkeit. Die Theorie der Verwandtenselektion stellt die Kooperation unter Individuen,
die genetisch in enger Beziehung stehen, ins Zentrum der Betrachtung (Hamilton 1964a, 1964b),
wohingegen Theorien zur direkten Reziprozitit auf Kooperationsanreize egoistischer Individuen
in wiederholten Interaktionen fokussieren (Trivers 1971; Axelrod 1984). Im Falle unendlicher
Wiederholung innerhalb einer Gruppe sei auf Taylor (1976) oder Mordecai (1977) und die Folk-
Theoreme von Rubinstein (1979) oder Fudenberg und Maskin (1986) verwiesen. Im Falle
unbestimmter Wiederholung, siche Kreps et al. (1982). Theorien indirekter Reziprozitit und
kostenverursachende Signalisierung zeigen Kooperation in groBleren Gruppen entstehen kann,
falls es den kooperierenden Gruppenmitgliedern gelingt eine Reputation aufzubauen (Nowak and
Sigmund 1998; Wedekind and Milinski 2000; Gintis et al. 2001).

Beziiglich der zweiten Einschrankung sei auf die frithen Arbeiten von Hirshleifer und Rasmusen
(1989) und Witt (1986) verwiesen, welche Bestrafungen nur dann erlauben, wenn eine Norm
verletzt wurde. Sethi (1996) erlaubt alle moglichen Strategien, die Bestrafung entweder von der
Missachtung oder der Befolgung einer Norm abhingig machen. Allerdings erfolgt dartiber hinaus
eine exogene Spaltung und damit Strukturierung der Population in Individuen deren Verhalten
im klassischen Sinne rational ist und in solche, deten Verhalten durch Routinen bestimmt ist, die
sich langsam an die Umweltzustinde anpassen.

Das Papier zur Evolution von Kooperation in sozialen Dilemmas er6ffnet eine alternative
Erklirung fir die Entstehung von Kooperation, die nicht von diesen beiden Restriktionen

abhingt.

Wihrend sich Kapitel 3 mit sozialen Dilemmas als wichtige Klasse menschlicher Interaktion
beschiftigt, untersucht der in Kapitel 4 vorgestellte Artikel die Evolution von
Ungleichheitsaversion in einer vereinfachten gemischten Umwelt, die drei Klassen menschlicher
Interaktion  vereint: ein soziales Dilemma, ein Koordinationsproblem und ein
Verteilungsproblem. Das Konzept der Ungleichheitsaversion spielt eine wichtige Rolle in der
behavioristischen Forschung zu menschlichen Entscheidungen. In Kapitel 4 wird der
Analyserahmen der evolutorischen Spieltheorie auf diese spezifische Verhaltensdeterminante
angewandt. In der Vergangenheit wurde die Evolution von Priferenzen in stark vereinfachten
Umwelten, die durch ein konkretes Spiel beschrieben werden, untersucht (z.B. Huck und
Oecchssler 1999; Kockesen et al. 2000a, 2000b und Sethi und Somanathan 2001). In jingerer
Vergangenheit wurden Versuche unternommen die Evolution von Priferenzen in komplexeren
Umwelten zu untersuchen. Giith und Napel (2000) analysieren wie das Personlichkeitsmerkmal
der Ungleichheitsaversion in einer Umgebung evolviert, welche zwei oft untersuchte Spiele
vereint: das Ultimatum-Spiel und das Diktator-Spiel. Poulson und Poulson (2006) untersuchen
die Evolution sozialer Priferenzen in einer Umwelt, die sich aus einem simultanen und einem
sequentiellen Gefangenendilemma zusammensetzt. Die Ergebnisse dieser Arbeiten wiesen darauf
hin, dass die Erkenntnisse die auf Untersuchungen von Umwelten basieren, die durch ein
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einziges Spiel reprisentiert werden, mit Vorbehalt zu bewerten sind, da die Ergebnisse eine
signifikante Verdnderung erfahren koénnen, sobald komplexere Umwelten betrachten werden.
Dieser Sachverhalt zeigt eine Forschungsliicke auf, zu deren SchlieSung Kapitel 3 beitrigt, indem
es einen allgemeinen Rahmen zur Analyse der Evolution von Priferenzen vorschligt und diesen
auf die soziale Priferenz der Ungleichheitsaversion anwendet.

Eine Voraussetzung fiir die Untersuchung der Evolution von Priferenzen im Rahmen des ,,game
of life ist die Strukturierung der unendlichen Menge an potentiellen Spielen, worin das zweite
Ziel der Arbeit besteht. Es gibt Grund zur Annahme, dass menschliches Verhalten nicht
spielspezifisch ist, sondern Gemeinsamkeiten fiir ganze, sehr allgemeine Klassen von Spielen
zeigt (siche Yamagishi et al. 2013; Ashraf et al. 2006; Blanco et al. 2011; Chaudhuri und
Gangadharan 2007 und Slonim und Garbarino 2008). Dies macht Hoffnung, dass sich fir
evolutionire Studien zu Praferenzen die Gberwiltigende Komplexitit der realen Welt auf diese
Klassen reduzieren ldsst. Zahlreiche Autoren teilen die Ansicht, dass es zwei fundamental
verschiedene Arten gesellschaftlicher Probleme gibt (siche bspw. Sugden 1986; Milgrom et al.
1990), Koordinationsprobleme und soziale Dilemmas. Schotter (1981), Ullmann-Margalit (1977)
und andere sind der Auffassung, dass es neben diesen beiden Klassen (mindestens) eine dritte Art
von sozialen Problemen gibt, Verteilungsprobleme. Ein Verteilungsproblem zeichnet sich durch
eine asymmetrische Verteilung der gleichgewichtigen Auszahlungen aus. Das ,,game of life* wie
ich es vorschlagen werde, umfasst diese drei Klassen von Interaktionen.

1.4,  Wissenschaftlicher Beitrag und zentrale Ergebnisse
In diesem Abschnitt werden der wissenschaftliche Beitrag und die zentralen Erkenntnisse jedes
einzelnen Artikels hervorgehoben.

Kapitel 2 “The impact of market innovations on the evolution of norms: the sustainability case.”
beschiftigt sich mit der in 1.3 identifizierten Forschungsliicke: die Wechselwirkung zwischen
innovativen Produktinnovationen und der Evolution sozialer Normen. Um diese
Wechselwirkung zu untersuchen wird in dem Artikel eine neue Dimension der Interaktion von
Mirkten und Normen entwickelt, die tber das Wechselspiel monetirer und nicht-monetirer
Anreize einer bestimmten Handlungsweise zu folgen, hinausgeht: die Innovation materieller
Giter als Katalysator der Normevolution. Die Katalysatorfunktion der Innovation basiert auf
zwei psychologische Faktoren, die Teil des Modells zur Normadoption sein werden. Der
Produktmarkt wird als Cournot-Oligopol modelliert mit einer exogenen Anzahl an Firmen, deren
Entscheidung dariiber die Produktinnovation in ihr Produktionsportfolio mit aufzunehmen
endogenisiert wird.

Das Modell zur Normadaption erweitert die bestehende Literatur zur Evolution sozialer Normen
auf dreierlei Weise. Erstens, das Modell bezieht die Wirkung von Produktinnovationen auf den
Prozess der Normadoption mit ein. Zweitens, der Artikel wird untersuchen wie ein
Konformititsbias im Konsum materieller Giter die Adoption idealistischer Normen beeinflusst.
Drittens, das Papier wird veranschaulichen wie die Marktstruktur durch ihre Auswirkung auf die
Marktergebnisse die Normdynamik beeinflusst. Dadurch trigt die Arbeit zum Verstindnis
dartiber bei wie die Evolution sozialer Normen von Marktaktivititen abhingt.

Zwel Fragen wird nachgegangen: Erstens wird untersucht werden wie eine Innovation, die sich
durch ihren relativ héheren Grad an Normeinhaltung auszeichnet, die Verbreitung der Norm
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verindert. Zweitens wird die Wirkung der Markdynamik auf die Evolution der sozialen Norm
hinsichtlich der Existenz und Multiplizitit der Gleichgewichte analysiert. Hinsichtlich der ersten
Frage wird sich zeigen, dass die Innnovation die Normverbreitung erhcht, wenn (1) der
Konformititsbias schwach ist oder genug Individuen bereits vor der Innovation die Norm
internalisiert hatten und (2) der Anstieg der individuellen Nachfrage nach dem der Norm
entsprechenden Produkt der aus der Normadoption resultiert den korrespondierenden Effekt auf
die Nachfrage nach dem die Norm verletzenden Produkt hinreichend stark tbersteigt. Diese
Bedingungen werden restriktiver je weniger Firmen im Markt aktiv sind, da der notwendige
Gewinnanstieg um ein zusitzliches Unternehmen zum FEintritt in den Markt des innovativen
Produkts zu bewegen, steigt.

Beziiglich der zweiten Frage wird die Untersuchung zeigen, dass multiple Gleichgewichte nicht
nur dann resultieren kénnen, wenn es sich bei der Normadoption um einen frequenzabhingigen
Meinungsbildungsprozess mit positiver Riickkopplung handelt, sondern das multiple
Gleichgewichte auch dann in Erscheinung treten konnen, wenn die Normadoption vom
beobachteten Marktverhalten, insbesondere vom Anteil des normkompatiblen Konsums,
abhingt. Die direkte positive Ruckkopplung kann schwicher ausfallen, wenn multiple
Gleichgewichte gleichzeitig durch einen Konformititsbias im Konsum materieller Gtter
unterstiitzt werden. Es wird sich zeigen, dass der Effekt der Norm auf die Nachfrage nach dem
der Norm entsprechenden Produkt im Vergleich zum Effekt auf die Nachfrage nach dem die
Norm verletzenden Produkt weder zu hoch noch zu niedrig sein darf, damit multiple
Gleichgewichte entstehen. Im Artikel wird die Marktstruktur als eine zweite Quelle fir die
Multiplizitit von Gleichgewichten diskutiert. Die Endlichkeit der Anzahl der im Markt aktiven
Unternehmen bedingt Unstetigkeiten in der Anzahl der Unternehmen. Dies hat Unstetigkeiten in
der Markt-Norm-Dynamik zur Folge (siche Abb.Figure 2-4)). Es wird sich jedoch herausstellen,
dass diese Ruckkopplung bereits bestehende positive Frequenzabhingigkeiten als Quelle fir die
Multiplizitit der Gleichgewichte zwar verstirken kann, aber kaum allein multiple Gleichgewichte

verursachen kann.

Diese Ergebnisse haben Konsequenzen fur Politiker, die als mittelfristiges Ziel auf dem Weg zur
langfristig angestrebten Reduktion der Umweltverschmutzung auf eine groflere Verbreitung
sozialer Normen abzielen. Unter anderem wird diskutiert werden, dass der Konformititsbias so
grof3 sein kann, dass er die Verbreitung der Norm verhindert. Vorwiegend in diesem Fall
erscheint die politische Interferenz mit Marktprozessen (und Normbildung) angemessen. Wird
von politischer Seite eine Multiplizitit von Gleichgewichten aufgrund positiver Riickkopplungen
im Prozess der Normverbreitung vermutet und zeichnet die Struktur des neuen Marktes die Zige
eines kleinen Oligopol oder gar eines Monopols, dann sollten politische MaBnahmen, die darauf
abzielen ein Gleichgewicht mit geringer Normverbreitung zu tberwinden, umfangreich und
lingerfristig wirksam sein. Politische MaBnahmen, welche den Effekt der Norm auf die
Nachfrage dndern, sollten nur dann Anwendung finden, wenn die Norm bereits weit verbreitet
ist. Sollte dies nicht der Fall sein, so wird die Wirkung nicht nur durch die geringe Anzahl an
Individuen reduziert, die moglichweise auf die politischen Mallnahmen reagieren, sondern auch
durch die potentielle Wiederbelebung von zumindest einem gewissen Grad an kognitiver
Dissonanz, die dann entsteht wenn man eine Norm internalisiert hat, aber nicht dieser
entsprechend konsumiert.
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Kapitel 3 “Evolution of cooperation in social dilemmas: signaling internalized norms.” leistet
einen Beitrag zur Erklirung des Phidnomens der Kooperation in grofBen, unstrukturierten
Gesellschaften (z.B. Axelrod und Hamilton 1981; Fudenberg et al. 2012). Der Beitrag liegt in der
Entwicklung eines alternativen Mechanismus zur Unterstitzung von Kooperation in einer
Umwelt (Gefangenendilemma), in der nicht-kooperatives Verhalten aus materieller Sicht
individuell rational ist. In einer solchen Umwelt kann Kooperation weder durch irgendeine Form
wiederholter Interaktion noch durch soziale Normen herbeigefiigt werden, die auf Sanktionen
basieren, die in zukunftigen Interaktionen auferlegt werden. Selbst internalisierte Normen, d.h.
Normen, welche den wahrgenommenen Nutzen aus kooperativen oder nicht-kooperativen
Verhalten beeinflussen, konnen das Dilemma in unstrukturierten Populationen nicht tiberwinden,
es sel denn —und dies ist der alternative Mechanismus— die Individuen sind in der Lage die
Eigenschaft ein Normtriger zu sein, zu signalisieren. Wenn internalisierte Normen einfach
existieren ohne die Moglichkeit diese zu signalisieren oder bei anderen zu erkennen, dann wiirden
diese die Normtriager veranlassen zu kooperieren und von anderen ausgenutzt zu werden. Somit
hitten Normtriger einen klaren evolutorischen Nachteil, der zum Verschwinden der Norm
fithren wiirde. Nur wenn Internalisierung der Norm glaubhaft kommuniziert werden kann, mag
sich das Bild 4ndern, da unter diesen Umstinden Verhalten auf das erwartete Verhalten anderer

konditioniert werden kann.

Ist die Signalisierung kostenlos, so reduziert sie sich zu cheap talk und wird keinen Einfluss auf
den evolutorischen Nachteil der Normtriger haben. Signalisierung wird demnach mit Kosten
verbunden sein und Individuen, welche die Norm angenommen und solche die nicht, mégen sich
in den Signalisierungskosten unterscheiden. Im Artikel wird ein Theorem prisentiert, welches
notwendige und hinreichende Bedingungen fiir vollstindige oder teilweise Kooperation in einem
stabilen Gleichgewicht angibt. Diese Bedingungen nehmen Bezug auf den Unterschied in den
Signalisierungskosten zwischen kooperativen und opportunistischen Individuen, auf die Stirke
der Kooperationsnorm und auf die Modelparameter des Gefangenendilemmas, d.h. der Anreiz
zu Defektieren und der ,,sucker’s payoff. Es ergeben sich mehrere interessante Ergebnisse.
Erstens, obschon der exakte Wert des Verhaltensparameters, der den internen Bias zugunsten
gegenseitiger Kooperation misst, nicht relevant hinsichtlich der Konsequenz fiir das Verhalten
jedes einzelnen ist, spielt der Wert und dessen Relation zum Defektionsanreiz eine Rolle
hinsichtlich der Existenz von Gleichgewichten mit teilweiser Kooperation. Genauer gesagt, je
stirker die innere Motivation fiir kooperatives Verhalten, desto weniger restriktiv sind die
Bedingungen fiir den Unterschied in den Signalisierungskosten. Zweitens, fiir die Koexistenz von
kooperativen und defektierenden Individuen in einem stabilen Gleichgewicht ist es nicht
notwendig, dass die Signalisierungstechnologie vollstindig den Defektionsanreiz authebt. Da dies
fur viele Ansitze notwendig ist, die auf einer Form unfreiwilliger Umverteilung (z.B. Bestrafung)
basieren, kann der Anwendung findende Ansatz Kooperation in mehr Fillen motivieren als die
umverteilungsbasierten. Es wird sich des Weiteren zeigen, dass sich die Spanne an
Signalisierungskosten der nicht-kooperativen Individuen, welche teilweise oder vollstindige
Kooperation erlaubt, schwach in der Stirke der sozialen Norm gegenseitiger Kooperation
vergrofert.  Schliellich  wird sich herausstellen, dass die Menge an Paaren aus
Signalisierungskosten des nicht-kooperativen Typs und der Stirke der Kooperationsnorm, welche
teilweise oder vollstindige Kooperation ermdglichen, strikt mit den Signalisierungskosten des
kooperativen Typs wichst und sich strikt mit dem ,,sucker’s payoff und dem Anreiz defektiv auf
kooperatives Verhalten zu reagieren, verkleinert.
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Kapitel 4 stellt den Artikel “The evolution of inequality aversion in a simplified game of life.”
vor. Spitestens mit den grundlegenden Arbeiten von Fehr und Schmidt (1999) und Bolton und
Ockenfels (2000) avancierte die soziale Priferenz in Form einer Ungleichheitsaversion zu einer
bedeutende Erklirung zahlreicher empirischer und experimenteller Befunde, die von den
Vorhersagen der klassischen 6konomischen Theorie abweichen. Die steigende Relevanz als
Erklirungskonzept verlangt nach einer Rationalisierung derartiger Praferenzen, da sie ansonsten
als reine ad hoc Anpassung der Priferenzen gewertet werden konnten, um empirische
Beobachtungen zu erkliren. Giith und Napel (2006) weisen darauf hin, dass derartige
Priferenzen insbesondere mit der physischen Notwendigkeit vereinbar sein sollten, in einer Welt
die durch Ressourcenknappheit charakterisiert ist, nach materieller Entlohnung zu streben und
um diese zu kimpfen. Mit anderen Worten, derartige Priferenzen sollten sich aus evolutorischer
Sicht erkliren lassen. Der Argumentation folgend, dass Untersuchungen zur Evolution von
Priferenzen in einer Umwelt erfolgen sollten, die im besten Fall alle relevanten Klassen von
Spielen umfasst, werde ich eine bestimmte Struktur eines vereinfachten ,,game of life®
vorschlagen. Wie bereits erwihnt beinhaltet das vereinfachte ,,game of life” wie es definieren
werde, ein symmetrisches Dilemma, ein symmetrisches und striktes Koordinationsproblem und
ein striktes Verteilungsproblem. Hernach werde ich die Evolution einer konkreten Ausprigung
sozialer Priferenzen, die der Ungleichheitsaversion, in eine 2x2 vereinfachten ,,game of life®

untersuchen.

Das vereinfachte ,,game of life”, welches drei besonders wichtige Klassen menschlicher
Interaktion beinhaltet, zeigt einerseits wie erwartet eine groflere Variation moglicher
Gleichgewichtsverteilungen im Vergleich zu den ein einzige Spielklasse umfassende Umwelten.
Insbesondere erfahren die tberraschend starken Vorhersagen der Einzelspielbetrachtung eine
Relativierung. Der globale evolutorische Vorteile ungleichheitsaverser Spieler im Rahmen eines
Dilemmas und der globale evolutorische Nachteil in fast allen Fallen fur ungleichheitsaverse und
im Verteilungsproblem begtinstigte Individuen werden relativiert. Dies gilt insbesondere fur den
Fall, in dem die Wechselwirkung eines Dilemmas und eines Verteilungsproblems ein lokal stabiles
Gleichgewicht unterstiitzen, in dem nur ungleichheitsaverse Individuen existieren. Dann
Ubertrigt sich dies auf das vereinfachte ,,game of life”, d.h. Ungleichheitsaversion kann sich auch
unter den im Verteilungsproblem begtinstigten Individuen etablieren. Andererseits wird sich
zeigen, dass die erwartete Stabilisierung innerer Gleichgewichte in denen relative
ungleichheitsaverse und relativ opportunistische Individuen koexistieren nur dann auftritt, wenn
diese Stabilisierung bereits im Koordinationsproblem fiir sich genommen erfolgt.

Zusammenfassend, meine Dissertation wird sich mit individuellen Priferenzen beschiftigen, dem
zentralen Konzept in der Okonomik zur Modellierung menschlichen Verhaltens. Genauer gesagt,
werden die drei konstituierenden Artikel bestimmte Charakteristika von Priferenzen betrachten,
die Auswirkungen auf das Verhalten haben koénnen. Zwei Arten der Strukturierung von
Priferenzen werden untersucht, die soziale Priferenz der Ungleichheitsaversion und Strukturen,
die aus der Internalisierung sozialer Normen hervorgehen. Meine Dissertation wird die
Verbreitung und die Auswirkungen dieser Charakteristika untersuchen. Zwei Krifte, welche fiir
die Verbreitung dieser Priferenzmerkmale von Bedeutung sind, werden dabei berticksichtigt:
evolutionire und psychologische Krifte. Meine Arbeit leistet einen Beitrag zum besseren
Verstindnis der Entstehungsbedingungen und der Konsequenzen moglicher Erklirungsansitze
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fur beobachtetes menschliches Verhalten, welche auf bestimmte Strukturen individueller

Priferenzen zuriickgreifen.
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1. Introduction

1.1.  Motivation

In Economics preferences are the central concept in the framework to analyze human behavior.
They refer to the set of assumptions concerned with the ordering of choice-alternatives. These
alternatives can incorporate aspects of uncertainty or intertemporal issues. A mathematical model
of preference relations was first written down by Frisch (1926) and brought to perfection by
Arrow (1951). A preference relation which models preferences is the foundation of rational
choice theory in economics. Rational choice is defined to mean the process of determining the
set of options to choose from and then selecting the most preferred one according to some
consistent criterion. Rational choice theory is based on a rather sparse description of the choice
problem (objectives and constraints). That choice depends on many more factors is for instance
proposed by psychological theories and supported by many laboratory experiments (Hogarth and
Einhorn 1992; Hoffman et al. 1994; Kahneman and Frederick 2002, to name a few). Such factors
include for instance the way or the order information is presented. The empirical failings of
rational choice theory in economic and psychological experiments have triggered intense research
in that field and many alternative models have been proposed. To understand individual behavior
is one of the fundamental tasks for economic research. My thesis contributes to this research
agenda. The emergence of certain particularities of preferences and their impact on behavior are
the overarching theme of the constituting three articles. Beyond this unifying theme, which is of
central interest for me each of the articles is motivated by a more narrow research question. This
will be exemplified in the next paragraphs.

Methodological individualism and the concept of homo oeconomicus form the basis for standard
economic theory. Preferences and restrictions of the action space determine individual behavior.
To operationalize the basic assumptions of rationality and narrow self-interest of homo
oeconomicus preferences are assumed to be stable over time. Stable preferences are not meant to
be a descriptive model for real individuals though. Even if preferences are stable in the short run,
the questions arise why and how certain features like altruism, risk aversion, loss aversion,
repeatedly confirmed in experiments were, “implemented” into humans. The evolutionary
perspective offers one framework to answer these questions. Within this framework economists
try to rationalize specific aspects of human preferences. At the latest with the seminal work of
Fehr and Schmidt (1999) and Bolton and Ockenfels (2000) other-regarding preferences in the
form of inequality aversion have become a prominent explanation for many empirical and
experimental findings which deviate from the prediction of standard economic theory. Increasing
importance of other-regarding preferences in behavioral economics and other fields’ calls for a
rationalization for such preferences, otherwise it may be regarded as an ad-hoc adjustment of
preferences to explain empirical results. As Giith and Napel (2006) point out such preferences
should in particular be compatible with the physical necessity to strive and compete for material
rewards in an environment characterized by the scarcity in resources. In other words such
preferences ought to be rationalizable from an evolutionary point of view. The authors
convincingly argue that any type of study concerned with the evolution of preferences need to be
carried out in an environment that comprises all of the classes of human interaction since
otherwise game-specific results are obtained whose generalizability is at least questionable. They



refer to such an environment as the ‘game of life’. In the article “The evolution of inequality
aversion in a simplified game of life’ I make a first step towards fulfilling this requirement.

However, preferences are not only shaped by evolutionary forces, which work on a long time
scale and transform the genetically encoded part of preferences. Formal and informal institutions
enable and constrain actions of individuals. If informal institutions like social norms become
internalized they become part of the preferences of an individual. The adoption of a social norm
works on a much shorter time scale and depends on multiple factors. In my understanding social
norms are inner “recommendation” to act in a certain way. They may be complemented or
substituted by external incentives like cost and benefits associated with a chosen action. These
cost and benefits are thus part of the aforementioned external restrictions to behavior. In modern
economies a large part of human interaction takes place in market environments. Hence most of
the behavioral constraints materialize in markets. By aggregating individual behavior markets also
aggregate individual external effects. Many of today’s environmental problems stem from private
consumption patterns. Individuals consume transportation, heating and food, all of which cause
substantial emissions of CO, and other pollutants. Preferences for choosing more or less
polluting products and services are shaped by their availability as well as by social norms and
other institutions. Thus, solutions to mitigate environmental problems depend not only on
product innovation, but also on the presence of social norms, with the former enriching markets
with sustainable products, and the latter supporting sustainable consumption. When recognizing
that social norms influence preferences, it becomes apparent that markets and social norms
cannot be treated separately. The existing literature has widely studied the interrelation between
markets and social norms in both directions — how social norms affect markets and how markets
affect social norms (e.g. Hong and Kacperczyk 2009; Johnson 2004; Ek and Soderholm 2008;
Fehr and Gichter 2001 and Gneezy and Rustichini 2000). All of these approaches are limited to
monetary incentives provided by markets and their regulation. This, however, reduces markets to
their price-quantity aspect and completely neglects their innovation capacity. The product
variation due to such innovations is an important element of the market-norm interaction. It is
this interrelation that is focused on in the article “The impact of market innovations on the
evolution of social norms: the sustainability case”.

The aspect of sustainability points to the more general class of problems of social dilemmas.
Social dilemmas are characterized by the property that individually rational behavior leads to
collectively irrational outcomes. Economists however observe in experiments (for a survey see
Roth 1995) and in the field (Fey and Meier 2004; Cunha and Augenblick 2014) cooperation in the
sense that this collective irrationality is at least partially circumvent. This is puzzling from the
traditional economic perspective in particular as cooperative behavior emerges even in the
absence of any shadow of future interaction (Cooper et al. 1996). Attempts to solve the puzzle
are abundant but have thus far commonly relied on one or both of two restrictions. The first
restriction is that explanations have focused on structured populations, in which interactions are
not completely anonymous but allows individuals to collect and process information about past
behavior of others and about their identity. The second restriction is that explanations have
depended on an unexplained ability of social norms to restrict the individuals’ action or strategy
spaces, in particular, with respect to the abuse of punishment. The article “Evolution of
cooperation in social dilemmas: signaling internalized norms.” presents a new explanation for
cooperation that avoids both restrictions.
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1.2.  Positioning of the thesis: the broad perspective
The three articles constituting my thesis are related to three fields of economics: Behavioral
Economics, Formal Institutional Economics and Evolutionary Game Theory. Figure 1-1
illustrates the relation graphically.

The impact of market
innovations on the ) The evolution of
. . Behavioral . . .
evolution of social norms: inequality aversion in a
the sustainability case. Economics simplified game of life.
[ Preferences.
Formal Institutional Evolutionary
Economics Game Theory

Evolution of cooperation in
social dilemmas: signaling

internalized norms.

Figure 1-1: The fields of economics the articles relate to.

Behavioral Economics: Incorporating psychological, cognitive and emotional factors is the
distinctive feature of behavioral economics. It thereby tries to increase the explanatory power of
economics. The attempt to set the discipline of economics on more realistic psychological
grounds does not imply a rejection of the neoclassical approach. Indeed most of the papers in
this field modify only one or two assumptions in standard theory to achieve a higher degree of
psychological realism. As Camerer and Loewenstein (2004) point out there is nothing in core
neoclassical theory that specifies that people should not take fairness into consideration or that
they should weight risky outcomes in a linear fashion. Some of the aforementioned modifications
relax these simplifying assumptions. Other modifications take cognitive limitations of humans
into account. These assumptions refer to what Herbert Simon calls “procedural rationality”
(Simon 1976). From a methodological point of view behavioral economics initially made
primarily use of experimental data. More recently field experiments (Gneezy and Rustichini 2004)
and computer simulations (Angeletos et al. 2001) have been utilized.

According to Camerer and Loewenstein (2004) behavioral decision research as the primary
source for behavioral economics with respect to psychological aspects to be incorporated can be
classified into two categories: judgment and choice. How people estimate probabilities is at the
core of the former. The latter is concerned with how people select among actions.




The paper on the impact of market innovation incorporates psychological aspects of the
adoption process of a social norm. After a new product or service which is characterized by a
relatively high degree of norm compliance has entered the market, the process of norm adoption
changes in two ways. First, an individual is now able to consume in accordance with his or her
norm, which could not have happened before the innovation. Second, the new variety allows the
social influences like the pressure to behave in conformity to others (Boyd and Richerson 1985)
to enter the scene.

The paper on the evolution of inequality aversion is related to the field of behavioral economics
as it is concerned with inequality aversion which is considered to give rise to a more realistic view
of human behavior. It provides an evolutionary foundation of an explanatory variable in
behavioral decision research.

Evolutionary Game Theory: Until today there is no common agreement about what is meant
by the “evolutionary” viewpoint in economics. Witt (2008) reflects for the field of evolutionary
economics on the three levels of scientific reasoning, the ontological level, the heuristic level and
the methodological level and classifies the existing differing views. In what follows I will briefly
restate his insights which will helpful to position the two articles which carry a strong
evolutionary notion. With respect to the ontological stance Witt (2008) identifies on the one hand
the monistic view and on the other the dualistic view. The former assumes that the economic
sphere and nature are connected spheres with potentially interdependent processes. The latter
explicitly rejects this view and treats economic and biological evolutionary processes as being part
of disconnected spheres of reality. On the heuristic level Witt (2008) distinguishes the generalized
Darwinian heuristic and the generic evolutionary heuristic. The former applies the three
principles of evolution that follow by abstract reduction from the Darwinian theory of natural
selection (blind variation, selection, and retention) to conceptualizing the evolution of technology
(Ziman 2000), science (Hull 2001), the economy (Nelson 1995) and others. The latter is not
based on an analogy between economic and biological evolutionary processes, but by a generic
concept of evolution. This concept characterizes evolution as a process of self-transformation
with the endogenous generation of novelty and its contingent dissemination as its constituting
elements (Witt 2003, Chap.1). The two ontological stances and the two heuristic strategies allow
the different approaches in evolutionary economics to be represented in a 2x2 matrix.

According to Witt (2008) applications of evolutionary game theory to the discipline of economics
can be distinguished along these dimensions and have essentially two interpretations. In the first
interpretation models from evolutionary biology which describe the selection process are applied
to an economic context to model learning processes (see Brenner 1999, Chap.6). This
interpretation makes use of the heuristic strategy of assuming an analogy between adaption in
biology and adaption in economics through non-cognitive learning. From an ontological
perspective the analogy construction typically does explicitly answer the question of whether, and
how, the economic processes connect to the naturalistic foundation of human behavior (Witt
2008). Hence it parallels the entry that is beset with the Neo-Schumpeterian synthesis of Nelson
and Winter (1982) in the aforementioned 2x2 matrix structuring the field of evolutionary
economics with respect to the ontological stance and the applied heuristic strategy. The second
interpretation is not based on an analogy but the biological context is directly relevant for the
application in economics. Authors taking up this position claim that very basic features of human
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behavior are genetically encoded and can therefore be best understood from the viewpoint of
natural selection. Among such basic features of human behavior are altruism, fairness or morality
(see. e.g. Giuith and Yaari 1992a; Binmore 1998; Gintis 2007). This direct transfer from biology to
economics obviously presupposes a monistic ontology. Witt (2008) argues the heuristic strategy
applied in the research following the second interpretation has some similarities with Hayek’s
theory of societal evolution.

In this view the article on the evolution of inequality aversion which is presented in Chapter 4
follows the second interpretation, whereas the article that deals with the signaling of internalized
norms follows the first interpretation. I study the evolution of inequality aversion in an
environment to what I refer as a simplified “game of life” (Giith and Napel 2006). This
environment comprises three classes of games which are representative for most of human
interactions. The article on the evolution of cooperation focuses on one particular game, the
Prisoners’ Dilemma, and studies the signaling of a cooperative norm as a mechanism to foster

cooperation.

Formal Institutional Economics: The term “institutional economics” has been applied to a
variety of economic approaches and schools of thought. Most of the time it refers to economics
in the tradition of Thorstein Veblen, John R. Commons, and Wesley Mitchell. In recent years the
term “new institutional economics” has become well-established. This term refers to economics
in the tradition of the transactions cost approach of Ronald Coase, Oliver Williamson, and
Douglas North. Nowadays the term is often extended to incorporate game theoretic approaches
to the evolution of social convention, and sometimes to institutions in the tradition of the
Austrian School (see Rutherford 2001). In this thesis I follow the game theoretic approach. To
distinguish it from the traditional institutional economics and the primarily non-formal
approaches of new institutional economics I refer to it as formal institutional economics. In the
literature applying a game theoretic framework to institutions two approaches defining the term
can be distinguished: the equilibrium approach and the rules-of-the-game approach. In the
equilibrium approach the core defining element of institutions is the equilibrium character of
individual actions. Most of the time the equilibrium character translates into a notion of stability.
Some authors rely on concepts of evolutionary game theory (Sugden 1986, 1989; Young 1998;
Aoki 2000; Bowles 2000), others use the theory of repeated games of standard game theory
(Greif 1989, 1997, 1998; Milgrom et al. 1990; Calvert 1995). The rules-of-the-game approach
treats institutions as an external factor shaping the actions spaces and payoffs of the game (North
1990; Hurwicz 1993, 1996). There is a huge gap between the wide definition in the field of new
institutional economics and the narrow definition within the equilibrium approach and the rules-
of-the-game approach.

This gap is narrowed down by the indirect evolutionary approach pioneered by Giith and Yaari
(1992b). Within the indirect evolutionary approach behavioral and fitness or material payoffs are
distinguished. Fitness-payoffs of a certain behavior are relevant for the diffusion of that particular
strategy among individuals. Behavioral payoffs reflect the inner evaluation of those fitness
payoffs. These payoffs are relevant for decision making but have no influence on the adoption
rate of that strategy by other agents.

The indirect evolutionary approach allows to model institutions in a more complex way beyond a
simple regularity in behavior or the rules of a game. In particular the informal institution of a
5



social norm may be modeled in this way. It thus provides a first step towards reducing the
aforementioned gap in the complexity of the different definitions. For this reason I will apply the
indirect evolutionary approach in the two articles that take an evolutionary perspective (Chapter 3
and 4).

1.3.  Positioning of the thesis: the narrow perspective
In this section I will briefly relate each of the articles to the existing literature and identify the
research questions being addressed. As mentioned earlier “preferences” constitute the
overarching theme of my thesis.

I consider social norms as important entities shaping individual preferences. The article presented
in Chapter 2 studies the interdependency of markets and the adoption process of a social norm.
It applies the psychological realism of behavioral economics to the analytical framework of
formal institutional economics. Furthermore it provides some insight for the industrial
organization literature with respect to the impact of social norms on product markets. The
influence of social norms on markets has been studied from theoretical, empirical and
experimental perspectives. Several attempts have been made to incorporate norm-motivated
behavior into neoclassical consumer theory (see e.g. Nyborgs et al. 2006; Brekke et al. 2003).
Despite these attempts there is no general or partial equilibrium theory based on norm-motivated
behavior, what may explain why most research in the field is empirical. How social norms
influence a particular type of market, the financial market is studied by Hong and Kacperczyk
(2009) and Johnson (2004). Kim (2007) shows that norms are also relevant for markets of private
property rights. A series of competitive-market and bilateral-bargaining experiments carried out
by Fehr et al. (1998) indicate that competition has a rather limited effect on market outcomes if
the norm of reciprocity is operative. The role of the psychological need to maintain a positive
self-image as a socially responsible person on the demand for “green” electricity is studied by Ek
and Soderholm (2008).

The research on the impact of markets on the evolution of norms primarily deals with the
analysis of the relationship of norm-driven intrinsic motives and market- or price-driven extrinsic
motives. There is empirical support (Fehr and Gichter 2001) that incentive contracts crowd out
reciprocity-driven voluntary cooperation. A first survey of this stream of empirical literature on
crowding-out effects was carried out by Frey and Jegen (2001). There is also theoretical research.
Benabou and Tirole (2006) provide a theory of pro-social behavior where rewards or
punishments create doubt about the true motives for which good deeds are performed.
Consequently this may lead to partial or even total crowding-out of pro-social behavior. The
interplay of social norms and economic incentives in firms is modeled by Huck et al. (2012). A
study that provides both a theoretical model and evidence form the laboratory is performed by
Bohnet et al. (2001). They study the connection between contract enforceability and individual
performance. The results show that trustworthiness is “crowded in” with weak enforcement and
“crowded out” with medium enforcement. All of these approaches are limited to monetary
incentives provided by markets and their regulation. This, however, reduces markets to their
price-quantity aspect and completely neglects their innovation capacity. The variation due to such
innovations is an important element of the market-norm interaction. This gap in research on the
interdependency between innovative variation of products and the evolution of social norms is
addressed in Chapter 2.
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Chapter 3 presents a paper that applies the formal institutional economics’ perspective on
institutions to the framework of evolutionary game theory. It analysis a particular social norm, a
norm to behave cooperatively, and its potential to resolve social dilemmas. More precisely it deals
with the puzzle of the emergence of cooperation in large, unstructured societies in an
environment where non-cooperative behavior is individual rational. As mentioned before most
attempts rely on one or both of two restrictions. Either it is structured population which is
analyzed or social norms are given the unmotivated ability to restrict the individuals’ action or
strategy spaces.

With respect to the first group of restrictions, some strands of the literature deserve special
mention. The theory of kin selection focuses on cooperation among individuals who are
genetically closely related (Hamilton 1964a, 1964b), whereas theories of direct reciprocity focus
on incentives to cooperate in repeated interactions of self-interested individuals (Trivers 1971;
Axelrod 1984). For infinite repetition within one group, see Taylor (1976) or Mordecai (1977)
and for Folk-Theorem-type of results Rubinstein (1979) or Fudenberg and Maskin (1986). For
indefinite repetition, see Kreps et al. (1982). The theories of indirect reciprocity and costly
signaling show how cooperation in larger groups can emerge when those cooperating can build a
reputation (Nowak and Sigmund 1998; Wedekind and Milinski 2000; Gintis et al. 2001).

In terms of the second set of exclusions, reference is made to eatly papers of Hirshleifer and
Rasmusen (1989) and Witt (1986) that allow for punishment only after a norm has been violated.
Sethi (1996) allows for all possible strategies which condition punishment on either the violation
of or compliance with a norm. However, he then adds structure to the society by introducing
some exogenous division of the population — the behavior of some individuals is rational, and for
the rest it is determined by routines that are slowly adapted to their environment.

The article on the evolution of cooperation in social dilemmas offers an alternative explanation
for the emergence of cooperation that does not depend on these two restrictions.

Whereas Chapter 3 deals with the important class of human interactions of social dilemmas, the
article presented in Chapter 4 studies the evolution of inequality aversion in a simplified
compound environment which comprises three classes of human interaction: a social dilemma, a
problem of coordination and a problem of distribution. The concept of inequality aversion plays
an important role in behavioral decision research. In Chapter 4 the framework of evolutionary
game theory is applied to this particular behavioral determinant. In the past the evolution of
preferences has been studied in highly artificial single-game environments (e.g. Huck and
Oecchssler 1999; Kockesen et al. 2000a, 2000b and Sethi and Somanathan 2001). More recently,
some attempts were made to analyze the evolution of preferences in more complex
environments. Giith and Napel (2000) analyze how the personal characteristic of inequality
aversion evolves in a setting containing two well-studied and characteristic games: the Ultimatum
game and the Dictator game. Poulsen and Poulsen (20006) study the evolution of other-regarding
preferences in an environment that comprises a simultaneous and a sequential Prisoners’
Dilemma. The results of the latter suggest that the results of single-game environments should be
treated with caution because they demonstrate a significant change in results once more complex
environments are analyzed. The gap in research being identified, Chapter 3 provides a step
towards conceptualizing a framework for evolutionary studies of preferences and applies this
framework to the other-regarding preference of inequality aversion.
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A prerequisite for the analysis of the evolution of preferences in the game of life is the structuring
of the infinite set of potential games, which is the second aim of the paper. There is evidence that
human behavior is not game-specific, but acts of men are similar in entire, quite general classes of
games (see Yamagishi et al. 2013; Ashraf et al. 2006; Blanco et al. 2011; Chaudhuri and
Gangadharan 2007 and Slonim and Garbarino 2008). This raises hope that the overwhelming
complexity of the real world might be reducible to these classes when the evolution of
preferences is considered. Many authors implicitly or explicitly share and express the view that
there are two fundamentally different societal problems (see e.g. Sugden 1986; Milgrom et al.
1990), problems of coordination and social dilemmas. Apart from these two classes, Schotter
(1981), Ullmann-Margalit (1977) and others share the view that there is (at least) a third type of
social problems, one of distributive nature. A problem of distribution is characterized by unequal
payoffs in equilibrium. The notion of a game of life which I will suggest comprises these three
classes of games.

1.4. Contributions and main conclusions

This section highlights the contribution and presents the main conclusions of each of the articles.

Chapter 2 “The impact of market innovations on the evolution of norms: the sustainability case.”
is concerned with the gap in research identified in 1.3: the interdependency between innovative
variation of products and the evolution of social norms. To analyze this interdependency the
paper will introduce a new dimension to the interaction between markets and norms beyond the
interplay of monetary and non-monetary incentives to act in a certain way: the innovation of
material goods as a catalyst of norm evolution. The catalytic function of the innovation is based
on two psychological forces being incorporated in a model of norm adoption. The product
market is modeled by a Cournot-oligolpoly with a fixed number of firms which decision whether
or not to add the innovative product to their production portfolio is endogenized.

The model extends the existing literature on the evolution of social norms in three ways. First,
the model incorporates the influence of a product innovation on the process of norm adoption.
Second, the paper will analyze how a conformity bias in the consumption of material goods
affects the adoption of idealistic norms. Third, the paper will demonstrate how market structure,
through its impact on market outcomes, may influence norm dynamics. The paper will thereby
add to the understanding of how the evolution of norms depends on market activities.

Two questions will be pursued. First, it will be studied how an innovation that differs with
respect to the level of norm compliance modifies the dissemination of a norm. Second, it will be
investigated the effect of market dynamics on the evolution of the norm with respect to the
existence and stability of the equilibria. Concerning the first question, the innovation increases
the norm diffusion if (1) the conformity bias is weak or enough individuals already bear the norm
prior to the innovation and (2) the increase of individual demand for the norm-compliant
product variant resulting from norm adoption exceeds the corresponding effect on the demand
for the norm-violating variant by a sufficient degree. These conditions become more restrictive
when fewer firms are in the market, since then the required increase in profits to induce an
additional incumbent to produce the innovative product increases.

With respect to the second question, the analysis will reveal that multiple norm equilibria may not
only result if norm adoption is a frequency-dependent opinion formation process with direct
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positive feedback loops. But multiple norm equilibria may also emerge if norm adoption depends
on observed market behavior, in particular, on the proportion of norm compliant consumption.
The direct positive feedback loop may be weaker when multiple equilibria are also supported by a
conformity bias in consumption of material goods. It will turn out that the effect of the norm on
the demand for the norm-compliant variant may be neither too high nor too low as compared to
the effect on demand for the norm-violating product for multiplicity to arise. In the paper a
second possible source of multiplicity of norm equilibria will be discussed, the market structure.
The number of operating firms in the market being finite introduces discontinuities in the
number of firms also operating in the market for the innovative product. Consequently the
market-norm dynamics shows discontinuities what may generate multiple equilibria (see Figure
2-4). It will turn out, though, that this feedback loop may reinforce already existing positive
frequency dependency as source of multiplicity of equilibria, and will rarely induce multiple
equilibria on its own.

The results have consequences for policy makers aiming at a higher dissemination of the social
norm as an intermediate goal to ultimately achieving the greater goal of reducing environmental
pollution. Among others it will be discussed that the conformity bias may be so strong that it
hinders the dissemination of the innovation. It is mainly in these cases where political
interference with market forces (and norm formation) is appropriate. If policy suspects the
existence of multiple equilibria due to positive feedback loops in the norm formation process and
the market structure on the new market is a small oligopoly or even a monopoly, then policies
aiming at overcoming equilibria of little norm adoption have to be strong and patient. Political
measures which alter the effect that the norm imposes on demand should only be implemented
when norm adoption is already wide spread. If it is not, the effect is not only diminished by the
small number of individuals who may react to the policy measure, but also by a possible
reintroduction of at least some cognitive dissonance from having the norm but not complying
with it.

Chapter 3 “Evolution of cooperation in social dilemmas: signaling internalized norms.”
contributes to solving the puzzle of the emergence of cooperation in large, unstructured societies
(e.g. Axelrod and Hamilton 1981; Fudenberg et al., 2012). It contributes to the literature on the
emergence of cooperation by offering an alternative mechanism to foster cooperation in an
environment (Prisoners’ Dilemma) where non-cooperative behavior is materially individual
rational. In such an environment, cooperation cannot be induced by any form of repeated
interaction nor by social norms based on sanctions to be inflicted in later interactions. Even
internalized norms, i.e. norms that alter the perceived utility from acting in a cooperative or
uncooperative way, will not help to overcome a dilemma in an unstructured society, unless — and
this is the alternative mechanism — individuals are able to signal their property of being a norm
bearer. If internalized norms simply exist while lacking the possibility of being signaled or
screened for, they would induce norm bearers to cooperate and be exploited by others. Hence,
norm bearers would have a clear evolutionary disadvantage so that norm adoption would vanish.
Only when internalization of the norm can be communicated in a reliable way, may the scenario
change, because behavior may then be conditioned on the expected behavior of others.

If signaling is costless then signaling is reduced to cheap talk and will not alter the evolutionary
disadvantage of norm-bearers. Thus signaling will be costly and individuals bearing the norm and
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those who don’t may have different signaling cost. The paper will present a theorem that states
necessary and sufficient conditions for full or partial cooperation to be prevalent in a stable
equilibrium. These conditions will refer to the difference in signaling cost between the
cooperative and the opportunistic type, the extent of the cooperative norm and the model
parameters of the Prisoners’ Dilemma, i.e. the temptation to defect and the sucket’s payoff.
Several interesting results will be obtained. First, it is true that the exact size of the behavioral
parameter measuring the internal bias in favor of mutual cooperation is not important for the
behavioral consequence for each individual. However, when it comes to the presence of stable
equilibria characterized by partial cooperation its size and its relation to the incentive to defect do
become relevant. More precisely, the stronger the inner motive to cooperate is, the less restrictive
are the conditions on the spread in signaling cost. Second, for cooperative agents to coexist with
defecting agents in a stable equilibrium, it is not necessary that the signaling technology fully
cancels the incentive to defect. Since this would be necessary for many corresponding results that
are based on some sort of involuntary redistribution (e.g. punishment), the applied approach may
explain cooperation in more cases than the latter approaches. Furthermore, the range of
signalling cost for the defective individuals allowing for partial or full cooperation is weakly
increasing in the strength of the social norm for mutual cooperation. Finally, the set of pairs of
signalling cost for the defective type and level of cooperative norm allowing for partial or full
cooperation is strictly increasing in signalling cost for the cooperative type and strictly decreasing
in the sucker’s payoff and the incentive to defect on cooperation.

Chapter 4 presents the article ““The evolution of inequality aversion in a simplified game of life.”
At the latest since the seminal work of Fehr and Schmidt (1999) and Bolton and Ockenfels
(2000) an other-regarding preference in the form of inequality aversion has become a prominent
explanation for many empirical and experimental findings which departure from the prediction of
standard economic theory. The increasing importance calls for a rationalization for such
preferences, otherwise it may be regarded as a rather ad-hoc adjustment of preferences to explain
empirical results. As Giith and Napel (2006) point out such preferences should in particular be
compatible with the physical necessity to strive and compete for material rewards in an
environment characterized by the scarcity in resources. In other words such preferences ought to
be rationalizable from an evolutionary point of view. Following the argument of the necessity to
analyze the evolution of preference in an environment that comprises at best all relevant classes
of games individuals engage in, I will suggest a particular notion of a simplified game of life. The
simplified game of life as I will define it comprises three classes of games: a symmetric dilemma, a
symmetric and strict problem of coordination and a strict problem of distribution. Then I will
analyze the evolution of a particular type of other-regarding preference that of inequality aversion
in the 2x2 simplified game of life.

The simplified game of life that comprises three major important types of human interaction, on
the one hand as expected gives rise to a greater variety in potential equilibrium distributions of
preferences than the single environments. In particular the surprisingly strong predictions for the
single environments are put into perspective. The global evolutionary advantage of inequality-
averse players in the dilemma and the global disadvantage in almost all cases for inequality-averse
individuals who are favored in the problem of distribution experience significant qualification. In
particular whenever the interplay of the dilemma and the problem of distribution allows for a
locally stable equilibrium with only inequality-averse players then this transfers to the simplified
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game of life, i.e. inequality aversion may also be present among individuals who are favored in the
problem of distribution. On the other hand the expected stabilization of inner equilibria in which
relatively inequality-averse individuals and relatively selfish individuals coexist occurs only if the
problem of coordination shows the same feature.

In summary my thesis will deal with individual preferences, the central concept in economics to
model behavior. More precisely the constituting articles will be concerned with certain
characteristics of preferences which may have behavioral consequences. Two types of structuring
of preferences will be incorporated, the other-regarding preference of inequality aversion and the
structures that emerge from the internalization of social norms. My thesis will analyze the
dissemination and the impact of these characteristics. Two forces relevant for the dissemination
of these particularities of preferences in a population will be considered: evolutionary and
psychological forces. The thesis contributes to a better understanding of the conditions of
emergence and the consequences of potential explanations for observed human behavior which
rely on certain structures of individual preferences.
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2. The impact of market innovations on the evolution of norms:
the sustainability case.

2.1.  Abstract

It is widely accepted among economists that institutions and in particular social norms as an
important category of informal institutions do matter. Social norms matter in many economic
situations, particularly for markets. The economic literature has studied the interrelation between
markets and social norms in both directions — how social norms affect markets and how markets
affect social norms. In the latter, markets are reduced to their price-quantity aspect and
innovation is completely neglected. Our paper introduces a new dimension to the interaction
between markets and norms beyond the interplay of monetary and non-monetary incentives to
act in a certain way: the innovation of material goods as a catalyst of norm evolution. We analyze
how the evolution of a social norm may be affected by product innovation, which adds to the
variation of products with respect to their level of norm compliance. We derive necessary and
sufficient conditions for a) a positive impact of the innovation on the level of norm adoption and
b) for multiplicity of norm equilibria. In concluding, we discuss several policy implications.

Keywords: Consumer Behavior — Social Norms — Evolutionary Economics — Sustainability —

Innovation

JEL Classifications: A13, D02, D11, Q01, Q55

2.2.  Introduction

Many of today’s environmental problems stem from private consumption patterns. Individuals
consume transportation, heating and food, leaving a significant carbon footprint. Preferences for
choosing more or less polluting variants of these products and services are shaped by their
availability as well as social norms and other institutions. Thus, solutions to mitigate
environmental problems depend not only on product innovation, but also on the presence of
social norms, with the former enriching markets with sustainable products, and the latter
supporting sustainable consumption. When recognizing that social norms influence preferences,
it becomes apparent that markets and social norms cannot be treated separately.

The existing literature has widely studied the interrelation between markets and social norms in
both directions — how social norms affect markets and how markets affect social norms. The
influence of social norms on markets has been studied from theoretical, empirical and
experimental perspectives. With respect to theory, there have been various attempts to
incorporate norm-motivated behavior into neoclassical consumer theory (see e.g. Nyborgs et al.
20006; Brekke et al. 2003). Or social norms are treated as a prerequisite for working market
systems (e.g. Platteau 1994)". However, there is no general or partial equilibrium theory based on

! For a normative theory of social norms in market economies, see Bergsten (1985).
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norm-motivated behavior’. This may explain why most research in the field is empirical. Hong
and Kacperczyk (2009) and Johnson (2004) for instance study the impact of norms on financial
markets. Kim (2007) finds support for the relevance of norms for the market pricing of private
property rights. A series of competitive-market and bilateral-bargaining experiments carried out
by Fehr et al. (1998) indicate that competition has a rather limited effect on market outcomes if
the norm of reciprocity is operative. The impact of wanting to maintain a positive self-image as a
socially responsible person on the demand for “green” electricity is studied by Ek and Soderholm
(2008). Johnson (2004) develops a framework using evidence from central Kenya for the
relationship between gender norms and financial markets, i.e. the demand and access to financial

services.

The research on the impact of markets on the evolution of norms primarily deals with the
analysis of the relationship of norm-driven intrinsic motives and market- or price-driven extrinsic
motives. Fehr and Gichter (2001) provide empirical support for incentive contracts crowding out
reciprocity-driven voluntary cooperation. In a similar vein, Gneezy and Rustichini (2000) present
results from a field study that contradict any deterrence hypothesis. A first survey of this stream
of empirical literature on crowding-out effects was carried out by Frey and Jegen (2001). With
respect to theory, Benabou and Tirole (2006) provide a theory of pro-social behavior where
rewards or punishments create doubt about the true motives for which good deeds are
performed, and hence, may lead to partial or even total crowding-out of pro-social behavior.
Huck et al. (2012) provide a model of the interplay of social norms and economic incentives in a
firm in which crowding-out of social incentives may occur. Bohnet et al. (2001) study the
connection between contract enforceability and individual performance, both theoretically and in
the laboratory. They find that trustworthiness is “crowded in” with weak enforcement and
“crowded out” with medium enforcement. All of these approaches are limited to monetary
incentives provided by markets and their regulation. This, however, reduces markets to their
price-quantity aspect and completely neglects their innovation capacity. The variation due to such
innovations is an important missing element of the market-norm interaction.

In this paper we try to close that gap by focusing on the interdependence between innovative
variation of products and the process of norm-adoption. To understand the explanatory potential
of the interdependence, consider a market where at the pre-innovation stage, the individual
characteristic of having adopted a specific norm is not observable, neither by observation of the
individual itself or its general behavior, nor by observation of its consumption behavior.
Obviously, the latter presupposes that products or services fail to differ with respect to their
norm compliance. After a new product or service which is characterized by a relatively high
degree of norm compliance has entered the market, the process of norm adoption changes in two
ways. First, an individual is now able to consume in accordance with his or her norm, which
could not have happened before the innovation. The innovation thereby directly facilitates the
adoption of the norm by reducing potential cognitive dissonances that would occur if a norm
adopter consumes in contradiction to his or her norm. We call this event cognitive bias. Second, the

2 For a discussion of an extension of Walrasian economics by social norms and psychological dispositions see Bowles
and Gintis (2000). For a multi-agent simulation model on the psychological factors like need for identity on market
dynamics, see Janssen and Jager (2001).
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new variety allows the conformity bias (Boyd and Richerson 1985) and other social influences
(Cialdini and Goldstein 2004) to enter the scene. The consumption of the (old) norm-violating
product and of the (new) norm-complying product will hence become more attractive, the more
other individuals still, or already consume the respective product.

In our model, we address both of these two elements of the link between product innovation and
the evolution of social norms. To achieve this goal, we consider a market in which consumers are
heterogeneous with respect to their norm-dependent and product-specific demand and the
producers’ product-portfolios heterogeneity evolves endogenously. The equilibrium of this
market depends on the share of consumers who have adopted the norm to which the new
product complies. Conversely, the innovation and the equilibrium ratio of norm-complaint to
norm-violating consumption affects the norm-adoption process via the two biases we introduced
in the preceding paragraph. Since the equilibria of markets strongly depend on market structure,
and markets for innovative products are highly susceptible to monopoly or oligopoly power, we
control for market structure. We do so by opposing the two cases of a discrete number of firms
and a continuum of producers of the innovative product.

The link between the process of norm adoption and the market may only be relevant if the
product or service is sufficiently important for individuals in terms of the time spent with it,
money spent on it, utility drawn from it, social status connected to it etc. since otherwise,
cognitive dissonances would be too weak to have a major impact. For our analysis, we therefore
employ e-mobility as the innovation and sustainable transportation as the norm. In 2010, German
households spent around two-thirds of their income on the following four categories: housing,
water, electricity, gas and other fuels (30.8%); transportation (13.2%); leisure, entertainment and
culture (11.6%) and food including non-alcoholic beverages (10.4%). Of these four categories,
only the expenditure for transportation and food reflect the attitude towards sustainable
consumption in an observable way." According to an extensive study on mobility in Germany
conducted by the zfas Institute for Applied Social Sciences and the DILR German Aerospace
Centre in 2008 (MiD 2008, p.21), a mobile person spent on average 1.5h a day on traveling
excluding regular travel time associated with a job, e.g. as a bus driver. Almost 60 % of that time
(about 54 minutes) is assigned to private transportation. In summary, the car is expensive,
important, omnipresent and relevant for sustainable consumption and therefore a product with a
high potential for a conformity bias and cognitive dissonances for norm-adopters.

Our analysis, however, is not limited to this case. We include two other examples that illustrate
the wider relevance of our approach. Consider first the technological innovation of social networks
such as Facebook or Twitter and the norm share yourself (opinions, activities, etc.) in opposition to
the norm protect your privacy. Prior to social networking, individuals willing to share their lives with
a wider public audience could not live in accordance to their norm. In contrast, privacy-loving
individuals were able to conceal most of their information. Protect your privacy was the prevalent
norm in many countries. When internet services such as Facebook or Twitter entered the market,
some individuals could start living according to their norm, share yourself. The innovation has

3 More than 85% of these expenditures are spent on private transportation.
4 Exceptions are things like solar panels for the accommodation category or the attendance of a pro-environment
concett.
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caused a complete reversal of the social norm. The second example is the innovation of ecological
food and the norm of sustainable and healthy consumption. Today, almost all large supermarket chains
include ecological food on their shelves, many being branded directly by the supermarkets
themselves. With this innovation, people concerned with sustainability, health and also with the
conditions of livestock breeding can live in accordance to this norm, and have become a large
minority.

To make our argument precise, in the remainder of the paper, we proceed as follows. In Section
2, we introduce the model. Assumptions and notation are presented in 2.1. In 2.2, we derive the
market equilibrium for a given share of norm-adopters and a given number of firms operating on
innovative and traditional markets and then deduce the equilibrium number of firms supplying
the innovative market. We then turn to studying the dynamics of norm adoption in 2.3. Results
are summarized in Section 3. Policy implications are discussed in Section 4 and Section 5
concludes.

2.3.  The Model

We consider a market where demand is characterized by a large number of consumers, who
differ only with respect to their having adopted a particular consumption-related norm. The
commodity traded on the market may occur in two specifications, one in compliance with the
norm and one in violation thereof. We base our argument on a specific example, the market for
automobiles and the norm of sustainable transportation, with electric cars as the norm-compliant
variant and gasoline cars as the norm-violating variant. However, as we have already argued in the
introduction, the argument extends to other examples as well.

To make identification of the two consumer groups easy, we call those consumers who have

adopted the norm-adopters and those who did not, hedonists. te{a,h} identifies the type of

consumers in the natural way, while VG{e,g} identifies the variant of the norm-compliant

(electric-powered) and, respectively, the norm-violating (gasoline-powered) variant of the
commodity automobiles. For simplicity, both variants of the commodity are imperfect substitutes
for each other and the slopes of demand curves as well as substitutability are assumed to be

independent of the type of the consumer. With the simplification of linearity, and p° and p°

denoting the prices of electric and gasoline cars, respectively, demand per consumer can be
written as

X(p%.p%)=x —xp'+Ap™ with v£—ve{eg}, x>0 and x>21>0,  (21)

for those price combinations which induce strictly positive quantities. For simplicity, we
concentrate on these combinations and leave other cases to further research:

Assumption 1 min(xz(pe, pg)’xg(pe’ pg)axﬁ(pe’ pg)’xg(pe’ p’ ))>O'
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We refer to y, as the zero-price consumption of variant V by type t. To reflect that electric cars

comply with the norm of sustainable transportation to a larger degree than gasoline cars, we state
the following,

Assumption 2 If prices of the two variants of the commodity are identical ( p° = p?),

then the difference between consumption of the norm-compliant variant and of the norm-

violating variant will be larger for the norm-adopters than for the hedonists:
XZ(pap)_Xg(ﬁaﬁ)> Xs(paﬁ)_xg(ﬁap)'
Corollary o =2 > 20— Xn -

We will later make use of the effect of norm adoption on individual demand for electric cars and for
gasoline cars, A°= y; — y; and A® = yJ — 37, respectively, where the former is obviously

larger than the latter due to the Corollary.

If we normalize the number of consumers to unity and write ( as the proportion of consumers

who have adopted the norm, market demands for the two product variants is:

X®=agx; +(1-q)x =qxs +(1-q) x5 —xp° + Ap°

2.2
X¢=ox¢ +(1-q)x =qzd +(1-q) 2 —xp® + Ap° 22
or equivalently, the system of inverse demand functions:
e 1 e e e
P=— 2((q;(a+(1—q);(h)1(+(q;(§+(1—q);(r?)/”t—/<X —/ng)
" _1’1 2.3)
PP =07 ((q;(ag +(1-9) 28 ) +(azs +(1-q) x5 ) A— kX —zxe)

On the supply side, we assume myopic profit maximization’ on a simple Cournot oligopoly
market for both variants of the commodity with constant marginal production costs of c? and

c® for gasoline-powered and electric cars, respectively. We assume that the number of suppliers
on the market for gasoline cars is given exogenously by N. The number M of suppliers on the
market for electric cars is given by the maximum number of producers who can profitably
produce for both markets when adding the second production line, entailing a fixed cost of K.
Note that the oligopoly market may turn into a monopoly market. For consistency with the
simplifications on the demand side, we exclude by assumption the absence of electric car
producers.

We assume that markets find their equilibrium fast enough to neglect the specific dynamics when
investigating the norm dynamics. In other words, we make use of the method of adiabatic

> We believe that profits, especially in large incorporations, are the main concerns of decision makers.
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elimination® which allows us to include markets into the norm dynamics only by their equilibria,
which may, of course, depend on the current level of norm adoption.

Finally, we assume that the dynamics of norm adoption and norm abandonment is a Markov
process driven by randomly assigned moments in which each individual may adopt or abandon
the norm. Whether it does may depend on the current state of the society with respect to norm
adoption and norm-related market behavior. The dynamics of the proportion of individuals
having adopted the norm, q, is thus given by

q:(l_q)ﬁhea — a7, (2.4)

where the transition rates 7, ,, and 7, are the expected number of adoptions and

abandonments of the norm per individual and per time unit.” This approximate equation of
motion is standard in population dynamics® and is highly intuitive. The change in the share is
simply the difference in the inflow and outflow. The inflow (outflow) is the product of the share
of hedonists (norm-adopters) and the rate of transition from hedonists to adopters (adopters to
hedonists).

In order to clearly identify the effect of the market innovation on the norm dynamics, we assume
that norms may not be inferred from consumption behaviour and is not observable when no
product variant compliant with the norm exists. The transition rates are then independent of the
current proportion of norm adoption in society and any parameters relating to the (non-existent)
market for the norm compliant variant of the commodity:

7y, =0, and 7, , =0,, whete 0, >0 and o, >0 ate constants. (2.5)
If the norm-compliant variant of the product enters the market, it will have two effects on the
transition rates, a cognitive dissonance effect and a conformity bias effect. The former is caused
by the possibility to behave according to the norm. It makes adopting the norm easier and being

a norm adopter less repelling. We capture this idea in the formal presentation of the dynamics by
increasing the norm adoption rate by a factor (1+CB) and lowering the rate by which norm
holders abandon it by a factor (I—CB) , where CB is the reduction in cognitive dissonances from
having the norm but not complying with it. We assume CB <1 to ensure that the transition rates

remain positive.

The conformity bias has a similar effect on norm adoption and norm abandonment. Once the
norm-compliant variant of the product enters the market, individual consumers may observe
whether their consumption conforms to the majority of consumers. Acting against the majority

¢ The method was introduced under this label by Haken (1977) for the synergetic approach of aggregation of
dynamics of micro-data to the dynamics of macro-data. It has been introduced to economics e.g. by Weidlich and
Haag (1983). The basic idea of the method may, however, already be found in Samuelson’s “Foundations” (1947).

7 Strictly speaking, the transition rates are the limits of the expected number of transitions per second, when we
consider ever shorter time intervals (similar to the speed of a car being measured in miles per hour, but measured for
a specific point in time, not for an entire hour).

8 For example, see Weidlich and Haag (1983).
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implies dissonances, which will be larger when the majority is larger. An individual is more likely
to adopt the norm if norm-compliant behavior reflects the consumption pattern of the majority,
L.e. if the ratio of electric cars to gasoline cars exceeds unity, then the transition rate towards
norm adoption should increase relative to the pre-innovation level. If the opposite is true with

e
respect to TR then the abandonment should be facilitated.” If « € (0,1) measures the relative
weight on the conformity bias, the post-innovation rates of transition can be written as follows:
e 9

Ty, =0, La(l+CB)+(l—a)%J and 7, _, =0, {a(l—CB)+(l—a)%J. (2.6)

Thus, the dynamics of the proportion of norm-adopters becomes:

g=a((1-q)o, —qa'h)+aCB((l—q)aa+qah)+(1—a)((1—q)0'a%—qah ij 2.7)

conformity bias (non-linear)

pre-innovation dynamics (linear) cognitive bias (linear)

The market-norm dynamics described in equation (2.7) completes the model. The equilibria for
the model will be discussed in the following sections.

2.4.  Equilibria

2.4.1. Market equilibrium
To find the equilibria of the norm-cum-market system described in the previous section, we first
determine the market equilibrium and then turn to the dynamic part (Section 2.4.2).

As oligopolists, each producer i €{1,2,...,n} maximizes max{ﬁi,ﬁi}, with IT, = p%® —¢&° and

[T, = p°%° + p°%° —c?X’ —c°X° —k over his production quantities %7, % and X' .

i

Proposition 2-1 For each share of norm-adopters q€[0,1] and each number me{0,...,n}

of firms producing the innovative product, there is a unique equilibrium in the Cournot oligopoly
game.

The proof follows Okuguchi and Szidarovszky (1990) and is given in Appendix A, as are all other
proofs for this paper.

Taking the derivatives of IT; for » producers of both variants with respect to X and X° yields

two first order conditions which entail

% =(p°—c®)x—(p°—c°)2 and & =(p*—c*)x—(p?—c®)A. (2.8)

% We neglect the possibility of having a conformity bias that affects consumption directly. This allows us to
concentrate on the effects of the conformity bias on norm adoption and abandonment. We conjecture that this has
no qualitative effects because the conformity bias affecting consumption directly should only reinforce the effects of
the norm-related conformity bias.
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Similarly, the derivative of f[i for the N—M producers of gasoline cars only with respect to &’

yields a first order condition which simplifies to

80 =(po—c®)(x*=47)/x. 2.9)

Summing up all X? and all X yields

<=5
X 9 _Z. i . Z” mdg

Inserting p° and p° from equation (2.3) and solving for X°® and X° gives the market

(2.10)

equilibrium quantities

X = mm l(q;(a (1-q) 75 —#c° + Ac®)

X"*:%(qgga (1-0) 72 —xc® + Ac° )+

n—m (2.11)
b I (1mq) - ket + 409 )
(m+1)(n+1)(qla (1-9)z Ve
As it is obvious from equations (2.8) and (2.9), the equilibrium is symmetric in the sense that each
firm of the same type (only conventional cars or both variants of cars) produces the same
quantities. Indeed from Proposition 1 we know that this equilibrium is unique.

The market entry equilibrium in terms of the equilibrium number of firms operating in both
markets is given by the condition of equal payoffs. Due to indivisibility, the equilibrium number

b

solving IT, =TI, with %X%,%¢,%% given by (2.8) and (2.9) and p° and p° by inserting X, X%

of firms active also on the market for e-mobility, m*, corresponds to the integer part of m"*

from (2.11) into (2.3). m* is thus given by:

Qs +(1-0q) xn —xC° + Ac’

N

Note that the condition on M* to be of integer value will cause discontinuity in equilibrium
g y q

m* = min{n,max {0, integerpart (m* )}} where m’" = -1 (212

prices and quantities at levels of ( that induce a change in the value of m*. The number of
firms serving both markets in equilibrium is increasing in the weighted willingness to pay for e-
mobility and in the weighted cost differential between conventional cars and electric cars. The
number of firms is decreasing in fixed costs K. Notably, the equilibrium number of firms
producing both products is independent of the total number of firms N. We further note the
tfollowing:

Lemma 2-1 The number of firms M’ is monotonically increasing in the share of norm-
adopters if and only if y; > y;, i.c. if and only if the effect of the norm adoption on individual

demand for electric cars is positive (Ae > O).
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Hence, if the sustainable-transportation norm is accompanied with a reduced overall demand for
individual mobility, then an increasing share of norm-adopters may induce a larger number of
producers of electric cars. This is true only if the reduction in the demand for transportation
exclusively affects the demand for gasoline cars, which has to be partially substituted by an
increased demand for electric cars. Lemma 2 will be helpful in Section 2.4.2.2 when we study the

impact of the discontinuity of m* on the number of stable equilibria.

Having derived the number of firms serving both markets, we can now determine the quantities

emerging if the expansion of firms on the e-mobility market is endogenous as X°® = X* and
m=m®d

X® =X g*| « - For expositional simplicity, we will heavily make use of the continuous version

m=m

of M for the moment:

Xe=X| _ =((1-0a) 2 +axs —xc +4c® )~k =6° +A%q
X9 = X9
m=m*
2.13
= (1-q)z +ax? —xc] +/109)—L((1—q)zﬁ +075 —KC° +zc9)i+iﬁﬁ @13
n+1 n+1 K K

. n

1 . e N A
par(0 %)= (0 At

where the tilde denotes the simplification based on the continuous version of M and the two

terms
0° = ¢ —kc® + Ac? —Jkfkc >0 and 6° = y¢ —kc? + Ac® +\/E«/;i>0 (2.14)
K

facilitate notation in the remainder of the paper. Before we turn to the analysis of the norm
dynamics, we briefly study the total demand for private transportation:

X0+ X7 = (-2 +azd +(1-0) 21+ azi (=) (¢ +¢)

+L((1—q);(§+q;(;—Kce+/1c9)(1—ij—\/E\/Z(1—iJ (2.15)
K K

n+1
n

e e 1 e e A
:m(e +0%+(A +A9)q)+m(0 +A q)(l—;}

Total demand for individual transportation is a linear function in the share of norm-adopters.
Neglecting a factor of proportionality close to 1, it increases (decreases) if the effect of norm
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adoption on the individual demand for electric cars (A®) is larger (smaller) than the opposite

effect on the individual demand for conventional cars (—=A%)." The precise condition is:

a(Xe+X9). >
%fo oA =—/1(—A9). (2.16)

“n+1-2
K

2.4.2. Norm equilibrium

We now turn to the evolution of the share  in the population carrying a norm to consume in a
sustainable way. As our model is fully specified, we can refine our research question concerning
the impact of an innovation of a relative norm-compliant product variant on the evolution of a
social norm shaping the preference for the good considered. We will address two questions in
detail. First, what is the impact of an innovation that differs with respect to the level of norm
compliance on the dissemination of a norm. Second, what is the effect of the market dynamics
on the evolution of the norm with respect to the existence and stability of equilibria.

In the pre-innovation stage where transition rates are given by the constants defined in equation
(2.5), the dynamics of equation (2.4) has an easy-to-calculate stable and unique equilibrium at

q° =0,/(0,+0,). 2.17)

When the innovation enters the market, transition rates now change depending on the
equilibrium quantities of the different product variants and as given in equation (2.6). In the
following paragraphs, we analyse the effects of three phenomena with respect to the two
aforementioned questions. We first study the interplay of the cognitive dissonance bias and the
conformity bias, and then turn to the discontinuity resulting from the fact that firms interact in an
oligopoly.

2.42.1. Cognitive Bias and Conformity Bias
In order to understand the interplay of cognitive dissonance bias and conformity bias, we neglect
the requirement that the number of firms supplying the norm-compliant variant of the product is

an integer, and base our argument on the continuous version of the equilibrium number of such
firms as defined by m" in equation (2.12). Obviously, this requires assuming (for the moment)
that the demand for electric vehicles by hedonists is large enough to keep X°© as defined by
equation (2.10) strictly positive. In order to cleatly differentiate between the continuous-m"

version of the model from the version with the discrete m* | we write § instead of § whenever

10 Note that —————— ~1 for sufficiently large # and if the cross price “elasticity” is sufficiently close to the direct

n+1——
K

price “elasticity”, i.e. if the two types of goods are very close substitutes.
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we use X° and X instead of X° and X° in equation (2.7). To guarantee differentiability of §

we will further assume that m* e [1, n].

This translates into a pair of inequalities:

m €[] —— (6" +9a%) e[L,n]

NS

€ [l, n] A (0e +A® ) € [l, n] , or equivalently,

o° 1
Jkix Jki
Jkie <0 <nvkx A ki —6° <A® <n'ki —6°. (2.18)

We will neglect this condition in the following paragraphs since its inclusion, while
straightforward, would unnecessarily complicate the notation. So far, the reader should keep in
mind that the number of firms #» should be sufficiently high and fixed set up cost £ should be
sufficiently small. We will return to this issue in Section 2.06.

(j O.2j

- 01

Figure 2-1: market-norm dynamics.

6°=0.1, 6° =1, A*=0.75, A =-0.65, n=4, 1/x=0.8, 0,=0, =1, =0

Neglecting the conformity bias (@ =1), inspection of equation (2.7) shows that cognitive bias
shifts the norm dynamics upwards and turns it counterclockwise, increasing the equilibrium level
of norm adoption. The conformity bias changes the motion of the norm adoption proportion
described in equation (2.7) from a linear function to an s-shaped function with at most one
increasing branch in the middle (see Figure 2-1):

Lemma2-2 Assume that y° and g are large enough to guarantee that X° and X9 as

defined by equation (13) are strictly positive for all q e [0,1]. Then:

1. d‘q:o >a(1+CB)o, >0 and d‘qzl <a(CB-1)o, <0;

2. Any value of g is reached for at most three different g € [0, 1]; and

e d(x°/x® dd
30 Af <2 A9 implies (X7x°) 0, which in turn implies — <0.
0° dq d

The intuition behind claims 1 and 2 is simple. Claim 1 is obvious when X°® and X9 are strictly

positive. Claim 2 follows from the fact that X® and X9 are linear in ( and thus solving equation

(2.7) for ( for any given value of § is tantamount to solving a polynomial of degree three. The

22



first implication of Claim 3 follows from the fact that the denominator of the derivative

d(X°/X*%)

is strictly positive and the numerator is given by:

dg
dX" go_dX7 ge
dg dqg
n 1 A n 1 A
=| A¥| —— (0% + A%q)———(O° + A o ——AY—— A (O + AC 219
S e ) B P T CR TS I

. n

- H[ew —6°A° ]

The second implication of Claim 3 follows from the observation that all three terms summed up

in

d_dz_a(aa(l+CB)+0'h(l—CB))—(l—a)(aa X’ +0, ng

dq )Zg X"e
v € i (220)
A(1-a) (1—~Q)20a+ a0, (dx Xg_dxg)ze}
(x*)  (xo) )\ dd dq
d(Xxe/Xe
are negative if ( d/ )g()'
q

As a consequence of Claim 1 of Lemma 3, q must have at least one branch declining in (. Claim

2 of the lemma then implies that there is at most one increasing branch. Such an increasing
branch is a necessary condition for multiple inner equilibria of the market-norm dynamics.

Hence, a direct consequence of Claim 3 is the following:

Corollary If the market-norm dynamics has multiple (two) stable inner equilibria then
Xe/ig increases strongly in q for all (€ [0,1], ie. A°>AY 199/(99 .

Figure 2-1 illustrates the possibility of multiple equilibria. In the following section, we look at the
conditions and thereby at the parameter set that gives rise to this phenomenon. With the
assumption of strictly positive demand, the roots of (2.7) are equivalent to the roots of (2.21).

= XX9G=aX X

N2 ~ 2 2.21
((1+CB)o, —q((1+CB)o-a+(1—CB)o-h))+(1—a)((1—q)aa(Xe) o, (X°) ) 2D
The dynamics given by (2.21) is a polynomial of degree 3 and has two stable inner equilibria in
the unit interval if and only if it has two extreme points with a negative functional value at the
minimum and a positive functional value at the maximum. Note that if there are two extreme

High

points " <q™" then C](qugh) >0 implies ™" <1 and Q(qLOW) <0impliesq* >0 by
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inspection of (2.7), given strictly positive demand. Given Q(qugh) >0 and ¢ (qLOW) <0, the fact

that Q(O) >0,q (1) <0 implies that qLOW is the minimum and qugh is the maximum.

Hence, only the two conditions with respect to the existence of two extrema and the sign
condition at the extrema points remain. Since demand is linear in the share of norm-adopters, the

conditions of positive demand amount to: 0 < 6° < %99 and —6° < A° <-0° + E(Ag +6° ) .
The binding constraints are therefore given by: Q(q"ow) <0, ¢ (qugh) >0,0<6°< %99 and
—60° <A° <—6° +%(Ag +¢99) . It turns out that only Q(qLOW) <0, C'I(qugh) >0 and

A* <0 +%(A9 +6°) depend on A® and A”

st
Figure 2-2: Range of multiple equilibria: blue line: X¢ (1) =0, X° (1) > 0 to the right of the blue line; red
line: A®M" (Ag) upper bound of A° allowing for multiple equilibia; yellow line: A*™* (Ag) lower bound of A°

allowing for multiple equilibria. 6° =0.1, 6° =1, o, /O'a =1, n=4, a=0, /1/1(‘ = 4/5 .

Therefore, if we study the parameter region of A® and A9 such that multiple equilibria exist,

only these three conditions are relevant, given that the values for the other parameters satisfy the

remaining inequalities (0 < 6° < 299 ). Figure 2-2 gives an illustrative example.

The intuition behind having an upper and lower limit for A® is simple. If A® were too large,

X® (q) increases too quickly relative to X (q) that q (q) increases at =0 or the minimum of
C](q) is above the d:O—aXis. If A® were too small, X°(q) declines rapidly relative to X°(q)
that (q) never increases ot only has a minimum but no maximum, or has a maximum which

remains below the C] =0 -axis. In our application, a relatively large A® implies that norm adoption

has such a strong effect on the market equilibrium amount of norm compliant consumption that
the growth in this consumption (possibly at the cost of norm violating consumption) reinforces
the norm very quickly. This happens at such a pace that norm adoption is always self-reinforcing
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until the number of individuals not having adopted the norm becomes very small. If, on the

other hand, A® is very small, then norm adoption has too little of an effect on norm compliant
consumption to become self-reinforcing.

In the next section, we derive sufficient conditions for multiple equilibria to exist. If we look at
Figure 2-2, it appears that these three conditions define a triangular region. In what follows, we

will derive the vertices of that region and reformulate the two differential equations C|(q"°w) <0,

g (qugh) >0 as differential equation for A® (Ag ) )

Given strictly positive demand (2.7) gives rise to a fixed point equation:

qza((l_q)o-a_qo-h)+aCB((l_q)O-a+qo_h)+(l_a)[(1—Q)Ua;(_:_qUh XQJZO

Xe
a#l
=
(1-q)c X 4o X2 a (1+CB)—qL(a (1+CB)+0, (1-CB))=7+fq
2 X9 "X¢ l-a ° l-a' ® "
= (2.22)
x*) g (7+pq) x
X° ) T (-q).> " (1—q) X°
(1-0) 06, (1-0)
<:>e
Z(Q)E%

(20 - 2o+ a0

Atq=0g*" such that C]'(qem')ZO this gives a fixed point equation in A®,A9 :

o (%) o

We take the total derivative with respect to A®,A9 and apply the envelope theorem''.

0z
22 extr. =
R
=
n+1 X% A dA® _ dA®  A°Q™ +6°

(y+B9) oz

a=q™" (1 - q) OA*

(y+pBa) oz

a=q™" (1 - q) OA*

e ear.\ OZ
JdA +{22(q )&7

JdAgzo

q :qextr q :qexlr

= o
n X® n dA® dA®  A°Q™" +6°

cad(a(aa))  aq(a) |

Opatrametet Opatametet |

1

q:qextr.
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Together ~ with initial conditions: (Ae.Ag)|G(9"™ (Ae,Ag))=0 and

dA® A9 +6°
dA® Aeqextr. +6°

(Ae LA° )‘Q(in" (Ae i )) =0 the differential equation gives rise to two

boundary functions: A®™" (Ag ),Ae’Max (Ag ) :
Definition  All (Ae,Ag ) pairs that satisfy the following three conditions define the parameter
region such that multiple equilibria exist: (1) A® <—6° +%(A9 +6°), (2) A°>AM(AY), (3)

A® < A (Ag ) . We will refer to this set as the wultiple equilibria set (MES).

dA®
dA? n+1X? A
+7
n

Before we continue, we will state some observations based on that will be

n X°

helpful in the course of our argument:
(1) The slopes of A®M" (Ag ),Ae’MaX (Ag) are positive and smaller than the slope of the third
r A8 e, N(ra o
constraint A® < —¢ +—(A +6 ) .
A

dA®  A%Q+6°
dA®  A°q+6°

(3) At point A, the relevant constraints have the same slope.

(2) By corollary 4 is ceteris paribus decreasing in q

We are able to determine the coordinates for points A and B (Figure 2-2) analytically. For better
readability, Table 2-1 below presents the results for a=0. Note that there exist multiple

B A
equilibria if and only if (Ae) > (Ae) . As mentioned before, the dynamics given by (2.7) consist

of a linear and nonlinear term, the latter is weighted with 1—¢« . Intuitively, one would expect that
a , the weight of the linear term, must be sufficiently small so that the nonlinear term dominates
the dynamics and for some parameter constellations multiple equilibria might arise. It indeed
turns out that there exists a unique threshold value for @, such that multiple equilibria are
possible. Its derivation is deferred to Appendix A. The value and its properties are summarized in
the next lemma.

n
Lemma2-3 For 0<6° < 199 there exists an unique

 (1=CB)(n+1)6° +2 —\/ 1-CB)(n+1)6°) +47*(1-CB?
cr|t4:( )( +) ter (( )( +) ) " T( ),With TEneg—lee
2(CB’r+(n+1)(1-CB)&")

crit.

such that MES is non-empty if and only if o <™.
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aacrit. aacrit. ee aacrit. n aacrit. aacrit. aacrit. aacrit.
Furthermore, = =—— =—— > 0; = =0; >0
06° on 0° 06° 6° O |p g0 oo, oo, oCB
fixed
crit. crit. crit. crit. crit.
which implies: 29— <0;9% 50,99 5 0,0% _ 9% " ¢
ox; oy oc oc® ok

In other words, as long as the weight for the non-linear term is sufficiently large, there will always
be (Ae,Ag) pairs such that multiple equilibria exist. With respect to partial effects, Lemma 2-3
states that the required weight for the non-linear term of the dynamics 1—a is increasing in
maximum willingness to pay for electric cars by hedonists y; and in the marginal cost for
gasoline cars €Y. The required weight decreases in the maximum willingness to pay for gasoline

cars x?, the marginal cost for electric cars C° and the fixed setup cost & The effects with

respect to parameters measuring the price sensitivity are ambiguous. The weight also decreases in
the number of firms in the market and in CB measuring the reduction of cognitive dissonances
from having adopted the norm but not complying with it.

Point A B C
v _ vin 4(““)2(98)2 - (no® - 20°)
d A _(n<9gI —ﬂu9e)2+4(n+1)2(¢99)2 q _3(nAg —/IAe)+4(n¢99—/we)

z( r jzl .
= ——0
(Agj (—9"] n\2(n+1)) ¢°
(o) 7
——0
2(n+1)) 6°

Table 2-1: Vertices of multiple equilibria set for ¢ =0.
dA®  A%Q™" +6°
dA® - Aeqextr. +6°

following, we present our approximation strategy for a =0, such that we can state explicit

The differential equations given by cannot be solved for analytically. In the

sufficient conditions for multiple equilibria to exist. Again, the general case can be found in the

Appendix A. Note that the values for ¢ that corresponds to (Ae,Ag) pairs that are elements of
(no® - 20°)

3(na® - 24%) +4(no? - 26°)

the graph of A*M* (Ag) range from q° = to q* =1. We can use the

B
(Ag) as a lower bound for AY and by that, can give a lower bound for  independent of A°

, 4(n+1)° 6 , ,
and AY, ie. g= . The system ©)=0, §(q°)=0 can be
A 4(n+1) 6° +34(ng° - A6°) pseem 4(d)=0. ()

solved for A® and A® as a function of ¢. If we plug in g, we get as point D a (Ae,Ag)pair on
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the graph of A% (Ag) that corresponds to a maximum for the dynamics in (7) that equals Q.
a36°27" 6% (4(n+1)" 6% +947)

(Ae]D 4(n+1)" 6° 225)
= 0 YA ; : @
3q(A°) —2f+\/6g(Ae) ((Ae) —98)—932+6(1—q)(Ae) oF —(n+1) (6°) +7°

3nq

We approximate the upper and lower boundaries by linear functions intersecting point B and D,
respectively. Our observation above, that the slope A*™" (Ag) is decreasing in q gives us a lower

e

bound for the slope by . Figure 2-3 illustrates our approximation procedure. Note that under

99
our approach, MES is not empty if and only if the area spanned by X° (1) >0 and the two

approximating linear function is non-empty.

TN

20

05 -

Figure 2-3: Approximation of MES. Red line: approximation of ASM" (Ag ) ; yellow line: approximation of

Ae,Max(Ag), 0°=0.1, ° =1, o,/c,=1, n=4, =0, 1/x=4/5.

Lemma2-4 If =0 and 0<6°< %Qg , §=0 has three solutions if (sufficient condition):

e ne - 16°)
A° < —6° +£(Ag +6’g),Ae <6’—Ag +¥
yl 6° an(n+1) 6%°

(A°) q-0° o (&%) g-¢°

wFar ) wya ™)

(.87)

(Ae,Ag)e

The effects of market parameter variations on the location of C](Q) and on the number of

equilibria are best understood by observing that they only enter via X® and X° into equation

dg dg
(2.7). Since % > 0>%, the derivatives are all straight forward. In particular,

d ~ ~

a) _,. da(q
dA® dA®

has a positive (negative) effect on the growth rate of the share of adopters.
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it is worth

b

Before studying the effect of the cognitive bias and the transition rates o,

mentioning that these parameters are not subject to policy measures. They reflect the dynamics
of norm adoption before the innovation takes place. In particular, the cognitive dissonance from
having adopted a norm that one cannot comply with is beyond the reach of political measures.
Discussing these parameters is thus only relevant for understanding the context in which policy is

formulated. Since the transition rates o, , occur in each and every term of the right-hand side of

equation (2.7), it is only their ratio which is relevant. If o,/o, is small, there will be only a few

norm-adopters in the equilibrium before the innovation takes place, in particular, because too
much cognitive dissonance is implied by having the norm. After the innovation, small values of

0,/o, imply that the range of A° for which multiple equilibria occur shifts upwards and

stretches along the A®-axis.

If the cognitive bias is large, that is, if the innovation removes a lot of cognitive dissonance from
norm-adopters, then the innovation tends to have a particularly positive effect on norm adoption.
Starting from the pre-innovation equilibrium value of the rate of norm adoption,

qQ°=o, / (O‘ e a) exemplifies the effect of the size of CB and its interplay with the conformity

bias on which most of our hitherto discussion was concentrated. The following lemma states the
necessary and sufficient condition for a positive growth rate in norm adoption at the pre-

innovation level.

. a X ¢ X 9
Lemma 2-5 G(a°)>0=20B——+ | -= >0 (2.24)
l-a X°| . X°®|
a=q a=q
9 e
which may be transformed to A® > e 0—+Ag + ! (1—# /1/1()49_’ (2.25)
u+1n+1\ g° u+1 n+1)q°

2
where ,u:[—CBli+ /CBZ(a—YHJiKl'
—a l-a n+

Equation (2.25) describes a straight and increasing line, above which (q°) is positive so that the

innovation induces a growth of norm adoption, while below this line, norm adoption will decline
when the innovation occurs. The straight line moves upward if CB or a increase.

1f d(qO) <0, then it implies that the positive cognitive bias is offset by a negative conformity bias

with a sufficiently large weight @ . Obviously, the conformity bias is negative only if at q°, the

market-equilibrium quantity of the norm-compliant variant of the good is less than the
corresponding quantity of the norm-violating variant.

If the quantities of the two variants of the good are hardly affected by the number of norm-

adopters or the quantity of the norm-compliant variant grows only slightly compared to the

quantity of the norm-violating variant, i.e. if the effects of norm adoption on individual demand

are small or not too much diverging, then d< 0 may hold true for all q=q°. However, if the
T

effects of norm adoption are strong and induce rapid growth of % %e in ¢ (see (2.24)), then
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§ may become positive for some ( e(qo,l) so that a (second) stable equilibrium with a large

level of norm adoption is generated by the conformity bias. In the next section, we will enlighten
the effects that the discontinuity of the number of firms adds to our discussion of the cognitive
and conformity bias.

2.4.2.2.  Discontinuity of Firm Number
We now drop the simplifying assumption of continuity of the equilibrium number of firms
producing the norm-compliant variant of the product. We first study the effect of the
discreteness of this number of firms on the pace at which norm adoption changes and then infer
consequences for the number and location of equilibria with reference to the structure of the
market of the innovative good.

A helpful first insight is the following:

Lemma 2-6  Except for the discontinuities, where ¢ (q) = q( q) holds true, we have:
: dq dg
1. 4(a)<q(q) and Mjﬂ@y 20 forall q.
dq dq
2. Let g, and g, be two instances of discontinuity of § with @, > ¢, . Then:

a. g, —q ZUJZ? where 776{1,2,...}

b. q(ql)—gi%l(q(q))>q(q2)—£iTrqn(q(q))>0 if A°>0 and

4(a)~lim(d(a)) <d(a,)-lim(q(a)) <0 if A° <0.

Figure 2-4 visualizes the relationship between A® >0 and § (q) reported in the lemma.

/77

/

/N q N

Figure 2-4: Effects of discontinuity on Q(Q) Left: A° >0, right A® <0 Additional stable equilibria

marked by an arrow.

The discontinuities described in Lemma 2-6 may increase the number of instances at which the
sign of (q) changes from positive to negative as ( increases, i.e. the number of stable equilibtia.

It does not reduce this number. The additional stable equilibria may not occur over the entire
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range of (¢, but only in those intervals, in which the “jumps” and the slope in the neighborhood

of the discontinuities are in opposite directions. Only then may the discontinuities result in
additional sign changes. We state the argument more precisely in the following:

Corollary Additional stable equilibria due to the discontinuities of (q) occur if and only if
the discontinuities entail additional sign changes of q(q) If A®>0, every additional stable
equilibrium is in one of the intervals in which Q(q ) is continuous and which has its lower bound
in one of the decreasing branches of q(q) If A® <0, almost all"” additional stable equilibria
occur at discontinuities which form the lower bound of a continuity interval of ¢(q) which is at

least partly in the increasing branch of q(q)

e note tha is corollary implies that with negative A° and a monotonously decreasin
W te that th llary implies that with negative A y g

function d(q), the discontinuity will never induce additional equilibria. The relevance of this

insight becomes obvious if one remembers that with negative A®, the existence of an increasing

branch of q(q) is only possible if A? is sufficiently smaller than A°.

With more stable equilibria, temporary policies are more likely to induce a permanent shift in
market structures or market outcomes, but as the larger number of stable equilibria become less
distant, such permanent effects of temporary policies tend to be smaller. Much of the discussion
in the following section on policy implications is based on this insight.

2.5.  Policy implications

The policy implications of our model depend to some degree on the definition of policy goals.
Within the realm of environmental policy in general and traffic-emissions policy in particular,
policy goals may run the gamut from the dissemination of environment-friendly products over a
reduction of particularly polluting products to straight emission reductions. Very often,
environmental sustainability and emission reductions may be the final goal, but political activism
often involves preliminary targets such as electric cars replacing gasoline cars. General adoption
of environmental norms, such as the sustainable-transportation norm we have been using as a
running example in our model, may also serve as one of the more immediate goals.

All these goals may be affected by innovation such as electric cars with similar consumption
properties as gasoline cars. If the innovation is unrelated to a norm, or if the adoption and
abandonment of the norm do not depend on the relative frequency of the consumption of the
new, norm-compliant product variant, then there would be few arguments for government
support of the new technology, except for the internalization of external effects. However, if the
dissemination of the innovation is linked to a norm in the two ways we have described in our
model, namely both higher valuation of the new product by norm bearers and the feedback of

12 The only case in which an additional equilibrium may be in a continuity interval of §(q) occurs if q(q) has a

minimum, this minimum is positive, a continuity interval of q(q) embraces this minimum, has an intetior minimum

which is negative and has positive limits at both bounds.
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norm-compliant consumption on the dissemination of the norm, then the introduction of a
norm-compliant innovation ceases to have unambiguous effects.

We have discussed the case that the conformity bias may be so strong that it can hinder the
dissemination of innovation. In fact, as innovation allows for the observable choice between
norm-compliant and norm-violating behavior, the innovation may reduce the number of norm-
adopters if it enters the market in small numbers at the beginning, and thereby hinders its own
further dissemination into the market. In these cases, it is particularly appropriate for political
interference with market forces (and norm formation!). However, policy measures should be
carefully chosen. It would be detrimental if policy aimed at (and succeeded in) increasing the
influence of the normative sphere on the market by strengthening the conformity bias in society.
Such policy measures would only reinforce the innovation-curbing effects of the conformity bias.
However, policy should be willing to strongly support innovation in an early stage by improving
market parameters in order to shift the market-norm system into the region of attraction of the
high level of norm adoption. Only in the long run should such policies be replaced by supporting
the conformity bias in order to further shift the “good” equilibrium towards greater norm
adoption. The reverse order of these measures may have detrimental effects: the system may be
driven to the “bad” equilibrium if it exists, and this may make later successful market interference

extremely expensive.

Among the market parameters to be influenced politically, choices should be made according to
the dissemination of the norms in the given society. Political measures which alter the effect that
the norms impose on demand should only be implemented when norm adoption is wide already.
If it is not, the effect is not only diminished by the small number of individuals who may react to
the policy measure, but also by a possible reintroduction of at least some cognitive dissonances
from having the norm but not complying with it, which in our model would be tantamount to
reducing CB. The effect would be less norm adoption and thus even less effectiveness of the
political instruments. Policies which affect the valuation for the innovative product of both
norm-adopters and hedonists in the same way (such as a subsidy for consumption of norm-
compliant behavior) or operate on the supply side (such as cost reductions) will of course also
have the desired effects, but cannot be tailored to the level of norm adoption.

If the norm compels individuals to use electric mobility rather than to avoid gasoline cars, iL.e. if

the effect of norm adoption on individual demand for electric cars (A® in our model) is positive,
then discontinuity of the number of firms may have to be considered when determining political
action to support the innovation of electric cars. In particular, if the number of suppliers is small
due to an initially low demand for such cars, discontinuity effects tend to be large. As a
consequence, temporary policy measures supporting the innovation are more likely to have
permanent effects. In addition, the permanence of the effects is triggered faster than if
multiplicity of the equilibria only stems from positive feedback loops in norm formation (in our
model, working via the market). However, this permanence cuts both ways. Not only is the
return to an initial equilibrium with lower consumption of the innovation avoided, but also
further increases in consumption may be hindered. If additional stable equilibria occur on the
way from an equilibrium of little consumption to an equilibrium of much consumption, then
their regions of attraction may trap the system before it can evolve to the region of attraction of
the “best” equilibrium. Hence, if policy suspects the existence of multiple equilibria due to

32



positive feedback loops in the norm formation process and the market structure on the new
market is a small oligopoly or even a monopoly, then policies aiming at overcoming equilibria of
little norm adoption have to be particularly strong and patient.

2.6.  Conclusions

Our paper introduces a new dimension to the interaction between markets and norms beyond
the interplay of monetary and non-monetary incentives to act in a certain way: innovation of
material goods as a catalyst of norm evolution. This new dimension allows us to incorporate two
neglected channels through which markets affect norm evolution. On the one hand,
consumption may express the normative attitude of an individual, but only if products vary
sufficiently with respect to compliance of the considered norm. On the other hand, observed
consumption also exposes an individual to social influence which may reinforce norm adoption
or norm abandonment. We have condensed these arguments in a model that extends the existing
literature on the evolution of social norms in three ways. First, our model incorporates the
influence of a product innovation on the process of norm adoption. Second, we consider how
conformity bias in the consumption of material goods affects the adoption of idealistic norms.
Third, we demonstrate how market structure, through its impact on market outcomes, may
influence norm dynamics. We thereby add to the understanding of how the evolution of norms
depends on market activities.

Within our model, we have pursued two questions. First, we studied how an innovation that
differs with respect to the level of norm compliance modifies the dissemination of a norm.
Second, we investigated the effect of market dynamics on the evolution of the norm with respect
to the existence and stability of the equilibria. Concerning the first question, we have derived the
necessary and sufficient conditions for an innovation to induce an increasing dissemination of the
social norm. The innovation increases the norm diffusion if (1) the conformity bias is weak or
enough individuals already bear the norm prior to the innovation and (2) the increase of
individual demand for the norm-compliant product variant resulting from norm adoption
exceeds the corresponding demand for the norm-violating variant by a sufficient degree. These
conditions become more restrictive when fewer firms are in the market, since then the required
increase in profits to induce an additional incumbent to produce the innovative product
increases.

With respect to the second question, we have shown that multiple norm equilibria may not only
result if norm adoption is a frequency-dependent opinion formation process with direct positive
feedback loops. But multiplicity may also arise if norm adoption depends on observed market
behavior, in particular, on the proportion of norm compliant consumption. The direct positive
feedback loop may be weaker when multiple equilibria are also supported by a conformity bias in
consumption of material goods. We have further derived sufficient conditions under which the
positive effect of norm adoption on individual demand induces multiplicity of equilibria. It turns
out that the effect of the norm on the demand for the norm-compliant variant may be neither
too high nor too low as compared to the effect on demand for the norm-violating product for
multiplicity to arise. We have also discussed a second possible source of multiplicity of norm
equilibria, the market structure. In principle, if more suppliers offer a norm-compliant good, they
would offer the good at lower prices, thereby facilitating norm compliance and norm adoption.
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This could in turn increase the demand for the norm-compliant good and thereby allow more
suppliers to enter the market. It turns out, though, that this feedback loop may reinforce already
existing positive frequency dependency as source of multiplicity of equilibria, and will rarely
induce multiple equilibria on its own.

Based on these results, we have drawn conclusions for policy makers aiming at a higher
dissemination of the social norm as an intermediate goal to ultimately achieving the greater goal
of reducing environmental pollution. We have discussed the case that the conformity bias may be
so strong that it hinders the dissemination of the innovation. It is mainly in these cases where
political interference with market forces (and norm formation) is appropriate. If policy suspects
the existence of multiple equilibria due to positive feedback loops in the norm formation process
and the market structure on the new market is a small oligopoly or even a monopoly, then
policies aiming at overcoming equilibria of little norm adoption have to be strong and patient.
Political measures which alter the effect that the norm imposes on demand should only be
implemented when norm adoption is already wide spread. If it is not, the effect is not only
diminished by the small number of individuals who may react to the policy measure, but also by a
possible reintroduction of at least some cognitive dissonance from having the norm but not
complying with it.
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3. Evolution of cooperation in social dilemmas: signaling
internalized norms.

3.1.  Abstract

Economists have a long tradition of finding that the evolution of cooperation in large,
unstructured societies is a puzzle. We suggest a new explanation for cooperation that avoids the
restrictions required in most previous attempts. Our explanation deals with the role of
internalized norms for cooperation in large unstructured populations. Even internalized norms,
i.e. norms that alter the perceived utility from acting in a cooperative or uncooperative way, will
not help to overcome a dilemma in an unstructured society, unless individuals are able to signal
their property of being a norm bearer. Only when having the norm may be communicated in a
reliable way, can the picture change. We derive necessary and sufficient conditions for
cooperation to be part of an asymptotically stable equilibrium of an evolutionary dynamics of
signaling norm internalization, behavior and norm adoption. These conditions put the signaling
costs of norm-adopters and non-adopters, the strength of the social norm and two parameters
measuring the cost of cooperation into relation with each other.

Keywords: Evolution - Cooperation — Signaling

JEL Classifications: A13, D02, D21

3.2.  Introduction
Despite the obvious advantages of exploiting the good will of others, human beings often
cooperate, even in large, unstructured societies. However, cooperation is neither universal nor is
it easy to explain. Economists have a long tradition of finding that the evolution of cooperation
in large, unstructured societies is a puzzle (e.g. Axelrod and Hamilton 1981; Fudenberg et al.
2012); and in explaining cooperation based on some structure within the population.

Attempts to solve the puzzle are abundant but have thus far commonly relied on one or both of
two restrictions. The first restriction is that explanations have focused on structured populations,
in which interactions are not completely anonymous but allows individuals to collect and process
information about past behavior of others and about their identity. The second restriction is that
explanations have depended on an unexplained ability of social norms to restrict the individuals’
action or strategy spaces, in particular, with respect to the abuse of punishment.

With respect to the first group of restrictions, some strands of the literature deserve special
mention.” The theory of kin selection focuses on cooperation among individuals who are
genetically closely related (Hamilton 1964a, 1964b), whereas theories of direct reciprocity focus
on incentives to cooperate in repeated interactions of self-interested individuals (Trivers 1971;
Axelrod 1984). For infinite repetition within one group, see Taylor (1976) or Mordecai (1977)
and for Folk-Theorem-type of results Rubinstein (1979) or Fudenberg and Maskin (1986). For

13 A complete literature review lies outside the scope of an introductory section of a journal article, as it would merit
a scholarly work in its own right.
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indefinite repetition, see Kreps et al. (1982). The theories of indirect reciprocity and costly
signaling show how cooperation in larger groups can emerge when those cooperating can build a
reputation (Nowak and Sigmund 1998; Wedekind and Milinski 2000; Gintis et al. 2001)".

In terms of the second set of exclusions, we point to early papers of Hirshleifer and Rasmusen
(1989) and Witt (19806) that allow for punishment only after a norm has been violated. Sethi
(1996) allows for all possible strategies which condition punishment on either the violation of or
compliance with a norm. However, he then adds structure to the society by introducing some
exogenous division of the population — the behavior of some individuals is rational, and for the

rest it is determined by routines that are slowly adapted to their environment.

We present a new explanation for cooperation that avoids both restrictions. Our explanation
focuses on cooperation in large unstructured populations of individuals whose incentives to use
or abuse actions or strategies evolve endogenously from the model. We assume that their
behavioral routines adapt to the sum of both objective and subjective payoffs and that their
subjective payoffs — which express internalized norms — slowly evolve according to the objective
payoffs. This allows us to explain all variation among individuals endogenously and to assume
absence of any information on the past behavior of other individuals.

We place our model in an environment that is most unfavorable to cooperation, a completely
unstructured society where every interaction occurs among strangers. We do this for two reasons.
The first reason is methodological: we want to isolate the impact of internalized norms from
other factors that might stabilize cooperation. The other is empirical: we believe that in modern
societies a non-negligible part of everyday interactions is characterized by cooperation in dilemma
situations although they actually do take place in an unstructured environment (for a survey on
experimental evidence see Roth 1995; Cooper et al. 1990).

In such an environment, cooperation cannot be induced by any form of repeated interaction'
nor by social norms based on sanctions to be inflicted in later interactions. Even internalized
norms, i.e. norms that alter the perceived utility from acting in a cooperative or uncooperative
way, will not help to overcome a dilemma in an unstructured society, unless — and this is the
thrust of the current paper — individuals are able to signal their property of being a norm bearer'’.
If internalized norms simply exist while lacking the possibility of being signaled or screened for,
they would induce norm bearers to cooperate and be exploited by others. Hence, norm bearers

14 There are other mechanisms that do not rely on informational aspects. Instead, they are based on restrictions in
rationality or on extended strategy spaces. In finitely repeated games, cooperation can, for example, result from
bounded complexity of strategies (Neyman 1985), history-dependent payoffs (Janssen et al. 1997) or bounded
complexity of beliefs (Harrington, 1987).

15 Kandori (1992) and Ellison (1994) show that in an environment with similar informational restrictions as in our
model, contagious strategies may support cooperation in a social dilemma in an extremely indirect way of repeated
interaction. In such strategies, when one player defects in one period, his opponent of that interaction will start to
defect from this period onwards, infecting other player who will defect in the future, infecting others and so forth.
For any given fixed population size, Kandori (1992) and Ellison (1994) show that cooperation can be sustained in a
sequential equilibrium if individuals exhibit enough patience. However, such contagious strategies may only uphold
complete cooperation by all individuals in large societies, if patience is nearly infinite. In addition, they are not
tolerant with respect to behavioral errors. We therefore do not discuss this approach in detail.

16 For an empirical paper on the role of costly signaling for the promotion of intragroup cooperation, see Soler
(2012).
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would have a clear evolutionary disadvantage so that norm adoption would vanish. Only when
internalization of the norm can be communicated in a reliable way, may the scenario change,
because behavior may then be conditioned on the expected behavior of others.

Within this environment, we borrow two elements from the indirect evolutionary approach
(Gith and Yaari 1992 and Gtth 1995): first, the idea that internalized norms are nothing more
than an internal payoff conditional on the behavior of the individual and its partners, and second,
the assumption that the adoption of an internalized norm evolves slowly depending on its effects
on material, external payoffs. Our approach is thus closely related to Gith et al. (2000), who
analyzes the Game of Trust rather than the Prisoners’ Dilemma. The two games are clearly
similar since in the Game of Trust, the outcome of the first mover trusting and the second mover
reciprocating is Pareto-superior to the unique Nash equilibrium. In Gtith’s model, evolution
allows for heterogeneity with respect to the evaluation of the material outcome such that some
agents will reciprocate and some will exploit trust as second movers. By adding the opportunity
of partially informative but costly screening of this evaluation to the standard Game of Trust,
Giith opens the path to equilibria in which the first mover trusts and the second reciprocates. We
carry this approach over to the Prisoners’ Dilemma and concentrate on signaling, instead of

screening.

In addition to these differences with respect to the interaction environment, we depart from the
standard indirect evolutionary approach in a fundamental way concerning the behavioral
assumptions. We assume that agents play inherited strategies defining both whether the agents
signal their norm internalization and whether they cooperate or not. We thus take the stand of
behavioral economics (as it is often reflected in evolutionary game theory) whereas Giith et al.
(2000) apply a rational choice approach with agents using Bayesian updating and making rational
investment decisions with respect to screening. Our model is thus evolutionary with respect to
both norm internalization and behavior, although the speed of the norm internalization dynamics
is clearly less than the speed of behavioral adaptation.

In the field of evolutionary biology it has been argued before that signaling may provide way out
of social dilemmas where mechanisms such as reputation, reciprocity or assortative matching are
absent or fail to work sufficiently (e.g. Wright 1999; Smith and Bliege Bird 2000; Leimar and
Hammerstein 2001). Yet only a few of these approaches incorporate a formal model (Gintis et al.
2001). The novelty of our approach is the derivation of the full set of behavioral equilibria, i.e. all
separating, pooling and semi-pooling equilibria of the signaling-extended Prisoners’ Dilemma.
This would be rather a technical note were it not for the implication of a far richer set of rate-of-
norm-adoption equilibria that can stabilize cooperation. Notably, the interplay of those multiple
behavioral equilibria may stabilize partial cooperation and dissolves the necessity to introduce
specific frequency-based evolutionary forces into the dynamics of norm adoption beyond payoff
monotonicity (e.g. Gintis et al. 2001 rely on the replicator dynamics).

Sethi (1996) suggests a linkage between his own approach, i.e. mixing optimizing and non-
optimizing behavior in an evolutionary game; and the approach taken by Giith and Yaari (1992)
and Gith and Kliemt (1994) in which all agents are assumed to optimize given heterogeneous
preferences. Both authors establish the existence of games in which preferences for cooperation
or fairness are evolutionary stable. Similarity in results despite differences in methodology suggest
that the two research approaches are highly complementary Sethi (1996, p. 117). Our results
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show that the complementarity between these different approaches is limited. We show that there
is substantial difference between assuming that norms simply fix a certain behavior, and assuming
that norms only create internal incentives to adhere to this behavior. In our case, the parameter
measuring the strength of this incentive affects the range of the other parameters for which
cooperation may emerge.

The remainder of the paper proceeds as follows. The model is presented in Section 3.3. Since we
consider a heterogeneous population composed of norm adopters and non-adopters, we first
derive equilibria in each sub-population for which the stable equilibria are presented in Section
3.4. Thereafter, we endogenize heterogeneity and consider equilibria of the two subpopulations in
Section 3.5. Section 3.6 collects and presents the requirements for partial or full cooperation
being part of a stable evolutionary equilibrium. Section 3.7 concludes.

3.3.  The model

The classical Prisoners’ Dilemma (PD) is the most prominent and best-studied example of a
social dilemma and serves as the basis for our analysis. The PD is played recurrently in an
unstructured population. An wustructured population is defined by the anonymity of the interaction,
L.e. agents process only information on outcomes of their own past interactions. In particular,
they process no information on the opponent's identity or on outcomes in games in which they
were not involved. To save space, payoff matrices are given from the row player’s perspective.
The strategy domain is finite, consisting of two strategies, C — “cooperation” and D —
“defection”. In conformity with the standard evolutionary model, we assume that individuals are
randomly matched into pairs with each pair having the same probability in each short time
period."” Any pair will engage in a one-shot PD game. Table 3-1 below presents the material
payoffs of the PD that will be decisive with respect to evolutionary success.

Material payoffs are given by: C D
C 1 -
D I+a 0

Table 3-1: Prisoners’ Dilemma, where & >0, >0and 1+ >« .

A common assumption in evolutionary models that explain the presence of cooperative behavior
is that individuals play inherited strategies that may depart from payoff maximizing behavior.
Playing non-maximizing strategies in this line of research is then interpreted as norm-guided (e.g.
Sethi 1996). This line of argument, however, appears incomplete because while showing that such
strategies can be sustained in equilibrium, it lacks motivation behind why an individual would
adhere to that particular norm. We believe that individuals will not stick to any behavior that is
suboptimal in the current environment. We do not claim that individuals will always do what is
best for them from an objective perspective (e.g. maximizes fitness), but we argue that they will

17 An unstructured population need not necessarily engage in uniform or random matches, but departures from
those assumptions significantly complicates analysis without changing the qualitative results since we assume that
population is unstructured and remains unstructured. Non-random or non-uniform matching might however
increase the chance that structure is introduced into the population.
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not commit to suboptimal strategies forever. Hence, in our view, any long-lasting departure from
the behavior that maximizes material payoffs needs to be motivated by a valuation of the
outcome of behavior that differs from the material payoffs in a substantial way. In other words,
norm-guided behavior is not equivalent to an unmotivated commitment to a certain behavior, but
it reflects the subjective valuation of the (physical) outcome of the game. Following this
reasoning, we rely on (a variant of) the indirect evolutionary approach, pioneered by Gtith and
Yaari (1992)", i.e. we explicitly model cooperative preferences, which determine behavior, and
behavior, which in turn determines fitness.

As a particular internalized norm, we focus on the case of a cooperative norm. Players carrying
such an internalized preference gain an additional internal payoff if the behavioral outcome of the
stage game is mutual cooperation, ie. (C, C). We assume that there are two types in the
population (high and low types). Let 4 denote the share of high types in the population and let

me{m,m{ be their preference parameter measuring the attitude towards cooperation, resultin
m, p p g p > g

in the internal payoff matrix depicted in Table 3-2 below. As Gtth et al. (2000) noted in a
different setting, the precise level of 7 is behaviorally irrelevant. All #-types for whom the same
inequality with respect to @ holds, form an equivalence class concerning the implied behavior.
We therefore normalize m=0,M>a."” The value of  is assumed to be private information of
the agent. In the tradition of Harsanyi (1967, 1968a, 1968b), beliefs about the opponent’s type are
common knowledge. Like Gtith and Ockenfels (2005), we adopt the natural assumption that
beliefs correspond to actual frequencies of types. Without communication, the impossibility
result of Kandori (1992, Proposition 3) applies, which states that the unique equilibrium is
characterized by full defection, i.e. everybody always defects.

Communication is modeled as an additional stage prior to the play of the adjusted PD. In that
stage, agents can simultaneously send one message concerning their inner motive. Without loss of
generality, we assume the message space to be the same as the type space. The message to be a
low type corresponds to sending no message and is costless. As in the standard signaling model
(Spence 1973) we assume the existence of a social technology which enables individuals to signal
their positive attitude towards cooperation by incurring some costs. Furthermore, agents who
adopted the norm are supposed to bear lower costs for sending the signal. Let k,k denote the
signaling cost for high types and low types respectively, so that k <k. In the current setup,
strategies are given by signal-dependent behavior and the choice of sending the signal or not, e.g.
“cooperate if signal is received, deviate if no signal is received and send signal”, denoted CDm.
In general, a strategy is denoted by a triple XYm, where the first entry denotes behavior in case of
receiving the signal (C or D), the second denotes behavior in the case of not receiving the signal
(Cor D), and the third signifies whether the signal is sent or not (M or m, respectively).

What might such a signal be? To give an illustrative example, consider a situation where
individuals elbow their way through a rummage sale. There is a table with one good offered as

18 The indirect evolutionaty approach has also been applied in different strategic settings (ultimatum game, Huck and
Oecchssler 1999) or to analyze the evolutionary stability of altruistic preferences (Bester and Giith 1998) or of
altruistic and spiteful preferences (Possajennikov 2000).

19 Assuming M > « is necessary, since otherwise, defection would still be the dominant strategy for norm-adopters.
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two variants, goods A and B. There are also two individuals, one preferring good A, the other
preferring good B. However getting both goods is the first best outcome for both individuals.
They can behave cooperatively, allowing the other to select their preferred good; or they can try
to queue-jump and grab both goods, in which case, the other gets none. If both individuals chose
not to cooperate, they will grab one of the goods by chance, leaving them in expectation with a
lower utility then in the cooperative state. Hence, this example is structurally equivalent to a PD.
In this scenario, the signal often used is to make room for the other person. Such a signal is
costly in terms of time, which usually has some monetary equivalent. If this gesture is received by
both individuals, this might lead to mutual cooperation. This example is also instructive in
demonstrating that signaling in our context is rather part of the behavioral strategy than an act of
rational choice. In the light of this example indeed most acts of courtesy may be understood as a
signal for a cooperative attitude. The signals are not limited to this aspect though.

Evaluation of material payoffs is given by:

C D
Cl1+m -
D|l+a 0

Table 3-2: PD with preference for cooperation.

Based on the basic behavioral actions C and D, for the high types, there are eight signal-
dependent strategies CCm, CDmM, DCmM, DDM and CCm, CDm, DCm, DDm. For the low types,

since defection is the dominant behavior, there are only two strategies that reflect their signals,
denoted by DM, Dm. We will denote the share in the subpopulation of high types playing the

strategy CCM by Py and accordingly, for any other strategy. Since low types always defect, we

denote their respective shates by p, and p, .

In evolutionary game theory, there are two approaches with respect to capturing the dynamical
aspect of evolution. The first one, due to the work of Smith and Price (1973), centers on the
concept of an evolutionary stable strategy and is considered as a “static”’ approach since typically
no reference is given to the underlying process by which behavior changes in the population. The
second approach does not attempt to define a particular notion of stability. By explicitly
modeling the underlying dynamics, all standard stability concepts used in the analysis of
dynamical systems can be applied. We will follow the second approach by modeling the dynamics
of the according population shares via payoff-monotone dynamics (see e.g. Bendor and Swistak,
1998 for definitions), i.e. if the fitness payoff of a certain strategy is larger than the one of
another, the share of the population following the former will increase faster than the share
following the latter, or decrease slower. An equilibrium is defined by the dynamics introduced
above. An equilibrium is a distribution in the shares of the population playing certain strategies,
such that the dynamical process induces no further adjustments, i.e. an equilibrium is a fixed
point of the adjustment process. As a stability concept, we will apply the notion of asymptotic
stability (see. e.g. Samuelson, 1997 for definitions). An equilibrium of that type must be
reconstituted after a small perturbation, which is arbitrary in terms of the composition of

mutation-strategies.
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As mentioned above, there are eight strategies for high types and two for low types. We assume
that the dynamic accommodation of the population shares playing the various strategies is
relatively fast compared to the dynamics of the population share of m-types, i.e. 4. This
assumption will simplify analysis of the dynamics and is considered adequate since behavior will
adapt faster to differences in payoffs than socially and culturally transmitted norms. We can
therefore analyze these processes separately as long as the faster process is stable. More precisely,
we apply the mathematical tool of quasi-stationary approximation, or ‘adiabatic elimination’
(Haken 1977; Weidlich and Haag 1983, used in economics by Samuelson 1947: 320, already) of
fast variables to solve the coupled differential equations which describe our system. The system
consists, on the one hand, of the differential equations that describe the fast dynamics of various
signal-behavior strategies and, on the other hand, of the differential equations that describe the
slow dynamics of norm-adoption. The eight strategies for high types and the two for low types
amount to ten differential equations, one per share per strategy, yielding nine independent
equations since the size of the total population is fixed. Fixing the size of each subpopulation
while analyzing the dynamics of behavioral strategies within each subpopulation reduces the
number of independent differential equation by one more, seven for the high types and one for

low types. We recall that pyy, and p,, denote the shares of strategies within the subpopulations

sothat " Py, =1 with X,Y €{C,D} and me{m,m} and p, +p,=1.

Given our assumption on the speed of the dynamic processes, we first derive all the behavioral
equilibria for a given proportion A of individuals with a high internal motivation for (mutual)
cooperation, and then analyze whether the implied A-dynamics can support a fully or partially
cooperative state. We call the former equilibria ‘p-equilibria’ and the latter, ‘A-equilibria’. If they
are asymptotically stable with respect to the corresponding p- or A-dynamics, we say that they
are p-stable and A -stable, respectively. The p-stable equilibria are presented in section 3.4, and A4
-stable equilibria are derived in section 3.5.

3.4.  Equilibria with Exogenous Proportions of Norm Bearers

For ease of reading, we present only the equilibria and their stability properties and leave the
derivation in Appendix B.4 (existence) and B.3 (stability). As in many other cases, we have
separating and pooling equilibria, depending on the parameters including A. There are one p-
stable separating and three p-stable pooling equilibria. In the separating equilibrium, the
subpopulations of the two types of individuals (high and low internal motivation for cooperation)
exhibit homomorphic behavior, whereas behavior of types in the pooling equilibria is
heteromorphic. However, there is a third type of equilibria where at least one subpopulation
applies both types of signals, so called semi-pooling equilibria. Table 3-3 reports these equilibria.

In the following paragraphs, we will take a closer look at the separating and pooling equilibria.
We will refer to the first of these equilibria as the ‘cooperative separating equilibrinn? , to the second as
the “low pooling cooperative equilibriuns’, to the third as the ‘low pooling defective equilibrium’ and to the

20 This assumption implies that payoff monotonicity is restricted to the fast and to the slow dynamics, but does not
comprise the combination of the two.
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tourth as the ‘high pooling cooperative equilibriuns. 1t turns out that the semi-pooling equilibria with

one exception are less important for the implied A-dynamics and are therefore not further

discussed. The exception is the p-stable semi-pooling equilibrium at /”LzlL that will be of
+a

relevance for one of the inner A-stable equilibria. In this semi-pooling equilibrium, high types

always play CDmMand low types are indifferent between sending the signal or not, and therefore

 1s undefined. The minor importance of all other p-stable semi-pooling equilibria is partly due

to their being characterized by strictly negative fitness differentials between high and low types
and partly to their limited A -support (see Figure 3-1 and Figure 3-2).

In the cooperative separating equilibrium, the high types recognize each other and cooperate only
among themselves. The intuition behind the fact that the support of this equilibrium has both a
lower and an upper is as follows: If there are too few high types, then the cooperative outcome
among them cannot compensate for the signaling costs. The higher the signaling costs relative to
the (non-material) reward for a cooperative outcome, the higher the required share of high types
in the population. If on the other hand, there are too many high types, signaling becomes
sufficiently profitable for low types. In other words, if there are enough high types that cooperate
when receiving the cooperative signal, it becomes profitable for low types to incur the signaling
costs. The higher the signaling cost for low types relative to what can be gained from defection
against a cooperative opponent, the higher is the share of high types needed for signaling to
become a profitable strategy for low types. The thresholds for the share of high types have a

precise economic interpretation. For high types, the cost-benefit ratio from signaling (1L_)
m
must be smaller than the probability to gain the benefit (1). The reverse holds true for low types,
i.e. their cost-benefit ratio from signaling must exceed (IL)’ the likelihood of gaining the
+a

benefit.

In the low pooling cooperative equilibrium, nobody signals and high types cooperate. This
equilibrium exists if there are sufficiently many high types. Only then can they compensate for
the loss from being cooperative against low types by the cooperative outcome among each other.
In other words, if the share of high types falls below a certain threshold, then they will start to
prefer defecting when receiving the low signal. Note that this equilibrium is indeed an equilibrium
set, since the strategies CCm and DCm are equivalent in equilibrium. The share of high types
required for this to be an equilibrium increases in the sucker’s payoff, since cooperative behavior
becomes more disadvantageous with increasing (absolute) sucker’s payoffs. This threshold, too,
has an intuitive meaning. Note that M—e«a () measures the incentive to reciprocate cooperative
B

~ <A, which can be rewritten as
p+M—-«a

(defective) behavior. In essence, the condition

A(M—a)>(1-2) B, states that the expected gain from reciprocating cooperative behavior must

exceed the expected gain from reciprocating defective behavior.
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Payoff differentials (superscript “f” indicates the
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Table 3-3: p-stable equilibria (p-stable semi-pooling equilibria are referred to Appendix B.2)




In the low pooling defective equilibrium, nobody sends the cooperative signal and everybody
defects earning a payoff of zero. Again, due to lack of distinguishability in equilibrium,
equilibrium is indeed a set where CDmM and DDm might be played by high types. This set of
equilibrium reflects the benchmark solution in the underlying game and exists for all population
compositions between high types and low types.

In the high pooling cooperative equilibrium, everybody signals and high types cooperate. This
equilibrium exists if there are sufficiently many high types. If the latter’s proportion is large
enough, they can compensate for the loss from being cooperative against low types by the
cooperative outcome among each other. In other words, if the share of high types falls beneath a
certain threshold, they will then start to prefer to play defective while receiving the low signal.
Contrary to the low pooling equilibrium, an additional restriction with respect to the share of
high types will arise, reflecting the incentive compatibility for low types to signal. Note that this
equilibrium is again an equilibrium set, since the strategies CCM and CDM are equivalent in
equilibrium. The share of high types required for this to be an equilibrium weakly increases in the
sucker’s payoff and the signaling cost for low types. Since with increasing (absolute) sucket’s
payoffs, cooperative behavior and sending the signal for low types respectively become more
disadvantageous. Here, for low types, the reverse logic applies in comparison to the separating
cooperative equilibrium, i.e. for low types to find it worthwhile to signal, their cost-benefit ratio (
%) must be smaller than the likelihood to profit from signaling (1). The lower bound
stemming from incentive constraint for high types bears the same logic as in the low pooling
cooperative equilibrium.

3.5. Endogenous Proportion of Norm Bearers

We now analyze the dynamics of the share of high types in the population for which we assume
that the p-dynamic has reached a stable p-equilibrium, as we assumed that inner motives evolve
far more slowly than behavioral frequencies. The evolution of the proportion of norm bearers is
determined by its relative fitness. Fitness is measured by the material payoffs as presented in
Table 3-1. Thus, any preference parameter measuring the evaluation of material payoffs will be
neglected when calculating fitness payoffs. Analogous to the derivation of p-equilibria, the
differentials in these fitness payoffs among high and low types are the driving force for the
evolution of their respective shares. To ease the understanding of the differentials of fitness
payoff differentials, we provide some intuition for their size in the relevant p-stable equilibria.

In the cooperative separating equilibrium, both types defect in all interactions, except when two
individuals of the high type meet. In this case, they cooperate. The low type will thus always earn
a fitness payoff of zero, and the high type will earn a fitness payoff of one with probability 4, i.e.
the probability that he interacts with another individual of the high type. Since high types

unconditionally bear the signaling cost k', their expected payoff in the cooperative separating

equilibrium is A-k, which is also the expected difference of fitness payoffs:
(Hm (CDm)—Hm(m))f =A—k . Obviously, this fitness advantage of the high type grows in the
share of high types in the population.
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In the two (partially) cooperative pooling equilibria, individuals of the high type cooperate in
reaction to the signal they send, and all individuals of the low type copy this signal but still
defect.” Leaving aside signaling costs for a2 moment, differences in material payoffs then reflect
payoffs of unconditional cooperators and defectors in the underlying PD. More precisely, with
probability A4, high types meet their own type and realize the cooperative outcome, earning 1.
With the residual probability, they meet a low type and lose . Low types always defect and only
earn positive payoffs when matched with high types, which happens with probability 4 and earns
them I1+a. A fitness differential to the advantage of the high types thus cannot result from
playing the game itself, but only form sufficiently large differences in signaling cost (see Table
3-3). Obviously, if no signal is sent, as is the case in the low pooling cooperative equilibrium, the
fitness payoff of the high type can only be smaller than that of the low type,

(11, (ccm) -1, (m))' =~(Za+(1-4)8)<0.

Only in the high pooling cooperative equilibrium, the signaling cost disadvantage of the low type
may outweigh the disadvantage of the high type from playing cooperatively in the game, so that
the  high type earns a  higher fitness  payoff than the low  type,

(11, (com) ~ 11, (M) =k —Kk —(2a +(1-2) ).

Obviously, the fitness payoff difference increases (declines) in the share of the high types if
defection is more (less) tempting against defection than against cooperation, i.e. if B is larger
(smaller) than « . If the proportion of the high type in the population is too small, it is either not
worthwhile to mimic the other type, or the chances to meet another high-type individual are so
low that cooperation ceases to be the best reaction to the signal sent by all individuals. For these
small shares of the high type in the population, the pooling cooperative equilibria break down
just like the cooperative separating equilibrium discussed eatlier breaks down for shares of the
high type that are too large.

In the pooling defective equilibrium, both types always defect without sending signals and thus all
earn the same fitness (and behavioral) payoff of zero.

The following two figures depict the differences in material payoffs for the various p-stable
equilibria (see Table 3-3).

21 This implies that the other signal is never sent, which explains why the high type is indifferent between the two
behavioural actions C and D to this never-observed signal.
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Figure 3-1: Differences in material payoffs for K < é
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Payoff differences for semi-pooling equilibria are neglected since their support lies in the interval

[ﬁ,lJ and the difference is strictly negative for all. Hence, their presence will have no
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important implications for the dynamics of the share of high types.
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Figure 3-2: Differences in material payoffs for K > €
l+a (B+mM-a)

A stable A-equilibrium may be realized around one p-stable equilibrium or by the interplay of
several such equilibria. We first concentrate on the first case, which we further differentiate into
corner equilibria (Lemma 3-1) and inner equilibria (Lemma 3-2) and then turn to the second case
(Lemma 3-3).

In the first case, the difference in fitness payoffs between high and low types must vanish to
constitute a stationary point at this particular value of the share of high types 4. For stability, in

the neighborhood of an equilibrium A°, high types must earn strictly more than low types for

A< A" and strictly less for 2> A". In terms of Figure 3-1 and Figure 3-2, the stationary point is a
zero of the linear payoff difference for a certain p-stable equilibrium, and stability is equivalent to
a negative slope of the payoff difference function. Of course, the requirement with respect to the
zero and the slope is only relevant for inner equilibria. At the upper bound of the domain, A=1,
a strictly positive payoff difference in favor of high types at A <1 is necessary and sufficient for
having a corner equilibrium. At the lower bound of the domain, 4=0, a strictly negative payoff
difference at A >0 is necessary and sufficient for having a corner equilibrium.

We first analyze whether A-stable equilibria with full cooperation exist. Since only high types
may cooperate, this is equivalent to asking whether there is a A-stable equilibrium at A =1 with
cooperating high types. Since high types in the low pooling cooperative equilibrium face an
evolutionary disadvantage for all population compositions, this p-stable equilibrium cannot

induce a stable cooperative A-equilibrium (partial or full). Hence, there are two potential
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candidates left, the separating cooperative equilibrium and the high pooling equilibrium. The
following lemma states the conditions such that a locally stable equilibrium with only high types
present in the population who cooperate with each other exists.

Lemma 3-1 The PD can be fully resolved as a locally A -stable equilibrium only in two ways:
1 by the separating cooperative equilibrium if and only if k>1+a and k <1

2 by the high pooling cooperative equilibrium if and only if k <1+« and eitherk —k >«
or k—k =a> .

All proofs are in Appendix B.1.

The existence of fully cooperative equilibria seems surprising at first glance, but a closer look at
the stated conditions for their existence reveals how rarely they occur. In the case of the
separating cooperative equilibrium, the condition corresponds to a scenario where the signaling
cost for low types are so severe that it will never pay for them to signal. More precisely, in a
cooperative separating equilibrium with A=1, a single low-type mutant would earn 1+« from
playing the dominant defective strategy at cost k . The second qualification k <1 stems from the
incentive compatibility constraint for high types, since they could always earn zero by not-
signaling and exhibiting defective behavior. In the case of the high pooling cooperative
equilibrium, the difference in the signaling cost must exceed the material reward of defecting on a
cooperative opponent.

The restrictiveness of Lemma 3-1 draws our attention to inner stable equilibria. The only
candidate for such a A -equilibrium supported by only one p-stable equilibrium is one associated

with the high pooling cooperative equilibrium at I—K_k—_a . All other equilibria are
-a
characterized by either strictly negative or strictly increasing payoff differentials. The high pooling

K-k —

cooperative equilibrium exists and is A -stable if 1—= is inside the A-support of this

-a
equilibrium and the fitness differential decreases in A, which is the case if f—a <0 (see Figutre

3-1). Taking these conditions together yields:

Lemma 3-2 The high pooling cooperative equilibrium constitutes an inner A -stable

k P m<k-K<a and p< Pk

equilibrium at I—K_—_a if and only if: —
-« m-a+pf I+«

Note that the first condition implies f—a <0, which guarantees stability. As expected, the

conditions presented in Lemma 3-2 are less restrictive as compared to the requirements for an
equilibrium formed only by high types. Looking at the conditions, we observe that the existence
of inner stable equilibria requires that the costs of signaling for norm adopters must differ
sufficiently from the corresponding costs of non-adopters.

What remains to be studied is whether separating A -equilibrium constituted by the interplay of
several p-equilibria exists. For this to be the case requires: (1) the supports of the p-equilibria
need to be adjacent, (2) around the point where the supports are adjacent, the differences of

fitness payoffs of the relevant p-equilibria must be positive for less-than-equilibrium shares of
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high types and negative for more-than-equilibrium shares of high types, and (3) after 4 moves
from the support of one p-equilibrium to the support of another, the behavioral frequencies have
to be within the basin of attraction of the “new” equilibrium if they have been sufficiently close
to the “old” equilibrium. In our case, we may have such an equilibrium only at A = % where
+a
three equilibria interplay: the separating cooperative equilibrium, a semi-pooling cooperative
equilibrium (last row in Appendix B.2), and the high pooling cooperative equilibrium. To
facilitate understanding of this argument, we recommend that the reader views Figure 3-2 while
reading the following argument.

Condition (1) requires that k >— p (cf. Table 3-3 and Appendix B). Condition (2) has
l+a M-a+p

implications for the fitness differences of the p-stable equilibria. For the cooperative separating

p-equilibrium, the fitness difference is given by (Hm (com)—1I1,, (m))f =A-k for 1< IL . This
- +a

. . . K K .
difference must be strictly positive at A “Tia’ whence 1+a <kE. In other words, the relative
+a
disadvantage for low types in terms of signal costs must exceed the relative incentive to defect
8 p g
given the opponent cooperates. Given this inequality and a share of high types sufficiently close

to, but lower than /1=1—, the share of the high type increases when the p-dynamics has
+a

reached the cooperative separating equilibrium. For the high pooling cooperative equilibrium, the
fitness difference is given by (Hm (ccm)-11, (rﬁ))f =k -k - (ﬂa +(1- ﬂ)ﬂ) , which has to be
k k+p

negative. Hence, we get " =< g
+ta 1+

To see that Condition (3) is satisfied under certain conditions we present our argument in three
steps. First, we draw the reader’s attention to the fact that for all three of the considered

equilibria, we have p.y. + Pecqy = 1. This implies that for A = IL we have:
+a

I, (CDm)=A(1+m)—(1-4)p,B-k
>T1_(CCm)=A(1+m)-(1-4)B-k 3.1)
>max (I, (X))  where X e{C,D} x{m,m}\{CDm,CCm}

where the first inequality is strict if p, <1 and the second inequality requires

/1* K > ﬁ

= — = 1. Hence, continuity of the payoffs and Lipschitz-continuity of the
I+ mM—-a+p

dynamics implies that for all 1 sufficiently close to A" and all sufficiently large Pepr + Pocy = 1
we have Pepm + Peem =1 Hence, once the system is close enough to any of the three relevant p-
stable equilibria, and in particular once Pep, + Pecy has become large enough, pepy + Peen Will
continue to grow for all p_. Second, we observe that if p., is large enough and the p-dynamics

is sufficiently fast compared to the A-dynamics, then 4 will always stay close enough to 1" to
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uphold the validity of the first argument. Third, if p.p, + Pecy 18 large enough and thus increases,
I, (Cbm) < I, (CCm) only occurs for ever decreasing ranges of large p,. Hence, for every
payoff-monotone dynamic p.., will be smaller after every full cycle and will never again reach its
previous maximum level. Hence, p.,, will eventually be large enough to ensure the validity of

our second argument.

Hence, once our full dynamic system is close enough to A” and the A-dynamic is slow enough,
the system will rotate between the separating equilibrium and the high pooling equilibrium in ever
smaller cycles (note that this does not necessarily imply that a fixed point is reached because a

limit cycle may exist). We summarize all conditions in the following:

If B k < K+p and |Z<L

Lemma 3-3 — < <
M—-a+pf 1+ £ then 1+ 4 l+a

an inner A-stable equilibrium

b

exists at A= " K , in which (1) high-type individuals cooperate among each other but also with
+a

those low-type individuals who signal to be of the high type and (2) the proportion of low-type
individuals who signal to be of the high type fluctuates.

Note that the conditions in Lemma 3-2 and Lemma 3-3 are mutually exclusive, i.e. there is at
most one stable inner equilibrium.

We have so far not considered the case of 1k < . If there is equality. ie.

K =— P , an equilibrium of the type discussed in Lemma 3 still exists at 4 =L , but it
l+aa M-a+p 1+

B

is unstable (the argument on condition 3 fails). If the inequality is strict (1 K < 5 ), there

+a M-a+
is a gap between the A-supports of the separating cooperative equilibrium and the high pooling

k B

1+a’n_1—a+ﬂ

cooperative equilibrium (see Figure 3-1). In the interval { J, the defective pooling

equilibrium is the unique equilibrium. Should the population start at the cooperative separating p-
equilibrium with a positive fitness differential, then it will eventually drive the share of high-type
individuals beyond the A -support of this equilibrium so that p, starts to grow. Once it grows
too much, the strategy DDmM yields the largest behavioral payoff to high-type individuals while
CDm yields only the second largest. Hence, the share of always defecting high-type individuals
Pppn must grow and Py, must decline because the shares of the other strategies (with even
lower behavioral payoffs) are already zero. Less cooperation by high-type individuals reduces the
advantages that low-type individuals accrue from falsely signaling to be of the high type. Hence,
P, Wwill eventually decline again. A behavioral equilibrium exists in which only some low-type
individuals signal the wrong type and only some high-type individuals cooperate after receiving
the high signal while the others always defect, but this equilibrium is not stable (see Appendix

B.3). Consequently, pyp, will eventually grow large enough to move the population in the

attraction region of the defective separating equilibrium, where it will remain. We admit that the

evolution may become more complex when p, and pyy, both become so large that CDm
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becomes less profitable than DCM. There may then be payoff monotonic dynamics for which

Pocn Starts to grow, although slower than pgy.. If this happens, false signaling by high types

may eventually become reasonable. However, as the low pooling equilibrium with cooperation

. . o . k
only of the high types fails to exist in the interval | ——, p
l+a M-—a+p

J, we conjecture that the

population will eventually end up in the defective pooling equilibrium as the unique behavioral

equilibrium.
. K i . o . Kk
Conjecture If —<— , no A -stable inner equilibrium exists at 1 =——
l+a M-a+p I+a
k
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Figure 3-3: Parameter region for partial or full cooperation
Figure 3-3 illustrate the conditions of Lemmas 1 through 3 graphically. For illustrative purposes,

we assume f-a<0 and K >— s
l+a M-a+p

\%

so that all inner equilibria may exist for some

parameter ranges. In Figure 3-3, areas marked by FC and PC represent parameter combinations
for which full and partial cooperation occur, respectively. More specifically, the indexes mark
parameter ranges for which cooperation is induced by the separating cooperative equilibrium
(SCE), the high pooling cooperative equilibrium (HPCE), or the interplay of the two and a semi-
pooling equilibrium (SCE&HPCE).

It is worth noting that the strength of the cooperative norm measured by M has a direct impact
on the parameter set allowing for A -stable inner equilibria (see Figure 3-3). As m gets closer to
the incentive to defect «, the parameter region supporting a separating cooperative equilibrium
(PCycpaaper) becomes smaller and smaller. Although the exact size of M is not important for the
behavioral consequence for each individual as long as M >« holds true, the exact size of M does
matter for the size of the parameter range for which evolutionary stable equilibria characterized
by partial cooperation exist.

3.6.  Collecting requirements for equilibria with cooperation
By combining Lemma 3-1 through Lemma 3-3 from the previous section, we deduce a theorem
on cooperation in an unstructured population:
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Theorem In an unstructured society, cooperation in a PD may exist and be stable due to the
possibility of signaling the existence of inner payoffs for (mutual) cooperation, which do not
affect fitness, if the costs of falsely signaling to have such inner payoffs are sufficiently large.
These costs must be larger to reach full cooperation than to reach partial cooperation.

In our model, ‘sufficiently large’ translates to k—k >a or k—k =a > for full cooperation

(Lemma 3-1). For partial or full cooperation (Lemmas 1 through 3), ‘sufficiently large’ translates

to:

k > (1+a)max<min k+a,_ P kb if @< B and to (3.2)
forzlast 1+a m_a+ﬂ
term

K>(l+a)max{min{ pm +k,— p },IZ} ifa>pf. (3.3)
M—-a+/f M—-a+pf

Figure 3-4 and Figure 3-5 illustrate the interrelation between the costs for low types to signal
falsely and the extent of the inner motive for mutual cooperation. This relation is determined by
the various inequality conditions for existence of partial or full cooperation stated in the theorem
above. Figure 3-4 and Figure 3-5 reveal the negative relation between these two parameters, i.e. in
order to sustain some level of cooperation, lower signalling costs for low-types must be
compensated by a higher inner motive for mutual cooperation of the high-types. Here, the
aforementioned interdependence of M and the presence of cooperative equilibria is directly
observable. Although the precise level of M is not decisive with respect to its behavioural
consequence, its level plays a crucial role with respect to the size of the set of parameters such
that partial or full cooperation could be sustained as an equilibrium outcome. Furthermore, we
observe that this set of parameters is strictly decreasing in the signalling cost for the high type.
Finally, Figure 3-4 and Figure 3-5 show that the chances for cooperation diminish with increasing
B . In essence, the riskier or more painful cooperation occurs when matched with defective
behaviour, the higher requirements have to be met with respect to signalling costs for low types
and the inner motive for mutual cooperation. A mirror argument applies with respect to
parameter ¢, measuring the incentive to defect on cooperation in the underlying game. The
following corollary summarizes these insights.

Corollary
(1)  The range of signalling cost for the low type allowing for partial or full cooperation is
weakly increasing in the social norm for mutual cooperation m.

(2)  The set of (K,m)—pairs allowing for partial or full cooperation is strictly increasing in

signalling cost for the high type k and strictly decreasing in the Sucket’s payoff S and the

incentive to defect on cooperation « .

The theorem reveals that in case of full cooperation, almost always it is only the incentive to
defect on a cooperative player o relative to the difference in signalling costs that matters.
Whereas for stable partial cooperation, the relation of a and f is relevant. The loss from playing
cooperatively on a defective opponent B must be less than what a player could gain from

defecting on a cooperative player. Intuitively, this explains the edge of defective players over
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cooperative players for shares of the latter that exceed the equilibrium level and vice versa.
Reflecting on both incentives in case of a partially cooperative equilibrium is also plausible since
both behaviors are present in equilibrium, whereas fully cooperative equilibria are characterized
by solely cooperative actions. In that case, only the price for cooperation given the monomorphic
cooperative behavior ¢ is relevant.

Interdependence between the size of the inner motive and the cost to send a false signal

k k
l+a I+a
Cooperation Cooperation

k+a \ K+a
N\ e sk

“ \ 1+ (ﬁ ) \

(1+a)k (1+a)k ,
m ] \ m
a 1 1
Figure 3-4: @ < Figure 3-5: @ > f3

3.7.  Conclusion
In this paper, we analyze an evolutionary model where individuals are able to signal that they
internalized a particular social norm, namely a norm for mutual cooperation. This preference was
embedded in a Prisoners’ Dilemma. In section 3.6, we present a theorem that states necessary
and sufficient conditions for full or partial cooperation to be prevalent in a stable equilibrium.
These conditions refer to the difference in signaling cost between the cooperative and the
opportunistic type, the extent of the cooperative norm and the model parameters of the PD, i.e.
the temptation to defect and the sucker’s payoff. We obtain several interesting results. First, it is
true that the exact size of the behavioral parameter measuring the internal bias in favor of mutual
cooperation is not important for the behavioral consequence for each individual. However,
when it comes to the presence of stable equilibria characterized by partial cooperation its size and
its relation to the incentive to defect do become relevant. More precisely, the stronger the inner
motive to cooperate is, the less restrictive are the conditions on the spread in signaling cost.
Second, for cooperative agents to coexist with defecting agents in a stable equilibrium, it is not
necessary that the signaling technology fully cancels the incentive to defect. Since this would be
necessary for many corresponding results that are based on some sort of involuntary
redistribution (e.g. punishment), our approach may explain cooperation in more cases than the
latter approaches. Furthermore, the range of signalling cost for the low-type individuals allowing
for partial or full cooperation is weakly increasing in the strength of the social norm for mutual
cooperation. Finally, the set of pairs of signalling cost for the defective type and level of
cooperative norm allowing for partial or full cooperation is strictly increasing in signalling cost
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for the high type and strictly decreasing in the sucker’s payoff and the incentive to defect on
cooperation.

We achieved these results by analyzing the evolution of norms concerning cooperation in the PD
with one of the most general class of dynamics considered in evolutionary game theory, namely
the class of payoff-monotone dynamics. Existing literature has already demonstrated that
signaling may point a way out of a social dilemma where mechanisms as reputation, reciprocity or
assortative matching are absent or fail to work sufficiently well. Yet only a few approaches
incorporate a formal model. The novelty of our approach is the derivation of the full set of
behavioral equilibria, i.e. all separating, pooling and semi-pooling equilibria of the signaling-
extended PD. This would be only a technical note if it did not induce a richer set of equilibria
concerning the distribution of an internalized norm that can stabilize cooperation. In particular, it
is worthwhile to observe the existence of an inner equilibrium, i.e. an equilibrium where norm
bearers and non-bearers coexist, that is stabilized by the interplay of a separating, a semi-pooling
and a pooling equilibrium of the evolutionary signaling game. It is exactly this interplay that
stabilizes the share of norm bearers and dissolves the necessity to introduce evolutionary forces
into the dynamics of norm adoption beyond payoff monotonicity that are frequency based™.

Since cooperative equilibria exist when agents may signal their cooperative attitude, large societies
aiming for more cooperation are not completely limited to the reduction of anonymity in social
interaction (and hence, giving up some of the advantages of large societies) or the use of formal
institutions. Politicians may also try to provide hard-to-falsify signals of internal motives to
cooperate in areas where interaction is rather anonymous. Then, informal institutions may
spontaneously and easily evolve even in large unstructured interaction environments. Even if
politics cannot alter the underlying incentives of the social dilemma to the extent that the
dilemma aspect would indeed vanish, partial reduction of the incentive to defect or partial
insurance for the suckers’ payoff may be sufficient to allow for cooperation to evolve. The share
of norm bearers in our model is driven by evolutionary forces that are beyond the scope of any
policy measure. However, politics might have some leverage on how strong the internal sanctions
are that support the norm once it is internalized. Hence, strengthening the internalized norms will

also increase the chance for cooperation.

If we argue that it is foremost the spontaneous institutions that repel defection in large
unstructured societies, then these insights lead us to argue that concepts of institutions should
not require that all individuals adhere to the behavior prescribed by the spontaneous institution.
Instead, a definition of institutions should allow for a substantial share of the population to
deviate from its rule. We add a theoretical basis to this insight, which seems obvious from an
empirical point of view.

We have not modeled the interplay of different PD situations in a society. Without going into any
detail here, we conjecture from our signaling model that cooperation in one PD may serve as a

22 Gintis et al. (2001) show in one of the few formal evolutionary signaling models that a stable separating
equilibrium may exist. However, under general payoff monotonicity, this equilibrium would cease to exist since their
type that corresponds to our high-types face an evolutionary advantage. As a consequence, their share of the
population would increase and eventually exceed the threshold beyond which the separating equilibrium breaks
down.
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signal to have the internal cooperation in order to fare better in another PD. The temptation to
defect in the first game would be the cost to falsely signal having the internal motivation to
cooperate. Hence, the interplay between different PD situations does not allow for scaling up:
temptation in the first game cannot be larger than in the second game, or cooperation there
cannot be complete. Further research is needed on the details of the interplay between different

PD games in an unstructured society.

The analysis for a more general norm than the one we considered is left open to future research.
We believe that the size of the parameter measuring the strength of the internalized norm is not
driven by evolutionary forces, since no fitness payoff differences depend on it. However, the size
of the parameter does determine the range in which cooperative equilibria exist. Hence, if two
separate populations with different levels of the internalized norms are considered, the one with
the higher value is more likely to evolve towards a cooperative state. If in the course of time,
both populations start interacting with each other, a cooperative population might induce
cooperation in a defective population and vice versa. To analyze such an environment may be
relevant for studying migrational effects on cooperation.
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4. The evolution of inequality aversion in a simplified game of
life.

4.1.  Abstract

The increasing prominence of other-regarding preferences as an explanation for empirical and
experimental findings calls for a rationalization of such preferences from an evolutionary
perspective. The sensitivity of study results on the evolution of preferences with respect to the
considered environment calls for an evolutionary approach that considers a compound
environment, which comprises at best all relevant classes of environments. This paper attempts
to address these two issues. I suggest a 2x2 simplified game of life that comprises a dilemma
involving a coordination and distribution problem. An analysis of the separate environments
makes strong predictions with respect to the advantageousness of inequality aversion. In
particular, the global advantage in the dilemma and the global disadvantage in the problem of
distribution are surprising. As expected, the simplified game of life gives rise to a greater variety
in potential equilibrium distributions of preferences. In particular, the strong predictions for the
single environments are put into perspective. Surprisingly, the expected stabilization of inner
equilibria occurs only if the problem of coordination shows the same feature.

Keywords: inequality aversion — evolution

JEL Classifications: C72, C73

4.2.  Introduction

At the latest with the seminal work of Fehr and Schmidt (1999) and Bolton and Ockenfels (2000)
an other-regarding preference in the form of inequality aversion has become a prominent
explanation for many empirical and experimental findings which departure from the prediction of
standard economic theory. The increasing importance calls for a rationalization for such
preferences, otherwise it may be regarded as a rather ad-hoc adjustment of preferences to explain
empirical results. As Giith and Napel (2006) point out such preferences should in particular be
compatible with the physical necessity to strive and compete for material rewards in an
environment characterized by the scarcity in resources. In other words such preferences ought to
be rationalizable from an evolutionary point of view.

Analyzing the evolution of preferences offers a unifying framework for traditional
microeconomic analysis concerned with forward looking agents with fixed preferences on the
one hand. And on the other, it incorporates evolutionary biology focusing on the interplay of the
social or biological environment and the success of certain behavioral strategies in that
environment. In the past the evolution of preferences has been studied in highly artificial single-
game environments (e.g. Huck and Oechssler 1999; Kocgkesen et al. 2000a, 2000b and Sethi and
Somanathan 2001). As a consequence, these studies were inconclusive in explaining the presence
of certain preferences, because the behavior induced by a certain preference might be
advantageous in one environment, but disadvantageous in another. The agents’ imperfect mental
model of the world requires at least some link between the intrinsic motivations in different
environments. Given this restriction, agents will be limited in the possibility to develop game-

specific or role-specific preferences. Hence, the decentralized results for the single environments
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need to be combined to a centralized picture in order to explain the success or failure of
behavioral determinants such as inequality aversion, reciprocity and truthfulness in the complex
social and biological environment that comprises seemingly endlessly many of those small worlds,
the ‘game of life’ (Guth and Napel 20006). I therefore in this paper address as a first aim the
rationalizability of a preference for equality in an environment that contains the major classes of
games constituting the game of life.

More recently, some attempts were made to analyze the evolution of preferences in more
complex environments. Giith and Napel (2006) analyze how the personal characteristic of
inequality aversion evolves in a setting containing two well-studied and characteristic games: the
Ultimatum game and the Dictator game. Poulsen and Poulsen (2006) study the evolution of
other-regarding preferences in an environment that comprises a simultaneous and a sequential
Prisoners’ Dilemma. Their analysis illustrates that the study of evolution of preferences in a
compound strategic environment yields more interesting and intuitive results than game-specific
analysis. However the considered environments are not meant to and indeed aren’t even rough
approximations of a game of life.

A prerequisite for the analysis of the evolution of preferences in the game of life is the structuring
of the infinite set of potential games, which is the second aim of the paper. There is evidence that
human behavior is not game-specific, but acts of men are similar in entire, quite general classes of
games (see Yamagishi et al. 2013; Ashraf et al. 2006; Blanco et al. 2011; Chaudhuri and
Gangadharan 2007 and Slonim and Garbarino 2008). This raises hope that the overwhelming
complexity of the real world might be reducible to these classes when the evolution of
preferences is considered. Many authors implicitly or explicitly share and express the view point
that there are two fundamentally different societal problems (see e.g. Sugden 1986; Milgrom et al.
1990), problems of coordination and social dilemmas. Apart from these two classes, Schotter
(1981), Ullmann-Margalit (1977) and others share the view that there is (at least) a third type of
social problem, one of redistributive nature. A problem of distribution is characterized by
unequal payoffs in equilibrium. The notion of a game of life I suggest will comprise these three
classes of games.

As a first step to achieve the eager first goal I restrict in this paper to the class of 2x2 games. 2x2
games are omnipresent as they serve as the workhorses in applied game theory and their
simplicity is their power as they combine remarkable diversity with minimal machinery. The eight
numbers that represent such a game yield a class of 144 problems of remarkable richness and
complexity (Robinson and Goforth 2005). Besides, the analysis will reveal that the 2x2 case is
representative in uncovering the major forces that in their interplay will determine the
distribution of inequality aversion in the population. Furthermore the purpose of the paper is to
conduct an analysis for a world that is in some sense complete, i.e. to consider an environment
that contains representatives of all classes present in my classification. In other words the focus
of the paper in terms of generality is on completeness within a certain world of games (2x2
games) rather than on the world of games as such (e.g. all finite games). I consider this as a first
step to explore the effects of considering a complete world, although restricted in size. I thus
refine the first question in asking for the rationalizability of inequality aversion in what I will refer
to as the ‘simplified game of life’. With respect to the second goal although definitions are given
for the 2x2 case the classification of games readily translates to all finite normal-form games.
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The remainder of the paper proceeds as follows. In Section 4.3 the precise definitions for the
games which are comprised in the simplified game of life will be given. The evolution of a
preference for equality in material outcomes for each of the single-game environments is studied
in Section 4.4. Thereafter the environment of the simplified game of life is considered in Section
4.5. Before I conclude in Section 4.7, 1 discuss the robustness of the results in Section 4.6.

4.3.  Definition of terms
The informal classification of games given above in terms of issues of coordination, dilemma or
redistribution is based on equilibrium considerations and will therefore depend on the
equilibrium concept applied. The relevance of the chosen equilibrium concept stems not only
from its consequences for the classification of games, but also from its implications for the study
of evolution of preferences. A particular preference may influence the set of equilibrium
outcomes that differs in accordance with the applied equilibrium concept, differently. As one of
the standard solution concept, I will apply the notion of Nash equilibrium. The implication of
applying different concepts is discussed in section 4.6. In the following I will give the formal
definitions for three social problems for the 2x2 case. Note that the definitions in 4.3.1 and 4.3.2

readily extent to any finite normal-form game with N players.

4.3.1. Dilemma and Problem of coordination

In Milgrom et al. 1990 the complex institutional structure that facilitates agreements among US
Congressmen is mentioned. The purpose of those institutions is either to facilitate coordination
(Banks and Calvert 1989) or to prevent renegotiation on agreements (Weingast and Marshall
1988). If the conditions of the renegotiation-proofness principle (Hart and Tirole 1988) are
violated the presence of renegotiation can restrict the set of achievable outcomes and might
prevent the achievement of a Pareto-superior outcome. This aspect of prevention of Pareto-
improvement is suggestive of what I have in mind talking about a dilemma. It is a non-
cooperative strategic interaction between multiple agents with the property that there exists an
outcome that is considered as advantageous by all agents but cannot be supported on purely
egoistic grounds in the sense that once agreed upon a certain collective behavior some agents
have an incentive to deviate from the implied behavior. In other words this superior outcome is
not supported as equilibrium. Coordination problems are characterized by a non-dilemma
situation with multiple equilibria.

Let y (Al, Az) denote a generic 2x2 game with strategy spaces S' =S° = {0,1} =S and payoffs

ij ij

A = (a‘) and A’ =(a2), (i,j)eSxS for player 1 and 2 respectively. Let AS represent the

mixed extension of S. Finally I write the expected payoff of player 1 for a pair of mixed strategy

as ﬂl(sl,sz):zl“aila(li,j), s" :(O'S,aln)eAS and 7[2(81,32) accordingly. The set of (pure)
iz0

Nash equilibria of }/(AI,AZ) is denoted by NE(}/)(NEp”re(}/)). For symmetric games we have

A = (A2 )T = A and I simply write 7/(A). Let d(i,j) = ‘a(li’j) —a(zi’j)‘ measure the absolute level of
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&) i)

inequality if player one (two) plays i( J). Finally, let AP.  =—22 "V denote the average
quality 1t play play J y 5 g

(i-1)
payoff if player one (two) plays I(j) Note that for symmetric games d(i,j):d(”) and

ARy = AP

Definition A game 7(A,A’) is a Dilenma if

3(s'.s*)eas’: z(s',s%)> 7" ((51,52)*), n e{1,2},v(s1,sz)* e NE(y)

In words, a game constitutes a dilemma if there exists a strategy profile such that the implied
payoffs strictly Pareto-dominate the payoffs associated with the set of all Nash equilibria.
Alternatively, in some sense on the other end of the spectrum, one could define a dilemma if
there exists a Pareto-improvement for at least one Nash equilibrium. In the latter case a dilemma
is present whenever from the perspective of a particular equilibrium there is a non-equilibrium
Pareto-improvement. In contrast to such a definition, mine declares game to be a dilemma only if
this holds for all equilibria, i.e. prior to the equilibrium selection. I consider the ex-ante viewpoint
as more appropriate as it makes the classification of games and the analysis of the evolution of
preferences less sensitive to assumptions regarding equilibrium selection. Furthermore, in the
more general class of finite normal-form games the majority of games would constitute a social
dilemma following the alternative definition. Consider for instance a game with Pareto-ranked
equilibria and an inferior equilibrium being Pareto-dominated by some non-equilibrium outcome.
A classification as a social dilemma appears unintuitive as the problem for this society is rather to
coordinate on a Pareto-superior equilibrium. As problem of coordination are complementary to
dilemmas and are characterized by the presence of multiple equilibria I define them as follows.

Definition A game (Al, Az) is a problem of coordination if |NE( 7/)| >1 and there exists no non-

equilibrium outcome which Pareto-dominates all of these equilibria.

Before I turn to problems of redistribution being asymmetric in nature I briefly want to elaborate
on the structure of all symmetric 2x2 games. Note that all symmetric 2x2 games which neither
constitute a dilemma nor a problem of coordination are exactly those with a unique equilibrium
which is not Pareto-dominated by some non-equilibrium outcome. In the world of symmetric
games such situations appear rather unproblematic since no dilemma, no coordination, and—as
we will see—no problem of distribution is present. In other words, the set of symmetric games
can be partitioned into three classes, dilemmas, problem of coordination s and unproblematic
situations. In a symmetric world considering dilemmas and problem of coordination is thus in
some sense complete as only unproblematic situations are excluded.

4.3.2. Problems of distribution
Before I give a precise definition of a “problem of distribution”, it is necessary to clarify the
intuition of such problems informally. First of all, any plausible definition of distributional
concern is related to a notion of asymmetry in payoffs. Again, one could take an ex-ante or an ex-
post point-of-view. With an ex-post point-of-view, a game would constitute a problem of
distribution if the equilibrium played by the individuals shows asymmetric payoffs. From an ex-
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ante perspective a game would constitute a problem of distribution if all equilibria would show
asymmetric payoffs, all in favor of the same player. To illustrate the difference consider two
situations. In the first strong individuals play against weak ones and all equilibria are characterized
by higher payoffs for the stronger. Such a situation will not only by chance lead to asymmetric
payoffs but it will do so systematically. In the second two identical individuals play a game with
multiple equilibria, some of them favoring one individual, some favoring the other. In the latter
case the game will only occasionally lead to asymmetries and whereas in the former case the game
implies systematic asymmetries. It is more convincing, and in line with the corresponding
decision with respect to the definition of social dilemmas, to take the ex-ante point-of-view.

Definition @ A game }/(Al,Az) is a  problem of distribution if |NE(}/)|>1 and

Ine{1,2): 7[”((51,82)*)>7T_n((51,52)*), V(s1,s2)* eNE(y).

The qualification in the definition for ]/(Al, Az) to have multiple equilibria is made for simplicity

only. I will refer to those individuals (dis)favored in the problem of distribution as (low) high

types.

4.3.3. Inequality aversion
In Sections 4.4 and 4.5 on the evolution of inequality aversion, I will make use of the standard
evolutionary model, which is concerned with a large population. This population is structured by
personal characteristics and by the way individuals are matched. With respect to the former there
are two sources of heterogeneity among individuals. The population is on the one hand divided
into two subpopulations that correspond to the two different roles assigned in the problem of
distribution. On the other hand there is heterogeneity with respect to the evaluation of payoff
distributions, i.e. agents show different levels of inequality aversion. Inequality aversion is
modeled as follows. I will apply the definition suggested by (Fehr and Schmidt 1999) which in a
2x2 setting amounts to u(r}’j) = a(”i!j) -o" max{a(‘if’j) —a('},j),O} ok max{a("i,j) —a(‘if‘j),O}, o",o" e [O,l] ,
ie. 0" and @" measure the degree of aversion of player n to inequality which disfavors or,

respectively, favors him. I make the simplifying assumption that ¢" =@" =8". The qualitative
implication of a relaxation of this assumption is discussed in section 4.6. Hence, inequality

aversion is parameterized by the one dimensional space [0,1]. At time t agents’ preference
regarding equality in material payoffs is distributed over [0,1] according to the distribution
functon F; and F' for high types and low types, respectively. Initially, the density functions
corresponding to F} and F' are assumed to have full support. I will drop the superscript t to

represent equilibrium distributions, i.e. F, = HE FaL -

4.3.4. The simplified game of life

As I will elaborate more deeply in the subsequent analysis, inequality aversion transforms the
game ) (Al, Az) into the game ]/(U LU 2) . The latter and the former may well differ in the set of

Nash equilibria. To ease reading and interpretation, I will make use of the following definitions.
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Definition 1 say that an equilibrium (i, j) in the game 7 (Al, Az) is contested by player 1(2) if
AU > Y (u(ziﬁj) > u(zi’j)), i.e. strategy 4(j) loses its property of being a best response to strategy
J() in the game Y (Ul,Uz). An equilibrium in the game } (AI,AZ) is contestable, if it may be
contested by at least one player I say that the strategy pair (i, J) is stabilizable if it is an equilibrium

of )/(Ul,U 2) for some levels of #' and 6°.

Note that if an equilibrium is contested by some player it is contested by any player who shows a

weakly higher degree of inequality aversion.

To simplify the analysis of the simplified game of life I will restrict the included games in a way
which ensures that in the game ) (Ul,Uz) no situation with a unique mixed Nash equilibrium

will occur. Since a unique mixed Nash equilibrium in particular arises if a player who contests all
pure Nash equilibria is matched with a purely selfish player, I make the following definition.

Definition =~ A game 7 (AI,AZ) is called s#rict if there is no player who can contest all
equilibria.

The term “strict” as defined in here parallels the concept of strict equilibrium since a player will
not be able to contest all equilibria if at least one equilibrium is sufficiently strict for him, i.e. the
material loss from unilateral deviations is sufficiently high. Note that if inequality aversion has a
leverage on strict games it will do so for games that are not strict. Note further that in general
finite normal-form games this condition will be satisfied in the majority of the cases. Allowing the
play of mixed equilibria has interesting consequences on the sharpness of the prediction
regarding the stable distributions of preferences though. This will be outlined in section 4.6.

Based on the classifications of social problems in section 4.3.1-4.3.2 and the definition given

above, I am now able to define an environment that comprises all these classes.

Definition  The swimplified game of life is a game that comprises a symmetric dilemma, a strict
symmetric problem of coordination and a strict problem of distribution.

The qualification for the dilemma and the problem of coordination to be symmetric is made in
order to isolate the effects that the asymmetry of the problem of distribution implies. Strictness

of an arbitrary game } (Al, Az) either implies the existence of multiple equilibria or the unique

equilibrium in mixed or pure strategies is not contestable. If the unique equilibrium is in mixed
strategy then no non-equilibrium outcome can be stabilized without contesting the mixed
equilibrium, hence for strict games no evolutionary pressure that favors or disfavor a preference
for equality will emerge. If the unique equilibrium is realized in pure strategies then a bilateral
deviation could be stabilized by inequality-averse players. Essentially this is the only case that is
excluded by the assumption of multiplicity of equilibria in the definition of a problem of
distribution. Strictness for the dilemma is not required as this class of games will not show mixed
play. In 4.3.1 I argued that a classification into dilemmas and problems of coordination is in some
sense complete by partitioning the set of all symmetric games with their complement reflecting
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rather unproblematic situations. Requiring strictness for problems of coordination limits to some
extent this completeness. Problems of coordination that are not strict are thereby excluded from
analysis. The only difference between strict problems of coordination and such problems that are
not strict is that in the latter in a match of an individual with a very high degree of inequality
aversion and an individual with a very low degree of inequality aversion a unique Nash
equilibrium in mixed strategy exists. I refer the reader again to the discussion in Section 4.6.

4.3.5. Evolutionary framework
Before I can start with the evolutionary analysis, the analytical framework needs to be set up. In
what follows I will state the assumptions I make with respect to informational aspects, the
matching process, evolutionary dynamics and the applied stability concept.

I assume that agents can mutually observe their attitude towards unequal payoff distributions.
This assumption could be weakened to an awareness of the inequality aversion in a positive
fraction of interactions, the availability of sufficiently accurate signals or sufficiently cheap
screening technologies (see Giith 1995; Sethi and Somanathan 2001; Gith et al. 2003). With
respect to matching consider the following procedure. First a random draw selects among the
three types of games that constitute the simplified game of life. In case of a dilemma or a
problem of coordination individuals from the total population are randomly matched into pairs
playing the selected game. Thereby each pair has the same probability in each short period of
time. The interaction in the problem of distribution will be modeled as a 2-population model (see
e.g. Weibull 1997), i.e. individuals interact across populations but not within. Again, each pairing
has the same probability, relative size of the subpopulations of high and low types matters for
expected payoffs though. If for instance the subpopulation of low types is ten times as large as
the subpopulation for high types then any high type will play ten times as often as a low type.
This will however only amplify the advantage or disadvantage of high types over low types. For
notational simplicity I may thus assume that the two subpopulations are equal in size. Payoffs

given by Al and A’ represent the material payoffs of the stage game that will be decisive with

respect to evolutionary success.

Whereas the belonging to one of the subpopulations due to role assignment in the problem of
distribution is exogenous and common knowledge, the distribution of inequality-averse
individuals in each of the two subpopulations is endogenous. Since inequality aversion reflects a
particular evaluation of material payoffs, I will apply the indirect evolutionary approach pioneered
by (Giith and Yaari 1992)®, i.e. preferences determine behavior and behavior in turn determines
fitness. Fitness measured by material payoffs will determine the evolution of F'. The
evolutionary process is modeled by payoff monotone selection dynamics™ (see e.g. Weibull
1997). With respect to stability I will apply the concept of asymptotic stability (see. e.g.
Samuelson 1997 for definitions). An asymptotically stable equilibrium will be reconstituted as

23 The indirect evolutionary approach has been applied in various strategic settings (ultimatum game, Huck and
Oecchssler 1999) or to analyze the evolutionary stability of altruistic preferences (Bester and Giith 1998) or of
altruistic and spiteful preferences (Possajennikov 2000).

24 There are other forces than evolutionary selection shaping individual preferences. Bisin and Verdier (2001) for
instance study intergenerational cultural transmission mechanisms.
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time approaches infinity after a small but — in terms of the composition of mutation-strategies —

arbitrary perturbation.

Since I am concerned with games that allow for multiple equilibria an assumption with respect to
equilibrium selection needs to be made. An appropriate equilibrium selection criterion should not
a priori favor or disfavor a preference for equality with respect to evolutionary success. I therefore

assume that if ¥ (U LU 2) has multiple pure-strategy Nash equilibria, then players randomize over

all pure-strategy Nash equilibria with equal probability. It turns out that symmetry of the
probability distribution over the set of pure Nash equilibria is necessary and sufficient for the
selection criteria to satisfy the requirement to be neutral with respect to the evolutionary
advantageousness of inequality aversion for all games considered (see discussion in 4.6.1). Since
2x2 games show at most two pure Nash equilibria symmetry amounts to uniformity. To clarify, it
is not the players who randomize over strategies of different pure Nash equilibria independently,
but pairs of players randomize jointly over the set of pure Nash equilibria. If for instance

v (UI,UZ) has two pure Nash equilibria then a given pair of players will play each of the two

with probability one-half. To put it differently, individuals are assumed to play the correlated
equilibrium that is the linear combination with equal weights of the two correlated equilibria that
correspond to the two pure Nash equilibria (see 4.6.2).

Let F,(Fsym) denote the set of (symmetric) 2x2 games, I’ ,(Fsym)the set of (symmetric) 2x2
games with neither weakly nor strictly dominated strategies. Games with weakly dominated

strategies can be treated as the limiting case of games in I"". More precisely as I'c Rg,(r gm © R4)
the subset of F,(Fsym) containing no weakly dominated strategies is dense in F,(Fsym) according
to the Euclidean norm. Since the critical level of inequality aversion are continuous in the

1 A2 . . .
parameters of a game 7(A A ) , the results for any game with weakly dominated strategies are a

limit case of games in F',(Fs‘ym)zs . With this technical note in mind I can concentrate on games

with no weakly dominated strategies.

In the next section I will study the evolution of the trait of inequality aversion in each of the three
games separately. In section 4.5 I will contrast those results with the analysis in the compound
environment of the simplified game of life.

4.4.  Inequality aversion in the separate environments
Symmetric dilemma Note that for symmetric games there is always an equilibrium in pure
strategies. Furthermore games with multiple equilibria are free of the dilemma property. To see
this note that a dilemma requires the existence of a non-equilibrium outcome that Pareto-
dominates all Nash equilibria. That is, such a pair off payoffs must yield higher payoffs than in

25 Mote precisely the mapping @ :I'— R which assigns to any game the critical value O%F (see Section 4.4) is
continuous.
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any Nash equilibrium. Consider a symmetric games with two pure Nash-equilibria. A necessary
condition for such a game to constitute a social dilemma would be that there is an outcome in
pure strategies that gives each player more than the maximum of the two Nash equilibria in pure
strategies. But the existence of such an outcome violates the Nash-equilibrium property in the
first place, because in 2x2 games this implies the existence of an alternative reply with higher
payoffs than in equilibrium. Hence a symmetric social dilemma must be in the set I'y;, \I'y,, the
set of games with weakly or strictly dominated strategies. If a player has a strictly dominant
strategy then by symmetry his opponent has the same strictly dominant strategy. As a unilateral
deviation from equilibrium can never lead to a strict Pareto-improvement, only the symmetric
non-equilibrium outcome realized by bilateral deviation can yield strictly higher payoffs for both
players. That is in 2x2 games a symmetric dilemma corresponds to the classical Prisoners’
Dilemma. Lemma 4-1 summarizes this insight. All proofs are given in Appendix C.

Lemma 4-1 Tet }/(A)EFSYW }/(A) constitutes a dilemma if and only if 7/(A) is strictly

dominance-solvable by the unique symmetric Nash equilibrium (i*, i*) and AP(i* ‘) < APH, ny

Dominance solvability implies that the only stabilizable outcome is the symmetric non-
equilibrium outcome. Lemma 4-2 states the conditions on the required degree of inequality

aversion for this to be the case.

Lemma4-2 let y (A) €Iy, be a social dilemma and (i*,i*) be its unique equilibrium. Then
the only pair of strategies (i, j)i(i*,i*) that is stabilizable is (—|i*,—|i*). (—|i*,—|i*) is stabilizable if
a ...—a . .

(ﬁl Ji ) (ﬁl —i

and only if 6',60> >0° = ) 6[0,1].

d. .

)
Lemma 4-2 states that whenever two sufficiently inequality-averse players interact, the symmetric
non-equilibrium outcome in 7/(A) constitutes an equilibrium in 7/(U ) The threshold 8° has a

straight forward economic meaning. Since a( - i*)—a( . measures the material gain of

-
=i =i

deviating from the non-equilibrium pair of strategies (—|i*,—|i*) and d( ) measures the implied

x
I,

loss in equality induced by such a deviation, #° measures the material price per unit of equality
gained. Sufficient inequality aversion therefore translates into a sufficient willingness to pay for
equality. Given the characterization of social dilemmas in Lemma 4-1 and the characterization of

stabilizable strategy profiles in }/(U) in Lemma 4-2, Proposition 4-1 characterizes the stable

distributions of inequality aversion.

Proposition 4-1 Let 7(A) el'y,, be a social dilemma. If (—|Sf ,—|Sz) is stabilizable, then

sym

there exists a 8° € [0, 1] , such that the globally stable equilibrium is F (HD ) =0, furthermore the

26 As in the dilemma and problem of coordination players role is symmetric, I will in the corresponding subsections
drop the subscripts reflecting types in the problem of redistribution.
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material advantage of sufficiently inequality-averse individuals is increasing in the share of

individuals with 0>6°, ie. sgn (HQZQD Ny ) =1, where (HQZQD .y O )

(1-F(6°)) (1-F ()
denotes the derivative w.r.t. 1-F (HD), the share of inequality-averse individuals. Otherwise the

share of inequality-averse individuals is determined by initial conditions and random shift.

In the following paragraphs I will give the intuition behind this result. The potential for an
evolutionary advantage of inequality-averse individuals stems from that fact that a pair of
sufficiently inequality-averse players will be able to transform the social dilemma into a
coordination game. In a symmetric dilemma “sufficiently high inequality aversion” translates to

60> 6", where 6° measures the ratio of the material incentive to deviate from the Pareto-

superior outcome and the potential loss in equality stemming from such a deviation. In other

words, if both players have an aversion against inequality larger than 6°, the material gain of an
deviation from the symmetric diagonal outcome is more than compensated for in utility terms by
the loss in equality. Thereby a match of two such individuals transforms the dilemma into a
problem of coordination. By definition of the dilemma the stabilized outcome yields Pareto-
superior payoffs which benefits inequality-averse individuals as they randomize over all pure
Nash equilibria.

Symmetric problem of coordination In games within the set of I'y, which show

multiple pure-strategy Nash equilibria either the two diagonal symmetric payoff-pairs or the two
off-diagonal asymmetric payoff-pairs constitute the Nash equilibrium payoffs.

Lemma4-3 Let y(A)e | 7(A) constitutes a problem of coordination if and only if (1)
NE™™ (7 (A))={(i.i)} or @ NE™™ ((A))={(i.])]i = i}.

Before I will characterize the stable distribution of inequality aversion in Proposition 4-2, I will
define a threshold 6° which is the equivalent to 8 in the symmetric dilemma. However, in the
symmetric coordination game each of the off-diagonal equilibria of ]/( A) may be contestable for
both players, hence 8¢ will be the minimum of the two ratios measuring the material price per
unit of equality gained for player one and two. These prices may differ as equilibria in ¥ (A) are
asymmetric ~ and  players  face  different incentives to  deviate. = Formally,

a. . —a..
6= min ) ) , where d =d
((4) (

(i.])eNEP™ d i’”‘(i,neNEm(ﬂA)) '

Let AP measure the average payoff of the equilibria in 7/(A) ,le. AP=AR, ) e For
’ i,j)eNEP"e(»(A
ease of readability T will refer to individuals with € >&° (0 < HC) as inequality-averse individuals

and selfish players respectively.
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Proposition 4-2 Let ]/(A) €Iy, bea strict problem of coordination. Then:

If NEP™ (j/(A)) = {(i,i)} or NE™"* (}/(A)) = {(i, j)‘l # j} and none of the material equilibria is

contestable then the share of inequality-averse individuals in the population is determined by
initial conditions and random shift.

If equilibria are contestable then:

1. if the destabilized equilibrium is materially favorable for inequality-averse individuals then

the globally stable equilibrium is characterized by F(@C)zl, furthermore

sgn (1™ -1 ) e{-1,0,1}.

(1-F(e° ))
2. if the destabilized equilibrium is materially favorable for selfish individuals then the
d

AP - AR,

globally stable equilibrium is characterized by F(Hc)zﬁc furthermore

sgn (Hazec N )(IF(GC)) -1,

where APW) is the average payoff of the outcome that is stabilizable by two sufficiently

inequality-averse individuals.

In case (1) of Lemma 4-3 the material equilibria are not contestable as any deviation from
symmetric material payoffs not only reduces material payoff but also increases inequality. As a
consequence no evolutionary pressure will emerge favoring or disfavoring inequality aversion. In
case (2) this is not necessarily true. With respect to utility a deviation from materially asymmetric
payoffs associated with a gain in equality might outweigh the material loss from deviation.
Proposition 4-2 reveals that in strict problem of coordination s a strong preference for equality is
weakly disadvantageous from an evolutionary point of view. Intuitively, strictness of the problem
of coordination excludes the possibility of both equilibria being destabilized. If one equilibrium is
contestable then it is destabilized by sufficiently inequality-averse agents. If the destabilized
equilibrium is materially favorable for inequality-averse individuals then not only they suffer from
deviating from material equilibrium, but lose relative to more selfish individuals as that
equilibrium is destabilized where they gain more than selfish players. As a consequence
individuals with a strong preference for equality face an evolutionary disadvantage and will
become extinct. If the reverse is true, i.e. the destabilized equilibrium is favorable for selfish
players then the disadvantage from unilaterally deviating from material equilibria is partially
compensated by no longer playing a disadvantageous equilibrium and thereby increasing average
payoffs. However, this effect diminishes as the share of sufficiently inequality-averse agents
increases. This stabilizes a distribution of preference where selfish and inequality-averse (relative

to 6°) individuals coexist.

Problem of distribution Lemma 4-4 below characterizes problems of redistribution and
differentiates two cases which will become relevant in the course of the argument.
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Lemma 4-4 let (Al, Az) el y (Al, Az) constitutes a strict problem of distribution if and
only if all Nash equilibria favor the same individual and:

MD:y ( A, Az) has multiple equilibria which are not Pareto-ranked.
@: 7 ( A, Az) has multiple equilibria which are Pareto-ranked.

Let é,f L (Hu,f ’L) denote the thresholds for the high and low type respectively such that the more

(Iess) equal material equilibrium is destabilized, which requires of course that the considered
equilibrium may be contested by the player. To give a formal definition requires a lot of
complicated notation and is not very insightful. The formal definition is given in Appendix C for
the representative case in the proof of Proposition 4-3. The economic meaning of the thresholds
is the same as for the thresholds in the problem of coordination or the dilemma. The critical
values for the inequality aversion of players relate the material incentive and the gain in equality
induced by an unilateral deviation from an equilibrium, i.e. they measure the price of deviation

per unit equality gained. Let 6] L= rnin{é,je ’L,é,f ’L} , i.e. the type-contingent threshold ) L plays

the same role as O° and 6° in the symmetric dilemma and the symmetric problem of

coordination respectively, i.e. if the degree of inequality aversion for at least one player exceeds

o L then at least one of the equilibria of 7/(Al, Az) loses its equilibrium property in ¥ (U ‘U 2) .

Proposition 4-3 Let ¥ (Al, Az) constitute a strict problem of distribution.

1. If one of the material equilibria is contestable by low types, the unique globally stable
equilibrium distribution is characterized by a homomorphic population with only
inequality-averse individuals. F_ (495 ) =0, sgn(l_lfzgLR —Hf<€5 ) (e () € {—1,0,1} .

1-Fy (67

2. If one of the material equilibria is contestable by high types, with one exception the
globally stable equilibrium distribution is characterized by
R _ 0208 r0<6f _
F, (0H ) =1, sgn(HH IT, )(I—FL(GE)) 1.
The exception arises in case of two Pareto-ranked equilibria (case (2) of Lemma 4-4) with
the Pareto-inferior equilibrium being contestable for both types. In that case the globally
stable equilibrium distribution is characterized by
RY_ 020fF _ yyo<6f __
Fy (HH ) =0, sgn(HH My )(1—FL(6{‘))

Otherwise the distribution is determined by initial conditions and random shift.

Note that the payoff differences for both types depend on the share of inequality-averse
individuals in the subpopulation of the other types as there is no interaction within
subpopulation, but only across them.

To see the intuition behind Proposition 4-3 I first elaborate on case (1) of Lemma 4-4. In case (1)
one of the pure strategy equilibria shows strictly less inequality. Hence the more (less) unequally
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distributed equilibrium is preferred by the high (low) type. It turns out that for the high type the
less unequally distributed equilibrium is never contestable. As a consequence the condition on the
problem of distribution to be strict is essentially a condition with respect to the payoffs of the

low type.

I first consider the case where the more equally distributed equilibrium is also not destabilized by
the low type as in the first case of Proposition 4-3. If on the one hand the more unequal
equilibrium is destabilized by both players, then the more equally distributed equilibrium will
become the unique equilibrium. In that case such high types will with certainty play the less

favorable equilibrium of } (AI,AZ) and face an evolutionary disadvantage. Furthermore the

extent of the disadvantage for the high types increases with the share of sufficiently inequality-
averse low types since more and more often they will end up in playing the relative unfavorable
equilibrium. The reverse argument applies for the low types. If on the other hand the more
unequal equilibrium is only destabilized by the high type the same argument applies for the high
types but the disadvantage is now independent of the share of inequality-averse low types as their
best response behavior is not altered by inequality aversion.

I second consider the case where the more equal distributed equilibrium is destabilized by the low
type as in the second case of Proposition 4-3. If high types destabilize the more unequally
distributed equilibrium then this will result in an evolutionary disadvantage as the relatively less
favorable equilibrium will be selected. As no player can destabilize all equilibria inequality-averse
low types will face an evolutionary disadvantage as they destabilize the relative favorable of the

two pure Nash equilibria in } (AI,AZ). In all other cases the distribution of the preference

parameter is undetermined. The major difference between case (1) and (2) of Lemma 4-4
responsible for the deviations in equilibrium distribution stems from the following fact. In case
(1) of Lemma 4-4 the less unequally distributed equilibrium which is relative less favorable for the
high type was not contestable. In case (2) however it is the Pareto-superior equilibrium which is
not contestable. In this difference lies the potential for an evolutionary advantage of inequality-

averse individuals among high types.

Before I turn to the analysis in the simplified game of life I briefly summarize the results obtained
so far (see also Figure 4-1). The analysis in the separate environments revealed that if inequality
aversion has a leverage on the set of equilibria played then inequality aversion enjoys a global
evolutionary advantage over more selfish preferences in a dilemma. In the class of problems of
coordination inequality aversion surprisingly faces a weak evolutionary disadvantage in the sense
that at most a stable inner equilibrium exists where relative inequality-averse and relative selfish
players coexist, in all other cases relative inequality-averse players will eventually disappear. In the
problem of distribution evolutionary selection dynamics will always favor the preference for
equality among the disfavored individuals. Among the individuals favored by the problem of
distribution in all cases except for one inequality aversion will eventually disappear.
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Dilemma Problem of coordination Problem of distribution
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Figure 4-1: Differences in material payoffs in the games constituting the simplified game of life. For high types in the
problem of distribution the blue lines correspond to case A, the red dash-dotted lines to case (2) of Lemma 4-4.

Note that the three characteristics: the slope, the intercept and having a root in the open unit
interval gives rise to eight different loci of the linear payoff differences”’. Remarkably, the analysis
so far predicts that for a single environment at most three of them are needed to describe the
differences in payoffs between inequality-averse and selfish individuals (see Figure 4-1).

4.5.  Evolution of inequality aversion in the 2x2 simplified game of life
In this section we will analyze the interplay of the different types of interaction present in the
simplified game of life. For ease of exposition I will assume that the thresholds of the single

environments coincide, ie. 8° =6 =@} L= 0" . The profit for an individual in the simplified

game of life is simply the weighted average of the profits earned in the single environments™, i.c.:

Hz,iza”“ =u HD,QZHC'" (Ft (ecrit))_H/ Hc,aza”“ (Ft (Hcm))+(1—,L1—V)Hf|’i29cm (FI_t,H (Hcrit))

, 4.1
HsH,jeL<9°”' =u 70-0<0™ (Ft (ecrit ))+V qce<e™ (Ft (ecrit ))+ (l—y—v)Hﬁ’ﬁfgcm (FI_t,H (th )) 1)
Hence payoff differences are given by™:
4.2

Dﬁzecrit D,9<9mt C,Hz&”" C,H<6°’“ Rﬂzecri( R,6<9°”‘
U (H —TI1 J-I—V (H ~T11 j+(l—,u—v) IEE7 -5

>0 <0 h
H:<0', L:>0

Let dIT denote the difference in payoffs between relatively inequality-averse and selfish players.
Equations in can now be expressed in a more compact way as:

27 The eight cases refer to a positive or negative function that is increasing or decreasing or a function with a root in
the open unit interval that shows negative or positive slope.

28 D — dilemma; C — problem of coordination ; R — problem of distribution; S — simplified game of life.

2 The asterisk in equation and refers to the exception in case (2) of Lemma 4-4 in which also among high types
inequality-averse individuals enjoy an evolutionary advantage.
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ATy, = [ dI°(1-Fy = F) [+v | dIC(1-FY = F)) |+(1-g-v) | dIT  (1-FL ) | @)
[N —

20 <0 H:<0", L:20

Note that whereas the differences in the dilemma and the problem of coordination depend on
the total share of inequality-averse individuals in population the according difference in payoffs
for the problem of distribution depends only on the share in the subpopulation of the opposite
type. Making use of the linearity of the payoffs differences I can write (4.3) in the following way:

O, = (1 ) {1 (1 1= (1)
dIt; = B (1-F = F)+v(a®+ B2 (1-Fi = F))+ (1-u—v) (el + SR (1-FY)) - @44
=dIT;, +(1—u—v)(0!f +ﬂLR(1—F|:)_“f| - B (I_FE))

>0

, where o =O,ac,aﬁ,L and ﬂD,,BC,,BHR,L denote intercepts and slops of dHD,dHC,dHE’L

respectively.

If in the case with two Pareto-ranked equilibria (case (2) of Lemma 4-4) the Pareto-inferior
equilibrium is destabilized by the low type, then inequality-averse players are favored also among
high types. In that case if the problem of coordination is not played too often or involved
differences in payoffs are comparably small inequality-averse players in both sub-populations face
an evolutionary advantage. In other words, the globally stable equilibrium distribution will be

characterized by F, (49Crit ) =0, i.e. population will consist of inequality-averse individuals only. I

therefore concentrate in the following on the non-exceptional cases with a problem of
distribution being accompanied with a global disadvantage of inequality-averse players among

high types. Note that in that case ,B,_F: = —0!,3 (see Figure 4-1). Note further that since low types

and high types earn the same profits in the dilemma and the problem of coordination a positive
payoff difference for high types implies a positive difference for low types (see (4.4)). This has
the immediate consequence that a locally stable equilibrium characterized by

F, (0““):0, F (Hcrit)zl , l.e. an equilibrium with only inequality-averse high types and only
selfish low types does not exist in the simplified game of life.

The following theorem characterizes the equilibria that may emerge in the simplified game of life
for the predominant case of a problem of distribution which is disadvantageous for inequality-

averse high types. For ease of readability I abbreviate F, (Hcm ) =F,,F, (Hcm ) =F.
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Theotem Let 0°=6°=6;, =6 and dI1} <0 then the set of equilibrium

distributions of a preference for equality is characterized by:

0 o€ 5 HB7 VB
|4
F=0,F, =
R P 0<qt < MOV
up® +vp° v
0 [ZU=Y r <0 <0
1%
F,=1 F ={1- va© fAHTV —1_ﬂ_vaR+uﬁD+W¢<<ac<—¥lﬁ:KaR
et up® +vp©  up® +vp° - v - v 1% -
1_ _ D C
| of < llVaf+ﬂﬂ'Hﬁ
v v

Figure 4-2 illustrates the set of equilibria graphically. Only if the advantage of inequality-averse
individuals increases or the disadvantage decreases in the share of inequality-averse individuals
when the dilemma and the problem of coordination are considered alone multiple equilibria may
arise (uB° +vB° >0). Inner equilibria with relative inequality-averse and selfish players in
coexistence may only arise if the reverse is true. In such inner equilibria only in one of the

subpopulation that correspond to the role assignment in the problem of redistribution inequality-
averse and selfish players may coexist.

¢
[24

Global stable equilibrium: M Multiple locally stable equilibria: MV
14 14
F,.F, (1.0)
S Ly oy (L)
__ (00) (0.0 (00) (00)
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Figure 4-2: set of equilibria, (F,,F ) for the right column.

As a consequence of the analysis in the single environments one should expect a tradeoff
between the advantageous dilemma environment and the disadvantageous distributional problem
with respect for the evolution of the preference for equality. We saw in Proposition 4-3 that in

almost all cases a preference for equality above 8" cannot be sustained in equilibrium among
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high types in the redistribution problem. A particulatly interesting question is therefore whether
there is a stable equilibrium with a positive share of inequality-averse players among high types if

the simplified game of life is considered, ie. F, (9“")6(0,1). The theorem reveals that this is

indeed the case. However an inner equilibrium with relatively inequality-averse and relatively
selfish players can only emerge in the case where the problem of coordination on its own would

stabilized such a distribution of preferences (0<a®, see Figure 4-2). If in a population of only
inequality-averse players selfish individuals would on average face an evolutionary disadvantage

when only the dilemma and the problem of coordination are considered (uf3° +V(ac + ¢ ) >0)

then inequality aversion will be advantageous for high and low types and a stable equilibrium with

F.=0,F, =0 exists. In all other cases the inequality-averse high types are deemed to extinction

also in the simplified game of life. If the problem of coordination is not too disadvantageous for
inequality-averse individuals then the advantageousness for the dilemma and the problem of
distribution carries over to the simplified game of life and a stable equilibrium with only
inequality-averse players exists. At an intermediate level of disadvantageousness both inequality-
averse and selfish players will coexist in the subpopulation of low types. Finally, if the
disadvantage in the problem of coordination dominates then in both sub-populations only
selfishness may be part of a stable distribution of preferences.

In summary, on the one hand the simplified game of life as expected gives rise to a greater variety
in potential equilibrium distributions of preferences. In particular the surprisingly strong
predictions for the single environments are put into perspective. The global advantage of
inequality-averse players in the dilemma and the global disadvantage for inequality-averse high
types in almost all cases become subject to some qualification. On the other hand the expected
stabilization of inner equilibria in which relatively inequality-averse individuals and relatively
selfish individuals coexist occurs if and only if the single environments show the same feature.
The reason for this is that advantageousness in the dilemma is increasing and the
disadvantageousness in the problem of distribution is decreasing in the share of inequality-averse
players. For an inner equilibrium a decreasing advantageousness that eventually turns into a
disadvantage is required though.

4.6.  Discussion
In this section I want to discuss the robustness of the results with regard to several issues. These
issues consider the core assumptions of the paper: the equilibrium-selection criteria, the
equilibrium concept, the strictness property, and the model of inequality aversion.

4.6.1. Equilibrium selection
I now turn to the assumption concerning equilibrium selection that agents jointly randomize over
the set of pure Nash equilibria with equal weight. I claimed in section 4.3.5 that, lacking a general
theory of equilibrium selection, the requirement on the selection criteria to a priori be neutral with
respect to the evolutionary success of inequality aversion amounts to a symmetric probability
distribution over the set of equilibria. This requirement stems from the fact that I am solely
interested in the evolutionary forces that follow from the impact of a particular preference on the
set of Nash equilibria and not in forces that are based on some selection bias. A symmetric
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probability distribution implies neutrality, because in that case any two matches of pairs of
individuals with potentially different degrees of inequality aversion will earn the same expected
material payoff as long as the set of pure Nash equilibria coincide. Symmetry is thus sufficient for
neutrality. To see necessity, consider the following numerical example of a problem of

coordination. Table 4-1 below presents the material payoffs of ]/(A1 , Az) and their evaluation.

0 1 0 1
. 3 4 3 4-26,
3 2 3 2-26,
1 2 0 2-26, 0
4 0 4-26, 0
Table 4-1:Payoffs in y(A',A’) Payoffs in y(U',U?).

In a match of two individuals with inequality aversion 0 <6, <6, < 5 i.e. preferences of player

two shows a higher degree of inequality aversion, the set of pure Nash equilibria of }/(Al, A2)
and 7/(U 'U 2) coincide. Any asymmetric probability distribution over the set {(0,1),(1,0)} will

(dis)favor the relatively inequality-averse player if a (smaller) larger weight is put on (O,l). Thus

an asymmetric distribution gives an evolutionary advantage or disadvantage to the relatively
inequality-averse player, but is not neutral.

Next to concerns of some economists about the play of mixed strategies, the assumption that the
randomization is over the set of pure Nash equilibria and thus excludes the equilibrium in mixed
strategies from the support of the probability distribution was made for simplicity. Interestingly
this parallels the application of a coarser equilibrium concept than the notion of Nash
equilibrium. In that case, average payoffs may only change if this subset of Nash equilibria
changes. The role of the play of mixed equilibria will be analyzed when the assumption for the
problems of coordination and distribution to be strict is discussed in section 4.6.3. The results of
section 4.6.3 and of the discussion of correlated equilibria in 4.6.2 indicate that the finer the
equilibrium concept, the more sensitive the equilibrium set to changes in preference parameter
and thus the higher the precision of the prediction characterizing the equilibrium distribution of
inequality aversion.

As mentioned before, the assumption of a uniform randomization over the set of pure Nash
equilibria is equivalent to a play of the correlated equilibrium that assigns equal weights to each of
the pure Nash equilibria. In other words, if multiple pure Nash equilibria exist individuals play a
particular correlated equilibrium. The implications of considering not one but the whole set of
correlated equilibria is discussed in the next section.

4.6.2. Equilibrium concept
As pointed out before, not only is the notion of the equilibrium decisive with respect to the
classification of a game into a dilemma, a problem of coordination or a problem of distribution,
but it also plays a role in the evolutionary analysis. The reason why a preference for equality may
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be advantageous or disadvantageous from an evolutionary perspective lies in its leverage on the
equilibrium set. Changes in the set of equilibria may change average payoffs and thereby generate
evolutionary pressure. How the set of equilibria is altered by transforming the underlying game in
material payoffs by preferences evaluating these payoffs may depend on the applied notion of
equilibrium. Most of applied game theory takes the Nash equilibrium as its reference point and
deals with finer or coarser equilibrium concepts relative to the Nash-concept. Let me illustrate
the effects for a concrete alternative, that of correlated equilibria®. This concept not only enlarges
the set of equilibria and thereby enlarges the class of problems of coordination but it also
increases the set of achievable payoffs generated by correlated strategies. To make the argument
precise I will restate some definitions and results of Calvo-Armengol (2006) who studies the set

of correlated equilibria for 2x2 games. For ;/(AI,A2) el” define o :‘a(l)o —allo‘ / ‘alll —a(l)l‘ and
a, = ‘ajo —aozl‘ / ‘afl —afo‘. In the absence of neither weakly nor strictly dominated strategies «,

and «, are well defined and strictly positive. The defined values give rise to three different types

of games:
0 1 0 1 0 1
0| a,a, 0,0 -a,,—a, 0,0 0| —a,a, 0,0
0,0 1,1 0,0 -1,-1 1 0,0 -1,1

7 (avaz): coordination 7, (0!1,052 ): anti-coordination  J, (al,az): competitive

Table 4-2: Classification of 2x2 games by Calvo-Armengol (2006)

Lemma 4-5 (Calvé-Armengol 2006, Lemma 1) Let y(Al, Az) eI . Then, for the set of

correlated equilibria (CE) of ]/(Al, Az) eI holds:
CE(y(A',A’))=CE(y (. 3)), for some I {1, 11,111}

The restated result of Calvo-Armengol (2006) proves that the set I of 2x2 games can be
partitioned into three equivalence classes for the set of correlated equilibrium strategies. It is
easily verified that CE(}/”, (0!1,0!2 )) = NE(}/," (0!1,052 )) , L.e. the sets of correlated equilibria and

Nash equilibria coincide and the set consist of a single point in A,, the 3-dimensional simplex of

R*. Let

0 1
0 Hoo Ho
1 Hio Hi

Table 4-3: The canonical representation of a correlated strategy.

30 There is plenty of theoretical and empirical support for the relevance of the concept of correlated equilibrium.
Aumann (1974) shows that a particular definition of Bayesian rationality generates outcomes identical to the set of
correlated equilibria. This result was extended by Brandenburger and Dekel (1987) and Tan and da Costa Werlang,
Sérgio Ribeiro (1988). Nyarko (1994) showed that Bayesian learning leads to correlated equilibria in normal form
games. In an evolutionary context Lenzo and Sarver (20006) establish the correlated equilibrium as a natural solution
concept. In particular they show that every interior stationary state, Lyapunov stable state, or limit of an interior
solution is equivalent to a correlated equilibrium. This result is generalized by Koch (2008). They show for
boundedly rational agents that a set of signal contingent strategies is asymptotically stable only if it represents a strict
correlated equilibrium.
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be the representation of a correlated strategy 1 =(thg» 44,5 ho» Hoy ) €A -

Lemma 4-6 (Calvé-Armengol 2006, Lemma 2) 1eCE(y, (a,a,)) if and only if
r(,u)eCE[}/“ [al,ijj,where T(X) =X, X, X, %, ) for (X, %, %, X, ) € R,
aZ

Lemma 4-6 reveals that the class of coordination games and the class of anti-coordination games
are isomorphic to one another. It thus suffices to characterize the set of correlated equilibria for

one class. I will restate the result for the class of coordination games. A game ¥, (al,az) of that

class has three Nash equilibria and two correlated equilibria, the probability measures of which
are given in Table 4-4.

H Hoo Hi Hio Hoi
1 0 0 0

0 1 0 0

1 aa, a, Q

(a.B)
(a.8)
(@f) Ta)ira) (ra)ira) (a)ire) (a)ira) —©9
(a.B)
(a.B)

1 a,a, a,

0

I+a,+a, l+a,+oa, l+a,+aa,

1 oo, a,

0

I+o, +aa, I+o, +aa, I+o, +aa,

Table 4-4: Probability measures for correlated equilibria and Nash equilibria for a game y, (al,az) .
Proposition 4-4 relates the 5 vertices given in Table 4-4 and the set of correlated equilibria.

Proposition 4-4 (Calvé-Armengol 2006, Proposition 1) CE ( 7 (a0, )) is a polytope of

A, with five vertices given in Table 4-4.

Note that for symmetric games the class of competitive games is empty. By a similar argument as
given in 4.4 symmetric coordination and anti-coordination games are free of the dilemma

property. Hence a symmetric social dilemma must be in the set I \['g,

the set of games with

weakly or strictly dominated strategies. If a player has a strictly dominant strategy then by
symmetry his opponent has the same strictly dominant strategy. Two cases can be distinguished.
The first one corresponds to the classical Prisoners’ Dilemma, i.e. one of the diagonal outcomes
is the unique correlated equilibrium payoff being Pareto-inferior to the other diagonal outcome.
The second is given by payoffs where the equilibrium payoff is equal or even Pareto-superior to
the non-equilibrium diagonal outcome, but where a correlation of out-of-diagonal outcomes
yields higher payoffs for both players. In other words with respect to symmetric games both
classes, that of dilemma and that of coordination grow whereas the class of what I referred to as
unproblematic situations shrinks. Note that any strictly dominated strategy cannot be played with
strictly positive probability in any correlated equilibrium of a finite game. Hence Lemma 4-2 also
holds if the concept of correlated equilibria is applied. In particular the definition of the critical
threshold for the required inequality aversion carries over. If two sufficiently inequality-averse
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players are matched they play a game y, (see Table 4-2). Given the assumption that player

randomize over the set of all equilibria, the derivation of expected material payoffs for the set of
correlated equilibria is more involved. Due to the linearity of the inner product, the calculation of

the expected payoff amounts to the determination of the center of mass of P, the polytope of
Proposition 4-4. Equation (4.6) states this property formally, where 7= (aoo,a“,am,am)

denotes the payoffs associated with the payoff matrix A of the game.

VO|I(P) (m,u)du= <ﬂ’\/o+(P) j H du> = (7, u™) (4.6)

ueP

o |

ueP
The following Lemma presents the center of mass for the polytope P .

Lemma 4-7 Let y, (al,az) €. Then the center of mass 4" of P is given by:

1 1 1 2
1+ + + -
o l+a +aa, l+a,+aa, (1+a)(l+a,) 2+ +a,+200,
ol 1 1 1
Hy' =~ Q, + - “.7)
o 4 l+a,+aa, (1+a)(1+a,) 2+a+a,+2aa,
01
1 1
a + -
l+a+aa, (1+o)(l+a,) 2+a+a,+2a0,

Given the center of mass, I can now compare expected profits in matches of individuals with
potentially different degrees of inequality aversion.

Proposition 4-5 Let ;/(Al , Az) eI . Then:
Exz,—Er,>0& (yff)“" — 15 )(a10 —a,)>0 (o, —a,)(a,—2a,)>0 (4.8)

The first equivalence follows from symmetry on the diagonal of the bimatrix representing
}/(AI,AZ), i.e. only the weights of off-diagonal outcomes may account for a difference in
expected material payoffs. Without loss of generality, I will focus on the case where

(a10 —am) > 0. In that case player 1 earns more than his opponent if and only if relatively more

weight is put on outcome (1,0) that favors player 1. The second equivalence may be less

obvious, but concerning this matter the vertices of F and G presented in Table 4-4 are already

quite suggestive. Equation (4.7) reveals that this property of the weights £, and g4, for vertices

F and G respectively carry over to the center of mass.

As already mentioned, if the concept of correlated equilibrium is applied there is another type of
dominance solvable game next to the Prisoner’s Dilemma that constitutes a social dilemma. It
turns out that the qualitative results for the Prisoner’s Dilemma type do not change, but gain in
precision in the sense that the equilibrium distribution of the preference-parameter measuring the
degree of inequality aversion can be characterized more precisely. This gain in precision stems
from the fact that two individuals who are sufficiently inequality-averse to transform the
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Prisoner’s Dilemma into a coordination-game no longer earn the same expected payoff when the
concept of correlated equilibrium is applied (see Equation (4.8)). However, in the other case
where the equilibrium payoff is equal or even Pareto-superior to the non-equilibrium diagonal
outcome, but where a correlation of out-of-diagonal outcomes yields higher payoffs for both
players, results change significantly. In particular it is the case that inequality-averse players face a
global evolutionary disadvantage. I will refer to this case as the non-PD-case.

Proposition 4-6 Let ]/(A) el'y, be a social dilemma. If (—|Sl* ,—62) is stabilizable, then

there exists a 6° E[O,l], such that the globally stable equilibrium in case of the Prisoners’

Dilemma is characterized by 8=6° for all individuals in the population. In the non-PD-case the

globally stable equilibrium is characterized by F (HD ) =1.

In other words, in case of the PD a precise value of inequality aversion is selected by evolutionary
forces. This value corresponds to the lowest value that suffices to transform the dilemma into a
coordination-game. In the non-PD-case stabilization of the material non-equilibrium outcome
implies an evolutionary disadvantage of inequality aversion, i.e. the reverse result. The intuition
behind this is, that it is relatively advantageous for inequality-averse individuals if a relatively low
weight is put on the disadvantageous one of the two off-diagonal outcome which on average
earns higher profits then the unique PD-outcome. In other word it pays off to be relatively
opportunistic among the inequality-averse players, because than more weight is put on the off-
diagonal outcome which is relatively advantageous. Consequently, while more successful players
are selected by evolution less weight is put on the off-diagonals, ultimately leading to a
randomization among the two diagonals. This randomization is advantageous in the PD and
disadvantageous in the non-PD-case.

The analysis of the class of social dilemmas reveals that results may change when a different
concept of equilibrium is applied. With respect to generalizability of the results for the Nash
equilibrium concept the preliminary results are ambiguous. On the one hand, the results for the
Nash equilibrium carry over to the correlated equilibrium in case of the Prisoners’ Dilemma.
Interestingly, I obtained a huge gain in precision with respect to the prediction of the stable
distribution of preferences. Whereas in the Nash case the distribution could be characterized up a
threshold, this threshold was picked as the unique equilibrium value in case of correlated
equilibria. On the other hand, a new case which constitutes a dilemma in case of correlated
equilibria but not under Nash equilibria emerges. In this case the reverse result with respect to
the evolutionary advantageousness of inequality aversion was obtained. Thus, the chosen
equilibrium concept appears to have some impact on the results. A detailed analysis for all classes
of games is left for future research. However, the effect on the precision of prediction regarding
equilibrium distribution of preference observed when applying the notion of correlated equilibria
will to some extent also be present when the play of mixed strategies is allowed. This role of
randomized play points to the assumption for the problems of coordination and distribution
respectively to be strict, which is discussed in the next section.

4.6.3. Strictness
For agents to apply mixed strategies, players need to be indifferent between the involved pure
strategies. The involved probabilities equalize the expected payoffs of the pure strategies and are
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sensitive to marginal changes in payoffs whereas best responses in a strict Nash equilibrium
change only in a discrete manner. As a consequence the set of equilibria is more elastic with
respect to changes in the preference parameter when mixed equilibria are considered. To see this,
consider a symmetric problem of coordination. As mentioned in Section 4.3.4 the requirement
for such a problem to be strict excludes the case where two players transform the problem of
coordination into a game with a unique mixed equilibrium given their degree of inequality
aversion. This is the case if and only if an inequality-averse player who destabilizes both material
equilibria is matched with a selfish player who destabilizes none of the material equilibria (see

proof of Proposition 4-2 in Appendix B). The unique mixed equilibrium is given by Ue (0(1,0(2)
for a game }, (al,az) (see Table 4-4 and Lemma 4-6 for a game },, (al,az)). Note that a game
of type 7, (al,az) is always strict since any degree of inequality aversion will increase the
strictness of the two symmetric equilibria on the diagonal of , (al,az). Hence I concentrate on

non-strict problems of coordination of type (0!1,052), i.e. I analyze anti-coordination games

such that both pure Nash equilibria are contestable by each player individually. If both equilibria
are contestable by one player, by symmetry they are also contestable by the opponent.

Proposition 4-7 Let y (A) eIy, be a problem of coordination such that both equilibria

are contestable by one player.

(1) If the equilibria are less strict for those player who are favored in the equilibria then no
additional stable equilibria arise. In particular there is no stable distribution of preferences
that assigns a positive share to players by whom both equilibria are contested.

(2) If the equilibria are less strict for those player who are disfavored in the equilibria then
additional stable equilibria arise. In particular there may be a stable distribution of
preferences only with players by whom both equilibria are contested. Furthermore there
may be a stable distribution of preferences where player who contest none of the
equilibria and players who contest both equilibria coexist. No stable equilibrium
distributions exist with all three types of players, those who contest none equilibrium,
those who contest one equilibrium and those who contest both equilibria.

In case (1) of Proposition 4-7 giving up strictness has no consequences with respect to the
characterization of the stable distribution of preferences. However, in case (2) the results
presented in Proposition 4-2 experience two qualifications. First, there is a minor qualification
with respect to the existence of an inner equilibrium where opportunistic and inequality-averse
individuals coexist. In a non-strict problem of coordination there may also be a stable equilibrium
with highly inequality-averse players who so far were excluded from analysis and opportunistic
players. Second, and this is a major qualification, the result implied by Proposition 4-2 that
inequality-averse individuals may at most partially be present in equilibrium is put into
perspective. In case (2) of Proposition 4-7 there may be a stable equilibrium with only (highly)
inequality-averse individuals. However, it still holds for medium inequality-averse individuals, i.e.
player who contest one equilibrium, that they may at most partially be present in equilibrium.
Thus, the assumption for problems of coordination to be strict implies that the evolutionary
success of inequality aversion is underestimated. This transfers to the simplified game of life and

77



introduces another case how inequality aversion could be stabilized among high types in the
problem of distribution.

I will now discuss the consequences of relaxing the restriction for problems of distribution to be
strict. In particular I am interested in whether the strong prediction of an evolutionary
disadvantage for inequality-averse high types carries over to non-strict problems of distribution.
Proposition 4-3 revealed that with one exception the distribution of inequality aversion among

high types is characterized by F, (6’;{ ) =1, i.e. only relatively opportunistic players are present in

equilibrium. This exception occurs if the two pure Nash equilibria are Pareto-ranked. If equilibria
are not ranked then the distribution always shows the property of an evolutionary disadvantage
of inequality aversion among high types. In any case, the prerequisite was that one of the material
equilibria is contestable by high types. Given up strictness now allows both equilibria to be
contestable by the same player. However, only low types may contest both equilibria since for
high types in any case at most one equilibrium is contestable. If equilibria are not Pareto-ranked it
is the more equally distributed equilibrium that is not contestable, if equilibria are ranked it is the
Pareto-superior equilibrium.

. 1 A2 . . o
Proposition 4-8 Let 7 (A A ) constitute a non-strict problem of distribution, such that

the pure Nash equilibria are not Pareto-ranked. Then the globally stable equilibrium distribution
is characterized by F, (9,? ) =1.

Proposition 4-8 shows that the disadvantage of inequality-averse high types transfers to non-strict
problems of redistribution if equilibria are not Pareto-ranked. However, next to the two cases
distinguished in Lemma 4-4 there is a third class of games that may constitute a problem of
distribution if strictness is given up, namely that of a competitive game (see Table 4-2) with the
unique Nash equilibrium being in mixed strategies. This case and the one with Pareto-ranked

equilibria are left for future research.

4.6.4. Modelling inequality aversion
Finally, dropping the assumption that individuals care about favorable and unfavorable inequality
in the same way has interesting consequences. In what follows I will elaborate on the
consequences of a more complex model of inequality aversion proposed by Fehr and Schmidt

(1999)°", ic. u(ni’j) = a(r:’j) -o" max{a('i’”j) - a(”i’j),O} -o" max{a(”i,j) - a(‘i’”j),O}, o",a" e [0,1] . Thus,
individuals preference for equality is no longer characterized by the single parameter &, but by a
pair (0,). Consider again the symmetric prisoners’ dilemma. In this game the Pareto-supetior
outcome can be stabilized by sufficiently inequality-averse players as they devaluate the material
gain from defecting on a cooperative opponent due to the induced inequality generated by such a
defection. Hence, in case of a symmetric dilemma not inequality aversion per se but aversion

against favorable outcomes is required to support cooperation. With respect to problems of
coordination two cases were distinguished in Proposition 4-2. In the first case, the destabilized

31 Note that the concept of inequality aversion of Bolton and Ockenfels (2000) implies symmetry, but it is left for
further research whether this notion will change qualitative results of the evolutionary analysis.
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equilibrium is materially favorable for inequality-averse players. Hence, in that case an aversion
against favorable inequality is decisive. In the second case the reverse holds, i.e. the destabilized
equilibrium is materially favorable for selfish individuals. Hence in that case an aversion against
unfavorable inequality becomes relevant. For problems of distribution there is no such clear
assignment for the thresholds of Proposition 4-3. To see this, consider the example given in
Table 4-5 which belongs to the first case in Proposition 4-3. In the example the column player is
the high type and the row player is the low type. Furthermore the game presented in Table 4-5
has two pure non-pareto-ranked Nash equilibria on the diagonal. I consider the case where none

of the equilibria is contestable by high types and the (0,0) is contestable by low types.

0 |
A-6’|A-al B—0’|B—b]
Ol acoja—al | b-0'|B-b)
c-e*|c—¢ D-¢’|D—d|
U emoie—d d—0'[D—d|

Table 4-5: A>B, D>C,a>c,d>b, a<d<D<A

The (0,0)-equilibrium is contested by a low type if and only if:
a-6'|A-a<c-6'|C—c| 4.9)
The example implies that A—a >0, but no relation for C—C. If the outcome of playing (1,0)
also favors high types, i.e. C—C>0 then (4.9) becomes
a—o'(A-a)<c-o'(C—c) 4.10)

This suggests that if high types are favored no matter which strategies are played, then the

threshold Hl_R in Proposition 4-3 refers to inequality aversion concerning favorable outcomes.

If however the reverse is true, i.e. C—C <0 then (4.9) becomes
a-o'(A-a)<c-w'(c-C) 4.11)

In this case both parameters become relevant and no clear assignment to the thresholds in

Proposition 4-3 is possible. Rewriting (4.11) as

, a-c c¢c-C ,
(4

o > +
A-a A-a

(4.12)

reveals that the threshold 6 needs to be substituted by a linear condition, described by (4.12)

when considered as equality, which separates the two dimensional parameter space characterizing

the preference for equality by (o, )-pairs. Thus, individuals with (o,@) located above (below)

that line can(not) contest the equilibrium.
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A similar argument applies to high types. If the example above is changed in a way such that the
(0,0) -equilibrium becomes contestable for the high type it again depends on the sign of the
difference in payoffs of the outcome which is realized if a high type is sufficiently inequality-
averse such that (0,0) is indeed destabilized, i.e. on the sign of B—b.If B—b>0 then (0,0) is

destabilized by a high type if and only if A—®’(A—a)<B—w’(B—b). Thus, for the example
6 in Proposition 4-3 refers to inequality aversion concerning favorable outcomes. As for low

types, if the reverse holds, i.e. B—b <0, then both parameters become relevant and 6 needs to

be substituted by a linear condition in the fashion of (4.13).

In summary the thresholds of inequality aversion I derived for a dilemma (6°, see Proposition

4-1) and a problem of coordination (8%, see Proposition 4-2) still remain valid but will under the
more complex model of inequality aversion refer to the parameter measuring aversion regarding
favorable or unfavorable inequality. Thus the precision of the prediction increases as in the more
complex model statements will refer not only to the level but also to the type of inequality

aversion. The example for a problem of redistribution indicates that in the (O‘, a)) -model of

inequality aversion the thresholds 6 and @ may transfer to thresholds regarding ¢ for low

types and @ for high types or need to be replaced by a linear condition on the relation of o and
@ . For problems of redistribution a detailed analysis is left for future research. Proposition 4-9

below summarizes these insights formally.

Proposition 4-9 Let y(A)el

a strict problem of coordination. If equilibria are contestable then:

be a social dilemma, then 8° = @® . Let y(A) el be

sym sym

1. if the destabilized equilibrium is materially favorable for inequality-averse individuals then
0° ="

2. if the destabilized equilibrium is materially favorable for selfish individuals then o° =o°.

In summary, with respect to the assumption of an uniform distribution over the set of all pure
Nash equilibria, it turned out that neutrality of the distribution concerning the evolutionary
success of inequality aversion implies symmetry and symmetry implies uniformity if 2x2 games
are considered. With respect to generalizability of the results for the Nash equilibrium concept
(Proposition 4-1-Proposition 4-3) the preliminary results (Proposition 4-6) are ambiguous and
further research is needed to fully understand the sensitivity of the results regarding the
coarseness of the applied equilibrium concept relative to the Nash equilibrium. Concerning the
assumption on the problem of coordination to be strict, the degree of disadvantageous of
inequality aversion (Proposition 4-2) is put into perspective as in a non-strict problem of
coordination there may exist a stable equilibrium with only inequality-avers players. However, this
requires that the equilibria are less strict for those players who are disfavored in the equilibria (see
case (2) in Proposition 4-7). If the reverse is true though, no additional equilibria arise if the
assumption of strictness is relaxed. Proposition 4-8 proofs that the strong prediction of an

evolutionary disadvantage for inequality-averse high types also holds for non-strict problems of

distribution if equilibria of ¥ (Al, Az) are not Pareto-ranked (Proposition 4-8). Finally, if a model
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of preferences is applied that distinguishes between aversion against favorable and unfavorable
inequality, then the results of Proposition 4-1 (dilemma) and Proposition 4-2 (problem of
coordination) carry over. However, the parameter measuring inequality aversion in the simplified
model is replaced by either the parameter for aversion against favorable or by the one for
unfavorable inequality. For problems of distribution the discussion in 4.6.4 suggests that the
thresholds of Proposition 4-3 are either replaced by a threshold referring to aversion against
favorable inequality or by a linear constraint relating the two parameters of the alternative model
of inequality aversion.

4.7.  Conclusion

The purpose of the paper was twofold. Following the argument for a requirement to analyze the
evolution of preference in an environment that comprises at best all relevant classes of games
individuals engage in, I have suggested a particular notion of a simplified game of life. The
simplified game of life as I have defined it comprises three classes of games: a symmetric
dilemma, a symmetric and strict problem of coordination and a strict problem of distribution.
Second I have analyzed the evolution of a particular type of other-regarding preference namely
that of inequality aversion in the 2x2 simplified game of life.

The analysis in the separate environments revealed that if inequality aversion has a leverage on
the set of equilibria played, then inequality aversion enjoys a global evolutionary advantage over
more selfish preferences in a dilemma. In the class of problems of coordination inequality
aversion surprisingly faces a weak evolutionary disadvantage in the sense that at most a stable
inner equilibrium exists where relative inequality-averse and relative selfish players coexist, in all
other cases relatively inequality-averse players will eventually disappear. In the problem of
distribution a preference for equality will always be favored by evolutionary selection dynamics
among those individuals disfavored by the problem. For those individuals favored in the problem
of distribution in all cases up to one inequality aversion will eventually disappear. I consider these
predictions in the light of the considered generality as rather strong. Furthermore, due to the
exemplary variations of assumptions discussed in Section 4.6 these predictions appear quite
robust. Note that among the eight loci a linear function can take in the unit interval one is
selected for a dilemma, three for problem of coordination, two for high types in the problem of
distribution and three for low types.

The simplified game of life that comprises all three types of interaction, on the one hand as
expected gives rise to a greater variety in potential equilibrium distributions of preferences. In
particular the surprisingly strong predictions for the single environments are put into perspective.
The global advantage of inequality-averse players in the dilemma and the global disadvantage for
inequality-averse high types in almost all cases experiences significant qualification. In particular
whenever the interplay of the dilemma and the problem of distribution allows for a locally stable
equilibrium with only inequality-averse players then this transfers to the simplified game of life,
i.e. inequality aversion may also be present among high types. On the other hand the expected
stabilization of inner equilibria in which relatively inequality-averse individuals and relatively
selfish individuals coexist occurs if and only if the problem of coordination shows the same
feature, i.e. the coexistence of both types. The reason for this is that advantageousness in the

dilemma is increasing and the disadvantageousness in the problem of distribution is decreasing in
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the share of inequality-averse players. For an inner equilibrium a decreasing advantageousness

that eventually turns into a disadvantage is required though.

The contribution of the paper is threefold. First, the different results in the single-game
environments and in the simplified game of life again underpin the necessity to carefully select
the relevant game environment in any study of the evolution of preferences. Otherwise any
negative or positive results with respect to the rationalization of a particular preference may only
point to a potential evolutionary force, which however may not be decisive if all relevant
environments are considered. Second, the paper contributes methodologically to the field of
evolutionary economics by making a precise suggestion of an evolutionary framework for the
study of the evolution of preferences. Third, the paper gives an evolutionary rationale for the
presence of inequality aversion within the compound environment of the simplified game of life.
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Appendix to Chapter 2

A. Appendix to Chapter 2

Proof of Proposition 2-1: The demand system (2.3) in vector notion is given by:

[SQJ:A(;JW' According to Okuguchi and Szidarovszky (1990, p.34), given the linear

structure of the model, negative definiteness of A+ A" is sufficient for uniqueness of the Cournot

equilibrium. Eigenvalues of A+A" are given by - : [11 ’14Z(K_;)J and negative by
K—A K+ 4

inspection. QED

Proof of Lemma 2-1: M Zg o Za —Zn 2 QED

aq < “(K' <

Equilibrium prices of system (2.3) are given by:
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Proof of LLemma 2-2: The proof is given in the paper. QED

Derivation of vertices of MES:

o | +—(1(;)(f)“5)“5 (no® - 207)
-a
The lower left vertex (point A) is given by = : , because
X . (-CBYas,A [ o .
+—(n9 -0 )
n(l+n)(1 - )3,
A X9 e A .
g™ ((Ae,Ag) )=1 and q(qMale):— 5T (1). Hence, (A ,Ag) is a solution to X?(1)=0 and

q(qMale):o.

The upper left vertex (point B) is derived by similar conditions, Q(qB) =0, q'(qB) =0 and

X9 (1) =0. The first two conditions are reduced to:

a a o1 Z'
m(lq+k)2+(1—q)22=q, EI—Z+(1—q)Z —?+q?:0,where

lg+k=(1+CB)o, — q((l +CB)o, +(1—CB)o-h). After some algebra, it turns out that

g (n+1)(leF —ka®)
q° = 1-c (n9g1; (/Iig: kAe) . Again, to obtain a relation between A® and A?, we plug
n+ -
A 4268 - 2

l-a ng® — 16°

e
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this value into Q(qB) =0. This gives us the third vertex:

1
(1+CB)Y'(1+n)a’s, (-2+3,)

. ~(1+CB)1+n)'a@’8,6,(-1+ 65, +CB(1+6, - 6,) +5,)0°

Ae

( J = | +1+ M3 (1 +n)(-2+a(4+a(-2+2(1+CB)’S, + 5, — CB’5))6"°
+(1+ CB)N(=1 + @)a® — (1 + CBY(=1 + a)ad6’) + T

A A

—(A®%) +=o°

L) ]

Y =((1+n)282((1+ )2+ (-4 + a(2+(~1+ CB)8, )8 — (1+CBIN(=1+ a)ard® + (1 + CB)(—1 + )" 1)’
+(1+CB) @?5, (-n#% + 10° + a((=1+CB)(1+n)&° +nb® — 16°))* -

2(1+CB)a8, ((1+CB)N* (~1+)* (07 +(1+CBIN(~1+ @)0"0° (~(~1+ CB)Y(1+ Ma(-3+8,) + 24~ 2a12)
+(e° )2 (-1+CB)(1+ 1)’ (2(~1+68,) + (4 — 45, + a (-2 + 5, +CB*5,)))
+(=1+CB*)(1+n)(-1+@)a(-3+8,) A+ (1+CB)(-1+a)* 1))

We can solve for the upper right vertex (point C) only for a=0. It is given by the intersection of

AN (Ag> and A®M" (Ag ) , characterized by solutions to Q(qMax) =0 and Q(q“’"”) =0. It follows that
such a (Ae,Ag)pair is given by three conditions Q(qc)=0, q’(qc)=0 and Q”(qc)zo. We can

ng? — 16°

solve for " explicitly: qczs(nAg_M)+4(neg—we)

C
. However, (Ae,Ag) cannot be solved

analytically.
q¢ is derived by rewriting q(q°)= 0, q’(qc)=0 and q"(q°)=0 as  Z%(q) =1i ,
-q
(l—q)Z’—Z—l+qZ—’=0 and —22’+2£+(1—q)2”+qz—”—2q (Z,)z =0, where Z= %e . The
Z Z? Z Z z? X9
-
definition of Z implies the following relation between Z and its second derivative: Z" = _2Z,W .

Proof of Lemma 2-3:

The situation where MES is empty corresponds to the case point A, B and C are equal, i.e. where
" =g""=q" =1, 4(1)=0 and X?(1)=0. The latter two conditions provide a solution for A° as
aAs, (1-CB)(ng° - 16°)

—6° . The first condition amounts to a condition
n(n+1)(1-a)d,

a function of a: A°(a)

for a as a function of AY:

Aa(A%) =
2n(n+1)°8,(A% +0%)(nA® +7)+ 8,27
2n(n+1)°5,(A° +69)(nA® + )+ 5,4°7° + 1+ n)Az (n((1+ CB)S, +2(1- CB)S, ) (A® +6°) — (1-CB)5,0°4)

, where r=(n99 —/we). Solving these two equations for « yields the critical value stated in the
lemma. QED
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Proof of Lemma 2-4:

For a=0, the approximation strategy is described in the paper. We therefore present only the
general solution for the tangent point D:

T 41+ n) (1 +a(2+CBa))s, \ ’(-a)s,

() {(1 +na((1+CB)s, +(1- CB)éh)]

“2(1-a)s,A

“ 1 [_m [0+ 1)(1+ a2 + CB'a))o, " WQZJ

26,7 +a((1+CBY(1+ 3, (A°) ~6°)
+q b
+5,((~1+CB)(1+m)¢° +20)) +(1+n)(A°) =

+(1+n)8° ((1+CB)as, +X)

D 1
(Ag) - 2ng*(1- @),

, where

r=(ng® - 26°)

T= \/(1 +CB)’ (-1+Qq)’a’sa’ —2(-1+q)q(2 + a(—4 + a + CB’a))dash + (-1 + CB)’q’a’sh’
W = (1+n)(20a8,8, (-3(1 + n)(=3 + 2¢)0° + 2(1 + CB)n(-1+ q)6° —2(1 + CB)(~1+ q)0°2) +
o’ (-2968,5,((1+ n)(=1+ CB* (=2 + ) + q)6° — (1 + CB)(1 + CB*)n(~1+ q)¢° + (1 + CB)(1+ CB*)(~1 + q)¢°A) +
(1+CB) (-1+0)"3,"(-~(1+ CB)N@° + 8°(1 + n+ A+ CBA)) + (1 + CB)*q’5, (=1 + CB)n®® + &°(1+ n+ A + CBA))) +
a(—(1+CBY(1+n)(~=1+ )8,6° + g5, (~(~1+ CB)(1 + )&° — 4n6° + 40° ) + 246, ((1 + N)(=3 + 2)5,0° + (n° — O°)T) —
a’((1+CB)Y (1+ n)(~1+ )’ 8,0 + 5,(245, (—(1 + n)(=7 + CB* (-2 + q) + 50)&" + 4(1 + CB)n(-1 + q)0° — 4(1 + CB)(—1 + q)8°1) —
(1+CB)(~1+q)(=(1+CB)NG® + O°(1+n+ A+ CBA)Z) + 45, ((~1+ CB)’ (1 + n)qd,0° + (=(1+ CBING® + @°(1+ n+ 1+ CB(=1- n+ CBA))Z)))
1

Q=————(¥+20+n)q(-1+a)l +a(-2 +CB'a))5,5,0°)
G -1+ a)d,

To find such a point, we apply the following approach: First, we express two of the conditions
for the inflection point C §(q)=0,G'(q)=0 in terms of A®(q). With these two conditions, we can

solve for A®. However, we still have to find a ¢ that will be greater than ¢" and independent of
A® and AS.
For the general case a=0, we again choose ¢ such that we can be sure that it will correspond to a

point on the graph of A*™™ (Ag ) This can be achieved by choosing (Ag )B as a lower bound for

A% and -6° as a lower bound for A®.

gqup(Ag =(AQ)B,AQ:_99)=
s, [(I—CB)a(l +mn(A%° +6°A%)+ 2n(1- a)(nA® - 24°) (n6° - 6°2) -2 (((1-CB)(1 + n)aAs)He)}

+1+n)5, [(1 +CB)ner(A°6° +¢99Ae)—(Ae)2 ((1+M)(1—a) - (1+ CB)ad) + A (n(20° — (1 + CB)A® + 20%)) + 26° (1 - — (1 + CB)a/l))}
3((1+N)S,A (1 +N)(—1+@)A® — (1+CB)naA? + (1 + CB)aA®A) — 5,(NA° — A*1)(NA® — A°A + a((1— CB)(1+ N)A® + NAY — A°A)))

This gives us a lower bound for the maxima that correspond to AN (Ag) independent of A® and
D
A® B (Ae) q+ o°

A®. We can then calculate the slope at point D: — = +—%=——.
dA (Ag) q+6"

QED
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Proof of ILemma 2-5: Inserting equilibrium quantities given in (2.13) into (2.24) and
reformulation yields equation (2.25). QED

Proof of Lemma 2-6:

(1) At the discontinuities we have m"=m* and thus q(q)=4§(q). Otherwise, m" >m* implies

ex g*

. . ~ . dx . . .
X*>X"and X°<X® due to >0 and - <0. Hence, ¢(q)<d(q) for all gin the intervals of

e

continuity. For the second part of the claim, note that we can write q—q[

(m(q>,q),qj and

Xg
. . aﬁ aﬁ . . * e eq . .

thus, d_qza_ct G dm S 1,8 Since M A and I o for all q in the intervals of
dg 02X\ om dg &g aq dg ki dq

continuity, and the other terms in d—q are the same for the discontinuous version of § and its
q

qo,
e \2
X

X9

. . . B . a9 . .
continuous approximation §, the observation —(3 =(1 —a)[(l -q)o, + J >0 implies the second

X9

claim of the lemma.

(2.) The distance between two discontinuities is a natural multiple of fkx/A® because am _ A

dg  kx
and thus m” reaches the next integer at this frequency. Finally, for A® >0, the lower limit at the

discontinuities is obviously smaller than the upper limit and size of the “jumps” of X° at the

. . . . f h—1 Jk
discontinuity q,, which is given by (l —Lj(;gj +A°q, — k€ + Ac’ ) = —K , where m=m"(q,).
M

m+1 m
Since m" grows in q, the size of the “jumps” declines in q. For A® <0, exactly the opposite is
true. QED

crit. ,

Derivation of the partial effects on the critical value «

(1-CB)(n+1)¢° +2(no? —/us?e)—\/((1—C:B)(n+1)6re ) +4(no° - 26°) (1-CB?)

crit. _

2(CB? (n0° —46°)+(n+1)(1-CB)¢" )

x=(1-CB)(n+1)e*>0 X+ Y —,[X*+ V> (1 —CBZ>

y=2(n6? - 36°}>0 CB*y +2x

94



Appendix to Chapter 2

crit.

Lelaim: ———>0:

| 2W'(1—CBZ) B2y +2x)—|x+y—./x*+y*(1-CB? B2y
dac™ [y2m}c v+ 2x) ( y= ¢ +y*(1-c8) (cBy)

00° (cB?y+2x)
y-(c82y+zx)-ZW;%“MCW By cty [Ty 1-C)

) (cBy+2x)

) (CBzy+2x)2 "0

95



Appendix to Chapter 2

crit

2.claim: Oa >0
oCB

[x'—%J(CBZy+2X)—(X+ y—ﬂfx2 +v° (I—CBZ))(ZCBerZx')
o™ - ’x +y*(1-

oCB (cB?y+2x)
2 2xx'- 2CBy’ R - '
x'(cB HZX)Z\/TTBZ)(CB y+2x)7(x+ yf,/xz+y2(17CB ))(2CBy+2x)
= >0
(CBzerZX)2
SN
x‘(CBzy+2x)7M(CBzy+2x)7(2CBy+2x')(x+ y)+(2CBy+2x')ﬂfx2 +y° (17CBZ) >0
2,fx2+y2(1—CB2)
SN

—M(082y+2x)—(208y)(x+ y)—(2—CBz)x'y+(2CBy+2x'),fx2 + yz(l—CBz) >0
Z,fx2 + yz(l—CBz)

o
—(2xx‘—ZCByz)(CBzy+2x)—(ZCBy(x+ y)+(2—CBz)x'y)2, /xz +y’ (l—CBz) +(2€By+2x')2(x2 +y’ (I—CBZ)) >0
o

—2xx'(CBzy + 2x) +2CBy’ (CBzy + 2x) +(2CBy +2x')2x* +(2CBy +2x"') 2y’ (1 —CBZ)
7(ZCBy(x+ y)+(27CBz)x‘y)2,fxz +y’(1-CB*) >0

=

—2xx'CB*y + 2CBy’? (CBzy + 2x) +2CBy2x” +(2CBy +2x')2y* —CB* (2CBy +2x') 2y’

—(2CBy(x+ y)+(2—CBz)x'y)2, fxz + yz(l—CBz) >0

2y.y>0
p=

—xx'CB? + CBy (CB”y + 2x)+ CB2x’ +(2CBy + 2x') y —CB’ (2CBy + 2x') y

—(2CB(x+y)+(2—CBz)x') x> +y*(1-CB*) >0
=

—xx'CB” +CBy (CB’y + 2x) + CB2x + 2CBy’ — CB?2CBy” + 2X' y[ 1-CB? ]

~(1-CBY(1+CB)
—(2CB(x+ y)+(2—CB2)x') fxz +y*(1-CB?) >0

B X
X'= - ——
1-CB

=4

—xx'CB” +CBy (CB’y + 2x) + CB2x + 2CBy’ — CB*2CBy’ — 2xy 1+ CB)

—(2CB(x+ y)+(2—CBZ)x‘) x*+y*(1-CB*) >0

=

—xx'CB? +CBy’ (2—CBZ)—2xy+2x2CB—(2CB(X+ y)+(2—CBZ)x') X +y*(1-CB*) >0

>0,x'<0 —
>0

In the next step, we first rearrange the term on the left-hand side of the last inequality and
second, we distinguish two cases to establish the strict positivity of the term.
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1-CB

—Xx'CB? +CBy2(2—CBZ)—2xy+2x2CB—(2CB(x+ y)+(2—CBZ)x') X' +y'(1-CB”) =

, CB’ ) ) 5 s X — —-"(1-ce)

X m+CBy (Z—CB )—2xy+2x CB—[zCB(x+y)—(2—CB )I—CBJ X +y (l—CB ) =

x’CB? +CBy2(2—CBZ)(1—CB)—2xy(1—CB)+ZXZCB(I—CB)—(ZCB(I—CB)(X+ y)—(Z—CBZ)x),%z +y (l—CBZ) =
X'CB(2-CB)+ yZCB(z—CBZ)(l—CB)—2xy(1—CB)—(2CB(1—CB)(x+y)—(z—csz)x),fxz+y2(1—CBZ)=

X’CB(2-CB)+y'CB(2-CB’)(1-CB)-2xy(1-CB)-(2CB(1-CB)y—(2+CB’ —2CB)x) /" +y’ (1-CB’)

Lcase: (2CB(1-CB)y—(2+CB* ~2CB)x)>0

X’CB(2-CB)+y'CB(2-CB’)(1-CB)-2xy(1-CB)-(2CB(1-CB)y—(2+CB’ —2CB)x) /" +y’ (1-CB’)

x2+y2(1—CBZ)<x+y (I—CBZ)

X’CB(2-CB)+y’CB(2-CB")(1-CB)-2xy(1-CB)—(2CB(1-CB)y—(2+CB’ —2CB)x)(x+ y f(l—CBZ)) >0
(1-CB)

X2[cs(2-c32)+(2+c32—2c3)
1-CB 1-CB

(1—032)
+CBy2(2—CBZ—2 1—CB2)+2xy ~1-CB+(2+CB* -2CB) -

ZXZ[I ZCB)+CBy2(2—CBZ—2 1—CBZ)+2xy[—1—CB+ (1+(1—CB)2)]>0:>claim

2(1-CB)

20

2.case: (2CB(1-CB)y—(2+CB* ~2CB)x) <0
X'CB(2-CB)+ yzCB(z—CBZ)(I—CB)—ny(l—CB)—(ZCB(l—CB)y—(2+CBz —2CB)x) X' +y*(1-CB) =

X’CB(2-CB)+y'CB(2-CB)(1-CB)-2xy(1-CB)+((2+CB* —2CB)x—2CB(1-CB)y)Jx* +y’(1-CB’)
>0
>

X’CB(2-CB)+y’CB(2-CB’)(1-CB)-2xy(1-CB)+((2+CB* -2CB)x—2CB(1-CB) y) y,(1-CB’) =

X'CB(2-CB)+ yz(CB(Z—CBZ)(I—CB)—ZCB(I—CB) (1—CBZ))—zxy(l—CB)+Xy(2+C82 -2CB),(1-cB’) =

CB(2-C8) +(1-CB) OBy (2-CB” ~2,{1-C8") )+ xy((2+ CB* ~2B) [[i-CB") ~2(1-CB) > 0 = claim

=0 =0
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B. Appendix to Chapter 3

B.1  Proofs
Proof of LLemma 3-1: Full cooperation can only be achieved with only high-types present in the

population, i.e. A=1. There are only two equilibria which support cooperation among high-types
that are supported at A =1 under certain conditions and potentially exhibit a fitness advantage for
high-types (necessary for local stability), the separating cooperative equilibrium and the high
pooling cooperative equilibrium. With respect to the former, the support condition amounts to

IL >1< k>1+a, and the fitness condition to k <1 (see Table 3-3). With respect to the latter,
+a

the support condiion amoutns to K<l+a, and the fitness condition to

(B-a)-p+k- k>0 k—k>a.If k—k =a stability requires a strict positive difference

in fitness payoffs for high-types for 4 close to 1,i.e. f—a<0. QED
Proof of Lemma 3-2: The first pair of inequalities % m<k-k <a arises from the
m-o+
. k—k —a . . . .
condition of the root (I—W) of the fitness difference for the high pooling cooperative
L . . e . K yij k-k -«
=, <l-=——«l
equilibrium to lie in the support of this equilibrium, i.e. maX{ Tra (Brm- a)} B—a
. Stability requires a negative slope of the fitness difference function, i.e. p—«. Let us first
consider k < 'f . In this case, the within-support condition amounts to
l+a (B+M-a)
K-k - )
— b <1-= = <1, rearranging yields _L Mm<k—k <a. If on the other hand
Mm-a+p B-a M—a+f
k p the within rt condition amounts t k <1 _—IZ—a<1 rearrangin
= e within-support condition amounts to - earra

1+a>(ﬂ+rﬁ—a) ’ pp l+a L-a ’ &g
. = . . y/j _ -

ield -—— k—k N 121 1 m<k-k < d
yields g (ﬂ a)<k-k<a ummarizing gives us m ek a an
,B—L(,B a)<k- k©ﬂ< ﬂk k. Note that — s Mm<k-k <a implies that

1+« Mm-—a+pf
SB—a<0, because Lrﬁ<a<:>rﬁ(ﬂ—a)<a(ﬂ—a)ngﬂ—a<0 QED

Proof of LLemma 3-3: For an inner A-stable equilibrium to exist at /1:1L , we need (1) the
+a

connectivness of the supports of the involved equilibria, (2) a fitness advantage for high-types to

the left of A= IL , (3) a fitness disadvantage for high types to the right of 1= and finally
+a

l+a

(4) for being an inner equilibrium A= k €(0,1). (1) gives us - p__ . K , (2) yields
a

—-a+pf l+a

L—k >0, (3) amounts to
I+a

K (B-a)-B+k- k<0<::>L<k+ , if high-types and
a

l+a 1+p
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low-types fare equally well at A :IL, then for stability, high-types need to earn strictly less to
+a

therightofi:L.Inessense,if K :k+'8,then P—a<0, 4 is equivalent to k<1+a.
l+a l+a 1+

(1) and (3) are equivalent to

m—a+ﬂ_1+aif;>71;;ﬂ 1+ 3

)
(2) and (4) are equivalent to
=k
K<——<1 (**
l+a ™)

Note that (2) and (3) imply (4), hence what remains is:

k k _
— P <—— < th and k<i QED
m-a+p l+alf;>t26n 1+ 4 l+a
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B.2  Stable semi-pooling p-equilibria
Equilibtrium Support Conditions for existence Payoff differentials (superscript “f”
indicates difference in fitness payoffs)
ccm Ck+(1-2)p Bk _em o kB My (CD.m)—IT,, (M) = 2( Pecn ) (1+ M) = Apecn (1 + @)
CDm Peon = A(1+1m) (M-a+p) (1+a) (1+a) (I+a) (M-a+p) = A(M=a) Pecq
m kK+(1-2)B K+p (M-a) & . ( k+(1—ﬂ)ﬂ]
cem = 1— — — " <1<l _ =Z(m—a) 1- — >0
p ﬂ(l-l—m) (1+m+ﬂ)< < 1 ﬂ (1+a)</1<1 /1(1+m)
=1 f k+(1-4
P (1, (CD,m) - 11,,(m)) :—aﬂ[l— +((1+m))ﬂ]<0
DCm ) —1[1+ K J 0- B+(k—k) » Bl+a)> IT,(CD,m)-II (m)
CDm 'CDm 2 ﬂ(l'fa) (rﬁ—a+ﬂ) M[(1+m)K7(l+a)k7] —ﬂpDCm 1+m I:pm ]—ﬂpom(l-ka)
m . c _ (m-a) = A(M=a) Poen — /3(1 2)Pn
_ Pocm I:l_ - :I <1—i (l+m)k—E <1 k -k f
m 2L Aira) (1+a) g PUre) (1, (CO.m) =11, (M) = a2~ B(1-4)py <0
1 1 (1+m) e
pm_2{1+(1—/1),8|:(1+a)k kﬂ
L (em) o
pm_z{l (l—ﬂ)ﬂ[(l+a)k kﬂ
DCm 1|, k+(1-2)8 k+p 1 Tk — (140K I1,,(CD,m)—TI1,, (M) = APpey (1+ M) = Appey (1+ )
com | Peor 2{” Ao - (1+rﬁ+ﬁ>’1 R =) B >0
_ m—oa _
B pDcm—l[l—“(l_ﬂ)ﬂ } e meas ) (Ta(CO.m)~Tlg(m)) =t <0
2 A(1+m)
Pn=0
COM | pepy =1 k A(M-a) I, (CD. M)~ I, (m) = & (1+m) k- p(1- ) p,
on A= Lk<(1 2.pn (D, n (M P
- (1+a) <(1+a) P < (1-2)p f(1+oz)k
m (T (CO.m) -~y (m) =725 =k = A(1-2)ps
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B.3  Stability of p-equilibria
In this appendix we are concerned with stability of the p-equilibria derived in Appendix A. Before
we start we will make some comments on the dynamics and on our way of argument. The dynamics
among high types is described by eight differential equation, seven being independent, one for each
of the eight signal-dependent strategies CCm , CDm, DCm , DDM and CCm , CDm, DCm, DDm. Due to
the dominance of defection among low types there are only two differential equations, one being
independent, reflecting the signaling behavior. Since it is assumed that the evolution of the share of
high types is comparably slow to the evolution of the shares adopting the different strategies these
seven independent differential equations for high types and the one for low types give rise to a
coupled system of differential equation which itself consists of the two aforementioned systems
(high and low types). We are confronted with two types of equilibria, on the one hand equilibrium

points, i.e. an equilibrium that specifies a precise level for each share p,, ,m,e{mm},X.,Y {C,D}
among high types and p,,me{m,m} among low types. There are on the other hand equilibrium set,

i.e. non-singleton subsets of R'". We apply the notion of asymptotical stability as a stability concept.
An equilibrium point is a fix point p; of the dynamical system D(t)z F(f)(t)) and is said to be
asymptotically stable if it meets two conditions. First it needs to be Lyapunow-stable, i.e.

V$>O,EI5>O:H[3(O)— f)fH<5:>Hf)(t)— f)fH<g,VtZO,Vf)(t) being a trajectory, second it needs to

be an attractor, i.e. 36>0: any trajectory p(t) with Hf)(O)— o H <0 then Hf)(t)— P, HT)O The

definitions for an equilibrium set are accordingly (see e.g. Samuelson 1997). To proof stability or
instability of an equilibrium we will rely on phase diagrams. We will proof instability by arguing that
the system cannot be Lyapunow-stable. In case of an equilibrium point in the interior of the support
of the equilibrium the involved strategies earn strictly higher payoffs then non-equilibrium strategies.
Small perturbation will not alter this property. Payoff monotone dynamics will decrease the share of
the non-equilibrium strategies. Hence for analyzing the stability properties in that case it suffices to
consider the involved equilibrium strategies and whether the dynamics will reestablish the
equilibrium values given a small perturbation. At the boundaries of the support of an equilibrium
point a non-equilibrium strategy will earn the same profits as the equilibrium strategies. In that case
these strategies needs to be included in the analysis. However with respect to all other strategies the
previous argument still applies.

In the first cell of the first row in the following tables equilibrium strategies can be found. In second
cell the precise values or set conditions are given. The third cell contains the support of the
equilibrium. The last cell may state some additional conditions concerning the existence of the
considered equilibrium.
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1. Separating Equilibria

CcDm k _
Peom =1, Pp =1 kiﬁﬂﬁ k k<l+m
o 1+m l+a
This equilibrium is certainly stable in the interior range k_. A< since all inequalities hold strict. At the upper boundary 3 = K ow types are
I+m 1 +a

indifferent between sending the signal and not sending. Any deviation from p_ =1 would need an decrease in pg,. to reestablish p_=1. However, for

small such changes CDM is still the dominant strategy for high types, hence Py, =1 persists and there is no force bringing back p, =1. Hence at

ﬂ:L this equilibrium is not stable. At the lower boundary A:L high types are indifferent between CDM and DDm:

I+a 1+m
I, (CD,m) = }”[( Peon ) (1+M)+( Poon ) (=4 )]_k Consider any small increase by random shift in Pppy , this will lower profits for CDM and leave profits
1, (DD, m) =0
for DDm unchanged, hence equilibrium will not be restored. In other words at = K this equilibrium is not stable.
B 1+m

CDm B M- (M-a+p) &k (M-a+p) k k B

_ = ——  Ppom = ————» P, =1 <A< = <=
DDm Peon m+f—-a Poon m+f—-«a P g (1+a) g (1+a) (I+a) (m-a+p)
m

M, (CD, m)~TT, (DD,m) > 0 < Shifts ~ downwards
ﬂ“[pCDm )+ pDDm :|+ 1-4 |: ( ):| Pep with 4
Qﬂ'pcom(m ﬂ) ﬂ'ﬂ‘* 1 ﬂ' |: ﬁ] Yii J

L B-(1-2)pp, Hence we obtain the following phase diagram: A(m—a+ ) | L
=P e ) e oo
_ Al
I, (m)-TI, (M) >0 < k lg(m-;u})(lg -~ B ﬁ)ﬁl(lk | i (ﬁ+a] N} ,
+a -a+ +a + =

~APepn (14 @) +K >0 Py € ———, Note: S \ m—a+f

CD ( ) “ /1(1+0t) B B AL+ f) 0, (€D, m)- 11, (DD.m)=0 ) k+Ap
note that for the support of that equilibrium k+48 B k B . . (1+m+f3)

) € 48— (1-2) 81 /1(1+m+,8)s m—a+,8<:>/1(1+a)s E— Shifts upwards with P

= > _ L holds. A
A(l+a) A(1+m+p)

As the diagram cleatly indicates, this equilibrium is unstable for all A in the support.
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Appendix to Chapter 3: Stability of p-equilibria

g

(em—a)~"

CCm,DCm
B B Pcem t Pocm =1
m
This set of equilibria is stable for 4 > B
(B+m-a)

since all inequalities hold strictly, i.e. for any small perturbation the equilibrium strategies earn strictly

more than any other strategy. Note that not necessarily the pre-perturbation shares are reestablished, but that the sum of their shares equals unity.

B

At the boundary 3 =
Y (B+m-a)

Low types still strictly prefer not to signal.

M, (CC,m)~TI, (CD,m)>0 <:>/1[( Pecn + Pocn ) (M=) +( Peom + pDDm)(—ﬂ)J—ﬁ(l—/l)z 0 Pocy >

B

Note thatat j=_— ~
(ﬂ+rﬁ—a)

payoffs for the equilibrium strategies strictly more than for the DD, -strategy and decreases
profits for all other strategies weakly more, i.e. those strategies still earn strictly less than DD, ,

and the share of DD, increases. Hence there is no force reestablishing the equilibrium set.

agents become indifferent between CC,, / DC,, and CD,, / DD,,.

a perturbation from CC_ towards DD, decreases the

B

Difference in fitness payoffs:
11, (CC.m) 1, (m) = 2(m—a) - A(1-2)
(11, (CCm)-T1,,(m))" =—ai-B(1-2)<0

7= Pocn
A(M-a+p) 0" Pecn

isoprofit line is shifted

towards boundary as 1
approaches

s

As the diagram clearly indicates this equilibrium set is stable for B <A
(B+m-a) Poewm

CDm. Dbm Peom + P L p <1min k+p 3 0<A<l

=L Pepn = — <A<
m com - Toom ) 1+m+ 4 1+a
I, (CD,m)~-II,(DD,m)=-A(1-4)p, <0

‘ Difference in fitness payoffs: Peon
— m)=K— > < —
Hm(m) Hm(m) K /1(1+a) Peom 2 0= pcDm—ﬂ(l_*_a) 1, (CD,m) -1, (m)=0 i {’
Hence we obtain the following phase diagram: (M, (CD,m)- 11, (m))' =0 Alva) | ¥ k+p
4}

As the diagram cleatly indicates, this equilibrium set is stable for all 4 in the support.

min{ k }
Al+m+p) A(1+a)

D
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B

(r‘T1—a+ﬁ)

B Poem

CCm, DCm,CDm, DDm Pcom + Poom + Peem + Pocn =1 A(M-a +ﬁ)

m K __ B _
(P~ Poc)< Famagy |A(6+m-0) P

</1<1(pccm+pocm)=

I, ( c m) /’{(pCCm+pDC )( nrﬁ(Ccam)_nrﬁ(CDam):nm(Dcvm)_nm(DDsm) A(I+Iﬁ+ﬂ)
Hm( Dm) l(pCCerpDC )(1 =/1(pccm+pDcm)(m_a"'ﬁ)_ﬂZO@pDcmzé_pccm ‘;o/
R ( DC, m) l(pCCm+pDC )(1 ﬂ(m_a+ﬂ) 4

all other differences vanish. <,

m(DD’m) (pCCm+pDCm) 1+a %/J/) j) )
Differences depend only on two shares. As the diagram clearly indicates this equilibrium set is 2 N
unstable.

cCm,CDm B k Vi K<lia Lk
rﬁ Pccn + Pepm =1 2>max{ (B+m- a)} - pCDm_/I(lﬁ-Ol)
I1(CC,m)—1II,(CD,m)=-(1-A)p, <0 : :

ol )= )=—AU=4)P, Difference in fitness payoffs: Pepim
I, (m)—TI, (M) =k = 2(1+ @) Pepp = 0 < Pepy sm I, (CC,m)~I1, (M)=A(M-a+f)-f+k—k
Hence we obtain the following phase diagram: (M (CC.m) 11, (M) = A(f—a)~f+k—K K “f
Note thatat , _ K low types are indifferent between signaling Ul+a) 4,

Al+a)
and no signaling. As soon as low types start not to signal CDm fetee ).
earns strictly higher payoffs than CCM such that the incentive for low (o, )
types to signal will be restored. As the diagram clearly indicates, this equilibrium set is stable. P
cCcm,CDm,DCm, DDm A(Pocn + Peom) = #
— Pccm + Peom + Pocn + Poon =1 (m—a+ﬂ) k k<l+a
m ? j~(pcDm_pDcm)217
+a
H; ( CI’T’]) ﬂ“[ pCC'ﬁ+pC )(1+ ) (pDCﬁ+pDD :|+ [ )-‘_pm(_’B)J_E 1et(pccm+pcom):X»(pDcm+pDDm):yZI*X
I, (CD,M) = 2 ( Pecn + Peom ) (1+ M)+ ( Pocn + Poon )(=8) |+ (1= 2)] ps(-B) | -K M, (CC.m)=A[ x(1+m+p)]- -k
I, (DC,M) = A( Pecn + Peon )(1+ @) +(1- )[ (- )} K e > X M, (CD,m)=A[ x(1+m+p)]- B -k
T, (DD, M) = A( Pegn + Popn ) (1+ @)~k pi I, (DC,m) = Ax(1+a)-k
A(p+m—a) I, (DD,m)=Ax(1+a)-k

Hence we obtain the following condensed phase diagram:
As the diagram clearly indicates this equilibrium is unstable.
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3. Semi-Pooling Equilibria (The denotation of the following equilibria in the first column refers to the corresponding subsection in App. A.)

cem [ & s K ma ks
cDm Peen = /1(1+a)+ﬁ,(m—a+ﬁ) Pocm 121_m7 '1+a<m—a+ﬁ
DCm | Peom = Pocm» 2. i
- _ 1 s
DD __ k. m-a B _ p<(m-a): P ﬁﬁ—(f ——J
pDDm /1(1+a) ﬂ ﬂ,(rﬁ—a+ﬂ)+/l pDCm b A m—a+ﬂ 1+
CDm N _

- k B2 (m-a) b <LiM-af A _ Kk
DDm Pcofm N N0 B \M—a+p l+a
m Do = k m-a 1-2

o a(lva) B A

Note that the payoffs for non-signaling high types is independent of their own 1, (CC.m) = /1[(pcm+pwm+pmm)(1+m)+(pm+pmm+Pmm)(—lf)]—ﬂ(l—/l)—E
share. However payoffs for all other behavioral strategies strictly increase in the | (cpm)- A[(Pecn + Poon ) (1+ M)+ (Peog ) (1+ @)+ Poca + Poon) ()] K
share Pgpy, and weakly decrease in ppp,, . Hence if the set is perturbed such that | 1 pe m)- Al (Peon)(1+ M)+ (Pegn + Poon)(1+ ) (Poon)(-8) |- B(1-2) -k
the equilibrium level for Pcom 18 exceeded than there is no force bringing it back | 11,(0D,m)=2[(pcen+ Peon + Peon )(1+ @) ] -K
to that level. Hence this set of equilibria is unstable.
1,(CD,m) = l[(pccmpm)(H M)+ (Peon + Poor ) (=) ]
I, (DD,m) = A[ ( Pecn + Pocn ) (1+ @) ]
cCm _(1+a)(p+k)-(1+g+m)k Brk-k _, B
com | Peon = A(1+a)(m-a+p) Pcom (M-a+p) (1+a),8>T%i;)ﬂ((Hnﬁ)K—(Ha)E)
DCm K—k m—qa (1+B+m)k—(1+a)k
X <l- 2.
DDm | Pocm pCDm+}L(m_a+ﬂ) B (I+a)(m-a+p) 1+p+m
_ = k - k

com Do =1 B+k-k . 0 peoy < min{1- L+ K=K ,ﬂ+ LY
m DM A(m-a+p) com AMM-a+p)  A(M-a+p)
m _ _ — X y

. k . k-k :(1+,B+m)g—(1+a)k veqs 2B K (o gik-k

N A(1+a) A(M-a+p)  A(l+a)(M-a+p) X=ye “(m-a+p) lra > (m-a+f)

1 m-a(+B+m)k-(1+a)k
Py = -
1-12 B (1+a)(m—a+ﬂ)
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Note that the payoff for non-signaling high types is independent of

, : , M (CC,M) = 2| (Pecn + Peon *+ Peon )(1+ M)+ (Pocn + Poon ) (=8) |+ (1= 2)[ Py (=) + Pa(-B) |-k
thc?1r own share. .However payoffs for all other behavioral SHALCGIES | 11 (CDm) = [ (Pocn + Peon)(1+ M)+ Peon (1+ @)+ (Pocn + Poon ) (~5)]+(1-2) [ ( B)]-Kk
strictly increase in the share pp, and weakly decrease in Pppy- 1, (D) = A oy (1 M)+ (Pecs + Peow)(1+ @)+ (1-2) py (~)]—&

Consider a perturbation such that the equilibrium level for pep, is | 1, (op,m)-= A[(Pecn + Peon + Peon (14 @) |~k

exceeded and Py, decreases. Payoffs for signaling high types strictly | I1,(CD.m)=A[(Pecn + Pocn)(1+ M) +(Peon + Poom )(—B) ]+ (1= 2) Pa(-5) ]
increase and there is no force bringing pgy,, back to that level. Hence | Ma(m)= A[(Pecn + Pocn)(1+a) |

this set of equilibria is unstable. . Ty (M) = 2[(Pecn + Peon + Peon ) (1+) | -k

Pecn =(1- 1, )L—p ok b

CCT i Y(m-a+p) " B(-a(2+a)+p+m(2+m+ )~k (n—a)(n-a+p) 5 (()1:0() <(m—a+ﬂ)
CDm o = p k . (1+a) 0 (+7)(7-a+p) , S0 pepy <
DCm | 2" T (1em+ ) (1-m+B) " | e [1_(1(—/1)13)]( B )

~ = (m-a) £ — AMm—a))(m—a+p)
DD - =) [, )

m Poom =(l_ pcDm)(mTaij_lﬂ)_ Pocm " B(m- a+ﬁ)[(1 +ﬂ)( 1+a) /6) min 5
- (1-2)8 f Gea) [1 “‘W’J it S tta (1-1)
m — I CA(m-a))(m- w+B) 1+ -
= pCDm:l(T—a) </1<j>1_(1+a) 5 Alm-a))(m-a+pB) l£1+ +B) 1+m+p A(m-a)

Note that the payoffs for non-signaling high types is independent of their own
share. However payoffs for all other behavioral strategies strictly increase in the
share pcp,. Hence if the set is perturbed such that the equilibrium level for

E

) l[ pCCm + pCDm + pcom)(1+m) (pDcm + pDDrﬁ)(_ﬂ)}_ﬂ(l_l)_E
) /1[ pCCm+ pCDm rﬁ)‘"pCDm( + ) (pDCm+ pDDﬁ)( )B):I_E
) l[pcom 1+m pCCm+pCDm :|7ﬁ 17/1 -k

)=

3
3 3

3

Pepm 18 exceeded than there is no force bringing it back to that level. Hence

ﬂ[ Pecm + Peom + pcnm)(1+a):|_k
/1[ Pecn + Poca ) (14 M) +( Peon + pDDm)(_ﬂ)]

3

A A A233

this set of equilibria is unstable.

M, (CC,m) = A[(1+ M)~ (1+ M+ B)( Poce + Poom) |~ B(1=2) -~k
CD, M) = A[ ( Peon + Peom ) (M=) +(1+ &) = (1+ & + B)( Pocn + Poon) |- K
DC.m)=2 (1+m) (Pecn + Peon)(M =) = (14 M)(Pocy + Poon) | = B(1-2) K

‘3 El

=(CC,
(co,
(DC,
(DD,
-(CD,m)

=(CD, ):l[(p em + Pocn ) (1+ M) +(Peom + pDDrﬁ)(_ﬂ)]
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4.1.3.2.

0 _k+(1-2)p
o a(tem k+p : B k 1+m
| e
cem — m-a
' Hxm R I (7 R (R R )
Py =1
nrﬁ(CC’rﬁ):’i(pccrﬁ"’pcnm)(l“'m)—/i(l—ﬂv)—E
Hrﬁ(CD’m):ﬂ(pccm)(lJrm)Jr(l_/i)[pm(_ﬂ)]
Hm(f):ﬂpccm(pra)
Hm(m):l(pccm'*'pcom)(1+a)_K
1, (CC.) 1, (CO.1)20 2 Ay (140) - 41~ 2) %~ (1- ) ()]0 e 2 21 AL PU= 1
I, (m) -, (M) >0 < Apgeg (1 +a)—ﬂ( Pecr + DCDm)(l +a)+k>0S Py Sﬁ, note that (lfa) > Ezlﬂflmi)i) due to the condition (see support) 2 >1— ([r{ﬁ(;fo)j

Hence we obtain the following phase diagram:

Pcom
k 1, ()11, (m)=0
/1(1+a)
r» k+(1-2)8
(cem=° A(1+m)
k
A(1+m) L’
Pm

As the diagram clearly indicates this equilibrium is stable.

Note that the lower bound in the support condition implies
k) ko k+(1-2)8
Al+a)” JA(1+a) A(1+m)

Differences in fitness payoffs:

1, (CD.m) ~ T, (m) = A( Pegn )(1+ M) ~ Aegn (1+ ) = A(M - 1) Pocy :/I(rﬁfa){lf E;((ll;%ﬂ}o

. kK+(1-2)p
(11,(CD,m) -1, (m)) =‘“’1[l‘ A1+m) J<0
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_1 1+ K
Peon =7 A(1+a)
DC _ K
Pocn = |:1_ Mm—o+f
com 2L Aive) (k-K) [em), ﬂ(”a)>((m_a) e me- (8]
m 1 Lo (em), o 0<( -a+b)</1<l_ﬁ (1+a)K_k <1 e
mo | P )| (e + 5 (1)
BRI (1+m) -
"””‘2{1 (l—w{ow)k kﬂ
I, (DC, M) = A pgpy (1+ M)+ (1= 2)[ p, (-8) |-k
M (CD,M) = APocy (1+ M) + (1= 2)[ P (=B) ]
& | T, ()= Apocy (1+a)
2 I, (M) = APeo (1+ @) —k
~ | m,(bc,m)- I, (CD,m) > 0 & APcop (1+ M) + (1= 2)[ Py (=B) |~ K = APocn (1+ M) = (1= )] Pe (=) ]2 0 Apeoy (1+M) = B(1=2) Py =K = (1= Pepy )(1+ M)+ B(1=2)(1-p, )2 0=
27 P (1+ M) =28(1= 1) py =K~ A(1+ M)+ B(1-1)20 & prgy 2 2LL=A)Po +2;(+1/1(m; m)- A1 )=5+k All 2’;)(1:2251_2)"@

_ Al+a)+k 1 k .
I1,, (M)~ L, (M) 2 0 & Appen (1+ @) = APepp (1+ @) +k 20 = A(1+a) = 2APepy (1+ @) +K 20 S peg, < 2(/1(13(1) 7E+2/1(17+a) Pepm

Hence we obtain the following phase diagram:

Differences in fitness payoffs: -

0, (m)-11, (ii)=0

I1,, (CD,m) —I1,, (M) = A Ppep (1+ M) + [p B) ]~ APoen (1+ @) = (M=) Ppen = B(1—- 1) Py 5+2A{l+a}
(11,(CD.m) -1, ()" =-a2 - A(1- ,1)
\\*\\'\'
) . ) e . — Py
As the diagram clearly indicates this equilibrium is stable. 1{1 +(;)[((1 + ’”)) ‘ _;ﬂ
2 1-2)8| (1+e) ™
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IT

m

(m)-TII,(M)>0< pepy, <

Note that 1, k 1
2 2i(1+a) 2 22(1+m)
Hence we obtain the following phase diagram:
2
«
N
~ pCDm
=
1,k 11y ()11, (m) =0
— >
2 22(1+a) i | Rep(i-2)
nes ay-n e 72 2 2(1+m)
(D€
P

As the diagram clearly indicates this equilibrium is stable.
11, (CD,m) — I, (M) = APpgy (14 M) = APpey (1+ ) = A(M—a) Ppey >0

(11, (CD,m)~ 11, (m))' =-ai<0

22(1+a) 2 24(1+a)

kK+p(1-4) since this is equivalent to the second argument in the support condition.

1y k=48
DCm pCDm_2|:1+ ﬂ(1+nﬁ) :I )
- k +p - ! _ i) 1_ m-a _
0 pDCm_llil—kJr(l_i)ﬁ} /1>max{(1 +8) ﬂ(1+a)((l+m)k (1+a)k). (M-a+p) 1+m)+(1+a)ﬂ(l+m+k)}
2 A(1+m)
pmzo
1 k-p(1-2)+2p(1-2)p,
IT,,(DC,m)-II,(CD,m) 20 < pep, = =+ - m
as above: ( ) ( ) S 2 24(1+m)
A(l+a)+k 1 K

Differences in fitness payoffs:

I1,(CD,m)—TI1, (M) = APpey (1+ M) = APpey (1+ @) = A(M—a) Ppey >0

f

(T1,(CD,m) 11, (m)) =-aA<0
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DCm
CCm

3

pCDm =

/1(2(1+m)(nﬁ—a+ﬂ)—,8(l+a))

4.3.1.1.

We obtain the following phase diagram (derivation below):

Pecrf

77

\\
\\
‘\
S
~
N,

. Ty (m) =TT, (m)

As the diagram clearly indicates this equilibrium is unstable.
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Dcm=l 1- k_lz_ﬂ
) p 2[ A(m- a+ﬁ)J B+k-k 2 (1_|_|r'n)k_|Z
oon || ptines, RN Lo
cCm Pecn = A(m-a+p) 1'(mT1/3)</1<m1n B+k-k 2((1+m)
CDm (M-a+p) = 2_[ +[ k_kjj
- [21+a+1]k—k—ﬁ (M-a+p) p\(1+a)
m pCDBZE 1+ ﬂ(l’ﬁ—a+ﬂ) 2. K—E<m—a
3. k<l+a
o (em), ) . . A(m-a+p)-p 4 (I+a)p>(1+m+B)k—(1+a)k
pm_ﬂ(l—,‘t)[(u-a)k "J s m-ar ) E ) 0 D mar )
M (CC,m) = [ ((Pecn + Peon ) (14 M) + Pocn (=8) |+ (1= 2) Py (=8)+ P (-B) ]-K
11, (DC,m)= /”L[pCDm(1+m)+pccm(1+a)}+(1 ﬂ[pm ] k
I, (CD m) ﬂ(pccm"’pDcm)(l"'m)'F(l_l)[pm(_ﬂ)]
o | My (m)=2(Peen + Pocn )(1+)
5 | Ty (M) =2(Pen + Pooy )(1+@) -k
T | 1, (CCm) 11, (DC.M)2 0 €5 A[ (Pege + Peon ) (15 M)+ Poce (<) [+ (1= 4)[ By (~8)+ B (<8) ]~k ~2[ Paog (1+ 1)+ Pecy (1) | ~(1- 1) p, (-) ] +k 20
I (1 o 1-2)Bp.+48 P
A[(Pecn) (M=) + Pocq (=B) |2 (1= 2) BPy < Pecn AM—arp) (M- Mﬂ)pwm
M, (CC,M)~T1, (CD,m) > 0 A[ ( Peen + Peog ) (1+ M)+ Pocn (~B) |+ (1= 2) Py (=8)+ Py (<8) ]~k = A(Pecn + Poca ) (1+M) = (1= 2)[ Py (-8) ]2 0 =
1[(pCDm)(1+rﬁ)—(1—pCDm—pccm)(1+m+,B)J (1-2) pn(-8)]- k>0<:>/1[(pwm 2(1+ )+ﬂ)+p¢¢m(1+m+ﬁ)]2(1 A)Bp, +k+(1+m+B)2
- >1+(1—/1)ﬂpm+i_2(1+rﬁ)+ﬂ
Pec = A(l+m+ ) (1+m+p) Peon
M, (DC,M)~T1,(CD,M)> 0 < A[ Pepy (1+ M) + Pey (14 @) |+ (1= 2)[ Py (=8) |~k = A(Peca + Pocn ) (1+ M) = (1-2)[ Py (-B) ]2 0 =
2P (1) P ()] 202K 2(0-) py (4] (1-2) 920 gy 2V AOR 0] TUey
I, (M) =TT, () > 0 < A( Pecn + Pocn ) (1 @) = A( Pecn + Peom ) (1+ @) +k 2 0 (1= Pepy ) (1+ @) = 2( Pogn + Pepn ) (1+ @) +k 20 < pccm71+7l(l+a) 2 Pep
72(1+m)<7 <72(1+rﬁ)+[3 ~ Yij
N ) ST rme ) < (mar )
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Hence we obtain the following phase diagram:

? pCCrﬁ

/-
@
+

We saw for the previously analyzed equilibrium with strict inequality with respect to the signaling decision among low types that this equilibrium
is unstable. The question here is whether the indeterminacy of the low types in equilibrium could have a stabilizing effect. It turns out that it
doesn’t. The reason is that if p_ decreases the new intersection of the iso-profit lines (not an equilibrium) lies in the fourth quadrant relative to

the equilibrium point. We will argue for the most favorite scenario that an adjustment in p_ will not stabilize the equilibrium. Consider therefor

a perturbation of the type indicated by the red arrow. For such an perturbation equilibrium will not be restored in the absence of an adjusting
P, - What kind of adjustment is most favorable with respect to stabilization? The instability can only be circumvented if the induced shift of the

intersection point of iso-profit lines and thereby a shift of regions with the depicted dynamics would bring the pertubated point into a region
with dynamics point at the equilibrium. Most favorable is a strong and fast movement to right at the boundary of the fourth quadrant (indicated
by the green arrow). It is important to note that even this most favorable movement cannot induce the pertubated point to be pushed into a
region to the left of the dotted line (unaltered by changes in p, ), because than p_ would start to increase again. And if this is assumed to be

fast and strong, than the iso-profit lines will be shifted back towards its equilibrium locations. In other words the only thing that can happen is
that the population state pointed at by the red arrow is find itself in the area between the 11, (DC,m)=11,(CD,m)-isoline and the dotted line.

However this will not lead to a reestablishment of equilibrium but to further movement away. The same argument applies to the second
diagram.
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B ~ (M-« ((l+rﬁ+ﬂ)ﬂ—ﬁ—?) Bk B+k—k 2f(1+m) _
E((_,‘:n? Pocn /1(2(1+rﬁ)(rﬁ—a+ﬂ)—,3(l+a)) A > max (1+m+ﬂ)’2_[(ma+ﬁ)+ﬂ[(l+a)k_k]]
cDm B((1+m+B)A-B-k) x y i
di Peem /1(2(1_'_”7] (rﬁ—a+p’)—,6’(l+a)) note: k <1+m
m oo _ _ _ prk-k  2f(1+m) ) p+k
o _R(m-a+p)s(1me pA(M-a)+(m-a+ p)(1-2)p (= T (s IO | et
com A(2(1+m)(M-a+p)-p(1+a)) - _
< (I+a)B>(1+m+ gk —(1+a)k A k<l+a

We obtain the following phase diagram (derivation above):

pCCm

4.3.1.3.

As the diagram clearly indicates this equilibrium is unstable.
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m 1 k+p(1-2 . _ = B
cbm pocm=*—L,) oi - l+01 [1+]+mj_ k (M-a)|<d L (I+a)B>(M-a+p)k
DCm 2 2(1+m) (M—a+p)(1+m)+(1+a)p l+a) l+a B _
- _ (l+a)(,8(m—a)+k(m—a+2ﬂ))
m L kepl-g) <1—1(k1+m—kj<1 2 S T e g em) (a) B
Peon =7 22(1+m) B 1+a « o
as below:
_ 28(1-A)p-+k +A(1+m)=B(1-1 k=p(1=-2)+28(1-2)p..
Hm(CD,nﬁ)—Hm(DC,m)ZOQipCDm(Hrﬁ)+(1—/1)[pm(—ﬁ)]—k—ipDGm(Hrﬁ)—(l—ﬂ)[pm(—ﬁ)]20<:> Peom = A )pm+2ﬂzl+(m;m) A ):%+ A 22)(:+2§ )Pn
L () = 1, (M) 2 0 € APpgy (1 @)~ 2Pegy (1+ @)+ k 2 0> pogy < 2F K 1 K
mA= mA bem com = N 24(1+a) 2 24(1+a)
Hence we obtain the following phase diagram:
) Pcom
3 1
~ 1 k+p(=2)
L - 2 22(1+)
—
1k [ m@eonmeo |
—+
2 24(1+a) T <
Y
,/(\“\."“
(\\9\““\ <—¢ <—¢
P
k+p(1-2 k+p(1-2 no—
As the diagram clearly indicates this equilibrium is unstable. Note lﬁLL_)>l+ k = +'B(_ )> k ©i<1—l(51+—m—kj,
20 22(1+m) 2 2i(1+a) (1+m)  (1+a) B\ 1+a
what is equivalent to the upper bound of the support.
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4.4.1.2.

k

m Peom =5+ - _
([Z)Ié):m N2 241+ a) 1L (I+a)B>(M-a+p)k

m 1 k L+ _ oo
- Pocy = =~ ————— B+k </1<1_1{( +m)k_kJ (1+a)(B(Mm-a)+k(M-a+28))
. 2 2(1+a) (m=a+p) pl(1+a)” S ma e p)em) (v a)p
) pf:l+ 1 (1+m)k—E 3. k<l+a

"2 2p(1-2)| (1+a)”
I1,(CD.M) = Apgpy (1+ M) + (1= 2)| pa(-8)] -k
Hm(DC,m)zﬂpDCm(l m)+(1_’1)[pm(_ﬁ)j|
I1, (M) = 2Ppey (1+ @)
I, (M) = APepn (1 +a) -k
1, (CDLM) - 1, (DC.1) 2 0 & £Pegy (14 M)+ (1 2)] P (~)] K —4Pagy 1+ M)~ (1= 2)[ Py (~)] 20> pegg = 22U =)o +2';zli(:ﬁ;m)_ﬁ(l_ﬂ):%+k_ﬂ(l_zi)(:fégl_ﬂ) L
1, (M)~ T, (1) 2 0 2Ppcy (14 @)~ APepy (1+6) +K =05 gy < iz(lﬂzli);)&%u(]{a)
Hence we obtain the following phase diagram: Peon
? i+?+[ﬁ’(1—ﬁ.)
Note: T — 2 2i(1+m)
= k

l+k+ﬁ(l__l)>l+ K _+2/?.(1+£I)

27 24(1+m) 2 22(1+a)

<:>k+ﬂ(1__/1)> K <:>/1<1—i(kﬂ—IZj

(1+m) (1+a) B l+a Don,

, what is equivalent to the upper bound of the support.

As the diagram clearly indicates this equilibrium is unstable.
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4.4.1.3.

cDm - =1{1+ k—ﬂ(l—ﬂ)j )
DCm 2 7/1(1+m) k(ﬁm—ia)+,8(2+a+m) el . I?<(1+m)
. 1, kA=) (+m)(m-a+g)+p(1+a)
Poen =3 A(1+m)

as above:
I, (CD, M)~ 1, (DC,m) > 0 < APgpy (1+M)+(1=2)[ py (=B) | =K = APpey (1+M) = (1= 2)[ py (-8) ] 20
- J2B(1=A) Py +k+A(1+m) - A(1- i) _1 k- ﬂ(l A)+2B(1-2) py

Peon = 2 (1+m) 2 2 (1+m)
1, ()~ T, ()2 0 & APy (146)~ APeoy (1+) +K 20 & ooy < ﬂg&‘?;fz%u(fm)

Hence we obtain the following phase diagram:

pCDrTl

S

k 1, (CD.M)-I1, (DC.m) =0

Peon

Note: 7+k —A(1- l)<l+ k

2 22(1+m) 2 2i(1+a)

As the diagram clearly indicates this equilibrium is unstable.
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cDm Do = k
"o 2(1+m k _

DDm ( _) A> k_ 1.k <(1+m)
m _1 (1+m)

Poon A(1+m)
I1,(CD,M) = A Peoy (1+ M) + (1= 1) ps(-B) |-k
11, (DD,m)=0
Hm(m):()
I, (M) = Apeps (1+a)—k
I, (CD,M) I, (DD, M) 2 0 & APepy (1+ M)+ (1= 2)[ pp(-8) |-k 20 & peoy ﬁ((ltnj))pm
Hm(m)—Hm(m)ZOQ—lpCDm(1+a)+K20©pCDmsﬁ

Hence we obtain the following phase diagram:

4.4.2.

pCDm

I L.

>

k 1,(CD,m)-T1, (DC,m) =0 l

pCDm

As the diagram clearly indicates this equilibrium is unstable.
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B 1 Bl+a)-k(M-—a+p)
CDm Pocn =7 Bl+a)+(1+m)(m-a+p) B
_ _ 1 1 k(m-—
ggm p 1{ (1+m+K) } K(m-a)+p2+a+m) A( (+1a)>)([§( a+)ﬁ)k( ”
m com T N — — +a m +k(M-—a+
- A 1 1 — _
- B(l+a)+(1+m)(m-a+pB) (1+m)(M-a+B)+B(1+a) 2. k< (T m)(m=a+5)+ Al a)
1| k(M-a)-p2+m+a)
Poom =1+~
Al pl+a +(1+m)(m a+p)
I, (CD, M)~ IT, (DD, M) > 0 <> A[ Pp (1+ M)+ ooy (=8) ]+ (1= 2)[ P (=8) ]~ A Peom (14 @) 2 0 APgp (M=) + A(1= Popm — Poca ) (=B)+ (1= 2)[ Pn (-B8) |2 0=
PN 0 2 BBy +(1=2) Py 2B+ (1=1)PPy B p:* b B
j'pr:Drﬁ( ﬂ) AB+ AP Pocn + ( j~)|:pm :I 0 Peom = A(m—a+/)’) l(rﬁ—owﬂ) (rﬁ—a+ﬂ) Pocm ﬂ(rﬁ—a+ﬂ) (rﬁ—a+/3’) Pocm
I, (CD, M)~ I, (DC,m) 2 0 < A[ Peom (1+ M)+ Poon (—B) |+ (1= 2)[ Pa (-8) |-k - lpDcm(ler) (1-2)[ py(-B)]z 0=
[pcDm 1+m (l pCDl’ﬂ pDCm) } I:pm ] k ;"pDCm 1+m I:pm ]Zoeﬂ'pcom(prm*ﬂ)’lpbcm(l+m’ﬂ)’ﬁ'ﬁ’ﬁ(l’ﬂ) pm’EJrﬂ(l’l) pm20c>
- >M:»DCL"(H—m B)+228+2B(1-2) py+k B 24B+2p(1- /l)pm+k ,b’+(1+m B) el Bk +(1+rﬁ—ﬂ)
Peon = A(1+m+ p) B A(1+m+B) (1jm+ﬁ) Pocn = A(1+m+B)  (L+m+p) Pocn Hm(CD,rﬁ)
r-s Hm(DD’m)_Hm(Dcam)Z()@lpcorﬁ (1+0{) k- A’pDCm 1+m [pm ]20@ Peom = X _f((;;j)) P +((1:::; Pocn "fli(lia)_‘_gisg Pocn =ﬁ,|:pCD,ﬁ (1 n_1 + pDDm :'+ [ ﬂ)}—i
S| 1, (M) =T, (M) 0 APocy (1+)~ APepn (1+@) +k >0 pmgAwm M5 (DD, M) = 2 peon (1+) =k
<t ﬂ.(l+zx)
B (1+m- ) (1+m) Hrﬁ(Dc 'l‘) /lpDCm( )+(1 ﬂ)[ (- ):|
Notethat = op) S (eme ) (1ra) 1, () = 2Pocy (1+ @)
Hence we obtain the following phase diagram: I, (M) = 2peps (1+ @)~k
p("”tﬁ
As the diagram clearly indicates this equilibrium
is unstable. If in the course of the dynamics the
dotted line is crossed, low types start to prefer
not to signal since signaling is not often enough . I, (DD.m) =1, (DC.m)
rewarded by CDm -player and too often pumshed (camm e
by DCm-player. The induced decline in the share k\\X i
of signaling low types will shift all three constraints Ara) F < '_’_:. A
downwards. I
2l+ea)
Poem
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4.6.1.2.

Bl+a)+(1-m-B+2a)k -(1+a)k
Pocn 2(1+a)(m-a+p)
Bl+a)+(1+m+ B)k—(1+a)k
Peon = (T a)(m—a + )
-B+A(M—a+pB)+k -k

. :_(1+a)(fﬂ(mfa)+(a72ﬂfm)E)+((1+m)(mfa+ﬂ)+,8(l+a))g
b 2+ a)(1-2)(M-a+f)
Pn=1-p,

See Appendix B.4

Hence we obtain the following phase diagram:

pCDm

@\

pDCm

We will apply here the same logic as in the case for the equilibrium 4.3.1.2. Consider a perturbation that pushes the population state in the lower
triangular region (red arrow). Given that low types will strictly prefer not to signal, which in turn shifts the intersection point of the iso-profit
lines into the first quadrant relative to the equilibrium. As the picture clearly indicates this will not help to stabilize the equilibrium.
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4.6.1.3.

com | , _ ( B(A(1+m+ B)+K - §) ) pll+a)>
_ CrA((t+m)(M-a+ )+ B(1+a) o  N( =
DDm (I+a)B(M—a+2B8)+(M-a)(m a+ﬁ)k< - L+ M) (Fi—a a
oo | o ﬂ((l—i)(rﬁ—inrf)Jrl(l+a))7(rﬁfa+ﬁ)i s @) (M= s 5) p) (1+m)(m (mt5;+ﬁ(l+ ))K
- = A((l+m)(m—a+ﬁﬂ)+ﬂ(1+a)) (1+a)p(Mm-a+2p)+((1+m)(M-a+B)+B(1+a))k—((1+a)(M-a+B)+B(1+a))k (1+a)(m-a+p)+f(1+a))
il o _ (m—a)(A(1+m+B)+k - B) 28(1+a)(M—-a+f) - (m-a) k
eom ﬂ((l+rﬁ)(m—a+ﬁ)+ﬂ(l+a))

as above

_ NG o MB=BPocy +(1=A)B0s _AB+(1-2)BPn B A B
M1 (CD.M) =I5 (DD.M) 20 & Poos 2 —— o #— = A(m—nwrﬂ? M-aip)™ = A(m-arp) (M-aip)

_ o o APocy (14M =) +24f +2B(1-2) Py +K = _22B+2p(1-2) Py +k - (1+M—p) 0218 B+k  (1+m-p)
M5(CD,m) ~T,(DC,m) > 0 & Peon > A(+m+B) B /1(1+m+33) +(1+m+ﬁ) Pocy = A(l+m+ﬁ)+(l+m+ﬁ) Poca

C=p-2)p, (1om)  =oR-pi-2) (1em)
ﬂ.(l+a) (l+a) ben l(1+a) (1+a) bem
k

ﬂ(]+a)+pDCm

I, (DD,m)-TI1,(DC,m)> 0 < peyy =

I, (M) =TT, (M) = 0 < APpe, (1+ @) = APepn (1+ @) +K 20 = pepy <

B B (1+m-p) (1+m)
Note that (rﬁ—a+ﬂ)<(1+rﬁ+ﬂ)<l<(l+a)'

In comparison to 4.6.1.1. the three lines corresponding to equal profits among the equilibrium strategies shifts such that the equilibrium lies
below the dotted line, which is constant with respect to changes in the share of signaling low types.
Hence we obtain the following phase diagram:

pCDm

pDCm

As the diagram clearly indicates this equilibrium is unstable. If in the course of the dynamics the dotted line is crossed, low types start to prefer
to signal since signaling is often enough rewarded by CDm -player and not too often punished by DCm-player. The induced incline in the share

of signaling low types will shift all three constraints upwards.
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4.6.2.

CDm kK K (m-— 1 m — k
DD pcm—/1 1+a) ((T+Z);/B)</1<l :B( +a)>(m a+ﬂ)
DDm (M-a) &
m pDDm ﬁ /1(1+a)
(M-a+pB) k
pDDm 1 ﬂ l( +a)

1
m m(1+m)+ pDDm(_/B):I"'(l_ﬂ)[pm (_ﬂ)]_kifﬂpwm(l*'a)*'?zoc’}":pcm(m_a)"'(l_ Peom — pDDm)(_ﬂ)JZ(I_A)ﬁprﬁ =
7>(1_l)ﬂpm+ﬂ“(l_popm)ﬂ_ l—ﬂ)ﬁpmi-/lﬁ ﬂ Pm_:(‘ ﬁ ﬁ

Am-atf)  AMm-atf) (m-atp) " T (m-a+p) (m-atp) "
M, (CD,M)~T1, (DD, M) > 0 < A[ pegp (14 M) + Popn (—8) |+ (1= A)[ P (~8) ]~k =0 A Peogy (1+M)+ (1= Peon = Poon ) (=) | 2k +(1=2) By <
k+(1—/1)ﬂpm+/lﬂ_ Yij w0 k+ A8 B B

Peem A(1+m+B) (1+m+p) Pops = A(l+m+p) (1+m+p) Pob _

B _ K Hm (CD’m)=l[pCDm (1+m)+ Poom (_:B):|+(l_l)[pm (_ﬂ)]_k
I, (DD,m)—I1(DD,m)> 0 < APy (1+a) -k 20 pepp 2 ——— _

A(l+a) I1, (DD, M) = APy, (1+a)—k

nm(m)*nm(m)ZOQ7ﬂpCDm(1+a)+KZO<:>pCDmSm Hm(DD,m)ZO
Note: — f >—— B Hm(m):o

(1+m+p8)" (m-a+p) I, (M) =Apepy (1+a)—k
Hence we obtain the following phase diagram: B

pCDm

AN 11, (m) =11, (m)
k ™ I1,,(DD,m) =11, (DD, m)
l(l+0{) \ K

pDDm

Since the phase diagram is ambiguous with respect to stability we will study the Figenvalues of the linearized system.
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s -
ATT, (CD,m)=A(1+m)s AIL,, (CD,m) =~4(B)¢
ATL, (DD, )= A(1+)e All, (DD, m)=0
AT, (DD,m)=0 All,, (DD,m)=0

payoff monotonicity

hence p;, , Tand ppp , V= f?>0 hencepgy, . Poom =Poom 1= fi>0

fProfP
hence | ° U e 0
fr £ >0

Hence at least one of the Eigenvalues is strictly positive and therefore this equilibrium is unstable.

=
»(DD,M)=I1g(DD,m)=ppp m=Pop.m

4.7.1.1

CDi Lk<(l+a)
m L.k 2.p, < A(M=a) | e that 2. is only binding if:
m Peom =1 = (1+a) (1-4)
- ﬂ(m_a)<l<:>i< s p= K < i
(1-2)p (M-atp) (I+a) (m-a+p)
I1, (CD,M) = A Peoy (1+ M) + (1= 2)[ pa(-8) |-k
ﬂm(m):O Peom 11, (m)-T1, () =
1, (M) = APen (1+ @) =k . ]g . e
Hence we obtain the following phase diagram: H(1+a) <_T <—T
1 (CD.M) <1, ()= - (14 m) K+ (1) 2 (-5)]
(1 (€0.m) 11y () = 5 =K -2 ()]
As the diagram clearly indicates this equilibrium set is stable. A(m—a) Py
Any perturbation induces a drift towards the separating equilibrium Py, =1, p; =0. (1-1)p
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Do K

o /1(1+CT()

DDm Poon =1—-—7——— __ —

- A(1+a) K <;L<(m_a+15) k 1. (1+a)p>(M-a+B)k
_(m-a+pB)k-2(1+a)B 1 1 2.k<(1

I s )" (e k<(1+a)
(+a)p-(M-a+p)k
" (1-)(1+a

4.7.1.2.

M) =TI, (DD,M) 2 0 < A[ Popy (14 M)+ Pom (=) |+ (1= 2)[ P (=8) | =K = APcom (1+ @) + K 20 4] Pepy (M=) + Popn (=B) ]+ (1= ) pn(-B) ]2 0=
L AB=(1-2)Bp,

Pcor = —
A(m-a+p) Pepm
k
1, (m)-I1, (m)=>0 o < =
T(f) nj( ) = pCDm /’L(l"’a)
, . . . s
Hence we obtain the following phase diagram: e+ ) T T_,
k
A (1 n a:) T -TLCH =0 " 1
- ./’)0'Y
/\17'"/'0[)
s
As the diagram clearly indicates this equilibrium is unstable. Dy
"
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Derivation of p-equilibria

B.4

SEPARATING-EQUILIBRIA

pes don’t (HSE - high separating equilibrium

es sional, low

High

1.

Pyvm =0, P, =1 (only high types signal) 0 < A <1,M>a

E
5 3

+ o o
[ + +

I

+ § 8
Z o o
N N
E 5 + +
O O —_~
o o g g
+ + + 4+
I3 IE — —
9] O ~— —
(8] O —~
o o o (=]

—~ o~~~

I m,, m,,
O o o Q
O

O a A
= & E ®
E E E E

~— — ~
,Aﬂﬂ

= /1[(0)(1 +m)+(0)(1+a)+(Peom + Poom )(0) + (0)(—ﬂ)]+ (1-2)0=0

R [T
eEE T ®
O QO o 0o
O O o 0O

~— ' —

[ [ [ IE
E E E E
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low types: high types:
Hm(m)zl[(pccm"'pcom)(l"'a)"'(pocm"'pDDrﬁ)O]"'(l_/l)o_K Hm(CD,m):l[(pCDm)(l+rﬁ)+(pDDm)(—ﬂ)]—IZ
M) = 2| (Peen + Pocm )1+ @) +( Peom + Poom +(1-4 itez;ion Hm(DD,rﬁ):ﬂ,[(pCDm)(1+a)]—|Z
Ty ()= A (Pecn * Pocn ) (1+ @)+ (Peon + Poon)0J+(1-2)0 2 I1,,(CD,M) = A[( Pegy + Poon ) (—8)] = 48 <
Hm(m):ﬂ[(pcnm)(1+a)+(pDDm)O]_K:ﬂ[(pcom)(”a)}_K M, (DD,m)=0
IT, (m) =0 low types:
= Hm(m)=ﬂ“|:(pcom)(1+0[)]_K
Hm(m):O

For a separating equilibrium where high types send the signal and low types don’t there are only two not dominated strategies left, CD,m and DD, m

,i.e. Peom t Poom =1, hence CD,m is strictly dominated by DD, m in such an equilibrium.

1.1, Let’s first analyze the case Pepy =1, P, =1 :
CD,, > DD,,, always satisfied @)
k )
CD,>~DD, © A2 —— (ii)
N I+m
_ K
m-moids—, (iii)
I+«

Note that since K > E, M > & the lambda support for this equilibrium is not empty. Intuitively there need to be sufficiently many CD players

such that it is worthwhile to signal for high types, but not too many to deter low types from also signaling.

1.2.  Let’s now analyze the case Pppy =1, P =1:

DD, m strictly dominates all other strategies, hence such an equilibrium cannot exist.
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1.3.  Finally, Pepm + Pppm =1 such that both strategies are played:

Poom=1-Pcom

I, (CD,M) = A (Peom ) (1+ M) +( Popm ) (—B) |~k = A[ (Peom ) (1+ ) |-k =TT, (DD, M) <

__ P
pCDm_m—a-’-ﬂ
AB+k .
CD. ~)DD_ - DD >
(CD, ~)DD,, > DD, < Pepy 2(1+m+ f) (i)
Mo Mo o <—% i
— CDm_ﬂ,(l-l—O{)' ( )
p_, ik, (Math)y iy

At Pepn = —— _a:@Dm_a+ﬂ‘AU+m+ﬂf© - p(+a)

B k (M—a+p) "
W g a(va) T plira) & (i

To summarize:

equilibrium Lambda-support Conditions for Existence
Peom =1 Py =1 k <1< k k<l+m
1+m 1+«
m-a M—a+f)— M—a+ _
pCDm:_LapDDm:_—a pmzl Mk SESMK k<—'8(1+a)
M+ -« m+ [ -« B(l+a) B(l+a) (M—a+p)
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2. High types don’t signal, low types signal (I.SE — low separating equilibrium)

Pyvm =0, Pry =1 (only low types signal) 0 < A <1,M> ¢«

M, (CC,M) = 2| ((Pecg + Peon )(1+M) +(0)(1+ @) +(0)(0)+ ( Pocy + Poon )(~B) |+ (1= 2)(=B) -k <I1,(DC,m
M, (CD,m) = A[ (0)(1+ M)+ (Pecy + Peon )(1+ @) + (Pocn + Poon )(0) + (0)(=) |+ (1- 2)(-B) -k <I1,(DD,m
I, (DC,m) = [ ( Pocy + Pepg ) (1+ M)+ (0)(1+ ) +(0)(0) + ( Pocy + Poon ) (=) |+ (1= 2)0—k
Hm(DD,m):/l[(O)(Hm )+ (Pecn * Peom ) (1+ @)+ ( Pocn + Poom )(0) +(0)(—,8)]+(1—/1)0—E

I, (CC,m)= /1[( Pecn + Pocy )(1+ M) +(0)(1+ @) +(0)(0) +( Pepy + pDDm)(_ﬂ)]+(1_/1)(_/3)<nm(Dc m
nm(co,m):z[(o)(um) (Pecn *+ Pocn ) (1+ @) +( Peom * Pooy )(0) +(O)(—ﬁ)]+(1—/1)(—ﬂ)<Hm(DD m
Hm(DC,m):/l[(p e + Pocy )(1+ M) +(0)(1+ ) +(0)(0) + ( Peom + Poon )(— ﬂ)]+(1—/1)0
Hm(DD,m):/1[(0)(1+rﬁ)+(pCCm+pDCm)(1+a)+(pCDm+pDD )(0 +(0)(—,8)]+(1—/1)0

M, (M) = 2] ( Pecn + Peon ) (1+ @)+ Pocg + Popn )0 |+ (1= 2)0—k

Hm(m) = /1[( Peem pDCm)(l+a)+( Peom + pDDm)O]+(1_/1)O =

I, (M) = 2] 0(1+ @) +( Pocy + Popn )0 |+ (1= 4)0—k = -k <

M, (m) = A[ ( Pocn ) (1+ @) + ( Poon )0 |+ (1= 2)0 = A[ ((Pocy )(1+ @) |

m is strictly dominated for low types implying, that such an equilibrium cannot exist.
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POOLING_EQUILIBRIA

1. High types and low types don’t signal (NSPE — no-signal pooling equilibrium)

Pyvn =0, Py =1 (all signal m, i.c. nobody signals) 0 <A <1,M> ¢
M) = 2] ( Pecn + Poon ) (1+ M)+ (0)(1+ @) +(0)(0)+ ( Pocy + Poon ) (=) |+ (1= 2)(=8) ~K = A[ (Pocw + Peom ) (1+ M)+ Poca + Poon ) (=) |+ (1-2)(-8) -k
A[(pccmpwm (1+m+f)]-p-k
) = A (0)(1+) +( Pecn + Peon ) (1+@) +( Poca + Poon ) (0)+(0)(=8) |+ (1= 2)0~K = 4 (Pecn + Peon ) (1+a) | =K
M) = 2] (Pecn + Peon ) (1) +(0) (1+)+(0)(0 )+(pDCm+pDDm)(—,B)]+( )( B) =k = 2] (Pecn + Peon ) (1+ M)+ (Pocy + Pooy ) (=8) |+ (1= 2) (-8) -k
A[(pccmpwm (1+m+p) |- p-k

l[ )(1+m)+ DCC + Peon )(1+a)+(pDCm+pDDm)(0)+(0)(—/5’)J+(1—ﬂ)0—E:ﬂ[(pCCm+ pCDm)(1+a)J—E

(Pecn + Poca ) (1+ M) +(0) (1+@)+(0)(0) +( Peon *+ Poom ) (=8) ]+ (1= 2)(=8) = A (Pecn + Poca ) (1+ M)+ Peon + Popn ) (=8) |+ (1= 2) (=)
(pCCm+pDC m"'ﬂ):l‘ﬂ
(0)(1+M)+( Pecn + pDCm)(l+oz)+(pCDm + pDDm)(O)+(0)(—,B)]+(1—/1)O:/1[( Pecy + pDCm)(1+a)J

(l+a

)+(0)(0)+< Peom *+ pDDm)(—ﬁ)]+(l—ﬁ)(—ﬁ): ’1[( Peem + pDcm)(l+rﬁ)+( Peom + pDDm)(—ﬁ)J+(1—ﬂ)(—ﬂ)
:ﬂ’[(pCCm—i_ pDC 1+m+ﬁ):|_ﬁ

(DD,m) /1[ )(1+ M) +( Pecn + Pocn )(1+a)+(pwm+pDDm)(0)+(0)(—ﬁ)J+(l—l)0=ﬁ[(pCCm+pDCm)(1+a)]

m(m):l[( Pecn + Peom ) (1+ @) +( Ppon + pDDm)0J+(1—A)0—K=ﬂ,[( Pecn + pCDm)(1+a)]—K
m(m):l[( Pecn + Pocn ) (14 @) +( Popm + pDDm)OJ+(1—/1)O:/1[( Pecn + pDCm)(1+a)J:
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(CC.m) = A[ (Pecn + Peon )(1+ M+ B) |- B-K = 2| (Pocn * Pocn ) (1+ M+ B) |- B I, (M) = 2[ ( Pegn + Peon ) (1+ @) |-k

MM, (CD,M) = 4| ( Pecy + Peon ) (1+ @) |-k M, (CD m)= [ (Pecn+ Poca ) (1+ ) | 1, () = A ( Pocn + Pocn ) (1+) |
M, (DC.M) = A[ ( Pecy + Peon )1+ M+ B) |- B—K DC.m) = 2[ (Pecn + Pocy ) (1+ M+ B) |- B

I1,(DD,m)= 4 [(pCCm+pCDm)(1+a)]—E (DD m)=1 [(pCCm+pDCm)(1+a)J

Note that in a pooling equilibrium where nobody sends the signal, CC and DC (CD and DD) will always earn the same profits irrespective of the

chosen signal and the particular composition. Since those pairs are indistinguishable we only have to consider the following cases:

129

1.1.

1.2

Consider first the case pge, + Ppey = 1,( Peom + Poom = 0):
S S S
CC,/DC,~CC,/DC,, CD,/DD,~CD, /DD, and M>M since Pepy = 0

CC,/DC,~CD, /DD, < 42 ﬁ , since CC_ /DC,>CD,/DD,>~CD,/DD,, A2 (ﬂ-l-,‘%) is necessary and
. . . . M—oa+ . . : . -a

sufficient.

Consider now the case Pcom + Poom = 1,( Pecn + Pocn = O):

CCm / DCm < CDm / DDm , since pCCm + pCDm =0

b

CD, /DD, - CD, /DD, <> A( pCDm)S—k @)
- - - 1+a

CDm/DDm>Ccm/DCm@,1(pCDm)s—ﬂ_+k (ii)
N N o 14+m+ g




130

Appendix to Chapter 3: Derivation of p-equilibria

rD*m@/l(Pcom)Sm- (i)
k

k k
Note that —— > > ——
l+a l1+a 1+m+p

i.e. (i) implies (iii), hence necessary and sufficient is

k+p _ —
[ K+p K L[ kK+ep K1 +m+ﬂ’(”“)ﬁ<(m‘“+ﬂ)k
/1( pCDm) <min — , & Pepy < —min — , =— _
- l+m+p l+a - A Il+m+p 1+« /1

<~

(1+a)B>(m-a+pB)k

l+a
KB (ea)p<(m-a+ Bk

k+p IZ rﬁ

! min ,
{1+rﬁ+ﬂ 1+a pCDm

Pcom

1+a),8>(m a+p)k

k+p k }@/13
1+a

l(pCDm)Smm{Hmjtﬂ’Ha

k_;ﬂ, (l+a)B<(M-a+pB)k
For this constraint to be binding we need to have: 4 > I+ rE"' B
——, (I+a)B>(M-a+p)
l+a

=1

1.3. Consider finally pCDm + pDDm + pCCm + pDCm

B

L.e. all no-signaling strategies earn the same payoff:
M—a+f)

(pCCm + pDCm)(l"'m"‘ﬂ)_,B:/l(pccm + pDcm)(l"'a)@ﬂ(pccm + pDCm)
(

In this case necessary and sufficient is, that any of the no-signaling strategies is better than any signaling strategy, necessary and

sufficient for this is:
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CC,/DC,>CC, /DCy <> A( Peom — Pocn ) S ————
CD,, / DD, > CD,,/ DD, < A( Pepm — Pocn ) <

m>m@ﬂ(pCDm_pDCm)S;

I+a
Maximal support: l( Pecm + pDCm) :L under the constraint /1( Peom — pDCm)S K , note that the maximal support is given if
. "o (M-a+ B) . " l+m+ B
Peem + Pocn has maximal support, ie. Peey + Ppen € (0,1) , consider Ppp, :1—( Peem T+ pDCm) and Pepy, =0, then the constraint will always be
satistied and we get the support _L <A<l
(M—a+p)
To summarize:
Equilibrium Lambda-support
pCCm + pDCm = 19( pCDm + pDDm = O)a pm =1 ﬂ Z IB
(B+m-a)
ot P =H(Pe +Peea =0) P01 | 0 (g K
I+m+ 4 1+«
Peom * Poom + Pecn + Pocn =1 Py =1 B k
- - - - - A + = > A m m <
(pccm pDCm) (M-a+f) (pcof pDCf) 1+m+ 3
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Lambda-support Equilibrium
A= L { Pcems Pocms Pm| Peem + Pocm = 1,( Pcom + Poom = 0)’ Pn = 1}
(B+m-a)
as—B Peom Pooms Pecms Pocns Pu| Peom + Poon + Pecn * Pocn =1,
(B+m-a) 1. B k
= — < =
(pCCm"'pDCm) /l(rﬁ—a+ﬁ)’(pCDm pDCm)—ﬂ(1+m+ﬂ):pm

2. {pccma Pocm» pm‘ Pcem t Poem = 19( Pcom + Poom = O), Pn = 1}

/16(0,1)

1 . | k+ k .
{pCDm’ Poom> pm‘ Pcom + Poom =la(pccm *+ Pocm =0), Po =1, Peon Szmm{l—l—mfﬂ’lﬁ-a}}’ Le.

Pepm < — min K j'B s k is only binding if 4 > max 1+_m+ﬂ ,lta
A l+M+f 1+« k+p k
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2. High types and low types signal (SPE — signal pooling equilibrium)

Pyym =0, Py =1 (all signal m) 0<A<1,M>a

Hm (CC,I’ﬁ):/l Pcem t Peom (1+m)+(0)(1+a)+(0)(0)+(pDCrﬁ + pDDm)(_ﬂ)]-}_(l_ﬂ)(_ﬂ)_E:ﬂ’[( Peca pcom)(1+m)+(pDcm+ pDDm)(_ﬂ):|+(1_}b)(_ﬂ)_E

/—\

=]
|w]

(o]

+
=]
]

O
SN—
—_

(e}
S—

+
—_

S
~—

|

)
~—

+
—_

—

|

N
~—

(e

|
Il
RN
1

—_

o
(@)

(o]

3l

+

o
o
o
~—
—

—
+
N
~—
|

o) (1) +(0) (1+ @) +(0)(0)+(Pocs + Poon ) (=) ]+ (1= 2) (=8) =k = [ (Pecn + Peom ) (1 M) +( Pocn + Poom ) (=5) |+ (1=2) (=) -k

m 1+m)+(0)(1+a)+(0)(0)+(pcnm + pDDm)(_ﬂ)]_f—(l_ﬂ”)(_ﬂ):ﬂ[( pccm + pDCm)(l+m)+(pCDm + pDDm)(_ﬂ)]"'(l_/l)(_ﬂ)

) (1) (0)(1+a)+(0)(0)+(Peon + Poon ) (=8) ]+ (1= ) (=8) = A[(Peca + Poca ) (1+ M)+ ( Peon + Poon ) (=) ]+ (1-2) (=)

11, (DC,m) = A[ (0)(1+ M)+ ( Pecn + Pocn ) (1+ @)+ (Peom + Poom ) (0)+(0)(=8) ]+ (1= 2)0 = A[ ( Peen + Pocn ) (1+ @) ]
Hm(DD,m):l[(O)(1+m)+ Pecn + Pocm ) (1+ @)+ ( Peom + pDDm)(O)+(O)(—ﬂ)}+(1—A)0=ﬁ[( Pecm + pDcm)(lﬂzﬂ
Hm(m):ﬂ[(pccm“‘pco )(1+a)]_K
Hm(m):}“[(pccm"‘poc )(1"'0‘)}
I, (CC,m)=2 [(pCCm"‘pcom)(l“'m"'ﬂ):'_ﬂ_E Hm(cc’m):/l[(pCCm+pDCm 1+m+ﬂ)] Hm(rﬁ)=/l[(pccm+pCDm)(1+a)]—K
Hm(CDam): |:(pccm+pcom)(l"'m"'ﬂ)]_ﬂ_E Hm(CD,m)= [(pCCm+pDCm 1+m+ﬂ):| Hm(m) ﬂ'l:(pcm"' pDCm)(l+a):|
Hm(DC ) /1[ pCCm+pCDm)(l+a):| k Hm(DC /1[ pCCm+pDCm 1"'0‘)]
I, (DD, M) = A[ ( Pocn + Peom ) (1+ @) |-k I, (DD, m) = A ( Pecn + Poen ) (1+ ) |

Note that in a pooling equilibrium where everybody sends the signal, CC and CD (DC and DD) will always earn the same profits irrespective of the

chosen signal and the particular composition. Since those pairs are indistinguishable we consider the following cases:
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1.1.

Consider first the case Pegy + Popm = l,( Pocm + Poom = 0)'

k
CC_./CD,_ >=CC,/CD, < A(Peyy ) i
m m>_ m m<:> (pCDm) 1+m+ﬂ’ (1)
CC./CD, »DC, /DD, < i>—P (i)
(m—a+ﬁ)
CC, /CD, = DC, /DD, < A>— Pk (i)
" . M—a+ B+(Pepm ) (1+ )
M>Me A(Pepn )2 —— S A2 k
- bm 1+« Pcom (1+a)

(iv)
Note that (iv) implies (i); for (iv) to be satisfied a strictly positive share needs to play CD; note further that (ii) and (iv) imply (iii) because
k k

B S S T S PO A>— Pk >
l+a 1+« M—a+ B+ (Peom )(1+)

B+k

A= — = — hence for
Peon (1+ @) (M-a+p) M—a+ B+ (Peom )(1+2)

A > max K , 'f such an equilibrium exists.
Pcom (l+a) (ﬂ+m_a)

1.2 Consider now the case Ppcq + Popm = 1,( Pcem + Peom = 0)'

This cannot be an equilibrium since low types strictly prefer not to signal.

1.3.  Consider finally Peen * Pepm + Poen + Poom = 1
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L.e. all signaling strategies earn the same payoff, i.e. ﬂ,( Pecm + pCDm) = ﬁ In this case necessary and sufficient is, that any of
m— o+
the signaling strategies is better than any no-signaling strategy, necessary and sufficient for this is:
CC,/CDh,~CC_/CD A > K i
n/CDy >CC,/CD, & (Pcom—pmm)—m, @

DC,, /DD, > DC, /DD, < A( Pepn — Pocn ) = ,

. (i1)

m>—r_n<:>j’(pCDm_pDCm)Zm (iv)

Note that (ii) implies (1) and (iv) implies (ii), hence for ﬂ,( Pcom — pDcm) > K

such an equilibrium exists.

To summarize:

Equilibrium Lambda-support
mt m 1’ m + m = 0 9
Pcem + Peom ( Poc Poo ) ll > max k — p
Peom (1+ ) (M—a+ B)

Maximal lambda support is given by setting Pepy =1 ; the larger lambda the smaller Pgpy can get.
A > max K , e
l+a (f+mM-a)
K

_ i(pccm_'_ pCDm):ﬁa ﬁ“(pCDr’n_ pDcm)ZE

Pecm T Peom T Poem + Popm = 1, Pr 7
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Equilibrium Lambda-support
G B K
(rﬁ—a+,8) Pcems Pocms pm| Pcem * Peom :la( Pocm t Poom :0)’ Pa =1, Peom Zm
A necess ndition for Py, = K to be feasible is A > K
cessary co on fo _>—=—t0 a >
v o = 1+ a) (1+a)
B B

A> (rﬁ—a+,8) the two L. {pCCm’ Pcom> Pocms Pooms pm| Pecn * Peom + Pocn + Poom =L Py = 1’( Peem + pCDrﬁ): m—

equilibria are indeed different

K . K
for(pCDm—pDCm)Zm to be feasible we need rﬁ—£+ﬁ21;a'
2. Peen + Peom =L Pocn + Poom =0). Py =1 P 72L
CCm CDm DCm DDm m CDm yi (1 + OC)
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SEMI-POOLING-EQUILIBRIA

We will turn to the analysis of equilibria where only parts of high types or low types signal.

Before we start we will have a closer look on the payoffs for various strategies and their differences. This will significantly simplify the analysis. The
following table gives the payoffs for each strategy:

T, (CC.M) = 4| ( Pecn + Peon + Pecn + Peon ) (1+ M)+ Pocn + Poon + Poca + Poon ) (=8) |+ (1= 2)[ by (=B)+ Py (=8) ] -K
Hm(CD,m)z/l[(p en + Peon ) (1+ M)+ (Pocn + Peom ) (1+ @) + ( Pocs + Poos ) (- )J+(1 ) P (=8)]-k

[, (DC,M) = 2] (Pecy + Peon ) (14 M)+ (Pecn + Peon ) (1+ @)+ ( Poce + Poon ) (=5) |+ (1= 2)[ P, (<) ]k

T, (DD, M) = 2 (Pecs + Peon + Pecn + Peon ) (1 @) |~k

[ (CC.m) = 2] (Pocn + Pocn + Pecn *+ Pocn ) (1+ M)+ Peor + Poom + Peon + Poon ) (<) |+ (1= 2)[ B (=8)+ s ()]
M, (€D,m) = A[ (Pocn + Pocn ) (1+ M)+ ( Pecy + Pocy ) (1+ @) + (Peon + Poon ) (=B) |+ (1= 2)[ s ()]

M, (DC,m) = [ ( Pecn + Poca ) (1+ M)+ (Peca + Pocn ) (1+@) +( Peon + Poon ) (—8) |+ (1= 2)[ Py (-8) ]

M, (DD, m) = A[ ( Pecn + Pocs *+ Pecn + Pocn )(1+ @) |

I, (m) = /1[( Peem + Poca + Peen + pocm)(1+0€)i|
I, (m) = ﬂ'|:( Peem + Peom t Peem + pCDm)(Ha)J— k

It will be useful to calculate differences among strategies with different behavior but the same signal and among strategies with different signals.
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(1) Within-differences:
M, (CC,M) =TT, (CD,M) = A (Pecy + Peon ) (M=) +( Pocy + Poon )(=8) |+ (1= 2)[ Py (-8) ]
M, (CC,M)~I1,, (DC,M) = A[ (Pecn + Peom ) (M=) +(Pocn + Poom ) (=4) |+ (1= 2)[ Pa (-£) ]
M, (CC,M) =TT, (DD, M) = A[ (Pecn + Peom + Pecn + Peon ) (M=) +( Pocn + Poom + Poca + Poon ) (=8) |+ (1= 2)[ Pn (=8)+ Py (-8) ]
M, (CD,M) =TT, (DC, M) = A[ ( Pecn + Peon — Pecn — Pepm ) (M +(p pDDm—pocm—pDDm)(—ﬂ)}(l—l)[pm(—ﬂ)—pm(—ﬂ)]
M,, (CD, M) ~I1,, (DD, M) = A[ ( Pecy + Peon ) (M=) +(Poc + Poon ) (=) |+ (1=2)[ Py (- ]
[, (DC,m)~IT, (DD, M) = [ ( Peeq + Peon ) (M= )+ ( Poca + Poon ) (=) | +(1-2)] Py (-8
M, (CC,m) =11, (CD,m) = A[ (Pecn + Pocy ) (M= )+ ( Peon + Poon )(=8) |+ (1= 2)[ Pa (-8) ]
I, (CC,m)~T1,, (DC,m) = A[( Pecn + Poca ) (M= &)+ (Peon + Poon ) (=) ]+ (1=2) [ Pa (-5) ]
1, (CC,m)-I1, (DD,m) = ﬁ[(pccm+pocm+pccm+pm) &)+ ( Peom + Poom + Peon + Poon ) (—B) |+ (1= 2) P (=B) + Py (-8)]
M, (CD,m) =TT, (DC,m) = A (Pecn + Pocn — Pecn — Poca ) (M=) +( Peom + Poom — Peon = Poon ) (=8) |+ (1= 2)[ Pn (=8) = Py (-5) ]
I, (CD,m)—T1, (DD, m) = [ ( Pecn + Pocn ) (M ) (pcom+pDD -p)]+(1- A[pm ]
1, (DC.m)~I1,, (DD, m) = [ ( Pec *+ Pocn ) (M=) +( Peom + Poon ) (=) |+ (1
(2) Cross-differences:
T, (M) =TT, (M) = 2| ( Peon + Peon — Pocn — Pocn ) (1+@) |-k
M, (CC,m)-I1, (CC,m) =4 (1+m+ﬂ)[(pw + Poom — Pocn — Pocn ) |~ K
M, (CD, M) ~T1,; (CD,m) = A[ ( Peom — Pocn ) (1+ M+ )+ ( Peon — Pocy ) (1+ @) |-k
I, (DC. M)~ T, (DC.m) = 2[ (Peo 0) (14 @) +( Popn = Pocy ) (1+ M+ B) | -K
Hm(DD,m)—Hm(DD,m)—ﬂ(Ha)[( Peon + Peon ~ Pocn — Pocn ) | =K

All other differences can be expressed by the within-differences and the four cross differences above.
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Observation 1:
(DD,M)~I1,, (DD, M) +2( Peon ~ Poca ) (M~ + B) =1, (CC, M) ~T1,, (CC.m) = A( Peom ~ Pocn ) (M=t + )
(DD, M)~ I1,, (DD, M)+ Z( Pepm — Pocy ) (M—a + f) =1, (CC, M)~ 11, (CC.M) ~ A(Peon ~ Pocn ) (M~ + 5)
(bC (DC.M)+2( Peom + Pocn ~ Peom ~ Pocn ) (M—a + )
() IT, +
A consequence of (i) of observation 1 is that whenever low types are indifferent in an equilibrium between signaling and not signaling, high types

strictly prefer to signal over not to signal given unconditional defective behavior. Put differently, if unconditional defection with and without signal is
part of an equilibrium, then low types will prefer not to signal in such an equilibrium.

Observation 2:
) IT,(CC,m)-II
@  II,(CC,m)-II,
(i)  Corollary: I, (CC,m)+I1, (DD, m) =11, (CD,m)+II,(DC,m) ; I, (CC,m)+II,(DD,m)=II,(CD,m)+II, (DC,m)

note that differences depend only on non-signaling shares

Implication:

If within the 4 signal or 4 non-signal behaviors 3 strategies earn the same profit then all 4 strategies earn the same profit. Hence, as a first
consequence, there ate for each of the cases signal/ no signal only three possibilities: either all 4 strategies earn the same payoff, 2 equal profitable
strategies earn strictly more than 2 others, or a single strategy earns more than all others.

If we look at the corollary of observation 2 that the sum of profits for unconditional strategies must equal the sum of profits for conditional strategies,
then both conditional can only earn the same profits in equilibrium if the two unconditional strategies earn the same profits too, i.e. all 4 strategies
earn the same, otherwise the two unconditional (conditional) strategies must be dominated by one conditional (unconditional) strategy. Furthermore
this dominating strategy dominates the second condition (unconditional) strategy. Hence either all strategies earn the same profits or a conditional an
unconditional strategy earn the same (highest) payoffs or a single conditional/unconditional strategy earns the highest payoff. The following Lemma

summarizes.
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Lemma: For each signaling strategy (signal/ no-signal) the table below gives all possible behavioral combinations that could be part of an equiilbrium.

unconditional versus conditional
1. CC=CD ; DC=DD 1.1. CC=CD=DC=DD
1.2. CC=CD>DC=DD
1.3. CC=CD<DC=DD
2. CC>CD ; DC>DD 2.1. CC=DC
2.2. CC>DC
2.3. CC<DC
3. CC<CD ; DC<DD 3.1. CD=DD
3.2. CD>DD
3.3. CD<DD

Table B-1: possible cases for signaling / no signaling

Proof: whenever CC and CD have a strict payoff relation, so do DC and DD, hence either CC/DC and CD/DD have a strict payoff relation or all
four strategies earn the same profit. In the former case there are three possible relations among the dominating pair: either the relation is strict, then
we have the situation of an unique behavior or they could earn the same payoff. Hence either all behavior earns the same payoff, a pair of conditional
and unconditional behavior (CC/DC or CD/DD) earn the highest payoff or any unique behavior earns highest payoff.

If we neglect for a moment that for a given signal all 4 behaviors are part of a semi pooling equilibrium then following the lemma above, the table
below gives all possible combinations of strategies in a semipooling equilibrium.

CC,m DC,m CC,m/DC,m CD,m DD, m CD,m/DD,m
CC,m N (2) N (2.
DC,m N (7.) N (3. N (3.
CC,m/DC,m N (2) N (3. N (3. N (6.)
CD,m N (4.) N 4. N (5. N (5.
DD, m N (4.) N 4. N (5. N (1. N (5.
CD,m/DD,m N 4. N 4. N (5. N (5.

Table B-2: N — cannot exist; for colored cells low types don’t signal, because either CD,m and CD, M are not played (blue) or DD, m ecarns highest payoffs (gray) (see 8.-9.)
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However, if we have a closer look at the respective differences we can significantly reduce the number of possible combinations.

I.Hm(DD,rﬁ)—H (DD,m)=A(l+a )L(pCD +pCDm—pDcm—pD0m)J—E=—E<o
(CC m) I ( ) /1(1 m+ )[(pconﬁ"‘pcom_pocm_pbcm)}_lzz_lz<0
3.Hm(DC,m)—Hm(DC,m)zl[(pCDm—pDcm)(1+a)+(pCDm—pDCm)(1+rﬁ+ﬁ)]—E=ﬂ[(—pDcm)(1+a)+(—pDCm)(1+rﬁ+ﬂ)]—l?<O

Pccm + Pocm =0

411, (CC,m)—T1, (DC,m) = A[ ( Pecn + Pocn ) (M=a)+(Peon + Poon ) (=8) |+ (1=4)[ P (-B)| < 0
2 0= Pecp + Pocn > 0

Pccm+ Pocm =0

511, (CD,m)—TI, (DD,m) = A[ ( Pecn + Pocn ) (M=a) +(Peom + Poon ) (=8) |+ (1=4)[ P (-B)] < 0
I1,(CD,m)-I1, (DD,m) > 0= Pecyy + Pocn >0

9.IT, (m)—Hm (m) = l[( Pcom + Peom — Pocn — pDCm)(l—l-Ot)]—K , hence if neither CD,mM nor CD,M is played then low types strictly prefer not to

signal, i.e. P, =1.
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Observation 3:

I, (XY, m)—IT, (XZ,m)=f (pCCm, Pcom> Pocms IODDm) X,Y,Ze{C,D},me{m,m},Y #Z and

IT, (YX,m)—TI1,,(ZX,m) = f ( Pecms Peoms Pocns Poom ) X,Y,Ze{C,D},me{m,m},Y =Z

Before we turn to the 14 remaining cases of table 2, we check for semi-pooling equilibria that contain all 4 behaviors for at least one signal.

1. All 8 strategies are played by high types (4 vs. 4)

11, (DD,m)-I1,, (DD, m) :/1(1+a)[( Peom + Peom — Pocn — pDCm)}—k

Due to _ there cannot be an equilibrium such that both equations are
I, (CC,m)-I1, (CC,m)=A(1+m +,B)[( Peom + Peom — Pocm — Poca )J— k

satisfied, required for an equilibrium where all strategies earn the same profits.
2. All four signaling strategies earn same profit, i.e. I, (CC,m)=1I1,(CD,m)=I1, (DC,m)=1I1,(DD,M) (4 versus 2/1)

2.1. CC,m/DC,m/CD,m/DD,m vs. CC,m/DC,m,ie. I (CC,m)-II,(CD,m)=II,(DC,m)—II,(DD,m)>0 *)

2.1.1. I1,,(CC,m) > 11, (DC,m)(>I1,, (DD, m))

Hm (CC,m)—Hm (CC,m):/l(1+m+,B)[( Pcom + pCDm ~ Pocm — pDCm):|_k =0=
Hm(DD,rﬁ)—Hm(DD,m):/I(Ha)[( Peom + Peom — Pocn — pDCm)]—E<O

cannot be part of the equilibrium, cannot earn the same profits as CC, M. Therefor such an equilibrium cannot exist.

CC,m/CC,m earn same profits, i.e.

2.1.2. I1,,(CC,m) < I, (DC,m), i.e. Pecp = Peom = Ppom =0
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M, (CC,m)~I1,, (CD,m) =TT, (DC,M)~T1, (DD, M) = 4| ( Pocy ) (=B) |+ (1=2)[ Py (~B) |=0 is violated if Pooy >0 which is
necessary for a semi-pooling equilibrium.

Therefor such an equilibrium cannot exist.

2.2. CC,M/DC,m/CD,M/DD,M vs. CD,m/DD,m, iec. I, (CC,m)—IT, (CD,m) =TT, (DC,m)~TI, (DD,m) <0 Pecy = Pocy =0

M, (CD,m)~TT,, (DD,m) = A ( Pecn + Pocn ) (M=) +( Peom + Poon ) (=) |+ (1= 2)[ Pn(=5) |20 )
1, (CD,m)-I1, (CD,m)=I1, (DD, m)- Hm(DD )+/1(pCDm Pocn ) (M—a+ ) )
= m(CC’m)_ m(CCJl‘ (pCDm )

= 2] (Peon = Poca ) (1+ M+ B)+(Peoy pDCm)( a)]—?=0

The last equation implies that ( Peom — pDcm) <0 and ( Peom — pDCm) >0.

Pecn = Pocn =0 2

I, (CC.m)~T1,,(CD,m) =I1,, (DC, M) ~TT,, (DD, M) = 4| ( Peon ) (M) +( Poon ) (=5) |+ (1=2)[ P (- )] ¢
IT, (CC,m)—I1, (DC,m) =TI, (CD,m)—I1, (DD, M) = A[ ( Pagn + Peom ) (M=) +(Pocn + Poom ) (=B) |+ (1=2)[ pp (-B)]= @
I, (CC.m)~11,, (CD,m) =TT, (DC.m) ~T,, (DD, m) = 2| ( Peon + Poon ) (-4) |+ (1= 2)[ P (~5) ] <0 ()
IT, (CD,m)—IT,, (DD, m) = A ( Pegn + Pocm ) (M—a)+( Peom + Poom ) (=B) |+ (1= 2)[ pn(-B)]20 (iv)
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o

»(CD,m)-I1, (CD,m) =11, (DD, m)-II, (DD, m)+A( Peon — Pocn ) (M—a + B) v)
=11, (CC,m)-TI,, (CC,m)— A( pepy ) (M—a + B)
= (pCDm_pDCm)(l+m+ﬂ)+(pCDm)(1+a):|_E=0
(iii) is always satisfied in a semi-pooling equilibrium

Obs.1

CD, M) =11, (DC, M) ~T1,, (DD, M) = 4| ( Pegw ) (M=) +( Popw ) (=) |+ (1= ) P (=) ] = 0 ®

I n (DD,M) = A[ (o + Peom ) (M—a)+( Poon + Poon ) (=B) |+ (1= 2)[ pn (-8) |= @
)=2[(Pecn *+ Pocn ) (M=) +( Peon + Poon ) (=) | +(1=2) Pa (=5) ] =0 (i)
(CD,m) =11, (DD, M)~ 1, (DD,m) + A( Pcon — Pocn ) (M—a + ) )

= (1"'0‘)[( Pcom + Peom — pDCm)]_E+/1(pCDm ~ Pocn ) (M-t + ) =
k k m-a 1-4
i(1+a) Yo

that ( Pcom — Poem ) =0 (i) and (iv) are equivalent., i.e. those two equation amount to one further condition on the shares among high

types.

(v) implies (pCDm — Pocm ) =0 then Pep, = ) by (v), Poon = by (i) and so (ii), (iv) are remaining: given

i(1+a
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(pCCm’ Pcom> Pocms Poom> Peom»> Pooms Pm = 1)‘

___k B _
Hoem = l(1+a)+/1(n_1—a+ﬁ) Hoen

pCDm - pDCﬁ‘I’

I o k m-oa
In summary the equilibrium set is given by: 3 p - =— /1(1 " a) Z _ ﬂ(m _ﬂa +ﬂ) +Z_ Pocn
k
Peom =m
kM-« 1-4
Poon = Alva) B 2
Note that the condition Ppp, 20 < ﬂ,(l n a) rﬁ;a - 1:12“ 2012 l—ﬁ% . On the other hand in a semi-pooling

equilibrium where high apply both types of signals we must have:
k m—05+,6’_1—l<1<:> k m—oz+ﬂ<1
A (1 + a) p A (1 + a) p

Pcom * Poom < l<
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All conditions of the type
pe [O,l] ,Z p<1 reduce to:

k mM-a 1-4 k M-«
1): >0 - >0 A2>21-
WiPoon 2070 0y 8 4 0 (lta) f
(2): Pepn 20 true
k
O Pon + Poon <1 11 <l
_ 1 — p__ kK B<(M-a)
1 Jij k . M- AlM-a+p l+a
(®): Pecm» Pooms Pepm 20 0< Ppeq < —| — - min = _ —
A\M-a+pf l+a yij 1m-a yij _k B> (-a)
A B \m-a+p l+a ’
Note:
a) — p_ kK n_q_05=—_m_0[ B S L el 2 A R SN - ﬂ(m—_a) > — P
Mm-a+pf l+a (I+a) p m-a+p (l+a) f (I+a) (M-—a+p)(M-a-pF) Mm-a+p
which violates (3), hence l(_ P __K jis binding, i.e. <1.
AAlM-a+f l+a
ﬂ(m _ a) < K < P false, since M >1,ie.
(rﬁ—a+ﬂ)(rﬁ—a—ﬂ) (1+a) Mm—a+f (rﬁ—a—ﬂ)
b)m_a — P __K -1+ K m_a:_m_a —1<0:>lm_a — P __K is binding, i.e. <1.
p (M-—a+pf l+a (1+a) p Mm—oa+f A p (M—a+pf l+a

Conditions for existence:
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1 K < P
l+a m-a+p
k M-«
2./121—(1+a) 7 (>0,by 1.)
3.
1 B k
B<(M-a) pDCmsz(m_OH_ﬂ— +aj(>0 by 1.)
Il M-« p k
B=(M-a) Pocn < 7 (m—a+ﬂ_l+a](>o by 1.)
2.2.1.2. Eq. for I, (DD, m) <I1, (CD,m): pyp, =0 plugged into
Hrﬁ(Cc’m)_nm(CD’m):H’(Dc’m)_n’(DD’m):ﬂ'[(pcDm)(m_a)+(pDDm)( ):| ( )[ ( ):' ®
IT, (CC,m)~I1, (DC,m) =TI, (CD,m)~I1, (DD, M) = A[ ( Pagn + Peom ) (M=) +(Pocn + Poom ) (=B) |+ (1=2)[ pp (-B)]= @
M, (CD,m)~TT,, (DD,m) = A ( Pecn + Pocn ) (M=) +(Peom + Poon ) (=) |+ (1=2) Pn (=5) |> 0 )
I, (CD,m)-I1, (CD,m) =TI, (DD, M)-TI1, (DD,m)+ A( Pepm — Pocm ) (M—ar + B) )

(i) gives us l[( Pcom )(m —a)} +(1 —Z)[ Py (—,B)] =0 which for a semi-pooling equilibrium ( Pep, >0) requires P, >0 hence

IT, (m)—Hm (m) = ﬂ(l+ a)[( Pcom + Peom — Pocn — Poem )]—K <0 Note that with p, >0 (i) will always be satisfied.
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22121, I, (M)-II,(m)=0

Hm (m)_Hm(m):l(l"‘a)[( Pcom + Peom — Poem — pDCm)}_KZO ©
/1(1"‘05)[( Pcom + Pepm — pDCm):|_K :0®1(1+a) Pcom =K—/1(1+06)(DCD,,—1 - pDcm) ®
A (Peon ) (M=) +(1-2) Py (=5)]=0 0
AL (Pecn + Peom ) (M=) +(Pocn + Poom ) (=8) |+(1=2)[ Pa (=8) | =0 (i)
ﬂ*[( Peenm + pDcm)(m_a)+(pCDm + pDDm)(_ﬂ)]+(l_/1)[pm (_ﬁ):|>0 (iv)
l(1+0[) pCDm:E_)}“(l_'_m_'_ﬂ)(pCDm_pDcm) (V)
Hence Pocr — Peom = m by @) and v) and therefor
/1(1+0£) pCDm:K—/l(l+a)(pCDm—pDcm):K+i(1+a)L = K + K_IZ by (*)

A(M-a+pB) = Peon Al+a) A(M-a+p)

andby () p =2 D=2/ kK k-k |__ 1 m-af k _ k-k
y pm_l—/l g \A(l+a) A(m-a+p)) 1-2 B |(1+a) (M-a+p))

Finally, rearrange (1) to: ﬂ,( CDm)(m—a)—(l—ﬂ,) ,Bz(l—/l)[pm (—ﬂ)] and plug it into (i) or equivalently
B k Jij k—k f-K+k
— _ = —_ _ 7:1— _ :1_
Peen = Foc A(M—a+p) /1(1+a)’pCDm+pDDm A(M-—a+p) A(M-a+p) A(M—a+p)
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B)J+(1-2) pa(-B) =

/1[( Peem + pDCm)(m_a) (pCD + pDDm)

(-
Note, that these values imply that (iv) is satisfied : /1[( Pcem + Pocm )(n‘1 -a+ ﬁ - B+ BPoo ]+ A pCDm m a) (1 - /1),3 =
k-

In summary equilibrium set is given by

Note: Pepp + Pcom = Pocm +m

Hm =Hm(

Existence:

All conditions of the type

ﬂ“(pCCnﬁ+pDCn’1+pCDm)(m OH'ﬂ) p= k >

( Pcems Peoms Pocms Poom» Peoms pm)
_ (1+a)(B+ I?)—(l+ﬂ+ m)k

cem = A(1+a)(M-a+pB) ~ Peon
L kK
pDCm — pCDm l(m—0!+ﬂ)
p+k-k
N Y. Sl S
pDDm i(rﬁ—a+ﬂ) pCDm
k k-k (1+B+m)k—(1+a)k

pCszﬂ(l_Fa +/1(rﬁ—a+ﬁ) /1(1+a)(n‘1—a+,8)

m) = A Pecn + Pocn)(1+@)] < [ Pecn + Poc)(1+ @) ] +k~k =TT, (DDm) =TI,
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pe [0,1],2 p<1 reduce to:

(1): Py >0 true

. k k—k (1+g+m)k—(1+a)k
@ Peon <N e ) T (earh)

3): Pecms Popms Pocy = 0 <> 0 < pepy < min{ 1— ﬂ_+£—l? ’(l+a)(ﬁ+k)_—(1+ﬁ+m)g
/1(m—O{+ﬁ) ﬂ,(l+a)(m—a+ﬁ)

a)x>0<:>/1>€+L x<1 true
(m—a+ﬁ)
— (1+p+m)
_ _ p+k———"k
o\ _ (1+a)(p+k)-(1+p+m)k (1+a)
b)y>0e (1+a)(f+k)-(1++M)k>0  y<lo (l+ @) (m—ax ) Y] <2 (by 3a))
2p Kk
C)XzyQAZ(rﬁ—a+ﬁ)_l+a
“4:p, 20 true
' m-af k k-k B _m_a(1+ﬂ+m)5— l+a)k
(5):pp <1 A< 5 {(1+a)+(rﬁ—a+,8)}_ (>0, by 3b))

p (1+a)(rﬁ—a+€)

. —(m— k m)(k —k prk-k K k-k ie is not bindin
note: (1+a) B-(M—a+ )k >(1+B+m)(k k)>0’by3b):>(rﬁ—a+ﬂ)>1+a+(rﬁ—a+,8)’ . (2)is not binding,.
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1L.3)b): (1+a)B>(1+B+m)k-(1+a)k
+k-k _m-af k k-k
2. (3)9-)/\(2)/\(5) O<m<ﬂ,£l ﬂ [(1+a)+(m_a+ﬂ)]<l(LHS < RHS,NOT by 3b) see belOW)

(m-a+p)  f \(+a) (m-a+p))”
Mm-a+pB k-k __M-a m-a Kk -

B (M-a+p) (M-a+p) B (1+a)
k-k M—a M-a k 1+mk k m-—a

< - - PP g
B (M-a+p) (I1+a)B 1+ap p (M-a+p)
(1+m)5—(1+a)?<%(1+a),8<:>(1+a),3>%((l+m)g—(l+a)ﬁ)
It turns out that this conditions is stronger than 3b), because

Mm—-a+f

(m—a) (1+m)k—(1+a)k)-((1+B+m)k—(1+a)k) >0k -k >0

Hence we are left with the following conditions for existence:
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L (1+a)B> (-a) (1+m)k-(1+a)k)
ﬁ+K_E<:< _m-a k N K-k _ _m_a0+ﬂ+mﬂ51+¢ﬂ
> (M—a+p) A=l yij {(l+a) (M—a+p) : B (I+a)(M-a+pB)

2/ k [ B+k-k
>
(rﬁ—a+ﬂ)

Hm(_)_nm(m):ﬂ“(l+a)|:(pCDm+pCDm_pDCm_pDCm)J_K<O ®
I, (CC.m)~T1,, (CD,M) =TT, (DC,M)~TT,, (DD, M) = A[ ( Pooy ) (M) +( ooy ) (=) |+ (1=2)[ P, (-5)]=0 @
IT, (CC,m) 11, (DC,m) =TT, (CD, M)~ I, (DD, M) = A[ ( Pecp + Peom ) (M—a)+( Pocn + Poom ) (=8) [+ (1= 2)[ s (-B) = @
Hm(CD )_Hm(DD m):ﬂ (pccm Poc )(m a’) (pCDm+pDDrﬁ)(_ﬂ):| 1-4 [pm - ]>0 (W)
11, (CD I :

:l

DD, m)+A( Pepm — Pocn ) (M—a + ) v)

3l

I
o

3
@)
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ﬂ(l+a)|:( Pcom * Peom — Poca )]_K <0 *)
A (Peow ) (M=) |+ (1-2)(-8) =0 0
/II:( Peem + pCDm)(m_a)"'( Pocm + pDDm)(_IB):I =0 (i1)
lli( Pecm pDCm)(m_a)"'( Pcom + pDDm)(_IB):I-i_(l_Z’)(_ﬂ) >0 (iv)
l(“‘“) pCDm=E_ﬂ(1+m+ﬂ)(pcom_pmm) v)
Then Pegy, = 1-2)f by (i) and
CDm ﬂ,(m—a) y
Pcom — Pocm = k - (1+06) Pcom = K —(l_ﬂ) ﬂ(“—a) by (v).

A(+m+A) (1+m+p) " A(1+m+p) A (1+m+p)(m-a)
Furthermore by (ii):
AL (Pecn + Popm ) (M=a)+( Pocn + Poon ) (=8) |= 0 = (Pecn + Popm ) (M—a + B)+(1= Peoy ) (-8) = 0=

(pCCm+pCDm):(1_pCDm)( )

= ) m—-a
m-a+f3)

(M—a+p)

= Poem * Poom :1_( Peem pCDm)_ Pcom = (1_ Pcom

In summary the equilibrium set is given by:
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(pCCm’ Pcom> Pocm» Pooms Peoms Pm = 1)‘

Peem = (1— pCD”‘)(rﬁ—I:%ﬂ)_ Pcom
_ ~ k . (1+a)
pDCm - pCDm ﬂ(1+m+ﬂ) (1+m+ﬂ) pCDm
m —
Poom :(1_ pCDm)Fxf)_ Pocm
0. = (1-2)B
con = g (m—-ar)

(*) and (1v) remain to be checked:

k

(m-a)

(iv):k (M-a)-(1+a)B(1-1)<0= A<1-

- (m—a) (1+ﬂ+rﬁ)g—(1+a)lz
() 4>1- [ U+axm—a+ﬂ)j

(I+a)

note that the lower bound is always smaller than the upper bound due to k > k

Appendix to Chapter 3: Derivation of p-equilibria
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All conditions of the type
pe [0,1],2 p<1 reduce to:
(D): Pepp >0 true

, p

2): pCDm<1<:>/1>(m_a+ﬂ)

. . p =4 B (1=4)p
(3>'p°0m20‘z(m_a+ﬁ)(l ™ a+ﬁ)J_(rﬁ—a+ﬂ)[1 l(rﬁ—a)]>pwm

k(M—a)—(1+a)p(1-1)
AM—-a)(1+ S +m)

(1—/1)ﬁ]( m-a __ k l+a (1-2)p

Pocn 20 Pepm >

Poom 2 0 Pepp <(1_

A(M-a))(M-a+p) A(1+m+p) 1+m+B A(M-a)
e (p N 0B p [ () mea K 1va (2A)
A(+m+B) 1+m+p A(M-a) " A(M-a))(M-a+p) | A(M-a))(M-a+p) A(l+m+p) 1+m+p A(M-a)
a)x>0<:>/1>1—L(m_a)$>)x<0
(I+a) P
p
b)y>0@l>m

0)z>0A>

ﬂ(—a(2+a)+ﬂ+rﬁ(2+rﬁ+/3))—|?(rﬁ—a)(rﬁ—a+ﬂ)
(1+m)(M—a+p)
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>0 /1—(1:/1)’3 Jﬁ i + E __I+a (l:l)ﬂ>0<:>
(M-a) J(M-a+p) (1+m+p) 1+m+p (M-a)
B AB m—o k  l+a Yii l+a A8
[/1 (m—a)+(m—a)J(m—a+ﬂ)+(l+m+ﬂ) 1+m+p (M-a) 1+m+ﬂ(m—oz)>0<:>
l+a B | Yii k  l+a Yii
/1[1+1+m+,8(m—a)J (m—a+ﬂ)+(1+m+ﬂ) 1+m+,8(n*1—oz)>0<:>
; (1+m)(M-a+pB) . Yij L l+a Bk
(1+m+p)(M-a)) (M-—a+p) 1+m+g(M-a) (1+m+p)
Note that for k 2> s the necessary condition Lﬁ)ﬂg)l— J (rﬁ—a) ives an nonempty interval if and
(I+a) (M-a+p) Y (M—a+p) (I+a) & Py

ok B k
ly if
"V 1ra) S (m-a+p)
K < P the condition 3c) is stronger than 3b)
(1+a) (M-a+p)’ i

. B
(1+a) B (rﬁ—a+ﬂ)

, hence the case can be neglected. It turns out that for the necessary condition
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Conditions for existence:

LR

(1+a) (m—a+p)

< < min _(1_/1)ﬂ B _(1_/1)ﬁ n-a k _ l+a (1-24)p
2 U Peos = (1 z(@—a)](@—mﬁ)’[l z(zz—a)}(;z—aw) A(1+m+B) 1+m+p Alm-a)

3. max

>

ﬁ(—a(2+a)+ﬁ+;77(2+;77+ﬂ))—2(;7;—a)(;77—a+ﬂ)1_ (7-a)
(1+;7z)(;zo—a+ )2 .

Note that the interval defined by 3. is non-empty due to 1.

_ I £ (m—a)
)[(l+w+ﬂ) —,é] </1<§>1_(1+a)7

2.2.2. I, (DD,m) >I1,,(CD,m) , i.e. Pecp = Peom = Poem =0

IT, (DD, rﬁ)—Hm (DD, m) = ﬂ,(l + 0!)[( Pcom + Peom — Pocm — Poen ):| —k =0 is violated.

Therefor such an equilibrium cannot exist.
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3. All four non-signaling strategies earn the same payoffs ,i.e. IT (CC, m) =11, (CD, m) =11, (DC, m) =11, (DD, m)

3.1. CC,m/DC,m/CD,m/DD,m vs. CC,m/DC,m ie. I, (CC,m)-II,(CD,m)=I1,(DC,m)—I1,(DD,M)>0 Pcpy = Pppn =0

I, (m)-I1, (m) =11, (DD,M)-I1, (DD,m)+k -k <0=> p, =0

I, (CC,m)-TI,, (DC,m) =TT, (CD,m)~TI,, (DD,m) = 2| (Pccn + Poca ) (M—a)+(Peon + Poon ) (=B) |+ (1= 2)| P (-8) ] =0

(i)  becomes: Il (CC,FII)—Hm (DC,m) =11, (CD,I’_n)—l_Im (DD,m):/I[( Pecm + pDcm)(I’T\—a)] =0 and implies that

( Peem + Poem ) =0 however a semi-pooling equilibrium requires strict positivity for at least one of the shares.

Therefor such an equilibrium cannot exist.

3.2. CC,m/DC,m/CD,m/DD,m vs. CD,m/DD,m ,ie. IT,(CC,m)-II,(CD,m)=II, (DC,m)—II,(DD,M)<0 Pccy = Ppcn =0

m m

3.2.1. I1,,(DD,m) >I1,,(CD,m) , ie. Pecn = Poen = Pepn =0

Then I1,,(CD,m)-II,,(CD,m) =11, (DD, M) -1, (DD,m)+ A( Peon — Pocn ) (M—a + ) =0 violates

=0
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I1,,(CC.m)~I1,,(CD,m) = I, (DC.m) I, (DD.m) = A[  Pecy + Pocs )M =)+ Peom + Poon ) (=) [+(1=2) Pu ()] = @
M, (CC,m)~I1, (DC,m) =11, (CD,m)—TI,, (DD, m) = A[ ( Pocn + Pocn ) (M=) +( Peom + Poom ) (=B) |+ (1= 2)[ pn (-8)]= @
I, (DD, M)~T1,, (DD,m) = (1+)| ( Peon + Peon — Pocr ~ Poca ) |~k <0 (i)
Ty (CC. M)~ (CD, M) =y (DC, M) ~TTy (DB, M) = 2| (Pec + Peon ) (1) +(Prca + P )(-4) [+ (1= A) s (-£) ]
M, (CD, M) I, (CD,m) =T, (DD, M) —I1;, (DD, M)+ A( Peon ~ Poc ) (M- + ) = )
M, (CC,m)~T1, (CC,m) - A( Peom — Pocn ) (M—a + B) =0

a) If (iii) holds with equality then the last equality implies that Pepn = Ppem = 0= Pepm =0 then (ii) becomes:
IT, (CC, m) —II. (DC, m) =11 (CD, m) —1I1 (DD, m) = l[( Poorm )(—,B)] =0= Ppp; =0 Hence such a semi-pooling
equilibrium cannot exist.

b) If (i) holds as a strict inequality then Pppy =0 and (i) becomes T (CC, m) —~II, (DC, m) = l[( Pcom )(—ﬂ)] =0 which holds

only for Pepm =0, ie. in a pooling but not semi-pooling equilibrium.



4. 1-2 strategies versus 1-2 strategies

Appendix to Chapter 3: Derivation of p-equilibria

In general there are 36 possible matchings: CC, DC, CC and DC, CD, DD, CD and DD , six for each signaling strategy, however as summarized in

Table B-3 we excluded 21 of them; in the following we consider the remaining 14 cases:

CC,m DC,m CC,m/DC,m CD,m DD, m CD,m/DD,m
CC,m N (2) N (4.1.1) N (2) (4.1.3) N (4.1.2) N (4.1.2)
DC,m N (7.) N (3.) N (3.) (42.3.2./4233) | N (4.2.1) N (4.2.2)
CC,m/DC,m N (2) N (3. N (3. 4.3.1) N (6.) N (4.3.2)
CD,m N (4.) 4.4.1) N (4. N (5. (4.4.2) N (5.
DD, m N (4.) N (4.5.) N 4. N (5. N (1. N (5.
CD,m/DD,m N (4.) 4.6.1)) N (4.) N (5. (4.6.2.) N (5.

Table B-3: Overview of subcases; N: non-existence of the considered equilibrium; number in parenthesis either refers to

dealing with the corresponding case.

4.1. CC,m

4.1.1.and DC,m (p, =0)

the list of payoff differences below Table B-2 or subsection

I, (CC,m)-TII, (DC,m) =TI, (DC,m)~TII, (DC,m)~[ I, (DC,m)~I1, (CC,m) | = @
A (Peom = Poon ) (14 @) +( Peom = Pocy ) (14 M+ B) |~k + A[( Peon + Peom ) (M= )+ (Pocn + Poon ) (=B) |+ (1= 2)[ P (-8) ]

= 2] (Peon ) (14 M) = Pocy (1+ @ + B)+ (Pecn ) (M= @) = Popn B+ ( Peon = Pocy ) (1+ M+ B) | =k +(1=2)[ Py (-8)] =0

I, (CC,M)~T1,, (DC, M) = A[(Pecn + Peon ) (M- )+(pDCm+pDDm)( B)J+(1=2) pn(-8)]>0 9
I, (CC, M)~ 11, (CD,M) = 2| ( Pecn * Peon ) (M=) +( Pocn *+ Poon ) (=) |+ (1=2) Po (-5) ] >0 (i)
M, (CC,m) -1, (DC,m) = 2[ ( Pecn + Pocn ) (M=) +( Peom + Poon ) (=) |+ (1=2) Py (=) ] <0 (i)
I,,(DC,m)~T1,, (DD, m) = 4| ( Pecy + Pocn ) (M=) +( Peon + Poom ) (=) |+ (1=2)[ Py (=8)]> 0 )
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IT, (CC,m)~I1, (DC,m) = A| peey (M=) = Pocy (1+M+ B) |-k =0 @
IT, (CC,m)—I1,, (DC, M) = A[ ( Peey ) (M- ) |> 0 (if)
M, (CC,M)~T1, (CD,M) = 4| (Pocy )(~B) |- B(1-4) >0 (i)
IT,, (CC,m)—T1,, (DC,m) = A[ (Pecy ) (M—a) | <O (iv)
M, (DC,m)~T1, (DD, m) = 4| ( Pocy ) (M—a) |- B(1=2) >0 )

By (iii) such a semi-pooling equilibrium cannot exist.

4.1.2. and DD,m or CD,m/DD,m (p, =0)

I, (CD,m)—TI,, (DD, m) = A[ ( Pecn + Pocn ) (M=) +( Peom + Poom ) (=) |+ (1= 2)[ pa (-8) | <0 @
I, (CC,m)~I1,, (DC,M) = [ ( Pecn + Peom ) (M=) +( Pocn + Poom ) (=5) ] +(1=2)[ Py (=) |> 0 <”>
1, (CC. )1, (CD.) =2 (P P 1)+ as B ) (-] 1= s (-] -
T, (CC,m)~T1,,(CD,m) = 4| ( Pocn + Pocn ) (M=) +( Peon + Poon ) (—8) |+(1=2) Py (-8) ] <0 (iv)
I, (CC,m)-I1,(DD,m)=0 \)
9
IT,, (CD,m)—I1,, (DD, m) = A[ (Pecy ) (M—a) | <O @
IT,, (CC,m)—TI1,, (DC, M) = A[ (Peey ) (M—c) | >0 (if)
M, (CC, M)~ (CD,M) = 4| ( Peo ) (M=) +( Popn ) (~B) |- B(1-2) >0 (iif)
11, (CC,m)~I1, (CD,m)zﬂ[( Pecy ) (M=) +( pDDm)(—ﬁ)}—ﬂ(l—z)m (iv)
I1,,(CC,m)—I1,(DD,m)=0 \)

By (i) such a semi-pooling equilibrium cannot exist.
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4.1.3.1. T1,,(M)~T1, (M) > 0 = peg, >L(:> P, =0)

A(l+a)
Then Pepy, = k. Poon = 1— K by (v) and (iii) is satisfied and (1-4)f < Peey by (i)
LR A(1+m) T A(1+m) A(m-a) 7
Since ) (1+ _) < 7 (11 a) such an equilibrium cannot exist.
_ k B
4.1.3.2 Hm (m)—l_[m(m)<0<:> Pcom <m(:> pm —l)
I, (CC,m)~I1,, (CD,m) = /1[( pCDm)(rﬁ—a)]+(1—/1)[pm (-B)]>0 (i)
I, (CC,M)~T1,, (CD,m) = A[ ( Peon ) (1+M) [+ (1= A)[ Py (-B)]-k =0 ©
Hm (m)—Hm (m) = ﬂv[( Pcom + Pcom — Poca — pDCm)(l+a)]_K = lpcom (1+a)_K <0 (v)
k+(1-2 k+(1-2
Then Pepy, = ;,ETrﬁ))IB’ Pecm = —H by (v) and (ii) is satisfied.

Conditions (iii) and (vi) need to be checked.
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iy A>—K*P
+M+

(1

(iii): A > 1—

(Vi):ﬂ>l—%(l+ k- j

(M-a) Kk

(ii)/\(iii):ﬂ>max{ ep | (m-a) K }

(1+m+B)’ B (l+a)
k + k . Yij
B (1+rﬁ+ﬁ’) ’(1+a) (rﬁ—a+ﬂ)
_1_(m—a) K K . B
B (1+a) ’(l+a)_(rﬁ—a+,8)
Finally all condition of the type:
pe 01 Zp<l reduce to:
(D: Peem <1 true
[+k
2 _
2): Peerm >0c>/1>1+m+ﬂ
m-a) k B+k

, hence max {1 - ( } <A <1, hence we need

B (l+a) 1+m+p

+k
l+m+p

Appendix to Chapter 3: Derivation of p-equilibria

<l k<l+m
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(M-a+p) (I+m+p
Conditions for existence: _ _
2.k<(lva)—P . I Ul) S SP
(m—c+p) g (1+a)
4.1.3.3. 1 (M)—IT, (m)=0
(Hm)k—E

then -k =1- K by (vi) and shares for low types are given by (v): (1+a) _ =p

pCDm_/»L(l_i_a)’ pCCm_ /1(1-1-61) y typ g y . (l—ﬂ)ﬂ m
furthermore by (ii) and (ii): % < Pecn <1 —%
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(l_l)ﬁ_(l+a)K_E<l_ K <1_(1+a)5"Z®
A(M-a A(1+a) A(M-a)
(4m), (14m),
(l_i)ﬁ_(l+a)K_k<i_ K, ()
(m—a) (1+a) (rﬁ—a)
(I+m) _ (M-a) (I+m)
(l—l)ﬂ—(l+a)3—k—/1(m—a)<— (1+a)K<_(1+a k+k o
(1+m) (1+m), ~ (1+m) (M-a) _
s L Uy A rwm L e | T K

The last inequality is violated; hence such an equilibrium cannot exist.

4.2. DC,m

4.2.1. and DD,m (p, =0)

IT, (CC,m)—I1, (DC,mM) = A[ ( Pecn + Peom ) (M=) +( Pocn + Poon ) (—B) |+ (1= 2)[ pn (-8) | <0

M, (DC,M)~T1,, (DD, M) = 2| ( Peoy + Peon ) (M=) +( Pocn + Popn ) (—B) |+ (1= 2)[ Py (=8) ]> 0

M, (CC,m)~I1, (CD,m) =TT, (DC,m)~T1,, (DD, m) = 2| ( Pecy + Poca ) (M= )+ ( Peon + Poon ) (=) |+ (1= 2)[ P (=8) ] <0
M, (CD,m)~T1, (DD, m) = 2| (Pecn + Pocn ) (M =) +( Peon + Poon ) (=) |+ (1= 2)] Pa (=) ] <0

I1,,(DC,m)-II, (DD,m)=0

0
(i)

(iii)
(iv)

v)
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M, (DC,M)~T1, (DD, M) = 4| ( oo ) (~B) |- B(1-4)>0 (if
B

By (if) such a semi-pooling equilibrium cannot exist.

4.2.2. and CD,m/DD,m

M, (CC,m)~T1,, (DC, M) = [ ( Pecn + Peom ) (M=) +(Pocn + Poom ) (=) |+(1=2)[ Pa (- ]<0 o)
I1,,(DC, M) ~T1,, (DD, M) = 2| ( Pecy + Peom ) (M=) +( Pocy + Poon ) (=) |+ (1=2) [ P (- &
M1, (CC.m)~T1, (CD,m) =T, (DC.m)IT, (DD.m) = £[ ooy + Pocy (I a+(pwm+pwm) B (=) py(-B)] <0 @
M, (CD,m)~TT,, (DD,m) = A ( Pecn + Pocn ) (M=) +( Peom + Poon ) (=) |+ (1= 2)[ Pn(-5) | =0 (i)
I1,,(DC,m)-I1,, (DD, m) =0 )
IT, (CC,m)~II,, (DC,M) = Appen (—B) + (1= ) Py (-B) <0 @
M, (DC, M)~ T, (DD, M) = 2| (oo ) (M=) +(Pooy ) (=) |+ (1-2) Py (-5)]> 0 (i
I, (CC.m)~I1, (CD,m) =TT, (DC.m) 1, (DD,m) = A[ eog + Poog ) (~4) |+ (1~ 1) Py (-5)] <0 @
IT, (CD,m) 11, (DD,m) = Appe, (M—a) +(1-2)| p, (-B) |=0 (iv)
M, (DC,m)~T1, (DD, m) =TT, (DD, M)~ I, (DD,m)— [T, (DD, m)~IT, (DC,m)] = A(1+a)| ( Peon + Peon ~ Pocn — Poca ) |-k )
#2[(Pecn * Poon ) (M=) +(Pocn + Poom ) (-8) |+ (1= 2) P ()] =0

(iv) requires Pn >0, ie.

I, (m)_Hm(m):ﬂ'[( Peom t Pcom — Pocm — pDcm)(l"'a)]_K:;t[( Pcom — pDcm)(1+a):|_KZO V)
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()and (iif) are always satisfied, note that (*) and (v) violate (ii):

A[( pCDm_pDcm)(l"'a)]ZK bY (*) and /1(1"'05)[( pcom_pDcm)J_E"'/l[( pCDm)(m_a)+(pDDm)(_ﬂ)]_'_(l_/l)l:pm (_,B):IZO by (V) >

>0

hence l[( pCDm)(m—a)+( pDDm)(—ﬂ)]+(l—l)[pm (—/5')] <0

Hence such a semi-pooling equilibrium cannot exist.

4.2.3.and CD,m

I, (CC,M)~I1, (DC,M) = A[ (Pocn ) (=) ]+ (1= 2) P (-8)] <0 ®
Hm(DC,m)—Hm(DD,—)=/1[(pCDm)(m—a) (pDDm)(_ﬂ)]+(1_z)[pm -p)]>0 (ii)
I, (CC.m)~T1,,(CD,m) =1, (DC,m)~I1, (DD, m) = £[ (Pep ) (=5) [+(1- 2) P (=) ] <0 i
I, (CD,m)—I1, (DD,m) = A[ ( Poey ) (M=) |+ (1=2)[ Py (-B)]>0 (i)
IT, (DC,m)—TI, (CD,m) =11, (CD, m)-I1, (CD,m)—[ I, (CD,m)-IT,, (DC,m) | =0 ™)
(iyand (iii) are always satisfied

T, (DC,M)—TT,, (DD, M) = 2| ( Peog )(M—a) |+ (1= 2)[ py(-B)]>0 ()
IT, (CD,m)~T1,, (DD, m) = A[ ( Ppy ) (M=) |+ (1= 2)[ P, (-B)|>0 (iv)
I1,,(DC, M) ~I1,, (CD,M) = 2| ( ey = Pocn ) (1+M) | =K =(1=2)[ Py (~5) ~ P, (-8) ]= 0 )
My, (M) =TT, (M) = A[ ( Peom — Pocn ) (1+@) |-k *)
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Hm(DC,rﬁ (DD, M) = 4| ( Pepg )(M—a) | >0
I, (CD,m) —T1,, (DD, m) = A[ ( Py )(M— a]+1 A)(-B)>0
Hm(DC,m 7 (CD,M) = 4| (Pepy = Pocn )(1+M) | =k + B(1=2) =0

Hm (m)_nm (m) = [( Pcom — pDCrﬁ)(1+a):|_K >0=p, =1
(i1) is satisfied; (*) violates (v) because

/’L[( Peom — Pocn ) (1+ rﬁ)]—E+,8(1—/’t) =0= /’t[( Peom — Pocn ) (1+ rﬁ)]— k<0= /’t[( Peom — pDcm)(l+a)]—K <0
Hence such a semi-pooling equilibrium cannot exist.

4.2.3.2. I, (M)-I1,(m)=0

Hm(DC,m =;t[ Peon ) (M—a) |- B(1-4) p, >0

11, (CD,m)—- :z[ (Poen)(M—a) |- B(1-2) p, >0

Hm(Dcam D = |:pCDm Pocm (1+ ):| k- ( ﬂ’)[pm(_ﬁ)_pm(_ﬁ)]zo
Hm(m)—ﬂm(m)= |:(pCDm pDCm)(“‘“)]‘K:OC> pCDm_pDCrﬁ:m

1
— = = = [ 1
pCDm pDCm /1(1 +a) pCDm 2 \\ + ﬂ,(l 4 a) s

A(M-—a) A(M-a) 1 k ,
pﬁmpmm:milwnaﬂ "

/1(1+a)

(i)
(iv)

)

(i)
(iv)

)

K J pDCm=l{1— K J by (*), if we plug in these values in (iv) and (i)
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A(M-a) _l(m_a)I{HLJ

Py < ﬂ(l—l) Peom = ﬁ(l—/l) 5 l(1+a)

K =(1-2) [ Py~ s | P, =i1+(l_;)ﬁmiz;5—iﬂ Pa =%{1—(l_lﬂ)ﬂmigk—iﬂ by ()

Furthermore:

| =
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We observe that (if) is binding.

Finally all condition of the type
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pe [0,1],2 p<1 reduce to:

(1): Pepp >0 true

K
(2): Pepy <1 = (l;a) <A

3):p, >0 true

1 _
4):py, <1<:>/1<1—E{(1+Q)K—k}
. k 1
Jje. O<(1+a)</1<1 ;

(
k § 1 (1+m)
()" /3[(1+a)

To summarize:

—
1
—~~
—
+
3l
~—
| =
|
=~
I
AN
—_

K—E}:wk<1+%<:>(1+a),3>(1+rﬁ+,8)g—(1+a)i
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Conditions:

. k fr(k-k) _Lem g
(1).O<max{(1+a),(m_a+b)}</1<1 El:(“a)h k<1

‘ k 1 (1+m) - (1+m+3) 3 3 B _
note: a) (i+a) ﬂ{(lvta)K k:|<:> lira) K<1+ﬂ<:>(1+a)ﬂ>(l+m+ﬂ)g (1+a)k

«:>§;IZ,B(1+04)<ﬁ(l+oc)—M m k (m-a+p)

m-a (rﬁ—a)

@ﬂ(1+a)>%[(HW)K—(”&)E]* é:iﬁ(1+a)> _(rﬁ—a)

(M-—a+p)(1+m)-B(l+a) (M-a)(l+a)
= k—

(M-a) . (M-a) (M-a)
Ji.c. the necessary condition for a non-empty interval a) is weaker than the b)
S (R peeR)
(I+a) (M-a+p)| (M-a+p)
o (l+a)B>(M-a+p)k+(1+a)(k—k)=(M-a+B)k+(1+a)(k—k)=(1+m+ )k —(1+a)k
k (k=K
(1+a) (rﬁ—a+ﬂ)

]@(rﬁ—a+ﬂ)g<(1+a)ﬁ—(1+a)(g—f)

JL.e. the necessary condition for a non-empty interval a) implies that

Conditions for existence:
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I, (DC,M)~TT, (DD, M) = 2| ( Peoy ) (M—) |- B(1-4) >0 (i)
T, (DC,M)~IT,, (CD,m) = [ ( Pepy — Pocn ) (1+M) |-k =(1-2) =0 (iv)
I, (CD,m)—I1, (DD,m) = A[ ( Pocy ) (M—-a) | >0 W)
I, (M) =TT, (M) = A[ ( Peom — Pocn ) (1+ @) |-k <0=>p, =0 *)
(v) is satisfied; Pcom =%{1+%:| > Poem 2%{1—%} by (iv)

T, (DC,M)~TT, (DD, M) = 2| ( Peoy ) (M=) |- B(1=4) P >0 (i)
1, (CD.m) -1, (DD.m) = 2[ (Pocn)(M-a) |- B(1-2) p, >0 ®
Hm(DC,m)—Hm(CD,m)=l[(pCDm—pDcm)(1+rﬁ)J—lZ—(l—ﬂ,)[pm(—,B)— pm(—ﬂ)]=0 )
Hm(m)_nm(m):i[( Peom — pDCm)(H'O{)]_K:OC:> Peom —~ :L o
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PN k+p3
2> e )
_ (1+m)
k+p- k
¥): 4> (+a)” | 1 +m)k —(1+a)k
(): 2 5 Bir ey FME=(a)k)
iy 4> B(2+a+m)—(M—a)k =ﬁ(1+a)+,6’(l+rﬁ +(M—a)(1+m)—(M-a)(1+m)—(M-a)k
(M—a+p)(1+m)+(1+a)B (M—a+p)(1+m)+(1+a)B
1 (M-a) -
e g mra) gt
note
iv)—(* kKef _pp ] +m)k—(1+a)k)>0< Kk Lem (1+rﬁ)K_£>
L=y T ey Mk a)k)> 0 e B ) 50
(+m) ¢ Ll +(l+rﬁ) >0 k- (+a) o AU+ )<:> +M+ ~(1+a)k > B(1+a
(emip)p" (emep) Blra) K mep) " (emep) < M Ak (ra)i>fllva)
iv)—(ii): K+ -1+ (m-a) +M+k)>0<
2000 e A mye ey g )
kK 1em (M-a)(1+m . (M-a) 0o
(1+m+8) (1+m+p) (M-a+p)1+m)+(1+a)f (M—a+p)(1+m)+(1+a)p
L (M-a) K> 1 _ (m-a) +M) <
(1+m+p (rﬁ—a+ﬂ)(1+n‘1)+(1+a)ﬁ’}k ((1+rﬁ+ﬂ) (M-a+p) 1+rT1)+(1+oc)ﬁj(1 )
k >(rﬁ—a+ﬂ)(1+rﬁ)+(1+a),8—(1+rﬁ+ﬂ)(rﬁ—a): (I+a)pB k N Y;; o (Mt BV > (Lea
() (Moat A)(Lem) (i a) fr(1emeg)(m—a) (em)m-aif) " (+a) (moarp) = M- o+hk>(ra)s
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* iy - 1 i (I’T]—a) i
3.( )—(ll).l—ﬂ(1+ )((Hm)K_(Ha)k)_H(rﬁ—a+ﬂ) 1+n‘1)+(1+a)ﬂ(1+m+k)>0©
(n_1—a+ﬂ)(?1];;§+(l+a)ﬂ(l+m+E)>ﬂ(llJra)((ler)K_(Ha)k)@
(M—a)(1+m) (1+m) K (M-a) o
(M—a+p)1+m)+(1+a)p  B(l+a)” f (M-—a+p)(1+m)+(1+a)p
1>(rﬁ—a+ﬂ)(1+rﬁ)+(1+a),8k_(rﬁ—a+,8)(l+rﬁ +(1+a ﬂl?— I o
B(l+a)(M-a) - B(M—a)(1+m) (1+m)
>(m—a+ﬁ)(1+rﬁ)+(1+a),8 _(rT1—oc+2,B)_<:> iy >(rﬁ—a+,6’)(1+rﬁ)+(l+a),8 _(rﬁ—a+ﬂ)(l+a)+(l+a)ﬁ_
T p(lra)(m=a) Fim—a) AU (m=a) « (M—a)
= B(lsa >(rﬁ—a+ﬁ)(1+rﬁ)+(l+a)ﬁ _(rﬁ—a+ﬂ)(1+a)+(l+a)ﬁ_
pllva) (M=) « (M=) ‘
(1+m+ )k —(1+a)k >(M—a+ f)k = ((iv)- (i) > 0= (iv)- (*) > 0)
(I+a)B<(M-—a+pB)k :(iv)
(M—a+p)k
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Finally all condition of the type

pe [0,1],2 p<1 reduce to:
(1): Pepy > O true
k+p

(2): Pcom <1<:>l>(1+n_1+ﬂ)

To summarize:
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{pwm =%{1+%} ol :%{1_%} " =0}

Conditions for Existence:

k+p ! m)k —(1+a)k),1- m-a +m+k
A> max{(1+n_1+ﬁ)’l_ﬂ(l+a)((l+ )K (1 )k),l — (1 k)}

k+p _ —
(1+m+ j) (I+a) B <(m-a+p)k
) (M-a) Lk Tt VK <(lsa <(rﬁ—a+ﬂ) 1+m)+(1+a)p _(rﬁ—a+ﬁ)(1+a)+(1+a)ﬁ_
By G ( (ﬁ)" (1)( )ﬁ) . (rﬁ(—a) ) K) . (M-a)
1 _ — M—a+g)(1+M)+(1+a)p M-a+p)1+a)+(l+a)p -
_ﬂ(1+a)((1+m)g—(l+a)k) (M=a) k- (M=a) k<(l+a)B
4.3. CC,m/DC,m
43.1. CD,m
I1,,(CC,m)~I1,, (DC, M) = 2[ ( Pecn + Peom ) (M=) +( Poca + Poow ) (=) |+ (1=2) P, (=5) |=0 ®
A (DC,m)—Hm(DD,m):ﬂ[( Peem + pCDm)(m_a)+( Pocm pDDm)(—ﬂ)]+(1—ﬂ)[pm (—ﬂ)] >0 (D)
I, (CD,m)~I1,, (DD, m) = A[ ( Pecn + Pocn ) (M=) +( Peom + Poom ) (=) ] +(1=2)[ Py (=8) | > 0 (if
I, (CC,m)~I1,, (CD,m) =TI, (DC,m)~I1,, (DD, m) = A[ ( Peeg + Poca ) (M=) +( Peom + Poon ) (=) |+ (1= ) Py (-B) ]<0 )
I, (CC,m)—TI1,, (CD,m) =TI, (CD,m)-TI1, (CD,m) - 1, (CD,m)~I1, (CC,m) | = ™)
A (pCDm pDCm)(1+m+lB +(pCDm_pDCm)(1+a):|_E+ﬁ’|:(pCCm+pCDm)(m_a)+( DCm+pDDm)(_ﬂ)]_i_(l_/l)[pm(_ﬂ):I:O
Hm(m)_nm (m):ﬂ (pCDm+ Pcom ~ Poem ~ Pocm (1"'05)]_& ™
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IT, (CC,m)—I1, (DC,M) = A[ ( Pecn ) (M=) +(Pocn ) (=B) |+ (1= 2)[ Py (-5) | =0 @
T, (DC,M)—TT,, (DD, M) = 2| ( Peoy )(M—a) |+ (1= 2)[ Py (-B)]>0 (i)
IT,, (CD,m)—I1,, (DD, m) = A[ ( Py + Pocn ) (M—a) |+ (1=2)[ pn(-B)]>0 (iii)
I, (CC,m)-I,,(CD,m) =1, (DC,m)~T,, (DD,m) = 2| (Peon )(~3) |+ (1= 2) Py (=) ] < 0 w
I, (CC,M)~TT, (CD,m) = A[ (~Pogy ) (1+ M+ B)+( Pooy ) (1+ @) |~k + A[ (Peon ) (M=) |+ (1= 2)[ Py (-B) ] = v)
A[(-Proca) (1M B+ (e ) (1) |-k +(1-2)] py (-5)] =

2| (Peom = Pocn ) (1+ ) = PocyB | =K +(1=2)[ P,y (-8)] =0

T, (M) =TT, (M) = 2] ( Peon *+ Peon ~ Poc — Poca ) (1+@) |-k ®

(iv) is always satisfied in a semi-pooling equilibrium, (i) implies (iii) if DC is played by strictly positive share.

4.3.1.1. T1, (M) -I1, (m) >0

,, (M) =TT, (M) = 2| ( Peom — Pocn ) (1+@) |-k >0=> p,, =1 *)
I,, (CC, M) ~I1, (DC, M) = A[ (Pecn ) (M—a) +( Pocn ) (-8) ]~ (1-2) B =0 0

I, (DC,M)-I1,, (DD, M) = [ ( Peoy ) (M-a) | >0 (i)
I, (CD,m)~TT,, (DD, m) = A[ ( Peen + Pocn ) (M=) ]~ >0 (i)
I,,(CC, M) ~I1,, (CD,M) = 2| (Peon = Pocn ) (1+M) = Pocs/B |~k =0 )
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(*) and (v) imply : A = )(1+rT1)—pDCm

(i) and (v) give:

Given this solution for the respective shares (*) and (iii) need to be checked for.
(1+m)(A(m-a+p)-B)-k(m-a) _
(2(1+rﬁ)(rﬁ—a+ﬂ)—ﬁ(1+a))
(1+a)(E(2m 2a+ )+ B(4 (rﬁ—a+ﬂ)—ﬂ))>k

(2(1+m)(M-a+B)-B(1+a)) -

(iii):—(M-a+p)

—A(M—a+f) Ppen <0

(*):

f—

Appendix to Chapter 3: Derivation of p-equilibria
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<A<l A k <1+m (detived with mathematica)
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Appendix to Chapter 3: Derivation of p-equilibria

( —) ,B+(rT1—a) K

ote that: = (1+n‘1)__+ﬁ’— Kk > (1+a) since —8 | 14m+ l+ra >k

N h'ﬁ(K(na) k] (M-arp)  (m-a+p) (m;){l 2(ma+ﬂ)lJ .
s

o p(tm)+ p-a(m-a+ B)-k)
In summary the equilibrium is given: p.., = /1(2(14_ m)(m . +ﬂ)—,b’(1+a))
kK(M-a+p)+(1+m+p)(A(M-a+p)-p)
Pcom = -
A2(1+m)(M-a+pB)-B(1+a))
Condition for existence: %[K (l+m)—EJ+ 'B_( _k) <A<l

Ty (1)~ (10)= 2P = P )1+ )| 1620 1=2 == oo .
M, (CC, M)~ (DC, M) = A (Pecn ) (M=) +(Poca ) (=) ]+ (1=2) P (=) ] =0 0

I1,,(DC,m)~T1,, (DD,M) = 2| ( Pepn ) (M—ax) | +(1-2)[ P, (=5) ] > 0 ()
I1,, (CD,m) I, (DD,m) = A[ (Pecn + Pocn ) (M—a) [+ (1= 2) o (-8)]> 0 (i)



I1,(CC,m)-II Docy ) (14 M o
TR T W A
Bk +(1=2) py (-8)]=0

[( pcom - pDCrﬁ)(1+ m)_ pDCm

To summarize:

Given this solution for the respective shares (i) and (iif) need to be checked for

183

( Pecm> Pocm> Peoms Pr)
_If,__k-k-p
pDCm_z(l z(m—a+/3)J
B E—l+m+ﬂ_
Dee = l+a
< A(M-a+pB)
m a+ﬂ
1 s 1+(x
pCDm_E
o - 1 (lJrn_w)k_E ~ 1 ( __)_ A(M-a+p)-pB
ToB1-A) (1+a) 2(1-2)(M-a+B)\ 2(1-2)(M-a+B)

Appendix to Chapter 3: Derivation of p-equilibria

v)
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(ii): A(M-a+pB)>B+k-k

(ii): A(M—a+B)> f—(k—k)

, L.e. (ii) implies (iii).
Finally all condition of the type
pe [0,1],2 p<1 reduce to:

. _ B+k—k
(high types): 4 > —(m —, +,3)

. ) B+k-k 2((1+m)
(low types): A<min {—(m — +ﬂ) + ; [

note:
p+k-k
(M—a+p)

<lok-k<m-a
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from high types:
(1+a)B>(1+m+B)k—(1+a)k =

(1ems Bk —(1+a)k <(1+a) f<(1+a) 8- LK K o(emk—(1+a)k)

Vm-arp)
(1+rﬁ+ﬂ)g—(1+a)lz<(1+a)ﬁ(n§:r7k;§)+2((l+rﬁ)g—(l+a)@<:>
o<(1+a)ﬁ(£+l;§)+(1+m_ﬂ)g_(1+a)i
c>O<(1+a)ﬁﬁ+(l+a)ﬂm—(l+a)ﬂ(m_OKHIB)+(1+m—ﬂ)K—(1+a)Iz
S0<(ire)p (1) m“jﬂ)E+(1+m)(m‘(;fﬁ)+‘ﬂ[;(“m+ﬂ)h
s0<(1+a)p-(1+a) "%k [mﬂ —ﬂ(l+m)jk<:>0<(1+a)ﬂ (1+a)m;112 (%—ﬂ(um)jg

conditions for existence:

1. M<ﬂ<mm{
m-o+

g—g+ 2((1+m)

( B) (M-a+p) p\(1+a)
2. k—k <m-
3. k<l+a
4. (I+a)p>(1+m+p)k—(1+a)k
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T, (M) =TT, (M) = 2| ( Peon = Pocn ) (1+ @) |-k <0=>p, =0
I, (CC,m)—Hm (DC,n‘q)=/1[( pccm)(m_a)+( pDCm)(—,B)]=O

I, (DC,M)~TT, (DD, M) = 2| ( Pey )(M—at) |- (1-2) B> 0

I, (CC,m)—Hm (CD» m) = l[( Peom — pDCm)(1+m+ﬂ)_ pDCmﬂ]_E_(l_ﬂ)ﬂ: 0

PocnS _ E+(l_/1)ﬁ

Rewrite (i) and (v) to: o= , = +| 1+
ewrite (i) and (v) to: Pecy Pcon ( (rms

A(1+m+ B)

/l(rﬁ—a)

Finally, check for (*) and (ii) given those values:

w.r.t. (%):

Appendix to Chapter 3: Derivation of p-equilibria

)

@

(i)

)

J Pocm and plug into: Pepy, =1= Pecn = Poen
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(1+a)[l?(2rﬁ—2a+,B)+ﬂ((2m—2a+,8)—l(rﬁ—a+ﬂ)ﬂ (2(1+m)(M-a+pB)-B(1+a))k <
E[2(1+a)(rﬁ—a+,8)—ﬂ(1+a ]—[2(1+rﬁ)(rﬁ—a+ﬂ) B(1+a) ]k+,8 (1+a) [2 (M—a+p)- ,B]</1,B l+a)(M-a+p)e

e b [ T e s [ i (e | O

w.r.t. (1)

A> prk Ak <1+m
(1+m+ )

To summatize:

Finally all condition of the type

pe [0,1],2 p<1 reduce to: 4 >

Hence we are left with:
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note:

f+k-k 2 ((1+m)

_ n ~ _
y>x<:>2—{(m_a+ﬁ)+z (HQ)K—kD—(lfr;rﬁ)>0c>(l+a)ﬂ>(1+m+ﬁ)g—(l+a)k A k<l+a

Conditions for existence:

1.k <1+m
2. A >max prk - prk-k +£ (1+m)k—lz
' (1+m+ ) (M-a+p8) Bl(l+a)”
2_{(£+E;i)+%[8:mik_|zﬂ (1+a)p>(1+m+B)k—(1+a)k A  k<l+a
—a a
_ ’B-HZ else
(1+m+ )
note:
y>x<:>2—[0?1_5;;)+%[8:S;K—EB—(IJ€%—EIB)>0c>(1+a)ﬁ>(1+n‘1+ﬂ)g—(l+a)lz A k<lta
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43.2. and CD,m/DD,m=> p, =1
I1,,(CC,m)~I1,,(DC, M) = [ ( Pecn + Peom ) (M=) +( Pocn + Poow ) (=) |+ (1=2) P, (=) |=0
M, (DC., M)~ T, (DD.M) = 2| ( Pocn + Poon ) (M=) +( Pocy + Poon ) (=) |+(1=2) Py (=) | > 0
I1,,(CD,m)~I1,, (DD,m) = A ( Pec + Poc ) (M=) +( Peom + Poom ) (=) ]+ (1= 2) P (-5) =0
M, (CC,m)~II, (CD,m) =TI, (DC,m) -1, (DD,m) = 2| ( Pecy + Poca ) (M=) +( Peon + Poon ) (=B) |+ (1-2) Py (=8) ] <0

11, (CC,m)-TI1,, (CD,m) =11, (CD, m)-I1, (CD,m)—[ 1, (CD,m)- I, (CC, m)]:
/1[( Peom — pDCm)(1+m+ﬂ)+( Peom — pDCm)(1+a)}—|z+l[( Peem + pCDm) ( ocm pDDm) ﬂ)]"‘(l_/l)lipm (_ﬂ)] =0

IT, (m)—l_[m (r_n) :/1[( Peom t Peom — Pocm — pDCm)(l+a):|_K

IT, (CC,m)—TI,, (DC,M) = A[ ( Peen ) (M—a) +( Pocn ) (—B) | =0 Q)
M, (DC,M)~TT, (DD, M) = 4| ( Peon ) (M—a)+( Poon )(~B) |- (1-2) B> 0 (i)
I, (CD, m)—Hm (DD: m) = ﬂ[( Pcem + Pocm )(m _a)] =0 (1)

M, (CC,m)~II, (CD,m) =TT, (DC,m)~T1, (DD, M) = 4| ( Peop + Poon ) (=) |-(1-2) <0 (iv)

I, (CC,m)~TI,, (CD,m) = l[(—pDcm)(1+rﬁ+,B)+( pCDm)(1+a)]—E+A[( Peom ) (M—a)+( pDDm)(—,B)]—(I—/i),B: 0

By (iii) such a semi-pooling equilibrium cannot exist.

@

(i)

(i)

(tv)
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4.4. CD,m

4.4.1.and DC,m

T, (CC,m)~TT,, (CD, M) = 4| ( Pec + Peon ) (M=) +( Pocn + Poon ) (—8) [+(1=2) [ Pa(-B)]<0 @)

M, (CD, M) —IT,, (DD, M) = A[ ( Pocy + Peom ) (M=) +(Pocn + Poon ) (=) |+ (1= ) Pa (-£) |>0 ()
M, (DC,m)~TT, (DD,m) = 2| ( Peeg + Poc ) (M=) +( Peon + Poon ) (=8) |+(1=2) pu (-B) ]>0 i

Hm (CCa m)_Hm (DC’ m) = Z[( pccm + pDcm)(m_a)+( p(:Dm + pDDm)(_ﬂ)]—'_(l_ﬂ’)I: pm (_ﬁ)] <0 (iv)

IT, (CD,m)-I1,, (DC,m) =11, (DC,m)~II,, (DC,m) - 1, (DC,m)-I1I, (CD,m) =0 W)

Hm (m)—Hm (r_n) :ﬂv[( pCDm + pCDm - pDcm - pDcm)(l"'a)]_K

T, (CC,m)~T1,,(CD, M) = 4| (Pocy ) (~8) |+ (1= ) Py (-8) ] <0 0
I, (CD,m)~I1,, (DD, M) = A[ ( Pepy ) (M—a) |+ (1= 2)[ po (-B) |>0 (i)
T, (DC,m)—TT,, (DD,m) = 4| ( Pocy )(M—a) | +(1-2)[ p (-8)]>0 i

I (CCo m)_nm (DC, m) = l[( pCDrﬁ)(_ﬂ)]_'_(l_Z’)[ Pr (_ﬁ):l <0 (iv)
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I, (CD, m) »(DC,m)=II, (DC,m)-II, (DC,m)-|I1, (DC,m)-I1, (CD,m)|=0

A (Peon = Pocn ) (1+ @)+ ( Peon = Poca ) (1+ M+ }

+[(Pecn + Peon pcm—pcnm)( @)+ ( Pocn + Poon - pDCm—pDDm)( B)]+(1=2) P (=)~ Pu (- )] )
= 2] (Peon ) (1+@) +(=Pocy ) (1+ M+ B) | =K + 4| (Peon ) (M=) +(=Pocy ) (=8) ]+ (1 [ ~B)= Py (-B)]

= [ (Peon = Poca ) 1+m)] B(1=2)[ Py~ Py ]=0

Hm (m)_nm (m)

:Z[( Pcom — pDCm)(1+a):|_K

()and (iv) are always satisfied.

4411, T1, (M)—T1, (M) > 0
Hm(m)—l‘[m(m)zﬂ[( Peom — pDCm)(1+a)]—K>O:> p, =1

IT, (CD,m)~I1,, (DD, M) = A ( Pepn ) (M—a) |+ (1= 2)[ pn(-B)]>0

/1[( pDCm)(rTl—ac)}+(l—/1)[pm (-B)

M, (CD,M)~T1, (DC,m) = | ( Peon = Pocy ) (1+M) |-k = B(1-2) =0

3

IT

m(DC’m)_Hm(DD’m): ]>0

1 k+p(1-2) 1 k+p(1-2)
E : = - = — D ———
Q Poon =3 2A(1+m) »Peon =5 2A(1+m)

(iii) is always satisfied, (ii) and (vi) need to be checked for:

(vi)

(vi)

(i)

(i)

)
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(i) /1<1—%£k1+—m—|?j

l+a
l+a 1+m k

W:d>m a+/3)(1+m)+(1+a)ﬂ[ﬁ(”mj_@(m_“)]
(Vi)/\(il)/\le(O,l):
1. k <l+a

1+« 1+m k 1+m -
2 Wt p)iem)s(ra)f ﬂ(“m}m(m “) “‘z(km‘kJ

( )( ) (1+a)

3. (I+a)p>(M-a+pB)k(=1.)

(1+a) (,B( a)+k(m- a+2,8))
—a( )+2ﬂ+m(1+m a+f)

Finally all conditions of the type

pe [O,l],z p<1 reduce to: %—F%
Pepm >0 true
Pepn <l A> - Bk Ak <1+m

(1+m+p)
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Conditions:

1+a ey K o) gk (e
- max (rﬁ—a+ﬁ)(1+m)+(l+a)ﬂ(ﬁ(l+l+aj 1+05(m a)}(l+rﬁ+ﬂ) <A<l ﬂ(KHa kj

note that 2. implies that X > Y.

PN M. CIT7) W e

(2+M+a)

note:

(+a)p(m-a)  (+a)(m-a) (+a)(m-a+2p)k _(+a)k _

nia)  (l+m)(m-a+f)+(l+a)f (2+m+a)




195

To summatize:

1 k+p(1-2) 1 k+p(1-2)

EQ: =—— T A S
Q: Pocn 2 24(1+m) » Peon =7+ 2A4(1+m)

Conditions for existence:

2 I+«
b —a+ﬂ)(1+rﬁ)+(l+a)ﬂ('g( o
2. (I+a)B>(M-a+p)k
(l+a)(ﬂ(rﬁ —a)+|Z(m - +2,B))
(M-a+p)1+m)+(1+a)p

1+

3. k<

4.4.1.2. T, (M)~TI, (M) =0

1+1+—m]—i(m—a)

Appendix to Chapter 3: Derivation of p-equilibria

J<l <1—l(k1+—m—lz)<1
L\ 1+«

I, (M) =TT, (M) = 2] ( Peon — Poce ) (1+@) | =k =0  Pepn = Pocn ) = ———

A(1+a) vi)
IT, (CD,m)~I1,, (DD, M) = A ( Pepn ) (M—a) |+ (1= 2)[ pn(-B)]>0 (i
T, (DC,m)~TT,, (DD,m) = 2| ( Pocy ) (M=) |+(1=2)[ p, ()] >0 (i)

M, (CD,M)~TT,, (DC,m) = 4| ( Peon — Pocy ) (1+M) |-k = B(1=2)[ pp — P | =0 =

(v) becomes:
(1+

3

)

=

— 1
k—k =8(1-21)[2p,-1]< p, ==
Tk B(1-2)[2p,—1]< Py, S

—

S}

)

28(1-2)
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1 K 1

Peon = " 24 (1ra) P T2 24 (11 @) 2" 25(1-2)

Appendix to Chapter 3: Derivation of p-equilibria

by (vi) 5 Pr -1

1 {(Hm)

(1+a)K—k} by (v) and

Given this solution for the respective shares (i) and (iif) need to be checked for.

(ii): A(M—a+B)>B+k—k

(iii): A(M—a+B)> f—(k—k), ie. (i) implies (ii).

A€(0,1) addsk -k <m-a
Finally all conditions of the type

pe [0,1],2 p<1 reduce to:

Bl (1+a)
(1+a)B>(1+m+ Bk —(1+a )k

Conditions for existence:

L<z<1—i((l+m)g—EJ[:

nec.:—

4. k<l+a
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Hm(m)—l‘[m(m):z[( Peom — pDCm)(1+a)]—K<O<:> Py =1
I, (CD,m)~II,, (DD, M) = A[ ( Peop ) (M—a) | > 0
M, (DC,m)~I1,,(DD,m) = 2| ( Pocy ) (Mi-a) |- (1-4) >0

I, (CD,m)-I1,(DC,m)

m

EO: A(1+m)
' (. k-p(1-2)
Pocs z[le

(i1) is satisfied, (iif) and (vi) need to be checked for,

e[,
(vi):A <1 ,B[(1+a)K kJ
k(Mm-a)+B(2+a+m)
(1+rﬁ)(n‘1—a+ﬂ)_+,8(1+a)

k(M-a)+B(2+a+m)
(1+m)(M—a+ )+ p(1+a)

(iii):A >

hence adding 4 €(0,1): <A<l

2| (Peon = Poca ) (1+M) |-k + B(1-2) =0

VAN

(vi)

(i)

(iii)

Appendix to Chapter 3: Derivation of p-equilibria
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Finally all conditions of the type:

pe [0,1] ,z p<1 reduce to:

0<1+%<2@—2(1+m+ﬂ)<I?—ﬂ</1(1+rﬁ—,8)<:>
A(l+m=B)>k-Bri(l+m+B)>k - < /1(1+rﬁ—ﬂ)>|?—ﬁ/\/1>ﬁ
P psk
adding A € (0,1) and k <1+ yields X < A<1, X = szm_ﬂ
B>k
I+m+f
. k(M-a)+B(2+a+m) o
however, it turns out that — < A is binding.
(1+m)(M-a+p)+B(1+a)

T'o summarize:

Appendix to Chapter 3: Derivation of p-equilibria
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4.4.2.and DD,m= p, =1
M, (CC, M) =TT, (CD,M) = 2| (Pecy + Peon ) (M=) +(Pocn + Poon ) (=B) |+ (1=2) Pu(-B)]<0 @
M, (CD,M)~T1, (DD, M) = [ ( Pecn + Peom ) (M=) +( Pocn + Popr )(=8) |+ (1=2) Pn (-B)|>0 (i)
M, (DC,m)—TT, (DD,m) = 2| ( Peoy + Pocn ) (M=) +( Peon + Poon ) (—8) |+ (1=A) Pa(-B)]<0 i)

I, (CD,m)—I1,, (DD, m) = A[ ( Pogn + Pocn ) (M=) +(Peom + Poom ) (—B) |+ (1=2)[ P (-B)[<0 (v

IT,, (CD,m)-I1, (DD, m) =1, (DD, M) —I1, (DD, m)—| T, (DD, m)~TI,, (CD,m) | = 0 )

M, (CC,m)~T1, (CD,M) = 4| (Pooy ) (-B) |- B(1-2) <0 )

Iy, (CD, M)~ T, (DD, M) = A[ (Pepn ) (M=) | > 0 @
I1,,(DC,m)~I1, (DD,m) = 2| (Poon )(-B) |- B(1-2)<0 i)

11, (CD,m)~I1,, (DD, m) = A ( Peon ) (—5) ] < 0 (iv)

I, (CD,m)~I1,, (DD, m) = I1,, (DD, m)~I1,, (DD, m) [ I1,, (DD, m)~T1,, (CD, M) =

/1(1"_0[) Pcom _E+A[( pcDm)(m—a)]=0<:> Pepm = —————
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EQ: Peom :m > Ppopom = 1= Pepm

(1),(11),(1i1) and (iv) are satisfied

k
(1+m)

Finally all conditions of the type p € [O, 1] ,Z p<1 reduce to: 4 >

Condition for existence:

k
(1+m

1. 1>

—

2.k <(1+m

~—

however it turns out that this equilibrium is not stable.

4.5. DD,M and DC,m = p, =1

M, (DC,m)~TT, (DD, M) = 4| ( Pooy + Peon ) (M=) +( Poca + Poon )(=B) |+ (1=A) Pu (-B)]<0 )
I, (CD, M)~ (DD, M) = A[ ( Pegn + Peom ) (M=) +(Pocn + Poom ) (=B) |+(1=2)[ P (-B)]<0 @)
I1,,(DC,m)~I1,, (DD,m) = 2| ( Pecy + Pocn ) (M=) +( Peon + Poon ) (=) [ +(1=2)[ P, (-8)]>0 i)
I, (CC,m)—I1,, (DC,m) = A[ ( Pecn + Poon ) (M=) +(Peom + Poon ) (—B) |+ (1= 2)[ P (-B8) |<0 (v

IT,, (DD, m)-I1,, (DC,m) =11, (DC,m)~TI1, (DC,m)—| I, (DC, M) I, (DD, M) | =0 )
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11, (DC,m)-TI1, (DD, m) = /1[( pDcm)(—,B)]—ﬁ’(l—ﬂ) <0 o)
IT, (CD,m)—T1,, (DD, M) = A[ (Ppon ) (—B) ] <0 (ii
M, (DC,m)~T1,,(DD,m) = 2| ( Pocy ) (Mi-a) |- B(1-4)>0 i)

11, (CC,m)~I1, (DC,m) = A[ (Popn ) (-B) ] <0 (iv)

3

11, (DD,m)-I1, (DC,m) =11, (DC,m)-II, (DC,m)~[I1, (DC, M) ~II

. N KA (12) g0 ITABK
PocpA(1+M)—k +(1-2) =0 Z20+m) = Pocn

(o0.m)]-

m

M, (DC,M)~TT, (DC,m) = 4| ( Popm — Pocn ) (1+ @) +( Popn — Pocy ) (1+M+ B) |-k
IT

m (DC,rﬁ)—Hm (DD’m) = /1[( pDcm)(_ﬂ)]—ﬂ(l—ﬂ) <0
By (v) Poen = % , however this is incompatible with Pocn > (r_ﬁl_ ) 5) by (i)

Hence such a semi-pooling equilibrium cannot exist.
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4.6. CD,m/DD,m

4.6.1. and DC,m

I, (DC,M)~IT,, (DD, M) = 2| (Pecn + Peon ) (M=) +( Poca + Poon ) (=8) | +(1=-2) P (-5)]<0 @

I, (CD, M) —TI,, (DD, M) = A[ ( Pecn + Peom ) (M=) +(Pocn + Poom ) (=8) |+ (1-2)[ pn (-B)]=0 (i)
M, (DC,m)~TT, (DD,m) = 2| ( Peeg + Pocn ) (M=) +( Peon + Poon ) (=8) |+(1=2) pp (-B) ]>0 i)

Hm (CCa m)_Hm (DC’ m) = Z[( pccm + pDcm)(m_a)+( p(:Dm + pDDm)(_ﬂ)]—'_(l_ﬂ’)I: pm (_ﬂ)] <0 (iV)

IT,, (DD, m) 11, (DC,m) =11, (DC,m)-I1, (DC,m) [ I, (DC, M)~ I, (DD, M) | =0 W)

M, (DC,m)~TT, (DD, M) = 2| ( Ppey ) (=8) |+ (1=4)[ P (-B) ] <0 0
My, (CD, M) =TT, (DD, M) = 2 (Peon ) (M=) +(Poon )(=8) |+ (1=2) Pa (-5)]=0 G
I, (DC,m)—TT,, (DD,m) = 2| ( Pocy ) (M=) |+(1=2)[ p, (-B)]>0 (i)

I, (CC, m)_nm (DC’ m) = 2“':( Pcom + pDDm)(_ﬂ)]—i_(l_ﬂ’)I: P (_:8):' <0 (iv)
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11, (DD,m)-I1, (DC,m) =11, (DC,m)-II, (DC,m)-[I1, (DC,m)~I1, (DD, m)]| =
l[(DCDm pDCm)(1+a)+(pCDm_pDCm (1+rﬁ+ﬂ)}—|?—/1[ pCCm+pCDm)(m_a)+(pDCm+pDDm)(_ﬂ)]_(l_i)[pm(_ﬂ)}: (V)
2] (Peon ) (14 @) +(=Pocy ) (14 M+ B) | =k = 4| +(Pocs ) (-B8) |+ B(1-2) Py =
ﬂ,[(pCDm)(Ha)—pDCm(1+rﬁ):|—IZ+,B(l—l) P, =0
Hm(m)_nm(r—n):Hm(m)_nm(m):ﬂ“[(pwrﬁ_pDCm)(l_H%)J_K
In a semi-pooling equilibrium (i) and (iv) will always be satisfied.
4.6.1.1. T (M)—TI,(m)>0
Hm (m)_Hm(r_n):l[( pcom_pocm)(1+a)]_K>0 = P =0 *)
IT,, (CD, M) —I1,, (DD, M) = A[ ( Peom ) (M=) +( Poom ) (-B) |- B(1-2) =0 (if)
I1,,(DC.m)~T1,, (DD, m) = A[ (Pocy )(M-a) |> 0 (i)
1, (DD, M) —IT,, (DC,m) = A[ ( Peom ) (1+ &) — Poey (1+M) |-k =0 )
1 ,6(1+a)—f(_—a+ﬂ) | _ Yij -
EQ pDCm - /fi,_ﬂ(1+a)+(l+m)(n_']—a+ﬂ)_ pCDrﬁ /,L(m—a-i-ﬂ) pDCm m_ +ﬂ pDDm 1 pCDm pDCm
.p :l_ B(l+a)-k(M-a+pB) ] " 1 B(1+m+k) } o - { k(M-a)-B(2+M+a)
pem A B(l+a)+(1+m)(M-a+p) | ChA pl+a)+(1+m)(M—a+B) | 0" Al BA+a)+(1+m)(M-a+B)
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(iii) is satisfied, (*) needs to be checked for, however this equilibrium is not stable.

(*) reduces to:

(1+a)(/3(rﬁ—a)+l?(rﬁ—a+2ﬂ))

Finally all conditions of the type

] Z p<1and 0 < A <1 reduce to:
(M-a)+B(2+a+m)
m)(M-a+8)+B(1+a)
+a)>k(M-a+p)

1. <A<l

I?
(1+
A1

To summarize

i _plra)k(
"2 B+ a)+(1+m)(M-a+ B

Conditions for existence:

(1+a (,B(rﬁ—a)+l?(n_1—a+2ﬁ))
(M—a+p)+p(1+a)
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4.6.1.2. T1, (M)—TIT, (m)=0

M, (M) =TT, () = 2| (Peon — Pocn ) (1+@) |-k =0 0)
1, (CD, M) ~T1,, (DD, M) = A[ ( Peom ) (M=) +( Popn ) (=) |+ (1= 2)[ Pw (-5)]=0 ()
I1,,(DC,m)~I1, (DD,m) = 2| ( Pocy ) (M=) |+ (1=2)[ P, (-B) ] > 0 (i)
I,,(DD,m)~T1,, (DC.m) = Z[ (Peon ) (1+@) = Pocy (1+M) =K + S (1-2) p =0 )
o AUra)r(i-m-praok-(va)k | pOra)r(emepk-(ra)k [ -f+A(m-a+f)rk-k
B0 2(1+a)(m-a+p) " 2(l+a)(M—a+ f) " A(m_asf)

(1+a)(—ﬂ(rﬁ—a)+(a—2ﬂ—n‘1)|?)+((1+nﬁ)(rﬁ—a+ﬂ)+ﬂ(1+a))&
. 2(1+a)(1-2)(M-a+p)

’pmzl_pm

Note, that for the equilibrium values (iii) is satisfied:

Finally all conditions of the type

pe [0,1],2 p<1and 0 <A <1 reduce to:

_(1+a)(—ﬂ(n‘1—a)+(a—2ﬂ—rﬁ)|?)+((l+rﬁ)(m—a+ﬁ)+ﬂ(1+a))g o
2(1+a)(1-A)(M-a+B)
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=

4.6.1.3. T1, (M)T1, (m) <0 *)
M, (M)~T1,, (M) = A[ ( Peon ) (1+a) |-k <0 = p, =1

My, (CD, M) =T, (PD, M) = A[ (Peon ) (M=) +(Poon ) (=4) ]+ (1=2) Pn (-8) ]=0 ()
I,,(DC.m)~T1,, (DD,m) = 2| ( Pocy ) (M) | +(1=2)[ Py (=) >0 (i)

I, (DD,m) 11, (DC,m) = A[ (Peon ) (1+ &) = Ppen (1+M) |-k + B(1=2) p, =0 ()
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M, (CD,m)~T1,, (DD, M) = A[ (Peon ) (M=) +(Poon ) (-5) ] =0 (i)

M, (DC,m)~TT,, (DD,m) = 2| ( Ppey ) (M—a) |- B(1-4) >0 (i)

IT, (DD, M)~ I, (DC,m) = A[ ( Pepm ) (1+ @) = Pocy, (1+M) |-k + B(1-2) =0 )
(ii) and (v):

A[(Peon ) (M= + )+ Pocy S~ ] =0

Al (Popm ) (1+ @) = Poey (1+M) |-k + B(1-2)=0

ﬂ_ pDCmﬂ

Peon = A(M=-a+p)

A (Poom) 1+ @) - pDCm(1+rﬁ)]—I?+ﬂ(1—ﬁ)=/{ B Poenl (1, 4)- pDCm(1+rﬁ):|—I?+,B(l—}t)=O

A(M-a+p)
1 B(l+a) _
= Pocn = — —K+p(1-2)
B(l+a) (e L(m—aﬂ[}) }
(M-a+p) A(l+m)
Do B(A(1+m+B)+k - B) :ﬂ((l—ﬂ)(rﬁ—a+ﬁ +A(1+a))-(M-a+B)k
EQ: 7 A(em)(m-a+ B)+ B+ a)) A((Q+m)(M-a+pB)+B(1+a))
o - (M=—a)(A(1+m+B)+k - B)
O A((my(m-a+ B)+ B(1+a))

We need to check for (*) and (iii):
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(*):

—a+ )+,B(1+ )

A 2(1+a)p rﬁ—a+ﬁ)
:(1+a)ﬂ(m a+2ﬂ)+((1+n‘1)(n‘1—a+ )+,B(1+a))g—((l+a)(m a+,8)+,8(1+a))k
2(1+a)ﬁ(rﬁ—a+ﬂ)

Finally all conditions of the type

pe [0,1],2 p<1and 0< A <1 and (iii) reduce to:

1+a),8(n_1—a+2ﬂ)+(rﬁ—a)(rﬁ—a+ﬂ)l?
28(1+a)(M-a+p)

2. B(1+a)>(M—a+f)k

1.0<( <A<l
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adding the upper bound due to (*) we end up with:
. (1+a)ﬂ(rﬁ—a+2ﬂ)+(rﬁ—a)(rﬁ—a+ﬁ)E</1<(1+a)ﬂ(rﬁ—a+2,6)+((l+rﬁ)(rﬁ—a+ﬂ)+,8(1+a))g—((lﬂx)(nﬁ—a+,8)+ﬁ(1+a))l?
2ﬁ(1+a)(rﬁ—a+,8) 2ﬂ(1+a)(rﬁ—a+ﬁ)

2.8(1+a)>(M-a+pB)k

note that LHS<RHS due to k <k

(1+a)p(M-a+2p)+((1+m)(M-a+B)+B(1+a))k—((1+a)(M-a+B)+B(1+a))k
2[)’(1+a)(m a+pf

(1+a))g—((1+a)(rﬁ—a+ﬂ)+ﬂ(1+a

Kk

RHS<1: <l

(n-a) (n-a)
((1+rﬁ)(rﬁ—oc+/3)+ﬂ(1+oz))k_((1+0:)(m—0:+ﬂ)+,[3(1+oz))+(m—oz)(m—oa+,3)|Z>0<:>
(M-a - (M-a)
0 i ((1+rﬁ)(n‘1—(;z+,8)+ﬂ(1+oz))k_((1+0:)(rﬁ—az+ﬂ)+ﬂ(l+oz))Iz S(1+a) is binding
: (n-a) : (n-a)
To summarize:
- B(A(1+m+B)+k - B) D _B(1-A)(m-a+p)+i(1+a))-(M-a+ )k
con = ((1+ m)(m-— a+,8)+ﬁ(1+a)) pem /1((1+rﬁ) M—a+f +,B(1+a))
o - (m- a)(/l 1+m+f)+k - ﬁ)
eom (1+rﬁ)( —a+p)+p(1+a))
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Conditions for existence:

N (1+a)B(M-a+2B)+(M-a)(M-a+B)k e (1+a)p(M—a+2p)+((1+m)(M-a+B)+B(1+a))k—((1+a)(M-a+B)+B(1+a))k

2B(1+a)(M-a+p) 2B(1+a)(M-a+p)
((1+rﬁ)(rﬁ—a+,B)+/i’(1+oc))K_((1+az)(rﬁ—az+/3)+,b’(1+oz))Iz

(M-a) (M-a)

2.ﬁ(l+a)>

4.6.2.and DD,m = p, =1

I, (DC, M) ~I1,, (DD, M) = 4| ( Pecy + Peon ) (M=) +( Pocy + Poon ) (=8) |+(1-2)[ Py (-B)]<0 @)

IT, (CD,m)~IT,, (DD, M) = A ( Pogn + Peom ) (M=) +(Poon + Poom ) (=B) |+(1=2)[ P (-B)]=0 @)
M, (DC,m) -1, (DD,m) = [ ( Pecy + Pocn ) (M=) +( Peon + Poon ) (=) [+ (1= 2) Py (-8)]<0 i)

IT, (CD,m)—IT,, (DD, m) = A ( Pecn + Pocm ) (M=) +( Pepm + Poom ) (=B) [+ (1=2)[ Pu(-B)]<0 ()

I, (DDam)_Hm (DDJD) =l(l+0[)[( Pcom + Peom ~ Pocm — pDCm):|_E =0 V)
I, (DC,M)~I1, (DD, M) = A[ ( Pooy )(~B) |- B(1-2) <0 i)
M, (CD,m)~T1,, (DD, M) = A ( Peon ) (M=) +(Poon ) (=) | = 0 (i)
T, (DC,m)~TT, (DD, m) = [ ( Popy ) (=8) |- B(1-24) <0 (i)
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I, (CD,m)—I1,, (DD,m) = A[ ( Pepm + Poom ) (—B) ] <0 (iv)
IT,, (DD, M) -I1,, (DD,m) = A(1+a)[ ( Peom ) |-k =0 )
k (M-a) k (M-a+pB) k

EQ: Peom =~ 7> Poom = —— Pppm =1— =
@ Peon = a) P T 5T v a) e 5 i(+a)
(i), (i) and (iv) are satisfied.
Finally all conditions of the type
pe [O,l],z p<1and 0 < A <1 reduce to:
1.O<M<ﬂ<l

(1+a)p
2. B(1+a)>(M-a+p)k
To summarize:

__k _(m-a) __(m-a+p)  k
Peom = 2 (va) ™™ = A(1ra) T . i(l+a)

Conditions for existence:
K (M- p)
(I+a)B
2. ,B(l+a)>(rﬁ—a+,8)lz

1. <A<l

Appendix to Chapter 3: Derivation of p-equilibria
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Finally we consider semi-pooling equilibria with only low types pooling, i.e. IT, (m) —1I1, (m) = ﬂ[( Peom + Peom — Pocn — Pocm )(1 + 0!)] —k=0. For

this equality to hold we necessarily need Pepy >0 or Peom > 0 but not both since this would correspond to a pooling among high types.
4.7. Hm (m)—l_[m (m) = l[( Pcom + pcam ~ Pocm — pDCm )(1+ a)]_K =0

4.71.  Pcpm > 0 , Le. Peem = Peom = Pocm = Poom = 0

P e(O,l):

I, (CC,mM) = A[ ( Pecn + Peon ) (1+ M) +( Pocn + Poon ) (—8) |+ (1= 2)[ Pa (=8) + Pa (-8) ]k <
I, (CD, M) = A[ ( Pecn + Peom ) (1+ M) + ( Poen + Poom ) (=B) [+ (1= 2)[ Pa (-B) |-k

M, (DC,M) = A[(Pecn + Peon ) (1+@) |+ (1=2)| Py (=5) |-k <

I, (DD, M) = 2[( Pegn + Peon ) (1+ @) ]—K

M, (CC.m) = A[ (Peon + Pocn ) (1+ M)+ (Peom + Poon ) (—8) |+ (1= 2)[ Py (=B)+ Pu (-B) ] <
M, (CD,m) = 2[ (Pecn + Pocn ) (1 M) +(Peom + Poon ) (=) |+ (1= 2)] Pw (-5) ]

M, (DC,m) = A[ (Pecn + Poca ) (1+@) [+ (1=2)] Py (=5) | <

M, (DD, m) = A[ (Peen + Pocn ) (1+ @) ]

I, (M) = A[( Pecn + Pocn ) (1+ 1) ]

My, (M) = A (Pecn + Peon ) (1+ @) |-k
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X . DD.m<DD,
A(1+a)

I1,(CD,m)-II, (DD, m)>0<
A(M-a)
(1-2)

M, (m)=0=A(1+a)-k=T, (M) e i=—"—

m

A(M—a+pB)>AB+(1-2) P < Py <

=

To summarize:

Appendix to Chapter 3: Derivation of p-equilibria
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Peom = 1

Conditions for existence:

k
M)
2.k<(l+a)
A(M—a)
3.p, < (1—/1)/5’
note that 3. is only binding if:
A(M-a) B k B
1-)p T e p) T (1va) (M—atp)

4.7.1.2.  I1,(CD,m)-II

m

3

I1,(CD,m)=I1, (DD,m) <

Al (Peom ) (M=t + B) | = 4B+ (1= 2) ppfB < Peop =

AB+(1-4)pafS _ kK
A(M-a+p)

k k
EQ: pepn = 2 =

m > Poom

Conditions for existence:

Appendix to Chapter 3: Derivation of p-equilibria
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k _, (m-a+fh) Kk
S D R (p
2. (l+a)p>(M-a+p)k
3. k<(1+a)

4.7.2. Pepop >0 ,ie. Pecn = Pepm = Pocn = Popm =0

P, €(0,1)

M, (CC, M) = [ (Pecn + Poon ) (1 M)+ Pocy + Poon ) (=8) |+ (1= 2)[ P (~B) + Pn (-8) |-k <
M, (DC,M) = 4| ( Pecn + Peom ) (1+ M)+ ( Poca + Poon ) (=8) |+ (1= 2) Py (-8) |-k

1, (CD m):x[( Pecy + pCDm)(1+a)]+(1—l)[pm -B)]-k <

M, (DD, M) = 2] (Pooy + Poon ) (1+ @) |-k

M, (CC,m) = A[ (Pecn + Pocn ) (1+ M) +( Peon + Poon ) (=8) |+ (1= 2) P (=8)+ Pn (-8) ] <
M, (DC,m) = A (Pecn + Pocn ) (1+ M)+ ( Peon + Poon ) (=8) |+ (1= 2)[ Py (-8)]

M, (CD,m) = A[ ( Pooy + Poca )1+ @) |+ (1=2) P (-8) ] <

M, (DD,m) = 4| ( Pocy + Pocy )(1+@) |

I, (m)= Z[( Peem pDCE)(Ha)]
I, (m)= /1[( Pecn + pCDm)(1+a)]—K

Since CD,m is strictly dominated by unconditional defection such an equilibtium cannot exist.
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C. Appendix to Chapter 4
Proof of Lemma 4-1: The argument is given in the paper. QED

Proof of Lemma 4-2: By Lemma 4-1 y(A)eT, constitutes a dilemma if and only if it is of the
Prisoners’ dilemma type. W.Lo.g. let (1,1) be the unique equilibrium. Since unilateral deviation
reduces material payoffs and increases inequality (I,1) may not be contested by any player.

However (0,0) may be stabilized by two sufficiently inequality-averse players. This is the case if

a  _a
=8y, & 0'2 a0 e L} and accordingly

0,0)
‘a(]l,o) - a(zl,o)
for player two. QED

1
ST

and only if for player one u,, =a,, 6" ‘a(ll’o) ~a)

Proof of Proposition 4-1: A symmetric dilemma can be represented by the following matrix

A= (Z ;J showing the payoffs for the column player. I will refer to the strategies as ‘0’ and ‘1’

respectively. Without loss of generality I assume b>a, d>c, ie. ‘1’ is the dominant strategy.
According to LLemma 4-1 a>d must hold. This implies the following ordering of parameters

b-a
b>a>d>c. Define °=——¢

(0,1). In terms of utility two individuals with inequality aversion

6, and 0, respectively give rise to the following bimatrix:

0 1
a b-6,(b-c)
Oa c-0,(b-c)
c—6 (b-c) d
! b-6,(b-c) d

Table C-1: Payoffs in the dilemma 7(U LU 2) .

In the following I will distinguish two cases. The first case corresponds to a match of two players
with a degree of inequality aversion above the threshold 6°. In the second case for at least one

player this condition is violated.
O 6.020°
(0,0),(1,1) are the two putre Nash equilibria over which individuals randomize with equal weight

and both gain a material payoff of: (#J

(i1) ove,<6°
‘1’ remains for at least one agent the dominant strategy. Hence, both individuals will earn: (d)

Note that all individuals with 626 ecarn the same expected payoff

n*” =f (QD)d +(1 -F (9" ))% , whereas individuals with 0 <6° earn
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e = F(HD)d +(1—F(9D ))d =d. Hence as long as there are some individuals with a degtee of
inequality aversion above 6° those players face an evolutionary advantage because

o= —m1%< = (1— F(6° )) 80 .. Hence the globally stable distribution of inequality aversion is

characterized by F“’(@D)zo. The advantage increases with the share of sufficiently inequality-
a(l—[azef’ _H9<¢9D) a_d

of-F@) 2

Proof of ILemma 4-3: The argument is given in the paper. QED

averse players, i.e.

>0. QED

Proof of Proposition 4-2: A symmetric problem of coordination can be represented by

A=£: ;J For a game with the Nash equilibria on the diagonal a>b, d >c holds. Hence any

degree of inequality aversion leaves the set of pure Nash equilibria unchanged. Hence any match
of two players will generate the same payoff, the average of the two pure Nash equilibria.
Therefore the distribution of preferences will be determined by initial conditions and random
shifts. Hence I shall assume for the Nash equilibria to lie on the off-diagonal, ie. w.lLo.g.
b>a, d <c. In terms of utility two individuals with inequality aversion 6§, and 6, respectively give

rise to bimatrix as depicted in Table C-1.

oy, =250, 68, =6, =20

Define 6 o =g o2 = b

o2 >0 . These thresholds represent the ratio of the

material incentive to stick to the considered (material) equilibrium and the gain in non-material
terms from deviation stemming from an increasing equality. A threshold above one represents a
situation where the maximum gain in equality is smaller than the material loss from deviating
from (material) equilibrium behavior. In other words no level of inequality aversion can

destabilize this equilibrium. If for a player 920(%,1)72(9&0)72) then for this player the equilibrium

(0.1)((1,0))is contestable. In the following (1)-(3) consider the different possible matches

according to the relation of the thresholds and the involved players’ inequality aversion.

1) 6,>65,,.6,>65,,

(1,0).1°

, 1.e. both equilibria are contestable (by different players) and are indeed destabilized. The

strategy-tuple (0,0) is stabilized. Now two cases can be distinguished. First ‘0’ has
become the dominant strategy for at least one player (a and ¢) or (1,1) is also stabilized
)

a’) 91 < 0(((:),1),1’ 92 < 9( v 0(((:) 1)1’91,0),2 >1

, L.e. (L1) is not stabilized either because inequality aversion is too weak or the equilibria

are not contestable by the considered players. In that case ‘0’ becomes the dominant

strategy and the unique Nash equilibriurn is given by (0,0). (a,a)
b) 6 >0(o1)1’9 >910)2 /\9(601 1’9(?0 2

, Le. (1) also becomes an equilibrium. There are now the two pure Nash equilibria (1,1)

and (0,0).
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[a+d a+dJ
272

,1.e. ‘0’ is the dominant strategy for player one and ‘0’ is the best response for player two.

(a.a)

Q) 6 <G5y, Vo, >16:,>05,, A, , <1

(0.1),1 (1,0),2

9<t9 vé’c 6°

(0.1),2° (101

2 6<6°

(1,0).1°

i.e. (0,0) is not stablhzed cither because inequality aversion is too weak or the equilibria

are not contestable by the considered players.
2 6< 0(?),1),1a 0, < 9(1 v 6’(?) 1)1’9(?0)2

e. (L1) is not stabilized either because inequality aversion is too weak or the equilibria

are not contestable by the considered players. The sets of Nash equilibria of y(A) and

7(U LU 2) coincide. (H,MJ
2 2

AOS . 6°

b) 6 > ‘9 o, >‘9 o> %102 <

(0,1),1° (1,0),2
, 1.e. both material equilibria are contestable and are indeed destabilized. In that case ‘1’
becomes the dominant strategy. (d.d)

3) wlo.g 6 <9<f’0)’1 0, >9(° v 6?50)’1 <1 (player 1 is selfish, player 2 is inequality-

(0.1),2°
averse), i.e. one players’ inequality aversion makes one equilibrium contestable.
) 6,<0,0,VE

102 Y %02 >
, 1.e. this player inequality aversion is either too weak or the remaining equilibrium is not
contestable by this player. In that case 0’ is the dominant strategy of this player. Two

cases can be distinguished for the remaining player.

@) G <G,V Gy, >1
, .e. this opponents’ inequality aversion is either too weak to or the remaining equilibrium
is not contestable from this perspective. (b,c)
(ii) 6> Gy <
, L.e. the remaimng equilibrium is also contestable and indeed destabilized. (a,a)
b) 6,>6,,,
, le. this player makes both equilibria contestable and indeed both equilibria are
destabilized.
@) 6> Gy, <
,1.e. ‘1’ becomes the dominant strategy of this player (d,d)

(it) 6 <641,V O

0|)1

There is a unique mixed equilibrium which is played (™, ™)

Note that strictness excludes the cases 1b), 1c), 3b). Table C-2 depicts equilibrium payoffs in the

various matches for the case of €, ,=6, =6°<l, ie. the case where both equilibria are

contestable by different players.
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0, <6° 0° <o,
0, <6° (MHJ (b,c)
2 2
0° <6, (c.b) (a,a)

Table C-2: Equilibrium payoffs according to the degree of inequality aversion of the matched players.
Note that individuals with 6>6° earn the same expected payoff T1%* =F (HC )C +<1 -F (HC ))a ,

whereas  individuals  with 0<6° earn = =F (HC )? + (1 -F (HC )) b. Hence

n929°—n9<9°:F(@C)%+(1-F(9¢))(a—b). Note that (m** - )(F(¢°)=0)=a-b<0. If

b>c, then (ng”c —T1%" )(F (HC ) = 1) = % <0 and the globally stable equilibrium is characterized

026° _ 0<6°
by F(é’c)=l. Furthermore 6<H - )=a b+c

qore))

If the reverse holds, i.e. b<c then (H‘QZQC —% )(F (6°)= 1) = C;zb >0 and as a consequence there
exist a globally stable inner equilibria characterized by F(6°)= B E;a =6° bi;b . Furthermore
a(nyzac _p<t* ) bic . .

6(1 = (90 )) =a-—-< 0. The case 6, ,=6;,,<1 is analyzed in the analog way
(a<>d,b«>c). With the definitions for AR, and d in the text the claim follows. QED
Proof of Lemma 4-4: The argument is given in the paper. QED
Proof of Proposition 4-3: Let me first consider the case with multiple equilibria which are

not Pareto-ranked (case A) with

b A B
payoffs given by A =£: dJ and A’ :(C DJ' W.lo.g. T will consider a game with Nash

equilibria on the diagonal (relabeling the strategies for one player transforms such a game in a
game with equilibria on the off-diagonal and vice versa), ie. A>B, D>C and d>b, a>c.
W.Lo.g. let player two be the type who is favored by the problem of distribution, i.e. A>a and
D >d. The assumption that the two pure Nash equilibria are not Pareto-ranked leaves us with
two possibilities, either a<d <D<A or d <a<A<D. W.Lo.g. I will assume the first relations to
hold. This implies that the equilibrium (1,1) is characterized by a strictly lower degree of

inequality. In terms of utility two individuals with inequality aversion 6, and 6, respectively give

rise to the following bimatrix:
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0 1
A-6,|A-a| B-6,[B-b|
"l acgla-al | b-g[B-p
c-g,lc— D-06,|D-d]|
"e-alc-d | d-gp-q

Table C-3: Payoffs in the problem of distribution }/(U U 2) .

Note that:

- (i) D-6,|D-d|zd>a>c
- (i) D-6,|D-d|>C—-6,|C—c|, because for §,=0 D>C and for §,=1 d>c>C-|C—c|
~ (i) |A—a[>|D—d|

Before I analyze the different types of matches, I will define the following thresholds:
oOF = A-B oF = D-C R _ a-c R _ d-b
©92 = |A—a|-[B-b]" " " D-d|-|C-c| " |A-a]-[C~c|" " |D-d|-[B-b]

Note that due to (ii) 6]

1) > 1, i.e. the equilibrium (1,1) is not contestable for player two. Let for all

other thresholds &f, ,.6,,.65,, €(0,1), i.e. both equilibria are contestable, (L1) only by player

(0,0),2> Y(0,0).1>

one, (0,0) by both players.

1. 6,> 0&0)2 (‘1" is the dominant strategy for player 2)

1) 6 <G, (d.D)
@ 6>, (b.B)
2. 6,< 9(20)’2
a) 6< ‘9('?),0),1
(1) 6 <G, (0,0),(11) remain both equilibtia (% A; DJ
2 6> 9(?,1)’1: ’0’ is the dominant strategy for player 1 (a,A)
b) 6> ‘9(2,0),1
1) 6< H(Ff’l)’l : ‘1’ is the dominant strategy for player 1 (d,D)
(2) 6>6,,: there is a unique mixed equilibrium (H["‘“d 1)

Note that all other values of threshold can be analyzed via 1. and 2., because for 7} ; 21 simply

the subcase 6> 49(?’”’]

simply the case 6>,

is left out of the analysis. The same holds for negative values, ie. 6, <0

; is left out of the analysis. The last statement may need some
clarification. A negative threshold implies that a deviation from an equilibrium (not only
decreases the material payoff, but also) increases inequality. In that case for no level of inequality

aversion a deviation from equilibrium becomes profitable in utility terms. This is equivalent to a
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situation where an equilibrium is contestable but inequality aversion is too weak to indeed

destabilize the equilibtium, ie. 6>8°

i, 1s left out. Note that strictness of the problem of

distribution excludes case 2b (2). Table C-4 depicts equilibrium payoffs in the various matches.

0 < 0 < 0(’?),0),2 5 H(’?),O),Z < 07 0(';,0)’2 21 6 > 9(?),0),2
R
0<0<6,,), (1) (%’A;DJ (1) (d,D)
G0y <0
ozl | @ (@) 2 (5.5
0>, | () (d,D) (1) (d.D)

Table C-4: Equilibrium payoffs according to the degree of inequality aversion of the matched players.

o5, =min{¢9,fL,9§yL}, 6’(?1),2 >1 and (1,1) being the materially more equal distributed equilibrium

imply that 6] =65 =6}, Furthermore 67 =min{gf, 4% }.

(0,0),1>¥(1,1)

L. 650,21V 8;,), <0 (materially more unequal distributed equilibrium is not contestable for
high type)

Obviously all high types will earn the same payoff. Hence the distribution of inequality aversion
among high types is determined by initial conditions and random shift. With respect to low types
let me first consider the case when the materially more unequal distributed equilibrium is

atd 4

contestable, ic. g =67, . In that case payoffs for low types are given by o< =

d-a >0 and the globally stable equilibrium

%% =d . Hence difference is given by M=% -7t =
02068 0<6}
o(my —mi )

o(1-F.(a5))

the materially less unequal equilibrium is contestable for the low type, ie. =6}, . Payoff

is characterized by F, (Hf ) =0. Furthermore =0. I will now turn to the case where

differences is given by %% —11* —=d-a>0. Hence the globally stable equilibrium is
. a(nfzef _ Hf«;{* )
characterized by F, (HLR) =0. Furthermore ————-=0

S

Finally if none of the material equilibria is contestable for the low type, the distribution of
inequality aversion among low types is determined by initial conditions and random shift.

2' 0(?),0),2 < (0’1)

Let me first consider the case when the materially more unequal distributed equilibrium is
contestable for the low type, ic. ' =6;,,. In that case payoffs for low types are given by

Hfd)f =F, (QR)¥+(1— )d and %4 - F, (9§)d+(1_FH (93))(1:(1, for high types

e = (QR) A;D (1_ )D and TI%% = F, (QLR)D+(1—FH (65 ))D =D . Hence differences are

given by %% —1%% = (HR)d 2.0 and %% —1%<% :—FL(HLR)A_D <0. Hence the globally
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stable equilibrium is characterized by F, (G’HR ) =1,F (QLR ) =0. Furthermore
a(nzzeﬁ o ) AD o a(Hfzef e ) _d-a 0
o(1-F (er)) 2 o(1-F (65)) 2

I will now turn to the case where the materially less unequal equilibrium is contestable for the low

type, ie. 6 =¢},,. In that case payoffs are given by m{* =F,(6f)a+(1-F,(65))b and
N =k, (65)d+(1-F, (68))d=d, for high types 1% =F (¢f)A+(1-F (&f))D and
5% =F (07)B+(1-F, (65))D. Hence differences are given by 1" —11i"* =d -b—F, (6] )(a-b)
and  TI7% -110% =F_(6F)(B-A)<0. Note that (H‘fﬂf —Hf“gf)(FH (65)=0)=d-b>0 and
(-~ ) (R, (65)=1)=d-a>0. Hence the globally stable cquilibrium is given by
a(nfz"f —Hf<55)

P Hazyﬁ _Ha<aﬁ
( ! ! ):A—B>O and —— 2 —a—b.

o(1-F.(47)) o(1-Fy (65))

Finally if none of the material equilibria is contestable for the low type, the distribution of

F, (H,f ) =1,F, (HLR ) =0. Furthermore

inequality aversion among low types is determined by initial conditions and random shift. Payoff

difference  for  high  types is given by O%% —O%% =F (o8 )(B -A)<0  with

a(nazeﬁ _ Hifgﬁ )
o(1-F.(40))

Case (2) of Lemma 4-4:

=A-B>0. Hence the globally stable equilibrium is given by F, (HHR ) =1.

Let us now turn to case (2) of Lemma 4-4 with two Pareto-ranked equilibria. Given the
assumption parallel to case A this leaves us with two possibilities, either d<aanD<A or
a<dAA<D. For ease of comparability to case (1) of Lemma 4-4 I will w.lo.g. assume
a<dAA<D to hold. Hence the only relation that has changed in comparison to case (1) is the
one between parameters A and D. Note that inequalities (1) and (if) still hold. Again, due to (ii)
G5, >1, i.e. the equilibrium (1,1) is not contestable for player two. That is, in case (2) the Pareto-

superior equilibrium is not contestable for high types. The equilibrium analysis is equivalent to
case A and equilibrium payoffs correspond to those in Table C-4, their relation to each other may
have changed though.

L o). 21V, <0 (Pareto-inferior equilibrium is not contestable for high type)

Parameters A and D are not involved, hence the results are identical to those in case A.

2' 0(?),0),2 < (0’1)

Let me first consider the case when the Pareto-inferior equilibrium is contestable for the low

type, i.e. 67 =6, - Payoffs are equivalent to case (1). Differences in payoffs among low types is

d-a A-D

given by T4 —1%<% = F, (QHR) >0 and by TI%% —1%% = _F, (HLR) >0 among high types.
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Hence the globally stable equilibrium is given by F, (9:: ) =F (HLR ) =0. Furthermore
P ngeﬁ _H9<9§ B P Hazef _H9<0f B
( ! ! ) A D<Oand ( - - )=—d 2 20.

f-rl@) 2 of-r(@) 2

I will now turn to the case where the Pareto-superior equilibrium is contestable for the low type,

ie. 6'=6;,,. In that case payoffs are given by II/f =F, (6] )a+(1— F. (60 ))b and
% =r, (65)d+(1-F, (67))d = for high types % =F (6f)A+(1-F (6f))D and
;% =k (6F) B+(1— . (65 )) D. Hence differences are given by 11%*% —11%“* =d —b—F, (65)(a-b)

and [Z% —T1%% = F(67)(B-A)<0. Note that (Hf”’f —Hf“gf)(FH (0ﬁ)z0)=d—b>0 and
(7 ) (R, (65) =1)=d

F, (H,f ) =1,F, (HLR ) =0. Furthermore

—a>0. Hence the globally stable equilibrium is given by

a(l'lffgf‘ —Hﬁi<6§)_A_B>o and M:a_b'

o(1-F (67) o(1-F. (42))

Finally if none of the material equilibria is contestable for the low type, the distribution of
inequality aversion among low types is determined by initial conditions and random shift. Payoff

difference  for  high  types is given by = O%% %% = F(6f)(B-A)<0  with
a(nazeﬁ _ Hifgﬁ )

o(1-F.(40))

Proof of Theorem:  Let 6° =6° =6, =6"" and dIT}, <0. dIIf <0 implies that B} =—af;.

=A-B>0. Hence the globally stable equilibrium is given by F, (HHR ) =1. QED

Payoff differences are given by
dIT}, >O©( )( up® +vpe (1 y—v)aﬂ)Z,u,BDﬂ/ﬂc—vac—(l—y—v)aﬁ —(l—F:')(,uﬁDﬂ/ﬂc) e
dIT; 20 (1-F )(uB° +vB°) 2 uB® +vB° —va® —(1-u—v)a —(1-Fy )(uB® +vB° +(1-u-v) A7)

I will distinguish 3 cases (i) 0< uB° +vB° < uB® +vB° —(1-u—v)af;, (i)
wB° +vB° < pB® +vB —(1-u—v)af) <0 and (iil) wB° +vB° <0< up® +vB° —(1-u—v)a;

(@) 0<up®+vB° <up® +vB° —(1-pu—v)aj

1):(1-F)>1- va” - HB” +vp” 1-F,
(1) ( ) up® +vB°C —(1-p-v)a; ,uﬁD+Vﬁc—(l—,u—v)aﬁ< )

(2)’(1_Ft)>1_vac +(1-p—v)af _yﬁD-i-vﬂc +(1-p—v)BE (I—Ft)
A Hp° + v Hp° +vp° "

(*) can be written as:

a) a© >0:

It follows that the intercept of (1) in below one and above the intercept of (2). Given the negative
slope of (1) essentially 2 cases can be distinguished. The following table depicts the phase
diagrams which clearly indicate the stable equilibria. The last row states the precise condition for
the case considered.
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Fo=F=0F =F =1 Fu=F =0
1-F, - F
0 T
(2) D 4 i
9 N N - ;
T i 1-F, 5 b I-F,
( ) r_____________"__--l i1
l_VaC +(1D_Iu—(‘:/)af 0o va© +(1D_,u_:)aL <0
up- +vp up” +vp
o B+ —(1-u-v)ay 0 y 4B VB —(1-pv)al
o a” >
y v

b) o <0:

It follows that the intercept of (1) above one and above the intercept of (2). Given the negative

slope of (1) essentially 4 cases can be distinguished. The following table depicts the phase

diagrams which cleatly indicate the stable equilibria. The last row states the precise condition for

the case considered.

F =F =1 F,=LF =0, F,=F =1 F,=LF =0
I-F, 1-F, - F,
| ST 1@----------- 1@-=====—=— ==
~_<h g4 - | ) :
O I N = i1 (1
:( ) (@) : ) //1( )
5 . =
r 1 L= Fy f ‘1‘ 1-F, (2)4’.’. ___________ 1 I-ty
c [— —
va® +(1-p-v)al e i +(1D ad :)aL <0
up® +vp°© 1_vac +(1-p—v)af c(0.1) ﬂDﬂ +VC,3
c l-u-v W v ’ A Ul L
af <——F—af v
v

The same three cases emerge if (1) has a value of below one at 1-F} =1. However in that case an

additional locally stable equilibrium arises, that of F,=F =0. The condition for this is

,u,BD+v(ac+ﬂC)>0‘
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(i) wB® +vB° < uB® +vp° —(1-p—v)a <0
Note that the slope of (1) is again negative.
a) a® <0:

It follows that the intercept of (1) in below one and below the intercept of (2). Given the negative
slope of (1) essentially 3 cases can be distinguished. The following table depicts the phase
diagrams which clearly indicate the stable equilibria. The last row states the precise condition for
the case considered.

Fi=F =1 F,=LF = Fo=LF =0
H L H L /J,BD+V,3C H L
1-F -
I-F, 1-F, y— L
___________ 1._:‘_\..,\_‘____..
1 i I Ny Y S g
! 1 ‘1 ———————— ! <—f 1}7\
| ()¢ i et
! S ! t. !
3 : ) I — : I-F
(Z)Ft::::"“"-----ﬂ I=Fy 1| 1-F, 1 "
l) X\
c _ R
va© +(1-p—v)a e Hlopov)eg >le
1- L<0e B° +vp°
uf3° +vp° va© +(1-u—v)a (o.1) H
- (0, 1— u—
o MBS —(1—p-v)al uB° e eyl “ Y) o

b) a©>0:

In this case the intercept of (1) is above one. The following two cases can be distinguished.

(o}
vo
FLZO’ FH=1+W FHZFLZO

I-F,

—_
=)
—
[N B, A
—
|
2

1-F,
- va© B up® +vp° o
HB° +vBe —(1=pu=v)af  up° +vB° —(1-pu—v)ay uB° +v(ef + )20

<:>,uﬂD+v(a°+ﬁc)<0
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(i) wB° +vB° <0< up® +vB° —(1-u-v)a;
Note that the intercept of (1) is above one.
a) a® <0:

It follows that the slope of (1) is positive. Essentially 3 cases can be distinguished.

c R R
F,=F =1 Fo=1F=1-22 +(ID H :)“L F, =1 F =0
up~ +vp
I-F; I-F, ) I—Fz ________
1ﬁ(” (1) ( )1.‘::;\::___‘_11(1)
! s = ! J "
! (2)8 i :
| ST ! :

K ! ! o
(ZJF_: ————— 1 1-F, : I-F, 1 1-F,
va© +(1-p—v)a _vac+(1—,u—v)af Lo

) S0 W

up® +vp° va® +(1-p-v)af (o.1)

(0, oy
¢ _ MB° VS —(1-pu-v)a; HB° +vp° o s UZHY) i
< > >
b) a© >0:

In this case the intercept of (1) is below one whereas the intercept of (2) is above one. The

following two cases can be distinguished.

<

Y,

|
=

_____
—
|
e
z

1- va® _ up° +vp° -1
uB® +vpe —(1-pu—v)af wp®+vpc—(1-pu-v)aj yﬂD+V(ac+ﬂc)$0
@yﬂ"+v(ac+ﬂ°)>0

QED
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Proof of Lemma 4-7: The center of mass of the polytope given by the vertices presented in
Table 4-4 can be calculated as the average with relative volume as weights of the centers of mass

of the two ramids DCGE and DCFE ie.
Y )
_ Pocee Pocre
PCDEFG - PDCGE PDCFE :
VPDCGE + PDCFE VPDCGE + PDCFE

The center of mass for these two pyramids is located on the line segment connecting the center
of the (any) triangular base and the top of the pyramids. Some elementary algebra yields
o 1 a, o 1 a,
e 6 1t o, (1) (1+e,) ™ 6 1+, +aa, (1+a)(1+a,)

Furthermore the centers of mass of the two pyramids are given by:

1+ ! + :
ILIOCOMPDCGE 1+al +a10{2 (1+a1)(1+0{2)
1 1
CM Pocee - ’ulc(:)M i a, and
S (I+a)(1+ )
o1 i 1 ) 1
1+ +aa, (1+a)(1+a,)
1 1
1+ +
Mryy l+a, +aa, (1+a)(1+a,)
00
1 1 1
CMPC = ﬂlCoMPDCFE == az( + J
oeTE My 4 I+a, +aq, (1+a1)(1+a2)
01
o 1
(l+a)(1+a,)
Plugging in values and rearranging terms yield the stated equation. QED
Proof of Proposition 4-5: Again, let the symmetric dilemma be represented by the following
matrix A= [Z ;J . Expected payoffs are then given by:

Ex, = yya+ t,,C+ 14,0+ 24,d, Ex, = poa+ g4y, 0+ g40a+24,d and hence the difference by:
Ex,—Ex, = (,um — My, )(b—C). Plugging in the values for the center of mass (see Lemma 4-7)
yields:

Ex,—Ex,=(a,—a,)(b—-c)

( 1+, . 1 ~ 1 QED
(

l+a +aa,)(1+a,+aa,) (1+a)(1+a,) (1+a+aa,)+(1+a, +aa,)

>0

Proof of Proposition 4-6: The line of argument in the proof of Proposition 4-1 is still valid,
ie. if and only if two individuals are matched who are sufficiently inequality-averse the set of
equilibria changes. In case of the concept of correlated equilibria the vertices of the set are given
in Table 4-4. According to Proposition 4-5 for two such individuals the one with the lower
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degree of inequality-aversion earns higher profits. Furthermore the difference in profits is
monotonic decreasing in the difference in the degrees of inequality-aversion. Hence the highest
profits is earned by individuals with @ =@ and the lowest profits such an individual can earn is

realized when matched with another individual with @ =@°. Again, let the symmetric dilemma

a C
be represented by the following matrix A=[b dJ‘ W.lo.g. a>d, in that case 6 =6, =06"

implies &, =a,=0 and " =%, w" = %, ue" =" =0 yielding expected payoff
3.1 : . e
Ex= Za+Zd >d strictly greater than the payoff received by opportunistic individuals. Hence

the only stable equilibrium that can emerge is the singular distribution with all agents sharing the
same degree of inequality-aversion.

I turn now to the non-PD-case. In that case the results with respect to profits for individuals with
6> 6° also hold. No two different values 6,,0, with 6,6, > 6° can be part of an equilibrium,
because both individual earn the same profit when matched with an opportunistic opponent and
the one with the lower degree of inequality-aversion earns higher profits than the one with the

higher value in any match with some other agent with 8> 6°. Hence only types with 6 =6°
could be part of an equilibrium. However the same calculation of expected payoffs as in the PD-
case applies, but in the non-PD-case this amount to a disadvantage because w.lo.g.

b>a, d>c, b_;—C >d, a<d and thereby Ex :%a+id <d. Hence the globally stable

equilibrium distribution is characterized by F <9D) =1. QED

Proof of Proposition 4-7: Given the definition of thresholds and the derivation of different

equilibria in the proof of Proposition 4-2, I focus herein on the case where one player alone can
destabilize both pure Nash equilibria. By symmetry potentially both players can thus destabilize
all equilibria individually. Again, since inequality aversion has no leverage on coordination games,
I study anti-coordination games. In other words, I am concerned with games represented by a

a

trix A=
matrix [b

J such that b<a, c>d. Both equilibria being contestable is equivalent to

c<{a,¥}, b>c=b>a>c>d
050,650, <L, 05,65, <1 and 9(3,1)52,05,0%51, o° 95,0)52<1@

(0.1),2>Y(1,0), (0,1),1>¥(1,0),2 (0.0)1° :
b<{d,%}, b<c=c>d>b>a

< &

I first study the case 6, =6; o

b-a
o =60 L@ a<feo—< IJ .

c—d

Table C-5 below presents the payoffs depending on the two level of inequality aversion being
matched. I will refer to an individual in lowest interval, medium and high interval as A, B and C-
types respectively.
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A

B

0, <0

C
(0.1),2 < 9(1,0),2

ec

(0.1),2 < 92 < 6.((1:,0).2

‘0’ is dominant stt.

%

1).2 < 0(?,0),2 < 92

b C b C mix mix
91 < 9(?.0),1 < 0(?),1).1 [%’%J (b,C) (1_[1 (al’aZ)’HZ (al’a2 ))
0((1:,0),1 < 91 < 0(((:),1).1 (C’ b) (a’ a) (a’ a)
mix mix a+d a+d
‘9((1:,0),1 < 9(%.0,1 < 91 (Hl (al O )snz (al &y )) (a’ a) (T’TJ

Table C-5: Payoffs in the various matches.

-b+6 |b- —-b+6,|b-
For the mixed equilibrium: ¢ :w, a, :w , and
lc—6,Jo—c|+d| lc-6,]b—c|+d|
b-a C C C C
a<ps _d <1<:>9(o,1),2 :H(I,O),] < 6(0,1),1 :0(1,0),2 .

I will first consider the case b >C. Note that in that case B-types destabilize the equilibrium that
favors them, but not the equilibrium that disfavors them. This suggests an evolutionary
disadvantage for B-types. Profits if there exists only a mixed Nash equilibrium, i.e. in a match
between A-types and C-types are given by:

o™ (a,,a,)=

(a+ab+ac+aad), I (a,a,)= (a+ac+ab+aa,d)

(1+al)(1+a2) (1+al)(1+a2)

mix mix o, &
™ (e, a,)-11; (al’%):(lJr(az)Tjr)a)(b_c) >0 a <a,
1 2
Consider a match between type A as player one and type C as player two, ie. player one is

opportunistic and player two is highly inequality-averse. In that case

la-b+6,|b—c| 3 la-b+6,Jo—c| a-b+6b—c| _a=b+0,[b—c]
lc=6,b—c|+d| [c-6,b—c|]+d| ~d-c+6]b-c| d-c+6,[b—c|
< (a-b)6,[b—c[+(d-c)g o-c|>(a-b)go—c[+(d-c)d,b—c| < 6<6,

a <a, =

When I considered a strict and symmetric problem of coordination type C player were simply left
out of analysis. Thus I will focus on equilibria with type C players. Note that there can be no B, C
equilibrium, because C players would be worse off. For the same reason there cannot be an
equilibrium with only C players, since B players could successfully invade.

In an equilibrium with both types A and C present, only players with minimal

o =q LHI = EJ =0 among A types and those with minimal «, =, (6, =1) :ﬁ can be
nmix _ _
patt of the equilibrium, because oM™ (@) 2 C+(2b d)e; <0 and
oq, (I+e) (1+a,)
Hmix _ b—d _
AL (o) __a=Cx )azl <0. Due to 2% _ b—c s(b-a—(c-d)) < 0 and
aaz (1+al)(1+a2) 891 (C—d _91 (b—C)) b-a<c—
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= 5 (b—a—(c—d)) < 0 minimal a translate into maximal 8. Table C-5 thus

90, (c-d-6,(b-c))

simplifies to:

b-a<c—d

A B C
A (MMJ (b.0) {—bc+a(2b—2c+d) —cz+a(b—c+d)]
2 2 a+b-3c+d a+b-3c+d
B (c,b) (a,a) (a,a)
(—cz+a(b—c+d) —bc+a(2b—20+d)J (a.2) (M’MJ
a+b-3c+d a+b-3c+d 2 2

It turns out that type A types earn strictly higher payoffs than type C players, because

, - —’+a(b-c+d
™| a, =0,a, = a-t ( )<b+c and
d+b-2c a+b-3c+d 2
_ - —bc+a(2b-2c+d ey .
™| o =0,a, = L P ( +d) > a+d . Hence such an equilibrium cannot exist.
d+b-2c a+b-3c+d 2

Intuitively, if B> C, then weighting the outcome (0,1) and (1,1) less reduced payoffs for player
two. For the lowest weight payoffs for player two are a weighted average of @ and C, and
therefore higher than C.

Finally, I analyze whether there exists a AB,C equilibrium. It turns out that for the most
a-c
d+b-2c

A-types would earn strictly higher profits than B-types in an A,B,C equilibrium.

profitable type A player an even stronger inequality holds: TT™ Lal =0,a, = J> a. Hence

Thus no additional equilibria arise.

. .. a+c
I now turn to the case when D < C. To summarize conditions: ¢c>d >b>a, b—a<c—d, b <T.

81'[2“*(0{1,012)=C—a+(d—b)oz1 20 and 61'[1rr‘ix(al,czz)=C—a+(d—b)oz2
oa, (1+a1)(1+a2)2 eled (1+a])2(1+a2)

These conditions imply:

Again I focus on equilibria with C types being present. I first consider the case with only C-types
present in equilibrium. Such a distribution cannot be invaded by B types. The fittest A type is the
one with maximal a;, which transfers to a minimal 6,. Note that the profit of the fittest A type is
bc—ad
“b-a+c—d’

independent of the degree of inequality aversion of the C type, IT/™ (al = :_Z ,a2j

Hence a locally stable equilibrium with only inequality averse players of type C exists if

bc—ad < a+d
b-a+c-d 2
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I now study whether there is an equilibrium with A and C types present. Again, this demands
b-a

= —.a=o implying the following profits: H;nix( _b—: " J b—b;;id—d and
_2 —
H;”‘X(al :B,az _)Ooj: ¢’ +(a b)d+Cd . Thus Table C-5 simplifies to:
c— a-b-c+d
A B ¢
_ —c? —b)d +cd
A (b+c’b+cj (b.c) bc—ad ’ ¢’ +(a-b)d+c
> b—a+c—d a-b-c+d
B (C,b) (a’a) (a’a)
C —c2+(a—b)d+cd, bc—ad (a.a) (a+d’a+dj
a-b-c+d b-a+c-d 2 2

Let IT* and II° denote the payoffs of A-types and C-types respectively. Let F(A) denote the

bc—ad
b-a+c-d

b+c

share of A-types in equilibrium, then 11" (A)—+(1 F(A)) and

—c’ +(a—b)d +cd .
a-b-c+d

a+d
° =F(A) (1-F(A)) =~
bc—ad _a+d b+c —¢*+(a—b)d+cd
> , because <
b-a+c-d 2 2 a-b-c+d
holds. In  that «case the equilibrium share of A-types is given by
F(A)= a’+2bc—a(b+c)—(b+c)d+d?

a’—b” +(c—d)’ —2ad +2bd
smaller than equilibrium payoffs, given the equilibrium share of A and C-types. Note that a

An A,C equilibrium exists if and only if

. The equilibrium is locally stable if the profits of B are

parameterization ~ with  a=0, b:g d= 5 c=1 indeed satisfies all condition, i.e.

a+c bc—ad Jat d
2’ b-a+c-d 2
stable equilibrium indeed exists.

c>d>b>a, b-a<c—-d, b<

, F(A)e(0,1), and M°<II*, thus such a

I will finally analyze the existence of an A,B,C equilibrium. Payoffs of the different types are
bc—ad
b-a+c—d’

given by: T = F (A )w+F(B)b+(1 F(A)-F(B))

=F(A)c+F(B)a+(1-F(A)-F(B))a, and

- 2 —_
¢’ +(a—b)d+cd .

I =F(A
( ) a-b-c+d

F(B)a+(1-F(A)- F(A))% The two equations IT* =T1° and
I1° =I1° imply the following equilibrium values for F(A) and F(B):
F(A)=
2(a-b)(a-d)(a-b-c+d)’
2a* +4b’c—(b—c)(b+c)(3b+c)d +2(b* —2bc—c*)d* +(b+c)d* +a’ (-5(b+c)+2d)
+a’ (4(b> +3bc+¢”)-5(b+c)d +2d”)—a(b’+b* (11c-6d )+ (c—d)(c” +3cd —2d* ) +b(3¢” — 4cd +3d°))

(a®-a(b+3c-2d)+b(2c-d)+(c-d)d )

F(B)=1-F(A) (a-d)(ab_cra)
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. . .. . a+c .
Given the summarizing conditions of this case ¢>d >b>a, b—a<c—-d, b<—— it turns out that

for the slopes of the three equation the following ordering  holds:

l'IA:l'[B l'IB:l'IC l—[A:l—lC
oF(8B) <L(B) <—1<0<6F(B) , where
aF(A) aF(A) OF(A)
oF (B)" ™ —2a?+b? +a(b+3c)+c(-c+d)-b(2c+d)
F(A) 2(a-b)(b-d) ’
aF(B)HB:“C _ -a’+a(b+3c-2d)+b(—2c+d)+d(—c+d) and
oF (A) (a—d)(a-b-c+d) ’
oF (B8)" " *_b* +(c—d)’ —2ad +2bd
(B) =— az +(c-d) ~2ad+ . This gives rise to the following phase diagram.
oF (A) a’+2b’-a(3b+c-2d)—-bd +(c-d)d
F(B)
Pe
\\Or

=

As the diagram clearly indicates this equilibrium is unstable.

Proof of Proposition 4-8: The set of equilibrium payoffs can be found in the proof of
Proposition 4-3. If the two Nash equilibria are not Pareto-ranked then I may w.l.o.g. assume that
a<d <D< A (see Table C-3). Two cases with respect to the thresholds for low types may be
distinguished. I first consider 65, , <67,

1. 0< (9(30),1 < 0&),1 <1

Table C-6 depicts equilibrium payoffs in the various matches.

0< 9(?),0),2 0> 9(?)’0)’2
. a+d A+D
0 <65, ) (d,D)
s <0 <G (d.D) (d.D)
9(?1)‘1 <0 (H;nix (0‘1»0‘2 )ﬂngﬂx (al,az )) (b’ B)

Table C-6: Equilibrium payoffs: 0< 9(';0)’1 < (9('?’1%1 <1.

I will refer to individuals with 9<9£’0)‘1 , 19(270))1 <0< 6’(?1)’1 , and H(Ff)l))l <6 as A types, B types and C
types respectively.
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There can be no equilibrium with B types only as the more opportunistic A type would earn
strictly higher profits as long as some high types are opportunistic. In an equilibrium with A and
B types opportunistic high types would earn strictly higher payoffs. I will now consider the case
of C types, who give rise to the play of a mixed equilibrium when matched with an opportunistic
high type. I will show that 17" (e,e,) > B, thus in such an equilibrium only opportunistic high

types can be present.
Note that TI7% (¢y,@,)>B < A+ +a,C+a,D>(1+ ¢, )(1+a,)B< A-B+aa, (D-B)>a, (B-C)

Consider first B<b, then D>B and hence A-B+a,2,(D-B)>a,(B-C)<=A-B>a,(B-C).

Note that 2% — Alc=d)+B(zc+2C+d —2D)—(a+b)2(C -D) it C>c. This derivative is negative if
a0, (D+C(-1+62)—(c—-d +D)#6,)

and only if the numerator is negative which can be written as —(A-B)(d-c)+(D-C)(a+b-2B).
This term is negative because (9{;!0)32 <l<a+b<2B. If C<c then
da, _—A(c-2C+d)+B(c+d-2D)-(a+b)(C-D)
00, (D(-1+6,)~(c+d)6, +C(1+6,))

. This derivative is negative if and only if the

numerator is negative which can be written as —(A-B)(d+c)+2AD—-2BD+(D-C)(a+b). Note

that:
—(A-B)(d+c)+2AD-2BD+(D-C)(a+hb)<0

— 0&‘,_0)2 <l<a+b<2B
>0

—(A-B)(d+c)+2AD-2BD+2B(D-C)<0 <
(A-B)(2C—(d+c))<0

Oa,

This term is negative because C <c<d implies (2C —(d +c)) <0.Thus <0,b>B.

——
>

2
Consider second B>b, then D>B because ¢, <l<>2(d-b)<D-B. Hence still
0

" (a,a,)>B<=A-B>q,(B-C) holds. I show that also in this case LY

a0,
0(§0)2<1<:>a+b<28. If C<c then %:—A(c—2C+d)+B(c—2C+d)—(a—b)(§:—D)' This
o 00, (D(-1+6,)—(c+d)6,+C(1+86,))

derivative is negative if and only if the numerator is negative which can be written as

—(A-B)(c+d-2C)+(a-b)(D-C). Note that: 6’(30)2 <l<a-b<0, hence ZZZ <0.

>0 >0, C<c<d >0 2

If Coc then 9% _ (A-B)(c-d)-(a-b)(C-D)

~. This derivative is negative if and only if the
90, (D+C(-1+6,)-(c-d+D)d,)

numerator is negative which can be written as —(A-B)(d-c)+(a—b)(D-C). Note that:

| S E— —
>0 >0

Gos)» <1>a-b<0, hence 9o, _y.
2

In summary, if O<‘9(E,o),1a0(i1),1 <1 and one equilibrium is contestable for the high type, ie.

0< 9(3’0)2 <1, then o, 0. Note that I did not make use of 0{3’0)’1 < H(Ff’l)’l. Hence the result also
2
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applies for the second case O<6(F1Q,1)‘1<9(§,0),1<1 which will be considered next. Hence

-
da.
2 <0

20, _
" (e,2,)>B<A-B>a,(B-C)=A-B>a"(B-C) = a,(6, :0)(B_C)Zé—i(8_c)

<D>B
Since the last inequality holds, the claim T17* (¢, a,)> B is established.

2. 0< 9(?,1),1 < ‘9(?),0),1 <1

In that case Table C-6 becomes:

0 < 9(?)‘0),2 9 > 9('(2),()),2
a+d A+D
0< 9(?),0),1 (Ta > J (d, D)
o <0 <G, (aA) (b.B)
9(?’1)’1 <0 (H;mx (alaaz )’H;mx (al &y )) (b.B)

Table C-7: Equilibrium payoffs: 0< 9:_1)’1 < 6’(2’0)’1 <1.

Since )™ (e,@,)>B also holds and since A>B dominance of relative opportunistic players

among high types is even strict. Thus, also in this case no inequality-averse individuals can be part
of a stable equilibrium. QED

Proof of Proposition 4-9: The argument is given in the paper. QED
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