

J Ö R N F R I E D R I C H D R E Y E R

I N STA N T
STO RY B OA R D I N G
I M M E D I AT E V I S UA L I Z AT I O N

O F O N TO LO GY L E A R N I N G

FO R AC C E P TA N C E T E STS

W I T H G R A P H T R A N S FO R M AT I O N S

I N W E B A P P L I CAT I O N S

D I S S E RTAT I O N submitted in fulfillment of the requirements for the degree of Doktor
der Naturwissenschaften (Dr. rer. nat.) to the department FB 16 Electrical Engineering /
Computer Science, Software Engineering Research Group at the University of Kassel.
Disputation in Kassel / Witzenhausen on November 11th 2014

Copyright © 2015 by Jörn Friedrich Dreyer
All rights reserved.
ISBN: 1-51524-095-9
ISBN-13: 978-1-51524-095-2

A digital version of this thesis is freely available in KOBRA (Kasseler OnlineBibliothek,
Repository und Archiv), the e-library for scientific contents from the University of Kassel:
https://kobra.bibliothek.uni-kassel.de/

https://kobra.bibliothek.uni-kassel.de/

DA S M U S S D O C H AU C H E I N FAC H E R G E H E N !

A L B E RT Z Ü N D O R F

Acknowledgements

My profound thanks to Albert Zündorf for the advice on graph transformation theory as well
as extra history lessons on the subject. His continued support and guidance led me the right
way.

Equally profound thanks go to Pieter Van Gorp for his thorough reviews and support be-
fore this thesis was even started. His constructive feedback allowed me to polish key sections
in my theory.

I would also like to extend my appreciation to Leif Geiger and Andreas Hotho, who guided
me on the first paper that sparked off this whole thesis. Their deep knowledge in Fujaba and
natural language processing allowed me to work on bringing the two research groups a little
closer to each other.

Special thanks to Christoph Eickhoff, Sascha Müller and Bernhard Grusie for their assis-
tance in the software development. Special extended thanks go to Christian Schneider, who
invited me to Kassel in the first place.

I would also like to express my deepest gratitude to my wife Nina as well as Alexandra and
Benedikt. Without their competitive ideas it would have taken me a lot more time to complete
the thesis, if ever.

Abstract

This thesis aims at empowering software customers with a tool to build software tests them
selves, based on a gradual refinement of natural language scenarios into executable visual test
models. The process is divided in five steps:

1. First, a natural language parser is used to extract a graph of grammatical relations from
the textual scenario descriptions.

2. The resulting graph is transformed into an informal story pattern by interpreting structur-
ization rules based on Fujaba Story Diagrams.

3. While the informal story pattern can already be used by humans the diagram still lacks
technical details, especially type information. To add them, a recommender based frame-
work uses web sites and other resources to generate formalization rules.

4. As a preparation for the code generation the classes derived for formal story patterns are
aligned across all story steps, substituting a class diagram.

5. Finally, a headless version of Fujaba is used to generate an executable JUnit test.

The graph transformations used in the browser application are specified in a textual domain
specific language and visualized as story pattern. Last but not least, only the heavyweight
parsing (step 1) and code generation (step 5) are executed on the server side. All graph trans-
formation steps (2, 3 and 4) are executed in the browser by an interpreter written in Java-
Script/GWT.

This result paves the way for online collaboration between global teams of software cus-
tomers, IT business analysts and software developers.

Contents

An introduction to Storyboarding 11

Foundations of instant storyboarding 19

Open Questions 29

Instant Storyboarding 31
Web based storyboarding 38
Instant grammatical relations 49
Instant graph visualization 61
Instant informal story patterns 74
Instant formal story patterns 98
Instant storyboards 110
Instant acceptance tests 124

Instant Examples 131

Conclusion 149

Outlook 153

Bibliography 159

List of Figures 167

List of Listings 172

List of Tables 176

An introduction to Storyboarding

In this thesis on Instant storyboarding, we will discuss immediate visual feedback on ontology learn-
ing for acceptance tests with graph transformations in web applications. Reading the title we can
identify two main topics of this thesis:

Storyboarding is a film industry standard that visualizes the movie script scene by scene.
The Fujaba community has developed a process that expresses requirements in a similar
graphical way. In the context of software engineering storyboarding formalizes require-
ments by adding story patterns for start, end and intermediate situations, helping devel-
opers to spot potential problems before they occur.

Instant storyboarding has been the main goal of my research work. Current tool support not
only requires interested users to download, install, run, configure and navigate through
the UI of the Fujaba tool suite, but is also limited to managing storyboarding artifacts. In
comparison to pen and paper, they are inaccessible and lack recommendation capabilities
for the core aspect of the process: deriving a story pattern from a textual scenario.

12

To achieve this goal, I created a prototype that demonstrates the advantages of instant sto-
ryboarding. As already mentioned in the subtitle of this thesis I researched solutions to im-
plementation details in five related topics:

Immediate Visual Feedback Spreadsheet software automatically recalculates the depend-
ing formulas whenever a cell is changed. With Instant storyboarding we are striving to
achieve the same level of liveness for storyboarding.

Ontology Learning is the task of learning concepts and relations from natural language in
ontology engineering. There, the subtask of instance learning resembles the task of deriv-
ing story patterns from textual scenario descriptions described by the storboarding process.

Behavior Driven Development The storyboarding process of Fujaba produces JUnit tests
that cover the requirements defined by the textual scenario descriptions. They capture
the desired behavior of a system in the same spirit as Behavior Driven Development as
proposed by Dan North.

Graph Transformations Instant storyboarding uses graph transformations to convert gram-
matical relations into informal story patterns, complement type information and add fur-
ther implementation details. Each of these steps is an ideal candidate for visualization
because of the graph nature.

Browser Applications To maximize the accessibility of Instant storyboarding, we implemented
the prototype as a web application. Instead of downloading an installer, an executable or
even source code trying out Instant storyboarding is as easy as pointing your web browser
to http://instant-storyboarding.de.

In the following sections, I will explain these seven aspects in more detail and give an
overview of the structure of this thesis and its contributions.

http://instant-storyboarding.de

13

Storyboarding by Example

“Scenarios have a plot; they include sequences of actions and events,
things that actors do, things that happen to them, changes in the setting, and so forth.”

∼ Rosson and Carroll1

1 Mary Beth Rosson and John M. Carroll.
Usability Engineering: Scenario-Based De-
velopment of Human-Computer Interaction.
San Diego, CA: Academic Press, 2002.
isbn: 1-55860-712-9

Storyboarding is the process of formalizing a textual scenario by deriving a story pattern
for each step in the plot. Let us examine the process with a simple chess example as in listing 1.

1 Start situation:

2 Alice and Bob are playing chess. Alice

3 moves her white pawn from field c2 to c4.

4

5 End situation:

6 Alice's pawn is now on field c4.

Listing 1: This textual scenario for a sim-
ple chess situation describes one of the
possible opening moves for Alice. We
will revisit the scenario several times, so
if you are unfamiliar with chess I recom-
mend reading the wikipedia article to get
an idea of the game: Wikipedia. Chess.
2001. url: http://en.wikipedia.or
g/wiki/Chess (visited on 03/24/2014).

In order to formalize this scenario Diethelm, Geiger, and Zündorf2 recommend the follow-

2 Ira Diethelm, Leif Geiger, and Albert
Zündorf. “Systematic Story Driven Mod-
eling, a case study”. In: Edinburgh, Scot-
tland, May 24 - 28, 2004. url: http://w
ww.se.eecs.uni-kassel.de/se/f
ileadmin/se/publications/DGZ04
.pdfing steps to derive a story pattern:

1. Identify nouns and underline them in the text.

(a) Draw an object for every noun.

(b) Use the noun as the name of the object.

(c) Map noun attributes to the object.

2. Identify verbs and use a dotted line to underline them in the text.

(a) Draw a link between the corresponding subject and object of every verb.

(b) Use the verb as the link name.

chess

Bob
playing

fieldc2

Alice

playing

c4pawn

white

Figure 1: The informal object diagram
lacks class names and attribute types.
Nevertheless, it captures the actors and
relations of the scenario in a visual rep-
resentation.

Interpreting these steps word by word would result in a simple object diagram as in fig-
ure 1. Links for the ownership of the pawn or the place of it are not yet taken into account.

http://en.wikipedia.org/wiki/Chess
http://en.wikipedia.org/wiki/Chess
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/DGZ04.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/DGZ04.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/DGZ04.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/DGZ04.pdf

14

While the missing class names make the object diagram technically incorrect it is sufficient
for starting a modeling discussion between developers.

In this discussion, developers familiar with object oriented development and the collabora-
tion diagram notation can use their world knowledge to add type information to the scenario
model. They may add class names like Player or Human for Alice and Bob, use Counter as
the class for pawn, model white as a color attribute of a counter or a player, and maybe add a
move() method. These additional modeling decisions would transform the object diagram
into a story pattern as shown in figure 2.

Figure 2: Adding the move() message to
the object diagram turns it into a story
pattern, a verbose collaboration diagram
that allows showing object attributes and
messages at the same time. Story patterns
also allow visualizing object and link cre-
ation and deletion, a visualization we will
explore in more depth later.

c2:Field
pawn:Counter

color:String="white"
type:String="pawn"

on alice:Player

name:String="Alice"

chess :Game

players

counters

bob:Player

name:String="Bob"

players

c4:Field

1: move(c4)

After adding type information to objects and attributes the next step to further formalize
the scenario is to derive a class diagram, the building plan for the identified objects. They
offer a notation for the cardinality of associations between classes which allows developers to
express the relationship between classes in more detail than object diagram links. Figure 3
shows the derived class diagram for our example.

Figure 3: The derived class diagram cap-
tures modeling decisions regarding as-
sociations, their names and cardinalities.
Note the subtle but very fundamental
change from a playing link to a play-
ers association: playing is a verb, players
is a plural noun.

15

After deriving all these diagrams the developer can finally write an acceptance test that
uses the formalized storyboard to verify the story patterns for each scenario step. The story
pattern for the start scenario describes the object world the test has to set up before execut-
ing the method under test. After the execution, the test has to verify that the end situation
as described by the corresponding story pattern has been reached. This way of formalizing
scenario descriptions requires a special way of describing scenarios, namely the separation
into steps and the identification of an event that can be represented as a method call in the
story pattern. In other words: a plot.

The Fujaba Unified Process steps have been distilled by rigorously using an objects first ap-
proach in informatics lectures in school.3 Diethelm was in the rare position to teach a school

3 Ira Diethelm. “Strictly models and
objects first: Unterrichtskonzept und
-methodik für objektorientierte Mod-
ellierung im Informatikunterricht”.
http://d-nb.info/98668760X. PhD the-
sis. University of Kassel, 2007, pp. 1–
223. isbn: 978-3-86805-007-3. url:
http://kobra.bibliothek.uni-ka
ssel.de/bitstream/urn:nbn:de:h

ebis:34-2007101119340/1/DissIr
aDruckfassungA5.1.pdf

class in informatics. She used the opportunity to show that starting with objects instead of
classes improves the learning experience of students new to object oriented programming.
Figure 4 shows a session of the Object Game. A role-playing variant of object oriented al-
gorithms that teaches students the limited viewpoint of objects and the navigation through
object structures via links. By continuously improving and evaluating the course over several
years Diethelm has proven storyboarding to be a better approach to teaching object oriented
software development in comparison to approaches starting with class diagrams.

Figure 4: Object game. Letting students
play the role of an object in an object dia-
gram teaches them the meaning of links
and how to navigate through an object
oriented data model.

http://kobra.bibliothek.uni-kassel.de/bitstream/urn:nbn:de:hebis:34-2007101119340/1/DissIraDruckfassungA5.1.pdf
http://kobra.bibliothek.uni-kassel.de/bitstream/urn:nbn:de:hebis:34-2007101119340/1/DissIraDruckfassungA5.1.pdf
http://kobra.bibliothek.uni-kassel.de/bitstream/urn:nbn:de:hebis:34-2007101119340/1/DissIraDruckfassungA5.1.pdf
http://kobra.bibliothek.uni-kassel.de/bitstream/urn:nbn:de:hebis:34-2007101119340/1/DissIraDruckfassungA5.1.pdf

16

Going from scenarios to story patterns to class diagrams to acceptance tests makes sto-
ryboarding a very straight forward approach.4 Not only does it provide an easy learning4 Albert Zündorf. Story Driven Modeling

with Fujaba. Turning Scenarios into Auto-
mated Tests. Google Tech Talks. June 4,
2008. url: https://www.youtube.co
m/watch?v=nwcsj_Iz4ao (visited on
03/24/2014).

curve for object oriented modeling, it also gradually evolves requirements specifications in the
form of textual scenarios into formalized storyboards. Generating acceptance tests from sto-
ryboards creates a test suite that allows testing the requirements similar to a behavior driven
development process. The small steps of storyboarding make it an ideal process for this thesis
to improve the tool support for the task of deriving acceptance tests from textual scenarios.

Instant storyboarding

“Intuitively, liveness is an assessment of how ’responsive’ a system is. When I perform an
action, are my changes immediately apparent? Do I have to go through a number of

auxiliary steps in order to understand the consequences of my actions? Liveness is a
property both of the program notation, and also of its execution environment.”

∼ Church, Nash and Blackwell5

5 Luke Church, Chris Nash, and Alan F.
Blackwell. “Liveness in notation use.
From music to programming”. In: Pro-
ceedings of the 22nd Annual Workshop of the
Psychology of Programming Interest Group
(PPIG 2010). 2010, pp. 2–11. url: http
://www.academia.edu/1124877/Li

veness_in_Notation_Use_From_Mu
sic_to_Programming, p. 2

Although the storyboarding process is easy to follow, tool support for it is hard to come by.
As of March 2014 the only tool that supports storyboarding is Fujaba. While the team at the
University of Kassel provides an eclipse update site6 installation still requires downloading6 Team Kassel. Fujaba4Eclipe update site.

2012. url: http://www.se.eecs.u
ni-kassel.de/fileadmin/se/upda
te/ (visited on 07/19/2013).

and running eclipse prior to even installing the Fujaba4eclipse plugin. Before a user can model
storyboards he then needs to activate the XProm Plugin. After all this, Fujaba only manages
the storyboards for a project and allows generating JUnit tests for them. It does not provide
help for the storyboarding process itself. The user has to model the object diagrams based on
the textual scenarios without any tool generated proposals. In essence, storyboarding with
Fujaba requires a software engineer familiar with Fujaba and a machine powerful enough to
run Eclipse with the Fujaba plugin.

With instant storyboarding I created a web application that completely removes these re-
quirements. Accessing the tool is as easy as pointing a browser to http://instant-stor
yboarding.de. For inexperienced users it starts with the same simple chess example that I
use in this thesis. Nevertheless, software engineers with in depth knowledge can still tweak

https://www.youtube.com/watch?v=nwcsj_Iz4ao
https://www.youtube.com/watch?v=nwcsj_Iz4ao
http://www.academia.edu/1124877/Liveness_in_Notation_Use_From_Music_to_Programming
http://www.academia.edu/1124877/Liveness_in_Notation_Use_From_Music_to_Programming
http://www.academia.edu/1124877/Liveness_in_Notation_Use_From_Music_to_Programming
http://www.academia.edu/1124877/Liveness_in_Notation_Use_From_Music_to_Programming
http://www.se.eecs.uni-kassel.de/fileadmin/se/update/
http://www.se.eecs.uni-kassel.de/fileadmin/se/update/
http://www.se.eecs.uni-kassel.de/fileadmin/se/update/
http://instant-storyboarding.de
http://instant-storyboarding.de

17

and alter the story patterns that derive a storyboard from textual scenario descriptions to
their liking, on the couch, even with a tablet or mobile device.

I choose the term instant not only to reflect the accessibility of the web application but also
to indicate the high level of liveness I was able to achieve with it. Church, Nash, and Black-
well7 gave the following descriptions for Tanimoto’s8 four levels of liveness found in interactive 7 Church, Nash, and Blackwell, “Live-

ness in notation use”, pp. 2-3
8 Steven L. Tanimoto. “VIVA: A vi-
sual language for image processing”.
In: Journal of Visual Languages & Com-
puting 1.2 (1990), pp. 127–139. issn:
1045-926X. doi: 10.1016/S1045-92
6X(05)80012-6. url: http://www
.sciencedirect.com/science/a

rticle/pii/S1045926X05800126

programming environments:

Level 1 a visual representation is used as an aid to software design (Tanimoto was referring to
a user document such as a flowchart, not a programming language). This provides a basic
level of graphical representation, and can be made continuously visible, although mainly
because of the fact that a paper document can be placed beside the screen, rather than on it.

Level 2 the visual representation specifies a program that can be manually executed, possibly
after compilation. This provides a basic kind of physical action mapping, in that modifica-
tion of the representation will eventually change the behavior of the program.

Level 3 the representation responds to an edit with immediate feedback, automatically execut-
ing or applying the changes. This allows users to make rapid actions, and often (after noting
the system response) an opportunity to quickly reverse an incorrect action.

Level 4 the environment is continually active, showing the results of program execution as
changes are made to the program. This provides high visibility of the effect of actions.

The instant storyboarding prototype updates the depending diagrams whenever the user presses
enter in the textual scenario description or any of the story pattern rules implementing the rec-
ommendation algorithm. This provides users with a level 3 liveness experience. While trig-
gering the update on every keystroke would theoretically lead to level 4 liveness, the natural
language parsing of the textual scenario descriptions takes too long to leverage the effect.

http://dx.doi.org/10.1016/S1045-926X(05)80012-6
http://dx.doi.org/10.1016/S1045-926X(05)80012-6
http://www.sciencedirect.com/science/article/pii/S1045926X05800126
http://www.sciencedirect.com/science/article/pii/S1045926X05800126
http://www.sciencedirect.com/science/article/pii/S1045926X05800126

Foundations of
instant storyboarding

Implementing the instant storyboarding prototype would not have been possible without com-
bining knowledge from several topics of interest. Not all of them are classical fields of re-
search, but they show where I drew my inspiration from.

Immediate Visual Feedback

“Here’s something I’ve come to believe: creators need an immediate connection to what they
are creating. That’s my principle. Creators need an immediate connection to what they

create. And what I mean by that is, when you are making something, if you make a change
or you make a decision, you need to see the effect of that immediately. There can’t be any

delay and there can’t be anything hidden.”
∼ Bret Victor, Inventing on principle9 9 Bret Victor. Inventing on Principle. 2012.

url: http://vimeo.com/36579366
(visited on 06/30/2013).Immediate visual feedback produces graphical representations that reflect the state or pro-

cess of a system as soon as possible, ideally in near real time. For this thesis we will use a
definition by Owen:10 10 G. Scott Owen. Definitions and Rationale

for Visualization. Feb. 11, 1999. url: htt
p://www.siggraph.org/education
/materials/HyperVis/visgoals/v
isgoal2.htm (visited on 06/30/2013).

visualize the formation of mental visual images, the act or process of interpreting in visual
terms or of putting into visual form

http://vimeo.com/36579366
http://www.siggraph.org/education/materials/HyperVis/visgoals/visgoal2.htm
http://www.siggraph.org/education/materials/HyperVis/visgoals/visgoal2.htm
http://www.siggraph.org/education/materials/HyperVis/visgoals/visgoal2.htm
http://www.siggraph.org/education/materials/HyperVis/visgoals/visgoal2.htm

20

In the case of software development this would match any tool that visualizes the current
state of an application. One example of this is eDOBS,11 a graphical version of a debugger11 Leif Geiger. “Fehlersuche im Modell:

modellbasiertes Testen und Debuggen.”
PhD thesis. University of Kassel, 2011.
url: http://d-nb.info/1013738
73X.

that visualizes the current state of an application as a UML object diagram. Figure 5 shows
a screenshot12 of eDOBS visualizing a program state as a UML object diagram. It allows

12 source: Geiger, “Fehlersuche im Mod-
ell: modellbasiertes Testen und De-
buggen.”, p. 112.

software developers to visualize the state of a Java program at execution time.
Bret Victor has already envisioned this kind of interactivity for development environments

before giving the talk Inventing on principle. An early example running in the browser can
be found at the top of his Article “Up and down the Ladder of Abstraction”.13 It shows a13 Bret Victor. Up and Down the Ladder of

Abstraction. Oct. 2011. url: http://wo
rrydream.com/LadderOfAbstracti

on/ (visited on 06/30/2013).

car that can be navigated around with the cursor keys. Jumping it up the ladder allows to
play with various aspects of the steering behavior. Each chapter introduces and examines a
new steering variable and interactivity allows changing the parameters of various examples
by hovering over sliders. The new result is immediately visible to the user. In his talk he
uses even more than one interactive example to show how immediate visual feedback makes
developing algorithms easier.

His vision of a more interactive development environment has inspired so many develop-
ers, that it might become a reality. Granger14 has taken the ideas of Bret Victor and created the14 Chris Granger. Light Table - a new IDE

concept. Blog. Apr. 12, 2012. url: http:
//www.chris-granger.com/2012/0
4/12/light-table---a-new-ide-

concept/ (visited on 03/24/2014).

prototype for a new IDE concept called “Light Table”, raising USD 316,720 on kickstarter.15

15 Chris Granger. Light Table. kickstarter.
June 1, 2012. url: http://www.kick
starter.com/projects/306316578
/light-table (visited on 03/24/2014).

Meanwhile the project has released an alpha version for the three major desktop platforms.16

16 Chris Granger. Light Table. Home page.
2013. url: http://www.lighttable
.com/ (visited on 03/24/2014).

In this thesis I will describe a prototype that encourages experimentation with storyboard-
ing and graph transformations in the same interactive manner. Driven by the goal to give
users instant feedback on storyboarding I improved the accessibiliy to a storyboarding tool
by implementing it as a browser application. Whenever the user changes textual descrip-
tions, structurization rules or formalization rules the prototype updates the corresponding
diagrams. Combining storyboarding with this kind of immediate visual feedback is the main
goal of this thesis. To be successful, several supporting research topics are needed.

http://d-nb.info/101373873X
http://d-nb.info/101373873X
http://worrydream.com/LadderOfAbstraction/
http://worrydream.com/LadderOfAbstraction/
http://worrydream.com/LadderOfAbstraction/
http://www.chris-granger.com/2012/04/12/light-table---a-new-ide-concept/
http://www.chris-granger.com/2012/04/12/light-table---a-new-ide-concept/
http://www.chris-granger.com/2012/04/12/light-table---a-new-ide-concept/
http://www.chris-granger.com/2012/04/12/light-table---a-new-ide-concept/
http://www.kickstarter.com/projects/306316578/light-table
http://www.kickstarter.com/projects/306316578/light-table
http://www.kickstarter.com/projects/306316578/light-table
http://www.lighttable.com/
http://www.lighttable.com/

21

Figure 5: eDOBS, the eclipse Document
Object Browsing System. The object dia-
gram in view number 6 visualizes the ap-
plication state during the execution of the
story pattern in view number 2.

22

Ontology Learning

“The process of defining and instantiating a knowledge base is referred to as knowledge
markup or ontology population, whereas (semi-)automatic support in ontology

development is usually referred to as ontology learning.”
∼ Philipp Cimiano, Ontology Learning from Text: An Overview17

17 Philipp Cimiano. Ontology learning and
population from text - algorithms, evaluation
and applications. Springer, 2006, pp. I–
XXVIII, 1–347. isbn: 978-0-387-30632-2,
p. 23

Identifying terms and synonyms is the foundation for learning concepts and relations.
Cimiano has depicted this hierarchy of ontology learning tasks in his “layer cake” shown
in figure 6. When working with unstructured text the initial terms are identified with parsers
from natural language processing. Traditional ontology learning parses large corpora of texts
from the same domain and uses statistical methods and means to identify concepts and rela-
tions. Depending on the tool manual changes and multiple iterations may be used to refine
the ontology.18 The resulting ontology describes the domain and can be used for reasoning

18 Philipp Cimiano and Johanna Völker.
“Text2Onto - A Framework for Ontology
Learning and Data-driven Change Dis-
covery”. In: Proceedings of the 10th Interna-
tional Conference on Applications of Natural
Language to Information Systems (NLDB).
ed. by Andres Montoyo, Rafael Munoz,
and Elisabeth Metais. Vol. 3513. Lecture
Notes in Computer Science. Alicante,
Spain: Springer, June 2005, pp. 227–238.
url: http://www.aifb.uni-karlsr
uhe.de/WBS/jvo/publications/Te
xt2Onto_nldb_2005.pdf

about entities within that domain.

Figure 6: The hierarchical “layer cake” by
Cimiano (2006) gives a summary of the
different tasks in ontology learning.

∀x(country(x) → ∃y capital of(y, x)∧∀z(capital of(z, x) → y = z)) General Axioms

disjoint(river,mountain) Axiom Schemata

capital of ≤R located in Relation Hierarchy

flow through(dom : river, range : GE) Relations

capital ≤C city, city ≤C InhabitedGE Concept Hierarchy

c := country := 〈i(c), ‖c‖, RefC(c)〉 Concepts

{country, nation} Synonyms

river, country, nation, city, capital, . . . Terms

A subtask of ontology learning is the population of the ontology with concept instances,
called instance learning. When an ontology on chess contains the concept queen an instance
would be the queen of the white player or the queen of the black player. From an ontology

http://www.aifb.uni-karlsruhe.de/WBS/jvo/publications/Text2Onto_nldb_2005.pdf
http://www.aifb.uni-karlsruhe.de/WBS/jvo/publications/Text2Onto_nldb_2005.pdf
http://www.aifb.uni-karlsruhe.de/WBS/jvo/publications/Text2Onto_nldb_2005.pdf

23

learning perspective storyboarding starts with instance learning, as it starts with the identifi-
cation of objects and links between them.

Similar to ontology learning, the first step in instant storyboarding is parsing natural lan-
guage sentences and extracting grammatical relations from them. These grammatical rela-
tions make up the start graph for the graph transformations that will drive the rest of the
storyboarding process. As graph transformations can be used to match patterns in a graph
our storyboarding approach can be seen as a graphical version of the common pattern speci-
fication language19 (CPSL) used in information extraction tools like TextPro20 and JAPE.21

19 Douglas E. Appelt and Boyan
Onyshkevych. “The common pattern
specification language”. In: Proceedings
of a workshop on held at Baltimore, Mary-
land: October 13-15, 1998. TIPSTER ’98.
Baltimore, Maryland: Association for
Computational Linguistics, 1998, pp. 23–
30. doi: 10.3115/1119089.1119095.
url: http://acl.ldc.upenn.edu/X
/X98/X98-1004.pdf
20 Douglas E. Appelt. TextPro. Oct. 10,
1999. url: http : / / www . ai . sri .
com / ~appelt / TextPro/ (visited on
07/19/2013).
21 H. Cunningham, D. Maynard, and V.
Tablan. JAPE: a Java Annotation Patterns
Engine (Second Edition). Research Memo-
randum CS–00–10. Department of Com-
puter Science, University of Sheffield,
Nov. 2000. url: http://www.dcs.she
f.ac.uk/~diana/Papers/jape.ps.

Instead of learning an ontology by parsing longer text corpora the storyboarding process
is limited to fewer examples of text. In fact, the parsed texts are pre-structured by separat-
ing them into individual steps, each describing a single scenario situation. With regard to
immediate feedback, the developer wants to see the resulting story pattern for each step as
soon as possible. Learning and visualizing as many concepts and relations as possible from
each scenario step is the main goal of the instant storyboarding prototoype before generating
an acceptance test.

Behavior Driven Development

“The deeper I got into TDD, the more I felt that my own journey had been less of a wax-on,
wax-off process of gradual mastery than a series of blind alleys. I remember thinking ’If

only someone had told me that!’ far more often than I thought ’Wow, a door has opened.’ I
decided it must be possible to present TDD in a way that gets straight to the good stuff

and avoids all the pitfalls.”
∼ Dan North, Introducing BDD22

22 Dan North. Introducing BDD. Mar.
2006. url: http : / / dannorth . n
et / introducing - bdd/ (visited on
07/19/2013). Repr. of “Behavior Modifi-
cation”. In: Better Software Magazine (Mar.
2006). url: http://www.stickymind
s.com/s.asp?F=S10836_MAGAZINE

_2

The original idea of Behavior Driven Development (BDD) was first introduced by Dan
North in “Behavior Modification”23, a response to Test Driven Development as proposed by

23 Dan North. “Behavior Modification”.
In: Better Software Magazine (Mar. 2006).
url: http://www.stickyminds.com
/s.asp?F=S10836_MAGAZINE_2

Kent Beck.24 Instead of writing unit tests for classes BDD shifts the focus towards writing tex- 24 Kent Beck. Extreme Programming
Explained: Embrace Change. First. Boston:
Addison-Wesley Professional, 1999,
p. 224. isbn: 0201616416.

tual scenarios that capture the desired behavior of a system. In our chess example that could
be scenarios for the movement of the different chess pieces, eg. for the pawn always moving

http://dx.doi.org/10.3115/1119089.1119095
http://acl.ldc.upenn.edu/X/X98/X98-1004.pdf
http://acl.ldc.upenn.edu/X/X98/X98-1004.pdf
http://www.ai.sri.com/~appelt/TextPro/
http://www.ai.sri.com/~appelt/TextPro/
http://www.dcs.shef.ac.uk/~diana/Papers/jape.ps
http://www.dcs.shef.ac.uk/~diana/Papers/jape.ps
http://dannorth.net/introducing-bdd/
http://dannorth.net/introducing-bdd/
http://www.stickyminds.com/s.asp?F=S10836_MAGAZINE_2
http://www.stickyminds.com/s.asp?F=S10836_MAGAZINE_2
http://www.stickyminds.com/s.asp?F=S10836_MAGAZINE_2
http://www.stickyminds.com/s.asp?F=S10836_MAGAZINE_2
http://www.stickyminds.com/s.asp?F=S10836_MAGAZINE_2

24

one or two fields forward in one move. BDD then formalizes these textual scenarios to derive
an executable acceptance test suite, similar to the TDD test suite.

To make parsing textual scenarios easier they are expressed in a restricted language called
Gherkin. A scenario for a pawns opening move could be written as in listing 2.

Listing 2: The Gherkin scenario syntax
consists of a scenario name followed by
a sequence of Given-When-Then steps.

1 Scenario: opening move

2 Given Alice and Bob are playing chess

3 When Alice moves her pawn from field c2 to c4

4 Then Alice's counter should be at field c4.

Each Given-When-Then step is then mapped to executable code. Popular implementations
like JBehave25 or Cucumber26 use regular expressions to resolve the method that implements25 Dan North. What is JBehave? 2003. url:

http : / / jbehave . org/ (visited on
03/23/2014).
26 Aslak Hellesøy. Cucumber - Making
BDD fun. 2008. url: http://cukes
.info/ (visited on 03/23/2014).

a specific step. An exception or failure for any of the steps also marks the containing scenario
as failed. This acceptance test suite should be execute like a traditional TDD unit test suite to
allow developers to be confident that their changes do not break existing functionality.

On a second look at the Given-When-Then syntax you might recognize the core steps of a
storyboard: start scenario, event and end scenario. While BDD implementations use regular
expressions to find hand written code that implements the steps, storyboarding formalizes
the textual scenario steps by modeling them as a series of story patterns and then uses Fu-
jaba’s code generation capabilities to obtain the acceptance test suite. In both approaches a
developer formalizes a textual scenario or rather the inherent grammatical relations into a
machine readable representation that can be used to derive an executable acceptance test.

A software developer has his world knowledge and experience to help him with the formal-
ization. Our instant storyboarding prototype also needs a way to rewrite grammatical relations
into a story pattern. The textual description of a storyboard is already split into at least a start
step description and an end step description. While natural language processing can give us
the grammatical relations for them we still need to model a story pattern for the start sce-
nario as well as an end scenario to receive a complete storyboard. To close the gap between
grammatical relations and a story pattern instant storyboarding uses graph transformations.

http://jbehave.org/
http://cukes.info/
http://cukes.info/

25

Graph Transformations

Graph Transformations describe the way of rewriting one graph into another. The approach
described by Ehrig, Pfender, and Schneider in 1973 as a generalization of textual grammars27 27 Hartmut Ehrig, Michael Pfender,

and Hans Jürgen Schneider. “Graph-
Grammars: An Algebraic Approach”.
In: SWAT (FOCS). IEEE Computer
Society, 1973, pp. 167–180. url:
http://dblp.uni-trier.de/db/co
nf/focs/focs73.html#EhrigPS73.

was first applied to specialization and evolution in biology.28

28 Hartmut Ehrig and Karl Wilhelm Tis-
cher. “Graph Grammars and Applica-
tions to Specialization and Evolution in
Biology.” In: J. Comput. Syst. Sci. 11.2
(1975), pp. 212–236. url: http://dbl
p.uni-trier.de/db/journals/jcs
s/jcss11.html#EhrigT75.

Andy Schürr and Albert Zündorf, at the time Ph.D. students of Manfred Nagl, first worked
on PROGRES, an integrated environment and very high level language for PROgrammed
Graph REwriting Systems and later mentored three master theses that led to Fujaba. Thorsten
Fischer, Lars Torunski and Jörg Niere created Fujaba (From UML to Java And Back Again), a
very powerful development environment that allows modeling structure and behavior of an
application in story diagrams and UML. A code generation mechanism allows the generation
of JUnit tests and Java code that implements the graphically modeled application. The story
diagrams used to model behavior in Fujaba are based on a short hand form of the original
PROGRES graph grammar rules.

The graphical representation of story diagrams is a mix of UML activity diagrams with
UML 1.x collaboration diagrams / UML 2.x communication diagrams extended with a spe-
cial notation for modifying elements. To illustrate the idea of how behavior is modeled in
story diagrams figure 7 shows a story pattern that moves a chess piece from its current field
to a new field without checking any limitations. It could be part of the default implementa-
tion of the move method for pieces. Black elements need to be matched before red elements
are deleted and green elements are created. Dashed elements represent optional matches.
Objects without a class are already bound: this is the Piece whose move method has been
called and newpos is the Field passed as an argument to move(newpos:Field). So the di-
agram translates to: if this piece is already on a field then delete the on link to oldpos. After
that Create an on link between this piece and the field newpos. In effect moving the piece
to a new field.

newpos

oldpos:Field

this

on

on

Figure 7: Story diagram for
piece.move(newpos:Field)

The code for the behavior is generated with a template engine. It takes care of isomorphism
checks, null checks and adds association implementations necessary for the graph transfor-
mation based behavior implementation. By generating the code with these extensions the use

http://dblp.uni-trier.de/db/conf/focs/focs73.html#EhrigPS73
http://dblp.uni-trier.de/db/conf/focs/focs73.html#EhrigPS73
http://dblp.uni-trier.de/db/journals/jcss/jcss11.html#EhrigT75
http://dblp.uni-trier.de/db/journals/jcss/jcss11.html#EhrigT75
http://dblp.uni-trier.de/db/journals/jcss/jcss11.html#EhrigT75

26

of reflection becomes unnecessary which shows in the performance of an application gener-
ated with Fujaba.

Similar to the way behavior is specified with story diagrams, Fujaba also allows to specify
functional tests with storyboards. A storyboard consists of at least two steps: a start scenario
and an end scenario. Each step is formalized by a story diagram that with the exception of
the end scenario must contain a collaboration statement. The acceptance test is then derived
by creating the object world shown in the start scenario and then calling the method from the
collaboration statement. To check if the implementation of the called method is correct, the
existence of the object world described by the succeeding step is checked. If the story diagram
cannot be matched the test fails. Otherwise the next collaboration statement is executed and
the object world matching is repeated until the end step has been reached. Using the XProM
Plugin Fujaba is capable of generating executable JUnit tests from the story board.2929 Leif Geiger and Albert Zündorf. “De-

veloping Tools with Fujaba XProM.”. In:
GTTSE. ed. by Ralf Lämmel, João Saraiva,
and Joost Visser. Vol. 4143. Lecture Notes
in Computer Science. Springer, 2006,
pp. 344–356. isbn: 3-540-45778-X. url: h
ttp://dblp.uni-trier.de/db/con

f/gttse/gttse2006.html#GeigerZ
06.

While Fujaba can generate code that can be cross compiled to JavaScript via GWT, the
story diagrams are used to create a static version of the graph transformation implementa-
tion. Whenever the intended behavior is subject to change by altered requirements, the code
has to be generated again. For a browser application that allows dynamically altering the
graph transformations a story pattern interpreter is more suitable.

Browser Applications

In this thesis Browser Applications are complex client server applications that execute the
application logic on the client side with JavaScript in a browser. A good example for this
are the Google Drive Apps30 which implement a word processor, spreadsheet calculator and30 Google. Google Drive Apps. 2006. url:

http://www.google.com/drive/ap

ps.html (visited on 07/19/2013).
more as a browser application. With gliffy31 there is an online diagram software that runs

31 Gliffy. Online Diagram Software and
Flowchart Software. 2005. url: http
: / / www . gliffy . com/ (visited on
07/19/2013).

in any browser that supports the Adobe flash plugin. In contrast to desktop applications an
installation is no longer required and users can instantly try out the application by pointing
their browser to an URL.

Executing a lot of business logic on the client side other than Flash games has become
more popular with the development of JavaScript frameworks that allow cross compiling of

http://dblp.uni-trier.de/db/conf/gttse/gttse2006.html#GeigerZ06
http://dblp.uni-trier.de/db/conf/gttse/gttse2006.html#GeigerZ06
http://dblp.uni-trier.de/db/conf/gttse/gttse2006.html#GeigerZ06
http://dblp.uni-trier.de/db/conf/gttse/gttse2006.html#GeigerZ06
http://www.google.com/drive/apps.html
http://www.google.com/drive/apps.html
http://www.gliffy.com/
http://www.gliffy.com/

27

Java to JavaScript. Although a lot of JavaScript frameworks like jQuery exist, their primary
purpose is to ease DOM manipulation and navigation. This helps a lot with the development
of AJAX in web pages but still feels like building web pages. With GWT Google has provided
a tool that allows to implement client logic in Java and hide the dynamically typed nature of
JavaScript which prevents a whole class of bugs. Using Java as the development language
allows software engineers to reuse well known design pattern like Model View Presenter, test
frameworks like JUnit and even classic IDEs like Eclipse to develop browser applications. As
a result the development of more complex browser applications has become possible.

Another benefit of web applications is the more direct contact to users. Instead of track-
ing user interactions and receiving them in chunked uploads from a desktop application, a
browser application allows us to monitor the users action in real-time. Most web server logs
already provide a lot of information on the user, that can be extended by checking the browser
environment with tools like Google Analytics32 or piwik.33 We can automatically collect er- 32 Google. Web Analytics & Reporting –

Google Analytics. 2005. url: http://w
ww.google.com/analytics/ (visited
on 03/23/2014).
33 Piwik. Free Web Analytics Software.
2007. url: http://piwik.org/ (vis-
ited on 03/23/2014).

rors on the client and send them to the server, along with the state of the application. Basically,
feedback reaches us faster because the user is already online.

As accessibility is an integral part to experimentation I decided to create a browser applica-
tion instead of a desktop application. Being able to point your browser tohttp://instant-
storyboarding.de and start toying around with the system is much easier than download-
ing and running an application or maybe even finding the correct repositories, checking out
source code and trying to compile and run the beast.34 We cannot scare users off with this 34 Paul Graham. “Hackers & Painters:

Big Ideas from the Computer Age”. In:
O’Reilly Media, Inc., 2004. Chap. The
Other Road Ahead, pp. 56–86. url: ht
tp://www.paulgraham.com/road.h
tml (visited on 03/14/2014).

kind of installation routine when talking about instant storyboarding.

http://www.google.com/analytics/
http://www.google.com/analytics/
http://piwik.org/
http://instant-storyboarding.de
http://instant-storyboarding.de
http://www.paulgraham.com/road.html
http://www.paulgraham.com/road.html
http://www.paulgraham.com/road.html

Open Questions

Giving instant feedback on storyboarding will encourage developers to experiment with various pa-
rameters of the process and as a result improve the quality of textual scenario descriptions, derived
storyboards and consequently acceptance tests. This hypothesis leads to the following research ques-
tions we are going to examine in this thesis:

1. How can we give instant feedback on the storyboarding process? Which steps should we visualize to lure
the user into experimenting with storyboarding? How do we prevent information overload?

2. How can we give instant feedback on the learning of instances, concepts and relations. When do we visualize
instances? When do we visualize concepts? How do we represent them in UML?

3. How can we give instant feedback on the graph transformations? How do we visualize the interpretation
of our story pattern? How can the user get feedback when making changes to the story pattern?

4. How can we provide instant acceptance tests for the visible storyboard? Do we provide a Fujaba .ctr, an
Eclipse project, a .zip or plain Java? Do we generate the code on the client or server side?

5. Can this be achieved under the constraints of a browser environment? Can we achieve the liveness required
to engage the user without the interactive capabilities of desktop applications like Fujaba itself?

To answer these questions the rest of this text will describe the overall solution and the implementation
decisions along the storyboarding process. Finally, when discussing the approach I will give an answer
to these five questions.

Instant Storyboarding

Minimizing the feedback loop

“In science if you know what you are doing you should not be doing it.
In engineering if you do not know what you are doing you should not be doing it.

Of course, you seldom, if ever, see the pure state.”
∼ Richard Hamming, The Art of Doing Science and Engineering, 1997

Tool support for storyboarding is rare. In fact, Fujaba is the only development environ-
ment that implements the process. Unfortunately, the research platform has stopped making
regular releases and requires interested researchers to build it from source to follow latest re-
search developments. The eclipse plugin update site maintained by the Software Engineering
Research Group Kassel35 provides a more stable version and still requires an Eclipse installa- 35 Software Engineering Research Group

Kassel, ed. Fujaba4Eclipse Update Site.
2013. url: http://www.se.eecs.uni
-kassel.de/fileadmin/se/update

(visited on 01/04/2014).

tion prior to starting the installation of Fujaba. This lack of a ready to run application already
prevents most users from trying out and giving feedback on storyboarding.

The main motivation of this thesis is to simplify access to storyboarding. On the one hand,
a browser application could be used in lectures without distracting students with any kind of
installation procedure. On the other hand, papers on storyboarding could benefit by allowing
reviewers to literally verify claims in their browser. We need to lower the barrier of entry for
experimentation with storyboarding.

http://www.se.eecs.uni-kassel.de/fileadmin/se/update
http://www.se.eecs.uni-kassel.de/fileadmin/se/update

32

Reexamining the storyboarding process

“An ontology is a fairly complex structure and it is often more practical to focus on the
evaluation of different levels of the ontology separately rather than trying to directly

evaluate the ontology as a whole.”
∼ Brank et al., 2005

The noun-verb analysis implicitly used in the storyboarding process I presented in “Story-
boarding by Example” on page 13, has first been described by Abbott36 in 1983. In the Fujaba

36 Russell J. Abbott. “Program design by
Informal English Descriptions.” In: Com-
mun. ACM 26.11 (1983), pp. 882–894.
url: http://sunset.usc.edu/cl
asses/cs577a_2003/coursenotes
/ep/Program%20Design%20by%20In

formal%20English%20Description

s,%20Russell%20Abbott.pdf

community Diethelm, Geiger, and Zündorf37 evolved the process to storyboarding and de-37 Ira Diethelm, Leif Geiger, and Albert
Zündorf. “Systematic Story Driven Mod-
eling”. In: Technical Report (Feb. 2004).
url: http://www.se.eecs.uni-k
assel.de/se/fileadmin/se/publi
cations/SDM04.pdf.

scribed it for human software developers. Developing an algorithm needs a more formal
analysis of the process. During my research we could observe our programming methodol-
ogy students to draw simple story patterns on paper, as suggested and demonstrated by the
tutor, when trying to understand textual scenarios and specific situations in the object world
of their application. We noticed that they initially left out nearly all technical details like type
information or attributes and focused on the structure, discussing objects and relations. If
something became unclear the technical details would be added on the fly.

In the design pattern lectures the story patterns became popular again, when our students
were trying to understand the way a design pattern behaves at run time. While the types
and attributes became nearly irrelevant in their drawings, they still helped them discuss and
reproduce design pattern implementations. The observation here is that having a visual lan-
guage for object oriented problems eases communication when the amount of information
shown can be limited to the needed focus.

This sparked the idea to distinguish informal story patterns from formal story patterns. The
informal patterns are basically a free form diagram consisting of lines, boxes and text. They
can be used to incrementally add details to the diagram without requiring a strict notation. By
adding technical details like type information, link names and sanitizing strings and numbers
an informal diagram can become a formal story pattern. As soon as the amount of technical
information can be used to generate code from it, a formal story pattern is reached. During
storyboarding the informal story pattern slowly evolves into a formal story pattern as dis-

http://sunset.usc.edu/classes/cs577a_2003/coursenotes/ep/Program%20Design%20by%20Informal%20English%20Descriptions,%20Russell%20Abbott.pdf
http://sunset.usc.edu/classes/cs577a_2003/coursenotes/ep/Program%20Design%20by%20Informal%20English%20Descriptions,%20Russell%20Abbott.pdf
http://sunset.usc.edu/classes/cs577a_2003/coursenotes/ep/Program%20Design%20by%20Informal%20English%20Descriptions,%20Russell%20Abbott.pdf
http://sunset.usc.edu/classes/cs577a_2003/coursenotes/ep/Program%20Design%20by%20Informal%20English%20Descriptions,%20Russell%20Abbott.pdf
http://sunset.usc.edu/classes/cs577a_2003/coursenotes/ep/Program%20Design%20by%20Informal%20English%20Descriptions,%20Russell%20Abbott.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/SDM04.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/SDM04.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/SDM04.pdf

33

cussion moves from conceptual relations to more technical details like attributes and type
information of individual objects.

Formalizing story patterns is closely related to deriving a class diagram for a story pattern.
While Diethelm, Geiger, and Zündorf have considered this task as “usually very straight for-
ward”38 we will add it as a distinct task our new algorithm has to take into account. The 38 Ira Diethelm, Leif Geiger, and Albert

Zündorf. “Systematic Story Driven Mod-
eling, a case study”. In: Edinburgh, Scot-
tland, May 24 - 28, 2004. url: http://w
ww.se.eecs.uni-kassel.de/se/f

ileadmin/se/publications/DGZ04
.pdf, p. 3.

“straight forward” may be true for seasoned software engineers, but as with everything done
for the first time, there is a learning curve. On the one hand, discussing patterns and so-
lutions with others, possibly guided by more experienced developers improves the results
of this modeling process. On the other hand, discussing application behavior with the end
user clarifies the requirements and heavily influences the modeling process. In this process
of adding world knowledge the modeling decisions for the class diagram and storyboard are
changed until they represent the requirement described by the textual scenario.

The final step of the storyboarding process is the generation of an acceptance test from a
sound storyboard with formal story patterns for the individual steps, all adhering to the same
class diagram. With a storyboard in place we can reuse the existing XProM Fujaba plugin to
generate the code for executable JUnit tests as described in “Instant acceptance tests” on page
124. This last step marks the goal of providing executable JUnit tests for textual scenario
descriptions as it completes the storyboarding process to meet the users expectations.

These observations in our lectures lead to six individual tasks in instant storyboarding:

• Text analysis and extraction of at least: nouns, verbs and attributes.

• Modeling a graph of objects, links and collaboration statements that represents the given tex-
tual scenario description39. 39 With object and link we are using

UML terminology. An ontology engineer
would be more familiar with concept in-
stance and relation.

• Formalizing this informal story pattern by adding further attributes and type information.

• While formalizing the story pattern keep the classes consistent with other story patterns,
in effect creating a class diagram in the background.

http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/DGZ04.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/DGZ04.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/DGZ04.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/DGZ04.pdf

34

• Derive a sound storyboard that contains all the necessary information to convert it to a
Fujaba compatible format.

• Generate code for an acceptance test and provide a way to download the result from the
server.

To give immediate feedback to the user, the intermediate results of these tasks and the
algorithm that converted one result into the next need to be visualized.

This kind of transparency will increase the trust in the storyboarding approach. The faster
the user receives feedback on his changes the easier it will be for him to iterate through
changes in the textual description, trying to get better parser results or adding more context
to improve the derived formal story patterns. So, how can we address the individual steps
one at a time and engage users in experimenting with storyboarding?

The Masterplan

To give early feedback on textual scenarios we will examine how to automate the individual
storyboarding steps and provide an immediate visualization of their intermediate results as
well as any graph transformations in between. Starting with grammatical relations, continu-
ing with informal and formal story patterns and ending with storyboards each intermediate
result can be visualized as a graph. Story patterns already are a mix of object and collaboration
diagrams which map very well to attributed nodes and labeled edges. As we will interpret
graph transformations to modify these diagrams we will also visualize the transformation
process to let users explore the execution of structurization and formalization rules. Well es-
tablished graph rendering tools like Graphviz allows us to render the different diagram types
for results and interpretation steps while keeping the development effort low.

Separating simple story activities from technical story activities will address the two differ-
ent tasks of modeling a graph that represents the textual scenario and formalizing the iden-
tified objects and links. The informal story patterns will be created by applying graph trans-
formations that restructure the grammatical relations into an informal story pattern. The set

35

of graph transformation rules for this first step can of course be changed by the user. Simi-
lar to the structurization rules of the first step a second set of rules is used to formalize the
informal story pattern by adding technical details. The rules will be generated by a recom-
mendation framework and can be extended with user defined rules. By reusing the same
graph transformation interpreter to evolve the diagrams in each step we also reuse the same
kind of visualization. Using a single graph transformation notation for structurization and
formalization rules keeps the way the user interacts with the application consistent across all
transformation steps.

The predecessor for the implementation of Instant Storyboarding was a prototype called
“natural text to object diagram” created during my research at the University of Kassel.40 It 40 Jörn Dreyer et al. “NT2OD Online -

Bringing Natural Text 2 Object Diagram
to the web”. In: ODiSE’10: Ontology-
Driven Software Engineering Proceedings.
Ed. by Sergio de Cesare. Reno/Tahoe,
Nevada, USA, Oct. 18, 2010. url: http
://dl.acm.org/ft_gateway.cfm?i
d=1937133&type=pdf.

was still using Fujaba generated code to transform the Stanford Parser results into a formal
object diagram. While the application was a successful demonstration for the use of graph
transformations on parser results we had to rewrite large parts of it to adapt it to the workflow
required for instant storyboarding.

Figure 8 gives an overview of the individual components that make up the instant story-
boarding masterplan:

Web based storyboarding The interface to the user is a browser application showing a story-
board. Each scenario step starts with the textual scenario description provided
by the user. Our application then automatically tries to derive an acceptance test by ap-
plying thegraph structurization rules andgraph formalization rules. To
improve the result the user can examine visualizations of the intermediate graphs and the
interpretation of graph transformations itself. We will examine the web application in more
detail in “Web based storyboarding” on page 38.

Instant grammatical relations Linguists have already written several natural language parsers
that identify parts of speech and grammatical relations. We will present the Stanford Parser
and the grammatical relations it produces and how we wrap the parsing step as a web
service in “Instant grammatical relations” on page 49.

http://dl.acm.org/ft_gateway.cfm?id=1937133&type=pdf
http://dl.acm.org/ft_gateway.cfm?id=1937133&type=pdf
http://dl.acm.org/ft_gateway.cfm?id=1937133&type=pdf

36

web based storyboarding

instant
grammatical

relations

instant
story patterns

instant
formal

story patterns

instant
storyboards

instant
acceptance tests

graph
structurization

rules

 graph
formalization

rules

instant graph visualization

textual
scenario

descriptions

JUnit test

Figure 8: In the masterplan we can see
that the main input for instant sto-
ryboarding are textural scenario de-
scriptions. The bottom row shows the se-
quence of steps that are executed to gen-
erate the final JUnit tests. The process
is implemented in customizable graph
transformation rules that are interpreted
by the web application whenever the user
confirms an update by pressing enter in
any of the text areas.

37

Instant graph visualization The parser result is the first graph we can visualize for the user. We
will introduce the web service we implemented to render this and all the other graph vari-
ants that will be produced in the storyboarding process in “Instant graph visualization”
on page 61.

Instant informal story pattern Taking the parser result as the input graph we can use the graph
structurization rules to transform it into an informal story pattern. The interpreter
and an extendable ruleset for the grammatical relations of the Stanford parser will be pre-
sented in “Instant informal story patterns” on page 74.

Instant formal story pattern In “Instant formal story patterns” on page 98 we will examine the
recommender framework used to formalize the story pattern. The main idea was to reuse
graph transformation rules as a representation for the recommendation to enable reusing
the graph transformation rule interpreter developed in the “Instant informal story pat-
terns” step.

Instant storyboards Aggregating the derived story pattern into a sound storyboard is not a
distinct step but requires the alignment of type information across all story patterns while
they are created. “Instant storyboards” on page 110 describes how we are maintaining a
class diagram in the background and use it as a source for the formalization rules of the
recommendation framework.

Instant Acceptance Tests To finish the storyboarding process we will show how we use a head-
less version of Fujaba to generate acceptance tests for the storyboards in “Instant acceptance
tests” on page 124. Wrapping Fujaba and the XProM plugin as a web service allows us to
generate code for a JUnit test and make it available for download in the web browser.

The technical goal of this thesis is to develop a browser application41 that automates the 41 You are welcome to visit http://i
nstant-storyboarding.de and try
some of the examples now. The GUI is
laid out to resemble the automation steps.
Seriously, give it a try now!

individual storyboarding steps, makes the process visually transparent and allows the devel-
oper to intervene when necessary.

http://instant-storyboarding.de
http://instant-storyboarding.de

38

Web based storyboarding

Introduction

Visualizing the individual steps of the storyboarding process needs a lot of screen space. On
the one hand each step produces or changes a graph. On the other hand the developer may
want to hide currently uninteresting graph visualizations. While users of web applications
are used to scrolling on a web page, developers expect applications to use the whole available
screen width. To address this problem we need a flexible and dynamic web application layout
that by default hides technical details, visualizes the important steps and allows customizing
the amount of visible information.

For our browser application we decided to provide two separate views on storyboards:

• Based on the Fujaba UI, a compact layout for the storyboard steps shows only the textual
scenario and the formal story pattern derived by our browser application.

• An extended layout shows the details for the scenario step over the whole screen width,
reveals additional text areas for graph transformation rules and also visualizes the inter-
mediate results for parser results and informal story pattern.

With this separation we create a simple way for users to try the storyboarding process
without being overwhelmed by the in depth information available to power users.

Graphs can be huge

Depending on the number of nodes and edges, graphs may rapidly outgrow the available
screen space. While smaller graphs like in figure 9 fit nicely next to a textual scenario step
description, each sentence will add new elements to the graph as shown in figure 10. It is
possible to wrap them inside a scrollable area, but then users may miss information changing
outside the currently visible area of the graph. In the end the available screen space is limited
by the resolution available to the browser.

39

s26tNNe31:Vertex

"text":"String"="chess"
"type":"String"="NN"

s0tNNPe5:Vertex

"text":"String"="Alice"
"type":"String"="NNP"

s10tNNPe13:Vertex

"text":"String"="Bob"
"type":"String"="NNP"

conj_ands18tVBGe25:Vertex

"text":"String"="playing"
"type":"String"="VBG"

dobj

nsubj

s14tVBPe17:Vertex

"text":"String"="are"
"type":"String"="VBP"

aux

nsubj

Figure 9: Grammatical relations for
the first sentence of the chess exam-
ple: “Alice and Bob are playing

chess.”

s45tPRP$e48:Vertex

"text":"String"="her"
"type":"String"="PRP$"

s0tNNPe5:Vertex

"text":"String"="Alice"
"type":"String"="NNP"

coref

s10tNNPe13:Vertex

"text":"String"="Bob"
"type":"String"="NNP"

s59tNNe64:Vertex

"text":"String"="field"
"type":"String"="NN"

s65tNNe67:Vertex

"text":"String"="c2"
"type":"String"="NN"

nn

s71tNNe73:Vertex

"text":"String"="c4"
"type":"String"="NN"

prep_to

s49tNNe53:Vertex

"text":"String"="pawn"
"type":"String"="NN"

poss

s26tNNe31:Vertex

"text":"String"="chess"
"type":"String"="NN"

s14tVBPe17:Vertex

"text":"String"="are"
"type":"String"="VBP"

s18tVBGe25:Vertex

"text":"String"="playing"
"type":"String"="VBG"

nsubj

dobj

aux

nsubj

s33tNNPe38:Vertex

"text":"String"="Alice"
"type":"String"="NNP"

s39tVBZe44:Vertex

"text":"String"="moves"
"type":"String"="VBZ"

prep_from

dobj

nsubj

conj_and

Figure 10: Grammatical relations for
both sentences of the chess example:
“Alice and Bob are playing
chess. Alice moves her pawn

from field c2 to c4.” The graph
has already become too big to fit it on
this page without shrinking it to a nearly
unreadable size.

40

Fortunately, all browsers provide scrolling and a zoom function to address that problem.
Graph visualization in browsers should therefore layout the complete graph and use the
browsers native zooming and scrolling capabilities. Nevertheless, showing the textual sce-
nario description, the transformation rules and the generated graphs for at least one start
and end situation all at once would almost always require the user to zoom out. A scenario
needs a more intelligent layout that hides the intermediate transformation rules and graphs
but allows the developer to explore them when necessary.

From overview to detail

The basic idea is, to first give the user an overview of the scenario, focusing on the flow of
the storyboarding process. When first opening our browser application we will present a
storyboard consisting of a start and end scenario. As you can see in figure 11 each scenario
initially only shows a text area for the input of the textual scenario description. As soon as
the user presses enter the application will try to create a formal story pattern and render it
next to the textual scenario description. This compact layout is inspired by the Fujaba UI and
is intended to be used for the storyboarding process.Figure 11: Screenshot of the compact sce-

nario step layout

41

More experienced or curious users might want to examine and alter the details of the al-
gorithm our browser application uses to derive the formal story pattern. Each scenario step
can be extended to reveal visualizations of the parser result, an intermediate informal story
pattern and the graph transformation rules that implement the storyboarding algorithm. The
screenshot in figure 12 shows the layout before any description has been added and parsed.
It has been taken at a resolution of 1280x1024 pixels and already required using the zoom
function to fit it on screen. After parsing, the size of the graphs would either require the user
to zoom out even more to fit everything on screen at once or use the scroll bars to focus on the
graph of interest. This extended layout has two purposes: it lets users examine the interme-
diate results of the storyboarding process on the one hand and provides a way to experiment
and debug graph transformation rules for storyboarding on the other hand.

Preparing for liveness

For our purpose we decided to combine the Model View Presenter Pattern and UiBinder
mechanism recommended by GWT with a classical Property Change Listener mechanism.
At its heart, the core architecture of our implementation is based on the Model View Pre-
senter Pattern. Figure 13 shows the related classes and interfaces for the StoryActivity.
Starting on the left side of the class diagram, our model – the StoryActivity – fires prop-
erty changes which the presenter implementation StoryActivityPresenter listens for.
To visualize a change the presenter updates the affected diagrams and text areas through
the interface provided by the StoryActivityView. The Presenter interface defines the
actions that can be triggered by the StoryActivityViewImplementation. The presenter
implementation then takes care of fetching the new user input and updating the model, which
in turn might trigger a property change event. As an example, when the users enters a textual
scenario description, theStoryActivityViewImpl callsonTextDescriptionChanged-
Event() on its Presenter. The StoryActivityPresenter fetches the new text and up-
dates the model with it. This triggers a property change event which is again handled by the
StoryActivityPresenter. It will make the call to the natural language parser and up-
date the StoryActivitymodel with the result. This will fire a new property change for the

42

parser result which the presenter will handle again. First the result is visualized by updating
the DiagramView for parser results then the presenter will apply the graph transformation
rules to the parser result and update the model with the transformation result, proceeding
in the chain of events until all subsequent steps of the storyboarding process have been pro-
cessed. The approach allows us to concentrate the implementation logic in the presenters and
cleanly separeate it from the model and the view.

Figure 12: Screenshot of the extended sce-
nario step layout

43

StoryActivity StoryActivityViewImpl
viewstoryActivity

presenter

<<interface>>
StoryActivityView

~textDescription():String
~structurizationRulesView():RulesView
~formalizationRulesView():RulesView
~parserDiagramView():DiagramView
~structurizationPatternView():StoryPatternView
~formalizationPatternView():StoryPatternView
~addLogLine(String line):void
~clearLog():void
~informalStoryPatternView():DiagramView
~formalStoryPatternView():DiagramView
~toggleDetails():void

<<interface>>
Presenter

~onTextDescriptionChangedEvent():void
~onToggleDetails():void

<<file>>
StoryActivityView.ui.xml

 <<UiBinder>>

Updates the model when the view calls
onTextDescriptionChangedEvent()

Updates the view and the model when
propertyChanged(...) is called

+propertyChanged(…):void

<<interface>>
PropertyChangeListener

StoryActivityPresenter

<<interface>>
SourcesPropertyChangeEvents

~addPropertyChangeListener(...):void

calls firePropertyChangeEvent(...)
on model changes

Figure 13: Class Diagram for the core ar-
chitecture

Using the UiBinder mechanism introduced in Google Web Toolkit 2.042 allows us to declar- 42 Google. GWT Developer Guide - UI
Binder. 2009. url: http://www.gwtpr
oject.org/doc/latest/DevGuideU

iBinder.html (visited on 07/19/2013).

atively describe UI components of the view and reuse them in several places in our web ap-
plication. To maximize the screenspace available we only added a very small navigation bar
at the top. While the UiBinder components for this overall layout and the static pages used on
some of the tabs are unique there are two main components that we reused several times. The
more lightweight one is the DiagramView which we feed a URL and a description to render
a graph. The more complex one is the ScenarioStepView which contains all UI elements
needed for a scenario step. In addition to several DiagramViews it contains up to three text
areas for user input and takes care of switching between the extended and the compact layout.

Another benefit of the model view presenter pattern is the independence of a browser
when running tests. Usually, when trying to write behavior tests for web applications a tool

http://www.gwtproject.org/doc/latest/DevGuideUiBinder.html
http://www.gwtproject.org/doc/latest/DevGuideUiBinder.html
http://www.gwtproject.org/doc/latest/DevGuideUiBinder.html

44

like selenium43 would be used to emulate user interactions in a browser. With GWT applica-43 The selenium IDE is a Firefox plugin
that can be used to record user interac-
tions with a web page. By adding con-
straints and checks to the test the devel-
oper can create behavior tests that can be
executed in a continuous integration en-
vironment. Selenium, ed. Selenium. Web
Browser Automation. 2008. url: htt

p : / / seleniumhq . org (visited on
03/24/2014)

tions it is possible to test the application logic with simple JUnit tests. Without the overhead
of starting a browser instance to run tests the test suite can be executed much faster and thus
more often. As a result many parts of the application logic for instant storyboarding could be
developed against a JUnit test suite without the necessity of a readily available visualization.

Updating the visualization on the fly requires several remote procedure calls either by us-
ing the native GWT-RPC mechanism or by using JSON-P. Whenever the user updates the
textual scenario or the transformation rules the depending graphs need to be updated. While
story patterns can be interpreted in the browser44 the text parsing and graph rendering cur-44 see “Interpreting structurization pat-

tern” on page 80 rently rely on the execution of a web service. The results immediately update the visualiza-
tion and trigger the depending steps. Chaining together the individual AJAX calls like this
updates the graphs as fast as possible, which produces the feeling of liveness for the web
application.

The extended layout

The easiest solution for laying out the different input areas and graphs was the 3x3 HTML
table in listing 3. The first row contains the text areas for user input: the textual scenario de-
scription, the graph transformation rules to restructure the parser result into an informal story
pattern and the rules to formalize the story pattern. The second row contains a visualization
of the parser result graph, a visualization of the structurization rules and a visualization of the
formalization rules. In the third row of the extended layout we placed an area containing the
application log, a visualization of the informal story pattern and finally the visualization of
the formal story pattern. This implementation brought us through most of the development,
but hiding cells to create a compact layout required rethinking the HTML markup.

The compact layout

As a web applicaton we need to be able toogle between complex and compact layout without
a page refresh. Converting the table layout into a div based layout allowed us to hide parts of

http://seleniumhq.org
http://seleniumhq.org

45

1 <table width="100%" cellspacing="0" cellpadding="0">

2 <tr>

3 <td><!-- Step Description --></td>

4 <td><!-- Sructurization Rules --></td>

5 <td><!-- Formalization Rules --></td>

6 </tr>

7 <tr>

8 <td><!-- Natural Language Parser Result --></td>

9 <td><!-- Structurization Pattern --></td>

10 <td><!-- Formalization Pattern --></td>

11 </tr>

12 <tr>

13 <td><!-- Log --></td>

14 <td><!-- Informal Pattern Result --></td>

15 <td><!-- Formal Story Pattern Result --></td>

16 </tr>

17 </table>

Listing 3: Table based layout

46

the table and rearrange the remaining cells into a compact layout. Simply hiding cells in the
table by setting CSS display:nonewould hide them from the user but leave the table layout
intact, making it impossible to arrange the top left cell with the textual scenario description
and the bottom right cell with the final story pattern at the same height. Listing 4 shows the
div based HTML that uses CSS table properties to emulate the extended layout and can be
rearranged to create the compact layout by emulating a table with a single row and two cells,
only by changing the CSS. The trick is to use an additional outer div that has no function in
the extended layout but is used to emulate the table element in the compact layout. Using
GWT and two different stylesheets to emulate the compact and extended layout with a div
based layout allows us to instantly toggle between the two different visualizations.

Related work

Storyboards have been introduced with Fujaba but never left the domain of CASE tools or
IDEs. With the Fujaba community being the only force behind the notation and the amount
of work required to create graphical editors, to date, only eclipse has gained storyboarding
support by reusing the existing codebase in the Fujaba for eclipse plugin. Rendering of sto-
ryboards in the browser makes its debut in the web application we developed.

As far as browser based ontology learning is concerned only few web applications are
concerned with learning ontologies. With Wiki@nt Bao and Honavar have created a wiki
specifically designed to model ontologies.45 Far more applications try to learn ontologies

45 Jie Bao and Vasant Honavar. “Collab-
orative Ontology Building with Wiki@nt
- A multi-agent based ontology build-
ing environment”. In: Proceedings of the
3rd International Workshop on Evaluation
of Ontology-based Tools (EON2004). Oct.
2004, pp. 1–10

by analyzing user generated content. Benz describes the ontology learning aspect behind
bibsonomy46 in his Dissertation.47 While ontologies are not uncommon in web applications,46 BibSonomy Project. BibSonomy. The

blue social bookmark and publication sharing
system. 2005. url: http://www.bibso
nomy.org/ (visited on 03/24/2014).
47 Dominik Benz. “Capturing Emergent
Semantics from Social Annotation Sys-
tems”. PhD thesis. University of Kassel,
Feb. 26, 2013. url: http://nbn-resol
ving.de/urn:nbn:de:hebis:34-20

13022642523.

explicit web applications to learn ontologies are rare.

Conclusion

The quick visual feedback of our web application rapidly draws testers into a state of exper-
imentation where they try different sentences and scenario descriptions. Adding a compact
layout to hide the underlying complexity keeps new users from being overwhelmed and al-

http://www.bibsonomy.org/
http://www.bibsonomy.org/
http://nbn-resolving.de/urn:nbn:de:hebis:34-2013022642523
http://nbn-resolving.de/urn:nbn:de:hebis:34-2013022642523
http://nbn-resolving.de/urn:nbn:de:hebis:34-2013022642523

47

1 <div class='{compact.outer}' ui:field="outerDiv">

2 <div class='{compact.inner}' ui:field="innerDiv">

3 <div class='{compact.r1}' ui:field="r1Div">
4 <div class='{compact.r1c1}' ui:field="r1c1Div">

5 <!-- Step Description -->

6 </div>
7 <div class='{compact.r1c2}' ui:field="r1c2Div">

8 <!-- Structurization Rules -->

9 </div>
10 <div class='{compact.r1c3}' ui:field="r1c3Div">

11 <!-- Formalization Rules -->
12 </div>

13 </div>

14 <div class='{compact.r2}' ui:field="r2Div">
15 <div class='{compact.r2c1}' ui:field="r2c1Div">

16 <!-- Natural Language Parser Result -->

17 </div>
18 <div class='{compact.r2c2}' ui:field="r2c2Div">

19 <!-- Structurization Pattern -->
20 </div>
21 <div class='{compact.r2c3}' ui:field="r2c3Div">

22 <!-- Formalization Pattern -->
23 </div>

24 </div>

25 <div class='{compact.r3}' ui:field="r3Div">
26 <div class='{compact.r3c1}' ui:field="r3c1Div">

27 <!-- Log -->

28 </div>
29 <div class='{compact.r3c2}' ui:field="r3c2Div">

30 <!-- Informal Pattern Result -->

31 </div>
32 <div class='{compact.r3c3}' ui:field="r3c3Div">

33 <!-- Formal Story Pattern Result -->
34 </div>
35 </div>

36 </div>
37 </div>

Listing 4: Div based layout

48

lows them to expose and visually examine the internal algorithm on demand. In summary,
choosing GWT as the target platform for a diagram savvy application was the right decision,
especially with regard to accessibility for end users.

Outlook

Although the web application is already well suited to support this thesis claims, it can be im-
proved to make it more suitable for everyday use. At the moment the application is designed
to handle only one storyboard to demonstrate the storyboarding process. For everyday use
a user and project component should be added. With HTML5 it would be possible to store
the users textual scenario descriptions and transformation rules on the client without having
to rely on a server for storage. In the far future it could be possible to extend the supported
number of diagrams to match those of Fujaba, bringing the whole Story Driven Modeling
process to the web.

49

Instant grammatical relations

While all natural language parsers take plain text as input, they vary greatly in implementa-
tion language, result format, precision and recall. To try out various parsers for the suitabil-
ity in our web application a common, minimal, graph based result format, ready for further
transformation is missing. By wrapping the individual parsers as JSON-P web services we
can exchange the different parse results by switching to another URL. This approach will en-
able the instant storyboarding prototype to abstract from the parser implementation and work
with any web service that takes a textual description and returns the result graph as JSON.

Introduction

Before we can think on visualizing textual scenarios we first need to enrich the plain text with
more information. Without any annotations „Alice is playing chess.“ is just a series
of characters to the computer. Like a child first learning about grammar in school we need
the computer to identify sentences and words and determine subject, predicate and object.
All this information needs to be stored in a suitable data model: a graph.

While the field of natural language processing (NLP) has produced dozens of parsers to
annotate text, they all use their own data format. Basically, the parsers produce a graph which
is converted to a bracketed textual treebank notation described by Marcus, Santorini, and
Marcinkiewicz.48 The output for our examplesentence could look like listings 5 or 6. 48 Mitchell P. Marcus, Beatrice Santorini,

and Mary Ann Marcinkiewicz. “Build-
ing a Large Annotated Corpus of English:
The Penn Treebank.” In: Computational
Linguistics 19.2 (1993), pp. 313–330. url:
http://dblp.uni-trier.de/db/jo
urnals/coling/coling19.html#Ma

rcusSM94.

(TOP (NP (NNP Alice))↩

↪(VP (VBZ is) (VP↩
↪(VBG playing) (NP (NN↩

↪chess)))) (. .))

Listing 5: „Alice is playing Chess“
OpenNLP parse

(ROOT
(S

(NP (NNP Alice))
(VP (VBZ is)
(VP (VBG playing)

(NP (NN chess))))
(. .)))

Listing 6: „Alice is playing Chess“ Stan-
ford parse

OpenNLP and the Stanford Parser agree on the treebank, but the Stanford Parser wraps
the sentence in an extra ROOT node and adds some line breaks for readability. For this thesis
we are more interested in a graphical representation of the treebank. To get there, we need to
find a generic way to transport the underlying graphs from the server to the browser.

http://dblp.uni-trier.de/db/journals/coling/coling19.html#MarcusSM94
http://dblp.uni-trier.de/db/journals/coling/coling19.html#MarcusSM94
http://dblp.uni-trier.de/db/journals/coling/coling19.html#MarcusSM94

50

Unfortunately, none of the NLP parsers are ready for direct use in a web application. To
access different parsers in that environment I

• chose a simple JSON data format suitable to transfer parser results from a web server to a
web application via JSON-P,

• implemented a web service for the Stanford and OpenNLP parsers,

• provide a call mechanism for web applications that automatically reconstructs cyclic graphs
from the JSON data, and finally

• compared POS-trees and grammatical relations for suitability in this thesis.

Together, this solution allows exchanging the NLP parser of our web application by point-
ing it to a new URL.

No common graph for parser results

Linguists and researchers in natural language processing have developed a wide variety of
parsers. OpenNLP comes with a command line interface for their NLP parser and coreference
annotation.49 Text2Onto is an interactive application for semi automatic learning of ontolo-

49 Apache. OpenNLP. 2010. url: http:
//opennlp.apache.org (visited on
07/19/2013)

gies.50 GATE is an integrated development environment that allows you to compose and test

50 Cimiano and Völker, “Text2Onto - A
Framework for Ontology Learning and
Data-driven Change Discovery”

an NLP toolchain for use in another application.51 And Stanford already provides an online
51 H. Cunningham et al. “GATE: A frame-
work and graphical development envi-
ronment for robust NLP tools and ap-
plications”. In: Proceedings of the 40th
Anniversary Meeting of the Association for
Computational Linguistics. 2002. url: ht
tp://gate.ac.uk/sale/acl02/acl

-main.pdf

demo for their CoreNLP tools.52 While these tools provide a different user interface, focusing

52 Stanford. CoreNLP. 2011. url: http:
//nlp.stanford.edu:8080/corenl

p/ (visited on 07/19/2013).

on specific problems in NLP, at some point, they all internally work on a graph structure: an
annotated corpus of text: a treebank.

Before we can use this treebank in graph transformations we have to represent the graph in
a data format our transformation engine understands, much like NLP researchers use graphs
in their papers to visualize sentence structures. So instead of whatever GUI comes with the
parser, we need direct access to the data model that is used to store the annotations.

The parse results may be trees or even cyclic graphs that need to be transferred from the
server to the browser before our web application can work with them. Unfortunately, JAXB,53

53 Metro Project. JAXB Reference Imple-
mentation. 2003. url: https://jaxb
.java.net/ (visited on 03/24/2014)

http://opennlp.apache.org
http://opennlp.apache.org
http://gate.ac.uk/sale/acl02/acl-main.pdf
http://gate.ac.uk/sale/acl02/acl-main.pdf
http://gate.ac.uk/sale/acl02/acl-main.pdf
http://nlp.stanford.edu:8080/corenlp/
http://nlp.stanford.edu:8080/corenlp/
http://nlp.stanford.edu:8080/corenlp/
https://jaxb.java.net/
https://jaxb.java.net/

51

the Java EE 6 solution for this (un-)marshalling problem widely used by server applications by
default only handles tree like structures.54 We either need to find a more suitable framework 54 Metro Project. Mapping cyclic references

to XML. 2009. url: https://jaxb.ja
va.net/guide/Mapping_cyclic_r
eferences_to_XML.html (visited on
03/24/2014).

or provide our own implementation to send cyclic graph structures from a web server to a
browser with HTTP.

Wrapping parse results in a common graph

The graph drawing community, concerned with the geometric representation of graphs and
networks, has specified GraphML55 as a file and exchange format for graphs. We are going 55 GraphML Team. The GraphML File For-

mat. 2002. url: http : / / graphm
l . graphdrawing . org/ (visited on
03/24/2014).

to wrap some of the NLP parsers as web services that return the treebank as a graph instead
of plain text. Although XML is a widely used data exchange format, the better alternative
for a web application would be JSON,56 the native data representation of JavaScript running 56 Douglas Crockford. Introducing JSON.

2002. url: http://www.json.org/
(visited on 03/24/2014).

in browsers. Luckily, the graph drawing community has already created a JSON version of
GraphML: GraphSON.57

57 Stephen Mallette and Marko A. Ro-
driguez. GraphSON Reader and Writer Li-
brary. 2012. url: https://github.co
m/tinkerpop/blueprints/wiki/Gr
aphSON-Reader-and-Writer-Libr
ary (visited on 06/11/2012).

With the data structure in place we need to decide on an RPC mechanism that allows us to
transparently use the NLP parser result graphs generated on the server side in our web appli-
cation. The problem with browser applications is that they have to respect the same origin pol-
icy.58 The browser will only allow HTTP requests to the same domain that served our web ap-

58 W3C. Same Origin Policy. 2009. url:
http://www.w3.org/Security/wi

ki/Same_Origin_Policy (visited on
03/24/2014).

plication. In the case of instant-storyboarding.de all parser web services would have to be de-
ployed at URLs like instant-storyboarding.de/stanford or instant-storyboarding.de/opennlp.
Instead of using a proxy server that the University of Kassel would have to change whenever
a new parser is used, it is possible to work around the same origin policy with a mechanism
called JSON-P.59 GWT already provides an implementation for JSON-P calls that we will use

59 Kyle Simpson. Defining Safer JSON-P.
2010. url: http://www.json-p.org
(visited on 03/24/2014)to transfer GraphSON from the server to the client.

https://jaxb.java.net/guide/Mapping_cyclic_references_to_XML.html
https://jaxb.java.net/guide/Mapping_cyclic_references_to_XML.html
https://jaxb.java.net/guide/Mapping_cyclic_references_to_XML.html
http://graphml.graphdrawing.org/
http://graphml.graphdrawing.org/
http://www.json.org/
https://github.com/tinkerpop/blueprints/wiki/GraphSON-Reader-and-Writer-Library
https://github.com/tinkerpop/blueprints/wiki/GraphSON-Reader-and-Writer-Library
https://github.com/tinkerpop/blueprints/wiki/GraphSON-Reader-and-Writer-Library
https://github.com/tinkerpop/blueprints/wiki/GraphSON-Reader-and-Writer-Library
http://www.w3.org/Security/wiki/Same_Origin_Policy
http://www.w3.org/Security/wiki/Same_Origin_Policy
http://instant-storyboarding.de/
http://instant-storyboarding.de/stanford
http://instant-storyboarding.de/opennlp
http://www.json-p.org

52

The Details

A common graph for parser results

Various XML based languages have been developed to represent Graphs. In 2000, The Graph
eXchange Language (GXL) was developed as a standard exchange format for graphs to enable
interoperability between software reengineering tools.60 In 2002, the graph drawing commu-60 Richard C. Holt, Andreas Winter, and

Andy Schürr. “GXL: Towards a Stan-
dard Exchange Format”. In: Proceedings
of the 7th Working Conference on Reverse En-
gineering (WCRE 2000). Limerick, June
2000. url: ftp://ftphost.uni-ko
blenz.de/ftp/outgoing/Reports

/RR-1-2000/RR-1-2000.pdf.

nity has standardized the Graph Markup Language (GraphML) as an exchange format for
data transfer between graph drawing tools.61 And the Graphviz community has developed

61 Ulrik Brandes et al. “GraphML
Progress Report: Structural Layer
Proposal”. In: Proceedings of the 9th
International Symposium Graph Drawing
(GD ’01) LNCS 2265. Springer-Verlag,
2002, pp. 501–512. url: http://www.i
nf.uni-konstanz.de/algo/public
ations/behhm-gprsl-01.ps.gz.

DotML as an XML variant of the Dot language.62 Of these three only the graph drawing

62 Martin Loetzsch. The Dot Markup Lan-
guage. 2002. url: http : / / martin
- loetzsch . de / DOTML/ (visited on
03/24/2014).

community has developed63 a JSON variant of their GraphML language shown in listing 7.

63 Mallette and Rodriguez, GraphSON
Reader and Writer Library.

Instead of reinventing the wheel, we use the GraphSON variant of GraphML to represent and
transfer the parser results in our web application.

Listing 7: GraphSON example

{
"graph": {

"vertices": [
{
"name": "alice",

"_id": "1", "_type": "vertex"
}, {
"name": "chess",

"_id": "2", "_type": "vertex"
},

],

"edges": [
{

"_id": "3",

"_type": "edge",
"_outV": "1",

"_inV": "2",
"_label": "playing"

}

]
}

}

ftp://ftphost.uni-koblenz.de/ftp/outgoing/Reports/RR-1-2000/RR-1-2000.pdf
ftp://ftphost.uni-koblenz.de/ftp/outgoing/Reports/RR-1-2000/RR-1-2000.pdf
ftp://ftphost.uni-koblenz.de/ftp/outgoing/Reports/RR-1-2000/RR-1-2000.pdf
http://www.inf.uni-konstanz.de/algo/publications/behhm-gprsl-01.ps.gz
http://www.inf.uni-konstanz.de/algo/publications/behhm-gprsl-01.ps.gz
http://www.inf.uni-konstanz.de/algo/publications/behhm-gprsl-01.ps.gz
http://martin-loetzsch.de/DOTML/
http://martin-loetzsch.de/DOTML/

53

During the work on this thesis it became necessary to mark edges as unidirectional. The
example given on the GraphSON page64 does not mention the optional edge attribute “di- 64 Mallette and Rodriguez, GraphSON

Reader and Writer Library.rected” present in GraphML.65 As reserved properties like “_id” and “_type” are pre-
65 Ulrik Brandes, Markus Eiglsperger,
and Jürgen Lerner, eds. GraphML Primer.
Declaring an Edge. 2012. url: http://g
raphml.graphdrawing.org/primer

/graphml-primer.html#GraphEdge

(visited on 03/24/2014).

fixed with an underscore we will use “_directed” as an edge attribute. The change is con-
sistent with the GraphSON notation and allows us to represent directed edges.

GWT, JSON-P and a parser web service API

With recent versions of GWT the support for JSON-P has been improved to a point where
the developer just needs to implement a simple asynchronous remote procedure call as in
listing 8. In the background GWT injects a script element with the given source URL into
the HTML DOM. The result is expected to be a valid JSON expression that is evaluated by
the browser. By sending a “callback” or “jsonp” query parameter this allows the execution of
an arbitrary JavaScript method that takes the actual result as an argument. A query param-
eter "callback=handleResult" and a result "Hello JSON-P!" becomes handleRe-
sult("Hello JSON-P!");. To free memory GWT also takes care of cleaning up old and
injecting new script elements for every JSON-P call. In summary, calling web services outside
the applications domain has become much easier with GWT natively supporting JSON-P.

1 String url = getParserURL() + URL.encodeQueryString(description);

2 JsonpRequestBuilder jsonp = new JsonpRequestBuilder();

3 jsonp.requestObject(url, new AsyncCallback<JavaScriptObject>() {

4 public void onFailure(Throwable throwable) {

5 // handle error case

6 }

7 public void onSuccess(JavaScriptObject graph) {

8 // unparse GraphSON

9 }

10 });

Listing 8: JSON-P call with GWT

http://graphml.graphdrawing.org/primer/graphml-primer.html#GraphEdge
http://graphml.graphdrawing.org/primer/graphml-primer.html#GraphEdge
http://graphml.graphdrawing.org/primer/graphml-primer.html#GraphEdge

54

With the mechanism set, we still need to define the API our web application will use to
execute a parser. A minimal service will take the corpus as a parameter of an HTTP GET
request and return the result as GraphSON, so our web application can immediately work
on it. Although there is no exact limit for the length of the URL in an HTTP GET request,
today’s browsers and servers usually allow for at least 2kb, Firefox even 8kb,66 which is long66 Bauke Scholtz. maximum length of HTTP

GET request? 2010. url: http://stac
koverflow.com/a/2659995/828717
(visited on 03/24/2014).

enough for our purpose of sending textual scenario descriptions in the URL. As a techni-
cal requirement for JSON-P the URL must also contain query parameter for the callback the
browser is meant to execute upon receiving the response. To keep the URL short, we decided
to encode the corpus as a URL path segment instead of a parameter and used an abbrevi-
ated parameter “c” that takes the callback function. Listing 9 shows the resulting URL format
our web application will call and gives the URLs to the OpenNLP and Stanford web services
we implemented67. Adding a the “c” parameter must wrap the GraphSON in a JavaScript

67 Point your browser to http:

//instant-storyboarding.de
/de.uks.nt2od.stanford/parse
r/Alice is playing Chess. to
see the GraphSON result and try other
sentences as well.

function callback given by it. Having defined the web service we can now take a look at the
implementation for OpenNLP and Stanford.

1 proto://host:port/path/to/service/<corpus>?c=<callback>

2

3 http://instant-storyboarding.de/de.uks.nt2od.opennlp/parser/<corpus>

4

5 http://instant-storyboarding.de/de.uks.nt2od.stanford/parser/<corpus>

Listing 9: Parser web service URL format

Wrapping OpenNLP as a web service

OpenNLP is distributed as a set of jars that we can wrap in a web service. The distributed
package comes with a command line interface that provides easy access to the NLP parser
implementation and can be used to try out the parser. Our web application expects the web
service to take English text as an input and return GraphSON. We are going to use the jars as

http://stackoverflow.com/a/2659995/828717
http://stackoverflow.com/a/2659995/828717
http://instant-storyboarding.de/de.uks.nt2od.stanford/parser/Alice is playing Chess.
http://instant-storyboarding.de/de.uks.nt2od.stanford/parser/Alice is playing Chess.
http://instant-storyboarding.de/de.uks.nt2od.stanford/parser/Alice is playing Chess.
http://instant-storyboarding.de/de.uks.nt2od.stanford/parser/Alice is playing Chess.

55

a library and write a web service that directly uses the OpenNLP parser implementation to
parse natural English language and convert the result into GraphSON.

To keep deployment cycles short we will not add the parsers trained model directly to our
web service but expect it on the java classpath. Adding the trained model provided by the
developers would add over 100MB that rarely change but would have to be copied to the
servlet container every time we deploy the OpenNLP web service which happens quite often
during development. As the model is provided as a jar we can add it to the servlet containers
lib folder68 so our web service can find it on the classpath.

68 Glassfish, Tomcat and Jetty all have a lib
folder that can be used to provide jars to
all servlets which is typically used for the
database driver.

Loading the model takes a few seconds, so we are going to implement the parser as a
singleton. As we are using a servlet container we can use the @Singleton and @PostCon-

struct annotations to lazy initialize our parser when the class is first used. This way the
sentence detector, tokenizer and parser model only need to be loaded once and allow reusing
the initialized parser in subsequent parses.

After loading the model we need to chain three method calls to create a parse tree for a
text corpus. Splitting the corpus into sentences is handled by calling sentDetect(cor-

pus:String) of an instance of SentenceDetectorME. The loaded model is used to de-
tect interpunctuation and leave numbers like “5.4” intact. Each sentence is tokenized by
tokenize(sentence:String) of the initialized TokenizerME. Each array of tokens is
merged back into a single line of text that can be parsed by using the staticParserTool.parse-
Line(). The result is an array of Parse that we add to a List of Parse[] for every sentence
in the corpus. Furthermore, the elements create a parent / children tree as shown in figure 14.

Figure 14: OpenNLP Class Diagram

In the last step of the OpenNLP server web service we need to represent the parser result
as GraphSON. JAXB is the standard solution of the EJB stack to un/-marshal objects to and
from XML or JSON. But it would require us to implement a GraphSON data model and in
this case marshalling classes. For us, the code was much cleaner after dropping JAXB and
implementing the marshalling with JSON.simple.69 69 Yidong Fang. JSON.simple. A simple

Java toolkit for JSON. 2008. url: https:
//code.google.com/p/json-simpl

e/ (visited on 03/24/2014).

For the web service specific code we relied on the EJB infrastructure. The web service API
is annotated with @Get, @Path, @PathParam and @Produces. This creates the necessary
handler that extracts a part of the path in an HTTP GET request as the corpus, uses the parser

https://code.google.com/p/json-simple/
https://code.google.com/p/json-simple/
https://code.google.com/p/json-simple/

56

singleton to parse it and returns the GraphSON result. The whole implementation of the web
service only takes two classes and about 250 lines of code.

The attentive reader familiar with JAX/RS may have noticed that in the previous section
we have defined the API URL without a special path parameter although we use it in the web
service implementation. We are using an Apache HTTP Server as a proxy to rewrite the URL
and move the corpus from the path into a path parameter. Furthermore, the Apache server
would allow us to host the different web services each on its own machine and even act as a
load balancer.

Wrapping the Stanford Parser as a web service

The Stanford CoreNLP tools are distributed similar to OpenNLP. Just like OpenNLP, they
are provided separately from a trained model and provide a command line interface for easy
access to the implementation. As we have already learned how to write a wrapper for an NLP
parser in the previous section the only new challenge is calling the parser and representing
the result as GraphSON.

For Stanford an NLP pipeline with sentence detection, tokenization and part of speech tag-
ging like in OpenNLP can be set up as well. The constructor for the StanfordCoreNLP class
takes Properties as a parameter. Setting “annotation” to “tokenize, ssplit, pos,

lemma, ner, parse, dcoref” even extends the pipeline with a coreference70 annota-70 As an example, in “Alice moves her
counter.” a coreference for Alice is her. tion. The text is then parsed by wrapping it in an Annotation class and calling the Stan-

fordCoreNLP objects annotate(Annotation annotation) method with it. As with
OpenNLP, the CoreNLP tools expect to find a trained model on the classpath, which is best
placed directly in the servlet containers shared extensions folder71.71 Glassfish uses <domain>/lib/ext,

Tomcat uses $CATALINA_HOME/lib After parsing, the Annotation object contains the result that we want to represent as
GraphSON. In contrast to OpenNLP we can not only fetch a PoS tree but also grammati-
cal relations. Passing CorefChainAnnotation.class, SentencesAnnotation.class
and TokensAnnotation.class to the Annotations get(…) method, we can iterate over
coreferences, sentences and tokens to collect the nodes and edges we need to represent the
result as GraphSON. With this the Stanford web service returns the grammatical relations

57

of the example sentence „Alice is playing chess.“ from the introduction as the GraphSON in
listing 10.

1 {
2 "graph":{
3 "edges":[
4 {
5 "_id":"e0", "_type":"edge",
6 "_outV":"s0tNNPe5",
7 "_label":"nsubj",
8 "_inV":"s9tVBGe16"
9 }, {

10 "_id":"e1", "_type":"edge",
11 "_outV":"s6tVBZe8",
12 "_label":"aux",
13 "_inV":"s9tVBGe16"
14 }, {
15 "_id":"e2", "_type":"edge",
16 "_outV":"s17tNNPe22",
17 "_label":"dobj",
18 "_inV":"s9tVBGe16"
19 }
20],
21 "vertices":[
22 {
23 "_id":"s0tNNPe5", "_type":"vertex",
24 "text":"Alice", "type":"NNP"
25 }, {
26 "_id":"s9tVBGe16", "_type":"vertex",
27 "text":"playing", "type":"VBG"
28 }, {
29 "_id":"s17tNNPe22", "_type":"vertex",
30 "text":"Chess", "type":"NNP"
31 }, {
32 "_id":"s6tVBZe8", "_type":"vertex",
33 "text":"is", "type":"VBZ"
34 }
35]
36 }
37 }

Listing 10: „Alice is playing Chess“
graphson

58

Cyclic graphs and JSON-P

On the technical side, grammatical relations introduce a (un-)marshaling problem, because
they may contain cycles. When choosing a framework to use for creating a JSON string for
the result graph, we first created a Java data model for a graph and then used JAXB to mar-
shal it. Marshaling tree like structures as with the parse result from OpenNLP worked out
of the box. But after mapping the grammatical relations from Stanford to our initial graph
data model JAXB would fail to marshal cyclic graphs because we had not used the required
annotations.72 The automatic conversion of java objects to JSON / XML with JAXB is nice,72 @XmlID and @XmlIDREF are your

friends, see: Metro Project, Mapping cyclic
references to XML.

but when trying to find out how to return the result in JSON-P with JAXB we decided that
directly controlling a String instead of indirectly controlling a given marshaling mechanism
was more straight forward. Replacing JAXB with json-simple and writing the result as Graph-
SON even reduced the code complexity as the extra data model and marshaling annotations
were now unnecessary.

Furthermore, using a standard like GraphSON allowed us to write a generic unmarshal-
ing mechanism that would reconstruct any parser result as a graph based data model in the
browser. After making the JSON-P call with GWT, our GraphSONReader can unparse()s
the returned JavaScriptObject, creating the vertices as UMLObject objects and reattach-
ing the edges as UMLLink objects. The UML prefixed classes had originally been inspired by
the Fujaba data model and are used to represent nodes and edges in the subsequent graph
transformations. As a result our web application can run graph transformations on any URL
that returns GraphSON via JSON-P.

PoS trees vs. grammatical relations

On the conceptual side, grammatical relations are a better starting point to derive collabora-
tion diagrams than part of speech trees. Where PoS trees are used to show the structure of
a sentence grammatical relations shift the focus to dependencies between words. POS trees
give you an answer to “What are the nouns in this sentence?” Grammatical relations also give
you an answer to “What is the role of this noun in the sentence?” In collaboration diagrams

59

the question becomes “Who does what?” which is a lot easier to answer with grammatical
relations being able to point out subject, predicate and object of a sentence.

Another advantage of grammatical relations is the ability to represent coreferences, even
across sentence borders. When trying to answer “What is related to Alice?” in the chess ex-
ample from listing 1 coreferences will point out “…her pawn …” or that “Alice moves …”. For
our goal of representing textual scenario description as a collaboration diagram, the higher
level representation of grammatical relations is the most suitable starting point.

Related Work

While a lot of natural language parsers have been implemented only few can be accessed with
a REST/JSON API. The most notable one being S.Pr.A.W., a Stanford Parser API for the Web73 73 Andrew LeBlanc. S.Pr.A.W.. Stanford

Parser API for the Web. 2010. url: http
s://github.com/LeBlanc/SPRAW

(visited on 03/24/2014).

which is a JRuby on Rails wrapper around the Stanford Parser that even supports JSON-P.
Unfortunately, the service is very unreliable and does not return GraphSON, so we deployed
our own wrapper.

Conclusion

Using a JSON-P based web service that returns the parse result in GraphSON makes exchang-
ing the parser very easy. On the server side, implementing wrappers for OpenNLP and the
Stanford Parser showed that the json-simple library is a straight forward and controllable
way to produce GraphSON. On the client side, our web application reconstructs the graph
described by the GraphSON result. As a result, the current implementation can be used
to execute graph transformations not just on parser results, but any web service returning
GraphSON via JSON-P.

None of the natural language parsers that I tried were directly usable in a web application.
Neither are any of them implemented in JavaScript, nor can they be compiled from Java to
JavaScript using GWT. For the latter they would have to manually be split into client and
server parts, as they all use standard Java file IO that GWT cannot convert to JavaScript. Last
but not least, the memory requirements for eg. the Stanford Parser with 6GB RAM cannot yet
be fulfilled by every client. Leaving the parsing step on the server is the better choice for now.

https://github.com/LeBlanc/SPRAW
https://github.com/LeBlanc/SPRAW

60

Outlook

Meanwhile, the World Wide Web Consortium has created a working draft for Cross-Origin
Resource Sharing (CORS) that uses aAccess-Control-Allow-Origin: *header to make
cross domain HTTP requests.74 CORS makes workarounds like JSON-P superfluous and, as74 Anne van Kesteren. Cross-Origin Re-

source Sharing. Jan. 29, 2013. url: http
://www.w3.org/TR/cors/ (visited on
06/29/2013).

of August 2012, all modern browser engines support it.75 With this, JSON-P can be considered

75 Todd Anglin has written a nice Article
with examples on how to use CORS: Todd
Anglin. Using CORS with All (Modern)
Browsers. Oct. 3, 2011. url: http://b
logs.telerik.com/kendoui/pos

ts/11- 10- 03/using_cors_with

_all_modern_browsers (visited on
03/24/2014).

deprecated and our web application should adopt to the new standard.
A much more interesting task would be to use GWT to compile a Java based NLP parser to

JavaScript. The biggest problem here is that you cannot use classes from thejava.iopackage
which most parsers use to read files. Accessing the model files is an even bigger challenge
as they come at around 100MB to 200MB. Nevertheless, using HTML5 client storage could
be used to cache trained models. Executing the parser on the client would relieve the server
from the CPU intensive task and remove this possible performance bottleneck.

Of course, OpenNLP and the Stanford Parser are not the only NLP parsers. Using JSON-P
and GraphSON makes it easy to examine other parsers and experiment with graph trans-
formations on their results. Considering the “instant” part of this thesis title a good starting
point would be the MaltParser76 as examined by Cer et al.77

76 Johan Hall, Jens Nilsson, and Joakim
Nivre. MaltParser. 2006. url: http :

//www.maltparser.org/ (visited on
03/24/2014)
77 Daniel M. Cer et al. “Parsing to Stan-
ford Dependencies: Trade-offs between
Speed and Accuracy.” In: LREC. ed. by
Nicoletta Calzolari et al. European Lan-
guage Resources Association, 2010. isbn:
2-9517408-6-7. url: http://dblp.uni
-trier.de/db/conf/lrec/lrec201

0.html#CerMJM10.

While adding other parsers the initialization should be done upon startup of the servlet
container, not upon the first request. The current web service wrappers for OpenNLP and
the Stanford Parser both use lazy loading, causing the first request to take up to 30 seconds
when initializing the parser with the learned model. The @Singleton annotation then keeps
the initialized parser in memory, speeding up subsequent requests. A better way would be to
configure the servlet container to load and initialize the wrapper servlets with the<load-on-
startup> element.78 Using the <load-on-startup>will however cause the initialization

78 Rajiv Mordani. JSR-000315 Java™
Servlet 3.0. Maintenance Release. Feb. 6,
2011. url: https : / / jcp . org / a
boutJava/communityprocess/mre
l / jsr315 / index . html (visited on
03/24/2014)

whenever the servlet is deployed which might be undesired for development purposes.

http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/
http://blogs.telerik.com/kendoui/posts/11-10-03/using_cors_with_all_modern_browsers
http://blogs.telerik.com/kendoui/posts/11-10-03/using_cors_with_all_modern_browsers
http://blogs.telerik.com/kendoui/posts/11-10-03/using_cors_with_all_modern_browsers
http://blogs.telerik.com/kendoui/posts/11-10-03/using_cors_with_all_modern_browsers
http://www.maltparser.org/
http://www.maltparser.org/
http://dblp.uni-trier.de/db/conf/lrec/lrec2010.html#CerMJM10
http://dblp.uni-trier.de/db/conf/lrec/lrec2010.html#CerMJM10
http://dblp.uni-trier.de/db/conf/lrec/lrec2010.html#CerMJM10
https://jcp.org/aboutJava/communityprocess/mrel/jsr315/index.html
https://jcp.org/aboutJava/communityprocess/mrel/jsr315/index.html
https://jcp.org/aboutJava/communityprocess/mrel/jsr315/index.html

61

Instant graph visualization

Introduction

The parser web services from chapter “Instant grammatical relations” on page 49 provide
their results as GraphSON79 and we already reconstruct the graph with JavaScript objects 79 As an example listing 10 can be found

on page 57.in the browser. A visualization of the graph however is still missing. Fortunately, there is
an excellent tool to plot graphs called Graphviz. As it is widely used in scientific papers to
render graphs we will reuse it for our web application.

Like many parsers Graphviz is a command line tool which lacks a ready to use web service
suitable for a web application. In order to visualize graphs in our web application, I

• created a domain specific language to encode graphs in URLs,

• implemented a web service that parses these URLs and

• returns an image of the graph rendered with Graphviz.

Similar to the parser wrappers, this web service is a wrapper for a well known tool that
will allow us to reuse the code already developed by others.

The Problem

Storyboarding is a highly graphical activity where immediate visual feedback allows the user
to be more productive. Every change to the textual scenario description will change the graph
returned by the parser. And every storyboarding step after that will also change the working
graph. To visualize the graph transformations that implement the storyboarding process as
well as any intermediate graphs we need a flexible and fast graph rendering engine. The
sooner the user can see an updated graph the earlier can he try another textual formulation
or graph transformation.

My Idea

There are two ways to render graphs or images in web applications. The traditional approach
is to use a web service that takes care of the image creation process and provides a URL where

62

the web application can fetch the result for inclusion in a web page. With HTML5 it has
also become possible to use JavaScript and styled div elements to render the graph directly
in the browser. For our web application I decided to stick to the traditional approach and
wrap Graphviz as a web service. The implementation was heavily inspired by the yuml.me8080 Tobin Harris. yUML. 2009. url: http

://yuml.me/ (visited on 03/24/2014). service that is capable of rendering class diagrams encoded in the URL81. I initially used
81 If their service is up, following http:
//yuml.me/diagram/plain/class
/edit/[Alice]-playing-[Chess]
will bring you to their online editor for
the diagram encoded in the URL.

their service, but over time it became evident that they were having availability issues and
were unable to render real object diagrams or, as is necessary for our web application, story
pattern, where colored nodes and edges have semantic relevance. Thankfully, the yuml.me
developers gave a little insight into their implementation, so I decided to rewrite and adapt it
to my requirements.8282 Tobin Harris. yUML pipeline. July 30,

2010. url: https : / / groups . goog
le.com/forum/#!msg/yuml/tLO

8Pl88c_0/XsvFV43r25sJ (visited on
07/19/2013). The Details

The yuml.me service parses the URL, converts the graph to the .dot language for Graphviz,
renders it as SVG and then uses XSLT transformations to add fancy decorations. For the pur-
pose of our web application varying the decorations is unnecessary, so we will omit the XSLT
transformations. We still need to create a DSL to describe graphs in a URL, write a .dot script
and use Graphviz to render it, before we can return an image to the browser.

A DSL for storyboarding

The yuml.me notation for class diagrams is very readable for humans. Listing 11 shows the
verbose version of a simple class diagram. Each row is used to specify a relation between two
classes. The unique idea of yuml.me is to visually describe the kind of relation and class by
using an ASCII art like notation. Classes are enclosed by square brackets, an association is
represented as a dash. If you want to add a name to a relation put it between two dashes. If
you want to add attributes or methods split the class with a pipe and separate attributes with
semi-colons. To link to the diagram with a URL you concatenate the rows with a comma and
prepend it with the yuml.me URL to the online editor83. While more variations are available84

83 The yuml.me sample becomes
http://yuml.me/diagram/plain,
/class/edit/// Cool Class Di

agram, [Customer]<>-orders*>
[Order], [Order]++-0..*>
[LineItem], [Order]-[note:
Aggregate root.]

84 Examples for inheritance, notes, cardi-
nalities, directed associations and even
colors can be found at http://yuml.me
/diagram/class/samples

yuml.me is not a modeling but a drawing tool. You can for example use more than two pipes
in a class which does not make sense in a UML class diagram. The expressiveness of the

http://yuml.me
http://yuml.me/
http://yuml.me/
http://yuml.me/diagram/plain/class/edit/[Alice]-playing-[Chess]
http://yuml.me/diagram/plain/class/edit/[Alice]-playing-[Chess]
http://yuml.me/diagram/plain/class/edit/[Alice]-playing-[Chess]
http://yuml.me
https://groups.google.com/forum/#!msg/yuml/tLO8Pl88c_0/XsvFV43r25sJ
https://groups.google.com/forum/#!msg/yuml/tLO8Pl88c_0/XsvFV43r25sJ
https://groups.google.com/forum/#!msg/yuml/tLO8Pl88c_0/XsvFV43r25sJ
http://yuml.me
http://yuml.me
http://yuml.me
http://yuml.me
http://yuml.me
http://yuml.me/diagram/plain
/class/edit/// Cool Class Diagram, [Customer]<>-orders*>[Order], [Order]++-0..*>[LineItem], [Order]-[note:Aggregate root.]
/class/edit/// Cool Class Diagram, [Customer]<>-orders*>[Order], [Order]++-0..*>[LineItem], [Order]-[note:Aggregate root.]
/class/edit/// Cool Class Diagram, [Customer]<>-orders*>[Order], [Order]++-0..*>[LineItem], [Order]-[note:Aggregate root.]
/class/edit/// Cool Class Diagram, [Customer]<>-orders*>[Order], [Order]++-0..*>[LineItem], [Order]-[note:Aggregate root.]
/class/edit/// Cool Class Diagram, [Customer]<>-orders*>[Order], [Order]++-0..*>[LineItem], [Order]-[note:Aggregate root.]
http://yuml.me/diagram/class/samples
http://yuml.me/diagram/class/samples
http://yuml.me

63

yuml.me notation gives users a lot of flexibility but still lacks features needed to model the
story patterns used in storyboarding.

1 // Cool Class Diagram

2 [Customer]<>-orders*>[Order]

3 [Order]++-0..*>[LineItem]

4 [Order]-[note:Aggregate root.] Listing 11: yuml.me notation example

Inspired by the yuml notation for class diagrams I gradually evolved the notation to de-
scribe the different kinds of diagrams needed in our web application. The yuml.me service
concentrates on class, activity and use case diagrams, so I first added the ability to render
object diagrams which most resemble class diagrams, but have their identifiers underlined.
Adding a method call notation then enabled us to render collaboration diagrams. Story Pat-
tern became possible after adding modifiers to create, delete and optionally match elements.
Table 1 gives an overview of the FUML notation and the resulting visualization.

At this point we can express a subset of Story Pattern using literal Strings or numbers in
attribute assignments. To assign and reference variables we will revisit the DSL in “A DSL for
Storyboarding revisited” on page 77. For now let us continue with this more simple subset.

Extending the yuml.me notation has led us to a domain specific language for storyboard-
ing. The ASCII art inspired DSL is very readable, yet flexible enough to encode object dia-
grams, class diagrams, collaboration diagrams and story patterns. With FUML, the Graph-
SON we received85 for our example sentence “Alice is playing Chess.” can be encoded into a 85 See listing 10 on page 57.

single line for use in a URL. Due to the page width I manually added line breaks to the result
in listing 12 represented by ↩ and ↪. Now all we need is a parser for this notation.

Parsing URLs with ANTLR

Once we have a parser grammar we can use a parser generator to generate the necessary
parser code. In the previous subsection we described some examples which we now use to
deduce a parser grammar. Figure 15 gives an overview of the FUML Grammar containing
the core elements.

http://yuml.me
http://yuml.me
http://yuml.me
http://yuml.me

64

FUML Notation visual representation

To render a class in yUML it is enclosed in square brackets:
[Person] (click the notation to open it in the browser)

Person

The most fundamental change for FUML is the shift from classes and associations to objects and
links. To produce object diagrams we need a way to underline the identifier:

Enclose name and class with an underscore:
[_p1:Person_]

p1:Person

An object can have attributes:
[_person_|name=="Alice"]

person

name=="Alice"

And objects can be connected with links:
[_o1_]-link-[_o2_]

o1 o2link

Using underlining as a convention is all the difference it needs to distinguish class diagrams from
object diagrams. But we also want to be able to render collaboration diagrams:

We will use an object followed by an arrow to send a message:
[_counter_]<-1:move(6,5)

counter
1:move(6, 5)

Table 1: FUML notations and their visual
representation can be accessed by point-
ing a browser to http://instant-
storyboarding.de/fuml/diagram
/story/[FUMLNotation].png.

http://instant-storyboarding.de/fuml/diagram/story/[Person].png
http://instant-storyboarding.de/fuml/diagram/story/[_p1:Person_].png
http://instant-storyboarding.de/fuml/diagram/story/[_person_|name=="Alice"].png
http://instant-storyboarding.de/fuml/diagram/story/[_o1_]-link-[_o2_].png
http://instant-storyboarding.de/fuml/diagram/story/[_counter_]<-1:move(6,5).png
http://instant-storyboarding.de/fuml/diagram/story/[FUMLNotation].png
http://instant-storyboarding.de/fuml/diagram/story/[FUMLNotation].png
http://instant-storyboarding.de/fuml/diagram/story/[FUMLNotation].png

65

FUML Notation visual representation

Story Pattern introduce create, delete and optional modifiers to objects and links. Fujaba colors
elements green or red to represent their creation respective deletion. We decided to reuse well
known characters like +, - and ? to represent them in FUML:

Assigning an attribute is done with the := operator:
[_p1:Person_|name:=Alice]

p1:Person

name:=Alice

Create an object by prepending it with +:
+[_alice:Person_|name:=Alice;gender:=F]

alice:Person

name:=Alice
gender:=F

Make creation optional by appending a ?:
+[_alice:Person_|name:=Alice;gender:=F]?

alice:Person

name:=Alice
gender:=F

Create a link by prepending the name with +:
[_o1_]-+link-[_o2_]

o1 o2link

Delete an object by prepending it with -:
-[_:Person_|name==Bob]

:Person

name==Bob

http://instant-storyboarding.de/fuml/diagram/story/[_p1:Person_|name:=Alice].png
http://instant-storyboarding.de/fuml/diagram/story/+[_alice:Person_|name:=Alice;gender:=F].png
http://instant-storyboarding.de/fuml/diagram/story/+[_alice:Person_|name:=Alice;gender:=F]%3F.png
http://instant-storyboarding.de/fuml/diagram/story/[_o1_]-+link-[_o2_].png
http://instant-storyboarding.de/fuml/diagram/story/-[_:Person_|name==Bob].png

66

Listing 12: FUML: “Alice is playing
Chess.”

1 [s9tVBGe16:Vertex|↩

2 ↪"text":"String"="playing";↩

3 ↪"type":"String"="VBG"↩

4 ↪]↩

5 ↪-nsubj-↩

6 ↪[s0tNNPe5:Vertex|↩

7 ↪"text":"String"="Alice";↩

8 ↪"type":"String"="NNP"↩

9 ↪]↩

10 ↪,↩

11 ↪[s9tVBGe16]↩

12 ↪-aux-↩

13 ↪[s6tVBZe8:Vertex|↩

14 ↪"text":"String"="is";↩

15 ↪"type":"String"="VBZ"↩

16 ↪]↩

17 ↪,↩

18 ↪[s9tVBGe16]↩

19 ↪-dobj-↩

20 ↪[s17tNNPe22:Vertex|↩

21 ↪"text":"String"="Chess";↩

22 ↪"type":"String"="NNP"↩

23 ↪]

67

Figure 15: FUML: Grammar Overview

This excerpt shows that a diagram is made up of a series of comma separated elements which
can be an object, a link or a call. Objects are surrounded by square brackets, links connect two
objects and calls attach a method to an object. For now we will concentrate on parsing the object
and link elements to keep things simple. While adding the call element to FUML is straight
forward, adding it to the interpreter is a different matter and will be examined in “Structuring
the data model” on page 117.

Using a parser generator for this step saved us the effort to write the parser on our own,
but we will revisit that task in subsection “A DSL for Storyboarding revisited” on page 77.

On the technical side, the implementation relies on the Apache HTTP Server to correctly
handle the URL and feed it to Glassfish without mangling any characters. With the intro-
duction of UTF-8 the problem should have been a non-issue. A common Java EE stack uses
Apache and mod_proxy in front of the servlet container that will in the end handle the HTTP
requests. To feed yuml.me like URLs to our JAX-RS web service we were using a simple
rewrite rule that reattaches the URL part representing the diagram in http://instant-
storyboarding.de/fuml/diagram/story/[alice]-[bob].png as a URL parame-

http://yuml.me
http://instant-storyboarding.de/fuml/diagram/story/[alice]-[bob].png
http://instant-storyboarding.de/fuml/diagram/story/[alice]-[bob].png

68

ter: http://instant-storyboarding.de/uml/diagram/story/?fuml=[alice]-
[bob].png, injecting a simple ?fuml=. Unfortunately, UTF-8 characters get mangled in the
process because Apache tries to unescape the regex match result into ISO-8859-1. The first
google search suggested using an Apache RewriteMap as shown in Lines 1-4 of listing 13 to
provide our own escaping which solves the problem.86 As it turns out we can alternatively86 The original page is gone but can still be

found in the internet archive: Xiao Jian-
feng. JAVA UTF-8. 2010. url: http :
/ / 92jsp . com / blog / default / 20

10/10/27/JAVA- UTF- 8 (visited on
01/14/2012).

use the RewriteRule flags noescape|NE and B to prevent Apache from mangling the URL
parameter. While the initial workaround served the purpose we finally settled on the officially
documented solution shown in line five of listing 13.

1 #RewriteMap escape int:escape

2 #RewriteRule ^/fuml/diagram/story/(.*)$↩

3 ↪ http://localhost:8080/fuml/diagram/story/?fuml=${escape:$1} [QSA,L,P]

4 RewriteRule ^/fuml/diagram/story/(.*)$↩

5 ↪ http://localhost:8080/fuml/diagram/story/?fuml=$1 [QSA,L,P,NE,B]

Listing 13: Apache Rewrite Rule

After solving these implementation details ANTLR produces a parse tree that we can use
to reconstruct the Storyboard model. Actually, this is another graph transformation step. But
since the reconstruction is generic we hard coded the mapping from parse tree nodes to sto-
ryboard elements.

Visualizing collaboration diagrams

Although there are low level Java bindings for Graphviz87 we followed the approach of a87 Mike Houston. jGraphViz. 2008. url:
http://jgraphviz.sourceforge.n
et/ (visited on 03/24/2014).

simple Graphviz wrapper that is used to create a dot file and then call the Graphviz executable
to render the graph. For our short example sentence “Alice is playing Chess.” the Stanford
parser produced grammatical relations that have been returned to the browser as GraphSON.
Our web application reconstructs the graph with JavaScript objects in the browser and creates
the FUML notation shown in listing 12. The FUML web service parses the URL with ANTLR
and creates the .dot file shown in listing 14. The result of the Graphviz rendering shown in
figure 16 is returned as a png and displayed by the browser.

http://instant-storyboarding.de/uml/diagram/story/?fuml=[alice]-[bob].png
http://instant-storyboarding.de/uml/diagram/story/?fuml=[alice]-[bob].png
https://web.archive.org/web/20120114042228/http://92jsp.com/blog/default/2010/10/27/JAVA-UTF-8
http://92jsp.com/blog/default/2010/10/27/JAVA-UTF-8
http://92jsp.com/blog/default/2010/10/27/JAVA-UTF-8
http://92jsp.com/blog/default/2010/10/27/JAVA-UTF-8
http://jgraphviz.sourceforge.net/
http://jgraphviz.sourceforge.net/

69

Figure 16: Grammatical relations in “Al-
ice is playing Chess.” s6tVBZe8:Vertex

"text":"String"="is"
"type":"String"="VBZ"

s0tNNPe5:Vertex

"text":"String"="Alice"
"type":"String"="NNP"

s9tVBGe16:Vertex

"text":"String"="playing"
"type":"String"="VBG"

aux

nsubj

s17tNNPe22:Vertex

"text":"String"="Chess"
"type":"String"="NNP"

dobj

70

1 digraph G {

2 fontname = "Bitstream Vera Sans"; fontsize = 8; rankdir="LR";

3 node [fontname = "Bitstream Vera Sans", fontsize = 8, shape = box, margin = 0, width = 0.5, height = 0.1]
4 edge [fontname = "Bitstream Vera Sans", fontsize = 8, arrowhead = "none"]

5 node_654206246 [color="black",

6 label = <<table valign="top" border="0" cellborder="0" cellspacing="0" cellpadding="4" width="10" height="10">
7 <tr><td><u>s9tVBGe16:Vertex</u></td></tr>

8 <hr/>

9 <tr><td>"text":"String"="playing"
"type":"String"="VBG"</td></tr>
10 </table>>

11]

12 node_814338642 [color="black",
13 label = <<table valign="top" border="0" cellborder="0" cellspacing="0" cellpadding="4" width="10" height="10">

14 <tr><td><u>s17tNNPe22:Vertex</u></td></tr>
15 <hr/>

16 <tr><td>"text":"String"="Chess"
"type":"String"="NNP"</td></tr>

17 </table>>
18]

19 node_624559471 [color="black",
20 label = <<table valign="top" border="0" cellborder="0" cellspacing="0" cellpadding="4" width="10" height="10">
21 <tr><td><u>s6tVBZe8:Vertex</u></td></tr>
22 <hr/>
23 <tr><td>"text":"String"="is"
"type":"String"="VBZ"</td></tr>
24 </table>>
25]
26 node_128103882 [color="black",

27 label = <<table valign="top" border="0" cellborder="0" cellspacing="0" cellpadding="4" width="10" height="10">
28 <tr><td><u>s0tNNPe5:Vertex</u></td></tr>
29 <hr/>

30 <tr><td>"text":"String"="Alice"
"type":"String"="NNP"</td></tr>
31 </table>>
32]

33 edge [label = dobj, color = black, fontcolor = black, style=solid, dir=none]
34 node_654206246 -> node_814338642
35 edge [label = nsubj, color = black, fontcolor = black, style=solid, dir=none]
36 node_654206246 -> node_128103882

37 edge [label = aux, color = black, fontcolor = black, style=solid, dir=none]
38 node_654206246 -> node_624559471
39 }

Listing 14: “Alice is playing Chess.” in
.dot notation. Used to render figure 16

71

1 fontname = "Bitstream Vera Sans"; fontsize = 8; rankdir = "LR";

2 node [fontname = "Bitstream Vera Sans", fontsize = 8, shape = box, margin = 0, width = 0.1, height = 0.1]

3 edge [fontname = "Bitstream Vera Sans", fontsize = 8, arrowhead = "none"]
4

5 ${foreach nodes node}
6 ${node.id} [color="${node.color}", ${if node.fillcolor}fillcolor="${node.fillcolor}", ${end}

7 ${if node.style}style="${node.style}", ${end}

8 label=<<table valign="top" border="0" cellborder="0" cellspacing="0" cellpadding="4" width="10" height="10"
9 color="${node.color}">

10 <tr><td><u>${node.name}${:,node.type,}

11 ${if node.newNameOrType}
12

13 ${if node.newName}${node.newName}

14 ${else}${node.name}${end}
15 ${if node.newType}${node.newType}

16 ${else}${:,node.type,}${end}

17 ${end}</u></td></tr>
18 <hr/>
19 <tr><td>
20 ${foreach node.attributes a}
21 ${if a.comparator="ASSIGN"}${a.name}${:,a.type,}:=${a.value}

22 ${else}${a.name}${:,a.type,}${a.comparator}${a.value}
${end}
23 ${end}
24 </td></tr>
25 </table>>
26]
27 ${end}
28

29 ${foreach edges edge}
30 edge [
31 label=${if edge.bgcolor}<<table border="0"><tr><td bgcolor="${edge.bgcolor}">${edge.name}</td></tr></table>>

32 ${else}${edge.name}${end},
33 ${if edge.fgcolor}color="${edge.fgcolor}", fontcolor="${edge.fgcolor}",${end}
34 ${if edge.style}style="${edge.style}",${end}
35 ${if edge.directed}dir=forward, arrowhead=normal, arrowsize=0.5

36 ${else}dir=none${end}
37]
38 ${edge.sourceid} -> ${edge.targetid}

39 ${end}

Listing 15: jmte .dot template. Used to
generate listing 14

72

If you haven’t noticed by now, this is another graph transformation that creates yet another
textual notation. As you can see in lines 9-17, 20-28, 31-39 and 42-50 of listing 14 we make use
of Graphviz pseudo HTML notation for nodes to render the objects. Initially, we hard coded
this step, adding line by line to the .dot file. To remove the Java compilation step we mean-
while moved to the Java Minimal Template Engine88 (jmte) which uses the template shown88 Oliver Zeigermann and Daniel Florey.

jmte. Java Minimal Template Engine. 2010.
url: https://code.google.com/p
/jmte/ (visited on 03/24/2014).

in listing 15. Being able to change the rendering template on the fly allows us to experiment
with different .dot features and Graphviz renderings without having to redeploy the FUML
web service.

Related Work

The FUML web service was written as a drop in replacement for yuml.me. The instant-
storyboarding.de prototype initially used yuml.me to render graphs which allowed us to fo-
cus on the underlying graph transformations and fix graphical glitches after we had tested our
ideas. Thankfully, they explained how they implemented the service, making it a lot easier to
just extend their ideas and adapt the web service to the instant storyboarding process.

Conclusion

Storyboarding starts with natural English text and our goal was to produce a graphical rep-
resentation of it early in the automated process. It allows us to easily evaluate the output of
the parser result by visualizing it as a graph. Rendering the parser result graph in our web
application gives the developer an immediate visual feedback and allows him to interactively
explore the natural language parsers capabilities. We hope that automated feedback educates
the user to use simple language and short sentences. Evolving the yuml.me notation to cover
all diagrams necessary for storyboarding and implementing a web service for them allows us
to use the textual DSL not only for our web application but also other web pages and even
eases the creation of example diagrams for research papers. With the FUML web service we
created an easy to use visualization tool for the storyboarding process that follows the spirit
of immediate feedback.

https://code.google.com/p/jmte/
https://code.google.com/p/jmte/
http://yuml.me
http://instant-storyboarding.de
http://instant-storyboarding.de
http://yuml.me
http://yuml.me

73

Outlook

If the client is powerful enough it would make sense to offload the rendering of the graphs to a
JavaScript rendering engine that runs directly in the browser. The first step could be using the
Canviz89 JavaScript library to render xdot files directly in the browser canvas. Furthermore, it

89 Ryan Schmidt. canviz. JavaScript library
for drawing Graphviz graphs to a web browser
canvas. 2006. url: http://code.g

oogle . com / p / canviz/ (visited on
03/25/2014)would be interesting to see how force or gravity based rendering engines as implemented by

Mike Bostock90 in D3.js91 behave when the graphs change a lot. Depending on the rendering 90 A lot of interesting visualization can be
found on his personal blog: Mike Bo-
stock. Mike Bostock. 2011. url: http:
//bost.ocks.org/mike/ (visited on
03/25/2014).
91 Mike Bostock. Force Layout. 2012. url:
https://github.com/mbostock/
d3/wiki/Force- Layout (visited on
03/25/2014).

engine it might even be possible to avoid the placement issues with Graphviz where objects
seem to jump around if Graphviz decides to place the same object at a new location every
other rendering run.

When the graph is rendered on the client side using JavaScript we could also allow the user
to change the jmte template used for the .dot generation. Currently, the template is stored on
the server and web application users cannot change it. Allowing them to submit new versions
would raise several security issues which we decided to avoid by not adding an ’upload your
own template’ feature. Moving the graph rendering engine to the client allows us to add this
feature without having to worry about introducing security issues on the server.

The FUML web service itself could also profit from yuml.me like decorations. Especially
yuml.me’s “scruffy” renderings draw attention and resemble the work in progress or draft look
of hand drawn UML diagrams during prototyping. Applying XSLT transformations to the
SVG produced by Graphviz is a nice task for a bachelor thesis.

http://code.google.com/p/canviz/
http://code.google.com/p/canviz/
http://bost.ocks.org/mike/
http://bost.ocks.org/mike/
https://github.com/mbostock/d3/wiki/Force-Layout
https://github.com/mbostock/d3/wiki/Force-Layout
http://yuml.me
http://yuml.me

74

Instant informal story patterns

Introduction

As figure 17 shows, graphs describing grammatical relations can become quite verbose. Fur-
thermore, their point of view is focused on language processing.

s45tPRP$e48:Vertex

"text":"String"="her"
"type":"String"="PRP$"

s0tNNPe5:Vertex

"text":"String"="Alice"
"type":"String"="NNP"

coref

s10tNNPe13:Vertex

"text":"String"="Bob"
"type":"String"="NNP"

s59tNNe64:Vertex

"text":"String"="field"
"type":"String"="NN"

s65tNNe67:Vertex

"text":"String"="c2"
"type":"String"="NN"

nn

s71tNNe73:Vertex

"text":"String"="c4"
"type":"String"="NN"

prep_to

s49tNNe53:Vertex

"text":"String"="pawn"
"type":"String"="NN"

poss

s26tNNe31:Vertex

"text":"String"="chess"
"type":"String"="NN"

s14tVBPe17:Vertex

"text":"String"="are"
"type":"String"="VBP"

s18tVBGe25:Vertex

"text":"String"="playing"
"type":"String"="VBG"

nsubj

dobj

aux

nsubj

s33tNNPe38:Vertex

"text":"String"="Alice"
"type":"String"="NNP"

s39tVBZe44:Vertex

"text":"String"="moves"
"type":"String"="VBZ"

prep_from

dobj

nsubj

conj_and

Figure 17: Visualizing the grammatical
relations for “Alice and Bob are

playing chess. Alice moves her
pawn from field c2 to c4.” takes
a lot of space. Here, for comparison, the
full size figure 10 from page 39 has been
scaled to take roughly the same space as
the two sentences.

We need to transform the parser result into an informal story pattern to reach the next step
in the Storyboarding process. As we have defined and implemented a web service for natural
language parsers we can rely on the result being a graph structure as described in “A common
graph for parser results” on page 52 provided as GraphSON. We still need to find a way for
developers to work with the graph and graph transformations in a visually accessible way.

To restructure the parsers result graph into an informal story pattern representing the tex-
tual scenario I

• created a textual DSL for graph transformation rules,

• wrote an interpreter to execute them in the browser,

• extended the collaboration diagram renderer to also render story patterns, and finally

• created a set of structurization rules to transform grammatical relations of the Stanford
Parser into an informal story pattern.

This allows us to automatically interpret grammatical relations from a software developers
point of view.

Clarification of the term “story pattern”

In “Instant graph visualization” on page 61 we created a textual DSL for simple story pattern,
the visual representation of a textual scenario step description. Now we will be using graph
transformations in the form of story patterns to restructure grammatical relations into an
informal story pattern. We are using the following terms to distinguish these story patterns:

75

Story pattern is a diagram mix of elements from UML object diagrams and UML collabora-
tion diagrams, enriched with graph transformation concepts such as element matching,
creating and deleting. A visual representation of a graph transformation rule.

Informal story pattern is the storyboard element we are trying to derive. The result of applying
structurization rules to grammatical relations.

Structurization rule is a graph transformation rule used to restructure grammatical relations
into an informal story pattern.

Structurization pattern is a visual representation of a structurization rule as a story pattern.

Formalization rule is a graph transformation rule used to formalize an informal story pattern.

Formalization pattern is a visual representation of a formalization rule as a story pattern.

Interpreting story pattern is the process of executing the structurization and formalization rules.
Initially the working graph consists of grammatical relations that become an informal story
pattern that becomes the final formal story pattern. We not use the term intepreting graph
transformations because the visualization always uses story pattern.

With this in mind we can rephrase the second sentence of this paragraph to be clearer: we will
be using structurization rules to derive informal story pattern from grammatical relations.
Examination of formalization rules will be deferred until “Instant formal story patterns” on
page 98.

A linguists view on scenario descriptions

Instant graphs of grammatical relations are a nice visual feedback for linguists, but the focus
on grammatical relations is still far away from being helpful to a software engineer.Take our
example sentence “Alice is playing chess.” While a linguist will be able to read the grammat-
ical relations from the object diagram in figure 16 on page 69 a software developer would

76

recognize the object diagram but might need to refresh his NLP knowledge before under-
standing the terminology of NNP, VBG and aux. Nevertheless, natural language processing
or grammatical relations are the foundation for every software engineers work.

As already described in the “Storyboarding by Example” section on page 13, the first task
in Storyboarding requires the software developer to identify nouns and verbs in the textual
scenario description. Actually, when looking at the available part of speech tags in table 2
and grammatical relations for natural English language the problem is a lot more complex
than just identifying nouns and verbs. NLP parser results are very detailed and need to be
aggregated into a more concise UML object diagram to be expedient in instant storyboarding.

Tag part-of-speech

CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition or

subordinating conjunction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker
MD Modal
NN Noun, singular or mass
NNS Noun, plural
NP Proper noun, singular
NPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PP Personal pronoun
PP$ Possessive pronoun
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
RP Particle
SYM Symbol
TO to
UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or

present participle
VBN Verb, past participle
VBP Verb, non-3rd person

singular present
VBZ Verb, 3rd person

singular present
WDT Wh-determiner
WP Wh-pronoun
WP$ Possessive wh-pronoun
WRB Wh-adverb

Table 2: Part of speech tags as described
by Beatrice Santorini. Part-of-speech tag-
ging guidelines for the Penn Treebank Project.
Tech. rep. MS-CIS-90-47. Department of
Computer and Information Science, Uni-
versity of Pennsylvania, 1990. url: ftp:
//ftp.cis.upenn.edu/pub/treeba

nk/doc/tagguide.ps.gz, pp. 6-7

A software engineers view on scenario descriptions

Instead of manually deriving a story pattern from a textual scenario description we will use
structurization rules to restructure the grammatical relations. Identifying nouns and verbs -
or rather matching various patterns in grammatical relations and creating objects, links and
messages will allow us to construct an informal story pattern, something software engineers
are more familiar with than part-of-speech tags or grammatical relations.

While we are experimenting with different parsers and new graph transformations the
structurization rules are subject to change. To minimize the feedback loop we will implement
an interpreter that can execute graph transformations in the browser. Specifying and execut-
ing graph transformation rules in a web application saves the compilation step and allows
rapidly iterating through changed rule sets.

The technical part of this challenge is implementing an interpreter that can be executed in
the native browser language JavaScript. As we will see in the following sections, GWT allows
us to reuse state of the art software engineering tools to implement the interpreter in Java and
cross compile it to JavaScript. Not having to install an Adobe Flash plugin or the Java browser
plugin greatly lowers the barrier of entry for interested developers.

ftp://ftp.cis.upenn.edu/pub/treebank/doc/tagguide.ps.gz
ftp://ftp.cis.upenn.edu/pub/treebank/doc/tagguide.ps.gz
ftp://ftp.cis.upenn.edu/pub/treebank/doc/tagguide.ps.gz

77

The Details

As already mentioned in “A DSL for storyboarding” on page 62 we will now revisit our FUML
language to introduce variable assignments and references. Then we can implement an in-
terpreter for these graph transformation rules and add visualizations. Not only for the graph
transformation rules and their results but also for intermediate steps of the execution for de-
bugging purposes. Finally, we can experiment with the structurization rules to restructure
grammatical relations into an informal story pattern.

A DSL for Storyboarding revisited

To write down graph transformations that assign values found in other elements of the work-
ing graph we need to distinguish literal string identifiers from path expressions. Referencing
the name attribute of another element requires two additions to our notation: assigning ob-
jects to a variable and referencing their properties. As an example listing 16 shows a structur-
ization rule that creates an object for every proper noun in the grammatical relations and in
a second rule deletes the “Vertex” nodes to clean up the diagram.

1 # lines starting with # are comments
2 # Create a new object in the diagram for each sentence subject

3 [(o):"Vertex"|"type"=="NNP";"text"==(sub)],[+sub.toLower():"Unknown"?|"name":=sub]
4 # Clean up object diagram by removing parser elements
5 [-(del):"Vertex"]

Listing 16: Structurization Rules: Create
an object for every proper noun

As a preview, the graphical version of these rules is shown in figures 18 and 19 which we
will examine later in “Visualizing Story Pattern execution” on page 89.

(o):"Vertex"

"type"=="NNP"
"text"==(nsubj)

nsubj.toLower():"Unknown"

"name":=nsubj

Figure 18: Structurization Pattern: Create
an object for every proper noun

(del):"Vertex"

Figure 19: Structurization Pattern: Delete
vertexes

If more than one rule is specified they are executed in order of appearance. They will
however all use the same working graph, which allows to collect nodes with a marker object
and iterate over the marked objects in a subsequent rule. We will see another example graph
transformation rule where this is used later.

78

For our new graph transformation rules string literals now must be surrounded by single
(') or double ticks ("). The first square bracketed part in Line 3 thus matches any nodes in
the graph of type “Vertex” that have an attribute “type” with a value of “NNP”. Any non
literals now describe new actions for the interpreter.

Assigning values to a variable is done by putting the variable name in braces. When match-
ing the first rule the interpreter will assign the name of the current “Vertex” node to “o” and
the value of the “text” attribute to “nsubj”. We can now reference these variables in other
parts of the rule.

The second square bracketed part of the rule references the “nsubj” value twice. It will
assign the value, as is, to the “name” attribute and use it lowercased as the object name. The
variable references can use methods like “toLower()” to manipulate the assigned value.
Since “o” is not referenced we use it as a wildcard to match all “Vertex” nodes regardless of
their name.

Instead of literals we can also use regular expressions to match strings. Like in JavaScript
they are surrounded by forward slashes: /NN.?/ will match “NN” and “NNP”. This not only
reduces the number of rules when dealing with similar rules but also saves the interpretation
of rules that only differ in a literal string.

The last two primitive types that can be assigned are also taken from JavaScript. By us-
ing numbers or the two reserved strings true and false for boolean values we can match
and assign all primitive datatypes used in JavaScript. They are however not necessary when
rewriting grammatical relations into an informal story pattern and are only mentioned here
for completeness.

Figure 20 shows the new rules of the FUML grammar that are necessary to generate a
parser for the above changes. We refined the original valueExpression by now distin-
guishing between quoted strings, regular expressions and the assignment values. While the
differentiation has no effect on the FUML rendered graphs, it requires a lot of thought when
adding it to the interpreter.

79

Figure 20: FUML valueExpression gram-
mar excerpt

80

Interpreting structurization pattern

The interpreter now used in our web application was developed in two major iterations. Sim-
ilar to the DSL the first iteration was able to match and manipulate only literal string values.
In the second iteration I added the capability to assign and reference values as well as regular
expression based matching. By using a straight test driven development approach I was able
to add feature after feature to the code in short cycles without breaking existing functionality.

In the previous chapter we developed the DSL parser to create the graph transformations
from a textual string notation and the GraphSONReader described on page 58 to create the
working graph from a textual GraphSON representation. As good software engineers the
first thought we should have is reusing them to set up our unit tests. Unfortunately, that
would create an extra compile step and a significant delay for test execution because the DSL
parser uses native JavaScript functions and thus needs to be executed in a GWTUnitTest. On
my machine a GWTUnitTest takes roughly 10 seconds to fire up a jetty server, compile the
Java to JavaScript if necessary and run the hosted mode browser before finally executing the
unit test. Instead of using the parsers I decided to directly create the small working graph
and story pattern models in the unit test. This not only allows me to skip the GWTTestCase
setup time and execute the unit tests as plain JUnit tests but also keeps the interpreter from
depending on the two parser packages.

When adding the interpreter to our web application I created integration tests that use the
two parser implementations to set up more complex scenarios in a GWTTestCase. This of
course revealed several bugs in the parsers, the interpreter and the web application. Creating
unit tests where possible and fixing the remaining issues has produced a test suite that reliably
shows when code changes break existing and expected behavior.

The interpreter itself uses a stack based approach to keep track of the graph matching
steps. Executing a story pattern can be divided in two phases: searching the working graph
for the next subgraph match and applying the changes described in the story pattern to that
match. A. Zündorf has described the algorithm for the code generation used in Fujaba in
his habilitation thesis.72 For an interpreter he best described the algorithm in a recorded

72 Albert Zündorf. Rigorous Object Ori-
ented Software Development with Fujaba.
Draft Version 0.3. 2002. url: http://w
ww.se.eecs.uni-kassel.de/se/fi
leadmin/se/publications/Zuen02
.pdf

lecture.92 Lacking the visual capabilities of a video, the figures 21 to 47 will use a step by step

92 Albert Zündorf. Rule Matching. 2010.
url: http : / / seblog . cs . uni - k
assel.de/fileadmin/se/course
s/MDESS10/MDE04RuleMatching/M

DE04RuleMatching.html (visited on
07/19/2013)

example to demonstrate how the interpreter executes a story pattern:

http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/Zuen02.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/Zuen02.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/Zuen02.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/Zuen02.pdf
http://seblog.cs.uni-kassel.de/fileadmin/se/courses/MDESS10/MDE04RuleMatching/MDE04RuleMatching.html
http://seblog.cs.uni-kassel.de/fileadmin/se/courses/MDESS10/MDE04RuleMatching/MDE04RuleMatching.html
http://seblog.cs.uni-kassel.de/fileadmin/se/courses/MDESS10/MDE04RuleMatching/MDE04RuleMatching.html
http://seblog.cs.uni-kassel.de/fileadmin/se/courses/MDESS10/MDE04RuleMatching/MDE04RuleMatching.html

81

s9tVBGe16:Vertex

text:String==playing
type:String==VBG

s17tNNe22:Vertex

text:String==chess
type:String==NN

dobj

s6tVBZe8:Vertex

text:String==is
type:String==VBZ

aux

s0tNNPe5:Vertex

text:String==Alice
type:String==NNP

nsubj

Figure 21: The working graph. For our
“Alice is playing chess.” exam-
ple the parser returns this graph which
we use as the working graph for the inter-
preter. The grey borders of the nodes and
edges indicate that none of the elements
have yet been matched to an element in
the structurization pattern.

nsubj.toLower():"Unknown"

"name":=nsubj
"name":=nsubj

(o2):"Vertex"

"type"==/(NNP|NN)/
"text"==(nsubj)

origin(o1):"Vertex"

"type"=="VBG"

nsubj

Figure 22: The story pattern. The
rule executed in this example basically
says to search the working graph for
two “Vertex” nodes that are linked
by an “nsubj” edge. If they exist
try to match an “origin” edge to an
“Unknown” node and create the miss-
ing parts. The grey border represents
mandatory matches, the dotted border
optional matches and the green border el-
ements to create on every match.

nsubj.toLower():"Unknown"

"name":=nsubj
"name":=nsubj

(o1):"Vertex"

"type"=="VBG"

(o2):"Vertex"

"type"==/(NNP|NN)/
"text"==(nsubj)

nsubj origin

Figure 23: Identifying by type options in the
pattern. The interpreter starts the match-
ing phase by collecting available node
types in the story pattern. In this case, the
only type the interpreter can search for is
“Vertex”. This expansive operation is
visualized by a dark blue background.

82

Figure 24: Choosing an initial search op-
tion. Since no other search options are
available the interpreter choses one of the
“by type” options. The currently cho-
sen search option is always rendered in
cyan in the story pattern. At this point
a “Vertex” node that has a “type” at-
tribute with the literal value “VBG”.

nsubj.toLower():"Unknown"

"name":=nsubj
"name":=nsubj

(o2):"Vertex"

"type"==/(NNP|NN)/
"text"==(nsubj)

origin(o1):"Vertex"

"type"=="VBG"

nsubj

Figure 25: Collecting possible candidates in
the working graph. Searching by type is ex-
pensive because the interpreter has to in-
spect every Node in the working graph.
If the attributes match the description in
the story pattern the interpreter will mark
them as valid candidates for a match, in-
dicated by a blue background.

s6tVBZe8:Vertex

text:String==is
type:String==VBZ

s9tVBGe16:Vertex

text:String==playing
type:String==VBG

aux

s0tNNPe5:Vertex

text:String==Alice
type:String==NNP

nsubj

s17tNNe22:Vertex

text:String==chess
type:String==NN

dobj

Figure 26: Choosing a candidate in the work-
ing graph. Again, the interpreter chooses
one of the collected candidates in the
working graph. It is marked as a matched
element, indicated by the black border.

s6tVBZe8:Vertex

text:String==is
type:String==VBZ

s9tVBGe16:Vertex

text:String==playing
type:String==VBG

aux

s0tNNPe5:Vertex

text:String==Alice
type:String==NNP

nsubj

s17tNNe22:Vertex

text:String==chess
type:String==NN

dobj

83

nsubj.toLower():"Unknown"

"name":=nsubj
"name":=nsubj

(o1):"Vertex"

"type"=="VBG"

(o2):"Vertex"

"type"==/(NNP|NN)/
"text"==(nsubj)

nsubj origin

Figure 27: Marking the match in the pat-
tern. The by type search was success-
ful and the previously chosen search op-
tion is marked as a matched element. In
the story pattern as in working graphs
matched elements are indicated by a
black border.

(o1):"Vertex"

"type"=="VBG"

(o2):"Vertex"

"type"==/(NNP|NN)/
"text"==(nsubj)

"nsubj" nsubj.toLower():"Unknown"

"name":=nsubj
"name":=nsubj

origin

Figure 28: Identifying to many options
from current match. Starting from the
“Vertex” node the interpreter identi-
fies the new available search options.
Traversing the “nsubj” link is cheaper
than searching “by type”, indicated by a
medium blue background.

(o2):"Vertex"

"type"==/(NNP|NN)/
"text"==(nsubj)

nsubj.toLower():"Unknown"

"name":=nsubj
"name":=nsubj

origin(o1):"Vertex"

"type"=="VBG"

"nsubj"

Figure 29: Choosing a search option.
Traversing the link is currently the cheap-
est (and only search option) for the inter-
preter so he chooses to search for it next,
again indicated by the cyan background.

s17tNNe22:Vertex

text:String==chess
type:String==NN

s9tVBGe16:Vertex

text:String==playing
type:String==VBG

dobj

s0tNNPe5:Vertex

text:String==Alice
type:String==NNP

nsubj

s6tVBZe8:Vertex

text:String==is
type:String==VBZ

aux

Figure 30: Collecting possible candidates in
the working graph. Only one “nsubj” link
starting from already matched “Vertex”
node currently exists in the working
graph, so the interpreter marks it as a pos-
sible candidate.

84

Figure 31: Choosing a candidate in the work-
ing graph. The sole candidate is marked
as a match in the working graph.

s6tVBZe8:Vertex

text:String==is
type:String==VBZ

s17tNNe22:Vertex

text:String==chess
type:String==NN

s9tVBGe16:Vertex

text:String==playing
type:String==VBG

aux

dobj

s0tNNPe5:Vertex

text:String==Alice
type:String==NNP

nsubj

Figure 32: Marking the match in the pattern.
With the next search option matched the
interpreter can now mark the “nsubj”
link in the pattern as matched, too.

(o1):"Vertex"

"type"=="VBG"

(o2):"Vertex"

"type"==/(NNP|NN)/
"text"==(nsubj)

"nsubj" nsubj.toLower():"Unknown"

"name":=nsubj
"name":=nsubj

origin

Figure 33: Identifying to one options from
current match. Starting from the “nsubj”
link the interpreter identifies the new
available search options. At the end of the
link in the working graph the interpreter
can expect to find an object that matches
the description in the story pattern. This
cheap “to one” search option is indicated
by a light blue background.

nsubj.toLower():"Unknown"

"name":=nsubj
"name":=nsubj

(o1):"Vertex"

"type"=="VBG"

(o2):"Vertex"

"type"==/(NNP|NN)/
"text"==(nsubj)

"nsubj"
origin

Figure 34: Choosing a search option. Check-
ing the correct object is at the end of
the “nsubj” link is currently the cheap-
est (and only search option) for the inter-
preter so he chooses to search for it next,
again indicated by the cyan background.

(o2):"Vertex"

"type"==/(NNP|NN)/
"text"==(nsubj)

nsubj.toLower():"Unknown"

"name":=nsubj
"name":=nsubj

origin(o1):"Vertex"

"type"=="VBG"

nsubj

85

s6tVBZe8:Vertex

text:String==is
type:String==VBZ

s17tNNe22:Vertex

text:String==chess
type:String==NN

s0tNNPe5:Vertex

text:String==Alice
type:String==NNP

s9tVBGe16:Vertex

text:String==playing
type:String==VBG

aux

dobj

nsubj

Figure 35: Collecting possible candidates in
the working graph. Collecting the possible
candidates already checks the attributes
of the element in question. A mismatch
would disqualify the current “to one”
search and backtrack the steps the inter-
preter has taken to find other search op-
tions. In this case however the attributes
match and the interpreter can mark the
second “Vertex” node as a possible can-
didate.

s17tNNe22:Vertex

text:String==chess
type:String==NN

s6tVBZe8:Vertex

text:String==is
type:String==VBZ

s9tVBGe16:Vertex

text:String==playing
type:String==VBG

dobj

aux

s0tNNPe5:Vertex

text:String==Alice
type:String==NNP

nsubj

Figure 36: Choosing a match in the work-
ing graph. The interpreter can mark the
second “Vertex” node in the working
graph as a match.

(o2):"Vertex"

"type"==/(NNP|NN)/
"text"==(nsubj)

nsubj.toLower():"Unknown"

"name":=nsubj
"name":=nsubj

origin(o1):"Vertex"

"type"=="VBG"

nsubj

Figure 37: Marking the match in the pattern.
By marking the second vertex node in the
story pattern as matched no mandatory
matches are left over for the interpreter to
match.

86

Figure 38: Identifying optional to many op-
tions from current match. The dashed bor-
ders represent optional matches, so the
interpreter will now try to find a match
for the “origin” link in the working
graph.

nsubj.toLower():"Unknown"

"name":=nsubj
"name":=nsubj

(o1):"Vertex"

"type"=="VBG"

(o2):"Vertex"

"type"==/(NNP|NN)/
"text"==(nsubj)

nsubj
"origin"

Figure 39: Creating an object. All manda-
tory matches of the story pattern have
been found in the working graph so the
interpreter can now apply the story pat-
tern changes. First he will create ob-
jects. In this case an object named
“alice” of type “Unknown”. The path
expression “nsubj.toLower()” refer-
ences the assigned “(nsubj)” value
of the “text” attribute in the second
matched “Vertex” node and lowercases
it, before assigning it as the name for the
new object.

s9tVBGe16:Vertex

text:String==playing
type:String==VBG

s0tNNPe5:Vertex

text:String==Alice
type:String==NNP

nsubj

s17tNNe22:Vertex

text:String==chess
type:String==NN

dobj

s6tVBZe8:Vertex

text:String==is
type:String==VBZ

aux

alice:Unknown

Figure 40: Creating origin link. The new
“alice” object is now linked to the
“origin” of its name. In the web appli-
cation example rules this “origin” link
is used as a marker to identify subject and
object in a later rule.

s6tVBZe8:Vertex

text:String==is
type:String==VBZ

s9tVBGe16:Vertex

text:String==playing
type:String==VBG

aux

s17tNNe22:Vertex

text:String==chess
type:String==NN

dobj

s0tNNPe5:Vertex

text:String==Alice
type:String==NNP

nsubj

alice:Unknownorigin

87

s17tNNe22:Vertex

text:String==chess
type:String==NN

s6tVBZe8:Vertex

text:String==is
type:String==VBZ

s9tVBGe16:Vertex

text:String==playing
type:String==VBG

dobj

aux

s0tNNPe5:Vertex

text:String==Alice
type:String==NNP

nsubj

alice:Unknown

name==Alice

origin

Figure 41: Assign attributes. After creat-
ing objects and links the interpreter cre-
ates any attributes for the new elements
in the working graph as specified in the
story pattern. Since no elements are to be
deleted the rule application ends here.

nsubj.toLower():"Unknown"

"name":=nsubj
"name":=nsubj

(o1):"Vertex"

"type"=="VBG"

(o2):"Vertex"

"type"==/(NNP|NN)/
"text"==(nsubj)

"nsubj"
origin

Figure 42: Backtrack third search option in
story pattern. After the pattern has been
applied the interpreter starts searching
for the next full pattern match by back-
tracking the search options. Before the
last “Vertex” node search option the in-
terpreter was searching for the “nsubj”
link.

s9tVBGe16:Vertex

text:String==playing
type:String==VBG

s0tNNPe5:Vertex

text:String==Alice
type:String==NNP

nsubj

s17tNNe22:Vertex

text:String==chess
type:String==NN

dobj

s6tVBZe8:Vertex

text:String==is
type:String==VBZ

aux

alice:Unknown

name==Alice

origin

Figure 43: Backtrack third search option in
working graph. The working graph con-
tains the new “alice:Unknown” object
and “origin” link, but the last search
option is no longer marked as a match.
Only the first “Vertex” node and the
“nsubj” link are matched to an element
in the story pattern, indicated by the
black border. Since no other “nsubj”
link exists the interpreter cannot choose
another candidate as a match for the
search option and has to continue back-
tracking.

88

Figure 44: Backtrack second search option
in story pattern. Before searching for the
“nsubj” link the interpreter was search-
ing for the first “Vertex” node.

nsubj.toLower():"Unknown"

"name":=nsubj
"name":=nsubj

(o1):"Vertex"

"type"=="VBG"

(o2):"Vertex"

"type"==/(NNP|NN)/
"text"==(nsubj)

nsubj origin

Figure 45: Backtrack second search option
in working graph. One “Vertex” node
has already been matched and no other
“Vertex” nodes qualifies as a candidate
(see figure 25). Again, the interpreter
continues to backtrack the search options.

s6tVBZe8:Vertex

text:String==is
type:String==VBZ

s0tNNPe5:Vertex

text:String==Alice
type:String==NNP

alice:Unknown

name==Alice

origin

s17tNNe22:Vertex

text:String==chess
type:String==NN

s9tVBGe16:Vertex

text:String==playing
type:String==VBG

aux

nsubj

dobj

Figure 46: Backtrack first search option in
story pattern. Having reached the root of
the pattern matching steps the interpreter
has no further search options available.
He already searched for “Vertex” nodes
and no other mandatory matches have a
different type so the execution ends here.

(o1):"Vertex"

"type"=="VBG"

(o2):"Vertex"

"type"==/(NNP|NN)/
"text"==(nsubj)

nsubj
nsubj.toLower():"Unknown"

"name":=nsubj
"name":=nsubj

origin

89

s6tVBZe8:Vertex

text:String==is
type:String==VBZ

s0tNNPe5:Vertex

text:String==Alice
type:String==NNP

alice:Unknown

name==Alice

origin
s9tVBGe16:Vertex

text:String==playing
type:String==VBG

aux

nsubj

s17tNNe22:Vertex

text:String==chess
type:String==NN

dobj

Figure 47: Backtrack first search option in
working graph. The working graph now
contains the result of the story pattern ex-
ecution. An “alice:Unknown” object
with a “name” attribute derived from the
grammatical subject of our example sen-
tence “Alice is playing chess.”

Figures 21 to 47 have been taken directly from the debug visualization of our web applica-
tion. In case a user wants to examine the interpreters rule execution for a given structuriza-
tion or formalization rule he can click the story pattern visualization to display the individual
steps below it. This in depth visualization of how the web application works allows software
engineers and researchers to get an immediate feedback on how rule changes affect the sto-
ryboarding process.

Visualizing Story Pattern execution

In “A DSL for Storyboarding revisited” we added the dynamic aspects of story pattern to
the FUML grammar. To render debug graphs as shown in figures 21 to 47 we added fore-
ground and background colors to the grammar. As you can see in the three figures 48 to 50
the foreground (fg) and background (bg) color can be given either as a SVG color name or
hexadecimal color code. Figure 51 shows the relevant rules of the ANTLR grammar.

node

Figure 48: FUML for a red foreground
and a lime background:
[node{fg:red,bg:lime}] or
[node{fg:#ff0000,bg:#00ff00}]

node

Figure 49: FUML for a lime foreground
and a blue background:
[node{fg:lime,bg:blue}] or
[node{fg:#00ff00,bg:#0000ff}]

node

Figure 50: FUML for a blue foreground
and a red background:
[node{fg:blue,bg:red}] or
[node{fg:#0000ff,bg:#ff0000}]

90

Figure 51: FUML colors excerpt

91

By default, the FUML service renders elements with a black foreground on a white back-
ground. Elements to create are rendered in chartreuse, elements to delete in crimson. The
debug output of the interpreter overwrites these defaults by explicitly specifying the colors.
Unmatched elements are rendered in grey or a lighter version of chartereuse and crimson
respectively. This part of the FUML grammar concludes the series of changes that we intro-
duced to instantly visualize story pattern.

From grammatical relations to object diagram

With the parse and render pipeline in place we can finally start working on the actual problem:
finding graph transformation rules that restructure grammatical relations into a collaboration
diagram. Let us start with figure 52 showing the relations the Stanford parser gives us for
”Alice and Bob are playing chess.”

s26tNNe31:Vertex

"text":"String"="chess"
"type":"String"="NN"

s0tNNPe5:Vertex

"text":"String"="Alice"
"type":"String"="NNP"

s10tNNPe13:Vertex

"text":"String"="Bob"
"type":"String"="NNP"

conj_ands18tVBGe25:Vertex

"text":"String"="playing"
"type":"String"="VBG"

dobj

nsubj

s14tVBPe17:Vertex

"text":"String"="are"
"type":"String"="VBP"

aux

nsubj

Figure 52: Grammatical relations for ”Al-
ice and Bob are playing chess.”

To apply the formalization steps described in “Storyboarding by Example” on page 13 we
first need to identify the nouns in the sentence. In grammatical relations we can find the

92

subject and object of a sentence at the end of ”nsubj” or ”dobj” edges. As a first step let us
create a rule that creates an object for every proper noun (NNP) at the end of a ”nsubj” edge.

The rule in figure 53 will match Alice and Bob and create a new object for each of them,
assigning the text value of the matched node to the (nsubj) variable and referencing it as
the value of the name attribute for the new object.

Figure 53: Create a new object for every
nsubj and add an origin link between
them.

nsubj.toLower():"Unknown"

"name":=nsubj

(o2):"Vertex"

"type"=="NNP"
"text"==(nsubj)

origin(o1):"Vertex" nsubj

To create an object for “chess” as well, we need to match nouns (NN) at the end of “dobj”
edges. The rule in figure 54 looks very similar to the first rule and they both are very specific
to our example.

Figure 54: Create a new object for ev-
ery dobj and add an origin link between
them.

dobj.toLower():"Unknown"

"name":=dobj

(o1):"Vertex"
(o2):"Vertex"

"type"=="NN"
"text"==(dobj)

dobj origin

The only difference between the two rules is the name of the edge and the type of the node.
Using regular expressions we can combine the two rules into one as shown in figure 55

Figure 55: Create a new object for every
nsubj or dobj and add an origin link be-
tween them.

(o2):"Vertex"

"type"==/(NNP|NN)/
"text"==(name)

name.toLower():"Unknown"

"name":=name

"origin"(o1):"Vertex" /(nsubj|dobj)/

93

After executing the rule our working graph looks like figure 56. At this point we have
created an object for every noun and linked it to the origin node so we can reference them
when implementing the next formalization rule.

bob:Unknown

"name"=Bob

s18tVBGe25:Vertex

"text":"String"="playing"
"type":"String"="VBG"

s26tNNPe31:Vertex

"text":"String"="Chess"
"type":"String"="NNP"

dobj

s0tNNPe5:Vertex

"text":"String"="Alice"
"type":"String"="NNP"

nsubj

s14tVBPe17:Vertex

"text":"String"="are"
"type":"String"="VBP"

aux

s10tNNPe13:Vertex

"text":"String"="Bob"
"type":"String"="NNP"nsubj

chess :Unknown

"name"=Chess

origin

conj_and

alice:Unknown

"name"=Alice

origin

origin

Figure 56: Intermediate working graph
after creating objects.

To map the second storyboarding formalization step to a graph transformation rule we
have to identify verbs and use them as edges between the corresponding subject and predi-
cate. Figure 57 shows where we use the origin nodes we created earlier to find the predicate
between object and subject.

(os):"Vertex"

"type"==/(NNP|NN)/
"text"==(nsubj)

nsubj.toLower():"Unknown""origin"

dobj.toLower():"Unknown"

pred

(oo):"Vertex"

"type"==/(NNP|NN)/
"text"==(dobj)

"origin"

(op):"Vertex"

"type"=="VBG"
"text"==(pred)

"nsubj"

"dobj"

Figure 57: Create a link between subject
and object that is named after the predi-
cate pred. pred is a variable that is cre-
ated with the (pred) notation and as-
signed the value of the text attribute of
the leftmost Vertex object in the graph.

94

Executing this rule leaves us with the working graph shown in figure 58. The objects we
created for “Alice”, “Bob” and “chess” are now connected by two “playing” links.

s0tNNPe5:Vertex

"text":"String"="Alice"
"type":"String"="NNP"

alice:Unknown

"name"=Aliceorigin

s10tNNPe13:Vertex

"text":"String"="Bob"
"type":"String"="NNP"

conj_and

s18tVBGe25:Vertex

"text":"String"="playing"
"type":"String"="VBG"

nsubj

s14tVBPe17:Vertex

"text":"String"="are"
"type":"String"="VBP"

aux

s26tNNPe31:Vertex

"text":"String"="Chess"
"type":"String"="NNP"dobj

nsubj

bob:Unknown

"name"=Bob

chess :Unknown

"name"=Chess

playing

playing

origin

origin

Figure 58: Intermediate working graph
after creating links.

(del):"Vertex"

Figure 59: Delete all vertex nodes

To clean up the working graph we can remove all “Vertex” nodes in a very simple rule
shown in figure 59. In the end the working graph contains an informal object diagram as
shown in figure 60.

Figure 60: Final working graph

alice:Unknown

"name"=Alice
chess :Unknown

"name"=Chess

playing

bob:Unknown

"name"=Bob

playing

95

Until now, we merely rearranged information that already existed in the grammatical rela-
tions. The structure of the resulting object diagram already looks good, but on a closer look
you will see that we made all objects instances of an “Unknown” class we invented along the
way. This, together with the fact that none of the attributes we use has a type is the reason for
the word “informal” in the title of this chapter. Determining more sensible classes for objects
as well as attribute types will be the topic of the next chapter.

Related Work

In the Fujaba community Giese, Hildebrandt, and Seibel93 implemented an interpreter for 93 Holger Giese, Stephan Hildebrandt,
and Andreas Seibel. “Improved Flexibil-
ity and Scalability by Interpreting Story
Diagrams.” In: ECEASST 18 (2009). url:
http://dblp.uni-trier.de/db/j

ournals/eceasst/eceasst18.html
#GieseHS09.

Fujaba story diagrams based on EMF models and Eclipse in 2009. They showed that using an
interpreter for story diagram execution improves the flexibility in research projects by stream-
lining the workflow and omitting the code generation step. While our interpreter is executed
in the browser we experienced the same flexibility and workflow benefits when experiment-
ing with rules in the previous section “From grammatical relations to object diagram”.

Natural language engineers use regular expressions to match semantic relations. King and
Satuluri94 examined the use of dependency paths for this task. While the work was never 94 Josh King and Venu Satuluri. “Ex-

tracting Semantic Relations Using De-
pendency Paths”. unpublished. url: h
ttp://www.cse.ohio-state.edu
/~satuluri/final788.pdf.

published it shows that there is interest in increasing the capturing power of pattern repre-
sentations indicating a semantic relation. Dependency paths, as described by Lin and Pan-
tel,95 already are an improvement over regular expressions. While these works are focused

95 Dekang Lin and Patrick Pantel. “Dis-
covery of inference rules for question-
answering.” In: Natural Language Engi-
neering 7.4 (2001), pp. 343–360. url: ht
tp://dblp.uni-trier.de/db/jour
nals/nle/nle7.html#LinP01.

on Natural Language Engineering, they have one problem in common: matching pattern in
graphs. Our approach uses graph transformations to match structure and regular expressions
to match strings in combination with an immediate visualization of the rules as well as rule
execution. The decision, which notation is more easy to grasp is left to the reader.

Conclusion

Based on the two parser wrappers we developed in “Instant grammatical relations”, develop-
ers can now execute graph transformations on part of speech trees or grammatical relations
in the browser. First, we extended the story pattern DSL from “A DSL for storyboarding” on

http://dblp.uni-trier.de/db/journals/eceasst/eceasst18.html#GieseHS09
http://dblp.uni-trier.de/db/journals/eceasst/eceasst18.html#GieseHS09
http://dblp.uni-trier.de/db/journals/eceasst/eceasst18.html#GieseHS09
http://www.cse.ohio-state.edu/~satuluri/final788.pdf
http://www.cse.ohio-state.edu/~satuluri/final788.pdf
http://www.cse.ohio-state.edu/~satuluri/final788.pdf
http://dblp.uni-trier.de/db/journals/nle/nle7.html#LinP01
http://dblp.uni-trier.de/db/journals/nle/nle7.html#LinP01
http://dblp.uni-trier.de/db/journals/nle/nle7.html#LinP01

96

page 62 with variable assignments and references to have a notation for graph transformation
rules in our web application. The main contribution of this chapter is the Story Pattern Inter-
preter that can execute these rules directly in the browser. To give instant feedback to the user,
we added custom color handling to the diagram renderer from chapter “Instant graph visual-
ization” on page 61. It allows our web application to instantly visualize graph transformation
rules as well as the rule execution steps.

An early prototype of our web application used hard coded graph transformations to ex-
tract objects and relations from part of speech trees. The main goal for implementing an inter-
preter was to replace the hard coded implementation with a more flexible solution that allows
experimenting with rule changes more quickly. Being able to omit the story pattern compi-
lation from Fujaba to Java and the Java to JavaScript compilation with GWT already shortens
the deployment cycle of new code. But switching from executing hard coded rules to inter-
preting rules on the fly completely removes the involvement of a developer familiar with the
code of our web application. Changing the parser can be done by switching to another URL
and changing the graph transformations is a matter of editing them in the browser.

Outlook

Since my focus was on creating a web application that allows experimenting with story pat-
tern for a wider audience than the Fujaba community, I concentrated on completing the tech-
nology stack. Due to time constraints, I had to move to the next step in the storyboarding
process, which left room for improvement regarding the user experience. The most pressing
matter I think is having to specify story pattern rules in a textual DSL. Meanwhile, JavaScript
has gained a lot of attention and frameworks like AngularJS96 bring more and more software

96 Google. AngularJS. Superheroic Java-
Script MVW Framework. 2010. url: h

ttp : / / angularjs . org (visited on
03/25/2014) engineering principles like dependency injection and testability to browser applications. With

Canviz97 there is an xdot renderer that runs in most modern web browsers. With Draw2D9897 Schmidt, canviz
98 Andreas Herz. Draw2D touch. 2007.
url: http://draw2d.org/ (visited on
03/25/2014).

there even exists a JavaScript drawing framework for Visio like drawings. The more simple
task may be to exchange the currently used FUML web service with Canviz to render dia-
grams directly in the browser. Replacing the text based input of graph transformation rules
with an in-place editor based on Draw2D should be the goal to allow users to edit structur-
ization rules without a media break.

http://angularjs.org
http://angularjs.org
http://draw2d.org/

97

Currently, there are two implementations for the storyboarding DSL. The FUML renderer
uses a parser generated with ANTLR but the web application uses a hand written parser.
While there was already an ANTLR parser generator for JavaScript at the time of writing the
web application it had a few bugs which stopped me from investigation the possibility further.
I needed something that worked and accepted the cost of maintaining two implementations.
The handwritten parser should be replaced with a proper generated JavaScript version of the
FUML renderer.

Personally, I wonder why all NLP papers use some kind of Graphviz based rendering to
visualize parse trees, dependency paths or grammatical relations but fail to recognize the
underlying graph nature. Especially with dependency paths, they seem to reinvent part of
graph pattern matching over and over again. Maybe a group of software engineers familiar
with graph theory should write a paper on the topic of NLP with graph transformations to
examine the strengths and weaknesses of this approach.

98

Instant formal story patterns

Introduction

Following the storyboarding process from “Storyboarding by Example” on page 13 an in-
formal story pattern is the starting point for discussion among developers to derive a class
diagram. To automate this step in our web application we need to find a replacement for
the discussion among developers. In alignment to the storyboarding process we need to for-
malize the story pattern by determining classes of objects and assigning types to all their at-
tributes. Borrowing from Artificial Intelligence99 and Information Retrieval communities10099 Pattie Maes. “Agents that Reduce Work

and Information Overload”. In: Commu-
nications of the ACM 37.7 (1994), pp. 30–40.
url: http://www.cs.brandeis.edu
/~cs125a/content/agentsmaes.do

c.
100 P. Resnick and H. R. Varian. “Rec-
ommender systems”. In: Communications
of the ACM 40.3 (1997), pp. 56–58. issn:
0001-0782. doi: http://doi.acm.o
rg/10.1145/245108.245121. url:
https://wiki.cc.gatech.edu/scq
ualifier/images/c/c6/Resnick-R
ecommender_systems.pdf.

we will replace the discussion among developers with a simple recommendation framework.
To evolve the informal story pattern into a formal story pattern I

• created a recommender framework that fetches type information by accessing online re-
sources and

• produces formalization rules that can be executed by the interpreter described in “Inter-
preting structurization pattern” on page 80 with implementations for

• a Vorname.com recommender that identifies male and female given names and

• a fallback recommender.

More sources are certainly possible, but I concentrated on these example recommenders to
obtain a set of formalization rules.

Missing Type information
alice:Unknown

"name"=Alice
chess :Unknown

"name"=Chess

playing

bob:Unknown

"name"=Bob

playing

Figure 61: Informal story pattern

Our web application produces the informal story pattern shown in figure 61 for our example
sentence “Alice and Bob are playing chess.” No instance specifications and no at-
tribute types are given. This is the starting point for developers to discuss the class diagram
for the story pattern. Most developers will recognize that Alice and Bob are given names and
can easily infer a Person class for these objects. Developers knowing that chess is a game might

http://www.cs.brandeis.edu/~cs125a/content/agentsmaes.doc
http://www.cs.brandeis.edu/~cs125a/content/agentsmaes.doc
http://www.cs.brandeis.edu/~cs125a/content/agentsmaes.doc
http://dx.doi.org/http://doi.acm.org/10.1145/245108.245121
http://dx.doi.org/http://doi.acm.org/10.1145/245108.245121
https://wiki.cc.gatech.edu/scqualifier/images/c/c6/Resnick-Recommender_systems.pdf
https://wiki.cc.gatech.edu/scqualifier/images/c/c6/Resnick-Recommender_systems.pdf
https://wiki.cc.gatech.edu/scqualifier/images/c/c6/Resnick-Recommender_systems.pdf

99

prefer Player. Since this discussion requires an opinion on how to model world knowledge
that is not included in the textual scenario description, we need to find a way to add external
knowledge resources to our storyboarding process. On the one hand our web application
should be able to access specialized resources, e.g given names or other named entities. On
the other hand we need to be able to fallback to a generic solution in case we are dealing with
unknown concepts. Just assuming class “Object” for all instances and type “string” for all
types will fail when trying to generate code for any type safe language.

My Idea

The internet not only contains unstructured information and cat memes but also machine
readable world knowledge. As an example Google provides an API to freebase101 and the 101 Google. Freebase. A community-curated

database of well-known people, places, and
things. 2007. url: http://www.free
base.com/ (visited on 03/25/2014).

DBpedia, a knowledge base sourced from the Wikipedia, has a public SPARQL endpoint.102

102 OpenLink Software. Virtuoso SPARQL
Query Editor. 2009. url: http : / /
dbpedia . org / sparql (visited on
03/24/2014).

In addition to these web services it is always possible to use information extraction on web
sites that only provide unstructured data.

In the previous chapters we already developed an interpreter that executes story patterns
and a set of structurization rules. Now we will create a recommender framework that uses
the same graph transformation rules to provide world knowledge to our web application and
create a set of formalization rules. Each recommender takes the informal story pattern as
an input and calculates recommendations based on a web service like DBpedia, freebase or
any other knowledge resource. The result is returned as a list of recommendations, each
represented by a formalization rule that can be executed by the interpreter.

In addition to web services we will implement two special recommenders. To keep track
of classes already present in other formal story pattern we can implement an existing classes
recommender that has access to all derived formal story pattern of our web application103. To 103 At this time we only handle one story-

board at a time, but the approach can eas-
ily be extended to a project or workspace
wide recommender when they are added
to our application.

handle unknown concepts we can use a fallback recommender that invents new class names
as soon as they become necessary and tries to identify basic types. On their own, these two
recommenders already provide the class and type information necessary to formalize the
informal story pattern and generate a data model for it.

http://www.freebase.com/
http://www.freebase.com/
http://dbpedia.org/sparql
http://dbpedia.org/sparql

100

For the initial version we will query and execute the recommenders in order. While weigh-
ing the recommendations based on a confidence level might increase the quality of the result-
ing story pattern formalization, we will start with a more simple approach. For now, this will
make the results and as a consequence the web application more predictable.

The Details

As described in “Preparing for liveness” on page 41 we will create a property change listener
for informal story pattern in our web application. It will be triggered whenever the interpreter
has transformed the parser result into an informal story pattern. This new pattern will be used
by the recommendation framework to calculate class and type recommendations in the form
of new formalization rules.

A recommender framework

For the first version of the recommender framework I wanted to examine the suitability of
story pattern as a form of representation for recommendations. As a result, the naive im-
plementation of the RecommenderManager interface queries each recommender with the
informal story pattern and applies the resulting formalization pattern recommendations to
the story activity in the order they are received. This might cause one result to overwrite
another, and is subject to HTTP timing issues when the recommenders use web services as
a knowledge source. A more predictable approach is implemented in the OrderedRecom-
menderManagerImpl. It will wait for a recommender result before querying the next rec-
ommender in the queue.

The vorname.com recommender

Continuing our “Alice and Bob are playing chess.” example let us write a recom-
mender that identifies the given names in the sentence and determines their gender. First we
need to find proper nouns in the sentence. For each of them we need to determine if it is a

101

given name and the most likely gender of it. Finally, we want to return a formalization pattern
for each given name we found that applies the information to the working graph.

Identifying proper nouns is the easiest part, because we already have a working graph
with named objects. We just need to iterate over all objects and check if their name happens
to be a given name. The first website where we could do that was http://www.vorname.c
om/ where you can query given names for their gender, language, name day and meaning.
Unfortunately, the website does not provide semantically annotated content so we have to
manually extract the results.

A first review of the website reveals that querying for a name always redirects the browser
to a specifically constructed URL. Alice redirects to http://www.vorname.com/name,Al
ice.html and Bob redirects to http://www.vorname.com/name,Bob.html. Querying
a specific gender version of Kim can be done by appending _w or _m to the name.

Since the web site heavily tries to optimize their google page rank we can already find the
gender in the HTML title tag as shown in listing 17. Our recommender can thus just check if
the title contains “Mädchennamen” or “Jungennamen” to determine the gender. In case we
fetch the url for an unknown name the title seems to be broken as you can see in the third title
tag in the listing. Normal visitors will be redirected to http://www.vorname.com/ind
ex.php?keyword=<unknown name>&cms=suche&loadpage=suchewhen the search
for a name does not return a result. As a result, identifying an unknown name can be imple-
mented by searching the title tag for “en namen”.

1 <title>Alice Vorname Herkunft und Bedeutung des Althochdeutschen Mädchennamen Namenstag Namensbedeutung</title>
2

3 <title>Bob Vorname Herkunft und Bedeutung des Althochdeutschen Jungennamen Namenstag Namensbedeutung</title>

4

5 <title>unknown Vorname Herkunft und Bedeutung des en namen Namenstag Namensbedeutung</title>

Listing 17: HTML title tag for Alice, Bob
and an unknown name at vorname.com

Locating the title tag in the vorname.com HTML and checking if it contains any of the three
strings is just a string matching problem and can even be done without a full HTML parser.
If we have identified a given name we need to create a formalization pattern that represents

http://www.vorname.com/
http://www.vorname.com/
http://www.vorname.com/name,Alice.html
http://www.vorname.com/name,Alice.html
http://www.vorname.com/name,Bob.html
http://www.vorname.com/name,Kim_w.html
http://www.vorname.com/name,Kim_m.html
http://www.vorname.com/index.php?keyword=<unknown name>&cms=suche&loadpage=suche
http://www.vorname.com/index.php?keyword=<unknown name>&cms=suche&loadpage=suche

102

a recommendation for the working graph. When we match “Mädchennamen” for an object
named “Alice” we want to tell the web application to change the type to “Person”, add a
“name” attribute of type “String” with a value of “Alice” and add a “gender” attribute
of type “Char” with a value of “f”. The formalization pattern representation we generate
for this can be found in figure 62. The list of formalization patterns is returned to our web
application and executed by the interpreter.

"alice"
"alice" : "Person"

"gender":"Char":='F'

Figure 62: Given name recommendation

In this section I demonstrated a very specific recommender that adapts an existing web
page, creating a resource for our web application. To our surprise the web site never intro-
duced any changes that would require us to change the way we parse the content since we
started experimenting with it. We were expecting a moving target where website redesigns or
adaptations in the search engine relevant parts of the HTML would require us to constantly
update the parsing process. The only change was a validation of the User Agent string to pre-
vent robots to extract content in the same way google prevents fetching web pages by stupid
scripts. In contrast to vorname.com google provides an API, which was meant to provide
machine readable content.

A generic JSON-P recommender

The vorname.com recommender is implemented in GWT and requires a redeployment of our
web application when the code was updated. Similar to the parser I wanted to allow users
to include their own web services to provide world knowledge to the storyboarding process.
For this I created a generic recommender that implements the necessary browser parts of a
recommender and uses FUML to exchange data with JSON-P web services.

The necessary parts in the browser start with converting the current working graph into
FUML notation, include making the JSON-P call and finish with handling the list of FUML
encoded recommendations. At this point we can already reuse existing code to implement
each step. The FUMLWriter developed in “Visualizing collaboration diagrams” on page 68
already converts a storyboard to FUML. We learned how to make JSON-P calls in “GWT,
JSON-P and a parser web service API” on page 53. And parsing FUML has been implemented
in the DSLParser as described in “A DSL for Storyboarding revisited” on page 77. As with

103

the vorname.com recommender, handling the recommended rules is then the responsibility
of the RecommenderManager.

A Freebase Recommender in PHP

Having a generic implementation for the browser part of arbitrary recommenders still leaves
the task of writing actual recommender services. To demonstrate that they are language-
independent we will use PHP to query googles freebase API and determine the class for any
unidentified objects in the working graph.

After registering for an API key freebase can be queried up to 100.000 times in 24h. The con-
tent can be used under the Creative Commons Attribution (CC-BY) license104 which allows 104 Creative Commons. Attribution 3.0 Un-

ported. 2007. url: http://creative
commons.org/licenses/by/3.0/

(visited on 03/25/2014).

us to share and remix the data as long as we credit the Freebase community appropriately.105

105 Google. How to Attribute Freebase on
Your Site. 2014. url: http://www.fre
ebase.com/policies/index (visited
on 03/25/2014).

With the legal requirements out of the way we can query the webservice using the Search
API. We could also query Freebase using the Topic API to fetch all known facts for a given
topic or using the Metaweb query language (MQL), but since we are trying to identify the
class of an object the search API is the best fit.

Based on the PHP version of the search API example106 our freebase recommender imple- 106 Google. Search Overview. Freebase API.
2014. url: https://developers.goo
gle.com/freebase/v1/search-ove
rview (visited on 03/25/2014).

mentation fits in under 100 lines of code of which we will show a few excerpts to give an idea
of how the class recommendation for an object is calculated. The first thing we had to add
was a way to extract the names from the FUML encoded working graph. Instead of writing
a full fledged FUML parser in PHP I took a shortcut and just used a regular expression to
match object names as shown in listing 18.

9 $fuml = $_GET['fuml']; // read url parameter

10 preg_match_all('/\["([^"]+)"/', $fuml, $matches);

11 $names = array_unique($matches[1]);

Listing 18: PHP: extract names from
FUML. The regular expression in line
10 matches names enclosed by double
quotes following the opening square
bracket: matching ["alice":"Per-
son"]-playing-["chess":null]
will fill the $names array with alice

and chess.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.freebase.com/policies/index
http://www.freebase.com/policies/index
https://developers.google.com/freebase/v1/search-overview
https://developers.google.com/freebase/v1/search-overview
https://developers.google.com/freebase/v1/search-overview

104

As you can see in listing 19 we make an individual query to the freebase search API for each
unique name. According to the Search API Cookbook107 we filter all things known to freebase107 Google. Search Cookbook. Freebase API.

2014. url: https://developers.goo
gle.com/freebase/v1/search-coo
kbook (visited on 03/25/2014).

that have a name property matching our object name. Since we are trying to determine a
class for the object we specify the output to contain type information. This will give us a list
of types for every name, so we will aggregate the types of three results to calculate a more
general result.

22 $service_url = 'https://www.googleapis.com/freebase/v1/search';

23 $rules = array(); // initialize empty array for rules

24

25 foreach ($names as $name) {

26 $params = array(

27 'filter' => '(all name:"'.$name.'")', // all things that match our name

28 'output' => '(type)', // give us extra type information

29 'limit' => 3, // we will aggregate up to three results later

30 'key' => $API_KEY); // works without for debug purposes

31 $url = $service_url . '?' . http_build_query($params); // build query URL

Listing 19: PHP: build freebase query

Each result is a JSON object containing a score as well as a list of types along with their
id and name. On the one hand we have to find the name of each type deep in the tree, on
the other hand we can use the score to calculate a more general score. Results are ordered by
score and types are ordered by notability as well, so we can weigh earlier results higher. With
this in mind the two foreach loops in listing 20 calculate a score for every type by weighing
them accordingly.

https://developers.google.com/freebase/v1/search-cookbook
https://developers.google.com/freebase/v1/search-cookbook
https://developers.google.com/freebase/v1/search-cookbook

105

40 //aggregate multiple results

41 $types = array();

42 $resultno = 0;

43

44 foreach($response['result'] as $result) {

45 $typeno = 0;

46 foreach ($result['output']['type']['/type/object/type'] as $type) {

47 if ($type['id']=='/common/topic') { // ignore common topic type

48 continue;

49 }

50 if (!isset($types[$type['id']])) {

51 $types[$type['id']] = array('name' => $type['name'], 'score' => 0);

52 }

53 $weight = (1/++$typeno)*(1/++$resultno);

54 $types[$type['id']]['score'] += $result['score']*$weight;

55 }

56 }

57

58 // sort by score

59 uasort($types,"sort_by_score");

Listing 20: PHP: calculate score for types

106

With the best type determined by our calculated score we can recommend a Class for each
object name in the working graph. Listing 21 shows that we simply pick the type with the
highest score, create a CamelCase version of the name and then express our recommendation
in FUML.

64 $type = reset($types); // get first element of array

65

66 // to create CamelCase upcase first letter of every word

67 $words = ucwords(strtolower($type['name']));

68 // and remove whitespace

69 $class = str_replace(' ', '', $words);

70

71 $score = $type['score'];

72

73 $rule = '["'.$name.'":null;"_type'':="'.$class.'"]';

74 $rules[] = array('fuml'=>$rule,'score'=>$score); // collect results

Listing 21: PHP: encode recommenda-
tion in FUML. To update only objects
without a class the formalization rule cre-
ated in line 73 only changes the class
name if none is present. In line 74 we add
the generated rule to our $rules array.

To return a JSON encoded list of recommendations that our generic JSON-P recommender
understands we have to wrap them in the JSON-P callback, which is a matter of three lines of
code in PHP as shown in listing 22.

82 // send as JSON-P

83 header('content-type: application/json; charset=utf-8');

84 $json = json_encode($rules);

85 echo $_GET['callback'] . '('.$json.')';

Listing 22: PHP: send JSON-P encoded
list of recommendations

107

For our Alice and Bob are playing chess example the freebase recommender will recommend
the class Game for chess. Our web application will render this recommendation as shown in
figure 63.

"chess":null
"chess": "Game"

Figure 63: SP: chess is a game

While the freebase recommender works for our simple example it is sometimes too specific
for proper nouns and too generic for nouns. On the one hand freebase will identify Alice as
Alice Cooper and Bob as Bob Marley. Their most notable type is MusicalArtist, which might
be correct but is too specific for our use case: identifying actors in a textual scenario. On the
other hand the recommender will returnAutomotiveClass for car andMassTransporta-
tionSystem for bus. Both too generic classes, when in these cases the CamelCase version of
the noun would have been sufficient. The best way of identifying the class for a noun might
need more thought but we will defer this discussion until the conclusion of this chapter.

A fallback recommender

Instead of examining yet another recommender that can only add knowledge from a specific
domain we will end the details of this chapter with a fallback recommender. In contrast to
the other recommenders it is always executed as the last recommender. It will complete any
missing type and class information to ensure a formally correct story pattern.

A straight forward implementation just iterates over all yet unclassed objects and invents
a class for each of them: UnknownClass1, UnknownClass2 and so on. If we do not clean
up the working graph after applying the structurization ruleset and leave the NLP parsers
Vertex nodes in place we can improve the fallback class name based on the part of speech tag.
All non proper nouns, singular (NN) or plural (NNS), can be CamelCased to derive a mean-
ingful classname: chess, car and lecture become Chess, Car and Lecture respectively.
This leaves proper nouns that we have to invent a class for. Since the vorname.com recom-
mender already identifies named actors in the textual scenario this should however seldom
be necessary.

Attribute types can be guessed by examining their values. We implemented the identifica-
tion of basic types like null, boolean true and false, integers, doubles and strings. Since
our app currently only has Java as the target language we also try to match colors and, if

108

successful, create a color attribute of type java.awt.Color with the correct color value.
Using class names from the Java Class Library is a target platform specific assumption and
we will present ideas on how to improve this in the outlook section of this chapter.

Related Work

Using online resources to look up named entities on the fly already became popular with lin-
guists before I started working on the recommender framework used in our web application.
Named entity disambiguation with online resources has been described and implemented in
the AIDA online tool108 by Yosef et al.109 With freebase, Yago and DBpedia AIDA uses an108 D5: Databases and Information Sys-

tems. AIDA Web interface (aida). Max-
Planck-Institut Informatik. 2011. url: ht
tps://gate.d5.mpi-inf.mpg.de/w
ebaida/ (visited on 03/25/2014).
109 Mohamed Amir Yosef et al. “AIDA: An
Online Tool for Accurate Disambiguation
of Named Entities in Text and Tables”. In:
PVLDB 4.12 (2011), pp. 1450–1453. url:
http://dblp.uni-trier.de/db/jo

urnals/pvldb/pvldb4.html#Yosef
HBSW11.

impressive set of resources and even tries to correlate the individual entities. The accurate
results come at a performance cost that we are trying to avoid for instant storyboarding.

Conclusion

In contrast to other named entity recognition solutions our recommender framework is very
simple but it quickly produces results that can be used to add world knowledge to our working
graph. The vorname.com recommender together with the fallback recommender already pro-
duce formalization rules to create an acceptable formal story pattern. As already mentioned
in “A Freebase Recommender in PHP” adding online resources can improve the results even
further. I did not invest a lot of time to write the freebase recommender because it should just
demonstrate the usage of online resources. There is room for improvement.

Outlook

The whole recommender framework was written with Java as the target platform in mind.
As a first step the fallback recommender could be split into a platform agnostic fallback rec-
ommender and a Java recommender that rewrites type and class names. This would allow
writing other target platform recommenders such as Python, C#, PHP or JavaScript.

https://gate.d5.mpi-inf.mpg.de/webaida/
https://gate.d5.mpi-inf.mpg.de/webaida/
https://gate.d5.mpi-inf.mpg.de/webaida/
http://dblp.uni-trier.de/db/journals/pvldb/pvldb4.html#YosefHBSW11
http://dblp.uni-trier.de/db/journals/pvldb/pvldb4.html#YosefHBSW11
http://dblp.uni-trier.de/db/journals/pvldb/pvldb4.html#YosefHBSW11

109

The freebase recommender is just a quick hack that was developed in two evenings. It
might give better results when adding more search properties or limiting the results to more
specific types. Before investing time, interested developers should go through the list of aca-
demic papers that has been collected at the freebase wiki.110 110 Google. Research. Papers about Freebase.

2010. url: http : / / wiki . freebas

e . com / wiki / Research (visited on
03/25/2014).

Each recommender adds complexity the current RecommenderManager was not meant
to handle. Experimenting with various recommenders requires a few improvements to the
UI. A list of recommenders could visualize the order of recommenders and allow the user to
change it and even deactivate individual recommenders. At the latest a new target platform
recommender will make it necessary to add this kind of UI.

The minimal freebase recommender has already shown that it is possible to calculate a
score for every recommended rule. In a similar way that natural language parsers provide
more than on parse the recommender manager could be extended to weight the different rec-
ommendations and only apply rules above a user defined threshold. Multiple results with
different scores would enable the manager to calculate alternative formal storyboards: A sec-
ond or third best solution.

Another thing that came to my mind when comparing ontology learning with the object
diagram rewriting I presented in the last two chapters is the suitability of graph transforma-
tions for open world systems. Ontologies can be used for automated reasoning to infer new
rules from an existing set of rules. Instead of using description logic graph transformations
could be used to work on ontologies. The approach might be more visually accessible than
formal notations.

http://wiki.freebase.com/wiki/Research
http://wiki.freebase.com/wiki/Research

110

Instant storyboards

Introduction

In the previous chapters we put together the basic building blocks of a storyboard. Our web
application can create formal story patterns for textual scenario descriptions of storyboard
steps. But a storyboard contains at least two steps: a start situation and an end situation. We
need to make sure the object classes we derived in the first story pattern will be reused in
subsequent pattern or else Alice might become a Player in the start scenario and a Human in
the end scenario. Furthermore, we need to identify an event in the start scenario to complete
our storyboard with a collaboration statement.

To derive sound storyboards in our web application I

• implemented a KnownClassesRecommender that recommends Class names based on the
existing formal story pattern of every storyboard step,

• extended the existing structurization rule set to cover new grammatical relations,

• added collaboration statements to the FUML notation and renderer,

• updated structurization rules that rewrite a Stanford parse into an informal story pattern to
differentiate gerunds from other verb forms111 and use them as collaboration statements.111 Wikipedia. Uses of English verb forms.

2012. url: http://en.wikipedia.o
rg/wiki/Uses_of_English_verb_f
orms (visited on 03/25/2014).

Together, these changes will ensure the derived storyboard can be used to generate a unit test.

Two story patterns do not yet make a storyboard

To demonstrate the problem arising from an object class changing between storyboard steps
we can extend our example sentence as shown in listing 23.

For the start scenario the Stanford parser produces the grammatical relations shown in fig-
ure 64. With our current structurization rules the informal story pattern will omit the second
sentence completely because we do not yet match VBG vertices or prep_to relations. A closer
look at the prep_to relation also reveals two nouns with a nn (noun compound modifier112)

112 The complete list of grammatical
relations can be found in the manual.
Marie-Catherine de Marneffe and
Christopher D. Manning. Stanford typed
dependencies manual. Sept. 2008. url:
http://nlp.stanford.edu/soft

ware / dependencies _ manual . pdf
(visited on 03/25/2014)

http://en.wikipedia.org/wiki/Uses_of_English_verb_forms
http://en.wikipedia.org/wiki/Uses_of_English_verb_forms
http://en.wikipedia.org/wiki/Uses_of_English_verb_forms
http://nlp.stanford.edu/software/dependencies_manual.pdf
http://nlp.stanford.edu/software/dependencies_manual.pdf

111

1 Start scenario:

2 Alice and Bob are playing chess.

3 Alice moves her pawn to field e4.

4

5 End scenario:

6 Alice's pawn is on e4.

Listing 23: Extended chess scenario

relation: e4 and field. In this case the Stanford parser considers e4 to be the head noun of the
noun phrase and field to modify the head noun. To add the facts expressed in the second
sentence we need to add new structurization rules to represent the facts in an informal story
pattern accordingly.

s48tNNe52:Vertex

"text":"String"="pawn"
"type":"String"="NN"

s44tPRP$e47:Vertex

"text":"String"="her"
"type":"String"="PRP$"

poss

s62tNNe64:Vertex

"text":"String"="e4"
"type":"String"="NN"

s56tNNe61:Vertex

"text":"String"="field"
"type":"String"="NN"

nn

s0tNNPe5:Vertex

"text":"String"="Alice"
"type":"String"="NNP"

s10tNNPe13:Vertex

"text":"String"="Bob"
"type":"String"="NNP"

conj_and

s32tNNPe37:Vertex

"text":"String"="Alice"
"type":"String"="NNP"

s38tVBZe43:Vertex

"text":"String"="moves"
"type":"String"="VBZ"

dobj

prep_to

nsubj

s26tNNe31:Vertex

"text":"String"="chess"
"type":"String"="NN"

coref

s14tVBPe17:Vertex

"text":"String"="are"
"type":"String"="VBP"

s18tVBGe25:Vertex

"text":"String"="playing"
"type":"String"="VBG"

nsubj

dobj

nsubj

aux

Figure 64: Grammatical relations for the
start scenarioIn the end scenario the noun modifier field has been omitted, which causes the fallback

recommender to recommend E4 as the class for e4. In the start scenario it derives the class
from the noun phrase field e4, using CamelCase to recommend FieldE4. Our current rules
also only use the head noun of a noun phrase to derive an object identifier. This leads to a

112

formal inconsistency: in the start and end pattern the object will be named e4 but it will be
an instance of FieldE4 in the start scenario and of E4 in the end scenario.

Figure 65: Grammatical relations for the
end scenario

s8tNNe12:Vertex

"text":"String"="pawn"
"type":"String"="NN"

s0tNNPe5:Vertex

"text":"String"="Alice"
"type":"String"="NNP"

poss

s19tNNe21:Vertex

"text":"String"="e4"
"type":"String"="NN"

s13tVBZe15:Vertex

"text":"String"="is"
"type":"String"="VBZ"

nsubj

prep_on

While missing objects in the start pattern do not harm the consistency of the storyboard,
deriving different classes for multiple occurrences of an object does. We need to find a way to
handle these inconsistencies and add structurization rules that will capture the facts described
in the second sentence of the start scenario.

My Idea

In our web application all scenario steps and their story patterns can be accessed in the client.
Furthermore, the order of recommenders is currently predetermined because it has been
hardcoded in the RecommenderManagerImpl. To stop the FallbackRecommender from
recommending conflicting classes I will introduce a KnownClassesRecommender that uses
all existing formal story pattern of a storyboard to recommend an already identified class
name for an object instance. It will be queried before the FallbackRecommender has a
chance to recommend any undetermined classes.

Capturing more facts from the grammatical relations in an informal story pattern can be
done by going through the list of possible grammatical relations and creating graph transfor-
mation rules for each of them. Since most of them do not occur in our example sentences I
took the less time consuming route and created structurization rules on the fly whenever I

113

came upon a new grammatical relation in the parse result. For the extended example scenario
I created rules for the new grammatical relations nn, prep_to, prep_on, poss and coref.

The Details

A known classes recommender

Our web application uses a property change mechanism to trigger the different steps of the
storyboarding process. When the informal story pattern of a scenario step changes the Rec-
ommenderManager queries any available Recommenders and applies the recommendations
to create a new formal story pattern. To reuse classes already determined for an object our
application needs to identify the same object across story pattern and assign the same class
before any other recommender comes up with a different class.

At the time of writing, the RecommenderManager implementation already queried the
fallback recommender last. To ensure the necessary order of recommenders I only needed
to update RecommenderManager to always query the KnownClassesRecommender first.
Deriving recommendations for existing classes is then a matter of iterating over all objects
in the working graph, the new informal story pattern, and searching all formal story pattern
of the storyboard for objects with the same name. If we find a matching object we can rec-
ommend the same class. The class will not be overridden by subsequent recommendations
because they only match objects not having a class, yet.

Extending the structurization ruleset

Adding a second sentence to our example produced a lot of new relations in the Stanford
parse. Readers familiar with the Stanford parser will recognize the coref relation linking
together the grammatical relations for the two sentences. The coreference resolution links
Alice and her and allows us to recognize that they are actually the same object.

The next grammatical relation we will examine is also related to nouns. The noun com-
pound modifier occurs when a noun phrase consists of more than one noun. We will use the

114

head noun to derive the object name for the informal object diagram. In the formalization
step the recommenders can then take into account any origin links that make up this object
to recommend a class name.

We still do not map any prepositions to the informal story pattern. In Alice moves

her pawn to field e4. the Stanford parser identifies a prep_to proposition which we
should match to capture the existence of e4 in the informal story pattern. Similar to the dobj
and nsubj relations this preposition also is linked to the verb in the sentence. We can thus
extend the regular expression in our first structurization rule to also match some prepositions
as shown in listing 24. The corresponding visual representation is given in figure 66

Listing 24: Structurization Rule: also
match prepositions

1 # Create a new object in the diagram for each sentence subject

2 [(o1):"Vertex"|"type"==/(VBG|VBZ)/]↩
3 ↪-/(nsubj|dobj|prep_to|prep_on)/-↩

4 ↪[(o2):"Vertex"|"type"==/(NNP|NN)/;"text"==(noun)]↩

5 ↪,↩
6 ↪[(o2)]↩

7 ↪-+"origin"?-↩
8 ↪[+noun.toLower():"Unknown"?|"name":=noun]

(o2):"Vertex"

"type"==/(NNP|NN)/
"text"==(noun)

noun.toLower():"Unknown"

"name":=noun

"origin"(o1):"Vertex"

"type"==/(VBG|VBZ)/

/(nsubj|dobj|prep_to|prep_on)/

Figure 66: Structurization Pattern: also
match prepositions

Why did we not add more prepositions like prep_over, prep_under or prep_beside?
These three already show that there are prepositions that carry a special meaning we might
want to capture for the story pattern. For these three a location link would be suitable. But I
stopped after adding prep_to and prep_on to our story pattern rule to continue with the
other yet unmatched grammatical relations.

115

The last simple addition to our structurization ruleset concerns the poss relation between
pawn and her. As an example for capturing special meaning I added a new rule to map this
relation to an owner link as shown in listing 25 and figure 67 respectively.

1 # ownership
2 [(v1):"Vertex"]-"poss"-[(v2):"Vertex"],↩

3 ↪[(v2):"Vertex"]-"coref"-[(v3):"Vertex"],↩

4 ↪[(v1)]-"origin"-[(o1)],↩
5 ↪[(v3)]-"origin"-[(o2)],↩

6 ↪[(o1)]-+"owner"?-[(o2)]

Listing 25: Structurization Rule: owner-
ship

(o2)
(v1):"Vertex"

(v2):"Vertex""poss"

(o1)

"origin"

(v3):"Vertex"
"origin"

"coref"

"owner"

Figure 67: Structurization Pattern: own-
ership

You might have noticed that the rule tries to match a coref relation in combination with
a poss relation. To create a link we need a source and a target object but the poss relation
only links the noun to a possessive pronoun. To resolve the pronoun to an actual noun we can
follow the coref relation. In our example this results in Alice being the owner of the pawn.

Adding collaboration statements to FUML

After adding rules for the new grammatical relations we now only need to identify an event
in the textual scenario that we can map as a collaboration statement. Before we can do that
we need to extend our FUML renderer to parse and render collaboration diagrams.

116

Extending the parser for the FUML service is done with the call element that links a method
to an object as shown in the syntax diagram in figure 68.

Figure 68: Call syntax for FUML notation

With the notation in place we can move forward to rendering a collaboration statement
with Graphviz. Since Graphviz only knows node, edge and graph properties we will create a
special collaboration statement node that has no border, shows the collaboration statement
and uses a directed edge to the object receiving the message (see listing 26).

Listing 26: JMTE template: collaboration
statement

1 ${foreach messages node}
2 ${node.id} [color="transparent",

3 ${if node.fillcolor}fillcolor="${node.fillcolor}",${end}
4 ${if node.style}style="${node.style}",${end}
5 label=
6 <<table valign="top" color="transparent" border="0" cellborder="0"
7 cellspacing="0" cellpadding="5" width="10" height="10">
8 <tr><td>${node.name}${:,node.type,}
9 ${if node.newNameOrType}

10

11 ${if node.newName}${node.newName}
12 ${else}${node.name}${end}
13 ${if node.newType}:${node.newType}
14 ${else}${:,node.type,}${end}
15 ${end}

16 </td></tr>
17 </table>>
18]

19 ${end}

With the template in place the FUML service now creates the diagram shown in figure 69
for [_someobject_]<-0:mycall(myparam).

someobject
0:mycall(myparam)

Figure 69: Example collaboration state-
ment

117

Structuring the data model

With the extension of the renderer we can use a declarative notation to visualize collaboration
statements in story patterns. Now, we also need to make the interpreter aware of collaboration
statements. While we could use ANTLR to generate a parser for the extended version of the
FUML notation an interpreter generator has yet to be written. But we can add collaboration
statements to our working graphs without even writing a single line of code for the story
pattern interpreter. Instead of the interpreter we are going to change the structurization rules.

Until now, all the structurization rules we presented were designed to work on the same
hierarchical level as the working graph. A link is represented as a link, an object as an object
and a collaboration statement as a collaboration statement. As the interpreter only works
with links and objects we cannot work with story pattern directly, but we can work with the
data model of a story pattern, because it is made only of links and objects: a link becomes an
object of typeLink, an object becomes an object of typeObject and a collaboration statement
become an object of type CollabStmt. This shift of focus from story pattern to story pattern
data model also introduces objects of type Attribute. Figures 70 to 80 show the updated
structurization rules.

(v):"vertex"

"type"=="NNP"
"text"==(noun)

noun.toLower():"Object"

"name":"String":=noun
"type":"String":="NamedEntity"

Figure 70: For proper nouns we create a
data model object that uses the noun as
the objects name, add a name attribute
and a type attribute with the valueName-
dEntity to represent named objects.

noun.toLower():"Object"

"name":"String":=noun
"type":"String":="Unknown"

(v):"vertex"

"type"=="NN"
"text"==(noun)

Figure 71: For common nouns we set the
type attribute of the object to Unknown.
We could use the noun as the type, but
will defer that modeling decision to the
formalization rules.

Similar to the old structurization ruleset we start searching for nouns in the grammatical
relations and create a data model element representing an object for each occurrence. This
time we model the step with the three rules in figures 70 to 72 to differentiate between nouns
and proper nouns.

noun.toLower():"Object"
(v):"vertex"

"type"==/(NNP|NN)/
"text"==(noun)

"origin"
Figure 72: After creating the objects we
add an origin link between them and
the corresponding nouns.

118

After creating the objects for nouns we are going to aggregate compound nouns. As shown
in figures 73 to 74 they can be identified with the nn grammatical relation. To aggregate the
compound nouns in the right order we also match a third vertex in the grammatical relations
that indicates which of the nouns is the first. Both rules delete the individual objects for the
compound noun, create a new object with the aggregated name and reattach the origin

links to allow lookup of the underlying grammatical relations by subsequent rules.

(v):"vertex"
(v1):"vertex"

"type"=="NN"
"text"==(noun1)

/nsubj|dobj|prep_to/

noun1.toLower()+noun2.toLower():"Object"

"name":"String":=noun1
"type":"String":=noun2.upcaseFirs t()

(v2):"vertex"

"type"=="NN"
"text"==(noun2)

"origin"

noun2.toLower():"Object""origin"

"origin"

"nn"

noun1.toLower():"Object"

"origin"

Figure 73: For common nouns we assign
the first noun to the name attribute of the
new object and assign the second noun as
the type attribute of the new object.

noun2.toLower():"Object"

noun1.toLower()+noun2.toLower():"Object"

"name":"String":=noun2+" "+noun1
"type":"String":="NamedEntity"

(v2):"vertex"

"type"=="NNP"
"text"==(noun2)

"origin"

"origin"

noun1.toLower():"Object"

(v):"vertex"
(v1):"vertex"

"type"=="NNP"
"text"==(noun1)

/nsubj|dobj|prep_to/

"origin"

"nn"

"origin"

Figure 74: For proper nouns we keep the
NamedEntity type attribute. We reverse
the order of the noun vertexes as they are
matched in the grammatical relations to
create a readable name attribute.

119

With the aggregated objects for compound nouns in place we will continue with the three
rules in figures 75 to 77. The first adds attributes to the objects that were created. The second
creates anorigin link to the preposition of a coreference relation. The third creates anowner
link for the possession modifier in the grammatical relations. In combination, they allow
identifying and modeling ownership relations across sentence borders.

(a):"vertex"

"text"==(text)(n):"vertex"

"type"==/(NNP|NN)/

"amod"

(o)

"origin"

:"Attribute"

"value":=text

"attributes"

Figure 75: Create an Attribute element
in the data model for attribute modifiers
in the grammatical relations.

(vc):"vertex"

"type"=="PRP$"

(vn):"vertex"
"coref"

(o):"Object"

"origin"

"origin"

Figure 76: Creates an origin link for
coreference relations.

(oi):"Object"

(l):"Link"

"name":"String":="owner"

"links"

(vo):"vertex"

"type"=="PRP$"
"text"==(owner)

(oo):"Object""origin"

(vi):"vertex"

"type"==/(NN|NNP)/
"text"==(item)

"origin"

"poss" "links"

Figure 77: Creates a new owner link in
the data model to represent the owner-
ship identified by a poss relation in the
grammatical relations.

120

The new structurization rule in figure 78 for the second storyboarding formalization step is
very similar to the old rule in figure 57 on page 93: it matches the same mandatory elements
but now creates a Link object in the data model. Furthermore, figure 79 shows the new rule
to create collaboration statements in the data model. It is followed by the rule in figure 80
which adds parameters to the collaboration statement before we are finished and just remove
the vertexes from the working graph with the old but still valid rule in figure 59 on page 94.

(l):"Link"

"name":"String":=pred
"name":"String"==pred

(vo):"vertex"

"type"==/(NNP|NN)/
"text"==(dobj)

(oo):"Object"
"origin"

(vs):"vertex"

"type"==/(NNP|NN)/
"text"==(nsubj)

(os):"Object""origin"

"links"

"links"

(vp):"vertex"

"type"=="VBG"
"text"==(pred)

"dobj"

"nsubj"

Figure 78: We need to match a subject,
predicate, object triple and the objects
that have been created for the nouns.
Then we create a new Link object in the
data model.

(vo):"vertex"

"type"==/(NNP|NN)/
"text"==(dobj)

(oo):"Object"
"origin"

(vp):"vertex"

"type"=="VBZ"
"text"==(pred)

"dobj"

(vs):"vertex"

"type"==/(NNP|NN)/
"text"==(nsubj)

"nsubj"
(os):"Object""origin"

(cs):"CollabStmt"

"name":"String":=pred

"messages"

"sender"

Figure 79: The rule to create collaboration
statements looks nearly identical to the
rule that creates Link objects in the data
model. The major difference is the cre-
ation of a CollabStmt object. The more
subtle difference is that we are
matching VBZ vertexes instead
of VBG vertexes.

121

(vprep):"vertex"

"type"==/(NNP|NN)/
(oprep):"Object"

"origin"

(param):"Parameter"

"name":"String":="to"

"parameter"

(oo):"Object"
(cs):"CollabStmt"

"name"==pred

"messages"
(vo):"vertex"

"type"==/(NNP|NN)/
"text"==(dobj)

"origin"

(vs):"vertex"

"type"==/(NNP|NN)/
"text"==(nsubj)

(os):"Object""origin"

(vp):"vertex"

"type"=="VBZ"
"text"==(pred)

"prep_to"

"dobj"

"nsubj"

"parameters"

"sender"

Figure 80: The final data model rule adds
parameters to the collaboration state-
ment. It not only needs to match the same
elements as the previous rule but also
tries to match a preposition that will then
be used to model a Parameter object for
the collaboration statement.

The attentive reader will have recognized that we are using VBZ (Verb, 3rd person singular
present) vertex nodes to identify an event. We are assuming that a scenario mostly describes
what is happening in present participle. An event then uses the present tense to indicate who
does what. This is of course an artificial assumption but we found that for the purpose of
identifying an event in a textual scenario it either works out of the box or makes the writer of
the scenario description rephrase his words to make it work. Which in turn educates him to
adhere to a more simple and structured writing style, which not only makes the text easier to
understand for the natural language parser, but also for other users.

The resulting data model can now be used to generate a story pattern in FUML notation
that also uses the new collaboration statement notation. For that we created a new FUML-

Writer that expects the working graph to contain the object types we introduced in the data
model rules above: Object, Attribute, Link, CollabStmt and Parameter. Depending
on these types the writer produces the corresponding FUML notation for a complete story
pattern that we then render with the FUML service. Together with the above rules and our
example sentence this results in the informal object diagram shown in figure 81.

122

Figure 81: The informal diagram now
contains a collaboration statement where
Alice sends the pawn a message to move to
field e4. The collaboration statement cur-
rently uses moves, the wrong verb form,
which we will address with a stemming
formalizer later.

e4:Field

Bob:NamedEntity

pawn:Pawn

chess :Chess

playing

Alice:NamedEntity

playing

owner

0:moves(e4)

Conclusion

To close the gap between formal but unrelated story pattern and a consistent storyboard we
made the individual story pattern aware of each other and refined the structurization rules
we developed earlier. The KnownClassesRecommender is an essential improvement for
the storyboarding process as it ensures that objects keep their class throughout all steps. By
extending the rule set to cover new grammatical relations I was able to demonstrate how to
capture more concepts from the grammatical relations. Especially a rule to identify a concept
that can be used as the collaboration statement in the start step is necessary to complete the
storyboard. In combination our web application can now derive sound storyboards that can
be used as the basis for a unit test.

Outlook

While the KnownClassesRecommender uses a story pattern to match existing classes the
access to formal story pattern of other storyboard steps has been hardcoded. Replacing this
hardcoded bridge with an API that can be accessed from within a formalization pattern would
allow all recommenders access to the whole storyboard. This gives the formalization recom-

123

menders a much bigger working graph to work with and might further improve their results.
Although we extended the structurization rule set to cover some prepositions and added

a rule that creates the essential collaboration statement we still only capture a fraction of the
English language. As mentioned earlier in “Extending the structurization ruleset” on page
113 prep_to and prep_on are not the only prepositions. The results of our web application
could be gradually improved by composing structurization rules that capture the meaning of
additional grammatical relations.

Adding additional rules however might require a more sophisticated handling for them.
While the current plain text field can be used to quickly comment a specific rule or use tra-
ditional copy and paste to enhance an existing rule a recommender approach similar to the
formalization step could be used to dynamically decide which set of structurization rules to
apply to grammatical relations.

I also noticed that some formalization recommenders benefit or even require the grammat-
ical relations to still be present in the working graph to create useful recommendations. As an
example the FallbackRecommender can concatenate nodes with a nn relation to recommend
a more specific CamelCased class name. Not removing the parser result from the working
graph however will lead to parser specific formalization recommenders. The current separa-
tion of informal and formal story pattern is a result of trying to solve one problem at a time.
Again, the solution might be to merge the two steps and combine a set of recommenders with
a yet to develop ChainedRecommenderManager that dynamically decides when to execute
a specific recommender. An initial approach could separate the recommenders into struc-
turization and formalization recommenders and wait for all structurization recommenders
to complete before querying formalization recommenders. This would simulate the current
two step approach and could evolve into a more diverse strategy in combination with recom-
mendation scores.

Distinguishing a collaboration statement from a link is currently based on verb tense. This
indirectly represents a key requirement for writing textual scenario descriptions. While this
will not be a revelation to most software engineers a missing collaboration statement also
prevents the generation of a unit test. In these cases adding a fallback collaboration statement
would improve the user experience.

124

Instant acceptance tests

Introduction

The XProM2 plugin for Fujaba generates executable JUnit tests from storyboards. Unfortu-
nately, the functionality is hidden in the Fujaba standalone application and lacks a web ser-
vice. Forcing a user to run Fujaba, somehow import the storyboard and finally generate the
acceptance test breaks the workflow and completely nullifies the instant storyboarding experi-
ence we try to demonstrate with our web application. Still, the final step in the storyboarding
process needs to deliver an executable acceptance test.

To wrap the XProM2 plugin and Fujaba as a web service I

• created a headless version of Fujaba with the necessary XProM2 and CodeGen2 plugin,

• created webservice wrapper around it with GWT and

• added the UI to access the Fujaba project repository and source code.

Integrating this service into our web application allows users to download an executable JUnit
test for the storyboard derived from the textual scenario descriptions.

The Problem

When a software developer identifies a new Use Case he can use Fujaba to model a storyboard
for it. At the end of the storyboarding process he can use the XProM2 plugin to derive an
acceptance test for it by generating a JUnit test case. While our web application focuses on
instant storyboarding by automating and visualizing the process in the browser we still need
to deliver this acceptance test to be on par with the XProM2 functionality.

When a developer chooses to use our web application to model a storyboard he should
be able to continue working with the result in the tool he prefers. Fujaba is the only other
tool capable of modeling storyboards so we need to provide an easy import of our result.
While the most generic form of the result is an executable Java jar containing the sourcecode

125

generated by the XProM2 plugin for the classes as well as the JUnit test we will provide the
source code as well as a Fujaba project repository in ctr format.113 113 Christian Schneider. “CoObRA: Eine

Plattform zur Verteilung und Replika-
tion komplexer Objektstrukturen mit op-
timistischen Sperrkonzepten”. PhD the-
sis. 2007. url: http://kobra.biblio
thek.uni-kassel.de/handle/urn:
nbn:de:hebis:34-2007121319874,
p. 142.

The code to generate a JUnit test from a Fujaba storyboard is hidden in the XProM2 plugin.
Our web application now needs a way to access it. To achieve this we need a way to use
a headless114 version of the Fujaba tool suite as a service, similar to the natural language

114 There currently is no command line in-
terface to Fujaba that could be used to in-
tegrate it into shell scripts.

parsers in section “GWT, JSON-P and a parser web service API” on page 53.

My Idea

Deploying Fujaba and the XProM2 plugin as a web service requires a headless version of the
code generation pipeline that does not require a graphical user interface. We basically want
to send a UML model containing the storyboard to the server, run the code generation for the
JUnit test there and return the resulting source code to the browser. Variations of this might
return a Fujaba ctr or an executable jar.

The Fujaba maven plugin already contains code to generate code from Fujaba projects in a
maven step. We can reuse the approach taken there and extend it with the XProM2 plugin to
create a headless version of the necessary code generation.

Using GWT we can seamlessly transport the storyboard model from the browser to a web
service that wraps the headless code generation. As a result we will return a timestamp that
is used to construct a URL under which the generated sources and Fujaba project repository
can be downloaded.

Running Fujaba headless

Fujaba 5 has been developed with a Desktop application in mind. Unfortunately, this has led
to the dependency on a graphical user interface for some tasks. Especially displaying error
logging and creating classes is, in early 2013, still tightly integrated with the UI.

With the Maven2 Fujaba Plugin115 developers can add a Fujaba code generation step to

115 Manuel Bork. Maven2 Fujaba Plugin
2. Software Engineering Group Kassel.
2007. url: http://www.se.eecs.u
ni-kassel.de/~maven/sites/mvn

FujabaPlugin/dependencies.html
(visited on 03/25/2014)

their headless maven builds. Similar to that plugin we need to set up the Fujaba preferences,
initialize the factories used to create the UML model and initialize the code generation. In

http://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-2007121319874
http://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-2007121319874
http://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-2007121319874
http://www.se.eecs.uni-kassel.de/~maven/sites/mvnFujabaPlugin/dependencies.html
http://www.se.eecs.uni-kassel.de/~maven/sites/mvnFujabaPlugin/dependencies.html
http://www.se.eecs.uni-kassel.de/~maven/sites/mvnFujabaPlugin/dependencies.html

126

addition we also initialize the XProM2 plugin and create a wrapper that takes a Fujaba UML-
Project and a destination path and generates the files with CodeGen2.

The hard part is not writing a few lines of code, but bundling a web application with all the
dependencies in the correct places. CodeGen2116 uses velocity as a template engine and needs116 Leif Geiger, Christian Schneider, and

Carsten Reckord. “Template- and mod-
elbased code generation for MDA-Tools”.
In: 3rd International Fujaba Days. Pader-
born, Germany, Sept. 2005. url: http:
//www.se.eecs.uni-kassel.de/se

/fileadmin/se/publications/Cod
eGen2.pdf.

the templates somewhere on the classpath. Without changes to CodeGen2 or the classloader
used by it velocity will not be able to access the templates when they are hidden in jars. As
a quick solution I created a new source directory called tmplsrc and copied the templates
there. This way they will be deployed like other Java class files, ready to be used by velocity. If
necessary a developer with access to the server can even change the templates without having
to redeploy the web application. Which is one of the main reasons for using templates.

Exchanging storyboards with GWT-RPC

While the storyboard UI of the web application uses a property change listener pattern to
update subsequent steps in the storyboarding process I decided to only trigger the code gen-
eration when the Generated Code tab is selected. Instant Storyboarding is meant to be visual
and the code generation only serves to proove the formal correctness of the storyboard and
create a Fujaba project repository that can be imported to Fujaba.

Some of the recommenders already use GWT-RPC to transfer the storyboard to a recom-
mender implemented as a web service. We will use the same approach to transfer the final
storyboard from our web application to the Fujaba web service. GWT allows us to reuse the
data model on the server side, where we can then create a Fujaba project from the storyboard.

Wrapping Fujaba as a Webservice

With the storyboard on the server side we now need to instantiate a data model expected
by the Fujaba code generation. Looking at the XProM2 implementation we can see that it is
responsible for the code generation of storyboards. It iterates over all Story Activities and
creates the necessary story pattern to set up the object world in the start scenario, execute the
collaboration statement and check the object world according to the next scenario step.117

117 Details of the implementation have
been described by Geiger in his PhD the-
sisLeif Geiger. “Fehlersuche im Modell:
modellbasiertes Testen und Debuggen.”
PhD thesis. University of Kassel, 2011.
url: http://d-nb.info/1013738
73X

http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/CodeGen2.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/CodeGen2.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/CodeGen2.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/CodeGen2.pdf
http://d-nb.info/101373873X
http://d-nb.info/101373873X

127

CodeGen2 can generate code for partial elements of the UML data model used by Fujaba.
For our purpose we need a complete project, as XProM2 will add the JUnit test classes and
methods to it on the fly. This UMLProject needs to contain a UMLPackage that marks the
root of all the contained classes. After this basic project setup we can continue to create the
actual storyboard.

With some helper methods to create UMLStoryActivity, UMLStoryPattern, UMLOb-
ject and UMLLink instances the instantiation of a data model representing the storyboard
is straight forward. First, we create a UMLStoryActivity and add a UMLStartActivity.
For each StoryActivity in the storyboard we create a UMLStoryActivity and set its de-
scription to the textual scenario description. The description will be added to the code as a
comment, so developers will still see what the generated code is meant to test. Then we add
UMLObject instances for each object. These objects must be collected in a HashMap so we
can correctly create UMLLinks between them when iterating over the links in the StoryAc-
tivity. Care must be taken to create UMLObject and UMLLink instances from the correct
package because Fujaba and our web application are using the same class name for objects
and links. Finally, we end the UMLStoryActivity with a UMLStopActivity.

Now we can tweak a few details in the model. To trigger the XProM2 code generation for
the storyboard we also need to mark the UMLStoryActivity as a test scenario by adding a
XProM2Plugin.TEST_SCENARIO stereotype to it. Furthermore, CodeGen2 by default uses
the Fujaba codestyle which we will keep to make importing and reusing the generated Fujaba
project repository easier.

After this we can start the code generation by handing over the complete UMLProject
and the destination path to the code generation wrapper. We use a timestamp based path
that is accessible by the web server to allow direct browsing of the generated files. The code
generation web service then returns the timestamp the code was generated at which the web
UI uses to construct and add several download links.

128

Accessing the generated acceptance tests

The asynchronous GWT-RPC call will receive a timestamp as the result of the code genera-
tion. Since the generated files are accessible at a public URL containing the same timestamp
I can generate HTML links to the generated code, the Fujaba project.ctr and for a
quick check the StoryboardTest.java containing the JUnit test. The generated code also
contains any classes that have been identified by the Fujaba code generation. An excerpt of
the code generation run at timestamp 1395613372706 is shown in listing 27.

Related Work

Without the work that had happened in the Fujaba community at the university of Kassel
this part of the storyboarding process would have been a lot harder to support in our web
application. The foundations of CodeGen2 were laid by Geiger, Schneider, and Reckord118

118 Leif Geiger, Christian Schneider, and
Carsten Reckord. “Template- and mod-
elbased code generation for MDA-Tools”.
In: 3rd International Fujaba Days. Pader-
born, Germany, Sept. 2005. url: http:
//www.se.eecs.uni-kassel.de/se

/fileadmin/se/publications/Cod
eGen2.pdf

which has meanwhile outgrown Fujaba and even led to the foundation of Yatta Solutions119,

119 Yatta Solutions. Yatta. 2012. url: htt
p://yatta.de (visited on 03/25/2014)

the company behind the commercial successor of Fujaba: UML Lab120.

120 Yatta Solutions. UML Lab. 2012. url:
http://www.uml-lab.com (visited
on 03/25/2014)

Geiger and Zündorf121 described the first version of test code generation in 2003 and ex-

121 Leif Geiger and Albert Zündorf.
“Transforming Graph Based Scenarios
into Graph Transformation Based JUnit
Tests.” In: AGTIVE. ed. by John L.
Pfaltz, Manfred Nagl, and Boris Böhlen.
Vol. 3062. Lecture Notes in Computer
Science. Springer, 2003, pp. 61–74. isbn:
3-540-22120-4. url: http://dblp.uni
-trier.de/db/conf/agtive/agtiv

e2003.html#GeigerZ03

tended the idea in subsequent122 papers.123 A detailed German description of the test case

122 Leif Geiger and Albert Zündorf.
“Story driven testing - SDT.”. In: ACM
SIGSOFT Software Engineering Notes 30.4
(2005), pp. 1–6. url: http://dblp.un
i-trier.de/db/journals/sigsoft
/sigsoft30.html#GeigerZ05.
123 Geiger and Zündorf, “Developing
Tools with Fujaba XProM.”.

generation has been written by Geiger124 as part of his PhD thesis.

124 Geiger, “Fehlersuche im Modell: mod-
ellbasiertes Testen und Debuggen.”

Conclusion

With XProM2 available as a web service our web application can complete the last step in the
storyboarding process. It can send the existing storyboard to the server with an asynchronous
GWT-RPC call and creates download links when the result arrives. The web service uses a
headless version of Fujaba with the necessary XProM2 and CodeGen2 plugins for the code
generation of JUnit tests. To continue working with the storyboard derived from a textual
scenario description developers can import a Fujaba project repository saved next to the gen-
erated sources.

http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/CodeGen2.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/CodeGen2.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/CodeGen2.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/CodeGen2.pdf
http://yatta.de
http://yatta.de
http://www.uml-lab.com
http://dblp.uni-trier.de/db/conf/agtive/agtive2003.html#GeigerZ03
http://dblp.uni-trier.de/db/conf/agtive/agtive2003.html#GeigerZ03
http://dblp.uni-trier.de/db/conf/agtive/agtive2003.html#GeigerZ03
http://dblp.uni-trier.de/db/journals/sigsoft/sigsoft30.html#GeigerZ05
http://dblp.uni-trier.de/db/journals/sigsoft/sigsoft30.html#GeigerZ05
http://dblp.uni-trier.de/db/journals/sigsoft/sigsoft30.html#GeigerZ05

1291 // Alice and Bob are playing chess. Alice
2 // moves her white pawn from field c2 to c4.
3
4 // story pattern
5 try
6 {
7 fujaba__Success = false;
8
9 // create object c2

10 c2 = new Field ();
11
12 // create object pawn
13 pawn = new Pawn ();
14
15 // create object Alice
16 Alice = new Person ();
17
18 // create object c4
19 c4 = new C4 ();
20
21 // create object chess
22 chess = new Chess ();
23
24 // create object Bob
25 Bob = new Person ();
26
27 // create link object_c2 from this to c2
28 this.setC2 (c2);
29
30 // create link owner from Alice to pawn
31 Alice.setPawn (pawn);
32
33 // create link object_pawn from this to pawn
34 this.setPawn (pawn);
35
36 // create link object_c4 from this to c4
37 this.setC4 (c4);
38
39 // create link players from Bob to chess
40 Bob.setPerson (chess);
41
42 // create link players from Alice to chess
43 Alice.addToPlayers (chess);
44
45 // create link object_chess from this to chess
46 this.setChess (chess);
47
48 // create link object_Bob from this to Bob
49 this.setBob (Bob);
50
51 // create link object_Alice from this to Alice
52 this.setAlice (Alice);
53
54 // collabStat call
55 pawn.moves();
56 fujaba__Success = true;
57 }

Listing 27: Excerpt from the generated
code for the JUnit setUp() method for
the start scenario. As of May 23rd 2014
the full source for this storyboarding run
is available online at http://instant-
storyboarding.de/~jfd/nt2od/f
ujabaWorkspace1395613372706/.
Other code generation runs can
currently be accessed by pointing
your browser to http://instant-
storyboarding.de/~jfd/nt2od/
and navigating to one of the subdirecto-
ries.

http://instant-storyboarding.de/~jfd/nt2od/fujabaWorkspace1395613372706/
http://instant-storyboarding.de/~jfd/nt2od/fujabaWorkspace1395613372706/
http://instant-storyboarding.de/~jfd/nt2od/fujabaWorkspace1395613372706/
http://instant-storyboarding.de/~jfd/nt2od/
http://instant-storyboarding.de/~jfd/nt2od/

130

Outlook

Fujaba sometimes uses magic guesses hidden in some of the helper methods used to create the
UML data model. One of them is used to guess the cardinality of associations when creating
them on the fly. The current guess is based on the plural s of the link name: players becomes
a 0..* cardinality player a 0..1 cardinality. This works ok for links named by humans. For
the structurization rules a link will be named after the verb and not the role of the object or
subject in the sentence. One solution would be to change the structurization rules to use the
subjects class lowercased as the link name. If that is an improvement is left to be determined
by future research or asking a linguist. He might even suggest to use stemming to find the root
of the verb: eg. play and use that to determine the cardinality. A software engineer might
write a recommender that rewrites link names based on number of links with the same name.
Best ask a linguist first.

Another question I did not try to answer was if it is possible to use GWT to cross compile
Fujaba with CodeGen2 and XProM2 to JavaScript. Since I started working on this Aschen-
brenner et al.125 added GWT support for the association implementations generated by the

125 Nina Aschenbrenner et al. “Fujaba
goes Web 2.0”. In: 6th International Fu-
jaba Days. Ed. by Uwe Aßman, Jendrik
Johannes, and Albert Zündorf. Dresden,
Germany, 2008, pp. 10–14. url: http:
//www.se.eecs.uni-kassel.de/se

/fileadmin/se/publications/ADJ

Z08.pdf

code generation with fujaba-web-runtime126. That might be a starting point to make the logic

126 Password protected outside the net-
work of the University of Kassel. Marcel
Hahn and Ruben Jubeh. Fujaba Web Run-
time. Software Engineering Group Kas-
sel. 2010. url: https://gforge.cs.u
ni-kassel.de/projects/fujabawe

brt/ (visited on 03/25/2014)

implemented in Fujaba compatible with GWT but it still leaves the task of developing a web
based user interface. A native JS solution such as AngularJS127 could be used to get databind-

127 Google, AngularJS

ing with HTML templates that can be used to create graphical HTML components. Maybe
the W3C HTML Components128 standard is a solution if more expressive HTML is needed.

128 W3C. HTML Components. Componen-
tizing Web Applications. 1998. url: http
://www.w3.org/TR/NOTE-HTMLComp

onents (visited on 03/25/2014)

While our web application is now capable of exporting the generated storyboard as a Fu-
jaba project the other direction is not yet possible. The idea is to use a Fujaba project to rec-
ommend type information in the formalization step of our web application. An initial im-
plementation could load a user specified Fujaba project in ctr format and collect the used
class names. With the FileReaderAPI specified by the W3C129 this can meanwhile be done

129 W3C. File API. 8. The FileReader Inter-
face. 2013. url: http://www.w3.org
/TR/FileAPI/#FileReader-interf
ace (visited on 03/25/2014)

without even sending the file to the server.130

130 A simple text editor based on this can
be found at thiscouldbebetter. Loading,
Editing, and Saving a Text File in HTML5
Using Javascript. Dec. 18, 2012. url: htt
p://thiscouldbebetter.wordpres
s.com/2012/12/18/loading-edit

ing-and-saving-a-text-file-in
-html5-using-javascrip/ (visited
on 03/25/2014)

http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/ADJZ08.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/ADJZ08.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/ADJZ08.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/ADJZ08.pdf
https://gforge.cs.uni-kassel.de/projects/fujabawebrt/
https://gforge.cs.uni-kassel.de/projects/fujabawebrt/
https://gforge.cs.uni-kassel.de/projects/fujabawebrt/
http://www.w3.org/TR/NOTE-HTMLComponents
http://www.w3.org/TR/NOTE-HTMLComponents
http://www.w3.org/TR/NOTE-HTMLComponents
http://www.w3.org/TR/FileAPI/#FileReader-interface
http://www.w3.org/TR/FileAPI/#FileReader-interface
http://www.w3.org/TR/FileAPI/#FileReader-interface
http://thiscouldbebetter.wordpress.com/2012/12/18/loading-editing-and-saving-a-text-file-in-html5-using-javascrip/
http://thiscouldbebetter.wordpress.com/2012/12/18/loading-editing-and-saving-a-text-file-in-html5-using-javascrip/
http://thiscouldbebetter.wordpress.com/2012/12/18/loading-editing-and-saving-a-text-file-in-html5-using-javascrip/
http://thiscouldbebetter.wordpress.com/2012/12/18/loading-editing-and-saving-a-text-file-in-html5-using-javascrip/
http://thiscouldbebetter.wordpress.com/2012/12/18/loading-editing-and-saving-a-text-file-in-html5-using-javascrip/

Instant Examples

After describing the technical details of Instant Storyboarding in full detail it is now time to
demonstrate how extendable the whole framework has become. Let me briefly repeat the
textual example scenario in listing 23 from page 111 and the excerpt I used to explain nearly
all storyboarding steps in this thesis:

1 Start scenario:

2 Alice and Bob are playing chess.

3 Alice moves her pawn to field e4.

4

5 End scenario:

6 Alice's pawn is on e4.

fieldE4:Field

chess :Chess

alice:Person

name:String=="Alice"
gender:Char=='F'

players

bob:Person

name:String=="Bob"
gender:Char=='M'

players

pawn:Pawn

owner

0:moves(fieldE4)

The attentive reader will have noticed the subtle changes from the initial example in the
introduction in listing 1 on page 13. In the following sections I will describe example by
example how the textual description as well as the structurization and formalization rules
can be changed to improve the result.

132

Change link verbs to nouns

When you look at the diagram in figure 1 on page 13 you may be dissatisfied by the verb
playing being the link caption. A player makes more sense and is what UML designers are
used to. To change the name we will use a short hack to the structurization rules as described
in listing 28.

Listing 28: Change link verbs to nouns 1 # rule to replace playing with players,

2 # makes the codegeneration create 0..n links:

3 [_(l):"Link"_|"name":"String"=="playing";"name":"String":="players"]

The rule matches all playing links and changes their caption to play. This is of course a
workaround and a more general, challenging, yet time consuming solution would be to write
a WordNet based recommender. In this case the goal is to demonstrate how the user can
instantly change the story pattern with his domain knowledge.

Adding more context to scenarios

Another way to change the storyboard is adding more context to the textual scenario. In our
chess example we can extend the scenario to also capture the concept of a turn as in listing 29.
The resulting story pattern for start and end situation are shown in figure 82.

Listing 29: Add turn example 1 Start scenario:

2 Alice and Bob are playing chess.

3 Alice moves her pawn to field e4.

4 It is Alice's turn.

5

6 End scenario:

7 Alice's pawn is on e4.

8 It is now Bob's turn.

133

pawn

fieldE4:Field

turn:Turn alice:Person

name:String=="Alice"
gender:Char=='F'

owner

chess :Chess

players

bob:Person

name:String=="Bob"
gender:Char=='M'

players

0:moves(fieldE4)

bob:Person

name:String=="Bob"
gender:Char=='M'

turn:Turnowner

pawn:Pawn e4:E4on
alice:Person

name:String=="Alice"
gender:Char=='F'

owner

Figure 82: Start and end Story pattern
now also contain the turn. After Alice has
made her move Bob becomes the owner
of the turn.

Again, looking at the two diagrams above may be dissatisfying because instead of a Turn
object and an owner link a more familiar modeling decision might have been the introduction
of a Game object and a turn link. It is left as an exercise for the reader to adapt the example
from the previous section accordingly.

Capturing more context from grammatical relations

When adding context to the textual scenarios it might become necessary to take new gram-
matical relations into account. To demonstrate that, we will extend the chess scenario to also
contain the source field of Alice’s move as in listing 30.

1 Start scenario:

2 Alice and Bob are playing chess.

3 Alice moves her pawn from field e2 to e4.

4

5 End scenario:

6 Alice's pawn is on e4.

Listing 30: Add source example

134

s50tNNe54:vertex

text:String=="pawn"
type:String=="NN"

s46tPRP$e49:vertex

text:String=="her"
type:String=="PRP$"

poss

s34tNNPe39:vertex

text:String=="Alice"
type:String=="NNP"

s1tNNPe6:vertex

text:String=="Alice"
type:String=="NNP"

s11tNNPe14:vertex

text:String=="Bob"
type:String=="NNP"

conj_and

s19tVBGe26:vertex

text:String=="playing"
type:String=="VBG"

nsubj

s27tNNe32:vertex

text:String=="chess"
type:String=="NN"

dobj

nsubj

s15tVBPe18:vertex

text:String=="are"
type:String=="VBP"

aux

coref

s66tNNe68:vertex

text:String=="e4"
type:String=="NN"

s40tVBZe45:vertex

text:String=="moves"
type:String=="VBZ"

dobj

nsubj

s60tNNe62:vertex

text:String=="e2"
type:String=="NN"

prep_from

prep_to

Figure 83: The prep_to preposition de-
pends on prep_from.

The resulting grammatical relations in figure 83 above reveal that the prep_to preposition
depends on prep_from. Our current structurization rules only take into account a prep_to
in combination with a dobj and nsubj relation to the same verb. To capture the prep_from
as a second parameter we need to add two rules. The first one in listing 31 and figure 84 is a
duplication of the existing prep_to based rule that adds a to parameter to the collaboration
statement. We just adjust it to match prep_from and add a from parameter.

1 #add parameter for prep_from as 'from' parameter
2 [_(vp):"vertex"_|"type"=="VBZ";"text"==(pred)]-"dobj"-[_(vo):"vertex"_|"type"==/NNP|NN/;"text"==(dobj)],
3 [_(vp)_]-"nsubj"-[_(vs):"vertex"_|"type"==/NNP|NN/;"text"==(nsubj)],
4 [_(vo)_]-"origin"-[_(oo):"Object"_],

5 [_(vs)_]-"origin"-[_(os):"Object"_],
6 [_(oo)_]-"messages"-[_(cs):"CollabStmt"_|"name"==pred],
7 [_(os)_]-"sender"-[_(cs)_],
8 [_(vp)_]-"prep_from"-[_(vprep):"vertex"_|"type"==/NNP|NN/],

9 [_(vprep)_]-"origin"-[_(oprep):"Object"_],
10 [_(oprep)_]-+"parameter"-+[_(param):"Parameter"_|"name":"String":="from"],

11 [_(cs)_]-+"parameters"-+[_(param)_]

Listing 31: Capture the prep_from
prepositions of the verb

135

(oprep):"Object"

(param):"Parameter"

"name":"String":="from"
"parameter"

(oo):"Object"

(cs):"CollabStmt"

"name"==pred

"messages"

(vs):"vertex"

"type"==/NNP|NN/
"text"==(nsubj)

(os):"Object""origin"

(vprep):"vertex"

"type"==/NNP|NN/

"origin"

"parameters"

(vo):"vertex"

"type"==/NNP|NN/
"text"==(dobj)

"origin"

"sender"(vp):"vertex"

"type"=="VBZ"
"text"==(pred)

"nsubj"

"prep_from"

"dobj"

Figure 84: Matching a prep_from

preposition and add a from parameter to
the collaboration statement.

The second rule in listing 32 and figure 85 extends the first new rule with a match for the
depending prep_to relation. If we find a match, we can add an additional to parameter to
the collaboration statement. After the formalization rules have been applied that will give us
the formal story pattern in figure 86.

Together, these two rules demonstrate how the meaning of a sentence can be captured by
matching patterns in the grammatical relations and transforming them into story patterns.

1 #add parameter for prep_to as 'to' parameter if it is related to prep_from

2 [_(vp):"vertex"_|"type"=="VBZ";"text"==(pred)]-"dobj"-[_(vo):"vertex"_|"type"==/NNP|NN/;"text"==(dobj)],
3 [_(vp)_]-"nsubj"-[_(vs):"vertex"_|"type"==/NNP|NN/;"text"==(nsubj)],
4 [_(vo)_]-"origin"-[_(oo):"Object"_],

5 [_(vs)_]-"origin"-[_(os):"Object"_],
6 [_(vp)_]-"prep_from"-[_(vprep):"vertex"_|"type"==/NNP|NN/],
7 [_(vprep)_]-"origin"-[_(oprep):"Object"_],
8 [_(vprep)_]-"prep_to"-[_(vprepto):"vertex"_|"type"==/NNP|NN/;"text"==(prep_to)],

9 [_(vprepto)_]-"origin"-[_(oprepto):"Object"_],
10 [_(oo)_]-"messages"-[_(cs):"CollabStmt"_|"name"==pred],
11 [_(os)_]-"sender"-[_(cs)_],
12 [_(oprepto)_]-+"parameter"-+[_(param):"Parameter"_|"name":"String":="to"],
13 [_(cs)_]-+"parameters"-+[_(param)_]

Listing 32: Capture the from and to prepo-
sitions of the verb

136

(oprep):"Object"

(oo):"Object"

(cs):"CollabStmt"

"name"==pred

"messages"

(oprepto):"Object"

(param):"Parameter"

"name":"String":="to"
"parameter"

(os):"Object" "sender"

(vprepto):"vertex"

"type"==/NNP|NN/
"text"==(prep_to)

"origin"

(vp):"vertex"

"type"=="VBZ"
"text"==(pred)

(vs):"vertex"

"type"==/NNP|NN/
"text"==(nsubj)

"nsubj"

(vprep):"vertex"

"type"==/NNP|NN/

"prep_from"

(vo):"vertex"

"type"==/NNP|NN/
"text"==(dobj)"dobj"

"origin"
"parameters"

"origin"

"prep_to"

"origin"

Figure 85: Matching a prep_to prepo-
sition depending on prep_from and
adding a second to parameter to the col-
laboration statement.

Figure 86: Formal story pattern for a col-
laboration statement with two parame-
ters.

e4:E4

bob:Person

name:String=="Bob"
gender:Char=='M'

pawn:Pawn

alice:Person

name:String=="Alice"
gender:Char=='F'

owner

chess :Chess

players

players

e2:E2

0:moves(e2, e4)

137

A web shop example

Until now, we only modified the chess example. What happens if we describe a completely
different scenario? Listing 33 and figure 87 show the textual scenario for a web shop and the
derived storyboard.

1 Start scenario:

2 Cindy adds a notebook to her shopping cart.

3

4 End scenario:

5 The notebook is listed in the cart.

Listing 33: Web shop example

cindy:Person

name:String=="Cindy"
gender:Char=='F'

shoppingCart:Shoppingowner

notebook
0:adds(shoppingCart)

notebook:Notebook

cart:Cart

Figure 87: Start and end story pattern for
the web shop example.Both story patterns can be improved. Take a moment and examine the start pattern. Do you

see something you would model differently? Take a closer look at the collaboration statement.
It roughly translates back to ”Cindy adds her shopping cart to a notebook”. To fix this, we
need to swap the nodes we match and change the structurization rules as shown in listing 34.

The second flaw is easier to spot as the end pattern lacks a relation between notebook and
cart. Examining the grammatical relations of the textual scenario in figure 88 helps us find the
reason: it uses the passive. Listing 35 shows a structurization rule to capture the in relation
in a passive sentence and create a link for it. Now let us polish the start diagram by aligning
the shopping cart class with the end scenario using the rule in listing 36. The final storyboard
then looks like figure 89.

138

1 # Create Collaboration Statements

2 [_(vp):"vertex"_|"type"=="VBZ";"text"==(pred)]-"prep_to"-[_(vo):"vertex"_|"type"==/NNP|NN/;"text"==(prep_to)],
3 [_(vp)_]-"nsubj"-[_(vs):"vertex"_|"type"==/NNP|NN/;"text"==(nsubj)],

4 [_(vo)_]-"origin"-[_(oo):"Object"_],

5 [_(vs)_]-"origin"-[_(os):"Object"_],
6 [_(oo)_]-+"messages"-+[_(cs):"CollabStmt"_|"name":"String":=pred],

7 [_(os)_]-+"sender"-+[_(cs)_]

8

9 #add parameter

10 [_(vp):"vertex"_|"type"=="VBZ";"text"==(pred)]-"prep_to"-[_(vo):"vertex"_|"type"==/NNP|NN/;"text"==(prep_to)],

11 [_(vp)_]-"nsubj"-[_(vs):"vertex"_|"type"==/NNP|NN/;"text"==(nsubj)],
12 [_(vo)_]-"origin"-[_(oo):"Object"_],

13 [_(vs)_]-"origin"-[_(os):"Object"_],

14 [_(oo)_]-"messages"-[_(cs):"CollabStmt"_|"name"==pred],
15 [_(os)_]-"sender"-[_(cs)_],

16 [_(vp)_]-"dobj"-[_(vdobj):"vertex"_|"type"==/NNP|NN/],
17 [_(vdobj)_]-"origin"-[_(oprep):"Object"_],

18 [_(oprep)_]-+"parameter"-+[_(param):"Parameter"_|"name":"String":="to"],
19 [_(cs)_]-+"parameters"-+[_(param)_]

Listing 34: Structurization Rule: swap the
order of nodes to capture the add to con-
struct in the right order.

s0tDTe3:vertex

text:String=="The"
type:String=="DT"

s4tNNe12:vertex

text:String=="notebook"
type:String=="NN"

det

s16tVBNe22:vertex

text:String=="lis ted"
type:String=="VBN"

nsubjpass

s13tVBZe15:vertex

text:String=="is"
type:String=="VBZ"

auxpass

s30tNNe34:vertex

text:String=="cart"
type:String=="NN"

prep_in

s26tDTe29:vertex

text:String=="the"
type:String=="DT"

det

Figure 88: Grammatical relations fo a pas-
sive sentence.

139

1 # create in link for prep_in relation in a passive sentence
2 [_(vp):"vertex"_|"type"=="VBN"]-"prep_in"-[_(vs):"vertex"_|"type"==/NNP|NN/],

3 [_(vp)_]-/nsubjpass/-[_(vo):"vertex"_|"type"==/NNP|NN/],

4 [_(vs)_]-"origin"-[_(os):"Object"_],
5 [_(vo)_]-"origin"-[_(oo):"Object"_],

6 [_(os)_]-+"links"-+[_(l):"Link"_|"name":"String":="in"]?,
7 [_(oo)_]-+"links"-+[_(l):"Link"_]?

Listing 35: Structurization Rule: add in
link for a passive sentence.

1 # change type of the shopping cart to Cart
2 [_(o):"Object"_|"name":"String"=="shoppingCart";"type":"String":="Cart"]

Listing 36: Structurization Rule: change
type of the shopping cart to Cart.

notebook:Notebook

cart:Cart

cindy:Person

name:String=="Cindy"
gender:Char=='F'

owner

0:adds(notebook)

cart:Cartnotebook:Notebook in

Figure 89: Fixed start and end story pat-
tern for the web shop example.

140

Gherkin as parsed english

This last example will revisit all kinds of changes that we already learned. In Behavior Driven
Development features of a software system are often collected in textual scenarios that follow
the Gherkin language. We are going to examine the example in listing 37. A Gherkin feature
starts with an In order to …, As an …, I want to … schema to provide context and
then describes scenarios following a Given … when … then … schema.

Listing 37: Gherkin Buy last coffee scenario
for using a coffee machine. An example
used in the Behat 3.0.12 documentation,
see Konstantin Kudryashov et al. Writing
Features. 2014. url: http://docs.b
ehat.org/en/latest/guides/1.

gherkin.html#features (visited on
02/18/2015)

1 Feature: Serve coffee
2 In order to earn money

3 Customers should be able to
4 buy coffee at all times

5

6 Scenario: Buy last coffee
7 Given there are 1 coffees left in the machine

8 And I have deposited 1 dollar

9 When I press the coffee button
10 Then I should be served a coffee

On the one hand, this minimal structure makes most of the structurization rules we have
seen so far useless, because they were crafted with a different sentence structure in mind. On
the other hand, Instant Storyboarding is flexible enough to be adopted to Gherkin on the fly.

machine:Machine

coffeeButton:Coffee

dollar:Dollar

Figure 90: Story pattern for the Buy last
coffee start

First, we are only interested in the textual scenario, which we will split into the start and end
scenario used in storyboarding. As listing 38 shows, we use the same lack of interpunction
and, without any changes to our rules, obtain the story pattern in figures 90 and 91.

Listing 38: Gherkin Buy last coffee start
and end scenario

1 Start scenario:
2 Given there are 1 coffees left in the machine

3 And I have deposited 1 dollar
4 When I press the coffee button

5

6 End scenario:
7 Then I should be served a coffee

coffee:Coffee

Figure 91: Story pattern for the Buy last
coffee end

http://docs.behat.org/en/latest/guides/1.gherkin.html#features
http://docs.behat.org/en/latest/guides/1.gherkin.html#features
http://docs.behat.org/en/latest/guides/1.gherkin.html#features

141

The reason for the missing objects and relations is that the parser has to identify sentence
boundaries before he can try to identify grammatical relations. Figure 92 shows the gram-
matical relations, which links the grammars of the three individual sentences to each other
by four dep relations. This can be corrected as the following sequence of figures will explain:

s81tPRPe82:vertex

text:String=="I"
type:String=="PRP"

s50tPRPe51:vertex

text:String=="I"
type:String=="PRP"

coref

s0tVBNe5:vertex

text:String=="Given"
type:String=="VBN"

s57tVBNe66:vertex

text:String=="depos ited"
type:String=="VBN"

dep

s12tVBPe15:vertex

text:String=="are"
type:String=="VBP"

dep

s38tNNe45:vertex

text:String=="machine"
type:String=="NN"

s34tDTe37:vertex

text:String=="the"
type:String=="DT"

det

s18tNNSe25:vertex

text:String=="coffees"
type:String=="NNS"

s16tCDe17:vertex

text:String=="1"
type:String=="CD"

num

s89tDTe92:vertex

text:String=="the"
type:String=="DT"

s83tVBPe88:vertex

text:String=="press"
type:String=="VBP"

nsubj

s100tNNe106:vertex

text:String=="button"
type:String=="NN"

dobj

s76tWRBe80:vertex

text:String=="When"
type:String=="WRB"

advmod

s26tVBNe30:vertex

text:String=="left"
type:String=="VBN"

prep_in

dep

s69tNNe75:vertex

text:String=="dollar"
type:String=="NN"

dep

s67tCDe68:vertex

text:String=="1"
type:String=="CD"

num
det

s93tNNe99:vertex

text:String=="coffee"
type:String=="NN"

nn

nsubj

dobj

s52tVBPe56:vertex

text:String=="have"
type:String=="VBP"

aux

acomp

conj_and

s6tEXe11:vertex

text:String=="there"
type:String=="EX"

expl

Given there are 1 coffees left in the machine
And I have deposited 1 dollar

When I press the coffee button

Figure 92: We start with the gram-
mar for the original scenario that we
just copied and pasted. I colorized the
grammar parts to hint which parts be-
long to the same sentence. The sig-
nificant subject-predicate-object relations
our current structurization rules partly
fail to match are highlighted in bold, the
sentence start words are blue, and the
dep relations are red.

142

s12tVBPe15:vertex

text:String=="are"
type:String=="VBP"

s18tNNSe25:vertex

text:String=="coffees"
type:String=="NNS"

nsubj

s6tEXe11:vertex

text:String=="there"
type:String=="EX"

expl s16tCDe17:vertex

text:String=="1"
type:String=="CD"

num

s85tNNe91:vertex

text:String=="button"
type:String=="NN"

s78tNNe84:vertex

text:String=="coffee"
type:String=="NN"

nn

s74tDTe77:vertex

text:String=="the"
type:String=="DT"

det

s66tPRPe67:vertex

text:String=="I"
type:String=="PRP"

s35tPRPe36:vertex

text:String=="I"
type:String=="PRP"

coref

s68tVBPe73:vertex

text:String=="press"
type:String=="VBP"

dobj

nsubj

s61tWRBe65:vertex

text:String=="When"
type:String=="WRB"

advmod

s42tVBNe51:vertex

text:String=="depos ited"
type:String=="VBN"

nsubj

s37tVBPe41:vertex

text:String=="have"
type:String=="VBP"

aux

s31tCCe34:vertex

text:String=="And"
type:String=="CC"cc

s26tVBDe30:vertex

text:String=="left"
type:String=="VBD"

ccomp

s52tCDe53:vertex

text:String=="1"
type:String=="CD"

s0tVBNe5:vertex

text:String=="Given"
type:String=="VBN"

ccomp

dep

s54tNNe60:vertex

text:String=="dollar"
type:String=="NN"

nsubj

dep

num

Given there are 1 coffees left
and I have deposited 1 dollar

when I press the coffee button

Figure 93: For now we leave out the ma-
chine to simplify the grammatical rela-
tions. We will see that it makes sense to
add it as a world knowledge later. How-
ever, without interpunction the sentence
parts are still very dependent on each
other.

143

s16tCDe17:vertex

text:String=="1"
type:String=="CD"

s70tVBPe75:vertex

text:String=="press"
type:String=="VBP"

s68tPRPe69:vertex

text:String=="I"
type:String=="PRP"nsubj

s87tNNe93:vertex

text:String=="button"
type:String=="NN"

dobj

s63tWRBe67:vertex

text:String=="When"
type:String=="WRB"

advmod

s36tPRPe37:vertex

text:String=="I"
type:String=="PRP"

coref

s80tNNe86:vertex

text:String=="coffee"
type:String=="NN"nn

s76tDTe79:vertex

text:String=="the"
type:String=="DT"

det

s38tVBPe42:vertex

text:String=="have"
type:String=="VBP"

s12tVBPe15:vertex

text:String=="are"
type:String=="VBP"

s18tNNSe25:vertex

text:String=="coffees"
type:String=="NNS"

nsubj

s43tVBNe52:vertex

text:String=="depos ited"
type:String=="VBN"

conj_and

s6tEXe11:vertex

text:String=="there"
type:String=="EX"

expl

num

s26tVBDe30:vertex

text:String=="left"
type:String=="VBD"

rcmod

aux

s55tNNe61:vertex

text:String=="dollar"
type:String=="NN"

dobj

nsubj

s0tVBNe5:vertex

text:String=="Given"
type:String=="VBN"

dep

dep

dep

s53tCDe54:vertex

text:String=="1"
type:String=="CD"

num

Given there are 1 coffees left,
and I have deposited 1 dollar,

when I press the coffee button

Figure 94: Indicating sentence bound-
aries with commas allows the parser to
more cleanly identify where left belongs
to in the grammar. Nevertheless, the dep
relations remain.

144

s36tPRPe37:vertex

text:String=="I"
type:String=="PRP"

s18tNNSe25:vertex

text:String=="coffees"
type:String=="NNS"

s26tVBDe30:vertex

text:String=="left"
type:String=="VBD"

rcmod

s16tCDe17:vertex

text:String=="1"
type:String=="CD"

num

s43tVBNe52:vertex

text:String=="depos ited"
type:String=="VBN"

nsubj

s38tVBPe42:vertex

text:String=="have"
type:String=="VBP"aux

s55tNNe61:vertex

text:String=="dollar"
type:String=="NN"

dobj

s70tVBPe75:vertex

text:String=="press"
type:String=="VBP"

s68tPRPe69:vertex

text:String=="I"
type:String=="PRP"nsubj

s87tNNe93:vertex

text:String=="button"
type:String=="NN"

dobj

s63tWRBe67:vertex

text:String=="When"
type:String=="WRB"

advmod

s80tNNe86:vertex

text:String=="coffee"
type:String=="NN"

coref

s12tVBPe15:vertex

text:String=="are"
type:String=="VBP"

nsubj

conj_and

s6tEXe11:vertex

text:String=="there"
type:String=="EX"

expl

s0tVBNe5:vertex

text:String=="Given"
type:String=="VBN"

dep

s53tCDe54:vertex

text:String=="1"
type:String=="CD"

num

nn

s76tDTe79:vertex

text:String=="the"
type:String=="DT"

det

Given there are 1 coffees left,
and I have deposited 1 dollar.

When I press the coffee button

Figure 95: After using a full stop we
get two distinct grammars that are only
linked by the coreference between the
two I vertexes.

145

With the grammar from figure 95 our structurization rules should be able to identify the
two subject-predicate-object relations. But the derived informal story pattern still looks like
figure 90 without the machine, which we removed on purpose. Why is that? The structuriza-
tion rules we developed for the Ludo example had to distinguish between verb tenses so we
could separate links from collaboration statements. With gherkin we can identify the collab-
oration statement by looking for the When adverbial modifier (advmod). This also allows us
to include any verb tenses when trying to match grammatical relations. Another change in
our structurization rules that is now used by default is the addition of plural nouns (NNS) to
any noun matching rules. Finally, we will add little hacks to represent I as the actor and fix
the object name derived from coffees from plural to singular. These rule changes are shown in
listing 39 which is only an excerpt from the full ruleset.

1 # replace I PRP with actor NN
2 [_(v):"vertex"_|"text"=="I";"type"=="PRP";"text":"String":="actor";"type":"String":="NN"]
3
4 # first create objects for all plural nouns
5 [_(v):"vertex"_|"type"=="NNS";"text"==(noun)],
6 +[_noun.toLower():"Object"_|"name":"String":=noun.toLower();"type":"String":=noun.upcaseFirst()]?
7
8 # Create a Link in the diagram for each matching subject, predicate, object triple
9 [_(vp):"vertex"_|"type"==/VBG|VBP|VBZ|VBN/;"text"==(pred)]-"nsubj"-[_(vs):"vertex"_|"type"==/NNP|NN/;"text"==(nsubj)],

10 [_(vp)_]-"dobj"-[_(vo):"vertex"_|"type"==/NNP|NN/;"text"==(dobj)],
11 [_(vs)_]-"origin"-[_(os):"Object"_],
12 [_(vo)_]-"origin"-[_(oo):"Object"_],
13 [_(os)_]-+"links"-+[_(l):"Link"_|"name":"String":=pred;"name":"String"==pred]?,
14 [_(oo)_]-+"links"-+[_(l):"Link"_]?
15
16 # Create Collaboration Statements
17 [_(vp):"vertex"_|"type"==/VBG|VBP|VBZ|VBN/;"text"==(pred)]-"dobj"-[_(vo):"vertex"_|"type"==/NNP|NN|NNS/;"text"==(dobj)],
18 [_(vp)_]-"nsubj"-[_(vs):"vertex"_|"type"==/NNP|NN|NNS/;"text"==(nsubj)],
19 [_(vp)_]-"advmod"-[_(wrb):"vertex"_|"type"=="WRB";"text"=="When"],
20 [_(vo)_]-"origin"-[_(oo):"Object"_],
21 [_(vs)_]-"origin"-[_(os):"Object"_],
22 [_(os)_]--"links"--[_(l):"Link"_|"name":"String"==pred],
23 [_(oo)_]--"links"--[_(l):"Link"_],
24 [_(oo)_]-+"messages"-+[_(cs):"CollabStmt"_|"name":"String":=pred],
25 [_(os)_]-+"sender"-+[_(cs)_]
26
27 #fix plural -> singular
28 [_(o):"Object"_|"name":"String"=="coffees";"type":"String"=="Coffees";"name":"String":="coffee";"type":"String":="Coffee"]

Listing 39: Updated structurization rules
for gherkin.

146

With these rules our informal story pattern in figure 96 becomes much more complete
compared to the pattern we started with in figure 90. All verbs have been mapped to links or
collaboration statements.

Figure 96: The story pattern after trans-
forming the grammar with the gherkin
specific structurization rules.

coffeeButton

actor:Actordollar:Dollar depos ited

coffee:Coffee

0:press()

Before we add back the machine to the textual start scenario let us examine what kind of
context it adds to the scenario. By adding the machine only to the first sentence we leave out
that actually all objects are linked to the machine. To give our structurization rules a chance to
capture this meaning we would have to add the machine to all aspects of the scenario, which
makes it awkward to read as seen in listing 40.

Listing 40: Gherkin Buy last coffee start
and end scenario with the machine added
to every part of the sentence.

1 Start scenario:
2 Given there are 1 coffees left in the machine,
3 and I have deposited 1 dollar in the machine.
4 When I press the coffee button on the machine
5

6 End scenario:

7 Then I should be served a coffee by the machine

Instead of repeating ourselves in the scenario we could add this kind of context to the end
of the structurization rules. That also allows us to directly model the link names. Listing 41
and the visual representation in figure 97 show how this can be done with a single rule.

147

1 # add machine as context directly as context
2 [_(o1):"Object"_|"name"=="dollar"]?-+"links"?-+[_(l1):"Link"_|"name":"String":="payment"]?,
3 +[_(l1)_]?-+"links"?-+[_(m):"Object"_|"name":="machine";"type":="Machine"],
4 [_(o2):"Object"_|"type"=="Button"]?-+"links"?-+[_(l2):"Link"_|"name":"String":="controls"]?,
5 +[_(l2)_]?-+"links"?-+[_(m)_],
6 [_(o3):"Object"_|"name"=="coffee"]?-+"links"?-+[_(l3):"Link"_|"name":"String":="products"]?,
7 +[_(l3)_]?-+"links"?-+[_(m)_]

Listing 41: Structurization rules to add the
machine context in FUML notation.

(m):"Object"

"name":="machine"
"type":="Machine"

(l1):"Link"

"name":"String":="payment"
"links"

(l2):"Link"

"name":"String":="controls"

"links"

(o1):"Object"

"name"=="dollar"

"links"

(o3):"Object"

"name"=="coffee"

(l3):"Link"

"name":"String":="products"

"links"

"links"

(o2):"Object"

"type"=="Button"

"links"

Figure 97: Structurization rules to add the
machine context as a story pattern.

The resulting informal story pattern in figure 98 captures every aspect of the gherkin sce-
nario and can be used to generate a JUnit test as it can be done for our chess example.

Lessons learned and further research opportunities

With the exception of the last gherkin example, the above examples were all developed in
front of an audience while discussion was possible. Reproducing them here revealed some
more glitches that were overlooked, like the wrong direction of a collaboration statement of
the web shop example or a bug in the interpreter that would prevent the execution of the
machine rule.

Nevertheless gherkin was an interesting challenge, as it allows a different approach for
distinguishing links from collaboration statements. A future task may be to also parse the
gherkin feature description for context and allow parsing scenarios without having to split
them in start and end steps.

148

Figure 98: The story pattern after adding
the machine via structurization rules. Us-
ing a structurization rule allows us to
specify more concrete link names than in
or on which would have been derived had
we polluted the textual scenario notation
with in/on the machine.

actor:Actormachine:Machine

coffeeButton:Button

controls

coffee:Coffee
products

dollar:Dollar
payment depos ited

0:press()

The big difference to classical behavior driven development implementations is that we do
not implement the meaning of a line of text as code but use graph transformations to derive
an object diagram that is the foundation for the data model. The scenarios are not only a
way to discuss functionality with end users, but also yield the basic entities for the modeling
discussion. Whether that is a good thing because it shrinks the gap between end users and
implementation or a bad thing because it frequently leads to changes of entities and the data
model, making it more dynamic could be subject of further research. A start would be to use
a NOSQL database to store the storyboard.

Conclusion

Before answering the main research question of this thesis “Can we improve tool support for
storyboarding?” let us answer the partial questions from the “Open Questions” section on
page 29.

1. How can we give instant feedback on the storyboarding process? First of all, getting tool support
for storyboarding is now a matter of pointing a browser to our web application instead
of running Fujaba. No installation of Java or any other Tool is required anymore since all
desktop operating systems already provide a web browser. We significantly lowered the
barrier of entry for interested developers or researchers. Our application itself resembles
a storyboard which helps the user identify start, intermediate and end scenarios without
explicit explanation. Whenever he presses enter in the textual scenario description the
derived storyboard visualization next to it will get updated immediately. Intermediate
steps of the process are hidden by default to prevent information overload.

2. How can we give instant feedback on the learning of instances, concepts and relations. Expanding
the details of a scenario reveals the individual storyboading steps automatically performed
by the web application as described in “The Masterplan” on page 34. The first column
shows the natural language parser result below the textual scenario description. The sec-
ond column contains a textual version of the structurization rules that can be changed by
the user. Any changes to the rules immediately trigger an update of the structurization

150

pattern and the resulting informal story pattern. The third column contains a textual and
graphical version of the formalization rules that produce the final formal story patten.

The distinction between formal and informal story pattern is an important separation of
concerns. While the informal pattern focuses on visualizing learned instances and relations
using objects and links the formal pattern visualizes the learned concepts by showing up-
dated type information. Giving feedback early by updating the rule visualizations and the
intermediate results allows users to experiment with the rules and interactively explore
the storyboarding process.

3. How can we give instant feedback on the graph transformations? Even more detailed informa-
tion on the execution of a graph transformation is available by clicking the corresponding
story pattern visualization. It will expand to a debug view with step by step visualizations
of matching the story pattern to the working graph.

4. How can we provide instant acceptance tests for the visible storyboard? Providing the necessary
functionality with a web service requires packaging Fujaba, CodeGen2 and XProM2 in a
headless version. After getting the classpath right and writing a few lines of glue code
our application currently provides a Fujaba .ctr as well as plain Java source code for the
derived storyboard.

5. Can this be achieved under the constraints of a browser environment? Although some of the
automated steps remain on the server side we showed that a browser is not an obstacle
when it comes to executing graph transformations. Our story pattern interpreter can even
use the rich markup capabilities of HTML to instantly visualize the rule execution. The
most resource hungry tasks like natural language parsing and code generation remain on
the server side and allow our web application to deliver instant storyboarding even on mobile
and tablet devices.

151

Can we make storyboarding more accessible?

Instant Storyboarding as provided by our web application lures developers into an iterative
learning process. The consequences of changes to a rule can be observed as soon as possible
to answer the users question “What if I change this?” Interactively exploring the capabilities
of the current rules used in the application will teach him to keep sentences simple and short.
This will not only allow our application to derive a meaningful storyboard but also helps other
humans to understand the scenario description.

If rephrasing a textual scenario does not give the desired result our web application al-
lows users to influence each step in the storyboarding process. The Stanford Parser can be
exchanged with OpenNLP or any other web service that provides a result in GraphSON.
The structurization rules can be changed directly in the browser without the need of starting
Fujaba and compiling the pattern to make them executeable. If necessary even the recom-
menders can be customized. Actually, it would be possible to use the web application to take
the result of any JSON-P web service returning GraphSON as input and execute a completely
different set of rules on it.

With the web application I developed to make storyboarding easily accessible I also cre-
ated a framework that can be used to experiment with graph transformations, interpreters,
recommenders, visualizations and natural language parsers. None of them is perfect, but that
only poses a chance for other researchers to continue my work in an area of their interest.

Outlook

In the Outlook sections of the previous chapters I already pointed out minor changes that will
improve the current web application. There are however more fundamental challenges that I
can think of.

The recommenders used with the current framework are more or less dumb wrappers
around other web resources. Their results are based on the working graph and the web re-
source that an algorithm turns into story pattern. Currently the algorithm is hard coded in
each recommender. To me, the following interesting research topics arise: Can we learn the
recommendations using genetic algorithms, neural networks or other machine learning ap-
proaches? Users could rate the results and draw the informal and formal story pattern they
expect. This will lead to the question if learned recommendations can improve the formal
story pattern compared to the current set of recommenders.

The second fundamental challenge I see is adding a project concept to the web application
and allowing users to authenticate themselves to permanently save and share these projects.
Adding explicit editors for activity and class diagrams to the web interface together with a
code generation web service for complete projects could bring the whole story driven devel-
opment process supported by Fujaba to the web.

The last challenge I see may seem blasphemic to some of my fellow researchers, but I have
come to believe that the whole web application should be reimplemented in native JavaScript.
One of the most time consuming tasks in software development is user interface design. Java

154

has recently started to allow declarative user interface modeling with JavaFX. While there is
a framework for everything in Java the most elegant solution for web applications I came to
know is AngularJS that allows data binding between HTML templates and JavaScript objects.
Together with JavaScript drawing libraries like Draw2D this gives unparallelled possibilities
to create browser based graphical editors. All without sacrificing testability when following
the dependency injection philosophy enforced by AngularJS.

Bibliography

Abbott, Russell J. “Program design by Informal English Descriptions.” In: Commun. ACM 26.11
(1983), pp. 882–894. url: http://sunset.usc.edu/classes/cs577a_2003/cours
enotes/ep/Program%20Design%20by%20Informal%20English%20Descriptio

ns,%20Russell%20Abbott.pdf.
Appelt, Douglas E. and Boyan Onyshkevych. “The common pattern specification language”.

In: Proceedings of a workshop on held at Baltimore, Maryland: October 13-15, 1998. TIPSTER
’98. Baltimore, Maryland: Association for Computational Linguistics, 1998, pp. 23–30. doi:
10.3115/1119089.1119095. url: http://acl.ldc.upenn.edu/X/X98/X98-100
4.pdf.

Aschenbrenner, Nina et al. “Fujaba goes Web 2.0”. In: 6th International Fujaba Days. Ed. by Uwe
Aßman, Jendrik Johannes, and Albert Zündorf. Dresden, Germany, 2008, pp. 10–14. url:
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/ADJ

Z08.pdf.
Bao, Jie and Vasant Honavar. “Collaborative Ontology Building with Wiki@nt - A multi-agent

based ontology building environment”. In: Proceedings of the 3rd International Workshop on
Evaluation of Ontology-based Tools (EON2004). Oct. 2004, pp. 1–10.

Beck, Kent. Extreme Programming Explained: Embrace Change. First. Boston: Addison-Wesley
Professional, 1999, p. 224. isbn: 0201616416.

http://sunset.usc.edu/classes/cs577a_2003/coursenotes/ep/Program%20Design%20by%20Informal%20English%20Descriptions,%20Russell%20Abbott.pdf
http://sunset.usc.edu/classes/cs577a_2003/coursenotes/ep/Program%20Design%20by%20Informal%20English%20Descriptions,%20Russell%20Abbott.pdf
http://sunset.usc.edu/classes/cs577a_2003/coursenotes/ep/Program%20Design%20by%20Informal%20English%20Descriptions,%20Russell%20Abbott.pdf
http://dx.doi.org/10.3115/1119089.1119095
http://acl.ldc.upenn.edu/X/X98/X98-1004.pdf
http://acl.ldc.upenn.edu/X/X98/X98-1004.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/ADJZ08.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/ADJZ08.pdf

156

Benz, Dominik. “Capturing Emergent Semantics from Social Annotation Systems”. PhD the-
sis. University of Kassel, Feb. 26, 2013. url: http://nbn-resolving.de/urn:nbn:d
e:hebis:34-2013022642523.

Brandes, Ulrik et al. “GraphML Progress Report: Structural Layer Proposal”. In: Proceedings of
the 9th International Symposium Graph Drawing (GD ’01) LNCS 2265. Springer-Verlag, 2002,
pp. 501–512. url: http://www.inf.uni-konstanz.de/algo/publications/beh
hm-gprsl-01.ps.gz.

Cer, Daniel M. et al. “Parsing to Stanford Dependencies: Trade-offs between Speed and Accu-
racy.” In: LREC. Ed. by Nicoletta Calzolari et al. European Language Resources Association,
2010. isbn: 2-9517408-6-7. url: http://dblp.uni-trier.de/db/conf/lrec/lrec
2010.html#CerMJM10.

Church, Luke, Chris Nash, and Alan F. Blackwell. “Liveness in notation use. From music to
programming”. In: Proceedings of the 22nd Annual Workshop of the Psychology of Programming
Interest Group (PPIG 2010). 2010, pp. 2–11. url: http://www.academia.edu/1124877
/Liveness_in_Notation_Use_From_Music_to_Programming.

Cimiano, Philipp. Ontology learning and population from text - algorithms, evaluation and applica-
tions. Springer, 2006, pp. I–XXVIII, 1–347. isbn: 978-0-387-30632-2.

Cimiano, Philipp and Johanna Völker. “Text2Onto - A Framework for Ontology Learning and
Data-driven Change Discovery”. In: Proceedings of the 10th International Conference on Appli-
cations of Natural Language to Information Systems (NLDB). Ed. by Andres Montoyo, Rafael
Munoz, and Elisabeth Metais. Vol. 3513. Lecture Notes in Computer Science. Alicante,
Spain: Springer, June 2005, pp. 227–238. url: http://www.aifb.uni- karlsruhe
.de/WBS/jvo/publications/Text2Onto_nldb_2005.pdf.

Cunningham, H., D. Maynard, and V. Tablan. JAPE: a Java Annotation Patterns Engine (Second
Edition). Research Memorandum CS–00–10. Department of Computer Science, University
of Sheffield, Nov. 2000. url: http://www.dcs.shef.ac.uk/~diana/Papers/jape
.ps.

Cunningham, H. et al. “GATE: A framework and graphical development environment for
robust NLP tools and applications”. In: Proceedings of the 40th Anniversary Meeting of the

http://nbn-resolving.de/urn:nbn:de:hebis:34-2013022642523
http://nbn-resolving.de/urn:nbn:de:hebis:34-2013022642523
http://www.inf.uni-konstanz.de/algo/publications/behhm-gprsl-01.ps.gz
http://www.inf.uni-konstanz.de/algo/publications/behhm-gprsl-01.ps.gz
http://dblp.uni-trier.de/db/conf/lrec/lrec2010.html#CerMJM10
http://dblp.uni-trier.de/db/conf/lrec/lrec2010.html#CerMJM10
http://www.academia.edu/1124877/Liveness_in_Notation_Use_From_Music_to_Programming
http://www.academia.edu/1124877/Liveness_in_Notation_Use_From_Music_to_Programming
http://www.aifb.uni-karlsruhe.de/WBS/jvo/publications/Text2Onto_nldb_2005.pdf
http://www.aifb.uni-karlsruhe.de/WBS/jvo/publications/Text2Onto_nldb_2005.pdf
http://www.dcs.shef.ac.uk/~diana/Papers/jape.ps
http://www.dcs.shef.ac.uk/~diana/Papers/jape.ps

157

Association for Computational Linguistics. 2002. url: http://gate.ac.uk/sale/acl02
/acl-main.pdf.

Diethelm, Ira. “Strictly models and objects first: Unterrichtskonzept und -methodik für ob-
jektorientierte Modellierung im Informatikunterricht”. http://d-nb.info/98668760X. PhD
thesis. University of Kassel, 2007, pp. 1–223. isbn: 978-3-86805-007-3. url: http://kobr
a.bibliothek.uni-kassel.de/bitstream/urn:nbn:de:hebis:34-20071011

19340/1/DissIraDruckfassungA5.1.pdf.
Diethelm, Ira, Leif Geiger, and Albert Zündorf. “Systematic Story Driven Modeling”. In: Tech-

nical Report (Feb. 2004). url: http://www.se.eecs.uni-kassel.de/se/fileadmi
n/se/publications/SDM04.pdf.

– “Systematic Story Driven Modeling, a case study”. In: Edinburgh, Scottland, May 24 - 28,
2004. url: http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publicat
ions/DGZ04.pdf.

Dreyer, Jörn et al. “NT2OD Online - Bringing Natural Text 2 Object Diagram to the web”.
In: ODiSE’10: Ontology-Driven Software Engineering Proceedings. Ed. by Sergio de Cesare.
Reno/Tahoe, Nevada, USA, Oct. 18, 2010. url: http://dl.acm.org/ft_gateway.cf
m?id=1937133&type=pdf.

Ehrig, Hartmut, Michael Pfender, and Hans Jürgen Schneider. “Graph-Grammars: An Alge-
braic Approach”. In: SWAT (FOCS). IEEE Computer Society, 1973, pp. 167–180. url: http
://dblp.uni-trier.de/db/conf/focs/focs73.html#EhrigPS73.

Ehrig, Hartmut and Karl Wilhelm Tischer. “Graph Grammars and Applications to Special-
ization and Evolution in Biology.” In: J. Comput. Syst. Sci. 11.2 (1975), pp. 212–236. url:
http://dblp.uni-trier.de/db/journals/jcss/jcss11.html#EhrigT75.

Geiger, Leif. “Fehlersuche im Modell: modellbasiertes Testen und Debuggen.” PhD thesis.
University of Kassel, 2011. url: http://d-nb.info/101373873X.

Geiger, Leif, Christian Schneider, and Carsten Reckord. “Template- and modelbased code gen-
eration for MDA-Tools”. In: 3rd International Fujaba Days. Paderborn, Germany, Sept. 2005.
url: http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications
/CodeGen2.pdf.

http://gate.ac.uk/sale/acl02/acl-main.pdf
http://gate.ac.uk/sale/acl02/acl-main.pdf
http://kobra.bibliothek.uni-kassel.de/bitstream/urn:nbn:de:hebis:34-2007101119340/1/DissIraDruckfassungA5.1.pdf
http://kobra.bibliothek.uni-kassel.de/bitstream/urn:nbn:de:hebis:34-2007101119340/1/DissIraDruckfassungA5.1.pdf
http://kobra.bibliothek.uni-kassel.de/bitstream/urn:nbn:de:hebis:34-2007101119340/1/DissIraDruckfassungA5.1.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/SDM04.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/SDM04.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/DGZ04.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/DGZ04.pdf
http://dl.acm.org/ft_gateway.cfm?id=1937133&type=pdf
http://dl.acm.org/ft_gateway.cfm?id=1937133&type=pdf
http://dblp.uni-trier.de/db/conf/focs/focs73.html#EhrigPS73
http://dblp.uni-trier.de/db/conf/focs/focs73.html#EhrigPS73
http://dblp.uni-trier.de/db/journals/jcss/jcss11.html#EhrigT75
http://d-nb.info/101373873X
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/CodeGen2.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/CodeGen2.pdf

158

Geiger, Leif and Albert Zündorf. “Developing Tools with Fujaba XProM.” In: GTTSE. Ed. by
Ralf Lämmel, João Saraiva, and Joost Visser. Vol. 4143. Lecture Notes in Computer Science.
Springer, 2006, pp. 344–356. isbn: 3-540-45778-X. url: http://dblp.uni-trier.de/d
b/conf/gttse/gttse2006.html#GeigerZ06.

– “Story driven testing - SDT.” In: ACM SIGSOFT Software Engineering Notes 30.4 (2005), pp. 1–
6. url: http://dblp.uni-trier.de/db/journals/sigsoft/sigsoft30.html
#GeigerZ05.

– “Transforming Graph Based Scenarios into Graph Transformation Based JUnit Tests.” In:
AGTIVE. Ed. by John L. Pfaltz, Manfred Nagl, and Boris Böhlen. Vol. 3062. Lecture Notes
in Computer Science. Springer, 2003, pp. 61–74. isbn: 3-540-22120-4. url: http://dblp
.uni-trier.de/db/conf/agtive/agtive2003.html#GeigerZ03.

Giese, Holger, Stephan Hildebrandt, and Andreas Seibel. “Improved Flexibility and Scalabil-
ity by Interpreting Story Diagrams.” In: ECEASST 18 (2009). url: http://dblp.uni-t
rier.de/db/journals/eceasst/eceasst18.html#GieseHS09.

Graham, Paul. “Hackers & Painters: Big Ideas from the Computer Age”. In: O’Reilly Media,
Inc., 2004. Chap. The Other Road Ahead, pp. 56–86. url: http://www.paulgraham.co
m/road.html (visited on 03/14/2014).

Holt, Richard C., Andreas Winter, and Andy Schürr. “GXL: Towards a Standard Exchange
Format”. In: Proceedings of the 7th Working Conference on Reverse Engineering (WCRE 2000).
Limerick, June 2000. url: ftp://ftphost.uni-koblenz.de/ftp/outgoing/Repo
rts/RR-1-2000/RR-1-2000.pdf.

King, Josh and Venu Satuluri. “Extracting Semantic Relations Using Dependency Paths”. un-
published. url: http://www.cse.ohio-state.edu/~satuluri/final788.pdf.

Lin, Dekang and Patrick Pantel. “Discovery of inference rules for question-answering.” In:
Natural Language Engineering 7.4 (2001), pp. 343–360. url: http://dblp.uni-trier.d
e/db/journals/nle/nle7.html#LinP01.

Maes, Pattie. “Agents that Reduce Work and Information Overload”. In: Communications of the
ACM 37.7 (1994), pp. 30–40. url: http://www.cs.brandeis.edu/~cs125a/conten
t/agentsmaes.doc.

http://dblp.uni-trier.de/db/conf/gttse/gttse2006.html#GeigerZ06
http://dblp.uni-trier.de/db/conf/gttse/gttse2006.html#GeigerZ06
http://dblp.uni-trier.de/db/journals/sigsoft/sigsoft30.html#GeigerZ05
http://dblp.uni-trier.de/db/journals/sigsoft/sigsoft30.html#GeigerZ05
http://dblp.uni-trier.de/db/conf/agtive/agtive2003.html#GeigerZ03
http://dblp.uni-trier.de/db/conf/agtive/agtive2003.html#GeigerZ03
http://dblp.uni-trier.de/db/journals/eceasst/eceasst18.html#GieseHS09
http://dblp.uni-trier.de/db/journals/eceasst/eceasst18.html#GieseHS09
http://www.paulgraham.com/road.html
http://www.paulgraham.com/road.html
ftp://ftphost.uni-koblenz.de/ftp/outgoing/Reports/RR-1-2000/RR-1-2000.pdf
ftp://ftphost.uni-koblenz.de/ftp/outgoing/Reports/RR-1-2000/RR-1-2000.pdf
http://www.cse.ohio-state.edu/~satuluri/final788.pdf
http://dblp.uni-trier.de/db/journals/nle/nle7.html#LinP01
http://dblp.uni-trier.de/db/journals/nle/nle7.html#LinP01
http://www.cs.brandeis.edu/~cs125a/content/agentsmaes.doc
http://www.cs.brandeis.edu/~cs125a/content/agentsmaes.doc

159

Marcus, Mitchell P., Beatrice Santorini, and Mary Ann Marcinkiewicz. “Building a Large An-
notated Corpus of English: The Penn Treebank.” In: Computational Linguistics 19.2 (1993),
pp. 313–330. url: http://dblp.uni-trier.de/db/journals/coling/coling19
.html#MarcusSM94.

North, Dan. “Behavior Modification”. In: Better Software Magazine (Mar. 2006). url: http:
//www.stickyminds.com/s.asp?F=S10836_MAGAZINE_2.

Resnick, P. and H. R. Varian. “Recommender systems”. In: Communications of the ACM 40.3
(1997), pp. 56–58. issn: 0001-0782. doi: http://doi.acm.org/10.1145/245108.245
121. url: https://wiki.cc.gatech.edu/scqualifier/images/c/c6/Resnick
-Recommender_systems.pdf.

Rosson, Mary Beth and John M. Carroll. Usability Engineering: Scenario-Based Development of
Human-Computer Interaction. San Diego, CA: Academic Press, 2002. isbn: 1-55860-712-9.

Santorini, Beatrice. Part-of-speech tagging guidelines for the Penn Treebank Project. Tech. rep. MS-
CIS-90-47. Department of Computer and Information Science, University of Pennsylvania,
1990. url: ftp://ftp.cis.upenn.edu/pub/treebank/doc/tagguide.ps.gz.

Schneider, Christian. “CoObRA: Eine Plattform zur Verteilung und Replikation komplexer
Objektstrukturen mit optimistischen Sperrkonzepten”. PhD thesis. 2007. url: http://k
obra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-20071213

19874.
Tanimoto, Steven L. “VIVA: A visual language for image processing”. In: Journal of Visual

Languages & Computing 1.2 (1990), pp. 127–139. issn: 1045-926X. doi: 10.1016/S1045-9
26X(05)80012-6. url: http://www.sciencedirect.com/science/article/pi
i/S1045926X05800126.

Yosef, Mohamed Amir et al. “AIDA: An Online Tool for Accurate Disambiguation of Named
Entities in Text and Tables”. In: PVLDB 4.12 (2011), pp. 1450–1453. url: http://dblp.u
ni-trier.de/db/journals/pvldb/pvldb4.html#YosefHBSW11.

Zündorf, Albert. Rigorous Object Oriented Software Development with Fujaba. Draft Version 0.3.
2002. url: http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publicat
ions/Zuen02.pdf.

http://dblp.uni-trier.de/db/journals/coling/coling19.html#MarcusSM94
http://dblp.uni-trier.de/db/journals/coling/coling19.html#MarcusSM94
http://www.stickyminds.com/s.asp?F=S10836_MAGAZINE_2
http://www.stickyminds.com/s.asp?F=S10836_MAGAZINE_2
http://dx.doi.org/http://doi.acm.org/10.1145/245108.245121
http://dx.doi.org/http://doi.acm.org/10.1145/245108.245121
https://wiki.cc.gatech.edu/scqualifier/images/c/c6/Resnick-Recommender_systems.pdf
https://wiki.cc.gatech.edu/scqualifier/images/c/c6/Resnick-Recommender_systems.pdf
ftp://ftp.cis.upenn.edu/pub/treebank/doc/tagguide.ps.gz
http://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-2007121319874
http://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-2007121319874
http://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-2007121319874
http://dx.doi.org/10.1016/S1045-926X(05)80012-6
http://dx.doi.org/10.1016/S1045-926X(05)80012-6
http://www.sciencedirect.com/science/article/pii/S1045926X05800126
http://www.sciencedirect.com/science/article/pii/S1045926X05800126
http://dblp.uni-trier.de/db/journals/pvldb/pvldb4.html#YosefHBSW11
http://dblp.uni-trier.de/db/journals/pvldb/pvldb4.html#YosefHBSW11
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/Zuen02.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/Zuen02.pdf

Online references

Anglin, Todd. Using CORS with All (Modern) Browsers. Oct. 3, 2011. url: http://blogs.te
lerik.com/kendoui/posts/11-10-03/using_cors_with_all_modern_brows

ers (visited on 03/24/2014).
Apache. OpenNLP. 2010. url: http://opennlp.apache.org (visited on 07/19/2013).
Appelt, Douglas E. TextPro. Oct. 10, 1999. url: http://www.ai.sri.com/~appelt/Tex
tPro/ (visited on 07/19/2013).

Bork, Manuel. Maven2 Fujaba Plugin 2. Software Engineering Group Kassel. 2007. url: http
://www.se.eecs.uni-kassel.de/~maven/sites/mvnFujabaPlugin/depende

ncies.html (visited on 03/25/2014).
Bostock, Mike. Force Layout. 2012. url: https://github.com/mbostock/d3/wiki/For
ce-Layout (visited on 03/25/2014).

– Mike Bostock. 2011. url: http://bost.ocks.org/mike/ (visited on 03/25/2014).
Brandes, Ulrik, Markus Eiglsperger, and Jürgen Lerner, eds. GraphML Primer. Declaring an

Edge. 2012. url: http://graphml.graphdrawing.org/primer/graphml-primer
.html#GraphEdge (visited on 03/24/2014).

Commons, Creative. Attribution 3.0 Unported. 2007. url: http://creativecommons.org
/licenses/by/3.0/ (visited on 03/25/2014).

Crockford, Douglas. Introducing JSON. 2002. url: http://www.json.org/ (visited on
03/24/2014).

http://blogs.telerik.com/kendoui/posts/11-10-03/using_cors_with_all_modern_browsers
http://blogs.telerik.com/kendoui/posts/11-10-03/using_cors_with_all_modern_browsers
http://blogs.telerik.com/kendoui/posts/11-10-03/using_cors_with_all_modern_browsers
http://opennlp.apache.org
http://www.ai.sri.com/~appelt/TextPro/
http://www.ai.sri.com/~appelt/TextPro/
http://www.se.eecs.uni-kassel.de/~maven/sites/mvnFujabaPlugin/dependencies.html
http://www.se.eecs.uni-kassel.de/~maven/sites/mvnFujabaPlugin/dependencies.html
http://www.se.eecs.uni-kassel.de/~maven/sites/mvnFujabaPlugin/dependencies.html
https://github.com/mbostock/d3/wiki/Force-Layout
https://github.com/mbostock/d3/wiki/Force-Layout
http://bost.ocks.org/mike/
http://graphml.graphdrawing.org/primer/graphml-primer.html#GraphEdge
http://graphml.graphdrawing.org/primer/graphml-primer.html#GraphEdge
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.json.org/

162

Databases, D5: and Information Systems. AIDA Web interface (aida). Max-Planck-Institut In-
formatik. 2011. url: https://gate.d5.mpi-inf.mpg.de/webaida/ (visited on
03/25/2014).

Fang, Yidong. JSON.simple. A simple Java toolkit for JSON. 2008. url: https://code.googl
e.com/p/json-simple/ (visited on 03/24/2014).

Gliffy. Online Diagram Software and Flowchart Software. 2005. url: http://www.gliffy.co
m/ (visited on 07/19/2013).

Google. AngularJS. Superheroic JavaScript MVW Framework. 2010. url: http://angularjs
.org (visited on 03/25/2014).

– Freebase. A community-curated database of well-known people, places, and things. 2007. url: ht
tp://www.freebase.com/ (visited on 03/25/2014).

– Google Drive Apps. 2006. url: http://www.google.com/drive/apps.html (visited
on 07/19/2013).

– GWT Developer Guide - UI Binder. 2009. url: http://www.gwtproject.org/doc/lat
est/DevGuideUiBinder.html (visited on 07/19/2013).

– How to Attribute Freebase on Your Site. 2014. url: http://www.freebase.com/polici
es/index (visited on 03/25/2014).

– Research. Papers about Freebase. 2010. url: http://wiki.freebase.com/wiki/Resea
rch (visited on 03/25/2014).

– Search Cookbook. Freebase API. 2014. url: https://developers.google.com/freeba
se/v1/search-cookbook (visited on 03/25/2014).

– Search Overview. Freebase API. 2014. url: https://developers.google.com/freeba
se/v1/search-overview (visited on 03/25/2014).

– Web Analytics & Reporting – Google Analytics. 2005. url: http://www.google.com/ana
lytics/ (visited on 03/23/2014).

Granger, Chris. Light Table. kickstarter. June 1, 2012. url: http://www.kickstarter.com
/projects/306316578/light-table (visited on 03/24/2014).

– Light Table. Home page. 2013. url:http://www.lighttable.com/ (visited on 03/24/2014).

https://gate.d5.mpi-inf.mpg.de/webaida/
https://code.google.com/p/json-simple/
https://code.google.com/p/json-simple/
http://www.gliffy.com/
http://www.gliffy.com/
http://angularjs.org
http://angularjs.org
http://www.freebase.com/
http://www.freebase.com/
http://www.google.com/drive/apps.html
http://www.gwtproject.org/doc/latest/DevGuideUiBinder.html
http://www.gwtproject.org/doc/latest/DevGuideUiBinder.html
http://www.freebase.com/policies/index
http://www.freebase.com/policies/index
http://wiki.freebase.com/wiki/Research
http://wiki.freebase.com/wiki/Research
https://developers.google.com/freebase/v1/search-cookbook
https://developers.google.com/freebase/v1/search-cookbook
https://developers.google.com/freebase/v1/search-overview
https://developers.google.com/freebase/v1/search-overview
http://www.google.com/analytics/
http://www.google.com/analytics/
http://www.kickstarter.com/projects/306316578/light-table
http://www.kickstarter.com/projects/306316578/light-table
http://www.lighttable.com/

163

– Light Table - a new IDE concept. Blog. Apr. 12, 2012. url: http://www.chris-granger.c
om/2012/04/12/light-table---a-new-ide-concept/ (visited on 03/24/2014).

Hahn, Marcel and Ruben Jubeh. Fujaba Web Runtime. Software Engineering Group Kassel.
2010. url: https://gforge.cs.uni- kassel.de/projects/fujabawebrt/
(visited on 03/25/2014).

Hall, Johan, Jens Nilsson, and Joakim Nivre. MaltParser. 2006. url: http://www.maltpar
ser.org/ (visited on 03/24/2014).

Harris, Tobin. yUML. 2009. url: http://yuml.me/ (visited on 03/24/2014).
– yUML pipeline. July 30, 2010. url: https://groups.google.com/forum/#!msg/yum
l/tLO8Pl88c_0/XsvFV43r25sJ (visited on 07/19/2013).

Hellesøy, Aslak. Cucumber - Making BDD fun. 2008. url: http://cukes.info/ (visited on
03/23/2014).

Herz, Andreas. Draw2D touch. 2007. url: http://draw2d.org/ (visited on 03/25/2014).
Houston, Mike. jGraphViz. 2008. url: http://jgraphviz.sourceforge.net/ (visited

on 03/24/2014).
Jianfeng, Xiao. JAVA UTF-8. 2010. url: http://92jsp.com/blog/default/2010/10/2
7/JAVA-UTF-8 (visited on 01/14/2012).

Kassel, Software Engineering Research Group, ed. Fujaba4Eclipse Update Site. 2013. url: ht
tp : / / www . se . eecs . uni - kassel . de / fileadmin / se / update (visited on
01/04/2014).

Kassel, Team. Fujaba4Eclipe update site. 2012. url: http://www.se.eecs.uni-kassel.d
e/fileadmin/se/update/ (visited on 07/19/2013).

Kesteren, Anne van. Cross-Origin Resource Sharing. Jan. 29, 2013. url: http://www.w3.org
/TR/cors/ (visited on 06/29/2013).

Kudryashov, Konstantin et al. Writing Features. 2014. url: http://docs.behat.org/en
/latest/guides/1.gherkin.html#features (visited on 02/18/2015).

LeBlanc, Andrew. S.Pr.A.W. Stanford Parser API for the Web. 2010. url: https://github.co
m/LeBlanc/SPRAW (visited on 03/24/2014).

http://www.chris-granger.com/2012/04/12/light-table---a-new-ide-concept/
http://www.chris-granger.com/2012/04/12/light-table---a-new-ide-concept/
https://gforge.cs.uni-kassel.de/projects/fujabawebrt/
http://www.maltparser.org/
http://www.maltparser.org/
http://yuml.me/
https://groups.google.com/forum/#!msg/yuml/tLO8Pl88c_0/XsvFV43r25sJ
https://groups.google.com/forum/#!msg/yuml/tLO8Pl88c_0/XsvFV43r25sJ
http://cukes.info/
http://draw2d.org/
http://jgraphviz.sourceforge.net/
http://92jsp.com/blog/default/2010/10/27/JAVA-UTF-8
http://92jsp.com/blog/default/2010/10/27/JAVA-UTF-8
http://www.se.eecs.uni-kassel.de/fileadmin/se/update
http://www.se.eecs.uni-kassel.de/fileadmin/se/update
http://www.se.eecs.uni-kassel.de/fileadmin/se/update/
http://www.se.eecs.uni-kassel.de/fileadmin/se/update/
http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/
http://docs.behat.org/en/latest/guides/1.gherkin.html#features
http://docs.behat.org/en/latest/guides/1.gherkin.html#features
https://github.com/LeBlanc/SPRAW
https://github.com/LeBlanc/SPRAW

164

Loetzsch, Martin. The Dot Markup Language. 2002. url: http://martin-loetzsch.de/D
OTML/ (visited on 03/24/2014).

Mallette, Stephen and Marko A. Rodriguez. GraphSON Reader and Writer Library. 2012. url:
https://github.com/tinkerpop/blueprints/wiki/GraphSON-Reader-and-

Writer-Library (visited on 06/11/2012).
Marneffe, Marie-Catherine de and Christopher D. Manning. Stanford typed dependencies man-

ual. Sept. 2008. url: http://nlp.stanford.edu/software/dependencies_manua
l.pdf (visited on 03/25/2014).

Mordani, Rajiv. JSR-000315 Java™ Servlet 3.0. Maintenance Release. Feb. 6, 2011. url: https:
//jcp.org/aboutJava/communityprocess/mrel/jsr315/index.html (visited
on 03/24/2014).

North, Dan. Introducing BDD. Mar. 2006. url: http://dannorth.net/introducing-bd
d/ (visited on 07/19/2013). Repr. of “Behavior Modification”. In: Better Software Magazine
(Mar. 2006). url: http://www.stickyminds.com/s.asp?F=S10836_MAGAZINE_2.

– What is JBehave? 2003. url: http://jbehave.org/ (visited on 03/23/2014).
Owen, G. Scott. Definitions and Rationale for Visualization. Feb. 11, 1999. url: http://www
.siggraph.org/education/materials/HyperVis/visgoals/visgoal2.htm

(visited on 06/30/2013).
Piwik. Free Web Analytics Software. 2007. url: http://piwik.org/ (visited on 03/23/2014).
Project, BibSonomy. BibSonomy. The blue social bookmark and publication sharing system. 2005.

url: http://www.bibsonomy.org/ (visited on 03/24/2014).
Project, Metro. JAXB Reference Implementation. 2003. url: https://jaxb.java.net/ (vis-

ited on 03/24/2014).
– Mapping cyclic references to XML. 2009. url: https://jaxb.java.net/guide/Mappin
g_cyclic_references_to_XML.html (visited on 03/24/2014).

Schmidt, Ryan. canviz. JavaScript library for drawing Graphviz graphs to a web browser canvas. 2006.
url: http://code.google.com/p/canviz/ (visited on 03/25/2014).

Scholtz, Bauke. maximum length of HTTP GET request? 2010. url: http://stackoverflow
.com/a/2659995/828717 (visited on 03/24/2014).

http://martin-loetzsch.de/DOTML/
http://martin-loetzsch.de/DOTML/
https://github.com/tinkerpop/blueprints/wiki/GraphSON-Reader-and-Writer-Library
https://github.com/tinkerpop/blueprints/wiki/GraphSON-Reader-and-Writer-Library
http://nlp.stanford.edu/software/dependencies_manual.pdf
http://nlp.stanford.edu/software/dependencies_manual.pdf
https://jcp.org/aboutJava/communityprocess/mrel/jsr315/index.html
https://jcp.org/aboutJava/communityprocess/mrel/jsr315/index.html
http://dannorth.net/introducing-bdd/
http://dannorth.net/introducing-bdd/
http://www.stickyminds.com/s.asp?F=S10836_MAGAZINE_2
http://jbehave.org/
http://www.siggraph.org/education/materials/HyperVis/visgoals/visgoal2.htm
http://www.siggraph.org/education/materials/HyperVis/visgoals/visgoal2.htm
http://piwik.org/
http://www.bibsonomy.org/
https://jaxb.java.net/
https://jaxb.java.net/guide/Mapping_cyclic_references_to_XML.html
https://jaxb.java.net/guide/Mapping_cyclic_references_to_XML.html
http://code.google.com/p/canviz/
http://stackoverflow.com/a/2659995/828717
http://stackoverflow.com/a/2659995/828717

165

Selenium, ed. Selenium. Web Browser Automation. 2008. url: http://seleniumhq.org
(visited on 03/24/2014).

Simpson, Kyle. Defining Safer JSON-P. 2010. url: http://www.json-p.org (visited on
03/24/2014).

Software, OpenLink. Virtuoso SPARQL Query Editor. 2009. url: http://dbpedia.org/sp
arql (visited on 03/24/2014).

Solutions, Yatta. UML Lab. 2012. url: http://www.uml-lab.com (visited on 03/25/2014).
– Yatta. 2012. url: http://yatta.de (visited on 03/25/2014).
Stanford. CoreNLP. 2011. url: http://nlp.stanford.edu:8080/corenlp/ (visited on

07/19/2013).
Team, GraphML. The GraphML File Format. 2002. url: http://graphml.graphdrawing
.org/ (visited on 03/24/2014).

thiscouldbebetter. Loading, Editing, and Saving a Text File in HTML5 Using Javascript. Dec. 18,
2012. url: http://thiscouldbebetter.wordpress.com/2012/12/18/loading
-editing-and-saving-a-text-file-in-html5-using-javascrip/ (visited
on 03/25/2014).

Victor, Bret. Inventing on Principle. 2012. url: http://vimeo.com/36579366 (visited on
06/30/2013).

– Up and Down the Ladder of Abstraction. Oct. 2011. url: http://worrydream.com/Ladd
erOfAbstraction/ (visited on 06/30/2013).

W3C. File API. 8. The FileReader Interface. 2013. url: http://www.w3.org/TR/FileAPI
/#FileReader-interface (visited on 03/25/2014).

– HTML Components. Componentizing Web Applications. 1998. url: http://www.w3.org/T
R/NOTE-HTMLComponents (visited on 03/25/2014).

– Same Origin Policy. 2009. url: http://www.w3.org/Security/wiki/Same_Origin
_Policy (visited on 03/24/2014).

Wikipedia. Chess. 2001. url: http://en.wikipedia.org/wiki/Chess (visited on
03/24/2014).

http://seleniumhq.org
http://www.json-p.org
http://dbpedia.org/sparql
http://dbpedia.org/sparql
http://www.uml-lab.com
http://yatta.de
http://nlp.stanford.edu:8080/corenlp/
http://graphml.graphdrawing.org/
http://graphml.graphdrawing.org/
http://thiscouldbebetter.wordpress.com/2012/12/18/loading-editing-and-saving-a-text-file-in-html5-using-javascrip/
http://thiscouldbebetter.wordpress.com/2012/12/18/loading-editing-and-saving-a-text-file-in-html5-using-javascrip/
http://vimeo.com/36579366
http://worrydream.com/LadderOfAbstraction/
http://worrydream.com/LadderOfAbstraction/
http://www.w3.org/TR/FileAPI/#FileReader-interface
http://www.w3.org/TR/FileAPI/#FileReader-interface
http://www.w3.org/TR/NOTE-HTMLComponents
http://www.w3.org/TR/NOTE-HTMLComponents
http://www.w3.org/Security/wiki/Same_Origin_Policy
http://www.w3.org/Security/wiki/Same_Origin_Policy
http://en.wikipedia.org/wiki/Chess

166

Wikipedia. Uses of English verb forms. 2012. url: http://en.wikipedia.org/wiki/Use
s_of_English_verb_forms (visited on 03/25/2014).

Zeigermann, Oliver and Daniel Florey. jmte. Java Minimal Template Engine. 2010. url: https:
//code.google.com/p/jmte/ (visited on 03/24/2014).

Zündorf, Albert. Rule Matching. 2010. url: http://seblog.cs.uni-kassel.de/file
admin/se/courses/MDESS10/MDE04RuleMatching/MDE04RuleMatching.html

(visited on 07/19/2013).
– Story Driven Modeling with Fujaba. Turning Scenarios into Automated Tests. Google Tech Talks.

June 4, 2008. url: https://www.youtube.com/watch?v=nwcsj_Iz4ao (visited on
03/24/2014).

http://en.wikipedia.org/wiki/Uses_of_English_verb_forms
http://en.wikipedia.org/wiki/Uses_of_English_verb_forms
https://code.google.com/p/jmte/
https://code.google.com/p/jmte/
http://seblog.cs.uni-kassel.de/fileadmin/se/courses/MDESS10/MDE04RuleMatching/MDE04RuleMatching.html
http://seblog.cs.uni-kassel.de/fileadmin/se/courses/MDESS10/MDE04RuleMatching/MDE04RuleMatching.html
https://www.youtube.com/watch?v=nwcsj_Iz4ao

Figures

Prefixes have the following meaning:
GR = Grammatical Relations, ISP = Informal Story Pattern, FSP = Formal Story Pattern
WG = Working Graph, SP = Story Pattern, SR = Structurization Rule

An introduction to Storyboarding 11
1 Informal Object Diagram 13
2 Verbose Collaboration Diagram 14
3 Derived Class Diagram 14
4 Object game 15

Foundations of instant storyboarding 19
5 eDOBS, the eclipse Document Object Browsing System 21
6 The hierarchical “layer cake” 22
7 Story diagram for piece.move(newpos:Field) 25

168

Instant Storyboarding 31
8 The Masterplan for instant storyboarding 36
9 Grammatical relations for the first sentence 39
10 Grammatical relations for both sentences 39
11 Screenshot: compact layout 40
12 Screenshot: extended layout 42
13 Class Diagram: core architecture 43
14 OpenNLP Class Diagram 55
15 FUML: Grammar Overview 67
16 GR: “Alice is playing Chess.” 69
17 Shrunken Grammatical relations 74
18 SP: Create an object for every proper noun 77
19 SP: Delete vertexes 77
20 FUML valueExpression grammar excerpt 79
21 WG: Initial working graph 81
22 SP: Initial Structurization Pattern 81
23 SP: Identifying by type options 81
24 SP: Choosing an initial search option 82
25 WG: Collecting possible candidates 82
26 WG: Choosing a candidate 82
27 SP: Marking the match 83
28 SP: Identifying to many options from current match 83
29 SP: Choosing a search option 83
30 WG: Collecting possible candidates 83
31 WG: Choosing a candidate 84
32 SP: Marking the match 84
33 SP: Identifying to one options from current match 84
34 SP: Choosing a search option 84
35 WG: Collecting possible candidates 85

169

36 WG: Choosing a match 85
37 SP: Marking the match 85
38 SP: Identifying optional to many options from current match 86
39 WG: Creating an object 86
40 WG: Creating origin link 86
41 WG: Assign attributes 87
42 SP: Backtrack third search option 87
43 WG: Backtrack third search option 87
44 SP: Backtrack second search option 88
45 WG: Backtrack third search option 88
46 SP: Backtrack first search option 88
47 WG: Backtrack first search option 89
48 FUML: red / lime node 89
49 FUML: lime / blue node 89
50 FUML: blue / red node 89
51 FUML: colors excerpt 90
52 GR: ”Alice and Bob are playing chess.” 91
53 SP: From grammar to object diagram: new object for nsubj 92
54 SP: From grammar to object diagram: new object for dobj 92
55 SP: From grammar to object diagram: new object for nsubj or dobj 92
56 WG: From grammar to object diagram: intermediate result 1 93
57 SP: From grammar to object diagram: create predicate link 93
58 WG: From grammar to object diagram: intermediate result 2 94
59 SP: From grammar to object diagram: cleanup 94
60 WG: From grammar to object diagram: final result 94
61 ISP: Alice and Bob are playing Chess 98
62 SP: given name recommendation 102
63 SP: chess is a game 107
64 GR: start scenario 111

170

65 GR: end scenario 112
66 SP: match prepositions 114
67 SP: ownership 115
68 FUML: call syntax 116
69 WG: example collaboration statement 116
70 SP: Data Model, create object for proper noun 117
71 SP: Data Model, create object for noun 117
72 SP: Data Model, link noun and object 117
73 SP: Data Model, aggregate compound noun 118
74 SP: Data Model, aggregate compound proper noun 118
75 SP: Data Model, create attribute 119
76 SP: Data Model, link coreferences to noun 119
77 SP: Data Model, create owner link for poss relation 119
78 SP: Data Model, create link for predicates 120
79 SP: Data Model, create collaboration statement for VBZ 120
80 SP: Data Model, create collaboration statement parameter 121
81 WG: Data Model, informal object diagram 122

Instant Examples 131
82 SP: Alice’s or Bob’s turn 133
83 GR: Moving from e2 to e4 134
84 SR: capture prep_from 135
85 SR: capture prep_to depending on prep_from 136
86 FSP: prep_to depending on prep_from 136
87 SP: Web shop example 137
88 GR: The passive 138
89 SP: Web shop example (fixed) 139

171

90 SP: Buy last coffee start 140
91 SP: Buy last coffee end 140
92 GR: coffee machine example 141
93 GR: coffee example without machine 142
94 GR: coffee example without machine, grammar change I 143
95 GR: coffee example without machine, grammar change II 144
96 SP: coffee example after gherkin structurization 146
97 SR: add the machine 147
98 SP: coffee example with the machine 148

Listings

Prefixes have the following meaning:
TS = Textual Scenario, SR = Structurization Rule

An introduction to Storyboarding 11
1 TS: A simple chess scenario 13

Foundations of instant storyboarding 19
2 Gherkin chess opening move scenario 24

Instant Storyboarding 31
3 Table based layout 45
4 Div based layout 47
5 „Alice is playing Chess“ OpenNLP parse 49
6 „Alice is playing Chess“ Stanford parse 49

174

7 GraphSON example 52
8 JSON-P call with GWT 53
9 Parser web service URL format 54
10 „Alice is playing Chess“ graphson 57
11 yuml.me notation example 63
12 FUML: “Alice is playing Chess.” 66
13 Apache Rewrite Rule 68
14 .dot “Alice is playing Chess.” 70
15 jmte .dot template 71
16 SR: Create an object for every proper noun 77
17 HTML title tags at vorname.com 101
18 PHP: extract names from FUML 103
19 PHP: build freebase query 104
20 PHP: calculate score for types 105
21 PHP: encode recommendation in FUML 106
22 PHP: send JSON-P encoded list of recommendations 106
23 Extended chess scenario 111
24 SR: match prepositions 114
25 SR: ownership 115
26 JMTE: collaboration statement 116
27 Java: start scenario set up 129

Instant Examples 131
28 SR: Change link verbs to nouns 132
29 TS: Add turn example 132
30 TS: Add source example 133
31 SR: capture prep_from 134

175

32 SR: capture prep_to depending on prep_from 135
33 TS: Web shop example 137
34 SR: swap order for add to 138
35 SR: add in link for passive sentence 139
36 SR: change type of the shopping cart to Cart 139
37 Gherkin Buy last coffee scenario 140
38 Gherkin Buy last coffee start and end scenario 140
39 SR: gherkin structurization 145
40 Gherkin Buy last coffee start and end scenario with the machine 146
41 SR: add the machine 147

Tables

Instant Storyboardingg 31
1 FUML notations and their visual representation 64
2 Part of speech tags 76

	An introduction to Storyboarding
	Foundations of instant storyboarding
	Open Questions
	Instant Storyboarding
	Web based storyboarding
	Instant grammatical relations
	Instant graph visualization
	Instant informal story patterns
	Instant formal story patterns
	Instant storyboards
	Instant acceptance tests

	Instant Examples
	Conclusion
	Outlook
	Bibliography
	List of Figures
	List of Listings
	List of Tables

