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Summary

Sensing with electromagnetic waves having frequencies in the Terahertz-range is
a very attractive investigative method with applications in fundamental research
and industrial settings. Up to now, a lot of sources and detectors are available.
However, most of these systems are bulky and have to be used in controllable
environments such as laboratories. In 1993 Dyakonov and Shur suggested that
plasma waves developing in �eld-e�ect-transistors can be used to emit and detect
THz-radiation. Later on, it was shown that these plasma waves lead to recti�ca-
tion and allows for building e�cient detectors. In contrast to the prediction that
these plasma waves lead to new promising solid-state sources, only a few weak
sources are known up to now. This work studies THz plasma waves in semi-
conductor devices using the Monte Carlo method in order to resolve this issue.
A fast Monte Carlo solver was developed implementing a nonparabolic band-
structure representation of the used semiconductors. By investigating simpli�ed
�eld-e�ect-transistors it was found that the plasma frequency follows under equi-
librium conditions the analytical predictions. However, no current oscillations
were found at room temperature or with a current �owing in the channel. For
more complex structures, consisting of ungated and gated regions, it was found
that the plasma frequency does not follow the value predicted by the dispersion
relation of the gated nor the ungated device.

Keywords: Monte Carlo method, plasma oscillations, �eld-e�ect-transistors, Ter-
ahertz



Zusammenfassung

Der messtechnische Einsatz elektromagnetischer Strahlung im Terahertzfrequenz-
bereich erfreut sich, sowohl in der Grundlagenforschung als auch in der industri-
ellen Anwendungen, in jüngerer Zeit immer gröÿerer Nutzung. Heutzutage exis-
tiert eine Vielzahl von Quellen und Detektoren für diesen erst in den letzten zwei
Jahrzehnten erschlossenen Spektralbereich. Trotz des rasanten technologischen
Fortschritts sind die Meisten dieser Systeme jedoch auf kontrollierbare Labor-
umgebungen beschränkt. Dyakonov und Shur schlugen 1993 einen neuartigen
Mechanismus vor, der auf der Instabilität von Plasmawellen in einem Felde�ekt-
transistorkanal beruht, welcher sich sowohl zur Detektion als auch Emission von
THz-Strahlung eignet. Auf dieser Grundlage wurden sehr erfolgreich gleichrich-
tende, bei Raumtemperatur arbeitende, Detektoren entwickelt. Gegenüber der
durch die Detektorentwicklung geschriebenen Erfolgsgeschichte stehen nur weni-
ge auf dieser Grundlage arbeitende Emitter. Um diesen Missstand zu ergründen,
wurde in dieser Arbeit ein Simulationsprogramm, basierend auf der Monte Carlo
Methode, entwickelt. Durch numerische Simulation von vereinfachten Felde�ekt-
transistoren soll ein tieferes Verständnis über THz Plasmawellen erlangt werden.
Aufgrund des hohen Rechenaufwandes wurde auf eine stark parallelisierte Imple-
mentierung und ein einfaches nichtparabolisches Halbleiterbandstrukturmodell
gesetzt. Für einfache Strukturen ohne statt�ndende Anregung folgt die Plas-
mafrequenz den analytischen Vorhersagen. Allerdings konnte bei zunehmender
Temperatur oder �ieÿendem Drainstrom eine starke Dämpfung der Plasmaoszil-
lationen beobachtet werden. Für komplexere Strukturen, welche aus Bereichen
mit und ohne Gate bestehen, kann die beobachtete Plasmafrequenz nicht aus der
einfachen analytischen Beschreibung abgeleitet werden.

Stichwörter: Monte Carlo Methode, Plasmaoszillationen, Felde�ekttransistoren,
Terahertz
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1. Introduction & Motivation

The Terahertz (THz) frequency range is often stated as the region of the elec-
tromagnetic spectrum between 300GHz and 10THz. It was referred to as the
THz gap, since it could not be accessed by using conventional electronic (diodes,
mixers and ampli�ers) nor optical sources (LEDs, lasers, photodiodes). Today
a lot of di�erent technologies accessing this frequency range are available and
the gap can be considered closed. Especially detectors are well developed and
real-time cameras are commercially available. However, the �rst commercially
available system making use of THz radiation was �rst-time available in the year
2000 [1].
Promising advantages of the THz frequency range opened the window to inter-

esting new applications. When compared to microwaves, the achieved resolution
in imaging applications is much better, due to the smaller wavelength. Addition-
ally, the radiation is still able to penetrate most materials which are opaque in
the optical range. Mm-waves impose no risk to its users since it is non-ionizing.
In the scienti�c �eld THz waves produced by ultrashort pulses have helped re-
searchers to investigate carrier dynamics in semiconductors on an fast timescale
[2]. On polymers, a morphological study allows for distinguishing structural
changes [3]. In molecules the low-energetic THz waves excite intramolecular,
vibrational and rotational transitions, which make it ideally suited as a spectro-
scopic tool [4�7]. However, the use of mm-waves is not only limited to scienti�c
research and has widely deployed in various real-world scenarios: in medical
studies THz waves have been used to perform in vivo burn diagnosis [8]. Human
skin a�ected by cancer and demineralized teeth re�ect THz waves di�erent com-
pared to healthy cells/teeth [9]. Many liquids or gaseous substances have unique
�ngerprints formed by absorption peaks in the lower far-infrared region. These
�ngerprints can be used as a detection mechanism in security motivated research
�elds [10, 11]. Even cameras have been developed, revealing concealed perils
[12]. THz waves are highly absorbed by water, which makes it an ideally sensor
for water content detection in plants and allows for an e�ective investigation of
drought stress [13]. Additionally, proteins and polysaccharides show absorption
bands in this frequency range, allowing a proper distinction of ingredients [14].
The transparency of polymers for THz waves has been extensively studied in
non-destructive testing scenarios where welding joints, inclusions and material
composition has been evaluated [15].
Up to now a wide range of sources and detectors are available: emerging tech-
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1. Introduction & Motivation

nologies from both sides of the electromagnetic spectrum have closed the THz
gap. Sources relying on optical techniques mostly make use of femtosecond lasers
or ampli�er systems. A quite prominent approach is the excitation of photocon-
ductive antennas acting as ultrafast switches and detectors. Commonly referred
to as THz time-domain spectroscopy (THz-TDS) [16]. Similar approaches using
ultrafast lasers with pulses in the lower femtosecond-range use the photo-Dember
e�ect where the excited electrons and holes di�use in the material and produce
an ultrashort current [17]. Optical recti�cation in nonlinear crystals like lithium-
niobate driven by ampli�er systems have proven to emit strong pulses reaching
several 100 kV cm−1 [18]. Pulsed THz generation and detection from ampli�er-
generated air plasma has signi�cantly improved the available bandwidth of mod-
ern spectrometers far beyond 10THz [19]. Additionally, continuous-wave (cw)
sources are mostly based on di�erence frequency generation (DFG) in a nonlinear
crystal [20] or photoconductive antennas [21], reaching more than 2THz. Since
most of these systems are rather bulky and sensitive to environmental in�uences
due to the involved laser systems, they are mostly used in laboratories.
In contrast to optical sources, electronic sources rely often on frequency upcon-

version: frequency multiplier chains are available at cryogenic temperatures up
to a frequency of 2.5THz delivering an output power of 1 µW [22, 23]. As direct
sources diodes make use of a negative-di�erential resistance, realized in GUNN-
, IMPATT- or RT-diodes [24�26]. These two-terminal devices cover mostly the
lower THz frequency range up to several hundred GHz. Today, MMIC-technology
deploying HEMTs reach record-breaking maximum oscillation frequencies be-
yond 1THz. A comprehensive review is given by Samoska [27].
With the pioneering work of Tsui [28] in the year 1980, it was demonstrated

that emission of far-infrared radiation can be observed by exciting plasma waves.
These longitudinal waves can be coupled via a grating to an electromagnetic wave
and measured. In the 1990s, Dyakonov [29] suggested in a theoretical study that
plasma waves can exist in a �eld-e�ect-transistor with a submicrometer-size gate
length. Based on his predictions that an incoming THz wave will be recti�ed due
to the plasma wave behaviour, e�ective detectors have been developed. However,
up to now no e�cient solid-state sources are available relying on plasma waves.
The goal of this thesis is to provide a comprehensive view on device physics.
Furthermore, the question should be answered why there are up to now no sources
available and what can be done to overcome these circumstances.
This work studies plasma oscillations in semiconductor devices using the Monte

Carlo (MC) method for carrier transport, providing a solution of the Boltzmann
transport equation (BTE). In contrast to macroscopic models like drift-di�usion
or hydrodynamic transport models, the MC method provides an accurate solu-
tion down to the deep submicrometer region. Furthermore, the MC method is
able to naturally include �uctuation phenomena and is therefore ideally suited
as an investigative tool. Its ability to include real scattering processes, rather

2



than relying on unmotivated or arbitrarily chosen relaxation constants, will be
used to give an estimation of the involved current densities and electric �elds.
Most readers of this thesis may originally come from the frontiers of THz

science, rather than semiconductor device physics. Thus, chapter 2 introduces
promising new concepts of generating THz radiation. Afterwards, a historical
review of the plasmonic approach based on Field-E�ect-Transistor- (FET) emit-
ters and detectors is given. The chapter ends with a brief overview describing
the basics of the Monte Carlo method as a transport model describing carrier
transport in semiconductor devices.
During this study a device simulator for the MC method solving the Boltz-

mann transport equation has been implemented using the Fortran programming
language. Chapter 3 summarizes the developed solver and the incorporated mod-
els. The treatment of particles in a device simulation, the implemented materials
and scattering rates are described.
The correct implementation of the developed solver has been validated against

experimental and theoretical data, describing the mobility as a function of the
electric �eld and doping level. The results of these simulations are given in
chapter 4.
Chapter 5 �nally discusses the presence of plasma wave in FET-like structures

and presents the dispersion of these waves. The most important properties such
as the mode pro�les, the in�uence of the lattice temperature and a current �ow
in the channel are investigated.
Chapter 6 shows simulations performed for combinated devices consisting of

ungated and gated regions demonstrating properties of plasma modes in more
complex devices.
Chapter 7 summarizes the key achievements of this work.
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2. Background Information

This work deals with the mechanism of generating THz radiation by using plasma
waves in �eld-e�ect-transistors (FETs). Therefore a short overview of di�erent
concepts in generating and detecting THz waves was given in the introductory
chapter. The �rst part of this chapter presents two novel di�erent approaches
for THz sources. Followed by the presentation of the plasmonic approach which
will be studied later. The chapter ends with an introduction of the Boltzmann
transport equation and its numerical solution by the Monte Carlo method for
charge carrier transport in semiconductors.

2.1. Sources for THz Radiation

For practical or industrial use most of the already introduced technologies are
bulky and expensive. In the last years new concepts from both sides of the
electromagnetic spectrum have evolved, namely planar GUNN diodes and THz
quantum cascade lasers (THz QCLs). At room temperature they can deliver
high output power over a wide frequency range by maintaining a small device
size. The following section will discuss the working principle of these devices.
Afterwards the plasmonic approach will be introduced.

2.1.1. THz Quantum Cascade Lasers

Quantum cascade lasers (QCLs) are unipolar devices exploiting intersubband
transitions to deliver gain. The energetic distance between subbands is in the
order of a few tens of meV. Thus the emitted radiation is in the long wavelength
region and covers the infrared and THz range. While QCLs in the mid-infrared
range (approximately 4-25 µm) work at room temperature and deliver several
watt of output power [30], di�culties arise moving to lower THz frequencies [31]:

• Closely spaced subbands make it di�cult to inject or remove carriers in or
from their destined band.

• The waveguide needs to con�ne the mode as far as possible to the ac-
tive region since the surrounding layers lead to high losses by free carrier
absorption.

• At lower frequencies high temperature gets more di�cult because the lower
radiative state will be �lled by thermally excited electrons. A higher
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2. Background Information

phonon population results in an increased optical phonon rate depopu-
lating the upper state.

Empirically it was found that the maximum operating temperature scales with
the emission frequency as T = ~ω/kB [31]. Today, most devices can be e�ectively
reduced to a 3-level system [32], shown in �gure 2.1. Resonant tunneling (RT) is
injecting carriers to the highest subband 3. The THz photon is emitted by the
transition 3 → 2. Finally a population inversion is obtained by the RT process
and a fast depopulation of subband 2 via optical phonon scattering. A record

1

2
31'

RT

Injector well Injector barrier

xN

ħω

ħωLO

Figure 2.1.: Schematic of the 3-level system processes

temperature of 186K was demonstrated at a frequency of 3.9THz with 63mW
output power [33].

The further development of THz QCLs at room temperature is problematic
and a new design using di�erence frequency generation (DFG) was demonstrated
[34]. The QCL is lasing at two di�erent wavelengths in the infrared. While they
share the same cavity a high second order susceptibility allows for generation of
the di�erence frequency, lying in the THz region. The �rst demonstration reached
only a weak output power of 300 nW at room temperature with a frequency of
4THz. Using a new design this was later pushed to 8.5 µW. One of the main
problems is that THz radiation is nearly completely absorbed in the active region
by free carrier absorption and only photons generated near the laser's facets
can exit the device. A Cherenkov DFG technique was introduced allowing for
an e�ective extraction of the THz photons throughout the whole device. The
photons exit the device via the semi-insulating substrate [35]. A 10 times higher
conversion e�ciency has been obtained compared to conventional design with
an output power of 500 nW. By an optimized heat transport and pump design
1.4mW at 3.6THz has been demonstrated [36] at room temperature.
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2.1. Sources for THz Radiation

2.1.2. Planar GUNN Diodes

GUNN diodes are often used as sources in the GHz range and can be pushed into
the lower THz frequency range. An experimentally found lower bound for vertical
devices seems to be a transit region of 1.5µm with a corresponding frequency of
the fundamental mode of 60GHz. Simulations and measurements suggest that
this limit could be overcome by a planar design of the diode [37, 38].
The device structure is similar to a HEMT without a gate, shown in �gure

2.2(a). The conducting channel is formed by a material with a lower conduction
band energy than the surrounding layers. One or several delta-doping layers
provide free carriers which di�use into the channel. Depending on the applied

GaAs

AlGaAs
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+δ-doping

n-GaAs

Cathode Anode

(a) Device structure
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(b) Frequency behaviour (data from [24])

Figure 2.2.: Schematic of the planar GUNN diode and maximum oscillation fre-
quency as a function of the cathode-anode distance

voltage electrons move from the source contact to the channel and are acceler-
ated. A high enough electric �eld can push these fast carriers to the L-valley in
the semiconductor's band structure, slowing them down as the e�ective mass is
higher compared to the Γ-valley. This leads to the formation of charge domains
near the drain contact and exit the device.
A few conditions have to be met allowing the charge domains to form. The

surface charge needs to deplete the surface and non-channel layer to form a �at
potential pro�le along the vertical direction. There should be no competing
conduction paths. However, a too strong depletion pushes the electrons towards
the bottom of the channel and the travelling domains form ine�ectively.
First experiments have been carried out in [38, 39], reaching already oscillation

frequencies of 83 and 108GHz. The latter reports an output power of 50 nW.
Large improvements were found by switching to a di�erent material system, Al-
GaAs/GaAs was replaced with the faster InGaAs/InP system [24]. 100 µW have
been measured at a fundamental frequency of 164GHz. Reducing the source-
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2. Background Information

drain distance to 600nm has led to an oscillation frequency of 307GHz with a
slightly lower output power of 28 µW [40]. The measured values match quite well
to performed Monte Carlo simulations [24, 37].
A di�erent mechanism achieve GUNN-like oscillations has been supposed by

Mateos and his group in [41, 42]. Induced by the high electric �eld peak through
the recess-drain edge electrons gain enough energy to scatter into the L-valley.
Degeneracy in the channel suppresses most scattering processes and pushes the
carrier even faster to high velocities. The GUNN domain travel between the
recess and drain contact. Higher oscillation frequencies are expected but up to
now no experimental proof is available.

2.2. Plasmonic Approach

The term plasmonics relates to techniques and phenomena involving the presence
of plasma waves in structures. The most prominent example is maybe the sur-
face plasmon polariton where a electromagnetic wave is excited at an metal- or
semiconductor-air interface. It involves the coupled propagation of the electro-
magnetic wave at the interface and the longitudinal oscillation of charges inside
the metal or semiconductor.
Under certain conditions plasma waves can develop in the conducting channel

in a FET. In short channels in the submicrometer range and due to the fact
that the plasma wave velocity is higher than the electron drift velocity these
oscillations have frequencies in the THz range. This chapter gives a review of
the established theoretical models and shows later on the results of detection
and emission experiments.

2.2.1. Prior Results

The existence of plasma waves, or plasmons, in FETs has been shown far before
the hydrodynamic model of Dyakonov and Shur was established. The �rst exper-
iments have been carried out in [43]. They used a grating to couple far-infrared
radiation to the inversion layer of a n-channel MOSFET, kept at cryogenic tem-
peratures, and measured the absorption spectrum. The appearing absorption
peak was denoted to the excitation of plasma waves in the channel. The plasma
frequency is given by the theory in [44]

ω2
p =

ne2

m∗
k (εSi + εOx coth(kd))−1 (2.1)

k = 2π/l (2.2)

where ωp is the plasma frequency, n the electron concentration, m∗ the semi-
conductors e�ective mass, e the elementary charge, the dielectric constant of
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2.2. Plasmonic Approach

the di�erent material ε and the gate to channel distance d. The wave vector
k is given by the length l of the grating deposited on the device. A shift in
the plasma peak is induced by tuning the electron concentration with changing
the gate voltage. Following the same theory [28] demonstrated the emission of
far-infrared radiation with a similar device.

2.2.2. Dyakonov-Shur Model

Beginning in 1993 the topic gets a revival. Dyakonov and Shur established a
new formalism based on hydrodynamic equations. They suggested that a FET
channel serves as a cavity for plasma waves with frequencies in the THz range
[29]. The proposed model treats the electron gas like a electron �uid, where the
following assumptions have to been made:

• Many electron-electron collisions

• Non-degenerated materials: Pauli principle can be neglected

• Ballistic transport: no scattering with impurities and phonons

• Linear regime: all quantities in the device are constant

The proposed equations are the Euler equation, known from �uid dynamics, and
the continuity equation:

∂v

∂t
+ v

∂v

∂x
+

e

m∗
∂U

∂x
+
v

τ
= 0 (2.3)

∂n

∂t
+
∂(nv)

∂x
= 0 (2.4)

With the average drift velocity v, the electric potential U , the momentum relax-
ation time τ and the gate to channel capacitance C. The quantities n, v and U
are a function of time and position. Furthermore the gradual channel approxi-
mation is applied, meaning that the transverse electric �eld is much larger than
the longitudinal �eld along the channel. The electron concentration can then be
expressed by:

n = CU/e (2.5)

C = ε/d (2.6)

The device structure is a simpli�ed FET, shown in �gure 2.3. The gate covers
the whole device and the channel is surrounded by a non-conducting dielectric
layer. By applying a source-drain voltage a current �ows, where the current
density can be controlled by the gate.
Dyakonov and Shur solve the system with the premise of asymmetric boundary

conditions. The voltage potential is �xed at the source and a constant current at
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Source Drain

Gate

Dielectric

Channel

Channel Length l

Gate to Channel
    Distance d

Channel Thickness
             W

Figure 2.3.: The simpli�ed gated FET structure

the drain contact is assumed. These boundary conditions can be compared with
the transmission line model, a zero impedance (short circuited) at the source
and an in�nite impedance at the drain (open). It was shown that the velocity
di�erence between waves moving towards the source and drain is di�erent and
leads to an instability in the steady state current �ow. The growth of plasma
waves is damped by scattering with phonons or impurities and the viscosity of
the electron �uid.
Later on the model was extended to include the viscosity [45] and for transient

simulations showing the plasma wave growth [46]. The hydrodynamic transport
model was used to show that in analogy to the choking of sound waves in a pipe,
the choking of electron �ow can be a current saturation mechanism at cryogenic
temperatures [47].
In [48] Dyakonov has made the same considerations for an ungated structure.

Deploying asymmetric boundary conditions leads to an instability and plasma
waves develop, having a higher frequency compared to the gated structure. The
dispersion relations given by [29, 48] can be written as:

fungated =
1

2π

√
e2nk

2εm∗
(2.7)

fgated =
1

2π

√
e2nd

εm∗
k (2.8)

With the assumed boundary conditions the device length corresponds to a λ/4
distance and the wave vector can be written as k = π/2L. Figure 2.4 plots the
dispersion relations for the gated and ungated cases, a dielectric surrounding
with εr = 1 is assumed. Here, the term dispersion relations relates the resonant
frequency to the concrete device geometry. A higher permittivity reduces the
plasma frequency.

2.2.3. Application of the Dyakonov-Shur Instability

The publication of the proposed mechanism to generate plasma waves with fre-
quencies in the THz range has been followed by a vast number of experimental
observations. It has been used for detection as well as for emission experiments.
In the next two sections a review of the major achievements is given.
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Figure 2.4.: Dispersion relations for the gated and ungated structures

2.2.3.1. Detection of THz Radiation

The detection process of THz radiation using the Dyakonov-Shur approach was
�rst suggested in [49]. An incoming THz signal is fed to the structure as a gate-
source voltage and due to the nonlinear plasma wave properties of the channel a
constant source-drain voltage is generated through a recti�cation process. The
most important part of the rectifying properties can be understood by the prod-
uct nv in the continuity equation. Both quantities depend on the gate voltage,
hence these oscillations generate a time-independent electric �eld [50]. Depend-
ing on the responsivity as a function of the frequency the theory distinguishes
between a resonant and a nonresonant detection process. In the case of resonant
detection the responsivity function exhibits sharp peaks at the plasma frequency
and its multiples. The nonresonant case shows a nearly �at responsivity curve.
A stronger damping of the plasma waves in the channel leads to nonresonant
response.
Experimentally, a nonresonant detection at cryogenic temperatures was �rst

shown in [51], followed by the observation of resonant detection in [52, 53] at cryo-
genic temperatures and later on at room temperature [54]. The measured respon-
sivity functions and the plasma frequency coincided well with the Dyakonov-Shur
theory. The theory gets supported by the fact that the responsivity increases
when the asymmetry of the boundary conditions increase in terms of a higher
drain current [55].
Today THz real-time cameras fabricated in a CMOS process are available in-

cluding 1000 pixel and a noise equivalent power (NEP) in the range of tens of
pW
√
Hz−1. A nonresonant detection scheme readily allows for room tempera-

ture operation [56, 57].
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2. Background Information

2.2.3.2. Emission of THz Radiation

The hydrodynamic theory already states that the generated plasma waves can
lead to the emission of electromagnetic radiation. Since the plasma waves are
longitudinal waves they can not couple to the transversal electromagnetic waves.
Nevertheless there is a vast number of emission experiments, proving the exis-
tence of such a mechanism. The emission process is explained by the assumption
that the gate contact acts as an antenna.

Millimeter-wave emission by a GaN HEMT was measured in [58] at 8K. The
emission peak was centered at 75GHz and took place when the transistor worked
in the linear regime. However the emission frequency was far lower than the cal-
culated one. In [59] the authors observe emission between 400GHz and 1.4THz
at cryogenic temperatures. The emission was tunable with the drain voltage and
appeared after reaching a threshold current. Boundary conditions were achieved
by short-circuiting the gate and source and driving the transistor into saturation.
Overall the measured power was in the nW range. Dyakonova characterized Al-
GaN/GaN and InGaAs/InAlAs HEMTs [60]. Devices on the basis of the GaN
material system even sustained emission at room temperature. Like reported ear-
lier the emission was threshold-like and the plasma frequencies were matching
with the ungated/gated theory. Nevertheless no gate dependency was observed.
The output was estimated to be 100 nW. Similar observations have been made
in [61]. Additionally a decrease in the linewidth was observed with increasing
drain current. It was argued that a larger drain current supports the growth of
plasma waves and decreases their damping. The �rst observation of the plasma
frequency tunability by changing the gate voltage and thus depleting the elec-
tron gas has been made in [62]. A signi�cant shift from 750GHz to 2.1THz was
observed. The authors claim that in previous publications no shift was observed
because the gate voltage window was too small.

A japanese group fabricated a HEMT-like device structure with a grating gate
deposited on top [63]. The emission was stimulated by cw or pulsed laser light
illumination and electrical excitation. The emission spectrum was claimed to be
due to excited plasmons in the gated region. Still the output power was 100 nW.
The device was improved by substituting the metal gate contacts with regions of
a doped semiconductor [64, 65]. Using the new gate contacts the emission was
pushed to 1 µW. In all experiments no gate tuning was observed.

Strong THz emission with an output power of 1.8µW was detected using a
HEMT-like device in [66]. There was no gate tuning possible and neither were
emission peaks observed.
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2.3. Monte Carlo Method

2.3. Monte Carlo Method

This thesis investigates transport properties and noise phenomena in submicrom-
eter sized FET-like structures. As the tool of choice the numerical investigations
are performed using the Monte Carlo (MC) method. It is a stochastic approach
for solving the Boltzmann transport equation (BTE) and relies on the generation
of random numbers. The MC method naturally includes �uctuations and is valid
at high energies under strong nonequilibrium conditions, as it includes the band
structure or simpli�ed band models. Furthermore it models nonlocal e�ects like
the velocity overshoot correctly which drift-di�usion or hydrodynamic transport
models under- or overestimate. The following section introduces the BTE and
the MC algorithm derived from a path integral formulation.
Usually complex conduction phenomena need to be treated by an exact quan-

tum mechanical description, involving the solution of many-body problems. For-
tunately the conduction properties, the motion of electrons or holes, can be
described by the kinetic theory of gases when the mean free path is larger than
the de Broglie wavelength. In contrast to gases the main scattering mechanism
is not scattering of particles of the same type, but rather scattering with other
quasi particles like phonons or with impurities [67].
At thermal equilibrium the distribution function is given by the Fermi-Dirac

distribution. In nonequilibrium the carriers are pushed to higher energies and
the distribution can be described with the BTE f , which is given by [68]:(

∂

∂t
+

F(r,k, t)

~
∇k + v(r,k)∇r

)
f(r,k, t) = S (2.9)

The force acting on charges is given by F and v denotes the group velocity of
electrons given by the gradient of the band structure. On the right hand side of
the BTE a scattering term S occurs which describes the in- and outscattering
in the volume element. The term S(k,k′) gives the scattering rate from a state
k in the state k′ which is weighted by the distribution itself and a factor 1 − f
covering the Pauli exclusion principle.

F = −q (E · v ×B) (2.10)

v =
∇kEc(k, r)

~
(2.11)

S =

∫
dk′

(2π)3

(
S(k′,k)f(r,k′, t)[1− f(r,k, t)]− S(k,k′)f(r,k, t)[1− f(r,k′, t]

)
(2.12)

f is not known from the start which makes the BTE nonlinear in three ways:

• Right hand side contains the Pauli exclusion factor (1− f)
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2. Background Information

• Scattering rates depend on f , especially the carrier-carrier scattering

• The force F acting on particles depends on the distribution function

The MC method is applicable to the linear BTE and the above listed cases have
to be included using a self-consistent simulation scheme. Using a path integral
formulation [68], the linear BTE can be expressed as a conditional probability
density

p(ζ, t|ζ0, t0) = p0(ζ, t|ζ0, t0) (2.13)

+

∫ t

t0

∫ ∫
p(ζ, t|ζ ′1, t1)S(ζ ′1|ζ1)p0(ζ1, t1|ζ0, t0)dζ ′1dζ1dt1 (2.14)

where ζ = (r,k) gives the particle state. p0(ζ, t|ζ0, t0) describes the conditional
probability density that a particle at time t0 in state ζ0 shows up in state ζ at
time t without being scattered. The second term depicts a particle propagation
without scattering from state ζ0 at time t0 to (ζ1, t1), followed by a scattering to
state ζ ′1 and �nishes drifting to state (ζ, t). p0 is given by

p0(ζ, t|ζ0, t0) = δ(ζ − ζdrift(t|ζ0, t0)) exp

(
−
∫ t

t0

S(ζdrift(τ |ζ0, t0))dτ

)
(2.15)

where ζdrift denotes the new state after applying Newton's equation of motion.
In equation 2.14 the conditional probability density appears on the right hand

side in the integral. Thus it can be inserted an in�nite time into itself and the
Neumann series results:

p(ζ, t|ζ0, t0) = p0(ζ, t|ζ0, t0)

+

∫ t

t0

∫ ∫
p0(ζ, t|ζ ′1, t1)S(ζ ′1|ζ1)p0(ζ1, t1|ζ0, t0)

× dζ ′1dζ1dt1

+

∫ t

t0

∫ ∫ ∫ t

t1

∫ ∫
p0(ζ, t|ζ ′2, t2)S(ζ ′2|ζ2)p0(ζ2, t2|ζ ′1, t1)

× S(ζ ′1|ζ1)p0(ζ1, t1|ζ0, t0)dζ ′2dζ2dt2dζ ′1dζ1dt1

+ . . .

(2.16)

The �rst term gives the probability density for a carrier drift from time t0 to
t without being scattered. The second term describes a particle propagation
from time t0 to t1, followed by a scattering process from state ζ1 to ζ ′1 and a
drift phase from t1 to t. An additional drift and scattering event is added for
every higher term. Equation 2.16 can be interpreted as an in�nite number of
trajectories. Consequently a MC simulator performs a series of drift processes
which are interrupted by scattering events.
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2.3. Monte Carlo Method

The MC algorithm needs as input the probability, or the drift time, for the
�rst scattering event. However, the direct evaluation of the integral in equation
2.15 is time consuming as the scattering rate depends on the particle state. A
�ctitious scattering mechanism called self-scattering is introduced which is not
changing the particle state. The scattering gets now a constant Γ independent
with respect to the current state. The self-scattering rate can be expressed as:

Sself(ζ
′|ζ) = (Γ− Sreal)δ(ζ

′ − ζ) (2.17)

Evaluating the integral, utilising a constant scattering rate, is now an easy task
and with the use of a random number r the time tscat until the �rst scattering
event gets:

tscat = − 1

Γ(ζ)
ln(r) (2.18)

When a scattering event occurs one of the various scattering processes has to be
chosen. The ith scattering mechanism is selected by using a new random number
r ful�lling:

i−1∑
j=1

Sj(ζ)

Γ
< r <=

i∑
j=1

Sj(ζ)

Γ
(2.19)

The implementation of the MC solver developed in this thesis is shown in the
next chapter.
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3. Monte Carlo Solver

Implementation

In the last chapter the physical advantages of the MC method and its algorithm
have already been introduced. The MC algorithm is implemented as a particle
based simulation method where a vast number of electrons is represented by
fewer superparticles. Holes will be neglected in this work since they are only
present as thermally excited carriers in the investigated devices. Thus the hole
current will be many orders of magnitude lower than the electron current. The
particle propagation can be recorded over time and the transient behaviour can
be analyzed afterwards.
This chapter provides an overview over the main software components and

physical models incorporated into the solver and used for further investigations.
First, the main sequence of the program is presented, followed by the laws of
particle motion. This work deploys a nonparabolic three-valley model for the
semiconductor's bandstructure which is explained, together with other material
parameters needed for the calculation of the scattering rates, in section 3.3.1.
The computation of the scattering rates, including phonon, alloy and impurity
scattering is given in section 3.4. Section 3.5 summarizes what is happening
to particles hitting a heterointerface. When simulating submicrometer-sized de-
vices, it is necessary to correctly model the injection of carriers at ohmic contacts,
described in 3.6. As already mentioned in the introduction of the BTE every
process leading to a nonlinearity of the distribution function has to be included
in a self-consistent fashion. The solution of the Poisson equation using the �nite
di�erence method (FDM) and the consideration of the Pauli exclusion principle
is shown in section 3.7 and 3.8, respectively.

3.1. Simulator Overview

The �ow chart 3.1 shows the program's main sequence. The program starts
with initialization functions, setting up the material parameters, constructing
the mesh and sets up, if selected, the environment for the tunneling and the Pauli
principle module. The device structure, including the geometry, used materials,
doping concentrations and simulation temperature is written to a con�guration
�le and read during the initialization phase. An initial carrier distribution is
created according to the doping concentration.
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3. Monte Carlo Solver Implementation

Material properties
  Scattering rates

Mesh/Poisson solver

    Particles in 
device/reservoirs

Tunneling - WKB

Pauli exclusion
     principle

Initialisation

Propagate all carriers
 in device/reservoirs

Assign charge

Solve Poisson
   equation Calculate tunneling

     probabilities

       Fermi level &
electron temperature

Write to HDF5

Main loop

when necessary 

until TSim
 reached

Figure 3.1.: Flowchart of the main sequence of the MC solver. The solver con-
sists of three main parts: initilization functions, the main loop and
optional functions involving more models and a saving function.

The main loop covers most of the simulation time and iterates through all
particles and propagates them to the end of the current time step. The particles
are then assigned to the mesh cells and the Poisson equation, considering the
new charge distribution, is calculated giving the force for the next time step.
The entire particle propagation ends when the total simulation time is reached
which is usually given by the user. Furthermore, the Fermi level and the electron
temperature can be computed to include the Pauli exclusion principle, if selected.
The simulation data is written to a �le using the HDF5 format for a subsequent
post-processing.

3.1.1. Technical Data

All models, excluding the Pauli principle model, are available in the solver for
a computation in a one-, two- or three-dimensional device domain. The compu-
tation time depends critically on the number of time steps and the number of
involved scattering processes. Primarily given by the electric �eld strength in
the device. Two-dimensional simulations performed for this thesis last typically
up to one hour for the simpli�ed FET structures and up to one day for HEMT
simulations.
The solver is written in the Fortran programming language compiled with the

gfortran compiler (gcc version 4.8.2). Since the particles are indepedent from
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3.2. Particle Propagation

each other the propagation part can be easily parallelized with the OpenMP
framework. The solution of the Poisson equation can be a tedious task since
a large (depending on the number of mesh cells) system of linear equations
has to be solved. This is performed with the help of the Hierarchical Iterative
Parallel Solver (HIPS) package [69] using OpenMPI as a MPI (Message Passing
Interface) implementation. Numerical integration and root �nding problems are
solved using the GNU Scienti�c Library (GSL). The post-processing is done using
Python.

3.2. Particle Propagation

The particles move in the six-dimensional phase space. However, for most prob-
lems in this work the real space dimensions are reduced to two dimensions.
Assuming small time steps the contribution of the acceleration term can be ne-
glected and the real and reciprocal space vectors are given by [70]:

r = r0 + v∆t (3.1)

k = k0 +
qE∆t

~
(3.2)

r0 and k0 denote the initial real space and wave vector at the start of the free
�ight. During the free �ight time ∆t, the electric �eld E acts as a force on the
particles. The drift velocity

v =
~k

m∗(1 + 2αE)
(3.3)

can be derived using the wave vector and the nonparabolicity α of the band
structure. E denotes the particle's kinetic energy.
Simulator variables like the calculated electric �eld, material properties and the

self-scattering upper bound are assigned to mesh cells in the device or reciprocal
space. Thus the particle propagations has to end when one of the following
events occur and the indexing variables of the particles have to be updated:

• Scattering with one of the included mechanisms

• Reaching a real space boundary

• Reaching a reciprocal space boundary

• The asynchronous phase of carrier propagation ends

The length of one time step is limited by the instability criterion for the self-
consistent solution of the Poisson equation (refer to section 3.5). One time step
consists of repeated phases of free �ight, interrupted by the above mentioned
cases [71]. The �owchart 3.2 visualises this propagation scheme: carriers start
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3. Monte Carlo Solver Implementation

select Δt = tmin
drift t0 = t0 + Δt

energy/k-space boundary
               Δt = te

       r-space boundary
               Δt = tr

            scattering
               Δt = ts

end of time step reached
               Δt = tsync

device geometry?
heterointerface? 

update upper bound Γ 

select new k-state

r,k(t0)

r,k(T)

Figure 3.2.: Carrier propagation �owchart for one time step: carriers drift as long
as they do not hit a boundary, which can be in real or reciprocal
space, a scattering event or the end of the actual time step.
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3.2. Particle Propagation

with the state r,k at time t0 and are propagated ∆t, which is the smallest time
until a boundary is reached or a scattering process takes place. This is repeated
until the end of the current time step T = t0 + tsync. In this work the same
particle propagation model as in [71] is used. The mathematical background is
given in [72] proo�ng that the interruption of a free �ight phase by an event
excepting a real scattering process is not changing the overall behaviour.
The computation of the propagation time to a r- and k-space boundary in this

solver is shown in the next two sections.

3.2.1. Time to Reach a Real Space Boundary

The device is discretized in equidistant steps, mdx and mdy, for the x- and y-
direction, respectively. At the same time this mesh discretization is used for the
solution of the Poisson equation. The particle's trajectory can be represented
as a line given by the velocity vector. Computing the time until the particle
crosses the boundary of the next mesh cell reduces then to cutting a line with
a point, another line or a plane. This corresponds to a one-, two- or a three-
dimensional computation, shown for the two-dimensional case in �gure 3.3. From

mdx

mdy

r0

x

y

Figure 3.3.: Schematic showing the mesh discretisation in real space. The sim-
ulation domain is cut along the di�erent directions in equidistant
slices.

the resulting equations the minimum positive time has to be selected. For the
two-dimensional case four equations result:

ttop,bottom =
rm,x ±mdx/2− r0,x

vx
(3.4)

tleft,right =
rm,y ±mdy/2− r0,y

vy
(3.5)
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3. Monte Carlo Solver Implementation

where rm,x denotes the x coordinate at the center of the mesh cell and v the
particle drift velocity.

3.2.2. Time to Reach a Boundary in k-Space

The k-space is represented in a three-dimensional Cartesian coordinate system.
The employed bandstructure model includes three valley with spherical or ellip-
soidal symmetry, for the sake of simpli�cation the full band structure is neglected.
The ellipsoidal valleys can be mapped with the Herring-Vogt transformations to
spherical symmetry (compare chapter 3.3.1) and the equi-energy surfaces are
spheres. Consequently, meshing in reciprocal space is done using these spheres
spaced by a constant dE, shown in �gure 3.4, for a cut through the kxy plane.

k0

kx

ky

dE

El

Eu

Figure 3.4.: Mesh discretisation in k-space: the equi-energy surfaces are spheres.

The time te can be derived by cutting the propagation vector ∆k with the
equidistantly spaced spheres. The sphere-radius r2 has to be calculated for the
lower El and upper Eu energy boundary using the nonparabolic bandstructure
dispersion. Inserting r2 and equation (3.7) into (3.8) and choosing the minimal
positive drift time results in te.

r2 =
2m∗

~
(Elu + αE2

lu) (3.6)

A = −kE~
E2

(3.7)

te = A2 ±

√
(A2 −

(
~2

E2
(k2 − r2)

)
(3.8)
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3.3. Material Parameter Selection

In this work semiconductor device simulations are performed on the basis of
Indium-Aluminium-Arsenide (InAlAs) and Indium-Gallium-Arsenide (InGaAs).
The InGaAs/InAlAs material system is quite popular for high-frequency devices
like HEMTs. Therefore, many emission experiments have been performed with
this system. In most MC studies the e�ective masses and other parameters are
used to �t the experimental �ndings, which can result in mismatched datasets
concerning di�erent mole fractions or temperatures. To avoid such con�guration
we employ a set of models to describe consistently the material properties of the
two alloys, derived from the binary properties (InAs, AlAs and GaAs). Further-
more, only bulk values of the e�ective mass are considered and no quantization
e�ects a�ecting the bandstructure are included.

3.3.1. Bandstructure Representation

This work employs a three-valley bandstructure model. The Γ-valley is modelled
with spherical symmetry and the higher L- and X-valleys have ellipsoidal equi-
energy surfaces. We are aware of the fact that at very high carrier energies
the bandstructure di�ers signi�cantly from the real dispersion relation. However
this is expected not to in�uence the results of this thesis since high electric
�eld domains are found rarely in the structures. This chapter presents �rst the
employed bandstructure models and concludes with the material properties.

3.3.1.1. Dispersion Relation

The relation between the wave vector k and the electron energy for the spherical
Γ-valley is given by

E(1 + αE) = γ(E) =
~2k2

2m∗
(3.9)

and the ellipsoidal valleys follow [70]:

E(1 + αE) = γ(E) =
~2

2

(
k2

x

mx
+
k2

y

my
+
k2

z

mz

)
(3.10)

Where m∗,mx,my,mz denote the e�ective masses with the subscripts x,y,z de-
scribing the di�erent orientation of the Cartesian coordinate system. At the
valley bottom (k = 0) particles have no kinetic energy (E = 0).
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3.3.1.2. Density of States

The density of states is frequently used in the calculation of the scattering rates
and can easily be expressed as [70]:

D(E) =
(2m∗)

3
2

2π2~3

√
γ(E)(1 + 2αE) (3.11)

A factor of 2 accounts for spin-degeneracy. In the case of ellipsoidal valleys the
e�ective mass has to be replaced with the density of states e�ective mass

mDOS = (mlm
2
t )

1
3 , (3.12)

representing a geometric of the longitudinalml and transversalmt e�ective mass.
The density of states e�ective mass can be derived using the Herring-Vogt trans-
formation [73].

3.3.1.3. Herring-Vogt Transformations

Dealing with ellipsoidal valleys complicates things like the calculation of te in
equation (3.8) or selecting a new state k′ after a scattering process. The Herring-
Vogt transformation maps the ellipsoidal equi-energy surfaces to spherical ones,
simplifying the implementation [74].
In a zinc-blende crystal there are six X-valleys present and due to symme-

try reasons they group pairwise along the [100], [010] and [001]-direction. The
transformation matrices for the new spherical sytem k∗ = Tk are [70]:

T[100] =


√

m0
ml

0 0

0
√

m0
mt

0

0 0
√

m0
mt

 T[010] =


√

m0
mt

0 0

0
√

m0
ml

0

0 0
√

m0
mt

 (3.13)

T[001] =


√

m0
ml

0 0

0
√

m0
ml

0

0 0
√

m0
ml


For the L-valley the symmetry axis of the ellipsoid is not located along the

main axes of the coordinate system and thus the transformation matrices include
an additional rotational transformation [75]:

R[111] =


1√
3

1√
3

1√
3

− 1√
2

1√
2

0

− 1√
6
− 1√

6

√
2
3

 Rr[1̄11] =


− 1√

3
1√
3

1√
3

− 1√
2
− 1√

2
0

1√
6
− 1√

6

√
2
3

 (3.14)
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R[111̄] =


− 1√

3
− 1√

3
1√
3

1√
2
− 1√

2
0

1√
6

1√
6

√
2
3

 Rr[11̄1] =


1√
3
− 1√

3
1√
3

1√
2

1√
2

0

− 1√
6

1√
6

√
2
3


Depending on the valley, the transformation matrices for the L-valley get now
RT100, with R according to the valley direction.

3.3.2. Bandstructure Parameters

To keep the MC transport module as close to actual physics as possible, this
thesis employs bandstructure models for the bandgaps, the e�ective masses and
the L- and X-valley o�sets in the conduction band. The solver covers the binary
materials GaAs, InAs and AlAs. Additionally the parameters for their ternary
alloys InxGa1−xAs and InxAl1−xAs can be derived from the binaries. Mole frac-
tion and temperature dependency is considered. In most cases the recommended
values given in the review of III-IV semiconductor parameters [76] are used. The
review includes theoretical and experimental values and tries to give an overall
parameter estimation.

3.3.2.1. Bandgap and Valley O�sets

The Varshni expression (3.15) describes the temperature dependency of the
bandgap and the valley o�sets with a simple equation [76]:

Eg(T ) = Eg(T = 0)− αT 2

T + β
(3.15)

Eg(T = 0) gives the bandgap at a temperature T of 0K and α and β are
the adjustable Varshni parameters. For ternary alloys the energy gaps can be
interpolated by applying an additional bowing parameter, accounting for the
di�erence to a linear interpolation scheme.

Eg(A1−xBx) = (1− x)Eg(A) + xEg(B)− x(1− x)C (3.16)

The nonlinearity is induced by disorder e�ects of the di�erent cat- and anions
[76].
Figure 3.5 and 3.6 show the calculated energy gaps for InGaAs and InAlAs.

The plots show on the left y-axis the total energy (straight line), where 0 eV is
de�ned as the top of the valence band. A second y-axis denotes only the energy
distance between the Γ- and the higher valleys (dashed line).
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The sub�gures 3.5(a) and 3.6(a) give the band gap and valley o�sets for the
mole fractions of 53% and 52%, respectively. These mole fractions have the im-
portant property that they have an equal lattice constant and are lattice matched
to an InP substrate. With increasing thermal energy the band gap decreases due
to the stronger interatomic motion. The crystal expands and the potential seen
by electrons decreases. Most authors of MC programs employ constant valley
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Figure 3.5.: Computed valley o�sets of InxGa1−xAs. The left axis gives the en-
ergy gap with respect to the top of the valence band. The right
y-axis give the gaps relative to the bottom of the conduction band.

o�sets for the complete temperature range, justi�ed by the results in 3.5(a) and
3.6(a).

However, the ternary material bandstructures exhibit a strong dependency on
the mole fraction. InGaAs, shown in �gure 3.5(b), stays a direct semiconduc-
tor while the bandgap decreases with increasing indium content. The energy
o�sets of the higher valleys in InGaAs are quite unclear in the literature (e.g.
[76]). Thus, the bowing parameters are found by numerical experiments and
comparison to experimental values for di�erent bowing parameters. This will be
shown in detail in section 4.1.1.1 covering the calibration results. For InAlAs
the situation is more complicated since adding aluminium has a great impact on
the bandstructure. At an aluminium concentration of 42% InAlAs changes its
properties to an indirect semiconductor. InAlAs is used as a barrier material for
InGaAs based devices since its bandgap is in most cases much larger and allows
for an e�cient electron con�nement.
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Figure 3.6.: Computed valley o�sets of InxAl1−xAs. The left axis gives the en-
ergy gap with respect to the top of the valence band. The right
y-axis give the gaps relative to the bottom of the conduction band.

3.3.2.2. E�ective Masses

The spherical Γ-valley is characterized by one e�ective mass. For the ellipsoidal
valleys a longitudinal and transversal mass needs to be de�ned. The e�ective
masses can be derived using the expression with basic band parameters given in
[76]:

m0

m∗
= (1 + 2F ) +

EP(Eg + 2∆so/3)

Eg(Eg + ∆so)
(3.17)

where the factor F denotes higher band contributions to the conduction band,
EP describes the matrix element between s-like conduction and p-like valence
bands and the split-o� energy of the valence bands is given by ∆so. All given pa-
rameters in [76] are constant over the entire temperature range and temperature
dependency of the e�ective masses is only included indirectly using the bandgap
expression (3.15). The temperature dependent e�ective masses for the binary
materials are given in �gure 3.7. The trend of the e�ective mass curves follows
the bandgap temperature behaviour meaning that the e�ective masses decrease
with temperature. Expression (3.16) is used for the interpolation of the Γ-valley
e�ective mass for the ternaries, using the bowing paramters given in [76]. Due to
the lack of sophisticated theoretical and experimental data the longitudinal and
transversal masses are interpolated linearly and temperature dependency has to
be neglected.
Figure 3.8 and 3.9 show the e�ective masses for the Γ-, X- and L-valley, re-

spectively. In general the InGaAs alloys have smaller e�ective masses compared
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Figure 3.7.: Calculated Γ-valley e�ective masses for the three binary materials
forming the base for the ternary materials

to other semiconductors making them an excellent choice for high frequency com-
ponents. Additionally, the material can reach higher drift velocities as indium is
added.

3.3.3. Other Parameters

While the bandstructure parameters are �xed, the unknown parameters for the
computation of the scattering rates need to be found. The lattice constant, ma-
terial density, sound velocity and the permittivity will be interpolated linearly.
Additionally, the permittivity plays an important role in the calculation of the
electric �eld as it enters the Poisson equation. The lattice constants are taken
from [76], the density and sound velocities from [77]. The static and high fre-
quency permittivities can be found in [78] and the permittivity for AlAs was
extrapolated using the permittivity of In0.52Al0.48As found in [79].

Missing parameters like the deformation potentials and phonon energies are
taken from other Monte Carlo publications [80, 81], due to the lack of experi-
mental data. The dependency on composition and temperature is neglected.

The alloy scattering potential follows the values in [82] and the small depen-
dence on mole fraction is omitted since the change is small. An average value
for a mole fraction of 50% is used. The chosen parameters are summarized in
appendix A.
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(a) Transveral e�ective masses
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Figure 3.9.: The L- and X-valleys are modelled as ellipsoidal valleys and have to
be described with a transversal and longitudinal mass. The e�ective
masses are shown for 300K as a function of the indium mole fraction.

3.4. Scattering Rates

This chapter reviews the scattering processes incorporated into the MC solver.
Di�erent types of phonon scattering, alloy scattering and ionized impurity scat-
tering are computed using compact equations.
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3. Monte Carlo Solver Implementation

3.4.1. Phonon Scattering

Scattering with phonons is the main mechanism limiting the mobility in a semi-
conductor. The phonon scattering rate scales strongly with temperature since
the number of phonons in a crystal is described by the phonon occupation num-
ber

N =

(
e

~ω
kBT − 1

)−1

. (3.18)

The equations for the di�erent scattering rates S are derived from Fermi's golden
rule and are proportional to the density of states D and a �tting parameter, often
a deformation potential.

3.4.1.1. Acoustic Phonon Scattering

Acoustic phonons are the quantized sound wave-like modes in a crystal. Scat-
tering with acoustic phonons is a weak intravalley scattering process. Especially
at the Brillouin zone center the energy of an acoustic phonon is very small and
the process is often treated elastic, only changing particle momentum. However,
at low temperatures or when an accurate energy distribution has to be obtained,
the energy exchange has to be included.

Inelastic Acoustic Phonon Scattering

This work follows the analytic formulation for nonparabolic spherical or ellip-
soidal bands and a linear approximated dispersion relation [83, 84]:

Sac,ine(E)dx =

√
m∗(kBT )3D2

ac

2
2
5π~4s4

l ρ
√
γ(E)

(1 + 2αE ∓ 2αkBTx)x2dx (3.19)

x =
~qsl

kBT
(3.20)

Where Sac,ine describes the scattering rate for absorption and emission processes,
respectively. ρ denotes the material density and sl the longitudinal sound veloc-
ity. After scattering equation (3.19) has to be used to select a �nal state after
scattering with the help of the rejection method. After a value for x is found
according to the probability function, the energy can be computed using the
corresponding wave vector q calculated with equation (3.20).
From equation (3.19) the scattering rate as a function of the particle energy
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3.4. Scattering Rates

E can be derived:

Sac,ine(E) =

√
m∗(kBT )3D2

ac

2
2
5π~4s4

l ρ
√
γ(E)

{
((1 + 2αE)G1 − 2αkBTG2)

((1 + 2αE)F1 + 2αkBTF2

(3.21)

G1 =

∫ x2e

x1e
(Nq(x) + 1)x2dx (3.22)

F1 =

∫ x2a

x1a
Nq(x)x2dx (3.23)

G2 =

∫ x2e

x1e
(Nq(x) + 1)x3dx (3.24)

F2 =

∫ x2a

x1a
Nq(x)x3dx (3.25)

(3.26)

At low temperatures and high energies the values of the integrals diverge sig-
ni�cantly from the given series expansion in [83, 84]. Thus the integration is
performed numerically.

Elastic Acoustic Phonon Scattering

For the sake of completeness the MC solvers implements the elastic scattering
case as well. If not stated otherwise, the inelastic formulation is used in this
thesis. In the case of high electric or higher temperatues the process can be
treated elastically since the thermal carrier energy will be large compared to
energy lost or gained by the phonon scattering. The elastic phonon scattering
rate is given by [85, 86]:

Sac,el(E) =
πkBTD

2
ac

~s2
l ρ

D(E) (3.27)

Following the latter publication we ignore the term Fα introduced by Fawcett
[85]. Isotropic scattering is assumed, meaning that every state on the equi-energy
sphere has an equal probability.

3.4.1.2. Optical Phonon Scattering

In contrast to the acoustic type optical phonons describe out of phase movements
of atoms in the crystal. They have a much larger energy and are often treated
with a constant energy throughout the Brillouin zone (Einstein approximation).
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Nonpolar Optical Phonon Scattering

The scattering rate is given by [70]:

Snonp(E) =
πD2

nonp

2ρωop

(
Nop +

1

2
± 1

2

)
D(E ∓ ~ωop) (3.28)

ωop denotes the angular optical phonon frequency and Nop its corresponding
occupation number. The scattering rate Snonp describes absorption and emission
processes.

Polar Optical Phonon Scattering

The polar optical phonon scattering is the dominating scattering mechanism in
a crystal where the basis consist of two di�erent species. To be able to follow the
DOS-ansatz we use the formulation of the direction-weighted density of states
Dq−2 used by Dolgos [71] which is similar to the formulation given in [85].

Dq−2 =

e2
√
m∗ωop√
2~

(
1
ε∞
− 1

εs

)
1+2αE′√

γ

2π
~ e

2F 2
F0(E,E′) (3.29)

F 2 =
~ωop

4

(
1

ε∞
− 1

εs

)
(3.30)

F0(E,E′) =
1

C

(
A ln

∣∣∣∣√γ +
√
γ′

√
γ −
√
γ′

∣∣∣∣+B

)
(3.31)

A = (2(1 + αE)(1 + αE′) + α(γ + γ′))2 (3.32)

B = −2α
√
γγ′(4(1 + αE)(1 + αE′) + α(γ + γ′)) (3.33)

C = 4(1 + αE)(1 + αE′)(1 + 2αE)(1 + 2αE′) (3.34)

The polar coupling constant is given by the Fröhlich expression [87] where εs and
ε∞ are the static and high frequency permittivities. E′ = E ± ~ωop denotes the
�nal electron energy after an absorption or emission process, respectively. Using
the direction-weighted DOS the scattering rate can be expressed by:

Spop(E) =
1

2~
e2F 2

(
Nop +

1

2
± 1

2

)
Dq−2(E) (3.35)

The new wave vector can be found using the probability distribution given in
[85]:

P (β)dβ ∼
(
√
γ
√
γ′ + αEE′ cosβ)2

√
γ +
√
γ′ − 2

√
γ
√
γ′ cosβ

sinβdβ (3.36)

Scattering with polar optical phonons as described by Spop is an intravalley
scattering process and favours small scattering angles which can be found using
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the rejection method. By integration by substitution of β with cosβ it follows
for equation (3.35):

P (β) =
P (cosβ)

sinβ
(3.37)

Thus, the maximum value of the distribution can found analytically for cosβ = 1
serving as an upper bound for the rejection method.

3.4.1.3. Intervalley Scattering

Long wavelength scattering with acoustic or optical phonons can lead to equiv-
alent (L ↔ L or X ↔ X) and nonequivalent (Γ ↔ L, Γ ↔ X or L ↔ X
intervalley scattering. The carrier momentum in the new valley is randomized
and the intervalley separation ∆E and the phonon energy ~ωiv are subtracted
or added to the particle's kinetic energy. The scattering rate can be expressed
as [70]:

Siv(E) =
πZfD

2
iv

2ρωiv

(
Niv +

1

2
± 1

2

)
D(E ∓ ~ωiv −∆E) (3.38)

The scattering rate scales with the intervalley deformation potential Div and the
number of equivalent �nal valleys Zf .

3.4.2. Alloy Scattering

In this work the used semiconductor alloys like InAlAs or InGaAs are compounds
of two binary semiconductor systems having the same group-V element. Due to
the random �uctuation of the periodical crystal potential a momentum scattering
is introduced. The new k-state will be chosen isotropically in the current valley.
The alloy scattering rate follows [88, 89]. These scattering rates are slightly lower
than given by Ridley in [86].

Salloy(E) =
3π3

16~
x(1− x)ΩU2

alloyD(E)S (3.39)

Ω =
a3

4
(3.40)

A complete randomization (S = 1) is assumed. The alloy scattering rate is
proportional to the density of states and the interaction potential U . The unit
cell volume Ω can be calculated using the lattice constant a. x denotes the mole
fraction.
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3.4.3. Ionized Impurity Scattering

Ionized impurity scattering describes the interaction with dopants incorporated
into the crystal. Typically it can be neglected at high electric �elds but plays a
strong role at cryogenic temperatures when the number of phonons will be low.
The scattering rate is computed using Ridley's statistical screening model [90]
depending on the Brooks-Herring model [70]. Ridley's model includes scattering
with the presence of a second impurity and avoids the strong increase of the
scattering rate at lower temperatures. The scattering rate Simp can be written
as:

Simp(E) =
|v(E)|
R

1− exp

(
−SBHR

|v(E)|

)
(3.41)

R = (2πNdop)
1
3 (3.42)

SBH(E) =

√
2NdopZ

2e4

ε2sE
2
β

√
m∗

√
γ(E)

1 + 2αE

1 + 4γ(E)
Eβ

(3.43)

Eβ =
~2β2

2m∗
(3.44)

β =

√
e2n0

εskBT0
(3.45)

where SBH is the original Brooks-Herring scattering rate, R the average distance
between impurities, Z the number of charges per impurity and β denotes the
inverse screening length. The assumption of non-degenerated statistics and an
independence of the screening length of the carrier temperature is made. Scat-
tering with ionized impurities is an elastic process and a new wave vector needs
to be selected. The scattering angle is chosen following the Brooks-Herring for-
mulation and the introduced error in the simulations is estimated to be small.
The crossover to a Conwell-Weisskopf distribution [83] at low temperatures and
relevant at small electric �elds is neglected. Ionized impurity scattering is only
implemented in the Γ-valley since in the higher valleys intervalley scattering
dominates.

3.4.4. Self-Scattering

The simple expression of equation (2.18) for the free �ight time before the next
scattering event takes place relies on a constant scattering rate. A �ctitious
scattering mechanism called self-scattering is introduced not changing the parti-
cle's state. Instead of a constant upper bound throughout the full energy range,
introducing a very high number of self-scatterings at low energies and thus com-
putational intensive interruption of drift processes, a piecewise constant upper
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bound is chosen. Figure 3.10 shows all implemented scattering rates, these can
be summed up to the total physical scattering rate. Adding the self-scattering
process gives a piecewise constant scattering rate.
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Figure 3.10.: Scattering rates including the self-scattering mechanism

3.4.5. Scattering Rate Results

This section gives the results for the computed scattering rates for the three
di�erent valleys for the In0.53Ga0.47As and In0.52Al0.48As alloys. The smaller
e�ective masses for In0.53Ga0.47As compared to In0.52Al0.48As leads to a lower
scattering rate and thus to a larger low �eld mobility, which will be shown in the
calibration results chapter4.2. In the Γ-valley scattering with optical phonons is
the main scattering process until the onset of intervalley transfer. Results for
ionized impurity scattering are given for a doping concentration of 1× 1018 cm−2.
Since self-scattering is no real physical scattering mechanism it is omitted.
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(a) Γ-valley InGaAs
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(b) Γ-valley InAlAs
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(c) L-valley InGaAs
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(d) L-valley InAlAs
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(e) X-valley InGaAs
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Figure 3.11.: Calculated scatterings rates for In0.53Ga0.47As and In0.52Al0.48As
at 300K
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3.5. Heterojunctions

Modern devices rely on vertical structures, forming heterostructures or super-
lattices. The solver treats carriers hitting a heterojunction classically meaning
energy and parallel momentum have to be conserved [91, 92]. Figure 3.12 shows
a channel surrounded by a layer with a higher bandgap resulting in this case in
a conduction band o�set ∆EC. The band o�sets for InGaAs/InAlAs are taken
from [76]. When a particle hits the barrier and the kinetic energy is smaller than
∆EC it will be re�ected, otherwise it can transfer to the next material sometimes
referred to real-space electron transfer. The heterojunction band o�set has to
be subtracted from the particle's kinetic energy. During the transfer carriers
remain in their original valley. Additionally, carriers can quantum-mechanically
tunnel through barriers. This has been implemented using the Wentzel-Kramers-
Brillouin (WKB) approximation but is not used for results presented in this
study.

x

y

EC

y

ΔEC

Figure 3.12.: Schematic of a surrounded channel and its corresponding band
diagram

3.6. Ohmic Contacts

Boundary conditions are crucial for semiconductor device simulation. They are
considered in the solution of the Poisson equation providing the internal elec-
tric �eld distribution and thus represent driving forces. Furthermore, from the
carrier's point of view, they let particles enter and exit the device. While Schot-
tky contacts absorb carriers, ohmic contacts allow a carrier injection. An ohmic
contact is characterized by a small or disappearing Schottky barrier between the
semiconductor and the contacting metal. The contact retains the equilibrium
electron concentration and no voltage drop occurs over the contact. Especially
for small devices an unphysical voltage drop would lead to a degraded device
performance since the driving electric �eld would be lowered.
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3. Monte Carlo Solver Implementation

This work follows the model presented in [93] with modi�cations for an im-
proved parallel computational performance. Carriers are injected with a velocity-
weighted Maxwellian distribution function which is additionally displaced to con-
serve the current. A di�erent velocity distribution function leads to a carrier in-
jection having a too low velocity and leads to an accumulation near the contact:

f(v) ∝ v exp

(
−m

∗(v − vd

2kBT

)
(3.46)

Where the velocity vd = J
qND

is given by the current J through the device and the
doping concentration ND. It has to be noted that only the velocity component
perpendicular to the interface is chosen by the velocity-weighted distribution
function. The missing velocity components parallel to the interface are given by
an unmodi�ed Maxwellian distribution. Having �xed the velocities, the particles
wave-vector and energy can be calculated.
The solver requires as input how many particles have to be injected and at

which simulation time they have to enter the device to ensure equilibrium con-
ditions. In [93] the time particles spend in the contact's mesh cells are tabulated
and particles with a random propagation drift time are injected until an equilib-
rium carrier concentration is reached. However, this approach is unpracticable
for a heavily parallelized MC program since carriers have to be injected itera-
tively. It is not a priori known which path particles choose and if they cross
other mesh cells. The next particle injection always depends on the previous in-
jected carrier. This injection mechanism was exchanged by a small reservoir (half
of a mesh cell) of particles naturally crossing the device boundary. The reser-
voir needs to be small enough to prevent unnatural induced charge oscillations.
The in�uence on the transient behaviour was carefully checked. The number
of particles is �uctuating according to the electron concentration present at the
boundary. No particles are injected when the electron concentration is larger
than the doping concentration.

3.7. Self-Consistent Electric Field

The following two sections introduce the self-consistent models employed in the
solver namely the solution of the Poisson equation giving the force acting on
particles and the inclusion of the Pauli exclusion principle.
The linear Poisson equation is the only �eld equation used in this study since

the magnetic �eld is usually negligible in semiconductor device simulation:

∇ε∇φ = −ρ (3.47)

E = −∇φ (3.48)
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3.7. Self-Consistent Electric Field

Where φ and E denote the electric potential and �eld, respectively. The space
charge distribution is given by ρ = p−n+ND−NA, where n and p describe the
electron and hole concentration while the donor and acceptor density is given by
ND and NA. In an intrinsic semiconductor or when the carrier densities equal
the doping concentrations the space charge is zero and no electric �elds arise.
The Poisson equation is solved using the �nite-di�erence method (FDM) and

the resulting system of linear equations solved with the MPI-parallelized solver
HIPS [69].
Dirichlet and von Neumann boundary conditions (BC) are included, the Dirich-

let BC �xes the electric potential and can be use for modelling Ohmic or Schottky
contacts. Von Neumann boundary conditions set the electric �eld in most cases
to zero (except when surface charges have to be modelled) and are the default
BC at the semiconductor-air interface.
The charge assignment to the mesh nodes can be either done by the cloud-in-

cell (CIC) or the nearest-grid-point (NGP) formula [68].
The solver can be coupled to the nonlinear Poisson transport equation keeping

the quasi Fermi level constant instead of a �xed charge. Both equations deliver
the same solution but have di�erent advantages [94]: the nonlinear Poisson equa-
tion damps arti�cially potential �uctuations, thus underestimating e�ects like a
velocity overshoot [95]. Because transient phenomena are under investigation
the linear Poisson has to be used. The di�erent types of the two equations have
di�erent constrains which will be discussed in the next section.

3.7.1. Stability of the Linear Poisson Equation

A self-consistent coupling scheme for the Monte Carlo kernel and the solution
of the Poisson equation can lead to instability and thus to non-physical results:
the particle's and the electric �eld energy are increasing over time and start
to oscillate. This behaviour can be avoided when the time step between two
successive solutions of the Poisson equation is su�ciently small. Furthermore
the maximal mesh grid spacing depends on the doping concentration.
In early works [96] the time step was chosen in a way that the plasma frequency

can be resolved, following the Nyquist theorem. However, this leads in most
cases to unstable simulations. A systematic investigation connecting the time
step and the scattering rate was performed in [97] and later extended in [94, 98].
Furthermore the authors added constraints for the mesh grid spacing. For the
linear Poisson equation the mesh grid spacing ∆x has to follow:

∆x/LD < π (3.49)

LD =

√
kBTεs
q2n

(3.50)
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where LD describes the Debye wavelength. The largest time step ∆t can be
expressed in terms of the plasma frequency and a scattering rate νc = q

µm∗

formulated by Rambo [97]:

∆t <
2νc
ω2
p

(3.51)

(3.52)

As µ describes only the low �eld mobility, this expression is not applicable for
heated electrons experiencing a stronger scattering rate. In [94] Palestri intro-
duced an e�ective scattering rate νc using the momentum relaxation rate:

1

νc
=
〈Eν−1

c (E)〉
〈E〉

=

∫ Emax

0 E
√
Ee−E/kBT ν−1

c dE∫ Emax

0 E
√
Ee−E/kBT

(3.53)

The maximal allowed time step for di�erent doping concentration is shown in
�gure 3.13 for the di�erent expression of the scattering rate. For electron concen-
trations below 1× 1018 cm−3, the constraint for the time step is unproblematic
because the transient sampling of the device quantities is usually done more pre-
cisely. However, for realistic electron concentrations in modern devices the time
step needs to be smaller than 1 or even 0.1 fs imposing a di�cult task concerning
the computational cost.
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Figure 3.13.: Allowed time step for stable simulations as a function of the doping
concentration for the two di�erent material systems
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The nonlinear Poisson equation provides lesser constraints but is not applicable
for transient phenomena. It has to be added that simulations without a scattering
mechanism are always unstable.

3.7.2. Damping of Plasma Oscillations

In [96] it is argued that the time step has to be chosen properly to damp un-
physical oscillations evolving in the system. This has been discussed in [99] and
this study follows [100] assuming that a particle based simulation coupled to the
Poisson equation includes correctly Landau damping. No dependence for the
time step or the mesh cell were observed in the outcarried simulations.

3.7.3. Short- and Long-Range Coulomb Force in MC Simulations

MC literature often refers to short- and long-range Coulomb force between car-
riers. In general the force between particles is given by their generated electric
�eld and should be covered by the solution of the Poisson equation. The force
experienced by a charge q1 at position r1 produced by a second charge q2 at r2

is given by the Coulomb law:

F =
q1q2

4πε

r1 − r2

|r1 − r2|3
(3.54)

However, it has to be enforced that the �eld created by one particle is not acting
on itself. The discretization of the simulation domain and the requirement of
a zero self-force lead to the fact that particles in the same mesh cell do not
experience a coulombic repulsion or attraction. After two or three mesh cells
the physical behaviour is covered again by the numerical solution of the Poisson
equation, termed the long-range force. To recover the short-range force in the
adjacent mesh cells an additional algorithm has to be used. Typically an iteration
over all carriers and the direct application of Coulomb's law is performed [100].
This process requires a large amount of simulation steps.
To minimize the computational burden we neglect the short range force and

employ a small mesh spacing which should minimize the e�ect of an inaccurate
force calculation. The in�uence of the mesh discretization is studied following
[100]. A discretized volume (3D) inhabits two equally charged particles where
one particle is kept at a constant position and the other is moving.
For di�erent positions of the second charge the electric �eld is calculated for

di�erent mesh sizes. The results are shown in �gure 3.14(a) for the case of point
charges and a mesh spacing of 10 and 20 nm. The deviation to equation (3.54)
is visible as the second charge crosses the mesh cell next to the �xed charge.
The force decreases, as zero-self force is enforced. In the two-dimensional case
Coulomb's law reduces to the force between to line charges, rather than point
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3. Monte Carlo Solver Implementation

charges. The force drops to zero when moving towards the constant charge and
follows the 3D case. The e�ect of miscalculated short-range forces seems to be
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Figure 3.14.: Electric �eld for the test scenario with two charges

negligible as the investigated plasma oscillations are long-range phenomena and
covered by the conventional Poisson equation [96].

3.8. Pauli Exclusion Principle

As electrons are fermions they have to obey the Pauli exclusion principle (PEP)
stating that only one electron can occupy a state, for each spin state, respec-
tively. The PEP leads to the fact that even under equilibrium conditions and
low temperatures high energies states are �lled which would be empty in non-
degenerated matter. Electrons can not lose energy under these conditions due
to phonon scattering because there are no allowed transitions to lower energy
states. The scattering process is suppressed, often termed Pauli blocking.

A common assumption is that for GaAs degenerated statistics have to be as-
sumed at electron concentrations larger than 1× 1018 cm−3. For faster materials
like the used InGaAs/InAlAs material sytems it is quite unclear when the PEP
has to be included. The systems have a much smaller e�ective mass and thus a
decreased DOS (compare section 3.3.1). After a short historical review over the
di�erent methods this chapter describes the inclusion of PEP in MC simulation.
Furthermore, the question when the Pauli exclusion principle gets important and
what will happen to the electron distribution function is answered.
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3.8. Pauli Exclusion Principle

3.8.1. Historical Review

The Pauli exclusion principle was �rst introduced in [101] for GaAs by using a
single electron MC method. The distribution function appears as a factor 1− f
at the right hand side of the BTE. In a single electron MC simulation, f is eval-
uated over the reciprocal space until a steady-state distribution is reached. It
was found that degeneracy gets important at cryogenic temperatures for elec-
tron concentration of of at least 1× 1017 and even more at 1× 1018 cm−3. This
was later extended to an ensemble MC method by Lugli and Ferry (LF) [102]
simulating a vast number of particles. Unfortunately, the LF-method is not ap-
plicable to device simulations or transient simulations since at every grid point
and temporal step the complete distribution needs to be evaluated imposing
a computational burden which can not be solved. In [96] Fischetti and Laux
suggest that the distribution function can be approximated by a Fermi-Dirac
distribution where the electron temperature and the quasi Fermi level enters as
arguments. Fischetti used a de�nition for the electron temperature TE = 2

3kB
E

only valid at thermodynamic equilibrium and for Maxwell-Boltzmann distribu-
tion functions. This was corrected in [103] de�ning the electron temperature as
velocity �uctuations around a mean value. The work presented in [104] solved
the system of equations in an analytical fashion neglecting second order terms
due to a non-parabolicity factor α � 1. For the used material this simpli�ca-
tion is not valid. Furthermore their solution incorporates the solution of more
Fermi-Dirac integrals than a direct numerical solution.

3.8.2. Model Results

This section presents the employed model in the solver, adapted from [103]. The
electron temperature should approach the lattice temperature for zero applied
force. Furthermore, temperature is de�ned as velocity �uctuations around the
mean drift value:

TE(r) =
2

3kB
〈E (k− kd(r))〉 (3.55)

Where kd is the local mean drift wave vector at position r. The angular brackets
denote the average over all particles present at that position. Following the above
considerations the distribution function f is de�ned as:

f(E,µ, TE) = exp

(
E (k− kd(r))− µ(r)

kBTE(r)
+ 1

)−1

(3.56)

Where µ is the local quasi Fermi level. The density of states relates the distri-
bution function to the electron concentration n:

n(r) =

∫ ∞
0

f(E,µ, TE)D(E)dE (3.57)
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3. Monte Carlo Solver Implementation

After several time steps, ensuring a good enough statistics, the average values for
the position dependent electron temperature and concentration are determined
by the solver and tabulated. Finally, equations (3.56) and (3.57) can be solved
for the quasi Fermi level using a root �nding function.
The model can answer the question when electron degeneracy becomes impor-

tant and has to be considered for electrical transport phenomena. A homoge-
neous semiconductor was simulated at 300K and after reaching a steady-state the
quasi Fermi level was extracted. Figure 3.15 shows the location of the quasi Fermi
level as a function of di�erent electron concentrations and for di�erent materials
at thermodynamic equilibrium. Degeneracy is only considered in the Γ-valley
since the density of states is much larger and the electron concentrations smaller
in the higher valleys. For increasing electron concentration the quasi Fermi level
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Figure 3.15.: Position of the quasi Fermi level for di�erent materials

increases as well because more states are occupied and electrons are pushed to
higher energies. The quasi Fermi level for electron concentrations slightly above
1× 1017 cm−3 lies in the conduction band. An increased Indium mole fraction
leads to faster materials as the e�ective mass is reduced. Consequently, a lower
density of states is obtained and the available states are �lled up at smaller
concentrations.
The in�uence of Pauli blocking on the energy distribution function is visu-

alized in �gure 3.16. For In0.53Ga0.47As a quasi Fermi level of approximately
0.08 eV results at a doping concentration of 1× 1018 cm−3. The simulation was
performed without an applied electric �eld which would shift the high energy
tail of the distribution to higher energies [103]. The �gure clearly shows that
neglecting PEP would lead to completely di�erent distribution and thus in�u-
encing transport properties. For comparison the analytical Fermi-Dirac function
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Figure 3.16.: Energy distribution function with and without degeneracy com-
pared to the analytical Fermi-Dirac function

is plotted for a electron temperature of 300K and the given quasi Fermi level.
The results agree quite well and Pauli blocking is only considered after a scat-
tering event, disagreeing with [105], where the authors suggest that even after
every free-�ight PEP has to be checked. This has led to an enormous increase
in computational time in this solver without changing the results.
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4. Calibration Results

The previous chapter has presented an overview of the developed MC solver. The
material properties and the handling of semiconductor devices were described. In
the following chapter the results of the MC program describing bulk steady-state
and transient behaviour are outlined.
The most important quantity is the relationship between applied electric �eld

and the mean electron drift velocity, namely the mobility. This will be compared
to various experimental and theoretical values.
The simulation procedure is the same for all numerical experiments. An en-

semble of 40000 carriers is simulated for a duration of 40 ps. After a settling time
of 10 ps averages of the desired quantities are taken at an interval of 1 ps ensuring
an independent statistic. The drift velocity is extracted as averages along the
direction of the applied electric �eld. If not stated otherwise the �eld is applied
in the [100]-direction.

4.1. Non-Degenerated Bulk Material

This section summarizes the results found for the bulk material characteristics
for a doping concentration where degeneracy e�ects can be neglected (smaller
than 1× 1016 cm−3). The temperature and composition dependent �eld-velocity
curves are given for InGaAs and InAlAs. In general, no quantization e�ects are
considered in this work.

4.1.1. InGaAs

InxGa1−xAs is mostly used as a channel material in FETs due to its high mobility
exceeding 10 000 cm2 V−1 s. Its low band gap makes it a suitable candidate for
infrared photodiodes.
Most of the available experimental and theoretical data present in literature

is for the case of an indium concentration of 53%. The developed solver will
be validated for this case. Using the simple band structure description an easy
computation for di�erent compositions or temperatures is performed.
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4.1.1.1. In0.53Ga0.47As

The most common type of InGaAs is grown with an indium mole fraction of
53% as it is lattice matched to an InP substrate and can be grown unstrained
and without compensation.

In�uence of the X-Valley Energy Gap

A value of approximately 0.55 eV is mostly accepted for the energetic distance
of the L-valley measured from the bottom of the conduction band. However, the
energy separation of the X-valley is quite unclear since large varying values are
given in literature. The review of Vurgaftman [76] suggests a bowing parameter
between 0.08 and 1.4 eV and recommends the latter. Since it turns out that the
bowing parameter is quite strongly in�uencing high �eld transport characteris-
tics, a systematic investigation is carried out. Figure 4.1 shows the drift-velocity
vs. the applied electric �eld behaviour as a function of the valley o�set. It is
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Figure 4.1.: In�uence of the X-valley bowing parameter on the drift velocity vs.
electric �eld characteristics: an increasing bowing parameter leads
to a higher high �eld drift velocity

evident that for larger bowing parameters the high �eld drift velocity decreases
since more electrons reside in the slower X-valley. The in�uence of the bowing
parameter on the valley occupations is shown in �gure 4.2(b) for a set of bowing
parameters. It has to be noted that the bowing parameter has a much higher
impact on the occupation of the higher valleys than the phonon energy and the
deformation potential appearing in the scattering rates. The Γ-valley occupa-
tion seems to be nearly constant for a wide range of parameters. Additionally,
carriers exhibit at smaller energies an increased intervalley scattering rate ran-
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domizing momentum. This thesis uses a bowing parameter of 0.85 eV resulting
in an energy o�set of 0.64 eV which was from comparison with experimental val-
ues of various authors, shown in the next section. Figure 4.2(a) gives the valley
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(a) Energy gap depending on the bowing
parameter: for bowing parameters larger
>1.25 eV the X-valleys lies energetically be-
low the L-valley
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Figure 4.2.: In�uence of theX-valley bowing parameter on the energetic distance
to the bottom of the conduction band and on the valley occupation
for di�erent applied electric �elds

o�set, calculated using equation 3.16, as function of the bowing parameters. It
is found that for bowing parameters larger than approximately 1.25 eV the X-
valley lies energetically below the L-alley including the recommended value of
1.4 eV. A crossing of valleys like in InAlAs is unmotivated because the binary
systems GaAs and InAs do not show such behaviour.
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Drift Velocity for x = 0.53
Most of the present data in literature are available for an indium mole frac-
tion of 53%, thus the comparison with the developed solver is carried out for
this mole fraction. Figure 4.3(a) shows the drift velocity as a function of the
applied electric �eld computed using the developed solver. For comparison ex-
perimental data is taken from Haase [106] and Windhorn [107] for a low n-doping
of 1× 1015 and 1× 1014 cm−3 which should not a�ect transport characteristics.
In [108] time-of-�ight measurements were performed with an optically excited
InAlAs/InGaAs/InAlAs double heterostructure. Theoretical values derived by
full band (FBMC) or nonparabolic analatical MC simulations are taken from
Fischetti [87], Brennan [81] and [80]. The latter two employ a nonparabolic
(analytical) band structure like used in this work.
The bulk drift velocity agrees quite well with various curves taken from litera-

ture. However, it is notable that in the low and high �eld region the drift velocity
is slightly larger. The experimental values depend crucially on the pureness of
the grown material and the measurement method. The computed velocity-�eld
relationship should be located within the systemically made errors. However, it
is noted that the MC results are mostly �tted to the few experimentally found
curves and measurement errors are easily propagated. A better availability of
experimental values would be favourable.
Additionally, the mean kinetic energy of carriers (�gure 4.3(b)) in every valley

and the valley occupation (�gure 4.3(c)) in general can be determined. For
electric �elds below the threshold �eld for intervalley transfer the kinetic energy
increases strongly and with the onset of intervalley scattering carriers gain less
energy for an increased electric �eld. Figure 4.3(c) clearly shows that due to
the small separation of the L- and X-valley high �eld transport is dominated by
electrons in the X-valleys. At high �elds most of the electrons are found in the
X-valleys.
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Figure 4.3.: Bulk characteristics for In0.53Ga0.47As: steady state for di�erent ap-
plied electric �elds
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Temperature Dependency

It is possible to investigate the electrical transport characteristic for di�erent
temperatures, which is shown in �gure 4.4. For lower temperatures the number
of phonons is signi�cantly lower following Bose-Einstein statistics and thus a de-
creased scattering rate is obtained. A drastically increased drift velocity over the
entire electric �eld range is observed for low lattice temperatures. The simula-
tions were performed for di�erent �eld orientations in [100]- and [111]-direction
but no signi�cant di�erences were found, shown in �gure 4.4. In general the
anisotropic e�ects increase at lower temperatures because scattering is reduced
and carriers are aligned more e�ective along the applied �eld. The drift velocity
peak shifts to smaller electric �elds which is observed in measurements of GaAs
and InGaAs in [106] but contrary to observations made in [109]. A di�erent
behaviour can stem from di�erent doping concentrations or the material quality.
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Figure 4.4.: In�uence of the lattice temperature on electrical transport for dif-
ferent electric �eld strengths([100]: straight line, [111]: dashed line)

4.1.1.2. Composition Dependency: InxGa1−xAs

The maximum operating frequency of a FET is limited by the transit time [110]
of electrons. For HEMTs the frequency of conventional operation can be pushed
into the THz region by decreasing the gate length. Today, a gate length of 35 nm
and below are reached [111, 112]. A di�erent approach can be optimizing the
channel mobility by increasing the indium content [113]. The MC simulator is
able to derive the properties of InGaAs for di�erent indium mole fractions, shown
in �gure 4.5. First, the mean drift velocity for di�erent indium mole fractions
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Figure 4.5.: Bulk characteristics for InxGa1−xAs: di�erent values for the mole
fraction x are simulated and compared (Γ: straight line, L: dashed
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53



4. Calibration Results

are presented in �gure 4.5(a). Almost for every electric �eld strength the drift
velocity increases for higher indium mole fractions due to the smaller e�ective
masses and reduced DOS given by the change in the bandstructure. This leads
to a decreased scattering rate, exemplarily shown for the Γ-valley in �gure 4.5(e).
Furthermore, the intervalley separation increases for higher indium concentra-
tions shifting the connected intervalley scattering rates to higher energies. The
mean drift velocity can be evaluated separately for each valley, shown in �g-
ure 4.5(c). The signi�cantly enhanced low �eld mobility stems from carriers in
the Γ-valley. The drift velocity of carriers in the X-valley stays nearly constant.
It is found that the peak velocity shifts to lower electric �elds for higher indium
mole fractions which is contrary to the fact that the onset of intervalley scat-
tering starts at higher �elds since more carriers stay in the Γ-valley (compare
�gure 4.5(b)). However, the small e�ective mass allows carriers gaining even at
low electric �elds large kinetic energies leading to the observed shift of the peak
velocity which can be observed in �gure 4.5(d).

4.1.2. InAlAs

InAlAs is a wide bandgap semiconductor material used in solar cells, photodi-
odes, bipolar and �eld e�ect transistors. The most interesting point of InAlAs is
that it can be grown lattice matched to InP/In0.53Ga0.47As for an indium mole
fraction of 52%. Together with its large bandgap it is used as a barrier materials
for quantum wells. Its bulk and temperature dependent properties are given in
this section.

4.1.2.1. In0.52Al0.48As

Due to its signi�cance the bulk properties are reported for an indium mole
fraction of 52%, shown in �gure 4.6. Unfortunately, Watanabe [79] gives no
velocity-�eld calculations for comparison in their work. The only available data
seems to be reported by Kim [89]. However, the presented data stems only from
nonparabolic MC calculations for a doping concentration of 1× 1016 cm−3.
The performed simulations show a bad overlap with [89] originating from the

quite di�erent parameter set, both shown in �gure 4.6(a). Especially because
the used models provide smaller e�ective masses and valley separations. Com-
pared to In0.53Ga0.47As, In0.52Al0.48As shows a smaller peak drift velocity due
to the lower Γ-valley e�ective mass. However, the saturation velocity is larger
which can be explained by the smaller transversal and nearly same longitudinal
e�ective masses of the L- and X-valleys in In0.53Ga0.47As. Figure 4.6(b) and
4.6(c) give the resulting kinetic energy and the valley occupation. The kinetic
energy reached by electrons is much smaller compared to In0.53Ga0.47As resulting
from the larger scattering rate and the fast onset of intervalley scattering. The
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Figure 4.6.: Simulated bulk characteristics for In0.52Al0.48As at 300K

fraction of carriers in the X-valley is much smaller than in the InGaAs-case.

Temperature Dependency

Figure 4.7 shows the results for di�erent lattice temperatures and compares them
to the simulations of [89]. In contrast to In0.53Ga0.47As the peak value stays at
the same position. Below a lattice temperature of 100K kinks appear in the
velocity curves which are connected to the onset of optical phonon emission and
the starting transfer to higher valleys. For InGaAs such behaviour is not observed
because the optical phonon energy is lower and the valley seperation much larger.
The MC simulator predicts a larger drift velocity at lower temperatures compared
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4. Calibration Results

to [89]. Even at 300K the velocity-�eld curve shows a bad overlap. The reason
lies in the already explained quite di�erent parameter sets.
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Figure 4.7.: In�uence of the lattice temperature on electrical transport ([100]:
straight line, [111]: dashed line)
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4.2. Doped Materials

In the previous section the steady state behaviour of the InGaAs and InAlAs
alloys were presented for doping concentration where considering PEP and im-
purity scattering is not necessary. However as outlined in section 3.8, the inclu-
sion of Pauli blocking is mandatory. This sections shows the results for the two
materials In0.53Ga0.47As and In0.52Al0.48As for di�erent doping concentrations
and clari�es the role of degeneracy.
Figures 4.8(a) and 4.8(b) show the obtained drift velocity vs. electric �eld

curves for In0.53Ga0.47As and In0.52Al0.48As, respectively. For simulations ne-
glecting PEP, it is found that for doping concentrations exceeding 1× 1016 cm−3

the mobility is drastically reduced. The velocity peak shifts in both cases to
higher electric �elds due to the higher scattering rate and the larger momentum
randomization. No di�erence in the drift velocity for high electric �elds and
varying doping concentration is observed since ionized impurity scattering is not
considered in these regions and is negligible.
When PEP is activated the drift velocity is increased over the entire elec-

tric �eld range for even small doping concentrations in In0.53Ga0.47As. For
In0.52Al0.48As only for concentrations exceeding 1× 1017 cm−3 a di�erence in the
drift velocity is observable. At high �elds the drift velocity stays the same, with
and without PEP for all doping levels. The threshold peak shift for In0.53Ga0.47As
to higher �eld strengths because the strong Pauli blocking seems to delay the
onset of intervalley scattering. In In0.52Al0.48As the opposite behaviour can be
observed, the threshold �eld is reached for smaller electric �elds, being consistent
with the observations made in [114]. Due to PEP carriers are pushed faster to
high energies and can scatter at lower �elds to higher valleys. This is empha-
sized by �gure 4.8(c) and 4.8(d) showing the total mean energy consisting of the
kinetic energy of carriers and the intervalley energy o�set as potential energy.
For larger doping concentrations carriers have increased energy even for nearly
vanishing �elds.
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Figure 4.8.: Drift velocity and total mean energy for di�erent doping concentra-
tions with and without Pauli blocking
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4.3. Dynamic Response

Finally, these results are summarized in �gure 4.9 where the low �eld mobility
is plotted over the doping concentration. The low �eld mobility is averaged over
the linear part of the drift velocity curve. In general, In0.53Ga0.47As has an
almost doubled mobility compared to In0.52Al0.48As decreasing in both cases for
higher doping concentrations. However, after reaching a minimum the mobility
increases for even larger doping levels. This unphysical behaviour has observed in
[104] and results from a relative simple screening function. Furthermore, heavy
doping changes the bandstructure and leading itself to a heavier e�ective mass.
Due to the bad knowledge of such properties this e�ect is neglected in the present
work.
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Figure 4.9.: Low �eld mobility for di�erent doping concentrations

4.3. Dynamic Response

This section covers the in�uence of the Pauli exclusion principle on the dynamic
response of particles. Spatial and temporal velocity overshoots are a known
non-local conduction phenomenon and important in short channel devices [110].
Carriers experiencing a sudden raise of the electric �eld strength overshoot their
steady state drift velocity and need time to settle to their equilibrium values.
A carrier ensemble is simulated at zero electric �eld and after a settling time

of 1 ps a suddenly increased electric �eld is applied. Figure 4.10 shows the re-
sults for the two investigated materials for low, intermediate and strong �eld
strengths. To study the in�uence of Pauli blocking on the dynamics a doping
concentration of 1× 1018 cm−3 is assumed. For low electric �elds (1× 105 Vm−1

no overshoot is visible and the drift velocity for the cases where PEP is consid-
ered is larger (compare section 4.2). With increasing �eld strength (5× 105 and
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4. Calibration Results

1× 106 Vm−1) overshoots can be observed, for considering and neglecting PEP
respectively. However, in the PEP cases the overshoot is signi�cantly larger since
scattering mechanisms leading to equilibrium conditions are reduced. For even
higher �eld strengths (5× 106 Vm−1) it is found that the in�uence of PEP is
negligible, being consistent with the observations for the steady state mean drift
velocity.
Following these observations, it is notable that degeneracy in the channel has

not to be a necessary requirement for the proposed THz GUNN diodes by Mateos
[41, 42]. The electric �eld strengths leading to the intervalley transfer in their
devices is comparable to the high �eld case presented here (5× 106 Vm−1).
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Figure 4.10.: Velocity overshoot for In0.53Ga0.47As and In0.52Al0.48As with a
doping concentration of 1× 1018 cm−3 for di�erent applied electric
�elds
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4.4. Device Simulation: Schottky Barrier Diode

In the previous sections the handling of material properties and their in�uence
on the steady state and transient electrical properties has been presented. While
the bulk code of the MC solver has been validated, this section presents results
of the device simulation part.
A Schottky barrier diode is an ideally candidate validating calculated quan-

tities like the electric potential, the resulting �eld and the conduction current.
The device presented in [93] is under investigation and shown in �gure 4.11.
The Schottky contact, depending on its work function and the surface states of

n+
1017

n
2·1016

100 nm

250 nm 450 nm

ohmic                                                schottky

Figure 4.11.: Structure of the simulated Schottky diode

the semiconductor, forms when connected to a n-type semiconductor a depletion
region. Under reverse bias the depletion region widens, making it harder for
carriers to cross the contact. However, a forward bias leads to a lowering of the
barrier and carriers can either overcome the barrier classically or tunnel through
it. The latter is not considered in the MC simulations, nor in the analytical
expression.
The current density J can be calculated analytically using the thermionic

emission theory [110]:

J = A∗T 2e
− qφB
kBT e

qV
kBT (4.1)

A∗ =
qm∗k2

B

2π2~3
(4.2)

Where A∗ denotes the e�ective Richardson constant for thermionic emission, φB

gives the Schottky barrier height and V the applied voltage at the ohmic contact.
The Schottky barrier height is set arbitrarily to 0.7 eV. The barrier lowering due
to the presence of image charges is neglected since this is not included in the
thermionic emission model.
The device is divided in mesh cells with the extension of 5 x 5 nm and the

time steps were chosen to be 1 fs. After reaching a steady state distribution
the calculated quantities are averaged over a duration of 5 ps. The current is
evaluated by counting the particles crossing the junction. The results for the
most important quantities are presented in �gure 4.12.
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Figure 4.12.: Simulated steady state schottky barrier diode characteristics: the
calculated carrier concenctration, the electric potential and the de-
rived electric �eld and the IV-curve are shown

The derived electron density is shown in �gure 4.12(a). Near the ohmic contact
the electron concentration is kept constant at the doping level of 1× 1017 cm−3

due to the proper injection of new carriers, leading to a zero electric �eld (�g-
ure 4.12(c)) and thus emphasizing the correctness of the employed model. At
the schottky contact a depletion region is visible, depending on the applied bias.
Elsewhere in the device the carrier concentration corresponds to the doping level.
The electric potential (�gure 4.12(b)) shows a decreasing barrier for anincreasing
forward bias. For applied voltages larger than 0.7V the barrier disappears. The
current-voltage characteristics (�gure 4.12(d) follows an exponential behaviour
since the transport over the barrier is controlled via its height. However, for
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4.4. Device Simulation: Schottky Barrier Diode

vanishing barrier heights the transport across the junction is limited by the se-
ries resistance of the diode and the exponential diode characteristic changes to a
linear one. The comparison with thermionic emission theory predicts a steeper
current-voltage characteristics. However, the thermionic emission theory descrip-
tion is rather simple and the origin of the di�erence is unclear.
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5. Plasma Oscillations in

Semiconductor Devices

In chapter 3.3.1 the MC solver and included models describing material and de-
vice behaviour have been introduced. Special attention has been paid to achieve
stable device simulation. The previous chapter has dealt with results obtained
from bulk material simulation, giving insight into the steady state and dynamic
response of the used semiconductors on applied electric �elds.
This chapter starts with noise results covering the simulation of bulk material.

The second part presents the dynamic behaviour of gated and ungated simpli�ed
FET-structures introduced within the analytic hydrodynamic models in section
2.2.2. The in�uence of di�erent parameters like the device geometries and the
strength of the plasma oscillation with respect to the lattice temperature and in
presence of a current �ow was studied in detail.
The dispersion of plasma waves in such simpli�ed structures were studied

for the ungated case in [115�117] and for the gated structure in [118]. The
main di�erences between this work and these publications is discussed where
appropriate. It has to be noted that in this work the term dispersion relation
is referring to the connection of the plasma frequency to the geometry of the
investigated devices.
In the following studies the power spectral density (PSD) of voltage and current

oscillations were calculated using the autocorrelation function and the Wiener-
Khinchin theorem, introduced in the next section. The simulations were per-
formed, if not stated otherwise, at a lattice temperature of 15K. As the noise
level of the electron concentration and velocity depends critically on the number
of simulated particles, typically 300 particles were present in each cell.

5.1. 3D Plasma Frequency

In doped semiconductors, or in more general terms systems with free charges,
current oscillations can develop at the plasma frequency. For crystalline solid
state systems like metals and semiconductors the plasma frequency is given by
[119]:

fp =
1

2π

√
e2n

εm∗
(5.1)
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5. Plasma Oscillations in Semiconductor Devices

With increasing electron concentration n a larger plasma frequency is observed.
Equation 5.1 can be derived using the Drude model and the free electron model
[67]. At the plasma frequency the dielectric function vanishes and oscillations
can appear in the electron gas, even without an external excitation. For metals
the plasma frequency is located in the optical or ultra-violet region, for doped
semiconductors the plasma frequency can be found in the THz range. The plasma
frequency can be observed experimentally for instance shown in [120] where
a pin-diode has been illuminated with a fs-laser. Depending on the optically
generated carrier density, THz-radiation was observed with a peak value at the
plasma frequency. In MC simulations the plasma frequency appears as peaks in
the noise spectra [121].
Before simulating complex device geometries the solver has been validated

for the simple case of a semiconductor slab with a length of 1 µm and ohmic
contacts at each side. A 1-dimensional simulation was performed with a mesh
size of 5 nm and a time step of 5 fs. The simulations were carried out for doping
concentrations of 1× 1016, 1× 1017 and 1× 1018 cm−3 and last for 100 ps. No
electric excitation was applied, the contacts have the same electric potential.
For calculating the �uctuation spectrum this work uses the Wiener-Khinchin

theorem which states that the power spectral density can be computed using the
Fourier transform of the autocorrelation of the signal [122, 123]:

Ck =
∑
n

δUnδUn+k (5.2)

δUn = Un − U (5.3)

Where Ck gives the correlation value for the function Un with itself at a time
shift k. n denotes the length of the autocorrelation signal and the mean value
U is subtracted from Un. The autocorrelation function can be used to detect
periodicity in noisy signals. The function has always its maximum at k = 0
since the multiplied functions are identical. When no periodic signal elements
are encountered, the autocorrelation function shows a fast decaying behaviour.
Otherwise the autocorrelation function shows an oscillatory behaviour. However,
in this thesis the autocorrelation function is only used in the frame of the Wiener-
Khinchin theorem for �nding the power spectral density.
Figure 5.1 shows the electric potential at the center of the semiconductor slab

for di�erent doping concentrations and the corresponding autocorrelation func-
tion. Following equation (5.1) it is obvious that a higher doping concentration
leads to oscillations at higher frequencies. Furthermore the �uctuation ampli-
tude is larger for increased doping concentrations since larger electric �elds are
induced. The autocorrelation functions show basically the same behaviour.
By taking the Fourier transform of the autocorrelation function, shown in

�gure 5.1(b), the power spectral density of voltage �uctuation can be derived
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5.1. 3D Plasma Frequency

and is presented in �gure 5.2(a). It is emphasized that this thesis uses the
units of the Fourier transform rather than the units of its discrete version. The
spectral analysis shows peaks in the noise spectrum located around the analytical
value of the plasma frequency which is shown for comparison in �gure 5.2(b).
The plasma frequency and its full width at half maximum (FWHM) presented
by the errorbars are obtained by �tting a Gauss curve to the spectral density
function. The electric �elds being present in the structure range from 1× 104 to
1× 106 Vm−1 depending on the doping concentration. However, averaged over
time the electric �eld has to converge to zero. In conclusion, the MC solver is
able to resolve �uctuations in the steady state and the presented method will be
used throughout this thesis.
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Figure 5.1.: Electric potential �uctuations and their autocorrelation function
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5.2. Transition to a 2D Plasma Frequency

The last section has revealed that in semiconductor bulk material �uctuations
appear at the plasma frequency in the power spectral density. By surrounding
a bulk material with a dielectric, which can be an undoped semiconductor, and
by shrinking the width of the resulting channel a transition to a 2-dimensional
plasma frequency can be observed. Fixing the electric potential on the top side
of the structure, a simpli�ed gated FET is derived. These two structures corre-
spond to the simpli�ed models used in the hydrodynamic framework presented
in section 2.2.2, namely the ungated and gated case (compare �gure 5.4). This
section shows the transition to a 2-dimensional plasma frequency and discusses
numerical issues observed in MC simulations.
Figure 5.4 reports the simulation results for decreasing channel widths w for

the ungated and gated structures. The source and drain potentials have been
set to an equal potential US = UD = 0V. In the gated structure the depleting
mechanism of the gate contact was not considered and set to UG = 0V as
well. The simulations were performed for a channel length of 100 nm for both
structures at a channel doping concentration of 1× 1018 cm−3. The simulation
for a concentration of 1× 1017 cm−3 for the ungated case was performed for a
slightly longer channel with 200 nm. These small values were chosen for a large
variation of the plasma frequency. For all simulations the surrounding dielectric
layer was formed by In0.52Al0.48As and the channel by In0.53Ga0.47As. The 2-

Figure 5.3.: Schematic of the simulated structures (left: ungated, right: gated
channel)

dimensional electron concentration entering equation (2.7) and (2.8) was derived
using n2D = n3Dw. In all simulation no 2D plasma frequency values above the 3D
plasma frequency were observed. For a thinner channel (a smaller 2D electron
concentration), the plasma frequency decreases as expected. The wavevector
entering the 2D dispersion relations was chosen as k = π

l , corresponding to a
half-wavelength standing wave pattern. This consideration is justi�ed later when
the mode pro�les are discussed in section 5.5.
Millithaler observed in MC simulations the same behaviour for ungated struc-

tures [117]. However, a more detailed analytical description is given by Marinchio
in [124] for the gated case. The authors changed the gradual channel approx-
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Figure 5.4.: Monte Carlo simulation results (symbols) of the 2D plasma fre-
quency: The width of the surrounding dielectric layer is varied. The
2D-value converges to the bulk value for thicker surrounding layers
(solid line: 2D frequency using equation 2.7 and 2.8, dashed line:
analytical 3D plasma frequency).

imation made in [29] with a solution of the Poisson equation, accounting for
the longitudinal electric �eld variations neglected otherwise. They found that
by considering the longitudinal and transversal �elds, two limits can be distin-
guished: for a channel thickness which is small compared to the wavelength the
real 2D case described in [29] is valid. In the opposite case, for a large channel
the behaviour is equal to the 3D plasma frequency. However, in the intermediate
regime the fundamental and higher modes are present. It has to be emphasized
that the transition to the 2D case is only caused by shrinking the channel width,
since no 2D e�ective masses are incorporated into the solver.
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5. Plasma Oscillations in Semiconductor Devices

5.3. Numerical Issues: In�uence of the Simulation

Geometry

In modern semiconductor devices the substrate and a following bu�er layer cover
the most physical space. However, it is bene�cial in terms of computational time
to exclude these regions. Especially the solution of the Poisson equation is a
tedious task and thus it is desirable to keep the simulation domain as small as
possible. As the imposed boundary conditions alter the device operation [125] it
is necessary to study di�erent scenarios and the impact of the observed plasma
frequency.
The study was performed for the ungated and gated structure for a �xed

doping concentration of 1× 1018 cm−3. First of all the simulation results for the
ungated structure for di�erent thicknesses of the surrounding dielectric layers
(deb = det) are shown in �gure 5.5(a) and 5.5(b). Both investigated channel
widths (5 and 20 nm) show the same development of the plasma frequency: an
increasing thickness of the dielectric layer leads to a lower plasma frequency until
a saturation can be observed. Shorter channels seem to reach this saturation
for thinner barriers. It is notable that only for a thick enough surrounding
layers a clear dispersion is visible. For vanishing dielectric layers the dispersion
disappears, con�rming that the dispersion of the plasma frequencies is a two-
dimensional e�ect.
Additionally, simulations were performed for a �xed thickness of the bottom

dielectric layer deb = 160 nm and a varying thickness of the upper layer det.
The results for this asymmetrical case, shown in �gure 5.5(c), are leading to
the assumption that only one dielectric layer needs to be thick enough and the
second layer is not in�uencing the dielectric function. At last simulations were
carried out for a gated structure for a �xed gate to channel distance of d = 20 nm,
shown in �gure 5.5(d). The simulations show that the plasma resonance does
not shift for di�erent thicknesses of the dielectric layer. A �xed potential by the
Schottky gate contact seems to dominate the system's response and suppresses
the in�uence of dielectric layer boundary (electric �eld is set to zero). This
follows the previous case where one boundary seems to be su�cient.
In conclusion for further device simulation, especially when ungated and gated

regions are combinated as in real structures, it follows that the simulation geom-
etry is given by the ungated part of the transistor. The lower dielectric barrier
should be thick enough, the top layer and the geometry of the gated part are not
in�uencing the resonant plasma frequency.
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Figure 5.5.: Monte Carlo simulation results (symbols) of the 2D plasma fre-
quency: The width of the surrounding dielectric layer is varied. The
2D-value saturates for thicker surrounding layers.
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5.4. Dispersion in Ungated and Gated Structures

The previous section has covered the in�uence of the simulation geometry on the
plasma peak. In this section the dispersive properties of the structure will be
investigated. The wave vector in equation 2.7 and 2.8 is given by the channel
length. Thus, the plasma frequency should change with the channel length.
The simulation results for the ungated and gated structure are shown in �g-

ure 5.6, 5.7(a) and 5.7(b) for di�erent doping concentrations, respectively. The
bulk plasma frequency is plotted in dashed lines and the analytical formulation
in solid lines for comparison. For all carrier concentrations an increasing plasma
frequency for decreasing channel lengths is observed, following the expectation
of the dispersion relation. For thicker channels a larger 2D carrier concentration
results and hence higher plasma resonances are reached. However, the analytical
expressions predict higher plasma frequencies than observed in the MC simula-
tions. Equation (2.7) and (2.8) are relying on real 2D concentrations which is
not implementable in devices or numerical simulations. Additionally, the gate to
channel distance of the gated structure can be varied as shown in �gure 5.7(c).
A larger seperation leads to an increased frequency, following the prediction of
equation (2.8).
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(a) Ungated channel for a doping concentra-
tion of 1 × 1017 cm−3

0 200 400 600 800 1000 1200
Channel Length (nm)

2

4

6

8

10

12

14

Pl
as

m
a 

Fr
eq

ue
nc

y 
(T

H
z) n=1018cm-3 ,w =6nm

n=1018cm-3 ,w =10nm

n=1018cm-3 ,w =20nm

(b) Ungated channel for a doping concentra-
tion of 1 × 1018 cm−3

Figure 5.6.: Extracted plasma frequencies using MC simulations for the ungated
channel having di�erent lengths (symbols: MC results, solid lines:
analytical 2D values)

The tuneability of the plasma frequency is often seen as an advantage of the
gated structure over the ungated one. For larger gate voltages the electrons
are depleted in the channel leading to a lower plasma frequency, presented in
�gure 5.7(d).
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Figure 5.7.: Dispersion relation for the gated channel for di�erent channel
lengths, doping concentrations and gate voltages: Symbols are re-
ferring to simulation results and solid lines to analytical values.

The two simpli�ed structures have been examined for di�erent channel concen-
trations and lengths. It was found that the plasma frequency dispersion follows
the expectations of the analytical expressions.
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5.5. Mode Pro�les in the Channel

The dispersion of plasma waves in the conducting channel was discussed in the
previous section. In comparisons with the analytical theory a wave vector corre-
sponding to a λ/2 standing wave pattern for the fundamental mode was assumed.
This assumption will be justi�ed in this section by investigating the longitudinal
mode pro�les in the channel.
The two di�erent structures are investigated for di�erent channel lengths and

thicknesses. At every position along the channel the electric potential �uctua-
tions were investigated by applying the Wiener-Khinchin theorem. The calcu-
lated noise spectra can be plotted and the longitudinal mode pattern analyzed.
For a better visualization of the higher modes, the electric potential mode pro�les
are plotted logarithmically.
First, simulations were performed for a �xed channel width of w = 10 nm and

di�erent channel lengths with a doping concentration of 1× 1018 cm−3 for the
ungated and gated case, respectively. The results are shown in �gure 5.8. For all
cases the fundamental mode is the dominant mode and shows the highest am-
plitude, forming a λ/2 standing wave due to the imposed boundary conditions
(�xed potential at the contacts). A decreasing channel length leads to a lower
plasma frequency, which was already discussed in the last section. Furthermore,
the number of longitudinal modes increases for larger channel lengths accompa-
nied by a smaller mode spacing. The standing wave pattern of plasma modes
seems to be comparable to the situation in a Fabry-Perot cavity. The oscillation
strength of the higher modes decreases rapidly. As stated in [124], no plasma
wave excitation is found above the bulk plasma frequency. Thus, only a limited
number of modes can be excited, given by the mode spacing and the frequency
of the fundamental mode.
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(a) Ungated channel: l = 100 nm
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(b) Gated channel: l = 100 nm
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(c) Ungated channel: l = 500 nm
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(d) Gated channel: l = 300 nm
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(e) Ungated channel: l = 1200 nm
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Figure 5.8.: Voltage �uctuation amplitude (red: high amplitudes, blue: low am-
plitudes) along the channel for ungated and gated structures at dif-
ferent channel lengths l for a channel thickness of w = 10 nm and a
doping concentration of 1× 1018 cm−3
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5. Plasma Oscillations in Semiconductor Devices

Marinchio predicted in [124] that for the gated case with asymmetrical bound-
ary conditions a broader channel would lead to excitations of higher modes until
the resonance converges to the bulk mode. Figures 5.4(a) and 5.4(b) already
show that a broader channel leads to higher plasma frequencies, given by the
increasing 2D carrier concentration. Additionally, the connected mode patterns
are shown in �gure 5.9. For a moderate channel thickness of 30 nm the excitation
of numerous higher modes compared to the 10 nm-case in �gure 5.8 is visible,
following the predictions in [124] and the observations made in this study for
di�erent channel lengths. However, a further increment of the channel thickness
does not lead to the excitation of more plasma modes. Obviously, the higher
order modes seem to gain more signi�cance by suppressing the lower ones.
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(a) Ungated: l = 300 nm, w = 30 nm
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(b) Gated: l = 100 nm, w = 30 nm
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(c) Ungated: l = 300 nm, w = 80 nm
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(d) Gated: l = 100 nm, w = 50 nm

Figure 5.9.: Voltage �uctuation amplitude (red: high amplitudes, blue: low am-
plitudes) along the longitudinal channel direction for ungated and
gated structures at di�erent channel thicknesses.
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Millithaler is arguing in [117] that the crossover between 2D and 3D plasma
frequencies is at the Debye wavelength. No similar signi�cant observations could
be made. Furthermore, [118] shows for the gated case always a peak at the 3D
plasma frequency. It is noted that this peak is only observed in our simulations
for time steps exceeding the stability criteria between the solutions of the Poisson
equation. At smaller time steps this peak vanishes or its amplitude is located
several orders of magnitude below the 2D peaks.
The �uctuations of the electric potential drive the electric �eld and produce a

current in the channel. Figures 5.10 and 5.11 show the simulated mode pro�les
for the current density �uctuations for an ungated and a gated structure with
a channel length of l = 500 nm and l = 300 nm, respectively. At frequencies in
the THz range, the displacement current ∂D

∂t is signi�cantly contributing to the
overall current density and has to be evaluated. It is found, that in the ungated
and gated structures the current mode pro�le is equal for the conduction and
displacement current. The current density oscillation amplitudes are in the same
order of magnitude for both current types.
In the investigated structures the current modes are visible at the resonant

frequencies. For the ungated case the current density forms nodes at the de-
vice borders and shows for the fundamental mode two oscillation maxima, four
maxima for the second mode and 2m for the mth mode.
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500 nm
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Figure 5.10.: Calculated conduction current (red: high current, blue: low cur-
rent) for an ungated and a gated structure: The simulations have
been performed at a lattice temperature of 15K.

In contrast to the current density in the ungated structure and the electric po-
tential pro�les where the �uctuation amplitude drops to zero, the current density
in the gated structure shows quite a di�erent behaviour. At the channel contacts
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the current density forms peaks for the fundamental mode and decreases into the
channel. Basically the higher modes show a similar pro�le with an increasing
number of appearing maxima. Marinchio presented in [126] a comprehensive
analytical study about THz plasma waves in a gated semiconductor slab of arbi-
trary thickness. It is noted that for the case of symmetric boundary conditions
the presented mode pro�les coincide with the pro�les in Marinchio's analytical
study.
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(b) Gated channel with a length of l = 500 nm

Figure 5.11.: Calculated displacement current (red: high current, blue: low cur-
rent) for an ungated and a gated structure: The simulations have
been carried out at a lattice temperature of 15K.

This section has summarized the investigations of the current density and
electric potential mode pro�les for di�erent geometries. Di�erent channel lengths
and thicknesses have been investigated, showing the presence of higher plasma
modes. As the channel thickness increases, the 2D modes converge to the 3D bulk
frequency. Both quantities are forming standing wave patterns in the channel.
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5.6. Oscillation Strength

5.6. Oscillation Strength

While the modal pro�les were studied in the previous section, this section covers
the voltage and current density oscillation amplitudes. In contrast to analyti-
cal studies [29, 45, 126] the MC method is able to incorporate real scattering
mechanisms beyond the relaxation time approximation and study more complex
geometries. This section discusses the in�uence of geometric variations, the lat-
tice temperature and the impact of a steady state current. Additionally, the
in�uence of the Pauli exclusion principle is studied. In this section the PSD is
given as a spatial average along the channel.

5.6.1. Variation of the Channel Length

This section covers the in�uence of the channel length on the oscillation strengths
of the �uctuations. Ungated and gated structures are investigated, the �rst for
two di�erent doping concentrations.
The results for the voltage �uctuations are shown in �gure 5.12. The PSD

of the electric potential �uctuations for the ungated structure is computed for
two di�erent doping concentrations, shown in �gure 5.12(a) and 5.12(b) and
three di�erent channel lengths, respectively. The results for the gated case and
a doping concentration of 1× 1018 cm−3 is given in �gure 5.12(c). In all cases
the frequency of the plasma resonances is increasing for shorter channel lengths,
which was already discussed in section 5.4 concerning the dispersion relations.
Furthermore, the oscillation amplitude is decreasing for shorter channels as

the in�uence of the �xed boundary conditions (US = UD = 0V) is weaker. The
oscillation strength increases for higher carrier concentrations as well, as the
associate forces for larger concentrations are stronger. The same behaviour was
found for plasma oscillations in bulk material, presented in section 5.2.
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Figure 5.12.: PSD of voltage �uctuations in the ungated and gated channel for
di�erent channel lengths and doping concentrations: Longer chan-
nels lead to stronger oscillations.
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5.6.2. Variation of the Lattice Temperature

Plasma waves in the THz region are strongly damped by scattering processes,
since the scattering rates are in the same order of magnitude. In order to in-
vestigate the in�uence of the scattering rates, simulations were performed for
di�erent lattice temperature. At cryogenic temperatures phonon scattering is
strongly reduced since fewer phonons are available. Especially scattering with
optical phonons, which is usually the dominant scattering mechanism, is sup-
pressed.
Simulations were carried out for an ungated and a gated structure with chan-

nel lengths of 500 and 300 nm, respectively. The computed PSD of the voltage
and current �uctuations is presented for the ungated (�gure 5.13) and gated
(�gure 5.14) case at di�erent lattice temperatures, reaching from cryogenic tem-
peratures to room temperature.
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Figure 5.13.: Calculated voltage and current spectral densities at di�erent lattice
temperatures for the ungated structure at a doping concentration
of 1× 1018 cm−3 and a channel length of l = 500 nm

Both simulation series show the same behaviour. At 15K, several modes
are visible in the voltage and current oscillation spectra. However, the scatter-
ing rates increase for higher temperatures and oscillations are more e�ectively
damped. At a lattice temperature of 100K oscillations are still visible but vanish
for higher temperatures. There are no oscillations visible at room temperature.
For higher lattice temperatures the general noise level of current oscillations in-
crease, which can be attributed to the additional thermal energy of carriers and
increased scattering rate.
Since this study plots the PSD, the square-root has to be taken to derive
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Figure 5.14.: Calculated voltage and current spectral densities at di�erent lattice
temperatures for the gated structure at a doping concentration of
1× 1018 cm−3 and a channel length of l = 300 nm

the amplitude spectra. It has to be noted that the amplitude values given by
Marinchio [126] are in the range of 1× 109 Am−2 at room temperature, which
coincide well with the current densities derived in this study at cryogenic tem-
peratures. The di�erence is attributed to the more realistic incorporation of
scattering processes used in the MC method compared to the used velocity re-
laxation time in the analytical approach. A weaker emission of THz radiation
for higher temperatures was found in experiments [60] as well.

5.6.3. Bias Dependency

Up to this section the devices have been simulated under equilibrium conditions
with no applied electric �eld. In experiments [60, 62] the onset of THz-emission
was observed at applied drain biases, especially when the transistor is driven
into the saturation regime. This section covers simulation results of an ungated
and gated structure at di�erent applied source-drain voltages and discusses its
current density spectra.
Figures 5.15(a) and 5.15(b) show the PSD-spectra for the ungated and gated

case. The insets give the corresponding IV-curves. Both simulated structures
show a current saturation at small applied voltages, which can be explained by
the short channels and large involved electric �elds. Additionally, there are no
doped contact regions where a voltage drop occurs when compared to real FETs.
It can be observed that for larger currents the plasma peaks are washed out and
no oscillations sustain. No observation for an ampli�cation or enhanced oscil-

82



5.6. Oscillation Strength

lation strength of plasma waves can be observed. Under larger electric �elds
carriers are signi�cantly heated (compare with section 4.1.1.1) and thus scatter
more often, destroying the plasma oscillation. As for increased lattice tempera-
tures the general noise level raise, underlining this conclusion.
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(b) Gated: l = 300 nm

Figure 5.15.: Current density PSD for di�erent applied biases at a lattice temper-
ature of 15K: for larger currents the plasma peaks are suppressed.

5.6.4. In�uence of the Pauli Exclusion Principle

In section 3.8 the Pauli exclusion principle in MC simulation was introduced.
It was found, that for higher electron concentrations the carriers are pushed
towards the high energy tail of the distribution function. Later, in the calibration
section of doped materials 4.2, the impact on the electron drift velocity in steady
state and dynamic scenarios were investigated. In general an increased doping
concentration leads to a lower mobility due to the increased scattering with
impurities. However, for doping levels where PEP gets important and needs to
be considered some of the "lost" mobility can be regained due to the increasing
blocking of scattering processes.
The in�uence of the Pauli principle was investigated by comparing simulations
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5. Plasma Oscillations in Semiconductor Devices

at di�erent lattice temperatures to simulations where PEP has been neglected.
Figure 5.16 summarizes the results: for both structures it is found that the
oscillations are stronger when PEP is considered. Especially for the ungated
structure it is found that the oscillation are visible at higher lattice temperatures.
However, there are still no current oscillations observable at room temperature.
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Figure 5.16.: Current density PSD as a function of temperature and activated
PEP-module. The dashed lines refer to simulations without Pauli
blocking: with activated PEP the oscillations are stronger and sus-
tain up to higher temperatures.

The analytical hydrodynamic theory used by Dyakonov [29] or Marinchio [126]
excludes quantum e�ects like the Pauli exclusion principle. In the presented
simulation results it was found that the frequency of the plasma peaks is not
shifting. Only the oscillation strength increases.
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6. THz Plasma Waves in FETs

The most important properties of THz plasma waves in simple ungated and
gated channels were discussed in the last chapter. It was shown that the com-
puted plasma frequencies follow loosely the proposed dispersion relations given
by Dyakonov. However, a real FET consists usually not of a single gated region
more by a combination of both ungated and gated parts. This section discusses
the plasma frequencies and mode patterns for such devices which should be more
comparable to experiments.

6.1. Combination of Ungated and Gated Regions

The �rst simulations were carried out for a combined ungated and gated device
section, shown in �gure 6.1(a). First, the ungated part of the device was �xed to
a constant value of u = 50 nm and the length of gated part g was varied between
50 and 250 nm. The results are summarized in �gure 6.1(b). In �gure 6.1(c)
the gated part was �xed and the length of the ungated regions changes. Markers
refer to standalone simulations such as performed in the last chapter. The funda-
mental plasma mode for each simulation geometry is plotted as a straight simple
line since no explicit channel length can be given for meaningful comparisons
with the standalone devices.
By �xing the length of the ungated part and increasing the gated region the

plasma frequency approaches for increasing gate length the value given by the
standalone gated device. Furthermore, it is observable that the plasma frequency
converges to the value of the gated dispersion relation for the total channel
length. The ungated part loses in�uence while the gated region with its �xed
gate potential dominates. The second study shown in �gure 6.1(c) reveals a
quite di�erent behaviour. Fixing the gate length and increasing the length of
the ungated part leads only to a slight shift of the plasma frequency. However, the
plasma peak is not approaching the ungated value as observed in �gure 6.1(b).
The plasma peak is even falling below the dispersion relation for the ungated
region.
It has been noted by Mateos in [127] that for the peaks appearing in the

noise spectra observed during recti�cation in the detection process the resonant
frequency is given by geometric parameters: the resulting frequency for a com-
bination of ungated and gated regions should be given by a combination of the
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Figure 6.1.: MC simulation results (represented by solid lines, since no channel
length is associated) of the plasma frequency for structures consist-
ing of an ungated and gated channel. The symbols represent the
expected plasma frequencies when the ungated and gated part is
considered alone.

standalone plasma frequencies weighted by their structural in�uence. In the pre-
sented simulations no such behaviour was observed. The plasma frequency for
u = g = 50 nm is located at l = 100 nm with a slight shift towards the gated
value. According to their theory the frequency should lay between the two values
at l = 50 nm.
Next, simulations were performed for ungated-gated-ungated devices which

resemble more realistic devices. Two studies were carried out: �rst, the length
of the ungated parts of the channel were �xed to u = 150 nm and the gated
region was varied in length. For the second test case the gated part was �xed
to g = 50 nm and the in�uence of the length of the ungated region was studied.
Both simulation series show a decreasing plasma frequency either by increas-
ing the ungated or gated channel region. Only a small change of the resulting
frequency is visible for longer devices, thus making a comparison with experi-

86



6.1. Combination of Ungated and Gated Regions

ments quite di�cult because a smaller frequency dispersion is visible, compared
to the standalone ungated and gated devices. Following the previous simulation
of ungated-gated structures the resulting frequency can not deduced from the
simple ungated and gated devices. Exemplarily, this can be clearly observed for
the 150-50-150 nm structure where the plasma frequency lies below the ungated
and gated plasma frequency.
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(a) Schematic of the simulated structure consisting of an ungated and
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Figure 6.2.: Calculated plasma frequencies for devices consisting of combined
ungated and gated regions. Markers refer to standalone simulations
and solid lines mark one combination of an ungated-gated-ungated
devices.
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6. THz Plasma Waves in FETs

6.2. Mode Pro�les for Combinated Devices

The mode pro�le of the electric potential and the current density were discussed
in chapter 5.5. Simulations showed that standing wave patterns are formed in
the channel. For both devices the electric potential formed nodes at the contacts,
since the potential was �xed by the boundary conditions. The current density
�uctuations formed nodes for the ungated channel at the channel contacts while
it showed peaks for the gated device. This section summarizes the results for
combinated structures.
Figure 6.3 shows the mode pro�les of the electric potential for an ungated-

gated and ungated-gated-ungated device (every part of the device has a length
of 50 nm. Being consistent with previous calculations, nodes are formed at the
channel contacts. Higher order modes can be observed at higher frequencies.
Additionally, it has to be noted that the oscillations under the gate are weaker
compared to the ungated region - the gate �xes the potential and damps evolving
oscillations.

0 2 4 6 8 10
Frequency (THz)

0

20

40

60

80

100

C
ha

nn
el

 P
os

iti
on

 (n
m

)

10-12

10-11

10-10

10-9

10-8

10-7

(a) Ungated-gated devices: gate covers the
channel between 50 and 100 nm
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(b) Ungated-gated-ungated: every section is
50 nm long

Figure 6.3.: Mode pro�les for the electric potential for a ungated-gated and
ungated-gated-ungated device. As for the standalone devices the
electric potential forms standing waves.

Furthermore, the mode pro�les for the conduction current can be evaluated.
For all investigated devices it was found that the number of current peaks for each
mode is equal to the standalone devices (e.g. two for the fundamental mode).
The modal current pro�le for the ungated-gated device is given by whether the
region is covered by a gate or not. In the ungated part the current tends to zero
at the contact while it shows a peak at the contact under the gate. This resembles
basically the �ndings of the previos chapter. The situation is more complicated
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6.2. Mode Pro�les for Combinated Devices

for the ungated-gated-ungated device: the current pro�le are neither given by
the ungated parts, nor by the gated part of the channel. However, the current
pro�le can be seen as an hybrid pro�le, given by the combination of ungated and
gated regions.
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Figure 6.4.: Conduction current �uctuations for an ungated-gated and ungated-
gated-ungated device.

In conclusion, these simulations indicate that the plasma peak observed in
experiments can not be calculated following the dispersion relation for the single
gated channel as it is mostly done in available experiments [59, 62]. The oscil-
lating current ranges over the whole device and is not only restricted to gated
regions as usually assumed.
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7. Conclusion

Sensing with THz waves has become a large �eld which is interesting for many
scienti�c and industrial applications. However, there is still a lack for small
and robust solid-state devices acting as sources. The goal of this work was to
investigate the device properties for plasma wave excitation and compare to
present experimental work. The results should lead to a deeper insight and lead
to new devices.
A Monte Carlo device simulator was developed as an investigative tool during

this work. One of the major achievements was to include sophisticated material
parameters relying on a variety of measurements or ab initio calculations, rather
using most of these parameters as �tting values. A simple three valley band-
structure model was used which is able to reproduce steady-state drift-velocity
curves known from literature. Scattering rates for various processes were com-
puted using e�cient formulations. The device simulator employs models for
heterojunctions and tunneling probabilities. Ohmic and Schottky contacts are
included serving as boundary conditions for the solution of the Poisson equation.
A fast solution for the electric potential and �eld is realized by using a parallized
solver for the linear system of equations. Results, showing the importance of the
Pauli exclusion principle, are presented to demonstrate its in�uence on transport
characteristics.
The second part of this work describes the presence of plasma waves in sim-

pli�ed FET-like structures. Simulations showing the in�uence of the channel
width and length were carried out. It was found that the results are in good
agreement with previously developed hydrodynamic models of di�erent authors.
The plasma frequency increases for shorter channels and the number of modes
grows with the channel thickness. Furthermore, basic properties with focus on
an application as possible emitters were investigated:

• Standing wave patterns are formed in the channel

• Current oscillations are overdamped at lattice temperatures above 100K

• A steady-state current �ow through the channel heats carriers and destroys
oscillations

• The Pauli exclusion principle does not a�ect the plasma frequency

• The plasma frequency in a common FET (ungated-gated-ungated device)
does not follow the dispersion relation of a single gated region
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7. Conclusion

• Ungated regions at contacts can not be used for diode-like two terminal
devices since the current density �uctuations tend to zero

In conclusion, the performed simulations suggest that the excitation of plasma is
possible in FET-like devices but is restricted to very limited use. The operating
temperature and low current densities involved make it impracticable for an
application as a real THz source. The experimentally observed broad emission
spectra could be based on thermal emission of the heated electron gas like stated
by Shalygin [128]. However, further experiments would certainly be helpful to
�nally clarify the emission of THz radiation.

92



A. Material Parameters

This section summarizes the values for the models of the semiconductor's band-
structure and the used material parameters needed for computating the scatter-
ing rates.

A.1. General Parameter

GaAs InAs AlAs In0.53Ga0.47As In0.52Al0.48As

a (nm) 0.5653 0.6058 0.5661 0.5868 0.5868

ρ (kg cm−3) 5317 5680 3730 5509 4744

sl (m s−1) 5400 4410 6480 4875 5404

εS (ε0) 12.90 15.15 9.46 14.09 12.42

ε∞ (ε0) 10.90 12.25 8.15 11.62 10.28

Table A.1.: Basic Parameters
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A. Material Parameters

GaAs InAs AlAs In0.53Ga0.47As In0.52Al0.48As

m∗ (m0)

Γ 0.067 0.026 0.150 0.043 0.073

L 0.075/1.90 0.050/0.64 0.150/1.32 0.062/1.23 0.098/0.96

X 0.23/1.30 0.160/1.13 0.220/0.97 0.192/1.21 0.188/1.05

EG (eV)

Γ 1.52 0.42 3.09 0.82 1.53

L 1.81 1.13 2.46 1.37 1.77

X 1.98 1.43 2.24 1.48 1.82

α (eV−1)

Γ 0.573 1.180 0.561

L 0.510 0.588 0.204

X 0.580 0.649 0.204

Table A.2.: Bandstructure Parameters at 0K
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A.2. Phonon Energies and Deformation Potentials

A.2. Phonon Energies and Deformation Potentials

The formulation of the various scattering rates include mostly a deformation
potential, describing the strength of the scattering. Furthermore, they involve a
phonon energy used for the energy exchange during the process. These parame-
ters are summarized here.

In0.53Ga0.47As In0.52Al0.48As

~ωop (meV) 32.7 41.0

~ωiv (meV)

Γ L X Γ L X

Γ 22.76 23.84 29.0 29.0

L 22.76 26.96 23.12 29.0 29.0 29.0

X 23.84 23.12 22.76 29.0 29.0 29.0

Table A.3.: Phonon Energies

In0.53Ga0.47As In0.52Al0.48As

Ualloy (eV) 0.53 0.47

Dac (eV) 9.2 8.0

Dnonp (eVnm−1) 30.0 30.0

Div (eVnm−1)

Γ L X Γ L X

Γ 70.0 70.0 100.0 100.0

L 70.0 70.0 50.0 100.0 100.0 100.0

X 70.0 50.0 58.0 100.0 100.0 100.0

Table A.4.: Deformation Potentials
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