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1 Introduction
In the field of commutative algebra, minimal free resolutions are one of the basic
invariants associated to a moduleM over a commutative ring R. Several other
invariants of a graded moduleM, for example the Betti numbers or the Hilbert
Function, can be defined via, or easily obtained from, this resolution of M.
If the module M comes from a geometrical setting, many of these invariants
reflect geometrical properties. From a computational point of view, the question
of how to efficiently compute the minimal free resolution and related invariants
is an interesting topic in itself.

In the case of a module over a polynomial ring P = k[x0, ..., xn], Buchberger
introduced Gröbner bases (see [Buc06] for an english version of his PhD thesis):
Gröbner bases provide a first idea for a systematic construction of a resolution,
which can be minimized to obtain a minimal free resolution. However, arbitrary
Gröbner bases have the downside that, in general, they are a primarily compu-
tational tool and might not contain much information about the algebraic struc-
ture ofM. However, the subclass of involutive bases provides a relatively new
approach, introduced in [GB98], which reflects interesting algebraic properties
ofM in a way that is useful from both a computational-algorithmic perspective
as well as from a theoretical perspective. New types of involutive bases have
been introduced very recently [GB11].

To obtain an involutive basis, one first needs an involutive division. There
are many different classes of involutive divisions, each with advantages and
downsides. The Pommaret division is typically the most useful involutive divi-
sion when one intends to make purely theoretical arguments. Many well-known
results such as the Auslander-Buchsbaum formula can also be proved with Pom-
maret bases, see [Sei10]. While Pommaret bases are helpful for most explicit
calculations, their use is hampered by the fact that in some non-generic cases
they do not exist. Here, the Janet division can be considered the closest substi-
tute which avoids this pitfall.

Either of these involutive divisions induces a free resolution, which is gener-
ally not minimal. Coming from a different direction, discrete algebraic Morse
theory (see [For98], [JW09] or [Skö06]) also offers a technique to construct res-
olutions. While this theory has its origins in the field of cellular complexes,
Sköldberg has in [Skö11] applied this theory to modules with initially linear
syzygies, a situation which typically arises in the context of involutive bases.
The main idea of the present work is to further investigate this construction
and see what results it brings.

Our first main result, Theorem 4.2.3, states that the combination of these
approaches yields a new construction for the iterative construction of involutive
bases of syzygy modules. Additionally, this approach enables us to directly com-
pute some parts of the differential anywhere in the resolution without having
to compute other parts of the resolution. Consequently, we can compute Betti
numbers without having to do the “unnecessary” computations for lower homo-
logical degrees. This algorithm has been implemented in CoCoALib [AB] by
Mario Albert, and it appears to be very efficient at computing Betti numbers.
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Next, we are able establish that our resolution is highly structured. It is then
natural to ask if this structure enables us to make purely theoretical statements,
for example which properties can be deduced for the minimal resolution, or more
precisely, what part of the structure is retained during a minimising process. It
turns out that the rules for minimising a resolution make it possible to give,
based on our resolution, some non-vanishing statements about certain Betti
numbers of Veronese subrings.

The Veronese subrings S(d) = k[xµ | deg(xµ) = d] ⊆ k[x0, ..., xn] are among
the most studied examples of graded modules. In [EL12], Ein and Lazarsfeld
showed that for every q ≥ d + 1, the (shifted) Betti numbers β′p,q of S(d) are
nonzero if(
d+ q

q

)
−
(
d− 1

q

)
− q ≤ p ≤

(
d+ n

n

)
−
(
d+ n− q
n− q

)
+

(
n

n− 1

)
− q − 1.

Using our theory established earlier, one of our main results, Theorem 6.2.6, is
a generalization of the bound on the left to

d(q)sq∑
i=0

(
d− i+ rq − 1

d− i

)
− rq

with certain integers sq,d(q)sq , rq as in Definition 6.1.14. This bound then holds
without any restriction on q, apart from the obvious 1 ≤ q ≤ regS(d).

We conclude with a topic that shows a different application of involutive
bases: The study of the behavior of the Hilbert function under some ideal-
theoretic operations has brought some interesting results such as the Theorem
of Macaulay, the Persistence and the Regularity Theorem of Gotzmann or the
Hyperplane Restriction Theorem, see [Gre98]. Using the technique of Pommaret
bases, we are able to give a new proof of the Hyperplane Restriction Theorem,
though we are limited to sufficiently large degrees.

This thesis is structured as follows:
Chapter 2 presents basic definitions and results that are needed throughout

the remaining chapters. In particular, we will briefly outline the concept of
the minimal free resolution of a graded module, and the invariants defined via
this resolution. While we suppose that the readers have encountered these
constructions before, the same cannot be said about the other major topic of
this chapter, involutive divisions and involutive bases. This field is much more
specialized, and therefore we devote the larger part of the chapter to introducing
and illustrating the basic ideas behind involutive divisions, with the goal of
explaining every aspect of involutive divisions necessary for comprehending the
remaining chapters. We close this chapter with some remarks about homological
algebra, which build the foundation for the next chapter.

Chapter 3 introduces algebraic discrete Morse Theory. This chapter is heav-
ily based on two papers by Emil Sköldberg, [Skö06] and [Skö11]. We repeat
several constructions and theorems from both papers. We have included most
of the proofs given in the references. Occasionally, we have revised some of these
proofs and added some arguments, hoping to improve accessibility.
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Our first original results appear in chapter 4: We see that certain classes of
involutive bases can be combined with algebraic discrete Morse theory, yielding
a free resolution. We will see that this is essentially the same resolution as
the resolution induced by the involutive basis. This approach leads to new
possibilities to calculate syzygies, which in particular includes the possibility to
compute single Betti numbers without having to compute the entire resolution.
The theory of this chapter has been implemented in CoCoALib by M. Albert.
We will give a short introduction to this implementation and see that it often
favorably compares to other computer algebra systems.

Earlier versions of the content of this chapter, joint work with M. Albert and
W.M.Seiler, have been published in [AFSS15] and [AFS15]. In the first paper,
the respective results have been given for the special case of Pommaret bases,
and in the second paper they were extended to Janet bases.

The next two chapters share the results of chapter 4 as a common basis, but
they lead in overall rather different directions.

In chapter 5, we further analyze the newly constructed resolution of chapter
4, which is, in general, not the minimal free resolution. It is interesting to see
where in this resolution the differentials contain constants. We will show that
in this resolution, the appearance of some constants is interlinked, or more pre-
cisely, some sets of constant share a common origin. We caution that stating
these theorems in a precise manner makes them look rather technical, and also
that their proofs require several technical results to be established in advance.
We discuss how these results can be used to further improve future implemen-
tations in CoCoALib.

In chapter 6, we apply the results of chapter 4 to the Veronese subrings
generated by the monomials of degree d in n + 1 variables. Here, we restrict
to Pommaret division. As first important step, we will construct a Pommaret
basis for the ideal arising from the Veronese subrings. As a corollary, we will
obtain new proofs for some well-known properties of the Veronese subrings.
Additionally, we will prove that some Betti numbers of the Veronese subrings
do not vanish. In [EL12], the respective result was proved for d ≥ q+1, where q
is a fixed degree of the “shifted” Betti number in question, but our result covers
any value of d. While the main focus of this chapter is different from chapter
5, we do occasionally require some of the lemmata of said chapter. Our result
regarding these Betti numbers can be understood via some purely combinatorial
conditions regarding multiindices.

In chapter 7, we show another new application of Pommaret bases: We
derive a formula that connects a Pommaret basis of an ideal and the unique
saturated lex segment ideal with the same Hilbert polynomial. We will use this
link to give a new proof for a part of Green’s Hyperplane Restriction Theorem.
This chapter does not require Morse theory and is independent of Chapters 3-6.
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2 Basic definitions and theorems
Definition 2.0.1. A (directed) graph Γ = (V,E) consists of an arbitrary set
V , called vertices of Γ and a set E ⊆ V × V , called edges of Γ. For an edge
e = (a, b) ∈ E, we will use the notation a→ b, and say that a, b are incident to
e. We call a the source and b the target of e.

Definition 2.0.2. Let Γ = (V,E) be a directed graph. A path in Γ is a finite
(ordered) subset a0, ..., am ∈ V such that ai → ai+1 ∈ E for all 0 ≤ i ≤ m− 1.
Equivalently, we will view any (ordered) set

{
(a0 → a1), ..., (am−1 → am)

}
⊆ E

as a path. We will usually write

a0 → ...→ am

for such a path.
A cycle of Γ is a path a0 → ... → am in Γ such that a0 = am. We say that

Γ is acyclic if there are no cycles in Γ.
For two paths p1 = (a → ... → b), p2 = (b → ... → c), we write p2 ◦ p1 for

the concatenation of the paths, i.e. the path a→ ...→ b→ ...→ c.

Even though the definition of the concatenation possibly looks reversed to
what one might initially expect, we prefer this order, for we will later associate
maps ρp to paths p in certain graphs. For these maps, we will have

ρp2◦p1 = ρp2 ◦ ρp1 ,

and here our notation is indeed natural.

2.1 Free resolutions
We will start by presenting some basic definitions and results on free resolutions.
The presentation is heavily inspired by [CLO98, Chapter 6].

Definition 2.1.1. A chain complex F over a commutative ring R consists of
R-modules Fl for l ∈ Z and homomorphisms

...→ Fl+1
ϕl+1−−−→ Fl

ϕl−→ Fl−1 → ..

such that ϕl ◦ ϕl+1 = 0 for all l ∈ Z. We call

Hi(F) = ker(ϕi)/ im(ϕi+1)

the i-th homology module of F . The maps ϕl are called the differential of F .
We call a chain complex F an exact sequence if Hi(F) = 0 for all i ∈ Z.

LetM be an R-module. A free resolution ofM is an exact sequence

...→ F2
ϕ2−→ F1

ϕ1−→ F0
ϕ0−→M→ 0,

where Fi ∼= Rri is a free R-module for all i. We say that the elements of Fi are
of homological degree i.
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Equivalently, we say that a chain complex1 F with

...→ F2
ϕ2−→ F1

ϕ1−→ F0

is a free resolution ofM if and only if every Fl is a free R-module and

H0(F) = F0/ im(ϕ1) ∼=M and Hi(F) = 0 for all i ≥ 1.

We say that the (free) resolution is finite of length l, if there is an l such that
Fl+i = 0 for i ≥ 1 and Fl 6= 0. In this case, we usually write

0→ Fl → Fl−1 → ...→ F1 → F0 →M→ 0.

For our purposes, we usually take R to be the ring P = k[x0, ..., xn] of
polynomials in n+ 1 variables over a field k of arbitrary characteristic, andM
to be a finitely generated P-module. While in more general situations, finite free
resolution do not necessarily exist, the next theorem guarantees the existence
of finite resolutions over P.

Theorem 2.1.2 (Hilbert’s Syzygy Theorem). Let P = k[x0, ..., xn]. Then for
every finitely generated P-module, there is a free resolution of length at most
n+ 1.

Proof. A standard proof is given in [CLO98, Chapter 6, Theorem 2.1]. The
statement also follows from Theorem 2.3.59, which gives an alternative proof,
using involutive bases.

Definition 2.1.3. Let s ≥ 0 be an integer. Then we define Ps to be the set of
all polynomials of total degree s, together with 0. Obviously, we now have

P =
⊕
s≥0

Ps

as k-vector spaces. We will call this decomposition the (standard) grading on
P. Using this decomposition of P, a (standard) graded module over P is a P-
moduleM with a family of subgroups {Mt|t ∈ Z} ⊆ M of the additive group
ofM such that

• M ∼=
⊕
t∈Z
Mt as additive groups,

• PsMt ⊆Ms+t for all s ≥ 0 and t ∈ Z.

The elements of Mt are called (homogeneous) elements of degree t.

This notation is consistent with the standard grading on P. More generally,
any decomposition of P as a direct sum

P =
⊕
s≥0

P ′s

1To formally match the definition of a chain complex, we extend F to the right with a
chain of trivial modules 0 and trivial homomorphisms.
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of finite-dimensional k-vector spaces P ′s such that P ′sP ′t ⊆ P ′t+s for all s, t ≥ 0
allows us to define a grading by taking as elements of degree s the nonzero
elements of P ′s. In the same manner, the definition can be extended to graded
modules with respect to the new grading. Examples of gradings that are dif-
ferent from the standard grading can be found, for example, in [KR05, Section
4.1.].

We will work exclusively with the standard grading on P and graded modules
with respect to the standard grading on polynomial rings:

Assumption 2.1.4. From now on, unless stated otherwise, any graded module
M is a standard graded P-module for a polynomial ring P. With the exception
of Chapter 6, we take P = k[x0, ..., xn] to be the polynomial ring in n + 1
variables over a field k.

Assumption 2.1.5. We write N for the set of non-negative integers. In par-
ticular, N contains 0.

Definition 2.1.6. A monomial in P is a term of shape xµ0

0 · · ·xµnn where we
have µ0, ..., µn ∈ N. We write T for the set of all monomials in P.

To be consistent with this general assumption, we define multiindices to also
have n+ 1 entries:

Definition 2.1.7. We call a vector µ = (µ0, ..., µn) ∈ Zn+1 a multiindex. For
a multiindex µ such that µi ≥ 0 for all 0 ≤ i ≤ n, let xµ be the monomial
xµ = xµ0

0 · · ·xµnn ∈ k[x0, ..., xn]. We also say that µ is the exponent vector of
xµ. For a monomial xµ, we define

supp(xµ) = supp(µ) = {i | µi > 0}.

For 0 ≤ i ≤ n, we define 1i the multiindex whose i-th entry is 1 and whose
remaining entries are 0, i.e.

• (1i)i = 1 and

• (1i)j = 0 for j 6= 1.

Thanks to the identification of multiindices and monomials as in this defi-
nition, many objects and definitions related to multiindices can just as well be
understood via the corresponding monomials. Occasionally, when the context
ensures that there cannot be confusion, we will use this fact for a minor abuse of
notation and write µ instead of xµ and vice versa, depending on what is better
suited for the respective context.

Theorem 2.1.8. Let d ∈ Z. LetM(d) be the direct sum

M(d) =
⊕
t∈Z
M(d)t,

whereM(d)t =Md+t. ThenM(d) is a graded P-module.

11



Proof. Obvious.

We call such anM(d) a shifted module. Of special interest are the shifted
modules P(d).

Definition 2.1.9. LetM,N be graded P-modules. We say that a homomor-
phism ϕ : M→N is a graded homomorphism of degree d if ϕ(Mt) ⊆ Nt+d for
all t ∈ Z. A graded resolution ofM is a free resolution

...→ F2
ϕ2−→ F1

ϕ1−→ F0
ϕ0−→M→ 0

such that each Fl is a shifted graded free module P(−d1) ⊕ ... ⊕ P(−dp) and
each ϕl is a graded homomorphism of degree 0.

Assumption 2.1.10. Unless stated otherwise, we will from now on take any
graded homomorphism to be of degree 0. In particular, if we speak of iso-
morphisms of graded modules, we will always assume that the modules are
isomorphic via a graded isomorphism of degree 0, unless stated otherwise.

Theorem 2.1.11 (Graded Hilbert Syzygy Theorem). Let P = k[x0, ..., xn].
Then any finitely generated graded P-module has a finite graded resolution of
length at most n+ 1.

Proof. See for example [CLO98, Chapter 6, Theorem 3.8].

Definition 2.1.12. LetM be a finitely generated graded P-module and

...→ Fl → Fl−1 → ...→ F0 →M→ 0

a graded resolution ofM. The resolution is called minimal if for all l ≥ 1, the
non-vanishing entries of the matrix of ϕl (which represents the map Fl → Fl−1)
are of positive degree. If one of these matrices contains has an entry contained
in P0 = k, we call this entry a constant of F and we say that F contains a
constant.

We will briefly explain the use of the word “minimal” in this context: In
Section 2.2, we will see that from any resolution for which a matrix of some
ϕl contains a non-vanishing entry of degree 0 (i.e. a constant), we can con-
struct another free resolution ofM whose modules have smaller ranks. Thus, it
makes sense to say that any resolution which contains a constant is not minimal,
justifying this definition of minimality for resolutions.

Definition 2.1.13. Two chain complexes

...→ Fl+1
ϕl+1−−−→ Fl → ... and ...→ Gl+1

ψl+1−−−→ Gl → ...

are called isomorphic if there are graded isomorphisms αl : Fl → Gl (of degree
0) for l ≥ 1 such that αl ◦ ϕl+1 = ψl ◦ αl+1 for all l ≥ 0 holds.

Theorem 2.1.14. Any two minimal resolutions ofM are isomorphic.

12



Proof. [CLO98, Chapter 6, Theorem 3.13]

Remark 2.1.15. From definition 2.1.1, we now immediately see that for any
isomorphismM∼=M′, the minimal free resolutions ofM andM′ are the same,
up to isomorphism. In particular, this is the case if M′ arises from M via a
change of coordinates, i.e. an automorphism of P given by x′i =

∑n
j=0Aijxj for

an invertible matrix A = (Aij) ∈ k(n+1)×(n+1).
Additionally, by Theorem 2.1.14, the minimal free resolution is unique up

to isomorphism. For each Fl, there are numbers d1, ..., dp ∈ Z such that there
exists a graded isomorphism Fl ∼= R(−d1)⊕ ...⊕R(−dp) of degree 0. Thus the
invariants of the definitions below are indeed well-defined:

Definition 2.1.16. LetM be a graded P-module and

0 →
⊕
d∈Z
P(−d)βp,d →

⊕
d∈Z
P(−d)βp−1,d → ... →

⊕
d∈Z
P(−d)β0,d → M → 0

(2.1.1)

a minimal free resolution ofM.

• The numbers βi,j = βi,j(M) are called the graded Betti numbers of M.
βi(M) =

∑
j∈Z

βi,j(M) is called the j-th total Betti number ofM.

• We call the numbers β′i,j = βi,i+j the shifted graded Betti numbers (of
M).

• pd(M) = max{i ∈ Z|∃i : βi,j(M) 6= 0} is called the projective dimension
ofM.

• reg(M) = max{j ∈ Z|∃j : β′i,j(M) 6= 0} is called the Castelnuovo-
Mumford-regularity ofM (or simply the regularity ofM).

In particular, any two minimal generating sets ofM have the same number
of generators in every degree.
Remark 2.1.17. The graded Betti numbers of a moduleM can be represented
in a compact way by a (finite) matrix, which is called the (graded) Betti table
of M. The graded Betti table of M contains the numbers β′i,j . For example,
supposeM has a minimal free resolution of shape

0→ P(−7)→ P(−5)⊕ P3(−6)→
P(−3)⊕ P5(−4)⊕ P (−5)→

P3(−2)⊕ P2(−3)→ P(0)→M→ 0,

then the graded Betti table ofM is

0 1 2 3 4
0 1 0 0 0 0
1 0 3 1 0 0
2 0 2 5 1 0
3 0 0 1 3 1.

13



In fact, in example 2.3.24 we will introduce an ideal I for which the module
M = P/I has exactly this Betti table (see also example 2.3.66).

Definition 2.1.18. The Hilbert function ofM is defined as

HFM : Z→ Z, t 7→ dimK(Mt).

In the context of an ideal I E P and the module P/I, we call HFI the volume
function of I, while the Hilbert function of I is given by HFP/I .

It is a well-known fact that for large values of t, the Hilbert function becomes
a polynomial function; this fact also follows as a corollary from the ideas of
Remark 2.1.20 Lemma 2.3.64. Again, we see ensures that the next definition is
well-defined:

Definition 2.1.19. Let M be a P-module. The Hilbert polynomial HPM of
M is the unique polynomial such that for t� 0, we have

HPM(t) = HFM(t).

As with the Hilbert function, for an ideal I E P, we will refer to HPP/I as the
Hilbert polynomial of I. Whenever it is necessary to make a distinction between
HPI and HPP/I , we will explicitly state the polynomial in question.

Remark 2.1.20. It is possible to calculate the Hilbert function and the Hilbert
polynomial from the ranks of the modules in a free resolution, i.e. the Betti
number, via an inclusion-exclusion-principle. We note that here we are implicitly
using Assumption 2.1.10, thanks to which the formulas here remain as compact
as possible. Let

...→ F2
ϕ2−→ F1

ϕ1−→ F0
ϕ0−→M→ 0

be a (finite) free resolution of M . Then we have1

HFM(t) = dimMt =
∑
i≥0

(−1)i dimk Fi,t.

Using the Betti numbers as in Definition 2.1.16, i.e. for the minimal resolution
given by

Fi =
⊕
d∈Z
P(−d)βi,d ,

we obtain
HPM(t) =

∑
i≥0

∑
d∈Z

(−1)iβi,d

(
n+ t− d
t− d

)
as soon as t is large enough. In particular, we see that Betti numbers contain
more information than the Hilbert function or the Hilbert polynomial. Addi-
tionally, we remark that we could even drop the assumption of the resolution
being minimal, as the analogous sum formula holds for any free resolution, not
just the minimal one.

1We denote by Fi,t the component of degree t of the module Fi.
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2.2 Minimising free resolutions
Lemma 2.2.2 below explains how an exact sequence of P-modules can be re-
placed by a smaller exact sequence. We will use this lemma in multiple instances
since it gives us a way to algorithmically “minimise” a given resolution step-by-
step by iterating the construction given in the lemma. If the original resolution
was finite, we will obtain a minimal free resolution after a finite number of steps.
The idea is as follows: For a nonzero constant in the differential (i.e. a con-
stant entry in a matrix representation of one of the ϕl, see definition 2.1.1), we
eliminate the generators that belong to this constant and slightly change the
differential to obtain a “smaller” exact sequence, i.e. an exact sequence where
the ranks of most modules remain unchanged, but some ranks are indeed smaller
than in the original exact sequence. The sum of all ranks of the free modules
in the new exact sequence is smaller than the sum for the exact sequence we
started with. Hence at some point we obtain a resolution without any constants,
i.e. a minimal free resolution. Therefore, if we started with an arbitrary finite
free resolution, we can reduce it until we obtain a minimal free resolution. The
lemma is implicitly stated and proved in [CLO98, Chapter 6, Theorem 3.15];
we formulate it here in an explicit manner, using mostly the same notation. In
[CLO98], only graded modules are considered, yet the generalisation to any free
module holds trivially. Since we will often remove elements from (index) sets,
it is useful to introduce the following notation of theˆ-symbol:

Definition 2.2.1. For any finite set a = {a1, ..., am}, let

ar = {a1, ..., âr, ..., am} = {a1, ..., am} \ {ar}.

In the same way, we extend this notation to any ordered set.

Lemma 2.2.2. Let Fl+1, ..., Fl−2 be free P-modules. Let

...→ Fl+1
ϕl+1−−−→ Fl

ϕl−→ Fl−1
ϕl−1−−−→ Fl−2 → ...

be an exact sequence. Let {e1, ..., em} be a basis of Fl and {u1, ..., ut} a basis of
Fl−1. Let (Al)r,s be a non-vanishing constant entry of the matrix Al of ϕl. Let
Gl ⊆ Fl be the module with basis {e1, ..., ês, ..., em} and Gl−1 ⊆ Fl−1 the module
with basis {u1, ..., ûr, ..., ut}. Then there is an exact sequence

...→ Fl+1
ψl+1−−−→ Gl

ψl−→ Gl−1
ψl−1−−−→ Fl−2 → ...,

where the differentials are given by ψl+1 = πGl(ϕl+1) with the canonical projec-
tion πGl : Fl → Gl, the map ψl given by

ψl(ei) = ϕl

(
ei −

(Al)r,i
(Al)r,s

es

)
for i ∈ {1, ..., r̂, ...,m}, and ψl−1 = ϕl−1|Gl−1

. The remaining differentials are
unchanged.
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Proof. See proof of [CLO98, Chapter 6, Theorem 3.15].

Definition 2.2.3. For a given exact sequence

F = Fl+1
ϕl+1−−−→ Fl

ϕl−→ Fl−1
ϕl−1−−−→ Fl−2

and (Al)r,s a non-vanishing constant entry of the matrix Al of ϕl, we use the
notation Fr,s for the the exact sequence

Fr,s = (Fl+1
ψl+1−−−→ Gl

ψl−→ Gl−1
ψl−1−−−→ Fl−2),

as constructed in Lemma 2.2.2 and call this exact sequence the Fr,s-sequence of
F .

Additionally, as a consequence of this lemma, we see that any free resolution
ofM gives upper bounds for the Betti numbers and the invariants of definition
2.1.16.

In particular, applying Lemma 2.2.2 to the resolution whose existence is
guaranteed by Theorem 2.1.11, we immediately obtain:

Corollary 2.2.4. We have pd(M) ≤ n+ 1.

Now if we are minimising a given (finite) resolution step-by-step via Lemma
2.2.2, from Theorem 2.1.14 we know that, after a finite number of steps, we
always obtain the unique (up to isomorphism) minimal free resolution. However,
we can pick the minimisations (or equivalently, the constants) in any order,
and therefore depending on the chosen order of minimisations, the resolutions
obtained during this process may vary. The next lemma aims to show that the
appearance of constants in the process is not completely arbitrary. Later, we
will use this lemma as a criterion to see that certain generators cannot vanish
throughout any minimisation process:

Lemma 2.2.5. Let Fl+1, ..., Fl−2 be free P-modules of finite rank. Let F be an
exact sequence

Fl+1
ϕl+1−−−→ Fl

ϕl−→ Fl−1
ϕl−1−−−→ Fl−2.

Let (Al)r,s be a non-vanishing constant entry of the matrix Al of ϕl. If we have
that (Al)t,u = 0, but (Bl)t,u is a non-vanishing constant entry of the matrix Bl of
ψl in the resolution Fr,s, then the entries (Al)r,u and (Al)t,s are non-vanishing
constants, the entry (Dl)t,s of the matrix of the differential in Fr,u is nonzero
and we have (Fr,s)t,u ∼= (Fr,u)t,s.

Proof. If (Al)t,u = 0, we have

(Bl)t,u = (Al)t,u − (Al)t,s
(Al)r,u
(Al)r,s

= −(Al)t,s
(Al)r,u
(Al)r,s

,

so if the left side is nonzero, then so are all terms on the right side.
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Since the assumption (Dl)t,s = (Al)t,s − (Al)t,u
(Al)r,s
(Al)r,u

= 0 is equivalent to

(Bl)t,u = (Al)t,u − (Al)t,s
(Al)r,u
(Al)r,s

= 0, we see that (Dl)t,s must be nonzero.
Writing At,u instead of (Al)t,u, we obtain that an entry Cv,w in the matrix

of the differential in the exact sequence (Fr,s)t,u is given by

Cv,w

=Bv,w −
Bv,uBt,w
Bt,u

=Av,w −
Av,sAr,w
Ar,s

−
(Av,u − Av,sAr,u

Ar,s
)(At,w − At,sAr,w

Ar,s
)

At,u − At,sAr,u
Ar,s

=
Av,wAt,uAr,s −Av,wAt,sAr,u −Av,sAr,wAt,uAr,sA−1

r,s +Av,sAr,wAt,sAr,uA
−1
r,s

At,uAr,s −At,sAr,u

+
−Av,uAt,wAr,s +Av,uAt,sAr,w +At,wAv,sAr,u +Av,sAr,uAt,sAr,wA

−1
r,s

At,uAr,s −At,sAr,u

=
Av,wAt,uAr,s −Av,wAt,sAr,u −Av,sAr,wAt,u

At,uAr,s −At,sAr,u

+
−Av,uAt,wAr,s +Av,uAt,sAr,w +At,wAv,sAr,u

At,uAr,s −At,sAr,u

We see that the last term is invariant under permutation of s and u (the sign
changes of the numerator and denominator cancel each other out).

Lemma 2.2.6. Let Fl+1, ..., Fl−2 be free P-modules of finite rank. Let F be an
exact sequence

Fl+1
ϕl+1−−−→ Fl

ϕl−→ Fl−1
ϕl−1−−−→ Fl−2.

Let (Al)r,s be a non-vanishing constant entry of the matrix Al of ϕl. Let (Al)r,s
and (Al)t,u be non-vanishing constant entries of the matrix Al of ϕl.

• If (Bl)t,u is a non-vanishing constant entry of the matrix Bl of ψl, then
we have (Fr,s)t,u = (Ft,u)r,s.

• If (Bl)t,u = 0, then also the entry (Cl)r,s in the matrix of the differential
of Ft,u is zero.

Proof. For the first point, we see that the formula for the differential of the
complex (Fr,s)t,u in the proof of Lemma 2.2.5 remains invariant if we exchange
the roles of r and t, and s and u.

For the second point, we note that (Cl)r,s = (Al)r,s − (Al)r,u
(Al)t,s
(Al)t,u

= 0 is

equivalent to (Bl)t,u = (Al)t,u − (Al)t,s
(Al)r,u
(Al)r,s

= 0, since by assumption (Al)r,s
and (Al)t,u are nonzero.
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2.3 Involutive bases
Involutive bases are special classes of Gröbner bases. Compared to Gröbner
bases, involutive bases tend to contain a larger amount of combinatorial prop-
erties than minimal Gröbner bases; this information is often contained in addi-
tional (compared to a minimal Gröbner bases) elements of involutive basis.

Involutive bases and were introduced by Gerdt and Blinkov (see [GB98]) who
combined ideas from the Janet-Riquier theory of differential equations with the
theory of Gröbner bases. Some of the results on Pommaret bases presented in
this chapter were obtained earlier by Amasaki [Ama90], who was using the term
Weierstraß bases.

2.3.1 Monomial orders

Definition 2.3.1. LetM = Pm. Let {e1, ..., em} be the standard basis ofM.
A monomial inM is an element xαei, where xα is a monomial in the polynomial
ring P in the sense of Definition 2.1.6. A monomial order on Pm is a relation
≺ on the set of monomials in Pm such that

• ≺ is a well-ordering and

• if mα,mβ ∈ Pm and xγ ∈ P are monomials in M respectively P with
mα ≺mβ , then also xγmα ≺ xγmβ .

Given a term f =
∑
α cαmα, where the mα ∈ M are monomials and cα 6= 0

for all α, the largest monomial appearing in f with respect to a given monomial
order ≺ is called the leading monomial of f , which we will denote by lt≺(f),
or just lt(f) if the monomial order is clear from the context. Given a set B of
terms in P (or M), we will write lt≺(B) = {xα|∃f ∈ B : lt≺(f) = xα} ⊆ P
or lt≺(B) = {xαei|∃f ∈ B : lt≺(f) = xαei} ⊆ M respectively for the set of
leading monomials of B. In cases where B itself is an ideal or a submodule, we
will also use the notation lt≺(B) for the ideal generated by these terms, which
is called the leading ideal of B.

It appears to us that this ambiguous use of the notation lt≺(B) is common
practice. To avoid confusion, whenever necessary we will explicitly state when
we want lt≺(B) to be (just) a set of monomials, or the leading ideal of B.

Definition 2.3.2. Let M ⊆ Pm be a nonzero polynomial module. Let ≺ be
a monomial order order on Pm. A finite set G ⊆ M is a Gröbner basis (with
respect to ≺ if lt≺(M) = lt≺(G).

Depending on the given problem, there are various practically relevant mono-
mial orders on a given polynomial ring P. For a reference, see [CLO98, Chapter
1, Section 2] or other books about Gröbner bases. For our purposes, we will
mention some monomial orders which are particularly interesting:

Definition 2.3.3. Let xα, xβ ∈ P be two monomials, where α = (α0, ..., αn)
and β = (β0, ..., βn) are the exponent vectors.
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• The degree reverse lexicographic order ≺degrevlex (also called the graded
reverse lexicographic order) on P is given by xα �degrevlex x

β if

degα =
n∑
i=0

αi >
n∑
i=0

βi = deg β

or if
n∑
i=0

αi =
n∑
i=0

βi and in the difference α − β ∈ Zn+1 the first nonzero

entry is negative.

• The lexicographic order ≺lex on P is given by xα �lex x
β if in the difference

α− β ∈ Zn+1, the last nonzero entry is positive.

• The degree lexicographic order ≺deglex on P is given by xα �deglex x
β if

degα =
n∑
i=0

αi >
n∑
i=0

βi = deg β,

or if
n∑
i=0

αi =
n∑
i=0

βi and in the difference α− β ∈ Zn+1, the last nonzero

entry is positive.

In our context, we will usually only we compare multiindices of the same de-
gree, and for such multiindices, the lex and the deglex order obviously coincide.
We note that by our definitions, we have x0 ≺ x1 ≺ ... ≺ xn for either of these
three orders. We encountered both this and the reverse convention in literature,
so we had to make choice which we will stick to for the remainder of this work.

The next two lemmata explain how via Gröbner bases, we obtain induced
monomial orders on syzygy modules.

Lemma 2.3.4. Let G = {g1, ...,gs} ⊆ Pm \ {0} be a finite set. Let ≺ be a
monomial order on Pm. Then there is a monomial order ≺G on Ps defined as
follows:

xαei ≺G xβej
if

lt≺(xαgi) ≺ lt≺(xβgj)

or if
lt≺(xαgi) = lt≺(xβgj) and i > j.

Proof. This lemma is a slightly more general version of one part of [CLO98,
Chapter 5, Theorem 3.3], where its proof is left to the reader as an exercise. It is
obvious that ≺G is a linear ordering and that it is preserved under multiplication
with monomials xα ∈ P. To show that it is a well-ordering, we remark that
xαei �G xβej implies lt≺(xαgi) ≥ lt≺(xβgj). But since for a given monomial
m ∈ Pm, we can have at most ≤ s monomials xβej such that lt≺(xβgj) = m.
So the existence of a strictly descending infinite chain

xα1ei1 �G xα2e2 �G ...
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with respect to ≺G gives an infinite chain

xα1gi1 ≥ xα2g2 ≥ ...

where we have a strong inequality at at least every s-th step. So we have a
strictly descending infinite descending chain with respect to ≺. But then since
≺ is a well-ordering, this is impossible.

Definition 2.3.5. In the situation of Lemma 2.3.4, the monomial order ≺G is
called the Schreyer order on Ps (with respect to G and ≺).

Definition 2.3.6. For a finite set G = {t1, ..., ts} ⊆ Pm, we call

Syz(G) =


s∑
j=1

Pjej ∈ Ps |
s∑
j=1

Pjtj = 0


the (first) syzygy module of T . An element of Syz(T ) is called a syzygy of T .
We recursively define Syz1(G) = Syz(G) and Syzi(G) = Syz

(
Syzi(G)

)
for i ≥ 2.

Definition 2.3.7. Let G = {g1, ...,gs} ⊆ Pm be a Gröbner basis with respect
to a monomial oder ≺ on Pm. For two monomials xµei, xνej ∈ Pm, we define
the least common multiple to be

lcm(xµei, x
νej) =

{
lcm(xµ, xν)ei if i = j

0 otherwise,

where lcm(xµ, xν) is the usual least common multiple in P. Since G is a Gröbner
bases, for any gi,gj ∈ G with lcm

(
lt(gi), lt(gj)

)
6= 0, there are polynomials P i,jk

such that

lcm
(
lt(gi), lt(gj)

)
lt(gi)

gi −
lcm
(
lt(gi), lt(gj)

)
lt(gj)

gj =

s∑
k=1

P i,jk gk ∈ Ps,

where the sum on the right is a standard representation (which is not necessarily
unique) with respect to G, i. e. we have

lt

(
lcm
(
lt(gi), lt(gj)

)
lt(gi)

gi −
lcm
(
lt(gi), lt(gj)

)
lt(gj)

gj

)
� lt(P i,jk gk)

for all P i,jk gk. For such a standard representation, we have that

si,j =
lcm
(
lt(gi), lt(gj)

)
lt(gi)

ei −
lcm
(
lt(gi), lt(gj)

)
lt(gj)

ej −
s∑

k=1

P i,jk ek ∈ Ps

is an element of Syz(G). For a given pair (i, j), there may be multiple syzygies
of shape si,j , as the choice of the P i,jk ek is not necessarily unique.
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Theorem 2.3.8 (Schreyer’s Theorem for Gröbner bases). Let G = {g1, ...,gs}
be a Gröbner basis for 〈G〉 ⊆ Pm with respect to the monomial order ≺G. Then
any set S ⊆ P s which contains exactly one si,j for each pair (i, j) with i 6= j and
lcm
(
lt(gi), lt(gj)

)
6= 0, is a Gröbner basis for the syzygy module Syz(g1, ...,gs)

with respect to the Schreyer order ≺G.

Proof. This is the other part of [CLO98, Chapter 5, Theorem 3.3], which is
proved in the reference: There, a fixed division algorithm is considered, and as a
consequence, the P i,jk ek are uniquely defined. But the proof remains unchanged
for any other valid choice of P i,jk ek.

Remark 2.3.9. There are two aspects of the Schreyer order and the Schreyer
Theorem which we emphasize:

• The Schreyer order depends on how the set G is ordered. We will later
see in Section 2.3.5 that some involutive bases admit certain “intrinsic”
orderings. This property of involutive bases is typically not present for
arbitrary Gröbner basis.

• Given a chain complex, and in particular a free resolution

...→ Fl → Fl−1 → ...→ F0 →M→ 0,

we can construct Schreyer orders for every module Fl. The idea is as
follows: Let e1, ..., es be the standard basis on Ps. For any given homo-
morphism ϕ : Ps → Pm, with the properties that

ϕ(eα) 6= 0 for all α

any monomial order on Pm induces a Schreyer order on Ps (after ordering
the elements of the set {e1, ..., es}, or their images under ϕ). Now we can
obtain Schreyer orders on the Fl by iterating this principle, provided no
generator of an Fl is mapped to 0. Explicitly, this means that from a
monomial order ≺Pm on Pm, we obtain a (Schreyer) order ≺Ps on Ps by
defining

xµeα ≺Ps xνeβ
if and only if

lt
(
ϕ(xµeα)

)
≺Pm lt

(
ϕ(xνeβ)

)
or

lt
(
ϕ(xµeα)

)
≺Pm lt

(
ϕ(xνeβ)

)
and α < β.

Later on, we will consider the situation where the images (under the dif-
ferential) the basis elements of Fl+1 are an involutive basis of the image
of Fl, so here indeed no generator is mapped to 0 and this idea can be
applied to such a situation.
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2.3.2 General involutive divisions

We will state some definitions about involutive bases and their properties. First,
we will shortly sketch the general idea: Given any finite set H ⊆ P, we want
to assign to each h ∈ H a subset of the variables {x0, ..., xn}, which we will
call the multiplicative variables of h. Now an involutive division can simply be
seen as a set of rules which tell us how to find these multiplicative variables.
If these rules depend on h, but not on H, we will call the involutive division
a global (involutive) division. Additionally, we will also assign to h the set
of non-multiplicative variables; this set simply contains all variables that are
not multiplicative for h. The presentation in this chapter is based on [Sei10,
Chapter 3].

Definition 2.3.10. An involutive division L is defined on the monoid (T, ·), if
for any finite subset B ⊆ T and every xν ∈ T, there is a subset

NL,B(xν) = NL,B(ν) ⊆ {0, ..., n},

called the multiplicative variables, and a submonoid

L(ν,B) = L(xν , B) = {xµ ∈ T | ∀j 6∈ NL,B(xν) : µj = 0},

such that for the involutive cones CL,B(xν) = xν · L(xν , B) ⊆ T, the following
conditions hold:

• If xν , xµ ∈ B and CL,B(xν) = CL,B(xµ) 6= ∅, then CL,B(xν) ⊆ CL,B(xµ)
or CL,B(xµ) ⊆ CL,B(xν) holds.

• If B′ ⊆ B, then NL,B(xν) ⊆ NL,B′(xν) for all xν ∈ B′.

We call NL,B(xν) = {0, ..., n} \ NL,B(xν) the non-multiplicative variables of
xν . An involutive division is global, if for any given xν , the set NL,B(xν) is
independent of the choice of B. We say that xµ is an involutive divisor of xν ,
or that xν is involutively divisible by xµ if xν ∈ CL,B(xµ).

Definition 2.3.11. For an involutive division L and a finite set B ⊆ T, the
involutive span of B is given by

〈B〉L =
⋃
xν∈B

CL,B(xν). (2.3.1)

The set B is called (weakly) involutive if

〈B〉L = 〈B〉 ∩T,

and a weak involutive basis of a monomial ideal I, if we have

〈B〉L = I ∩T.

We say that B is (strong) involutive basis or an L-basis of I if B is a weak
involutive basis of I and additionally, the union in Equation (2.3.1) is disjoint.
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Let I E P = k[x0, ..., xn] be an ideal, ≺ a monomial order and H ⊆ I a
finite subset with lt(h1) 6= lt(h2) for h1,h2 ∈ H with h1 6= h2. We say that H
is an involutive basis of I (with respect to the monomial order ≺), if we have
that the finite set {xν | ∃h ∈ H : lt≺(h) = xν} is a strong involutive basis of
the leading ideal lt≺(I); i.e. the leading monomials of H are a strong involutive
basis of the leading ideal lt≺(I).

Given a polynomial submoduleM⊆ Pm, we say that a finite subset H ⊆M
(again with lt(h1) 6= lt(h2) for h1,h2 ∈ H with h1 6= h2) is an involutive basis
ofM (for the monomial order ≺), if for any 1 ≤ j ≤ m, the set

Hj = {xν | ∃h ∈ H : lt≺(h) = xνej},

where {e1, ..., em} is the standard basis of Pm is an involutive basis of the ideal

〈{xν | ∃f ∈M : lt≺(f) = xνej}〉 ⊆ P.

For ideals and modules, we will use the notations XL,H,≺ (h) for the multi-
plicative variables of h and XL,H,≺ (h) for the non-multiplicative variables.

A first important fact about involutive bases is the Theorem below, which
follows immediately from the the definition of involutive bases.

Theorem 2.3.12. Any involutive basis is a Gröbner basis.

Obviously, any statement concerning involutive bases can be given as a state-
ment about ideals in P; we will usually prefer this approach. As Definition 2.3.11
above is key to this work, we reformulate it once more for ideals of P.
Remark 2.3.13. Let ≺ be a monomial order on P, H ⊆ P a finite set such that
lt(h1) 6= lt(h2) for h1,h2 ∈ H with h1 6= h2, and L an involutive division. The
set H is a weak L-basis for the ideal I = 〈H〉 ⊆ P, if we have 1

I =
∑
h∈H

k[XL,H,≺ (h)]h. (2.3.2)

The set H is a strong L-basis for the ideal I E P, if we have

I =
⊕
h∈H

k[XL,H,≺ (h)]h.

In both cases, we take (direct) sums of k-vector spaces.
In general, the involutive span of H (with respect to L and ≺) is given by

〈H〉L,≺ =
∑
h∈H

k[XL,H,≺ (h)]h.

For involutive bases for polynomial modules M ⊆ Pm, these notions are ex-
tended in analogy to ideals.

1For any set X of variables, we understand k[X] = k[xi | i ∈ X].

23



Definition 2.3.14. Let L be an involutive division with respect to a monomial
order ≺ on Pm. A finite set G ⊆ Pm is (head) auto reduced1 if no leading term
of an element of G is an involutive divisor of another leading term, i.e. for all
g1,g2 ∈ G with g1 6= g2, we have lt≺(g1) 6∈ XL,G (g2).

Combining this concept with Definition 2.3.10 of involutive divisions, we see
that for an auto reduced set G, the involutive cones of the elements of G are
pairwise disjoint. Hence we have an alternative definition of involutive bases:

Theorem 2.3.15. Let L be an involutive basis and ≺ a monomial order on Pm.
Let H be a finite subset of the polynomial moduleM E Pm. H is an involutive
basis ofM (with respect to L and ≺) if and only if the following conditions are
satisfied:

• lt≺
(
I
)

= lt≺(〈H〉L,≺).

• H is auto reduced.

Assumption 2.3.16. For simplicity of notation, from now on we will refer to
strong involutive bases simply as involutive bases.

For later use, we note two more properties related to involutive divisions:

Definition 2.3.17. Let L be an involutive division. The division L is continu-
ous, if it satisfies the following condition: For any finite set B ⊆ Nn+1

0 and any
finite sequence b1, ..., bm ∈ B where for each p < m there is a non-multiplicative
variable i ∈ NL,B(bp) with bp + 1i ∈ CL,B(bp+1), we have that all elements of
this sequence are pairwise distinct.

Definition 2.3.18. An involutive division L is of Schreyer type for the mono-
mial order ≺, if for any involutive set H ⊆ P and any h ∈ H, the set XL,H,≺ (h)
is again (weakly) involutive.

In order to check if a given set is an involutive basis, at least in the case of
a continuous division, it is often easier to take the next lemma as a criterion:

Lemma 2.3.19. Let ≺ be a monomial order on P, H ⊆ P a finite set and L
an involutive division. The set H is an L-basis for the ideal I = 〈H〉 ⊆ P if and
only if for each h ∈ H and each xi ∈ XL,H,≺ (h), we have xih ∈ 〈H〉L,≺.

Proof. Obviously, if H is an involutive basis, then 〈H〉 = 〈H〉L,≺ and any prod-
uct of xik and an h ∈ H and a variable xi ∈ XL,H,≺ (h) is contained in 〈H〉L,≺.

For the other direction, it suffices to check that any product xµh is contained
in 〈H〉L,≺. The proof is a variation of the proof of Lemma 4.1.6, which is based
on the proof of [AFS15, Lemma 13]:

Consider the following algorithm:
1One could also define G to be auto reduced if no arbitrary monomial summand of g1 is

contained in a XL,G (g2). Then, the term “head auto reduced” would be used to imply that
one is only concerned about the leading term of g1, as is the case in the definition presented
here. However, this more general definition is of no real further importance for this work.
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Given a product xµh, we check if xµ contains any variables which are non-
multiplicative for h. If this is not the case, then the algorithm terminates, giving
xµh as the output. Otherwise, we pick one such non-multiplicative variable xi.
Let g be the representation of xih as an element of 〈H〉L,≺, which exists by
assumption, so g =

∑
hα∈H Pαhα with Pα ∈ k[XL,≺ (hα)] for all α. Then we

have xµ

xi
lt(g) = xµ lt(h)

Let hβ be such that lt≺(Pβhβ) = lt≺ g. Now we iterate our algorithm, by
looking at the leading monomial of x

µ

xi
lt≺(Pβhβ), which, as we have just seen,

has the same leading monomial as the input.
Our claim is that this algorithm

• terminates after a finite number of steps.

• gives as output a term xνh′ whose leading monomial is a product of an el-
ement h′ ∈ H with a monomial xν ∈ k[XL,≺ (h′)], i.e. xν is multiplicative
for h′.

Indeed, the last part is obvious by construction of the algorithm, if it does
terminate.

Now assume the algorithm does not terminate: Then we obtain an infinite
chain

hγ1 → hγ2 → ...

of elements of H by picking as hγi the hβ calculated in the i-th iteration of
the algorithm. Since H is finite, this means that at least one element appears
more than once in this chain. But since L is continuous, this is impossible (see
definition 2.3.17).

Now since the difference of xµ lt(hα) and the output of the algorithm is
smaller than xµ lt(hα) with respect to the monomial order ≺, we can use this
algorithm to construct the involutive standard representation of xµ lt(hα).

Remark 2.3.20. We note that this proof does in fact leads to an idea how one
could try to find an involutive basis: Given a finite set H, one can calculate the
non-multiplicative variables, take the involutive product and then iteratively
reduce the leading monomial like in the algorithm in the proof above. If not
this process terminates with a nonzero element, we add this element to the setH
and continue. While this algorithm might terminate in a finite number of steps,
with an involutive basis as the output, there are nevertheless some problems,
for example situations for which this algorithm does not terminate even in cases
where an involutive basis exists. See [Sei10, Section 4.1] for a more detailed
treatment of these topics.

For our purposes, this lemma is usually a sufficient criterion to check if a
given set is an involutive basis, which is exactly what we will need at several
points later in this work. Nevertheless, we point out that from our experience,
the task of finding an involutive basis for a given ideal tends to be more chal-
lenging than verifying that the candidate set, once it is found, is indeed an
involutive basis.
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2.3.3 Examples of involutive bases

Now we will introduce some examples of involutive divisions: The Pommaret
division, the Janet division and the class of pairwise divisions, which was recently
introduced by Gerdt and Blinkov [GB11]. We will see that both the Pommaret
and the Janet are continuous and of Schreyer type.

Definition 2.3.21 (The Pommaret division). Let P = k[x0, ..., xn] and ≺ be a
monomial order on P. For an exponent vector µ = (µ0, ..., µn), and the mono-
mial xµ 6= 0, we set

cls(xµ) = min{i | µi 6= 0},

or cls(xµ) = n if xµ is a nonzero constant. We call cls(xµ) the class of xµ (or
the class of µ). Then we define XP (xµ) = {x0, ..., xcls(xµ)}. For a term f ∈ P,
we define the (Pommaret) multiplicative variables to be

XP,≺ (f) = XP (lt≺(f)) =

{
x0, .., x

cls
(

lt≺(f)
)} .

Since this assignment is independent ofH, we will omit the indexH when talking
about (non)-multiplicative variables with respect to the Pommaret division. For
the non-multiplicative variables, we have

XP,≺ (f) =

{
x

cls
(

lt≺(f)
)

+1
, ..., xn

}
.

For a module M = Pm, a monomial order ≺ on M and an element f ∈ M
with leading monomial lt≺(f) = xµei, we define cls(f) = cls(xµ), implying

XP,≺ (f) = XP (lt≺(f)) =
{
x0, .., xcls(xα)

}
.

Theorem 2.3.22. [Sei10, Theorem 3.1.8] The Pommaret division is an invo-
lutive division.

We point out a special relationship between the degree reverse lexicographic
order and the Pommaret division (or more precisely, the concept of the class
cls(f) of f as in definition 2.3.21). The degrevlex-order trivially satisfies the
definition below.

Definition 2.3.23. We say that a monomial order � on P is a class-respecting
order, if it satisfies

cls(f) < cls(g) =⇒ f ≺degrevlex g

of all polynomials f, g ∈ P.

Note that even in the case of the degrevlex-order, the inverse of this definition
does not hold.

We will now give an example of a Pommaret basis. Throughout this work,
we will often come back to this example, using it to illustrate newly introduced
constructions.
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Example 2.3.24. Let k be of characteristic 6= 2. Let I E k[x0, x1, x2, x3] be
the ideal

I = 〈x3
1 + 2x2

0x1, x2
1x3 + 2x2

0x3, x1x2, x2
2, x2

3〉.

Obviously, this generating set is minimal. If we use in advance the fact that the
Pommaret division is continuous by Lemma 2.3.36, and the alternative definition
for involutive basis of Lemma 2.3.19 in this special case, one can check that a
Pommaret basis of I (with respect to the degrevlex order ≺degrevlex) is given by

H = {x2
0x2x3, x

3
1 + 2x2

0x1, x
2
1x3 + 2x2

0x3, x1x2x3, x
2
2x3, x1x2, x

2
2, x

2
3}.

The multiplicative variables are given by

h x2
0x2x3 x3

1 + 2x2
0x1 x2

1x3 + 2x2
0x3 x1x2x3 x2

2x3 x1x2 x2
2 x2

3

XP,≺ (h) x0
x0

x1

x0

x1

x0

x1

x0

x1

x2

x0

x1

x0

x1

x2

x0

x1

x2

x3

Definition 2.3.25 (The Janet division). Let P = k[x0, ..., xn] and ≺ be a
monomial order on P. For a finite set H ⊆ P of monomials, we define the sets

(dk, ..., dn) = {xα ∈ H|αi = di ∀k ≤ i ≤ n}.

The variable xn is (Janet) multiplicative for xα, if αn = maxxβ∈H{βn} and xk
with k < n is multiplicative for xα if αk = maxxβ∈(αk+1,...,αn){βk}. For a finite
set H of terms, we then define

XJ,≺,H (f) = XJ,≺,lt≺(H) (lt≺(f)) .

For a module M = Pm, a monomial order ≺ on M and a finite set H ⊆ M ,
we define the sets

Hj = {xβ ∈ P|∃g ∈ H : lt≺(g) = xβej}

for all 1 ≤ j ≤ m. Now for a term f ∈ H with leading monomial lt≺(f) = xαej ,
this means we have

XJ,≺,H (f) = XJ,≺,lt≺(Hj) (xα) .

Theorem 2.3.26. [Sei10, Theorem 3.1.5] The Janet division is an involutive
division.

Note that the Pommaret division is a global division, while the Janet division
is not. We will reflect this fact in the notation for the multiplicative variables, as
for a finite set H and f ∈ H, we will simply write XP,≺ (f) instead of XP,H,≺ (f)
when we restrict to the Pommaret division. With this in mind, we will keep
H as an index when making statements about involutive divisions, in order to
cover the general case.

Now, another obvious question is the (non-)existence of (strong) involutive
bases. This time, the answer actually depends on the involutive division:
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Theorem 2.3.27. Let ≺ be a monomial order on P. Then every ideal I E P
has a strong Janet basis with respect to ≺.
Proof. This theorem is a special case of [Sei10, Theorem 4.5.13].

Remark 2.3.28. Unfortunately, there are modules for which Pommaret bases do
not exist. However, we will see that this is only a question of “choosing the right
coordinate system”, at least if k is an infinite field. It even suffices to require the
field k to be a sufficiently large field (with respect to the number of elements in
a minimal generating system and their degrees). We will not treat this question
in full detail, but just sketch the ideas and give the main results. For a more
detailed view on this subject, see [Sei10, Section 4.3].

For the ring P = k[x0, ..., xn], an invertible matrix A ∈ k(n+1)×(n+1) defines
an automorphism of P by setting x′i =

∑n
j=0Aijxj , called a change of coordi-

nates. In this way, we can view x = (x′0, ..., x
′
n) (or respectively, the invertible

matrix A ∈ k(n+1)×(n+1)) as a coordinate system. Of course, the initial coordi-
nate system corresponds the identity matrix. Now if we have an ideal I E P
for which no Pommaret basis exists with respect to a given monomial order ≺,
we can apply a change of coordinates and look at the image I ′ of I in the ring
P ′ = k[x′0, ..., x

′
n]. Next, we ask the question whether I ′ has a Pommaret basis

for the monomial order ≺ on P ′, which we want to be the “same” monomial
order as it was on P, in the sense that x′α ≺ x′β ⇔ xα ≺ xβ . We will see that,
at least for infinite fields, it is always possible for a given ideal to find a suitable
coordinate system (or equivalently, a change of coordinates) for which the ideal
has a Pommaret basis.

While we consider this question of coordinate systems, we seize this oppor-
tunity to define the notion of “genericity”:

Definition 2.3.29. We say that a statement holds generically or in generic
coordinates, if there is an open subset (with respect to the Zariski topology on
k

(n+1)×(n+1)) of coordinate systems for which the statement holds.

Definition 2.3.30. Let I E P be an ideal and ≺ a monomial order on P. The
variables x = (x0, ..., xn) are called δ-regular for I and ≺, if there is a Pommaret
basis for I with respect to ≺. Otherwise, the variables x are called δ-singular
for I (and ≺).

We will also say that an ideal I E P is δ-regular if I has a Pommaret basis.
If I is additionally a monomial ideal, we say that I is quasi-stable.

Definition 2.3.31. Let I E P be a monomial ideal. I is stable if for any xµ ∈ I
with µi > 0 and any j < i, we have that xµ−1i+1j ∈ I.
Theorem 2.3.32. [Sei10, Theorem 4.3.15] Let k be infinite and let ≺ be a
monomial order on P. Then every ideal I E P has a Pommaret basis in suitably
chosen coordinates.

Recall that by our definition, any involutive basis is finite. We note that in
the theorem it would be enough to have a sufficiently large field, if the number
and the degree of the generators of I are fixed.

In fact, “almost every” coordinate system is δ-regular:
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Corollary 2.3.33. [Sei10, Theorem 4.3.16] The set of coordinate systems x
(seen as matrices, see Remark 2.3.28) which are δ-singular, for a given ideal
I E P and a monomial order ≺, form a Zariski closed proper subset of the
affine space A(n+1)×(n+1)

k
.

Obviously, I is δ-regular if and only if lt(I) is quasi-stable. Additionally,
δ-regular coordinates are generic coordinates in the sense that if a statement is
true in δ-regular coordinates, then it holds generically.

Example 2.3.34. The “most basic” example of an ideal which does not have a
Pommaret basis is the ideal

〈x0〉 E k[x0, x1],

for any monomial order ≺ satisfying x0 ≺ x1. However, after any change of
coordinates which maps x0 to ax′1 + bx′0 with a 6= 0, we obtain the ideal

〈ax′1 + bx′0〉 E k[x′0, x
′
1],

whose leading term is x′1. Hence this ideal is δ-regular for any monomial order
satisfying x′0 ≺ x′1, in particular for the degrevlex order.

In characteristic 2, an example of an ideal which is neither δ-regular in the
given coordinates nor after any change of coordinates is the ideal

〈x2
0x1 + x0x

2
1〉 E F2[x0, x1].

This behavior is independent of the given coordinate system, as the ideal is in
fact invariant under any change of coordinates. Therefore, with respect to any
monomial order satisfying x0 ≺ x1, the leading monomial of the generator is of
class 0 in any coordinate system.

The following theorem states that the Janet and the Pommaret division are
closely related:

Theorem 2.3.35. Let I E P be an ideal and ≺ a monomial order on P. If
I has a Pommaret basis H with respect to ≺, then H is also a Janet basis
with respect to ≺, and for each h ∈ H, the Pommaret and Janet multiplicative
variables coincide, i.e. XP,≺ (h) = XJ,H,≺ (h).

So example 2.3.24 is also an example of a Janet basis.

Proof. [Sei10, Corollary 4.3.9] states that any Pommaret multiplicative variable
is also Janet multiplicative. But now if H is a strong Pommaret basis and if
there were more Janet multiplicative variables, the involutive cone of H with
respect to the Janet division would not be a direct sum, contradicting [Sei10,
Corollary 4.3.11].

For later use, we state:

Lemma 2.3.36. [Sei10, Lemma 4.1.5] The Pommaret and the Janet division
are continuous.
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and

Lemma 2.3.37. [Sei10, Lemma 5.4.9] The Pommaret and the Janet division
are of Schreyer type for any monomial order ≺.

One major advantage of Pommaret bases is that several properties of an
ideal I E P and the quotient ring P/I (or a submodule M ⊆ Ps and Ps/M)
can be read off from a Pommaret basis of I in very simple ways. We use a
different language than in given reference, to avoid the introduction of more
technical terms which would be of no further use for the purposes of this work.

Definition 2.3.38. Let M be a P-module. A finite sequence r1, ..., rk ∈ P
is called a regular sequence for M, if r1 is not a zero divisor for M and for
1 < i ≤ k, ri is not a zero divisor for M/〈r1, ..., ri−1〉M. A regular sequence
is maximal, if it cannot be extended to a longer regular sequence. It is a well-
known fact that all maximal regular sequences ofM have the same length. This
length is called the depth ofM.

Theorem 2.3.39. [Sei10, Theorem 5.2.7] Let H be a Pommaret basis of the
ideal I E P with respect to the degrevlex order. Let d = minh∈H clsh. Then the
variables x0, ..., xd are a maximal regular sequence of I and we have depth I =
d+ 1 and depth(P/I) = d.

Definition 2.3.40. Let M be a P-module. The dimension of M is given by
dim(M) = 1 + deg HPM. The module M is called a Cohen-Macaulay module
if dimM = depthM.

Theorem 2.3.41. [Sei10, Theorem 5.2.1] Let H be a Pommaret basis of the
ideal I E P with respect to a monomial order. Let q = max

h∈H
degh. Then we

have
dim(P/I) = min{i | 〈H, x0, ..., xi−1〉q = Pq}.

Theorem 2.3.42. [Sei10, Theorem 5.2.9] Let H be a Pommaret basis of the ideal
I E P with respect to the degrevlex order. P/I is a Cohen-Macaulay module,
if and only 〈H, x0, ..., xd−1〉q = Pq, where d = depth(P/I) = minh∈H clsh and
q = maxh∈H degh.

Theorem 2.3.43. [Sei10, Theorem 5.5.11] Let H be a Pommaret basis of the
polynomial moduleM⊆ Ps with respect to class-respecting monomial order ≺.
Let d = depth(P/I) = minh∈H clsh. Then the projective dimension of M is
pdM = n− d. Equivalently, we have pd(Ps/M) = n− d+ 1.

Corollary 2.3.44 (The Auslander-Buchsbaum formula). [Sei10, Corollary 5.5.12]
LetM be a polynomial P-module. Then we have

depthM+ pdM = n+ 1.

Theorem 2.3.45. [Sei10, Theorem 5.5.15] Let H be a Pommaret basis of the
module M E Ps with respect to the degrevlex order. Let q = maxh∈H degh.
Then the Castelnuovo-Mumford regularities of I and P/I are given by reg I = q
and reg(P/I) = q − 1.
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Definition 2.3.46 (Pairwise divisions). An involutive division L is pairwise if
for any finite set U ⊆ T, and any µ ∈ U , we have

XL,U (µ) =
⋃
ν∈U
XL,{µ,ν} (µ) . (2.3.3)

Theorem 2.3.47. [GB11, Theorem 1] Let @ be a total order on T. Let µ ∈ T
be a multiindex and σ ∈ Sn+1 be a permutation of the variables. For any ν ∈ T,
let an assignment for non-multiplicative variables be given by

XL,{µ,ν} (µ) =

{
∅ if ν @ µ or (µ @ ν ∧ ν|µ).

xσ(i) where i = max{j | µj < νj} otherwise.1

For any finite set U ⊆ T, let XL,U (µ) be given by Equation (2.3.3). Then this
assignment defines an involutive division L.

Remark 2.3.48. An involutive division given by Theorem 2.3.47 is called a @-
division2. There are some orders @ which are particularly interesting:

• If @ is the lex-ordering, the ≺lex-division is in fact the Janet division (for
σ = id), see also [Sem06, page 266].

• In [GB11] the authors introduce the@alex-division for the@alex-order given
by

f ≺alex g ⇔
(

deg(f) > deg(g)
)
∨
(

deg(f) = deg(g) ∧ f ≺lex g
)
.

The authors argue that the @alex-division is, from a computational point
of view, heuristically better than the Janet division, which until then has
been considered the computationally best involutive division. The main
reason behind is that compared to the Janet division, there tend to be more
@alex-multiplicative than Janet-multiplicative variables. Consequentially,
one can expect @alex-bases to usually contain fewer elements than Janet-
or Pommaret bases.

Nevertheless, if one looks the example given in Example 2.3.24, we see that
occasionally, the inverse behavior can occur: Again, consider the ideal given by

I = 〈x3
1 + 2x2

0x1, x2
1x3 + 2x2

0x3, x1x2, x2
2, x2

3〉.

One can check, again using Lemma 2.3.19, that a @alex-basis of I with respect
tot the degrevlex-order and for the permutation σ = id is given by the set
H whose elements are given in the chart below, together with the respective
multiplicative variables:

1more precisely, we want XL,{µ,ν} (µ) to be the set containing this element
2In the literature about such @-divisions, it is more common to use the term ≺-division.

However, in our context, ≺ commonly denotes the monomial order which determines the
leading terms, while the total order @ is in general different from ≺.
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h X@alex,H,≺ (h)

x2
3 x0, x1, x2, x3

x2
2 x0, x1, x2

x2x1 x0, x1

x3x
2
2 x0, x2

x3x2x1 x0, x1

x3x
2
1 + 2x3x

2
0 x0, x1

x3
1 + 2x1x

2
0 x0, x1

x3x
2
2x1 x0, x2

x3x2x
2
0 x0

x3x
2
2x

2
1 x2

x3x
2
2x

3
1 x1, x2

x3x
2
2x

2
1x0 x2

x3x
2
2x

3
1x0 x1, x2

x3x
2
2x

2
1x

2
0 x0, x2

x3x
2
2x

3
1x

2
0 x0, x1, x2

As one immediately sees, this involutive basis is much larger than the Pommaret
basis given in Example 2.3.24; additionally the appearing sets of multiplicative
variables are more diverse than in the case of Pommaret division.

2.3.4 Combinatorial decompositions

Involutive bases induce a decomposition of an ideal I E P as in Equation (2.3.2).
Analogously, often one is also interested in an analogous decomposition of the
module P/I.

Definition 2.3.49. A Stanley decomposition of P/I consists of a homomor-
phism as k-linear spaces

P/I ∼=
⊕
g∈G

k[Xg] · g,

where G ⊆ T is a finite set of monomials, Xg ⊆ {0, ..., n} is a set of variables
for each g ∈ G. The elements of Xg are called the multiplicative variables of g.

From this definition it immediately follows that a Stanley decomposition of
P/I is also a Stanley decomposition of P/ lt(I).
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Remark 2.3.50. From a decomposition of I 6= P given by an involutive bases
H of I, it is possible to directly construct a Stanley decomposition of P/I. We
will present an algorithm for Pommaret bases, as this decomposition is, directly
or implicitly, used at several points later in this work. This will also serve
as motivation why we speak of multiplicative variables both in the context of
involutive bases and Stanley decompositions.

Let H be a Pommaret basis of an ideal I E P. Let r = max{degh | h ∈ H}.
We set

G =
r⋃
t=0

{xν | deg xν = t, xν 6∈ lt(I)}.

The multiplicative variables are given by

• Xg = ∅ if deg g < r.

• Xg = {0, ..., clsg} if deg g = r.

Using the decomposition of I from Equation (2.3.2), we see that any monomial
is contained either in lt(I) or in some k[Xg]g, from which the correctness of this
definition follows immediately.

However, this decomposition is not optimal, as we can remove some redun-
dant elements: If for an g in G with Xg = ∅, we have that

• xig ∈ G for all i ≤ clsg and

• Xxig = {0, ..., cls(xig)}

then we can remove all xig from G and redefine Xg = {0, ..., clsg}, since

k[x0, ..., xg}]g = kg ⊕
cls g⊕
i=0

k[x0, .., xi]xig.

A class examples of such Stanley decompositions which is minimal (i.e. contains
no redundant elements) will be constructed in the proof of Corollary 7.2.6.

2.3.5 Syzygies of involutive bases

Lemma 2.3.51. [Sei10, Theorem 3.4.4] Let M ⊆ Pm be a polynomial module,
H = {h1, ...,hs} an involutive basis forM with respect to an involutive division
L and ≺ a monomial order on Pm. By definition 2.3.11, we have

M =

s⊕
α=1

k[XL,H,≺ (hα)]hα.

For any f ∈M, there are unique polynomials P fα ∈ k[XL,H,≺ (hα)] such that

f =
s∑

α=1

P fαhα

and
lt≺(P fαhα) � lt≺(f) for all α.
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Definition 2.3.52. In the situation of Lemma 2.3.51, given the representation

f =
s∑

α=1

P fαhα,

we call the sum on the right the involutive standard representation of f (with
respect to H, L,≺).

Now for a polynomial moduleM⊆ Pm, an involutive basis H ofM, hα ∈ H
and any variable xk ∈ P, we may look at the involutive standard representation
of xkhα. There are two cases which can occur:

• xk ∈ XL,H,≺ (hα): Here xkhα is its own involutive standard representa-
tion.

• xk ∈ XL,H,≺ (hα): Here by definition, xkhα is not an involutive standard
representation, so the involutive standard representation can be written
in a unique way as

xkhα =
s∑

β=1

P
(α,k)
β hβ , (2.3.4)

which serves as the defining equation of the polynomials P (α,k)
β .

Therefore, taking the involutive standard representation of xkhα, we see that
we obtain a syzygy

~Sα;k = xkeα −
s∑

β=1

P
(α,k)
β eβ ∈ Syz(H). (2.3.5)

So for each product xkhα of an element hα of an involutive basis H with
a non-multiplicative variable xk ∈ XL,H,≺ (hα), we obtain an element of the
syzygy module Syz(H) of H. This corresponds to taking si,j in the theory of
Gröbner basis, see definition 2.3.7 and Theorem 2.3.8.

For a Gröbner basis G, we obtain a Gröbner basis of Syz(G) with the help
of the S-polynomials, i.e. by calculating standard representations. We will now
work towards the corresponding result for involutive bases. In order to obtain
such a result, we first need to introduce some definitions.

Definition 2.3.53. LetH ⊆ Pm be an involutive basis for an involutive division
L. Any partial ordering @ on H satisfying

∃xk ∈ XL,H,≺ (hα) : lt≺(hβ)|xk lt≺(hα) =⇒ hα @ hβ

for all hα,hβ ∈ H is called an L-ordering on H.
If there is an L-ordering @ on H such that hα @ hβ =⇒ α < β, we say that

H is ordered according to an L-ordering, or simply that H is L-ordered.

Now, an obvious question is whether L-orderings exist.
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Definition 2.3.54. LetH ⊆ Pm be an involutive basis for an involutive division
L. To H, we associate a directed graph, called the L-graph of H, defined as
follows:

• The set of vertices is H.

• For any two vertices hα,hβ ∈ H, the graph contains the directed edge
hα → hβ if and only if there is a xk ∈ XL,H,≺ (hα) such that lt≺(hβ) is
involutively divisible by xk lt≺(hα).

With this definition, we see that the question of the existence of L-orders
can be reformulated in terms of the L-graph: An L-ordering exists, if and only
if there are no elements hα1 , ...,hαt ∈ H such that there is a cycle

hα1
→ ...→ hαt → hα1

,

in the L-graph, i.e. the L-graph of H is acyclic.

Lemma 2.3.55. Let H ⊆ Pm be an involutive basis for continuous involutive
division L. Then the L-graph of H is acyclic. In particular, for any Pommaret
or Janet basis, P -orders (or J-orders) exist.

Proof. In [Sei10, Lemma 5.4.5], the lemma is proven for ideals of P and involu-
tive bases with respect to any continuous involutive division L. But since any
L-graph of H consists of (at most) m disjoint graphs

{xµ | ∃f ∈ 〈H〉 : lt(f) = xµei},

one for each each 1 ≤ i ≤ m, the lemma also holds for modules. From Lemma
2.3.36, we see that both the Pommaret division and the Janet division are
continuous, so the claim of the lemma follows for either type of involutive bases.

Lemma 2.3.56. Let H = {h1, ...,hs} ⊆ Pm be an involutive basis for a con-
tinuous involutive division L with respect to a monomial order ≺ on Pm. Let
hα ∈ H. Let H be ordered according to an L-ordering. Let xk ∈ XL,H,≺ (hα).
Then we have

lt≺H(~Sα;k) = xkeα.

Proof. [Sei10, Lemma 5.4.7] establishes the lemma for involutive bases of P, but
the proof remains the same for Pm.

Definition 2.3.57. Let H ⊆ Pm be involutive basis for a continuous involutive
division L, ordered according to an L-ordering. Then we define

HSyz =
{
~Sα;k | hα ∈ H, xk ∈ XL,H,≺ (hα)

}
.

Now we have finished the preparations to state the involutive version of the
Schreyer Theorem 2.3.8.
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Theorem 2.3.58. [Sei10, Theorem 5.4.10] Let L be a continuous involutive
division of Schreyer type. Let H ⊆ Pm be an L-ordered involutive L-basis with
respect to a monomial order ≺. Then the set HSyz is an L-basis for the module
Syz(H) with respect to the Schreyer order ≺H.

In particular, combining Lemma 2.3.36 and Lemma 2.3.37, we see that this
theorem holds for the Pommaret and the Janet division.

By iterating the construction of HSyz, we obtain:

Theorem 2.3.59. Let H ⊆ Pm be an involutive basis for the polynomial module
M = 〈H〉 ⊆ Pm, with respect to a continuous involutive division L of Schreyer
type. We define β(k)

0 to be the number of elements of H with exactly k non-
multiplicative variables and d = min{k|β(k)

0 > 0}. ThenM has a free resolution

0→ Ptn−d → ...→ Pt1 → Pt0 →M→ 0

where the ranks of the free modules are given by

ti =
n−i∑
k=0

(
n− k
i

)
β

(k)
0 .

Proof. See [Sei10, Theorem 5.4.12] for Pommaret bases, and [Sei10, Remark
5.4.13] for the more general case.

Lemma 2.3.60. The resolution introduced in Theorem 2.3.59 is minimal if and
only if all first syzygies ~Sα;k do not contain any constants.

Proof. In [Sei09, Theorem 8.1], a proof for Pommaret bases is given. How-
ever, the proof remains unchanged for any other involutive basis satisfying the
assumptions of Theorem 2.3.59.

Remark 2.3.61. We note that this lemma can also be adapted for the resolution

0→ Ptn−d → ...→ Pt1 → Pt0 → Pm → Pm/M→ 0

to get an equivalent statement for Pm/M.
Remark 2.3.62. In [Sei10, page 200], it is explained how the resolution intro-
duced in Theorem 2.3.59 can be presented in an explicit manner as a complex,
using the exterior algebra. While in the reference, the construction is established
only for Pommaret bases, again by [Sei10, Remark 5.4.13], it can be extended to
any involutive basis with respect to a continuous involutive division L. This idea
is central for the statement of one of our main results, Theorem 4.2.3. We will
make some minor adaptations in our notations, but the idea of the construction
remains unchanged. The correctness of this approach is treated en detail in the
given references, so we will skip it here.

Let H be an involutive basis ofM with |H| = s elements. LetW be a free k-
module with s elements whose elements will be denoted by {v∅⊗k hα|hα ∈ H}.
Let V be a free k-module of rank n + 1 with basis v0, ...,vn, i.e. we have one
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generator vi for each variable xi ∈ P. Let ΛV be the exterior algebra over V.
We set Ci = P ⊗k (ΛiV ⊗k W) ∼= (P ⊗k ΛiV) ⊗P (P ⊗k W). A basis of ΛiV
is given by the elements of shape vk = vki ∧ ... ∧ vki , where k = (k1, ..., ki)
is an ordered sequence of length i, i.e. 0 ≤ k1 < ... < ki ≤ n. Now a basis
for ΛiV ⊗k W is given by the elements of shape vk ⊗k v∅ ⊗k hα. In order to
shorten our notation, for these elements, we will just write vk⊗khα for such an
element. Now consider the submodule Gi ⊆ Ci which is generated by the basis
elements vk ⊗k hα for which k ⊆ XL,≺ (hα) holds.

For each pair k,hα with |k| = i ≥ 1 which gives a generator of a Gi, we have
an element ~S(α,k) ∈ Syzi(H) ⊆ Gi−1; and for each ki+1 > ki, we have a unique
involutive standard representation

xki+1
~S(α,k) =

s∑
β=1

∑
`

P
(α,k,ki+1)
β,`

~Sβ;`,

where the second sum ranges over all ordered sequences ` = (l1, ..., li) of length
i such that 0 ≤ l1 < ... < li ≤ n. We define homomorphisms d0 : G0 →M by

d0(v∅ ⊗k hα) = hα ∈M

and di : Gi+1 → Gi by

di(vk⊗k∪{ki+1}hα) = ~S(α,k∪{ki+1}) = xki+1
vk⊗khα−

s∑
β=1

∑
`

P
(α,k,ki+1)
β,` v`⊗khβ .

Now with these homomorphisms as differential, (G, d) is a free resolution ofM.

If we further take the degrees of the elements of the involutive basis H into
consideration, and recall the definition 2.1.16 of the bigraded Betti numbers, we
have the motivation for

Definition 2.3.63. In the situation of Theorem 2.3.59, let β(k)
0,f be the number

of elements of H of degree f and with exactly k non-multiplicative variables,
i.e.

β
(k)
0,f =

∣∣{h∈H∣∣degh = f, |XL,H,≺ (h) | = k
}∣∣.

Then we say that the numbers

β∗i,f =
n−i∑
k=0

(
n− k
i

)
β

(k)
0,f

are the (bigraded) pseudo Betti numbers of M for the involutive basis H. In
analogy to the Betti table, we define the pseudo Betti table ofM.

With equation (2.3.2), which can be easily generalised to be applicable to
modules, we see how to obtain the Hilbert function and the Hilbert polynomial
of a P-module M from an involutive basis of M with a simple combinatorial
argument:
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Lemma 2.3.64. [Sei10, Equation (4.6)] Let H = {h1, ...,ht} be an involutive
basis of the module M = 〈H〉 ⊆ Pm. For every hα, let kα be the number of
multiplicative variables of hα. Then we have

HFM(t) =
t∑

α=1

(
t− deg(hα) + kα − 1

t− deg(hα)

)
=
∑
f≥0

n∑
k=0

(
t− f + k − 1

t− f

)
β

(k)
0,f .

(2.3.6)

Remark 2.3.65. Note that only finitely many β(k)
0,f are nonzero, so the second

sum is indeed a finite sum. We understand the binomial coefficient
(
a
b

)
to be 0

if a < b (or equivalently b < 0).

Example 2.3.66. Obviously, the pseudo Betti numbers are upper bounds for
the Betti numbers.

If we look at how the set HSyz is defined, we see that (for a graded module
M) for any hα ∈ H, the degree of ~Sα;k is the degree of hα, plus 1. Hence for
graded modules, this statement can be reformulated to a more precise version
including statements about the degrees of the generators of the shifted graded
free modules in the graded resolution ofM.

For Pommaret bases, any set of non-multiplicative variables is of the shape
{xcls(hα)+1, ..., xn}. Thus we see that for Pommaret bases, we have

β
(k)
0 = #{hα ∈ H| cls(hα) = n− k}.

Going back to the ideal I given in example 2.3.24, the pseudo Betti table of
I for the Pommaret basis given there is

0 1 2 3
2 3 3 1 0
3 4 7 3 0
4 1 3 3 1,

,

where all other numbers are understood to be 0. By remark 2.3.61, this gives
the pseudo Betti table

0 1 2 3 4 5
0 1 0 0 0 0
1 0 3 3 1 0
2 0 4 7 3 0
3 0 1 3 3 1.

of M = P/I. However, computing the Betti table of I (for example, with
CoCoALib), one sees that the Betti table of I is given by

0 1 2 3
2 3 1 0 0
3 2 5 1 0
4 0 1 3 1,

which translates to the Betti table ofM = P/I given in remark 2.1.17.
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2.4 Homological algebra
The presentation in this chapter is based on [Wei95].

Definition 2.4.1. Let F and G be two chain complexes

F = ...→ Fl+1
ϕl+1−−−→ Fl → ... and G = ...→ Gl+1

ψl+1−−−→ Gl → ....

• A chain map α : F → G is a set of homomorphisms αl : Fl → Gl (of degree
0) such that αl ◦ ϕl+1 = ψl ◦ αl+1 for all l.

• It is a simple fact that any chain map α : F → G satisfies α(imϕl) ⊆ imψl
and α(kerϕ) ⊆ kerψl. Hence α induces a well-defined map α∗ : Hl(F)→
Hl(G) on the homology groups for all l by setting α∗(g) = α(g), where ·
denotes the respective equivalence classes.

• A chain map α : F → G is called null homotopic if there is a set s of maps
sl : Fl → Gl+1 such that1

α = ψs+ sϕ.

s is called a chain contraction of α.

• Two chain maps α, β : F → G are called chain homotopic if the difference
α− β is null homotopic.

• A chain map α : F → G is called a chain homotopy equivalence if there is
a chain map β : G → F such that α ◦ β and β ◦ α are chain homotopic to
the respective identity maps of F and G. In this situation, we say that F
and G are homotopy equivalent.

Lemma 2.4.2. [Wei95, Lemma 1.4.5] If α, β : F → G are chain homotopic,
then they induce the same maps Hl(F)→ Hl(G).

Corollary 2.4.3. If F and G are homotopy equivalent, then their homology
modules are identical. In particular, if F is a free resolution of a module M
and G is homotopic to F , then G is also a free resolution ofM.

Proof. If F and G are homotopy equivalent, then the concatenated induced
maps Hl(F)→ Hl(G)→ Hl(F) and Hl(G)→ Hl(F)→ Hl(G) are the identity
maps on Hl(F) and Hl(G).

We will now give an alternative definition for the Betti numbers, using the a
special case of the Tor-functor. We abstain from giving a more general definition
of this functor, as it would serve no further purpose for this work.

Definition 2.4.4. LetM,N be P-modules. Let

...→ F2
ϕ2−→ F1

ϕ1−→ F0
ϕ0−→M→ 0

1For such sets of maps it is common practice to omit the indices of the maps φl, i.e. the
given equations are supposed to hold for all eligible values of l.
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be a free resolution ofM and F ⊗P N be the chain complex

...→ F2 ⊗P N → F1 ⊗P N → F0 ⊗P N →M⊗P N → 0.

Then we define
TorPi (M,N ) = Hi(F ⊗P N ).

One can show that this definition is indeed independent of the choice of F . Of
course, this definition can be easily extended to keep track of gradings. With
this in mind, we obtain another interpretation of the graded Betti numbers.
Note that we have k ∼= P/〈x0, ..., xn〉, thus the action of P-module on k is given
by, for a polynomial f ∈ P acting on k, multiplication with the constant term of
f . This gives a well-known alternative approach to calculate the Betti numbers,
presented in the lemma below.

Lemma 2.4.5. LetM be a P-module. Then we have

TorPi (M,k) =
⊕
j∈Z

k
(
−(j)

)βi,j
.

2.5 Splitting homotopies and strong deformation retracts
In this section, we explain another idea which allows us reduce a given chain com-
plex to a smaller complex while preserving homology. The concept of splitting
homotopies was introduced by Barnes and Lambe in [BL91]. The advantage of
this idea, when compared to the step-by-step approach of Section 2.2, is that,
given suitable circumstances, it enables us to “minimise” infinite resolutions.

Assumption 2.5.1. For the remainder of Section 2.5, let F be a chain complex

...→ Fl+1
dl+1−−−→ Fl → ...

with differential d.

Definition 2.5.2. A splitting homotopy is a set φ = {φl} of homomorphisms
φl : Fl → Fl+1 such that

• φ2 = 0.

• φdφ = φ.

Lemma 2.5.3. Let φ be a splitting homotopy. Let the set π of maps πl : Fl → Fl
be given by

π = idF −φd− dφ

and let ι : π(F)→ F be the inclusion. Then π satisfies

• π2 = π.

• πι = idπ F .
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• ιπ = π.

• dπ = πd.

Proof. Regarding the first point, we have

π2 = id−φd− dφ− φd+ φdφd+ φddφ− dφ+ dφφd+ dφdφ

= id−φd− dφ− φd+ φd− dφ+ dφ

= id−φd− dφ
= π.

From this equation, the second point follows at once, while the third point is
obvious anyway. Regarding the last point, we note the equations

dπ = d− dφd− ddφ = d− dφd

and
πd = d− φdd− dφd = d− dφd.

We would like to turn π(F) into a chain complex. The lemma below ensures
we can indeed define a differential on π(F).

Lemma 2.5.4. Let the maps φ, π, ι be given as in Lemma 2.5.3. For the maps
δ : π(Fl+1)→ π(Fl) defined by

δ = πdι,

we have δδ = 0, i.e. π(F) together with the differential δ is a chain complex.

Proof. Using Lemma 2.5.3, we obtain

δ2 = πdιπdι = πdπdι = ππddι = 0.

Now what are the properties of this complex? The most important fact for
our purposes is that the homology remains unchanged.

Theorem 2.5.5. The chain complexes F and π(F) as in Lemma 2.5.4 are
homotopy equivalent. A chain homotopy equivalence is given by the maps1 π
and ι.

Proof. Checking definition 2.4.1 for homotopy equivalence. Again using Lemma
2.5.3, we have

ιπ − idF = π − idF = −(φd+ dφ)

and
πι− idπ(F) = idπ(F)− idπ(F) = 0.

1Strictly speaking, we are working with the map obtained from π by restricting its
codomain to π(F).
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Remark 2.5.6. We can also give a formula for δ in terms of d and φ instead of
d and π. Depending on the context, either formula may be useful. We have

δ = πdι = (idF −φd− dφ)dι = dι− φdd− dφdι = dι− dφdι.

Usually we will omit ι in there formulas and simply write

δ = d− dφd.
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3 Algebraic discrete Morse theory
In this chapter, we will discuss some elements of algebraic discrete Morse theory.
Our goal is to explain how algebraic discrete Morse theory allows us to construct
a free resolution of some modules. We will see that this concept can be applied
to a class of involutive bases with respect to a continuous involutive division of
Schreyer type, which in particular includes Pommaret and Janet bases.

Discrete Morse theory was developed by Forman, see [For98] and [For02],
allowing a CW-complex to be reduced to a smaller, homotopy-equivalent CW-
complex. An algebraic version of this theory was established by Sköldberg in
[Skö06] and by Jöllenbeck and Welker in [JW09].

Our basic notation is the same as in the paper [AFSS15]; the presentation
there is in turn based on the papers [Skö06] and [Skö11] by Sköldberg. Unless
stated otherwise, any proof of a theorem, lemma or corollary which is cited
from the papers [Skö06] and [Skö11] is mathematically the same proof as in
those papers; with some occasional minor changes to the notation. However, in
a few cases, some proofs in this chapter have been partially rewritten, or contain
some additional arguments; if this is the case, it is explicitly mentioned at the
beginning of the respective proof.

In order to make the definitions apply to a more general situation than in
[AFSS15], we will make some minor adaptations.

3.1 Basics of discrete Morse theory
Definition 3.1.1. Let R be a commutative ring and C a finite chain complex
of R-modules

0 −→ Cp −→ Cp−1 −→ · · · −→ C0 −→ 0 (3.1.1)

where each module Cm =
⊕

a∈Im Ka is written as a direct sum of R-modules
with disjoint index sets Im (Sköldberg call auch a complex a based complex ).
Note that we require C to be of finite length, however the index sets Im may
be infinite. To such a complex, we associate a directed graph ΓC : The set of
vertices is the disjoint union tmIm and the graph contains the edge a→ b if and
only if a ∈ Im+1, b ∈ Im for some m ≥ 0 and db,a = πb(dC |Ka) 6= 0. Here, dC
is the differential in C and for Cm =

⊕
a∈Im Ka, πb is the canonical projection

πb : Cm → Kb for b ∈ Im while ·|Ka denotes the restriction to Ka.
A partial matching on a directed graph D = (V,E) with vertices V and

edges E is a subset A ⊆ E of edges such that no vertex is incident to 2 or
more edges in A. Given a partial matching A, we define a new directed graph
DA = (V,EA) which is obtained from D by reversing all the arrows contained
in A: Thus the graph DA has the same vertices as D and contains the edge
a→ b if and only if

(b→ a) ∈ A ∨
(
(a→ b) ∈ E \A

)
.

We define A+ ⊆ V to be the (sub-)set of vertices of D that are sources of the
arrows in A, i.e.

A+ = {a ∈ V | ∃b ∈ V : (a→ b) ∈ A},
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and A− ⊆ V as the sources of said arrows, i.e.

A− = {a ∈ V | ∃b ∈ V : (b→ a) ∈ A};

finally A0 ⊆ V contains all vertices which are not incident to any arrow con-
tained in A, i.e.

A0 = {a ∈ V |6 ∃b ∈ V : (a→ b) ∈ A ∨ (b→ a) ∈ A} = V \ (A+ ∪A−).

Vertices contained in A0 are called A-critical. Furthermore, we define

A−m = A− ∩ Im, A+
m = A+ ∩ Im, A0

m = A0 ∩ Im

for each m ∈ N.

For our applications, starting with chapter 4, we will work exclusively in
a situation where every Cm =

⊕
a∈Im Ka is a free module and every Ka is a

shifted module P(d).

Definition 3.1.2. A Morse matching on the directed graph ΓC is a partial
matching A satisfying the following conditions:

• For every edge (a→ b) ∈ A, the map db,a is an isomorphism.

• For every index set Im, there is a well-founded partial order @ on Im such
that for any a, c ∈ Im with a 6= c, we have c @ a if and only if there is a
path a → b → c in ΓAC . We say that such an order @ respects the Morse
matching A.

If the modules of the complex C are finitely generated, the differential can
be represented by matrices. So in this case, the graph ΓC contains a directed
edge for every nonzero entry of these matrices. For an edge to be contained in
a Morse matching, it is necessary that the edge corresponds to a constant entry
in the matrix representing the differential.

However, we already know a way how to minimise a finite resolution in this
case, see Lemma 2.2.2. Thus, for our purposes, Morse theory will be needed in
particular when (some of) the modules Cm are not finitely generated.

First, we give an alternative definition of Morse matchings under the condi-
tion that the graph ΓC is finite. While we have just mentioned that we do not
require Morse theory for finite graphs, we will later use this Lemma in situations
where we can represent an infinite graph by (infinitely many) finite equivalence
classes.

Lemma 3.1.3. [Skö06, Lemma 1] Let C be a based complex such that the graph
ΓC is finite. Let A be a partial matching on ΓC such that db,a is an isomorphism
whenever the edge a→ b is contained in A. Then A is a Morse matching if and
only if ΓAC has no directed cycles.

44



Proof. ⇐=: Let u ∈ Im and define

l(u) =

max{t | ∃u1, ..., ut, v1, ..., vt ∈ Im : ut → vt → ut−1 → ...→ u1 → v1 → u ∈ ΓC}.

Since ΓC is finite and there are no directed cycles in ΓC , l(u) is finite. We
set u @ v if l(u) < l(v). Obviously, this is a well founded partial order which
respects the Morse matching.

=⇒: Let ≺ be an order that respects the Morse matching. We immediately
see that the existence of a directed cycle

u→ v1 → u1 → ...→ us−1 → vs−1 → us = u ∈ ΓC

would imply u A u1 A ... A u, contradicting the fact that @ is a well founded.

Even when a based complex is not finitely generated, Lemma 3.1.3 can still
be useful thanks to the next lemma:

Lemma 3.1.4. [Skö06, Lemma 7] Let C be a based complex. Let ∼ be an
equivalence relation on the set V of vertices of ΓC. Let J be a partial order on
the set of equivalence classes satisfying [b] J [a] whenever there is an edge a→ b
in ΓC. If there is a Morse matching A[a] on ΓC ∩ [a] for each [a] ∈ V/ ∼, then⋃

[a]∈V/∼A[a] is a Morse matching on ΓC.

Proof. If A[a] is a Morse matching on [a], then there is a well-founded partial
order @[a] on [a] such that @[a] respects the Morse matching A[a]. Let @ be a
partial order on V defined by a @ b if [a] J [b] or [a] = [b] and a @[a] b. Let
(ai)i∈N be a decreasing sequence with respect to @, so ai w ai+1 for all i. Since
J is well-founded on V/ ∼, there is an N ∈ N such that [ai] = [aN ] for all
i ≥ N . Since @[ai] is well-founded on [ai], there is a M ≥ N such that aj = aM
for all j ≥M . So @ is well-founded.

Later, we will apply the idea of this Lemma to the following situation: Given
a based complex of certain P-modules which are not necessarily finitely gener-
ated, but still only have a finite number of generators in every degree and no
generators in degree ≤ N , we take two generators to be equivalent if they are
of the same (total) degree.

Our next goal is to use a Morse matching on ΓC to construct a complex that
is “smaller” than C, but with the same homology.
Remark 3.1.5. Given a based complex C and a Morse matching A on ΓC , we
recursively define a P-linear map φ as follows:

For an a that is minimal with respect to @ and x ∈ Ka, let

φ(x) =

{
d−1
a,b(x) if b→ a ∈ A for some b

0 otherwise.

If a is not minimal with respect to @ and x ∈ Ka, let
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φ(x) =

{
d−1
a,b(x)−

∑
b→c
a6=c

(
φ ◦ dc,b ◦ d−1

a,b

)
(x) if b→ a ∈ A for some b

0 otherwise.

Lemma 3.1.6. Let x ∈ Ka. If πKb
(
φ(x)

)
6= 0, then the graph ΓAC contains a

path of shape a→ ...→ b.

Proof. By the recursive definition of φ, this is obvious.

For simplicity of notation, from now on we will often omit the ◦-symbol for
concatenations of maps.

Lemma 3.1.7. [Skö06, Lemma 2] Let A be a Morse matching on a based com-
plex C. Then the map φ satisfies:

φ2 = 0, φdφ = φ.

In other words, φ is a splitting homotopy, and therefore we can later on make
use of the theory presented in Section 2.5.

Proof. The first equation follows from the fact that A is a partial matching,
since there are no a, b, c such that both a → b and b → c are contained in A.
In fact, we see that for πb

(
φ(x)

)
to be nonzero, it is necessary that b ∈ A− and

x ∈ Ka for some a ∈ A+.
We will prove φdφ = φ by induction over @. Let a be minimal with respect

to @ and x ∈ Ka. If a 6∈ A−, we have just seen that

φdφ(x) = 0 = φ(x).

Now assume that a ∈ A− and b → a ∈ A. Since a is minimal, we see that
d|Kb = da,b, as otherwise ΓC would contain the edge b → c for some c, and so
a→ b→ c ∈ ΓAC , contradicting the minimality of a. So we have:

φdφ(x) = φdd−1
a,b(x) = φda,bd

−1
a,b(x) = φ(x).

Now suppose a is not minimal with respect to @. If a 6∈ A−, the argument
remains unchanged. So we assume that a ∈ A− with b → a ∈ A and x ∈ Ka.
Now we obtain

φdφ(x) = φd
(
d−1
a,b(x)−

∑
b→c
c6=a

φdc,bd
−1
a,b(x)

)
= φdd−1

a,b(x)−
∑
b→c
c6=a

φdφdc,bd
−1
a,b(x)

= φda,bd
−1
a,b(x) +

∑
b→c
c6=a

φdφdc,bd
−1
a,b(x)−

∑
b→c
c6=a

φdφdc,bd
−1
a,b(x)

= φ(x).
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Regarding the second-to-last equality, we note that for any c appearing in
the sum, we have a → b → c ∈ ΓAC and therefore c @ a, so by induction
φdφ(y) = φ(y) for all y ∈ Kc.

Lemma 3.1.8. [Skö06, Lemma 3] Let C be a based complex, A a Morse matching
on ΓC and the map φ as defined in remark 3.1.5. For x ∈ Ka, we have

dφ(x) =

x+
∑
b@α

yb if a ∈ A−

0 otherwise.

Here, with the notation
∑
b@α yb we mean that the sum is taken over some

elements yb where yb ∈ Kb for all b.

Proof. By induction over @. Let a be minimal with respect to @. If a 6∈ A−,
we again have dφ(x) = 0. So let a ∈ A− with b → a ∈ A. As in the proof of
Lemma 3.1.3, we have d|Kb = da,b and so:

dφ(x) = dd−1
a,b(x) = da,bd

−1
a,b(x) = x.

Finally, let a be non-minimal with respect to @. Again, if a 6∈ A−, then we have
dφ(x) = 0. So if a ∈ A− and b→ a ∈ A, then:

dφ(x) = d
(
d−1
a,b(x)−

∑
b→c
c6=a

φdc,b, d
−1
a,b(x)

)
= x+

∑
b→c
c6=a

dc,bd
−1
a,b(x)− dφ

∑
b→c
c6=a

dc,bd
−1
a,b(x).

For each term appearing in these sums, we have c @ a, since (a→ b→ c) ∈ ΓAC .

Lemma 3.1.9. [Skö06, Lemma 4] Let C be a based complex, A a Morse matching
on ΓC and the map φ as defined in remark 3.1.5. For x ∈ Ka, we have

φd(x) =

x if a ∈ A+∑
b@a

yb otherwise,

where again the sum is taken over some elements yb ∈ Kb for all b, as in Lemma
3.1.8.

Proof. While as mentioned before, this proof presented here is mathematically
the same as the one in [Skö06], here we have also included some arguments
added for clarification.

Induction over @. Let a be minimal with respect to @. If a ∈ A+ with
(a → b) ∈ A, then for any c 6= b with a → c we have c 6∈ A−, for otherwise
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there would be some d such that a → c → d is a path in ΓaC and hence d @ a,
contradicting the minimality of a. So φ|Kc = 0 and we get

φd(x) = φdb,a(x) +
∑
a→c
c6=b

φdc,a(x) = d−1
b,adb,a(x) = x.

If a 6∈ A+, we get
φd(x) = φ

∑
a→b

db,a(x) = 0

since again b 6∈ A− for all b appearing in the sum, for otherwise a would not be
minimal.

Now let a be non-minimal with respect to @ and x ∈ Ka. If a ∈ A+ with
(a→ b) ∈ A, then

φd(x) = φdb,a(x) +
∑
a→c
c6=b

φdc,a(x)

= d−1
b,adb,a(x)−

∑
a→c
c6=b

φdc,a(x) +
∑
a→c
c6=b

φdc,a(x)

= x.

If a 6∈ A+, then

φd(x) = φ
∑
a→b

db,a(x)

=
∑
a→b
c→b∈A

d−1
b,cdb,a(x)−

∑
a→b
c→b∈A

∑
c→d
d6=b

φdd,cd
−1
b,cdb,a(x).

For the summands in the first sum, we immediately see that any summand is
contained in some Kc for an index c such that a → b → c is a path in ΓAC and
hence c @ a. So these summands are of the shape given in the lemma. In the
same manner, for the summands in the second sum, using Lemma 3.1.6, we see
that whenever the term πKe

(
φdd,cd

−1
b,cdb,a(x)

)
is nonzero for some e, there are

paths
a→ b→ c→ d→ ...→ e

in ΓAC . This concludes the proof.

Theorem 3.1.10. [Skö06, Theorem 1] Let A be a Morse matching on ΓC. Let
π : C → C be defined by π = id−(φd + dφ). Then the complexes C and π(C)
are homotopy equivalent. Additionally, for each m there is an isomorphism of
modules

π(Cm) ∼=
⊕
a∈A0

m

Ka.
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Proof. The homotopy equivalence follows directly from Theorem 2.5.5.
All that is left to prove is

π(C) = π

(⊕
c∈A0

Kc

)
.

We will do so by showing that π(Ka) ⊆ π(
⊕

c∈A0 Kc) for all a by induction over
@.

Let x ∈ Ka where a is minimal with respect to @. If a ∈ A0, the statement
is obvious. If a 6∈ A0, then π(x) = 0 by Lemma 3.1.8 and Lemma 3.1.9.

Now let x ∈ Ka and a be not minimal with respect to @. Again if a ∈ A0,
there is nothing to prove. Using Lemma 3.1.8 and Lemma 3.1.9, we see that
there is a set KJ with c @ a for all c ∈ J and some yc ∈ KJ such that

π(x) = π2(x) = π
(∑
c∈J

yc
)

=
∑
c∈J
c∈A0

π(yc) +
∑
c∈J
c6∈A0

π(yc).

From this equation the statement follows by induction.
To conclude the proof, we will prove that the homomorphism

π :
⊕
a∈A0

m

Ka = π(Cm)→ Cm,

which is obtained from the homomorphisms of π by restricting the domain, is
injective. Again, from Lemma 3.1.8 and Lemma 3.1.9, we see that for a ∈ A0

and x ∈ Ka there is once again a set KJ , with c @ a for all c ∈ J and and some
yc ∈ KJ , such that

π(x) = x+
∑
c∈J

yc.

So the restricted map is injective.

Now we define a new chain complex (D, d̃) with modules

Dm = π(Cm) =
⊕
a∈A0

Ka.

For the differential d̃ on D, we know from Remark 2.5.6 that is given by

d̃ = (d− dφd). (3.1.2)

Altogether, we once again state that we have found the theorem below. In the
given reference requires a proof, for there the complexes which take the role of
D and π(C) are not a priori identical.

Theorem 3.1.11. [Skö06, Theorem 2] (D, d̃) is a chain complex which is ho-
motopy equivalent to the complex C.
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3.2 Constructing the differential in the complex D
Now while we know how to construct the complex D, for the differential d̃ we
only have the recursive definition involving the splitting homotopy φ. In this
chapter, we will see that is possible to give an alternative definition of d̃ which
is based on paths in the Morse graph. This apporach allows us to give a non-
recursive description of φ and d̃, at the cost of an increase in technical language.

As a first step, the construction below and Lemma 3.2.1 establish how we
can use paths in the Graph ΓAC to construct the splitting homotopy φ and the
“reduced differential” d̃.

If we have a ∈ Im and b ∈ Im+1 (or b ∈ Im−1 resp.), let Γb,a be the set of
directed paths p in the Graph ΓAC of shape

p = c1 → c2 → ...→ c2k−1 → c2k,

where c1 = a, c2k = b and all cj are contained in Im if j is odd, or in Im+1 (or
Im−1 resp.) if j is even.

If b ∈ Im+1 and p ∈ Γb,a, let

%p = (−1)k−1dc2k,c2k−1
d−1
c2k−2,c2k−1

· · · d−1
c2,c3dc2,c1 ,

and if b ∈ Im−1 and p ∈ Γb,a, let

%p = (−1)k−1d−1
c2k,c2k−1

dc2k−2,c2k−1
· · · dc2,c3d−1

c2,c1 .

Using this notation, we have

Lemma 3.2.1. [Skö06, Lemma 5] Let a ∈ Im and x ∈ Ka. Then we have

φ(x) =
∑

b∈Im+1

∑
p∈Γb,a

%p
(
x
)
.

Proof. We use induction with respect to @. If a is minimal with respect to @
and a ∈ A−, then φ(x) = d−1

a,b(x), for there is exactly one b with b → a ∈ A,
and for this b there is no c with b→ c ∈ ΓC . If a 6∈ A−, then there is no b with
b→ a ∈ A and we have φ(x) = 0.

Now let a be non-minimal with respect to @. If a 6∈ A−, we still have
φ(x) = 0 by the same argument as before. So let a ∈ A−. Then we get

φ(x) = d−1
a,b −

∑
b→e
e6=a

φde,bd
−1
a,b(x)

= d−1
a,b −

∑
b→e
e6=a

∑
c∈Im+1

∑
p∈Γc,e

%pdc,bd
−1
a,b(x)

=
∑

b∈Im+1

∑
p∈Γb,a

%p
(
x
)
,
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where to obtain the last equation, we have used the fact that we obtain all paths
a→ ...→ e (of length > 1) by taking the disjoint union (over b) of all paths of
the shape a→ b→ c→ ...→ e.

Corollary 3.2.2. [Skö06, Corollary 3] For a ∈ Im and x ∈ Ka, we have

d̃(x) =
∑

b∈Im−1

∑
p∈Γb,a

%p
(
x
)
.

Proof. By Lemma 3.2.1, we have

(d− dφd)(x) =
∑

b∈Im−1

∑
p∈Γb,a

%p
(
x
)
,

where we again use the same disjoint union as in the proof of Lemma 3.2.1.

3.3 Morse theory for modules with initially linear syzygies
In his paper [Skö11], Sköldberg applied algebraic discrete Morse theory, as in-
troduced in Sections 3.1 and 3.2, to modules with “initially linear syzygies”.
One of his goals was to directly construct the minimal free resolution of a mod-
ule. However, his construction is still useful for constructing other non-minimal
finite resolutions, which might not be minimal, but can be minimized using
lemma 2.2.2.

From a technical point of view, an important feature of this chapter will be
the introduction of reduction paths. This concept provides a way to represent
and calculate the differential obtained from initially linear syzygies (see below)
with the help of a Morse matching. While this construction is rather technical,
it cannot be avoided, as it is used later in many theoretical proofs while also
serving as foundation of the implementation of the theory in the computer
algebra system CoCoALib.

Definition 3.3.1. A polynomial module M has initially linear syzygies if M
possesses a finite presentation

0 −→ ker η −→W = Ps =
s⊕

α=1

Pwα
η−→M −→ 0 (3.3.1)

such that with respect to some monomial order ≺ on the free module W, the
leading module lt ker η of the kernel of η is generated by terms of the form
xjwα. We say thatM has initially linear minimal syzygies, if the presentation
is minimal in the sense that ker η ⊆ ms, where by m we denote the homogeneous
maximal ideal m =

⊕
i≥1 Pi.

These notions go back to [Skö11] who, however, does not consider the non-
minimal case. In his work, the term “initially linear syzygies” always refers to
initially linear minimal syzygies. His construction begins with the following
two-sided Koszul complex (F , dF ), defining a free resolution of the moduleM
(see Lemma 3.3.4), which we will take as a fixed notation for the remainder of
this work.
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Definition 3.3.2. For an (ordered) sequence k = (k1, ..., kj) and 1 ≤ i ≤ j, we
denote by ki the (ordered) sequence k without the element ki, i.e. ki = k\{ki}.

Assumption 3.3.3. We will fix a complex F with modules Fj and differential
dF as follows: Let V be a k-linear space with basis {v0, . . . ,vn} (recall that
n+ 1 is the number of variables) and let

Fj = P ⊗k ΛjV ⊗kM, (3.3.2)

which obviously yields a free P-module. Choosing a k-linear basis {ma | a ∈ B}
ofM, a P-linear basis of Fj is given by the elements of shape 1⊗vk⊗ma with
ordered sequences k of length j. The differential is now defined by

dF (1⊗kvk⊗kma) =

j∑
i=1

(−1)i+1
(
xki⊗kvki⊗kma−1⊗kvki⊗kxkima

)
. (3.3.3)

It should be noted that in general, the second term of the summands on the
right hand side is not yet expressed in the chosen k-linear basis of M. For
notational simplicity, we will drop in the sequel the index of ⊗k, or even the
tensor signs ⊗k entirely. We will also omit the leading factor if it is equal to 1,
i.e. we will use the notation

vkhα = 1⊗k vk ⊗k hα.

We remark that, unlessM is an artinian module, the modules of this two-
sided Koszul complex are not finitely generated. Thus, if we want to minimise
this complex later to the point where the reduced complex is finite, we cannot
rely on the step-by-step approach from Lemma 2.2.2. However, using Morse
theory, such a “minimisation” becomes possible.

We also point out that this complex also on the surface looks similar to the
free resolution induced by an involutive basis, understood as Remark 2.3.62. A
large part of Chapter 4 is dedicated to formally establishing links between the
behavior of these complexes.

Lemma 3.3.4. [Skö11, Lemma 1] The complex F is a free resolution ofM (in
the sense that we have a complex as in definition 2.1.1, but its modules are not
necessarily finitely generated).

Proof. While this proof is based on the proof given in [Skö11], it also includes
some additional aspects which have been added for further clarification.

Since dF (F1) is generated by all relations xiv∅m − v∅xim, we immediately
see that H0(F) ∼=M.

Now we have to prove that Hi(F) = 0 for all i ≥ 1.
We consider F to be a based complex of k-vector spaces via the natural

decomposition
P ⊗k Λ⊗kM∼=

⊕
k · xµvIma,

where the direct sum is taken over all µ, I,ma such that µ ∈ Nn, I ⊆ {0, .., n}
and ma ∈ B where B is a basis ofM as a k-vector space.
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For each i ≥ 0 and ma ∈ B, let

Vi,ma = {xµvIma | deg xµ + |I| = i}

be a subset of the vertices of ΓF . We define a partial matching Ei,ma on ΓF |Vi,ma
by

(xµvIma → xµxjvI\jma) ∈ Ei,ma if and only if j = min(suppµ ∪ I) ∧ j ∈ I.

It is clear that Ei,ma is a partial matching. Since any Vi,ma is finite, by Lemma
3.1.3, Ei,ma is a Morse matching on ΓF |Vi,ma if there are no directed cycles on(
ΓF |Vi,ma

)Ei,ma , where by this notation meant to describe the graph that is
given by taking the graph ΓF |Vi,ma and reversing the arrows contained in the
Morse matching Ei,ma (see Definition 3.1.1). So let

xµ0vI0ma → xµ1vI1ma → ...→ xµ2k−1vI2k−1
ma → xµ0vI0ma = xµkvIkma

be a directed cycle in
(
ΓF |Vi,ma

)Ei,ma . Since Ei,ma is a partial matching on a
based complex, for such a cycle we can assume that xµlvIlma ∈ (Ei,ma)

+ if l
is even and xµlvIlma ∈ (Ei,ma)

− if l is odd. From the definition of Ei,ma , we
then have

µ0 ≺lex µ2 ≺lex .. ≺lex µ2k = µ0,

which is impossible (recall that according to our conventions of Definition 2.3.3,
we have x0 ≺ x1 ≺ ... ≺ xn for the lex order). So Ei =

⋃
ma∈B Ei,ma is a Morse

matching on the graph ΓF |Vi , where Vi =
⋃
ma∈B Vi,ma .

Now for any (xµ0vI0ma → xµ1vI1ma) ∈ ΓF , we must have

deg xµ0 + |I0| ≥ deg xµ1 + |I1|,

and so by Lemma 3.1.4, E =
⋃
iEi is a Morse matching on ΓF . But then, there

are no E-critical vertices in (homological) degree ≥ 1. By Theorem 3.1.10, this
means that all homology modules Hi(F) for i ≥ 0 vanish, if we view F as a
complex over k. But then of course, they also vanish over P.

Remark 3.3.5. Under the assumption that the module M has initially linear
syzygies via the presentation of equation (3.3.1), [Skö11] constructs a Morse
matching leading to a smaller resolution (G, dG). He calls the variables

crit (wα) = {xj | xjwα ∈ lt ker η} (3.3.4)

critical for the generator wα; the remaining non-critical ones are contained in
the set ncrit (wα). A k-linear basis of M is then given by all elements xµhα
with hα = η(wα) and monomials xµ ∈ k[ncrit (wα)].

For each m ∈M, consider the following set of vertices in the graph ΓF :

Vm = {vIxµhα | xIxµhα = m} (3.3.5)
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Then Vm is not empty if and only if m is the product of some generator hα with
a monomial. Furthermore, we define1

Am =
{
vIx

µhα → vI\ixix
µhα ∈ ΓF |Vm |
i = min {I ∩ ncrit (wα)} ∧ i ≤ cls (xµ)

}
. (3.3.6)

Now we see that we have constructed a Morse matching:

Lemma 3.3.6. [Skö11, Lemma 2] The union A =
⋃
m∈MAm is a Morse match-

ing on ΓF . The set of unmatched vertices consists of all vkhα with k ⊆ crit(wα).

Proof. It is clear that A is a partial matching, since any set I of indices contains
every index at most once. In analogy to the proof of Lemma 3.3.4, we see that
the existence of an oriented cycle

vI0x
µ0ha0 → vI1x

µ1ha1 → ...

...→ vI2k−1
xµ2k−1ha2k−1

→ vI2kx
µ2kha2k = vI0x

µ0ha0 (3.3.7)

in ΓF |Vm Am implies I0 >lex I2 >lex ... >lex I2k = I0, which is again impossible,
as in the proof of Lemma 3.3.4. Using Lemma 3.1.3 and Lemma 3.1.4 again, we
see that A is a Morse matching on ΓF .

The statement about the unmatched vertices is clear by definition (3.3.6) of
the matching A in remark 3.3.5.

A vertex vkhα is not contained in A if and only if k ⊆ crit (wα); additionally,
all vertices of the form vIx

µhα with µ 6= 0 appear in this Morse matching. We
now define Gj ⊆ Fj as the free submodule generated by those vertices vkhα
where the ordered sequences k are of length j and such that every entry ki of
k is critical for wα. In particular, W ∼= G0 with an isomorphism induced by
wα 7→ v∅hα.

Combining Lemma 3.1.7, Theorem 3.1.10, Lemma 3.3.4 and Lemma 3.3.6,
we get the following result:

Theorem 3.3.7. [Skö11, Theorem 1] This complex G, with modules Gj is a
finite free resolution ofM. The differential dG is induced by the Morse matching
A (see Section 3.2).

This theorem is one of the main results of [Skö11], where it is stated in
the form that (G, dG) is the minimal free resolution of M if one starts with
initially linear minimal syzygies. However, independently of the minimality as-
sumption, his construction always yields some free resolution. The minimality
condition holds in the case of initially linear minimal syzygies since the condi-
tion ker η ⊆ ms is equivalent to the fact that if we write a product xima with
i ∈ crit(ma) as a linear combination over P, then no constant coefficients ap-
pear in this sum. But then there are also no constant coefficients in any of the
dF (vkma) and by Equation 3.1.2, this property translates to dG , hence G is
minimal. Notably, for Pommaret bases, the analogous property holds:

1In [Skö11], a slightly different definition for the sets Am is given.
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Lemma 3.3.8. [Sei10, Lemma 5.5.1] The resolution induced by a Pommaret
basis as in Theorem 2.3.59 is minimal if and only if all first syzygies ~Sα;k are
free of constant terms.

Remark 3.3.9. If we reduce a general complex C to a smaller complex with the
same homology by taking advantage of a Morse matching A, it is natural to ask
how we can calculate the differential map in the smaller complex. In particular,
we are interested in the differential of the complex G, which is obtained by
reducing the two-sided Koszul complex F via the Morse matching A of equation
(3.3.6). For the definition of this differential, we will use reduction paths in ΓAC• .
An elementary reduction path is a “zig-zag” path α0 → β → α1 of length1 two
in ΓAC• with α0, α1 ∈ Im that also satisfies

β ∈ Im−1 ⇐⇒ α0 ∈ A0 ∪A+ and β ∈ Im+1 ⇐⇒ α0 ∈ A− . (3.3.8)

Note that there are also zig-zag-paths α0 → β → α1 of length two in the graph
ΓAC• with α0, α1 ∈ Im which are not elementary reduction paths: a path with
β ∈ Im−1 and α0 ∈ A− is not considered to be an elementary reduction path;
we will see later in Lemma 4.1.5 that, that for our goal of giving a formula for
the differential in G, these paths are irrelevant anyway. Note that since A is a
Morse matching, the existence of a path α0 → β is equivalent to α0 ∈ A−, so
if α0 ∈ A0 ∪ A+, there cannot be any path α0 → β → α1 where β ∈ Im+1.
For the elementary reduction path α0 → β → α1, we define the corresponding
elementary reduction as the map

ρα1,α0
=

{
−d−1

β,α1
◦ dβ,α0

if β ∈ Im−1 ,

−dα1,β ◦ d−1
α0,β

if β ∈ Im+1 .
(3.3.9)

A (general) reduction path p is a composition of elementary reduction paths

p = (α0 → β1 → α1 → · · · → βq → αq)

where q ≥ 0.
For two indices α, α∗ ∈ Im, several reduction paths from α to α∗ may exist;

we write [α α∗] for the set of all such paths. For a general reduction path p,
the (associated) reduction ρp is given by

ρp = ραq,αq−1 ◦ ραq−1,αq−2 ◦ · · · ◦ ρα1,α0 .

[Skö11] gives two descriptions of the differential dG in the reduced complex, the
recursive one of equation (3.1.2), which is based on the splitting homotopy φ
of remark 3.1.5; and another one that makes use of the concept of reduction
paths. The latter one is better suited for our purposes. It is based on reduction
paths in the associated Morse graph and expresses the differential as a triple

1Length as defined in Definition 2.0.2.
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sum. If we assume that after expanding the right hand side of (3.3.3) in the
chosen k-linear basis ofM, the differential of the complex F is expressed as

dF (vkhα) =
∑

m,µ,γ

Qk,α
m,µ,γvm(xµhγ) , (3.3.10)

then by Corollary 3.2.2, dG is given by

dG(vkhα) =
∑
`,β

∑
m,µ,γ

∑
p

ρp
(
Qk,α

m,µ,γvm(xµhγ)
)
, (3.3.11)

where the first sum ranges over all ordered sequences ` which consist entirely
of critical indices for wβ and the second sum may be restricted to all values
such that a polynomial multiple of vm(xµhγ) effectively appears in dF (vkhα),
and the third sum ranges over all reduction paths p going from vm(xµhγ) to
v`hβ , see [Skö11, Equation (2)] Finally, ρp is the reduction associated with
the reduction path p satisfying ρp

(
vm(xµhγ)

)
= qpv`hβ for some polynomial

qp ∈ P.
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4 Combining Morse theory and involutive bases
Definition 4.0.1. If p = pm ◦ · · · ◦ p1 is a reduction path where all pi are
elementary reduction paths, then from now on, we will call m the length of p,
written l(p) = m. In the classical sense of graphs, see definition 2.0.2, such a
path would be of length 2m, for it contains 2m arrows. However, as for the
purposes of this chapter, elementary reduction paths are the minimal building
blocks of (general) reduction paths, this definition of the length is better suited.

Now we combine Sköldberg’s construction with involutive bases for contin-
uous involutive divisions of Schreyer type, which by lemmata 2.3.36 and 2.3.37
include the Pommaret and Janet divisions. In the paper [AFSS15], this idea
has been established for the case of Pommaret division, and in [AFS15], for the
Janet division. In this chapter, we will take another step and generalize these
results to any continuous involutive division of Schreyer type. Assume that
the considered graded moduleM in the definition of initially linear syzygies in
Equation (3.3.1) is presented by a quotient Pm/M for a “different” graded sub-
moduleM⊆ Pm. Obviously, a free resolution ofM immediately yields one of
Pm/M and vice versa. Therefore we will restrict to the construction of resolu-
tions for polynomial submodules given by an involutive basis H = {h1, . . . ,hs}
for a continuous involutive division L.

Assumption 4.0.2. Unless stated otherwise, we will always assume that any
involutive basis is enumerated according to a L-ordering.

As an immediate consequence of Lemma 2.3.56, with respect to the presen-
tation given in equation (3.3.1), we obtain the following trivial assertion:

Lemma 4.0.3. In the situation of Definition 3.3.1, let the map η be given by
η(wα) = hα. Then the submodule M ⊆ Pm has initially linear syzygies with
respect to the Schreyer order ≺H and crit (wα) = XL (hα), i. e. the critical vari-
ables of the generator wα are the non-multiplicative variables of hα = η(wα).

From now on, we will consider exclusively such initially linear syzygies orig-
inating from an involutive division:

Assumption 4.0.4. From now, let H be an involutive basis for the module
M E Pm with respect to a continuous involutive division L and a monomial
order ≺. The presentation Equation (3.3.1) comes from the homomorphism
defined by η(wα) = hα. For the k-basis ofM as in Assumption 3.3.3, we take
the basis induced by the direct sum decomposition defined by H as in Equation
(2.3.2), i.e. the basis is given by all terms xµhα where hα ∈ H and

supp(µ) ⊆ XL,H,≺ (hα) = ncrit(wα).

In particular, whenever an element of the complex F appears, for example
xκvkx

µhα, we always implicitly assume supp(µ) ⊆ ncrit(wα).
We will also occasionally use the notation ncrit(hα) = ncrit(wα).
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Definition 4.0.5. LetM⊆ Pm be a graded polynomial module. M is compo-
nentwise linear if for each e ≥ 0, the module 〈Me〉 (i.e. the module generated
by Me, the elements of degree e in M) has a linear resolution, i.e. the only
non-vanishing Betti numbers of 〈Me〉 are the βi,i+e(〈Me〉) for i ≥ 0.

Theorem 4.0.6. [Sei09, Theorem 9.12.] LetM be componentwise linear. Then
for the Pommaret division, generically the resolution introduced in Theorem
2.3.59 is minimal.

[Skö11, Corollary 4] shows that a module with initially linear minimal syzy-
gies is always componentwise linear. Now, it follows from the combination of
Lemma 2.3.60, Theorem 4.0.6 and Lemma 4.0.3 that the converse is also true:
modulo a coordinate transformation, any componentwise linear module has ini-
tially linear minimal syzygies:

Corollary 4.0.7. If the polynomial moduleM⊆ Pm is componentwise linear,
thenM has initially linear minimal syzygies in generic coordinates.

Of course, the question of how to find a generic coordinate system is not
that interesting from a theoretical point of view, but nevertheless relevant when
one wants to do actual computations. A discussion regarding this question the
situation can be found in the preprint [HSS16, in particular Remark 6.5.].

4.1 Classification of reduction paths
For later use, we will now classify elementary reduction paths p in the graph ΓAF
into three different types. Our classifications follows the presentation in [Skö11],
which was in turn using [JW09]. This classification covers all elementary reduc-
tion path.

Definition 4.1.1. Let k ⊆ N be a finite set. Then for any i ∈ N, let

ε(i;k) = (−1)|{j∈k|j<i}|.

This generalises the corresponding notation in [Skö06, Skö11] in the sense
that we do not require i ∈ k.

Type 0: In this case p is a path α0 → β → α1 with α0, α1 ∈ Im and β ∈ Im−1.
We will later see that these elementary reduction paths are irrelevant for
the construction of the differential dG of the reduced complex G.

All other elementary reduction paths are of the form

vk(xµhα) −→ vk∪i

(
xµ

xi
hα

)
−→ v`(x

νhβ) .

Here k∪ i is the ordered sequence which arises when i is inserted into k; likewise
k \ i stands for the ordered sequence given by the removal of an index i ∈ k, in
analogy to definition 2.2.1.
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Type 1: Here we have ` = (k ∪ i)\j, xν = xµ

xi
and β = α. Note that i = j is

allowed. The associated reduction is

ρ(vkx
µhα) = ε(i;k ∪ i)ε(j;k ∪ i)xjv(k∪i)\j

(xµ
xi

hα
)
.

Type 2: Now ` = (k ∪ i) \ j and xνhβ appears in the involutive standard
representation of xµxj

xi
hα with a coefficient λj,i,α,µ,β,ν ∈ k. In this case,

by construction of the Morse matching, (see also remark 3.3.5 and Lemma
3.3.6), we have i 6= j. The reduction is

ρ(vkx
µhα) = −ε(i;k ∪ i)ε(j;k ∪ i)λj,i,α,µ,β,νv(k∪i)\j(x

νhβ) .

Note that by definition 4.1.1, we obviously have ε(i,k ∪ i) = ε(i,k), which we
could use to slightly shorten the representation of the reduction maps, at the
expense of less “symmetrically” looking formulas.

These reductions come from the differential Equation (3.3.3)

dF (1⊗k vk ⊗k ma) =

j∑
i=1

(−1)i+1
(
xki ⊗k vki ⊗k ma − 1⊗k vki ⊗k xkima

)
.

The summands appearing there are either of the form xkivkima or of the form
vki(xkima). Recall Definition 3.3.2 for the notation ki. For each of these
summands, we have a directed edge in the graph ΓAF ; or in cases where the
involutive standard representation of xki consists of more than one summand,
multiple edges. Thus for an elementary reduction path

vk(xµhα) −→ vk∪i

(
xµ

xi
hα

)
−→ v` (xνhβ) ,

the second edge can originate from summands of either form. For the first form
we then have an elementary reduction path of type 1 and for the second form
we have type 2.

For completeness, we note the following simple result which just shows that
the free resolution G indeed extends the presentation (3.3.1) and hence yields
essentially the same first syzygies as the involutive basis, see Equation (2.3.5).

Lemma 4.1.2. Let1 i ∈ crit (hα) and xihα =
∑s
β=1 P

(α;i)
β hβ be the involutive

standard representation. Then we have dG(vihα) = xiv∅hα −
∑s
β=1 P

(α;i)
β v∅hβ

and ltH
(
dG(vihα)

)
= xiv∅hα.

Proof. Looking at the different types of reduction paths, we immediately see
that in the differential (3.3.11), we can only have concatenations of elementary
reduction paths of type 1 which are of the form

v∅(x
µhα) −→ vi

(
xµ

xi
hα

)
−→ v∅

(
xµ

xi
hβ

)
.

1Recall that for notational simplicity, we have identified sets X of variables with sets of
the corresponding indices, allowing us to simply write i ∈ X instead of xi ∈ X.
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The corresponding reduction is ρ(v∅x
µhα) = xiv∅(

xµ

xi
hα) . As

dF (vihα) = xiv∅hα −
s∑

β=1

v∅P
(α;i)
β hβ ,

the reduction paths move the variables in a way that gives us the correct reduced
differential dG .

The statement about the leading monomial follows directly from the defini-
tion of the Schreyer order.

Example 4.1.3. We will go back to the ideal I from example 2.3.24, to see an
explicit example of how to construct the differential dG , and how a part of the
graph ΓC looks like. The ideal is given by the Pommaret basis

H = {x2
0x2x3, x

3
1 + 2x2

0x1, x
2
1x3 + 2x2

0x3, x1x2, x1x2x3, x
2
2, x

2
2x3, x

2
3}.

We want to find the differential dG of v2,3(x3
1 +2x2

0x1). We start by constructing
the part of the Morse graph which contains all paths originating in the vertex
v2,3(x3

1 + 2x2
0x1). We note the coefficient for each differential dβ,α or d−1

β,α along
the respective edge. Every blue path has 1 as the coefficient for the associated
reduction map. We have omitted these coefficients in order to nor overload the
graphs. A more detailed discussion of these coefficients follows below.

We also use Lemma 4.1.4 and Lemma 4.1.5 in advance, which allows us to
immediately ignore all edges that are not incident to vertices in F1 and F2. This
gives us a graph, which is displayed in figures 4.1.1 and 4.1.2. In this graph, we
have marked vertices of F1

in green, if they are also generators of modules in G. By the definition of
the Morse matching in equation (3.3.6), no elementary reductions paths
of type 1 or 2 originate in these vertices, i.e. the paths ending there do
contribute to the differential dG .

in red, if we know from the definition of the Morse matching in equation (3.3.6)
that there are no elementary reduction paths of type 1 or 2 originating in
this vertex, but the vertex is not a generator of a module of G; i.e. the
paths ending there do not contribute to the differential dG .

in purple, if we know from the not yet proven Lemma 4.1.4 that no path
originating in these vertices leads to a generator of a module of G; i.e.
these paths do not contribute to dG

in light blue, if we could use the not yet proven Theorem 5.1.4 as a shortcut to
obtain the differential, instead of calculating reduction paths originating in
this vertex: In this example, this applies to the vertices of shape xµ0

0 hα,
and since x0 is of minimal class, this variable is of minimal class and
therefore multiplicative for any element of H. In this case Theorem 5.1.4
gives a formula that instantly gives the reduction map associated to any
path originating in this vertex.
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3
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0x1)

v3(x
3
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3
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x2
22

−1 //
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2
1(x1x2)

��

v3x
2
0(x1x2)

		

v2x1(x
2
1x3 + 2x2

0x3)

��

v1x1(x1x2)

v1,3x1(x1x2)

−x3
22

1 //
x1

,,

v1x1(x1x2x3)

v3x1(x1x2)

��

v3x0(x1x2)

��

v0,3x0(x1x2)

x0
22

−x3 //
1

,,

v0x0(x1x2)

v0x0(x1x2x3)

v2(x
2
1x3 + 2x2

0x3)

v1,2(x
2
1x3 + 2x2

0x3)

x1 22

−x2 //

1

,,
2

))

v1(x
2
1x3 + 2x2

0x3)

v1x1(x1x2x3)

v1(x
2
0x2x3)

Figure 4.1.1: Top part of the graph of example 4.1.3
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v1(x1x2)

v1,3(x1x2)

−x3

44

x1 //

1

**

v3(x1x2)

v1(x1x2x3)

v0(x1x2)

v0,3(x1x2)

−x3

44

x0 //

1

**

v3(x1x2)

v0(x1x2x3)

Figure 4.1.2: Bottom part of the graph of example 4.1.3

Note that the in general, these categories might not be mutually exclusive; in
fact even any purple vertex could also be marked in red.

From this graph, we obtain the differential dG
(
v2,3(x3

1 + x2
0x1)

)
by taking

the sum over all reduction maps ending in a green vertex; the coefficient of such
a summand (for one path) is given by multiplying all coefficients noted along a
path. Note that while in the example each blue path, which comes from an edge
in the Morse matching that has been reversed, has 1 as associated coefficient,
this is not the not the case in more general situations: We might also have −1
as coefficient for such paths. If we look at the reduction maps, as displayed at
the beginning of Section 4.1, the coefficients of the blue paths are the ε(i;k∪ i),
while the coefficients of the black paths are the ε(j;k ∪ i)xj (in case of type
1) or the −ε(j;k ∪ i)λj,i,α,µ,ν,β (in case of type 2).

Of course, the result does not depend on the way chosen to calculate the
differential. We obtain:

dG
(
v2,3(x3

1 + 2x2
0x1)

)
= −x3v2(x3

1 + 2x2
0x1) + x2v3(x3

1 + 2x2
0x1) + x1v2(x2

1x3 + 2x2
0x3)

+ 2v1(x2
0x2x3)− x2

1v3(x1x2)− 2x2
0v3(x1x2).

Our next result formalizes the following idea: If one starts at a vertex
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vi(x
µhα) with i ∈ ncrit(hα) and follows through all possible reduction paths

in the graph, one will never get to a vertex where one must calculate an invo-
lutive standard representation. If there are no critical (i. e. non-multiplicative)
variables present at the source of a reduction path, then this property will also
hold for any vertex incident to a reduction path originating in this source. In
order to generalize this Lemma to higher homological degrees, one must simply
replace the conditions i ∈ ncrit (hα) and j ∈ ncrit (hβ) by ordered sequences
k, ` with k ⊆ ncrit (hα) and ` ⊆ ncrit (hβ).

Lemma 4.1.4. Let L be of Schreyer type. Let i∪supp(µ) ⊆ ncrit (hα). Then for
any reduction path p =

(
vi(x

µhα) → · · · → vj(x
νhβ)

)
we have j ∈ ncrit (hβ).

In particular, in this situation there is no reduction path p = vi(x
µhα)→ · · · →

vkhβ with k ∈ crit (hβ).

Proof. Assume first that p is an elementary reduction path. We separately
consider two cases, depending on the source of p.

Case 1 vi(x
µhα) ∈ A0 ∪ A+. Then the elementary reduction path must be of

type 0 and p is either of the form

vi(x
µhα)→ v∅(xix

µhα)→ vcls(xixµ)

(
xix

µ

cls(xixµ)
hα

)
or

vi(x
µhα)→ xiv∅(x

µhα)→ xivcls(xµ)

(
xµ

cls(xµ)
hα

)
.

The assumption, i ∪ supp(µ) ⊆ ncrit (hα) assures cls(xix
µ) ∈ ncrit (hα)

and cls(xµ) ∈ ncrit (hα), resp., as claimed.

Case 2 vi(x
µhα) ∈ A−. Then p can be either of type 1 or type 2.

Type 1 If p is of the form

vi(x
µhα)→ vi,cls(xµ)

(
xµ

cls(xµ)
hα

)
→ vi

(
xµ

cls(xµ)
hα

)
,

then the statement is obvious. If, however, p is of the form

vi(x
µhα)→ vi,cls(xµ)

(
xµ

cls(xµ)
hα

)
→ vcls(xµ)

(
xµ

cls(xµ)
hα

)
,

then Assumption 4.0.4 entails that cls(xµ) ∈ ncrit (hα).

Type 2 Here the path p is of the form

vi(x
µhα)→ vi,cls(xµ)

(
xµ

cls(xµ)
hα

)
→ vcls(xµ)

(
xix

µ

cls(xµ)
hα

)
.

As above, cls(xµ) ∈ ncrit (hα) and by assumption i ∈ ncrit (hα).
Thus xix

µ

cls(xµ)hα is already an involutive standard representation.
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For arbitrary reduction paths p, the claim now follows by an induction over the
length of p.

Now we can show, as we have claimed earlier, that reduction paths of type
0 are irrelevant for the differential dG . Implicitly, this statement is already
contained in [Skö06, Lemma 5], in a more general setting.

Lemma 4.1.5. Let L be of Schreyer type. In the differential (3.3.11), no re-
duction path appearing in the third sum contains an elementary reduction path
of type 0; i. e. all reduction paths appearing in the third sum are concatenations
of elementary reduction paths of type 1 or 2.

Proof. Let p = pm ◦ ...◦p1 be a reduction path appearing in the sum in equation
(3.3.11) with elementary reduction paths pi. Suppose p ends at the vertex vkhγ ,
and let

pr =

(
v`(x

µhα)→ v`i(x
νhβ)→ v`i∪cls(xν)

(
xν

cls(xν)
hβ

))
be an elementary reduction path of type 0 appearing in p. Now we have that
v`i∪cls(xν)(

xν

cls(xν)hβ) ∈ A+. From the discussion of elementary reduction paths
in remark 3.3.9, in particular equations (3.3.8) and (3.3.9), we learn that pr+1 is
of type 0, and then so is pm by induction. But then we see that k must contain
an index that is multiplicative for hγ , so vkhγ is not contained in ΓG , i.e. it is
not a generator of a module of G.

The lemma below is a generalized version of [AFS15, Lemma 13]. The proof
here is a generalized version of the proof given in the reference.

Lemma 4.1.6. Let L be of Schreyer type. If lt(hβ) is an involutive divisor
of xµ lt(hα) for some xµ, then hβ is greater or equal than hα according to the
L-ordering. In particular, we have α < β.

Proof. Since H is an involutive basis and therefore auto reduced, xµ ∈ k occurs
only if hα = hβ . So now let xµ be non-constant.

Consider the following algorithm:
Given a product xµ lt(hα), we check if xµ contains any variables which are

non-multiplicative for hα. If this is not the case the algorithm terminates, giving
xµhα as the output. Otherwise, we pick one such non-multiplicative variable xi
and find the involutive standard representation of xihα. Let xν lt(hγ) be the
leading monomial of this representation, i.e. xi lt(hα) = xν lt(hγ).

Now we iterate our algorithm, by looking at (x
µ

xi
xν)hγ .

Our claim is that this algorithm terminates after a finite number of steps,
with the output being the leading monomial of the involutive standard repre-
sentation of xµhα:

Indeed, as the leading monomials remain unchanged during the algorithm,
the last part is obvious if the algorithm terminates.
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Now assume the algorithm does not terminate: Then we obtain an infinite
chain

hα → hγ1 → hγ2 → ...

of elements of the involutive basis. By construction of these elements, this
chain corresponds to a path in the L-graph. As our basis is finite, this means
we obtain a cycle in the L-graph. But since L is continuous, this is impossible
(see definition 2.3.17).

Lemma 4.1.7. Let L be of Schreyer type, |H| = s and let H1 be an involutive
basis of the syzygy module Syz(H) ⊆ Ps with |H1| = t. Let p = vi(x

µhα) →
· · · → vj(x

νhβ) be a reduction path that appears in the differential (3.3.11)
(potentially as part of a longer path). If ρp

(
vi(x

µhα)
)

= xκvj(x
νhβ), then

lt≺H1
(xκ+νvjhβ) �H1

lt≺H1
(xµvihα).

Here, ≺H1 denotes the Schreyer order on Pt which is induced by H1, see Defi-
nition 2.3.5.

Proof. We prove the assertion only for an elementary reduction path p and
the general case follows by induction over the length of the path. If p is of
type 1, we can easily prove the assertion by using the same arguments as for
the corresponding Lemma in the Pommaret case, see [AFSS15, Lemma 4.6]:
We either have ρp(vix

µhα) = xkvi
(
xµ

xk
hα
)
, where the claim is obvious, or

ρp(vix
µhα) = xivk

(
xµ

xk
hα
)
for an index k ∈ supp(xµ), so k ∈ ncrit(hα). But by

Lemma 4.1.5, the last case cannot occur, for this would imply j ∈ ncrit(hβ).
If p is of type 2, there exists an index j ∈ supp(µ)

(
which in particular implies

j ∈ ncrit(hα)
)
and thus j ∈ XJ,H,≺ (hα), a multiindex ν and a scalar λ ∈ k such

that ρp(vi(xµhα)) = λvj(x
νhγ) where xνhγ appears in the involutive standard

representation of xµxi
xj

hα with a non-vanishing coefficient. Lemma 4.1.4 now
implies j ∈ crit(hγ). By construction, lt≺(xix

µ

xj
hα) � lt≺(xνhγ).

Here, we separately consider equality and strict inequality. If strict inequality
holds, then also lt≺(xix

µhα) � lt≺(xjx
νhγ). Hence by definition of the Schreyer

order, we get lt≺H1
xµvihα �H1

lt≺H1
(xνvjhβ). In the case of equality, we note

that xν lt≺(hγ) must be the involutive divisor of xix
µ

xj
lt≺(hα). Hence Lemma

4.1.6 guarantees that hα is smaller than hγ according to the L-ordering and
hence the claim follows for this special case directly from the definition of the
Schreyer order, see definition 2.3.5.

4.2 Involutive bases via Morse theory
Before we proceed, we recall the resolution induced by an involutive basis (with
respect to a continuous involutive division L) of Theorem 2.3.59 and its represen-
tation as a complex via the exterior algebra, see Remark 2.3.62: Using Lemma
4.0.3, we immediately see that the two a priori different complexes G of Remark
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2.3.62 and Theorem 3.3.7 do in fact have the same generators vkhα ∈ Gi. It
should be noted that this fact, combined with the knowledge that either com-
plex is a free resolution of M, is enough to know that both resolutions are
isomorphic by [Eis95, Theorem 20.2]. However, we do not stop here and ask if
these similarities go even further.

For notational simplicity, we formulate the two decisive corollaries only for
the special case of second syzygies, but they remain valid in any homological
degree: In Corollary 4.2.1 below, one replaces1 vi,j with vk and xjvihα with
xmaxkvk\(maxk)hα, while for Corollary 4.2.2 the analogous statement is true
if one replaces 2 with any integer ≥ 2. Note that the special case of |k| = 1
has been covered in Lemma 4.1.2. Corollary 4.2.1 already indicates the great
similarity between Sköldbergs resolution and the one induced by an involutive
basis with respect to a continuous involutive division of Schreyer type, as a
comparison with Lemma 2.3.56 shows that there is a one-to-one correspondence
between the leading monomials of the syzygies contained in the two resolutions.

Corollary 4.2.1. Let L be an involutive division of Schreyer type, |H| = s and
let H1 be an involutive basis of the syzygy module Syz(H) ⊆ Ps with |H1| = t.
If i < j, then

lt≺H1

(
dG(vi,jhα)

)
= xjvihα.

Here, ≺H1 is again the Schreyer order as in Lemma 4.1.7.

Proof. As described in Section 2.3.5, we assume that the elements of the given
involutive basis are numbered according to an L-ordering. Consider now the
differential dG . We first compare the terms xivjhα and xjvihα. The minimality
of these terms with respect to any order respecting the Morse matching entails
that there are no reduction paths [vjhα  vkhδ] with k ∈ crit (hδ) (except
trivial reduction paths of length 0), since vjhα ∈ A0; the same argument applies
to vihα. By Definition 2.3.5 of the Schreyer order, we have xivjhα ≺H1 xjvihα.

Now consider any other term in this sum. We will prove xjvihα �H1
xκvihβ ,

where xκhβ effectively appears in the involutive standard representation of
xjhα. The claim then follows from applying Lemma 4.1.7 with

xjvihα �H1
xκvihβ �H1

lt≺H1

(
ρp(vix

κhβ)
)
.

We always have lt≺ (xjxihα) � lt≺ (xκxihβ).
If this is a strict inequality, then xjvihα �H1 xκvihβ follows at once by

definition of the Schreyer order.
So now assume lt≺ (xjxihα) = lt≺ (xκxihβ). By construction, we have

xκ ∈ k[x0, . . . , xcls (hβ)]. Again by definition of the Schreyer order, the claim fol-
lows, if we can prove lt≺H0

(xjxiv∅hα) �H0
lt≺H0

(xκxiv∅hβ). Since j ∈ crit (hα)
and lt (xjhα) is involutively divisible by lt (hβ), we have α < β, by definition of
the L-ordering. As we have lt≺(xjhα) = lt≺(xκhβ), we also obtain

lt≺H0
(xjxiv∅hα) �H0 lt≺H0

(xκxiv∅hβ)

1Formally, we should write v(i,j) instead of vi,j . But since the meaning is clear from the
context, we omit unnecessary brackets.
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and therefore
lt≺H1

(xjvihα) �H1 lt≺H1
(xκvihβ).

The leading monomials are therefore the same as the leading monomials
given by Theorem 2.3.58, so we have:

Corollary 4.2.2. Let L be of Schreyer type. The set{
dG(vk ⊗ hα) | |k| = 2;k ⊆ crit (wα)

}
is an involutive basis for the involutive division L with respect to the term order
≺H0

.

Based on these two corollaries, it is now comparatively straightforward to
prove our main theoretical result of this chapter, by explicitly constructing an
isomorphism between the two resolutions we consider.

Theorem 4.2.3. Let H be an involutive basis with respect to a continuous in-
volutive division L of Schreyer type. Assume the situation of Lemma 4.0.3,
i. e. we consider a submodule M ⊆ Pm and the presentation (3.3.1) comes
from an involutive basis H that is ordered according to an L-ordering. Then
the resolution (G, dG) is isomorphic to the resolution induced by H as in The-
orem 2.3.59 and Remark 2.3.62, via a family of automorphisms ϕi : Gi → Gi
satisfying lt

(
ϕi(f)

)
= lt(f) for the leading monomials with respect to ≺Hi−1 of

any f ∈ Gi. In particular, if we denote dG,i : Gi+1 → Gi, then the images of
the basis elements of Gi+1 are an involutive basis of ker dG,i (for the involutive
division L with respect to ≺Hi−1

), and both the image and the preimage of any
involutive basis under ϕi is again an involutive basis.

Proof. We write the two resolutions as rows in a diagram denoting the compo-
nents of the resolution induced by an involutive basis (see Remark 2.3.62) by di
and those of dG by d∗i :

· · · // G2
d2 //

ϕ2

��

G1
d1 //

ϕ1

��

G0

ϕ0=id

��

d0 //M // 0

· · · // G2

d∗2 // G1

d∗1 // G0

d∗0=d0 //M // 0

. (4.2.1)

Let {vkhα | k ⊆ XL,H≺ (hα) , |k| = i} be the basis of the free module Gi. By
Remark 2.3.62, the vectors hi,k,α = di+1(vkhα) define1 an involutive basis Hi
of im di. Analogously, we obtain an involutive basis H∗i of im d∗i . Here we set
H−1 = H∗−1 = H, the given involutive basis ofM, and define the term orders ≺i
on Gi recursively as the Schreyer orders ≺i=≺Hi−1

. Because of Corollary 4.2.1,

1Recall that these vectors are the same as the ~S(α,k) from Remark 2.3.62; but since here
our point of view is to see them as elements of an involutive basis, we use the notation hi,k,α
associated with involutive bases, instead of the notation ~S(α,k) associated with syzygies.
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we always have lthi,k,α = lth∗i,k,α and hence also ≺i=≺H∗i−1
, so the Schreyer

order is the same for either involutive basis.
Assume now that an automorphism ϕ0 : G0 → G0 is given which satisfies

ϕ0

(
im (d1)

)
= im(d∗1)

and which preserves the term order ≺0 in the sense that lt≺0

(
ϕ0(f)

)
= lt≺0

(f)
holds for all vectors 0 6= f ∈ G0. Obviously, the identity is such an automor-
phism (since by construction the maps d0, d

∗
0 : G0 →M are the same). We now

show that ϕ0 can be lifted to automorphisms ϕi : Gi → Gi preserving the term
orders ≺i such that the diagram (4.2.1) commutes.

If

ϕi(hi,k,α) =
s∑

β=1

∑
`⊆XL,H,≺(hβ)

P `,β
k,αv`h

∗
i,`,β

is an involutive standard representation with respect to the involutive basis H∗i ,
then we set

ϕi+1(vkhα) =
s∑

β=1

∑
`⊆XL,H,≺(hβ)

P `,β
k,αv`hβ

and extend P-linearly. It is trivial that for this iterative choice of ϕi+1, the
diagram (4.2.1) becomes commutative.

We temporarily renumber the elements of the involutive bases Hi and H∗i
according to an ordering @ such that

vkhα @ v`hβ if and only if lthi,k,α ≺i lthi,`,β .

This is possible since by construction, the images of the vkhα are an involutive
basis and therefore have pairwise distinct leading terms. By definition of an
involutive standard representation, the matrix (P `,β

k,α), whose entries are defined
by the involutive standard representations

ϕi(hi,k,α) =

s∑
β=1

∑
l∈XL,H,≺(hβ)

P `,β
k,αv`h

∗
i,`,β

is then an upper triangular matrix for this ordering @. Since ϕi preserves
the term order ≺i, the elements (Pk,α

k,α ) on the diagonal of the matrix are non
vanishing constants. This fact trivially implies that ϕi+1 is an automorphism.

Finally, we must show that ϕi+1 preserves the term order ≺i+1. Obviously,
it suffices to check this for terms. By definition of ϕi+1, we have

ϕi+1(vkhα) =
s∑

β=1

∑
`⊆XL,H,≺(hβ)

P `,β
k,αv`hβ .

Using the definition of the Schreyer order and the fact that the coefficients P `,β
k,α

come from involutive standard representations, we find
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xνvmhγ = lt≺i+1
ϕi+1(xκvkhα)

⇔ xνvmhγ = max
≺i+1

{
xκ lt≺i P

`,β
k,αv`hβ | β = 1, . . . , s;κ ∈ XL,H,≺ (hα)

}
⇔ xνh∗i,m,γ = max

≺i

{
xκ lt≺i (P `,β

k,αh
∗
i,`,β) | β = 1, . . . , s;κ ∈ XL,H,≺ (hα)

}
⇔ xνh∗i,m,γ = xκ lt≺i (h∗i,k,α)

⇔ xνhi,m,γ = xκ lt≺i (hi,k,α)

⇔ xνvmhγ = lt≺i+1
(xκvkhα)

as required. Note again that here we have used the fact that both Hi and H∗i
are involutive bases, and therefore the leading monomials of Hi (or H∗i resp.)
are pairwise distinct, which simplifies the comparison of terms elements with
respect to the Schreyer order.

4.3 Calculating individual Betti numbers
Another application of the combination of involutive bases and Morse theory is
as follows:

Given a P-moduleM, suppose we are interested in only one of the bigraded
Betti numbers βi,j(M). Betti numbers are defined via ranks of the graded
modules appearing in the minimal free resolution ofM, one could be tempted
to calculate the minimal free resolution of M (at least for up to homological
degree j and total degree i) and then read off the rank corresponding to the
Betti number in question. But this approach usually involves calculations that
are irrelevant to this special problem.

Our approach now allows us to directly calculate the differential of the free
(non-minimal) resolution G ofM in any degree, total and homological, without
having to compute the differential for smaller (total and homological) degrees:

We obtain the modules (and the differential) of the minimal free resolution
by minimising the free resolution G. From Lemma 2.2.2 we see that the only
minimisations that involve the module1 Gj,i are those that come from the maps
Gj+1,i−1 → Gj,i and Gj,i → Gj−1,i+1. Even better, for the purpose of obtaining
the modules of G it is sufficient to know all constants in the differential dG , for
after performing a minimisation, the formula from Lemma 2.2.2 ensures that the
constants in the new smaller reduced complex arise via a formula determined
by the constants in the original complex.

It should be noted that this process of partially2 minimising G involves only
linear algebra over k, as the necessary operations are matrix operations over

1In these notations, Gj,i denotes the component of degree i of the module Gj of homo-
logical degree j in the chain complex G.

2I.e. calculating the modules in the minimal resolution, but not the differential
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k. Following the approach of first constructing the minimal free resolution,
one would have, in order to obtain the differential of this resolution, perform
matrix operations over P, which can usually be expected to be much more
computationally challenging.

So our algorithm to compute a single Betti number βi,j(M) looks as follows:

• Construct an involutive basis ofM, for a suitable involutive division, i.e.
a continuous involutive division of Schreyer type.

• Construct the modules Fj+1,i−1, Fj,i and Fj−1,i+1 and the differential be-
tween these modules. In Chapter 5 below, we explain how with our ap-
proach, it is even possible to restrict the calculation of the differential in a
way that only computes the constants, i.e. we skip the (here) unnecessary
part of calculation the non-constant part of the differential.

• Construct the subgraph of the Morse graph of F which contains only the
generators of these three modules. So if we use this idea, we can skip the
next two steps in this algorithm.

• From this graph, construct the constant parts of the chain complex

Gj+1,i−1 → Gj,i → Gj−1,i+1.

• Compute the homology module at the middle of the complex

k⊗Gj+1,i−1 → k⊗Gj,i → k⊗Gj−1,i+1.

In particular, this computation only involves k-linear spaces, i.e. linear
algebra over k is sufficient to compute this homology.

• βi,j(M) is the rank of this homology module, i.e. its k-dimension.

Of course, we can iterate this algorithm to compute the entire Betti diagram;
or even, as some computations for different Betti numbers are the same, com-
bine several calculations. In the next section we compare see how efficient this
algorithm is in comparison to other approaches.

4.3.1 Discussion of possible applications

What are the applications for this algorithm? Apart from the efficiency of the
implementation of this algorithm as explained in Section 4.4 below, it very much
depends on the given setting.

Usually, given a module, one would like to know the complete Betti diagram,
which can of course be computed with our algorithm. However, are there situa-
tions where it might suffice to compute only a small number of Betti numbers?

In some situations, often some which are described in a geometrical way, the
shape of the Betti diagram can only be one of a limited number of well-known
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tables1. For example, from [Eis05, Section 2C], we know that the Betti table of
(the module corresponding to) seven points in linearly general position in P2

k
is

either
0 1 2 3

0 1 − − −
1 − 3 0 −
2 − 1 6 3

or

0 1 2 3
0 1 − − −
1 − 3 2 −
2 − 3 6 3

,

depending on whether or not the seven points lie on a curve of degree 3 (second
table) or not (first table). So if we know that only one of either cases is possible,
the knowledge of just one of the Betti numbers marked in red is sufficient to
deduce the entire betti diagram.

In the same manner, there are results classifying Betti tables of canonical
curves up to genus 8, see [Sch]; in [Sag06], a complete classification of the Betti
tables of (smooth, irreducible) canonical curves of genus 9 was given. The
possible Betti tables, classified as in the given reference, are:

general ∃ g15 ∃ two g15
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 - - - - - - - 1 - - - - - - - 1 - - - - - - -
1 - 21 64 70 - - - - - 21 64 70 4 - - - - 21 64 70 8 - - -
2 - - - 0 70 64 21 - - - - 4 70 64 21 - - - - 8 70 64 21 -
3 - - - - - - - 1 - - - - - - - 1 - - - - - - - 1

∃ three g15 ∃ g27 ∃ g14
0 1 2 3 4 5 6 7 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 - - - - - - - 1 - - - - - - - 1 - - - - - - -
1 - 21 64 70 12 - - - - 21 64 70 24 - - - - 21 64 75 24 5 - -
2 - - - 12 70 64 21 - - - - 24 70 64 21 - - - 5 24 75 64 21 -
3 - - - - - - - 1 - - - - - - - 1 - - - - - - - 1

∃ g14 × g15 ∃ g26 ∃ g13
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 - - - - - - - 1 - - - - - - - 1 - - - - - - -
1 - 21 64 75 44 5 - - - 21 64 90 64 20 - - - 21 70 105 84 35 6 -
2 - - 5 44 75 64 21 - - - 20 64 90 64 21 - - 6 35 84 105 70 21 -
3 - - - - - - - 1 - - - - - - - 1 - - - - - - - 1

Hence it suffices to compute the red Betti numbers, and in the cases where
this number is 24, to additionally compute the blue Betti numbers. Of course,
these are not the only possible choices.

A few words of caution are in order though: In neither of the quoted ref-
erences, the results obtained were by working with explicit generating systems,
whose existence is a necessity to use our approach. Thus the actual relevance of
these results for the fields of origin of these examples might be limited. Addition-
ally, we expect the knowledge that the assumptions of either example (linearly
general position, canonical curve of certain genus) are given, to not come easily.
They should require some computations or theoretical arguments on their own.

1The examples given here are based on talk by M. Albert at CASC 2015.
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In particular, we note that to our knowledge, there is no argument linking invo-
lutive bases and the genus of a variety. We expect that if one compares the task
of verifying the assumptions to the task of computing of a single Betti number,
the former tends to be much more difficult than the latter.

4.4 Implementation in CoCoALib
The theory of this chapter, creating a free resolution via involutive bases and
algebraic discrete Morse theory, and in particular the algorithm of Section 4.3
to compute individual Betti numbers has been implemented by M. Albert in
the computer algebra system CoCoALib[AB]. From our experience, it appears
that for most examples, this implementation outperforms Macaulay2 [GS15]
and Singular[DGPS15]. While there are some examples where these computer
algebra systems are faster, most of the time CoCoALib is faster than either,
often by orders of magnitude. Notably, this is before some relatively obvious,
but yet to be implemented, optimisations of the algorithm in CoCoALib, which
we will mention at the end of this section.

In this section, we shortly sketch some aspects of this implementation and
compare it to the two computer algebra systems mentioned above. Most of the
contents of this chapter, including the tables containing the benchmarks, have
already been presented in [AFS15, Section 4]. We refer to this paper for a more
detailed outline.

The calculations for the tables were performed by M. Albert using an Intel
i5-4570 processor with 8GB DDR3 main memory, the operating system Fedora
20 and CoCoALib. CoCoALib was compiled by gcc 4.8.3. The running times
are given in seconds. The ground field for each example was F101

∼= Z/101Z.
This field was chosen to keep the coefficients within a manageable limit for either
system; the choice was made in order to limit effects that the unrelated aspect
of how either system is able to deal with rational numbers (or large finite fields)
might have on our computations. The maximal time usage was limited to 2
hours and and the maximal memory usage to 7.5 GB. In the tables, a ∗ marks
when the computation was exceeding the time limit, while ∗∗ marks when it was
running out of memory.

The examples considered were taken from the website [GBY], where one can
also find more information about these examples, in particular the defining equa-
tions. This website is an ongoing project by Gerdt, Blinkov and Yanukovich,
documenting their results regarding computation of involutive bases and Gröb-
ner bases. A large number of these examples also features in articles published
by these authors, for example [GBY01].

The following list describes the columns of the tables:

Example: name of the example

#JB: number of elements in the minimal Janet basis

#GB: number of elements in the reduced Gröbner basis
#JB
#GB : the quotient of #JB and #GB
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Example Time Macaulay2 Time Singular Time CoCoALib
butcher8 126.25 19.92 1.20
camera1s 0.09 6.00 0.13
chandra6 0.64 8.00 0.13
cohn2 0.03 1.00 0.03
cohn3 1.47 5.90 0.32
cpdm5 14.71 5.05 0.64
cyclic6 0.99 1.26 0.37
cyclic7 1 093.66 * 37.42
cyclic8 * * 1663.00
des18_3 433.45 20.84 3.15
des22_24 * ** 52.19
dessin1 428.13 20.89 3.10
dessin2 * * 32.90
f633 591.08 7.70 49.06
hcyclic5 0.03 2.00 0.09
hcyclic6 11.00 47.12 7.41
hcyclic7 * * 3688.01
hemmecke 0.00 0.00 2.69
hietarinta1 443.15 170.29 4.12
katsura6 51.41 13.90 1.22
katsura7 ** 1 373.70 15.87
katsura8 * ** 412.90
kotsireas 51.89 17.84 0.83
mckay 0.84 3.20 0.38
noon5 0.13 6.00 0.27
noon6 15.14 5.07 5.25
noon7 6 979.40 821.64 122.61
rbpl 58.81 22.69 57.91
redcyc5 0.02 2.00 0.01
redcyc6 6.79 1.95 0.13
redcyc7 * * 8.26
redcyc8 * ** 207.02
redeco7 2.72 2.20 0.42
redeco8 355.30 11.83 5.01
redeco9 ** 312.49 84.89
redeco10 ** ** 2 694.05
reimer4 0.01 1.00 0.01
reimer5 1.39 5.00 0.35
reimer6 1 025.89 176.08 19.01
speer 0.20 3.00 0.13

Table 1: Various examples for computing Betti diagrams
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Example #JB #GB #JB
#GB ppd pd preg reg bprk brk bprk

brk
butcher8 64 54 1.19 8 8 3 3 3732 2631 1.42
camera1s 59 29 2.03 6 6 4 4 863 337 2.56
chandra6 32 32 1.00 6 6 5 5 684 64 10.69
cohn2 33 23 1.43 4 4 7 7 179 67 2.67
cohn3 106 92 1.15 4 4 7 7 696 370 1.88
cpdm5 83 77 1.08 5 5 9 9 1 020 100 10.20
cyclic6 46 45 1.02 6 6 9 9 1 060 320 3.31
cyclic7 210 209 1.00 7 7 11 11 10 356 1 688 6.14
cyclic8 384 372 1.03 8 8 12 12 34136 6400 5.33
des18_3 104 39 2.67 8 8 4 4 8 132 2 048 3.97
des22_24 129 45 2.87 10 10 4 4 32 632 6 192 5.27
dessin1 104 39 2.67 8 8 4 4 8 132 2 048 3.97
dessin2 122 46 2.65 10 10 4 4 22 760 6 192 3.68
f633 153 47 3.26 10 10 3 3 17390 4987 3.49
hcyclic5 52 38 1.37 6 5 11 10 932 32 29.13
hcyclic6 221 99 2.23 7 7 14 14 9834 146 67.36
hcyclic7 1182 443 2.67 8 8 17 17 105957 1271 83.37
hemmecke 983 9 109.22 4 4 61 61 6242 38 164.26
hietarinta1 52 51 1.02 10 10 2 2 6402 3615 1.77
katsura6 43 41 1.05 7 7 6 6 1 812 128 14.16
katsura7 79 74 1.07 8 8 7 7 6 900 256 26.95
katsura8 151 143 1.06 9 9 8 8 27 252 512 53.23
kotsireas 78 70 1.11 6 6 5 5 1810 1022 1.77
mckay 126 51 2.47 4 4 15 9 840 248 3.39
noon5 137 72 1.90 5 5 8 8 1 618 130 12.45
noon6 399 187 2.13 6 6 10 10 9 558 322 29.68
noon7 1 157 495 2.34 7 7 12 12 56 666 770 73.59
rbpl 309 126 2.45 7 7 14 14 13834 1341 10.32
redcyc5 23 10 2.30 5 5 7 7 276 88 3.14
redcyc6 46 21 2.19 6 6 9 9 1060 320 3.31
redcyc7 210 78 2.69 7 7 11 11 10356 1688 6.14
redcyc8 371 193 1.92 8 8 12 12 32459 6973 4.65
redeco7 48 33 1.45 7 7 5 5 1 708 128 13.34
redeco8 96 65 1.48 8 8 6 6 6 828 256 26.67
redeco9 192 129 1.49 9 9 7 7 27 308 512 53.34
redeco10 384 257 1.49 10 10 8 8 109 228 1 024 106.67
reimer4 19 17 1.12 4 4 6 6 118 16 7.38
reimer5 55 38 1.45 5 5 9 9 694 32 21.69
reimer6 199 95 2.09 6 6 12 12 5 302 64 82.84
speer 49 44 1.11 5 5 7 7 359 133 2.70

Table 2: Statistics for examples from Table 1
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ppd: the projective pseudo-dimension, i.e. the length of the pseudo Betti dia-
gram

pd: the projective dimension

preg: the pseudo-regularity, i.e. the maximal total degree appearing in the
pseudo Betti table

reg: the Castelnuovo-Mumford-regularity

bprk: the Betti pseudo-rank, i.e. the total rank of the pseudo Betti table

brk: the Betti rank, i.e. the total rank of the Betti table
bprk
brk : the quotient of bprk and brk.

In the rows, boldface marks examples which are not δ-regular. As the com-
putations were done for the Janet division, we avoided the unpleasant topic of
coordinate transformations which would have been an issue for the Pommaret
division.

Comparing the time of CoCoALib with the various numbers contained in
table 2, we see that as one would intuitively expect, there seems to be a loose,
but nevertheless noticeable correlation between the time of the computation
and #JB, the size of the Janet basis; but it appears the correlation of time
and bprk, the size of the pseudo Betti table, is stronger. For Macaulay2 and
Singular, the size of the Gröbner bases are a better indicator. And conse-
quentially, we indeed see that the relative performance of these system seems
to be linked to the quotients #JB

#GB and bprk
brk , again with the latter more often

being the better indicator. Large values of these quotient tend to be bad for
CoCoALib, as in these cases, there are many more additional elements in the
Janet basis compared to the Gröbner basis. Nevertheless, these correlations
suggest that other factors are still of importance; for example a natural factor
in the computation would be the sparseness of the polynomials involved.

Additionally, it appears that most of the time, the resolution constructed by
CoCoALib already gives a correct bounding box for the actual Betti table, i.e.
the values of ppd and pd and of preg and reg coincide.

Analyzing these tables more closely, we see that as mentioned before, our
algorithm in CoCoALib is faster than both Macaulay2 and Singular for
most examples. Often, our algorithm is faster by orders of magnitude. When
just one of these systems is faster, such as in the noon5, noon6 or rbpl examples,
our algorithm usually performs within the same orders of magnitude. With a
small stretch, one can still say the same about the less favorable f633 example.
The only clear exception where our algorithm is considerably slower, is the
hemmecke example.

Regarding the example hemmecke, we note the this is a an example of
an ideal which has very few generators, which however contain high powers of
different variables. The defining equations of the hemmecke example are

x18
0 x

2
2 − x10

0 x
10
4 − x20

4 , x26
0 x2x

3
3 − x20

0 x
10
4 − x30

4 , −x40
1 x

4
2 + x38

0 x
6
3.
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From the definition of the Janet division, we quickly see that this combina-
tion of a small number of generators with high powers of different variables most
likely leads to very large Janet basis: When trying to construct a Janet bases
with the help of the algorithm sketched in Remark 2.3.20 in the hemmecke
example, we have that x4 is non-multiplicative for the second generator; and
since the first generator has leading monomial x20

4 , we probably have to mul-
tiply the second generator (or some of its involutive standard representations)
20 times with x4 to obtain a Janet basis, giving up to 19 new elements for the
Janet basis. Such bases are not good for our algorithm, as the Gröbner bases
in these situation tend to be much smaller than the Janet bases.

We also point out that our algorithm in CoCoALib is still far from opti-
mal, and possible optimisations could come both from theoretical and practical
backgrounds:

• The algorithm itself has a huge potential for parallelization: Once the
(constant part of) the complex is calculated, we know from Section 4.3
that single Betti numbers can be computed independently of the others.
So in principle, the associated operations can be parallelized.

• The implementations of the algorithms which are used to minimise the
resolution are still in a basic state. In principle it follows the ideas given
in Lemma 2.2.2. As it suffices to consider linear algebra over k, we expect
that we are not the first to encounter this problem. It stands to check if
there are more advanced algorithms for the minimisation process, which
could further increase the speed of this implementation.

• Another idea might be to take other involutive bases than Janet bases. As
stated in Remark 2.3.48, the @alex-division might be more favorable than
the Janet-division from a combinatorial point of view.

• In Chapter 5, we explain an idea how some constants are essentially the
same. This idea is not yet implemented in CoCoALib and likely has
potential to further improve the algorithm. A more detailed explanation
of the possible improvements originating from this idea can be found in
the corresponding chapter, see in particular Remarks 5.1.5 and 5.4.2.

4.5 Theoretical limits for algorithms with involutive bases
As we have seen in Section 4.4, a large value of the quotient #JB

#GB (i.e. the
involutive basis contains a sizable proportion of elements which do not feature in
a minimal Gröbner basis) tends be an indicator or a close-to-necessary condition
for our algorithm to perform relatively unfavorable. We shortly explain while
in some situations, these elements sometimes cannot be avoided when using
involutive bases:

Remark 4.5.1. Looking at the formula of the resolution induced by an involu-
tive basis as in Theorem 2.3.59, we see that in the pseudo Betti diagram, the
entries in each row are given by (sums of) binomial coefficients, whose exact
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values are determined by the distribution of the elements of the involutive basis
H over the various degrees and occurring sets of non-multiplicative variables.
Now since the Betti diagram is obtained from the pseudo Betti diagram via
minimisations, this restriction to the shape of the pseudo Betti diagrams can
have some rather unpleasant consequences. We will restrict ourselves here to
explain these effects for some examples, as a precise mathematical expression
would both require highly technical language, if at all possible, and possibly
hide the actually relevant consequence.

For the sake of simplicity, we will suppose that in the remainder of this
remark, we consider polynomial modulesM E Pm instead of quotients Pm/M..
Suppose for example that the Betti diagram ofM is of shape

0 1 2 3 4
∗ ∗ ∗ ∗ ∗ ∗
5 0 0 0 0 1

,

with all other entries further right or further below being 0. The only way this
is possible if H contains exactly one element of degree 5 with exactly 4 non-
multiplicative variables. Assuming that the pseudo Betti table has the same
bounding box1 implies that in the pseudo Betti table, the entries of the last row
are at least given by

0 1 2 3 4
∗ ∗ ∗ ∗ ∗ ∗
5 1 4 6 4 1.

Recall that the entries of the pseudo Betti diagram correspond to generators
in the complex G, and we immediately see that G contains 1 + 4 + 6 + 4 = 15
redundant generators. In fact it is even worse: Every minimisation removes two
generators in a way that can be expressed as subtracting a diagram of shape

... 0 1 0
0 1 0 ...

from the pseudo Betti diagram. This means that in order to remove the entries
of the last row (except for the bottom right entry 1), the entries of the second-
to-last row must be at least

0 1 2 3 4
∗ ∗ ∗ ∗ ∗ ∗
4 ∗ 1 4 6 4
5 1 4 6 4 1.

Now for the rightmost entry in the second-to last row implies to be at least
4, we have that H must contain at least 4 elements of degree 4 with exactly

1This assumption does not hold in general. However, for most of the examples given in
Section 4.4, this behavior is indeed satisfied, so we consider this assumption to be reasonable.
Considering the general case where the pseudo Betti table has a potentially larger bounding
box would complicate the situation even further.
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4 non-multiplicative variables, which in fact implies that entries in the pseudo
Betti diagram are at least

0 1 2 3 4
∗ ∗ ∗ ∗ ∗ ∗
4 4 16 24 16 4
5 1 4 6 4 1.

Now performing the minimisations that lead to a last row as in the actual Betti
diagram, we have that after these minimisations a lower bound for the entries
of the (partially) reduced diagram is

0 1 2 3 4
∗ ∗ ∗ ∗ ∗ ∗
4 4 15 20 10 0
5 0 0 0 0 1.

Now depending on how the second-to-last row in the Betti diagram looks, this
gives further restrictions. Note that now we even need to consider that the
remaining entries might get canceled both by entries in the row above, one
column to the right, or by an entries in the row below, one column to the left.

A (likely) worst case scenario would be that the second-to-last row in the
Betti diagram vanishes entirely. Since then again by iterating our argument, if
the rightmost entry in the third-to-last row is least a, then be third-from-the-
right entry in the bottom row must be at least 10 − a. These conditions can
then be transferred back to restrictions on H. Remember that all entries that
are removed by minimisations correspond to redundant basis elements in the
complex G, which means that in such a situation, our algorithm to compute
Betti numbers (or a free resolution) works with a relatively large number of
redundant elements.

It is worth pointing out that by the results of [EFW11], pure resolutions
exist: These are resolutions of shape

0→ P(−dm)βm,dm → P(−dm−1)βm−1,dm−1 → ...→ P(−d0)β0,d0 .

In the cited article, it is established that for every sequence dm > dm−1 > ... >
d0, such a pure resolution does indeed exist. The βi,j are uniquely determined
by the choice of the di. Now for these resolutions, the Betti diagram contains
exactly one non-vanishing entry per column. Conversely, for every such choice
of non-vanishing entries, one has a corresponding pure resolution. Continuing
our example, we now know that there is indeed a module with a Betti diagram
of shape

0 1 2 3 4
3 ∗ ∗ ∗ ∗ 0
4 0 0 0 0 0
5 0 0 0 0 1,

where the entries marked with ∗ are the only non-vanishing entries except for
the bottom right 1.
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In particular, this implies that there are arbitrarily “sparse” Betti diagrams
with “many” zero rows. The consideration presented earlier suggests that for
modules with such Betti diagrams, the involutive bases contain a high propor-
tion of redundant elements.
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5 Structural analysis of the induced resolution
The resolution G constructed in Theorem 2.3.59 from an involutive basis is in
general not minimal. For a minimisation of this chain complex G, it is deci-
sive where constants appear in the differential. Furthermore, knowledge of all
constants is sufficient for the computation of the Betti numbers; no further in-
formation about the differential is necessary. In this chapter, we will specify
to the case of a Pommaret basis and show that in the resolution obtained by
the combination of this Pommaret basis and algebraic discrete Morse theory as
in Chapters 3 and 4, there exist relations between constants of G in different
homological degrees.

Assumption 5.0.1. For the remainder of chapter 5, H = {h1 . . . ,hs} will
always be the degrevlex Pommaret basis of a P-moduleM⊆ Pm and

d = min{k ∈ N | ∃h ∈ H : cls(h) = k}

the minimal class of the elements of H. Throughout this chapter, ordered sets
of pairwise different indices will appear; for these, we will employ the notations
k, `,m or (j1, . . . , jm) (l1, . . . , lf ), etc. We consider these sets to be ordered, i. e.
the notation (j1, ..., jm) implies j1 < · · · < jm.

Unless stated otherwise, the notation xµhα implies

xµ ∈ ncrit(hα) = XP,≺degrevlex (hα) .

However, if we multiply an element of the Pommaret basis H explicitly with a
single variable, for example in a product xihα, we also allow xi ∈ crit(hα); in
fact, in cases where such a kind of multiplication arises, this will usually be the
more interesting case. We will make use of reduction paths, their decomposition
into elementary paths and the classification of these into different types (see
Section 4.1 or [JW09, Skö06, AFSS15] for details).

We will fix the resolution G as constructed in Theorem 2.3.59.

Remark 5.0.2. We note one particular argument for Pommaret bases, which will
appear in a shortened version on several occasions in the proofs of this chapter.
Let hα be an element of our Pommaret basis and xi ∈ crit(hα) = XP,≺ (hα).
Let xihα =

∑s
β=1 P

(α,i)
β hβ be the involutive standard representation. By defi-

nition, we have lt(xihα) � lt(P
(α,i)
β hβ) for any term appearing in the involutive

standard representation. This implies

cls(xihα) = cls(hα) ≥ cls
(
P

(α,i)
β hβ

)
,

since H is a Pommaret basis for the degrevlex order. Now, we consider two
cases:

cls(hβ) > cls(hα): Since cls(hα) ≤ cls
(
P

(α,i)
β hβ

)
, we must have that the poly-

nomial P (α,i)
β is non-constant, for otherwise

cls(hα) ≥ cls
(
P

(α,i)
β hβ

)
= cls(hβ) > cls(hα).
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So we have cls(hα) ≥ cls
(
P

(α,i)
β hβ

)
= cls

(
P

(α,i)
β

)
, and then there is an index

j ≤ cls(hα) such that xj divides lt
(
P

(α,i)
β

)
.

cls(hβ) ≤ cls(hα): Since P (α,i)
β ∈ k[x0, . . . , xcls(hβ)], if the polynomial P (α,i)

β is
not a constant, again there is an index j ≤ cls(hβ) ≤ cls(hα) such that xj
divides lt

(
P

(α,i)
β

)
.

So whenever P (α,i)
β is not a constant, there is an index j ≤ cls(hα) such that xj

divides lt
(
P

(α,i)
β

)
(and, as a consequence, the same holds for any other monomial

summand of P (α,i)
β ).

This argument does not necessarily hold for other involutive divisions: Con-
sider the ideal 〈h1 = x0x1,h2 = x0x2〉 ⊆ k[x0, x1, x2]. One can check that the
given generators are a Janet basis H for the ideal, where

XJ,H,≺ (h1) = {x0, x1} and XJ,H,≺ (h2) = {x0, x1, x2}.

However, we have x2h1 = x1h2, and therefore P (1,1)
2 = x1 > cls(h1).

As this property of the Pommaret division is crucial in the proofs of lem-
mata 5.1.8 and 5.1.13, a generalisation of our results to arbitrary initially linear
syzygies (for example coming from a Janet basis) is at least not straightforward,
if at all possible.
Remark 5.0.3. Let k ∩ ncrit(hα) 6= ∅. If ncrit(hα) contains an index e, it also
contains all indices smaller than e, which means that in this situation, we have
min

(
k ∩ ncrit(hα)

)
= mink. This follows from Lemma 4.0.3 and the fact that

we are considering initially linear syzygies originating from a Pommaret Basis.
Again, in a more general situation, for example for Janet bases, the non-critical
variables might not show such a nice behaviour. As we will take advantage of
this property of the Pommaret division, we have another possible obstruction
regarding the generalisation of our results of this chapter to other involutive
divisions.

5.1 Some technical lemmata
Another key observation which we will implicitly use in the remainder of this
chapter is:

Lemma 5.1.1. Let p = vmx
µhγ → ... → v`hβ be a reduction path appearing

in the differential

dG(vkhα) =
∑
`,β

∑
m,µ,γ

∑
p

ρp
(
Qk,α

m,µ,γvm(xµhγ)
)

from equation (3.3.11)1. Then for any reduction path p, the reduction map ρp
contributes a non-vanishing constant in this sum if and only if p consists entirely

1see the comments following said equation for a discussion for the restrictions to the
summation indices

81



of elementary reduction paths of type 2 (including trivial elementary reduction
paths of type 0).

Proof. By Lemma 4.1.5, the path is made up from elementary reduction paths
of type 1 or 2. From the description of reduction paths of type 1 in Section 4.1,
we see that for any path containing, the degree of the coefficient of the reduction
map is given by the numbers of elementary reduction paths of type 1 contained
in the entire path. In particular, the coefficient is a constant if and only if the
path consists exclusively of elementary reduction paths of type 2.

We continue with two lemmata which we will use in proofs later in this
chapter.

Lemma 5.1.2. Let

vk(xµhα) −→ ... −→ v`(x
νhβ)

be a reduction path that consists of a concatenation of elementary reduction
paths of type 1 or 2, but not type 0.

Let k ∩ {0, ..., e} 6= ∅ for some e ≥ 0. Then we also have ` ∩ {0, ..., e} 6= ∅ .

Proof. It suffices to prove the lemma for elementary reduction paths. Let

vk(xµhα) −→ vk∪i

(
xµ

xi
hα

)
−→ v`(x

νhβ)

be an elementary reduction path of type 1 or 2. Looking at equation (3.3.6)
which defines the Morse matching, we see that we must have

i < min
{
k ∩ ncrit (wα)

}
and i = cls (xµ).

Let f ∈ k ∩ {0, ..., e}.
Suppose f ≤ i: Then because of i ∈ ncrit(hα), we also have f ∈ ncrit(hα).

But then f ≤ i < min
{
k ∩ ncrit (wα)

}
≤ f .

So e ≥ f > i must hold. By definition of elementary reduction paths, we
have ` = {k ∪ i} \ j for some j ∈ {k ∪ i}.

If i = j, then ` = k. In this case, we have f ∈ k ∩ {0, ..., e} = ` ∩ {0, ..., e},
and now ` ∩ {0, ..., e} 6= ∅.

If i 6= j, then i ∈ `. But then because of i ≤ e, we have i ∈ `∩ {0, ..., e}.

Lemma 5.1.3. Let

vk(xµhα) −→ vk∪i

(
xµ

xi
hα

)
−→ v` (xνhβ)

be an elementary reduction path of type 1 or 2, which additionally is not of
form

vk(xµhα) −→ vk∪i

(
xµ

xi
hα

)
−→ vk

(
xµ

xi
hβ

)
.

Let cls(xµ) ≤ e. Then also ` ∩ {0, ..., e} 6= ∅.
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Proof. For all such reduction paths, we have ` =
(
k∪cls(xµ)

)
\j for some j ∈ k.

The claim now follows from cls(xµ) ≤ e.

Theorem 5.1.4. Let p = vmx
µhγ → ...→ v`hβ be a reduction path appearing

in the differential

dG(vkhα) =
∑
`,β

∑
m,µ,γ

∑
p

ρp
(
Qk,α

m,µ,γvm(xµhγ)
)

from equation (3.3.11) and xν ∈ k[x0, ..., xd] be a term with xν |xµ (recall that
by Assumption 5.0.1, d is the minimal class of an element of H). Then we have

ρv`hβ ,vmxµhγ (vmx
µhγ) = xνρv`hβ ,vm

xµ

xν hγ

(
vm

xµ

xν
hγ

)
.

Remark 5.1.5. In a more compact manner, the lemma states that there is a
reduction path p′ = vm

xµ

xν hγ → · · · → v`hβ such that

ρp(vmx
µhγ) = xνρp′

(
vm

xµ

xν
hγ

)
.

Given p, the path p′ can be effectively constructed. While by construction, any
reduction map ρ∗ : Fj = P⊗ΛjV⊗M→ Fj is a P-homomorphism with respect
to P acting on the first component of Fj , this lemma essentially states that any
ρp is also a “pseudo-homomorphism” for polynomials of class ≤ d acting onM,
i.e. the third component of Fj written as a tensor product.

Additionally, this lemma has the potential to further improve the implemen-
tations of our algorithms in, as have hinted in Section 4.4. Whenever such a
variable appears, we could use the “pseudo-homomorphism” property and re-
place the original reduction path with a shorter one, allowing us to skip the
calculation of some reduction paths and maps in the process; see also the com-
ments in example 4.1.3 considering the light blue vertices of said example. Hence
it might be possible to avoid some computations which are essentially the same.
The discussion in Remark 5.4.2 suggests that it should even be possible to just
compute one particular differential per element hα of H from which it is possible
to obtain all constants for any generator of shape v∗hα. But most importantly
for our theoretical analysis of the constant parts of the resolution G, we now
already see that, whenever a variable of class i ≤ d is present at some point in
the path p in anM-part of a vertex, then p cannot contribute a constant to the
differential.

Additionally, the idea presented in Lemma 5.1.1 implies that the degree of
a coefficient contributed by a reduction path is equal to number of elementary
reduction paths of type 1 that appear in this path. Of course, after minimising
this resolution, we still have that coefficients of degree f originate from the
coefficients of degree f in the original unminimised resolution. So if one is
interested differential of the minimal free resolution up to a certain degree f ,
one can also use this idea and restrict to the calculation of reduction paths which
contain at most f elementary reduction paths of type 1.
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Proof. (of Theorem 5.1.4) Without loss of generality assume that xν is not
constant, so cls(xν) ≤ d.

Let p = vm(xµhγ)→ ...→ v`hβ .
Consider the partition of p into elementary reduction paths p1, ..., pm, i.e.

p = pm ◦ p2 ◦ ... ◦ p1. By Lemma 4.1.5, or [Skö11, Equation (2)] or [Skö06,
lemma 5], these elementary reduction paths are of type 1 or 2.

Now we claim

p1 = vmx
µhγ → vm∪cls(xµ)

(
xµ

xcls(xµ)
hγ

)
→ vm

(
xµ

xcls(xµ)
hγ

)
.

If not, then from Lemma 5.1.3 follows that p1 is of shape

vmx
µhγ → vm∪cls(xµ)

(
xµ

xcls(xµ)
hγ

)
→ v(m∪cls(xµ))\j

(
xµ

xcls(xµ)
hγ

)
for some j ∈ m \ clsxµ. Because of cls(xµ) ≤ cls(xν) ≤ d, we then have((

m ∪ cls(xµ)
)
\ j
)
∩ {0, ..., d} 6= ∅. Via induction, using Lemma 5.1.2, this im-

plies ` ∩ {0, ..., d} 6= ∅. But since {0, .., d} ⊆ ncrit(hα) for all 1 ≤ α ≤ s, we also
get ` * crit(hβ). Such a reduction path does not appear in the formula (3.3.11)
for dG .

So we have p1 = vmx
µhγ → vm∪cls(xµ)

(
xµ

xcls(xµ)
hγ

)
→ vm

(
xµ

xcls(xµ)
hγ

)
and

we see

ρp(vmx
µhγ) = ρpm ◦ .... ◦ ρp2 ◦ ρp1(vmx

µhγ)

= ρpm ◦ .... ◦ ρp2 ◦ ρvm
xµ

xcls(xµ)
hγ ,vmxµhγ

(vmx
µhγ)

= ρpm ◦ .... ◦ ρp2xcls(xµ)vm

(
xµ

xcls(xµ)
hγ

)
= xcls(xµ)ρpm ◦ .... ◦ ρp2vm

(
xµ

xcls(xµ)
hγ

)
.

Now let xξ ∈ k[x0, ..., xd] satisfying xµ

xξ
∈ k[xd+1, ..., xn] (xξ is uniquely deter-

mined by these properties). Iterating this argument, we obtain

ρp(vmx
µhγ) = xcls(xµ)ρpm ◦ .... ◦ ρp2vm

(
xµ

xcls(xµ)
hγ

)
= ...

= xξρpm ◦ ... ◦ ρprvm

(
xµ

xξ
hδ

)
.

Additionally, for each xν with xν |xξ, if we do follow the ideas of these compu-
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tations in the reversed order, we get

ρp(vmx
µhγ) = xξρpm ◦ ... ◦ ρprvm

(
xµ

xξ
hδ

)
=

xξ

x
cls
(
xξ

xν

) ρp′m

circ... ◦ ρp′rvm

xµxcls
(
xξ

xν

)
xξ

hδ


= ...

= xνρp∗

circ... ◦ ρp∗
(
xµ

xν
hδ

)
.

Remark 5.1.6. For later use, we introduce some more notations. We write
[a  b]2 for the set containing all reduction paths a → · · · → b which consist
exclusively of concatenations of elementary reduction paths of type 2. Recall
that by Lemma 5.1.1, these are exactly the paths that give the constants in dG .
This notation is in analogy to a notation in [Skö11], where [a b] denotes the
set of reduction paths without any further restrictions. For µ = 0, γ = α, let
Qj,αµ,γ = −xj . Otherwise, let Qj,αµ,γ be the coefficient of xµhγ in the involutive
standard representation of xjhα. This means that these polynomials are defined
by the equations

dF (vkhα) =
∑

j∈k,µ,γ

ε(j,k)Qj,αµ,γvk\j(x
µhγ). (5.1.1)

We will see in the lemma below that these polynomials are essentially the
polynomials Qk,α

m,µ,γ from Equation (3.3.10), but since this new notation removes
one index, we tend to prefer it. Even more so, the lemma will tell us that some
of these coefficients Qk,α

m,µ,γ are actually the same, a fact we will use in some
proofs later on. Finally, we introduce an “extended” ε-symbol, generalizing the
respective notation of definition 4.1.1:

ε
(
(j1, . . . , jf ); (l1, . . . , lq)

)
=

f∏
g=1

ε
(
jg; (l1, . . . , lq)

)
.

We state some elementary properties of the extended ε-symbol which we will
use later:

Lemma 5.1.7. 1. If m ⊆ `, then ε(k; ` \m)ε(k;m) = ε(k; `).

2. ε(k; `)2 = 1.
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3. ε
(
(j); `

)
= ε(j; `).

4. ε
(
(j1, . . . ., jf ); (l1, . . . , lq)

)
= (−1)

∑f
g=1 |{l∈(l1,...,lq)|l<jg}|.

5. Let m ⊆ k. For the coefficients Qk,α
m,µ,γ , as defined in Equation (3.3.10)

or in [AFSS15, Equation (15)], we have

Qk,α
m,µ,γ = ε(k \m;k)Qk\m,α

µ,γ ,

where we set Q(j),α
µ,γ = Qj,αµ,γ .

Proof. The first four points are obvious. Regarding the last point, note that the
Q

k\m,α
µ,γ are defined by the equation

dF (vkhα) =
∑
j,µ,γ

ε(j;k)Qj,αµ,γvk\j(x
µhγ).

In the construction of the differential in the complex F as in Equation (3.3.10)

dF (vkhα) =
∑

m,µ,γ

Qk,α
m,µ,γvm(xµhγ),

we must have m = k∪{j} for some j ∈ k, which in combination with Equation
(3.3.3)

dF (1⊗k vk ⊗k ma) =

|k|∑
i=1

(−1)i+1
(
xki ⊗k vki ⊗k ma − 1⊗k vki ⊗k xkima

)
=
∑
j∈k

ε(j;k)
(
xj ⊗k vk\{j} ⊗k ma − 1⊗k vk\{j} ⊗k xjma

)

yields the given formula.

Lemma 5.1.8. Let cls(xµhγ) = d+ e− 1 and p ∈ [vm(xµhγ) v`hβ ]2.

• We have l(p) ≤ e− 1 (with the definition for the length of reduction paths
as in Assumption 4.0.1).

• We have ` \m ∈ {0, . . . , d+ e− 1}.

• Let p = pm◦· · ·◦p1, where the pi are elementary reduction paths and let pi
be of shape pi = (· · · → vnih∗). Then for i < j, we have m∩nj ⊆m∩ni.

Remark 5.1.9. Assume that cls(hα) ≤ d + e − 1 and let dG(vkhα) be given by
equation (3.3.11). Then for any reduction path p ∈ [vm(xµhγ) v`hβ ]2 which
appears in this sum, we have cls(xµhγ) ≤ d+ e− 1, as the path originates from
repeatedly computing involutive standard representations. So the lemma can
be applied to such reduction paths. In other words, the lemma says that, if
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you keep track of the index set of v∗ along such a reduction path, indices of
class ≥ d + e can only disappear, or equivalently, all newly introduced indices
are of class ≤ d+ e− 1 (though those might disappear again). Any elementary
reduction path of type 2 replaces indices in the v∗ by smaller ones.

Proof. (of Lemma 5.1.8) If xµ ∈ k, the claims of the lemma hold trivially.
So let xµ 6∈ k. We consider two cases:

• cls(hγ) > d+ e− 1: Then cls(xµ) ≤ d+ e− 1.

• cls(hγ) ≤ d+ e− 1: Here we have xµ ∈ k[x0, ..., xd+e−1].

Therefore cls(xµ) ≤ d + e − 1 holds in either case (this is the argument from
remark 5.0.2).

Now let p ∈ [vm(xµhγ) v`hβ ]2 with elementary reduction paths p1, ..., pm
of type 2, such that p = pm ◦ ... ◦ p1

(
so l(p) = m

)
.

Let

p1 = vm(xµhγ)→ vm∪cls(xµ)

(
xµ

xcls(xµ)
hγ

)
→ v(

m∪cls(xµ)
)
\i

(
xξhδ

)
for some i ∈ m

(
By the definition of elementary reduction paths of type 2, we

have i 6= cls(xµ)
)
.

Further, let p2 be the reduction path

p2 = v(
m∪cls(xµ)

)
\i

(
xξhδ

)
→

v((
m∪cls(xµ)

)
\i
)
∪cls(xξ)

(
xξhδ

)
→

v(((
m∪cls(xµ)

)
\i
)
∪cls(xξ)

)
\j

(xπhη) (5.1.2)

for some j ∈ (m ∪ cls(xµ)) \ i. The Morse matching condition requires

cls(xξ) <
((

m ∪ cls(xµ)
)
\ i
)
∩ ncrit(hδ).

Again, a priori two cases can occur:

cls(hδ) ≥ d+ e− 1: Because of cls(xµ) ≤ d+ e− 1, we have cls(xµ) ∈ ncrit(hδ)
and therefore

cls(xξ) <
((

m ∪ cls(xµ)
)
\ i
)
∩ncrit(hδ) ≤ cls(xµ) = d+ e− 1.

cls(hδ) < d+ e− 1: Here we directly have cls(xξ) ≤ cls(hδ) < d+ e− 1.

So cls(xξ) < d+ e− 1 holds, and then cls(xξ) ≤ d+ e− 2.
By iterating this argument, we see that min(`) ≤ d+e−m. Since for d0 ≤ d,

we always have d0 ∈ ncrit(hβ) (see proof of Lemma 5.1.2), m < e holds in any
case, and so l(p) = m ≤ e− 1.

The other statements of the lemma follow from the same considerations,
using induction in the process.
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Corollary 5.1.10. Assume that cls(hα) = d+ e− 1 and let dG(vkhα) be given
by equation (3.3.11). Then for any reduction path p ∈ [vm(xµhγ)  v`hβ ]2
which appears in the sums in equation (3.3.11), we have |m \ `| ≤ e − 1 and
|k \ `| ≤ e.

Proof. By Lemma 5.1.8, l(p) ≤ e − 1. Since any elementary reduction path of
type 2 replaces exactly one index in the index set of v∗ with a different index,
p replaces in total at most e− 1 indices. Furthermore, we have m = k \ {i} for
an i ∈ k.

Now we would like to proceed to our main theorems, which establish some
relations between the constants of the differentials dG in different homological
degrees. First however, in order to formulate the results in a compact way, we
introduce an abbreviation:

Definition 5.1.11. For cls(hα) = d+ e− 1 and 0 ≤ f ≤ e, we set

P
(j1,...,jf ),α

(k1,...,kf−1),β =∑
γ,µ

∑
jr∈(j1,...,jf )

∑
p∈[v

(j1,...,ĵr,...,jf−1)
xµhγ

 v(k1,...,kf−1)hβ ]

ε
(
jr; (j1, . . . , jf )

)
Qjr,αµ,γ qp ,

where qp is the polynomial coefficient of the map p
(
see also equation (5.2.1)

)
.

Note that by remark 5.1.6, only finitely many of the Qjr,αµ,γ are nonzero.

With this definition, we obtain the following chain of equations, which serves
as the motivation of using a notation similar to the polynomials in an involutive
standard representation:

dG(v(j1,...,jf )hα)

=
∑
`,β

∑
m,µ,γ

∑
p

ρp
(
Q

(j1,...,jf ),α
m,µ,γ vm(xµhγ)

)
=
∑
`,β

∑
m,µ,γ

∑
p

Q
(j1,...,jf ),α
m,µ,γ qpv`hβ

=
∑
`,β

∑
m,µ,γ

∑
p

ε
(
(j1, . . . , jf ) \m; (j1, . . . , jf )

)
Q

(j1,...,jf )\m,α
µ,γ qpv`hβ

=
∑

(k1,...,kf−1),β

∑
jr,µ,γ

jr∈(j1,...,jf )

∑
p

ε
(
jr; (j1, . . . , jf )

)
Qjr,αµ,γ qpv(k1,...,kf−1)hβ

=
∑

(k1,...,kf−1),β

∑
jr,µ,γ

jr∈(j1,...,jf )∑
p∈[v

(j1,...,ĵr,...,jf−1)
xµhγ

 v(k1,...,kf−1)hβ ]

ε
(
jr; (j1, . . . , jf )

)
Qjr,αµ,γ qpv(k1,...,kf−1)hβ
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=
∑

k1,...,kf−1

s∑
β=1

P
(j1,...,jf ),α

(k1,...,kf−1),βv(k1,...,kf−1)hβ ;

Thus, the polynomials P (j1,...,jf ),α

(k1,...,kf−1),β appear as entries of the differential, in a
manner similar to the way the polynomials of the involutive standard represen-
tation did in Lemma 4.1.2. This justifies our notation.
Remark 5.1.12. We are mainly interested in the constants. If we consider the
isomorphisms

k⊗P F = k⊗P (P ⊗k ΛV ⊗kM) ∼= k⊗k ΛV ⊗kM∼= ΛV ⊗kM,

the constants of F are exactly those entries of the differential in F which “sur-
vive” after taking the tensor product with k. Of course, the isomorphisms also
hold when one replaces F by G. It is obvious that the order in which we take
the tensor product and perform a minimisation does matter. We recall that the
ranks of the homology modules of the complex k⊗ G are the Betti numbers of
M, see Lemma 2.4.5. Our main results are statements about the constants of
G and thus can also be stated in the complex k ⊗ G. In the sequel, the nota-
tion 1 ⊗ . . . is meant to imply that we are talking about elements of k ⊗ G or
k⊗ P ∼= k, depending on the context.

As a first example, we prove Lemma 5.1.13 below, which will later follow as
a corollary to Theorem 5.3.1. However, we can prove it right now, avoiding the
use of more technical notations for now.

Lemma 5.1.13. Let cls(hα) = d = min cls(H), let xihα =
∑s
β=1 P

(α,i)
β hβ be

the involutive standard representation and k = (k1, . . . , kj). Then

1⊗ dG(vkhα) =

j∑
i=1

(−1)i
s∑

β=1

1⊗ P (α,ki)
β v(k1,...k̂i,...,kj)

hβ .

The sum over β may be restricted to those β for which cls(hβ) = d.

Proof. A priori, three cases are possible.

cls(hβ) > d: As cls(hα) = d, for any monomial xµ which appears in the involu-
tive standard representation of a P (α,ki)

β , we must have that if cls(hβ) > d,
then there is a d0 ≤ d with xd0 |xµ. Theorem 5.1.4 guarantees that all re-
spective reduction paths do not add constants to the differential.

cls(hβ) = d: Any monomial xµ that appears in one of the P (α,i)
β as a sum-

mand must be multiplicative for hβ . If xµ 6∈ k, then again there is a
d0 ≤ cls(hβ) = d with xd0 |xµ. Here, at most the xµ ∈ k add a constant to
the differential. In fact, the trivial reduction paths of length 0 do indeed
add exactly these as constants to the differential. The sign is therefore
determined by Equation 3.3.3.
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cls(hβ) < d: This case cannot occur, for

d = min{m ∈ N | ∃h ∈ H : cls(h) = m} ;

see Assumption 5.0.1.

5.2 Related reduction paths and constants
Lemma 5.2.1. Let

` ⊆m ⊆ n ⊆ {0, ..., n}

be (ordered) sets of indices. Let cls(xµ) < minn. Then for any index set c such
that |c| = |`| and max c < minn , there is a bijection

Ψ: [vnx
µhγ  vc∪(n\`)x

νhδ]2 → [vmx
µhγ  vc∪(m\`)x

νhδ]2 .

given by

Ψ
(
vnx

µhγ → · · · → vc∪(n\`)x
νhδ
)

= vmx
µhγ → · · · → vc∪(m\`)x

νhδ

i. e. Ψ is given by removing (from the index set of any v∗ appearing in a given
path) the indices contained in n \m. Furthermore, assume that

p ∈ [vnx
µhγ  vc∪(n\`)x

νhδ]2

and
ρp (vnx

µhγ) = qpvc∪(n\`)x
νhδ. (5.2.1)

Then we have

ρΨ(p) (vmx
µhγ) =

∏
i∈`

(
ε
(
i;n \m)

)
qpvc∪(m\`)x

νhδ

= ε
(
`;n \m

)
qpvc∪(m\`)x

νhδ.

In particular, up to sign, we have qp equals qΨ(p).

We point out that the condition p ∈ [vnx
µhγ  vc∪(n\`)x

νhδ]2 implies that
this lemma holds only for those reduction paths which are a concatenation of
elementary reduction path of type 2.

Proof. First we check that the image of Ψ is indeed contained in the given
codomain: Lemma 5.1.8 in combination with the assumption cls(xµ) < minn
assures that, in the index set of the v∗, indices larger than minn can only
disappear in each elementary reduction (sub-)path. For any given elementary
reduction path, its image under Ψ is indeed also an elementary reduction path,
as both arise from taking the same involutive standard representations, which
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naturally appear in the differential dF of both generators. In particular, each
elementary reduction path contained in an image is again of type 2.

For Ψ, the inverse map is given by, for a reduction path

vmx
µhγ → · · · → vc∪(m\`)x

νhδ,

inserting in every index set of the v∗ in the path, the indices contained in n\m,
so Ψ is indeed a bijection.

All that is left to consider are the signs:
If p = pm ◦ ... ◦ p1, then obviously Ψ(p) = Ψ(pm) ◦ ... ◦Ψ(p1) (All necessary

assumptions to inductively apply the lemma to parts of a longer path are satis-
fied, which the reader can make sure of for himself, if he feels that this chapter
is short on technical lemmata and juggling with sets of various types). Hence it
suffices to consider elementary reduction paths.

So now let c,k be ordered sets such that k ⊆m, |c| = |k| and max c < minn.
Let

p∗ = vc∪(n\k)(x
ξhα)→

v{cls(xξ)}∪c∪(n\k)

(
xξ

xcls(xξ)

hαhα

)
→

v
{cls(xξ)}∪

(
(c\{i})∪(n\k)

)(xπhβ)

or

p∗ = vc∪(n\k)(x
ξhα)→

vcls(xξ)∪c∪(n\k)

(
xξ

xcls(xξ)

hα

)
→

v
{cls(xξ)}∪c∪

(
n\(k∪{i})

)(xπhβ)

respectively be elementary reduction paths of type 2. Note that by Equation
3.3.6, we must have cls(xξ) < min c. The defining difference between these two
cases is that in the first case, we want the index i to be contained in c, while in
the second case, we have i ∈ n \ k.

For the reduction maps as introduced in Section 4.1, we then have

ρp∗
(
vc∪(n\k)(x

ξhα)
)

= ε
(

cls(xξ); {cls(xξ)} ∪ c(∪n \ k)
)
ε
(
i; {cls(xξ)} ∪ c ∪ (n \ k)

)
· qp∗v{cls(xξ)}∪

(
(c\{i})∪(n\k)

) (xπhβ)

= ε(i; {cls(xξ)} ∪ c)qp∗ ...

or

ρp∗(...)

= ε
(

cls(xξ); {cls(xξ)} ∪ c ∪ (n \ k)
)
ε
(
i; {cls(xξ)} ∪ c(∪n \ k)

)
qp∗(...)

= (−1)|c|+1ε(i;n \ k)qp∗(...)
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respectively. In the same manner, we have

ρΨ(p∗)

(
vc∪(m\k)(x

ξhα)
)

= ε
(

cls(xξ); {cls(xξ)} ∪ c ∪m(\k)
)
ε
(
i; {cls(xξ)} ∪ c(∪m \ k)

)
· qp∗v{cls(xξ)}∪

(
(c\{i})∪(m\k)

)(xπhβ)

= ε(i; {cls(xξ)} ∪ c)qp∗(...)

or

ρΨ(p∗)
(...)

= ε
(

cls(xξ); {cls(xξ)} ∪ c ∪ (m \ k)
)
ε
(
i; {cls(xξ)} ∪ c(∪m \ k)

)
qp∗(...)

= (−1)|c|+1ε(i;m \ k)qp∗(...)

respectively. We were using cls(xξ) < min c < maxn in both cases.
In the first case (“removing” an index which was not present at the origin),

the sign remains unchanged. If however an index which was present at the origin
of the path, is “removed”, the coefficients change by the sign

ε
(
i;n \ k

)
ε
(
i;m \ k

)
= ε(i;n)ε(i;k)ε(i;m)ε(i;k)

= ε(i;n)ε(i;m)

= ε(i;n \m)

In order to obtain the correcting factor for the entire path, we see that we need a
correcting factor for each index which both was present at the start of the path
and was removed along the path. By multiplying all these factors, we obtain
the correcting factor for the entire path.

Remark 5.2.2. The necessity to precisely determine the signs of the constants
makes this lemma look very technical. Our bijection essentially expresses the
following idea, of which we already have seen a hint in the proof of corollary
5.1.10: Those reduction paths which give us the constants can only be of limited
length. Thus, if the index set of v∗ is larger than this length, some indices
remain the same along the entire path p. For shorter paths, this behavior may
or may not occur. But those unchanged indices are then almost irrelevant for
the coefficient qp of p; they can at most change the sign. The bijection in the
lemma expresses this fact in the manner that if we fix two sets n \m of indices
which are not in any way moved by any of the elementary reduction paths of
which the entire path consists, we can identify those reduction paths that change
the same sets of (not-fixed) variables. For two paths identified in this way, the
key observation is stated in the last sentence of the lemma.

We note that it is possible to replace the condition m ⊆ n by a more gen-
eral one, at the cost of having to introduce more combinatorial notations: For
example, one could only require ` ⊆ (m ∩ n), and still to get a similar result,
yet this would further complicate the formulae for the signs and is not necessary
for the proof of our main theorems.
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5.3 Calculating constants in higher homological degree via
lower degrees

Recall our notation of Remark 5.1.12.

Theorem 5.3.1. Let cls(hα) = d + e − 1. Let ` be an ordered sequence such
that1 min ` > clshα and e < |`| ≤ n− e. Then we have

1⊗ dG(v`hα) =
e∑

f=1

∑
j⊆`
|j|=f

ε(j; ` \ j)
∑
|k|=f−1

min k≤cls(hα)

s∑
β=1

(
1⊗ P j,α

k,β

)
vk∪(`\j)hβ .

Remark 5.3.2. One can express this theorem as follows: Consider a fixed ele-
ment hα of the Pommaret basis H. Then in our complex G, there are some
basis elements of shape v∗hα. The theorem establishes relations between the
constants in the differentials of the basis elements of these v`hα in the following
way: First, we need to take into account how much larger the class of hα is
than the minimal class d appearing in our Pommaret basis. This difference is
e−1. Then we need to know all constants in the differentials for the v∗hα up to
homological degree f ≤ e. These differential give us some coefficients P ∗∗ . Now
the theorem says that for all v`hα of homological degrees |`| > e, the constants
of the differentials of these v∗hα are essentially some constants which already
appeared for the smaller homological degrees f ≤ e; we only need to reassemble
them (and sometimes change the sign) in some ways which depend only on the
index sets of the v∗ involved.

We also remark that, if we combine this theorem with Theorem 5.4.1 below,
it is in fact enough to know the constants exactly in homological degree e to
deduce all constants (note that e depends on the given generator hα).

The proof of the theorem consists in principle of a single chain of equations,
yet it is a rather technical and lengthy computation, involving sums over up to
six different (multi-)indices. In the process, we are using Lemma 5.1.8, corollary
5.1.10, Lemma 5.2.1 and some properties of our generalised ε-symbol.

Proof. For simplicity of notation, we will write j instead {j} or (j) when con-
sidering ordered sets with a single element.

dG(v`hα)

= 1⊗
∑
a,β

∑
m,µ,γ

∑
p∈[...]2

ρp
(
Q`,α

m,µ,γvm(xµhγ)
)

1Note that min ` > clshα implies ` ⊆ crit(hα).
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See the discussion following Equation (3.3.11) for the restrictions to the indices
of either sum. As we are interested only in the constants, by Lemma 5.1.1,
we can restrict the sum over p to all reduction paths which consist exclusively
of elementary reduction paths of type 2, which we indicate by the notation
p ∈ [...]2. Using the isomorphism k

m ∼= k ⊗P Pm given by (v1, ..., vm) 7→
1 ⊗ (v1, .., vm), we also make slight abuse of notation and temporarily drop
1⊗ ..., as we have ensured via p ∈ [...]2 that any summand is a constant, which
temporarily makes the necessity to the tensor product redundant. Now we are
using Lemma 5.1.7 to obtain

=
∑
a,β

∑
m,µ,γ

∑
p∈[...]2

ρp

(
ε
(
` \m; `

)
Q`\m,α
µ,γ vm(xµhγ)

)
=
∑
a,β

∑
m,µ,γ

∑
p∈[...]2

ε
(
` \m; `

)
Q`\m,α
µ,γ ρp

(
vm

(
xµhγ)

)
=
∑
j

∑
a,β

`\a=j

∑
m,µ,γ

∑
p∈[...]2

ε
(
` \m; `

)
Q`\m,α
µ,γ ρp

(
vm(xµhγ)

)
Now we make use of Lemma 5.1.8 and corollary 5.1.10, which tell us which
shapes for j are possible: In particular, j contains at most e elements.

=
e∑

f=1

∑
j⊆`
|j|=f

∑
a,β

`\a=j

∑
m,µ,γ

∑
p∈[...]2

ε
(
` \m; `)

)
Q`\m,α
µ,γ ρp

(
vm(xµhγ)

)
If ` \ a = j, then we know by Lemma 5.1.8 that a = k ∪ (` \ j) with some
k ⊆ {0, ..., cls(hα).

=
e∑

f=1

∑
j⊆`
|j|=f

∑
|k|=f−1

min k≤cls(hα)

∑
β

∑
m,µ,γ∑

p∈[vm(xµhγ) vk∪(`\j)hβ]
2

ε
(
` \m; `

)
Q`\m,α
µ,γ ρp

(
vm(xµhγ)

)

=
e∑

f=1

∑
j⊆`
|j|=f

∑
|k|=f−1

min k≤cls(hα)

∑
β

∑
m,µ,γ∑

p∈[vm(xµhγ) vk∪(`\j)hβ]
2

ε
(
` \m; `

)
Q`\m,α
µ,γ qpvk∪(`\j)hβ

Using Lemma 5.2.1 in order to replace the condition in the last sum. Addition-
ally, since again by Lemma 5.2.1, indices greater than cls(hα) can only disappear
along reduction paths, we need that m = ` \ j with some j ∈ j.

=

e∑
f=1

∑
j⊆`
|j|=f

∑
|k|=f−1

min k≤cls(hα)

∑
β

∑
j,µ,γ
j∈j
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∑
p∈[vj\j(xµhγ) vkhβ]

2

ε
(
` \m; `

)
ε
(
j \ j; ` \ j

)
Qj,αµ,γqpvk∪(`\j)hβ

=
e∑

f=1

∑
j⊆`
|j|=f

∑
|k|=f−1

min k≤cls(hα)

∑
β

∑
j,µ,γ
j∈j∑

p∈[vj\j(xµhγ) vkhβ]
2

ε
(
j; `
)
ε
(
j \ j; ` \ j

)
Qj,αµ,γqpvk∪(`\j)hβ

=
e∑

f=1

∑
j⊆`
|j|=f

∑
|k|=f−1

min k≤cls(hα)

∑
β

∑
j,µ,γ
j∈j∑

p∈[vj\j(xµhγ) vkhβ]
2

ε
(
j; `
)
ε
(
j; ` \ j

)
ε
(
j; ` \ j

)
ε
(
j \ j; ` \ j

)
Qj,αµ,γqpvk∪(`\j)hβ

=
e∑

f=1

∑
j⊆`
|j|=f

∑
|k|=f−1

min k≤cls(hα)

∑
β

∑
j,µ,γ
j∈j∑

p∈[vj\j(xµhγ) vkhβ]
2

ε
(
j; `
)
ε
(
j; `)ε(j; j

)
ε
(
j; ` \ j

)
ε
(
j \ j; ` \ j

)
Qj,αµ,γqpvk∪(`\j)hβ

=
e∑

f=1

∑
j⊆`
|j|=f

∑
|k|=f−1

min k≤cls(hα)

∑
β

∑
j,µ,γ
j∈j∑

p∈[vj\j(xµhγ) vkhβ]
2

ε
(
j; j
)
ε
(
j; ` \ j

)
Qj,αµ,γqpvk∪(`\j)hβ

=
e∑

f=1

∑
j⊆`
|j|=f

ε
(
j; ` \ j

) ∑
|k|=f−1

min k≤cls(hα)

∑
β

∑
j,µ,γ
j∈j∑

p∈[vj\j(xµhγ) vkhβ]
2

ε
(
j; j
)
Qj,αµ,γqpvk∪(`\j)hβ

Finally, we reintroduce the tensor product notation which we had omitted ear-
lier.

=

e∑
f=1

∑
j⊆`
|j|=f

ε
(
j; ` \ j

) ∑
|k|=f−1

min k≤cls(hα)

∑
β

(
1⊗ P j,α

k,β

)
vk∪(`\j)hβ

5.4 Calculating constants in lower homological degree via
higher degrees

Theorem 5.4.1. Let cls(hα) = d + e − 1, ` ⊆ j and |`| ≤ |j| ≤ e. Then we
have:
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1⊗ dG(v`hα) =
e∑

h=1

∑
i⊆`
|i|=h

∑
|k|=h−1

min k≤cls(hα)

∑
β

ε(i; j \ `)
(
1⊗ P j,α

k∪(j\i),β
)
vk∪(`\i)hβ .

Remark 5.4.2. The proof is very similar to the proof of Theorem 5.3.1. This
time, we take the inverse point of view: Theorem 5.3.1 tells us how to construct
constants in higher (homological) degree from constants in lower degrees. Here,
we construct constants in lower degrees from constants in higher degrees. Again,
suppose that we have a generator hα ∈ H and that we know the constants in
the differential for a vjhα in some homological degree f . Then we can give
the constants for all v`hα where ` ⊆ j (again, with some sign- and settheoretic
computations).

Most importantly, we state the following consequence: If for a fixed hα
we know the constants in the differential of v(

cls(hα)+1,...,n
)hα, i.e. in the

highest homological degree in which a generator of shape v∗hα is present in the
resolution, we can from this differential deduce all constants in the differential of
all other elements of shape v∗hα. This if of course possible because the index set
of the v∗ of this last generator contains exactly all non-multiplicative variables.
From a computational point of view, this means that for our Pommaret basis H,
we need to compute only one differential for each element of H, and additionally
do some purely sign- and settheoretic computations, to obtain all constants in
the complex G. This gives a lot of potential to further increase the speed of the
algorithm presented in [AFSS15].

Proof. Again because of Lemma 5.2.1, we have a bijection of those reduction
paths which consist entirely of elementary reduction paths of type 2: To any re-
duction path originating in v`hα, we assign the reduction path which originates
in vjhα and leaves the indices contained in j \ ` unchanged within each of its
elementary reduction paths. One again, when talking about sets with a single
element, we write i instead of {i}. Basically, this proof repeats the arguments
of the proof of Theorem 5.3.1.

1⊗ dG(v`hα)

=
∑
a,β

∑
m,µ,γ

∑
p

ρp
(
Q`,α

m,µ,γvm(xµhγ)
)
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Essentially, throughout this proof, we repeat our remarks from the previous
proof: See the discussion following Equation (3.3.11) for the restrictions to
the indices of either sum. As we are interested only in the constants, by
Lemma 5.1.1, we can restrict the sum over p to all reduction paths which
consist exclusively of elementary reduction paths of type 2, which we indicate
by the notation p ∈ [...]2. Using the isomorphism k

m ∼= k ⊗P Pm given by
(v1, ..., vm) 7→ 1 ⊗ (v1, .., vm), we also make slight abuse of notation and tem-
porarily drop 1⊗ ..., as we have ensured via p ∈ [...]2 that we any summand is
a constant, which temporarily makes the necessity to the tensor product redun-
dant. Now we are using Lemma 5.1.7 to obtain

=
∑
a,β

∑
m,µ,γ

∑
p∈[...]2

ρp
(
ε(` \m; `)Q`\m,α

µ,γ vm(xµhγ)
)

=
∑
a,β

∑
m,µ,γ

∑
p∈[...]2

ε
(
` \m; `

)
Q`\m,α
µ,γ ρp

(
vm(xµhγ)

)
=
∑
i

∑
a,β

`\a=i

∑
m,µ,γ

∑
p∈[...]2

ε
(
` \m; `

)
Q`\m,α
µ,γ ρp

(
vm(xµhγ)

)
Again using Lemma 5.1.8 and corollary 5.1.10, which tell us which shapes for a
are possible:

=

e∑
h=1

∑
i⊆`
|i|=h

∑
a,β

`\a=i

∑
m,µ,γ

∑
p∈[...]2

ε
(
` \m; `

)
Q`\m,α
µ,γ ρp

(
vm(xµhγ)

)
If ` \ a = i, then we know by Lemma 5.1.8 that a = k ∪ (` \ i) with some
k ⊆ {0, ..., cls(hα).

=
e∑

h=1

∑
i⊆`
|i|=h

∑
|k|=h−1

min k≤cls(hα)

∑
β

∑
m,µ,γ

∑
p∈[vm(xµhγ) vk∪(`\i)hβ]

2

ε
(
` \m; `

)
Q`\m,α
µ,γ ρp

(
vm(xµhγ)

)

=
e∑

h=1

∑
i⊆`
|i|=h

∑
|k|=h−1

min k≤cls(hα)

∑
β

∑
m,µ,γ

∑
p∈[vm(xµhγ) vk∪(`\i)hβ]

2

ε
(
` \m; `

)
Q`\m,α
µ,γ qpvk∪(`\i)hβ

=
e∑

h=1

∑
i⊆`
|i|=h

∑
|k|=h−1

min k≤cls(hα)

∑
β

∑
i,µ,γ
i∈i

∑
p∈[v`\i(xµhγ) vk∪(`\i)hβ]

2

ε
(
i; `
)
Qi,αµ,γqpvk∪(`\i)hβ

Using Lemma 5.2.1 in order to replace the condition in the last sum. Addition-
ally, since again by Lemma 5.2.1, indices greater than cls(hα) can only disappear
along reduction paths, we need that m = ` \ i with some i ∈ i.

=
e∑

h=1

∑
i⊆`
|i|=h

∑
|k|=h−1

min k≤cls(hα)

∑
β

∑
i,µ,γ
i∈i∑

p∈[vj\i(xµhγ) vk∪(j\i)hβ]
2

ε(i; `)ε
(
i \ i; (j \ i) \ (` \ i)

)
Qi,αµ,γqpvk∪(`\i)hβ
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=
e∑

h=1

∑
i⊆`
|i|=h

∑
|k|=h−1

min k≤cls(hα)

∑
β

∑
i,µ,γ
i∈i∑

p∈[vj\i(xµhγ) vk∪(j\i)hβ]
2

ε(i; `)ε
(
i \ i; (j \ i)

)
ε
(
i \ i; (` \ i)

)
Qi,αµ,γqpvk∪(`\i)hβ

=
e∑

h=1

∑
i⊆`
|i|=h

∑
|k|=h−1

min k≤cls(hα)

∑
β

∑
i,µ,γ
i∈i∑

p∈[vj\i(xµhγ) vk∪(j\i)hβ]
2

ε(i; `)ε
(
i \ i; j)

)
ε
(
i \ i; i

)
ε
(
i \ i; `

)
ε
(
i \ i; i

))
Qi,αµ,γqpvk∪(`\i)hβ

=
e∑

h=1

∑
i⊆`
|i|=h

∑
|k|=h−1

min k≤cls(hα)

∑
β

∑
i,µ,γ
i∈i∑

p∈[vj\i(xµhγ) vk∪(j\i)hβ]
2

ε(i; `)ε
(
i \ i; j)

)
ε
(
i \ i; `

)
Qi,αµ,γqpvk∪(`\i)hβ

=
e∑

h=1

∑
i⊆`
|i|=h

∑
|k|=h−1

min k≤cls(hα)

∑
β

∑
i,µ,γ
i∈i∑

p∈[vj\i(xµhγ) vk∪(j\i)hβ]
2

ε(i; `)ε
(
i \ i; j \ `

)
Qi,αµ,γqpvk∪(`\i)hβ

=

e∑
h=1

∑
i⊆`
|i|=h

∑
|k|=h−1

min k≤cls(hα)

∑
β

∑
i,µ,γ
i∈i∑

p∈[vj\i(xµhγ) vk∪(j\i)hβ]
2

ε(i; `)ε
(
i; j \ `)

)
ε
(
i; j \ `

)
Qi,αµ,γqpvk∪(`\i)hβ

=

e∑
h=1

∑
i⊆`
|i|=h

∑
|k|=h−1

min k≤cls(hα)

∑
β

∑
i,µ,γ
i∈i∑

p∈[vj\i(xµhγ) vk∪(j\i)hβ]
2

ε
(
i; j \ `

)
ε(i; j)Qi,αµ,γqpvk∪(`\i)hβ

=
e∑

h=1

∑
i⊆`
|i|=h

∑
|k|=h−1

min k≤cls(hα)

∑
β

ε
(
i; j \ `)

)
( ∑
i,µ,γ
i∈i

∑
p∈[vj\i(xµhγ) vk∪(j\i)hβ]

2

ε(i; j)Qi,αµ,γqp

)
vk∪(`\i)hβ
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Finally, we reintroduce the tensor product notation which we had omitted ear-
lier.

=
e∑

h=1

∑
i⊆`
|i|=h

∑
|k|=h−1

min k≤cls(hα)

∑
β

ε
(
i; j \ `)

)(
1⊗ P j,α

k∪(j\i),β
)
vk∪(`\i)hβ

Example 5.4.3. To have a more concrete look at the previous two theorems,
we again turn back to the ideal from example 2.3.24. Suppose we visualize the
complex G with a graph ΓG , see definition 3.1.1. If we omit the edges belonging
to non-constant parts of the differential, we obtain the graph given in figure
5.4.3, plotting the constants of the resolution. The arrows/constants of same
color in the graph, i.e. red or blue, are the ones which are linked by Theorem
5.4.1. We note that formally, Theorem 5.3.1 is a priori not helpful for the
calculations of the red or blue arrows, since either such arrow has as source an
element of shape v∗hα with cls(hα) = 2, which means that in Theorem 5.3.1
we have e = 2, and hence we could only use it to obtain arrows with sources
in homological degree greater or equal to e = 2; but obviously there are no
such possible sources. The underlying reason is that when going from sources
in F1 to sources in F2, it is possible to miss out on some constants such as
the black arrow. A more detailed discussion of this idea follows below. The
sign change of the red constants come from the (−1)∗-terms and the ε-symbols
in these theorems, which in turn were needed to be introduced because of the
possible additional indices in the index sets of the v∗. For the blue constants,
these terms leave the sign unchanged.

Nevertheless, we can use 5.4.1 for the red and blue arrows. Looking at the
right red arrows, we see that we have

P
(2,3),x1x2

(2),x1x2x3
= 1, (5.4.1)

and this is the only constant contained in the differential of this source, i.e. for
all m 6= 2 or β 6= x1x2x3, we have

P
(2,3),x1x2

(m),β = 0. (5.4.2)

Now we look at the formula 5.4.1: We have

cls(hα) = cls(x1x2) = 1, d = min
h∈H

cls(h) = 0

and hence

e = cls(hα)− d+ 1 = 2, ` = (3) and j = (2, 3).
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Figure 5.4.1: The graph of constants for example 5.4.3

100



This gives

1⊗ dG(v3x1x2)

=
2∑

h=1

∑
i⊆(3)
|i|=h

∑
|k|=h−1
min k≤1

∑
β

ε
(
i; (2)

)(
1⊗ P (2,3),x1x2

k∪
(

(2,3)\i
)
,β

)
v
k∪
(

(3)\i
)hβ

Looking at the first two sums, we immediately see that only the cases h = 1,
i = (3) give any summands, implying k = ∅.

=
∑
β

ε
(
(3); (2)

)(
1⊗ P (2,3),x1x2

(2),β

)
v∅hβ

Now we know from Equation (5.4.1) and (5.4.2) that there is only one β for
which this summon is nonzero, so

= −1 · 1⊗ P (2,3),x1x2

(2),x1x2x3
v∅x1x2x3

= −v∅x1x2x3.

In the same manner, for the blue arrows, we see that we have

P
(2,3),x2

1x3+2x2
0x3

(3),x2
0x2x3

= −2,

and for all m 6= 3 or β 6= x2
0x2x3, we have

P
(2,3),x2

1x3+2x2
0x3

(3),β = 0.

Again, we have

cls(hα) = cls(x2
1x3 + 2x2

0x3) = 1, d = min
h∈H

cls(h) = 0

and this time

e = cls(hα)− d+ 1 = 2, ` = (2) and j = (2, 3).

This gives

1⊗ dG(v2x
2
1x3 + 2x2

0x3)

=
2∑

h=1

∑
i⊆(2)
|i|=h

∑
|k|=h−1
min k≤1

∑
β

ε
(
i; (3)

)(
1⊗ P (2,3),x2

1x3+2x2
0x3

k∪
(

(2,3)\i
)
,β

)
v
k∪
(

(2)\i
)hβ

=
∑
β

ε
(
(2); (3)

)(
1⊗ P (2,3),x2

1x3+2x2
0x3

(3),β

)
v∅hβ

= 1 · 1⊗ P (2,3),x2
1x3+2x2

0x3

(3),x2
0x2x3

v∅x1x2x3

= −2v∅x1x2x3.
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We note that the black arrow has no corresponding arrow in lower homological
degrees. Along all other arrows, the index set v∗ of the target is just the index
set of the source, with one element removed. However, for the black arrow, the
index set of the target actually contains a new index, 1, which is not contained
in the index set of the source, while both indices, 2 and 3, of the source are
no longer present. But for arrows going from first to 0-th homological degree,
this behavior cannot be matched: If there is just one index in the source, it
is impossible to remove two indices; and in the same way, if the target has no
index, it impossible to insert one. So this example also shows that Theorem 5.3.1
is not enough to construct all constants in homological degrees lesser or equal
to e, for otherwise we would miss the black arrow, as it has no corresponding
arrow in lower homological degree.

However, Theorem 5.4.1 does not have this problem of missing some con-
stants in lower homological degrees. It is in fact possible to get all constants
by calculating dG(v(clshα)+1,...,nhα) for all hα ∈ H and then applying Theorem
5.4.1 to obtain the constants in the other differentials. To finish this example,
we explain how Theorem 5.4.1 indeed formally assures that the black does not
give a constant in lower homological degree. Consider the vertex v2(x3

1+2x2
0x1):

We have
P

(2,3),x3
1+2x2

0x1

(1),x2
0x2x3

= 2,

and again for all m 6= 1 or β 6= x2
0x2x3, we have

P
(2,3),x3

1+2x2
0x1

(m),β = 0. (5.4.3)

Once more, we have

cls(hα) = cls(x3
1 + 2x2

0x1) = 1, d = min
h∈H

cls(h) = 0

and
e = cls(hα)− d+ 1 = 2, ` = (2) and j = (2, 3).

So we have

1⊗ dG
(
v2(x3

1 + 2x2
0x1)

)
=

2∑
h=1

∑
i⊆(2)
|i|=h

∑
|k|=h−1
min k≤1

∑
β

ε
(
i; (3)

)(
1⊗ P (2,3),x3

1+2x2
0x1

k∪
(

(2,3)\i
)
,β

)
v
k∪
(

(2)\i
)hβ

But now from Equation (5.4.3), we see that this time for h = 1, any choice of i
with |i| = h = 1 gives a zero summand.

=
∑
i⊆(2)
|i|=2

∑
|k|=1

min k≤1

∑
β

ε
(
i; (3)

)(
1⊗ P (2,3),x3

1+2x2
0x1

k∪
(

(2,3)\i
)
,β

)
v
k∪
(

(2)\i
)hβ

And now the condition i ⊆ (2), |i| = 2 of the first sum cannot be satisfied either,
so there are no summands left.

= 0.
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6 Syzygies of Veronese subrings
Through the paper [PS09], which, as its title states, presents “Open problems on
syzygies and Hilbert functions”, we have first encountered the following ques-
tions: Given a P-module M ∼= P/I for an ideal I E P generated in degree
greater or equal to 2, and its minimal free resolution

...→ Fl
ϕl−→ Fl−1

ϕl−1−−−→ ...
ϕ1−→ F0

ϕ0−→M→ 0,

what can be said about the subcomplex

...→ Fl,l+1 → Fl−1,l → ...→ F1,2,

where by Fl,l+1 we denote the denote the submodule of Fl of total degree l+ 1.
So if1 Fl =

⊕
i≥1 P

(
−(i)

)βl,i , then Fl,l+1 = P
(
−(l + 1)

)βl,l+1 . This subcomplex
is called the 2-linear strand of M. Note that as by assumption, I is generated
in degree greater or equal to 2, so for l > 0, all Betti numbers βl,l are 0. The
length of the 2-linear strand is max{l | βl,l+1 6= 0}. Now one can ask several
questions related to the 2-linear strand (for classes of ideals):

• Up to which homological degree does the 2-linear strand coincide with
the minimal free resolution? If we express this number in the language of
Betti numbers, it is equivalent to finding the maximal number p such that
βq,q+i = 0 for q ≥ 2 and i ≤ p. In this case, we say that M satisfies the
Np-property . In terms of the shifted graded Betti numbers and the Betti
table, we want to know the integer p such that the Betti table is of shape

0 1 2 ... p− 1 p ...
0 1 − − ... − − ...
1 − β′1,1 β′2,1 ... β′p−1,1 β′p,1 ...
2 − − − ... − ∗ ...
...
r − − − ... − ∗ ...

where one of the Betti numbers ∗ is nonzero.

• What is the length of the 2-linear strand?

• If these questions cannot be answered, what can be said about lower or
upper bounds? Obviously, finding a non-vanishing Betti number other
than βl,l+1 immediately gives an upper bound for the p in the Np-property.
In fact, one of our main result of this chapter is of this shape.

• What can be said about similar subcomplexes of the minimal free resolu-
tion? For example the subcomplex generated by all Fl =

⊕t
i=1 P

(
−(i)

)βl,i
for a fixed t ≥ 1. Note that for t = 1, we have the 2-linear strand, while
t = regM corresponds to the entire minimal free resolution.

1see also definition 2.1.16
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One particular class of ideals, for which there are some results and conjectures
regarding these questions, are ideals originating from Veronese subrings. In this
present chapter, we try to work towards the questions mentioned above with
respect to this class of modules. We have used the articles [EL12] and [OP01]
as inspiration.

We will apply the theory presented in previous chapters to Veronese subrings,
but we will make some minor changes to our notations and conventions, adapting
to the special situation in question:

Assumption 6.0.1. For this chapter, we will work with the conventions below:

• The field k is algebraically closed of arbitrary characteristic. While for
the area of involutive bases, this is rather unusual, in the context of alge-
braic geometry, this is typically a basic assumption, as some tools such as
Hilbert’s Nullstellensatz require k to be algebraically closed. We will later
see in Lemma 6.1.7 below, that for our methods, it would be enough to
assume that k contains an element of large enough order over the minimal
subfield of k.

• As polynomial rings with different numbers of variables will appear, in
order to avoid confusion, we will use the identification

P ∼= k[x0, ..., xm],

withm as in the definition below. This is a change from previous chapters,
where P was denoting the polynomial ring in n+1 variables. We make this
change in order to be more consistent with the literature about Veronese
subrings mentioned above, where in the situation of definition 6.0.3 below,
the domain of the map νd is usually denoted with Pn

k
.

• Unless stated otherwise, we will assume if we work with a fixed monomial
order ≺ in the polynomial rings k[x0, ..., xn] or k[x0, ..., xm], that for any
product xi1 · · ·xil of variables we have xi1 � ... � xil , i.e. any product of
variables is ordered. In particular, with respect to Section 6.1.1 below, we
will use this implicit ordering for the renamed variables in the polynomial
ring P and the degrevlex order on P, which both will be introduced in
Section 6.1.1.

• We will fix the number d as in Definitions 6.0.2 and 6.0.3 below. This is a
change from Chapter 6, where d was the minimal class of elements in H.

Definition 6.0.2. The (d-th) Veronese subring S(d) of k[x0, ..., xn] is given by
S(d) = k[xµ | deg xµ = d] ⊆ k[x0, ..., xn]. In particular, we have1

S(d) =
⊕
i≥0

k[x0, ..., xn]i·d

1Recall that k[x0, ..., xn]id contains the elements of degree id.
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Definition 6.0.3. The Veronese embedding of degree d in n + 1 variables is
given by the map

νd : Pn
k
→ Pm

k
,

where m =
(
n+d
d

)
− 1 and νd maps any point [τ0 : ... : τn] to the point whose

entries are given by all monomials of degree d in the variables τ0, ..., τn. The
image Y of this map is an irreducible variety. This fact easily follows from the
remark below, but it does not bear any further relevance for our work.

Remark 6.0.4. Combining Definitions 6.0.2 and 6.0.3, we see that a Veronese
subring can be presented as a P ∼= k[x0, ..., xm]-algebra via the homomorphism

φ : P → S(d)

which maps each variable x0, ..., xm to a different monomial xµ ∈ k[x0, ..., xn]
of degree d.

Of course, now the vanishing ideal of Y is given by kerφ.

6.1 A Pommaret basis for Veronese subrings
Our goal is to apply the theory presented in previous chapters, in particular
chapter 4, to gain information about the vanishing ideal I(Y ) ∼= kerφ.

For this approach, it is necessary to construct an involutive basis of I(Y ).
We choose to construct a Pommaret basis with respect to the degrevlex order.
As we have seen in example 2.3.34, Pommaret bases might not exist in a given
coordinate system. So our first task will be to construct δ-regular coordinates.

6.1.1 Constructing δ-regular coordinates for I(Y )

First we note that we can choose any order in which the monomials in the image
of νd appear. Any change of this order induces an isomorphism of varieties:
Permuting the order of monomials is equivalent to a permutation of the variables
x0, ..., xm. Before we describe one particular ordering which we use for the
remainder of this chapter, we will rename the variables x0, ..., xm ∈ P in a way
that is better suited for Veronese subrings. We take inspiration from Definition
6.0.3 and Remark 6.0.4:

Since we have one variable xi for every monomial τµ of degree degµ = d
in the variables τ0, ..., τn, we will use multi-indices d of length n + 1 and total
degree d to enumerate the variables x0, ..., xm. We extend the notion of a class
in definition 2.3.21 to these new indices; i.e. the class of a variable is now a
multiindex.

Now we will look at the monomial order. We already mentioned that it is
degrevlex order, but having introduced new indices to the variables, we need to
explain how these new indices interact with the monomial order; i.e. we need
to define the degrevlex order for our “new” variables. While the order we will
define now might look unusual, its usefulness is given in Theorem 6.1.9 below,
where we see that, for this monomial order, a Pommaret basis does indeed exist:
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Assumption 6.1.1. For the remainder of this chapter, we define ≺ to be the
degrevlex order on P induced by the following ordering of the variables xd where
d ∈ Nn+1 is a multiindex of length d: For two multiindices d, e ∈ Nn+1 of degree
d, we have xd ≺ xe, if and only if

• d and e both are of the form (0, ..., d, ..., 0), and d ≺degrevlex e.

• d is of the form (0, ..., d, ..., 0), but e is not.

• d and e both are not of the form (0, ..., d, ..., 0), and d ≺degrevlex e.

Note that the ≺degrevlex order appearing in this definition is the degrevlex order
for multiindices of length n+ 1, with our usual convention that d ≺degrevlex e if
and only if the leftmost entry of e− d is negative, see Definition 2.3.3.

There is one minor downside to this approach: In a context where we have
a multiindex d, according to our notation, di denotes the i-th entry of d. Now
occasionally, it will be necessary to refer to entries of multiindices in a product
of variables, for example, if we have a product

∏t
i=1 xdi , we denote by (di)j the

j-th entry of the i-th multiindex. Here di now has two possible meanings. We
try to avoid this ambiguity as much as possible; in any case where the meaning
of the notation might not be obvious from the context, we explicitly mention
which meaning we are referring to.

Example 6.1.2. If n = 2 and d = 3, this ordering is given by

x(3,0,0) ≺ x(0,3,0) ≺ x(0,0,3) ≺ x(2,1,0) ≺ x(2,0,1) ≺
x(1,2,0) ≺ x(1,1,1) ≺ x(1,0,2) ≺ x(0,2,1) ≺ x(0,1,2).

With respect to the existence of a Pommaret basis, we will see that we only
need variables of shape x(0,...,d,...,0) to be the smallest variables with respect to
≺. The order of those monomials which are not pure powers of variables does
not matter. Nevertheless, it is advantageous to work with this fixed monomial
order, since we will see that for this particular monomial order, it is possible to
obtain statements for Betti numbers of I(Y ). We think that one possible idea
for further research might be to change the monomial order and see if it is still
possible to get results similar to those presented later in this chapter.

Definition 6.1.3. For any multiindex d with degd = i · d for some integer
i ≥ 1, we define the minimal monomial of d to be the monomial xd1

· · ·xdi
with

∑i
j=1 dj = d which is minimal with respect to ≺. We use the notation

MinMon(d).

Example 6.1.4. Let n = 2 and d = 3. For d = (2, 4, 3), we have

MinMon(d) = x(0,3,0)x(0,0,3)x(2,1,0).

We state three simple properties of minimal monomials, which we will later
use repeatedly in our proofs:
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Lemma 6.1.5. Let d be a multiindex with degd = t · d for some integer t ≥ 1.

• If there is an index j such that dj ≥ d, then we have1

MinMon(d) = xd·1j MinMon(d− d · 1j).

• If MinMon(d) =
t∏
i=1

xdi , then MinMon(d− d1) =
t∏
i=2

xdi .

• Let e be the minimal multiindex of degree d such that ej ≤ dj for all
0 ≤ j ≤ n. Then

MinMon(d) = xe ·MinMon(d− e).

Proof. (Recall that by our Assumption 6.0.1, we have d1 � ... � dt)

• Regarding the first point, without loss of generality, let j be the minimal
index such that dj ≥ d, i.e. the class (in the renumbered variables) of
MinMon(d) is at least d·1j . But since the class of xd·1j MinMon(d−d·1j)
is d · 1j , we see that the class of MinMon(d) is also at most d · 1j . So we
have cls

(
MinMon(d)

)
= d · 1j , and therefore MinMon(d) is divisible by

xd·1j .

• Regarding the second point, we note that if there was a monomial
∏t
i=2 xei

with
∑t
i=2 ei =

∑t
i=2 ei and

∏t
i=2 xei ≺

∏t
i=2 xdi , then also

xd1

t∏
i=2

xei ≺ xd1

t∏
i=2

xdi ,

contradicting the fact that MinMon(d) =
∏t
i=1 xdi .

• The third point is obvious, as we are considering the minimal monomial
with respect to the degrevlex order.

Example 6.1.6. With d = (2, 4, 3) as in example 6.1.4, we do have

d0 = 2,d1 = 4,d2 = 3

and so the minimal j as in the proof of lemma 6.1.5 is j = 1. Indeed, we have

MinMon(d) = x(0,3,0)x(0,0,3)x(2,1,0) = x3·11
x3·12

x(2,1,0) = x3·11
MinMon(2, 1, 3),

which illustrates the statements of lemma 6.1.5.
1Recall that by Definition 2.1.7, 1j = (0, ...0, 1, 0, .., 0) is the multiindex for which the j-th

entry is 1 while all other indices are 0. As the set of multiindices has a natural Z-module
structure, we have d · 1j = (0, ..., 0, d, 0, ..., 0).

107



6.1.2 The Pommaret basis

Before we write down our Pommaret basis, we note the following lemma. Prob-
ably it is clear to anyone more familiar with algebraic geometry. Nevertheless,
since this lemma will be essential in one of our proofs later, we find that it
is helpful to explicitly formulate and prove it right now, for it is here that we
make use of one of the special assumptions 6.0.1 that only hold for this chapter,
namely that k is an algebraically closed field.

Lemma 6.1.7. Let g ∈ I(Y ). Let xµ1

d1
· · ·xµtdt = xµ = lt(g). Then g contains

another monomial xπ1
e1
· · ·xπtet such that

t∑
i=1

(µi · di) =
t∑
i=1

(πi · ei) ∈ Nn+1

as a summand.

Proof. Let k be the prime field of k, i.e. the minimal subfield of k containing
1. k is not algebraically closed, since obviously k ∼= Q or k = Fp. We note
that k is a perfect field in either case. Let φ ∈ k be an element such that[
k(φ) : k

]
is sufficiently large. We shortly explain why we can always pick such

an element φ: Obviously, if there is a φ ∈ k that is transcendent over k, we
are done. Otherwise,

[
k(φ) : k

]
is finite for any φ ∈ k. Since

[
k : k

]
= ∞,

we can pick an index i ∈ N and a set of elements φi ∈ k \ k(φ1, ..., φi−1) such
that

[
k(φ1, ..., φi) : k

]
is arbitrary large, yet finite. Since k is a perfect field and

therefore separable, this extension is separable, and by the Primitive Element
Theorem (see for example [Lan05, V,§4, Theorem 4.5]) there is a φ such that
k(φ) = k(φ1, ..., φi).

Now consider the image of Φ = [φ(d·deg µ+1)0 : φ(d·deg µ+1)1 : ... : φ(d·deg µ+1)n ]
under νd. We have g

(
νd(Φ)

)
= 0, since g ∈ I(Y ). If we evaluate lt(g) at νd(Φ),

we obtain

lt(g)
(
νd(Φ)

)
=

t∏
i=1

n∏
j=0

(
φ(d·deg µ+1)j

)µi·(di)j
= φ

n∑
j=0

t∑
i=1

µi·(di)j ·((d·deg µ+1)j)
∈ k,

(6.1.1)
where (di)j denotes the j-th entry of the multiindex di. By construction, we
have (di)j ≤ d, and therefore

µi · (di)j ≤ (degµ) · d ≤ ddegµ+ 1.

So if we choose φ such that
[
k(φ) : k

]
≥ (d · degµ+ 1)(n+ 1), the numbers

t∑
i=1

µi · (di)j

are uniquely determined by equation (6.1.1). But then since g
(
νd(Φ)

)
= 0,

g
(
νd(Φ)

)
must contain another summand whose evaluation at νd(Φ) is the ele-

ment of k given in (6.1.1). But this is only possible if g contains a summand of
the shape given in the lemma.
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Example 6.1.8. Lemma 6.1.7 can indeed fail if k is not algebraically closed:
Consider

ν2 : P1
F2
→ P2

F2
,

which maps [τ0 : τ1] to [τ2
0 : τ2

1 : τ0τ1], so

im(νd) = {[1 : 0 : 0], [0 : 1 : 0], [1 : 1 : 1]}.

Hence I(Y ) contains the element h = x(0,2)x(1,1) − x(2,0)x(1,1), and for this h,
we have

1 · (0, 2) + 1 · (1, 1) = (1, 3) 6= (3, 1) = 1 · (2, 0) + 1 · (1, 1).

So indeed lemma 6.1.7 can fail if k is not algebraically closed.

Now we continue the process of finding a Pommaret basis for I(Y ).

Theorem 6.1.9. For t ≥ 2, let

Ht =
{
xd1
· · ·xdt −MinMon

( t∑
j=1

dj

)
| xd1

· · ·xdt 6= MinMon
( t∑
j=1

dj

)
,

xd2
· · ·xdt = MinMon

( t∑
j=2

dj

)
,d1 6∈ {(d, 0, ..., 0), ..., (0, ..., 0, d)}

}
.

Then H =
⋃
t≥2Ht is a Pommaret basis of I(Y ) (Recall that by assumption

6.0.1 we assume xd1 � ... � xdt).

In particular this theorem implies that I(Y ) is a toric ideal, i.e. generated
by binomials xµ − xν .
Remark 6.1.10. Note that the statement of this theorem can be split into two
separate aspects: First, that H is a Pommaret basis (for the ideal generated
by H), and second, that its involutive span 〈H〉P is equal to I(Y ). Looking
at the proof, we see that the first aspect does not require the fact that k is
algebraically closed; so any statement made later in this chapter still holds over
any field if one replaces I(Y ) by 〈H〉P . For the second aspect however, if we
omitted the assumption that k is algebraically closed, the ideal I(Y ) might
contain additional elements that are not contained in the involutive span 〈H〉P ,
so 〈H〉P $ I(Y ) is possible: Indeed, for the generator h of example 6.1.8, one
sees that h has leading monomial x(0,2)x(1,1), which is not the leading monomial
of any element of H, as it contains the variable x(0,2). On the other hand lt(h)
cannot be involutively divisible by any element of H, for any involutive divisor
would be of degree 1. But obviously, I(Y ) is generated in degree greater or
equal to 2. So we have indeed h ∈ I(Y ) \ 〈H〉P .

Proof. (of Theorem 6.1.9) Now from definition 2.3.13, we see that we need
to show that we have 〈H〉P = 〈H〉P,≺ = I(Y ) for the involutive span of H
with respect to the Pommaret division P . Obviously, we have H ⊆ I(Y ). By
Theorem 2.3.15, using H ⊆ I(Y ), it is equivalent to show that
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• lt≺
(
I(Y )

)
= lt≺(〈H〉P ),

• H is Pommaret auto reduced and

• H is finite.

Since any element of 〈H〉P is obviously contained in I(Y ), we only need to show
that lt≺

(
I(Y )

)
⊆ lt≺(〈H〉P ) for the first point.

We start by proving lt≺
(
I(Y )

)
= lt≺ (〈H〉P ). We do so by using induction

over the degree t of the elements in H.

t = 2: If xd1xd2 is the leading monomial of some element of I(Y ), then by
Lemma 6.1.7, this element of I(Y ) contains a term xc1

xc2
with

d1 + d2 = c1 + c2

and xd1xd2 � xc1xc2 , so xd1xd2 � MinMon (d1 + d2) . But now since H2

contains xd1xd2 −MinMon (d1 + d2), we have lt
(
〈H〉P

)
2

= lt
(
I(Y )

)
2
.

t > 2: Our goal is to prove lt
(
I(Y )

)
t
⊆ lt(〈H〉P )t. Let xd1 · · ·xdt be the leading

monomial of some r ∈ I(Y )t. We separately consider two sub-cases for
xd1

(Recall that by our conventions, we have xd1
� xdi for all 1 ≤ i ≤ t):

Case 1: xd2
· · ·xdt = MinMon

(∑t
j=2 dj

)
: If d1 6= (0, ..., d, ..., 0), then

by definition, H contains xd1
· · ·xdt −MinMon

(∑t
j=1 dj

)
, so there

is nothing to prove. So let d1 = (0, ..., d, ..., 0). We claim that
there is some g such that xdg · · ·xdt 6= MinMon

(∑t
j=g dj

)
. Then

Ht−g+1 contains xdg · · ·xdt −MinMon
(∑t

j=g dj
)
, for which the vari-

ables xd1
, ..., xdg−1

are multiplicative, implying xd1
· · ·xdt ∈ lt(〈H〉P ).

So assume that there is no such g. But then by lemma 6.1.5, we have

xd1
· · ·xdt = MinMon

( t∑
j=1

dj
)
.

Now by lemma 6.1.7, r contains another term xe1
· · ·xet such that

t∑
j=1

ej =
t∑

j=1

dj .

But then we have

xe1
· · ·xet � MinMon

( t∑
j=1

dj
)

= xd1
· · ·xdt ,

contradicting lt r = xd1 · · ·xdt .
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Case 2: xd2 · · ·xdt 6= MinMon(
∑t
j=2 dj). So we have

xd2
· · ·xdt −MinMon

( t∑
j=2

dj
)
∈ I(Y ).

However, by assumption, we have lt(〈H〉P )t−1 = lt
(
I(Y )

)
t−1

, so
〈H〉P,t−1 (the set of elements of degree t− 1 in 〈H〉P ) contains some
h with leading monomial xd2

· · ·xdt and then of course xd1
is mul-

tiplicative for h, so 〈H〉P,t contains the element xd1
h with leading

monomial xd1
· · ·xdt .

Now we show that H is Pommaret auto reduced: If xd1 · · ·xdt is the leading
monomial of some element of H, then xd2 · · ·xdt is a minimal monomial. Due
to the second statement of lemma 6.1.5, then also xdi · · ·xdt for 2 ≤ i ≤ t is a
minimal monomials, and so neither of these monomials is the leading monomial
of another element of H. This is exactly what is needed to see that H is Pom-
maret auto reduced (Again recall assumption 6.0.1, which says that we always
have xd1 � ... � xdt).

Now all that is left to show is that H is finite. Since any Ht is obviously
finite, it suffices to show that only finitely many Ht are nonempty.

Let t > (d−1)(n+1)
d + 1. Assume Ht 6= ∅: Let xd1

· · ·xdt be the leading
monomial of an element of Ht. Since deg(

∑t
i=2 di) = (t− 1)d > (d− 1)(n+ 1),

there is some index j ∈ {0, ..., n} for which (
∑t
i=2 di)j ≥ d. As xd1

· · ·xdt is the
leading monomial of an element Ht, we have xd2 · · ·xdt = MinMon(

∑t
i=2 di).

But now from lemma 6.1.5, we see that this implies x(0,...,0,d,0,..,0) = xd·1j (where
the entry corresponding to j is the only nonzero entry) for some k ∈ {2, ..., t}.
Since xd1

� xd2
, we have that d1 is also of shape d · 1k for some k ≤ j. But

this is a contradiction, since by definition of the Ht, no leading monomial of an
element of Ht can be of this shape.

Example 6.1.11. We have a closer look at this Pommaret basis: One naive,
but far from optimal, algorithm to construct the elements of H would be as
follows: Starting with degree t = 2, we iteratively construct Ht. In order to
do so, for any multiindex e of degree 2d, we need to find all decompositions of
e into sums of two multiindices e1 � e2 of degree d. In the process, we can
discard any sum containing a multiindex of shape d · 1j (except when this sum
is MinMon(e)), for a product of shape xd·1jxe2

cannot be the leading term of
an element of H. For every other sum e1 + e2 = e, we obtain the element

xe1xe2 −MinMon(e) ∈ H2,

(except when xe1
xe2

= MinMon(e)). Proceeding to higher degrees t > 2, we
also need to take into account that for any

∑t
i=1 et = e with e1 � ... � et, the

condition xe2
· · ·xet = MinMon(

∑t
i=2 et) is satisfied.

So now let n = 1, d = 2. Let t = 2, i.e. we consider the degree 2d = 4. The
multiindices e in question are

(4, 0), (3, 1), (2, 2), (1, 3), (0, 4).
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Of these multiindices, only (2, 2) can be written as a sum of two multiindices
e1 = e2 = (1, 1) such that xe1xe2 6= MinMon

(
(2, 2)

)
= x(2,0)x(0,2), and we

obtain
x2

(1,1) − x(2,0)x(0,2) ∈ H2.

We know that Ht = ∅ as soon as t > (d−1)(n+1)
d + 1 = 2, so here indeed the

Pommaret basis contains a single element. Equivalently, one could have shown
that this element generates I(Y ).

A more interesting example arises in the case1 n = 3, d = 4. Even in this
relatively small case, we have m =

(
7
4

)
− 1 = 34, i.e. the ring P has 35 variables.

Going to degree t = 4, one can check

x2
(3,1,0,0)x(0,2,2,0)x(0,0,1,3) −MinMon

(
(6, 4, 3, 3)

)
∈ H4.

This element is contained in I(Y ). The condition

xe2 · · ·xet = MinMon
( t∑
i=2

et
)

now translates to

x(3,1,0,0)x(0,2,2,0)x(0,0,1,3) = MinMon
(
(3, 3, 3, 3)

)
,

which is indeed satisfied, as one can easily check with help of Lemma 6.1.5.
In fact, we claim that H4 contains only this single element. While this could
be proven by the naive “brute-force”-algorithm outlined at the beginning of the
current remark, in Example 6.1.18 below, we introduce a more systematic nota-
tion, which allows us to prove a generalized version of this claim by introducing
a better algorithm.

In fact, it was this example n = 3, d = 4 that served as a primary inspiration
for the general construction of Pommaret bases for arbitrary values of n, d.

Remark 6.1.12. It should be noted that this Pommaret basis is in general larger
than the minimal Gröbner basis, which is given by H2, as we will prove in
Theorem 6.1.13 below. The fact that the ideal I(Y ) defining the Veronese
subring has a quadratic Gröbner bases is well known, see for example [Stu,
Theorem 14.2], [ERT94, Theorem 6] or [PM15, page 246], who attribute this
statement to [BM81].

From Section 4.4 we recall that the quotient of the number of elements in H
and a minimal Gröbner basis, i.e. H2 is of interest for performing calculations
with computers. Since a pseudo Betti table gives upper bounds for the Betti
numbers, we have another reason to be interested in how much larger H is
than H2. Unfortunately, the definition of H would quickly turn the precise

1One can check that for H4 be a nonempty set, one could also have chosen d = 2, n ≥ 6 or
d = 3, n ≥ 4. However, we have already seen an example for d = 2; and while for d = 3, n = 4
we also have m = 34, in this example, H4 then contains more than just a single element.
Hence, the given example also illustrates Theorem 6.1.19 below.
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determination of |H| into a combinatorial nightmare, which would also serve no
further purpose for the theoretical results of this work.

However, we conjecture that in general, the quotient |H|
|H2| is given by a

polynomial function involving n and d and hence can be arbitrarily large. Recall
that according to Section 4.4, this suggests that, apart from the obvious issue
of the large number m of variables which we expect to be a problem for any
computer algebra system, our algorithm to actually compute Betti numbers
with a computer might not be optimal here.

Nevertheless, we have constructed our Pommaret basis with the goal of ob-
taining theoretical results, and for this fact it is indeed very useful. As a first
application, we will in Corollary 6.1.17 see that this Pommaret basis immedi-
ately yields formulas for the projective dimension and the regularity of S(d).

Theorem 6.1.13. H2 is a quadratic minimal Gröbner basis for I(Y ) (with
respect to the degrevlex order as defined above).

Proof. We need to show that lt(Ht) ⊆ lt(H2) for t ≥ 3. So let t ≥ 3 and

ht = xd1 · · ·xdt −MinMon
( t∑
j=1

dj
)
∈ Ht.

By definition, we have

xd1 · · ·xdt 6= MinMon
( t∑
j=1

dj
)
,

but

xd2 · · ·xdt = MinMon
( t∑
j=2

dj
)
.

If we can show that there is an i ≥ 2 with

xd1
xdi 6= MinMon(d1 + di),

the statement follows from recursion with respect to the monomial order, since
then the leading term of ht is divisible (but not necessarily involutively divisible)
by the leading term of

h2 = xd1
xdi 6= MinMon(d1 + di).

So what is a suitable choice of i? From the definition of the monomial order
on P, we see that there has to be an index 1 ≤ k ≤ n with (d1)k ≥ 1 (i.e. the
k-th entry of d1 is greater than 0) and an index 0 ≤ l < k with (

∑t
j=2 dj)l > 0:

For otherwise d1 is the unique minimal multiindex which divides
∑t
j=1 dj . Then

Lemma 6.1.5 implies

MinMon
( t∑
j=1

dj
)

= xd1

( t∑
j=2

dj
)

= xd1
· · ·xdt ,
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and hence ht = 0 6∈ Ht, a contradiction. So we can pick a di with 2 ≤ i ≤ t
with (di)l ≥ 1 and for this choice of i, we have

xd1xdi � xd1+1l−1kxdi−1l+1k � MinMon(d1 + di),

so indeed
xd1

xdi 6= MinMon(d1 + di).

Definition 6.1.14. For any integer q with 1 ≤ q ≤ (d−1)(n+1)
d , let d(q) be the

unique multiindex of degree q · d and of shape

d(q) = (0, ..., 0,d(q)sq , d− 1, ..., d− 1)

such that 1 ≤ d(q)sq ≤ d − 1. We define sq and d(q)sq to be the integers that
are uniquely determined by this multiindex d(q). We denote by rq the maximal
integer that is strictly smaller than qd

d−1 , i.e.
1

rq =

⌊
qd− 1

d− 1

⌋
.

For any q ≤ (d−1)(n+1)
d , we define multiindices d1, ...,dq by

d1 = (0, ..., 1, d− 1)

and

di = d(i)−
i−1∑
j=1

dj .

For q ≥ 2, we define dq,+ to be the multiindex of degree d such that xdq,+ is
the successor of xdq (with respect to the degrevlex order of Assumption 6.1.1).

Remark 6.1.15. By construction of dq, for any q ≤ (d−1)(n+1)
d , we immediately

have
dq = d(q)− d(q − 1).

Any dq is a multiindex in Nn+1 of degree d. Obviously, we have

n = sq + rq

and
d(q)sq = qd− rq(d− 1).

Additionally, we have

MinMon
(
d(q)

)
= xdq · · ·xd1

and
dq = cls

(
MinMon

(
d(q)

))
.

1For a real number z ∈ R, we denote by bzc = max{a ∈ Z | a ≤ z} the lower Gauss
bracket of z.
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Example 6.1.16. For n = 5, d = 4, q = 4, we have

d(q) = (1, 3, 3, 3, 3, 3), sq = 0, d(q)sq = 1

and

d1 = (0, 0, 0, 0, 1, 3), d2 = (0, 0, 0, 2, 2, 0),

d3 = (0, 0, 3, 1, 0, 0), d4 = (1, 3, 0, 0, 0, 0).

For the multiindices dq,+, we indeed see that d1 has no successor, so d1,+ cannot
be defined in the same manner as for q ≥ 2. For 2 ≤ q ≤ 4, we obtain

d2,+ = (0, 0, 0, 2, 1, 1), d3,+ = (0, 0, 3, 0, 1, 0), d4,+ = (1, 2, 1, 0, 0, 0).

Now we can give another proof for the well-known property that Veronese
subrings are Cohen-Macaulay, cf. [GM14, Theorem 3.5.] or [Pau13, Prop. 9].
We also have a formula for the regularity.

Corollary 6.1.17. The ring S(d) ∼= P/I(Y ) is a Cohen-Macaulay ring. Its
regularity is

reg
(
P/I(Y )

)
=

⌊
(d− 1)(n+ 1)

d

⌋
= n+ 1 +

⌊
−n− 1

d

⌋
and its projective dimension is m− n =

(
n+d
d

)
− n.

Proof. From the proof of Theorem 6.1.9, we know that Ht = ∅ as soon as
t > r. However, Hr contains x2

dr−1xdr · · ·xd1 − MinMon
(
dr−1 + d(r − 1)

)
.

Using Theorem 2.3.45, we see that reg
(
P/I(Y )

)
= r.

Additionally, H contains

x2
(d−1,1,0,...,0) − x(d,0,...,0)x(d−2,2,0,...,0),

but no elements of smaller class, implying depth(P/I) = n by Theorem 2.3.39.
But then since (〈H〉)r is obviously δ-regular, lt

(
(〈H〉)r

)
is stable, implying(

k[{xd | d �lex (d1, 1, 0, ..., 0)}]
)
r

= lt〈H〉r. However, by construction Hr obvi-
ously contains no leading term of shape xa(0,...,0,d), and therefore dim

(
P/I(Y )

)
=

n by Theorem 2.3.41. Now we immediately see from Theorem 2.3.41 that

n = dim
(
P/I(Y )

)
= depth

(
P/I(Y )

)
,

so P/I(Y ) is indeed Cohen-Macaulay.
The statement about projective dimension now follows from Theorem 2.3.43,

or the Auslander-Buchsbaum formula, see Corollary 2.3.44.

Example 6.1.18. Now we give a more refined algorithm for the construction
of H. Using this algorithm, we can show that for n = 3, d = 4, the only element
of H4 is given by

x2
(3,1,0,0)x(0,2,2,0)x(0,0,1,3) −MinMon

(
(6, 4, 3, 3)

)
∈ H4,
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as suggested in Example 6.1.11.
The idea is as follows: Looking at the conditions defining the sets

Ht =
{
xd1 · · ·xdt −MinMon

( t∑
j=1

dj
)
| xd1 · · ·xdt 6= MinMon

( t∑
j=1

dj
)
,

xd2 · · ·xdt = MinMon
( t∑
j=2

dj
)
,d1 6∈ {(d, 0, ..., 0), ..., (0, ..., 0, d)}

}
,

we see that for an element of Ht, the condition d1 6∈ {(d, 0, ..., 0), ..., (0, ..., 0, d)}
is satisfied. Recalling our general assumption xd1

� ... � xdt , we see that
implies that the multiindex

∑t
j=2 dj cannot have an entry ≥ d. Contrary, it is

not difficult to see that for any multiindex e of degree d·(t−1) with xe2 · · ·xet =
MinMon(e), and any d such that x(0,....,d) ≺ x(d−1,1,0,...,0) � xd � xe2 , we have

xdxe2
· · ·xet −MinMon(d + e) ∈ Ht.

So another idea to construct Ht is to look at all such multiindices e of degree
d · (t− 1) whose entries are less or equal to d− 1, and construct the generators
in the manner described above. This algorithm is more efficient than the one
given in Example 6.1.11, as here the number of multiindices that we actually
need to do calculations for can generally be expected to be much smaller: In the
first naive algorithm, we had to consider all multiindices of degree d · t without
any restriction to the indices.

Going back to the special case n = 3, d = 4, for t = 4 there is only one
multiindex of degree d · (t − 1) = 4 · 3 = 12 for which no entry is larger than
d = 4, namely d(3) = (3, 3, 3, 3). Its minimal monomial can now be described
as

xd3xd2xd1 = x(3,1,0,0)x(0,2,2,0)x(0,0,1,3) = MinMon
(
(3, 3, 3, 3)

)
= MinMon

(
d(3)

)
.

Now we need to find all d which satisfy

x(0,0,0,4) ≺ x(3,1,0,0) � xd � x(3,1,0,0).

So d = (3, 1, 0, 0) is the only eligible monomial, and we indeed obtain that

x2
(3,1,0,0)x(0,2,2,0)x(0,0,1,3) −MinMon

(
(6, 4, 3, 3)

)
is the only element of H4.

Generalizing this idea, whenever n + 1 = a · d for some a ∈ N, we have for
t = (d−1)(n+1)

d = a(d−1) = reg(P/I), the set Ht contains only a single element,

x2
dt−1xdt−2 · · ·xd1 −MinMon

(
(2d− 2, d, d− 1, ..., d− 1)

)
.

As for t > (d−1)(n+1)
d = a(d − 1), we know that Ht = ∅, we also obtain that

this generator the only element of H of both maximal degree and minimal class
among all elements of H, and hence defines a non-vanishing generator. All in
all, we can now proof the theorem below
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Theorem 6.1.19. Let n+ 1 = a · d for some integer a ≥ 1. Then

βpd(P/I),reg(P/I)
(
I(Y )

)
= 1,

i.e. the bottom right entry of the Betti Diagram of P/I is 1.

Proof. Essentially, we could repeat the arguments of the proof of Theorem 2.3.45
in [Sei10, Theorem 5.5.15]. A slightly different is to use the idea of the minimi-
sation product translates to the Betti diagram as explained in Section 4.5:

We have just explained in Remark 6.1.18 thatHreg(P/I) contains only a single
element, for which we also know by Assumption 6.0.1 and Corollary 6.1.17 that
is of minimal class among all elements of H. This means that the pseudo Betti
table of P/I is of shape

0 1 ... reg(P/I)
∗ ∗ ∗ ... ∗

pd(P/I) 0 ∗ ... 1

with all other entries further right or further below being 0. As we have ex-
plained in Section 4.5, the Betti diagram arises from the Pseudo Betti diagram
by subtracting some diagrams of shape

... 0 1 0
0 1 0 ...

while have to keep in mind that all entries have to be at least 0. But this
trivially implies that the 1 in the bottom right corner of the diagram remains
unchanged by any such subtraction.

6.2 Some non-vanishing syzygies of Veronese subrings
Remark 6.2.1. It is obvious that xdq · · ·xd1 = MinMon

(
d(q)

)
. So our Pommaret

basis H contains elements of form

x2
dqxdq−1 · · ·xd1 −MinMon

(
dq + d(q)

)
.

Now, for a fixed q ≤ (d−1)(n+1)
d , we look at the basis element

h = vdq,+,...,(0,....,1,q−1)

(
x2
dqxdq−1 · · ·xd1 −MinMon

(
dq + d(q)

))
.

Our goal is to show that these generators survive all minimisations that occur in
the process of minimising the chain complex G. Recall lemma 2.2.5, which states
that, if after performing a minimisation, h appears with constant coefficient in
the differential of some g, then this must have been the case even before the
minimisation (though not necessarily for the same g); and in the same way,
if the differential of h contains some constant after a minimisation, then this
differential also was containing a constant before the minimisation. So in order
to make sure that h is not removed during the entire minimisation process, it
is sufficient to show that for the differential dG at the start of the minimisation
process, the following two conditions hold:
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• The G-differential of h does not contain any constant.

• h does not appear with a constant coefficient in the G-differential of some
other generator.

We will begin with the second point, as it is is easier to prove:

Lemma 6.2.2.

h = vdq,+,...,(0,....,1,q−1)

(
x2
dqxdq−1 · · ·xd1 −MinMon

(
dq + d(q)

))
does not appear with a constant coefficient in the G-differential of any other
generator.

Proof. The statement follows from an argument involving classes: We need to
check that h does not appear in the differential of some g with a constant
coefficient, with g being a generator whose homological degree is 1 larger than
that of h. As this means that for g = vkhα, the index set k needs to contain one
more element than (dq,+, ..., (0, ...., 1, q− 1)), the index set belonging to h. Any
element of k is non-multiplicative for hα by construction of the complex G. This
is only possible if cls(hα) < dq, for otherwise there would not even be |k| non-
multiplicative variables for hα. By lemma 5.1.8 (see also the remarks following
said lemma), h can appear with a constant coefficient in the differential of g
only if x2

dqxdq−1 · · ·xd1 −MinMon
(
dq + d(q)

)
appears as a summand (with a

constant coefficient) in the involutive standard representation of some xdshα,
where cls(hα) < ds ≤ dq. But then the inequality

cls(xdshα) = cls(hα) < dq = cls
(
x2
dqxdq−1 · · ·xd1−MinMon

(
dq+d(q)

))
= clsh

makes this is impossible.

Now we consider the first point given in remark 6.2.1:

Lemma 6.2.3. The G-differential of

h = vdq,+,...,(0,....,1,q−1)

(
x2
dqxdq−1 · · ·xd1 −MinMon

(
dq + d(q)

))
does not contain a constant.

Remark 6.2.4. Before we begin with the proof, we note in advance an idea which
we will use in the proofs of both Lemma 6.2.3 and Lemma 6.2.5:

• To calculate the G-differential of h, by equations (3.3.10) and (3.3.11), we
first need to know the involutive standard representations of xeh for all
e > cls(h).

• From the construction of the Pommaret basis H in Theorem 6.1.9 and
the monomial order given in Assumption 6.1.1, we immediately see that
any variable of shape x(0,...,d,...,0) is multiplicative for any element of the
Pommaret basis H.
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• From Theorem 5.1.4, we know that any summand of shape

v`

(
x(0,...,d,...0)x

νh′
)

with h′ ∈ H does not contribute a constant to the differential.

• Now if at any point in the computation of the involutive standard rep-
resentation of xeh, we have a summand with a leading term of shape
x(0,...,d,...,0)x

νh, we can ignore this term, for none of the basis elements
of G arising from this generator contributes a constant to the differen-
tial. Additionally, remaining summands have a leading term smaller than
x(0,...,d,...,0)x

νh. As we are using the monomial order defined in Assump-
tion 6.1.1, this implies that any such leading term also has a factor of
shape x(0,...,d,...,0). So we can ignore all of these summands thanks to
same argument.

Using this idea, we will be left only with summands which share one special
shape. For terms of these shape, Lemma 6.2.5 will ensure that, by recursion,
we cannot obtain a constant from these summands either.

Proof. of lemma 6.2.3. We start by having a closer look at the involutive stan-
dard representations in question:

Let e = (0, ...., 0, esq , ..., ej , 0, ..., 0) � dq,+ � dq be a multiindex with
deg e = d such that ej > 0. In particular, since e � dq, e is not of shape
d · 1k, and hence j > sq. We claim(

e +
∑
di�e

di
)
j
≥ d.

Separately, consider the two cases of equality and strong inequality:

j = sq + 1: We have e > dq = (0, ...0,d(q)sq , d − d(q)sq , 0, .., 0). This implies
esq < d(q)sq and ej = esq+1 > d− d(q)sq . We also have(∑

di�e

di
)
j

=
( ∑
di�dq

di
)
j

=
( ∑
di�dq

di
)
sq+1

= d(q)sq − 1

and hence(
e+

∑
di�e

di
)
j

= esq+1 +
( ∑
di�dq

di
)
sq+1

> d−d(q)sq +d(q)sq − 1 = d− 1.

j > sq + 1: Since
(∑

di�dq d
i
)
sq+1

= d(q)sq − 1, we have
(∑

di�dq d
i
)
j

= d− 1

and hence (
e +

∑
di�e

di
)
j

= ej +
( ∑
di�dq

di
)
j
≥ 1 + d− 1 = d.
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So in either case
(
e +

∑
di�e d

i
)
j
≥ d holds, which entails

MinMon(e +
∑
di�e

di) = xd·1j MinMon
(
e +

∑
di�e

di − d · 1j
)

by lemma 6.1.5. Further, by definition 6.1.14 of dq and sq, we have dqsq+1 ≥ 1

and
(
d(q)

)
sq+1

= d− 1. This implies(
dq + d(q)

)
sq+1

≥ 1 + d− 1 = d,

which again by lemma 6.1.5 gives

MinMon
(
dq + d(q)

)
= xd·1sq+1 MinMon

(
dq + d(q)− d · 1sq+1

)
.

Using these equations, we obtain

xe

(
x2
dqxdq−1 · · ·xd1 −MinMon

(
dq + d(q)

))
= xdq

∏
di≺e

xdi
(
xe
∏
di�e

xdi −MinMon(e +
∑
di�e

di)
)

+
(
xdq

∏
di≺e

xdi MinMon(e +
∑
di�e

di)
)
−
(
xe MinMon

(
dq + d(q)

))
= xdq

∏
di≺e

xdi
(
xe
∏
di�e

−xd·1j MinMon
(
e +

∑
di�e

di − d · 1j
))

+ xd·1jxdq
∏
di≺e

xdi MinMon
(
e +

∑
di�e

di − d · 1j
)

− xd·1sq+1xe MinMon
(
dq + d(q)− d · 1sq+1

)
= xdq

∏
di≺e

xdi
(
xe
∏
di�e

xdi − xd·1j MinMon(e +
∑
di�e

di − d · 1j)
)

+ xd·1jxdq
∏
di≺e

xdi MinMon
(
e +

∑
di�e

di − d · 1j
)

− xd·1sq+1
xe MinMon

(
dq + d(q)− d · 1sq+1

)
.

Looking at this last sum, the factor

xe
∏
di�e

xdi − xd·1j MinMon
(
e +

∑
di�e

di − d · 1j
)

of the first summand is an element of H, for by construction,
∏

di�e xdi is
indeed a minimal monomial (in fact, the first summand even is its own involutive
standard representation). As an immediate consequence, the first summand is
an element of I(Y ), and then so is the remainder of the last term in this chain
of equations, i.e. the sum of the last and the second-to-last line.
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But the leading monomial of the sum of these two lines (as long as this sum
is not 0, in which case we do not need to consider it at all) has a factor of
shape x(0,...,d,...,0); namely xd·1j or xd·1sq . So using remark 6.2.4, we cannot get
a constant in the differential of this summand.

So we now ask the question if the summand

he = xdq
∏
di≺e

xdi
(
xe
∏
di�e

xdi − xd·1j MinMon
(
e +

∑
di�e

di − d · 1j
))

can contribute constants to the differential. The technical lemma 6.2.5 below
ensures that no constants can come from vertices of shape v∗he belonging to this
generator, which will finish this proof. We state this lemma on its own, as this
allows us to simplify the language and hence the more general statement, which
includes all that is necessary to conclude this current proof, can be expressed in
a more compact manner.

Lemma 6.2.5. Let e be a multiindex of degree d in Nn+1 that is not of shape
d · 1j for all 0 ≤ j ≤ n. Let

v`

(
xν
(
xe
∏
di�e

xdi −MinMon(e +
∑
di�e

di)
))

be a vertex, where xν is a non-constant monomial1. If this vertex appears at
some point in a reduction path p in the sum (3.3.11), then p contains at least one
elementary reduction path of type 1, i.e. the reduction map ρp is not constant.

Proof. We are using induction with respect to the class of xe, starting with
maximal class.

The assumption e 6= d·1j assures that xe
∏

di�e xdi−MinMon(e+
∑

di�e di)
is indeed an element of the Pommaret basis. Recall that by our conventions,
the notation in the lemma implies that xν is multiplicative for

xν
(
xe
∏
di�e

xdi −MinMon(e +
∑
di�e

di)
)
∈ H.

We use induction over the class of xe:
If xe has maximal class, we have e = d1 = (0, ..., 0, 1, d− 1). In this case, the

form of the element given in the lemma is necessarily

v`x
ν
(
x2
d1 −MinMon(2d1)

)
,

as no other shapes are possible. Now the element x2
d1 − MinMon(2d1) is of

maximal class, and therefore there are no reduction paths of type 2 originating
in this vertex by lemma 4.1.4 (see also the discussion preceding said lemma),
because in this case any variable is multiplicative for the leading monomial x2

d1 .
1Recall that by our assumptions, the notation xν

(
xe

∏
di�e

xdi −MinMon(e +
∑

di�e

di)
)

implies ν ∈ ncrit
(
xe

∏
di�e

xdi −MinMon(e+
∑

di�e

di)
)
.
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Now let xe be not of maximal class. Let t be the number of monomials of
type di (see definition 6.1.14) for which di � e holds. This means di � e if and
only if i ≤ t. By construction, dt is of shape

dt =
(
0, ...., 0,d(t)st , d− d(t)st , 0, ..., 0

)
with 1 ≤ d − d(t)st ≤ d − 1. Since xdt � xe holds, for entries of e, we have
ej′ = 0 for j′ < st and d(t)st ≤ est ≤ d − 1. Since e is a multiindex of total
degree d, this implies that there is a je > st such that eje ≥ 1. We fix this index
je. Now consider the multiindex e +

∑
di�e d

i. By remark 6.1.15, we have

∑
di�e

di =
t∑
i=1

di = d(t) = (0, ..., 0,d(t)st , d− 1, ..., d− 1).

But this implies that for the multiindex e +
∑

di�e d
i, the je-th entry must be

greater or equal to d, and therefore by lemma 6.1.5, we have

MinMon(e +
∑
di�e

di) = xd·1je MinMon(e +
∑
di�e

di − d · 1je). (6.2.1)

By lemma 5.1.1, it suffices to consider elementary reduction paths of type 2
originating in the vertex given in the current lemma. Any such path is of shape

v`

(
xν
(
xe

∏
di�e

xdi −MinMon(e +
∑

di�e
di)
))

↓

v`∪n

(
xν

xn

(
xe

∏
di�e

xdi −MinMon(e +
∑

di�e
di)
))

↓
...

where the omitted target comes from the involutive standard representation (of
theM-component) of

v`\m∪nxm

(xν
xn

(
xe
∏
di�e

xdi −MinMon(e +
∑
di�e

di)
))
,

where by remark 3.3.5, we have1 m ∈ ` and n = cls(xν) < cls(`). In fact, this
vertex is its own involutive standard representation if and only if xm is multi-
plicative for xe

∏
di�e xdi . However, as in this case we have

deg(
xν

xn
xm) = deg xν ≥ 1,

1Note that here ` is actually a multiindex of multiindices, as the variables are enumerated
multiindices.

122



the entire path cannot be a concatenation of exclusively such reduction paths
where xm is multiplicative for xe

∏
di�e xdi . Additionally, when xm is multi-

plicative, if we choose `′ = (` \m) ∪ n and xν
′

= xνxn

xm
, the target of the path

is again of the same form as the source of the path, yet it is smaller than the
source of this elementary reduction path with respect to the ordering induced
by the Morse matching. Therefore we can proceed by recursion. Without loss
of generality, we can assume that xm is non-multiplicative for xe

∏
di�e xdi .

Now we proceed by calculating the involutive standard representation of

xm

(xν
xn

(
xe
∏
di�e

xdi −MinMon(e +
∑
di�e

di)
))
.

First we need to find the unique involutive divisor of the leading monomial

xm

(xν
xn
xe
∏
di�e

xdi
)
.

From the definition of di, we immediately see
∏

di�m xdi is a minimal monomial,
so the Pommaret basis contains the element

xm
∏

di�m

xdi −MinMon(m +
∑

di�m

di),

whose leading monomial is the involutive divisor we are looking for (note that
we have xm � xe as we are in the case where m is non-multiplicative).

So we have

xν

xn
xm
(
(xe

∏
di�e

xdi −MinMon(e +
∑
di�e

di)
)

=
xν

xn
xe

∏
e�di≺m

xdi
(
xm

∏
di�m

xdi −MinMon(m +
∑

di�m

di)
)

+
xν

xn
xe

∏
e�di≺m

xdi MinMon(m +
∑

di�m

di)− xν

xn
xm MinMon(e +

∑
di�e

di)

=
xν

xn
xe

∏
e�di≺m

xdi
(
xm

∏
di�m

xdi −MinMon(m +
∑

di�m

di)
)

+ xd·1jm
xν

xn
xe

∏
e�di≺m

xdi MinMon(m− d · 1jm +
∑

di�m

di)

− xm
xν

xn
xd·1je MinMon(e− d · 1je +

∑
di�e

di),

where je is the index associated to the multiindex e earlier in this proof, and jm
is the index that is constructed in the analogous manner from the multiindex
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m. Regarding the last sum, we again see, as in the proof of Lemma 6.2.3, that
the sum of the last two lines is an element of I(Y ), since we know that the first
summand of the last sum is an element of I(Y ), and from the first line of the
equations, so is the entire sum. Now once again, the arguments from remark
6.2.4 tell us that the last two summands cannot contribute any constants, i.e. no
reduction path appearing in the sum (3.3.11) may contain a vertex v∗h∗ where
h∗ is either of those two summands.

For the first summand, the leading monomial of

xm
∏

di�m

xdi −MinMon(m +
∑

di�m

di)

is of class m > e, i.e. for this summand we can apply induction. This concludes
the proof.

This lemma was all that was needed to finish the proof of Lemma 6.2.3. We
have constructed a generator which survives any minimisation, and thus gives
us a non-vanishing shifted Betti number β′m−cls(xdq )+1,q (the +1 appears in this
sum as we are constructing Betti numbers of P/I, not I). Now we calculate the
class of dq:

Theorem 6.2.6. Let S(d) = P/I(Y ) and q be an integer with

1 ≤ q ≤
⌊

(d− 1)(n+ 1)

d

⌋
= regS(d).

Then for every q, there is a non-vanishing Betti number

β′m−cls(xdq )+1,q(S
(d)) 6= 0, where m−cls(dq)+1 =

d(q)sq∑
i=0

(
d− i+ rq − 1

d− i

)
−rq.

Proof. We have

m− cls(xdq ) + 1

= #{e | e � dq = (0, ...., 0,d(q)sq , d− d(q)sq , 0, ..., 0)}+ 1

= #
( d(q)sq⋃

i=0

{
e | e = (0, ..., 0, i, esq+1, ..., en),

n∑
j=sq+1

ej = d− i
}

\ {dq, d · 1sq+1, ..., d · 1n}
)

+ 1

=
( d(q)sq∑

i=0

#
{
e | e = (0, ..., 0, i, en−rq+1, ..., en),

rq∑
j=1

en−rq+j = d− i
})

−#{dq, d · 1sq+1, ..., d · 1n}+ 1

=

d(q)sq∑
i=0

(
d− i+ rq − 1

d− i

)
− rq − 1 + 1
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with a simple combinatorial argument.

Remark 6.2.7. If we have d ≥ q + 1 we immediately see that the numbers from
Definition 6.1.14 simplify to rq = q, sq = n − q, d(q)sq = q. Using basic
identities of binomial coefficients, we obtain

m− cls(dq) + 1 =

q∑
i=0

(
d− i+ q − 1

d− i

)
− q =

(
d+ q

q

)
−
(
d− 1

q

)
− q,

which is the same bound1 as in [EL12, Theorem 6.1 and 6.2]. There, the respec-
tive result is given for d ≥ q + 1 (see [EL12, Theorem 6.3]), while our results
cover all values of d. Finally, we point out that the arguments in this chapter
are independent of the characteristic of k.

If we go back to the beginning of this chapter, we see that in terms of the
Betti table, we have found non vanishing entries

0 1 2 ...
0 1 − − ... ? ? ...
1 − β1,2 = β′1,1 β′2,2 ...
2 − ? ? ... ? β′m−cls(xd2 )+1,2 ...

...
. . .

r − ? ? ... ? ? ... ? ∗ ...

marked with ∗. To precisely determine the question of the Np property, we
would have to prove that all entries marked with a red ? are in fact 0. But
we also see that we have an upper bound for the Np property, given by the
non-vanishing shifted Betti number β′m−cls(xd2 )+1,2. This leads to the following
corollary:

m− cls(xd2) + 1 =

d(2)s2∑
i=0

(
d− i+ r2 − 1

d− i

)
− r2

Corollary 6.2.8. The Veronese subrings satisfy the Np property for some

p ≤ m− cls(xd2) + 1 =

d(2)s2∑
i=0

(
d− i+ r2 − 1

d− i

)
− r2.

6.3 Interpretation of the constructions of this chapter
Some of the constructions of this chapter may appear to be somewhat arbitrary
at first glance. In this section, we explain the ideas behind the constructions
earlier in this chapter and hint at where we see potential for generalizations.

1Note that our situation corresponds to b = 0 in the referenced paper.
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6.3.1 The ideas behind the construction

While in most literature about Veronese subrings, explicit constructions of the
ideal I(Y ) are usually done with goal of obtaining a generating system with
square-free leading terms, such an approach would be counterproductive when
one wants to use the Pommaret division as a tool: If we combine Theorem
2.3.42 and Corollary 6.1.17, we see that any Pommaret must contain exactly
m − n pure powers of variables as leading terms, which of course then have to
be the largest variables for some elements of H with respect to the degrevlex-
order (whose exact definition at this point of the thought process is yet to be
made). As another consequence, the n + 1 smallest variables cannot appear
as classes of leading terms of the Pommaret basis. How should we pick these
variables? There are n+ 1 special multiindices of degree d which are somewhat
natural candidates, namely the multiindices of shape (0, . . . , d, . . . , 0) = d · 1j .
This motivates the part of definition of the degrevlex order in Assumption 6.1.1,
which defines the variables of shape xd·1j to be the smallest variables.

Now if we want to find a systematical way to construct all elements of a
Pommaret basis, we start with the fact that I(Y ) can be generated by elements
of shape xν − xπ, where xµ and xπ are monomials as in Lemma 6.1.7, i.e. we
have

e =

t∑
i=1

(µi · di) =

t∑
i=1

(πi · ei) ∈ Nn+1

for some multiindex e. As we have explained in Example 6.1.11, we obtain such
a generator by decomposing the multiindex e into different sums of multiindices.
There are many such sums and for any choice of xµ �degrevlex x

π, we have a
xµ − xπ ∈ I(Y ). This leads to the question which indices one should chose.
Every such xµ, except for MinMon(e), must appear as leading term in exactly
one element of the Pommaret basis. It appears natural to pick the elements of
shape xµ −MinMon(e). But in fact, there is even another heuristic reason for
this choice: We guarantee that the elements of the Pommaret basis are auto
reduced1, i.e. no summand in any element of H is involutively divisible by the
leading term of another element of H. So we have two intuitive reasons why
elements of H should be of the shape given in Theorem 6.1.9.

Regarding the defining conditions of the sets Ht in Theorem 6.1.9, we now
have given the reasons behind every condition except

xd2
· · ·xdt = MinMon

( t∑
j=2

dj

)
.

This condition does not so much come from the Veronese subrings, but it takes
care of a basic property of involutive bases: If this condition is not satisfied, we
have that Ht−1 contains the element

h = xd2
· · ·xdt −MinMon

( t∑
j=2

dj

)
.

1See Definition 2.3.14: This time we mean auto reduced as opposed to head auto reduced.
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Given our general assumption xd1 � xd2 , the leading term of h is an involutive
divisor of the leading term of

xd1
· · ·xdt −MinMon

( t∑
j=1

dj
)

and hence H would not be involutively (head) auto reduced. Additionally, this
condition has another beneficial side effect: In combination with the fact that
the variables xd·1j are the smallest variables, it ensures that H is indeed finite:
This combination implies that in the multiindex

∑t
j=2 dj , no entry can be larger

than d, for otherwise one of the dj would be of shape d ·1i, which is not allowed,
as we have seen above. This idea is directly formalized in the proof of Theorem
6.1.9.

Going back to the degrevlex order defined in Assumption 6.1.1, we have to
reason why we would sort variables of shape xd with d 6= d · 1j in the given
way. This part of the monomial order does not come into play until much later
in the chapter: We need it for the construction of the non-vanishing generator
of Remark 6.2.1. We recall that in our proofs, we had to invest quite a lot of
computations to show that the differential of the given generator

h = vdq,+,...,(0,....,1,q−1)

(
x2
dqxdq−1 · · ·xd1 −MinMon

(
dq + d(q)

))
does not contain a constant. The fact that it was not contained (with a constant
coefficient) in the differential of another generator follows simply from a class
argument, which is based on the fact that the index set of v∗ contains all non-
multiplicative variables. So regarding the differential of this generator it seems
natural to choose a particular useful combination of non-multiplicative variables;
since we are considering the Pommaret division, this implies that we want these
variables to be the largest with respect to the degrevlex order. Now what is this
useful choice?

In the process of calculating the differential of h, we have to take the product
of a v∗hα, we have to consider the product xdhα for all d in the index of v∗.
How can we guarantee that neither of these summands contributes a constant
to the differential? Here we recall Theorem 5.1.4: In the involutive standard
representations of xdhα, any summand where a variable of shape xd·1j appears
will not contribute a constant to the differential. So under which circumstances
will many, or even all, such involutive standard representations be of this shape?
For a variable xd·1j to appear in the involutive standard representation of some
xd(xµ − xπ), we expect it to be necessary that the j-th entry of the multiindex

d +
t∑
i=1

(µi · di)

is at least d. For this to happen, it would be a good start if the entries of
t∑
i=1

(µi · di)
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are as large as possible. However, we still want the entries to be smaller than
d − 1, for we would like to be able to construct the Pommaret basis via the
algorithm of Example 6.1.18. A candidate for such a multiindex is of shape

d(q) = (0, ..., 0,d(q)sq , d− 1, ..., d− 1),

see Definition 6.1.14. It seems also to be the case that this multiindex has
the property that, if we count the number of different multiindices of degree d
appearing in some decomposition of d(q) into sums of multiindices, then this
number is probably minimal. Whenever we add d(q) to a multiindex d with
an entry dj ≥ 1 for a j > sq, the j-th entry of the sum d(q) + d is at least d.
Obviously, for any d with d �degrevlex d(q), this condition is satisfied. So we we
want the conditions

• xd ∈ X≺degrevlex,P (hα) and

• d �degrevlex d(q)

to be satisfied simultaneously. This suggests that we should indeed order the
variables xd as in Assumption 6.1.1. This is the final part of the idea behind
the definition of our degrevlex-order.

Now we should also explain how we came to choose the generator

x2
dqxdq−1 · · ·xd1 −MinMon

(
dq + d(q)

)
appearing in h. We have seen that the multiindex

d(q) =
(
0, ..., 0,d(q)sq , d− 1, ..., d− 1

)
was appearing somewhat naturally along our line of thought. For every decom-
position of this multiindex into multiindices of degree d, we obtain a candidate
for an element of I(Y ). But we found that there is no clear answer to the ques-
tion which one these decompositions is a good candidate to pick; furthermore,
some candidates might actually fail to be elements of H. But there is more
natural way to construct an element of H from d(q): We consider the monomial
MinMon

(
d(q)

)
, and multiply it with its class, obtaining the generator

x
cls MinMon

(
d(q)
) ·MinMon

(
d(q)

)
−MinMon

(
d + d(q)

)
.

A systematical way to describe this construction is by using the numbers of
Definition 6.1.14, since

MinMon
(
d(q)

)
= xdq · · ·xd1

and hence
dq = cls

(
MinMon

(
d(q)

))
.

The generator

x
cls MinMon

(
d(q)
) ·MinMon

(
d(q)

)
−MinMon

(
d + d(q)

)
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is in fact nothing else than

x2
dqxdq−1 · · ·xd1 −MinMon

(
dq + d(q)

)
.

The remainder of Section 6.2 shows that these heuristically justified con-
structions indeed have the intended behavior.

6.3.2 Possibilities for generalization

We have explained in Section 6.3.1 that behind the technical language intro-
duced earlier in this chapter, there are combinatorial arguments which can be
expressed purely by multiindices. Recall that it was our key idea to consider
the multiindex

d(q) = (0, ..., 0,d(q)sq , d− 1, ..., d− 1).

Ignoring for the moment some correctional terms in the formulas, we have seen
that

• the degree of elements of the Pommaret basis, and hence the total degree
of the non-vanishing Betti numbers in Theorem 6.2.6 corresponds to the
question if this multiindex can be decomposed into sums of multiindices
such that the defining conditions of Theorem 6.1.9 are satisfied.

• the homological degree of the non-vanishing Betti numbers in Theorem
6.2.6 corresponds to the number of multiindices for which every entry is
at most as large as the respective entry of d(q).

Of course, this idea leads to many new questions: If we exchange d(q) for
another multiindex, is it possible to obtain other non-vanishing Betti numbers?
Or even lower bounds larger than 1? It is likely that we need some adaptations
to the monomial order of Assumption 6.1.1.

We also point out that so far we have been aiming to construct non-vanishing
entries which are, as conjectured by [EL12] in their case d ≥ q+ 1, possibly the
leftmost non-vanishing entries in each row. As a corollary, we had bounds for
the Np-property. However, the question of the linear strand asks us to try to
construct non-vanishing entries of the Betti table which are as much to right
as possible (and the also to find the rightmost such entry). Thus, it could be
beneficial to identify multiindices which can be decomposed into sums where as
many multiindices as possible appear. Recall that for d(q), we suggest that is
number might be minimal.

Since we were working with Veronese subrings, any multiindex of degree d
needs to be considered. But what if we change the map

νd : Pn
k
→ Pm

k
,

by omitting some monomials? Of course, this means we are removing some
multiindices from our constructions and therefore also possibly some decompo-
sitions of d(q). Do the purely combinatorial arguments remain valid if we simply
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add the condition that the multiindices in question need to be contained in a
subset? On first glance, we consider this to be likely, but a more rigid investi-
gation remains necessary. If the answer is yes, how does it effect our Pommaret
basis and the formula for non-vanishing Betti numbers?

There are also other different generalizations of Veronese subrings, such as
Veronese modules given by

Sn,d,k =
⊕
i≥0

k[x0, ..., xn]k+id.

While our initial impression is that applying our ideas to the modules would
require complicating our language, it still looks possible.
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7 Green’s Hyperplane Restriction Theorem
In this chapter, we aim to prove a part of Green’s Hyperplane Restriction Theo-
rem. The contents of this chapter are independent of Chapters 3 to 6. To state
the theorem, we need the definition below.

Definition 7.0.1. Let c, t > 0 be two integers. By [Gre98, Theorem 3.1], there
are unique integers kt, ...., tδ ≥ δ > 0, such that

c =

(
kt
t

)
+

(
kt−1

t− 1

)
+ ...+

(
kδ
δ

)
.

In this situation, we define

c<t> =

(
kt − 1

t

)
+

(
kt−1 − 1

t− 1

)
+ ...+

(
kδ − 1

δ

)
,

where
(
a
b

)
= 0 if a < b.

Now the full version of the Hyperplane Restriction Theorem can be formu-
lated as follows.

Theorem 7.0.2. [Gre98, Theorem 3.4] Let I E P be an ideal with Hilbert
function HFP/I(t). Let IH be the restriction of I to a general hyperplane1, seen
as an ideal in the polynomial ring PH . Then for any integer t ≥ 1, we have

HFPH/IH (t) ≤
(
HFP/I(t)

)
<t>

.

We will prove a weaker statement, which is given in Theorem 7.4.4; essen-
tially we restrict ourselves to sufficiently large values of t.

In [Gre98], the theorem comes alongside a number of other theorems, for
example the Persistence Theorem and the Regularity Theorem of Gotzmann,
which follow the common question of examining the behavior (in particular the
growth) of the Hilbert function and its relation to the Castelnuovo-Mumford-
regularity. Green proves the Hyperplane Restriction theorem together with
Theorem 7.0.3 below, by doing one large induction which covers both theorems.
However, looking at the proof given [BH98, Theorem 4.2.10], Theorem 7.0.3
can also be understood to be a corollary of Theorem 7.0.2: If Theorem 7.0.2
holds for a degree t, then so does Theorem 7.0.3 for the same t. Hence, if we
can prove Theorem 7.0.2 for sufficiently large values of t, then we also obtain a
proof Theorem 7.0.3.

Theorem 7.0.3 (Macaulay’s Estimate on the Growth of Ideals). [Gre98, Propo-
sition 3.5] Let I E P be an ideal. Then for any integer2 t ≥ 1,

HFP/I(t+ 1) ≤ HFP/I(t)
<t>.

1More precisely, we mean that there is an open subset of hyperplanes for which the state-
ment holds, see Definition 2.3.29.

2Here the c<t> is defined in analogy to the c<t>-notation of Definition 7.0.1, by increasing
each kt by one.
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Definition 7.0.4. Let I E P be an ideal. The saturation of I is the ideal

Isat = {f ∈ P | ∃k ∈ N : f · Pk ⊆ I}.

I is saturated if and only if I = Isat.

We revert back to our conventions stated in Assumption 2.1.4, while in
particular discarding both the temporary Assumption 5.0.1 and Assumption
6.0.1 of the two previous chapters. However, we still consider only Pommaret
bases.

Definition 7.0.5. Given an ideal I E P, we define Bq(I) = lt(I)q ∩T and

β(k)
q (I) = |{t ∈ Bq(I)| cls(t) = k}|.

The β-vector of I is

βq(I) =
(
β(0)
q (I), . . . , β(n)

q (I)
)
.

Lemma 7.0.6. Let H = {h1, ...,hs} be a Pommaret basis of the ideal I E P.
For every hα ∈ H, let kα be the number of multiplicative variables of hα, i.e.
kα = cls(hα) + 1. Then we have

β(c)
q (I) =

s∑
α=1

(
q − deg(hα) + kα − c− 2

q − deg(hα)− 1

)

=
∑
f≥0

n∑
k=0

(
q − f + k − c− 2

q − f − 1

)
β

(k)
0,f ,

where the β(k)
0,f are the numbers from definition 2.3.63.

Proof. Essentially this is nothing else than a refinement of the representation of
the Hilbert polynomial given in lemma 2.3.64: Instead of counting all elements
of degree q, we count elements of degree q and class c. For any hα ∈ H and a
degree q ≥ deg(hα), picking a monomial xµ with deg xµ = deg(hα) − q gives
a basis vector xµhα ∈ Iq, and if we additionally require xµ ∈ k[XP,H (hα)], we
obtain a basis of Iq by taking the union over all such monomials and all hα.
Now β

(c)
q (I) is given by the number of basis elements xµhα ∈ Iq of class c. To

count those, we have to count the multiindices µ for which µc ≥ 1, µk = 0 for
k < c and k ≥ cls(hα). This means that in the formulae of equation (2.3.6) in
lemma 2.3.64, we have to replace t by q − 1, kα by kα − c and k by k − c. This
gives the sums of the lemma.

7.1 Lex segment ideals
In this section, we will introduce lex segment ideals, which are monomial ide-
als with additional “nice” properties. Later on in this chapter, we will link
(saturated) lex segment ideals with various representations of the Hilbert poly-
nomial. This kind of connection is by no means a new idea, and closely related
constructions can be found for example in [Geh03] and its foundation [Ree92].
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Definition 7.1.1.

• A set of monomials of degree q is called a lex segment (of xµ) if it is given
by

Lex(xµ) =
{
xν ∈ T | deg(xν) = q, xµ �lex x

ν
}

for some monomial xµ of degree q. We also understand the empty set to
be a lex segment.

• A k-linear subspace V of P is called a lex segment space if V ∩Td is a lex
segment for all d ∈ N.

• A monomial ideal I of P is called a lex segment ideal if Id is a lex segment
space for all d ∈ N.

These definitions are in analogy to [KR05, Definitions 5.5.12 and 5.5.30]

Example 7.1.2. Let P = k[x0, x1, x2]. Then the lex segment of x3
1 is given by

Lex(xµ) = {x3
1, x

2
0x2, x0x1x2, x

2
1x2, x0x

2
2, x1x

2
2, x

3
2}.

Lemma 7.1.3. Let I E P be a lex segment ideal. Then I is stable (and therefore
also quasi-stable). The unique monomial minimal generating system of I is a
Pommaret basis.

Proof. Let xµ ∈ I with cls(xµ) = i. Since Id is a lex segment, then xµ−1i+1j ∈ I
for j > i, which is the unique involutive divisor of xµ+1j . Using lemma 2.3.19,
we see that T ∩ Id is a Pommaret basis of 〈Id〉, and then so is the monomial
minimal generating system of I.

Lemma 7.1.4. Let I E P be a lex segment ideal. If Id = 〈Lex(xµ)〉 for some d,
we have 〈Lex(x0x

µ)〉 ⊆ Id+1, and equality holds if and only if I has no minimal
generator in degree d+ 1.

Proof. Let xν ∈ Lex(x0x
µ), so ν �lex µ+10. We separately consider two cases:

cls(xν) = 0: Then we have ν0 ≥ 1, so ν − 10 �lex µ. Then xν−10 ∈ Id and
therefore xν ∈ Id+1.

cls(xν) = i > 0: Here we have ν �lex ν−1i+10. Now if ν − 1i + 10 �lex µ+ 10,
we have ν − 1i �lex µ and therefore xν ∈ Id+1.

Now let I have no minimal generator in degree d+ 1, so P · Id = Id+1. For an
xν ∈ Id+1, we have xν = xix

κ for some i and xκ with κ �lex µ. But then

ν = κ+ 1i �lex κ+ 10 �lex µ+ 10,

and therefore xν ∈ Lex(x0x
µ).
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7.2 Saturated lex segment ideals
Lemma 7.2.1. [Sei09, Corollary 10.2] Let H be a Pommaret basis of an ideal
I E P. Then I is saturated if and only if H contains no elements of class 0.

Lemma 7.2.2. A lex segment ideal I E P is saturated if and only if

I ∩T = {xν | xν �lex x
µ}

for some xµ ∈ T with cls(xµ) > 0.

Proof. Let H be a monomial Pommaret basis of a saturated lex segment ideal
I E P. In particular, H is a minimal generating system of I by lemma 7.1.3.
Now let xµ be the element of H which is minimal with respect to the lex order
among all elements of maximal degree in H. We claim that for this xµ, we
have I ∩ T = {xν | xν �lex x

µ}. Since I is saturated, we have cls(xµ) > 0 by
lemma 7.2.1. Suppose there is an xκ ∈ I with xκ ≺lex x

µ. Let d = deg xκ. We
separately consider two cases:

d ≤ deg(xµ): Let µ = µ1 + µ2 such that deg xµ
2

= d and such that there is an
index iµ such that1 µ1

i = 0 for i > iµ and µ2
i = 0 for i < iµ. So we have

µ1 = (µ0, ..., µiµ−1, µiµ − aµ, 0, ..., 0)

and
µ2 = (0, ..., 0, aµ, µiµ+1, ..., µn)

where iµ and aµ are the unique numbers such that d+1 = aµ+
∑n
j=iµ+1 µj

and 0 ≤ aµ < µiµ (if such numbers do not exist, then because of d ≤ degµ,
we must have µ = ν, contradicting the assumption xκ ≺lex xµ). Since
additionally we have deg xµ

2

= d + 1 > d = deg xκ, xκ ≺lex x
µ implies

xκ ≺lex x
µ2

. We have xdeg(xµ)−d
0 xκ ∈ I. But now we obtain

κ+ (deg(xµ)− d) · 10 �lex κ+ µ1 ≺lex µ
2 + µ1 = µ.

This contradicts the choice of xµ.

d > deg(xµ): In analogy to the case d ≤ deg(xµ), let κ = κ1 + κ2 such that
deg xκ

2

= deg(xµ) and such that there is an index iκ such that κ1i = 0 for
i > iκ and κ2

i = 0 for i < iκ. So we have

κ1 = (κ0, ..., κiκ−1, κiκ − aκ, 0, ..., 0)

and
κ2 = (0, ..., 0, aκ, κiκ+1, ..., κn)

where iκ and aκ are the unique numbers such that

deg(xµ) = aκ +
n∑

j=iκ+1

κj

1µ1i refers to the i-entry of the multiindex µ1.
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and 0 ≤ aκ < κiκ (such numbers do exist because of the assumption
d > deg(xµ)). Now by construction, κ2 is an involutive divisor of κ, and
since I is generated in degree deg(xµ) = d = deg(xκ

2

), we have xκ ∈ I if
and only if xκ

2 ∈ I. So xκ2 ∈ I. Now if κ2 � µ, then also κ �lex κ
2 �lex µ,

so we must have have κ2 ≺lex µ, contradicting the definition of µ.

Now take I to be a monomial ideal with I ∩ T = {xν | xν �lex x
µ} for some

xµ ∈ T with cls(xµ) > 0. By lemma 7.2.1, it suffices to show that if x0x
ν ∈ I,

we also have xν ∈ I.
So let x0x

ν ∈ I. Then we have ν+10 �lex µ, so the last non-vanishing entry
of µ − ν − 10 is negative. Since the entries of µ − ν − 10 and µ − ν are the
same, with the exception of the 0-th entry (belonging to x0), we easily see that
ν �lex µ unless the 0-th entry of µ− ν is positive. But because of cls(xµ) > 0,
we have µ0 = 0, and so this is impossible and therefore xν ∈ I.

Now in the special case of an ideal for which lt(I) ∩T = {xν | xν �lex x
µ}

for an xµ ∈ T holds, it is possible to directly give a Stanley decomposition for
the module P/I, from which we then can read off the Hilbert polynomial of
P/I. In fact, we will even know slightly more about the Hilbert polynomial, as
this decomposition will even give us the Gotzmann representation (see definition
7.3.1) of the Hilbert polynomial.

Lemma 7.2.3. Let I E P be a monomial ideal with

lt(I) ∩T = {xν | xν �lex x
µ}

for some xµ ∈ T. Then

P/ lt(I) ∼=
µn−1⊕
i=0

k[x0, ...xn−1]xin ⊕
µn−1−1⊕
i=0

k[x0, ..., xn−2]xin−1x
µn
n

⊕ ...⊕
µ1−1⊕
i=0

k[x0]xi1x
µ2

2 · · ·xµnn ⊕
µ0−1⊕
i=0

kxi0x
µ1

1 · · ·xµnn

Proof. Note that a k-basis of P/ lt(I) is given by {xν ∈ T | xν ≺lex x
µ}. The

direct sum decomposition essentially does nothing more than partitioning those
generators by the last non-vanishing entries of the difference µ−ν. It is obvious
that no elements of this basis are missing, and that no redundant elements are
added either.

We explicitly state one corollary of this lemma. Due to lemma 7.2.2, the
corollary does in particular hold for saturated lex segment ideals.

Corollary 7.2.4. Let I E P be a monomial ideal with

lt(I) ∩T = {xν | xν �lex x
µ}

for some xµ ∈ T. Then the regularity of P/I is given by reg(P/I) = deg µ.
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Proof. From the decomposition of lemma 7.2.3, we immediately see that a Pom-
maret basis of lt(I) is given by

〈xµn+1
n , xµnn x

µn−1+1
n−1 , ...., xµnn · · ·x

µ1

1 xµ0+1
0 〉.

We now obtain the formula for the regularity by Theorem 2.3.45.

Definition 7.2.5. For an integer a ≥ 0, let(
t+ a

a

)
=

(t+ a)(t+ (a− 1) · · · (t+ 1)

a!
∈ Q[t]

be a polynomial function. We understand
(
t+0

0

)
= 1.

Corollary 7.2.6. Let I E P be an ideal with lt(I) ∩T = {xν | xν �lex x
µ} for

some xµ ∈ T. Then the Hilbert polynomial of P/I is given by

HPP/I(t) =

µn−1∑
i=0

(
(t− i) + (n− 1)

n− 1

)
+

µn+µn−1−1∑
i=µn

(
(t− i) + (n− 2)

n− 2

)

+ ...+

µn+...+µ2+µ1−1∑
i=µn+...+µ1

(
(t− i) + 1

1

)
+

µn+...+µ0−1∑
i=µn+...+µ1

(
(t− i) + 0

0

)
Proof. If we restrict the decomposition of lemma 7.2.3 to terms of degree t with
t≥ deg(xµ), we obtain

(
P/ lt(I)

)
t
∼=
µn−1⊕
i=0

k[x0, ...xn−1]t−i · xin ⊕
µn−1−1⊕
i=0

k[x0, ..., xn−2]t−µn−i·x
i
n−1x

µn
n

...⊕
µ1−1⊕
i=0

k[x0]t−µn−...−µ2−i · xi1x
µ2

2 · · ·xµnn ⊕
µ0−1⊕
i=0

kxi0 · x
µ1

1 · · ·xµnn
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which gives

HPP/I(t)

= HPP/ lt(I)(t)

=

µn−1∑
i=0

(
(t− i) + (n− 1)

n− 1

)
+

µn−1−1∑
i=0

(
(t− µn − i) + (n− 2)

n− 2

)
+ ...

+

µ1−1∑
i=0

(
(t− µn − ....− µ2 − i) + 1

1

)
+

µ0−1∑
i=0

(
(t− µn − ....− µ1 − i) + 0

0

)

=

µn−1∑
i=0

(
(t− i) + (n− 1)

n− 1

)
+

µn+µn−1−1∑
i=µn

(
(t− i) + (n− 2)

n− 2

)
+ ...

+

µn+...+µ2+µ1−1∑
i=µn+...+µ1

(
(t− i) + 1

1

)
+

µn+...+µ0−1∑
i=µn+...+µ1

(
(t− i) + 0

0

)
.

Note that if we understand
(
a
b

)
= 0 if a < b, the proof ensures that the

formula from lemma 7.2.6 gives the Hilbert function, and not just the Hilbert
polynomial.

7.3 The Hyperplane Restriction Theorem
Definition 7.3.1. Let f ∈ Q[t] be a polynomial. If f can be written as

f =

(
t+ a1

a1

)
+

(
(t− 1) + a2

a2

)
+ · · ·+

((
t− (g − 1)

)
+ ag

ag

)
with integers a1 ≥ a2 ≥ ... ≥ ag ≥ 0, we say that f has a Gotzmann represen-
tation and we call

(a1, a2, ..., ag) ∈ Ng

the Gotzmann difference set of f . For i ≥ 0, we call ai = ai(f) = #{aj | aj = i}
the i-th Gotzmann coefficient of f . The set

G(f) = (a0, a1, ..., aa1−1, aa1 , 0, 0, ...) ∈ NN

is called the Gotzmann vector of f . If f = HPP/I is the Hilbert polynomial of
an ideal, we use the notation

G(I) = G
(
HPP/I

)
and call G(I) the Gotzmann vector of I.
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This notation is a minor adaptation of the notation used in [AGS09, Defini-
tion 2.10].

Obviously, the Gotzmann vector can be determined from the Gotzmann
difference set and vice versa.

Lemma 7.3.2. Let α = (a0, α1, ..., αn) ∈ Nn+1 be a multiindex. Then the
Gotzmann vector of HP〈Lex(α)〉 is given by

(α1, ..., αn, 0, ...).

In particular, a polynomial f ∈ Q[t] has a Gotzmann representation if and only
if there is a lex segment ideal with Hilbert polynomial f .

Note that α0 is irrelevant for the Gotzmann vector.

Proof. See (proof of) lemma 7.2.6.

Lemma 7.3.3. The Gotzmann representation is unique, provided it exists.

Proof. This follows by recursion, using the fact that we must have a1 = deg f .

We also state the relation between the Gotzmann vector and the (·)<t>-
notation of Definition 7.0.1

Lemma 7.3.4. Let the polynomial f ∈ Q[t] be given by the Gotzmann repre-
sentation

f =

(
t+ a1

a1

)
+

(
(t− 1) + a2

a2

)
+ · · ·+

((
t− (g − 1)

)
+ ag

ag

)
.

Then for any q ∈ Z with q ≥ g − 1, we have

f(q)<q> =

(
t+ a1 − 1

a1 − 1

)
+

(
(t− 1) + a2 − 1

a2 − 1

)
+ · · ·+

((
t− (g − 1)

)
+ ag − 1

ag − 1

)
.

In particular, if f is defined by the Gotzmann vector

(a0, a1, ..., aa1−1, aa1 , 0, 0, ...) ∈ NN,

and h ∈ Q[t] is the polynomial defined by the Gotzmann vector

(a1, ..., aa1−1, aa1 , 0, 0, 0, ...) ∈ NN,

then we have that for any q ≥ g that

h(q) = f(q)<q>.

Proof. Using the identity
(
t+a
a

)
=
(
t+a
t

)
the statements follow immediately from

the respective definitions.
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7.4 Connecting Pommaret bases and Lex segment ideals
Remark 7.4.1. Our next goal is to find a relation between a Pommaret basis H
of an ideal I 6= {0}, and the Gotzmann representation of the Hilbert polynomial
HPP/I . As a byproduct, in the process we will also find a another proof for one
part of Lemma 7.3.2; namely that the Hilbert polynomial of an arbitrary graded
ideal has a Gotzmann representation. Our idea is to use the Pommaret basis H
to construct a (saturated) lex segment ideal I ′ with the same Hilbert polynomial
as I. For this ideal I ′, we will then use the decomposition of lemma 7.2.3 and
the formula for the Hilbert polynomial HPP/ lt(I) of corollary 7.2.6.

We deviate from the usual convention of first stating the precise lemma we
want to prove, for the following reason: If one starts with a rather intuitive
computation of the Hilbert polynomial, after some calculations, one naturally
arrives at a point where the suitable (recursive) definition of the lex segment
ideal I ′ is clearly visible. A concrete illustration of the calculation can be found
in Example 7.4.3 below.

Without loss of generality, we can assume that the ideal I is δ-regular, i.e.
it has a Pommaret basis. I ′ is quasi-stable by lemma 7.1.3 (provided it exists).
Now if we look at the formulae from lemma 2.3.64, we see that the Hilbert
polynomials HPP/I and HPP/I′ of I and I ′ are identic if and only if the beta-
vectors of I and I ′ are identic for large degrees. More specifically, we want the
ideal I ′ to be a lex segment ideal with

I ′ ∩T = {xν | xν �lex x
µ}

for an xµ ∈ T, since for such ideals we can make use of corollary 7.2.6. Since
I ′ is obviously generated by I ′ ∩ T, finding a suitable µ is a sufficient answer
for the question of constructing I ′. We also restrict ourselves to the case where
dim(I) 6= 0, as in this case the Hilbert function of I and IH is 0 eventually,
so the Gotzmann Hyperplane Restriction Theorem trivially holds in sufficiently
large degrees.

We set β(j)
d (P/I) = |{xν ∈ Td | xν 6∈ lt(I), clsxν = j}|, in a manner similar

to the β-vector, see definition 7.0.5. In particular, we note
n∑
j=0

β
(j)
d = dim(P/I)d.

We will construct the entries of µ recursively (starting with a maximal nonzero
index µk and then working “backwards”). Assuming that we have have con-
structed µk−(i−1), ..., µk, we will develop a formula for µk−i depending exclu-
sively on µk−(i−1), ..., µk and the β(j)

d (P/I). As a technical tool, we also define
integers ti depending on µk−i. The ti correspond to degrees which we consider
in the process.

• To start the recursion, let k be the maximal integer such that β(k)
reg I(P/I) 6=

0. This choice is possible, as I is not a zero-dimensional ideal. Then we
set µk+1 = β

(k)
reg I(P/I) and µj = 0 for j > k + 1 (note that if k = n,
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we would have P/I ∼= P and therefore I = {0}). We also set t−1 =
max{reg I, µk+1}+ 1.

With this choice of k, we have

β
(k)
t (P/I) = β

(k)
reg I(P/I) = µk+1

for t ≥ reg I = degH, for the following reason: Considering I ′, for t ≥ µk+1, the
monomials of degree t and class k which are not in I ′t, are

xtk, xt−1
k xk+1, ...., x

t−(µk+1−1)
k x

µk+1−1
k+1 .

Therefore β(k)
t (P/I ′) = µk+1 = β

(k)
t (P/I) as soon as

t ≥ t−1 = max{reg I, µk+1}+ 1.

While the additional summand of 1 in the definition of t−1 may look unnatural
at first glance, it is necessary to make our computations work..

• Now we want to define µk−i and ti for i ≤ k − 1 such that for any choice
of µ0, ..., µk−i−1, the equality

β
(k−i−1)
t (P/I ′) = β

(k−i−1)
t (P/I)

for t ≥ µk−i−1 + ti holds.

So we fix an integer 0 ≤ i ≤ k − 1: First, we define

ti = µk−i + ti−1,

so we only have define µk−i now. We want to ensure that β(k−l)
t is identic for I

and I ′, given t ≥ ti+1, where ti+1 is yet to be defined. Using induction for the
higher classes, we can assume that

β
(k−l)
t (P/I ′) = β

(k−l)
t (P/I)

holds for all classes k − l ≥ k − i, all µ0, ..., µk−i and all t ≥ ti = µk−i + ti−1 .
So for any µk−i−1, let

ti+1 = µk−i−1 + ti =
k∑

j=k−i−1

µj + max{reg I, µk+1}+ 1,

the minimal degree for which we want β(k−i−1)
ti+1

(P/I ′) = β
(k−i−1)
ti+1

(P/I) to hold.
For any choice of µ0, ..., µk−i−1, we have

β
(k−i−1)
ti+1

(
P/I ′

)
=
∣∣{xν ∈ Tti+1 | ν ≺lex (µ0, ...., µk+1, 0, ..., 0), cls ν = k − i− 1}

∣∣
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If we have cls ν = k − i, then ν0, ..., νk−i−2 = 0. Note that we have i ≤ k − 1.

=
∣∣{xν ∈ Tti+1

| ν ≺lex (0, ...., 0, µk−i−1, ...., µk+1, 0, ..., 0), cls ν = k − i− 1}|
∣∣

=
∣∣{xν ∈ Tti+1

| ν ≺lex (µk−i−1, 0, ...., 0, µk−i, ...., µk+1, 0, ..., 0)), cls ν = k − i− 1}
∣∣

+
∣∣{xν ∈ Tti+1

| (µk−i−1, 0, ...., 0, µk−i, ...., µk+1, 0, ..., 0) �lex ν

≺lex (0, ...., 0, µk−i−1, ...., µk+1, 0, ..., 0), cls ν = k − i− 1}
∣∣

But since ti+1 =
∑k
j=k−i−1 µj + max{reg I, µk+1}+ 1, the second set is empty

for degree reasons.

=
∣∣{xν ∈ Tti+1

| ν ≺lex (µk−i−1, 0, ...., 0, µk−i, ...., µk+1, 0, ..., 0)), cls ν = k − i− 1}
∣∣

=β
(k−i−1)
ti+1

(
P/〈Lex(x(µk−i−1,0,....,0,µk−i,....,µk+1,0,...,0))〉

)∣∣
Using lemma 7.1.4 and lemma 7.2.3.

=
i+1∑
l=0

(
(ti+1 − ti − 1) + (i− l + 2)− 1

ti+1 − ti − 1

)
β

(k−l)
ti

(
P/〈Lex(x(0,....,0,µk−i,....,µk+1,0,...,0))〉

)
=

i∑
l=0

(
(ti+1 − ti − 1) + (i− l + 2)− 1

ti+1 − ti − 1

)
β

(k−l)
ti

(
P/〈Lex(x(0,....,0,µk−i,....,µk+1,0,...,0))〉

)
+ β

(k−i−1)
ti

(
P/〈Lex(x(0,....,0,µk−i,....,µk+1,0,...,0))〉

)
Now we use the fact that in order to determine the numbers β(k−l)

ti , we need
to count elements of class k − l ≥ k − i (see also the definition earlier in this
remark). But for any choice of µ0, ..., µk−i−1, these numbers are obviously the
same for ideals lex(x(0,....,0,µk−i,....,µk+1,0,...,0))〉 and lex(x(µ0....,µk+1,0,...,0))〉 = I ′.

=

i∑
l=0

(
(ti+1 − ti − 1) + (i− l + 2)− 1

ti+1 − ti − 1

)
β

(k−l)
ti

(
P/I ′

)
+ β

(k−i−1)
ti

(
P/〈Lex(x(0,....,0,µk−i,....,µk+1,0,...,0))〉

)
Now we make use of the assumption that we have

(
P/I ′

)
= β

(k−l)
ti (P/I) for

0 ≤ l ≤ i.

=
i∑
l=0

(
(ti+1 − ti − 1) + (i− l + 2)− 1

ti − ti−1 − 1

)
β

(k−l)
ti (P/I)

+ β
(k−i−1)
ti

(
P/〈Lex(x(0,....,0,µk−i,....,µk+1,0,...,0)〉)

)
=
i+1∑
l=0

(
(ti+1 − ti − 1) + (i− l + 2)− 1

ti+1 − ti − 1

)
β

(k−l)
ti (P/I)− β(k−i−1)

ti (P/I)

+ β
(k−i−1)
ti

(
P/〈Lex(x(0,....,0,µk−i,....,µk+1,0,...,0))〉

)
=β

(k−i−1)
ti+1

(P/I)− β(k−i−1)
ti (P/I) + β

(k−i−1)
ti

(
P/〈Lex(x(0,....,0,µk−i,....,µk+1,0,...,0))〉

)
.
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• So we see that (for any choice of µ0, ..., µk−i−1) we have

β
(k−i−1)
ti+1

(P/I ′) = β
(k−i−1)
ti+1

(
P/I

)
if and only if

β
(k−i−1)
ti (P/I) = β

(k−i−1)
ti

(
P/〈Lex(x(0,....,0,µk−i,....,µk+1,0,...,0))〉

)
. (7.4.1)

We continue by studying the terms in this equation (7.4.1), using ideas
similar to those used in deriving this equation:

β
(k−i−1)
ti

(
P/〈Lex(x(0,....,0,µk−i,....,µk+1,0,...,0))〉

)
=
∣∣{xν ∈ Tti | ν ≺lex (0, ...., 0, µk−i, ...., µk+1, 0, ..., 0), cls ν = k − i− 1}

∣∣
Again note that we consider the case i ≤ k − 1.

=
∣∣{xν ∈ Tti | ν ≺lex (µk−i, 0, ...., 0, µk−i+1, ...., µk+1, 0, ..., 0)), cls ν = k − i− 1}

∣∣
+
∣∣{xν ∈ Tti | (µk−i, 0, ...., 0, µk−i+1, ...., µk+1, 0, ..., 0) �lex ν

≺lex (0, ...., 0, µk−i, ...., µk+1, 0, ..., 0), cls ν = k − i− 1}
∣∣

Now the elements of the second set can be given in a simple explicit manner.

=
∣∣{xν ∈ Tti | ν ≺lex (µk−i, 0, ...., 0, µk−i+1, ...., µk+1, 0, ..., 0)), cls ν = k − i− 1}

∣∣
+
∣∣{(0, ...., 0, µk−i, 0, µk−i+1...., µk+1, 0, ..., 0),

(0, ...., 0, µk−i − 1, 1, µk−i+1...., µk+1, 0, ..., 0), ...,

(0, ...., 0, 1, µk−i − 1, µk−i+1...., µk+1, 0, ..., 0)}
∣∣

=
∣∣{xν ∈ Tti | ν ≺lex (µk−i, 0, ...., 0, µk−i, ...., µk+1, 0, ..., 0)), cls ν = k − i− 1}

∣∣
+ µk−i

=β
(k−i−1)
ti

(
P/〈Lex(x(µk−i,0,....,0,µk−i+1,....,µk+1,0,...,0))〉

)
+ µk−i

Using lemma 7.1.4 and lemma 7.2.3 again.

=
i+1∑
l=0

(
(ti − ti−1 − 1) + (i− l + 2)− 1

ti − ti−1 − 1

)
β

(k−l)
ti−1

(
P/〈Lex(x(0,....,0,µk−i+1,....,µk+1,0,...,0))〉

)
+ µk−i

=
i∑
l=0

(
(ti − ti−1 − 1) + (i− l + 2)− 1

ti − ti−1 − 1

)
β

(k−l)
ti−1

(
P/〈Lex(x(0,....,0,µk−i+1,....,µk+1,0,...,0))〉

)
+ β

(k−i−1)
ti−1

(
P/〈Lex(x(0,....,0,µk−i+1,....,µk+1,0,...,0))〉

)
+ µk−i

=
i∑
l=0

(
(ti − ti−1 − 1) + (i− l + 2)− 1

ti − ti−1 − 1

)
β

(k−l)
ti−1

(
P/I ′

)
+ β

(k−i−1)
ti−1

(
P/〈Lex(x(0,....,0,µk−i+1,....,µk+1,0,...,0))〉

)
+ µk−i
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Now again we make use of the assumption that for 0 ≤ l ≤ i, we have the
equation β(k−l)

ti (P/I ′) = β
(k−l)
ti (P/I).

=
i∑
l=0

(
(ti − ti−1 − 1) + (i− l + 2)− 1

ti − ti−1 − 1

)
β

(k−l)
ti−1

(P/I)

+ β
(k−i−1)
ti−1

(
P/〈Lex(x(0,....,0,µk−i+1,....,µk+1,0,...,0)〉)

)
+ µk−i

=
i+1∑
l=0

(
(ti − ti−1 − 1) + (i− l + 2)− 1

ti − ti−1 − 1

)
β

(k−l)
ti (P/I)− β(k−i−1)

ti−1
(P/I)

+ β
(k−i−1)
ti−1

(
P/〈Lex(x(0,....,0,µk−i+1,....,µk+1,0,...,0))〉

)
+ µk−i

=β
(k−i−1)
ti (P/I)− β(k−i−1)

ti−1
(P/I)

+ β
(k−i−1)
ti−1

(
P/〈Lex(x(0,....,0,µk−i+1,....,µk+1,0,...,0))〉

)
+ µk−i

Comparing the first and the last line of this chain of equations, we see that the
desired equality (7.4.1) holds if and only if

µk−i = β
(k−i−1)
ti−1

(P/I)− β(k−i−1)
ti−1

(
P/〈Lex(x(0,....,0,µk−i+1,....,µk+1,0,...,0))〉

)
.

However, since 〈Lex(x(0,....,0,µk−i+1,....,µk+1,0,...,0))〉 is a lex segment ideal, we can
use the decomposition from lemma 7.2.3 and corollary 7.2.6 (which can easily be
adapted to take into consideration only elements of one fixed class), to explicitly
express the second summand on the right side in this equation in terms of the
µk−i+1, ...., µk+1. We obtain:

β
(k−i−1)
ti−1

(
P/〈Lex(x(0,....,0,µk−i+1,....,µk+1,0,...,0))〉

=
i∑

j=0

µk−j+1−1∑
l=0

((
ti−1 − l − (µk−j+2 + ...+ µk+1)− 1

)
+ (i− j + 2)− 1

ti−1 − l − (µk−j+2 + ...+ µk+1)− 1

)
.

So if we define

µk−i =

β
(k−i−1)
ti−1

(P/I)−
i∑

j=0

µk−j+1−1∑
l=0

((
ti−1 − l − (µk−j+2 + ...+ µk+1)

)
+ (i− j)

ti−1 − l − (µk−j+2 + ...+ µk+1)− 1

)
,

we have the equalities we were looking for. Note that this definition of µk−i
does indeed only depend on µk−i+1, ..., µk+1 and I, since

ti−1 =
k∑

j=k−i+1

µj + max{reg I, µk+1}+ 1.
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Because of lemma 7.0.6, the β-vectors of I and I ′ are then also identic, for
sufficiently large values of the degree t.

We also point out that this construction is independent of the characteristic
of the ground field k.

If we set µ0 = 0, the ideal lex(xµ) is saturated by lemma 7.2.2.
Altogether, using Lemma 7.3.2, we have proven:

Theorem 7.4.2. Let I E P be an ideal that is neither the zero ideal nor zero-
dimensional. Let k be the maximal integer such that β(k)

reg I(P/I) 6= 0. Then the
unique saturated lex segment ideal I ′ with the same Hilbert polynomial as I is
given by I ′ = 〈Lex(xµ)〉, for µ given by

• µj = 0 for j > k + 1,

• µk+1 = β
(k)
reg I(P/I),

• µk−i = β
(k−i−1)
ti−1

(P/I)−
i−1∑
j=0

µk−j+1−1∑
l=0

((ti−1−l−(µk−j+2+...+µk+1)
)

+(i−j)
ti−1−l−(µk−j+2+...+µk+1)

)
for

0 ≤ i ≤ k − 1,

• and µ0 = 0,

where the numbers ti are given by

t−1 = max{reg I, µk+1}+ 1 and ti = µk−i + ti−1 = t−1 +
i∑

j=0

µj

for i ≥ 0. The Gotzmann vector of I and I ′ is given by

G(I) = G(I ′) = (0, µ1, ...., µk+1, 0, ...).

Example 7.4.3. Via the construction given above, we calculate the saturated
lex segment ideal with the same Hilbert polynomial as the ideal

I = 〈x2
2x3, x2x

2
3, x

3
3〉 E k[x0, x1, x2, x3].

Its Hilbert polynomial is given by

HPP/I(t) =
1

2
t2 +

9

2
t− 1.

Obviously, the given set of generators is a Pommaret basis for I (with respect
to the degrevlex order). From Theorem 2.3.45, we learn that

reg(I) = reg(P/I) + 1 = 3.

We see that Treg(I) ∩ I = T3 ∩ lt(I) does not contain the monomials

x3
0, x2

0x1, x2
0x2, x2

0x3, x0x
2
1, x0x1x2, x0x1x3, x0x

2
2,

x0x2x3, x0x
2
3, x3

1, x2
1x2, x2

1x3, x1x
2
2, x1x2x3, x1x

2
3, x3

2.
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So for the numbers given in the construction above, we obtain

β
(0)
3 (P/I) = 10, β

(1)
3 (P/I) = 6, β

(2)
3 (P/I) = 1, β

(3)
3 (P/I) = 0,

and hence k = 2 and µk+1 = µ3 = 1. To continue, we first need

t−1 = max{reg I, µk+1}+ 1 = max{3, 1}+ 1 = 4.

Now let i = 0, i.e. our goal is to calculate µk = µ2. The formula

µk−i =

β
(k−i−1)
ti−1

(P/I)−
i∑

j=0

µk−j+1−1∑
l=0

((
ti−1 − l − (µk−j+2 + ...+ µk+1)

)
+ (i− j)

ti−1 − l − (µk−j+2 + ...+ µk+1)− 1

)
,

now simplifies to

µ2 = β
(1)
4 (P/I)−

(
4

3

)
= β

(1)
4 (P/I)− 4.

So all this left to do is to calculate β(1)
4 (P/I). We can either explicitly write

down T4 ∩ I = T4 ∩ lt(I), or use the fact that a Pommaret basis induces a
Stanley decomposition of P/I as explained in Remark 2.3.50, or a formula in
analogy to Lemma 7.0.6 to see that

β
(1)
4 (P/I) =

(
1− 1

0

)
β

(1−1)
3 (P/I) +

(
2− 1

0

)
β

(2)
3 (P/I) = 7

and hence µ2 = 3. Now to find µ1, let i = 1. We have

t0 = µk + t−1 = µ2 + 4 = 5.

The formula for µk−i now simplifies to

µ1 = β
(0)
t0 (P/I)−

1∑
j=0

µk−j+1−1∑
l=0

(
(t0 − l − (µk−j+2 + ...+ µk+1)) + (1− j)

t0 − l − (µk−j+2 + ...+ µk+1)− 1

)

= β
(0)
t0 (P/I)−

(
(t0 + 1

t0 − 1

)
−

2∑
l=0

(
(t0 − l − µk+1)

t0 − l − µk+1 − 1

)

= β
(0)
5 (P/I)−

(
6

4

)
−

2∑
l=0

(
4− l
3− l

)
.

= β
(0)
5 (P/I)− 15− 4− 3− 2.

= β
(0)
5 (P/I)− 24.

145



Again, we have

β
(0)
5 (P/I) =

(
1− 1

1

)
β

(0)
3 (P/I) +

(
2− 1

1

)
β

(1)
3 (P/I) +

(
3− 1

1

)
β

(0)
3 (P/I)

= 10 + 2 · 6 + 3 · 1
= 25

and hence µ1 = 1. As mentioned above, we have µ0 = 0 for any ideal. So the
ideal I ′ is given by

I ′ = Lex(x1x
3
2x3) = 〈x1x

3
2x3, x

4
2x3, x

2
3〉,

where this set of generators is also a Pommaret basis for I ′.

Now we want to prove a part of the Hyperplane Restriction Theorem of
Green (recall in the given reference, this theorem is proven for all values of t):

Theorem 7.4.4. [Gre98, Theorem 3.4] Let I E P be an ideal with Hilbert
function HFP/I(t). Let IH be the restriction of I to a general hyperplane, seen
as an ideal in the polynomial ring PH . Then for sufficiently large values of t,
we have

HFPH/IH (t) ≤
(
HFP/I(t)

)
<t>

.

Proof. Working in generic coordinates, we can assume that for t ≥ reg I, the
ideal 〈It〉 has a Pommaret basis whose elements are of degree t 1and that the
generic hyperplane is given by H = 〈x0〉. We will use the identification

PH ∼= P/〈x0〉 ∼= k[x0, ..., xn−1]

and view IH as an ideal in k[x0, ..., xn−1] (even though this means we will iden-
tify xi ∈ P with xi−1 ∈ PH , we choose to work with the notation k[x0, ..., xn−1]
over k[x1, ..., xn] to be consistent with our conventions). Theorem 2.3.45 ensures
that we have reg I ≥ reg IH . By definition of the Hilbert polynomial, we know
that HPP/I(t) = HFP/ lt(I)(t) for t ≥ reg I. Furthermore, for the β-vectors of I
and IH , we have the relation

β(k)
q (I ′H) = β(k)

q (IH) = β(k+1)
q (I) = β(k+1)

q (I ′),

for k ≥ 0 and sufficiently large q and therefore

βq(IH) =
(
β(1)
q (I), ..., β(n)

q (I)
)
.

Note that that βq(IH) is of length n, while βq(I) is of length n+ 1.
Now we look at the saturated lex segment ideals I ′, I ′H with the same Hilbert

polynomials as I, IH . The construction of I ′, I ′H and their respective Gotzmann
vectors according to Remark 7.4.1 and Theorem 7.4.2 tells us that for sufficiently

1This implies that the leading ideal lt(It) of is stable.
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large values, we can construct the β-vector of I or I ′ from its Gotzmann vector,
and vice versa. The key observation is now that the formulae given in Theorem
7.4.2 for this process imply that the shifting relation

β(k)
q (I ′H) = β(k)

q (IH) = β(k+1)
q (I) = β(k+1)

q (I ′),

translates to a corresponding shift in the Gotzmann vectors, i.e. we obtain that
if the Gotzmann vector of I ′ is given by

(0, µ1, ...., µk, µk+1, 0, ...),

then the Gotzmann vector of I ′H is given by

(0, µ2, ...., µk+1, 0, 0, ...).

Here, the entry µ1 vanishes, which may appear surprising at first glance; however
from Theorem 7.4.2 we see that this is indeed the correct formula.

Obviously, for two polynomials f, g ∈ Q[t], the equation G(f) �lex G(g) im-
plies f(t) ≤ g(t) for t sufficiently large. Using this property, from the definition
of the (·)<t>-symbol, we immediately see by Lemma 7.3.4 that

(
HFP/I(t)

)
<t>

has the Gotzmann vector

(µ1, µ2, ...., µk+1, 0, 0, ...).

This finishes the proof.
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8 Conclusion
If one asks the question if the ideas and constructions of this work have been
explored up to their possible limits, our impression is that this could be answered
with a yes at most for Chapter 7: However, while we expect that our main new
idea of this chapter, the link between Pommaret basis and the lex segment ideals
given in Remark 7.4.1 and Theorem 7.4.2, is not enough to extend Theorem
7.4.4 to cover any value of t and hence prove the entire Hyperplane Restriction
Theorem 7.0.2, it stands to check if this link might be of use for other related
fields.

However, we believe that further examination of the resolution introduced
in Chapter 4 might be much more fruitful, as even the first applications we have
presented in Chapter 5, and in particular in Chapter 6, opened up numerous
avenues on which one might continue.

In Chapter 5, we investigated relations between constants appearing in the
resolution from Chapter 4. While so far, the results are of a rather technical
nature, we recall that this resolution has been implemented in CoCoALib, and
that this implementation is efficient for computing Betti numbers, as explained
in Section 4.4. Right now, CoCoALib calculates every single constant on its
own, in the sense that involutive standard representations are calculated only
once, but all reduction paths are calculated on their own. We expect that in
the case where constants are related as explained in Chapter 5, many of these
computations are redundant. Thus an implementation of these technical results
might further accelerate the computation of Betti numbers with CoCoALib.
From a theoretical perspective, for the goal of computing Betti numbers from
a non-minimal resolution, it is sufficient to first compute the constants, and
then compute the ranks of the matrices given by these constants. Now, if we
know something about the relations between constants in different homological
degrees, one can ask if it is also possible to obtain results regarding the ranks
of the matrices. We have tried to continue in this direction, but so far without
success. Nevertheless, we consider it likely that in a situation where there are
overall “relatively few” constants, it should be possible to find at least some
results.

Another interesting question bears some similarity to the topic of Chapter
6: Instead of asking where minimisations might happen, i.e. finding constants
in the differential of the resolution, one might instead ask where minimisations
do not occur. So one reverses the question of Chapter 5 in the sense that we
no longer want to find relations between constants, but now we want to find
relations between places where there are no constants. Of course, it seems likely
that the theorem from Chapter 5 could yield some results in this direction. Then
by the idea explained in remark 6.2.1, we would obtain some generators that will
never vanish during the minimisation process, and therefore give non-vanishing
Betti numbers, or maybe even better, lower bounds for certain Betti numbers.
The feasibility of this approach might however depend on the given ideals or
modules, and a good choice of a Pommaret bases, just like for the Veronese
subrings in Chapter 6.

148



While the constants of our resolution contain sufficient information to com-
pute Betti numbers, the minimal resolution itself still remains interesting, and
in some sense the optimal goal. This leads to the question if the results for con-
stants can be generalised to non-constant entries in the differential. We recall
that the degree of the entry is given by the number of times an elementary re-
duction path of type 1 appears in a longer reduction path. As stated in Remark
5.1.5, it might be of particular interest to study the linear entries, i.e. the paths
where at most one path of type 1 appears.

Turning to Chapter 6, we first point out that at the heart of this chapter, we
constructed a Pommaret basis for the Veronese subrings. In general, finding a
Pommaret basis (or some other kind of involutive basis) for a given a ideal over
polynomial ring P = k[x0, .., xn] in a “concrete” situation such as in example
2.3.24 is a task that can often be solved without much computation, or for
example by using the algorithm mentioned in Remark 2.3.20, possibly after
a change of coordinates. For an entire class of ideals however, such as the
class of ideals given by the Veronese subrings, finding an associated class of
Pommaret bases is usually more difficult. This leads to the question if the
methods employed in this Chapter can be applied to other classes of ideals: For
example, one could consider, as first generalization, any embedding X → Pn

k

given by arbitrary sets of monomials, i.e. where some monomials of degree d
are missing, as explained in Section 6.3.2. As another step, one can ask to what
extent our concept of renumbering variables by multiindices as introduced in
Section 6.1.1 remains useful if one replaces monomials by leading monomials of
polynomials.

If we stay at Veronese subrings, we note that in the paper [EL12], the state-
ment about non-vanishing Betti numbers covered other Betti numbers we have
not considered in this work, see [EL12, Theorem 6.1]. Therefore, a further topic
of research could be to check if we could obtain comparable results via Pommaret
bases and algebraic discrete Morse theory for these Betti numbers. We suspect
that we would have to make some adaptations to the approach presented in
Chapter 6: For example, a change of the monomial order given in Assumption
6.1.1 might be prove to be useful. This is another interesting question, as we
still believe this order has an aspect of “free parameters”, corresponding to the
ordering of the monomials in the Veronese embedding. However, a change of the
monomial order is likely to entail a new computation for a different Pommaret
basis, but we think that the usefulness of an order most likely depends on the
precise question one would like to answer (for example, which Betti numbers
one is interested in).

Again, in this chapter, one can also adopt an inverse question compared to
our results: Instead of asking which Betti numbers do not vanish, one can ask
which Betti numbers are 0. In fact, as we explained at the beginning of Chapter
6, this was originally the first question. However, it is assumed (see for example
again [EL12, Chapter 7]) that the task of proving which Betti numbers for the
Veronese subrings vanish, is harder than finding non-vanishing ones.

Another possible class of modules that might be worth considering from our
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point of view are Veronese modules Sn,d,k, given by

Sn,d,k =
⊕
i≥0

k[x0, ..., xn]k+id,

which are a generalization of Veronese subrings. In the paper [OP01], one can
find several results for these modules. The first big step to apply our approach of
Chapter 6 to these modules would be to find a Pommaret basis for these modules
and then to check if the methods utilized for Veronese subrings still prove to
be fruitful. After a first, not yet detailed, glance at this subject, we are rather
optimistic that this topic might prove to be a suitable field for generalizing our
methods employed for the Veronese subrings.
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