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Introduction

In the late 1950s and 1960s Alexander Grothendieck revolutionized algebraic geometry.
He introduced an abstract algebraic point of view for algebraic geometry. In particular,
he introduced the language of schemes which enabled us to use sheaf theory to study
algebraic varieties. Furthermore, he developed the theory of Hilbert and Quot schemes,
which is still today an area of active research.

Quot schemes were introduced by Grothendieck [25] as schemes representing the con-
travariant Quot functor QuotF ,HP(t)

X,S which is a functor from the category of S-schemes
to the category of sets. The Quot functor parametrizes quotient sheaves of a fixed quasi-
coherent sheaf F on an S-scheme X that are flat over the base and have Hilbert polyno-
mial HP(t) on the fibres. Grothendieck showed the representability of the Quot functor
by embedding it into a suitable Grassmann functor GrN,HP(s) where s is a sufficiently
large integer and N is the number of module terms in degree s.

For the case of Hilbert functors, which are special Quot functors there were several at-
tempts to simplify the proof of representability. The first crucial point was the concept
of regularity, introduced by Mumford [35], for the choice of degree s. A further sim-
plification was found by Gotzmann [23]: his regularity theorem gives a formula for the
minimal s depending only on the polynomial HP(t). These classical approaches allow
us to determine equations for specifying the embedding of the Hilbert scheme into the
Grassmann scheme. But the number of equations and their degrees are usually so high,
that it is impossible to compute these equations.

Instead of considering global equations to embed the Hilbert scheme into the Grass-
mann scheme, Bayer [6] suggested a reduction to the local case, that is to consider an
open covering of the Hilbert scheme induced by an open covering of the Grassmann
scheme. However, even this approach was still far away from practical for computing
concrete equations of a Hilbert scheme.

Using the strategy of Bayer [6] Brachat et al. [11] constructed a special open covering
of the Grassmann functor which is called the Borel fixed open covering. Using this
covering they defined subfunctors of the Grassmann and the Hilbert functor. Then they
showed that these subfunctors are representable which induces the representability of
the Grassmann and Hilbert functors. In particular, they showed that the subfunctors of
the Hilbert functor are represented by marked schemes. The advantage of the approach
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Introduction

of Brachat et al. [11] is that we have to consider only a really small open covering which
is provided by a much smaller set of equations then the approaches mentioned above.
With this approach it was possible for the first time to really compute non trivial Hilbert
schemes.

Marked schemes appeared for the first time in [13]. If J is a strongly stable ideal in
the polynomial ring A[x0, . . . , xn] then the family of ideals I ⊆ A[x0, . . . , xn] such that
A[x0, . . . , xn] = I ⊕ 〈{xα ∈ T | xα /∈ J }〉 is naturally an algebraic scheme, called the
marked scheme. Using the marked scheme it is possible to embed the Hilbert schemes
in affine spaces, which allows computing explicit equations for it. One major restriction
of this approach is that this only works over fields with characteristic zero.

In this thesis we extend the ideas developed by Brachat et al. [11] in two directions.
First, we show that we can construct a similar covering, called a quasi-stable covering,
which let us prove the representability of Hilbert functors over fields of arbitrary char-
acteristic. Secondly, we show that we can extend this approach to Quot functors, which
allows us to give a new proof for the representability of the Quot functor. Using this
new approach we formulate algorithms to compute explicitly an open covering of a
Quot scheme. The new algorithms allow us for the first time to compute concrete Quot
schemes.

This thesis starts with a chapter about resolving decompositions. They provide a uni-
fying framework for computing free resolutions. Furthermore, we introduce in this
chapter the notion of Pommaret bases. They are an example of resolving decomposi-
tions, and they will be the foundation for the theory which is developed in the following
chapters. One disadvantage of Pommaret bases is that they exist only in generic coor-
dinates. Therefore, a part of the first chapter is devoted to introducing several generic
coordinate positions.

Another example of resolving decompositions are marked bases over modules; a topic
we also introduce in the first chapter. They may be considered as a form of Gröbner
basis which do not depend on a term order. Instead, one chooses for each generator
some term as head module term such that the head module terms generate a prescribed
monomial module. We show that the involutive normal form algorithm with respect to
Pommaret division will terminate if the prescribed monomial module is quasi-stable.

The second chapter is devoted to the Hilbert function and the Hilbert polynomial. Both
objects are defined in this chapter. Furthermore, we analyse the important persistence
and regularity theorem for ideals of Gotzmann [23]. We provide for both theorems
new alternative proofs which are much simpler to understand than previous proofs.
They are based on the theory of Pommaret bases. We stated above that the regularity
theorem of Gotzmann is an important step in the proof of the representability of the
Hilbert functor. We want to use this step for the Quot functor, too. For this we briefly
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Introduction

recall the work of Dellaca [15] who extended the regularity theorem of Gotzmann to
modules.

In the third chapter we introduce at first the Hilbert, Quot and Grassmann functors.
Then we construct the “quasi-stable covering” of the Grassmann functor and show
that we can restrict this covering to the Quot functor. The covering is represented by
subfunctors. In an additional step we show that every subfunctor can be represented by
a marked scheme. This marked scheme is an extension of the marked scheme defined
by Brachat et al. [11] and uses the marked bases for modules that we defined in the first
chapter.

The fourth chapter is devoted to the computation of concrete Quot schemes. In the first
part we investigate the computation of saturated quasi-stable or p-Borel fixed mono-
mial modules. In the second part we present two algorithms for computing marked
schemes. Finally, we prove that Hilb3

4 is a reduced scheme, we compute for the first
time a concrete representation for a Quot scheme and give an example for Hilbert
schemes over fields of finite characteristic.

Conventions

Throughout this work we always consider k to be an algebraically closed field of arbi-
trary characteristic andN the set of natural numbers including zero:

• A is a k-algebra.

• P = A[x] is a polynomial ring with variables x = (x0, . . . , xn).

• Pm
d =

⊕m
k=1 P(−dk)ek is a finitely generated free P-module with grading d =

(d1, . . . , dm) ∈ Zm and free generators e1, . . . , em. If d = (0, . . . , 0) we write simply
Pm instead of Pm

d .

• We consider only finitely generated graded submodules U ⊆ Pm
d .

• Let B ⊆ Pm
d , then 〈B〉 is the module generated by B.

• T is the set of terms in P .

• xα ∈ T, then degi(xα) is the degree of xi in xα. Sometimes we also write just αi
instead of degi(xα).

• xα ∈ T, then xαsat := xα

xα0
0

.
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Introduction

• If M ⊆ {0, . . . , n}, we define

TM :=
{

xµ ∈ T | degi(xµ) = 0 ∀ i ∈ {0, . . . , n} \M
}

.

• V ⊆ Pm
d is a monomial module if it is of the form

⊕m
k=1 J (k)ek where J (k) is a

monomial ideal in P .

• A module term (with index k) is a term of the form xµek.

• For a monomial ideal J ⊆ P we define N (J ) ⊆ T as the set of terms in T not
belonging to J .

• For a monomial module V =
⊕m

i=1 J (k)ek we define N (V) = ⋃m
k=1N (J (k))ek.

• For an element f ∈ Pm
d we define supp(f) to be the set of module terms appearing

in f with nonzero coefficient: f = ∑xαeiα∈supp(f) cαxαeiα
.

• If B is a set of homogeneous elements of degree s in Pm
d we write 〈B〉A for the

A-module space generated by B in (Pm
d )s.

• For a module U ⊆ Pm
d we denote by pd(U ) the projective dimension of U .

• For a module U ⊆ Pm
d we denote by reg(U ) the (Castelnuovo-Mumford) regularity

of U .

• For a module U ⊆ Pm
d we denote by depth(U ) the depth of U .

• The binomial coefficient is defined as usual. For k > n we set (n
k) = 0. Further-

more, (n
0) = (n

n) = 1.
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1 Decomposition of Polynomial Modules

The first chapter is about the decomposition of polynomial modules. Decompositions
of polynomial modules are an important aspect in computational algebraic geometry
and commutative algebra because they allow the structured analysis of polynomial
modules.

Now we introduce resolving decompositions, which are decompositions which contain
much information about the underlying free resolution of the polynomial module. Fur-
thermore, we introduce involutive bases and marked bases, which are the foundation
for the following chapters. In this thesis we often work in generic coordinates due to
that we introduce several notions of stability of polynomial modules, too.

1.1 Resolving Decompositions

The determination of free resolutions for polynomial modules is a fundamental task
in computational commutative algebra and algebraic geometry. Free resolutions are
needed for derived functors like Ext and Tor. Also, many important homological in-
variants like the projective dimension or the Castelnuovo-Mumford regularity are de-
fined via the minimal resolution. Moreover, the Betti numbers contain much geometric
and topological information.

Unfortunately, it is rather expensive to compute a resolution. As a rough rule of thumb,
one may say that computing a resolution of length ` corresponds to computing ` Gröb-
ner bases. In many cases one needs only partial information about the resolution like
the Betti numbers simply measuring its size. However, all classical algorithms require
always determining a full resolution.

A new approach is provided in [4] by combining the theory of Pommaret bases and
algebraic discrete Morse theory (together with an implementation in the COCOALIB).
It allows for the first time to determine Betti numbers –even individual ones– without
computing a full resolution and thus is for most problems much faster than classical
approaches (see [4, 5, 19] for detailed benchmarks). In addition, it scales much better
and can be easily parallelised.

5



1 Decomposition of Polynomial Modules

By reason of these good properties it is of great interest to generalize this approach to
other situations. In [5], the approach is extended to Janet bases and in [19] to arbitrary
continuous involutive divisions of Schreyer type. While the proofs remained essentially
the same, the use of another involutive division required the adoption of a number of
technical points.

The main objective of this section is the development of an axiomatic framework that
unifies all the above works. We introduce the novel concept of a resolving decomposition
which is defined via several direct sum decompositions. It implies in particular the
existence of standard representations and normal forms. Then we show that such a
decomposition allows for the explicit determination of a free resolution and of Betti
numbers.

The point of such a unification is not that it leads to any new algorithms. Indeed, we
will not present a general algorithm for the construction of resolving decomposition.
Instead, one should see the results as a “meta-machinery” which given any concept of a
basis that induces a resolving decomposition delivers automatically an effective syzygy
theory for this kind of basis. For the concrete case of resolving decompositions induced
by Janet or Pommaret bases, an implementation of this effective theory is described
(together with benchmarks) in [4, 5]. For other types of underlying bases only fairly
trivial modifications of this implementation would be required.

Large parts of the following section have already been published in [2].

1.1.1 Definition of Resolving Decompositions

Let B = {h1, . . . , hs} ⊂ Pm
d be a finite homogeneous generating set such that there

exists module terms xµi eki ∈ supp(hi) with coefficient 1A for every hi ∈ B. Among
all of these special module terms we choose one for every hi and denote it by hm(hi)
and call it head module term. We define U = 〈B〉 and define the head module terms of B,
hm(B) := {hm(h) | h ∈ B} and the head module of U , hm(U ) := 〈hm(B)〉. Note that
hm(U ) depends on the choice of B and on the choice of the head module terms in B.

Definition 1.1. Choose a submodule U ⊆ Pm
d such that there exists a finite generating set

B described like above. Then we define a resolving decomposition of the submodule U as a
quadruple (B, hm(B), XB ,≺B) with the following five properties:

(i) U = 〈B〉.

(ii) Let h ∈ B be an arbitrary generator. Then, for every module term xµek ∈ supp(h) \
{hm(h)}, we have xµek /∈ hm(U ).

6



1 Decomposition of Polynomial Modules

(iii) We assign a set of multiplicative variables XB(h) ⊆ x to every head module term
hm(h) with h ∈ B such that we have direct sum decompositions of both the head module

hm(U ) =
⊕
h∈B

A[XB(h)] · hm(h) (1.1)

and of the module itself
U =

⊕
h∈B

A[XB(h)] · h . (1.2)

(iv) (Pm
d )r = Ur ⊕ 〈N (hm(U ))r〉A for all r ≥ 0.

(v) Let {f1, . . . , fs} denote the standard basis of the free module P s. Given an arbitrary term
xδ ∈ T and an arbitrary generator hα ∈ B, we find for every term xεei ∈ supp(xδhα)∩
hm(U ) a unique hβ ∈ hm(B) such that xεei = xδ′ hm(hβ) with xδ′ ∈ A[XB(hβ)] by
(iii). Then the term order ≺B on P s must satisfy xδfα �B xδ′fβ.

In the sequel, we always assume that (B, hm(B), XB ,≺B) is a resolving decomposition
of the finitely generated graded module U = 〈B〉 ⊆ Pm

d . In addition to the multi-
plicative variables, we define for h ∈ B the non-multiplicative variables as XB(h) :=
{x0, . . . , xn} \ XB(h). Note, that for notational simplicity, we will identify sets X ⊆ x
of variables often with sets of the corresponding indices and thus simply write i ∈ X
instead of xi ∈ X. Let h ∈ B, then we call a product xi · h non-multiplicative prolongation
if xi ∈ XB(h).

Remark 1.2. Resolving decompositions may be considered as a refinement of Stanley decompo-
sitions. A Stanley decomposition of a module U ⊆ Pm

d is a representation of U as an isomor-
phism of graded A-linear spaces

U ∼=
⊕
f∈B

A[Xf] · f

with a finite set B ⊆ Tm and sets Xf ⊆ {x0, . . . , xn}.

Indeed, (1.1) gives us a Stanley decomposition of the head module of U and (1.2) of U itself.

Remark 1.3. The third condition gives us for every f ∈ U a unique standard representation

f =
s

∑
α=1

Pαhα

with Pα ∈ A[XB(hα)]. Condition (iv) implies the existence of unique normal forms for all
homogeneous elements f ∈ Pm. Due to this condition, we find unique Pα ∈ A[XB(hα)] for
every hα ∈ B such that f′ = f−∑s

α=1 Pαhα and f′ ∈ 〈N (hm(U ))〉A. Another important con-
sequence of the definition of a resolving decomposition is that (1.1) implies that every generator
in B has a different head module term.

7



1 Decomposition of Polynomial Modules

While for the purposes of this work the mere existence of normal forms is sufficient, we
note that (v) implies that they can be effectively computed. The choice of head terms
and multiplicative variables in a resolving decomposition induces a natural reduction
relation. If f ∈ Pm

d contains a module term xεei ∈ hm (U ), then there exists a unique
generator h ∈ hm(B) such that xεei = xδ hm(h) with xδ ∈ TXB(h) and we have a

possible reduction f B−→ f− cxδh for a suitably chosen coefficient c ∈ A.

Lemma 1.4. For any resolving decomposition (B, hm(B), XB ,≺B) the transitive closure B−→∗

of B−→ is noetherian and confluent.

Proof. It is sufficient to prove that for every term xγek in hm(U ), there is a unique g ∈
Pm

d such that xγek
B−→∗ g and g ∈ 〈N (hm(U ))〉.

Since xγek ∈ hm(U ), there exists a unique xδhα ∈ U such that xδ hm(hα) = xγek

and xδ ∈ XB(hα). Hence, xγek
B−→ xγek − cxδhα for a suitably chosen coefficient c ∈ A.

Denoting again the standard basis ofP s by {f1, . . . , fs}, we associated the term xδfα with
this reduction step. If we could proceed infinitely with further reduction steps, then
the reduction process would induce a sequence of terms in P s containing an infinite
chain which, by condition (v) of Definition 1.1, is strictly descending for ≺B . But this

is impossible, since ≺B is a well-ordering. Hence, B−→∗ is noetherian. Confluence is
immediate by the uniqueness of the element that is used at each reduction step.

Furthermore, every resolving decomposition (B, hm(B), XB ,≺B) induces a directed
graph naturally. Its vertices are given by the elements in B. If xj ∈ XB(h) for some
h ∈ B, then, by definition, B contains a unique generator h′ such that xj hm(h) =
xµ hm(h′) with xµ ∈ TXB(h′). In this case we include a directed edge from h to h′. We
call the thus defined graph the B-graph.

Lemma 1.5. The B-graph of a resolving decomposition (B, hm(B), XB ,≺B) is acyclic.

Proof. Assume the B-graph was cyclic. In this case we find generators hk1 , . . . , hkt ∈ B
which are pairwise distinct variables xi1 , . . . , xit such that xij ∈ XB(hm(hk j)) for all
j ∈ {1, . . . , t} and terms xµ1 , . . . , xµt such that xµj ∈ TXB(hm(hkj

)) for all j ∈ {1, . . . , t}
satisfying:

xi1 hm(hk1) = xµ2 hm(hk2),
xi2 hm(hk2) = xµ3 hm(hk3),

...
xit hm(hkt) = xµ1 hm(hk1).

8



1 Decomposition of Polynomial Modules

Multiplying with some variables, we obtain the following chain of equations:

xi1 · · · xit hm(hk1) = xi2 · · · xit x
µ2 hm(hk2)

= xi3 · · · xit x
µ2 xµ3 hm(hk3)

...
= xit x

µ2 · · · xµt hm(hkt)

= xµ1 · · · xµt hm(hk1)

which implies that xi1 · · · xit = xµ1 · · · xµt . Furthermore, condition (v) of Definition 1.1
implies in P s the following chain:

xi1 · · · xit fk1 �B xi2 · · · xit x
µ2 fk2 �B · · · �B xµ1 · · · xµt fk1 .

Because of xi1 · · · xit = xµ1 · · · xµt , we must have throughout equality entailing that
k1 = · · · = kt which contradicts our assumptions.

The main obstacle to check if a given quadruple (B, hm(B), XB ,≺B) is a resolving de-
composition is condition (v). In the following we show, that one can easily choose an
ordering for a monomial module if the B-graph is acyclic.

Lemma 1.6. Let B be a generating set with multiplicative variables XB such that B = hm(B),
e.g. B consists only of module terns. If the B-graph is acyclic, then there is no cycle of the form

xν1 hm(hk1) = xµ2 hm(hk2),
xν2 hm(hk2) = xµ3 hm(hk3),

...
xνt hm(hkt) = xµ1 hm(hk1)

such that xµi ∈ TXB(hki
) and xνi ∈ T.

Furthermore, if xν hm(hi) = xµ hm(hj) such that xµ ∈ TXB(hj) then there is a path from hi
to hj in the B-graph.

Proof. Let us assume that there is such a cycle. In the following we show that this cycle
induces a cycle in the B-graph.

Without loss of generality we assume that gcd(xνi , xµi+1) = 1 and xνi /∈ TXB(hki
).

Take xi0 ∈ XB(hk1) such that xi0 divides xν1 . In addition, we define xρ0 = xν1
xi0

. Let the

normal form of xi0 hm(hk1) be xτ1 hm(hl1). Then xρ0 xτ1 hm(hl1) = xµ2 hm(hk2). Now
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1 Decomposition of Polynomial Modules

we take xi1 which is non-multiplicative for hl1 and divides xρ0 xτ1 . Again we define xρ1

as xρ0 xτ1
xi1

and then we repeat the procedure. Due to the fact that the B-graph is acyclic

and there are only finitely many xρ, xτ and hl such that xρxτ hm(hl) = xµ2 hm(hk2)
we find after finitely many steps xlt and hlt such that xlt ∈ XB(hlt), xlt |xρt−1 xτt and the
normal form of xlt hm(hlt) is xµ2 hm(hk2).

Now we do the same for hk2 , hk3 , . . . . At the end we reach again hk1 . Hence, we have
constructed a cycle in the B-graph, which is a contradiction to our assumption.

The last statement of the lemma follows immediately from the construction above.

Lemma 1.7. Choose B = {h1, . . . , hs} and XB such that all hi are module terms and the
conditions (i) to (iv) of Definition 1.1 are satisfied. Furthermore, the B-graph should be acyclic
and the elements of B are numbered in such a way that for a path from hi to hj in the B-graph
we always have i < j.

Let ≺B be an arbitrary term ordering in P s such that xαfi �B xβfj when i < j. Then (B,
hm(B), XB ,≺B) is a resolving decomposition.

Proof. We only have to proof condition (v) of Definition 1.1. Take an arbitrary hi ∈ B
and xδ ∈ T. Then xδhi = xαhj for a suitable xα ∈ TXB(hj). Due to Lemma 1.6 there is a
path from hi to hj in the B-graph and hence i < j. But then xδfi �B xαfj which proves
the last condition of the definition of a resolving decomposition.

The last lemma gives us a tool to check easily if a monomial generating set together
with the assignment of multiplicative variables is a resolving decomposition. We only
have to check if the corresponding B-graph is acyclic. Then we can choose an arbitrary
ordering which fulfils the property of Lemma 1.7 to finish the definition of a resolving
decomposition. The existence of such an ordering is obvious because every position
over term order1 fulfils this property.

Example 1.8. Let P = k[x0, x1, x2, x3], m = 1 and consider the standard grading. Let U be
the ideal generated by x0x1, x2

1, x2x3, x3
3 in P . A Stanley decomposition of U is then given by

the set

B = {h1 = x0x1, h2 = x0x1x2, h3 = x2
0x1, h4 = x2

1, h5 = x2
1x3,

h6 = x0x1x3, h7 = x2
1x2

3, h8 = x0x1x2
3, h9 = x3

3, h10 = x2x3}

1A position over term order ≺POT is an order for Pm
d based on a term order ≺ of P . Let xµek, xνel ∈ Pm

d .
Then xµek �POT xνel if k < l or if k = l and xµ � xν

10



1 Decomposition of Polynomial Modules

with multiplicative variables

XB(h1) = ∅, XB(h2) = {x0, x2}
XB(h3) = {x0, x2}, XB(h4) = {x0, x1, x2}
XB(h5) = {x1}, XB(h6) = {x0, x1}
XB(h7) = {x1}, XB(h8) = {x0, x1}
XB(h9) = {x0, x1, x3}, XB(h10) = {x0, x1, x2, x3} .

The B-graph of this set is

h2 //

��

h10

h1

>>

//

  
88

h4 // h5

>>

//

��

h7

OO

//

��

h9

``

h3

OO

// h6 //

FF

h8.

>>

ii

This graph is obviously acyclic and hence we can choose an arbitrary ordering≺B like described
in Lemma 1.7 which completes the definition of a resolving decomposition (B, hm(B), XB ,≺B).

Example 1.9. Even in the case of a monomial module, not every Stanley decomposition can
be extended to a resolving decomposition. For the example we use P = k[x0, x1, x2, x3, x4],
m = 1 and the standard grading. Let U be the homogeneous maximal ideal in P . A Stanley
decomposition of U is then given by the set

B = {h1 = x0, h2 = x1, h3 = x2, h4 = x3, h5 = x4, h6 = x0x1x3, h7 = x0x2x3,
h8 = x0x2x4, h9 = x1x2x4, h10 = x1x3x4, h11 = x0x1x2x3x4}

with multiplicative variables

XB(h1) = {x0, x1, x2}, XB(h2) = {x1, x2, x3}
XB(h3) = {x2, x3, x4}, XB(h4) = {x0, x3, x4}
XB(h5) = {x0, x1, x4}, XB(h6) = {x0, x1, x2, x3}
XB(h7) = {x0, x2, x3, x4}, XB(h8) = {x0, x1, x2, x4}
XB(h9) = {x1, x2, x3, x4}, XB(h10) = {x0, x1, x3, x4}

XB(h11) = {x0, x1, x2, x3, x4} .

It is not possible to find a term order ≺B which makes this Stanley decomposition to a resolving
one, as the corresponding B-graph contains several cycles (note that here obviously hm(hi) =
hi):

11



1 Decomposition of Polynomial Modules

h4

��   

h6 // h10

��
h1

  

>>

h2

��

oo h3oo
		

h11 h9

��
h5

ii

>>

h7

OO

h8oo

1.1.2 Syzygy Resolutions via Resolving Decompositions

Let Pm
d0

be a graded free polynomial module with standard basis {e(0)1 , . . . , e(0)m } and

grading d0 = (d(0)1 , . . . , d(0)m ). Furthermore, let (B(0), hm(B(0)), XB(0) ,≺B(0)) be a re-
solving decomposition of a finitely generated graded module U ⊆ Pm

d0
with B(0) =

{h1, . . . , hs1}. Our first goal is now to construct a resolving decomposition of the syzygy
module Syz(B(0)) ⊆ P s1 which may be considered as a refined version of the well-
known Schreyer theorem for Gröbner bases.

For every non-multiplicative variable xk of a generator hα, we have a standard repre-
sentation xkhα = ∑s1

β=1 P(α;k)
β hβ and thus a syzygy

Sα;k := xke(1)α −
s1

∑
β=1

P(α;k)
β e(1)β (1.3)

where {e(1)1 , . . . , e(1)s1 } denotes the standard basis of the free module P s1
d1

with grading
d1 = (deg(h1), . . . , deg(hs)). Let B(1) be the set of all these syzygies.

Lemma 1.10. Let S = ∑s1
l=1 Sle

(1)
l be an arbitrary syzygy of B(0) with coefficients Sl ∈ P .

Then Sl ∈ A[XB(0)(hl)] for all 1 ≤ l ≤ s1 if and only if S = 0.

Proof. If S ∈ Syz(B(0)), then ∑s1
l=1 Slhl = 0. Each f ∈ U can be uniquely written in the

form f = ∑s1
l=1 Plhl with hl ∈ B(0) and Pl ∈ A[XB(0)(hl)]. In particular, this holds for

0 ∈ U . Thus, 0 = Sl ∈ A[XB(0)(hl)] for all l and hence S = 0.

For hα ∈ B(0) we denote the non-multiplicative variables by {xiα
1
, . . . , xiα

rα
} with iα

1 <

· · · < iα
rα

. Thus, B(1) =
⋃s1

j=1{Sj;ij
k
| 1 ≤ k ≤ ij

rj}.

12



1 Decomposition of Polynomial Modules

Theorem 1.11. For every syzygy Sα;iα
k
∈ B(1) we set

hm(Sα;iα
k
) = xiα

k
e(1)α

and
XB(1)(Sα;iα

k
) = {x0, . . . xn} \ {xiα

1
, . . . , xiα

k−1
} .

Furthermore, we define ≺B(1) as the Schreyer order2 associated to B(1) and ≺B(0) . Then the
quadruple (B(1), hm(B(1)), XB(1) ,≺B(1)) is a resolving decomposition of the syzygy module
Syz(B(0)).

Proof. We first show that (B(1), hm(B(1)), XB(1) ,≺B(1)) is a resolving decomposition of
〈B(1)〉. In a second step we show that 〈B(1)〉 = Syz(B(0)).

The first condition of Definition 1.1 is trivially satisfied. By construction, it is obvious
to see that

hm(〈B(1)〉) =
s1⊕

i=1

〈XB(0)(hi)〉e(1)i . (1.4)

A term xµe(1)l ∈ supp(Sα;k − xke(1)α ) must satisfy by (1.3) that xµ ∈ TXB(0) (hl) and hence

xµe(1)l /∈ hm(〈B(1)〉) which implies the second condition of a resolving decomposition.
The first part of third condition is again easy to see. It is obvious that

〈XB(0)(hα)〉e(1)α =
rα⊕

k=1

A[XB(1)(Sα,iα
k
)]xiα

k
e(1)α .

If we combine this equation with (1.4) the first part of the third condition follows.

The second part of this condition is a bit harder to prove. We take an arbitrary f ∈ 〈B(1)〉
and construct a standard representation for this module element. We construct this
representation according to hm(〈B(1)〉). We take the biggest term xµe(1)α ∈ supp(f) ∩
hm(〈B(1)〉) with respect to the order≺B(0) . There must be a syzygy Sα;i such that xi | xµ

and xµ

xi
∈ TXB(1) (Sα;i). We reduce f by this element and get

f′ = f− c
xµ

xi
Sα;i

for a suitable constant c ∈ A such that the term xµe(1)α is no longer in the support of f′.
Every term xλe(1)β newly introduced by xµ

xi
Sα;i which also lies in hm(B(1)) is strictly less

2Let B = {h1, . . . hs} ⊂ Pm
d be a finite subset, ≺ a term order on Pm

d and e(1)1 , . . . e(1)s the free generators

of P s. The Schreyer order ≺B is the term order on P s defined by xµe(1)α ≺B xνe(1)β , if lt≺(xµhα) ≺
lt≺(xηhβ) or if these leading terms are equal and β < α.

13



1 Decomposition of Polynomial Modules

than xµe(1)α according to the fifth condition of Definition 1.1 and equation (1.3) defin-
ing the syzygies Sα;i. Now we repeat this procedure until we arrive at an f′′ such that
supp(f′′) ∩ hm (〈B(1)〉) = ∅. It is clear that we reach such an f′′ in a finite number of
steps, since the terms during the reduction decrease with respect to ≺B(0) which is a
well-order. We know that all xεe(1)α ∈ supp(f′′) have the property that xε ∈ XB(0)(hα).
Therefore, we get that f′′ = 0 due to Lemma 1.10 which finishes the proof of this condi-
tion.

The procedure above provides us with an algorithm to compute arbitrary normal forms
and hence the fourth condition of Definition 1.1 follows immediately. For the last con-
dition we note that now each head term xie

(1)
α is actually the leading term of Sα;i with

respect to the order ≺B(0) . Hence, the corresponding Schreyer order satisfies the last
condition of Definition 1.1.

As with the usual Schreyer theorem, we can iterate this construction and derive this
way a free resolution of U . In contrast to the classical situation, it is however now
possible to make precise statements about the shape of the resolution (even if we do not
obtain explicit formulae for the differentials).

Theorem 1.12. Let β
(k)
0,j be the number of generators h ∈ B(0) of degree j having k multiplica-

tive variables and set d = min {k | ∃j : β
(k)
0,j > 0}. Then U possesses a finite free resolution

0→
⊕
P(−j)rn+1−d,j → · · · →

⊕
P(−j)r1,j →

⊕
P(−j)r0,j → U → 0 (1.5)

of length n + 1− d where the ranks of the free modules are given by

ri,j =
n+1−i

∑
k=1

(
n + 1− k

i

)
β
(k)
0,j−i.

Proof. According to Theorem 1.11, (B(1), hm(B(1)), XB(1) ,≺B(1)) is a resolving decom-
position for the module Syz1(U ). Applying the theorem again, we can construct a re-
solving decomposition of the second syzygy module Syz2(U) and so on. Recall that for
every index 1 ≤ l ≤ s1 and for every non-multiplicative variable xk ∈ XB(0)(hα(l)) we
have |XB(1)(Sl;k)| < |XB(0)(hα(l))|.

If D is the minimal number of multiplicative variables for a head module term in B(0),
then the minimal number of multiplicative variables for a head term in B(1) is D + 1.
This observation yields the length of the resolution (1.5). Furthermore, deg(Sk;i) =
deg(hk) + 1, e. g. from the jth to the (j + 1)th module the degree from the basis element
to the corresponding syzygies grows by one.

14



1 Decomposition of Polynomial Modules

The formula for the ranks of the modules follows from a rather straightforward com-
binatorial calculation. Let β

(k)
i,j denote the number of generators of degree j of the ith

syzygy module Syzi(U ) with k multiplicative variables according to the head module
terms. By definition of the generators, we find

β
(k)
i,j =

k−1

∑
t=1

β
(n+1−t)
i−1,j−1

as each generator with less multiplicative variables and degree j − 1 in the resolving
decomposition of Syzi(B(0)) contributes one generator with k multiplicative variables.
A lengthy induction allows us to express β

(k)
i,j in terms of β

(k)
0,j :

β
(k)
i,j =

k−i

∑
t=1

(
k− l − 1

i− 1

)
β
(t)
0,j−i.

Now we are able to compute the ranks of the free modules via

ri,j =
n+1

∑
k=1

β
(k)
i,j =

n+1

∑
k=1

k−i

∑
t=1

(
k− t− 1

i− 1

)
β
(t)
0,j−i =

n+1−i

∑
k=1

(
n− k

i

)
β
(k)
0,j−i.

The last equality follows from a classical identity for binomial coefficients.

Theorem 1.12 allows us to construct recursively resolving decompositions for the high-
er syzygy modules. In the sequel, we denote the corresponding resolving decompo-
sition of the syzygy module Syzj(U ) by (B(j), hm(B(j)), XB(j) ,≺B(j)). To define an ele-

ment of B(j), we consider for each generator hα ∈ B(0) all ordered integer sequences
k = (k1, . . . , k j) with 0 ≤ k1 < · · · < k j ≤ n of length |k| = j such that xki ∈ XB(0)(hα)
for all 1 ≤ i ≤ j. We denote for any 1 ≤ i ≤ j by ki the sequence obtained by eliminating
ki from k. Then the generator Sα;k arises recursively from the standard representation of
xk j Sα;kj according to the resolving decomposition (B(j−1), hm(B(j−1)), XB(j−1) ,≺B(j−1)):

xk j Sα;kj =
s1

∑
β=1

∑
l

P(α;k)
β;l Sβ;l. (1.6)

The second sum is taken over all ordered integer sequences l of length j− 1 such that
for all entries `i the variables x`i is non-multiplicative for the generator hβ ∈ B(0).
Denoting the free generators of the free module which contains the jth syzygy module
by e(j)

α,l such that α ∈ {1, . . . , s1} and l is an ordered subset of XB(0)(hα) of length j− 1
we get the following representation for Sα,k:

Sα;k = xk j e
(j)
α;kj
−

s1

∑
β=1

∑
l

P(α;k)
β;l e(j)

β;l.
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1 Decomposition of Polynomial Modules

Corollary 1.13. In the situation of Theorem 1.12, set d = min {k | ∃j : β
(k)
0,j > 0} and

q = deg(B(0)) = max{deg(h) | h ∈ B(0)}. Then we obtain the following bounds for the
projective dimension, the Castelnuovo-Mumford regularity and the depth, respectively, of the
submodule U :

pd(U ) ≤ n + 1− d , reg(U ) ≤ q , depth(U ) ≥ d .

Proof. The first estimate follows immediately from the resolution (1.5) induced by the
resolving decomposition (B(0), hm(B(0)), XB(0) ,≺B(0)) of U . The last estimate is a simple
consequence of the first one and the graded form of the Auslander-Buchsbaum formula.
Finally, the ith module of this resolution is obviously generated by elements of degree
less than or equal to q + i. This observation implies that U is q-regular and thus the
second estimate.

1.1.3 An Explicit Formula for the Differential

In the former sections we used polynomials rings over k-algebras. For this section
this is not applicable. Hence, we restrict us to the easier case that we only have poly-
nomial rings P over k. As before let Pm

d be a graded free module with free genera-
tors e1, . . . em and grading d = (d1, . . . , dm). We always work with a finitely generated
graded module U ∈ Pm

d and a resolving decomposition (B, hm(B), XB ,≺B) of U where
B = {h1, . . . , hs1}.

First we give an alternative description of the complex underlying the resolution (1.5).
Let W =

⊕s1
α=1 k ·wα and V =

⊕n
i=0 k · vi be two free k-vector spaces whose dimen-

sions are given by the size of B and by the number of variables in P , respectively. Then
we set Ci =W ⊗P ΛiV where Λ• denotes the exterior product. A P-linear basis of Ci is
provided by the elements wα ⊗ vk where vk = vk1 ∧ · · · ∧ vki for an ordered sequence
k = (k1, . . . , ki) with 0 ≤ k1 < · · · < ki ≤ n. Then the free subcomplex S• ⊂ C•
generated by all elements wα ⊗ vk with k ⊆ XB(hα) corresponds to (1.5) upon the
identification e(i+1)

α;k ↔ wα⊗ vk. Let ki+1 ∈ XB(hα) \ k, then the differential comes from
(1.6),

dS (wα ⊗ vk,ki+1) = xki+1 wα ⊗ vk −∑
β,l

P(α;k,ki+1)
β;l wβ ⊗ vl ,

and thus requires the explicit determination of all the higher syzygies (1.6).

In this section we present a method to directly compute the differential without com-
puting higher syzygies. It is based on ideas of Sköldberg [45, 46] and generalises the
theory which we developed in [4, 5] for the special case of a resolution induced by a
Pommaret or a Janet basis for a given term order.
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Definition 1.14. A graded polynomial module U ⊆ Pm
d has head linear syzygies if it pos-

sesses a finite presentation

0 −→ ker η −→ W =
s⊕

α=1

Pwα
η−→ U −→ 0 (1.7)

with a finite generating set B = {h1, . . . , ht} of ker η where one can choose for each generator
hα ∈ B a head module term hm(hα) of the form xiwα.

Sköldberg’s construction begins with the following two-sided Koszul complex (F , dF )
defining a free resolution of U . Let V be a k-linear space with basis {v0, . . . , vn} (with
n + 1 still the number of variables in P) and set Fj = P ⊗k ΛjV ⊗k U which obviously
yields a free P-module. Let {ma | a ∈ A} be a k-linear basis of U , where A is a Morse
matching of U (see [4, Ch. 3]). Then a P-linear basis of Fj is given by the elements
1⊗ vk ⊗ma with ordered sequences k of length j. The differential is now defined by

dF (1⊗ vk ⊗ma) =
j

∑
i=1

(−1)i+1(xki ⊗ vki ⊗ma − 1⊗ vki ⊗ xki ma
)
. (1.8)

Here it should be noted that the second term on the right hand side is not yet expressed
in the chosen k-linear basis of U . For notational simplicity, we will drop in the sequel
the tensor sign ⊗ and leading factors 1 when writing elements of F•.

Sköldberg uses a specialisation of head linear terms. He requires that for a given term
order ≺ the leading module of ker η in the presentation (1.7) must be generated by
terms of the form xiwα. In this case he says that U has initially linear syzygies. Our
definition is term order free.

Under the assumption that the module U has initially linear syzygies via a presenta-
tion (1.7), Sköldberg [46] constructs a Morse matching leading to a smaller resolution
(G, dG). He calls the variables

crit (wα) = {xj | xjwα ∈ lt≺(ker η)} ;

critical for the generator wα; the remaining non-critical ones are contained in the set
ncrit (wα). Then a k-linear basis of U is given by all elements xµhα with hα = η(wα)
and xµ ∈ k[ncrit (wα)].

According to [45] we define Gj ⊆ Fj as the free submodule generated by those vertices
vkhα where the ordered sequences k are of length j and such that every entry ki is
critical for wα. In particularW ∼= G0 with an isomorphism induced by wα 7→ v∅hα.

The description of the differential dG is based on reduction paths in the associated
Morse graph (for a detailed treatment of these notions, see [4, 45] or [30]) and expresses
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the differential as a triple sum. If we assume that, after expanding the right hand side
of (1.8) in the chosen k-linear basis of U , the differential of the complex F• can be ex-
pressed as

dF (vkhα) = ∑
m,µ,γ

Qk,α
m,µ,γvm(xµhγ) ,

then dG is defined by

dG(vkhα) = ∑
l,β

∑
m,µ,γ

∑
p

ρp
(
Qk,α

m,µ,γvm(xµhγ)
)

(1.9)

where the first sum ranges over all ordered sequences l which consists entirely of crit-
ical indices for wβ. Moreover, the second sum may be restricted to all values such that
a polynomial multiple of vm(xµhγ) effectively appears in dF (vkhα) and the third sum
ranges over all reduction paths p going from vm(xµhγ) to vlhβ. Finally, ρp is the reduc-
tion associated to the reduction path p satisfying

ρp
(
vm(xµhγ)

)
= qpvlhβ

for some polynomial qp ∈ P .

It turns out that Sköldberg uses the term order≺ only for distinguishing the critical and
non-critical variables. Therefore, it is straightforward to see that his construction also
works for modules which have head linear syzygies. We simply replace the definition
of critical and non-critical variables. We define

crit (wα) = {xj | xjwα ∈ hm(H)} ,

whereH is chosen as in Definition 1.14. Again the remaining variables are contained in
the set ncrit(wα).

In the sequel we will show that for a finitely generated graded module U with a re-
solving decomposition (B, hm(B), XB ,≺B) the resolution constructed by Sköldberg’s
method is isomorphic to the resolution which is induced by the resolving decompo-
sition if we choose the head linear syzygies properly. Firstly we obtain the following
trivial assertion.

Lemma 1.15. If the graded submodule U ⊆ Pm
d possesses a resolving decomposition (B,

hm(B), XB ,≺B), then it has head linear syzygies. More precisely, we can set crit(wα) =
XB(hα), i. e. the critical variables of the generator wα are the non-multiplicative variables of
hα = η(wα).

The lemmata which we subsequently cite from [4] are formulated for a Pommaret basis
which is an involutive basis. Nevertheless, we can apply them directly in our setting,
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if not stated otherwise, because their proofs remain applicable for resolving decompo-
sitions. The reason for this is, that they only need the existence of unique standard
representations and the division of variables into multiplicative and non-multiplicative
ones. Some proofs in [4] explicitly use the class of a generator in B, a notion arising in
the context of Pommaret bases. When working with resolving decompositions, one has
to replace it by the maximal index of a multiplicative variable.

The reduction paths can be divided into elementary paths of length two. There are
essentially three types of reductions paths [4, Section 4]. The elementary reductions of
type 0 are not of interest [4, Lemma 4.5]. All remaining elementary reductions paths are
of the form

vk(xµhα) −→ vk∪i(
xµ

xi
hα) −→ vl(xνhβ) .

Here k ∪ i is the ordered sequence which arises when i is inserted into k; likewise k \ i
stands for the removal of an index i ∈ k.

Type 1: Here l = (k ∪ i)\j, xν = xµ

xi
and β = α. Note that i = j is allowed. We define

ε(i; k) := (−1)|{j∈k|j>i}|. Then the corresponding reduction is

ρ(vkxµhα) = ε(i; k ∪ i)ε(j; k ∪ i)xjv(k∪i)\j
( xµ

xi
hα

)
.

Type 2: Now l = (k∪ i) \ j and xνhβ appears in the involutive standard representation

of xµxj
xi

hα with the coefficient λj,i,α,µ,ν,β ∈ k. In this case, by construction of the
Morse matching, we have i 6= j. The reduction is

ρ(vkxµhα) = −ε(i; k ∪ i)ε(j; k ∪ i)λj,i,α,µ,ν,βv(k∪i)\j(xνhβ) .

These reductions originate from the differential (1.8): The summands appearing there
are either of the form xki vki ma or of the form vki(xki ma). For each of these summands,
we have a directed edge in the Morse graph ΓA

F• . Thus, for an elementary reduction
path

vk(xµhα) −→ vk∪i
( xµ

xi
hα

)
−→ vl(xνhβ) ,

the second edge can originate from summands of either form. For the first form we then
have an elementary reduction path of type 1 and for the second form we have type 2.

To show that the resolution induced by a resolving decomposition is isomorphic to the
resolution constructed via Sköldberg’s method we need a classical theorem concerning
the uniqueness of free resolutions.

19



1 Decomposition of Polynomial Modules

Theorem 1.16. [17, Thm. 1.6] Let U be a finitely generated graded Pm
d -module. If F is the

graded minimal free resolution of U and G an arbitrary graded free resolution of U , then G is
isomorphic to the direct sum of F and a trivial complex.

Assume that we have two graded free resolutions F , G of the same module U with the
same shape (which means that the homogeneous components of the free modules in the
two resolutions have always the same dimensions: dimk((Fi)j) = dimk((Gi)j)). Then
Theorem 1.16 implies that the two resolutions are isomorphic. For the next theorem,
we note the following important observation. The bases of the free modules in the
resolution G of Sköldberg are given by the generators vkhα with k ⊆ XB(hα).

Theorem 1.17. Let F be the graded free resolution which is induced by the resolving decompo-
sition (B, hm(B), XB ,≺B) and G the graded free resolution which is constructed by the method
of Sköldberg when the head linear syzygies are chosen such that crit(hα) = XB(hα) for every
hα ∈ B. Then the resolutions F and G are isomorphic.

Proof. According to the observation made above, it is obvious that the two resolutions
F and G have the same shape. Together with Theorem 1.16, the claim follows then
immediately.

For completeness, we repeat some simple results from [4]. They will show us, that the
differentials of both resolutions are very similar. In fact, we show for the resolution
constructed via Sköldberg’s method, that we can find head module terms in the higher
syzygies which are equal to the head module terms of the resolving decompositions of
the higher syzygies of the induced free resolution.

Lemma 1.18. [4, Lem. 4.3] For a non-multiplicative index i ∈ crit (hα) let

xihα =
s1

∑
β=1

P(α;i)
β hβ

be the standard representation. Then we have

dG(vihα) = xiv∅hα −
s1

∑
β=1

P(α;i)
β v∅hβ .

The next result states that if one starts at a vertex vi(xµhα) with certain properties and
follows through all possible reduction paths in the graph, one will never get to a point
where one must calculate a standard representation with respect to the given resolving
decomposition. If there are no critical (i. e. non-multiplicative) variables present at the
starting point, then this will not change throughout any reduction path. In order to
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1 Decomposition of Polynomial Modules

generalise this lemma to higher homological degrees, one must simply replace the con-
ditions i ∈ ncrit (hα) and j ∈ ncrit (hβ) by ordered sequences k, l with k ⊆ ncrit (hα)
and l ⊆ ncrit (hβ).

Lemma 1.19. [4, Lem. 4.4] Assume that i ∪ supp(µ) ⊆ ncrit (hα). Then for any reduction
path p = vi(xµhα)→ · · · → vj(xνhβ) we have j ∈ ncrit (hβ). In particular, in this situation
there is no reduction path p = vi(xµhα)→ · · · → vkhβ with k ∈ crit (hβ).

The next corollary asserts that we can choose in Sköldberg’s resolution head module
terms in such a way that there is a one-to-one correspondence to the head terms of the
syzygies contained in the free resolution induced by the resolving decomposition. This
corollary is a direct consequence of Lemma 1.19.

Corollary 1.20. Let (k1, . . . , k j) = k ⊆ crit hα, then

xkl vk\kl
hα ∈ supp(dG(vkhα)).

In [4] and [5] we show a method to effectively compute graded Betti numbers via the
induced free resolution of Janet and Pommaret bases and the method of Sköldberg. We
show that we can compute the graded Betti numbers with computing only the constant
part of the resolution. With this method it is also possible to compute only a single
Betti number without computing the complete constant part of the free resolution. The
reason for that is that Sköldberg’s formula allows to compute a differential in the free
resolution independently of the rest of the free resolution. Furthermore, Theorem 1.12
gives us a formula to compute the ranks of this resolution. These methods are also
applicable for an arbitrary resolving decomposition due to the fact that we proved The-
orem 1.12 and the form of the differential (1.9).

1.2 Pommaret Bases

The computation of “good” generating systems of polynomial modules is an important
task in commutative algebra and algebraic geometry. It is one of the starting points
for further studies of polynomial modules. Gröbner bases are well-known generating
systems of polynomial modules. A main advantage of them is that they are relative
easy to compute.

Using Gröbner bases to study different kind of algebraic invariants turns out to be labo-
rious. Usually the invariants could only be computed by costly operations on Gröbner
bases. Involutive bases are a special kind of Gröbner bases. On the one hand they are
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1 Decomposition of Polynomial Modules

as easy to compute as Gröbner bases but on the other hand they provide more easy ac-
cessible algebraic invariants of the represented polynomial modules. In fact, we show
that they are a special kind of resolving decomposition.

Among all involutive bases it turns out that the Pommaret bases are special. At first
Pommaret bases seem to be useless because a Pommaret basis does not always exist.
By performing suitable linear coordinate changes it is possible to solve this obstacle.
Assuming that we are acting in suitable coordinates they provide directly many alge-
braic invariants like the regularity or the depth. Hence, Pommaret bases are a good
point to start a further analysis of polynomial modules.

1.2.1 Involutive Bases

In the following we use the abelian monoid (Nn+1, +) with componentwise addition.
We call an element ν ∈ Nn+1 a multi index where we count the indices from 0, . . . , n,
that is ν = (ν0, . . . , νn). Let ν ∈ Nn+1, then we define the cone of ν as C(ν) := ν +Nn+1.
We say that ν divides µ (ν | µ) if µ ∈ C(ν). If V ⊆ Nn+1 then the span of V is the monoid
ideal

〈V〉 =
⋃

ν∈Nn+1

C(ν) .

The idea of the involutive division is to restrict the cones in such a way that the union
above is a disjoint one. We restrict the cone by restricting the addition of the multi
indices. That means we only allow the addition in the cone for certain multi indices.
Instead of speaking about the restriction of the cones we also speak about a restriction
of the divisibility relation.

Let N ⊆ {0, . . . , n} be an arbitrary subset; then we write Nn+1
N = {ν ∈ Nn+1 | ∀j /∈ N :

νj = 0} for the set of all multi indices where the only nonzero entries have an index
which is contained in N.

Definition 1.21. An involutive division L is defined on the abelian monoid (Nn+1, +) if
for any finite set V ⊂ Nn+1 a subset XL,V (ν) ⊆ {0, . . . , n} of multiplicative indices is
associated to every multi index ν ∈ V such that the following two conditions on the involutive
cones CL,V (ν) := ν +Nn

XL,V (ν)
are satisfied.

(i) It either holds CL,V (µ) ⊆ CL,V (ν) or CL,V (ν) ⊆ CL,V (µ) if there exist two elements
µ, ν ∈ V with CL,V (µ) ∩ CL,V (ν) 6= ∅.

(ii) If V ′ ⊂ V , then XL,V (ν) ⊆ XL,V ′(ν) for all ν ∈ V ′.

An arbitrary multi index µ ∈ Nn+1 is involutively divisible by ν ∈ V , written ν |L,V µ if
µ ∈ CL,V (ν).
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1 Decomposition of Polynomial Modules

Involutive divisibility is defined with respect to the involutive division L and a fixed
set V ⊂ Nn+1. We note that the only possible divisors must be in V and that involutive
divisibility implies ordinary divisibility. In the definition we introduced multiplicative
indices XL,V (ν). As for the definition of multiplicative variables for a resolving de-
composition, we call the counterpart XL,V (ν) := {0, . . . , n} \ XL,V (ν) non-multiplicative
indices.

Now we will see a first example of an involutive division

Example 1.22. First we introduce certain subsets of the given set V ⊂ Nn+1 for 0 ≤ k ≤ n:

(dk, . . . , dn) = {ν ∈ V | vi = di, k ≤ i ≤ n}.

The Janet division J is defined as the following assignment of multiplicative variables for the
elements in V : the index n is multiplicative for ν, if νn = maxµ∈V{µn}, and 0 ≤ k < n is
multiplicative for ν ∈ (dk+1, . . . , dn), if νk = maxµ∈(dk+1,...,dn){µk}.

Removing an element ν of a given set V ⊂ Nn+1 and determining the multiplicative
indices of the remaining elements with respect to V ′ = V \ {ν} again, gives in general a
different result than before: the second condition of the definition of involutive division
implies that only a non-multiplicative index can become multiplicative for some µ ∈ V ′,
but the converse cannot happen. The next definition treats involutive divisions where
removing elements do not change the multiplicative indices of the remaining elements
e.g. the set V does not play a role in computing multiplicative indices.

Definition 1.23. The division L is globally defined, if the assignment of the multiplicative
indices is independent of the set V . In this case we write XL(ν).

For an element ν ∈ Nn we define the class of ν as cls(ν) := min({i | νi 6= 0}) when
ν 6= [0, . . . , 0] and cls([0, . . . , 0]) := n.

Example 1.24. An important globally defined division is the Pommaret division P. It assigns
the multiplicative indices according the following rule: Let ν ∈ Nn+1 and k = cls(ν), then we
set XP(ν) = {0, . . . , k}. Finally, we define XP([0, . . . , 0]) = {0, . . . , n}.

Now we define the involutive span and an involutive basis, which is a disjoint union
of involutive cones.

Definition 1.25. The involutive span of a finite set V ⊂ Nn+1 is

〈V〉L =
⋃

ν∈V
CL,V (ν). (1.10)
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The set V is weakly involutive for the division L or a weak involutive basis of the monoid
ideal 〈V〉, if 〈V〉L = 〈V〉. A weak involutive basis is a (strong) involutive basis, if the union
on the right hand side of (1.10) is disjoint. That is, the intersections of the involutive cones are
empty. Any finite set V ⊆ V ⊂ Nn+1 such that 〈V〉L = 〈V〉 is called a (weak) involutive
completion of V . An obstruction to involution for the set V is a multi index ν ∈ 〈V〉 \ 〈V〉L.

In Gröbner basis theory there exists the concept of an autoreduced set. Equivalently
there is also such a term in involutive theory.

Definition 1.26. A set V ⊂ Nn+1 is called involutively autoreduced with respect to the
involutive division L if there exist no two distinct multi indices µ, ν ∈ V such that µ |L,V ν.

An obvious observation is that every (strong) involutive basis is involutively autore-
duced. Furthermore, the definition of the Janet division implies that CJ,V (µ)∩CJ,V (ν) =
∅ whenever µ 6= ν. Hence, for the Janet division any set is involutively autoreduced.

We want to use (strong) involutive bases. The following proposition shows that it is
always possible to extract a (strong) involutive bases from a weak involutive basis in
the monomial case.

Proposition 1.27 ([43, Prop. 3.1.12]). If V is a weak involutive basis, then there exists a subset
V ′ ⊆ V which is a (strong) involutive basis of 〈V〉.

The minimal involutive basis of a monoid ideal is unique, if it exists. For a globally
defined division, we can even show that any involutive basis is unique.

Proposition 1.28 ([43, Prop. 3.1.21]). Let L be a globally defined division and J ⊆ Nn+1 a
monoid ideal. If J has a strong involutive basis for L, then it is unique and thus minimal.

Note that a finite involutive basis of 〈V〉 does not always exist, as we see in the follow-
ing example.

Example 1.29. We use the Pommaret division and V = {[1, 1]}. The class of [1, 1] is zero
and hence XP([1, 1]) = {0}. So CP([1, 1]) ( C([1, 1]), but also every other multi index in
〈V〉 has class zero. Hence, there cannot be a finite involutive basis of 〈V〉. We can generate it
involutively only with the infinite set {[1, k] | k ∈ N \ {0}}.

Definition 1.30. An involutive division L is called noetherian if any finite subset V ⊂ Nn+1

possesses a finite involutive completion with respect to L.

Lemma 1.31 ([43, Prop. 3.1.19]). The Janet division is noetherian.
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So far we have only defined involutive bases for monoid ideals. Now we extend the
theory to finitely generated graded submodules of Pm

d , where P is a polynomial ring
over a noetherian k-algebra. In the following, we equip the free module with an arbi-
trary term order ≺.

In addition to the conventions at the beginning of this chapter, we define for an ele-
ment f ∈ Pm

d the leading (module) term lt≺(f) := xµei which is the biggest module term
in supp(f) with respect to ≺. Note that we ignore the coefficient of f in lt≺(f). Further-
more, we define for a set B ⊆ Pm

d the leading set as lt≺(B) := {lt≺(f) | f ∈ B}. For a
submodule U ∈ Pm

d we define the leading module as lt≺(U ) := 〈{lt≺(f) | f ∈ U}〉. We
call a module element f ∈ Pm

d monic if the leading term has coefficient 1A.

Definition 1.32. Let Pm
d be a finitely generated free P-module with grading d and free gener-

ators e1, . . . , em. Let U ⊆ Pm
d be a finitely generated graded submodule of Pm

d with lt≺(U ) =⊕m
k=1 J (k)ek such that the J (k) are monomial ideals.

A finite monic subset B ⊂ U is a weak involutive basis of U for an involutive division L on
Nn+1 if its leading module terms lt≺(B) form a weak involutive basis of the monomial module
lt≺(U ). That is, the sets B(k) := {xµ | xµek ∈ lt≺(B)} are weak involutive bases of J (k) for
all k ∈ {1, . . . , m}.

The set B is a (strong) involutive basis of U if the sets B(k) are strong involutive bases for
J (k) for all k ∈ {1, . . . , m} and no two distinct elements of B have the same leading module
terms.

The set B is called (weakly) involutive if it is a (weak) involutive basis of 〈B〉.

In the next definition we translate some notions from the monomial case to the module
case.

Definition 1.33. Let B ⊂ Pm
d \ {0} be a finite monic set and L an involutive division onNn+1.

Assume that f ∈ B and lt≺(f) = xµek. By considering again the set B(k) from Definition 1.32
we define the multiplicative variables of f as

XL,B(f) = {xi | i ∈ XL,B(k)(xµ)} .

The involutive span of B is then the set

〈B〉L := ∑
f∈B

A[XL,B(f)] · f ⊆ 〈B〉. (1.11)

Standard representations are an important aspect of Gröbner bases. We can also prove
that there exist involutive standard representations which have furthermore the nice
property of uniqueness.
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Theorem 1.34 ([41, Thm. 5.4]). Let U ⊆ Pm
d be a nonzero finitely generated graded submod-

ule, B ⊂ U \ {0} a finite monic set and L an involutive division on Nn+1. Then the following
two statements are equivalent.

• The set B is a weak involutive basis of U with respect to L and ≺.

• Every module element f ∈ U can be written in the form

f = ∑
h∈B

ph · h (1.12)

where the coefficients ph ∈ A[XL,B(h)] satisfy lt≺(ph · h) � lt≺(f) for all module
elements h ∈ B.

B is a strong involutive basis if and only if the representation (1.12) is unique for all f ∈ U .

Remark 1.35. In the preceding theorem we considered monic sets B. It must be monic because
we consider a polynomial ring over a noetherian k-algebra, hence in general the leading coeffi-
cient is not invertible. If we consider a polynomial ring over a field, then we do not need this
property.

Corollary 1.36 ([41, Cor. 5.5]). Let the set B be a weak involutive basis of the finitely generated
graded submodule U ⊆ Pm

d . Then 〈B〉L = U

Note that the converse is in general not true.

Example 1.37. Consider in the ordinary polynomial ring k[x0, x1] with degrevlex order ≺
the ideal I generated by two polynomials f1 = x2

1 and f2 = x2
1 + x2

0. Then the set B = {f1, f2}
trivially satisfies 〈B〉J = I , as with respect to the Janet division all variables are multiplicative
for each generator. However, lt≺(B) = {[0, 2]} obviously does not generate lt≺(I) because it
is clear, that lt≺(I) = 〈{[2, 0], [0, 2]}〉. Thus, B is not a weak Janet basis.

Now we see that we can extract a strong involutive basis out of every weak involutive
basis, as in the monoid case.

Proposition 1.38 ([41, Prop. 5.7]). Let U ⊆ Pm
d be a finitely generated graded submodule and

B ⊂ Pm
d a weak involutive basis of U for the involutive division L. Then there exists a subset

B′ ⊆ B which is a strong involutive basis of U .

In our case there is no need to discuss about weak involutive bases, therefore we will
discuss in the following only about strong involutive bases. Nevertheless, weak invo-
lutive bases are useful in a more general setting.

In the next definition we introduce the notation of an involutive normal form and an in-
volutive autoreduced set which are similar to the usual definitions concerning Gröbner
bases.
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Definition 1.39. Let B ⊂ Pm
d be a finite monic set and L an involutive division. A module

element g ∈ Pm
d is involutively reducible with respect to B, if it contains a module term xµei

such that lt≺(f) |L,B xµei for some f ∈ B. It is in involutive normal form with respect to B,
if it is not involutively reducible.

The set B is involutively autoreduced, if no module element f ∈ B contains a module term xµei
such that another module element f′ ∈ B \ {f} exists with lt≺(f′) |L,B xµei.

An obstruction to involution is a module element g ∈ 〈B〉 \ 〈B〉L possessing a (necessarily
non-involutive) standard representation with respect to B.

If G is a Gröbner basis of the finitely generated graded submodule U ⊆ Pm
d , then any

element of U has a standard representation with respect to G. But this does not imply
that for a given division L the submodule U is free of obstructions to involution with
respect to G. In order to obtain at least a weak involutive basis, we must usually add
further elements of U to G until 〈lt≺(G)〉L = lt≺(U ).

Often we are only interested in the leading term of a module element g. Therefore, we
introduce the following notions.

Definition 1.40. Let B ⊂ Pm
d be a finite monic set and L an involutive division. A module

element g ∈ Pm
d is involutively head reducible if lt≺(f) |L,B lt≺(g) for some f ∈ B.

The set B is involutively head autoreduced if the leading exponent of every element f ∈ B
is not involutively divisible with respect to L and B by the leading exponent of an element
f′ ∈ B \ {f}.

If the set B is a strong involutive basis this immediately implies that B is involutively
head autoreduced.

The involutive reduction is a restriction of the ordinary reduction. Due to that involu-
tive normal forms can be computed similar to the normal forms computed with respect
to Gröbner bases. If g′ is an involutive normal form of g ∈ Pm

d with respect to the set
B for the division L, then we write g′ = NFL,B(g). The ordinary normal form is unique
if and only if it is computed with respect to a Gröbner basis. For the involutive normal
form the situation is a bit different.

Lemma 1.41 ([41, Lem. 5.12]). The sum in (1.11) is direct if and only if the finite monic set
B ⊂ Pm

d \ {0} is involutively head autoreduced with respect to the involutive division L.

Proposition 1.42 ([41, Prop. 5.14]). The ordinary and the involutive normal form of any
module element g ∈ Pm

d with respect to a finite monic weakly involutive set B ⊂ Pm
d \ {0} are

identical.
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With the preceding proposition we are now able to extend the definition of a minimal
involutive basis from Nn+1 to a free module Pm

d . It is done in the same way as in the
ordinary Gröbner bases case.

Definition 1.43. Let U ⊆ Pm
d be a nonzero finitely generated graded submodule and L an

involutive division. An involutive basis B of U with respect to L is minimal if B(i) is the
minimal involutive basis of J (i) for all i ∈ {1, . . . , m}, where B(i) and J (i) are defined like in
Definition 1.32.

By Proposition 1.28 we see that for any globally defined division any involutive basis is
minimal. But in general uniqueness requires two additional assumptions in the module
case.

Proposition 1.44 ([22, Thm. 5.2]). Let P be a polynomial ring over an arbitrary field k.
Furthermore, let U ⊆ Pm

d be a nonzero finitely generated graded submodule and L an involutive
division. Then U possesses at most one monic, involutively autoreduced, minimal involutive
basis for the division L.

The main objective of this section is to introduce a class of resolving decompositions
which based on term orders. It turns out that the definition of involutive bases is not
enough. In addition to that we need continuity.

Definition 1.45. Let L be an involutive division and V ⊂ Nn+1 a finite set. Furthermore, let
ν(1), . . . , ν(t) be a finite sequence of elements of V where every multi index ν(k) with k < t has
a non-multiplicative index jk ∈ XL,V (ν

(k)) such that ν(k+1) |L,V ν(k) + 1jk . The division L is
continuous if any such sequence consists only of distinct elements, i. e. ν(k) 6= ν(l) for all k 6= l.

Proposition 1.46 ([21, Cor. 4.11]). The Janet and Pommaret division are continuous.

Definition 1.47. Let B ⊂ Pm
d be an involutive basis for the involutive division L. An L-graph

of the basis B is a graph associated to the involutive basis B. Its vertices are given by the terms
in lt≺(B). If xj ∈ XL,B(h) for some generator h ∈ B, then, by definition of an involutive basis,
B contains a unique generator h such that lt≺(h) is an involutive divisor of lt≺(xjh). In this
case we include a directed edge from lt≺(h) to lt≺(h).

Lemma 1.48 ([42, Lem. 5.5]). If the division L is continues then the L-graph of any involutive
set B ⊂ Pm

d is acyclic.

Proposition 1.49. Let ≺ be a term order on the free module Pm
d , L a continuous involutive

division and B = {h1, . . . , hs} a finite, L-involutively autoreduced set which is a strong L-
involutive basis of a finitely generated graded submodule U ⊆ Pm

d . Then B induces a resolving
decomposition with hm(hi) = lt≺(hi) and XB(hi) = XL,B(hi) for all i ∈ {1, . . . , s}. We take
as ≺B the Schreyer order induced by B and ≺.
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Proof. Condition (i) of Definition 1.1 follows from Corollary 1.36, condition (ii) is a con-
sequence of the fact that B is involutively autoreduced and condition (iii) follows from
Lemma 1.41. According to Proposition 1.42 every f ∈ Pm

d possesses a unique normal
form. In Remark 1.3 we have seen that this is equivalent to the fourth condition in our
definition. Finally, (v) is satisfied because of Lemma 1.48 and the existence of an L-
ordering. Let {f1, . . . , fs} denote again the standard basis of the free module P s. Then
an L-ordering ≺L,B on P s must satisfy that fα ≺L,B fβ whenever there is a path from
hα to hβ in the corresponding B-graph. Due to Lemma 1.48 it is obvious that for every
continuous division L such a term order exists. Hence, an autoreduced involutive basis
always induces a resolving decomposition.

Remark 1.50. The resolving decomposition (B(1), hm(B(1)), XB(1) ,≺B(1)) constructed in The-
orem 1.11 is always a Janet basis of the first syzygy module with respect to the term order≺B(0) .
This is simply due to the fact that the choice of the multiplicative variables in the resolving de-
composition of the syzygy module made in Theorem 1.11 is actually inspired by what happens
for the Janet division. Hence, in the special case that the resolving decomposition is induced by a
Janet basis, it is easy to see that also the resolving decompositions of the higher syzygy modules
are actually induced by Janet bases for a Schreyer order constructed as in Theorem 1.11.

At this point, one can also see some advantages of our general framework. Previous results
require that the used involutive division is of Schreyer type (see [42, Def. 5.8]). This assumption
ensures that we obtain at each step again an L-involutive basis for the syzygy module with
respect to a Schreyer order. With the new approach, we automatically obtain Janet basis, as
we can choose the head terms and the multiplicative variables as we like. Consequently, we
can now use an involutive basis B for an arbitrary involutive division L as starting point for
the construction of a resolution, provided its L-graph is acyclic (which is always the case if L
is continuous). The construction will not necessarily lead to L-involutive bases of the syzygy
modules, but for most applications this fact is irrelevant.

1.2.2 Pommaret Bases

In the previous section we have seen in Example 1.29 that the Pommaret division does
not always possess a finite Pommaret basis for a module. Hence, the Pommaret division
is not noetherian. In the following we restrict ourselves to such polynomial modules
which always induce finite Pommaret bases. In [42] it is shown that we can perform on
every polynomial module a deterministic change of coordinates to get a new module
which possess a finite Pommaret basis.

We show that one can easily extract the regularity, depth and projective dimension out
of a Pommaret basis. At the end of this section we shortly analyse the saturation of a
module with a finite Pommaret basis.
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Definition 1.51 ([42, Def. 2.1]). The variables x are δ-regular for the finitely generated graded
submodule U ⊆ Pm

d if U possesses a finite Pommaret basis.

In Proposition 1.49 we proved that every involutive basis induces a resolving decompo-
sition. Hence, a Pommaret basis induces a resolving decomposition. In Corollary 1.13
we get upper bounds for the projective dimension and regularity and a lower bound
for the depth of a submodule. If the resolving decomposition is induced by a finite
Pommaret basis for a suitable term order we get equality in every case.

Theorem 1.52 ([42, Thm. 8.11]). Let B be a Pommaret basis of the finitely generated graded
submodule U ⊆ Pm

d for a class respecting term order and set d = min({cls(h) | h ∈ B}) + 1.
Then pd(U ) = n + 1− d.

With the theorem of Auslander-Buchsbaum we get equality for the depth as well.

Corollary 1.53. Let B be a Pommaret basis of the finitely generated graded submodule U ⊆ Pm
d

for a class respecting term order and set d = min({cls(h) | h ∈ B}). Then depth(U ) = d.

For the depth and the projective dimensions it is enough to assume that the Pommaret
basis is computed with respect to a class respecting term order. For the regularity it is
necessary to choose the degree reverse lexicographic order.

Theorem 1.54 ([42, Thm. 9.2]). Let U ⊆ Pm
d be a finitely generated graded submodule with a

finite homogeneous Pommaret basis with respect to the degree reverse lexicographic order. The
regularity of U is q if and only if U has homogeneous Pommaret basis of degree q with respect
to the degree reverse lexicographic order.

The following lemma analyses the behaviour of elements in a δ-regular monomial mod-
ule. This lemma will be fundamental for the last section in this chapter.

Lemma 1.55 ([7, Lem. 3]). Let V ⊆ Pm
d be a δ-regular monomial module with Pommaret basis

B. Then:

(i) If xαek ∈ V \ B then xα

xcls(xα)
ek ∈ V .

(ii) If xαek /∈ V and xixαek ∈ V , then either xixαek ∈ B or i > cls(xα).

(iii) If xαek /∈ V and xδxαek ∈ CP(xβek) such that xβek ∈ B and xδxαek = xδ′xβek, then
xδ′ ≺lex xδ.

For the rest of this section we introduce the saturation and the satiety of a module.
Furthermore, we show some interesting properties concerning Pommaret bases and
the saturation of modules in δ-regular modules.
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Definition 1.56. Let U ⊆ Pm
d a graded module. Then the saturation of U is defined as

U sat = U : P∞
+ = {f ∈ Pm

d | ∃k ∈ N : f · Pk ⊆ U}.

A module U is called saturated if U = U sat. The smallest value q0 such that Uq = U sat
q for all

q ≥ q0 is called the satiety sat(U ) of the module U .

Due to the next proposition it is easy to determine the saturation of an δ-regular mod-
ule.

Proposition 1.57. Let B be a Pommaret basis of the graded module U ⊆ Pm
d for a class re-

specting term order ≺. We introduce the sets B0 = {h ∈ B | cls(h) = 0} and

B0 =

 h

x
degx0

(lt≺(h))
0

| h ∈ B0

 .

Then B = (B \ B0) ∪ B0 is a weak Pommaret basis of the saturation U sat.

Proof. The proof is analogous to the proof of [42, Prop. 10.1].

An involutive head autoreduction of the set B yields a strong Pommaret basis for U sat.
Another trivial consequence of this proposition is that for δ-regular coordinates the
following equality is satisfied:

U sat = U : P∞
+ = U : x∞

0 .

Corollary 1.58. Let B be a Pommaret basis of the module U ⊆ Pm
d . Then U is saturated if and

only if B0 = ∅. If U is not saturated, then sat(U ) = deg(B0).

Proof. The proof is analogous to the proof of [42, Cor. 10.2].

Furthermore, we have the following formula relating the regularity and saturation.

Corollary 1.59. Let U ⊆ Pm
d be a module. Then

reg(U ) = max({sat(U ), reg(U sat)}).

Proof. The proof is analogous to the proof of[42, Cor. 10.4].
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1.3 Stable Positions

In this section we introduce several kinds of stability. Stability is a classical combina-
torial concept that plays an important role in the theory of monomial ideals. We recall
the basic theory of the several stability concepts and show the connection to Pommaret
bases. If not stated otherwise we use in this section a polynomial ring over a noetherian
k-algebra A, again.

The first concept which we introduce is the concept of quasi-stability.

Definition 1.60.

• Let J ⊆ P be a monomial ideal and q the maximal degree of a minimal generator of J .
Then the ideal J is quasi-stable if for every term xµ ∈ J and every index j > c =
cls(xµ) the term xq

j
xµ

xµc
c

also lies in J .

• Let V ⊆ Pm
d be a monomial submodule. Then V =

⊕m
i=1 Jiei, such that all Ji ⊆ P are

monomial ideals. We define V to be quasi-stable if all Ji are quasi-stable.

There are many equivalent definitions of quasi-stability. We repeat some of them in
the following proposition. An important observation is that for monomial modules the
terms δ-regular and quasi-stable are equivalent. Hence, a monomial module has a finite
Pommaret basis if and only if it is quasi-stable.

Proposition 1.61. Let V ⊆ Pm
d be a monomial module, such that V =

⊕m
i=1 Jiei, where

Ji ⊆ Pm
d are monomial ideals. Then the following statements are equivalent:

• V is quasi-stable.

• For each module term xαek ∈ V and for all integers i, j, l such that 1 ≤ i < j ≤ n and xl
i

divides xα, there exists s ≥ 0 such that xs
j

xα

xl
i
ek ∈ V .

• For each term xαek ∈ V and for all integers i, j such that 1 ≤ i < j ≤ n, there exists
s ≥ 0 such that xs

j
xα

x
αi
i

ek ∈ V .

• For all 1 ≤ j ≤ n and for all 1 ≤ i ≤ m we have

Ji : x∞
j = Ji : 〈xj, . . . , xn〉∞.

• For all 1 ≤ i ≤ m the variable x0 is not a zero divisor for P/J sat
i and for all 1 ≤ j < d

the variable xj+1 is not a zero divisor for P/〈Ji, x0, . . . , xj〉sat.

• V is δ-regular.
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Proof. Using the identity V =
⊕m

i=1 Jiei we can apply [7, Thm. 1] to every Ji which
shows the claim.

The next concept that we introduce is the concept of stability.

Definition 1.62.

• Let J ⊆ P be a monomial ideal. Then J is stable, if for every term xµ ∈ J and every
index j > c = cls(xµ) the term xj

xµ

xc
also lies in J .

• Let V ⊆ Pm
d be a monomial submodule. Then V =

⊕m
i=1 Jiei, such that all Ji ⊆ P are

monomial ideals. We define V to be stable if all Ji are stable.

The following proposition shows that for stable ideals the Pommaret basis and the min-
imal basis coincide. This implies immediately that every stable ideal is always quasi-
stable, too.

Proposition 1.63. Let V ⊆ Pm
d be a monomial module. V is stable, if and only if its minimal

basis B is simultaneously a Pommaret basis.

Proof. This is a direct consequence of [42, Prop. 8.6] which proves the claim for the ideal
case.

Proposition 1.64.

• Let V ⊆ Pm
d be a quasi-stable module generated in degrees less than or equal to s. The

monomial module V is s-regular if and only if V≥s is stable.

• Let V ⊆ Pm
d be a quasi-stable module and consider s ≥ reg(V). Then V≥s is stable and

the set of terms Vs ∩Tm is its Pommaret basis.

Proof. This is a direct consequence of [7, Prop. 1] which proves the claim for the ideal
case.

As a last combinatorial definition we define strong stability. Again we see immediately
that every ideal which is strongly stable is stable, too.

Definition 1.65.

• Let J ⊆ P be a monomial ideal. Then J is strongly stable if for every term xµ ∈ J
and every index pair i < j such that xi|xµ the term xj

xµ

xi
also lies in J .

• Let V ⊆ Pm
d be a monomial submodule. Then V =

⊕m
i=1 Jiei, such that all Ji ⊆ P are

monomial ideals. We define V to be strongly stable if all Ji are strongly stable.
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The definitions above are always independent of the characteristic of the basic field. In
the following we introduce the concept of Borel fixed ideals and modules. For this we
need the assumption that we act over a polynomial ring over an arbitrary field k. We
will see that these ideals and modules depend on the characteristic of the basic field
k.

Definition 1.66. Let GL(n + 1,k) be the general linear group. That is the group of invertible
n + 1× n + 1-matrices with entries in k. Every g = (gi,j)i,j∈{0,...n} ∈ GL(n + 1,k) induces
an automorphism

g : Pm
d −→ Pm

d

f(x0, . . . , xn) 7−→ f

(
n

∑
j=0

g0,jxj, . . . ,
n

∑
j=0

gn,jxj

)
.

For every module U ⊆ Pm
d , we write g(U ) for 〈g(f(x0, . . . , xn)) | f ∈ U〉.

We denote by B the Borel subgroup of GL(n + 1,k) consisting of upper triangular matrices.

Definition 1.67. Let V ⊆ Pm
d be a monomial module. We say that V is Borel fixed if for every

g ∈ B, g(V) = V .

If we consider only ideals of P for the definition above, we do not need to demand
that the ideal must be monomial, because in [16, Thm. 15.23] it was shown that every
Borel fixed ideal must be monomial. For submodules of Pm

d this is not the case. For
example consider U ⊆ k[x, y]2 such that U = 〈ye1 + ye2〉. It is obviously closed under
the operation of the Borel subgroup, but it is not a monomial module. Nevertheless,
we demand that the Borel fixed modules are monomial so that they fit in the context of
stable modules.

Computationally it is very difficult to check if a module is fixed under the operators of
the Borel subgroup. Therefore, we develop in the following a concept which implies an
easy computational way to check if a module is Borel- fixed or not.

Definition 1.68. Let p be a prime number and a, b ∈ N. We define a <p b if and only if
(a

b) 6= 0 mod p. We extend this definition for p = 0 demanding that a <0 b if and only if
a ≤ b in the usual sense.

Definition 1.69. Let xα ∈ T and choose i < j and s > 0 such that xs
i |xα. We define the sth

increasing move on the term xα ∈ T as

e+(s)
i,j (xα) =

xs
j

xs
i
xα = xα0

0 · · · x
αi−s
i · · · xαj+s

j · · · xαn
n .

The increasing move e+(s)
i,j (xα) is p-admissible on the term xα if e+(s)

i,j (xα) ∈ T and s <p αi.
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Definition 1.70. For a fixed prime p, we define the following relation on the terms ofT: xα ≺p

xβ if and only if there is a p-admissible increasing move e+(s)
i,j such that e+(s)

i,j (xα) = xβ. The
transitive closure of this relation gives a partial order on the set of monomials of any fixed degree,
that we will keep on denoting by ≺p.

Theorem 1.71. Let char(k) = p ≥ 0 and V ∈ Pm
d be a monomial module with minimal

generating set B. V is Borel fixed if and only if for every xαek ∈ B, if xα ≺p xβ then xβek ∈ V .

Proof. Using the identity V =
⊕m

i=1 Jiei we can apply [7, Thm. 6] to every Ji which
shows the claim.

In the following a monomial module V ⊆ Pm
d is called p-Borel fixed if it is Borel fixed in

Pm
d , with char(k) = p. The question if a monomial module is Borel fixed or not depends

on the characteristic. It is easy to see that for char(k) = 0 the property Borel fixed is
equivalent to strong stability. For arbitrary characteristic it is only true that strong sta-
bility always induces Borel fixedness. But a p-Borel fixed module is not always strongly
stable, as the following example shows.

Example 1.72. Consider P = k[x0, . . . , x4], B = {x4, x3, x2
2, x2

1, x2
0} and J = 〈B〉. The ideal

is not p-Borel fixed for p 6= 2 because e+(1)
2,3 (x2

2) = x2x3 is a p-admissible move for all p 6= 2,
but J does not contain x2x3.

But the ideal is 2-Borel fixed, because the increasing moves e+(1)
i,j (x2

i ) are not 2-admissible for
all i ∈ {1, 2, 3} and j > i. All other increasing moves are obviously 2-admissible which implies
that J is 2-Borel fixed.

In contrast to that the ideal J = 〈x4, x3, x2, x1, x8
0〉 is obviously strongly stable and hence

p-admissible for all possible p.

The definitions above are always for monomial modules. For a given term order ≺ we
can extend the definitions to an arbitrary module U ⊆ Pm

d . We say that U is in quasi-
stable/stable/strongly stable/p-Borel fixed Position if lt≺(U ) is quasi-stable/stable/strongly
stable/p-Borel fixed.

1.4 Marked Modules

Resolving decompositions are generating sets which give us an easy way to gain much
information about the minimal free resolution of a finitely generated module. In con-
trast to other special generating sets of finitely generated modules, the head module
of a resolving decomposition does not depend on a term order. In the following we
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assume that we have a given head module. For modules which “contain” this given
head module we will see that we can construct a resolving decomposition for them.
This work is based on [8, 12, 13, 33], where the notions of a marked polynomial and
marked basis were introduced. Now we extend this to finitely generated modules and
show that a marked basis induces a resolving decomposition.

In general, it is not possible to construct an algorithm which computes a resolving de-
composition for a given finitely generated module. The main problem is that due to the
lack of a term order it is hard to define a terminating normal form algorithm. But, such
an algorithm is mandatory for computing new generating sets for a given finitely gen-
erated module. We will see that we can obtain a resolving decomposition if the given
finitely generated module “contains” a quasi-stable monomial module.

For completeness, we first generalize some notions introduced in [8, 12, 13, 33]. We
assume that Pm

d = A[x]md is a free module over A[x], where A is a k-Algebra over a
field of arbitrary characteristic.

Definition 1.73. A marked homogeneous module element is a homogeneous module el-
ement in Pm

d with a fixed term in its support whose coefficient is 1A and which is called
head term. We denote a marked homogeneous module element by fk

α if the head term is
Ht(fk

α) = xαek.

We associate the following sets to a marked module element fk
α:

• the multiplicative variables of fk
α: XPm(f

k
α) := XP(Ht(fk

α));

• the non-multiplicative variables of f: XPm(f) := XP(Ht(f)).

The following definition is fundamental for this section. It is modelled after a well-
known characteristic property of Gröbner bases.

Definition 1.74. Let C ⊂ Tm be a finite set and V the module generated by C in Pm
d . A C-

marked set is a finite set B ⊂ Pm
d of marked homogeneous module elements fk

α with Ht(fk
α) =

xαek ∈ C and supp(fk
α − xαek) ⊂ 〈N (V)〉 (obviously, |C| = |B|).

The C-marked set B is a C-marked basis if N (V)s is a basis of (Pm
d )s/〈B〉s as A-module, i. e.

if (Pm
d )s = 〈B〉s ⊕ 〈N (V)s〉A for all s.

As we wrote in Remark 1.3 the defining property of a marked basis is equivalent to the
existence of a normal form algorithm. The next lemma shows that we find a marked
set on every degree s such that at this degree s the marked set fulfils this property.
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Lemma 1.75. Let C ⊂ Tm be a finite set and V the module generated by it in Pm
d . Let U ⊆ Pm

d
be a finitely generated graded module such that for every s the set N (V)s generates the A-
module (Pm

d )s/Us. Then for every degree s there exists a Vs ∩Tm-marked set Bs contained in
Us such that

(Pm
d )s = 〈Bs〉A ⊕ 〈N (V)s〉A.

Proof. Let π be the usual projection morphism of Pm
d onto the quotient Pm

d /U . For
every xαek ∈ Vs ∩Tm, we consider π(xαek) and choose a representation π(xαek) =

∑xηel∈N (V)s
cαk

ηl xηel , cαk
ηl ∈ A which exists asN (V)s generates (Pm

d )s/Us as an A-module.
We consider the set of marked module elements Bs = {fk

α}xαek∈Vs , where fk
α := xαek −

π(xαek) and Ht(fk
α) = xαek.

We now prove that (Pm
d )s = 〈Bs〉A ⊕ 〈N (V)s〉A. At first, we prove that every term

in Tm
s belongs to 〈Bs〉A ⊕ 〈N (V)s〉A. If xβel ∈ N (V)s, there is nothing to prove. If

xβel ∈ Vs, then there is fl
β ∈ Bs such that Ht(fl

β) = xβel , hence we can write xβel =

fl
β + (xβel − fl

β) = fl
β + π(xβel).

We conclude by proving that 〈Bs〉A ∩ 〈N (V)s〉A = {0m
A}. Let g ∈ Pm

d be an element
contained in 〈Bs〉A ∩ 〈N (V)s〉A

g = ∑
fk

α∈Bs

λαkfk
α ∈ 〈N (V)s〉 .

Since the head terms of fk
α cannot cancel each other, λαk = 0 for every α and k and hence

g = 0.

We specialize now to the case that V is a quasi-stable module and assume that P(V)
is its Pommaret basis. We study a reduction relation naturally induced by any basis
marked over such a set P(V).In particular, we show that it is confluent and noetherian
just as the familiar reduction relation induced by a Gröbner basis. In the following
the set B(s), defined below, plays an important role. We show that this set is for every
degree s a marked set which fulfils the condition of the lemma above.

Definition 1.76. Let V ⊆ Pm
d be a quasi-stable module and B be a P(V)-marked set in Pm

d .
We introduce the following sets:

• B(s) :=
{

xδfk
α | fk

α ∈ B, xδ ∈ A[XPm(f
k
α)], deg(xδfk

α) = s
}

,

• B̂(s) :=
{

xδfk
α | fk

α ∈ B, xδ /∈ A[XPm(f
k
α)], deg(xδfk

α) = s
}

=
{

xδfk
α | fk

α ∈ B, xδfk
α /∈ B(s)

}
,

• N (V , 〈B〉) := 〈B〉 ∩ 〈N (V)〉.
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Lemma 1.77. Let V ⊆ Pm
d be a quasi-stable module such that V =

⊕m
k=1 J (k) and B a P(V)-

marked set. For every product xδfk
α with fk

α ∈ B, each term in supp(xδxαek − xδfk
α) either

belongs to N (V) or is of the form xηxνel ∈ CP(xνel) with xνel ∈ P(V) and xη <lex xδ.

Proof. It is sufficient to consider xδxβel ∈ supp(xδxαek − xδfk
α) ∩ V . Then xδxβ ∈ J (l).

Therefore, there exists xγ ∈ P(J (l)) such that xδxβ ∈ CP(xγ). More precisely, if xη :=
xδ xβ

xγ , then xη ≺lex xδ by Lemma 1.55.

Note in the next definition the use of the set B(s) which means that we use here a gen-
eralization of the involutive reduction relation associated with the Pommaret division
and not of the standard reduction relation in the theory of Gröbner bases. This modi-
fication is the key for circumventing the restrictions imposed by the results of [39]. It
also entails that if a term is reducible, then there is only one element in the marked basis
which can be used for its reduction.

Definition 1.78. Let V ⊆ Pm
d be a quasi-stable module and B a P(V)-marked set. We denote

by G(s)
−−→ the transitive closure of the relation h G(s)

−−→ h − λxηfk
α where xηxαek is a term that

appears in h with a nonzero coefficient λ ∈ A and which satisfies deg(xηxαek) = s and
xηfk

α ∈ B(s).

We will write h G(s)
−→∗ g or NFG(s)(h) = g if h G(s)

−−→ g and g ∈ 〈N (V)〉 and call it the V-

normal form modulo 〈B〉 of h. Observe that if h ∈ (Pm
d )s, then h G(s)

−−→ g ∈ (Pm
d )s. If

NFG(s)(h) = h, then we call h V-reduced.

Proposition 1.79. Let V ⊆ Pm
d be a quasi-stable module and B a P(V)-marked set. The

reduction relation G(s)
−−→ is confluent and noetherian.

Proof. It is sufficient to prove that for every term xγek in Vs, there is a unique g ∈ Pm
d

such that xγek
G(s)
−→∗ g and g ∈ 〈N (V)〉A.

Since xγek ∈ Vs, there exists a unique xδfk
α ∈ B(s) such that xδ Ht(fk

α) = xγek. Hence,

xγek
G(s)
−−→ xγek − xδfk

α. If we could proceed in the reduction without obtaining an ele-
ment in 〈N (V)〉, we would obtain by Lemma 1.77 an infinite lex-descending chain of

terms inTwhich is impossible since≺lex is a well-ordering. Hence, G(s)
−−→ is noetherian.

Confluence is immediate by the uniqueness of the element of B(s) that is used at each
step of reduction.
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Proposition 1.80. Let V ⊆ Pm
d be a quasi-stable module and B be a P(V)-marked set. Every

term xβek ∈ Tm
s of degree s can be uniquely expressed in the form

xβel = ∑
i

λδiαiki x
δi fki

αi
+ g,

where λδiαiki ∈ A \ {0A}, xδi f ki
αi ∈ B(s), g ∈ 〈N (V)〉A and the terms xδi form a sequence

which is strictly descending with respect to ≺lex.

Proof. For terms in N (V), there is nothing to prove. For xβel ∈ V , it is sufficient to

consider g ∈ 〈N (V)〉A such that xβel
G(s)
−→∗ g. The polynomials xδi fki

αi ∈ B(s) are exactly

those used during the reduction G(s)
−−→. They fulfil the statement on the terms xδi by

Lemma 1.77.

Corollary 1.81. Let V ⊆ Pm
d be a quasi-stable module and B be a P(V)-marked set. Consider

a homogeneous element g ∈ Pm
d such that g = ∑m

i=1 λixδi fki
αi , with λi ∈ A \ {0} and xδi fki

αi ∈
B(s) with s = deg(g) and xδi fki

αi pairwise different. Then g 6= 0m
A and g /∈ 〈N (V)〉A.

Proof. The statement follows from the definition of B(s) and the properties of G(s)
−−→.

The following theorem and corollary collect some basic properties of sets marked over
a Pommaret basis. They generalize analogous statements in [33, Thms. 1.7, 1.10] which
consider only ideals and marked bases where the head terms generate a strongly stable
ideal.

Theorem 1.82. Let V ⊆ Pm
d be a quasi-stable module and B a P(V)-marked set. Then, we

have for every degree s the following decompositions of A-modules:

(i) 〈B〉s =
〈
B(s)〉A

+
〈
B̂(s)〉A;

(ii) (Pm
d )s = 〈B(s)〉A ⊕ 〈N (V)s〉A;

(iii) The A-module
〈
B(s)〉A is free of rank equal to |B(s)| = rk(Vs) and it is generated (as an

A-module) by a unique Vs ∩Tm-marked set B̃(s);

(iv) 〈B〉s =
〈
B(s)〉A ⊕N (V , 〈B〉)s.

Moreover, the following conditions are equivalent:

(v) B is a P(V)-marked basis;

(vi) for all degrees s, 〈B〉s =
〈
B(s)〉A;
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(vii) N (V , 〈B〉) = {0m
A};

(viii) for all s,
∧Q(s)+1〈B〉s = 0A, where Q(s) := rk(Vs).

Proof. Item (i): Immediate.

Item (ii) is a consequence of Proposition 1.80 and Corollary 1.81.

Item (iii): We can repeat the arguments of [33, Theorem 1.7]: for every s, we may
construct a Vs ∩ Tm-marked set B̃(s) such that (Pm

d )s = 〈B̃(s)〉A ⊕ 〈N (V)s〉A by us-
ing Lemma 1.75. By item (ii), the Vs ∩Tm-marked set B̃(s) is unique and furthermore
〈B̃(s)〉A = 〈B(s)〉A.

Item (iv): By items (i) and (iii), we have 〈B〉s = 〈B̃(s)〉A + 〈B̂(s)〉A. Recalling that
〈B̃(s)〉A ∩ 〈N (V)s〉A = {0m

A} by Lemma 1.75, it is sufficient to show that every g ∈
〈B̂(s)〉A can be written as g = f + h with f ∈ 〈B̃(s)〉A and h ∈ 〈N (V)s〉A: we ex-
press every term xβel ∈ Vs appearing in g with nonzero coefficient in the form xβel =

f̃l
β + (xβel − f̃l

β) where f̃l
β is the unique polynomial in B̃(s) with Ht(f̃l

β) = xβel . By
construction, h ∈ N (V , 〈B〉)s. By item (ii), we obtain the assertion.

Items (v), (vi), (vii) are equivalent by the previous items, using again the same proof as
in [33, Thm. 1.7].

With respect to [33], the only new item is (viii), which is obviously equivalent to (vi) and
(vii). In fact, by (iii) and (iv) we find that 〈B〉s =

〈
B(s)〉A⊕N (V , 〈B〉)s and rk

〈
B(s)〉A

=
rk(Vs) = Q(s).

Corollary 1.83. Let V ⊆ Pm
d be a quasi-stable module and B be a P(V)-marked set. The

following conditions are equivalent:

(i) B is a P(V)-marked basis,

(ii) 〈B〉s =
〈
B(s)〉A for every s ≤ reg(V) + 1,

(iii) N (V , 〈B〉)s = {0m
A} for every s ≤ reg(V) + 1,

(iv)
∧Q(s)+1〈B〉s = 0A for every s ≤ reg(V) + 1.

Proof. By the second part of Theorem 1.82, item (i) implies item (ii) and items (ii), (iii),
(iv) are equivalent. For the proof that item (ii) implies (i), it is sufficient to repeat the
arguments of [33, Thm. 1.10].

Corollary 1.84. Let V ⊆ Pm
d be a saturated quasi-stable module and B be a P(V)-marked set.

Then the following conditions are equivalent:
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(i) B is a P(V)-marked basis,

(ii) 〈B〉reg(B)+1 =
〈
B(reg(V)+1)〉A,

(iii) N (V , 〈B〉)reg(V)+1 = {0m
A},

(iv)
∧Q+1〈B〉reg(V)+1 = 0A, where Q := rk(Vreg(V)+1).

Proof. The equivalence among items (ii), (iii) and (iv) is immediate by Theorem 1.82.
We only prove that items (i) and (iii) are equivalent. If B is a P(V)-marked basis, then
we have N (V , 〈B〉)reg(V)+1 = {0m

A} by Theorem 1.82.

We now assume that N (V , 〈B〉)reg(V)+1 = {0m
A} and prove that N (V , 〈B〉) = {0m

A}. By
Corollary 1.83, it is sufficient to prove that N (V , 〈B〉)s = {0m

A} for every s ≤ reg(V). If

f ∈ N (V , 〈B〉)s, with s ≤ reg(V), then xreg(V)+1−s
0 f ∈ N (V , 〈B〉)reg(V)+1, by Corollary

1.58 and Lemma 1.55 applied to V . Hence, f = 0m
A.

Corollary 1.85. Let V ⊆ Pm
d be a quasi-stable module and U ⊆ Pm

d be a finitely generated
graded submodule such that (Pm

d )s = Us ⊕ 〈N (V)s〉A for every s. Then U is generated by a
P(V)-marked basis.

Proof. The statement is an easy consequence of Theorem 1.82 as soon as we define a
P(V)-marked set generating U .

By the hypotheses, for every degree s and every module term xαek ∈ P(V) there is a
unique element hk

α ∈ 〈N (V)s〉A such that xαek − hk
α ∈ Us.

The collectionB of the elements xαek−hk
α is obviously a P(V)-marked set and generates

a graded submodule of U . Moreover, (Pm
d )s = Us ⊕ 〈N (V)s〉A = 〈B(s)〉A ⊕ 〈N (V)s〉A.

Therefore, Us = 〈B(s)〉A ⊆ Bs ⊆ Us, so that B generates U as a graded P-module.

Finally, we give an algorithmic method to check whether a marked set is a marked basis
using the reduction process introduced in Definition 1.78.

Theorem 1.86. Let V ⊆ Pm
d be a quasi-stable module and B be a P(V)-marked set. The set B

is a P(V)-marked basis if and only if

∀fk
α ∈ B, ∀xi ∈ XPm(f

k
α) : xifk

α
B(s)−−→ 0m

A.

Proof. We can repeat the arguments used in [12, Thm. 5.13] for the ideal case.
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1 Decomposition of Polynomial Modules

Corollary 1.87. Let V ⊆ Pm
d be a quasi-stable module and B be a P(V)-marked basis. Then

every homogeneous module element h ∈ 〈B〉s for an arbitrary s ∈ N reduces to zero with

respect to B(s)−−→.

At the end of this section we show that a P(V)-marked basis over a noetherian k-
algebra is a resolving decomposition. Hence, we can apply the whole syzygy theory
which we have done in the first part of this chapter.

Theorem 1.88. Let V ⊆ Pm
d be a quasi-stable module andB = {h1, . . . , hs} be a P(V)-marked

basis. Define XB(h) = XPm(h) for all h ∈ B. Let ≺lex be the TOP-lift of the lexicographic
ordering to A[x]s. Then the quadruple (B, Ht(B), XB ,≺lex) is a resolving decomposition.

Proof. We see immediately that the conditions (i), (ii) and (iv) of Definition 1.1 are sat-
isfied. The first part of condition (iii) follows from the fact that Ht(B) is a Pommaret
basis. The second part follows from the uniqueness of the reduction process which
is a consequence of Proposition 1.80 and Theorem 1.82 (iv). That ≺lex fulfils the last
condition of a resolving decomposition follows from Lemma 1.77.
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2 The Hilbert polynomial and the
Theorems of Gotzmann

In this chapter we introduce the Hilbert function and the Hilbert polynomial. They
measure the growth of the dimension of homogeneous components of ideals over poly-
nomial rings.

First, we recall the basic definitions and results concerning the Hilbert function and
the Hilbert polynomial. Then we show how to compute the Hilbert function and the
Hilbert polynomial via a given resolving decomposition and introduce lexsegment ide-
als which play an important role later in this section.

The persistence theorem and the regularity theorem of Gotzmann for ideals are well-
known results concerning the connection between the Hilbert function respectively
Hilbert polynomial and the regularity of an ideal. We give for both theorems two alter-
native proofs. In addition to that, we introduce the Gotzmann number. It is based on a
decomposition of a Hilbert polynomial and will be important in the next chapters.

Furthermore, we recall the results of Gasharov and Dellaca which extended the classical
theorems of Gotzmann to the module case.

We consider again finitely generated graded submodules of Pm
d where P = k[x] for an

arbitrary field k.

Definition 2.1. For a finitely generated graded submodule U ⊆ Pm
d the Hilbert function of

Pm
d /U is defined by

HFPm
d /U : Z −→ Z

j −→ dimk((Pm
d /U )j).

In contrast to many other works about the Hilbert function we distinguish between the Hilbert
function of U and Pm

d /U . The volume function of U is defined by

HFU : Z −→ Z

j −→ dimk((U )j).
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2 The Hilbert polynomial and the Theorems of Gotzmann

The following important result goes back to Hilbert and Serre. It motivates the defini-
tion of the Hilbert polynomial.

Theorem 2.2 ([28, Thm. I.7.5]). For a finitely generated graded submodule U ⊆ Pm
d with

Hilbert function HFPm
d /U there is a univariate polynomial HPPm

d /U (t) ∈ Q[t] such that

HPPm
d /U (j) = HFPm

d /U (j) for j� 0 .

For the volume function there is an analogous result which provides the existence of a
polynomial HPU (t).

Definition 2.3. The above defined polynomial HPPm
d /U (t) is called the Hilbert polynomial

of Pm
d /U . The polynomial HPU (t) is called the volume polynomial of U .

In the following, we need some simple results concerning the definitions above. We
summarize these in the next lemma.

Lemma 2.4. Let U ⊆ Pm
d be a finitely generated graded submodule and j ∈ Z.

• HFPm
d /U (j) = HFPm

d
(j)−HFU (j) and

• HPPm
d /U (t) = HPPm

d
(t)−HPU (t).

If furthermore d = (0, . . . , 0), then

• HFPm
d
(j) = m · (n+j

n ) and

• HPPm
d
(t) = m · (n+t

n ).

Remark 2.5. To make statements about the Hilbert function or the Hilbert polynomial of a
module one often assumes that the given modules are in a stable position which is often easier
to analyse. This restriction is possible because a k-linear coordinate change does not change
the k-vector space dimension of homogeneous components of a module. Hence, one can obtain
a stable module via coordinate transformations with the same Hilbert function and the same
Hilbert polynomial.

Remark 2.6. It is also possible to define a Hilbert function and a Hilbert polynomial for an
A[x]-submodule U of A[x]md where A is a k-algebra and for every j ∈ Z the component of
degree j of A[x]md /U is a free A-module. Then the Hilbert function respectively the Hilbert
polynomial is given by the ranks of the homogeneous components of A[x]md /U

If we consider the Hilbert polynomial or the Hilbert function of a finitely generated
graded module U ⊆ Pm

d , we see immediately that the Hilbert polynomial or the Hilbert
function of U and lt≺(U ) coincide for a given term order≺. It is obvious that the same is
true for a resolving decomposition (B, hm(B), XB ,≺B) of U because of the definition of
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2 The Hilbert polynomial and the Theorems of Gotzmann

a resolving decomposition. Therefore, it is enough to consider the Hilbert polynomial
or the Hilbert function of 〈hm(U )〉. Due to that, it is easy to get the Hilbert function and
the Hilbert polynomial, respectively the volume function and the volume polynomial
for a finitely generated graded module with a given resolving decomposition.

Lemma 2.7. Let (B, hm(B), XB ,≺B) be a resolving decomposition of the finitely generated
graded module U ⊆ Pm

d . Then

HFPm
d /U (j) = m ·

(
n + j

n

)
− ∑

xµek∈hm(B)∧deg(xµek)≤j

(
j− deg(xµek) + |XB(xµ)| − 1

j− deg(xµek)

)
,

HPPm
d /U (t) = m ·

(
n + t

n

)
− ∑

xµek∈hm(B)

(
t− deg(xµek) + |XB(xµ)| − 1

t− deg(xµek)

)
,

HFU (j) = ∑
xµek∈hm(B)∧deg(xµek)≤j

(
j− deg(xµek) + |XB(xµ)| − 1

j− deg(xµek)

)
,

HPU (t) = ∑
xµek∈hm(B)

(
t− deg(xµek) + |XB(xµ)| − 1

t− deg(xµek)

)
.

2.1 Gotzmann’s Persistence Theorem

In this and the following section we restrict ourselves to the case of homogeneous ideals
I ⊆ P . We introduce the Persistence Theorem of Gotzmann [23]. This is a fundamental
theorem about the growth of the Hilbert function of an ideal. We present here a new
proof using the β-vector of monomial quasi-stable ideals.

Fundamental for the analysis of the growth of Hilbert functions are the so called lexseg-
ments which we define in the following.

Definition 2.8. Let d ∈ N and xµ ∈ T be a monomial of degree d.

• The set L(xµ) := {xν ∈ T | deg(xν) = d, xµ �lex xν} is called a lexsegment. The
empty set is also considered as a lexsegment.

• The k-subspace V of Pd is called lexsegment space if V ∩T is first the k-basis of V and
second a lexsegment.

• An ideal L ⊆ P is called lexsegment ideal if Ld is a lexsegment space in Pd for all
d ∈ N.

• An ideal L ⊆ P is called a basic lexsegment ideal (with s elements) if L is a lexseg-
ment ideal which has a lexsegment (with s elements) as minimal generating set.
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2 The Hilbert polynomial and the Theorems of Gotzmann

• Let I ⊆ be a homogeneous ideal. Consequently, the corresponding lexsegment ideal
L ⊆ P is the lexsegment ideal which has the same Hilbert function then I .

In the following we need several times the growth theorem of Macaulay which gives us
a fundamental statement of the growth of ideals. Especially, it shows us that the growth
of a lexsegment ideal is the slowest possible.

Theorem 2.9 (Theorem of Macaulay [24, Thm. 3.3 and Prop. 3.7]). Let be I ⊆ P be a
homogeneous ideal and L its corresponding lexsegment ideal. Then

dimk(Id+1) ≥ dimk(P1Ld) for d ≥ 0.

To proof the theorems of Gotzmann we first need a statement about the β-vector and
basic lexsegment ideals.

Definition 2.10. Let J ⊆ P be a monomial ideal. We define Bq(J ) := Jq ∩T and

β
(k)
q (J ) := |{xµ ∈ Bq(J ) | cls(xµ) = k}|.

Moreover we define the β-vector as

βq(J ) := (β
(0)
q (J ), . . . , β

(n)
q (J )).

Lemma 2.11. Let d ∈ N and B = {xµ(1)
, . . . , xµ(s)} be a monomial Pommaret basis such that

deg(xµi) = d for all possible i. Then J = 〈B〉 is stable.

Proof. Let xµ ∈ B = Jd ∩T such that cls(xµ) = j. We claim for k > j that the element
x

µj−1
j · · · xµk+1

k · · · xµn is in B, too. Consider the element xkxµ = x
µj
j · · · x

µk+1
k · · · xµn .

The set B is a Pommaret basis, hence there exists xµ′ which divides xkxµ involutively.
Due to the fact that every element in B has the same degree there exists an l such
that xµ′ = xk

xl
xµ. Suppose that l > j, then cls(xµ′) = cls(xµ) = j and hence xl is

non-multiplicative for xµ′ . But then xµ′ is not an involutive divisor of xkxµ, because
degl(xµ′) < degl(xkxµ). Hence, l = j and xµ′ = x

µj−1
j · · · xµk+1

k which proves the claim.

Now we choose an arbitrary monomial xν ∈ J \ B. Thus, there is an xµ ∈ B such that
xν = xδxµ and xδ ∈ TXP(xµ). Assume that k = cls(xµ) and j = cls(xν). In addition to
that, we choose an l > j and we want to show that xν′ = xl

xj
xν ∈ J . If l ≤ k then xν′

also has xµ as an involutive divisor which proves the claim. Assume that l > k and
xµ′ = xl

xk
xµ. It is obvious that xµ′ ∈ B and that xµ′ is an involutive divisor of xν′ which

completes the proof.
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2 The Hilbert polynomial and the Theorems of Gotzmann

Now we prove the persistence theorem of Gotzmann. In contrast to many other poofs
our proof needs only some easy combinatorial results concerning the growth of the
β-vectors of stable ideals.

If a β-vector of a stable ideal is given of degree higher than or equal to the maximal
degree of a minimal generator of this ideal, one can use the β-vector to compute the
volume function.

Lemma 2.12. Let d ∈ N and B = {xµ(1)
, . . . , xµ(s)} ⊂ Td be a monomial Pommaret basis of

the ideal J . In addition to that, let βd(J ) = (β
(0)
d (J ), . . . , β

(n)
d (J )). We get for the volume

function the following result:

HFJ (j) =
n

∑
i=0

(
j− d + i

j− d

)
β
(i)
d (J ).

Proof. We know from Lemma 2.7 that

HFJ (j) = ∑
xµ∈B

(
j− deg(xµ) + cls(xµ)

j− deg(xµ)

)
.

Using the fact that every element in the Pommaret basis has the same degree we can
simplify the formula further:

HFJ (j) = ∑
xµ∈B

(
j− deg(xµ) + cls(xµ)

j− deg(xµ)

)
= ∑

xµ∈B

(
j− d + cls(xµ)

j− d

)
=

n

∑
i=0

(
j− d + i

j− d

)
β
(i)
d (J ) .

The last transformation is a consequence of the fact that there are exactly β
(i)
d (J ) ele-

ments of class i in B = Jd ∩T.

If we have a monomial ideal which is generated by a monomial Pommaret basis in
degree d, then we can define a shifted version of the volume function which simplifies
the formula to compute the volume function out of the β-vector:

HFJ (d + j) =
n

∑
i=0

(
d + j− d + i

d + j− d

)
β
(i)
d (J )

=
n

∑
i=0

(
j + i

j

)
β
(i)
d (J ) =: HFd

J (j)
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2 The Hilbert polynomial and the Theorems of Gotzmann

for j ≥ 0.

One main step to prove the persistence theorem of Gotzmann is the next proposition. It
shows that the β-vector of a lexsegment is the ≺lex-smallest among all stable ideals.

Proposition 2.13. Let d ∈ N and B = {xµ(1)
, . . . , xµ(s)} ⊂ Td be a monomial Pommaret basis

of the ideal J . Then the β-vector of J is lexicographically greater than or equal to the β-vector
βd(L) where L is a basic lexsegment ideal which is generated by the lexsegment in degree d
which has s elements.

Proof. The theorem of Macaulay (Theorem 2.9) indicates that if HFJ (j) = HFL(j), so
HFJ (j + 1) ≥ HFL(j + 1) holds for all j ∈ N. We know that HFJ (d) = HFL(d), hence
HFJ (j) ≥ HFL(j) for all j ≥ d.

Assume J has a β-vector which is lexicographically smaller than the β-vector of L. We
take a look at the difference of the shifted volume functions

HFd
J (j)−HFd

L(j) =
n

∑
i=0

(
j + i

j

)(
β
(i)
d (J )− β

(i)
d (L)

)
.

We can interpret this difference as a polynomial in j. The leading term of this poly-
nomial has the degree of the maximal i ∈ {0, . . . , n} such that β

(i)
d (J )− β

(i)
d (L) 6= 0.

Due to the assumption we know that βd(J ) ≺lex βd(L) which implies that β
(i)
d (J )−

β
(i)
d (L) < 0. Therefore, the leading term of the polynomial above has a negative lead-

ing coefficient. However, then we have HFd
J (s) − HFd

L(s) < 0 for s � 0 which is a
contradiction to the theorem of Macaulay.

The next two statements concern multi indices and show the connection between them
if they have the same content1.

Definition 2.14. Let α ∈ Nn+1 be a multi index, i ∈ {1, . . . , n} and j ∈ {0, . . . , n− 1}. We
define an elementary change ei,j(α) := α′ such that α′ fulfils the following conditions

α′i = αi − 1
α′i−1 = αi−1 + 1

α′j = αj − 1

α′j+1 = αj+1 + 1

α′k = αk for all k ∈ {1, . . . , n} \ {i, i− 1, j, j + 1}.

1The content of a multi index α ∈ Nn+1 is the sum of its entries.
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2 The Hilbert polynomial and the Theorems of Gotzmann

Lemma 2.15. Let α, β ∈ Nn+1 be two multi indices such that

n

∑
i=0

αi =
n

∑
i=0

βi and
n

∑
i=0

iαi =
n

∑
i=0

iβi .

Then we can transform α to β by a finite number of elementary changes.

Proof. We assume that α 6= β and perform an induction over n. For n = 1 and n = 2
the statement is trivial. Let n ≥ 2 and consider α and β such that ∑ αi = ∑ βi and
∑ iαi = ∑ iβi. If αn = βn we can apply the induction hypothesis to (α0, . . . , αn−1) and
(β0, . . . , βn−1) and the claim is following. Now assume without loss of generality that
αn > βn. The repeated application of elementary changes on α gives us an α′ such that

α′n = en,kαn−βn
◦ · · · ◦ en,k1(α)

for k1, . . . , kαn−βn ∈ {0, . . . , n − 2} and (α′)n = βn. We find such a suitable chain
of elementary changes because if not then we would get an element α′′ of the form
(0, . . . , 0, α′′n) with α′′n 6= βn and α′′n = ∑n

i=0 βi. This has the consequence that ∑n
i=0 iα′′i =

nα′′n > ∑n
i=0 iβi which is a contradiction of the assumption. Because we only apply

elementary changes it is still true that ∑ α′i = ∑ βi and ∑ iα′i = ∑ iβi. Furthermore,
∑n−1

i=0 α′i = ∑n−1
i=0 βi and ∑n−1

i=0 iα′i = ∑n−1
i=0 iβi. Now we can apply the induction hypothe-

sis again and the claim is following.

Proposition 2.16. Let α, β ∈ Nn+1 be like in Lemma 2.15. Additionally, let α ≺lex β. Then
there exists a j ∈ {0, . . . , n} such that

n

∑
k=j

αk >
n

∑
k=j

βk.

Proof. Due to Lemma 2.15 we know that there is a finite number of elementary trans-
formations from α to β. Among all of these transformations we take a minimal set
E = {ei1,j1 , . . . , eir ,jr} which transforms α to β. This set is not necessarily unique.

At first, we apply to α all elementary transformations ei,j ∈ E such that i ≤ j and i is
decreasing. There must be at least one such transformation because α ≺lex β.

If we apply the first elementary transformation ei1,j1 to α, we see that

n

∑
k=i1

αk >
n

∑
k=i1

ei1,j1(α)k.
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Now we assume that for α ≺lex α′ = eis−1,js−1 ◦ · · · ◦ ei1,j1(α) the claim above is true
which means that there is an i such that

n

∑
k=i

αk >
n

∑
k=1

α′k.

Let i be the minimal number such that the inequality above is satisfied.

Now we apply eis,js on α′. Assume that is ≤ js. If i = is the inequality above remains
true. The case i < is cannot appear because we apply the elementary transformations
ei,j such that i is decreasing. The only remaining case is i > is. Here we have to distin-
guish between four different cases:

js ≥ i: The inequality obviously remains.

js < i− 1: The inequality obviously remains.

js = i− 1: Due to the order how we apply the elementary transformations we can fol-
low that at least ∑n

k=is
αk > ∑n

k=is
eis,js(α

′)k is true.

js < is:

If js < is we can assume that all elementary transformations ei,j ∈ E with is ≤ js are
done. Now we have to do distinguish some further cases:

is ≤ i: The inequality obviously remains.

is > i: We have to distinguish three more cases:

js ≥ i: The inequality obviously remains.

js < i− 1: The inequality obviously remains.

js = i− 1: There must be at least one elementary transformation eiq,jq such that
iq ≤ jq and iq = i. If not, no inequality existed before. Hence, we can replace
the elementary transformations eiq,jq and eis,js by eis,jq which is a contradiction
to the assumption that E is minimal.

Lemma 2.17. Let I ⊆ P be a homogeneous ideal and L be the corresponding lexsegment ideal.
Further, let H1 be a generic linear form of P , H2 be a generic linear form of P/H1, H3 be a
generic linear form of P/〈H1,H2〉, etc., q ∈ N and s ∈ {1, . . . , n}. Then

dimk((P/〈L,H1, . . . ,Hs〉)q) ≥ dimk((P/〈I ,H1, . . . ,Hs〉)q).
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Proof. This statement is a repeated application of the theorem of Green (for example see
[37, Sec. II.44]) and hence obvious.

We denote by J{x0,...,xj} the ideal that we obtain by applying the generic linear forms
〈x0〉, . . . , 〈xj〉 on the stable ideal J .

Theorem 2.18. Let char(k) = 0, p ∈ N and J be a stable ideal with minimal generating set
B such that deg(h) = p for every h ∈ B. Furthermore, let L be the corresponding lexsegment
ideal of J . Moreover, suppose that d ≥ p is an integer such that

dimk((P/J )d+1) = dimk(P1(P/J )d),

then J is d-regular and dimk((P/J )k+1) = dimk(P1(P/J )k) for all k ≥ d.

Proof. At the beginning of the proof we consider the Pommaret basis of J . It has degree
p due to the fact that J is stable, hence the Pommaret basis is B which only consists of
elements of degree p. Now assume that we cut J at degree k ≥ p. Then J≥k is also
stable and hence the Pommaret basis coincides with the minimal generating set of J≥k
which is Jk ∩T.

Now consider J≥d and the corresponding lexsegment ideal L≥d. It is true that

n

∑
i=0

β
(i)
L≥d

(d) =
n

∑
i=0

β
(i)
J≥d

(d)

and
n

∑
i=0

iβ(i)
L≥d

(d) =
n

∑
i=0

iβ(i)
J≥d

(d) = dimk(Jd+1).

We assume that βL≥d(d) 6= βJ≥d(d). Then βL≥d(d) ≺lex βJ≥d(d) due to Proposition 2.13.
In addition to that, Proposition 2.16 implies the existence of j ∈ {0, . . . , n} such that

n

∑
k=j

β
(i)
L≥d

(d) >
n

∑
k=j

β
(i)
J≥d

(d).

As a result, we have in the (j− 1)th hyperplane that

dimk(J≥d{x0,...,xj−1}) =
n

∑
k=j

β
(i)
J≥d

(d) <
n

∑
k=j

β
(i)
L≥d

(d) = dimk(L≥d{x0,...,xj−1}).

However, this is a contradiction to Lemma 2.17 which claims that

dimk(J≥d{x0,...,xj−1}) ≥ dimk(L≥d{x0,...,xj−1}).
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This contradiction implies that βL≥d(d) = βJ≥d(d). The Hilbert function of J≥d can be
computed via βJ≥d(d) because J≥d has no minimal generator of degree greater d. From
this follows that L≥d cannot have a minimal generator of degree greater than d because
the Hilbert functions would not be coincide anymore. This implies that the growth of
J≥d is equal to the growth of L≥d. Together with Theorem 2.9 it follows the first part of
the claim.

The maximal degree of an element in the Pommaret basis of I is p and d ≥ p and thus
I is trivially d-regular.

The last theorem proved the persistence theorem for a field with characteristic zero.
The next corollary extends this to fields of arbitrary characteristics.

Corollary 2.19 (Gotzmann’s Persistence Theorem). Let char(k) ≥ 0 and I ⊆ P be a
homogeneous ideal with minimal generating set B and deg(B) = p. Moreover, that let L be
the lexsegment ideal of I . Further, suppose that d ≥ p is an integer such that

HFP/I (d + 1) = dimk(P1(P/I)d),

then I is d-regular and HFP/I (k + 1) = dimk(P1(P/I)k) for all k ≥ d.

Proof. Without loss of generality we assume that I is a monomial ideal. Furthermore,
assume that char(k) > 0. Now, assume another field k′ with char(k′) = 0. If we
consider I not over k but over k′, the Hilbert function does not change and so the
corresponding lexsegment ideal remains. Hence, it is sufficient to show the statement
for a monomial ideal over a polynomial ring with a field of characteristic zero.

Let char(k) = 0 and J ⊆ P be a homogeneous ideal. The Hilbert function is stable
under coordinate transformations. Thus, we can assume that J is in a stable position.
In addition to that, we can assume that J is monomial due to the theorem of Macaulay.
For a stable idealJ we can apply Theorem 2.18 toJ and the claim immediately follows.

Definition 2.20. Let I ⊆ P and p be like in Corollary 2.19. Then the smallest d which fulfils
the condition of Corollary 2.19 is called the persistence index.

2.2 Gotzmann’s Regularity Theorem

In this section we prove Gotzmann’s regularity theorem [23]. It gives us an upper
bound for the regularity among all saturated ideals with the same Hilbert polynomial.
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The regularity theorem is based on the Gotzmann representation which we define be-
low. Our approach shows that one can easily determine the Gotzmann representation
out of the saturated lexsegment ideal which is unique for every Hilbert polynomial.

Lemma 2.21 ([47, Cor. B.5.1]). Let I ⊂ P be a homogeneous ideal. The Hilbert polynomial of
P/I has the form

HPP/I (t) =
(

t + a1

a1

)
+

(
t + a2 − 1

a2

)
+ · · ·+

(
t + as − (s− 1)

as

)
for some a1 ≥ · · · ≥ as ≥ 0.

The representation above is called the Gotzmann representation of HPP/I , the number s
is called the Gotzmann number of HPP/I , a1, . . . , as are called the Gotzmann coefficients
and (t+ai−i+1

ai
) are called the Gotzmann summands. Please note, that the Gotzmann

representation is only defined for ideals which are not the whole polynomial ring.

Firstly, we show the uniqueness of the saturated lexsegment ideal among all lexseg-
ment ideals with the same Hilbert polynomial. Secondly we show how to obtain the
Gotzmann representation out of this saturated lexsegment ideal. Finally, we use this to
prove the regularity theorem of Gotzmann.

Lemma 2.22. Let M be the set of all lexsegment ideal with the same Hilbert polynomial HP.
Then there exists an L ∈ M such that L′ ⊆ L for every L′ ∈ M.

Proof. Assume there is an L′′ such that neither L′′ ⊂ L nor L ⊂ L′′. Hence, there exist
xµ ∈ L′′ with xµ /∈ L and xν ∈ L, such that xν /∈ L′′.

However, there is a d ∈ N such that HFL(d + i) = HFL′′(d + i) for all i ∈ N, which
implies Ld+i = L′′d+i. But then L+L′′ has also Hilbert polynomial HP and L ⊂ L+L′′
and L′′ ⊂ L+ L′′. This is a contradiction to the assumption that L is maximal.

Lemma 2.23. Let M be as above, then the maximal L ∈ M is saturated.

Proof. Let BL be the minimal generating set of L and assume that L is not saturated.
Thus, there exists an xµ ∈ BL such that deg0(xµ) = i > 0 because BL is a Pommaret ba-
sis of L, too. Due to the fact that L is stable we know that xµ−10+1i ∈ L for all 1 ≤ i ≤ n.
This implies that L+L(xµ−10) is also a lexsegment ideal which has Hilbert polynomial
HP. This is a contradiction to the maximality of L, because L ⊂ L+ L(xµ−10).

Lemma 2.24. Let M be as above, then M contains only one saturated lexsegment ideal.
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Proof. Assume there are at least two saturated lexsegment ideals with the same Hilbert
polynomial. We choose the saturated lexsegment ideals L1 and L2. Since both have the
same Hilbert polynomial there exists d ∈ N such that HFL1(d + i) = HFL2(d + i) for all
i ∈ N. Let d′ be the greatest degree such that HFL1(d′) 6= HFL2(d′). Then there exists
without loss of generality an xµ ∈ L2

d′ such that xµ /∈ L1
d′ . But we know that L1

d′+1 =

L2
d′+1 which implies x0xµ ∈ L1

d′+1. Consequently, x0xµ must be a minimal generator of
L1. This is a contradiction to the assumption that L1 is a saturated ideal.

Definition 2.25. Let C ⊂ T be a finite set. We divide C for every 0 ≤ i ≤ n into subgroups
which are represented by non-negative integers dn, . . . , di:

[di, . . . , dn]C := {xµ ∈ C | dj = degj(xµ), i ≤ j ≤ n}.

Lemma 2.26. Let L be a saturated lexsegment ideal with minimal generating set B. If

[di, . . . , dn]B 6= ∅, but [di + 1, . . . , dn]B = ∅ ,

then
[di − j, . . . , dn]B = ∅ for i ∈ {0, . . . , n} and 2 ≤ j ≤ di .

Proof. First, we proof that the set [di, . . . , dn]B contains only the element xα = xdi
i · · · x

dn
n .

Assume that there is another element xβ in this set. xβ has a class that is smaller than i
which implies that there is a non-multiplicative prolongation xixβ. This element must
be involutive divisible by an element xγ ∈ B. The element xγ must be divisible by
xdi

i · · · x
dn
n . If this is not the case, every element in the set [di, . . . , dn]B would be involu-

tively divisible by xγ and hence the set would be empty. In fact, xγ must be xdi
i · · · x

dn
n

because degi(xγ) < di + 1, and hence i must be multiplicative for xγ. Hence, the only
possible solution is {xα} = [di, . . . , dn]B .

Now assume that B contains an element xνxdi−j
i · · · xdn

n such that j ≥ 2 and xν ∈
T{0,...,i−1}. L is a lexsegment ideal, hence xβ = xdeg(xν)−1

0 xdi−j+1
i · · · xdn

n ∈ L. Note

that xν 6= 1. If this would not the case, then xdi−j
i · · · xdn

n would be an involutive divisor
of xα which implies that xα /∈ B. Neither xdi−j+1

i · · · xdn
n nor an involutive divisor of it

can be an involutive divisor of xβ, because this would be an involutive divisor of xα,
too. However, then xβ ∈ B which is a contradiction to the fact that L is saturated.

Corollary 2.27. Let L be a saturated lexsegment ideal with minimal generating set B with
maximal degree d. Moreover, let di be the maximal degree of xi and m be the smallest class
which occurs for an element in B. Then xµ = xdn−1

n · · · xdm−1−1
m−1 xdm

m ∈ B and deg(xµ) = d.
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Lemma 2.28. Let L be a saturated lexsegment ideal with minimal generating set B with maxi-
mal degree d and denote by L = T \ (L+T) its complementary set. Then there exists a finite
set B ⊂ L and for each xµ ∈ B a set Xµ ⊆ {0, . . . , n} defining the disjoint decomposition⊎

xµ∈B

(
xµ +TXµ

)
.

It is possible to choose a decomposition such that B contains exactly one element of degree i for
0 ≤ i < d.

Proof. The proof is based on [43, Prop. 5.1.4], [43, Alg. 5.2] and Lemma 2.26. We proceed
iteratively over the sets [di, . . . , dn]B . Let di be the maximal degree of xi which occurs
in B. Due to Lemma 2.26 we know that only [dn]B and [dn − 1]B are non-empty sets
of length one. Hence, we can add the set {(xi

n, {0, . . . , n− 1}) | 0 ≤ i < dn − 1} to B
((xi

n, {0, . . . , n− 1}) means that we add the element xµ = xi
n, with Xµ = {0, . . . , n− 1}

to B). For the sets of length two, we know that the only non-empty sets that can occur
are [dn − 1, dn−1]B and [dn − 1, dn−1 − 1]B . We have a similar situation as above and we
add {(xdn−1

n xi
n−1, {0, . . . , n− 2}) | 0 ≤ i < dn−1− 1} to B. Now we apply this technique

to all sets of length 3, 4, . . . , n−m + 1. Here m is the smallest class which occurs in B.
However, for sets of length n−m the situation is similar but one has to note that the set
[dn, . . . , dm − 1] is empty. This leads to the complementary decomposition

B =
⊎

i=n,...,m+1

{
(xj

i x
di+1−1
i+1 · · · xdn−1

n , {0, . . . , i− 1}) | 0 ≤ j < di − 1
}

∪
{
(xj

mxdm+1−1
m+1 · · · xdn−1

n , {0, . . . , m− 1}) | 0 ≤ j < dm

}
.

(2.1)

Now it is obvious, that the claim is fulfilled.

Corollary 2.29. Let L be a saturated lexsegment ideal as above. Then the Hilbert polynomial is

HPP/L(t) =
dn−2

∑
i=0

(
t− i + n− 1

t− i

)

+
dn−1−2

∑
i=0

(
t− (dn − 1 + i) + (n− 1)− 1

t− (dn − 1 + i)

)
+ · · ·

+
dm+1−2

∑
i=0

(
t− (dn − 1 + · · · dm+2 − 1 + i) + (m + 1)− 1

t− (dn − 1 + · · · dm+2 − 1 + i)

)

+
dm−1

∑
i=0

(
t− (dn − 1 + · · · dm+1 − 1 + i) + m− 1

t− (dn − 1 + · · · dm+1 − 1 + i)

)
(2.2)
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with respect to the notations of B defined in (2.1).

Proof. It is a simple application of the formula to compute the Hilbert polynomial from
a polynomial decomposition which is defined in [43, Errata Prop. 5.2.1] on B.

Proposition 2.30. Let L be a saturated lexsegment ideal, and B its complementary decompo-
sition as constructed in (2.1). Then B provides the Gotzmann representation of HPP/L. with
Gotzmann number

s = dm +
n

∑
i=m+1

(di − 1) . (2.3)

Furthermore the Gotzmann coefficients are

a1, . . . , adn−1 = n− 1,
adn , . . . , adn−1+dn−1−1 = n− 2,

adn−1+dn−1 , . . . , adn−1+dn−1−1+dn−2−1 = n− 3,
. . . ,

adn−1+···dm+2−1+dm+1 , . . . , adn−1+···+dm+1−1+dm = m− 1 .

Proof. This is a direct consequence of the previous corollary with (2.2).

Now we want to prove Gotzmann’s regularity theorem. In order to prove it we need a
result from the PhD thesis of A.A. Reeves.

Theorem 2.31 ([38, Appendix A, Fact 2, p. 83]). Let J ⊆ P be a saturated monomial stable
ideal. Then the corresponding lexsegment ideal is a saturated monomial stable ideal, too.

Corollary 2.32. Let HP be a Hilbert polynomial with the corresponding saturated lexsegment
ideal L. All saturated stable ideals with Hilbert polynomial HP have the same lexsegment ideal,
namely L.

Theorem 2.33 (Gotzmann’s regularity theorem). Let I be an ideal and HPP/I the Hilbert
polynomial with Gotzmann representation

HPP/I (t) =
(

t + a1

a1

)
+

(
t + a2 − 1

a2

)
+ · · ·+

(
t + as − (s− 1)

as

)
with a1 ≥ a2 ≥ · · · ≥ as ≥ 0. Then the saturation of I is s-regular.
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Proof. Without loss of generality we assume that I is a saturated monomial ideal. This
property remains preserved under coordinate transformations. In addition to that, the
regularity does not change under coordinate transformations, too. Hence, we can as-
sume that I is a stable ideal. We know from Theorem 2.31, that the corresponding
lexsegment ideal is the saturated lexsegment ideal corresponding to HPP/I . From
Corollary 2.19 we know that the degree of the minimal generating set of I is smaller
than s. Hence, I is s-regular because I is stable.

Corollary 2.34. Let L be a saturated lexsegment ideal with minimal generating set B and s
the corresponding Gotzmann number. Then s = deg(B) and the regularity of L is equal to the
Gotzmann number.

Proof. This is an easy consequence of (2.3), Corollary 2.27 and the fact, that the saturated
lexsegment ideal is stable.

Finally, we show that the regularity of a quasi-stable ideal is either smaller than or equal
to its Gotzmann number or is equal to the persistence index.

Lemma 2.35. Let L be a lexsegment ideal with minimal generating set B and Gotzmann num-
ber s such that deg(B) > s. If HFP/L(d) = HPP/L(d), then d ≥ deg(B).

Proof. We assume that this is not true and there is a d with s ≤ d < deg(B) such that
HFP/L(d) = HPP/L(d). Let d be the biggest possible. Now we choose another lexseg-
ment ideal Ls such that HPP/Ls = HPP/L and the degree of the minimal generating set
of Ls is s. Then

HPL(d + 1) = HPLs(d + 1) = dimk((Ls)d+1) = dimk(P1(Ls)d) = dimk(P1(L)d).

However, from the assumption we know that B has an element of degree d + 1. This
implies that HFL(d+ 1) > dimk(P1Ld) = HPL(d+ 1) and respectively HFP/L(d+ 1) <
HPP/L(d + 1). However, this is a contradiction because [43, Errata Prop. 5.2.1] implies
that

HFL(d + 1) = ∑
t∈B∧deg(t)≤d+1

(
d + 1− deg(t) + cls(t)− 1

q− deg(t)

)
≤ ∑

t∈B

(
d + 1− deg(t) + cls(t)− 1

q− deg(t)

)
= HPL(d + 1).
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Proposition 2.36. Let I ⊆ P be an ideal with finite Pommaret basis B, L the corresponding
lexsegment ideal with minimal generating set BL and s the corresponding Gotzmann number
such that deg(B) > s. Then, deg(B) = deg(BL).

Proof. We know that HFP/I (deg(B)) = HPP/I (deg(B)) using the formula to com-
pute the Hilbert polynomial starting from a Pommaret basis. Then it is also true that
HFP/L(deg(B)) = HPP/L(deg(B)). Lemma 2.35 implies deg(BL) ≤ deg(B). Ad-
ditionally, the persistence theorem of Gotzmann (Corollary 2.19) says that deg(B) =
reg(I) ≤ deg(BL) which implies deg(B) = deg(BL).

Corollary 2.37. Let I be a quasi-stable ideal with Pommaret basis B, Gotzmann number s and
persistence index p. Then reg(I) ∈ {1, . . . , s, p}.

Proof. The persistence index is an upper bound for the regularity of I . If deg(B) > s,
Proposition 2.36 implies reg(I) = deg(B) = p.

2.3 Gotzmann’s Theorems for Modules

In this section we show that one can extend Gotzmann’s theorems to the module case.
In order to transform the regularity theorem to modules we need a special grading for
Pm

d .

At first, we have to introduce the Macaulay representation of natural numbers. Let
a, d ∈ N, then the dth Macaulay representation of a is the unique expression

a =

(
kd

d

)
+

(
kd−1

d− 1

)
+ · · ·+

(
ke

e

)
,

with e ∈ Z, satisfying kd > · · · > ke ≥ e > 0 (see for example [31, Prop. 5.5.1]). With
this representation, the dth Macaulay transformation of a is

a<d> =

(
kd + 1
d + 1

)
+

(
kd−1 + 1

d

)
+ · · ·+

(
ke + 1
e + 1

)
.

In 1997 Gasharov [20] already extended the persistence theorem to the module case.

Theorem 2.38 ([20, Thm. 4.2]). Let U ⊆ Pm
d be a finitely generated graded module. Further-

more, let l = max({di | 1 ≤ i ≤ m}). For each pair (p, d) such that p ≥ 0 and d ≥ p + l + 1
we have

• HFPm
d /U (d + 1) ≤ HFPm

d /U (d)〈d−l−p〉;
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• If U is generated in degree at most d and HFPm
d /U (d + 1) = HFPm

d /U (d)〈d−l−p〉, then
HFPm

d /U (d + i) = HFPm
d /U (d + i− 1)〈d+i−1−l−p〉 for all i ≥ 1.

Now we recall the work of Dellaca who recently showed that one can extend the regu-
larity theorem as well. However, we have to notice, that there are Hilbert polynomials
where we cannot even find a Gotzmann representation. The reason for this is the grad-
ing we use. We see this in the next example.

Example 2.39 ([15, Ex. 2.10]). Let us consider the polynomial ring Pm
d = k[x0, x1]

1
(1), e.g.

deg(e1) = 1. Then HPPm
d /〈0〉(t) = t and by reason of degree, the Gotzmann representation

must have one as the first Gotzmann coefficient. The Gotzmann representation can only add
more positive terms to the first term (t+1

1 ) = t + 1, hence there cannot exist a Gotzmann
representation for this Hilbert polynomial.

For the rest of the chapter we assume that Pm
d has a grading such that d = (d1, . . . , dm)

with di ≤ 0 for all 1 ≤ i ≤ m. The next proposition shows that we can always find a
Gotzmann representation in this case.

Proposition 2.40 ([15, Prop. 3.1]). Let U ⊆ Pm
d be a finitely generated graded module. Then

HPPm
d /U (t) has a unique Gotzmann representation.

With this proposition Dellaca is able to proof Gotzmann’s regularity theorem for mod-
ules.

Theorem 2.41 ([15, Prop. 4.1]). Let U ⊆ Pm
d be a finitely generated graded module such that

Pm
d /U has the following Gotzmann representation

HPPm
d /U (t) =

(
t + a1

a1

)
+

(
t + a2 − 1

a2

)
+ · · ·+

(
t + as − (s− 1)

as

)
.

Then the module U is s-regular.

Example 2.42. We consider the polynomial P3
d = k[x0, x1, x2, x3]3d with d = (0,−1,−2).

That gives deg(e1) = 0, deg(e2) = −1 and deg(e3) = −2. Moreover, we consider the
monomial ideals J1,J2,J3 ⊆ P with

J1 = 〈x0, x1, x2
2, x3

3〉,
J2 = 〈x2, x3〉,
J3 = 〈x1x3, x2x3, x3

3〉.
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Obviously, the corresponding Hilbert polynomials are HPP/J1(t) = 0, HPP/J2(t) = t+ 1 and
HPP/J3(t) = t2 + 3t + 6. Out of this Hilbert polynomials we can easily construct the Hilbert
polynomials of Ji · ei:

HPP3
d/J1·e1

(t) = HPP/J1(t) = 0,

HPP3
d/J2·e2

(t) = HPP/J2(t + 1) = t + 2,

HPP3
d/J3·e3

(t) = HPP/J3(t + 2) = t2 + 7t + 16.

Then the Hilbert polynomial of U = J1 · e1 ⊕J2 · e2 ⊕J3 · e3 is obviously

HPP3
d/U (t) = HPP3

d/J1·e1
(t) +HPP3

d/J2·e2
(t) +HPP3

d/J3·e3
(t) = t2 + 8t + 18 .

A computation shows that the Gotzmann number of HPP3
d/U (t) is 45. The Gotzmann coeffi-

cients are

a1 = a2 = 2 ,
a3 = · · · = a7 = 1 ,

a8 = · · · = a45 = 0 .
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In this chapter we introduce the Hilbert, Quot and Grassmann functor. We will see
that the Quot functor is a simple generalization of the Hilbert functor. Furthermore, we
show that the Quot functor can be seen as a subfunctor of the Grassmann functor. To
define the Hilbert functor and the Quot functor we are going to remind the construction
of the Hilbert polynomial for coherent OX-modules over projective k-schemes at the
beginning of this chapter. Furthermore, we show how the Hilbert polynomial behaves
if we consider flat families of schemes. We are also going to remind the definition of
representable functors and their properties.

Grothendieck proved in [25] that the Quot functor is representable and hence we can
talk about Quot schemes. In this chapter we present a new constructive proof of rep-
resentability of the Quot functor. For that we construct an open quasi-stable covering
of the Grassmann functor and we show that we can restrict this quasi-stable covering
to the Quot functor. Then we introduce marked functors and show that these functors
are represented by marked schemes. By showing that the marked functors correspond
to the subfunctors of the quasi-stable covering of the Quot functor we can finally show
that the Quot functor is representable.

The basic ideas we use in this chapter were introduced by Brachat et al. [11]. They
considered a strongly stable covering of the Grassmanian to give a new proof for the
representability of Hilbert functors over fields of characteristic zero. This chapter gen-
eralizes this idea in two directions. First of all, we extend this idea to the more general
case of Quot functors and secondly we use a quasi-stable covering of the Quot functor
in order to show the representability over fields of arbitrary characteristic.

3.1 Representability and Flat Families of Projective Schemes

3.1.1 The Hilbert Polynomial for Coherent Sheaves

We define the Hilbert polynomial for coherent sheaves. For the attentive reader this
seems to be confusing as we already introduced the Hilbert polynomial for modules
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in Definition 2.3. At the end of this section we resolve this ambiguity by showing that
these definitions are compatible.

In the following let X be a projective k-Scheme andF a coherentOX-module. The Euler
characteristic of F ([28, Ex. III.5.1]) is defined as

χ(F ) :=
∞

∑
i=0

(−1)i dimk(Hi(F )).

Lemma 3.1 ([28, Ex. III.5.1]). Let 0 −→ F ′ −→ F −→ F ′′ −→ 0 be an exact sequence of
OX-modules then

χ(F ) = χ(F ′) + χ(F ′′).

Using this lemma we can show the following theorem.

Theorem 3.2 ([28, Ex. III.5.2 (a)]). There exists a polynomial HPF (t) ∈ Q[t] such that
χ(F (s)) = HPF (s) for all s ∈ Z. This polynomial is called the Hilbert polynomial of
F

The following theorem allows us to simplify the definition of the Hilbert polynomial.

Theorem 3.3 (Serres vanishing theorem [28, Thm. III.5.2]). Let A be a noetherian ring and
X be a projective scheme over A. Let F be a coherent sheaf on X. Then we have the following
properties:

• For any integer p ≥ 0 the A-module Hp(F ) is finitely generated.

• There exists an integer s0 (which depends on F ) such that for every s ≥ s0 and for every
p ≥ 1 we have Hp(F (s)) = 0.

As all higher homologies of F vanish for s� 0 we get for s� 0

HPF (s) = dimk(H0(F (s))). (3.1)

Remark 3.4. We defined the Hilbert polynomial only for coherent OX-modules, where X is a
projective k-scheme. But for example in [36] the definition is extended to the more general case,
where X is a finite type scheme over k, whose support is proper over k.

Due to the fact that the support of X is proper over k the morphism supp(F ) → Spec(k)
is proper. This ensures that the cohomology groups in the definition of the Euler characteristic
are finite. In addition to that there is a generalization of Theorem 3.3, where X can be a proper
scheme over Spec(A), where A is a noetherian ring (see see [34, Rem. 3.3, Prop. 3.6]). Hence,
it is possible to define the Hilbert polynomial in the same way for this more general case.
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In the second chapter we have seen the classical definition of a Hilbert polynomial
in commutative algebra. In this section we defined a Hilbert polynomial, again. The
following example illustrates that both definitions are essentially the same.

Example 3.5. Let Pm = k[x0, . . . , xn]m be a polynomial module over an arbitrary field. Fur-
thermore, let U ⊆ Pm be a homogeneous module of Pm. Then M = Pm/U is a finitely
presented k-module. Now we take a look at the module sheaf F = M̃ which is induced byM.
It is obvious that this module sheaf is a coherent sheaf over the projective k-scheme X = Pn.

Via (3.1) we can compute the Hilbert polynomial of F . It is (for s� 0)

HPF (s) = dimk(H0(F (s))) = dimk(F (s)(X)) = dimk(Ms).

But this is exactly the definition of the Hilbert polynomial which we deduced from Theorem 2.3.
Hence, we see that HPF (s) = HPM(s).

3.1.2 Flatness

Now we introduce the concept of flatness for schemes. The property of flatness is in
general not easy to understand. In fact, there is no easy geometric interpretation of this
property. Nevertheless, we will see that flatness is really important in the following.
One reason is the impact of flatness on families of projective schemes. In general the
fibres of these families can vary a lot. But flatness ensures that these fibres only vary
continuously and this fact allows to study these fibres systematically.

Definition 3.6 ([28, III.9]). Let X, Y be schemes, and let F be an OX-module. Furthermore,
let f : X −→ Y. We can endow Fx for x ∈ X with the structure of an OY, f (x)-module via the
canonical homomorphism fx : OY, f (x) −→ OX,x. We say that

• F is flat if Fx is a flat OX,x-module at every point x ∈ X,

• F is flat over Y, if Fx is flat over OY, f (x) at every point x ∈ X and

• f is flat if fx is flat at every point x ∈ X.

The next propositions collect some important properties of flat module sheaves.

Proposition 3.7 ([28, Prop. III.9.2]).

• An open immersion is flat.

• Flatness is preserved by base change: Let f : X −→ Y be a morphism of schemes, let
F be an OX-module which is flat over Y, and let g : Y′ −→ Y be any morphism. Let
X′ = X ×Y Y′, p1 : X′ −→ X be the first projection and let F ′ = p?1(F ). Then F ′ is
flat over Y′.
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• Let f : X −→ Y and g : Y −→ Z be morphisms of schemes. Let F be an OX-module
which is flat over Y, and assume also that Y is flat over Z. Then F is flat over Z.

• Let A −→ B be a ring homomorphism, and let M be a B-module. Let f : X =
Spec(B) −→ Y = Spec(A) be the corresponding morphism of affine schemes, and let
F = M̃. Then F is flat over Y if and only if M is flat over A.

• Let X be a noetherian scheme, and F a coherent OX-module. Then F is flat over X if and
only if it is locally free.

Proposition 3.8 ([28, Cor. III.9.4]). Let f : X −→ Y be a separated morphism of finite type of
noetherian schemes, F be a quasi-coherent sheaf on X and Y be affine. For any point y ∈ Y let
Xy be the fibre over y and Fy be the induced sheaf. Moreover, let k(y) denote the constant sheaf
k(y) on the closure of y in Y. Then for all i ≥ 0 there are natural isomorphisms

Hi(Xy,Fy) ∼= Hi(X,F ⊗ k(y)).

In the following part we want to investigate the Hilbert polynomial in the context of
flatness. But first of all we recall the definitions of families of schemes.

A family of projective varieties is a projective morphism of schemes

f : X −→ S.

The members of the family are the fibres of f and S is the parameter scheme.

A family of closed subschemes of Pr is a family f as above which is part of a commutative
diagram of morphisms:

X

f
##

� � // Pr × S

��
S

realizing X as a closed subscheme of the product Pr × S and where the vertical arrow
is the second projection.

The family f : X −→ S is called flat, if f is flat as a morphism of schemes.

Proposition 3.9 ([44, Prop. 4.2.1 (ii)]). Let S be a connected scheme and F a coherent sheaf on
Pr × S. For each s ∈ S let Ps(t) ∈ Q[t] be the Hilbert polynomial of Fs. Ps(t) is independent
of s ∈ S if F is flat over S. Conversely, if S is integral and Ps(t) is independent of s for all
s ∈ S, then F is flat over S.

The proposition leads immediately to a simple corollary about flat families of closed
subschemes.
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Corollary 3.10 ([44, Cor. 4.2.2]). If X ⊂ Pr × S is a flat family of closed subschemes of Pr

with S connected then all fibres Xs have the same Hilbert polynomial.

The next example nicely illustrates the last corollary.

Example 3.11 ([44, Ex. 4.2.3 (ii)]). We consider the projective space P3 with homogeneous
coordinates x = (x0, x1, x2, x3) and choose the curve

Cu = Proj(k[x]/〈x2, x3〉) ∪ Proj(k[x]/〈x1, x3 − ux0〉)

for every u ∈ k. If u 6= 0 then Cu consists of two disjoint lines, while

C0 = Proj(k[x]/〈x1x2, x3〉)

is a reducible conic in the plane x3 = 0. The Hilbert polynomials are

Pu(t) = 2t + 2 u 6= 0 and
P0(t) = 2t + 1.

From Corollary 3.10 it follows immediately that {Cu}u∈k cannot be a set of fibres of a flat family
of closed subschemes of P3.

3.1.3 Representable Functors

We now introduce the concept of representable functors. We will see that a repre-
sentable functor can be represented by a scheme. This allow us to analyse and under-
stand these functors much better. To introduce the concept of representable functors
we define the functor of points and state the Yoneda lemma which is a fundamental
lemma from category theory. After introducing representable functors we will see how
to check if a given functor is representable.

In the following let SchS be the category of S-schemes.

Definition 3.12. Let F, G be two functors from a category C into a category D. A family of
morphisms α(S) : F(S) −→ G(S) for every object S of C is functorial in S or a morphism of
functors if for every morphism f : T −→ S in C the following diagram commutes.

F(T)
α(T) //

F( f )
��

G(T)

G( f )
��

F(S)
α(S) // G(S) .
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Definition 3.13. We define for every S-scheme X the contravariant functor

hX : Sch◦S −→ Set
Y 7−→ hX(Y) := HomS(Y, X),

(u : Y′ → Y) 7−→ (hX(u) : hX(Y)→ hX(Y′), x 7→ x ◦ u).

The functor above is called the functor of points. Furthermore, we define for an S-morphism
f : X −→ Y and an S-Scheme Z a functor of morphisms

h f (Z) : hX(Z) −→ hY(Z),

g 7−→ f ◦ g.

We obtain a covariant functor X 7→ hX from SchS to the category ŜchS of functors
Sch◦S → Set. For the following let F be a functor from Sch◦S to Set, X an S-Scheme
and α : hX −→ F a morphism of functors. Note that then α(X)(idX) ∈ F(X).

Lemma 3.14 (Yoneda Lemma [26, Lem. 4.6]). The map

HomŜchS
(hX, F) −→ F(X)

α 7−→ α(X)(idX)

is bijective and functorial in X.

For the category of S-schemes the Yoneda lemma implies the following nice identifica-
tion.

Corollary 3.15 ([26, Cor. 4.7]). Let X and Y be S-Schemes. Then it is equivalent to give the
following data.

• An S-morphism of schemes from X to Y.

• For all S-schemes T a map f (T) : XS(T) −→ YS(T) of sets which is functorial in T.

• For all affine S-schemes T = Spec(B) a map f (T) : XS(T) −→ YS(T) of sets which is
functorial in B.

Definition 3.16. A functor F : Sch◦S −→ Set is representable if there exists an S-scheme X
and an isomorphism ξ : hX −→ F. We say that F is representable by X.

The pair (X, ξ) is then uniquely determined up to isomorphisms of schemes, due to the
Yoneda Lemma.
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Example 3.17. Let n ≥ 0 be an integer. The functor

F : Sch◦
Z
−→ Set

S 7−→ OS(S)n

is representable by Spec(Z[x1, . . . , xn]). To see this we take a look at the functor hSpec(Z[x1,...,xn]).
This functor maps a scheme S to hSpec(Z[x1,...,xn])(S) = HomZ(S, Spec(Z[x1, . . . , xn])) ∼=
HomRing(Z[x1, . . . , xn],OS(S)) = OS(S)n. Now it is obviously that hSpec(Z[x1,...,xn]) and F
are isomorphic and hence F is representable by Spec(Z[x1, . . . , xn]).

In the following we try to solve the problem of checking if a given functor F : Sch◦S −→
Set is representable. If j : U −→ X is an open immersion of S-schemes and ξ ∈ F(X)
we write ξ|U instead of F(j)(ξ).

Definition 3.18. F is a sheaf for the Zariski topology (or Zariski sheaf) on SchS if the usual
sheaf axioms are satisfied that is for every S-scheme X and for every open covering X =

⋃
i∈I Ui

we have:
Given ξi ∈ F(Ui) for all i ∈ I such that ξi|(Ui∩Uj) = ξ j|(Ui∩Uj) for all i, j ∈ I there exists a
unique element ξ ∈ F(U) such that ξ|Ui

= ξi for all i ∈ I.

This definition immediately leads to the following simple proposition:

Proposition 3.19 ([26, Prop. 8.8]). Every representable functor F : Sch◦S −→ Set is a sheaf
for the Zariski topology.

Now we want to prove that every Zariski sheaf that has a Zariski covering by repre-
sentable functors is representable itself. This will be later on one of the key properties
to prove that the Grassmann functor is representable.

Definition 3.20. Let F : Sch◦S −→ Set be a contravariant functor. A subfunctor F′ is an open
subfunctor if for the morphism f : F′ −→ F, for every S-scheme X and for every S-morphism
g : X −→ F the second projection f(X) : F′ ×F X −→ X is an open immersion and F′ ×F X is
representable.

Definition 3.21. A family ( fi : Fi −→ F)i∈I of open subfunctors is called a Zariski open
covering of F if for every S-scheme X and every S-morphism g : X −→ F the images of the
( fi)(X) form a covering of X.

Theorem 3.22 ([26, Thm. 8.9]). Let F : Sch◦S −→ Set be a functor such that F is a sheaf for the
Zariski topology and has a Zariski open covering ( fi : Fi −→ F)i∈I by representable functors
Fi. Then F is representable.
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We work mainly with schemes over an algebraic closed field k. The following proposi-
tion shows that we can restrict us in this case to the functor of points of affine schemes
over k.

Proposition 3.23 ([18, Prop. VI-2]). If R is a commutative ring, a scheme over R is determined
by the restriction of its functor of points to affine schemes over R; in fact the functor h from the
category of R-schemes to the category of functors from the category of R-algebras to the category
of sets is an equivalence of the category of R-schemes with a full subcategory of the category of
functors.

A contravariant functor from the category of affine k-schemes to the category of sets
is obviously the same then a covariant functor from the category of k-algebras to the
category of sets. Hence, we can consider the contravariant functors which are defined
in the next section as functors of covariant functors of k-Algebras.

3.2 Functors

In this section we introduce several functors, especially the Hilbert and the Quot func-
tor. Furthermore, we define the Grassmann functor. This functor plays an important
role in the following because we use the Grassmann functor to present a new proof of
the representability of the Quot functor.

3.2.1 Hilbert functor

We first introduce the Hilbert functor in a very general case. We will see that we can
simplify the definition when we only consider the Hilbert functor over the projective
k-scheme Pn

Let Y be a projective scheme over k. Furthermore, fix a numerical polynomial in other
words choose HP(t) ∈ Q[t] of the form

HP(t) =
r

∑
i=0

ai

(
t + r

i

)
(3.2)

with ai ∈ N for all i. For every Y-scheme S we define

HilbY
HP(t)(S) :=

{
flat families X ⊂ Y× S of closed subschemes of Y parametrized
by S with fibres having Hilbert polynomial HP(t)

}
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and for a morphism of schemes f : S −→ T we define

HilbY
HP(t)( f ) : HilbY

HP(t)(T) −→ HilbY
HP(t)(S)

X 7−→ f ∗(X).

This functor is well defined because the property flatness is preserved under base
change by Proposition 3.7. We call this functor the Hilbert functor of Y relative to HP(t).

The Hilbert functor was introduced by Grothendieck [25], who also proved that the
Hilbert functor is representable. This motivates the following definition:

Definition 3.24. The scheme which represents the functor HilbY
HP(t) is called the Hilbert

scheme and we denote it by HilbY
HP(t).

The Hilbert scheme HilbY
HP(t) has a universal element. That is a flat family Z ⊂ Y ×

HilbY
HP(t) of closed subschemes of Y with Hilbert polynomial HP(t) which fulfils the

following universal property:
For all schemes S and for all X ⊂ Y × S of closed subschemes of Y having Hilbert
polynomial HP(t) there is a unique morphism S −→ HilbY

HP(t) such that

X = Z×HilbY
HP(t)

S //

��

Z

��
S // HilbY

HP(t) .

If Y = Pn for an n ∈ N \ {0}we write in the following Hilbn
HP(t), respectively Hilbn

HP(t).
Furthermore, we restrict ourselves to the case that we only consider schemes over an
algebraic closed field k. Hence, we can use Proposition 3.23 to consider Hilbn

HP(t) as a
functor from the category of affine k-schemes to the category sets with the following
map:

Hilbn
HP(t)(Spec A) =

{
X ⊂ Pn × A

∣∣∣∣ X flat over Spec(A) with Hilbert
polynomial HP(t)

}
.

Since we are now considering affine k-schemes, we take the graded module

M =
⊕
t≥0

H0(X,OX(t))

over A[x] such that M̃ = OX. In the image of the functor we assume that OX is flat,
hence M must be also flat by Proposition 3.7. Furthermore, we know that flatness is
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preserved under localization and that every finitely generated module is flat if and only
if it is free. We denote by k(p) the residue field of Ap, where p ∈ Spec(A). Then we can
define the Hilbert polynomial HP(t) of Mp as the Hilbert polynomial of Mp ⊗ k(p)
which is

HP(t) = dimk(p)((Mp)t ⊗ k(p)) t� 0.

By Corollary 3.10 we conclude that HP(t) does not depend on p ∈ Spec A. Hence, we
can redefine the Hilbert functor as a functor from the category of k-Algebras to the
category of sets: For every k-Algebra A let

Hilbn
HP(t)(A) =

{
M, graded module over A[x] flat over A with
Hilbert polynomial HP(t)

}

and for any homomorphism of k-Algebras f : A −→ B let

Hilbn
HP(t)( f ) : Hilbn

HP(t)(A) −→ Hilbn
HP(t)(B)

M 7−→M⊗A B.

It is easy to see that the functor is still well defined again because flatness is preserved
when tensoring with B.

3.2.2 Quot Functor

In the previous section we introduced the Hilbert functor. Now we define a general-
ization of this functor called Quot functor. We first introduce the Quot functor for the
general case and then specialize to Quot functors over the projective space Pn over the
algebraically closed field k again.

Let S be a noetherian scheme. Furthermore, let X be an S-scheme,F be a quasi-coherent
OX-module and assume that HP(t) ∈ Q[t] fulfils (3.2). Then we define the quotient
functor of F relative to HP(t) as a functor from the category S-schemes to the category of
sets. For every S-scheme T we define

QuotF ,HP(t)
X,S (T) :=

{
Q quotients of FT which are quasi-coherent and flat over T,
such that the fibres have Hilbert polynomial HP(t)

}
.

For a morphism of S-schemes f : T −→ T′ we define

QuotF ,HP(t)
X,S ( f ) : QuotF ,HP(t)

X,S (T) −→ QuotF ,HP(t)
X,S (S)

X 7−→ f ∗(X).

70



3 Quasi-Stable Covering of Quot Schemes

We have to prove that the functor QuotF ,HP(t)
X,S is representable again but for the moment

we assume that this is true which leads to the following definition:

Grothendieck [25] proved that the Quot functor is representable. We will not assume
this in the following, because we will give a new proof of the representability of this
functor under some hypothesis, which we introduce below. Grothendieck’s work mo-
tivates the following definition

Definition 3.25. The scheme which represents the functor QuotF ,HP(t)
X,S is called the Quot

scheme and we denote it by QuotF ,HP(t)
X,S .

If S = Spec(k) we write QuotF ,HP(t)
X , respectively QuotF ,HP(t)

X . If furthermore F =

Om,d
X :=

⊕m
i=1OX(di) for an m ∈ N \ {0} and d = (d1, . . . , dm) with di ∈ Z we write

Quotm,d
X,HP(t), respectively Quotm,d

X,HP(t).

Now we can see, how the Hilbert scheme is a specialization of the Quot scheme. For
m = 1 and d = (0) the Quot functor Quotm,d

X,HP(t) is equivalent to the Hilbert functor

HilbX
HP(t) due to the fact that quotients of the Quot functor correspond to the flat families

of the Hilbert functor.

We can simplify the Quot functor even further. If X = Pn for an n ∈ N \ {0} we
write Quotm,d

n,HP(t), respectively Quotm,d
n,HP(t). In the following we only work with the

Quot functors which are of this form. Grothendieck [25] proved that Quotm,d
n,HP(t) is a

Zariski sheaf. Due to this we can consider Quotm,d
n,HP(t) as a functor from the category of

k-algebras to the category of sets via Proposition 3.23 that is for every finitely generated
k-Algebra A we assign

Quotm,d
n,HP(t)(A) =

{
Q quotients of Om,d

P
n
A

which are flat over Spec(A) with Hilbert
polynomial HP(t)

}
.

Note that we can now skip the condition of quasi-coherence because this is always
fulfilled in this case. Furthermore, it holds for any k-algebra homomorphism f : A −→
B that

Quotm,d
n,HP(t)( f ) : Quotm,d

n,HP(t)(A) −→ Quotm,d
n,HP(t)(B)

Q̃ 7−→ Q̃⊗A B ,

where Q = H0
∗Q, for Q ∈ Quotm,d

n,HP(t)(A).
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This is equivalent to consider the functor from the category of k-algebras to the category
of sets that associates to every k-algebra the set

Quotm,d
n,HP(t)(A) =

{
A-flat quotients Q of A[x]md with Hilbert polynomial HP(t)

}

and that associates to every k-algebra homomorphism f : A −→ B the morphism

Quotm,d
n,HP(t)( f ) : Quotm,d

n,HP(t)(A) −→ Quotm,d
n,HP(t)(B)

Q 7−→ Q⊗A B .

This is equivalent to consider the functor from the category of k-algebras to the category
of sets that associates to every k-algebra the set

Quotm,d
n,HP(t)(A) =

{
M saturated submodules of A[x]md with A[x]md /M flat with
Hilbert polynomial HP(t)

}
and that associates to every k-algebra homomorphism f : A −→ B the morphism

Quotm,d
n,HP(t)( f ) : Quotm,d

n,HP(t)(A) −→ Quotm,d
n,HP(t)(B)

M 7−→M⊗A B .

3.2.3 Grassmann Functor

In the following we define the Grassmann functor and show that this functor is repre-
sentable. We follow Görtz and Wedhorn [26, (8.4)].

Like the Hilbert functor and the Quot functor the Grassmann functor Grk,l is a functor
from the category of schemes to the category of sets for two positive integers k, l. For a
scheme S we define

Grk,l(S) :=
{

U ⊆ Ol
S | Ol

S/U is locally free OS-module of rank l − k
}

where Ol
S =

⊕l
i=1OS and for a morphism of schemes f : S −→ T we define

Grk,l( f ) : Grk,l(T) −→ Grk,l(S)
U 7−→ f ∗(U).

Obviously this functor is well defined. Furthermore, we observe the following fact.

Lemma 3.26. The functors Grk,l are Zariski sheafs.
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Proof. For the proof see [26, p. 211]

We use Theorem 3.22 to prove the representability of Grk,l . Therefore, we construct at
first a Zariski open covering of representable functors Fi which covers Grk,l and then
apply the theorem.

Let I be the set of subsets of {1, . . . , l} of cardinality l− k. For I ∈ I let sI : Ol−k
S −→ Ol

S
the direct sum of coprojections OS −→ Ol

S corresponding to the elements of I. That is
if I = {i1, . . . , il−k} then a coprojectionOS −→ Ol

S corresponds to ij ifOS maps into the
ijth component of Ol

S.

With this notation we are able to introduce the following subfunctors of the Grassmann
functor. For a scheme S we define

GrI
k,l(S) = {U ∈ Grk,l(S) | Ol−k

S
sI−→ Ol

S → Ol
S/U is an isomorphism}

and for a morphism of schemes f : S −→ T we define

GrI
k,l( f ) : GrI

k,l(T) −→ GrI
k,l(S)

U 7−→ f ∗(U).

Furthermore let f I : GrI
k,l −→ Grk,l the natural embedding of the GrI

k,l into Grk,l .

To apply Theorem 3.22 we have to show that all GrI
k,l are representable and all f I :

GrI
k,l −→ Grk,l form a Zariski open covering of Grk,l . First we show that the functors

GrI
k,l are representable.

Lemma 3.27. The functors GrI
k,l are representable.

Proof. Let S be a scheme and U ∈ GrI
k,l . The morphism w : Ol−k

S −→ Ol
S/U is obviously

an isomorphism. If we define the map

uU : Ol
S −→ Ol

S/U w−1

−−→ Ol−k
S

we see immediately that the kernel is U and that uU ◦ sI = idOl−k
S

.

Conversely, given a homomorphism u : Ol
S −→ Ol−k

S with u ◦ sI = idOl−k
S

we get

ker(U) ∈ GrI
k,l(S). Hence, we can define a map

F(S) = {u ∈ HomOS(O
l
S,Ol−k

S ) | u ◦ sI = id} −→ GrI
k,l(S)

u −→ ker(u).
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This map is clearly bijective and functorial in S. Hence, we get a natural isomorphism
between F and GrI

k,l . Now we define the map

F(S) −→ HomOS(O
k
S,Ol−k

S ) = OS(S)k(l−k) ∼= Ak(l−k)(S)
u 7−→ u|Ok

S
.

This map is bijective and functorial in S. Therefore, F is representable by Ak(l−k) and
hence F ∼= GrI

k,l is representable.

Lemma 3.28. A Zariski open covering of Grk,l is ( f I : GrI
k,l −→ Grk,l)I∈I .

Proof. In [26, Lem. 8.13 (i)] it is shown that f I is an open subfunctor. Thus, we only have
to show that ( f I)(X) form a covering of X for an arbitrary scheme X. Let g : X −→ Grk,l
be a morphism of functors which corresponds via the Yoneda Lemma to U ∈ Grk,l . In
[26, Lem. 8.13 (i)] we see that UI = GrI

k,l ×Grk,l X is representable by an open subscheme
of X which we again denote by UI . We have to show that f : qIUI −→ X which is
induced by open immersion UI −→ X, is surjective.

It is enough to show that f is surjective on k-valued points, where k is an arbitrary field.
Let x : Spec(k) −→ X be a k-valued point of X. By composition with g we get a k-
valued point of Grk,l . This point corresponds to a k-dimensional vectors space of kl . By
the definition of x we know that x lies in the image of U I(k) −→ X(k) if and only if the
complement of U is an l − k-dimensional vector subspace of kl . We can complete any
basis of U by part of the standard basis to a basis of kl . Thus, there exists a complement
of U of dimension l − k. Now it is obvious that f is surjective and we are done.

Due to the lemmata above it is easy to prove the following statement.

Corollary 3.29. The functor Grk,l is representable.

Proof. Due to Lemma 3.28 and Lemma 3.27 we can apply Theorem 3.22.

3.3 A new Proof for the Representability of the Quot Functor

To prove that the Quot functor is representable we will follow the approach which was
developed by Bayer [6] for Hilbert functors. He showed that the Hilbert functor is a
subfunctor of the Grassmann functor which allows to deduce the representability of
the Hilbert functor from the representability of the Grassmann functor.
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In the previous section we constructed a Zariski open covering for the Grassmann func-
tor. Using this open covering we were able to show that the Grassmann functor is rep-
resentable. In this section we introduce the “quasi-stable open covering” for the Grass-
mann functor. Using this covering we show that the Quot functor is a subfunctor of the
Grassmann functor which allows us to show that the Quot functor is representable.

The advantage of the quasi-stable open covering is the possibility to show that every
subfunctor in this open covering is represented by a marked scheme which we also
introduce in this section.

The idea to consider this covering is based on [9] where it is proved that a Hilbert
functor can be covered by a strongly stable covering if it is considered over a field of
characteristic zero. This work here does not only extend this idea to Quot functors
it also allows considering Quot functors (respectively Hilbert functors) over fields of
arbitrary characteristic.

In this section we fix the positive integers n, m and we consider a polynomial HP(t) and
a sequence of m integers d. As in the previous section we restrict us to the Quot functor
Quotm,d

n,HP(t). Hence, it is enough to consider the Grassmann functor also as a functor
from the category of k-algebras to the category of sets such that

Grk,l(A) :=
{

A-submodule M ⊆ Al | Al/M is locally free A-module of rank l − k
}

for a k-algebra A and two positive integers k and l.

Instead of considering A-submodules M of Al it is also possible to consider A-sub-
modules of A[x]md . Let now s, p ∈ N. Then we define for A

Grm,n,d
s,p (A) =

{
A-submodule M ⊆ (A[x]md )s such that (A[x]md )s/M is
locally free of rank p

}
.

As (A[x]md )s is isomorphic as an A-module to ANm,n
d (s) where Nm,n

d (s) := HPA[x]md
(s) we

immediately see that Grm,n,d
s,p can be identified by GrNm,n

d (s)−p,Nm,n
d (s). From now on we

always work with the “Grassmann functor” Grm,n,d
s,p .

We set a basis {b1, . . . , bp} for Ap. Consider the complete list (Tm
d )s = {τ`}`=1,...,Nm,n

d (s)

of terms τ = xαei, deg(xαei) = s, of (A[x]md )s. (Tm
d )s is the basis we consider for the

A-module (A[x]md )s.

Consider I = {a1, . . . , ap} ⊆ {1, . . . , Nm,n
d (s)}, |I| = p and consider the injective mor-

phism ΓI : Ap → (A[x]md )s, bi 7→ τai and the subfunctor Grm,n,d
s,p,I that associates to
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every k-algebra A the set

Grm,n,d
s,p,I (A) = {M ∈ Grm,n,d

s,p (A) | πM ◦ ΓI is bijective}

where πM : (A[x]md )s → (A[x]md )s/M is the canonical projection. In the previous sec-
tion we have shown that we cover the Grassmann functor Grm,n,d

s,p if we consider every
possible I ⊂ {1, . . . , Nm,n

d (s)} with |I| = p.

In Theorem 2.41 we have seen how Dellaca generalizes the notion of Gotzmann number
to modules. If we consider the corresponding modules as sheaves we get the following
statement:
Let d = (d1, . . . , dm) with di ≤ 0 for all 1 ≤ i ≤ m. If Q = Om,d

P
n
A

/M with Hilbert poly-
nomial HP(t) and the Gotzmann number of HP(t) is r then M is r-regular. Therefore,
for every s ≥ r there is a graded A[x]-moduleM generated byMr such that M = M̃.
In this way the Quot-Functor can be considered by [15, Lem. 5.2 and Thm. 5.1] as a
subfunctor of the Grassmann functor Grm,n,d

s,HP(s).

Considering now that d has the form like above then the Quot functor can be seen
as a closed subfunctor of the Grassmann functor Grm,n,d

s,HP(s) which associates to every
k-Algebra the set

Quotm,d
n,HP(t)(A) =

{
M ∈ Grm,n,d

s,HP(s)(A) with A[x]md /〈M〉 flat and with Hilbert
polynomial HP(t)

}
.

and to every k-algebra homomorphism f : A→ B the function

Quotm,d
n,HP(t)( f ) : Quotm,d

n,HP(t)(A) −→ Quotm,d
n,HP(t)(B)

M 7−→ M⊗A B .

Furthermore, we define the natural transformation of functors

H : Quotm,d
n,HP(t) → Grm,n,d

s,HP(s) .

Now we can define the following open subfunctor of Quotm,d
n,HP(t) as

Quotm,d,I
n,HP(t)(A) := Quotm,d

n,HP(t) ∩Grm,n,d
s,HP(s),I(A)

for every I ⊆ {1, . . . , Nm,n
d (s)} with |I| = HP(s).
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3.3.1 Quasi-Stable Covering

In this section we consider a different open covering of the Grassmanian which is based
on quasi-stable modules. We will use this covering to show that we also find a similar
covering for the Quot functor. Hence, we are mainly interested to find such a covering
for Grm,n,d

s,HP(s) where s is greater or equal to the Gotzmann number of HP(t). To ensure
that all admissible Hilbert polynomials have a Gotzmann number we have to restrict
ourselves to the case that d = (d1, . . . , dm) with di ≤ 0 for all 1 ≤ i ≤ m.

To simplify the notations we assume for the rest of this chapter the standard grading
that is d = (0, . . . , 0). Hence, we can always skip the index d. It is straightforward to
see that everything that we will do in the following is also applicable for a non-standard
grading as long as we assume that the grading satisfies the condition above.

The complement of the polynomial HP(t) is defined as VP(t) := Nm,n(t)− HP(t). Let
I ⊆ {1, . . . , Nm,n

d (s)} then we define the complementary set Ic := {1, . . . , Nm,n
d (s)} \ I.

Furthermore, we define E Ic := {τi}i∈Ic ⊆ Tm
s .

Lemma 3.30. Let us assume that the monomial module V := 〈E Ic〉 is quasi-stable.

(i) Then M ∈ Grm,n,I
s,HP(s)(A) if and only if it is generated as an A-module by an E Ic -marked

set.

(ii) If M belongs to Grm,n,I
s,HP(s)(A), then for every s′ ≥ s the A-module 〈M〉s′ contains a free

submodule of rank greater or equal to VP(s′) generated by a V ∩Tm
s′ -marked set.

Proof. (i): If M belongs to Grm,n,I
s,HP(s)(A), since πM ◦ ΓI is surjective, E I is a generating

set for the module A[x]ms /M. Then for every τ ∈ E Ic we consider the polynomial fτ =
τ − πM(ΓI(τ)). fτ is a homogeneous marked element of A[x]m with Ht(fτ) = τ and
fτ − τ ∈ 〈N (V)〉A. Hence, {fτ}τ∈E Ic is a E Ic -marked set contained in M. Observe that
〈{fτ}τ∈E Ic 〉A ⊆ M and rk(Ms) = rk(〈{fτ}τ∈E Ic 〉), hence M = 〈{fτ}τ∈E Ic 〉.

Vice versa, let {fτ}τ∈E Ic be the E Ic -marked set generating M. Then every τ ∈ A[x]m

can be written modulo M as τ = τ − fτ = ∑τ′∈V a′τ′, a′ ∈ A. Hence, the A-module M
generated by {fτ}τ∈E Ic belongs to Grm,n,I

s,HP(s)(A).

(ii): Due to the fact, that 〈M(s′)〉A ⊂ 〈M〉s′ this statement follows from Theorem 1.82
(iii, iv).

The following example shows that the modules A[x]m/〈E Ic〉 and A[x]m/〈M〉, with M ∈
Quotm,HP(t),I

n (A), in general do not have the same Hilbert polynomial or function.
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Example 3.31. In A[x] = k[x0, x1, x2] let E Ic = (x1x2, x2
0) and M be the ideal of A[x]

generated by f1 = x1x2 + x0x1, f2 = x2
0 + x0x2 which form a E Ic -marked set. The Hilbert

polynomial of A[x]/〈E Ic〉 is constant, while the Hilbert polynomial of A[x]/〈f1, f2〉 has degree
one. Hence, they also do not have the same Hilbert function.

Definition 3.32. Let HP(t) be an admissible Hilbert polynomial, and s and q be two non-
negative integers.

• QSs,q is the set of the quasi-stable modules in k[x]m generated by q terms of degree s.

• QSs,q
HP(t) is the set of quasi-stable modules inQSs,q with Hilbert polynomial HP(t).

• For every element G ∈ GL(n + 1,k) G̃ denotes the automorphism induced by G on
A[x]mr , the Grassmann functor and the Quot functor and G denotes the corresponding
action on an element or a set of elements.

For any I such that 〈E Ic〉 ∈ QSs,q
HP(t) and any G ∈ GL(n+ 1,k) we consider the following

subfunctor of the Grassmann functor:

Grm,n,I
s,HP(s),G(A) =

{
M ∈ Grn,m

s,HP(s)(A) | πM ◦ G̃ ◦ ΓI is bijective
}

.

Lemma 3.33. Let (A,m, K) be a local ring and M ∈ Grn,m
s,HP(s)(A). Then M ∈ Grm,n,I

s,HP(s)(A) if

and only if M⊗A K ∈ Grm,n,I
s,HP(s)(K).

Proof. By the extensions of the scalars it is clear that M ⊗A K ∈ Grm,n,I
s,HP(s)(K) if M ∈

Grm,n,I
s,HP(s)(A). Therefore, we only prove the other direction.

Assume that M ⊗A K ∈ Grm,n,I
s,HP(s)(K) and let {fτ}τ∈E Ic the E Ic -marked set generating

M ⊗A K. Let us consider a set of polynomials {fτ}τ∈E Ic ⊂ M such that the image of
each fτ in K[x]ms is fτ.

We construct a matrix MM ∈ AVP(s)×Nm,n(s) for M. We order (in any way) the terms of
Tm

s : xα1 ek1 , . . . , xαNm,n(s)ekNm,n(s)
and the elements fτ. The jth column of M corresponds

to the term xαj ek j . The ith row of MM corresponds to the coefficients in the element ith
element in {fτ}τ∈E Ic .

Considering the images of the entries in K we obtain the analogous matrix M′ for
{fτ}τ∈E Ic . By hypothesis the minor of these last matrix corresponding to E Ic is invert-
ible. Then the corresponding minor in M is also invertible because A is local.

We cannot say that {fτ}τ∈E Ic is a E Ic -marked set. But we can obtain a E Ic -marked set
by performing a row reduction of M such that the minor from above gets the identity
matrix.
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Remark 3.34. Consider a non quasi-stable module V which is generated by

BV = {xµ(1)
ek1 , . . . , xµ(q)

ekq} ,

where the maximal degree of a generator is s. Due to the fact that V is not quasi-stable, there
exists an obstruction to quasi-stability: xµek ∈ BV and j > c := cls(xµ), such that xs

j
xµ

xµc
c

ek /∈
V . This implies that xµc

j
xµ

xµc
c

ek /∈ V . If we now consider the module Ṽ generated by BṼ =

{xµc
j

xµ

xµc
c

ek, xµ(1)
ek1 , . . . , xµ(q)

ekq} it is clear that Ṽ is somehow nearer to quasi-stability than V .
In fact, it is obvious that we can find now fewer pairs (xµek, j) which are an obstruction to
quasi-stability. Replacing all elements in the way described above leads to a quasi-stable module
Ṽ . In [40] it is explained for the ideal case how one can perform deterministic linear coordinate
transformations such that we obtain such a quasi-stable module Ṽ .

With the knowledge of Remark 3.34 we define an elementary move ml,t,a which is a linear
transformation of variables of the form xi 7→ xi if i 6= l and xl 7→ xl + a · xt for suitable
indices l < t and a ∈ k×. If we apply ml,t,a to a term xµ we obtain a polynomial

ml,t,a(xµ) =
µl

∑
i=0

(
µl

i

)
aixµ−il+it .

For any characteristic the polynomial ml,t,a(xµ) contains at least two terms: xµ with
coefficient 1 and xµ−µl+(µl)t with coefficient aµl .

It is clear that a monomial module is marked on itself. When we apply a coordinate
transformation on a monomial module, the new module is not monomial anymore it
has a non-monomial minimal generating set. The next proposition shows that we are
able to construct a marked set out of the new module again.

Proposition 3.35. Let s ≥ 0, char(k) > sq and BV = {xµ(1)ek1 , . . . , xµ(q)ekq} ⊆ Tm
s , such

that V := 〈BV 〉. Furthermore, let F = {g1, . . . , gq} ⊂ k[x]ms marked over V .

Let xµek := xµ(1)ek1 an obstruction to quasi-stability for V that is it exists a j > c := cls(xµ)

such that xs
j

xµ

xµc
c

ek /∈ V and let F̃ = mc,j,a(F) for an a ∈ k. We define xµ̃ek := xµc
j

xµ

xµc
c

ek.

Then we can construct a set F′ ⊆ 〈F̃〉 ∩ k[x]ms from F̃ via linear combinations which is marked
over BṼ = {xµ̃ek, xµ(2)ek2 , . . . , xµ(q)ekq} and Ṽ = 〈BṼ 〉 which can be constructed from F̃ via
linear combinations.

Proof. The considered term xµek is replaced as follows

mc,j,a(xµ)ek =
µc

∑
i=0

(
µi

i

)
aixµ−ic+ij ek .
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Without loss of generality we see that by our choice of the pair (c, j) the term xµ̃ek
appears on the right hand side with a nonzero coefficient for the index value i = µc.
Applying the transformation mc,j,a to all generators gi yields new generators g̃i and
each g̃i still contains the term xα(i)eki with a coefficient which is a polynomial in a with
constant term 1. It may happen that the term xα(i)eki also appears in other generators
g̃l now but then the coefficient of xα(i)eki in g̃l is always a polynomial in a without a
constant term. Furthermore, the term xµ̃ek appears in g̃1. Its coefficient in particular
contains the term aµc coming from the above transformation of xµ. If xµ̃ek also lies in
the support of some other generator g̃l then its coefficient cannot contain the term aµc

as xµek only appears in g1, because F is marked over V .

These observations imply that after taking suitable linear combinations again we get
new generators h̃1, . . . , h̃q such that for i = 2, . . . , q each h̃i is solved for xα(i)eki (and
xα(i)eki does not appear in any other generator) and h̃1 is solved for xµ̃ek (again with
the term not appearing in any other generator). It cannot happen that for i = 2, . . . , q
a term xα(i)eki vanishes by performing linear combinations on g̃1, . . . g̃q because there is
exactly one term xα(i)eki which has as a coefficient a polynomial in a with constant term
1. With the same argument it is clear that the term xµ̃ek does not vanish by performing
linear combinations as its coefficient aµc in g̃1 is unique. But this implies that the set
F′ obtains from F by the coordinate transformation and suitable linear combinations is
marked over BṼ .

Furthermore, in each polynomial h̃i the coefficient of the head module term is a poly-
nomial in a of degree at most s. Since we have q such coefficients, the assumption
|k| > sq guarantees that there exists a value for a such that none of these polynomials
vanish.

Proposition 3.36. The collection of subfunctors{
Grm,n,I

s,HP(s),G(A) | G ∈ GL(n + 1,k), I s.t 〈E Ic〉 ∈ QSs,VP(s)
}

covers the Grassmann functor Grm,n
s,HP(s).

Proof. We have to proof that for every k-Algebra A and every M ∈ Grm,n
s,HP(s)(A) an I

with 〈E Ic〉 ∈ QSs,VP(s) and G ∈ GL(n + 1,k) exists such that M ∈ Grm,n,I
s,HP(s),G(A) or

equivalently such that G−1M ∈ Grm,n,I
s,HP(s)(A).

As the question is local it is sufficient to consider the case that the ring A is local. By
Lemma 3.33 we may assume that A is in fact a field.
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Let M ∈ Grm,n
s,HP(s)(A) for a field A, J be the set of subsets of Tm

s of cardinality VP(s)
and let E Ic ∈ J . Let ∆E Ic (MM) be the corresponding minor of MM of E Ic ∈ J . It is
obvious that there is at least one E Ic ∈ J such that ∆E Ic (MM) 6= 0.

If 〈E Ic〉 ∈ QSs,VP(s) we are done. Assume that this is not the case. Then there exists a
module term xµek ∈ E Ic and j > c := cls(xµ), such that xs

j
xµ

xµc
c

ek /∈ 〈E Ic〉. We denote by

Ẽ Ic ∈ J the set obtained by replacing in E Ic the obstruction to quasi-stability xµek with
xµ̃ek := xµc

j
xµ

xµc
c

ek.

It is obvious that there is an autoreduction on M such that M is marked over E Ic other-
wise ∆E Ic (MM) would be zero. Hence, we assume without loss of generality, that M is
marked over E Ic . Proposition 3.35 guarantees that there is a linear coordinate transfor-
mation G ∈ GL(n + 1,k) with respect to the elementary move mc,j,a for an a ∈ A, such

that M̃ = G
−1M and M̃ is marked over Ẽ Ic . This implies that ∆Ẽ Ic (MM̃) 6= 0.

The claim of the proposition follows from a simple termination argument which shows
that we finally get an E Ic ∈ QSs,VP(s) by using the elementary moves from above. We
introduce an ordering on J . Given two sets J1, J2 ∈ J , we first sort them according to
≺TOPrevlex (greatest term first) and then compare the two sets entry by entry again with
respect to ≺TOPrevlex . The set whose entry is greater when we find a difference for the
first time is defined to be the greater set. That is

J1 < J2 ⇐⇒ xαi eki = xβi eli for i < j and xαj ek j ≺TOPrevlex xβ j elj

for J1, J2 ∈ J with J1 = {xα1 ek1 , . . . , xαVP(s)ekVP(s)} and J2 = {xβ1 el1 , . . . , xβVP(s)elVP(s)} and
j ∈ {1, . . . ,VP(s)}.

We can decompose every J ∈ J into a set of sets J(1), . . . , J(m) ⊆ Ts, such that J =
J(1)e1 ∪ · · · ∪ J(m)em. For the following it is enough to know that 〈J〉 is quasi-stable
when for every i ∈ {1, . . . , m} there is no term in Ts \ J(i) which is greater as any
element in J(i) with respect to the revlex order.

Our construction yields a set Ẽ Ic that is always larger than E Ic with respect to this or-
dering and iterating it leads to a strictly ascending chain of sets in J . Since J is a finite
set the chain must be finite, too. However, our construction only stops when it reaches
a set contained inQSs,VP(s). Therefore, we obtain after finitely many transformations a
set E Ic ∈ QSs,VP(s) defining a quasi-stable module because the elementary moves con-
struct a set J = J(1)e1 ∪ · · · ∪ J(m)em such that J(i) is maximal with respect to the revlex
order.

81



3 Quasi-Stable Covering of Quot Schemes

Definition 3.37. We call quasi-stable subfunctor of Grm,n
s,HP(s) any element of the collection

of subfunctors of Proposition 3.36. Moreover, we denote by Quotm,HP(t),I
n,G the open subfunctor

H−1(Grm,n,I
s,HP(s),G(A)) ∩Quotm,HP(t)

n .

Theorem 3.38. The collection of subfunctors{
Quotm,HP(t),I

n,G | G ∈ GL(n + 1,k), I s.t 〈E Ic〉 ∈ QSs,VP(s)
HP(t)

}
(3.3)

covers the Quot functor Quotm,HP(t)
n .

Proof. By Proposition 3.36 we can immediately deduce that the Quot functor is covered
by {

Quotm,HP(t),I
n,G | G ∈ GL(n + 1,k), I s.t 〈E Ic〉 ∈ QSs,VP(s)

}
. (3.4)

We obtain the statement proving that Quotm,HP(t),I
n (A) 6= ∅ for a quasi-stable 〈E Ic〉 if

and only if 〈E Ic〉 ∈ QSs,VP(s)
HP(t) . In fact, this implies that for every G ∈ GL(n + 1,k)

we have Quotm,HP(t),I
n,G (A) 6= ∅ if and only if 〈E Ic〉 ∈ QSs,VP(s)

HP(t) . As this is a local and
set-theoretical fact we may assume that A is a field.

Assume now that M ∈ Quotm,HP(t),I
n (A) for 〈E Ic〉 ∈ QSs,VP(s).

Due to Lemma 3.30 we know that M is generated by an E Ic -marked set. By Theorem
1.82 we know that 〈M〉s′ contains an A-vector space of the same dimension as 〈E Ic〉s′
for every s′ ≥ s. This implies by Theorem 1.82 that Nm,n(s′)−HP(s′) = dim(〈M〉s′) ≥
dim(〈E Ic〉s′). Furthermore, the growth theorem of Macaulay ([29, Lem. 23]) implies
that dim(〈E Ic〉s′) ≥ N(s′)−HP(s′), hence we have equality and the Hilbert polynomial
of 〈E Ic〉must be HP(t).

For the other direction note that 〈E Ic〉 ∈ QSs,VP(s)
HP(t) induces E Ic ∈ Quotm,HP(t),I

n (A).

Definition 3.39. The quasi-stable covering of Quotm,HP(t)
n is the collection of the open sub-

functors (3.3) of Theorem 3.38.

Remark 3.40. We considered for Quotm,HP(t)
n a quasi-stable covering in degree s ≥ r, where r

is the Gotzmann number of HP(t). This implies that the considered modules 〈E Ic〉 ∈ QSs,VP(s)
HP(t)

have regularity s since they are generated in degree s. But this implies that 〈E Ic〉 is in fact a
stable module. Hence, we have actually a stable open covering of the Quot functor. Nevertheless,
we call this covering a quasi-stable covering because it is deduced from a quasi-stable covering
of the Grassmann functor.
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Remark 3.41. We constructed a quasi-stable covering of Quotm,HP(t)
n by using a deterministic

change of coordinates. There always exists a change of coordinates to reach a p-Borel fixed
position. It is well known that p-Borel fixed implies quasi-stability. Therefore, there exists a
p-Borel fixed covering of the Quot functor which is in general a more sparse covering of the
Quot functor than the quasi-stable covering. However, we prefer to work with the quasi-stable
covering because this covering is independent of the characteristic.

Furthermore, in the next section we show that it is possible to compute equations for the open
subscheme of the Quot scheme corresponding to each quasi-stable open subfunctor. The set of
p-Borel fixed open subfunctors is contained in the set of quasi-stable open subfunctors. The
computational cost to get such equations for open neighbourhoods of a given point of the Quot
scheme can be significantly different depending on the neighbourhood we choose. Hence, it is an
advantage to have a relatively dense covering in order to choose the more convenient one.

Corollary 3.42. Let M be any element of Grm,n,I
s,HP(s)(A) with 〈E Ic〉 quasi-stable. Then M ∈

Quotm,HP(t),I
n (A) if and only if for every s′ ≥ s the A-module 〈M〉s′ is free of rank VP(s′) and

it is generated by 〈E Ic〉 ∩Tm
s′ -marked basis. Furthermore, Quotm,HP(t),I

n (A) 6= ∅ if and only if
the Hilbert polynomial of A[x]m/〈E Ic〉 is HP(t).

Proof. As the question is local again we once more assume that A is a local ring.

We first consider the special case with A a field. Due the proof of Theorem 3.38 we
know that M(s) ⊆ 〈M〉s. Furthermore, the proof shows that the dimension of both
vector spaces is VP(s′). Hence, they must be equal for every degree s′ and this implies
via Theorem 1.82 that M is a E Ic -marked basis of 〈M〉.

We generalize this result to the case (A,m, K) a local ring by the lemma of Nakayama,
since for every s′ ≥ s the A-module 〈M〉s′ contains the free submodule of rank VP(s′)
that in Theorem 1.82 is denoted by M(s′) and the two A/m-vector spaces 〈M〉s′ ⊗A A/m
and M(s′) ⊗A A/m coincides as they have the same dimensions.

The rest of the statement has already proven in the proof of Theorem 3.38.

3.3.2 Marked Schemes

In Theorem 3.38 we proved that there is a quasi-stable covering of the Quot functor.
Due to the fact that this covering is a Zariski open covering it remains to show that the
subfunctors of the Quot functor are representable. For that we exhibit a natural scheme
structure on the set containing all modules generated by a P(V)-marked basis with V a
quasi-stable module. A part of this section is part of [3].
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Let P(V) ⊂ Tm be the Pommaret basis of the quasi-stable module V ⊆ A[x]m. We
consider the functor of the marked bases on P(V) from the category of k-algebras to
the category of sets

Mf n,m
P(V) : k−Alg −→ Sets

that associates to any k-algebra A the set

Mf n,m
P(V)(A) := {G ⊂ A[x]m | G is a P(V)-marked basis}

or equivalently by Corollary 1.85,

Mf n,m
P(V)(A) := {M ⊆ A[x]m | M is generated by a P(V)-marked basis}

and to any morphism σ : A→ B the map

Mf n,m
P(V)(σ) : Mf n,m

P(V)(A) −→ Mf n,m
P(V)(B)

G 7−→ σ(G) .

Note that the image σ(G) under this map is indeed again a P(V)-marked basis, as we
are applying the functor−⊗A B to the decomposition A[x]ms = 〈G(s)〉A⊕ 〈N (V)s〉A for
every degree s.

Corollary 3.43. Let P(V) ⊂ Tm be the Pommaret basis of the quasi-stable module V ⊆ A[x]m.
Then every moduleM ∈ Mf n,m

P(V)(A) has the same Hilbert function as V .

Proof. This is a simple reformulation of Lemma 2.7.

The functor that was introduced above turns out to be representable by an affine scheme
that can be explicitly constructed by the following procedure. We consider the k-
algebra k[C] where C denotes the finite set of variables{

Cαηkl | xαek ∈ P(V), xηel ∈ N (V), deg(xηel) = deg(xαek)
}

and construct the P(V)-marked set G ⊂ k[C][x]m consisting of all elements

Fk
α =

(
xα − ∑

xηek∈N (V)deg(xαek)

Cαηkkxη

)
ek − ∑

xηel∈N (V)deg(xαek)

l 6=k

Cαηklxηel (3.5)
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with xαek ∈ P(V). Then we compute all the complete reductions xiFk
α
G(s)−−→∗ L for

every term xαek ∈ P(V) and every non-multiplicative variable xi ∈ XP(Fk
α) and collect

the coefficients of the monomials xηej ∈ N (V) of all the reduced elements L in a set
R ⊂ k[C].

Theorem 3.44. The functor Mf n,m
P(V) is represented by the scheme Mf n,m

P(V) := Spec(k[C]/〈R〉).

Proof. We observe that each element fk
α of a P(V)-marked set G in A[x]m can be written

in the following form:

fk
α =

xα − ∑
xηek∈N (V)deg(xαek)

cαηkkxη

 ek − ∑
xηel∈N (V)deg(xαek)

l 6=k

cαηklxηel , cαηkl ∈ A.

Therefore G can be obtained by specializing in G the variables Cαηkl to the constants

cαηkl ∈ A. Moreover, G is a P(V)-marked basis if and only xifk
α

G(s)
−−→∗ 0 for every

xαek ∈ P(V) and xi ∈ XP(fk
α). Equivalently G is a P(V)-marked basis if and only if the

evaluation morphism ϕ : k[C]→ A, ϕ(Cαηkl) = cαηkl factors through k[C]/〈R〉, namely,
if and only if the following diagram commutes

k[C]
ϕ //

��

A

k[C]/〈R〉

;; .

The next lemma shows that the subfunctor of the Quot functor is isomorphic to a
marked functor hence the subfunctor is representable by an affine scheme.

Lemma 3.45.

(i) The subfunctor Quotm,HP(t),I
n with 〈E Ic〉 ∈ QSs,q

HP(t) is isomorphic to the marked functor
Mf n,m
E Ic .

(ii) The subfunctor Quotm,HP(t),I
n is representable by an affine subscheme of the affine space

AHP(s)·VP(s).

Proof. Item (i) is a straightforward consequence of Corollary 3.42; item (ii) follows from
(i) and Theorem 3.44.
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Now we are able to prove the main result of this chapter about the representability of
the Quot functor.

Theorem 3.46. The Quot functor Quotm,HP(t)
n is the functor of points of a closed subscheme

Quotm,HP(t)
n of the Grassmanian Grm,n

s,HP(s).

Proof. By Theorem 3.22, it suffices to check the representability on an open covering
of Grm,n

s,HP(s) and Quotm,HP(t)
n : we choose the quasi-stable covering (Proposition 3.36 and

Theorem 3.38).

Therefore, we can conclude by Corollary 3.45 (ii).

A generating set F ∈ Mf n,m
P(V)(A) defines a quotient A[x]m/〈F〉 that is a free A-module

such that the family ˜A[x]m/〈F〉 → Om
P

n
A

is flat and defines a morphism from Om
P

n
A

to a
suitable Quot scheme by the universal property of Quot schemes. Since Quot schemes
parametrize flat families of Om

P
n
A
-quotients and the same quotient can be defined by in-

finitely many different modules we first need to investigate the function that associates
to every generating set in Mf n,m

P(V)(A) the quotient of Om
P

n
A

it defines. In general, this
function can be non-injective.

Example 3.47. Consider the quasi-stable module

V = 〈x2e1, x2
1e1, x2

2e2, x2
1e2, x0e2〉 ⊂ A[x0, x1, x2]

2

with P(V) = {x2e1, x2
1e1, x2

2e2, x2
1e2, x0e2}. For a ∈ A consider the P(V)-marked set

FV ,a = {x2e1, x2
1e1 + ax1x2e2, x2

2e2, x2
1e2, x0e2} .

This set is in fact a P(V)-marked basis for every a ∈ A since every non-multiplicative prolon-
gation reduces to zero. Moreover, for every a ∈ A the module (FV ,a)≥3 coincides with V≥3.
Therefore, for all a ∈ A the modules 〈FV ,a〉 define the same quotient.

For a marked module element fk
α we define T(fk

α) := fk
α − xαek.

Proposition 3.48. Let V be a quasi-stable module and let t be the minimum degree such that
Vt 6= 0. Assume that no monomial module element of degree larger than t in the Pommaret
basis P(V) is divisible by x0 (or equivalently that xq

0N (V)≥t ⊆ N (V)≥t+q for every q). Then

for any two different P(V)-marked bases FV and GV in A[x]m the module sheaves ˜A[x]m/〈FV 〉
and ˜A[x]m/〈GV 〉 are different.
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Proof. There exists a module term xαek ∈ P(V) such that the corresponding poly-

nomials fk
α ∈ FV and gk

α ∈ GV are different. If ˜A[x]m/〈FV 〉 = ˜A[x]m/〈GV 〉, then
〈FV 〉≥s = 〈GV 〉≥s for a sufficiently large s. Therefore, for s � 0 xs

0fk
α is contained

in 〈GV 〉 and xs
0fk

α − xs
0gk

α = xs
0(T(g

k
α) − T(fk

α)) ∈ 〈GV 〉. By definition, the support of
T(gk

α) − T(fk
α) is contained in N (V) due to the hypothesis on V . Finally, by Theo-

rem 1.82 (ii)-(vi) this implies xs
0(T(g

k
α)− T(fk

α)) ∈ 〈FV 〉s+|α| ∩ 〈N (V)〉A = {0}, so that
T(gk

α) = T(fk
α) against the assumption fk

α 6= gk
α.

Definition 3.49. We say that V is a t-truncated module if V = V ′≥t for V ′ a saturated
quasi-stable module.

Observe that the monomial module elements divisible by x0 in the Pommaret basis of
a t-truncated module V (if any) are of degree t. Therefore, by Proposition 3.48, dif-
ferent t-truncation modules define different quotients. We emphasize that a priori the
truncation degree t can be any positive integer.

We now describe the relations among marked functors (respectively schemes) corre-
sponding to different truncations of the same saturated quasi-stable modules V. We
will prove that for sufficiently large integers t the V≥t-marked schemes are all isomor-
phic. However, the construction of Mf n,m

P(V≥t)
given in Theorem 3.44 depends on t since

we obtain it as a closed subscheme of an affine space whose dimension increases with
t. From a computational point of view it will be convenient to choose among isomor-
phic marked schemes the one corresponding to the minimum value of t while for other
applications higher values of t can be more convenient.

Theorem 3.50. Let V be a saturated quasi-stable module. Then for every t > 0 and for any
ring A, Mf n,m

P(V≥t−1)
(A) ⊆ Mf n,m

P(V≥t)
(A). More precisely,

(i) if in P(V) are no elements of degree t + 1 divisible by the variable x1 or V≥s−1 = V≥s,
then Mf n,m

P(V≥t−1)
∼= Mf n,m

P(V≥t)
;

(ii) otherwise, Mf n,m
P(V≥t−1)

is a closed subfunctor of Mf n,m
P(V≥t)

.

Proof. To prove the inclusion Mf n,m
P(V≥t−1)

(A) ⊆ Mf n,m
P(V≥t)

(A) let us consider a P(V≥t−1)-

marked basis F. Recall that according to Theorem 1.82 F̃(t) is the unique P(Vt ∩Tm)-
marked set which generates 〈F(t)〉A as an A-module. The set

G := F̃(t) ∪
{

fk
α ∈ F | xαek ∈ P(V) and |α| > t

}
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is by construction a P(V≥t)-marked set. In fact, G is a P(V≥t)-marked basis since
〈G(t)〉A = 〈F(t)〉A by Theorem 1.82 and the generators of degree larger than t are the
same in the two marked sets.

From now on in this proof we denote by V ′ the truncation of V in degree t − 1, by
FV ′ the marked set analogous to the one given via (3.5) that we used to construct the
module 〈R〉 ⊆ k[C] of Mf n,m

P(V ′). We denote the corresponding module 〈R〉 for Mf n,m
P(V ′)

from now on byMV ′ . We also let A′ := k[C′]m/MV ′ , φFV′ : k[C′] → A′ the canonical
map on the quotient and φFV′ [x] the extension to k[C′][x] → A′. Moreover, V ′′ will be
the truncation of V in degree t and FV ′′ , k[C′′],MV ′′ , A′′, φFV′′ are defined analogously.
By the definition ofMV ′ andMV ′′ , we observe that φFV′ [x](FV ′) is a P(V ′)-marked basis
in A′[x] and φFV′′ [x](FV ′′) is a P(V ′′)-marked basis in A′′[x]

We first prove (ii). Let us consider the P(V ′′)-marked set

G := F̃(t)
V ′ ∪

{
fk

α ∈ FV ′ | xαek ∈ P(V), |α| > t
}

.

By Theorem 1.82, φFV′ [x](G) is a P(V ′′)-marked basis of A′[x], since

N
(
V ′′, 〈φFV′ [x](G)〉

)
⊆ N

(
V ′, 〈φFV′ [x](FV ′)〉

)
= {0} .

Thus, the ring homomorphism

ψ : k[C′′]→ k[C′]

C′′αβkl 7→ coefficient of xβel in gk
α ∈ G

induces a homomorphism ψ : A′′ → A′ such that φFV′ ◦ψ = ψ ◦ φFV′′ . Moreover, φFV′ ◦ψ
is surjective, being the composition of two surjective homomorphisms. Indeed,

C′αβkl =

{
ψ(C′′αβkl) , if xαek ∈ P(V) , |α| ≥ t ,

ψ(C′′ηγkl) , xηek = x0xαek , xγ = x0xβel , otherwise.

Under our assumptions, for every fk
α ∈ FV ′ of degree t− 1, x0T(fk

α) is a V ′′-remainder,
so that x0fk

α ∈ G.

Therefore, the epimorphism ψ induces an isomorphism between a closed subscheme of
Mf n,m

P(V ′′) = Spec(k[C′′]/MV ′′) and Mf n,m
P(V ′) = Spec(k[C′]/MV ′).

To prove (i) we observe that the new condition on V implies that for every xγek ∈
N (V)t either x1xγek ∈ N (V)t+1 or x1xγek = x0xδek with xδek ∈ Vt holds.

Exploiting this property we first prove that C′′ηγkl ∈ MV ′′ if xηek ∈ Vt, x0|xη and x0 - xγ.

Let xεek = x1
xη

x0
ek and consider the non-multiplicative prolongation x0gk

ε. Obviously
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the involutive divisor of x0xεek is xγek such that x0xεek = x1xγek. The V-remainder of

this module element given by
F(·)
V′′−−→ is of type

g = x0T(gk
ε)− x1T(gk

η) + x0 ∑ C′′ηδklg
l
β ,

where gl
β ∈ FV ′′ and the sum is over the multi-indices β and the indices l such that

xβel := x1
xδ

x0
el ∈ Vt with xδ divisible by x0 and contained in the support of T(gk

η) and
C′′ηδkl the coefficient of xδel in gk

η . If xγel is a term in the support of T(gk
η) such that

x0 - xγ then x1xγel ∈ N (V)t+1 is contained in the support of g. By definition, MV ′′
contains the x-coefficients of g, thus in particular the coefficient C′′ηγkl of x1xγel in g.

For every xαek ∈ Vt−1 and xηek = x0xαek let us denote by hk
α the module element

in k[C′′][x] such that gk
η = x0hk

α + ∑ C′′ηγklx
γel with x0 - xγ, so that φFV′′ [x](g

k
η) =

φFV′′ [x](x0hk
α).

Using these polynomials we can define the P(V ′)-marked set

H = {hk
α | xαek ∈ Vt−1} ∪ {gk

η ∈ FV ′′ | xηek ∈ P(V), |η| ≥ t} .

By construction, φFV′′ [x](x0H) ⊆ φFV′′ [x](FV ′′), therefore φFV′′ [x](H) is a P(V ′)-marked
basis by Theorem 1.82. In fact, if the support of an element u in the module 〈φFV′′ [x](H)〉
only contains module terms of N (V), then x0u is in 〈φFV′′ [x](FV ′′)〉 and has the same
support, so that u = 0 since N (V , 〈φFV′′ [x](FV ′′)〉) = {0}.

Thus, the ring homomorphism

ϕ : k[C′]→ k[C′′]

C′αβkl 7→ coefficient of xβel in hk
α if |α| = s− 1

C′ηγkl 7→ coefficient of xγel in gl
η if xηel ∈ P(V), |η| ≥ t

induces a homomorphism ϕ : A′ → A′′.

Finally, ψ and ϕ are inverses of each other. Indeed, if we apply to the P(V ′)-marked
set H the construction from the first part of the proof we obtain a P(V ′′)-marked set
G′ such that φFV′′ [x](G

′) is a P(V ′′)-marked basis and φFV′′ [x](G
′) ⊆ φFV′′ [x](FV ′′), hence

φFV′′ [x](G
′) = φFV′′ [x](FV ′′).

Corollary 3.51. Let V be a saturated quasi-stable monomial module with Hilbert polynomial
HP(t) and Gotzmann number r and regularity d. Then Mf n,m

P(V≥r)
and Mf n,m

P(V≥d−1)
are isomor-

phic.
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4 Computation

In the first chapters we developed a method to compute Quot-schemes over fields of
arbitrary characteristic. For that we first developed marked bases for modules and
then we used the marked bases to define marked families. With the marked families
we constructed a new open covering for a Quot-scheme.

In this chapter we use the theory developed in the earlier chapters to construct algorith-
mic methods. This will allow us to define a first algorithm for computing Quot-schemes
over fields of arbitrary characteristic. It turns out that we can optimize the algorithms
a lot. Therefore, a large part of this chapter is devoted to this aspect.

Some of the algorithms, which we will develop in this chapter are implemented in
the computer algebra system COCOALIB ([1]). Namely, the computation of Hilbert
schemes for fields of arbitrary characteristic. At the end of this chapter we will use the
algorithms to compute some examples.

4.1 Computation of Saturated Quasi-Stable Ideals

In the following we describe how to compute all saturated quasi-stable ideals which
have a given Hilbert polynomial. As main reference we use [7].

As before we consider a field k of arbitrary characteristic. In this section we consider
the polynomial ring P (l) := k[xl , . . . , xn] with 0 ≤ l ≤ n. We denote by T(l) the set of
terms of P (l).

Definition 4.1. Let HP(t) ∈ Q[t]. Then we define

∆HP(t) := HP(t)−HP(t− 1).

In addition to that we define recursively

∆kHP(t) := ∆k−1HP(t)− ∆k−1HP(t− 1)

with ∆0HP(t) = HP(t).
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If HP(t) has Gotzmann number r, then the Gotzmann number of the Hilbert polynomial
∆HP(t) is ≤ r.

Now let J ⊆ P (l) be a monomial ideal, hence J is generated by a unique minimal set
of terms. This set is denoted by Bmin(J ). If J is quasi-stable then we have seen that
there exists a unique minimal Pommaret basis P(J ).

Definition 4.2. [7, Def. 3] Let J be a quasi-stable ideal in P (l). We define the following sets
of terms

P(J )(j) := {xα ∈ P(J ) | cls(xα) = j} and

P(J )(j) :=

 xα

x
αj
j

| xα ∈ P(J )(j)

 .

Lemma 4.3. [7, Lem. 1] Let J be a quasi-stable ideal in P (l) and consider l ≤ j ≤ n. The ideal
J : 〈xn, . . . , xj〉∞ has the weak Pommaret basis

P(J )(j) ∪
n⋃

i=j+1

P(J )(i) .

Furthermore no term in the Pommaret basis of J : 〈xn, . . . , xj〉∞ is divisible by xm with m ≤ j.

Lemma 4.4 ([7, Lem. 2]). Let J ⊆ P (l) be a quasi-stable monomial ideal. Then the Pommaret
basis P(J ) is also a Pommaret basis for the ideal J · P (l−1).

Definition 4.5 ([7, Def. 4]). Let J ⊆ P (l) be a stable monomial ideal. The term xα ∈ J is
St-minimal if xjxβ

x
cls(xβ)

6= xα for every xβ ∈ J and for every j > cls(xβ).

Definition 4.6. Let J ⊆ P (l) be a stable monomial ideal generated in degree s, i.e. Bmin(J ) =
Js ∩T(l). The set of St-minimal elements of J is defined as the set of monomial generators
of J which are St-minimal. This set is denoted by Smin(J ) or Smin(Js).

Corollary 4.7 ([7, Cor. 1]). Let J be a quasi-stable ideal in P (l), consider s ≥ reg(J ) and
xα ∈ P(J≥s) = Js ∩T(l). Then the ideal generated by the set (Js ∩T(l)) \ {xα} is stable if
and only if xα ∈ Smin(J≥s).

Definition 4.8. Given a quasi-stable ideal J ⊆ P (l), then the ideal (J : x∞
l ) : x∞

l+1 is called
the xl+1-saturation of J and is denoted it by Jxl xl+1 . The quasi-stable ideal J is xl+1-saturated
if J = Jxl xl+1 .

Proposition 4.9 ([7, Prop. 2]). Let J ⊆ P (l) be a saturated quasi-stable ideal, r be the
Gotzmann number of HPP (l)/J (t) and let the integer s ≥ r. We define the ideal I :=
Jxl xl+1 and q := dimk(Is)− dimk(Js). Then the Hilbert polynomial of I is HPP (l)/I (t) =
HPP (l)/J (t)− q.
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Lemma 4.10 ([7, Lem. 4]). Let J be a quasi-stable ideal in P (l) and let r be the Gotzmann
number of HPP (l)/J (t). For an arbitrary s ≥ r, consider an St-minimal term xβ ∈ Js with
cls(xβ) = l and letM := (Js ∩T(l)) \ {xβ}. Then the ideal generated byM is stable and
its Hilbert polynomial is HPP (l)/J (t) + 1.

Lemma 4.11 ([7, Lem. 5]). Let I and J be quasi-stable ideals in P (l). If for every s � 0 we
have Is ⊆ Js and HPP (l)/I (t) = HPP (l)/J (t) + a with a ∈ N, then I and J have the same
xl+1-saturation and for every s � 0 there is a term xα ∈ Js \ Is, with cls(xα) = l which is
St-minimal.

Algorithm 1 REMOVE(I , l, n, s, q, xβ)
Input: I a quasi-stable ideal
Input: l first index of the variables in the polynomial ring
Input: n last index of the variables of the polynomial ring
Input: s upper bound for reg(I)
Input: q non-negative Integer
Input: xβ monomial
Output: L set of saturated quasi-stable ideals J obtained by removing q St-minimal

terms divisible by xl from Is ∩T(l) and saturating
1: L ← ∅
2: if q = 0 then
3: return {Isat}
4: else
5: M← STMINIMAL(I , l, n, s)
6: for all xα ∈ M do
7: if xα � xβ then
8: L ← L ∪ REMOVE(〈(Is ∩T(l)) \ {xα}〉, l, n, s, q− 1, xα)
9: end if

10: end for
11: end if
12: return L

The computation of all quasi-stable ideals with the same Hilbert polynomial HP(t) uses
the xl+1-saturation. For the computation we relate the Hilbert polynomial of a quasi-
stable ideal J to that of 〈J , xl〉/〈xl〉.

In P (l) consider a quasi-stable ideal J with Hilbert polynomial HP(t). Obviously xl is
a non-zero divisor in P (l)/J sat. The ideal 〈J , xl〉/〈xl〉 ⊆ P (l+1) has the same Hilbert
polynomial as 〈J , xl〉 ⊆ P (l) and J sat has the same Hilbert polynomial as J , because
for s� 0 J sat

s = Js. Hence, we can consider the short exact sequence

0 −→ (P (l)/J sat)s−1
·xl−→ (P (l)/J sat)s −→ (P (l)/〈J sat, xl〉)s −→ 0
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Algorithm 2 QUASISTABLE(l, n,HP(t), s)
Input: l first index of the variables in the polynomial ring
Input: n last index of the variables of the polynomial ring
Input: HP(t) admissible Hilbert polynomial
Input: s positive integer upper bound for the Gotzmann number of HP(t)
Output: F set of quasi-stable ideals J in P (l) having Hilbert polynomial HP(t)

1: if HP(t) = 0 then
2: return {〈1〉}
3: else
4: E ← QUASISTABLE(l + 1, n, ∆HP(t), s)
5: F ← ∅
6: for all J ∈ E do
7: I ← J · P (l)

8: q← HP(s)− (n−l+s
s ) + dimk(Is)

9: if q ≥ 0 then
10: F ← F ∪ REMOVE(I , l, n, s, q, 1)
11: end if
12: end for
13: return F
14: end if

and we obtain that the Hilbert polynomial of 〈J sat, xl〉 is ∆HP(t) in P (l). This is also
the Hilbert polynomial of 〈J , xl〉, since 〈J sat, xl〉s = 〈J sat

s , xl〉s = 〈Js, xl〉s = 〈J , xl〉s,
for every s ≥ r, where r is the Gotzmann number of HP(t). Furthermore, observe

that 〈J , xl〉/〈xl〉 ⊆ P (l+1) is also quasi-stable and
(
〈J , xl〉/〈xl〉

)sat
is generated by

Jxl xl+1 ∩T(l + 1) in P (l+1) due to Proposition 1.61.

To compute all saturated quasi-stable ideals in P (l) with a given Hilbert polynomial
HP(t) we use recursion on the number of variables. Assume that we have a complete
list of saturated quasi-stable ideals in P (l+1) generated in degree less than or equal to
the Gotzmann number of HP(t) with Hilbert polynomial ∆HP(t). Then we embed all
the ideals of this list in P (l). In P (l) these ideals have Hilbert polynomial HP(t) + q,
where q is an integer. Turning Lemma 4.10 into an algorithm finishes the construction
and leads to the Algorithms 1 and 2.

To get a better understanding why the Algorithms 1 and 2 work we recall the proofs of
[7].

Theorem 4.12 ([7, Thm. 4]). Algorithm 1, REMOVE(I , l, n, s, q, xβ), returns the set of all
saturated quasi-stable ideals in the polynomial ring P (l) contained in Is, having the same xl+1-
saturation as I and having Hilbert polynomial HPP (l)/I (t) + q.
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Proof. For q = 0 the algorithm terminates obviously with the correct output in line (3).
If q > 0, the algorithm computes in line (5) the St-minimal terms xα having class l. By
Lemma 4.10 the set of terms in (Is ∩T(l)) \ {xα} generates a stable ideal with Hilbert
polynomial HPP (l)/I (t) + 1.

The termination of the algorithm is obvious, because at each recursive call at line (8) the
number of terms to remove decreases. The if-condition in line (7) avoids the repeated
computation of the same result several times: If xα and xβ are two St-minimal elements
of class l of I then the algorithm without the if-condition would generate both the ideal〈(

(Is ∩T(l)) \ {xα}
)
\ {xβ}

〉sat

and the ideal 〈(
(Is ∩T(l)) \ {xβ}

)
\ {xα}

〉sat

which are obviously the same. By using an arbitrary term order ≺ in line (7) the algo-
rithm avoids these duplicate computations.

Applying Algorithm 1 to a quasi-stable ideal I we obtain as output saturated ideals
having the same xl+1-saturation as I by Lemma 4.11 and having the Hilbert polynomial
HPP (l)/I (t) + q.

Theorem 4.13 ([7, Thm. 5]). Algorithm 2, QUASISTABLE(l, n,HP(t), s), returns the set of
all quasi-stable saturated ideals in the polynomial ring P (l) with Hilbert polynomial HP(t).

Proof. We perform an induction on ∆mHP(t). It is sufficient to take s to be an upper
bound for the Gotzmann numbers of ∆mHP(t) for all m ≥ 0.

If HP(t) = 0, then the ideal 〈1〉 is the only quasi-stable saturated ideal with this Hilbert
polynomial. This shows that the algorithm is correct in this case.

Now we assume that HP(t) 6= 0 and that Algorithm 2 returns the correct set for ∆HP(t).
Line (4) returns the complete list of xl+1-saturation of the saturations of the ideals
we look for. Consider J ⊆ P (l+1) belonging to the output of QUASISTABLE (l +
1, n, ∆HP(t), s)). Then the ideal I = J · P (l) is quasi-stable by Lemma 4.4 and Proposi-
tion 1.64. Furthermore, the Hilbert polynomial of I is HP(t) + q, where q is defined at
line (8). Now there are three possibilities:

• if q < 0, there exist no saturated quasi-stable ideals I ⊆ P (l) with Hilbert poly-
nomial HP(t) and such that 〈I , xl〉/〈xl〉 = J , hence J has to be discarded, by
Proposition 4.9;

• if q = 0, then J · P (l) is one of the ideals which we want to obtain;
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• if q > 0, we apply Algorithm 1 to obtain the saturated quasi-stable ideals I ⊆ P (l)

with Hilbert polynomial HP(t) and such that 〈I , xl〉/〈xl〉 = J .

4.1.1 An Efficient Algorithm to Compute Saturated Quasi-Stable Ideals

Our goal is a fast implementation of the algorithms mentioned in the section above.
Therefore, we investigate some effort to obtain this goal now.

The key point of a good implementation is a good balance between a memory efficient
representation of the ideals and the fast computation of the different operations of the
algorithms. In Algorithm 1 and Algorithm 2 we can identify the following costly oper-
ations:

(i) The computation of the St-minimal elements of an ideal in Algorithm 1 in line (5);

(ii) The computation of J · P (l) in Algorithm 2 in line (7);

(iii) The computation of the dimension of Is in Algorithm 2 in line (8).

Our idea is now to represent the ideals in Algorithm 1 and 2 by two different sets. We
represent an ideal I by its Pommaret basis and by the St-minimal set of Is.

In the following let I be a quasi-stable saturated ideal and s be greater than or equal to
the Gotzmann number of the Hilbert polynomial of I . As a first step we will show how
to efficiently check whether an element belongs to Is, only knowing Smin(Is).

The following ordering is based on ideas of [32] where the author wants to compute
Borel fixed ideals in characteristic zero, e. g. to compute strongly stable ideals.

Definition 4.14. Let xα, xβ ∈ T(l)s. Additionally, let di(xα, xβ) := degi(xα)− degi(xβ) for
all i ∈ {l, . . . , n}. Then xα ≺St xβ if and only if

• di(xα, xβ) ≥ 0 for all i ∈ {l, . . . , cls(xβ)− 1} ,

• di(xα, xβ) > 0 for at least one i ∈ {l, . . . , cls(xβ)− 1} ,

• di(xα, xβ) ≤ 0 for all i ∈ {cls(xβ) + 1, . . . n} and

• di(xα, xβ) < 0 for at least one i ∈ {cls(xβ) + 1, . . . n} .

Lemma 4.15. Let J ⊆ P (l) be a stable monomial ideal generated in degree s. Let xα ∈ Js and
xβ ∈ T(l)s such that xα �St xβ. Then xβ ∈ Js.
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Proof. Beside equality of xα and xβ we distinguish between the cases dcls(xβ)(xα, xβ) ≥ 0
and dcls(xβ)(xα, xβ) < 0.

For the first case we prove the statement by an induction over the sum

d(xα, xβ) :=
cls(xβ)

∑
i=l

di(xα, xβ).

Suppose d(xα, xβ) = 1, hence

n

∑
i=cls(xβ)+1

di(xα, xβ) = −1

and so we must have be dk(xα, xβ) = 1 and dj(xα, xβ) = −1 for some k ≤ cls(xβ) and
j > cls(xβ). Furthermore, di(xα, xβ) = 0 for all i ∈ {l, . . . , n} \ {k, j}. Hence, xj

xk
xα = xβ

and therefore xβ ∈ Js because J is stable and cls(xα) = k.

When d(xα, xβ) > 1 we consider an element xγ =
xj
xk

xα with dk(xα, xβ) > 0 and
dj(xα, xβ) < 0 such that k = cls(xα). It is obvious that xα ≺St xγ, hence xγ ∈ J by
the beginning of the induction. It is also clear that xγ ≺St xβ and that d(xγ, xβ) =
d(xα, xβ)− 1. Hence, the claim follows.

The proof for dcls(xβ)(xα, xβ) < 0 is essentially the same. But now we perform an induc-
tion over the sum

d(xα, xβ) :=
cls(xβ)−1

∑
i=l

di(xα, xβ).

.

Corollary 4.16. Let J ⊆ P (l) be a stable monomial ideal. Let xα ∈ Js be an St-minimal
element. Then there does not exist any xβ ∈ Js such that xβ ≺St xα. Moreover, there exists for
any non St-minimal element in Js an St-minimal element in Js which is smaller with respect
to �St.

Proof. Let xα be an St-minimal element of Js. Assume that there exists an element
xβ ∈ Js, such that xβ ≺St xα. Then di(xβ, xα) ≥ 0 for all i ∈ {l, . . . , cls(xα) − 1}.
There is a strict inequality for at least one i. Additionally, di(xβ, xα) ≤ 0 for all i ∈
{cls(xα) + 1, . . . , n}. Hence,

xdl(xβ,xα)
l · · · xdcls(xα)−1(xβ,xα)

cls(xα)−1

x
−dcls(xα)+1(xβ,xα)

cls(xα)+1 · · · x−dn(xβ,xα)
n

xβ = xα ,
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which shows, that xα cannot be St-minimal in this situation.

The second part of the corollary is obvious.

In the following we assume that J and I in the Algorithms 1 and 2 are represented by
their St-minimal sets in degree s. Now we show how to perform the costly computa-
tions mentioned above.

The computation of the St-minimal elements in Algorithm 1 in line (5) is trivial because
I is represented exactly by the set of St-minimal elements of Is.

The next problem which occurs is the computation of the St-minimal set of J := 〈(Is ∩
T(l)) \ {xα}〉 where xα ∈ Smin(Is). It is obvious that S := Smin(Is) \ {xα} ⊆ Smin(J ).
Now we have to find a set T , such that S ∪ T = Smin(J ). For this we compute all
possible increasing moves starting from xα. It is clear that Smin(J ) ⊆ S ∪ T ′′, where

T ′′ =
{

xi

xcls(xα)
xα | i ∈ {cls(xα) + 1, . . . , n}

}

is the set of all increasing moves starting from xα. Then we check for every xγ ∈ T ′′ if
there is an xβ ∈ Smin(Is) \ {xα} such that xβ is smaller than xγ with respect to �St. If
this is not the case the element could be a new St-minimal element of J and we add it
to a new set T ′.

Now we have to check that the remaining elements in T ′ are St-minimal for J . We
already know, that Smin(Is \ {xα}) ⊆ S ∪ T ′ and that there exists no xβ ∈ S which
is smaller than an element in T ′ with respect to ≺St. Hence, the only case which can
happen now, is that there are elements xβ, xγ ∈ T ′, such that xβ ≺St xγ. To find these
elements we can use the special structure of elements in T ′ and the next lemma.

Lemma 4.17. Let xα ∈ T(l)s, xβ = xi
xcls(xα)

xα and xγ =
xj

xcls(xα)
xα with i > j. Then it never

holds that xβ ≺St xγ.

Proof. We take a look at dk(xβ, xγ) for all k ∈ {l, . . . , n}. It is clear that dk(xβ, xγ) = 0
for all k /∈ {i, j}, di(xβ, xγ) = 1 and dj(xβ, xγ) = −1. But then it can never happen that
xβ ≺St xγ according to Definition 4.14 because i > j and cls(xα) ≤ i.

To construct the set T out of T ′ we proceed as follows: We move at first the element
xi

xcls(xα)
xα with the smallest index i from T ′ to T . Then we remove all elements from T ′

which are bigger than the chosen element with respect to ≺St. After that we choose
again the element xj

xcls(xα)
xα with the smallest index j from the new set T ′, and move

it into T , and repeat. Lemma 4.17 guarantees that the first element which we move
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from T ′ to T is not smaller than the second element which we move from T ′ to T with
respect to ≺St. Finally, we get a set T , such that S ∪ T = Smin(J ).

The process described above is formalized in Algorithm 3.

Algorithm 3 STMINIMALELEMENTS(l, n,Smin(Is), xα)
Input: l first index of the variables in the polynomial ring
Input: n last index of the variables of the polynomial ring
Input: Smin(Is) St-minimal elements of Is
Input: xα ∈ Smin(Is)
Output: The set Smin(Is \ {xα})

1: S ← Smin(Is) \ {xα}
2: i← cls(xα) + 1
3: while i ≤ n do
4: xδ ← xi

xcls(xα)
xα

5: if there does not exist xγ ∈ S such that xγ ≺St xδ then
6: S ← S ∪ {xδ}
7: end if
8: i← i + 1
9: end while

10: return S

Now we determine how to compute the St-minimal set of Is, where I = J · P (l) and
J ⊆ P (l+1) is a saturated quasi-stable ideal and s ≥ reg(J ).

Lemma 4.18. Let J ⊆ P (l) be a saturated quasi-stable monomial ideal and let s ≥ reg(J ).
Then

Smin(Js) ⊆
{

xαxs−|α|
l | xα ∈ Bmin(J )

}
.

Proof. Let xγ ∈ Smin(Js). Then xγ = xδxβ for some xβ ∈ P(J ) and xδ ∈ k[XP (xβ)].

It is clear that xδ = xγl
l because xβ is saturated and if xδ 6= xγl

l then the element xdeg(xδ)
l xβ

is smaller with respect to the St-minimal order.

If xβ ∈ Bmin(J ) ∩ P(J ) we are done. If not, there must be an xα ∈ Bmin(J ) and an
xδ′ ∈ k[xl , . . . , xn] \ k[XP (xα)] with xβ = xδ′xα, hence xγ = xδxδ′xα. But with the same

arguments as above we show that xαxδxdeg(xδ′ )
l is more St-minimal than xγ which is

again a contradiction.

Definition 4.19. Let J ⊆ P (l) be a stable monomial ideal generated in degree s. We define

Sminl (Js) :=
{

xα ∈ Smin(Js) | cls(xα) = l
}

.

98



4 Computation

Lemma 4.20. Let J ⊆ P (l) be a saturated quasi-stable monomial ideal and let s ≥ reg(J ).
Then

Sminl (Js) =
{

xαxs−deg(xα)
l | xα ∈ Bmin(J ) and deg(xα) < s

}
.

Proof. By Lemma 4.18 it is obvious that

Sminl (Js) ⊆
{

xαxs−deg(xα)
l | xα ∈ Bmin(J ) and deg(xα) < s

}
.

For the other direction assume that

xαxs−deg(xα)
l ∈

{
xαxs−deg(xα)

l | xα ∈ Bmin(J ) and deg(xα) < s
}

is not St-minimal. Therefore, there must be a xγ ∈ Js such that xγxj
xcls(xγ)

= xαxs−deg(xα)
l .

But this means that cls(xγ) = l, hence xγxj = xαxs−deg(xα)+1
l or equivalent xγ =

xα

xj
xs−deg(xα)+1

l . Let xγ = xδxβ with xβ ∈ P(J ) and xδ ∈ k[XP (xβ)]. Then xδxβ =

xα

xj
xs−deg(xα)+1

l . J is saturated, hence degl(β) = 0 and we can write xδ′xβ = xα

xj
or equiv-

alent xjxδ′xβ = xα. Hence, xα is not a minimal generator of J which is a contradiction
by assumption.

With the lemma above it turns out to be easy to compute the St-minimal elements of
Is.

Lemma 4.21. Let J ⊆ P (l+1) be a saturated quasi-stable monomial ideal, s ≥ reg(J ) and
I = J · P (l). Then

Smin(Is) =
{

xα ∈ Smin(Js) | cls(xα) > l + 1} ∪ {
xαl+1

l

xαl+1
l+1

xα | xα ∈ Sminl+1(Js)
}

.

Proof. Let

B1 =

{
xα

xαl+1
l+1

| xα ∈ Sminl+1(Js)

}
and B2 be the set of all terms which can be reached by increasing moves starting from
elements in Smin(Js) \ Sminl+1(Js). It is obvious that 〈B1〉 + 〈B2〉 = J ⊆ P (l+1). By
construction 〈B2〉 is saturated and B2 is a Pommaret basis of 〈B2〉. Hence, B2 is also a
Pommaret basis for 〈B2〉 · P (l) by Lemma 4.4. This implies that Smin(Js) \ Sminl+1(Js)

is the St-minimal set of 〈B2〉 · P (l).

99



4 Computation

We know that B1 is a minimal generating set for 〈B1〉. Hence, it is also a minimal
generating set of 〈B1〉 · P (l). Therefore, we know that

Sminl

(
(〈B1〉 · P (l))≥s

)
=
{

xαxs−|α|
l | xα ∈ B1

}
,

by Lemma 4.20.

It is obvious that I = 〈B1〉 · P (l) + 〈B2〉 · P (l). This implies that

Smin(Is) ⊆ Sminl

(
(〈B1〉 · P (l))≥s

)
∪ Smin(Js) \ Sminl+1(Js) .

Now it is left to prove that

Smin(Is) = Sminl

(
(〈B1〉 · P (l))≥s

)
∪ Smin(Js) \ Sminl+1(Js) .

It is clear that there are no increasing moves from an element of Sminl ((〈B1〉 · P (l))≥s)
to Smin(Js) \ Sminl+1(Js) and vice versa. It is also clear that there cannot be an element
which can be obtained by increasing moves from an element of the set

Sminl ((〈B1〉 · P (l))≥s) ∪ Smin(Js) \ Sminl+1(Js)

which lies outside Is and vice versa. Hence, the statement is true.

The last task on the list at the beginning of this section is the computation of q in line
(8) in Algorithm 2. Specifically the dimension of Is, where I is a quasi-stable ideal
with a regularity which is less than or equal to s. For this computation we simply use
the Pommaret basis of I , because it is easy to compute the Hilbert function in degree s
starting from of the Pommaret basis which gives us immediately the dimension of Is.

dim(Is) =

(
s + n− l

s

)
−HFP (l)/I (s).

Now we have to determine how the Pommaret basis changes when we remove an St-
minimal element from Is.

Assume that we remove an St-minimal element xα from Smin(Is). Let J := 〈Is \
{xα}〉sat. We have to determine how to change P(I) to get P(J ). It turns out, that
the modifications are quite easy. It is clear that xαsat := xα

x
αl
l

/∈ J , but every xixαsat ∈ J
for i ∈ {l + 1, . . . , n}. We know that xi is non-multiplicative for xαsat for all i > cls(xαsat),
hence these elements have a divisor which is already in the Pommaret basis and we do
not need to treat them. The only possible elements which we may have to add to the
Pommaret basis of J are the elements xixαsat with i ∈ {l + 1, . . . , min(xαsat)}. It turns
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out that we have to add all of them to the Pommaret basis of I to get the Pommaret
basis of J because these elements have the involutive divisor xαsat in I and therefore
do not occur in the Pommaret basis of I . Hence, the Pommaret basis of J is

P(J ) = P(I) ∪ {xixαsat | i ∈ {l + 1, . . . , cls(xαsat)}} \ {xαsat}.

The last thing which we have to determine is the behaviour of the Pommaret basis in
Algorithm 2 line (7), that is we have a Pommaret basis of P(J ) of a saturated quasi-
stable J ⊆ P (l+1) and we want to compute the Pommaret basis P(I) of I := J · P (l)

Thanks to Lemma 4.4 the solution is easy because it says that the Pommaret bases for
J and I are equivalent.

Now we are able to state new effective versions for the Algorithms 1 and 2 which call
the Algorithms 4 and 5. In Algorithm 4 it is possible that we have sometimes to com-
pute cls(1). In this case we always consider cls(1) = n.

Algorithm 4 REMOVE((BPB,BSt), l, n, s, q, xβ)

Input: (BPB,BSt) such that BPB = P(I) and BSt is the St-minimal set of a quasi-stable
ideal I

Input: l first index of the variables in the polynomial ring
Input: n last index of the variables of the polynomial ring
Input: s upper bound for reg(I)
Input: q non-negative Integer
Input: xβ monomial
Output: L, the set of pairs (BPB

i ,BSt
i ) obtained by removing q St-minimal terms divisi-

ble by xl from Is ∩T(l) and saturating
1: L ← ∅
2: if q = 0 then
3: return {(BPB,BSt)}
4: else
5: for all xα ∈ BSt do
6: if xα � xβ then

7: BPB
α ← BPB ∪

{
xi

xα

x
αl
l
| i ∈ {l + 1, . . . , cls( xα

x
αl
l
)}
}
\
{

xα

x
αl
l

}
8: BSt

α ← STMINIMALELEMENTS(l, n,BSt, xα)
9: L ← L ∪ REMOVE((BPB

α ,BSt
α ), l, n, s, q− 1, xα)

10: end if
11: end for
12: end if
13: return L
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Algorithm 5 QUASISTABLE(l, n,HP(t), s))
Input: l first index of the variables in the polynomial ring
Input: n last index of the variables of the polynomial ring
Input: HP(t) admissible Hilbert polynomial
Input: s positive integer upper bounding the Gotzmann number of HP(t)
Output: F , the set of all pairs (BPB,BSt), such that BPB = P(J ) for a saturated quasi-

stable ideal J in P (l) having Hilbert polynomial HP(t)
1: if HP(t) = 0 then
2: return {(1, xs

l )}
3: else
4: E ← QUASISTABLE(l + 1, n, ∆HP(t), s)
5: F ← ∅
6: for all (BPB,BSt) ∈ E do

7: B ←
{

xα ∈ BSt | cls(xα) > l + 1
}
∪
{

x
αl+1
l

x
αl+1
l+1

xα | xα ∈ BSt and cls(xα) = l + 1
}

8: q← HP(s)− (n−l+s
s ) + dimk((〈BPB〉 · P (l))s)

9: if q ≥ 0 then
10: F ← F ∪ REMOVE((BPB,B), l, n, s, q, 1)
11: end if
12: end for
13: return F
14: end if

Example 4.22. We want to compute all saturated quasi-stable ideals in k[x0, x1, x2] with
Hilbert polynomial HP(t) = 4. Figure 4.1 sketches the computation which is done by the
Algorithms 3, 4 and 5.

As a result we get five different saturated quasi-stable ideals J1,J2,J3,J4,J5 ⊂ k[x0, x1, x2]
with

Bmin(J1) = {x1, x4
2} ,

Bmin(J2) = {x3
1, x2x1, x2

2} ,

Bmin(J3) = {x2
1, x2x1, x3

2} ,

Bmin(J4) = {x2
1, x2

2} ,

Bmin(J5) = {x4
1, x2} .

Algorithm 3 Algorithm 5 and Algorithm 4 are implemented in the computer algebra
system COCOALIB ([1]). We applied the implementation to some bigger examples.
Table 4.1 exhibits the computation times of these examples, and Table 4.2 shows the
number of saturated quasi-stable ideals for the given input. The first column gives the
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QUASISTABLE(0, 2, 4, 4)
4: E ← QUASISTABLE(1, 2, 0, 4)

2: return {({1}, {x4
1})}

5: F ← ∅
6: for ({1}, {x4

1}) ∈ E
7: B ← {x4

0}
8: q← 4− (2−0+4

4 ) + (2−0+4
4 ) = 4

10: F ← REMOVE(({1}, {x4
0}), 0, 2, 4, 4, 1)

1: L ← ∅
5: for x4

0 ∈ {x4
0}

7: BPB
x4

0
← {1} ∪ {x1, x2} \ {1}

8: BSt
x4

0
← STMINIMALELEMENTS(0, 2, {x4

0}, x4
0)

1: S ← ∅
2: i← 1
3: while i = 1 ≤ 2

4: xδ ← x1
x0

x4
0

6: S ← S ∪ {x1x3
0} = {x1x3

0}
8: i← 2

3: while i = 2 ≤ 2
4: xδ ← x2

x0
x4

0
6: S ← S ∪ {x2x3

0} = {x2x3
0, x1x3

0}
8: i← 3

10: return S = {x2x3
0, x1x3

0}
9: L ← L∪ REMOVE((BPB

x4
0

,BSt
x4

0
), 0, 2, 4, 3, x0)

1: L ← ∅
5: for x2x3

0 ∈ {x2x3
0, x1x3

0}
7: BPB

x2x3
0
← {x1, x2} ∪ {x2

2x2
0, x2x1x2

0} \ {x2} = {x2
2x2

0, x2x1x2
0, x2}

8: BSt
x2x3

0
← STMINIMALELEMENTS(0, 2, {x2x3

0, x1x3
0}, x2x3

0) = {x1x3
0}

9: L ← L∪ REMOVE(BPB
x2x3

0
,BSt

x2x3
0
, 0, 2, 4, 2, x2x3

0) = {({x1x3
0}, {x1, x4

2)})}
5: for x1x3

0 ∈ {x2x3
0, x1x3

0}
7: BPB

x1x3
0
← {x1, x2} ∪ {x2x1x2

0, x2
1x2

0} \ {x1}
8: BSt

x1x3
0
← STMINIMALELEMENTS(0, 2, {x2x3

0, x1x3
0}, x1x3

0) = {x2x1x2
0, x2x3

0}

9: L ← L∪ REMOVE(BPB
x1x3

0
,BSt

x1x3
0
, 0, 2, 4, 2, x1x3

0)

= {({x2
2x2

0, x2x1x2
0, x3

1x0}, {x2x1, x2
2, x3

1}), ({x
2
1x2

0, x2x1x2
0, x3

2x0}, {x2
1, x2x1, x3

2}),
({x2

1x2
0, x2

2x2
0}, {x2

1, x2
2}), ({x2x3

0, x4
1}, {x2, x4

1})}
13: return L

13: return L
13: return F = {({x1x3

0}, {x1, x4
2)}), ({x2

2x2
0, x2x1x2

0, x3
1x0}, {x2x1, x2

2, x3
1}),

({x2
1x2

0, x2x1x2
0, x3

2x0}, {x2
1, x2x1, x3

2}), ({x2
1x2

0, x2
2x2

0}, {x2
1, x2

2}), ({x2x3
0, x4

1}, {x2, x4
1})}

Figure 4.1: Computation of quasi-stable ideals
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HP(t) G n = 3 n = 4 n = 5 n = 6 n = 7 n = 8
5 5 0.000 0.000 0.004 0.008 0.016 0.024

10 10 0.012 0.120 0.684 2.972 10.000 29.152
15 15 0.288 20.607 79.904 - - -

5t + 1 11 0.008 0.072 0.392 1.536 42.586 12.452
5t + 7 17 0.732 29.124 - - - -

2t2 + 8t− 46 16 0.000 0.096 1.488 17.838 55.424 205.424
2t2 + 8t− 42 20 0.032 41.640 12.024 73.632 - -

4t2 − 12t + 10 20 0.040 1.272 12.392 71.032 - -
4t2 − 12t + 14 24 0.796 63.748 - - - -

Table 4.1: Time for computing all saturated quasi-stable ideals for a given Hilbert poly-
nomial in a polynomial ring k[x0, . . . , xn]

given Hilbert polynomial and the second column gives the corresponding Gotzmann
number. The first row says the number of variables which we consider. If n = 3 we
compute the example in the polynomial ring k[x0, . . . , x3], hence we consider n + 1
variables. That is the entry in the second row and third column is the computation time
in seconds (respectively the number of saturated quasi-stable ideals) for the input n = 3
and HP(t) = 5.

For the computation we have used a computer with 8 GB main memory and Intel i7-
5500U processor. The operating system was Ubuntu 16.04.1 LTS. We compiled CO-
COALIB with gcc 5.4.0. We restrict our program to use only 7.8 GB main memory.

For some examples we were not able to compute the result. This is denoted in both
tables by “-”. The problem was always that we ran out of memory. We see that the
computation time is reasonably fast. Even the big examples could be computed within
four minutes. The results are usually very big which explains why we ran so often out
of memory. There is even an example which has as result more than a million different
saturated quasi-stable ideals. It is obvious that the Gotzmann number and the number
of variables are two values which influence the complexity most strongly.

The big results also show that it is not useful to compute all marked scheme accord-
ing to a quasi-stable cover for a Hilbert scheme. There are simply too many marked
schemes, which we would need to compute.
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HP(t) G n = 3 n = 4 n = 5 n = 6 n = 7 n = 8
5 5 24 59 120 216 357 554

10 10 500 3 122 13 220 43 352 118 874 285 784
15 15 6 879 108 802 982 615 - - -

5t + 1 11 370 2 562 10 039 29 165 70 317 149 149
5t + 7 17 21 648 579 747 - - - -

2t2 + 8t− 46 16 66 468 1 614 4 048 8 460 15 696
2t2 + 8t− 42 20 1 200 24 052 170 526 741 684 - -

4t2 − 12t + 10 20 1 811 31 236 204 855 851 736 - -
4t2 − 12t + 14 24 23 153 1 068 586 - - - -

Table 4.2: Number of all saturated quasi-stable ideals for a given Hilbert polynomial in
a polynomial ring k[x0, . . . , xn]

4.2 Computation of Saturated p-Borel Fixed Ideals

In [7] an algorithm was presented to compute all Borel fixed ideals for a given Hilbert
polynomial over a field k with characteristic p. In this section we briefly recall the
construction of this algorithm. The structure of the algorithm is similar to that of the
algorithm to compute quasi-stable ideals. But instead of removing St-minimal elements
we remove p-minimal elements which are introduced below.

Definition 4.23 ([7, Def. 10]). Let J be a p-Borel fixed ideal and consider xα ∈ J . xα is
p-minimal (with respect to J ) if there is no other term in J ∩T(l)deg(α) smaller than xα,
with respect to ≺p.

Definition 4.24. Let J be a p-Borel fixed ideal and s an integer. Then we define the set

Minp(Js) := {xα | xα is p-minimal in J ∩T(l)s} .

Lemma 4.25 ([7, Lem. 6]). Let J be a p-Borel fixed ideal in P (l) and let r be the Gotzmann
number of HPP (l)/J (t). Let s ≥ r, let xα ∈ Js be a p-minimal and St-minimal term in Js with
cls(xα) = l. LetM := (Js ∩T(l)) \ {xα}. Then 〈M〉 is p-Borel fixed and HPP (l)/〈M〉(t) =
HPP (l)/J (t) + 1.

Lemma 4.26 ([7, Lem. 7]). Let I and J be p-Borel fixed ideals in P (l). If, for every s � 0,
we have Is ⊆ Js and HPP (l)/I (t) = HPP (l)/J (t) + a, with a ∈ N0, then I and J have the
same xl+1-saturation and for every s � 0 there is an xα ∈ Js \ Is, with cls(xα) = l which is
St-minimal and p-minimal.

The idea of computing all p-Borel fixed ideals with the same Hilbert polynomial, is
the same as for computing all quasi-stable ideals with the same Hilbert polynomial.
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Instead of removing arbitrary St-minimal elements during the removal procedure we
only remove St-minimal elements of class l which are in addition p-minimal according
to Lemma 4.25, now. In the following we call the set of these elements p-St-minimal
elements. This leads to Algorithms 6 and 7.

Algorithm 6 p-REMOVE(I , l, n, s, q, p)
Input: I a p-Borel fixed ideal
Input: l first index of the variables in the polynomial ring
Input: n last index of the variables of the polynomial ring
Input: s upper bound for reg(I)
Input: q non-negative integer
Input: xβ monomial
Input: p characteristic of the coefficient field
Output: L, the set of the saturated p-Borel fixed ideals J obtained by removing q terms

divisible by xl from Is
1: L ← ∅
2: if q = 0 then
3: return {Isat}
4: else
5: M← p-STMINIMAL(I , l, n, p, s)
6: for all xα ∈ M do
7: L ← L ∪ p-REMOVE(〈(Is ∩T(l)) \ {xα}〉, l, n, s, q− 1, p)
8: end for
9: end if

10: return L

Theorem 4.27 ([7, Thm. 7]). Algorithm 6, p-REMOVE(I , l, n, s, q, p), returns the set of all
saturated p-Borel fixed ideals in the polynomial ring P (l) contained in Is, having the same
xl+1-saturation as I and having Hilbert polynomial HPP (l)/I (t) + q.

Theorem 4.28 ([7, Thm. 8]). Algorithm 7, BOREL(l, n,HP(t), s, p), returns the set of all sat-
urated p-Borel fixed ideals in the polynomial ring P (l) with Hilbert polynomial HP(t).

4.2.1 An Efficient Algorithm to Compute Saturated p-Borel Fixed Ideals

As in Section 4.1.1 we will develop a datastructure which allow us to compute saturated
p-Borel fixed ideals quickly. In Algorithms 6 and 7 we mainly work with the stable ideal
I≥s, and with its minimal generating set Is. In the optimized version we consider the
Pommaret basis of I . In Lemma 4.25 we have seen that we have to consider St-minimal
elements of class l which are p-minimal for Is. Lemma 4.20 shows the close connection
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Algorithm 7 BOREL(l, n,HP(t), s, p)
Input: l first index of the variables in the polynomial ring
Input: n last index of the variables of the polynomial ring
Input: HP(t) admissible Hilbert polynomial
Input: s positive integer upper bounding the Gotzmann number of HP(t)
Input: p characteristic of the coefficient field
Output: F , the set of all saturated p-Borel fixed ideals J in the polynomial ring P (l)

having Hilbert polynomial HP(t)
1: if HP(t) = 0 then
2: return {〈1〉}
3: else
4: E ← BOREL(l + 1, n, ∆HP(t), s, p)
5: F ← ∅
6: for all J ∈ E do
7: I ← J · P (l)

8: q← HP(s)− (n−l+s
s ) + dimk(Is)

9: if q ≥ 0 then
10: F ← F ∪ p-REMOVE(I , l, n, s, q, p)
11: end if
12: end for
13: return F
14: end if

between St-minimal elements of class l and the minimal generating system of I . Hence,
it is enough to consider only the ideal I with its Pommaret basis. The reason why we
consider the Pommaret basis of I and not only the minimal generating set of I is, that it
is much easier to determine dimk(Is) from the Pommaret basis than from the minimal
generating system of I .

Adding a variable to the polynomial ring as in Algorithm 7, line (7) is also easy, because
the Pommaret basis does not change, by Lemma 4.4.

In Algorithm 6 we remove a p-St-minimal element xα from Is ∩T(l). In particular xα

is St-minimal, and we have already seen in Section 4.1.1 how to compute J such that
J≥s =

〈
(Is ∩T(l)) \ {xα}

〉
. If xα is St-minimal, then there exists an xβ ∈ Bmin(I) ⊂

P(I), such that xα = xβxs−|β|
l and deg(xβ) < s. Then we have seen that J = 〈Is \

{xα}〉sat has as Pommaret basis

J =
〈
Is \ {xα}

〉sat
=
〈
Bmin(J ) \ {xα} ∪

{
xαxi | i ∈ {l + 1, . . . , n}

}〉
.

The only problem left is to determine if xα is p-minimal as well. It turns out that we
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do not have to consider xα, it is enough to consider only xβ. This is done in the next
proposition which is in fact a reformulation of Lemma 4.25.

Proposition 4.29. Let I ⊆ P (l) be a saturated p-Borel fixed ideal and s ≥ reg(I). Further-
more, let xα ∈ Bmin(I) with deg(xα) ≤ s. Then

J =
〈
Bmin(I) \ {xα} ∪

{
xαxi | i ∈ {l + 1, . . . , n}

}〉
is a saturated p-Borel fixed ideal with HPP (l)/J (t) = HPP (l)/I (t) + 1 if and only if xα is
p-minimal with respect to the set Bmin(I)deg(xα).

Proof. If xα is not p-minimal with respect to the set Bmin(I)deg(xα) it is clear that J is
not p-Borel fixed.

For the other direction we show first that xα being p-minimal with respect to the set
Bmin(I)deg(xα) implies that xα is p-minimal with respect to Ideg(xα) ∩T(l). Suppose that
this is not the case. Then there exists an xβ ∈ Bmin(I)≤deg(xα) such that there is a chain

of p-admissible moves from xβxdeg(xα)−deg(xβ)
l to xα. We can arrange the moves in such

a way that every 0-admissible move e+(s)
i,j with i 6= l is also applicable at xβ. But then

we would have found an element xγ ∈ I such that xγxδ = xα which contradicts to
xα ∈ Bmin(I).

As all p-admissible moves are a subset of the 0-admissible moves the statement holds
for any suitable p. Using the same arguments above again, we can show that xαxi

l is
p-minimal with respect to Ideg(xα)+i ∩T(l) for every i.

Consider now J≥s. It is clear that

Js ∩T(l) =
(
Is ∩T(l)

)
\
{

xαxs−deg(xα)
l

}
and J≥s = 〈Js〉. This concludes the proof because

HPP (l)/J (t) = HPP (l)/J≥s
= HPP (l)/I (t) + 1 ,

by Lemma 4.25.

Therefore, we have to check only if there is an element xβ ∈ Bmin(I)deg(xα) with xβ ≺p
xα. If this is not the case, J is p-Borel fixed and xα is p-St-minimal which leads to
Algorithm 8.

Algorithms 9 and 10 consider all the changes which we suggested above. In Algorithm
9, line (7) the same optimization as in Algorithm 1, line (7) is used, which avoids com-
puting duplicate results.
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Algorithm 8 p-STMINIMAL(P(I), l, n, p, s)
Input: P(I) Pommaret basis of a saturated p-Borel fixed ideal
Input: l first index of the variables in the polynomial ring
Input: n last index of the variables of the polynomial ring
Input: p characteristic of the coefficient field
Input: s positive integer upper bounding the Gotzmann number of HP(t)
Output: S , the set of terms such that for every term xα ∈ S the element xαxs−deg(xα)

l is
p-St-minimal element of Is ∩T(l).

1: Bmin ← {xα ∈ P(I) | @xβ ∈ P(I) s.t. xβ|xα}
2: S ← ∅
3: for all xα ∈ Bmin do
4: if deg(xα) < s then
5: Bmin

α ← {xβ ∈ Bmin | deg(xβ) = deg(xα)}
6: IsPMinimal← true
7: for all xβ ∈ Bmin

α do
8: if xβ ≺p xα then
9: IsPMinimal← false

10: end if
11: end for
12: if IsPMinimal = true then
13: S ← S ∪ {xα}
14: end if
15: end if
16: end for
17: return S

Example 4.30. In Example 4.22 we computed all saturated quasi-stable ideals in k[x0, x1, x2]
for HP(t) = 4. We do not sketch the computation of p-Borel fixed ideals here, because the
computation is very similar to the computation of saturated quasi-stable ideals and notable dif-
ferences only occur if we do the computation in all detail.

Nevertheless, we want to take a look at all saturated p-Borel fixed ideals for p = 0 and p = 2.
For p = 0 we get the following two ideals J1,J2 with

Bmin(J1) = {x3
1, x2x1, x2

2} ,

Bmin(J2) = {x4
1, x2} .

For p = 2 we get additionally the ideal J3 with

Bmin(J3) = {x2
1, x2

2} .
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Algorithm 9 p-REMOVE(P(I), l, n, q, xβ, p)
Input: P(I) Pommaret basis of a saturated p-Borel fixed ideal
Input: l first index of the variables in the polynomial ring
Input: n last index of the variables of the polynomial ring
Input: q non-negative Integer
Input: xβ monomial
Input: p characteristic of the coefficient field
Output: L set of Pommaret bases of saturated p-Borel fixed ideals obtained by remov-

ing q p-St-minimal terms divisible by xl from Is
1: L ← ∅
2: if q = 0 then
3: return P(I)
4: else
5: M← p-STMINIMAL(P(I), l, n, p, s)
6: for all xα ∈ M do
7: if xαxs−deg(xα)

l > xβxs−deg(xβ)
l then

8: L ← L ∪
p-REMOVE(P(I) \ {xα} ∪ {xαxi | i ∈ {l + 1, . . . , cls(xα)}}, l, n, q− 1, xα, p)

9: end if
10: end for
11: end if
12: return L

We see that J3 is obviously not 0-Borel fixed because x1x2 does not belong to J3. If we compare
the results with all saturated quasi-stable ideals with Hilbert polynomial HP(t) = 4 from Ex-
ample 4.22 we see that there are two quasi-stable ideals (I1 = 〈x1, x4

2〉 and I2 = 〈x2
1, x2x1, x3

2〉)
which are neither 0-Borel fixed nor 2-Borel fixed. In fact, for both ideals there is no p such that
they are Borel fixed because e+(1)

1,2 (x1) = x2 /∈ I1 and e+(1)
1,2 (x2x1) = x2

2 /∈ I2 and these are
p-admissible moves for every possible p.

Algorithm 9 and Algorithm 10 are implemented in the computer algebra system CO-
COALIB. As for the quasi-stable case we applied the implementation to some bigger
examples. Table 4.3 exhibits the computation time of these examples and Table 4.4
shows the number of saturated quasi-stable ideals for the given input. The structure
of the tables is similar to the tables in the quasi-stable case. But p-Borel fixedness is
dependent on the characteristic. Hence, we divide every row, which correspond to an
example with one specific Hilbert polynomial into four small rows. The upper row cor-
responds to computations of saturated 0-Borel fixed ideals, the second to computations
of saturated 2-Borel fixed ideals, and so on.
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Algorithm 10 BOREL(l, n,HP(t), s, p))
Input: l first index of the variables in the polynomial ring
Input: n last index of the variables of the polynomial ring
Input: HP(t) admissible Hilbert polynomial
Input: s positive integer upper bounding the Gotzmann number of HP(t)
Input: p characteristic of the coefficient field
Output: F , the set of Pommaret bases of p-Borel fixed ideals in the polynomial ring
P (l) having Hilbert polynomial HP(t)

1: if HP(t) = 0 then
2: return {{1}}
3: else
4: E ← BOREL(l + 1, n, ∆HP(t), s, p)
5: F ← ∅
6: for all P(J ) ∈ E do
7: P(I)← P(J ) · P (l)

8: q← HP(s)− (n−l+s
s ) + dimk(Is)

9: if q ≥ 0 then
10: F ← F ∪ p-REMOVE(P(I), l, n, q, 1, p)
11: end if
12: end for
13: return F
14: end if

In contrast to the structure of Table 4.1 and 4.2 we introduced a third column where we
denote the number p. That is, if p = 0 we refer to 0-Borel fixed ideals.

Again we used for the computation a computer with Intel i7-5500U processor and
8 GB main memory. The operating system was Ubuntu 16.04.1 LTS. We compiled CO-
COALIB with gcc 5.4.0. We restricted our program to use only 7.8 GB main memory.

The Hilbert polynomials which we consider in these examples are a superset of the
Hilbert polynomials considered in Table 4.1 and Table 4.2. But instead of considering
the examples only in polynomial rings k[x0, . . . , xn] with n ∈ {3, 4, 5, 6, 7, 8} we now
consider polynomial rings with n ∈ {5, 10, 15, 20}. The new Hilbert polynomials have
in general greater Gotzmann numbers.

Despite the fact that we consider larger examples the computations times are much
better. Every example which we compute here finished within 20 seconds. The reason
for that is, that there are many more saturated quasi-stable ideals than p-Borel fixed
ideals. For example, take the Hilbert polynomial 4t2 − 12t + 10 and n = 5. There are
204 855 different quasi-stable ideals but only 1 135 2-Borel fixed, which is only about
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one twentieth. The smaller result implies that we have to consider far fewer sets dur-
ing the computation, and this explains why these algorithms are much faster than the
algorithms for computing saturated quasi-stable ideals.

For every example we computed once all saturated p-Borel fixed ideals for the primes
p ∈ {0, 2, 5, 19}. We see in Table 4.4 that usually there are many more 2-Borel fixed
ideals than 0-Borel fixed ideals. In our examples there are at most three times as much.
If we now compare for a specific example all saturated p-Borel fixed ideals with p ∈
{2, 5, 19} we see that the number of ideals quickly descends to the number of 0-Borel
fixed ideals as the prime p increases. In fact for p = 19 we get always the same result
as for p = 0 in our set of examples.

This means for the computation of Hilbert schemes that the computation over fields
with small finite characteristic is more costly because we need usually a larger covering.
But it is possible that we can save the extra costs because we work over a finite field,
so the arithmetic is usually faster. For fields with larger finite characteristic the result is
almost the same.

HP(t) G p n = 5 n = 10 n = 15 n = 20

5 5

0 0.000 0.000 0.004 0.004
2 0.000 0.000 0.000 0.000
5 0.000 0.000 0.004 0.004

19 0.000 0.000 0.000 0.000

10 10

0 0.000 0.004 0.004 0.008
2 0.004 0.004 0.004 0.012
5 0.004 0.004 0.004 0.008

19 0.000 0.004 0.004 0.008

15 15

0 0.008 0.028 0.044 0.060
2 0.012 0.052 0.084 0.116
5 0.008 0.028 0.048 0.060

19 0.008 0.028 0.048 0.064

20 20

0 0.052 0.212 0.372 0.480
2 0.120 0.488 0.844 1.080
5 0.052 0.216 0.388 0.484

19 0.056 0.212 0.392 0.504

25 25

0 0.320 1.520 2.540 3.388
2 0.856 4.264 6.956 9.192
5 0.320 1.536 2.580 3.492

19 0.360 1.612 2.636 3.580
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HP(t) G p n = 5 n = 10 n = 15 n = 20

5t + 1 11

0 0.000 0.004 0.004 0.008
2 0.004 0.000 0.008 0.008
5 0.004 0.000 0.008 0.008

19 0.004 0.004 0.004 0.008

5t + 7 17

0 0.052 0.160 0.236 0.288
2 0.076 0.228 0.312 0.388
5 0.052 0.164 0.232 0.296

19 0.052 0.164 0.232 0.288

5t + 13 23

0 1.296 4.988 7.408 8.988
2 2.600 9.220 13.068 16.364
5 1.292 4.996 7.416 9.128

19 1.316 4.928 7.288 9.100

8t− 6 22

0 0.076 0.244 0.356 0.456
2 0.116 0.336 0.476 0.596
5 0.080 0.248 0.368 0.448

19 0.076 0.244 0.372 0.448

8t− 3 25

0 0.368 1.228 1.792 2.228
2 0.620 1.916 2.708 3.360
5 0.368 1.224 1.804 2.252

19 0.372 1.236 1.808 2.260

8t 28

0 1.580 5.928 8.732 10.688
2 3.036 10.616 15.208 18.556
5 1.560 5.892 8.800 10.788

19 1.600 6.068 8.752 11.048

2t2 + 8t− 46 16

0 0.008 0.028 0.036 0.048
2 0.016 0.040 0.052 0.072
5 0.008 0.032 0.036 0.052

19 0.008 0.028 0.040 0.048

2t2 + 8t− 42 20

0 0.016 0.044 0.060 0.080
2 0.024 0.064 0.080 0.104
5 0.016 0.044 0.064 0.080

19 0.016 0.048 0.060 0.080

2t2 + 8t− 38 24

0 0.088 0.280 0.392 0.488
2 0.124 0.372 0.512 0.624
5 0.092 0.288 0.396 0.492

19 0.092 0.284 0.396 0.608
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HP(t) G p n = 5 n = 10 n = 15 n = 20

4t2 − 12t + 10 20

0 0.012 0.024 0.032 0.048
2 0.016 0.032 0.044 0.056
5 0.012 0.024 0.036 0.048

19 0.012 0.024 0.036 0.048

4t2 − 12t + 14 24

0 0.112 0.344 0.464 0.576
2 0.176 0.496 0.672 0.848
5 0.116 0.336 0.480 0.584

19 0.112 0.340 0.472 0.588

4t2 − 12t + 18 28

0 1.088 3.976 5.480 6.888
2 1.996 6.692 9.068 11.436
5 1.072 3.964 5.552 6.964

19 1.092 4.024 5.604 6.996

Table 4.3: Time for computing all saturated p-Borel fixed ideals for a given Hilbert poly-
nomial in a polynomial ring k[x0, . . . , xn] and a given characteristic of k

HP(t) G p n = 5 n = 10 n = 15 n = 20

5 5

0 5 5 5 5
2 6 6 6 6
5 5 5 5 5

19 5 5 5 5

10 10

0 42 50 50 50
2 63 75 75 75
5 43 51 51 51

19 42 50 50 50

15 15

0 287 417 425 425
2 591 851 863 863
5 312 445 453 453

19 287 417 425 425

20 20

0 1 732 3 130 3 263 3 271
2 4 303 8 073 8 342 8 354
5 2 017 3 540 3 676 3 684

19 1 732 3 130 3 263 3 271

25 25

0 9 501 21 616 23 158 23 291
2 27 795 67 600 71 817 72 086
5 11 696 25 801 27 471 27 607

19 9 501 21 616 23 158 23 291
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HP(t) G p n = 5 n = 10 n = 15 n = 20

5t + 1 11

0 89 98 98 98
2 101 110 110 110
5 89 98 98 98

19 89 98 98 98

5t + 7 17

0 3 028 4 560 4 587 4 587
2 4 541 6 648 6 677 6 677
5 3 043 4 575 4 602 4 602

19 3 028 4 560 4 587 4 587

5t + 13 23

0 58 124 123 689 126 962 127 030
2 121 343 245 079 249 804 249 882
5 59 550 125 513 128 787 128 855

19 58 124 123 689 126 962 127 030

8t− 6 22

0 4 171 6 741 6 837 6 838
2 6 438 9 956 10 066 10 067
5 4 248 6 824 6 920 6 921

19 4 171 6 741 6 837 6 838

8t− 3 25

0 17 334 32 073 32 848 32 868
2 30 835 54 024 55 003 55 024
5 17 932 32 817 33 592 33 612

19 17 334 32 073 32 848 32 868

8t 28

0 68 291 144 660 149 777 149 976
2 137 987 277 237 284 502 284 737
5 71 777 149 758 154 895 155 094

19 68 291 144 660 149 777 149 976

2t2 + 8t− 46 16

0 34 38 38 38
2 37 41 41 41
5 34 38 38 38

19 34 38 38 38

2t2 + 8t− 42 20

0 481 670 671 671
2 593 806 807 807
5 481 670 671 671

19 481 670 671 671

2t2 + 8t− 38 24

0 4 774 8 393 8 476 8 476
2 6 738 11 346 11 436 11 436
5 4 808 8 428 8 511 8 511

19 4 774 8 393 8 476 8 476
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HP(t) G p n = 5 n = 10 n = 15 n = 20

4t2 − 12t + 10 20

0 631 856 857 857
2 861 1 135 1 136 1 136
5 631 856 857 857

19 631 856 857 857

4t2 − 12t + 14 24

0 6 394 10 986 11 082 11 082
2 10 087 16 511 16 623 16 623
5 6 430 11 023 11 119 11 119

19 6 394 10 986 11 082 11 082

4t2 − 12t + 18 28

0 51 527 112 852 115 295 115 332
2 96 668 196 002 199 285 199 326
5 52 606 114 265 116 708 116 745

19 51 527 112 852 115 295 115 332

Table 4.4: Number of all saturated p-Borel fixed ideals for a given Hilbert polynomial
in a polynomial ring k[x0, . . . , xn] and a given characteristic of k

4.3 Computation of Saturated Monomial Modules in Certain
Stability Positions

In this section we determine how to compute all saturated monomial modules in a
specific stability position for a given Hilbert polynomial. It turns out that the main
point in the development of an algorithm is the fact that one can identify a monomial
module V ⊆ Pm

d with V =
⊕m

i=1 Jiei, where Ji are monomial ideals in P .

Let us assume that the Hilbert polynomial of V is HPPm
d /V (t) ∈ Q[t]. Then we have

seen in Section 2.3 that

HPPm
d /V (t) = HPPm

d /I1·e1 + · · ·+HPPm
d /Im·em .

The Hilbert polynomial of Ii is

HPP/Ii(t) = HPPm
d /Ii ·ei(t + deg(ei)) (4.1)

for i ∈ {1, . . . , m}.

This observation suggests a way of computing to compute all saturated monomial mod-
ules in a certain stability position for a given Hilbert polynomial. We first divide the
given admissible Hilbert polynomial into m admissible Hilbert polynomials for the
modules Ii · ei such that the sum of the m polynomials is equal to the original poly-
nomial. The polynomial corresponding to Ii · ei must take into account the degree of
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ei. Hence we shift the polynomial as in (4.1) to get a polynomial corresponding to
Ii. If this polynomial is an admissible Hilbert polynomial it is possible to compute all
saturated monomial ideals which are quasi-stable (Algorithm 5) or p-Borel fixed fixed
(Algorithm 10).

Hence the main purpose of this section is to develop an algorithm which can divide
a given admissible Hilbert polynomial HP(t) ∈ Q[t] into m admissible polynomials
HP1(t), . . . ,HPm(t) ∈ Q[t], that is into polynomials which have a Gotzmann represen-
tation, such that HP(t) = ∑m

i=1 HPi(t).

Assume that we have polynomials as in the paragraph before. Furthermore we assume
that the Gotzmann coefficients of HP(t) are (a1, . . . , as) and that the Gotzmann coeffi-
cients of HPi(t) are (a(i)1 , . . . , a(i)si ) for every i ∈ {1, . . . , m}. Then the first observation

which we make is that the Gotzmann coefficients a(j)
i are bounded by a1:

Lemma 4.31. The Gotzmann coefficient a(i)1 is smaller than or equal to a1 for every i ∈
{1, . . . , m}.

Proof. Assume that this is not the case. Then choose i, such that a(i)1 is maximal. Then
deg(HPi(t)) = a(i)1 > a1 and lc(HPi(t)) > 0. Since the leading coefficients for all indices
j such that deg(HPj(t)) = a(i)1 are positive we get that

deg(HP(t)) = deg(
m

∑
k=1

HPk(t)) = a(i)1 > a1 .

But this is a contradiction.

For a given polynomial p Algorithm 11 computes all possible tuples of admissible poly-
nomials (p1, . . . , pm) whose sum is exactly p.

The idea of the algorithm is to compute for a given admissible polynomial p firstly the
number of Gotzmann coefficients with the highest value among all Gotzmann coeffi-
cients. Among all Gotzmann coefficients of the polynomials (p1, . . . , pm), there must be
exactly the same number of Gotzmann coefficients with this value. Then we subtract
the polynomials p1, . . . , pm from p and obtain a lower degree polynomial. Then we call
the recursively the algorithm but now we add the computed polynomials p′1, . . . , p′m to
the already obtained polynomials p1, . . . , pm. For the computation of p′1, . . . , p′m we take
into account that these Gotzmann coefficients are not the highest Gotzmann coefficients
which leads to different Gotzmann summands. We call the algorithm recursively until
we reach as input polynomial 0.
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Algorithm 11 DISTRIBUTEPOLYNOMIAL((p, (G1, . . . ,Gm), m))
Input: p ∈ Q[t] such that lc(p) · (deg(p))! ∈ N
Input: (G1, . . . ,Gm) sequence of sequences of natural numbers
Input: m positive integer which corresponds to the rank of Pm

d
Output: M, the set of module elements ofQ[t]m

1: M← ∅
2: if p = 0 then
3: return {GOTZMANNCOEFFTOPOL(m, (G1, . . . ,Gm))}
4: end if
5: d← deg(p)
6: c← lc(p) · d!
7: for all (S1, . . . Sm) ∈ MULTISET(d,c,m) do
8: q← p
9: for all j = 1 to m do

10: a← |Gj|
11: for k = 1 to |Sj| do
12: q← q− (t+d−k−a+1

d )
13: end for
14: Gj ← Gj + Sj
15: end for
16: if lc(q) · (deg(q))! /∈ N then
17: continue
18: end if
19: M←M∪DISTRIBUTEPOLYNOMIAL(q, (G1, . . . Gm), m)
20: end for
21: returnM

In line (3) the algorithm calls the method GOTZMANNCOEFFTOPOL(m, (G1, . . . ,Gm)).
This method assumes that Gi is a sequence of Gotzmann coefficients and it computes
the corresponding polynomial pi(t) ∈ Q[t]. It returns the sequence of polynomials
(p1(t), . . . , pm(t)).

In line (7) the algorithm calls the method MULTISET(d, c, m). This method computes all
(S1, . . . ,Sm) such that there are exactly c copies of d among all sequences Si.

The sum operation in line (14) is meant as the concatenation of two sequences of natural
numbers.

Theorem 4.32. Let p ∈ Q[t] such that there exists a Gotzmann representation for this polyno-
mial and m ∈ N \ {0}. Then Algorithm 11 returns all sequences of polynomials (p1, . . . , pm),
such that p = ∑m

i=1 pi and there exists a Gotzmann representation for every pi.
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Proof. First of all we note that Algorithm 11 terminates. Let p be the input of Algorithm
11 and q the result in line (19). We define psupp := p − lc(p) · lt(p) and d = deg(p).
Then

q = p−
lc(p)·d!

∑
i=1

(
t + d− ai

d

)

= p−
lc(p)·d!

∑
i=1

(t + d− ai) · · · · · (t− ai + 1)
d!

= lc(p)pd + psupp −
lc(p)·d!

∑
i=1

td

d!
−

lc(p)·d!

∑
i=1

qi

d!

= psupp −
lc(p)·d!

∑
i=1

qi

d!
,

where qi = (t + d− ai) · · · · · (t− ai + 1)− td. It is obvious that the degree of q is less
then the degree of p and that the leading term of p vanishes during the algorithm which
proves termination.

If a is a Gotzmann coefficient, then note that the degree of the corresponding Gotzmann
summand is always a and the leading coefficient of the Gotzmann summand is 1

a! , no
matter at which position this Gotzmann coefficient appears in the Gotzmann represen-
tation.

Now we come to the proof of the correctness of Algorithm 11. It is clear that every
sequence of polynomials which are in the output of Algorithm 11 satisfy the demanded
properties. Hence we only have to show, that the algorithm provides all possible se-
quences of polynomials which satisfy there properties.

Let p ∈ Q[t] be a polynomial which has a Gotzmann representation. Furthermore let
(p1, . . . , pm) be a sequence of rational polynomials such that there exists a Gotzmann
representation for every polynomial and p = ∑m

i=1 pi. Let (S1, . . . ,Sm) be the corre-
sponding Gotzmann coefficients of (p1, . . . , pm). From the observation above their are
lc(p) · (deg(p))! Gotzmann coefficients with value deg(p). We distribute them over the
sequences S ′1, . . . ,S ′m so that in all the S ′i together there are exactly the same number
of Gotzmann coefficients with value deg(p) as in S1. Let p′i the result of subtracting
from pi all Gotzmann summands with Gotzmann coefficient deg(p). It is obvious that
the sum over all p′i is equal to q at line (19). Now we call the algorithm again and we
add to the sequences of Gotzmann coefficients S ′1, . . . ,S ′m the Gotzmann coefficients
deg(q). Let q′ be the polynomial which we gave as argument in line (19). It is again
obvious that q′ is equal to the sum of all pi after subtracting all Gotzmann summands
with Gotzmann coefficients deg(p) and deg(q).
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We proceed recursively. At the last recursion we have as input p = 0 and (S1, . . . ,Sm)
which obviously leads to the polynomials (p1, . . . , pm).

Example 4.33. Let p = 2t + 3 ∈ Q[t]. Then Algorithm 11 provides eight different results:

(2t + 3, 0) with Gotzmann coefficients ((1, 1, 0, 0), ()) ,
(2t + 2, 1) with Gotzmann coefficients ((1, 1, 0), (0)) ,
(2t + 1, 2) with Gotzmann coefficients ((1, 1), (0, 0)) ,

(t + 2, t + 1) with Gotzmann coefficients ((1, 0), (1)) ,
(t + 1, t + 2) with Gotzmann coefficients ((1), (1, 0)) ,

(2, 2t + 1) with Gotzmann coefficients ((0, 0), (1, 1)) ,
(1, 2t + 2) with Gotzmann coefficients ((0), (1, 1, 0)) ,
(0, 2t + 3) with Gotzmann coefficients ((), (1, 1, 0, 0)) .

This example shows, that the Gotzmann coefficients of p are not simply the collected Gotzmann
coefficients of the polynomials (p1, p2), because the Gotzmann coefficients of p are (1, 1, 0, 0).

With Algorithm 11 we are now able to define an algorithm to compute all saturated
monomial modules which satisfy a certain stability condition.

The method STABILITYALGORITHM in Algorithm 12 at line (9) computes all ideals in P
which satisfy the stability condition stated in the variable STABILITYPOSITION. For us
the interesting stability position are quasi-stability and p-Borel fixed fixedness. Then
we call the corresponding algorithms which we have developed before.

The correctness and the termination of Algorithm 12 is obvious for the stability po-
sitions quasi-stable and p-Borel fixed. For other stability conditions we first need to
develop the corresponding algorithm in the ideal case and we need to clarify if the sta-
bility positions of J1, . . . ,Jm have as a consequence the stability position of the module
V =

⊕m
i=1 Jiei

Example 4.34. We consider P2
d with d = (0,−1) and P = k[x0, x1, x2, x3]. We want to

compute all saturated 0-Borel monomial modules for the Hilbert polynomial HP(t) = 2t+ 3. In
Example 4.33 we have already computed all pairs (p1, p2). We sketch now the rest of Algorithm
12 for the pairs (2t + 1, 2) and (t + 2, t + 1).

Let us begin with (t + 2, t + 1). First we have to compute the shifting in the second component.
This leads to computing all quasi-stable ideals in P for p1 = t + 2 and p2 = t. But it turns
out that for p2 there exists no quasi-stable ideal with p2 as Hilbert polynomial, because p2 does
not have a Gotzmann representation. Hence there are no monomial modules J1e1 ⊕J2e2 such
that HPP/J1(t) = p1 and HPP/J2(t) = p2.

120



4 Computation

Algorithm 12 MONOMIALMODULES(HP,Pm
d , STABILITYPOSITION)

Input: HP ∈ Q[t] admissible Hilbert polynomial
Input: Pm

d , a graded free module with d = (d1, . . . , dm), such that di ≤ 0 for all 1 ≤ i ≤
m

Input: STABILITYPOSITION, a flag which indicates which stability condition the satu-
rated monomial modules should fulfil

Output: M, the set of saturated monomial modules which fulfil the stability condition
STABILITYPOSITION

1: M← ∅
2: for all (p1(t), . . . , pm(t)) ∈ DISTRIBUTEPOLYNOMIAL(HP(t), ((), . . . , ()), m) do
3: M1, . . . ,Mm ← ∅
4: for i = 1 to m do
5: pi(t)← pi(t + deg(ei))
6: if pi(t) is not an admissible Hilbert polynomial then
7: break
8: end if
9: Mi ← STABILITYALGORITHM(STABILITYPOSITION, pi(t),Pm

d )
10: end for
11: for all J1 ∈ Mi, . . . ,Jm ∈ Mm do
12: M←M∪{J1e1 ⊕ · · · ⊕ Jmem}
13: end for
14: end for
15: returnM

For (2t + 1, 2) we begin again with the shifting in the second component. Therefore it turns
out, that we have to compute all saturated 0-Borel ideals in P for p1 = 2t + 1 and p2 = 1. For
p1 there are three different saturated 0-Borel ideals in P :

J (1)
1 = 〈x2

3, x3x2, x3x1, x3
2, x2

2x1〉 ,

J (2)
1 = 〈x2

2, x2
3, x3x2, x3x2

1〉 ,

J (3)
1 = 〈x3, x3

2, x2
2x2

1〉 .

For p2 = 1, there is only one 0-Borel ideal in P :

J2 = 〈x3, x2, x1〉 .

Hence we get three different saturated monomial modules which are 0-Borel with Hilbert poly-
nomial HP(t).

V1 = J (1)
1 e1 ⊕J2e2 , V2 = J (2)

1 e1 ⊕J2e2 , V3 = J (3)
1 e1 ⊕J2e2 .

For the original problem we get a total of eight different saturated monomial modules.
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4.4 Computation of Marked Families

In order to compute an open covering for Quot schemes we have seen in the previous
section how to compute all saturated quasi-stable modules for a given Hilbert polyno-
mial. If we consider the truncation of these modules in degree equal to the regularity
or higher and compute the corresponding marked families we get an open covering of
the Quot scheme as we have seen in Theorem 3.46 and Theorem 3.50.

4.4.1 Computing Marked Families Using Superminimal Generators

In Section 3.3.2 we have seen a first method to compute a marked family based on
Theorem 1.86. There we embed the marked scheme for a quasi-stable module V with
P(V) ⊆ Vr in an affine space of dimension |P(V)| · |N (V)r|. We will see that we
can eliminate a significant number of variables of the equations of the marked scheme
which allows us to embed the marked scheme of V in an affine space of much lower
dimension than |P(V)| · |N (V)r|. Usually the new equations are of higher degree, but
from a computational point of view fewer variables are often better. The ideas used
here are based of [8]. There they consider the marked schemes only for ideals which
are strongly stable. Now, we extend this ideas to marked schemes over quasi-stable
modules.

For simplicity, we consider for the rest of this chapter only the standard grading d =
(0, . . . , 0) for computing the marked schemes. Nevertheless, it is simple to adept the
techniques to arbitrary gradings. In this section we always consider a polynomial
module A[x]m, where A is a k-algebra. Furthermore, we consider t-truncated modules
V ⊆ A[x]m such that V = V sat

≥t . It is obvious that we have in this case P(V)≥t ⊆ P(V sat).
For the following we define V := V sat. Instead of writing Mf n,m

P(V)(A) when we con-
sider the marked scheme over the quasi-stable module V ⊆ A[x]m we will write for
simplicity for the rest of this chapter always Mf(V) := Mf n,m

P(V)(A).

At first, we state some basic facts we need in the following.

Lemma 4.35. Let V be a quasi-stable t-truncation. Then:

(i) P(V) ∩ P(V) = P(V)≥t

(ii) Let xβek ∈ P(V) \ P(V), then xt−deg(xβek)
0 xβek ∈ P(V)

(iii) Let xγek ∈ A[x]m≥t. For all i ∈ N xi
0xγek ∈ V if and only if xγek ∈ V

(iv) N (V)≥t = N (V)≥t

(v) For all g ∈ A[x]m≥t: g is V-reduced if and only if g is V-reduced.
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(vi) If U belongs to Mf(V) with a P(V)-marked basis G, then every homogeneous module
element g ∈ Us with s ≥ t satisfies that NFG(s+i)(xi

0g) = xi
0NFG(s)(g).

Proof. The first two items are a straightforward consequence of the definition of t-
truncation. For the third item we consider only the non-trivial part. If xi

0xγek ∈ V ,
then xγek belongs to V . Since V is a t-truncation and xγek ∈ A[x]m≥t, then xγek ∈ V , too.
The fourth and fifth statements are obviously equivalent to the third statement. For
the sixth statement one has to note that the normal form with respect to G is unique.
Furthermore, NFG(s+i)(xi

0g) and xi
0NFG(s)(g) are V-reduced forms of xi

0g and then they
must coincide.

Lemma 4.36. Let V ⊆ A[x]m be a quasi-stable module. If xεek belongs to N (V) and xδxεek
belongs to V for some xδ, then xδxεek = xηxαek, such that xαek is a Pommaret divisor of
xδxεek with xη ≺lex xδ. Furthermore, xηsat ≺lex xδsat .

Proof. We can assume that xδ and xη are coprime. If xη = 1, the statement is obvious. If
xη 6= 1, then xcls(xδ)|xα because xδ and xη are coprime, hence cls(xδ) ≥ cls(xα). Further-
more, every i such that degi(xη) 6= 0 is smaller than or equal to cls(xα), so it is smaller
than cls(xδ) because xδ and xη are coprime. This inequality implies as already known
that xη ≺lex xδ and newly that xηsat ≺lex xδsat .

To compute the embedding in the affine space of marked scheme we have seen before
that we have to compute all reductions of the non-multiplicative prolongations of the
set G, which we defined in Section 3.3.2. For a t-truncated module V the set G has
|P(V)| elements. Now, we define the set of superminimal generators which has in
general fewer elements. For the next definition, recall that xαsat := xα

xdeg0(xα)
0

.

Definition 4.37. The set of superminimal generators of a quasi-stable module V is

sP(V) := {xαek ∈ P(V) | xαsat ek ∈ P(V)} .

It is easy to determine the number of elements in the set of superminimal generators
for a quasi-stable module V . The number is exactly the number of elements in the
Pommaret basis of V .

Example 4.38. Consider

V1 = {x3
2, x2x1, x2x1x0, x2x2

0} ⊂ k[x0, x1, x2]

V2 = {x4
2, x3

2x1, x2
2x1, x2x2

1, x2x1x0, x3
1, x2

1x0, x1x2
0} ⊂ k[x0, x1, x2]

V = V1e1 ⊕V2e2 ⊂ k[x0, x1, x2]
2 .
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Then V = 〈x2e1, x4
2e2, x1e2〉 with V = V≥3. We immediately see that P(V) = V1e1 ∪ V2e2

and P(V) = {x2e1, x4
2e2, x3

2x1e2, x2
2x1e2, x2x1e2, x1e2}. Then

sP(V) = {x2x2
0e1, x4

2e2, x3
2x1e2, x2

2x1e2, x2x1x0e2, x1x2
0e2} .

Definition 4.39. Let V be a quasi-stable module. An sP(V)-marked superminimal set is
a finite set of marked module elements fk

α = xαek + ∑ cα,β,k,lxβel such that the head module
terms form the set of superminimal generators sP(V) of V and they are pairwise different.
Furthermore, all elements xβel ∈ supp(fk

α − xαek) are in N (V).

Every P(V)-marked set G contains a subset

sG := {fk
α ∈ G | xαek ∈ sP(V)} ,

which is an sP(V)-marked superminimal set. It is called the set of superminimals of G. If G
is a V-marked basis it is called sP(V)-superminimal basis.

Definition 4.40. Let V be a quasi-stable module, G be a P(V)-marked set and two module
elements g and g1. We say that g is in sG-relation with g1 if there is a module term xγek ∈
supp(g) ∩ V , such that xγek is divisible by a superminimal generator xαek ∈ sP(V) with
xγek = xεxαek such that xαsat is a Pommaret divisor of xγ and g1 = g− cxεfk

α.

We call a superminimal reduction the transitive closure of the above relation and denote it by
sG−→. Moreover, we say that:

• g can be reduced to g1 by sG−→ if g sG−→ g1;

• g is reduced with respect to sG if no module term in supp(g) is divisible by a module
term of sP(V);

• g is strongly reduced if for every i, xi
0g is reduced with respect to sG.

Remark 4.41.

(i) A homogeneous module element h is strongly reduced if and only if no module terms
in supp(h) are divisible by a module term of P(V), that is h is V-reduced. In fact, if
xγek ∈ supp(h) ∩ V then xγek = xηxαsat ek with xαsat ek ∈ P(V) is a Pommaret divisor

of xγek such that xαek = xq
0xαsat ek ∈ P(V). Thus xq

0h can be reduced by sG−→ using the
module element fk

α.

(ii) The module elements xεfk
α, that we use for the reduction procedure sG−→ have pairwise

different head module terms. Moreover, if xδfk′
α′ is used in the sG−→ reduction of xεT(fk

α)
then xδsat ≺lex xεsat .
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If we consider a quasi-stable module V without further hypothesis we cannot general-

ize the properties of reduction G(s)
−−→ to sG−→ as shown in the following example:

Example 4.42 ([8, Ex. 3.13]). Consider k[x0, x1, x2] and

J = 〈x3
2, x2

2x1, x2
2x0, x2x1x0, x4

1, x3
1x0, x2

1x2
0〉

with J = 〈x2
2, x2x1, x2

1〉. The set of superminimals of J is sP(J ) = {x2
2x0, x2x1x0, x2

1x2
0}.

Now we consider the sP(J )-marked superminimal set

sG = {f1 = x2
2x0, f2 = x2x1x0 − x3

1, f3 = x2
1x2

0 − x2x3
0} .

The superminimal reduction with respect to sG is not noetherian:

x3
1x2

0
sG−→ x3

1x2
0 − x1f3 = x2x1x3

0
sG−→ x2x1x3

0 − x2
0f2 = x3

1x2
0 .

However, if we assume that the quasi-stable module V is also a t-truncated module,

then the reduction sG−→ turns out to be noetherian and satisfies several good properties,

similar to the ones of G(s)
−−→ as the following theorem shows. In the following we use for

a marked polynomial fk
α again the tail of fk

α which is defined as T(fk
α) := fk

α − xαek.

Theorem 4.43. Let V be a t-truncated quasi-stable module and sG be an sP(V)-marked super-
minimal set. Then

(i) sG−→ is noetherian.

(ii) For every homogeneous module element h there exists an integer q and a unique strongly

reduced module element hq such that xq
0h sG−→ hq. If q is the minimum one and h := hq,

then hq = xq−q
0 h for every q ≥ q. There is an effective procedure to compute q and h.

Proof. (i) Since V is a quasi-stable t-truncation N (V)≥t = N (V)≥t by Lemma 4.35 (iv).

If sG−→ is not noetherian we would be able to find an infinite descending chain of module
terms with respect to ≺lex, by Lemma 4.36.

(ii) It is sufficient to prove the statement for module terms h = xγek ∈ V . Let xγek =
xηxαsat ek, such that xαsat ek ∈ P(V) is a Pommaret divisor of xγek. If xη = 1, then xα =

xqα

0 xαsat ∈ sP(V), fk
α belongs to sG and xqα

0 xαsat ek
sG−→ T(fk

α), where supp(T(fk
α)) ⊆ N (V).

In this case h = T(fk
α) and q = qα.

If xη 6= 1 we can assume that the statement holds for any module monomial xεek =
xη′xβsat ek such that xη′ ≺lex xη and xβsat ek ∈ P(V) is a Pommaret divisor of xεek. We

perform a first reduction xqα

0 xγek
sG−→ xηT(fk

α). If xηT(fk
α) is strongly reduced we are
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done. Otherwise, we have xη 6= x|η|0 . For every module term xεek ∈ supp(xηT( f k
α)) ∩

V we have xεek = xη′xβsat ek such that xηsat ek ∈ P(V) is a Pommaret divisor of xεek
with xη′ ≺lex xη by Lemma 4.36. So, we also have xq

0xη′ ≺lex xη for every q. By the
inductive hypothesis we can find a suitable power q of x0 such that every module term

in xq
0xηT(fk

α) can be reduced sG−→ to a strongly reduced module monomial.

It remains to prove the uniqueness of the strongly reduced module term hq. Let us

consider two different strongly reduced sG−→ reductions of xq
0h: their difference is again

strongly reduced and can be written as ∑ aixηi fki
αi with ai ∈ A \ {0} and xη

i fki
αi pairwise

different. Let xη1 fk1
α1 be such that for every i ≥ 2, either xη1 �lex xηi or k1 6= ki. Then

xη1 xα1 ek1 should cancel with a module term in supp(xηi T(fki
αi)) for some i, but this is

impossible as observed in Remark 4.41 (ii).

Observe that though for a fixed xγek = xηxαsat ek, such that xαsat ek ∈ P(V) is a Pommaret
divisor of xγek there are infinitely many module terms xεek = xη′xβsat ek, such that
xβ

satek ∈ P(V) is a Pommaret divisor of xεek and xη′ek ≺lex xηek. We use the inductive
hypothesis only with respect to the finite number of them that appear on the support
of xηT(fk

α). For this reason our procedure is effective.

Theorem 4.44. Let V be a t-truncated quasi-stable module and sG be an sP(V)-marked super-
minimal set which is the superminimal basis of a module U of Mf(V), then

(i) sG−→ computes the V-normal forms modulo U . More precisely, for every homogeneous
module element:

NFsG(h) =

h, i f deg(h) < t ,
h
xq

0
, i f deg(h) ≥ t and xq

0h sG−→ h .

(ii) It is true for every homogeneous module element h, that

h ∈ U ⇐⇒ deg(h) ≥ t and xq
0h sG−→ 0 .

(iii) There is a one-to-one correspondence between a module in Mf(V) and sP(V)-supermini-
mal bases.

Proof. If h is a homogeneous module element and h sG−→ h1 with h1 strongly reduced,
then by uniqueness of V-normal forms modulo U we have h1 = NFsG(h).

(i) If deg(h) < t we are done. Otherwise from Theorem 4.43 (ii) we have that xq
0h sG−→ h

and h is a V-reduced form modulo U . thus xq
0NFGs(h) is also V-reduced, by Lemma
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4.35 (iii). Hence, we get the desired equality by uniqueness of V-normal forms modulo
U .

(ii) This is a consequence of (i) and of Corollary 1.87.

(iii) This is a straightforward consequence of (ii).

Whenever V is a quasi-stable t-truncated module and G is the P(V)-marked basis and
sG is the sP(V)-marked superminimal basis of a module U ∈Mf(V), then sG is a subset

of G. Nevertheless, it is interesting to notice that not every step of reduction by sG−→ is

also a step of reduction by G(s)
−−→, as shown in the following example.

Example 4.45 ([8, Ex. 3.15]). Consider in k[x0, x1, x2] the ideal J = 〈x2
1, x0x2, x1x2, x2

2〉
which is a quasi-stable ideal and a 2-truncation of J = 〈x2, x2

1〉. Let G be a P(J )-marked set.

• The term x2x2
1 is non-reducible with respect to sG, because the only term of sP(J ) =

{x0x2, x2
1} dividing it is x2

1, but x2
1 is not the Pommaret divisor of x2x2

1 . On the other

hand, x2x2
1 is Pommaret divisible by x2x1, so x2x2

1
G(3)

−−→ x1T(f) where f ∈ G(2) with
Ht(f) = x2x1.

• The only way to reduce x0x2
2 via G(3)

−−→ leads to x0T(f′), where f′ is the unique polynomial
of G(2) such that Ht(f′) = x2

2. Moreover, x0T(f′) is not further reducible, because all
the monomials of its support belong to N (J ) according to Lemma 4.35. On the other

hand, according to Definition 4.39, a first step of reduction of the term x0x2
2 via sG−→ is

x0x2
2

sG−→ x2T(f′′), where f′′ is the polynomial in sG with Ht(f′′) = x0x2. Since x2 is a
term of P(J ), every term appearing in supp(x2T(f′′)) belongs to J and so we will need

further steps of reduction via sG−→ to compute a polynomial non-reducible with respect to
sG.

Lemma 4.46. Let V be a quasi-stable t-truncated module, G be a P(V)-marked set and h be a
homogeneous module element of degree q ≥ t. Then h ∈ 〈G(q)〉 if and only if x0h ∈ 〈G(q+1)〉.

Proof. If h ∈ 〈G(q)〉 then it is obvious that x0h ∈ 〈G(q+1)〉

Vica versa, assume that x0h ∈ 〈G(q+1)〉. This is equivalent to x0h G(q+1)

−−−→ 0. Every mod-
ule term in supp(x0h) can be written as x0xεek. Observe that x0xεek /∈ P(V) because
deg(x0xεek) > t by Lemma 4.35 (i). Then, if x0xεek belongs to V we can find a Pom-
maret divisor xαek ∈ P(V) such that x0xεek = xηxαek and xη 6= 1. By the properties of
the Pommaret division xη must be divisible by x0, hence xη = x0xη′ .
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Summing up, in order to reduce the module term x0xεek of supp(x0h) using G(q+1),
we use the module element x0xη′fk

α ∈ G(q+1). If the coefficient of x0xεek in x0h is a we
obtain

x0h G(q+1)

−−−→ x0(h− axη′fk
α) .

At every step of reduction we obtain a module element which is divisible by x0. In
particular

x0h ∈ 〈G(q+1)〉 =⇒ x0h = x0 ∑ aixηi fki
αi

, where x0xηi fki
αi
∈ G(q+1).

Then we have that h = ∑ aixηi fki
αi and xηi fki

αi ∈ G(q), that is h ∈ 〈G(q)〉.

The next lemma is an analogous of Proposition 1.80 and is gives us an effective proce-
dure to check if a given module is contained in a marked scheme.

Lemma 4.47. Let V be a quasi-stable t-truncated module, G be a P(V)-marked set fk
α ∈ G and

i > cls(xα). If xq
0xifk

α
sG−→ h, then

xq
0xifk

α − h = ∑ ajxηj f
k j
β j

with f
k j
β j
∈ sG, xηj ≺lex xi and xηsat

j ≺lex xi.

Proof. For every module term xq
0xixεek ∈ supp(xq

0xifk
α − h) there is a Pommaret divisor

xβsat ek ∈ P(V) such that xq
0xixεek = xηxβsat ek with xη ≺lex xq

0xi and xηsat ≺lex xi by
Lemma 4.35 (iii) and Lemma 4.36. The same holds for any further reduction and the
same argument applies to module terms appearing in supp(xq

0xγ′T(fk′
α′)).

With the lemma above we are now able to state and proof an analogous of Theorem
1.86.

Theorem 4.48. Let V be a quasi-stable t-truncated module, G be a P(V)-marked set and U be
the graded module generated by G. The following statements are equivalent:

(i) U ∈ Mf(V).

(ii) For every fk
α ∈ G and i > cls(xα) there exists a non-negative integer q such that

xq
0xifk

α
sG−→ 0.

(iii) For every fk
α ∈ G and i > cls(xα) there exists a non-negative integer q such that xq

0xifk
α =

∑ ajxηj f
k j
β j

with xηj ≺lex xi and f
k j
β j
∈ sG.
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Proof. If U ∈ Mf(V) we can apply Theorem 4.44 (ii) because any non-multiplicative
prolongation of elements in G belongs to U .

If statement (ii) holds, then we get (iii) by Lemma 4.47.

We now assume that statement (iii) holds. We define G∗ :=
⋃

q∈N G(q). By Theorem 1.82
it is sufficient to prove that 〈G〉 = 〈G∗〉A. It is enough to show that xηG∗ ⊆ 〈G∗〉A. The
statement is obviously true for xη = 1. For the following we assume that the statement
holds for any term xη′ such that xη′ ≺lex xη

If deg(xη) > 1 we can consider any product xη = xη1 xη2 such that deg(xη1) > 0 and
deg(xη2) > 0. Since xη1 ≺lex xη and xη2 ≺lex xη we immediately obtain by induction

xηG∗ = xη1(xη2 G∗) ⊆ xη1〈G∗〉A ⊆ 〈G∗〉A .

If deg(xη) = 1 we need to prove that xiG∗ ⊆ 〈G∗〉. Lemma 4.46 shows that x0G∗ ⊆
〈G∗〉A. Therefore, we only have to prove that xiG∗ ⊆ 〈G∗〉A for i ≥ 1, assuming that
the statement holds for every xη′ ≺lex xi. We consider gk

β = xδfk
α ∈ G∗ where xδ is

multiplicative for xα and xβ = xδxα. If xigk
β does not belong to G∗ then xixβ is non-

multiplicative for xα, so i > cls(xα). So xi �lex xδ and it is sufficient to prove the
statement for xifk

α.

By hypothesis there is a q such that xq
0xifk

α = ∑ ajxηj f
k j
β j

where all xηj are lower than xi

with respect to ≺lex and f
k j
β j
∈ sG. Then all xηj f

k j
β j

belong to 〈G∗〉A by induction and we

conclude that xifk
α ∈ 〈G∗〉A by Lemma 4.47.

For the theorem above we have to consider all non-multiplicative prolongations for
every element in G. The next theorem shows that we only have to consider all non-
multiplicative prolongations for elements in sG and and some other prolongations of
elements in G.

Theorem 4.49. Let V ⊆ A[x]m be a quasi-stable t-truncated module, G be a P(V)-marked set
and U be the graded module generated by G. We define the following two sets

L1 :=
{

xifk
α | fk

α ∈ sG and i > cls(xαsat)
}

,

L2 :=

{
xifk

α

∣∣∣∣∣ fk
α ∈ G with deg(fk

α) = t such that xixα = x0xβ

for fk
β ∈ G and i = cls(xαsat)

}
.

Then U ∈ Mf(V) if and only if for all xifk
α ∈ L1 ∪ L2 there exists a q such that xq

0xifk
α

sG−→ 0.
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Proof. If U ∈ Mf(V) we can apply Theorem 4.48 and the statement follows immedi-
ately.

Vica versa, by Theorem 1.82 it is sufficient to prove that 〈G〉 = 〈G∗〉A. It is enough to
show that xiG∗ ⊆ 〈G∗〉A. We proceed by induction on the variables. By construction we
have x0G∗ = 〈G∗〉A. We now assume that 〈x0, . . . , xi−1〉G∗ ⊆ 〈G∗〉A and we prove that
xiG∗ ⊆ 〈G∗〉A. Consider xδfk

β ∈ G∗. The statement is that xixδfk
β is contained in 〈G∗〉A.

If xixδfk
β does not belong to G∗, then xixδ is not multiplicative for xβ, so i > cls(xβ)

because xδ is multiplicative for xβ. Hence it is sufficient to prove the statement for xifk
β,

because by induction then we have xδxifk
β ∈ 〈G∗〉A. In the following we consider, that

xβek = xηxαsat ek, such that xη is multiplicative with respect to xαsat ek ∈ P(V).

We have a first case when xη = 1. Then xβek = xαsat ek and fk
β ∈ sG. We consider

xixαsat ek = xη′xα′sat ek such that xη′ is multiplicative for xα′sat ek ∈ P(V). Since i > cls(xαsat)
we have that xifk

β ∈ L1. Hence by hypothesis and by Lemma 4.47 there is a q such that

xq
0xifk

β = ∑ ajxηj f
k j
αj ,

with xηj ≺lex xi and f
k j
αj ∈ sG. Hence xηj f

k j
αj ∈ 〈G∗〉A by induction on the variables and

so xifk
β belongs to 〈G∗〉A by Lemma 4.46.

We have a second case when xη = xq
0 6= 1. Then deg(xβek) = t and fk

β belongs to sG. Let

xixβek = xη′xα′sat ek, such that xη′ is multiplicative for xα′sat ek ∈ P(V). If i > cls(xα′sat) then
xη′ is not divisible by xi and we repeat the argument above. Otherwise, i ≤ cls(xα′sat)
and xi does not divide xη′ . If xi would divide xη′ we would have find a Pommaret
divisor of xαsat ek in P(V). So i = cls(xα′sat) and xη′ ≺lex xi. Then xifk

β belongs to L2 and
we repeat the same reasoning above.

We now assume the statement holds for every fk
β′ with xβ′ek = xη′xα′sat ek such that xη′

is multiplicative for xα′sat ek ∈ P(V) and xη′ ≺lex xη . By the base of the induction we
can suppose that xη �lex x1. Hence fk

β does not belong to sG and it has degree t. Let
j = cls(xβsat).

We first suppose that xi �lex xj. Then j ≥ i > cls(xβ) and x0 divides xβ. Then there
exists an element fk

β′ with xβ′ek = xi
xβ

x0
ek such that xixβ = x0xβ′ which shows that xifk

β

belongs to L2 and we can repeat the argument of the previous case.

We now assume that xi > xj and choose fk
β′ such that xβ′ek = x0

xβ

xj
ek. Therefore xjfk

β′

belongs to L2 and by the hypothesis and by Lemma 4.47 there exists an integer q such
that

xq
0xjfk

β′ = ∑ alxηl fkl
αl
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with xηl ≺lex xj and fkl
αl ∈ sG. We now multiply the equation by xi. We see that xif

kl
αl

belongs to 〈G∗〉A because fkl
αl ∈ sG and by the first two cases. Finally xifk

β belongs to
〈G∗〉A because of Lemma 4.46.

Now we see how we obtain Mf(V) by using the theory of sP(V)-marked sets. As in
Section 3.3.2 we start with a P(V)-marked set G = {Fk

α ∈ k[C][x]m | xαek ∈ P(V)}
consisting of elements as defined in (3.5).

Definition 4.50. If G is the set of marked module elements for V like defined above then we
define the set of superminimals and denote it by sG as the subset of G such that Fk

α ∈ sG if
Fk

α ∈ G with xαek ∈ sP(V). We denoted by C the set of variables appearing in the tails of the
module elements in G. Now we denote by C̃ the set of variables appearing in the tails of the
module elements in sG.

In Section 3.3.2 we have seen that we obtain a P(V)-marked basis for a module U ∈
Mf(V) by specializing in a suitable way the variables C in G. The set of supermini-
mals sG of U is obtained in the same way by sG through the same specialization of the
variables C̃.

Definition 4.51. Let xαek ∈ P(V) and q be an integer such that xq
0xαek

sG−→ Hk
α ∈ k[C̃][x]m

with Hk
α strongly reduced (the integer q exists by Theorem 4.43). We can write Hk

α = Hk
α +

xq
0H̃k

α, where no module term appearing in Hk
α is divisible by xq

0. We will denote by:

• B =
{

Cαγkl − coeffH̃k
α
(xγel) | xαek ∈ P(V) \ sP(V), xγel ∈ N (V)deg(xαek)

}
the set

of the coefficients of T(Fk
α)− H̃k

α for every xαek ∈ P(V) \ sP(V).

• D1 ⊂ k[C̃] the set of coefficients of Hk
α for every xαek ∈ P(V) \ sP(V).

• D2 the set of coefficients of the strongly reduced module elements in 〈sG〉.

Observe that B, D1, D2 are well-defined because of the uniqueness of Hk
α, by Theorem

4.43 (ii). We have seen in Theorem 3.44 that the marked scheme Mf(V) can be defined
through an ideal R := 〈R〉. The next theorem shows that we can intersect R with the
polynomial ring k[C̃] and the newly obtained ideal still represents Mf(V).

Theorem 4.52. The marked scheme Mf(V) is defined by the ideal R̃ := R ∩ k[C̃] as a
subscheme of the the affine space A|C̃|, where |C̃| = ∑xαek∈sP(V) |N (V)deg(xαek)|. Moreover

R = 〈B ∪ D1 ∪ D2〉k[C] and R̃ = 〈D1 ∪ D2〉k[C̃].
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Proof. For the first part it is sufficient to prove that R contains B and so it contains an
element of type Cαγkl − Eαγkl for every Cαγkl ∈ C \ C̃ where Eαγkl ∈ k[C̃]. Because this
allows the elimination of the variables Cαγkl ∈ C \ C̃.

By the construction in Definition 4.51, it is clear that Hk
α belongs to k[C̃][x]m and that

xq
0T(Fk

α) and Hk
α are strongly reduced. Thus their difference xq

0T(Fk
α) − Hk

α is strongly
reduced and moreover it belongs to R , because xq

0T(Fk
α)− Hk

α = xq
0Fk

α − xq
0xαek − Hk

α.
Hence its coefficients belong to R and in particular the coefficient of xq

0xγel is of the
type Cαγkl − Eαγkl with Eαγkl ∈ k[C̃]. Then B ⊆ R andR is generated by B ∪ R̃.

To prove the second part it is sufficient to show thatR∩ k[C̃] = 〈D1 ∪ D2〉k[C̃].

“⊇”: Taking the coefficients of xq
0T(Fk

α) − Hk
α of module terms that are not divisible

by xq
0, we see that R contains the coefficients of Hk

α. Then D1 ⊆ R ∩ k[C̃] because

Hk
α ∈ k[C̃][x]m.

Moreover, we recall that R is made by all the coefficients in the module elements of
〈G〉 that are strongly reduced. Indeed, R is made by all the coefficients of the module
elements of 〈G〉 that are V-reduced. This is true because the degree of the module terms
in the variables x of every module element in 〈G〉 is greater than or equal to t. Then V-
reduced is equivalent to V-reduced, that is strongly reduced by Lemma 4.35 (iv). Then
D2 ⊆ R∩ k[C̃], because 〈sG〉k[C̃][x]m ⊂ 〈G〉k[C][x]m .

“⊆”: For every module element F ∈ k[C][x]m let us denote by FE the module element in
k[C̃][x]m obtained by substituting every Cαβkl ∈ C \ C̃ by Eαβkl . If F is strongly reduced
then FE is strongly reduced, too. Observe that for every xαek ∈ P(V) we have Fk,E

α =

xαek − H̃k
α and moreover xq

0(xαek − H̃k
α) − Hk

α ∈ 〈sG〉k[C̃][x]. In particular, xq
0Fk,E

α and

xq
0(xαek − H̃k

α)− Hk
α are equal modulo D1

It remains to prove that every element K ∈ R ∩ k[C̃] can be obtained modulo D1 as an
coefficient in some strongly reduced module element of the module 〈sG〉 ⊆ k[C̃]. We
know that K is a coefficient in a strongly reduced module element D ∈ 〈G〉.

If D = ∑ Dk
αFk

α ∈ 〈G〉, then for a suitable q,

xq
0DE = ∑ Dk,E

α (xq
0(xαek − H̃k

α)− Hk
α) mod D1 (4.2)

and the module element on the right-hand side of the equality is strongly reduced and
it belongs to 〈sG〉k[C̃][x]m . Therefore K is still one of the coefficients of DE since it does not
contain any variable in C \ C̃ and it remains unchanged. Then K ∈ 〈D1 ∪ D2〉k[C̃].

Proposition 4.53. Let R̃ be as in Theorem 4.52 and let Q be any ideal in k[C̃]. Assume that
Q ⊆ R̃ and that the following conditions hold:
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(i) For every module term xβek ∈ P(V) \ sP(V) such that xβek = xδxαsat ek with xδ is
multiplicative for xαsat ek ∈ P(V) there exists q such that we have a formula of type

xq
0xβek = ∑ bixηi Fki

αi
+ Hk

β ,

with bi ∈ k[C̃], Fki
αi ∈ sG, xηi �lex xδ, x(ηj)sat is multiplicative with respect to xαj ek j ∈

P(V) and Hk
β = Hk

β + xq
0H̃k

β with Hk
β strongly reduced, xq

0 does not divide any module

term in supp(Hk
β) and coeff(Hk

β) ⊆ Q.

(ii) For every module element Fk
α ∈ sG and for every i > cls(xαsat) there exists a q such that

we have a formula of type

xq
0xiFk

α = ∑ bjxηj F
k j
αj + Hk

i,α

where bj ∈ k[C̃], F
k j
αj ∈ sG, xηj ≺lex xi, x(ηj)sat is multiplicative with respect to xαj ek j ∈

P(V) and Hk
i,α is strongly reduced with coeff(Hk

i,α) ⊆ Q.

Then Q = 〈D1 ∪ D2〉 = R̃.

Proof. Due to (i) we immediately observe that D1 ⊆ Q.

For the inclusion D2 ⊆ Qwe show that if (i) and (ii) hold forQwe obtain that for every
Fα ∈ sG and for every xδ there exists a q such that

xq
0xδFk

α = ∑ bjxηj F
k j
αj + H (4.3)

with bj ∈ k[C̃], F
k j
αj ∈ sG, xηj ≺lex xδ, x(ηj)sat is multiplicative with respect to xαj ek j ∈

P(V) and H is strongly reduced with coeff(H) ⊆ Q.

For deg(xδ) = 1 the statement is obviously be true, due to (ii). Assume that deg(xδ) > 1
and that the thesis holds for every xδ′ ≺lex xδ. Let i = cls(xδ) and xδ′ = xδ

xi
.

By the inductive hypothesis we have an integer q such that

xq
0xδ′Fk

α = ∑ b′jx
η′j F

k j
αj + Hk

δ′,α ,

with xηj ≺lex xδ′ . So, multiplying by xi we obtain

xq
0xδFk

α = ∑ b′jxix
η′j F

k j
αj + xi Hk

δ′,α
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and the thesis holds for every module element xix
η′j F

k j
αj because xix

η′j ≺lex xixδ′ = xδ.
Then, we replace such module elements by formula (4.3) and obtain for q′ ≥ q

xq′
0 xδFk

α = ∑ bsxηs Fks
αs
+ H′ + xi Hk

δ′,α

where the first sum satisfies the conditions of (4.3) and H′ is strongly reduced with
supp(H′) ⊂ N (V) and coeff(H) ⊆ Q.

Note that coeff(xi Hk
δ′,α) = coeff(Hk

δ′,α) ⊆ Q, but we do not know if supp(xi Hk
δ′,α) ⊆

N (V). If the coefficient of xβ′el ∈ supp(Hk
δ′,α) is b and xβek = xixβ′ek ∈ V then we

can use (i) obtaining an integer q′′ such that xq′′
0 bxβek = ∑ balxγi Fkl

αl + bHk
β. Moreover

if xβek = xεxαek such that xε is multiplicative for xαek ∈ P(V) then xγi �lex xε ≺lex

xi ≺lex xδ, where the second inequality is due to the fact that xβ′ ∈ N (V) and to Lemma
1.55. All coefficients of Hk

β belong to Q because they are divisible by b. Replacing all
such module terms xβek we obtain the statement and H is strongly reduced with coeffi-
cients inQ, because it is the sum of strongly reduced module elements with coefficients
in Q.

We can also prove the uniqueness of such a rewriting: thanks to the uniqueness of the

decompositions of the Pommaret division with respect to V , the module elements xηj F
k j
αj

that can appear in (4.3) have pairwise different head terms. Hence we can express every
module element in Q in a unique way like in (4.3). And this implies the equality of Q
and R̃.

Proposition 4.53 is very important from the computational point of view. Indeed, its
condition (i) allows to explicitly construct the set of module elements B, namely to write
a V-marked set G′ in k[C̃][x] whose superminimal set is sG. using such a V-marked set
in k[C̃][x] we can either use Theorem 4.48 or Theorem 4.49 to obtain a set of generators
for R̃.

Now we give a pseudo-code description of an algorithm, which computes the affine
representation of Mf(V), where V is a t-truncation. The algorithm is based on Theorem
4.49 and Proposition 4.53. But first of all we define some auxiliary functions, which we
need to state the algorithm:

• SUPERMINIMALREDUCTION(f, sG): Given an sP(V)-marked superminimal set sG
and a module element f, it returns a pair (q, h) where q is the minimal power of x0
such that there is a superminimal reduction of xq

0f to a strongly reduced module

element and h is such a module element, namely xq
0f sG−→ h.

• QUOTIENTANDREMAINDER(f, q): Given a module element f and a non-negative
integer q, it returns the pair of module elements (H, H̃) such that f = H + xq

0H̃.
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• COEFF(f, xαek): It returns the coefficient of the module term xαek in the module
element f. If xαek /∈ supp(f) the method returns zero.

Algorithm 13 MARKEDSCHEME(V)
Input: V quasi-stable t-truncated module
Output: An ideal defining the marked scheme Mf(V)

1: sG ← ∅
2: for all xαek ∈ sP(V) do
3: Fk

α ← xαek
4: for all xβel ∈ N (V)deg(xαek) do
5: Fk

α ← Cαβklxβel
6: end for
7: sG ← sG ∪ {Fk

α}
8: end for
9: E ← ∅

10: P(V)← P(V) \ sP(V)
11: for all xαek ∈ P(V) do
12: (q, H)← SUPERMINIMALREDUCTION(xαek, sG)
13: (H, H̃)← QUOTIENTANDREMAINDER(H, q)
14: for all xηel ∈ supp(H) do
15: E ← E ∪ { COEFF(H, xηel) }
16: end for
17: end for
18: L1 ← {xi Hk

α | Hk
α ∈ sG and i > cls(xαsat)}

19: for all xi Hk
α ∈ L1 do

20: (q, H)← SUPERMINIMALREDUCTION(xi HK
α , sG)

21: for all xηel ∈ supp(H) do
22: E ← E ∪ { COEFF(H, xηel) }
23: end for
24: end for
25: return E

Theorem 4.54. Algorithm 13 terminates and is correct.

Proof. To prove that the algorithm terminates it is sufficient to recall Theorem 4.43 (i)
where it is proved that the superminimal reduction is noetherian.

Hence we only have to show that the algorithm is correct, that is it returns a set of gen-
erators for the ideal defining Mf(V). The starting point is the V-marked superminimal
set sG, having parameters in C̃ as coefficients of every module term in the tails and get
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a set E of polynomials in k[C̃]. We will show that the ideal generated by E coincides
with the ideal Q defined in Theorem 4.52.

Indeed in the first part (lines (11)-(17)), the algorithm computes the superminimal re-
duction H of each module term xαek ∈ P(V) \ sP(V) and it imposes the conditions
required by Proposition 4.53 (i). This means that the algorithm computes the set D1
defined in Definition 4.51.

In the second part (lines (18)-(24)), the algorithm considers non-multiplicative pro-
longations xi Hk

α of superminimal generators Hk
α, such that xixαek = xηxαsat ek. Then

xη ≺lex xi by Lemma 4.36. These prolongations correspond to the set L1 defined in
Theorem 4.49.

At line (20) of the algorithm we compute the superminimal reduction of the associated
non-multiplicative prolongations

xq
0xi Hk

α
sG−→ H ,

that is applying Lemma 4.47:

xq
0xi Hk

α = H + ∑ bjxηj F
k j
β j

with bj ∈ k[C̃], F
k j
β j
∈ sG, xηj ≺lex xixt

0 and x(ηj)sat ≺lex xi.

The module element H is strongly reduced and it belongs to the module 〈sG〉 ⊆ k[C̃][x],
hence its coefficients belong to D2 ⊆ Q.

Then by construction, Q is contained in R̃ and it satisfies the condition required by
Proposition 4.53 (ii), hence Q = R̃.

4.4.2 Computing Marked Families Using Dehomogenization

The main problem of Algorithm 13 is the computation of superminimal reductions.
Assume that we compute the superminimal reduction of an element f. Then we have
to determine a non-negative q, such that there is a reduction from xq

0f to a strongly
reduced module element. The value of the integer q cannot be predicted before the
superminimal reduction and due to that q could be arbitrary large. As we have to
multiply several times with xq′

0 with q′ ≤ q during the superminimal reduction this is
one bottleneck for the superminimal reduction.

In the following we use another approach which computes exactly the same result than
Algorithm 13 but without using the costly superminimal reduction. It is the straight-
forward generalization of an idea from [10].
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Let us consider the quasi-stable module V ⊆ A[x1, . . . , xn]m and a non-negative integer
t. We know that the module V = Bmin(V) · A[x0, . . . , xn]m is a saturated quasi-stable
module in A[x0, . . . , xn]m. We define hh as the homogenization of h ∈ A[x1, . . . , xn]
with the variable x0 and Vh as the homogenization of V with the variable x0. Then we
immediately see that V≥t = (Vh)≥t. In the following we denote as usual A[x0, . . . , xn]
as A[x] and A[x1, . . . , xn] as A[x′]. Originally we defined a marked module element as a
homogeneous module element. In the following do not demand that a marked module
element in A[x′]m must be homogeneous, anymore.

Definition 4.55. Let V ⊆ A[x′]m be a quasi-stable module and V = Vh.

• A [P(V), t]-marked set B is a finite set of monic marked module elements fk
α ∈ A[x′]

such that the head module terms Ht(fk
α) = xαek are pairwise different and form the Pom-

maret basis P(V) and supp(fk
α − xαek) ⊆ N (V)≤s with s = max({t, deg(xαek)}).

• A [P(V), t]-marked set B is a [P(V), t]-marked basis if there is a P(V≥t)-marked basis
B and a non-negative integer qα for every xαek ∈ P(V) such that xqα

0 fk
α belongs to B.

Definition 4.56. Let B be a [P(V), t]-marked set. We define

B̃ :=
{

xδfk
α | fk

α ∈ B and xδ ∈ A[XP(xαek)]
}

.

We will denote by B̃−→ the transitive closure of the following reduction relation on A[x′]: f is
in relation with f′ if f′ = f− cxδfk

α where xδfk
α ∈ B̃ and c is the coefficient of the module term

xαxδek in f. We will write f B̃−→∗ h if f B̃−→ h and h ∈ 〈N (V)〉.

Proposition 4.57. Let B be a [P(V), t]-marked set.

(i) The reduction relation B̃−→ is noetherian and confluent.

(ii) For every module element f ∈ A[x′]m there is h ∈ 〈N (V)〉 such that f B̃−→∗ h. The
module element h is a V-reduced form of f modulo the module 〈B〉.

(iii) A[x′]m = 〈B̃〉 ⊕ 〈N (V)〉.

Proof. The proof is analogous to the proof of [10, Prop. 4.3].

Even if the definition of [P(V), t]-marked basis relies on the existence of a homogeneous
marked basis in A[x]m the following theorem shows that it is equivalent to consider a
condition which involves only V-reduced forms modulo 〈B〉 and their degrees.
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Theorem 4.58. Let B be a [P(V), t]-marked set. It is a [P(V), t]-marked basis if and only
if every module element f ∈ A[x′]m has a V-normal form h modulo 〈B〉 with deg(h) ≤
max({deg(f), t}).

Proof. One direction of the proof is analogous to the proof of [10, Thm. 4.4] and the
other direction is analogous to the proof of [10, Thm. 4.5]

Let B be a [P(V), t]-marked basis. By Theorem 4.58 we can consider for every xβek ∈
V≤t \ P(V) the module element fk

β := xβek − h where h is the V-normal form of xβek

modulo 〈B〉 which belongs to 〈N (V)≤t〉. We denote by B the set {fk
β | xβek ∈ V≤t \

P(V)} ⊆ 〈B〉.

Corollary 4.59. There is a bijective correspondence between the set of [P(V), t]-marked bases
and the set of P(V≥t)-marked bases.

Proof. The proof is analogous to the proof of [10, Cor. 4.8].

Finally, we show that [P(V), t]-marked bases have the expected good behaviour with
respect to the homogenization. We define Bh := {(fk

α)
h | fk

α ∈ B} and B̃h := {(fk
α)

h |
fk

α ∈ B̃}.

Theorem 4.60. If B is a [P(V), t]-marked basis and B is its corresponding P(V≥t)-marked
basis then 〈B〉 = 〈B〉h≥t = 〈Bh ∪ B̃h〉≥t and 〈B〉 = 〈Bh ∪ B̃h〉sat = 〈B〉sat.

Proof. The proof is analogous to the proof of [10, Thm. 4.10].

The next theorem gives us an effective criterion for [P(V), t]-marked bases.

Theorem 4.61. A [P(V), t]-marked set B is a [P(V), t]-marked basis if and only if the two
following statements hold:

(i) For every xβek ∈ V≤t \ P(V), xβek
B̃−→∗ hk

α with hk
α ∈ 〈N (V)≤t〉A.

(ii) For every fk
α ∈ B and i > cls(xα), xifk

α
B̃−→∗ 0.

Proof. The proof is analogous to the proof of [10, Thm. 5.1].
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Example 4.62. Consider V ⊂ k[x1, x2] which is generated by the Pommaret basis

P(V) = {x2
2e1, x2x2

1e1, x2
1e1, x3

2e2, x2
2x1e2} .

As a first example we consider the set

B1 = {x2
2e1 + x4

1e2, x2x2
1e1, x2

1e1, x3
2e2, x2

2x1e2 + x1x2e1} .

This set is obviously a [P(V), 4]-marked set. But it is not a [P(V), 4]-marked basis because

x2(x2
2x1e2 + x1x2e1)

B̃1−→∗ −x5
1e1, which violates the second condition of Theorem 4.61.

As a second example we consider the set

B2 = {x2
2e1 + x4

1e2, x2x2
1e1, x2

1e1, x3
2e2, x2

2x1e2} .

This set is obviously a [P(V), t]-marked set for every t ≥ 4, but it is not a [P(V), 4]-marked
basis. Due to the first condition of Theorem 4.61 x3

2e1 must reduces to h ∈ 〈N (V)≤4〉k. But

x3
2e1

B̃2−→∗ −x2x4
1e2 /∈ 〈N (V)〉≤4.

However, one can easily check that it is a [P(V), t]-marked basis for t ≥ 5.

In the last part of the example we have seen an example of a given [P(V), t]-marked set
which is always a [P(V), t]-marked basis if t is large enough. The next theorem shows
that if a [P(V), t]-marked set is a [P(V), t]-marked basis for a large t, then it is always
a [P(V), t′] for t′ large enough. In addition, it gives a precise bound, how large t must
be.

Theorem 4.63. Let B be a [P(V), t]-marked set, with t ≥ sat(V). B is a [P(V), t− 1]-marked
basis if and only if B is a [P(V), t]-marked basis.

Proof. The proof is analogous to the proof of [10, Thm. 5.4].

Using the theorem above, we can improve Theorem 4.61 for large t.

Corollary 4.64. Let B be a [P(V), t]-marked basis with t ≥ sat(V).

• B is a [P(V), t]-marked basis if and only if it is a [P(V), t− 1]-marked basis.

• B is a [P(V), sat(V)− 1]-marked basis if and only if

(i) For every xβek ∈ V≤sat(V)−1 \ P(V) there is a reduction xβek
B̃−→∗ hk

α with
hk

α ∈ 〈N (V)≤sat(V)−1〉A.

(ii) For every fk
α ∈ B and i > cls(xα), xifk

α
B̃−→∗ 0.
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It turns out that we can simplify the check for a [P(V), sat(V)− 1]-marked basis even
more, if A[x′]m/V is an artinian module, that is N (V) is a finite set of terms and we
have thatN (V)reg(V)−1 = N (V)reg(V)+r for a non-negative integer r. Furthermore, it is
equivalent to the fact, that HPA[x′]/V(t) = 0.

Proposition 4.65. Let B be a [P(V), t]-marked set with t ≥ sat(V). IfN (V) is finite then B

is a [P(V), sat(V)− 1]-marked basis if and only if xifk
α

B̃−→∗ 0 for every fk
α ∈ B and for every

i > cls(xα).

Proof. The proof is analogous to the proof of [10, Prop. 5.6].

Now we describe a new algorithm for computing the marked scheme corresponding
to the saturated quasi-stable ideal V ⊆ k[x]m. Let V ⊆ k[x′]m the corresponding deho-
mogenization of V , that is V := 〈Bmin(V)〉 · k[x′]m.

For every xαek ∈ P(V) let qα := max({t, deg(xαek)}). We define the following set of
parameters

C := {Cαηkl | xαek ∈ P(V), xηel ∈ N (V)≤qα}

and construct the P(V)-marked set G ⊂ k[C][x′]m consisting of all elements

Fk
α :=

xα − ∑
xηek∈N (V)≤qα

Cαηkkxη

 ek − ∑
xηel∈N (V)≤qα

l 6=k

Cαηklxηel

with xαek ∈ P(V).

For every xβek ∈ V≤t \ P(V), let hk
β the unique module element in 〈N (V)〉k[C] such

that xβek
G̃−→∗ hk

β. We write hk
β = (hk

β)
(≤t) + (hk

β)
(>t) with (hk

β)
(≤t) ∈ 〈N (V)≤t〉k[C]

and (hk
β)

(>t) ∈ 〈N (V)≤deg(hk
β)
\ N (V)≤t〉k[C].

For every Fk
α ∈ G and for every i > cls(xα), let hk

α,i be the unique module element in

〈N (V)〉 ⊆ k[C][x′], such that xiF
k
α

G̃−→∗ hk
α,i.

Let R ⊆ k[C] be the ideal generated by the coefficients in k[C] of the module elements
(hk

β)
(>t) for every xβek ∈ V≤t \ P(V) and those of the module elements hk

α,i for every
Fk

α ∈ G and every i > cls(xα).

Theorem 4.66. The marked scheme Mf(V≥t) is defined by the ideal 〈R〉 as a subscheme of the
affine spaceA|C|.
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Proof. Using the same arguments as in Theorem 3.44 we can show that the set of all
[P(V), t]-marked bases over noetherian k-algebras can be represented by the affine
scheme Spec(k[C]/〈R〉). We have seen in Corollary 4.59 that there is a bijective cor-
respondence between [P(V), t]-marked bases and P(V≥t)-marked bases. Therefore,
Spec(k[C]/〈R〉) is also the representation of all P(V≥t)-marked bases over noetherian
k-algebras and so of Mf(V≥t).

Remark 4.67. The ideal R constructed above is exactly the ideal R̃ constructed by super-
minimal reduction of homogeneous module elements in Theorem 4.52 for a marked scheme
Mf(V≥t).

Now we describe another algorithm to compute marked schemes Mf(V≥t), where V ⊆
k[x]m is a saturated quasi-stable module and t is an integer. For every V≥t there exists
a quasi-stable module V ⊆ k[x′], such that Bmin(V) · k[x] = V and V≥t = Vh

≥t.

For simplicity, we choose as input of Algorithm 16 V ⊆ k[x′] and the non-negative
integer t. The output of the algorithm is a set of equations which defines the ideal 〈R〉,
which corresponds to the marked scheme Mf(V≥t).

At first, we define some additionally auxiliary functions, which we need for stating the
algorithm:

• LOWERPART(g, q): Given a module element g and a non-negative integer q, it
returns the pair of module elements (g1, g2) such that g = g1 + g2, deg(g1) ≤ q
and for every xγek ∈ supp(g2), deg(xγek) ≥ q + 1.

• REDUCTION(g,G): Given a [P(V), t]-marked set G and a module element g, it

returns the module element h such that g G̃−→∗ h with h ∈ 〈N (V)〉 according to
Definition 4.56.

• LOWTERMS(V, t): Given a quasi-stable module V it determines the set of module
terms in V≤t.

Algorithm 14 corresponds to the first condition of Theorem 4.61 and Algorithm 15 cor-
responds to the second condition of Theorem 4.61. We have seen that we can skip many
reduction in the case, when A[x′]m/V is an artinian module. We have taken this into ac-
count at Algorithm 16 line (11). The improvement of Theorem 4.63 is taken into account
at Algorithm 16 line (2).
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Algorithm 14 REDUCTIONONE(V, t,G)
Input: V ⊆ k[x′]m, a quasi-stable module
Input: t a non-negative integer
Input: G a [P(V), t]-marked set
Output: Conditions to impose on the module elements in G to fulfil Theorem 4.61 (i)

1: E ← ∅
2: B ← LOWTERMS(V, t) \ P(V)
3: for all xβek ∈ B do
4: h← REDUCTION(xβek,G)
5: (h1, h2)← LOWERPART(h, t)
6: for all xγel ∈ supp(h2) do
7: E ← E ∪ {COEFF(h2, xγel)}
8: end for
9: end for

10: return E

4.5 Computation of Concrete Hilbert Schemes

Now we want to use the tool set, which we developed earlier in this chapter, to compute
several examples. Algorithms 5, 10 and 16 with their corresponding subalgorithms are
implemented experimentally in the computer algebra system COCOALIB([1]). At the
moment the implementation of Algorithm 16 can only compute Hilbert schemes. In this
chapter we illustrated only some interesting examples. We also tested our experimental
implementation with some larger and we were able to compute the Hilbert scheme of
points in P3 up to 14 points.

4.5.1 Reducedness of Hilb3
4

It is still an open question if the Hilbert scheme for n = 3 with Hilbert polynomial
HP(t) = 4 is reduced or not over a field of characteristic zero. First of all we shortly
repeat the definition and some properties of a reduced scheme.

Definition 4.68. Let X be a scheme. It is reduced if every local ring OX,x is reduced, that is if
r ∈ OX,x with rn = 0 for some n > 0, then r = 0. Or in other words: the ring OX,x does not
contain any nilpotent elements.

Lemma 4.69. A scheme X is reduced if and only ifOX(U) is a reduced ring for all open subsets
U ⊆ X.
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Algorithm 15 REDUCTIONTWO(V, t,G)
Input: V ⊆ k[x′]m, a quasi-stable module
Input: t a non-negative integer
Input: G a [P(V), t]-marked set
Output: Conditions to impose on the module elements in G to fulfil Theorem 4.61 (ii)

1: E ← ∅
2: for all fk

α ∈ G, i > cls(xα) do
3: h← REDUCTION(xifk

α,G)
4: for all xγel ∈ supp(h) do
5: E ← E ∪ {COEFF(h2, xγel)}
6: end for
7: end for
8: return E

Proof. At first we suppose that X is reduced and U is an open subset of X. Let s be a
section of OX(U), such that sn = 0 for some n > 0. For each u ∈ U let ρu : OX(U) −→
OX,u be the map which sends a section s over U to the corresponding stalk at u. Then
ρu(sn) = 0 for all u ∈ U. This implies that s = 0 because the map

OX(U) −→ ∏
x∈U
OX,x

s 7−→ {ρx(s)}

is injective. This shows that OX(U) is reduced.

Conversely, suppose that OX(U) is a reduced ring for every open subset U ⊆ X and
let x ∈ U. We pick an element with a representation (V, f ) from OX,x. Suppose f
is nonzero. Then f is not nilpotent in OX(V). Hence, (V, f ) is not equivalent to a
nilpotent element in OX,x. Hence, OX,x is reduced.

Proposition 4.70. Let X be a scheme. Then the following is equivalent:

(i) X is reduced.

(ii) There exists an affine open covering X =
⋃

i Ui, such that OX(Ui) is reduced.

(iii) OX(U) is reduced for every affine open U ⊆ X.

Proof. (i) ⇔ (ii): X can be covered by affine open sets. Let {Ui} be an affine open
covering of X. We know OX(Ui) is reduced for each i by Lemma 4.69. Conversely,
assume that X is covered by an affine open covering {Ui} such that Ui = Spec(Ai) with
Ai reduced. Consider x ∈ Ui, then OX,x = (Ai)x. Since Ai is reduced and reducedness
does not vanish when localizing we get that OX,x is reduced.
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Algorithm 16 MARKEDSCHEME(V, t)
Input: V ⊆ k[x′]m, a quasi-stable module
Input: t a non-negative integer
Output: A set of equations defining the ideal which defines the marked scheme

Mf(V≥t)
1: E ← ∅
2: t0 ← min({t, sat(V)− 1})
3: G← ∅
4: for all xαek ∈ P(V) do
5: Fk

α ← xαek
6: for all xηel ∈ N (V≤max({t0,deg(xαek)})) do
7: Fk

α ← Fk
α + Cαηklxηel

8: end for
9: end for

10: E ← REDUCTIONTWO(V, t0,G)
11: if t0 = reg(V)− 1 and N (V≤reg(V)−1) = N (V≤reg(V)) then
12: return E
13: end if
14: E ← E ∪ REDUCTIONONE(V, t0,G)
15: return E

(i)⇔ (iii): One direction is clear by Lemma 4.69. Conversely, supposeOX(U) is reduced
for every affine open U ⊂ X. We can choose an affine open covering of X. Hence, by
the equivalence of (ii) and (i) the claim follows.

To check if Hilb3
4 is reduced we compute an open covering by marked schemes and

check if the corresponding rings, which are associated to the marked schemes, are re-
duced. The reducedness of marked scheme then implies that Hilb3

4 is reduced.

For Hilb3
4 we compute the Borel fixed open covering. At first, we have to compute

all saturated 0-Borel fixed ideals with Hilbert polynomial HP(t) = 4 in a polynomial
ring with four variables. Using our implementation in the computer algebra system
COCOALIB, we get the following three saturated 0-Borel fixed ideals.

I1 = 〈x2
1, x2

2, x2x1, x2
3, x3x2, x3x1〉 ,

I2 = 〈x3, x2
2, x2x1, x3

1〉 ,

I3 = 〈x3, x2, x4
1〉 .

For these three ideals we computed the corresponding marked schemes, using CO-
COALIB and our implementation of Algorithm 16. It turns out that we can embed
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Mf(I1) in the affine spaceA24, Mf(I2) inA16 and Mf(I3) inA12.

For Mf(I1) the algorithm produces 32 equations, for Mf(I2) the algorithm produces 16
equations and for Mf(I3) it only produces one equation, namely 0.

The marked scheme Mf(I3) is a really simple space, because it is equal to A12. Hence,
we can immediately deduce that the ring corresponding to Mf(I3) is a simple polyno-
mial ring over kwith 12 variables which is obviously reduced.

Let R1 be the ideal generated by the equations corresponding to Mf(I1) and R2 the
ideal generated by the equations corresponding to Mf(I2). We assume that R1 ⊆
k[C1, . . . , C32] := k[C′] and R2 ⊆ k[C1, . . . , C16] := k[C′′]. The ring k[C′]/R1, respec-
tively k[C′′]/R2 is reduced if and only ifR1, respectivelyR2 is a radical ideal. To check
this we computed with the computer algebra system SINGULAR ([14]) the radicals of
R1 andR2. It turns out that both ideals are radical ideals.

Finally, this leads to the following theorem:

Theorem 4.71. The Hilbert scheme Hilb3
4 is reduced.

4.5.2 Quot
2,(0,0)
2,t+2

In the following, we compute an open covering of the Quot-scheme for the Hilbert
polynomial HP(t) = t + 2 over the polynomial module k[x0, x1, x2]2(0,0), where k is a
field of characteristic zero. Currently, there is no implementation of Algorithm 16 for
computing Quot schemes. Hence, we will do the computations manually.

At first, we have to compute all saturated 0-Borel fixed modules in k[x0, x1, x2]2(0,0).
Using the algorithm MONOMIALMODULES (t + 2,k[x0, x1, x2]2(0,0), 0-Borel-fixed) (Algo-
rithm 12) we have to compute at first all results of the algorithm DISTRIBUTEPOLYNO-
MIAL(t + 2, ((), ()), 2) (Algorithm 11). There we get the following distributions:

HP1 = (1, t + 1) , HP2 = (0, t + 2) ,
HP3 = (t + 1, 1) , HP4 = (t + 2, 0) .

(4.4)

This intermediate result leads to the following four saturated 0-Borel fixed modules:

V1 = 〈x2e1, x1e1, x2e2〉 , V2 = 〈e1, x2
2e2, x2x1e2〉 ,

V3 = 〈x2e1, x2e2, x1e2〉 , V4 = 〈x2
2e1, x2x1e1, e2〉 .

To compute the open covering we have to compute the marked schemes Mf((V1)≥2),
Mf((V2)≥2), Mf((V3)≥2) and Mf((V4)≥2). We have to consider the 2-truncations be-
cause the Gotzmann number of HP(t) is two. It is clear that Mf((V1)≥2) ∼= Mf((V3)≥2)
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and Mf((V2)≥2) ∼= Mf((V4)≥2). Hence, we only compute Mf((V1)≥2) and Mf((V2)≥2).
Furthermore, it is enough to compute Mf((V1)≥1), because Mf((V1)≥1) ∼= Mf((V1)≥2),
due to Corollary 3.51.

We use Algorithm 16 to compute the marked schemes. For that we have to define
V1 ⊆ k[x1, x2]2. But, as we have seen in the previous section, this is trivial and P(V1) =
{x2e1, x1e1, x2e2}. To compute Mf((V1)≥1), we have to call MARKEDSCHEME(V1, 1).
Due to the fact, that sat(V1) = 1 this is equivalent to call MARKEDSCHEME(V1, 0),
due to Corollary 4.64. In the first part of the algorithm we compute the set G ⊂
k[C1][x1, x2]2, which contains the following three elements:

F1 = x2e1 + C1e1 + C2e2 + C3x1e2 ,
F2 = x1e1 + C4e1 + C5e2 + C6x1e2 ,
F3 = x2e2 + C7e1 + C8e2 + C9x1e2 .

For simplicity, we enumerate the variables C1 = (C1, . . . ,C9) and the elements in G
sequentially and not like in Algorithm 16.

In the second part of the algorithm we call the subalgorithm REDUCTIONTWO(V, 0,G)
(Algorithm 15). In this algorithm we have to compute all possible non-multiplicative
prolongations of elements in the [P(V1), 0]-marked set. There is only one prolonga-
tion:

x2F2
G−→∗(−C6C9 − C3)x2

1e2 + (C2
6C7 − C3C4 + C1C6 − C6C8 − C5C9 − C2)x1e2

+ (C5C6C7 − C2C4 + C1C5 − C5C8)e2 + (C4C6C7 − C5C7)e1 .

Out of this normal form we can extract the following set of polynomials:

E1 = { − C6C9 − C3,C2
6C7 − C3C4 + C1C6 − C6C8 − C5C9 − C2,

C5C6C7 − C2C4 + C1C5 − C5C8,C4C6C7 − C5C7} .

It is clear that N ((V1)≤reg(V1)−1) 6= N ((V1)≤reg(V1)). Therefore, we have to call RE-
DUCTIONONE(V1, 0,G) (Algorithm 14), too. But we have to compute nothing in this
algorithm, because there are no terms in (V1 \ P(V1) ∩T2)≤0. As a result we get that
Mf((V1)≥2) is a subspace ofA9, more exactly

Mf((V1)≥2) ∼= k[C1]/〈E1〉 .

Now it remains to compute Mf((V2)≥2). This is equivalent to compute for P(V2) =
{e1, x2

2e2, x2x1e2} ⊂ k[x1, x2]2 the algorithm MARKEDSCHEME(V2, 1). Again, we com-
pute at first the set G ⊂ k[C2][x1, x2]2, which contains the three following elements:

F1 = e1 + C1e2 + C2x1e2 + C3x2e2 ,

F2 = x2
2e2 + C4e2 + C5x1e2 + C6x2e2 + C7x2

1e2 ,

F3 = x1x2e2 + C8e2 + C9x1e2 + C10x2e2 + C11x2
1e2 .
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Again, we enumerate the variables C2 = (C1, . . . ,C11) and the elements in G sequen-
tially.

Then we have to call the subalgorithm REDUCTIONTWO(V2, 1,G), where we compute
the normal forms of all non-multiplicative prolongations. We only have to compute one
prolongation, again:

x2F3
G−→∗(−C2

11 − C7)x3
1e2 + (C10C

2
11 − C7C10 + C6C11 − 2C9C11 − C5)x2

1e2

+ (C9C10C11 + C6C9 − C2
9 − C5C10 − C8C11 − C4)x1e2

+ (C2
10C11 − C9C10 + C8)x2e2 + (C8C10C11 + C6C8 − C8C9 − C4C10)e2 .

Out of this normal form we can extract the following set of polynomials:

E2 = { − C2
11 − C7,C10C

2
11 − C7C10 + C6C11 − 2C9C11 − C5,

C9C10C11 + C6C9 − C2
9 − C5C10 − C8C11 − C4,C2

10C11 − C9C10 + C8,
C8C10C11 + C6C8 − C8C9 − C4C10} .

It remains to call REDUCTIONONE(V, 1,G). In contrast to the first case we have to
compute two normals forms:

x1e1
G−→∗(C3C11 − C2)x2

1e2 + (C3C9 − C1)x1e2 + (C3C10)x2e2 + (C3C8)e2 ,

x2e1
G−→∗(C3C7 + C2C11)x2

1e2 + (C3C5 + C2C9)x1e2 + (C3C6 + C2C10 − C1)x2e2

+ (C3C4 + C2C8)e2 .

Hence, we have to add the following set of polynomials to E2:

E2 =E2 ∪ {C3C11 − C2,C3C9 − C1,C3C10,C3C8,
C3C7 + C2C11,C3C5 + C2C9,C3C6 + C2C10 − C1,C3C4 + C2C8, } .

As a result we get that Mf((V2)≥2) is a subspace ofA11, more exactly

Mf((V2)≥2) ∼= k[C2]/〈E2〉 . (4.5)

To summarize, we have seen that we can cover Quot2,(0,0)
2,t+2 by four marked schemes.

Two schemes, which are isomorphic are a subspace of A9. The other two schemes,
which are also isomorphic, are a subspace ofA11.

4.5.3 Quot
2,(−1,0)
2,t+2

Now we compute the Quot scheme for the Hilbert polynomial HP(t) = t + 2 over the
polynomial module k[x0, x1, x2]2(−1,0), where k is a field of characteristic zero. This is
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nearly the same Quot scheme as in the section above. We do not use the standard
grading now, but we shift the degree of the first free generator by −1. We will see that
we obtain a completely different open covering. The algorithms defined in Section 4.4
are formulated only for the standard grading. Nevertheless, they are also applicable
for a non-standard grading. Therefore, we can use these algorithms for this example,
too.

Firstly, we call MONOMIALMODULES((t + 2,k[x0, x1, x2]2(−1,0), 0-Borel-fixed). For that
algorithm we have to call DISTRIBUTEPOLYNOMIAL(t + 2,((), ()),2) which produces the
pairs of polynomials from (4.4). In the next step we have to shift the polynomials ac-
cording to the algorithm:

HP1 = (1, t + 1) , HP2 = (0, t + 2) ,
HP3 = (t, 1) , HP4 = (t + 1, 0) .

It turns out that for HP3 there is no saturated 0-Borel fixed module. For the other three
pairs of polynomials we get in total three 0-Borel fixed modules:

V1 = 〈x2e1, x1e1, x2e2〉 , V2 = 〈e1, x2
2e2, x2x1e2〉 ,

V3 = 〈x2e1, e2〉 .

Even, if the modules V1 and V2 also occur in the example of the section above, we will
see that the corresponding marked schemes are only in one case equal.

At first, we compute Mf((V1)≥2), which is equivalent to compute for

P(V1) = {x2e1, x1e1, x2e2}

the algorithm MARKEDSCHEME(V1,−1). The satiety of V1 is zero which explains
the second argument. The set G ⊂ k[C1][x1, x2]2(−1,0) contains the following three el-
ements:

F1 = x2e1 + C1e1 + C2e2 ,
F2 = x1e1 + C3e1 + C4e2 ,
F3 = x2e2 + C5e1 + C6e2 + C7x1e2 .

As usual we enumerate the variables C1 = (C1, . . . ,C7) and the elements in G sequen-
tially.

After initializing G we have to compute in REDUCTIONTWO(V1,−1,G) the normal
forms of the non-multiplicative prolongation. Again we have to compute only one
prolongation:

x2F2
G−→∗ (−C4C7 − C2)x1e2 + (−C2C3 + C1C4 − C4C6)e2 + (−C4C5)e1 .
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Out of this we can extract the following set of polynomials:

E1 = {−C4C7 − C2,−C2C3 + C1C4 − C4C6,−C4C5} .

There are no normal form computations which we have to perform in algorithm RE-
DUCTIONONE(V1,−1,G). Hence, Mf((V1)≥2 ∼= k[C1]/〈E1〉.

Now we compute Mf((V2)≥2), which is equivalent to compute for

P(V2) = {e1, x2
2e2, x2x1e2}

the algorithm MARKEDSCHEME(V2, 1). The satiety of V2 is two, hence we have chosen
one as second argument. The set G ⊂ k[C2][x1, x2]2(−1,0) contains the following three
elements:

F1 = e1 + C1e2 + C2x1e2 + C3x2e2 ,

F2 = x2
2e2 + C4e2 + C5x1e2 + C6x2e2 + C7x2

1e2 ,

F3 = x1x2e2 + C8e2 + C9x1e2 + C10x2e2 + C11x2
1e2 .

The variables in C2 are (C1, . . . ,C11).

Now we call in REDUCTIONTWO(V2, 1,G) the normal forms of the non-multiplicative
prolongations. Again we have to compute only one prolongation:

x2F3
G−→∗(−C2

11 − C7)x3
1e2 + (C10C

2
11 − C7C10 + C6C11 − 2C9C11 − C5)x2

1e2

+ (C9C10C11 + C6C9 − C2
9 − C5C10 − C8C11 − C4)x1e2

+ (C2
10C11 − C9C10 + C8)x2e2 + (C8C10C11 + C6C8 − C8C9 − C4C10)e2 .

Out of this we can extract the following set of polynomials:

E2 = { − C2
11 − C7,C10C

2
11 − C7C10 + C6C11 − 2C9C11 − C5,

C9C10C11 + C6C9 − C2
9 − C5C10 − C8C11 − C4,C2

10C11 − C9C10 + C8,
C8C10C11 + C6C8 − C8C9 − C4C10} .

In the algorithm REDUCTIONONE(V2, 1,G) we have to perform several normal form
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computations:

x1e1
G−→∗(C3C11 − C2)x2

1e2 + (C3C9 − C1)x1e2 + (C3C10)x2e2 + (C3C8)e2 ,

x2e1
G−→∗(C3C7 + C2C11)x2

1e2 + (C3C5 + C2C9)x1e2 + (C3C6 + C2C10 − C1)x2e2

+ (C3C4 + C2C8)e2 ,

x2
1e1

G−→∗(C3C11 − C2)x3
1e2 + (−C3C10C11 + C3C9 − C1)x2

1e2

+ (−C3C9C10 + C3C8)x1e2 + (−C3C
2
10)x2e2 + (−C3C8C10)e2 ,

x1x2e1
G−→∗(C3C7 + C2C11)x3

1e2 + (−C3C6C11 − C2C10C11 + C3C5 + C2C9 + C1C11)x2
1e2

+ (−C3C6C9 − C2C9C10 + C3C4 + C2C8 + C1C9)x1e2

+ (−C3C6C10 − C2C
2
10 + C1C10)x2e2 + (−C3C6C8 − C2C8C10 + C1C8)e2 ,

x2
2e1

G−→∗(−C3C7C11 + C2C7)x3
1e2

+ (C3C7C10C11 − C3C6C7 − C3C7C9 − C3C5C11 − C2C6C11 + C2C5

+ C1C7)x2
1e2

+ (C3C7C9C10 − C3C5C6 − C3C7C8 − C3C5C9 − C2C6C9 + C2C4 + C1C5)x1e2

+ (C3C7C
2
10 − C3C

2
6 − C3C5C10 − C2C6C10 + C3C4 + C1C6)x2e2

+ (C3C7C8C10 − C3C4C6 − C3C5C8 − C2C6C8 + C1C4)e2 ,

Hence, we have to add the following set of polynomials to E2:

E2 =E2 ∪ {C3C11 − C2,C3C9 − C1,C3C10,C3C8,C3C7 + C2C11,C3C5 + C2C9,
C3C6 + C2C10 − C1,C3C4 + C2C8,C3C11 − C2,−C3C10C11 + C3C9 − C1,

− C3C9C10 + C3C8,−C3C
2
10,−C3C8C10,C3C7 + C2C11,

− C3C6C11 − C2C10C11 + C3C5 + C2C9 + C1C11,

− C3C6C9 − C2C9C10 + C3C4 + C2C8 + C1C9,−C3C6C10 − C2C
2
10 + C1C10,

− C3C6C8 − C2C8C10 + C1C8,−C3C7C11 + C2C7,
C3C7C10C11 − C3C6C7 − C3C7C9 − C3C5C11 − C2C6C11 + C2C5 + C1C7,
C3C7C9C10 − C3C5C6 − C3C7C8 − C3C5C9 − C2C6C9 + C2C4 + C1C5,

C3C7C
2
10 − C3C

2
6 − C3C5C10 − C2C6C10 + C3C4 + C1C6,

C3C7C8C10 − C3C4C6 − C3C5C8 − C2C6C8 + C1C4} .

As a result we get that Mf((V2)≥2) is a subspace ofA11, more exactly

Mf((V2)≥2) ∼= k[C2]/〈E2〉 .
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A simple computation shows that this scheme is exactly the same scheme as defined in
(4.5).

At last, we have to compute Mf((V3)≥2), which is equivalent to compute for P(V3) =
{x2e1, e2} the algorithm MARKEDSCHEME(V3,−2). The module V3 is saturated, hence
the saturation of V3 is equal to V3 in every degree. Therefore, the satiety is the lowest
possible degree, which is −1. Hence, the second argument of the algorithm is −2. The
set G ⊂ k[C3][x1, x2]2(−1,0) contains the following two elements:

F1 = x2e1 + C1e1 + C2x1e1 ,
F2 = e2 + C3e1 + C4x1e1 .

The variables in C4 are (C1, . . . ,C4).

The algorithm REDUCTIONTWO(V3,−1,G) computes the normal forms of non-mul-
tiplicative prolongations. But in V3, there are no non-multiplicative prolongations.
Hence, the set E3 remains empty. For the algorithm REDUCTIONONE(V3,−1,G) we
have the same situation. But this implies that Mf((V3)≥2) ∼= A4.

To summarize, we have seen that we can cover Quot2,(−1,0)
2,t+2 by three marked schemes.

One scheme is isomorphic toA4, one scheme is isomorphic to a subspace ofA7 and one
is isomorphic to the subspace ofA11.

If we compare this Quot scheme with the Quot scheme for the same Hilbert polynomial
but with the standard grading, we see that this tiny change produces a totally different
result.

4.5.4 The Hilbert Polynomial HP(t) = 4 in Polynomial Rings with Four
Variables over Fields with Different Characteristic

A main advantage of the approach developed in this thesis is that we can compute
Quot schemes over fields with arbitrary characteristic. As an example we compute
Hilb3

4 once over the field k1 = C which is a field of characteristic zero and k2 = Z/2Z
which is a field of characteristic two.

At first, we compute as usual the set of saturated 0-Borel fixed ideals, respectively the
set of 2-Borel fixed modules. There are three saturated 0-Borel ideals V1,V2,V3 with

P(V1) = {x2
1, x2

2, x2x1, x2
3, x3x2, x3x1} , P(V2) = {x3, x2

2, x2x1, x3
1} ,

P(V3) = {x3, x2, x4
1} .

151



4 Computation

The set of saturated 2-Borel fixed ideals contains an additional ideal V4 with

P(V4) = {x3, x2
1, x2

2} .

For the Hilbert scheme over k1 we have to compute the marked schemes Mfk1((V1)≥4),
Mfk1((V2)≥4), Mfk1((V3)≥4). We have done this with our experimental implementa-
tion in COCOALIB. The marked scheme Mfk1((V1)≥4) is a subspace ofA24

k1
, the marked

scheme Mfk1((V2)≥4) is a subspace ofA16
k1

and the marked scheme Mfk1((V3)≥4) is the
affine spaceA12

k1
.

For the Hilbert scheme over k2 we have a similar situation: Mfk2((V1)≥4) is a subspace
ofA24

k2
, Mfk2((V2)≥4) is a subspace ofA16

k2
and Mfk2((V3)≥4) is the affine spaceA12

k2
. In

addition, Mfk2((V4)≥3) is a subspace ofA16
k2

.

The scheme Hilb3
4 considered over the field k1 has a different open covering then over

the field k2. But this does not mean that both Hilbert schemes behave different or have
different invariants. This needs a deeper analysis of these results, which is not the goal
of this thesis.
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In the first chapter we introduced resolving decompositions (Definition 1.1). We have
introduced continuous involutive divisions as an example. We investigated the com-
putation of free resolutions and Betti numbers induced from resolving decompositions.
In [19] it was shown how to compute free resolutions and Betti numbers by involutive
bases. By using resolving decompositions it could be possible to get other generating
systems which behave computationally better than involutive bases. Furthermore, we
introduced in the first chapter marked bases over modules which extended the previ-
ous work of Cioffi and Roggero [13].

In the second chapter we gave alternative proofs for the Gotzmann regularity and per-
sistence theorem. These are important ingredients in an alternative proof of the rep-
resentability of the Quot functor. For Hilbert functions the theorems of Macaulay and
Green are very important. We are convinced that one can use Pommaret bases to get
a simple proof for both theorems. In addition to that, our hope is that this leads to a
deeper understanding of the combinatorial structure of Pommaret bases.

In this thesis we have seen a new method to prove the representability of the Quot
functor (Theorem 3.46). Using this we were able to give algorithms to compute the
corresponding Quot schemes.

It seems to be worth trying to use the same techniques to show the representability of
the multigraded Hilbert functors introduced by Haiman and Sturmfels [27]. Another
interesting aspect is to analyse, with the techniques introduced in this thesis, special
loci of Quot schemes. For example, the subscheme of a specific Quot scheme which
contains all modules with a bounded regularity or projective dimension. For the spe-
cific case of the subscheme of Quot schemes with bounded regularity or projective di-
mension most of the work should already be done in the first chapter. Marked bases
over modules induce a resolving decomposition. By using this theory it should be easy
to construct marked schemes which take into account bounded regularity or projective
dimension.

In the fourth chapter we developed algorithms for computing Quot schemes. In the first
two sections we developed efficient algorithms for computing saturated quasi-stable
and p-Borel fixed ideals. By using these algorithms we showed in the third section how
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to compute saturated quasi-stable and saturated p-Borel fixed modules. The fourth sec-
tion was devoted to the computation of marked schemes. Combining the algorithms
for the computation of saturated quasi-stable or p-Borel fixed modules and the compu-
tation of marked schemes we are finally able to compute Quot schemes. Finally, we saw
in Section 4.5 some example applications of computing Quot schemes. Specifically we
have computed the first concrete representation of a Quot scheme which is not a Hilbert
scheme, ever. Formerly it was a hard task to compute even small Quot schemes. We
have seen in this section that our approach is a much better approach which allows to
compute many Quot schemes.

In Section 4.5 we saw that not only the computation of an open covering of a Quot
scheme is a challenging problem. For analysing a Quot scheme it is necessary to have
effective algorithms to analyse the marked schemes. But, in general, marked schemes
are represented by ideals in polynomial rings with very many variables, even if the
algorithms presented in Section 4.4 are better than the standard approach which we
introduced at first. Furthermore, the ideals are generated by very dense polynomials.
Both facts cause big problems for algorithmic tools to analyse the marked schemes.
Most of the algorithmic tools are based on Gröbner bases. The computation of Gröbner
bases in polynomial rings with many variables and dense generating systems is still
very challenging. Hence, for the algorithmic analysis of Quot schemes we need effi-
cient techniques to deal with dense generating systems in polynomial rings with many
variables. Another problem is that the tools to analyse Quot schemes are not fully de-
veloped. For example, we checked in Section 4.5 if a Hilbert scheme is reduced. For that
we computed the radicals of ideals which represent the marked schemes. But it would
be enough to have an algorithm which only checks if the ideal is radical or not.

As we have stated, we are able to compute an open covering of the Quot scheme. In
general, it is possible to remove some marked schemes from the open covering and
the remaining set of marked schemes is still an open covering of the Quot scheme. We
know that the quasi-stable covering of a Quot scheme is in general a covering where
we can remove many elements and still have an open covering. An idea to get a better
covering would be to use this covering and find a subcover which still covers the whole
Quot scheme. There are two main problems which we need to solve for this approach.
The first problem is to check if the subcover still covers the whole Quot scheme. The
second problem is to verify that the subcover is better than the usual covering.

Nevertheless, the techniques developed in this thesis are a good starting point for a
deeper computational analysis of Quot schemes, which are currently not well explored.
This especially includes the Hilbert schemes over fields of arbitrary characteristic.
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