
Software Stories Guide
Ulrich Norbisrath1, Albert Zündorf2, Tobias George2, Ruben Jubeh2, Bodo Kraft3, Sabine
Sachweh4

1 Upper Austria University Appl. , 2 Kassel University, 3 Aachen University Appl. , 4 Dortmund
University Appl.

1 Motivation
Classical requirements engineering approaches [Pohl2010] and analysis and design techniques
[RJB2004] do not fit agile software development. Agile software development does not aim for a
complete requirements elicitation before software development starts. Instead agile software
development deploys an on-site customer [Beck2000] or a product owner [TN1986]
[Schwaber2004] who provides requirements on-demand. Similarly, agile software development
does not aim on a complete system analysis and design before software development starts. Instead
agile software development uses refactoring [FB1999] to evolve the system architecture during
development. While eXtreme Programming abandons analysis and design totally, there is an urgent
need for requirements, analysis, design, and modeling techniques that blend into agile software
development. Such an agile design technique needs to address requirements one after the other and
shall allow to proceed to analysis, design, modeling, and actual software development, early on. It
shall allow to add new requirements and functionality step by step and to extend the existing system
accordingly. An agile requirements, analysis, design, and modeling technique should support
iterative development and refactoring towards new and changing functionality. In addition, such a
technique should enable domain experts and (IT) layperson to participate in the agile development
as on-site customers and product owners. At least, layperson domain experts should be able to
understand the ideas and concepts underlying the software system in order to be able to judge
whether their requirements are met and where the software concepts may have faults or
functionality is still missing.

Software Stories are an ideal means for agile requirements, analysis, design, and modeling.
Software stories focus on concrete example scenarios thus allowing to address one functionality
after the other. A Software Story addresses a single scenario not all possible scenarios, at once.
Using examples from the every day life of the domain experts help them to express their knowledge
about the process. If there are different cases, Software Stories use multiple different scenarios, one
for each case. Thus, one may start with a simple scenario and add more and more complex cases in
an agile manner. Within a Software Story, the domain experts may exemplify relevant data in the
form it occurs to them. For example, they may add PDF forms, excel sheets, word documents, or
GUI mockups of tools they already use. For Software Stories it is perfect to give just concrete
examples of e.g. one filled PDF form for a certain process step.1 Analyzing the concrete scenarios
and the provided example data and turning it into classes and software is done by the agile software
developers during system development.

This paper introduces Software Stories as a means for agile requirements engineering, system

1 Note, a blank form will not work. A blank form is meaningful for the domain expert, only. The software people
will have serious problems understanding the meaning of all the empty form fields. (At least I (Albert) have always
difficulties to fill forms.) A form filled with example data that is also known from other scenarios helps the
software people to understand the domain, significantly.

analysis and system design and for some user centered design activities. We will first exemplify
how we have used Software Stories for the development of a simple administrative tool at our
research group. We will then discuss some important aspects and caveats of Software Stories and
how Software Stories shall be used in an agile software development process.

2 Example for Current State Analysis
As an example we model the administrative process how bachelor and master theses are managed
in our department and research group. This problem is somewhat "academic" as it does not
originate from a typical business environment. However, the problem is typical for the kinds of
problems addressed by software stories as multiple persons are involved at different points in time
and the communication, coordination, and collaboration of these people currently lack transparency
and tool support. Thus we wanted to develop a workflow tool supporting us in the coordination of
these processes.

First, we needed to do some requirements elicitation defining the theses workflow at our research
group. Instead of BPMN notation we did the requirements elicitation with Software Stories. Figure
1 shows the first two steps of our first Software Story for the Theses' Management Tool.

Figure 1: Software Story for Daniel's Bachelor Thesis, The start

A Software Story consists of a number of steps. A step describes a concrete situation and actions
executed in that situation. A step also describes when this step has been (or will be) executed and

who participated in this step or who executed it. In Figure 1 the first step is shown on the left. It has
been executed at June 28th 2015 at about 3pm. Daniel, a computer science student at Kassel
University, met Professor Albert at Albert's office. Daniel wanted to do his Bachelor thesis under
Albert’s supervision. Daniel was student programmer at Lemon Inc.2 in Kassel. Daniel was
programming some Software managing Wind Mills for electrical power generation. Daniel wanted
to do his Bachelor thesis in cooperation with Lemon Inc. in the context of his work at Lemon Inc.
In our research group, the actual supervision of bachelor thesis is usually done by PhD students.
Thus, Albert asked Tobi, one of his PhD students to join the discussion. Daniel gave some more
information on the context of his work at Lemon Inc. The topic seemed to be interesting and related
to our research. Therefore, we agreed to supervise Daniel's Bachelor thesis. For theses in
cooperation with an enterprise, in our group a meeting with a supervisor provided by the enterprise
is mandatory. Thus, Daniel got the task to organize such a meeting.

The second step of our example is shown on the right of Figure 1. On July 7th 2015 at 1pm Albert,
Daniel, and Tobi met with Lars at Lemon Inc. Lars was a software engineer responsible for the
Wind Mill Management3 software developed at Lemon Inc. Daniel gave a short presentation on the
content of the planned Bachelor thesis and Lars provided more details to the technical challenges. It
turned out that Lemon Inc. was looking for a Big Data solution to do the recording and analysis of
sensor data from a huge number of wind mills. As Big Data is the special expertise of Marcel,
another PhD student of our group, it was discussed to contact Marcel and ask him to supervise
Daniel's thesis and to collaborate with Lemon Inc. on the Big Data issues.

Figure 2: Software Story for Daniel's Bachelor Thesis, Doing It

2 Name changed by editors.

3 Thesis topic simplified and translated from German.

Figure 2 shows on the left the meeting with Albert, Daniel, and Marcel on July 5th. Marcel was
happy to help in this thesis and brought at lot of ideas to the table. In the thesis outline the most
important topics were added. These included which database system would serve best for the thesis,
how much data we expected, and what should be done with the data. Another meeting with Daniel,
Marcel, and Lars was scheduled in order to get Marcel and Lars to know each other. Then the actual
thesis work started.

The actual thesis work is shown on the right of Figure 2. This has been done mostly by Daniel.
Marcel and Lars only assisted by giving directions for areas that needed more investigation and
how to organize work and how to structure the thesis itself. This lasted about 3 month. The outcome
was the implementation of the Wind Mill Sensor Manager Web App and the thesis document.

Figure 3: Software Story for Daniel's Bachelor Thesis, Printing

As shown in Figure 3, in the morning of September 30th Daniel went to the copy shop and 3 copies
of his thesis were printed.

Figure 4: Software Story for Daniel's Bachelor Thesis, Submission

Then the difficult administrative process started. Just in time Daniel entered the Student Service
Office of our department and handed in the three copies, cf. Figure 4. Tina is working at the Student
Service. She stamped the three thesis copies with the date of their reception. Then, Tina fetched
Daniel's Student Record and marked the dead line for the bachelor thesis as met. Finally, Daniel
and Tina filled in two copies of the Thesis Grading Form4 [3] of our department. Tina handed the
stamped copies of thesis and the two grading forms to Daniel. Daniel had the responsibility to
deliver the copies and the forms to his examiners.

4 Forms simplified and translated from German, therefore also using European date notations.

Figure 5: Software Story for Daniel's Bachelor Thesis, Examiners

Figure 5 shows how Daniel delivered one copy of his thesis and one copy of the grading form to
Rose, the secretary of the Software Engineering group, and to Regina, the secretary of the database
group, respectively. The professors of these groups, Albert and Lutz, are the two examiners for
Daniel's thesis.

Figure 6: Software Story for Daniel's Bachelor Thesis, Examination

In Figure 6 Albert and Lutz read Daniel's thesis and wrote a review giving a grade for it. This has
been done completely independent from each other. There are rumors that some professors do not
read the theses themselves, but just ask their PhD students to do this. There are other rumors that
sometimes the second examiner waits with his review until the first examiner sends his review as a
guideline. Actually, in our department bachelor and master thesis reviews are not mandatory and
sometimes the second reviewer does not produce one.

Figure 7: Software Story for Daniel's Bachelor Thesis, Colloquium

On October 14th Daniel had his Bachelor Thesis Colloquium, cf. Figure 7. Daniel gave a
presentation of his results. There were several interested people from our group and especially
Albert as first examiner, Marcel as university supervisor, Lutz as second examiner, and Lars as the
industrial supervisor. After the presentation there were a lot of questions on details and a lively
discussion. At the end, Albert, Marcel, Lutz, and Lars asked for some privacy and then discussed
their impression from the work done by Daniel, from his thesis, and from his presentation. Finally,
Albert and Lutz filled in and signed the Grading Form for Daniel's thesis. Now its almost done.

Figure 8: Software Story for Daniel's Bachelor Thesis, Diploma

As the very last administrative steps, Rose the secretary of our group adds the hard copy of Daniel's
thesis to our library book shelf and she keeps a copy of the Grading Form for Daniel's thesis in our
records, cf. Figure 8 left side. Then Rose sends the original Grading Form to Tina, the Student
Service secretary. Tina, completes the Student Record of Daniel and creates Daniel's Diploma.

3 Example for Application Design
Albert wrote down the Software Story of Daniel's Bachelor Thesis discussed in Section 2 as a first
attempt at describing the problem. It shows only the current situation. Later, it turned out that this
story is still incomplete and that there are some other scenarios that are not covered by Daniel's
story. For example, internal theses without an industrial partner are somewhat simpler as the
coordination with the industrial partner can be omitted. In addition, cases where Albert is only
second examiner require some internal steps beyond those performed by Lutz in Daniel's story.

As a first step towards the design of an application helping us to manage theses in our group we did
a requirements elicitation workshop with Rose, our secretary, Tobi, the PhD student going to
implement the thing, and Albert, eager to evaluate Software Stories in practice. At the beginning of
this requirements workshop, Albert explained Daniel's Software Story to Rose and Tobi using a
large white board. During the discussion some missing elements popped up:

� For the very first step of our Software Story, we decided that we want a desktop application
allowing us to record the protocol of the first meeting with a student bringing up the idea for
a thesis. Thus we added a GUI mockup to the first step of Daniel's Software Story, cf.
Figure 9.

Figure 9: Gui Mockup Create Thesis

� Next, Tobi recalled that we were late for the first meeting at Lemon Inc. We had no phone
number nor contact name to call to announce that we are late. Similarly, there have been
cases where we reached an enterprise in time but when the door man asked for our contact
we could only name the student who had no entry in the enterprise's phone book. To avoid
such problems, we decided that in case of an external thesis our new Theses Management
Tool shall force us to record the student's mobile phone number and the contact information
for the industrial supervisor. See the bold parts of the GUI mockup in Figure 9.

� Then, we had a discussion whether the new Theses Management Tool should also support
the process of agreeing on dates and times for meetings. This usually involves checking
Albert's Google Calendar and the calendars of the other participants and may require to set
up a Doodle call. We anticipated problems in accessing the calenders of external participants
and did not come to a conclusion for this feature. However, the Thesis Management Tool
should allow to add action points or tasks on the fly and support us in keeping track of their
execution.

� Beyond action points the new Theses Management Tool might also allow to take notes on
meetings. Thus, we would be able to protocol e.g. the outline of a thesis as done in Figure 2.
However, the Thesis Management Tool was meant to facilitate the administration of theses
and we were not sure whether it should deal with the actual content of theses. We decided to
keep things simple at first and keep such a feature in mind for future extensions.

� As we reached the submission of Daniel's thesis in Figure 4, we noticed that Albert omitted
an important step in the whole process: a thesis needs to be registered at the Student Service

Office before you can submit it. Actually, the department rules require that you register your
thesis before you start working on it. The rational behind this is that the amount of time
spent on for example a Bachelor Thesis should not exceed 9 weeks. Thus, on registration the
Student Service Office sets a deadline for the submission of the thesis and this deadline is
controlled on submission. For some reasons students tend to be sloppy with the registration
of their theses'. To enforce early registration, the Student Service Office set up the rule that
one may not submit a thesis earlier than 4.5 weeks after registering it. To address the
registration of Daniel's thesis, we added another step to our Software Story as shown in
Figure 10.

Figure 10: Thesis Registration

� Analyzing the Register Thesis step brought up an essential idea for our Thesis Management

Tool. We noticed that during the process one enters the credentials of various persons and
for example the title of the thesis multiple times in multiple forms. Thus, the new Thesis
Management Tool should have an address book keeping track of the contact data of all
involved persons. Some contact data may also be imported from other sources, our group
has for example a web based assignment management system for the courses given by us.
Most likely, Daniel is already registered in this system with his credentials. Next, a lot of
information managed by the Theses Management Tool needs to be transferred into various
PDF forms provided by the Student Service Office. Thus, it would be great if the new Thesis
Management Tool provides links to the appropriate PDF forms and if the new Thesis
Management Tool would be able to auto-fill such forms with the data it already has. In the
example of Figure 10 a click on the link "Registration Form" shown in the bottom right
corner of the Theses Management Tool shown as mockup on the left of Figure 10 should
open some PDF tool with the Registration Form for theses and the Theses Manger's PDF
Bot shall auto-fill as many fields of the PDF form as possible. In our example, the PDF Bot
might auto-fill all shown information except the signatures. This auto-fill feature will greatly
enhance the motivation of the members of our research group to actually use the Thesis
Management Tool and to keep its content up to date. This is considered a killer feature.

The Story Step shown in Figure 10 includes a non-human actor like the Thesis Manager
PDF Bot, and another software component the Thesis Manager Database shown in the lower
left corner. In Software Stories, such components resemble software functionality that are
parts of the system under design. Later, these components will be implemented by the
software development team.

� Next, our secretary Rose recognized that some students need to prolongate the submission
deadline. Theoretically, this should not happen, but sometimes reality can be cruel. Our
Student Service Office provides another PDF form for this case. Thus, our Thesis
Management should allow to add such an action point on demand and it should auto-fill that
form too and keep track of the changed submission deadline.

� Finally, our secretary Rose came up with another PDF form which she uses to keep track of
theses, cf. Figure 11. Our secretary's checklist revealed a number of new insights. First of
all, we should have asked her on the first run. She had much more insight in the
administration of theses than the other group members. Second, there is a lot of redundancy
in the current system. There are the forms used by the Student Service Office, the form used
by our secretary, and an excel list in our owncloud, cf. Figure 12. And currently there is
little motivation for most group members to enter the same information into multiple forms
again and again. This results in the excel list being outdated all the time and in a lot of
frustration for our secretary as she cannot answer questions from students nor questions
from the Student Service Office like who is in charge of supervising a certain thesis and
where are the hard copies of that thesis located and when the Colloquium is scheduled.

Figure 11: Our secretary's check list

Figure 12: Theses Overview in our Owncloud

� To overcome our problems with the administration of theses, we decided to build a
workflow software that helps all of us to keep the informations about theses up-to-date and
consistent. The users of this workflow software would be the scientific members of our
group that supervise the theses and our secretary that deals with student requests and
communicates with the people outside of our research group like the staff of the Student
Service Office and supervisors of other research groups. In addition, our secretary circulates
a lot of copies of various documents. As GUI for the system we wanted some overview over
all theses and their current states. This overview might be organized like the Excel table
shown in Figure 12. In addition, for each single thesis we want a view like the checklist
shown in Figure 11. This view should provide some common data about the student and the
thesis at the top and it should show a checklist of TODOs and people in charge. TODO
items that are done might go to the bottom of the list and form some kind of history. Current
TODO items should appear on top. Future TODO items might show in the middle. TODO
items that involve filling a PDF form shall provide links to that form and should auto-fill it
as much as possible.

As the new workflow software mimics a checklist, we decided to name it E-Checkman for
Electronic Checklist Manager.

As a next step we developed prototypes for the GUI of E-Checkman. These will be included in the
next version of this paper.

4 Example for Concurrency Design Details
Our thesis administration system shall allow concurrent changes by multiple users and thus we have
to deal with concurrency issues. The following Software Story outlines our concurrency concepts.

Figure 13: Nina mails her name change

At the beginning of our scenario, Nina sends an email announcing that she has married and that her
new last name is now Mrs. Violine. At 12:12 o'clock Albert and Tobi both react to that email and
open the student record tool on their respective PCs, cf. Figure 14. Albert just changes Ashpot to
Violine, not recognizing that Nina's last name is stored in the first name field, erroneously. Albert's
student record tool employs a so-called property change listener shown as "albert edit listener" in
Figure 14. This change listener notices the change of the first name field and sends a change
notification to the SE Student Records Database shown at the bottom of Figure 14. The change
description consists of a change number that is merely a time stamp, the id of the changed data
record, the name of the changed record field and the new value. Actually, the SE Student Record
Database does not store data records but just such change records. To retrieve such a full data
record for Nina, you retrieve all changes referring to Nina's record id 123456. New changes to a
certain field of a certain data record replace old changes of the same field. Thus, the change with
the timestamp 12:12:12 will replace some old change with recordId 123456, fieldName
firstName, and newValue AshPot.

Figure 14: Handling concurrent record changes

Tobi's student record tool has a database change listener. This database listener notices change
12:12:12 when it is added to the SE Student Record Database. Thus, the change is send to Tobi's
student record tool in order to update Tobi's GUI. Meanwhile, Tobi changes the surname and the
first name field of Nina's data record. Tobi's edit listener recognizes that Tobi has entered Nina as
new first name and Violine as last name. Thus, Tobi's edit listener creates change number
12:12:13 and 12:12:14 shown in the lower right corner of Figure 14. These changes are not only
send to the SE Student Records Database but Tobi's history manager keeps track of these changes,
too. Thus, when Albert's change with number 12:12:12 reaches Tobi's student record tool, Tobi's
history manager looks into its change records and finds record 12:12:13 that changes the same field
of the same data record. As the change number is interpreted as time stamp, Tobi's history manager

notices that change 12:12:13 is newer than Albert's change and thus it drops Albert's change.

Similarly, the SE Student Records Database has its own history manager. In our scenario, the
database history manager receives Albert's change first and Tobi's changes later. When Tobi's
change 12:12:13 arrives, the database history manager notices that this change effects the same
attribute as Albert's change but it has a newer time stamp. Thus, in the database the new change
12:12:13 replaces Albert's old change. If Albert's change 12:12:12 needs some more time to reach
the SE Student Record Database and Tobi's changes have already arrived, the database history
manager would identify the conflict of changes 12:12:12 and 12:12:13 and it would drop Albert's
change instead of storing it.

Overall, the history managers are used to detect conflicting edits on the same model element, Nina's
names in our case. Without the history managers Albert's change would have been send to Tobi and
applied to Tobi's data and at the same time Tobi's change would have been send to Albert and
applied there. At the end, Albert has “Nina Violine” (as received from Tobi) and Tobi has “Violine
Violine” (the first name received from Albert and the last name changed by Tobi himself. Thus
without the history managers the two copies of the data would become inconsistent in case of
conflicting concurrent edits.

The outlined scheme of handling concurrent edits depends on the time stamps of changes. Usually,
the later change wins. This may result in so-called lost updates. Tobi may change the first name
field without noticing Albert's change. Well, this happens only when Tobi changes the first name
field in that split second that is needed to transport Albert's change to the database and from there to
Tobi's tool. Formally, it is not a lost-update, if Albert's change is shown to Tobi for some
millisecond. Actually, Tobi might see only some flickering in the GUI while starting his own
change. Thus, from the user’s perspective, there is little difference whether Albert's change is
shown for a millisecond or it is ignored at all. On the other hand, if Tobi does his change a split
second earlier than Albert, he would change the first name to Nina and when Albert's change
arrives some milliseconds later, Albert's change would be recognized as the later change and the
GUI would be updated accordingly. As Tobi has just edited the field, he would probably see that his
change has been overridden and he would just repeat it in order to set the first name to Nina,
correctly. When two people edit the same data at the same time, you may expect such situations.
And letting the last change win is a reasonable behavior. However, if this is for example a flight
reservation system, you would probably want that the earlier reservation wins. In such cases you
need another concurrency handling scheme to be discussed in another paper.5

5 Notation Details
A Software Story consists of a sequence of Software Story Steps. Each step should have

� a time and date (or a duration),
� an activity name,
� a location,
� some actors that execute the step or participate in the step,
� some picture or bullet list outlining the content of the step,
� some example data showing what information is processed and produced in this step.

5 One simple solution for a fair seat reservation system is to let the customer not change the seat data record directly
but the customer creates a new data record for a reservation request. Then some seat manager component may
listen for new reservation records. The seat manager may wait some time for other reservation records that are still
on their way through the network. The seat manager component then assigns the seat to the earliest reservation he
knows. (Reservations arriving lately due to network latency may have bad luck.)

The activity name of a Story Step frequently refers to a later implementation of the illustrated
activity. For example, in our E-Checkman system, the name "Register thesis" of the Story Step of
Figure 10 refers to an Action Point or TODO item in the E-Checkman GUI that will be used to
open the Thesis Registration Form of our department and to (auto) fill this form. Thus, the name of
a Story Step is merely used for tracing the described functionality in the later implementation.

Each Story Step should provide a time and date when this example step has been executed or will
be executed. The first purpose of the step execution time is to help the people developing the
Software Story to focus on the example level. It is not the “Register Thesis dialog is opened by
somebody” but it is “July 28th 10:42” and it is “Albert together with Daniel and Marcel”. We
experienced that forcing domain experts and other Software Story developers to start with a
concrete point in time helps them significantly to stick to a concrete example and to prevent them
going to a more abstract (rule level) description.

Next, the concrete time and date helps to deal with parallel and concurrent activities. At the rule
level, concurrency issues require a lot of careful design regarding when a particular activity might
be executed, which other activities need to be completed first, and which set of activities might be
mutual exclusive. In a concrete example, it is much easier to specify just when the activity is
executed in this particular example run. One may choose similar dates for two activities done by
different actors in a single Software Story in order to give a hint that these two activities are
independent from each other. One may also choose a sequence of points in time for a number of
Story Steps in order to emphasize that the involved Story Steps trigger each other. One may also
indicate that some Story Step happens several days later as another department or another
organization is responsible for it and information has to be send around and the issue may need to
wait before it is scheduled.

In general, timing and concurrency issues are complicated topics that need sound analysis.
However, in early requirements engineering where domain experts are involved, it is nearly
impossible to address such issues in all details. Thus, we made the experience, that domain experts
as well as software engineers can do a reasonable job in discussing concurrency issues just by
providing time stamps for Story Steps.

The location where a Story Step is executed again helps the Software Story developers to focus on a
concrete example. It also gives an idea of the kind of infrastructure you might expect for the
execution of such a step. Story Step "Register Thesis" of Figure 10 is executed in the office of
Albert at Kassel University. However, we can expect that a desktop computer is available and that
we have access to the Internet and we have access to the E-Checkman system of our group. In other
situations like on the right of Figure 1 we might only have a mobile system available or as shown in
Figure 4, we might be in a different department and thus we might not be able to access E-
Checkman.

Next, each Story Step should provide the actors that execute it or that are involved. In our example,
these actors are usually persons like Albert, Daniel, or Tina. These persons represent users of the
described software system. However, to focus on the concrete example we use individual names to
refer to the involved actors and we also use individual icons for each of them. Still, the different
Actors represent different roles or different kinds of users. These roles may be given as a second
name on a second name line like Albert Prof, Daniel Student or Tina Student Service. We
frequently provide the role of an actor on its first occurrence in our Software Story and omit it later
on.

One additional remark on concrete named actors versus just role names: Different people doing the
same job might frequently execute it quite differently. For example, some years ago the

administration agent in charge for checking and refunding travel costs at Kassel University was
Mister Four-Corner. When Mr. Four-Corner was in charge, it was enough to fill some simple form
and to put all your receipts in a bag and send it to him. If there was something unclear, he would
phone you and clarify things – issue solved. Then Mr. Four-Corner retired. The new guy in charge
was Mr. Spare-Time. Mr. Spare-Time did not call you back but he just sent back your bag of
receipts with a remark like "details are missing". This frequently required quite a number of
iterations and you were waiting for you money for ages. Finally, we had to change the process.
Now you give your bag of receipts to Rose, our secretary and she will ask you for the details and
then send a detailed and complicated report to Mr. Spare-Time. The lesson learned is, the same user
role in the same process may function quite differently depending on the concrete person doing it.
One might argue that such cases indicate missing process standardization and strictness. However,
even with good standardization, in practice, different people do the same job differently. Thus,
processes and the accompanying tools need to deal with different personalities and need to be
flexibly adaptable to such issues. During requirements engineering this means, when developing a
Software Story, knowing the concrete person who is doing a certain step will greatly facilitate to
describe that step. It is much easier to describe how Tina handles the submission of Daniel's Thesis
than to describe how some Student Service servant handles the submission of some student. To
generalize from the concrete example to the rule level is the task of software developers, later on.

Our example Software Story models a workflow with several human actors. In other examples,
some steps may be executed by a software system that does for example some consistency checking
or that calculates a certain price. Actually, the Register Thesis step shown in Figure 10 shows an
incomplete triangle icon representing the PDF Bot component of our Theses Manager. This piece of
software is responsible to open PDF forms and to auto-fill them using the data collected in our
Theses Manager. If (that piece of) your software already has a logo, you may use that logo to
represent it in a Software Story (as the open triangle resembles the Adobe icon). You may also use
icons resembling a computer or a robot or for example a xerox machine to show software
components that do a certain job. Adding software components as actors to your software stories
greatly helps to illustrate internal activities executed by your program(s). They may also be used for
internal discussions in the software development teams to clarify the responsibilities of the various
software components to be developed. They also help domain experts to understand how the
software works internally. This will help your users in working with the system. Note, a software
component participating in a certain step of a Software Story always represents a running instance
of that software component that is executed on a certain computer at a certain point in time. This
shall not be mixed with the part of the software that implements this behavior. The difference is that
the same program binary may be executed on different computers at a certain point in time and on
each computer it may modify its own copy of the data, cf. Figure 14. Using runtime instances of a
software in our Software Stories allows to model such situations. Still, the identification of software
components and their roles in the example scenarios is a pretty good input for the software analysis
and design. Later, the software developers will revisit these components and (together with some
customer or product owner) clarify the details by refining the Software Stories with more data and
more functional details. This may then serve as input for the component implementation.

The main content of a Story Step is some kind of PowerPoint slide that outlines what is going on in
this step. This outline may contain any pictures or drawings or bullet items. This content is mainly
read by humans and has just the task to help the involved domain experts and software engineers to
get an idea of what is done in this step. On a white board, the participants will discuss the details of
the Story Step content. When documented, some explaining text should be added to explain these
things to the reader.

A very important part of the main Story Step content is the inclusion and visualization of some
example data. In our example Software Story, we depict several paper sheets or PDF forms

showing notes, phone numbers, addresses, check boxes, and text fields. In Figure 9 we also mimic a
screen dump showing an input form for some thesis and contact data. Such example data is
extremely valuable for the requirements engineering task. Example data represented in forms that
are familiar to the domain experts help those domain experts a lot to provide input to Software
Stories and to explain which data they are dealing with. Similarly, the example data helps the
software engineers to derive a data model for the desired software. The software engineers will
most likely use some UML class diagrams to specify that data model for later implementation.
While such class diagrams are very valuable for the software engineers and developers, domain
experts usually do not understand class diagrams very well and they will not be able to spot faults in
the class diagram design. Thus class diagrams will not help to clarify details and to resolve
misunderstandings. Example data shown to the domain experts in a familiar way does a much better
job. Deriving the formal data model is done by the software developers in a later step, easily. In our
experience, example data contained in Software Stories is the most valuable part of a software story
and thus we strongly suggest that Software Stories should always contain a lot of example data.
Example data also helps you to find the right level of abstraction for your Software Story. If your
Software Story does some kind of top down refinement, you may start with Software Stories like
"Monday Morning, Albert tries to run SE Group Uni Kassel" containing Story Steps like "Albert
manages David’s thesis" which are quite coarse. When you refine such complex Story Steps to
more detailed activities, frequently the question arises whether we have reached a sufficient fine-
grained level of abstraction or whether we should still go on refining the steps. To our experience,
as soon as you are able to give example data, you have reached the right level of abstraction.

5 Summary
Software Stories are a great means to do agile requirements engineering, analysis, design, and
modeling with domain experts. Focusing on concrete examples helps the domain experts to explain
and document their processes and by providing example data, the domain experts are able to
provide great input for the data modeling step. To complement Software Stories during
requirements engineering usecase diagrams may be used to group Software Stories and to give a
general overview of the requirements. Thus usecase diagrams may help to structure the whole
system while Software Stories explain the usecases in more detail. Thus, the usecases will help to
structure the whole software development process and to group system functionality and to
prioritize software development tasks. A thorough analysis of alternative scenarios may result in a
larger number of Software Stories for a given System. Following the ideas of Story Driven
Modeling [NJZ2013], Software Stories shall be turned into automatic (J)Unit [JUnit] tests. These
Story Tests serve two main purposes. First a Story Test ensures that the described functionality is
actually implemented and working at least for the example scenarios. And second, the Story Tests,
help to ensure consistency across multiple related Software Stories. Without such a consistency
check, multiple Software Stories may easily contradict each other on how a certain step is done and
why a certain decision is made and which example data is used and stored in a certain step. By
turning Software Stories into JUnit tests, the software engineers will identify such inconsistencies
and they may revisit the domain experts to resolve such issues. Once you have achieved a
consistent set of JUnit tests for your Software Stories, these JUnit tests ensure the consistency and
completeness of all your requirements. Note, your final system will need more tests than just the
Story Tests. You may also need a system design using component, deployment, and class diagrams.
When designing algorithms, you may again use Software Stories or Storyboards for more fine-
grained internal analysis. Such internal Software Stories may look much more technical and they
may contain object diagrams or pseudo code fragments. Overall, Software Stories are just a great
help for such requirements engineering, analysis, design, and modeling activities – especially in an
agile development environment.

References
[Beck2000] Beck, Kent. Extreme programming explained: embrace change. addison-wesley

professional, 2000.

[BPMN] Object Management Group Business Process Model and Notation.
http://www.bpmn.org/

[FB1999] Fowler, Martin, and Kent Beck. Refactoring: improving the design of existing
code. Addison-Wesley Professional, 1999.

[JUnit] Junit. http://junit.org/

[NJZ2013] Ulrich Norbisrath, Ruben Jubeh, Albert Zündorf. Story driven modeling.
CreateSpace Independent Publ. Platform. ISBN-13: 978-1483949253.
http://www.amazon.de/Story-Driven-Modeling-Ulrich-
Norbisrath/dp/1483949257 2013

[Pohl2010] Klaus Pohl. Requirements Engineering: Fundamentals, Principles, and
Techniques. Springer Publishing Company. ISBN:3642125778
9783642125775. 2010.

[RJB2004] James Rumbaugh, Ivar Jacobson, Grady Booch. Unified Modeling Language
Reference Manual, The (2nd Edition). Pearson Higher Education.
ISBN:0321245628. 2004.

[Schwaber2004] Schwaber, Ken. Agile project management with Scrum. Microsoft press, 2004.

[TN1986] Takeuchi, Hirotaka, and Ikujiro Nonaka. "The new new product development
game." Harvard Business Review (1986).

