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Abstract

Time series are useful for modeling systems behavior, for predicting some events (catastro-

phes, epidemics, weather, . . . ) or for classification purposes (pattern recognition, pattern

analysis). Among the existing data analysis algorithms, ordinal pattern based algorithms

have been shown effective when dealing with simulation data. However, when applied to

quasi-periodically forced systems, they fail to detect SNA and tori as regular dynamics. In

this work we address this concern by defining ordinal array (OA) based indicators, namely

the OA complexity (OAC) and three OA asymptotic growth indices: the periodicity, the

quasi-periodicity and the non-regularity index. OA growth indices allow to clearly distin-

guish between periodic and quasi-periodic dynamics, which is not possible with the existing

ordinal pattern-based entropy and complexity measures. They clearly output integer values

for periodic dynamics and non-integer values for SNA and quasi-periodic dynamics. SNA

and quasi-periodic dynamics are distinguished from weakly chaotic dynamics by the sign of

the non-regularity index: it is positive for chaotic data and negative for regular dynamics.

A further test based on the dependence of the OA growth indices on the time series length

allows us to distinguish between tori and SNA. Moreover, by defining the upper limits of

the OA growth indices for purely random data, a classification between deterministic and

stochastic data is achieved. The non-regularity index may also be used as a complexity

measure for non-regular dynamics by considering large time series length, but the OAC

still provides a better estimate of the complexity for moderate data length. So, OA growth

indices are useful for determining the nature of the data series (periodic, quasi-periodic,

chaotic or stochastic), while the OAC allows us to estimate the corresponding complex-

ity. The four indicators thus defined constitute a complete tool for nonlinear data analysis

applicable to any type of time series.
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Introduction

Natural systems obey physical laws which can be better understood by means of mathe-

matical modeling. As recent progress in laboratory experiments and data analysis methods

have revealed fundamental properties of nonlinear dynamical systems [16, 29], the challenge

nowadays is to exploit ideas from chaos theory in real-life phenomena wherever more struc-

tures are observed from data than with traditional methods [44]. For this purpose, many

complex phenomena are being modeled using the concept of nonlinear dynamical systems

or simply chaos theory.

System modeling depends prior on observations made from the real-world system and

is useful for prediction, classification, fault detection, . . . Time series therefore constitute

the starting point for system modeling or analysis. However, if so far modeling has been

shown efficient, it is nevertheless important to note that it is based on approximations that

sometimes can diverge from reality. Indeed, modeled systems do not exactly approximate

the behavior of the real-world systems, as it remains difficult to model the adaptive prop-

erties of the real-world system parameters, or to make the control parameters of the model

fit exactly those of the real-world system. In more complex systems, the number of control

parameters is too large and cannot be managed [70]. In order to discard all these hard

approximations, a direct processing of the time series is surely needed.

The nonlinear analysis of time series from real-world systems has been shown to be the

most direct link between chaos theory and the real world [44]. Nonlinear time series analysis

is then considered as a reliable tool for the study of complex dynamics and the concept of

low-dimensional chaos is becoming more and more effective for the understanding of many

complex phenomena [47, 50], although discriminating between chaos and stochastic data

remains an open problem [31, 64]. In this work, we shall deal with deterministic systems.

Much as nonlinear time series analysis is the most direct link between chaos and the
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2 Introduction

real world, complexity is the effective method for comparing time series. It applies to di-

verse areas of applied science and engineering, including physics, chemistry, biology, finance

and industrial applied mathematics [5, 12, 13, 32]. The main complexity parameters are

entropies, fractal or correlation dimension and the Lyapunov exponent. As these definitions

are not made for arbitrary series of observations or require an infinite observation time, they

appear to be less suitable for real-time applications and less accurate for decision making.

For example, the existing methods for the estimation of the largest Lyapunov exponent

do not provide stable estimates since the scaling of the exponential growth of the initial

perturbation requires large and noise-free time series [7].

Developing techniques to understand the internal behavior of a dynamical system given

only its observed outputs has been so far crucial for various fields of research. In addition

to the above listed complexity measures, there are various basic methods for time series

analysis such as the Fourier transform, wavelet transforms, and many others [42, 52, 69].

Unfortunately, the Fourier transform as well as other conventional methods have been shown

to be inappropriate for the classification of stochastic or chaotic data [70]. For example, the

Fourier transforms of Gaussian noise and uniform noise are similar, although the two types

of noise have two different probability distributions. Therefore, statistical methods based

on the probability distributions appear to be more suitable for such a classification. In

chaos theory, a deterministic dynamical system generating non-regular dynamics is said to

be chaotic and the ability to quantify chaos (or the degree of randomness) is an important

question with applications ranging from physiological data analysis (electroencephalogram,

electrocardiogram . . . ), robotics (stability analysis of robotic control systems) to the sta-

bility of the solar system. Detecting chaos from an arbitrary series of observations remains

a challenging task [1, 4, 19, 20, 38, 55], as it is difficult to make a clear difference between

chaotic and stochastic dynamics. Some investigations have been carried out in this area

and are giving promising results [11, 31, 64]. If the system is assumed to be deterministic,

measuring its complexity is useful for determining whether its behavior is predictable or

not. Progress has been made in developing tests for chaos [7, 22, 28] and various com-

plexity measures have been developed, which let us to compare time series and distinguish

between regular and non-regular behaviors. Some examples of application can be found in

meteorology where the time prediction is of crucial importance.

Habilitation thesis, University of Kassel, June 2017



Introduction 3

As we have just said, existing theoretical complexity measures such as Lyapunov expo-

nents, Kolmogorov-Sinai (KS) entropy, correlation dimension and many others are difficult

to estimate from a finite data set, while empirical measures of complexity like the renormal-

ized entropy or the approximate entropy often lack a theoretical foundation or are not easy

to interpret [2, 58, 62]. Moreover, most of these complexity measures do not perform well in

the presence of noise and require large computation times so that they cannot be used for

real-time applications. Considering all these difficulties of applying theoretical complexity

measures to experimental data, new algorithms have been developed. Among them, one

can quote the 0-1 test and the ordinal pattern based algorithms, as they can be directly

applied to the series of observations [4, 8, 30, 40, 57, 59]. The 0-1 test for chaos detection

from time series was proposed in 2004 by Gottwald and Melbourne. The test has the advan-

tage of being binary as it outputs 0 for regular dynamics and 1 for non-regular dynamics.

The 0-1 test has exhibited competitive results and has been successfully applied to many

types of dynamical systems and experimental data [35, 36, 37]. It is still being improved

and has recently been slightly modified for an efficient application to strange non-chaotic

attractors (SNA) [34]. The 0-1 test is sensitive to the sampling frequency. Gottwald and

Melbourne showed that in the case of continuous time systems, it can fail to detect chaos in

oversampled time series and requires the sampling frequency to be reduced to the Nyquist

frequency. However, such a condition is not consistent with the digital signal processing

requirement that the sampling frequency needs to be greater than the Shannon limit. In

order to overcome such a limiting property, we proposed the modified 0-1 test in which the

0-1 test is applied to the local maxima and minima of the observations, instead of directly

being applied to the entire observation [25]. This modified 0-1 test thus allows us to easily

detect chaos from oversampled time series. However, despite this improvement, the 0-1 test

remains computationally costly and cannot be used for real-time analysis of time series.

Moreover, the calibration of the test sometimes depends on the system under study, and

the 0-1 test by itself does not distinguish between quasi-periodic and periodic orbits, or

quasi-periodic and weakly chaotic orbits.

We dedicate particular attention to ordinal pattern-based algorithms as they are fast and

robust against noise, therefore can be used for real-time applications. We define an ordinal

pattern to be any pattern obtained by considering the order relation between values in a time

series. In 2001, Bandt and Pompe proposed the basic algorithm, namely the permutation

Habilitation thesis, University of Kassel, June 2017



4 Introduction

entropy (PE) [4], which is actually widely used in many fields due to its conceptual and

computational simplicity. The PE is based on the ordinal pattern analysis and is easily

calculated for any type of time series, be it regular, chaotic, noisy, or reality based. It has

been successfully applied to the study of structural changes in time series and the underlying

system dynamics [9, 10, 45, 46, 48]. In addition to its robustness against noise, it has been

verified that the PE behaves similarly to the largest Lyapunov exponent (LLE) and can

therefore be used for the detection of chaos in dynamical systems [3].

However, although regular dynamics exhibit vanishing or negligible complexities, there is

no particular value or property of the PE for detecting this as it is the case for the LLE, which

makes the PE less suitable for chaos detection. Indeed, in some examples of chaos detection,

PE tracks the LLE with a uniform bias that depends on the underlying system and the

parameter setting of the PE algorithm: even perfectly predictable dynamics are measured

as having nonzero entropy. The dependence on the uniform bias can sometimes be difficult

to determine when dealing with an unknown single time series. Despite the modification

proposed by the weighted PE [3] and the modified PE [6] algorithms to overcome some

shortcomings of the PE, no solution has been proposed to address this concern. According to

its implementation description, a technique based on the use of lookup tables was presented

in [68]. However, defining lookup tables for large permutation orders n is problematic as

the number of permutations is equal to n!. In the case of the modified PE for example, the

number of permutations is given by the corresponding ordered Bell number, which is greater

than n! [68]. Thus approximating the Kolmogorov-Sinai (KS) entropy from the PE is quite

difficult as it requires large n. Moreover, defining a lookup table may not be practicable

if the algorithm is implemented for embedded systems. Recently the conditional entropy

of ordinal patterns was proposed that provides more reliable estimation of the KS entropy

[67] than the PE.

Without prior knowledge of the PE, we proposed another approach for time series anal-

ysis, namely the three-state test (3ST) for chaos detection in discrete maps, which has also

been shown to belong to the group of ordinal pattern analysis methods [26]. The 3ST

presents the advantages of both detecting the regularity or non-regularity and estimating

the period of the time series. The difference between the PE and the 3ST comes from the

statistical exploitation of the permutations. Indeed, instead of constructing ordinal patterns

(permutations) of fixed order n like in the PE, in the 3ST data sequences are ordered using

Habilitation thesis, University of Kassel, June 2017



Introduction 5

different values of n and the corresponding permutations are studied. In this approach, no

probability is computed as the permutations do not have the same length. Moreover, the

permutation list may be very large, depending on the length of the time series, hence it may

be memory and computationally costly. For this purpose, each permutation was replaced by

its largest slope S. The 3ST can easily detect the period-doubling bifurcation and output

the corresponding periods as discrete numbers (periods of stable limit-cycles) [26]. In ad-

dition, like other ordinal methods for time series analysis, the 3ST is also computationally

low cost and was designed for possible real-time applications. Recently, we proposed an

improvement of the 3ST which clearly discriminates between periodic, quasi-periodic and

chaotic dynamics [27]. We thus defined λP as the sensitivity of the 3ST chaos indicator,

namely λ, to the initial phase. We also showed that λP is equivalent to computing λ us-

ing permutations with fixed order [27]. With this definition, the 3ST and the PE appear

closer, even if only the largest slopes of permutations and no probabilistic approach are

used in the 3ST algorithm. Taking into account the complex nature of the algorithm used

for computing λP , we introduced the entropy measure related to the largest slopes, namely

the permutation largest slopes entropy (PLSE) [28].

However, despite the proven efficiency of ordinal pattern based algorithms, to the best

of our knowledge, their application to quasi-periodically driven systems has never been

reported. Indeed, when applied to such systems, ordinal pattern-based algorithms fail to

detect SNA and tori as regular dynamics, i.e with zero complexity. The objective of this

thesis is to address this concern. We revisit ordinal pattern based algorithms for improving

complexity measures from time series. New chaos indicators based on the ordinal arrays

(OA) are proposed, namely the OA complexity (OAC) and three OA asymptotic growth

indices: the periodicity, the quasi-periodicity and the non-regularity index. The OA growth

indices should distinguish between periodic and quasi-periodic dynamics, while the OAC

should improve their complexity measure by outputting a nearby zero complexity, which

is not possible with the existing ordinal pattern-based entropy and complexity measures.

The rest of the work is divided into four chapters: chapter 1 presents the 3ST algorithm;

chapter 2 is focused on the permutation largest slope entropy (PLSE) algorithm; chapter

3 presents the matching energy (ME); while chapter 4 investigates the applicability of the

OA-based indicators to strange non-chaotic attractors.

Habilitation thesis, University of Kassel, June 2017



Chapter 1

The three-state test (3ST)
algorithm

This chapter presents an algorithm for the analysis of the outputs of deterministic dynamical

systems, namely the three-state test (3ST). 3ST is designed to distinguish clearly between

periodic, quasi-periodic and chaotic dynamics by means of a chaos indicator called the

periodicity index. In addition to the common outcomes of the existing tests based on time

series analysis, it also allows us to estimate the period of stable limit-cycles. In simulations,

data generated from discrete maps and ordinary differential equations were successfully

characterized confirming the validity of the method, and the results were compared to

those of the Lyapunov exponent.

The algorithms presented in this chapter were published in:

[26] J. S. A. Eyebe Fouda, J. Y. Effa, M. Kom, M. Ali, The three-state test for chaos

detection in discrete maps, Applied Soft Computing 13 (2013) 4731-4737.

[27] J. S. A. Eyebe Fouda, W. Koepf, Efficient detection of the quasi-periodic route to

chaos by the three-state test, Nonlinear Dyn. 78 (2014) 1477-1487.

1.1 Introduction

Understanding the internal dynamics of a nonlinear system given only its time observation

is a key challenge in applied dynamical systems. The most interesting task is to classify

systems into deterministic or stochastic, and the easiest is to classify dynamics into regular

and non-regular. We recall that in this work we are dealing exclusively with deterministic

Habilitation thesis, University of Kassel, June 2017



1.2 Mathematical foundations 7

systems. Regular dynamics do not depend on the initial conditions of the underlying system.

In contrast, non-regular dynamics are sensitive to the initial conditions. If in addition the

underlying system is assumed to be deterministic, then non-regular dynamics are said to

be chaotic.

Usually, the regular and non-regular behavior of a dynamical system is determined by

the sign of the largest Lyapunov exponent (LLE) λLyap: if λLyap ≤ 0, then the dynamics

exhibited by the system is regular; otherwise, it is chaotic. However, computing the Lya-

punov exponent is too time consuming, and the algorithms used are noise sensitive and may

require the modeling equations of the underlying system. In order to achieve real-time anal-

ysis of real-world dynamical systems, fast and robust time series analysis based algorithms

are required. In this chapter we present the three-state test (3ST), an ordinal pattern based

algorithm designed to distinguish clearly between periodic, quasi-periodic and chaotic dy-

namics [26, 27]. In addition to the common outcomes of the existing tests based on time

series analysis, the 3ST allows us to estimate the period of stable limit-cycles.

1.2 Mathematical foundations

The 3ST considers the properties of periodic and quasi-periodic signals for the definition of

the ordinal patterns, which themselves are used for determining whether the dynamics are

regular or non-regular. Ordinal patterns are derived from the order relation between values

in a time series. Chaos can be seen as the ability of a deterministic system to exhibit new

values in the phase space as the time evolves. However, given that the topological space is

bounded, the number of distinct values exhibited by the system also can be limited, even

though the system is chaotic. Therefore, the above definition needs to be extended. With

the ordinal patterns approach, the number of ordinal patterns can increase infinitely with

the observation time, although the number of distinct values in the phase space is bounded.

This means that although chaos can be detected by counting the number of distinct values

in the phase space, it is also useful to know whether the distribution of these values or their

time evolution is regular or not. The ordinal pattern based time series analysis can then be

considered as a complementary tool for chaos detection.

Habilitation thesis, University of Kassel, June 2017



8 The three-state test (3ST) algorithm

In nonlinear dynamics, there are three basic types of behaviors: the periodic, quasi-

periodic and chaotic dynamics. The two first types belong to the category of regular dy-

namics while the third one belongs to the category of non-regular dynamics. The 3ST

algorithm is assumed to distinguish between these different categories. As it is based on

ordinal pattern analysis, its reliability also depends on their definition.

1.2.1 Patterns of periodic dynamics

It is common to characterize periodic dynamics by their period, the period itself being

characterized by a basic shape (pattern) so that the whole dynamics can be seen as a

repetition of this basic pattern. A simple example we can easily describe is the sinusoid.

Indeed, a sinusoidal signal is characterized by its period, and the period itself is characterized

by a basic shape so that the sinusoid can be effectively defined as a periodic recurrence of

that basic shape. The feature which can better describe the basic shape of the sinusoid

is for example its amplitude (also representing its maximum). So, for a dynamics to be

sinusoidal, its maximum should take the same value (single value in the phase space) and

should also appear periodically in the time space. Using these two characterizing features,

the pattern that fits the description of a sinusoid is derived from the map of the time

evolution of its maximum amplitude: if this local maximum varies as the time evolves or if

it is constant, but does not appear periodically, the signal cannot be said sinusoidal. The

maximum of the sinusoid can then be seen as a feature, while a pattern can be derived from

its time evolution. This approach can be easily extended to dynamics with more than two

harmonics by considering the series of local maxima.

In the case of discrete maps, a time series is said to be periodic if there exists a basic

shape which is periodically repeated as the time evolves.

Definition 1.2.1. A time series x = {xt}t=0,1,...,T−1 of length T is called period-L cycle or

simply L-periodic, if there exists a basic pattern of length q samples containing L distinct

values (L ≤ q) periodically repeated, independently of the time origin. q is known as the

time space period and L as the phase space period.

In Fig. 1.1 are shown some examples of periodic signals. It clearly appears that L is the

number of distinct values per period, while q is the total number of values per period of the

time series.
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Figure 1.1: Example of periodic signals with various phase space periods L and time space
period q = 6. In the left side is shown the time representation, while the right side corre-
sponds to the phase space representation.

Definition 1.2.2. Let {xt}t=0,1,...,T−1 be a data series of length T , g a sorting function such

that {ut} = g({xt}) is the data series containing the values of {xt} sorted into ascending

order (identical values are sorted by the ascending order of their time index), and f a

function such that v = f({ut}) is the series of time indices of the values of {ut} in {xt}. We

define the ordinal transform to be the function F = f ◦g such that v = F(x). F is a function

which associates to an input time series x the series of time indices v = {vt}t=0,1,...,T−1 of

its values sorted into ascending order. The argument of F can be a list or a vector of real

numbers, while the corresponding output v is a list or a vector (permutation) of natural

numbers.

If for example x = {xt}t=0,1,...,T−1 is such that x5 < xT−1 < x0 < . . . < x3, then the

series of indices v = F({xt}) is equal to v = {5, T − 1, 0, . . . , 3}.

Proposition 1.2.1. Let {xt}t=0,1,...,T−1 be an L-periodic time series of length T ≥ 2L with

L = q, the corresponding series of time indices v = F ({xt}) is a piece-wise linear function

whose all the increasing linear segments present the same slope, and this slope is equal to

the phase space period L of the time series.

Proof. Let us assume that the length of {xt} is such that T = L · N , where N ≥ 2 is the

number of periods observed. {ut} = g({xt}) is a stair function having L stairs each of
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10 The three-state test (3ST) algorithm

length N . All the values in a stair are identical and two consecutive values ut = xvt and

ut+1 = xvt+1 in a stair belong to two consecutive periods of {xt}. So, their positions in {xt}
are such that vt+1−vt = L. Now let us apply this relation to each stair of the series of time

indices:

• First stair:

The first stair contains N samples, that is

U0 =
{
u0, u1, . . . , uN−1} = {xv0 , xv1 , . . . , xvN−1

}
.

Their positions in {xt} verify the relation vt+1 − vt = L. This relation can be re-

cursively written and generalized as vt+i = L · i + vt. By setting t = 0 for the first

element, the relation can be simplified to vi = L · i + v0, where v0 is the position of

u0 in {xt} and 0 ≤ i ≤ N − 1. u0 is the first smallest value of {xt}. It is now clear

that the slope of the first stair is equal to L.

• Second stair:

The second stair corresponds to the following samples:

U1 =
{
uN , uN+1, . . . , u2N−1} = {xvN , xvN+1 , . . . , xv2N−1

}
.

Using the same technique as for the first stair, but setting now t = N , we obtain

vN+i = L · i + vN , where vN is the position of uN in {xt} and 0 ≤ i ≤ N − 1. uN

is the first value of {xt} greater than u0. Once more, it is clear that the slope of the

second stair is equal to L.

• L-th stair:

It corresponds to

UL−1 =
{
u(L−1)N , u(L−1)N+1, . . . , uLN−1} = {xv(L−1)N

, xv(L−1)N+1
, . . . , xvLN−1

}
.

In the same way as for the previous two stairs, but setting t = (L−1)N , the elements

of the series of time indices vary as v(L−1)N+i = L · i+ v(L−1)N , where v(L−1)N is the

position of u(L−1)N in {xt} and 0 ≤ i ≤ N − 1. u(L−1)N is the first greatest value of

{xt}. The slope of the L-th stair, similar to the two previous ones, is equal to L and

recursively, we can extend this demonstration to the other ramps of v.
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1.2 Mathematical foundations 11

Given that 0 ≤ i ≤ N − 1 for all the ramps, it can be rewritten as i = t mod N . The

set of initial values for all the ramps is v0 = {v0, vN , . . . , v(L−1)N} and the corresponding

values are {u0j}j=0,1,...,L−1 = {u0, uN , . . . , u(L−1)N}. Each of them is the first element of the

different L stairs of {ut}, so they all belong to the first period of {xt}. Consequently, v0

can be expressed as v0 = F(x0), where x0 = {x00, x01, x02, . . . , x0L−1} is the basic period of

{xt}. Thus, v0 is the series of time indices corresponding to the basic period of {xt} sorted

into ascending order; so it depends on the ordering of the L distinct samples in x0. As each

element of v0 is unique, the initial value of each ramp of v is unique and ranges from 0 to

L− 1. Finally, the general term of vt describing the behavior of the series of time indices v

can be expressed as

vt = L · (t mod N) + v0� t
N
�. (1.2.1)

Equation (1.2.1) shows that vt is a piece-wise linear function presenting L linear ramps

with the same slope S = L, which ends the proof.

Following from Proposition 1.2.1, a periodic dynamics with L = q can be efficiently

described by its slope S = L = q, as predicted. Furthermore, this slope does not depend on

the ordering v0 of the values in the basic period x0 of {x}.
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Figure 1.2: Example of period-6 signal and the corresponding series of time indices {vt}.
The results confirms that all the ramps of {vt} present the same slope S = 6

Example 1.2.1. Let x = {0, 3, 2, 5, 4, 1, 0, 3, 2, 5, 4, 1, . . .} be a period-6 time series observed
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12 The three-state test (3ST) algorithm

on N = 10 periods, as shown in Fig. 1.2. Its basic period is x0 = {0, 3, 2, 5, 4, 1} and the

series of time indices of the corresponding ordered version u0 is v0 = {0, 5, 2, 1, 4, 3}. The

general term of the series {vt} can then be written as vt = 6 · (t mod N) + v0� t
N
�. The

corresponding plot is shown in Fig. 1.2 where {vt} is a function with 6 ramps which all

present the same slope S = 6.

Changing the basic shape into x0 = {0, 2, 3, 5, 4, 1} will also change the basic series of

indices into v0 = {0, 5, 1, 2, 4, 3}, but the slope will remain unchanged.

Proposition 1.2.2. Let {xt}t=0,1,...,T−1 be a L-periodic time series of length T ≥ 2q with

L < q, the largest slope S of the corresponding series of time indices v = F ({xt}) is equal

to q iff there exists at least one non-repeated value in the basic period x0 of {xt}.

Proof. Let us assume that the length of {xt} is such that T = q · N , where N ≥ 2 is the

number of periods observed and A = {a0, a1, . . . , aj , . . . , aL−1} the set of distinct samples.

{ut} = g({xt}) is a stair function presenting L stairs each of length rj ·N , where rj is the

number of repetitions of aj in the basic period x0 of {xt}. The repetitions are such that
∑L−1

j=0 rj = q. Non-repeated values are those for which rj = 1. Let us assume that there is

a non-repeated value aj in x0. It ocurs only once per period and according to Proposition

1.2.1, the time indices of the ramp of the corresponding stair are such that vt+i = q · i+ vt,

hence the corresponding slope is equal to q.

Now let us assume that all the samples in the basic period are repeated, and consider a

twice repeated (rj = 2) sample aj . Let xt+i and xt+k be two occurrences of aj belonging to

the l-th period of {xt}, with i < k. Their repetitions in the (l+1)-th period are respectively

xt+i+q and xt+k+q. The series of times indices of the stair of {ut} corresponding to this

value can be written as {. . . , t+ i, t+ k, t+ i+ q, t+ k + q, . . .}. The corresponding slopes

are (k − i) < q as xt+i and xt+k belong to the same period, and (i+ q − k) < q.

This technique, which can easily be extended to rj > 2, shows that the slopes corre-

sponding to repeated values are all smaller than q. So, the largest slope S equals q only for

non-repeated values, which ends the proof.

Example 1.2.2. Let us consider N = 10 periods of the period-3 (q = 6) time series

x = {0, 3, 2, 3, 2, 2, 0, 3, 2, 3, 2, 2, 0, 3, 2, 3, 2, 2, . . .} shown in Fig. 1.3. Its basic period is x0 =
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1.2 Mathematical foundations 13

{0, 3, 2, 3, 2, 2} and the series of time indices of the corresponding ordered version u0 is

v0 = {0, 2, 4, 5, 1, 3}. It can be observed in that case that only the ramp corresponding to the

non-repeated sample is linear and its slope S = 6 is the largest one.
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Figure 1.3: Example of period-3 signal with redundant values, and the corresponding series
of time indices {vt}. The results confirm that only the ramp of {vt} corresponding to the
non-repeated value presents a slope S = 6

Finally, we can conclude that the series of time indices of a periodic dynamics is a piece-

wise linear function presenting a largest slope S which is equal to its time period q if its

basic period contains at least one non-repeated value, and smaller than q otherwise. From

the proof of Proposition 1.2.2, in the case all the values in x0 are repeated, the largest slope

of v depends on v0 and is such that S(v0) < q. Nevertheless, one can notice that the largest

slope is independent of the length T (T ≥ 2q) of the time series.

1.2.2 Patterns of quasi-periodic dynamics

By definition, a quasi-periodic dynamics contains at least two incommensurable frequencies,

i.e their ratio is an irrational number. According to this definition, the number of distinct

values cannot be rigorously determined as for periodic dynamics, due to the irrational

ratio of the constitutive frequencies. However, as quasi-periodic dynamics are known to be

regular, we agree that a quasi-periodic time series x can be seen as a dynamics presenting

a large basic pattern which can be isolated only after a long observation time. Considering

that the observation time in practice is not too large, it is difficult to fix such a basic shape
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14 The three-state test (3ST) algorithm

and all the samples in x are assumed to be different. Therefore, applying F to x outputs

a series of time indices v which exclusively depends on the ordering of the whole set of

values x. An example of quasi-periodic dynamics is derived from the sine-circle map whose

equation is

xt+1 =
[
Ω+ xt +

r

2π
sin

(
2πxt

)]
mod 1, (1.2.2)

where x0 = 0.3, Ω =
√
5−1
2 and r = 0.
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Figure 1.4: Example of quasi-periodic signal, and the corresponding series of time indices
{vt}.

As each value xt is assumed to appear only once in x, the series of ordered values is

no longer a stair function. This observation implies that although v remains a piece-wise

linear function, the number of ramps cannot be properly determined, and depends on the

ordering of x. Moreover, its behavior may change as the observation time grows, given that

the number of distinct samples depends on the observation time T . Considering that the

behavior of v changes as the observation time grows, we see that its largest slope S also

depends on time, and approaches a limit value L for T → ∞, under to the assumption that

a basic pattern occurs after a long observation time T . Assuming that no repetition occurs

in the basic period, the pattern of the quasi-periodic dynamics can be approximated by

L = lim
T→∞

S(T ). (1.2.3)

Fig. 1.5 shows an example of behavior of the largest slope corresponding to the dynamics

presented in Fig. 1.4. It clearly appears on this figure that the largest slope in that case
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1.3 Description of the 3ST algorithm 15

depends on the observation time T . There are ranges of T where the largest slope is

constant. We can also observe that the width of intervals of T where S(T ) is constant is

increasing as T → ∞, thus suggesting that there may exist a limit value L of the largest

slope.
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Figure 1.5: Behavior of the largest slope of a quasi-periodic dynamics in terms of the
observation time T .

The largest slope expresses how large the number of features (distinct values) in the

pattern is, so it can be efficiently used as a pattern describer. It is simply expressed as

S(T ) = max
(
vt+1,T − vt,T

)
. (1.2.4)

In the case of non-regular dynamics, the detection of a basic pattern is not possible and

the period also cannot be estimated. The largest slope is then assumed to increase faster

in terms of T than in the case of quasi-periodic dynamics. From the above considerations

we derived the 3ST algorithm.

1.3 Description of the 3ST algorithm

The 3ST considers the properties of periodic and quasi-periodic signals for determining

whether a dynamics is regular or not. It studies the ordering of data in the time series as a

function of time, given that chaos manifests itself both in time and space. The corresponding

shape for each observation time is considered as a pattern (qualitative description). For the
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16 The three-state test (3ST) algorithm

pattern to be quantitatively described, the data sequence is sorted into ascending order,

and the largest slope S of the resulting sequence of time indices is retained as a pattern

describer. Applying statistical analysis to the series of largest slopes allows us to determine

chaos indicators such as the asymptotic growth rate K and the periodicity index λ3ST .

1.3.1 Principle of the 3ST algorithm

Given a time series x, the principle of the 3ST algorithm consists to splitting it into Q

sub-series xj of length Tj , with Tj < Tj+1 < · · · < TQ, and then to derive a set of largest

slopes {Sj}. Let us consider for example a time series {xt} containing ten values such

that {xt} = {4, 7, 9, 10, 6, 11, 3, 2, 13, 5}. Let us also consider Q = 4 subsets of {xt} such

that: x0 = {4, 7, 9, 10, 6, 11, 3}, x1 = {4, 7, 9, 10, 6, 11, 3, 2}, x2 = {4, 7, 9, 10, 6, 11, 3, 2, 13}
and x3 = {4, 7, 9, 10, 6, 11, 3, 2, 13, 5} and thereafter apply the ordinal transform F to each

subset. We obtain respectively the following series of time indices: v0 = {7, 1, 5, 2, 3, 4, 6},
v1 = {8, 7, 1, 5, 2, 3, 4, 6}, v2 = {8, 7, 1, 5, 2, 3, 4, 6, 9}, and v3 = {8, 7, 1, 10, 5, 2, 3, 4, 6, 9}.
Considering the definition of the largest slope and applying it to each series of time indices,

the following largest slopes are respectively obtained: S0 = 4, S1 = 4, S2 = 4 and S3 = 9.

In Fig. 1.6, it can be seen from top to bottom some particular behaviors of S for periodic

dynamics with n > L, n < L and chaotic dynamics respectively. We used for this example

the logistic map whose equation of motion is given by:

xt+1 = rxt

(
1− xt

)
, (1.3.1)

where 0 ≤ r ≤ 4 is the control parameter, and 0 ≤ xt ≤ 1. The efficiency of the 3ST

algorithm is based on the statistical exploitation of these three basic behaviors.

1.3.2 Determination of the asymptotic growth rate K

Statistically, the analysis of the behavior of the largest slopes is well described by the

measurement of the standard deviation σS of S expressed by:

σS(T, n) =

√√√√ 1

Q

Q−1∑
j=0

(
Sj − S̄

)2
(1.3.2)

where

S̄ =
1

Q

Q−1∑
j=0

Sj . (1.3.3)
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Figure 1.6: Example of observation time dependency of the largest slope (S). Dynamics are
generated from logistic map (Eq. (1.3.1)) with x0 = 0.5: (a) periodic dynamics (r = 3.5), (b)
periodic dynamics with large period (r = 3.84943363), and (c) chaotic dynamics (r = 3.86).

Sj is the largest slope corresponding to the subset xj whose length is Tj = jp0 + n; T =

(Q − 1)p0 + n is the length of the data series, p0 is the integration step, Q is a natural

number different from zero (number of slopes evaluated), and n is the smallest observation

time for the largest slope to be well evaluated. n should satisfy the relation n < T . In our

example, T = 10, Q = 4, p0 = 1 and n = 7.

σS(T, n) measures the ability of a dynamical system to generate new patterns as time

evolves. So, σS(T, n) is bounded if the underlying dynamics is regular, according to the

behavior of S [26]. We showed in the previous section that S remains constant for periodic

motions, and assumed that S increases up to a limiting value in the case of quasi-periodic

dynamics. For non-regular dynamics we assume that S is an increasing function of T as it

can be observed in Fig. 1.6.

Assuming that σS(T, n) increases linearly in the data length T , the growth rate is

determined as follows:

μ(T, n) =
log

(
1 + σS(T, n)

)

log(T )
. (1.3.4)

The asymptotic growth rate K of the largest slope is thus obtained as the limit value of

μ(T, n):

K(n) = lim
T→∞

μ(T, n). (1.3.5)

Equation (1.3.5) shows that K(n) is a non-negative indicator (K(n) ≥ 0). K(n) allows us
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18 The three-state test (3ST) algorithm

to distinguish between regular (K(n) = 0) and non-regular (K(n) > 0) motions. When the

dynamics is periodic, the standard deviation is equal to zero, as S remains constant for any

value of T , provided that n > q. For dynamics with large period (assumed to be quasi-

periodic motions), the growth of S up to a limiting value results in a decrease in σS to zero,

thus leading to K(n) = 0 also. Fig. 1.7 shows the behavior of the asymptotic growth rate

K(n) corresponding to the dynamics presented in Fig. 1.6. Given that K(n) = 0 for both

periodic and quasi-periodic dynamics, we require another criterion for discerning between

these two types of regular dynamics. We thus suggest to analyze the behavior of the growth

rate μ.
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Figure 1.7: Example of observation time dependency of the growth rate (K) for the previous
dynamics shown in Fig. 1.6: (a) periodic dynamics (r = 3.5), (b) periodic dynamics with
large period (r = 3.84943363), and (c) chaotic dynamics (r = 3.86). The first value of σS
is computed with 300 values of S.

1.3.3 Determination of the periodicity index λ3ST

From the definition of the asymptotic growth rate K, both periodic and quasi-periodic

dynamics are characterized by K = 0. In order to distinguish between these two types of

dynamics, we propose to model the evolution rule of μ(T, n) in terms of T. While looking

at the behavior of the growth rate μ in Fig. 1.7, it clearly appears that periodic dynamics

with large periods present a decreasing growth rate function while periodic dynamics with

q < n present a constant growth rate equal to zero. In the case of chaotic dynamics, we also
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1.3 Description of the 3ST algorithm 19

also observe that μ does not behave linearly in terms of T . We thus suggest approximating

its behavior by an exponential growth. For this purpose, the set of largest slopes {Sj}
is divided into P subsets Sk of length mk such that such that m0 < m1 < . . . < mP−1.

Indeed, each subset Sk is assumed to derive from a subset xk of length Tk ≤ T , which itself

is derived from the initial time series {xt}. Thus, assuming that μ behaves as

μ(Tk, n) = μ0 +K0 · exp
(
− λ3ST (n) · Tk

T

)
(1.3.6)

where μ0 andK0 are constant values and uk = Tk
T , 0 ≤ Tk ≤ T , is the normalized integration

time, the value of λ3ST can be easily determined by exponential fitting.

From Eq. (1.3.4), μ = 0 for T0 = 0 (uk = 0), hence μ0 = −K0; as the maximum value

of μ is approximately equal to 1, one can set μ0 = 1. Thus, including μ0 in Eq. (1.3.6) and

using exponential fitting leads to

λ3ST (n) = lim
T1→∞

∑P
k=1

[
uk ·

(
Γ(Tk, n)− Γ

)]

∑P
k=1

[
uk ·

(
uk − ū

)] (1.3.7)

where Γ(Tk, n) = − log
(
1− μ(Tk, n)

)
.

Finally, the 3ST is based on the interpretation of the sign of λ3ST (n): for periodic

dynamics, obviously λ3ST (n) = 0 and for chaotic motions, μ(T, n) increases as a function of

the observation time, hence λ3ST (n) > 0. Based on the assumption made on the definition of

quasi-periodic signals, μ(T, n) is decreasing as the observation time increases, thus implying

λ3ST (n) < 0. Another important result of the 3ST is the estimation of the period L of stable

limit-cycles as

L = lim
T→∞

|S| (1.3.8)

1.3.4 Algorithmic steps for the computation of λ3ST

In this section, we summarize the algorithmic steps for computing the periodicity index

λ3ST .

Algorithm 1

———————————————————————————————

1. Consider a time series x of length T ;
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20 The three-state test (3ST) algorithm

2. Divide x into Q subsets xj of length nj such that x0 ⊂ x1 ⊂ . . . ⊂ xj ⊂ . . . ⊂ xQ−1,

and n0 = n;

3. Apply F to each sequence to obtain the largest slope Sj of the resulting series of time

indices;

4. Divide the set S of largest slopes into P subsets Sk of length mk such that S0 ⊂ S1 ⊂
. . . ⊂ Sk ⊂ . . . ⊂ SP−1, and m0 > 2;

5. For each Sk, compute the standard deviation σSk
and deduce the corresponding growth

rate μk;

6. From the set of μk, deduce λ3ST using Eq. (1.3.7), with uk = mk
P ;

7. Consider L = SQ−1 as the estimated period of the time series.

———————————————————————————————–

1.3.5 Phase sensitivity of the periodicity index (λP )

The three behaviors of μ presented in Fig. 1.7 are well described by three states of λ3ST :

λ3ST = 0, λ3ST < 0 and λ3ST > 0. However, in the case of quasi-periodic dynamics, λ3ST

may alternate between positive and negative values, depending on the observation time. If

this happens, the nature of the dynamics cannot be determined as it is considered as regular

for λ3ST < 0 (quasi-periodic) and non-regular for λ3ST > 0. This observation requires to

complete or extend the description of the quasi-periodic dynamics by the 3ST.

Quasi-periodic dynamics are well known as regular. As a consequence of this basic

knowledge, the periodicity index should not depend on the initial conditions or on the initial

phase, and The largest slope only depends on the parameter setting of the 3ST (n, T ). Thus,

the largest slope is the same for different sequences of the same length Tk = M derived from

a quasi-periodic dynamics. In this section, we evaluate the dependency of the periodicity

index on the initial conditions and initial phase.

The dependency on the initial conditions assumes that there are at least two different

time series (two stimuli) with different initial conditions, while the initial phase dependency

refers to the time delay in a single time series. Indeed, the period of a regular dynamics

should not be sensitive to the initial conditions. For periodic motions for example, the period
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1.3 Description of the 3ST algorithm 21

depends on neither the initial conditions, nor the initial phase. Quasi-periodic signals can be

seen as signals with at least two competitive incommensurable frequencies. Although there

is no defined period, a fixed largest slope should be found for the same parameter setting,

independently of the initial condition or the initial phase. It then turns out that the 3ST

should output the same period (largest slope) as well as the same periodicity index. Fig.

1.8 shows an example of behavior of the largest slope for the dynamics considered in Fig.

1.5, from where it can be verified that it remains constant for various initial phases, with a

fixed value of M . Indeed, we considered a time series of length T and a sliding window of

length M , and then computed the largest slope for each position i of the window.
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Figure 1.8: Behavior of the largest slope of series of indices derived from quasi-periodic
sequences of the same length (a): M = 1000 and (b): M = 2000.

In dynamical systems, chaotic (non-regular) dynamics are those which are sensitive to

initial conditions. So, let x0 and x1 be two time series generated from the same system with

two different initial conditions. Applying the 3ST to each of them outputs two periodicity

indexes λ0
3ST and λ1

3ST respectively. In order to evaluate the influence of the initial condi-

tions, we can consider the sensitivity of the periodicity index λ3ST on the initial conditions

as

λC(n) =
1

log(T )
log

(
1 + ξ ·

∣∣∣λ1
3ST (n)− λ0

3ST (n)
∣∣∣
)
. (1.3.9)

ξ � 1 is a scaling factor to improve the readability of the result. The sensitivity of λ3ST

on initial conditions lets us to distinguish between regular (λC(n) = 0) and non-regular

(λC(n) > 0) dynamics.
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However, computing λC requires at least two time series (stimuli) derived from the

same system with different initial conditions. In some practical cases, the decision needs

to be taken from a single time series. For this purpose, let us consider a time series

x = {xt}t=0,1,...,T−1 and a sliding rectangular window W i
M of length M < T centered

at time index M0 + i, with M0 = M
2 and i the delay time (phase shift), and define the

sensitivity of the periodicity index on the initial phase or time delay. Indeed, for each se-

quence corresponding to a position i (referring to the initial phase) of the sliding window,

the 3ST will output a periodicity index λi. We can then consider λi as the periodicity

index obtained from xi = x ·W i
M and λi+1 as the one obtained from xi+1 = x ·W i+1

M . For

example, let us consider x = {4, 7, 9, 10, 6, 11, 3, 2, 13, 5} and W i
5 a 5-length window centered

at 3 + i, i = 0, 1, 2, 3, 4, 5. Applying the sliding window to x0 with i = 0 and i = 1 outputs

x0 = {4, 7, 9, 10, 6} and x1 = {7, 9, 10, 6, 11}, respectively. Extending this principle to the

whole time series, we define the sensitivity of λ3ST on the initial phase or delay time as

λP (n) =
1

log(M)
log

⎛
⎝1 + ξ ·

√√√√imax∑
i=0

(
λi(n)− λ0(n)

)2

⎞
⎠ (1.3.10)

with i ∈ N. λP is determined from a single time series by considering different time delays

and sequences of the same length M . Indeed, as in Fig. 1.8, series of time indices derived

from quasi-periodic sequences of the same length exhibit the same largest slope. Dynamics

which are not sensitive to initial conditions, even those which are sensitive to the initial

phase, are considered as regular. The following detection approach is then proposed:

• Regular dynamics: λC(n) = 0;

• Non-regular dynamics: λC(n) > 0.

In the class of regular dynamics, periodic and quasi-periodic dynamics can be also distin-

guished as follows:

• Periodic dynamics: λ3ST (n) = 0 and λP (n) = 0, ∀imax > 0;

• Quasi-periodic dynamics: λ3ST (n) �= 0 and λP (n) = 0, ∀imax > 0.

Periodic dynamics are insensitive to both initial phase and initial conditions and their

periodicity index is equal to zero; quasi-periodic dynamics also are insensitive to both initial
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phase and initial conditions but their periodicity index is different from zero while non-

regular dynamics are sensitive to both time delay and initial conditions. According to the

above observations, periodic and quasi-periodic dynamics can be distinguished by looking at

the values of λ3ST and λP exclusively. λC may be used for discerning between non-regular

dynamics and regular dynamics which are sensitive to initial phase. The 3ST can thus help

detecting efficiently quasi-periodic dynamics as regular as well as the quasi-periodic route

to chaos from a single stimulus.

1.3.6 Algorithmic steps for the computation of λP

The computation of λP as above described is time consuming as it requires more than two

values of λi. By reinterpreting the its definition, the term
√∑

(λi(n)− λ0(n))
2 can be seen

as a single value of λi evaluated from sequences of the same length M , thus reducing the

number of values of λi to be computed. The following algorithm is then proposed for a fast

computation of λP .

Algorithm 2

———————————————————————————————

1. Consider a time series x of length T ;

2. Choose the length M of the sliding window W i
M for scanning the whole time series

and the number Q of largest slope to compute;

3. For each position i of W i
M , apply F to the corresponding subsequence xi and deduce

the largest slope Si of the resulting series of indices;

4. Evaluate λi as described in steps 4 to 6 of Algorithm 1;

5. Deduce λP (M) from Eq. (1.3.9) where
√∑

[λi(n)− λ0(n)]2 is replaced by |λi| com-

puted in step 4.

———————————————————————————————–

Finally, the outputs of the 3ST algorithms are the periodicity index λ3ST , the sensitivity

of the periodicity index to the initial phase λP and the period of limit cycles L. These three

outputs are interpreted as follows:

• λ3ST > 0 and λP > 0: the system is chaotic;
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• λ3ST �= 0 and λP = 0: the system is quasi-periodic;

• λ3ST = 0 and λP = 0: the system is periodic, a stable limit cycle with period L ≤ q.

1.4 Example of chaos detection in the logistic map

Most of the researchers in the field of nonlinear dynamics are familiar with the rich nature of

the logistic map (Eq. (1.3.1)) [17]. It is commonly used for the period doubling bifurcation it

exhibits and has been widely studied in literature. In this example, we apply the 3ST to the

logistic map to verify its efficiency for the detection of such a period doubling bifurcation, as

well as for determining the period of stable limit-cycles. We also evaluate the impact of the

3ST parameters on the results. For this purpose, we took 501 values of the control parameter

satisfying 3.5 ≤ r ≤ 4, and with step size Δr = 10−3. The spectra of the periodicity index

and the sensitivity of the periodicity index to the initial phase are compared to the Lyapunov

exponent λLyap. For this experiment, the data length is set to T = 20 000, while the 3ST

parameters are set as: n = 50, M = 10 000, Q = 100, P = 70 and m0 = 30. For easier

interpretation of λP , we set ξ = 106 for all the simulation results.

1.4.1 Estimation of the period of stable limit-cycles

The Feigenbaum diagram is given in Fig. 1.9 for comparison with the period L of limit-

cycles in periodic windows. By comparing these two diagrams, it is observed that the 3ST by

means of the cycle diagram clearly detects the period of stable limit-cycles. It is outputting

a natural number even for regular dynamics with large periods where the Feingenbaum

diagram is showing a large number of dots which is difficult to interpret. Indeed, for

limit-cycles with large periods, one may confuse in the bifurcation diagram between regular

dynamics and chaotic dynamics. For r = 3.602 for example, the system exhibits period-

88 dynamics. While looking at the Feigenbaum diagram, such a dynamics is not easily

observed as regular, whereas the cycle diagram clearly indicate L = 88. However, in order

to make sure that such dynamics are clearly regular another decision making parameter is

required, hence the use of the Lyapunov exponent.
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Figure 1.9: Comparison between the Feingenbaum diagram and the spectrum of the period
of limit-cycles of the logistic map (a) Feigenbaum diagram, (b) cycle diagram.

1.4.2 Chaos detection by λ3ST and λP spectra

The main advantage by using the 3ST algorithm resides in the fact that it outputs at once

the period L and the chaos indicators λ3ST and λP . So, even limit-cycles with large periods

are easily detected, without needing further tests. In Fig. 1.10 we see λLyap, λ3ST and

λP for a comparison of the chaos detection efficiency of the Lyapunov exponent and the

3ST algorithm. This figure clearly shows that periodic windows are well detected by the

3ST algorithm, as compared to the Lyapunov exponent λLyap. Results of λLyap and λP

are consistent as λP = 0 when λLyap < 0. We can then conclude that the dependence of

the periodicity index on the initial phase may be efficiently used for the detection of the

periodic route to chaos. However, to the best of our knowledge, there is no quasi-periodic

dynamics in the logistic map. By rigorously interpreting the result in Fig. 1.10, one should

conclude that dynamics for which λ3ST < 0 and λP = 0 are quasi-periodic. For r = 3.602

for example, a rigorous interpretation of the 3ST results indicates that the dynamics is

quasi-periodic, whereas it corresponds to a period-88 dynamics. In order to avoid such a

false detection, the value of n needs to be increased. By choosing n > 88 for example, the

previous period-88 dynamics will be detected as periodic. This observation also proves that

λ3ST < 0 does not necessarily indicate a quasi-periodic dynamics, but perhaps a dynamics

whose period is greater than n.
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Figure 1.10: Spectra of (a) λLyap, (b) λ3ST (n) and (c) λP (M) (sensitivity to the initial
phase). The 3ST parameters are: n = 50, N = 20000, Q = 100, P = 70,m0 = 30,M =
10000.

1.5 Example of detection of the quasi-periodic route to chaos

For the detection of the quasi-periodic route to chaos, we consider the sine-circle map

defined in Eq. (1.2.2). It can exhibit periodic, quasi-periodic or chaotic behaviors depending

on the frequency ratio and the nonlinearity parameters, i.e. Ω and r, respectively. For

0 ≤ r ≤ 1, the system dynamics is either periodic (frequency-locked) or quasi-periodic

depending on whether the value of the frequency ratio parameter is rational or irrational. As

the nonlinearity parameter r approaches zero, the system exhibits quasi-periodic behavior

for all values of the frequency ratio parameter Ω. As the nonlinearity parameter r approaches

one, frequency-locked steps extend to eventually occupy the whole Ω axis when r is equal

to one. In this case, there is a special fraction of Ω value called the most irrational Ωc. This

value corresponds to the ”golden mean” (Ωc =
√
5−1
2 ) winding number W = limt→∞ xt−x0

t

if the frequency ratio parameter Ω is locked to its critical value Ωc [10]. Shortly after this

critical value in the (r,Ω) plane, (1, Ωc) is the edge of the quasi-periodic route to chaos since

chaotic behavior can occur. All these characteristic shapes in the (r,Ω) plane are called

”Arnold Tongues” in the literature. For the r > 1 region where the nonlinearity parameter

r is dominant for the system dynamics, there are periodic regions with different periods,
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chaotic regions, and so edges of the periodic route to chaos [10].

As in the case of the logistic map, a sequence of lengthN = 20000 samples after transient

die out (5000 samples), is considered as time series x for each value of the control parameter

0 ≤ r ≤ 2.5, taken with step size Δr = 0.01. The initial conditions are set to x0 = 0.5. Fig.

1.11 shows the bifurcation diagram of the sine circle map for Ω = Ωc and the behaviors of

λ3ST and λP .
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Figure 1.11: Detection of the quasi-periodic route to chaos: (a) bifurcation diagram, (b)
diagram of λ3ST and (c) diagram of λP . The 3ST parameters are: n = 50, N = 20000, Q =
100, P = 70,m0 = 30.

It is observed from this figure that λ3ST fails to properly characterize quasi-periodic

dynamics. Sometimes it is detecting them as regular with large periods (λ3ST < 0) and

sometimes as chaotic (λ3ST > 0). However, combining λ3ST and λP allows to clearly

distinguish between quasi-periodic and chaotic dynamics. The complete interpretation is

the following [27]:

• λ3ST > 0 and λP > 0: the dynamics is chaotic;

• λ3ST > 0 and λP = 0: the dynamics is quasi-periodic;

• λ3ST = 0 and λP = 0: the dynamics is periodic;
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• λ3ST < 0 and λP = 0: the dynamics may be periodic or quasi-periodic, depending on

the choice of n as compared to the period of the dynamics.

Indeed, as we just said in the case of the logistic map, choosing n < L leads to negative

values of λ3ST . Similarly, one may get λ3ST < 0 for some quasi-periodic dynamics. We

then conclude in that case that the underlying dynamics is regular. Nevertheless, the above

results confirm the efficiency of the 3ST for the detection of the quasi-periodic route to

chaos. We can also observe that using a single time series for computing λP is enough for

the detection of the periodic and quasi-periodic dynamics (λP = 0).

1.6 Applicability of the 3ST algorithm to continuous time

systems

Applying the 3ST algorithm to continuous time systems requires considering the data as

noise contaminated, given that the acquisition process undoubtedly induces some errors due

to sampling and quantization processes. In the case of simulation data, the error due to

the integrator used as well as the choice of the sampling step can be considered as noise

sources. Thus, for the algorithm to be efficiently used, it is necessary to reduce a priori the

noise effect, hence to define an appropriate noise reduction algorithm.

1.6.1 The differential dynamical quantization (DDQ)

For the 3ST to be useful for the detection of regularity, it should output zero values for

regular dynamics even in the presence of noise. However, we observed that the algorithm

is extremely sensitive to small changes, so to the noise effect. In order to reduce this

sensitivity, we suggest reducing the data precision. Indeed, by considering values with a

too high precision, even very close samples are detected as different, which contributes to

increasing the noise sensitivity of the algorithm. Reducing the data precision requires the

definition of a new quantization step for the data series. We also suggest considering a new

quantization method, namely the differential dynamical quantization (DDQ) [28].

The DDQ is a nonlinear approach which consists of assigning a single value (quantum)

to those which are approximately the same in the data series. We thus define the noise

threshold (or noise tolerance) η as its quantization step. Indeed, η is defined as the minimum
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difference between xt and xt′ for two values that are considered as different. With this

definition, it clearly appears that η can be considered as the precision of the quantized time

series. As only a maximum number of T values is allowed in a quantized time series of

length T , we suggest to consider η as

η ≥ max({xt} −min({xt}))
T

. (1.6.1)

It should be noticed that whenever the true precision η0 of the input time series is smaller

than η (η0 > η), the quantization has no effect on the output of the 3ST algorithm. For

example, choosing η = 10−5 for a 10-bits encoded time series has no impact on the 3ST

result. For the 3ST algorithm to be sensitive to η in that case, we must take η > 1/1024.

The DDQ algorithm thus applies as follows: the {xt} values are first sorted into ascend-

ing order to obtain {ut} in which all equal values are neighbors; thereafter ut and ut+1 are

set to ut′+1 if |ut − ut+1| < η and t′ < t, with t′ such that |ut′ − ut′+1| ≥ η; else, these

values are left unchanged; finally the quantized or noise reduced series {vt} is obtained by

relocating the values of {ut} as in {xt}. By this approach, the DDQ is used for reducing

the precision of the series {xt}, but the range of values is not explicitly determined as is

the case for the other quantization methods. Indeed, the precision in {vt} is equal to η, but

the range of data depends on the input time series. Then the 3ST is applied to vt. The

algorithmic steps are the following:

Algorithm 3

———————————————————————————————

1. A threshold or noise tolerance η is defined as the quantization step;

2. {xt} values are first sorted in ascending order to obtain {uj} in which all equal values

are neighbors;

3. thereafter uj and uj+1 are set to uj′+1 if |uj − uj+1| < η and j′ < j, with j′ such that

|uj′ − uj′+1| ≥ η; otherwise, these values are left unchanged;

4. finally the quantized series v={vt} is obtained by relocating the values of {uj} as in

{xt}

———————————————————————————————–
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If for example {xt} = {2.12, 2.61, 2.53, 2.30, 2.44, 2.28}, t = 0, 1, . . . , 5, then the sorted

sequence is {uj} = {2.12, 2.28, 2.30, 2.44, 2.53, 2.61}. Setting η = 0.04 leads to {uj} =

{2.12, 2.28, 2.28, 2.44, 2.53, 2.61}, and finally {vt} = {2.12, 2.61, 2.53, 2.28, 2.44, 2.28}. It ap-
pears that x3 = 2.30 was noise contaminated and has been replaced by v3 = 2.28. The

choice of the right value of η depends on the noise amplitude ε.

Instead of sorting the data into ascending order, we can also consider descending order

or both ascending and descending orders. Although the quantized sequence depends on

the type of sorting used, we verified that only the noise contaminated samples are taking

different values, while the others remain unchanged. It turns out that the detection result

does not depend on the type of sorting. For the above example, if the data are sorted by

descending order instead, then we will find that x5 = 2.28 was noise contaminated and it

will be replaced by 2.30. So, the change involves only x3 = 2.30 and x5 = 2.28.

1.6.2 Example of chaos detection in the Duffing oscillator

Data generated from the system are considered as noise contaminated due to the sampling

process and the precision of the integrator. Thus, for the 3ST result to be efficiently

determined, the use of the DDQ for noise reduction is required. The 3ST can be directly

applied to the continuous time series or to the series of local extrema. The Duffing system

is described by the following system of ordinary differential equations

⎧⎪⎪⎨
⎪⎪⎩

ẋ = y

ẏ = x− ay − x3 + r cos(z)

ż = ω

(1.6.2)

where ˙(·) = d(·)/dt and r is the control parameter. We used the fourth order Runge-

Kutta algorithm to solve Eq. (1.6.2) with sampling step Ts = 4π/1000. We set a = 0.3

and ω = 1.25. For the analysis of this system, the observation time is set to 200π
ω after

transient die out (200πω ). The 3ST algorithm is then applied to the noise reduced version of

solutions xt and yt and only the maximal value of the corresponding outputs is retained.

The result depends on the choice of η, which itself depends on the sampling frequency Fs

and the precision of the integrator. We recommend choosing the largest sampling frequency

possible, as the largest frequency Fmax of the spectra of xt and yt is not a priori known. For

this experiment, we set η = Ts
10 independently of the sequence to be analyzed, where Ts =

1
Fs
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Figure 1.12: Chaos and limit-cycle detection in the forced Duffing system: (a) spectrum
λLyap, (b) spectrum of the maximum λ3ST and (c) spectrum of the maximum λP . The
control parameter r varies from 0.2 to 0.5. The 3ST parameters are: n = 5000,M =
15000, Q = 100, P = 70,m0 = 30.

is the sampling period. This value of noise tolerance η = 0.0013 is effectively greater than

the absolute tolerance AbsTol = 10−5 and the relative tolerance RelTol = 10−6 of the

integrator.

We thus consider that times series {xt} and {yt} are corrupted by a small amount of

noise of amplitude ε ≤ Ts/10, due to sampling and numerical integration. Taking η = Ts/10

and applying the DDQ to {xt} and {yt}, we obtained the result in Fig. 1.12 which shows

the spectra of the the largest Lyapunov exponent λLyap, the periodicity index λ3ST and the

sensitivity of the periodicity index to the initial phase λP .

As in the case of the logistic map, 3ST results are consistent with those of the Lyapunov

exponent and allow us to easily detect limit-cycles. For the comparison to be plausible we

have considered the largest periodicity index for 3ST, given that only the largest Lyapunov

exponent is considered. However, we observe other possibilities which were not described

previously: λ3ST = 0 and λP > 0 (r = 0.288), λ3ST < 0 and λP > 0 (r = 0.4). As compared

to the Lyapunov exponent, the first case corresponds to a periodic dynamics and indicates

a transition between two stable limit-cycles (see Fig. 1.14); while the second combination

clearly indicates a chaotic dynamics. These decisions can also be confirmed by readjusting
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Figure 1.13: Chaos detection in the forced Duffing oscillator using the series of local maxima:
(a) spectrum of λLyap, (b) spectrum of the maximum λ3ST and (c) spectrum of the maximum
λP . The control parameter is set as 0.2 ≤ r < 0.5 (step size Δr = 10−3), and the 3ST
parameters as n = 20, M = 40, Q = 50, P = 35 and m0 = 15.

the parameter setting or by using the series of local extrema.

Indeed, instead of considering the whole continuous time series {xt} and {yt}, the 3ST

can also be applied to the series of their local extrema. However, one should take care of

the data length as the number of extrema strongly depends on the phase space period of

the underlying dynamics. The results obtained are depicted in Fig. 1.13 where we used the

series of local maxima. As compared to λ3ST obtained with the continuous time series, the

result of the series of local maxima is easily interpretable (there are no more cases with

λ3ST < 0 and λP > 0). In contrast, as compared to λP , the result of the continuous time

series is closer to the Lyapunov exponent than the one obtained with the series of local

maxima; but this result strongly depends on the parameter setting. For this example, we

set the 3ST parameters as n = 20, M = 40, Q = 50, P = 35 and m0 = 15.

As well, the detection of the period of periodic cycles is well performed by 3ST as shown

in Fig. 1.14.

One can clearly observe the period doubling bifurcation for 0.2 ≤ r ≤ 0.319 for both xt

and yt variables. For r = 0.467, the system exhibits a period-7 dynamics. There are also

some parameter values where the periods of the two variables are different, e.g for r = 0.38
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Figure 1.14: Cycle diagrams of variables xt and yt. This diagram is obtained using the local
maxima of the corresponding variables. The control parameter r varies from 0.2 to 0.5.

where the period of xt is Lx = 3 and that of yt is Ly = 5; and r = 0.496 where Lx = 7

and Ly = 11. In Fig. 1.15 we show some examples of phase portraits of periodic dynamics.

Without noise reduction, the corresponding periods are respectively Lx = Ly = 26 for

r = 0.3, Lx = 36, Ly = 35 for r = 0.38, Lx = Ly = 14 for r = 0.467, and Lx = 7, Ly = 37

for r = 0.496. Looking at Fig. 1.15(a) (r = 0.3), the use of the DDQ is helpful as it allows us

to obtain the period shown by the phase portrait. Indeed, by zooming into this plot, there

are clearly other lines which are too close each other, confirming the presence of what we

consider as noise due to sampling, integration and approximation errors (the approximation

of π for example induces some errors).

1.6.3 Example of chaos detection in the Rössler system

The Rössler system is a three dimensional nonlinear system defined by

⎧⎪⎪⎨
⎪⎪⎩

dx
dt = −(y + z)
dy
dt = x+ ry

dz
dt = r + z(x− a)

(1.6.3)

where a = 4.3 and r is the control parameter. For this example, we set the sampling period

to Ts = 0.01 and the control parameter as 0.05 ≤ r ≤ 0.5. The integration duration is set

to 2500 time units after transient die out (300 time units). The corresponding Lyapunov
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Figure 1.15: Example of phase portraits of periodic dynamics: (a) r = 0.3 (Lx = Ly = 2),
(b) r = 0.38 (Lx = 3, Ly = 5), (c) r = 0.467 (Lx = Ly = 7) and (d) r = 0.496 (Lx = 7, Ly =
11).

and 3ST spectra are shown in Fig. 1.16. For a better readability of the results, we plotted

log(1 + 4λ3ST ) instead of λ3ST itself. One can then appreciate the effectiveness of the

3ST algorithm, except for some particular values of the control parameter. Indeed, for

r < 0.196, according to the Lyapunov spectrum, the system is exhibiting limit cycles,

whereas the 3ST spectrum is showing some peaks indicating transitions between these limit

cycles. For r = 0.125 for example, 3ST indicates a chaotic dynamics, which is not in

accordance with the Lyapunov exponent. The observed peak in this example indicates the

transition between a period-1 cycle and a period-2 cycle. Increasing the sampling frequency

or considering more samples in transient die out can make the transition bandwidth very

fine, but do not suppress it. By setting Ts = 0.001 for example, the dynamics is detected as

period-2 cycle while it is detected as period-1 cycle for Ts = 0.01. The appearance of false

detection is thus due to the transition between period-1 and period-2 cycles.

1.7 Influence of the parameter setting

Getting right results with the 3ST requires suitable good parameter settings. For this

purpose, it is useful to analyze the impact of each parameter on the result. There are three

main parameters, namely n, M and Q.
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Figure 1.16: Chaos detection by the 3ST algorithm in the Rössler system: (a) spectrum
of the largest Lyapunov exponent (λLyap), (b) spectrum of the maximum λ3ST and (c)
spectrum of the maximum λP . The control parameter is set as 0.05 ≤ r < 0.5 (step size
Δr = 10−3), and the 3ST parameters as n = 90, M = 70, Q = 50, P = 35 and m0 = 15.

1.7.1 Influence of parameters n and M

The parameter n is the smallest data length for the largest slope to be well evaluated. n

determines the upper limit of the period that can be estimated without bias. Any periodic

dynamics whose period is less than n is detected by λ3ST = 0 while those for which the

period is greater than n may be detected by λ3ST < 0. This observation also confirms that

λ3ST < 0 describes both quasi-periodic and periodic dynamics, but not exclusively quasi-

periodic dynamics as predicted in [26, 27]. The choice of n can help to detect transitions

between different types of dynamics (periodic-periodic, periodic-chaotic. . . ).

The parameter M is acting in λP similarly as n in λ3ST . It indicates the largest period

which can be detected without error. When the period of the underlying dynamics is greater

than M , the algorithm outputs a largest slope close to M for all the positions of WM . It

then results in λP = 0, confirming that the dynamics are regular. The larger M , the more

accurate the computation of λP and the larger the computational time.

Fig. 1.17 presents the behavior of λ3ST as a function of n and λP as a function of M

for periodic (r = 1.05), quasi-periodic (r = 0) and chaotic (r = 1.7) dynamics derived from

the sine-circle map. n is varying from 10 to 400 by step size Δn = 1, while M is varying
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Figure 1.17: Dependence of λ on n and λP on M , 10 ≤ n ≤ 400 by step size Δn = 1 and
103 ≤ M ≤ 104 by step size ΔM = 30, for periodic (r = 1.05), quasi-periodic (r = 0) and
chaotic (r = 1.7) dynamics derived from the sine-circle map. The other 3ST parameters
are: N = 20000, Q = 100, P = 70,m0 = 30.

from 103 to 104 by step size ΔM = 30. r = 1.05 corresponds to a dynamics whose period

is L = 22 and λ3ST < 0 for n < 22. It can be concluded from Fig. 1.17 that the choice of

n does not influence the 3ST result, provided that dynamics with λ3ST < 0 are interpreted

as regular dynamics with period larger than n. In the case of λP , some errors can occur at

the transitions between different types of dynamics (quasi-periodic to periodic, periodic to

chaotic, . . . )

1.7.2 Influence of parameter Q

The choice of the parameter Q is less constraining than that of n as it determines the

integration step. The maximum value of Q is Q = N−n which corresponds to an integration

step p0 = 1. Q should be chosen such that the computation of λ is statistically feasible.

The larger Q, the smaller the integration step and the larger the computational time. For

small data length, Q can be set to its maximum value. However, m0 which is the smallest

number of largest slopes used for computing σS should be chosen such that m0 � Q. The

behavior of λ in terms of Q is shown in Fig. 1.18 and confirms that there is no need to

consider very large values of Q as compared to the data length.
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Figure 1.18: Dependence of λ on Q, Q varying from 50 to 2000 by step size ΔQ = 10, for
periodic (r = 1.05), quasi-periodic (r = 0) and chaotic (r = 1.7) dynamics derived from the
sine-circle map. The other 3ST parameters are: n = 50,M = 5000, N = 20000,m0 = 30
and P = Q−m0.

1.8 Conclusion

In this chapter, we presented the 3ST algorithm for discerning between periodic, quasi-

periodic and chaotic dynamics. The algorithm gives satisfactory results in the case of

discrete maps. While dealing with continuous time systems, a prior noise reduction step

should be considered. Three different combinations of λ3ST and λP are necessary for decision

making: the pair (λ3ST = 0, λP = 0) which describes periodic dynamics; the combination

(λ3ST �= 0, λP = 0) implying quasi-periodic dynamics and (λ3ST > 0, λP > 0) indicating

chaotic dynamics. Nonetheless, it should be pointed out that there are other combinations,

(λ3ST ≤ 0, λP > 0) for example, whose interpretation is not clearly determined. Moreover,

the algorithm is very sensitive to the parameter setting, and for some inappropriate setting,

the 3ST may not allow to clearly distinguish between periodic and quasi-periodic dynamics,

or between quasi-periodic and weakly chaotic dynamics. In addition, the number of param-

eters required is large and users may get confused while setting them. For this purpose, we

opt in chapter 2 for an algorithm based on entropy measure applied to the largest slopes,

and which involves few parameters.
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Chapter 2

The permutation largest slope
entropy (PLSE)

In this chapter we present the entropy related to the permutation largest slopes as an efficient

approach for distinguishing between regular and non-regular dynamics. The permutation

largest slope entropy (PLSE) is seen as a simplified algorithm for computing the phase

sensitivity of the periodicity index of 3ST (λP ) as presented in chapter 1, so as to improve its

dependency on the large number of parameters involved. We theoretically establish that, for

suitably chosen delay times, permutations generated in the case of regular dynamics present

the same largest slope if their order is greater than the period of the underlying orbit. This

investigation helps us make a clear decision in the detection of regular dynamics with large

periods for which permutation entropy (PE) for example gives nonzero complexity measure.

We also extend the investigation to the detection of strange nonchaotic attractors (SNA).

The algorithms presented in this chapter have been published in:

[23] J. S. A. Eyebe Fouda, Applicability of the permutation largest slope entropy to

strange nonchaotic attractors, Nonlinear Dyn. (Submitted)

[24] J. S. A. Eyebe Fouda, B. Bodo, G. M. D. Djeufa, and S. L. Sabat, Experimental

chaos detection in the duffing oscillator, Commun Nonlinear Sci. Numer. Simulat. 33

(2016), 259-269.

[28] J. S. A. Eyebe Fouda, W. Koepf, Detecting regular dynamics from time series using

permutations slopes, Commun. Nonlinear Sci. Numer. Simulat. 27 (2015) 216-227.
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2.1 Introduction

Measuring the complexity of a deterministic system is useful for determining whether its

behavior is predictable or not. Entropies, fractal dimension and Lyapunov exponent (LE)

are some examples of complexity parameters. Particular interest has been given to entropies

as some of them can be directly applied to the series of observations [8, 30, 40, 43, 57, 59].

In this perspective, Bandt and Pompe [4] proposed the permutation entropy (PE), which

is actually widely used in many fields due to its conceptual and computational simplicity.

It has been successfully applied to the study of structural changes in time series and the

underlying system dynamics [9, 10, 45, 46, 48]. In addition to its robustness against noise,

it has been verified that the PE behaves similarly to the largest Lyapunov exponent and

can therefore be used for the detection of chaos in dynamical systems [3]. The PE is based

on ordinal pattern analysis, and is easily calculated for any type of time series, be it regular,

chaotic, noisy, or reality based.

Unfortunately, although regular dynamics present vanishing or negligible complexities,

PE does not give any particular value or property for the characterization of regular dy-

namics as we have with the LLE, therefore it appears to be less suitable for chaos detection.

Indeed, in some examples on chaos detection, PE tracks the largest LE with a uniform bias

that depends on the underlying system and the parameter setting of the PE algorithm: even

perfectly predictable dynamics are characterized by a nonzero entropy. The dependence on

the uniform bias can be sometimes difficult to determine when dealing with an unknown

single time series. Some improvements including the weighted PE [21] and the modified PE

[6, 68] have been proposed, but none of them has definitely fixed the problem related to

the above mentioned bias. Nevertheless, using the recently defined conditional entropy of

ordinal patterns [67], a more reliable approximation of the Kolmogorov-Sinai (KS) entropy

is obtained.

Without prior knowledge on the PE, we proposed the three-state test (3ST) which also

belongs to the class of ordinal pattern analysis methods [26]. As shown in chapter 1, the 3ST

has the advantage of performing both the detection of the regularity or non-regularity and

the period estimation in time series. The difference between the PE and the 3ST comes from

the statistical exploitation of the permutations. Indeed, in the 3ST, instead of constructing

ordinal patterns (permutations) of fixed order n like in the PE, data sequences are ordered
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using different values of n and the corresponding permutations are studied for computing

the periodicity index. With this approach, no probability is computed as the permutations

do not have the same length. Moreover, the permutation list may be very large, depending

on the length of the time series, hence it is both memory and computationally expensive.

For this purpose, each permutation is replaced by its largest slope S. For discerning between

periodic, quasi-periodic and chaotic dynamics, the sensitivity of the periodicity index to the

initial phase is computed using permutations of fixed length n [27]. With this definition,

the 3ST and the PE appear closer, even if only the largest slopes of permutations and no

probabilistic approach are used in the 3ST algorithm. However, the fundamental question

is to know whether the use of the largest slopes is reliable for chaos detection.

In this chapter, we theoretically prove the usefulness of the permutation slopes for dis-

criminating between regular and non-regular dynamics. We further establish the relation-

ship between the 3ST and the PE and simplify the 3ST algorithm by computing the entropy

related to the permutations largest slopes, and show that it can be efficiently applied to the

detection of chaos in dynamical systems [24, 28]. We also investigate the applicability of

the above algorithm to the detection of strange nonchaotic attractors (SNA) [23].

2.2 Mathematical fundamentals

2.2.1 Brief recap of the PE algorithm

Let {xt}t=0,1,··· ,T−1 be a time series of length T where t is the time index. The PE of order

n is defined as the entropy related to permutations of order n [4]. Permutations of order

n are obtained from the comparison of neighboring values (increasing order) in embedding

vectors xk =
(
xkτ0 , xkτ0+τ . . . , xkτ0+mτ , . . . , xkτ0+(n−1)τ

)
, where 0 ≤ k ≤ 
T−(n−1)τ−1

τ0
�,

n is the embedding dimension (number of values in xk), τ0 ∈ N�1 is the delay time of

the embedding vectors, τ ∈ N�1 is the delay time of samples and m + 1 the index of

xkτ0+mτ in xk, 0 ≤ m ≤ n − 1. Let Pk be the permutation derived from xk, with τ0 = 1.

Pk =
(
1,2,3,...,n
5,n,1,...,3

)
for example is obtained by sorting the values of xk into ascending order,

with xk+4τ < xk+(n−1)τ < xk < . . . < xk+2τ . Identical values are sorted by ascending order

of their time index. The permutation entropy of order n is thus given by

Hp(n) = −
∑

p(θ) · ln(p(θ)), (2.2.1)
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where

p(θ) =
#{k | 0 ≤ k ≤ T − (n− 1)τ − 1, Pk = θ}

T − (n− 1)τ
, (2.2.2)

is the probability of the permutation θ and # denotes the cardinality [4].

Despite the efficiency of the PE as complexity measure, it remains unsuited for dis-

tinguishing between regular and non-regular dynamics. Indeed, obtaining Hp(n) = 0 for

regular dynamics requires large embedding dimensions n and an observation time T � n!.

This requirement is difficult to satisfy as the memory space is not infinitely large. There-

fore n is reduced to small values (2 ≤ n ≤ 15) [4]. As a consequence, Hp(n) �= 0 even for

perfectly predictable dynamics. It is evident that regular dynamics cannot be detected as

periodic unless the observation time is greater than its period [25, 67]. Let q be the time

period of the underlying dynamics, if n < q, then the corresponding PE is greater than zero.

It then appears from the above restriction that only dynamics with a period less than 15

samples may be detected with zero entropy. Moreover, for a regular dynamics to be detected

with zero entropy, all the embedding vectors xt should output the same permutation, which

is possible only if the dynamics is a period-1 cycle, otherwise the embedding vectors will

output different permutations so that the entropy of the whole dynamics is different from

zero. For example, let us consider a period-5 cycle orbit obtained by generating 5 distinct

random numbers (0.8147, 0.9058, 0.1270, 0.9134, 0.6324) and repeating this basic sequence

M -times (M > 2). The first four 6-order permutations obtained by sorting values of vectors

xt, t=0 to 3, are the following: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P0 =
(
1,2,3,4,5,6
3,5,1,6,2,4

)
;

P1 =
(
1,2,3,4,5,6
2,4,5,1,6,3

)
;

P2 =
(
1,2,3,4,5,6
1,6,3,4,5,2

)
;

P3 =
(
1,2,3,4,5,6
5,2,3,4,1,6

)
.

(2.2.3)

This example shows that the entropy related to the permutation (PE) is different from

zero as there are at least four different permutations, although the dynamics is regular. It

appears that the permutations are sensitive to the initial phase (or initial condition), and

therefore cannot efficiently help for recognizing periodic dynamics as regular.
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2.2.2 Usefulness of the permutations slopes

Definition 2.2.1. Viewing the permutation Pk as a piece-wise linear interpolation function,

we simply consider as slope of each linear interpolation function the difference si = Pk(i+

1)− Pk(i), 1 ≤ i ≤ n− 1, between pairs of neighboring values in Pk. For a permutation Pk

of order n, the maximum number of distinct slopes is n− 1. We define the largest slope Sk

of Pk as

Sk = max (si, 1 ≤ i ≤ n− 1) , (2.2.4)

We showed that L = limn→∞ |Sk| for regular dynamics [26, 27].

If Pk includes some increasing pieces, then the largest slope is positive; otherwise, we

note that the largest slope is equal to -1. Thus, there are n possible values of largest slope

which all belong to the set Sp = {−1, 1, 2, . . . , n− 1} of largest slopes.

Theorem 2.2.1 (see [28]). All the Permutations of length n generated using ascending

order of the values of embedding vectors xk of length n derived from a period-L time series

{xt}, L = q, τ0 = 1 and n > L
gcd(L,τ) , have the same largest slope S = L

gcd(L,τ) , where τ is

the delay time of samples.

Proof. Each xk = (xk, xk+τ , · · · , xk+mτ , · · · , xk+(n−1)τ ) corresponds to permutation Pk of

order n after sorting into ascending order. Extracting samples from a periodic time series

with a fixed step leads to another periodic sequence. We recall that L and q are respectively

the phase space and time space periods.

If gcd(L, τ) = 1 and n ≤ L, all the differences Pk(i+ 1)− Pk(i), i = 1 to n− 1 can take

any value in Sp, depending on the ordering of samples in xk, hence S < L.

If gcd(L, τ) �= 1, then xk+k′=xk+k′+L where k′ = mτ , 0 ≤ m ≤ n−1. The corresponding

indices in xk are respectively m+ 1 and m+ 1 + δ with δ = L
gcd(L,τ) . The possible number

of distinct samples in xk is equal to δ: xk is δ-periodic. In the case n ≤ δ, none of the L

distinct values of {xt} is repeated in xk and the largest slope takes any value S < δ in Sp,

depending on the ordering of samples in xk. If n > δ, at least one of the possible δ distinct

samples in xk is repeated at least once. In that case, xk for example is always repeated and

each of its occurrences indicates the end of the previous period or the beginning of the next

one. The time index of such occurrences in {xt} is k + ατ , α being an integer such that
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α ≥ δ. As xk is δ-periodic, the index α indicating the repetition of xk+mτ , 0 ≤ m ≤ n− 1,

is such that:

α ≡ m mod δ. (2.2.5)

The general solution of Eq.(2.2.5) is α(κ) = κ · δ +m, where κ ≥ 0 is the repetition index.

From the definition of xk, the largest slope S is equal to the distance between indices of

successive occurrences of the same value, so S = α(κ + 1) − α(κ) = δ. Thus, considering

the definition of δ, the largest slope is:

S =
L

gcd(L, τ)
, (2.2.6)

which ends the proof.

For example the largest slopes of the 6-order permutations P0, P1, P2 and P3 in Eq.

(2.2.3) are S0 = S1 = S2 = S3 = 5. Each of the corresponding four vectors xk, k = 0 to 3,

contains the same values and differ only by their ordering. All of them are then period-5

sequences.

Remark 2.2.1. Theorem 2.2.1 shows that the estimate of the phase space period of the time

series {xt} by the largest slope S depends on the delay time τ . For this estimate to be

equal to L, it is necessary that gcd (L, τ) = 1. As it is difficult to meet such a condition for

arbitrary time series, choosing τ = 1 is sufficient.

In the case of the PE for example, choosing τ > 1 can lead to some misinterpretations

in complexity values in the case of regular dynamics. Indeed, let us consider a 3-periodic

and a 10-periodic time series. Normally, the first dynamics is less complex than the second

one, but choosing τ = 5 will reduce the second dynamics into a 2-periodic one, thus leading

to a smaller complexity. For n = 7, the corresponding PE are respectively H1(7) = ln(3) =

1.0986 and H2(7) = ln(10) = 2.3026 for τ = 1; and H1(7) = ln(3) = 1.0986 and H2(7) =

ln(2) = 0.6931 for τ = 5. It therefore turns out that the PE is such that ln(δ) ≤ Hp(n) ≤
ln(L). This dependence on the ordering of the time series proves that the bias between the

PE and the largest Lyapunov exponent in the case of regular dynamics cannot be determined

rigorously.

However, although choosing τ > 1 can lead to false results for the detection of regular

dynamics periods, it can be useful for detecting regular dynamics of large period from small
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embedding dimensions (n < L). Indeed, if τ is such that gcd (L, τ) > 1, then the period

of the time series is reduced to δ < L and choosing δ < n < L even allows to detect the

dynamics as periodic.

Theorem 2.2.2 (see [28]). Given a period-L time series {xt}, L = q, and τ such that

gcd(L, τ) = 1, the number of distinct permutations of length n > L, generated from the

ascending sorting of the values of embedding vectors xk, xk+1, · · · , xk+l, τ0 < n, is equal

to L
gcd(L,τ0)

, where τ0 is the delay time of the embedding vectors.

Proof. If τ0 = 1, xk and xk+L according to Theorem 2.2.1 are repeats: {xk} is L-periodic.

It then results that Pk and Pk+L are the same, and only Pk to Pk+L−1 are distinct permu-

tations. So, the set of permutations in that case is L-periodic like the time series {xt}.
If τ0 > 1 and L

gcd (L,τ0)
= γ, then by Theorem 2.2.1, it is easily verified that xk and xk+γ

are redundant as {xt} is L-periodic. So, the number of distinct permutations obtained from

{xk} is equal to γ: {Pk} is thus γ-periodic.

For gcd(L, τ) > 1, the number of distinct permutations can be smaller than γ, depending

on the ordering of the values in {xt}: the choice of τ can reduce the number of distinct

permutations. Thus, γ is the maximum number of distinct permutations which can be

obtained, given the couple (τ, τ0), which ends the proof.

Example 2.2.1. Let us consider for example {xt} = {a0, a1, a2, a3, a0, a1, a2, a3, a0, · · · },
a 4-periodic (L = 4) time series, where a0 �= a1 �= a2 �= a3 are distinct real numbers

and an embedding dimension n = 5. For τ = 1 and τ0 = 1, the corresponding embedding

vectors are: x0 = (a0, a1, a2, a3, a0), x1 = (a1, a2, a3, a0, a1), x2 = (a2, a3, a0, a1, a2), x3 =

(a3, a0, a1, a2, a3), x4 = x0, x5 = x1, . . ., xk = xk−4, k ≥ 4. In this example, there are

only four distinct embedding vectors, so only four distinct permutations can be observed

(γ = L
gcd(L,τ0)

= 4) and all of them have the same largest slope equal to the period of the

time series, S = L = L
gcd(L,τ) = 4.

Now let us consider τ = 2 and τ0 = 1, the embedding vectors become: x0 = (a0, a2, a0, a2, a0),

x1 = (a1, a3, a1, a3, a1), x2 = (a2, a0, a2, a0, a2), x3 = (a3, a1, a3, a1, a3), x4 = x0, x5 =

x1, . . ., xk = xk−4, k ≥ 4. Once more, the number of distinct embedding vectors is equal

to 4; but the number of distinct permutations depends on the ordering of the samples in
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the time series. For the case a0 < a2 < a3 < a1, there are only two distinct permutations:

P0 = P3 =
(
1,2,3,4,5
1,3,5,2,4

)
and P1 = P2

(
1,2,3,4,5
2,4,1,3,5

)
; this number of permutations is less than

γ = L
gcd(L,τ0)

= 4 permutations. However, the largest slope of the permutations now is half

the period of the time series, S = L
gcd(L,τ) = 2.

By setting τ = 1 and τ0 = 2, the embedding vectors are: x0 = (a0, a1, a2, a3, a0),

x2 = (a2, a3, a0, a1, a2), x4 = x0, x6 = x2, . . ., x2k = x2k−4, k ≥ 2. It then turns out that

the maximum number of distinct permutations is now half the period of the time series:

γ = L
gcd(L,τ0)

= 2; while the largest slope of these permutations remains S = L = 4

Finally, if τ = 2 and τ0 = 2, the embedding vectors are: x0 = (a0, a2, a0, a2, a0), x2 =

(a2, a0, a2, a0, a2), x4 = x0, x6 = x2, . . ., x2k = x2k−4, k ≥ 2. It is now clear that both

the number of permutations and the largest slopes are reduced to half the period of the time

series. This example can be extended to any period to see the interplay between τ and τ0

Remark 2.2.2. Theorem 2.2.2 shows that only γ (γ ≤ L < n) permutations are periodically

repeated in the case of regular dynamics, instead of n!. This number is less than or equal

to the possible number of largest slopes, so the permutations can be efficiently represented

by their largest slopes with no information loss. In addition, for a given regular dynamics,

all the γ permutations have the same largest slope.

On the contrary, for non-regular dynamics if the period L is assumed to be infinitely

large, then n < L implies that the number of distinct permutations is greater than n.

Therefore the permutations cannot be efficiently described by the n possible values of largest

slopes any more. It then turns out that for a given dynamics, there is more than a single

value of largest slope as in the case of regular dynamics.

From the remark 2.2.2, we can conclude that regular dynamics can be characterized by

a single largest slope whereas non-regular dynamics cannot. This difference can help to

distinguish between the two types of dynamics. The largest slopes do not allow to represent

all the possible permutations in the case of non-regular dynamics and therefore are not

useful for estimating their complexity.

Remark 2.2.3. Theorem 2.2.2 shows that the number of distinct permutations is less than

or equal to L and that {Pk} is γ-periodic. It thus implies that there is no need to consider

large observation durations, as the periodicity of the permutations can be detected from only

three to four cycles. So, the effective observation time can be set such that 3n ≤ T ≤ 4n,
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with n > Lm the largest period to be estimated without error. This observation also implies

that only 3γ to 4γ permutations can be sufficient for the detection to be accurate. When

τ0 is chosen such that gcd (L, τ0) > 1, 4γ can be too small and allows to save computation

time. Indeed, considering the largest slope does not allow us to determine the complexity,

but only to distinguish between regular and non-regular dynamics. So, it is not useful any

more to consider T � n!, but only T > 3n. This observation is important as it can help

speed up the detection of the regularity of dynamics for real-time applications, and to make

a clear decision from a small amount of data. For low-dimensional systems for example,

where periodic dynamics have few number of harmonics, large values of n are not required.

Remark 2.2.4. In the case L = q and n < L, the set {Sk} of largest slopes derived from

{xk} is γ-periodic. Indeed, for any embedding dimension n < L, the embedding vectors xk

are periodically repeated as the time series {xt} is L-periodic, even if the largest slopes of

the corresponding permutations Pk take possible values between 1 and n − 1, depending

on the ordering of the values in {xt}. Theorem 2.2.2 shows that embedding vectors xk

are periodically repeat, and only a maximum of γ distinct permutations Pk can be derived

from such embedding vectors. The number of distinct permutations for a regular dynamics

does not explicitly depend on the embedding dimension, but only on L, τ0, T and the

ordering of the values. As stated above, the time period of {Sk} is equal to γ, similar to

that of {xk}, except when all the Sk values are the same. When {Sk} corresponds to a

period-1 cycle time series. As only a maximum of γ distinct permutations can be derived

from the set of embedding vectors xk, although the corresponding largest slopes may be

different, it can be conjectured that the upper limit of the PE of a L-periodic dynamics is

ln(γ), where γ = L
gcd(L,τ0)

. This limiting value is obtained when all the γ permutations are

realized with the same probability. The dependence of the number of distinct permutations

on the ordering of values in {xt} and τ can lead to arbitrary nonzero values of the PE for

regular dynamics: two regular dynamics with the same period can give different permutation

entropies.

Remark 2.2.5. In the case L < q, repeated values occur in the basic period of {xt}. For the
largest slope to be unique and equal to q, at least one non-repeated value should appear

twice in xk. For avoiding any detection error, it is necessary to consider the time period

as it remains constant even for embedding vectors with repeated values in the basic period
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(L < q). This requirement can be easily justified by considering n ≥ 2q as embedding

dimension. For example, n = 200 is enough for detecting dynamics with period q = 100.

When there is no redundant value, even a period q = 199 can be efficiently detected with

n = 200.

2.2.3 Permutation largest slope entropy

Theorems 2.2.1 and 2.2.2 indicate that L-periodic dynamics are characterized by a single

value of largest slope if the embedding dimension is such that L < n. It turns out that the

entropy related to the distribution of the largest slopes is equal to zero in the case of regular

dynamics, thus ideal for detecting it, unlike the PE which can take arbitrary values. Thus,

we define the permutation largest slope entropy (PLSE) of order n ≥ 2, τ0 = τ = 1, as:

HS(n) = −
∑

p(S) ln(p(S)) (2.2.7)

where

p(S) =
#{k | 0 ≤ k ≤ T − n, Sk = S}

T − n+ 1
(2.2.8)

is the probability, or relative frequency, of S and # denotes the cardinality. HS(n) = 0 for

regular dynamics with period L < n and 0 < HS ≤ ln(n) for non-regular dynamics. We

can also define the normalized PLSE as:

hS(n) = HS(n)/ ln(n). (2.2.9)

hS(n) = 0 for regular dynamics and 0 < hS(n) ≤ 1 for non-regular dynamics. Indeed,

regular dynamics are characterized by a single value of largest slope Sk = S, for all k and

HS = 0 as p(S) = 1; for non-regular dynamics, Sk takes different values, thus leading to a

nonzero entropy. By this approach, the PLSE can help to distinguish between regular and

non-regular dynamics.

The definition of the entropy related to {Sk} allows us to reduce redundant permutations

in the case of regular dynamics: two permutations with the same largest slope are equivalent.

The maximum number of permutations with different largest slopes is thus n instead of n!.

2.2.4 Relationship between the 3ST and the PLSE

We defined the 3ST algorithm for distinguishing between regular and non-regular dynamics.

The difference between the PLSE and 3ST resides in the statistical analysis of the largest
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slope. We first computed the periodicity index λ3ST by considering embedding vectors of

different lengths [26]. Thereafter, we studied the sensitivity of λ3ST to the initial phase,

namely λP , by considering embedding vectors of fixed length [27]. The interpretation of

λP is similar to that of the PLSE: λP = 0 for regular dynamics and λP > 0 for non-

regular dynamics. Computing the PLSE is similar to computing λP , except that the PLSE

algorithm is easy to implement. Indeed, apart from the delay times τ and τ0 which are

common to the two algorithms, four parameters are required for the determination of λP ,

whereas only the permutation length n is useful for computing the PLSE hS(n). The lower

number of parameters in the PLSE algorithm reduces the chance of detection errors due to

inappropriate parameter settings.

The number of distinct permutations in the case of regular dynamics does not explicitly

depend on the embedding dimension n. However, choosing n < L may lead to permutations

with different largest slopes, hence to hS > 0 for regular dynamics. In order to prevent such

false detection, large embedding dimensions are required. The value of n is then chosen

such that n > Lm, where Lm is the largest period to be detected with no error. Periodic

dynamics whose periods are greater than Lm are considered to be chaotic and the choice of

Lm depends on the complexity of the system under study. Similarly to the 3ST algorithm,

the DDQ can be applied to the PLSE for the noise reduction.

2.3 Influence of the parameter setting

For the analysis of the impact of the parameter setting on the PLSE result, we used the

logistic map whose the control parameter r varies from 3.5 to 4 with a step size of Δ r = 10−3.

We also compare the PLSE results to those of the PE.

2.3.1 Impact of τ and τ0 on the PE and PLSE

The logistic map exhibits a period doubling bifurcation for 3.5 ≤ r < 3.57, starting with a

period-4 cycle. The Feigenbaum diagram is given in Fig. 2.1(a) for comparison with entropy

values in periodic windows. Fig. 2.1 shows that choosing τ > 1 effectively reduces the PE

of regular dynamics for which gcd(L, τ) > 1. The PE of period-4 and period-8 cycles which

are respectively ln(4) and ln(8) for τ = 1 are now all equal to zero for τ = 8 and less than

the PE of period-3 cycle which remains equal to ln(3) for both τ = 1 and τ = 8. The
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same result is observed with the PLSE. For example, r = 3.606 corresponds to a period-20

cycle and the smallest embedding dimension for HS to be zero is equal to 21. However,

considering τ = 8 brings back this period to 5, which is less than the embedding dimension

n = 7, hence HS(7) = 0 for this dynamics.

For τ0 = 8, the number of distinct permutations in the case of period-4 and 8 cycles is

reduced to γ = L
gcd(L,τ0)

= 1, thus leading to HS(7) = 0; for all other period-L cycles with

L a multiple of 8, the number of distinct permutations becomes γ = L/8 instead of γ = L.

This reduction of the number of permutations does not guarantee a zero value of the PLSE

as 7 < L ≤ 32 may lead to different largest slopes. For the PLSE to be zero, the embedding

dimension needs to be greater than the period of the underlying dynamics: τ0 does not

reduce the period of the orbit, but only the number of distinct permutations. Fig. 2.1 also

shows that complexities corresponding to τ = 1, τ0 = 1 and τ = 1, τ0 = 8 are quite the

same for non-regular dynamics, while for τ0 = 1 and τ > 1 an increase of the complexities

is observed. This observation confirms that τ0 > 1 preserves the ordering/nature of the

underlying dynamics, hence its complexity, while τ > 1 does not, thus giving a more complex

appearance to the dynamics than truly exists: we have shown in Theorem 2.2.1 that τ > 1

can lead to the reduction of the periods of regular dynamics while Theorem 2.2.2 has shown

that only the number of distinct permutations can change without affecting the period of

the dynamics. Considering the simulation results, we can conjecture that in the case of

non-regular dynamics, choosing 1 < τ0 < n does not significantly modify the number of

distinct permutations, hence the complexity measure of the dynamics. Considering τ0 > n

contributes to skipping samples in {xt} and may lead to false detection results. It also

appears that choosing large values of τ is a limiting factor for the chaos scaling as the PE is

taking about the same value for all the non-regular dynamics. On the other hand, choosing

τ0 > 1 reduces the PE of regular dynamics for which gcd(L, τ0) > 1, while maintaining

the scaling of the complexity of non-regular dynamics. Fig. 2.1(b) and Fig. 2.1(c) show

that HS(7) < H(7), which confirms that the number of distinct permutations in the case of

non-regular dynamics is effectively greater than the number of possible slopes, and therefore

cannot be suitably described by the largest slopes.

The impacts of τ and τ0 on the PE and the PLSE for regular dynamics are quite opposed.

For τ0 = 1, gcd(L, τ) > 1 contributes to reducing the period of the underlying dynamics

to δ < L, but does not change the number of distinct permutations. It therefore turns
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Figure 2.1: Logistic equation for varying control parameter 3.5 ≤ r ≤ 4 (step Δr = 10−3),
T = 5000: (a) Bifurcation diagram, (b) PE H(7) for τ = 1 and τ0 = 1 (blue solid line),
τ = 3 and τ0 = 1 (red dash-dotted line), τ = 8 and τ0 = 1 (magenta dashed line) and τ = 1
and τ0 = 8 (black dotted line); (c) PLSE HS(7) for τ = 1 and τ0 = 1 (blue solid line), τ = 3
and τ0 = 1 (red dash-dotted line), τ = 8 and τ0 = 1 (magenta dashed line) and τ = 1 and
τ0 = 8 (black dotted line).

out that the PLSE of regular dynamics with period L such that δ < n < L is equal to

zero, while the corresponding PE is such that ln(δ) ≤ H(n) ≤ ln(L). In the case τ = 1

and gcd(L, τ0) > 1, the number of distinct permutations is reduced to γ < L, while the

period L remains unchanged. As a consequence, the PE of L-periodic orbits is reduced to

H(n) ≤ ln(γ) whilst their PLSE is such that 0 ≤ HS(n) ≤ ln(n) if n ≤ L and HS = 0 if

n > L. We choose n = 7 in Fig. 2.1 for comparison purposes, but this value needs to be

large enough for efficient detection of regular dynamics with large periods.

2.3.2 Impact of n on the detection result

Now let us consider n = 1024 with τ = 1, τ0 = 8 and n = 32 with τ = 8, τ0 = 1. Such large

values of n are difficult to consider with the PE as the requirement T � n! may be difficult

to achieve in practice. In the simulation below, the results of the PLSE are compared with

the Lyapunov exponent. From Fig. 2.2, choosing large values of n effectively allows us to

give a better estimate of the periods and to measure zero entropy even for dynamics with

large periods. This result also shows that there is no need to increase the observation time
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Figure 2.2: Logistic equation for varying control parameter 3.5 ≤ r ≤ 4 (step Δr = 10−3),
T = 5000: (a) Cycle diagram for τ = 1 and τ0 = 8; (b) Lyapunov exponent λLyap; (c)
HS(1024), τ = 1 and τ0 = 8; (d) HS(32), τ = 8 and τ0 = 1.

T , as only three to four cycles of the distinct permutations are required for the dynamics to

be detected as periodic. Choosing τ0 = 8 allows us to reduce the number of permutations

for all regular dynamics whose periods are such that gcd(L, τ0) > 1 and to reduce the

computational time, while choosing τ = 8 allows to achieve zero PLSE even for period-L

cycle dynamics with L > 32 and δ < 32 < L. For r = 3.602 for example, the logistic map

exhibits a period-88 cycle dynamics and considering n = 32 is not enough for detecting this

dynamics as periodic. However, combining n = 32 with τ = 8 allows to obtain HS(32) = 0

as the 88-periodic orbit is reduced to period-δ cycle dynamics, with δ = 11. Normally, there

is a tiny periodic window around r = 3.801 which cannot be clearly observed as Δr = 0.001

only. For r = 3.801 the LE is coming close to zero (λLyap = 0.0619), but remains positive.

This result is clearly expressed by the PLSE which remains positive even for n = 1024

(HS(1024) = 1.5652), thus confirming the chaotic nature of the corresponding dynamics.
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2.4 Applicability to continuous time systems

Similarly to the 3ST, applying the PE or the PLSE to continuous time series is quite difficult

due to the sampling process and the precision of the integrator. Thus, the time series should

be considered as noise contaminated. For the PLSE to be efficiently determined, we used

the DDQ as for the 3ST for noise reduction. We thus used as dynamical system the forced

Duffing oscillator described in Eq. (1.6.2). The PLSE algorithm is then applied to the

solutions xt and yt and only the maximal value of the corresponding entropies is retained.

As in chapter 1, we considered in the case of PLSE and 3ST that the time series {xt} and

{yt} are corrupted by a small amount of noise of amplitude ε ≤ Ts/10, due to sampling

and numerical integration. Taking η = Ts/10 and applying the DDQ to {xt} and {yt}, we
obtained the result in Fig. 2.3(b), which is to be compared to λP in Fig. 2.3(c) computed

in chapter 1. Applying the DDQ prior to PE gives approximately the same result as in

Fig. 2.3(d), for which no noise reduction is considered. The results in Fig. 2.3 show that

the LE λLyap and hS(n) behave similarly, except for r = 0.287 where hS(n) > 0 indicates a

transition between two stable limit-cycles. This transition is characterized by the detection

of two values of largest slopes and can be easily recognized. Fig. 2.3(d) shows that PE

can only detect changes in the dynamics, but cannot give details on their nature. The

PLSE algorithm may also be applied to the set of local maxima of {xt} and {yt} to obtain

effectively the same detection result.

So, according to the observation made on the impact of τ and τ0, PE accurately estimates

the complexity of L-periodic dynamics iff the conditions gcd (L, τ) = 1 and gcd (L, τ0) = 1

are satisfied. As there is no defined period in the case of non-regular dynamics, such

a condition is not required and the PE approximates the complexity of the underlying

dynamics better when τ0 < n. In contrast, the PLSE always indicates a zero complexity for

the regular dynamics whose periods are such that L < n, as they are perfectly predictable.

In the case of non-regular dynamics, the maximum number of distinct permutations is

greater than the n possible values of largest slopes, and the permutations therefore cannot

be effectively described by their largest slopes. Consequently, the corresponding entropy

cannot be considered as a complexity measure. However, as nonzero entropies are supposed

to be obtained only for non-regular dynamics and zero entropies for regular dynamics,

the PLSE can be considered to be a detection entropy. Choosing τ > 1 allows to reduce
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Figure 2.3: Forced Duffing System for varying control parameter 0.2 ≤ r < 0.5 (step
Δr = 10−3), T = 4 · 104: (a) Lyapunov exponent, (b) hS(15000), (c) λP (15000) and (d)
h(7).

detection errors due to small values of embedding dimensions n while 1 < τ0 < n allows to

consider smaller observation time T for detection purposes. Moreover, choosing 1 < τ0 < n

speeds up the scanning time of the time series under study, hence the PLSE algorithm, as

the number of embedding vectors analyzed for τ0 = 1 is reduced by a factor of τ0 without

error on the detection result. For the purposes of detection, the above results show that the

PLSE behaves similarly to the positive Lyapunov exponent, whilst outputting zero entropy

for regular dynamics without bias. Compared to λP , the calibration of the PLSE algorithm

is easier than that of the 3ST algorithm.

We also applied the PLSE algorithm to experimental data acquired from an electronic

circuit exhibiting a Duffing attractor in order to validate its effectiveness and robustness

against noise [24]. We compared the results obtained to those of the 0-1 test, the conditional

entropy of ordinal patterns (CPE) and the maximal Lyapunov exponent (MLE). From the

comparison of the experimental spectra of the four methods with the analogue phase por-

traits of the experimental system, it appeared that the PLSE is the more reliable algorithm

for chaos detection from experimental data.
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2.5 Applicability to strange nonchaotic attractors (SNA)

Strange nonchaotic attractors (SNA) are usually observed in quasi-periodically forced non-

linear systems. The general term for such systems in the case of one-dimensional maps is

given by

⎧⎨
⎩

xt+1 = f(xt, 2πyt)

yt+1 = yt +Ω mod 1,
(2.5.1)

where Ω = (−1 +
√
5)/2. SNA are geometrically strange (i.e described by a fractal di-

mension), but the corresponding nontrivial largest Lyapunov exponent is negative, thus

implying a nonchaotic dynamics. They were only seen in laboratory experiments, but never

in the nature until the recent observation of stellar strange nonchaotic dynamics [49]. This

observation of course could imply an increasing interest for SNA detection in the forthcom-

ing years, as it may improve the classification and refine the physical modeling of the stars’

interiors [49, 61].

Although the PLSE like the 3ST can detect periodic and quasi-periodic dynamics [27,

28], it should be noticed that this detection can require a long observation time, depending

on the period of the time series. In the case of quasi-periodically forced dynamics, the

time series period may be too long as compared to the observation time. In these cases,

the detection of the corresponding tori and SNA is no longer possible. For the PLSE to

be efficient in such cases, some preprocessing or transform must be applied to the initial

time series. In this section, we suggest applying the PLSE algorithm to quantized ordinal

matrices (QOM) derived from the input time series [23].

In fact, we observed that there is no possibility of detecting quasi-periodic dynamics as

regular while considering the phase space periodicity. Indeed, given the irrational nature

of the driving frequency, observing some repetition of a certain basic shape is somehow

impossible. However, while considering the order relation between the time series values,

we observed that some periodicity properties may occur in the resulting data series. For this

purpose, we suggest using the order relation between values in the time series as a quantizer

(ordinal quantizer), so as to reduce the number of distinct values in the initial time series,

and hence its complexity which is due to the numerical approximation of the irrational

driving frequency. With this approach, the periodicity related to the order relation can
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then be exploited for detecting torii and SNA as regular dynamics.

2.5.1 Ordinal quantization of the time series

The principle of the ordinal quantization process is described in what follows. Given the time

series {xt}t=0,··· ,T−1, we first choose the embedding dimension k, and consider embedding

vectors xk = (xk, xk+1, . . . , xk+j , . . . , xk+(l−1)), where j+1 is the index of xk+j in xk, j ∈ N.

Thereafter, permutations Pk of order l are derived from embedding vectors xk by sorting

the amplitude of the elements of each xk into ascending order. The possible number of

distinct permutations is l! and depends on the time series under study. This value may be

greater or less than the initial number L of distinct values in the time series. Finally, the

largest slope Sk, k = 0, 1, · · · , T − l + 1, of each permutation Pk derived as in Eq. (2.2.4)

is considered as the quantized value. The ordinal quantization thus defined allows us to

convert the phase space period L of the initial time series into l: Sk ∈ {−1, 1, 2, · · · , l− 1}.
Choosing l = 2 for example is equivalent to the ordinal binarization of the time series,

as only two distinct values are allowed, namely Sk ∈ {−1, 1}. Indeed, reducing the phase

space period is required for the detection of regular dynamics with large period L. Since the

quantization process may introduce repetitions in the quantized time series, some hidden

periods may appear, thus helping to characterize complex regular dynamics.

2.5.2 Ordinal matrix transform of the quantized time series

While quantizing the initial time series, some properties are lost. Therefore, even weakly

chaotic dynamics may be detected with a zero entropy. In order to avoid such errors, we

propose increasing the complexity of the quantized time series by transforming it into a

series of ordinal matrices of order m. The principle consists of combining m symbols of the

previously quantized series {Sk} into a single value such that:

zt1 =
1

∑m
i=1 a

− i
i+1

·
m∑
i=1

a−
i

i+1St1+i−1, (2.5.2)

with t1 = 0, 1, . . . , T − (l+m)+2, a = 2. Given that St1 corresponds to the quantized value

of the embedding vector xt1 , combining m values of St1 is equivalent to designing l × m

matrices whose quantized value is zt1 . {zt1} is the quantized series of embedded delayed

matrices (QOM) derived from the series {xt}, or embedded quantized vectors derived from
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the series {Sk} of quantized ordinal patterns (permutations), which itself is derived from

{xt} using ordinal relations. The whole process can be summarized as follows:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xt1 xt1+1 · · · xt1+l−1

xt1+1 xt1+2 · · · xt1+l

...
...

...
...

xt1+j xt1+j+1 · · · xt1+l+j−1

...
...

...
...

xt1+m−2 xt1+m−1 · · · xt1+l+m−3

xt1+m−1 xt1+m · · · xt1+l+m−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

St1

St1+1

...

St1+j

...

St1+m−2

St1+m−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−→ zt1

So, each line j = 0, 1, . . . ,m − 1 of the matrix corresponds to the embedding vector

xt1+j and is transformed into a single scalar St1+j corresponding to the largest slope of the

permutation obtained by sorting its values. Given an initial time series {xt} of length T , a

quantized series {St1} of embedding vectors of length l, whose the length is T − l + 1, can

be derived. Even if the number of distinct values in {xt} is unknown, the possible number

of distinct values in {St1} is equal to l. Combining m values of {St1} to define the series

{zt1} allows to generate new words, thus to increase the number of distinct values from l

to lm. By this approach, a small difference between two quantized series of permutations

is amplified so that the PLSE values of the corresponding transformed time series are no

longer the same.

Let us consider for example a period-5 cycle (L = 5) time series obtained by gener-

ating 5 distinct random numbers (0.8147, 0.9058, 0.1270, 0.9134, 0.6324) and repeating this

basic shape 200-times. Similarly, using the circle map defined in Eq. (1.2.2) with r = 0

and Ω = −1+
√
5

2 , let us generate a quasi-periodic time series. The first 100 values of the

corresponding time series as well as the corresponding binarized time series are shown in

Fig. 2.4(a)-(b). For the period-5 time series, the phase space period is decreased from L = 5

to L1 = 2. However, for the binarized time series to be detected as regular, an embedding

dimension n ≥ 8 is required for the PLSE algorithm, while only n = 6 would have been

necessary for the initial time series. It should be pointed out that the time period of the

binarized series remains q = 5 as for the initial time series. This increase of the PLSE

embedding dimension is due to repetitions introduced by the quantization process. In the

quasi-periodic dynamics all the 1000 samples generated with x0 = 0.25 are distinct and no
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phase and time period can be determined. However, the binarization process converts this

dynamics into a period-2 time series, while some time periods can be observed on short

sequences (q = 8, q = 13, q = 21,. . . ). We observed that an embedding dimension n = 8

is enough for the PLSE to output zero, whereas no precise small embedding dimension can

be initially estimated theoretically. The binarization process thus reduces the complexity

of the quasi-periodic dynamics by highlighting some hidden periods. Indeed, we verified

that repeating patterns of length q can be extracted from the binarized series derived from

the quasi-periodic dynamics and that the values of q belong to the Fibonacci sequence. De-

pending on the initial condition, some Fibonacci numbers may not occur on the sequence of

hidden periods Gq = {qj}. For our example, the sequences of the first 8 hidden periods ob-

tained for x0 = 0.25 and x0 = 0.251 are respectively G1
q = {5, 8, 13, 21, 89, 144, 233, 377}

and G2
q = {5, 8, 13, 21, 89, 144, 610, 987}. By using the binarization, two distinct quasi-

periodic dynamics generated with slightly different initial conditions can then be character-

ized by their respective signatures G1
q and G2

q . In the case of periodic dynamics of period

q, the signature does not depend on the initial condition and behaves linearly, i.e qj = j · q.
So, from these examples, it is clear that the phase space period of the quantized time series

is smaller than that of the initial time series. However, the embedding dimension required

for the PLSE to output a zero entropy may be slightly increased as repetitions appear in

the quantized series. In the case of quasi-periodic dynamics, in addition to the phase space

period, a variable time space period clearly appears, whereas no pattern can be observed

in the initial time series, thus attesting that its complexity is reduced.

Applying the ordinal matrix transform with m = 3 to the above quantized series leads

to new time series as shown in Fig. 2.4(c). The maximum number of distinct values is

equal to lm = 8. For the period-5 data series, the phase period is increased from L = 2

to L = 4, while the time period remains q = 5 with one repeated value. The PLSE

thus outputs a zero value for this time series when considering an embedding dimension

n ≥ 7. For the quasi-periodic time series, the new phase period is also L = 4, while

the time period sequences are now G1
q = {13, 21, 89, 144, 233, 377, 1597, 2584, . . .} and

G2
q = {13, 21, 89, 144, 610, 987, 1597, 6765, . . .} respectively for x0 = 0.25 and x0 = 0.251.

The PLSE now requires n ≥ 21 as embedding dimension for the time series to be detected

as regular. It is observed from the period sequences that the shorter periods 5 and 8 do not

appear anymore. This observation implies that the series of QOM are more complex than
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Figure 2.4: Example of ordinal matrix transform: (a) initial time series, (b) series of per-
mutations largest slopes and (c) quantized ordinal matrices time series

the generating binarized series, thus requiring a larger embedding dimension for the PLSE.

The embedding dimension n required for the series of QOM to be detected as regular is

increased accordingly to the initial phase space period (or complexity) of the corresponding

time series. Assuming that quasi-periodic dynamics are less complex than SNA which

themselves are less complex than chaotic dynamics, the present ordinal matrix transform is

used for detecting SNA.

2.5.3 Efficiency of the ordinal matrix transform

Applying the PLSE to the series of ordinal matrices requires three parameters n, l and m.

As the detection result is sensitive to all these parameters, some guidance for their choice

is necessary. Indeed, the ordinal matrix transform preserves the time period of periodic

dynamics, although the phase space period is modified by the quantization process.

SNA, Quasi-periodic and chaotic dynamics all present large phase space periods. The

phase space period is reduced by the ordinal matrix transform, but unlike for the quasi-

periodic dynamics, the PLSE outputs a nonzero entropy for both SNA and chaotic dynamics.

The nonzero value of the PLSE thus obtained implies that the transform induces no time
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period, or the induced time period is too large. Indeed, even when a time period exists,

the number of repeated values increases as the difference between l and the initial phase

space L becomes larger (l < L); and the required embedding dimension for the PLSE to

output zero increases with the number of repeated values. Given that chaotic dynamics

are assumed to be more complex than SNA, the complexity of the ordinal matrix series

obtained from a chaotic dynamics should increase faster than that of the SNA data series.

Under this assumption, (for a given dynamical system) a pair (l,m) may exist such that

the entropy of the series of ordinal matrices of the SNA is smaller than that of the series of

ordinal matrices of the chaotic dynamics, whereas the initial time series of the two dynamics

present approximately the same entropy.

Let h(n) be the entropy of the series of ordinal matrices {zt} and h0(n) the entropy of

the initial time series {xt}, we thus define an indicator for the calibration of the parameters

n, l and m as follows:

λl,m(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ln
[
h0(n)−1
h(n)−1

]
, if h > h0;

ln
[

h(n)
h0(n)+ξ + ξ

]
, if h ≤ h0.

(2.5.3)

with 0 < ξ � 1. In our examples, we set ξ = 10−2 for this equation. The algorithm

is assumed to be well calibrated if for a given value of n, h(n) > h0(n) only for chaotic

dynamics. This implies that λl,m ≤ 0 for periodic and quasi-periodic dynamics as well as

tori and SNA for well chosen values of k and m. This condition constitutes our criterion

for the choice of (l,m) pairs. Given that quasi-periodic dynamics are assumed to present a

zero entropy, the corresponding values of λl,m should be less than those of SNA. The above

definition of λl,m constitutes the extension of the PLSE algorithm for SNA detection. In

order to evaluate the efficiency of the ordinal matrix transform, let us apply the extended

PLSE to the forced logistic and cubic maps. The forced logistic map is described by the

following equation [54]:

xt+1 = r
[
1 + ε′ cos(2πyt)

]
xt(1− xt) (2.5.4)

with yt behaving as in Eq.(2.5.1), 0 ≤r ≤ 4 and 0 ≤ ε′ ≤ 4
r−1 . In order to ensure a bounded

motion, the amplitude is rescaled as ε → ε′(r−1)
4 , with 0 ≤ ε ≤ 1. Similarly, the forced cubic
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Figure 2.5: Example of phase portraits derived from the quasi-periodically forced logistic
map. From left to right and from top to bottom: Torus (r = 3.484), SNA (r = 3.488),
Weak-chaos (r = 3.513) and Chaos (r = 4). The dynamics are obtained with ε = 0.3.

map is described by the following equation of motion [34]:

xt+1 = A cos (2πyt)− βxt + x3t (2.5.5)

with yt behaving as in Eq.(2.5.1).

Fig. 2.5 shows some an example of phase portraits for a torus, an SNA and a chaotic

dynamics derived from the quasi-periodically forced logistic map. Although, SNA may

be found both in λl,m < 0 and λl,m > 0 regions, the detection of tori-SNA transitions

is expected to be improved in the h(n)-spectrum, compared to the Lyapunov exponent

spectrum as can be seen in Fig. 2.6 where the extended PLSE is applied to the forced

logistic map. For this example, the effectiveness of the parameter setting is evaluated by

computing the rate σ of false detection of λl,m for a large spectrum of the system under

study, taking as reference the Lyapunov exponent λLyap. This error is evaluated as

σ(%) =

∑ |sign(λLyap)− sign(λl,m)|
2N

× 100, (2.5.6)

where N is the length of the spectrum. σ expresses how effective the parameter setting

is. The smaller σ, the better the calibration of the parameters. We set for this experiment

2.4 ≤ r ≤ 4 with step size Δ r = 10−4, ε = 0.3, n = 280, l = 4, m = 3 and T = 5 · 104 as

data length. The corresponding calibration error is σ = 3.387%, which is quite small, as

compared to the total number of values analyzed.
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Figure 2.6: Detection spectra of the forced logistic map for ε = 0.3, T = 5 · 104, n = 280,
l = 4 and m = 3. (a) comparison of the conventional PLSE and the extended PLSE; (b)
comparison of the calibration parameter λl,m and the Lyapunov exponent λLyap

Looking at Fig. 2.6, the error occurs in transition zones where the Lyapunov exponent

is very close to zero. While comparing the entropy spectra, it is clear that the detection

of the transitions between the different types of dynamics is considerably improved by the

ordinal matrix transform. Indeed, the entropy of tori is considerably decreased, thus taking

much smaller values (close to zero) compared to the other dynamics.

2.5.4 Example of SNA detection in the Heagy-Hammel route

A SNA occurs in the Heagy-Hammel (H-H) route when the period-22 torus collides with its

unstable parent [41, 54]. Such a phenomenon is observed in the quasi-periodically forced

logistic map with ε = 0.3. The H-H transition is known to appear at r0 � 3.487793 [60, 34].

We thus examined the behavior of the system in the neighborhood of r0 and compared the

result of the PLSE with the Lyapunov exponent. On the other side of the SNA there is a

transition between SNA and chaos at r1 = 3.512 [54]. In Fig. 2.7 we show the detection

result. It can be clearly observed in the case of the PLSE there is a large gap between

the entropy in tori and SNA, as well as between SNA and chaos regions. We set for this

experiment n = 210, l = 4, m = 2. The corresponding calibration error is σ = 5.237%.

Similarly, we examined the neighborhood of β0 = 1.88697 in the case of the cubic map with

A = 0.7 where the system is known to exhibit a SNA (torus-SNA transition). Initially, it
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Figure 2.7: Detection of the transition from torus to SNA by the H-H route in the forced
logistic map, ε = 0.3, n = 210, l = 4 and m = 2. From top to bottom the Lyapunov
exponent, the PLSE h and the calibration indicator λ4,2 are shown.
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Figure 2.8: Detection of the transition from torus to SNA by the H-H route in the cubic
map, A = 0.7, n = 210, l = 5 and m = 11. From top to bottom: the Lyapunov exponent,
the PLSE h and the calibration indicator λ5,11.
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Figure 2.9: Fractalization route to SNA in the forced logistic map, ε = 1, n = 210, l = 5
and m = 2. From top to bottom: the Lyapunov exponent, the PLSE h and the calibration
indicator λ5,2.

has for β = 1.8865 a period-2i torus, i ∈ N; this torus begins to wrinkle as β increases

to the value 1.8868 where it approaches its unstable parent [34]. After the onset of SNA,

the system moves smoothly toward a chaotic dynamics as β approaches 1.8875. For the

detection of these changes, we set n = 210, l = 5 and m = 11. The results are compared

in Fig. 2.8, for β varying from 1.886 to 1.889, by step size Δβ = 10−5. It can be easily

observed that the PLSE once more allows to clearly distinguish between the torus and SNA,

as well as SNA and chaos.

2.5.5 Example of detection of the fractalization route to SNA

The fractalization route to SNA has been detected in the logistic map for ε = 1, between

r = 2.64 and r = 2.67. In that case, a period-L torus attractor gets wrinkled and eventually

forms an L-band SNA [34, 60]. Fig. 2.9 compares the results of the PLSE and the 0-1 test.

The transition from torus to SNA appears at r0 = 2.6526 [34], We varied r by step size

Δ r = 10−4. The PLSE spectrum clearly shows the transition between torus and SNA at r0.

It can be observed that the λl,m-spectrum gives negative values, although the h-spectrum

outputs entropy values around h = 0.5. The negativity of the λl,m spectrum helps quickly

making a decision in that case, whereas transitions can be clearly detected in both spectra.

We also analyzed the fractalization route to chaos in the cubic map. Once more, it
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can be observed in Fig. 2.10 that the PLSE performs well for the detection of torus-SNA

and SNA-chaos transitions. The experiment was conducted with A = 0.1, n = 210, l = 5,

m = 11 and β varying from 2.14 to 2.17, with a step size Δβ = 10−4. The calibration error

for this experiment is σ = 4.319%. Comparing the PLSE-spectrum with the Lyapunov

exponent, it is clear that the PLSE detects transitions occurring in the system behavior,

even in the doubled torus region (β = 2.14 to β = 2.167). The system starts with a torus-

like motion at β = 2.14, it thereafter exhibits a quasi-periodic oscillation of the double torus

for β = 2.16, then moves to a wrinkled torus for β = 2.165; the SNA appears for β = 2.167

and finally, the system becomes chaotic for β = 2.1675 [34]. All these transitions can be

clearly observed on the h and λl,m spectra in Fig. 2.10.

2.6 Conclusion

In this chapter we presented the PLSE as the simplified and improved alternative for the

3ST algorithm. Using a probabilistic analysis of the permutation largest slopes, we com-

pared the PLSE and PE results and showed that the PE is suitable for measuring the

complexity of non-regular dynamics, while the PLSE is useful for detecting of regular dy-

namics. We also showed that the bias between the PE and the largest Lyapunov exponent

in the case of regular dynamics is predictable only for gcd (L, τ) = 1 and gcd (L, τ0) = 1.
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Otherwise, the PE may take arbitrary values smaller than the predicted entropy of the dy-

namics under investigation, although it should be zero as referred to the KS entropy. The

PLSE allows us to save computational time by choosing 1 < τ0 < n without affecting the

detection capability, nor the estimation of the period of the limit cycles. The results thus

presented confirm along the way the reliability of the permutation slopes for chaos detec-

tion. By using the QOM transform, we also investigated the applicability of the PLSE to

the detection of SNA in quasi-periodically forced chaotic maps. Assuming that the entropy

of tori and SNA reduces compared to that of the initial time series, whereas that of chaotic

dynamics increases, the detection of transitions between tori and SNA as well as between

SNA and chaotic dynamics becomes possible,but was not for other ordinal pattern-based

algorithms. However, although the PLSE well performs for the detection of regular and

non-regular dynamics, it should be pointed out that it cannot be used as a complexity

measure. Moreover, it remains difficult to characterize an isolated time series, unless the

spectrum of the whole system is known. Since in most of practical cases the challenge is

to classify isolated non-regular dynamics by means of complexity measure, we investigate

in chapter 3 the possibility of performing both the detection of regular dynamics and the

complexity measure.
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Chapter 3

The matching energy: a novel
approach for complexity measure

Chapters 1 and 2 have presented the increasing improvements brought to ordinal pattern-

based algorithms, but we have not established a complexity measure. In this chapter, we

introduce an algorithm based on matching values in time series, namely the matching energy

(ME). It consists of simply estimating the complexity by dividing the energy of the time

series into the energy of non-matching samples and that of matching samples. The ME

of periodic time series is equal to zero while non-regular dynamics present a positive ME.

The approach thus defined allows to scale chaos in dynamical systems and presents a high

robustness against noise as well as a high speed performance, hence is useful for real-time

analysis of real-world data.

This algorithm has been presented in:

[22] J. S. A. Eyebe Fouda, The matching energy: a novel approach for measuring com-

plexity in time series, Nonlinear Dyn. - (2016) DOI: 10.1007/s11071-016-3014-8.

3.1 Introduction

The main properties required for a nonlinear time series analysis method are the robustness

against noise, high speed performance, applicability to short data sets, applicability to any

type of data, and the classification ability (discerning between regular and non-regular dy-

namics or measuring the data complexity), and we just showed that the previous algorithms

presented can only discern between regular and non-regular dynamics. Other various well
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known theoretical approaches such as the Lyapunov exponents, Kolmogorov-Sinai (KS) en-

tropy, correlation dimension and many others are difficult to estimate from a finite data set

[1, 15, 19, 20, 31, 38], while empirical measures like the renormalized entropy or the ap-

proximate entropy often lack a theoretical foundation or are not easily readable [2, 58, 62].

The Rosenstein algorithm was designed to be robust against noise and can be applied to

short length data [63]. It has the advantage of being easily interpretable as it refers to

the theoretical Lyapunov exponent which is already known as a powerful tool for nonlinear

system analysis. Unfortunately, this algorithm cannot be used for real-time data analysis

as it is too time consuming.

In this chapter, we introduce a new algorithm for real-time complexity measurement

in real-world time series, namely the matching energy (ME). It needs to fulfill the main

properties required for a data analysis method, and needs to be particularly fast as it

is designed for real-time analysis. The ME approach consists of simply estimating the

complexity by dividing the energy of the time series into the energy of non-matching samples

and that of matching samples. For this purpose, the time series is globally sorted into

ascending and descending order and locally compared to the initial time series. Indeed,

n-length embedding vectors (sequences) derived from the sorted and initial time series are

compared. If some coordinates match in the two vectors, then the partial energy of the

sequence is set to zero. If there are no matching coordinates, then the partial energy

is positive. The ME for the whole time series is then obtained by averaging the partial

energies of all the sequences, and will be equal to zero for periodic dynamics and positive

for non-regular dynamics.

3.2 The matching energy approach

3.2.1 Definition of the matching energy

Let us consider a time series {xt}t=0,1,2···T−1 and its globally sorted versions {ut} and

{vt}. {ut} is obtained by rearranging the values of {xt} into ascending order, while {vt} is

obtained by rearranging {xt} values into descending order. From the time series {xt}, {ut}
and {vt}, we derive n-length embedding vectors xk = (xkτ0 , xkτ0+1, . . . , xkτ0+(n−1)), uk =

(ukτ0 , ukτ0+1, . . . , ukτ0+(n−1)) and vk = (vkτ0 , vkτ0+1, . . . , vkτ0+(n−1)) respectively, where k ∈
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N and 1 ≤ τ0 ≤ n is the delay time of the embedding vectors. Since xk, uk and vk belong

to an n-dimensional vector space V, they can be easily compared.

The matching energy approach consists of projecting xk, uk and vk on two subspaces of

V: the vector spaceV(1) of matching coordinates and the vector spaceV(2) of non-matching

coordinates of xk, uk and vk, and to consider the energy of the different projections for

evaluating the complexity of the time series. Let yk and zk be two vectors obtained by

sorting xk respectively into ascending and descending order (local sorting), n1 is the number

of matching coordinates between yk and uk, and n′
1 the number of matching coordinates

between zk and vk. Thus, V(1) and V(2) are respectively n1-dimensional and (n − n1)-

dimensional vector spaces when considering uk, while V′(1) and V′(2) are respectively n′
1-

dimensional and (n − n′
1)-dimensional vector spaces when considering vk. Let Ek+ be the

energy of xk, Ek+ is such that:

Ek+ =

√√√√ 1

n

n∑
i=1

(
xk(i)− xk

)2
, (3.2.1)

where xt is the mean value of xt.

Similarly, let us consider the projections u
(1)
k and v

(1)
k of uk and vk respectively on

V(1) and V′(1), and u
(2)
k and v

(2)
k the respective projections on V(2) and V′(2). The average

distance (or mutual energy) between yk and uk, and zk and vk for the matching coordinates

is evaluated as:

dk− =
1

2

(
d
(u)
k− + d

(v)
k−

)
, (3.2.2)

where

d
(u)
k− =

√√√√ 1

n1

n1∑
i=1

(
y
(1)
k (i)− u

(1)
k (i)

)2
(3.2.3)

and

d
(v)
k− =

√√√√ 1

n′
1

n′
1∑

i=1

(
z
(1)
k (i)− v

(1)
k (i)

)2
. (3.2.4)

For the non-matching coordinates, this distance is evaluated as:

dk+ =
1

2

(
d
(u)
k+ + d

(v)
k+

)
, (3.2.5)

where

d
(u)
k+ =

√√√√ 1

n− n1

n−n1∑
i=1

(
y
(2)
k (i)− u

(2)
k (i)

)2
(3.2.6)

Habilitation thesis, University of Kassel, June 2017



3.2 The matching energy approach 69

and

d
(v)
k+ =

√√√√ 1

n− n′
1

n−n′
1∑

i=1

(
z
(2)
k (i)− v

(2)
k (i)

)2
. (3.2.7)

It is obvious that dk− = 0, ∀ (n1, n
′
1).

The partial energy associated with the k-th embedding vectors xk, uk and vk derived

respectively from {xt}, {ut} and {vt}, is defined as follows

Ek(n) =

⎧⎨
⎩

0, if (n1 + n′
1) �= 0;

Ek+ + dk+, otherwise.
(3.2.8)

Applying this process to the whole time series, the average value of the partial energies

Ek is considered as a complexity measure, hence:

E(n) =
1

N

N−1∑
k=0

Ek(n), (3.2.9)

where N = 1 + 
T−n
τ0

� is the number of n-length embedding vectors explored. Embedding

vectors with partial energy Ek = 0 are assumed to be perfectly predictable. The above Eq.

(3.2.9) thus defines the matching energy of a given time series and applies to any type of

data set. The ME approach is equivalent to splitting the whole orbit into small sequences

and determine its complexity by discarding all the predictable sequences. A time series is

less predictable when it contains few embedding vectors with zero partial energy.

3.2.2 Justification of the ME algorithm

The above definition of the complexity measure by the ME approach should allow to dis-

tinguish between periodic and non-regular time series. Indeed, let us assume that the time

series {xt} is L-periodic, L being its phase space period (number of distinct samples per

period) and q its time period. For simplicity, we assume L = q. By sorting the values of

{xt} into ascending (respectively descending) order, the resulting time series {ut} (respec-

tively {vt}) is a stair function with L stairs, and is no longer periodic. Depending on n,

L and T , Ek can be greater than zero or equal to zero. Let us assume T = n0 · L, where
n0 ∈ N�1 is the number of periods explored. This assumption implies that each stair of

{ut} (respectively {vt}) contains n0 identical samples. The following cases can then be

distinguished:
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1st case: n ≥ L

In that case, xk contains all the L distinct samples of the series {xt}. Two subcases can

also be distinguished: the case n ≤ n0 and the case n > n0.

If n ≤ n0, then uk (respectively vk) contains a single value or two distinct values of {xt}
if it includes a transition between two stairs of the series {ut} (respectively {vt}). As xk

contains all the L possible values, at least one sample matches in yk and uk (respectively zk

and vk), hence Ek = 0. This result can be verified for the whole time series, thus implying

that E = 0.

If n > n0, uk (respectively vk) contains more than a single value of {xt} and Ek = 0

as there is at least one matching sample in yk and uk (respectively zk and vk), given that

n ≥ L. This result is also valid for the whole time series, hence E = 0.

2nd case: n < L

In that case xk contains only n of the L distinct samples. As in the first case, two

possibilities can be considered: n ≤ n0 and n > n0. If n ≤ n0, then as shown in the first

case uk (respectively vk) contains one or two distinct values. However, as n < L these

values are not necessarily included in xk. It turns out that Ek depends on the ranking

of the values in {xt}. So, Ek = 0 is not guaranteed in that case. If n > n0, although

uk (respectively vk) contains more than one distinct value, Ek = 0 is not guaranteed as

n0 < L.

Thus for periodic dynamics, E(n) = 0 is guaranteed if n ≥ L. However, the above

observation for n < L is useful for detecting non-regular dynamics. Indeed, the phase space

period L of non-regular dynamics tends to infinity and there is no possibility for considering

n > L. Thus, the energy E(n) is positive as matching samples are rare.

3.2.3 Complexity measure by the ME algorithm

In sufficiently large truly random time series, each value (or symbol) is equiprobable and

any significant deviation from equiprobability is considered as evidence for deterministic

structure in the data [66]. Given a time series assumed to be deterministic, its complexity

increases as the number of distinct samples is large and there is no particular rule for

describing their time evolution. For a single value time series for example, the complexity

is equal to zero as the ordering of the time series is trivial. The complexity of a T -length
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time series with T distinct samples ranged in ascending or descending order also is equal to

zero (E = 0) due to the trivial ordering of the data. By randomly rearranging these values,

the complexity increases as the degree of randomness increases. The complexity of a time

series does not depend on the range of the samples, whereas the energy does depend on it.

For instance, multiplying a given time series by a factor κ should not modify its complexity,

although its energy is multiplied by the same factor. As the ME algorithm is based on

energy measurement, it follows from the above observation that it should be applied to

normalized time series for it to be considered as a complexity measure.

The ME algorithm is strongly related to the existence of matching samples between

embedding vectors xk, uk and vk. The condition of matching samples between signal

sequences is sensitive to the precision of the time series values. Indeed, from the definition

of the ME, the complexity of the dynamics is greater when the number of embedding vectors

with matching samples (zero partial energy) is smaller. So, considering values with a too

large a precision may reduce the number of sequences with matching samples as even close

samples may be detected as different, hence increasing the sensitivity of the ME algorithm

to small changes (even to the noise effect). Therefore, for an efficient comparison of the

samples, we suggest reducing the data precision by using the DDQ presented in chapter 1

[28]. Applying the ME algorithm to the time series with reduced precision improves the

complexity measure. However, such an improvement is only possible if the initial precision

of the time series is greater than the one imposed by DDQ.

Given that only a maximum number of T values is allowed in the quantized time series

of length T , for data with too large precision, we suggest to consider the noise threshold η

satisfying

η ≥ max({xt} −min({xt}))
T

(3.2.10)

where {xt} is the normalized time series. For a unipolar time series, η ≥ 1/T , while

η ≥ 2/T for a bipolar time series. By normalizing the time series, the range of the values is

not exactly known. For a unipolar time series for example, values in the normalized time

series may vary between ξ ≥ 0 and 1; for a bipolar time series, values may lie between −ξ

and 1 or between −1 and ξ. For this purpose, we suggest choosing the precision so that

η < ζ/T , 0.1 ≤ ζ ≤ 2. It should be noticed that whenever the true precision η0 of the input

time series is smaller than η (η0 > η), the quantization has no effect on the output of the
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ME algorithm. For instance, choosing η = 10−5 for a 10-bits encoded time series has no

impact on the ME result. For the ME algorithm to be sensitive to η in that case, it must

choose η > 1/1024.

The whole ME algorithm is thus summarized as follows:

Algorithmic steps:

Step1: Normalize {xt} by dividing all the values xt by its maximum absolute

value xm;

Step2: Apply the DDQ to the normalized time series {xt};
Step3: Sort the values of {xt} into ascending and descending order to obtain

{ut} and {vt}, respectively;
Step4: For the k-th embedding vectors xk, uk and vk, sort the values of xk

into ascending and descending order and determine the energy Ek(n) using Eq.

(3.2.8);

Step5: Compute the ME or complexity E(n) of the whole time series by aver-

aging all the partial energies Ek(n) as indicated in Eq. (3.2.9);

The full MATLAB code of the ME algorithm is available online1.

3.3 Impact of the parameter setting on the result

In this section we apply the ME algorithm to simulation data generated from the logistic

map in order to evaluate the impact of the parameter setting to the algorithm results. For

validation purposes, we compare the matching energy spectra with the Lyapunov exponent.

We plotted the energy and the Lyapunov spectra for 3.5 ≤ μ ≤ 4, by step size Δr = 10−3.

In Fig. 3.1 we compare the ME and Lyapunov exponent spectra for T = 105, n = 200,

τ0 = n. Initially, values in {xt} are double precision data and we reduced their precision

to η = 10−5. It is clearly observed from this figure that the spectrum of the ME algorithm

tracks the Lyapunov exponent spectrum. Indeed, all the periodic dynamics are well detected

with a zero complexity. This interesting result suggests a suitable parameter setting. We

thus analyzed the impact of each parameter on the result.

1at http://www.mathematik.uni-kassel.de/~fouda/
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Figure 3.1: Comparison of the ME (solid line) and the Lyapunov exponent (dotted line)
spectra of the logistic map for varying control parameter 3.5 ≤ r ≤ 4 (step Δr = 10−3):
T = 105, n = 200, τ0 = n and η = 10−5

3.3.1 Impact of the embedding dimension n

We showed that in the case of periodic dynamics with no repeated value in the basic period,

the embedding dimension should be chosen such that n ≥ L. We then evaluated the energy

spectrum of the logistic map for various values of n, for T = 104, τ0 = 10 and η = 0.5/T .

The corresponding results are shown in Fig. 3.2. It appears that the value of E for the

whole spectrum reduces as n increases. This observation may be justified by the reduction

of the number of embedding vectors, which is controlled by τ0. While considering the case of

μ = 3.602 corresponding to an 88-periodic dynamics, it is observed that E > 0 for n < 88.

For this dynamics to be detected as regular with n < 88, we need to increase the noise

tolerance η.

3.3.2 Impact of the delay time τ0 of embedding vectors

The delay time of embedding vectors τ0 let us to control the computational time of the ME

algorithm. It should be chosen such that 1 ≤ τ0 ≤ n. The larger τ0, the smaller the number

of embedding vectors to be explored, hence the smaller the computational time. However,

we observed that choosing few embedding vectors also alters the quality of the estimate of

E. This indicates a compromise between the computational time and the estimate of the
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Figure 3.2: Dependence of the ME on the embedding dimension n, T = 104, η = 0.5/T ,
τ0 = 10. From top to bottom, n = 30, 50, 100, and 200.

ME.

In Fig. 3.3 we show some spectra obtained for τ0 ∈ {1, 20, 200}, with T = 104, n = 200

and η = 0.5/T . In this figure, the spectrum with τ0 = 1 is easier to interpret than the

one with τ0 = n. Nevertheless, large values of τ0 can be considered for large observation

times, provided that the number of embedding vectors is statistically significant. Hence,

the complexity of a given time series can be well estimated even with short length data,

provided that the number of embedding vectors is suitably chosen.

3.3.3 Impact of the noise tolerance η

The noise tolerance η is used for suppressing noise due to rounding errors, sampling errors

or external noise. η was defined as the minimum difference between two signal samples to

be considered as different. In the ME algorithm, η is used to reduce the matching error

which may be induced by the noise effect. The value of η should always be smaller than

1, the amplitude of the normalized signal. In our simulations, we choose 0.1/T ≤ η ≤ 2/T

for noise free data. In Fig. 3.4 we show some spectra evaluated with different values of η.

We used T = 104, n = 200 and τ0 = 10. It is observed from this figure that the spectra are

smooth when η is small, but the estimate of the complexity, as compared to the Lyapunov

exponent, is well approximated as η increases.

Habilitation thesis, University of Kassel, June 2017



3.3 Impact of the parameter setting on the result 75

3.5 3.6 3.7 3.8 3.9 4
0

0.2
0.4
0.6

E(
n)

3.5 3.6 3.7 3.8 3.9 4
0

0.2
0.4
0.6

E(
n)

3.5 3.6 3.7 3.8 3.9 4
0

0.2
0.4
0.6

r

E(
n)

Figure 3.3: Dependence of the ME on the delay time of embedding vectors τ0, T = 104,
η = 0.5/T , n = 200. From top to bottom, τ0 = 1, 20 and 200.

3.3.4 Robustness against noise

The DDQ has been shown effective for noise reduction in the case of the PLSE [28]. In this

chapter, while combined with the ME approach, the DDQ also improves the complexity

measure. In the case of noisy data, the value of η should be chosen according to the degree

of disturbance. Indeed, for noise with amplitude σ, the noise tolerance should be chosen as

η ≥ σ. We thus considered the logistic map perturbed by dynamical and observational noise

with uniform distribution, whose standard deviations vary from σ = 0.0005 to σ = 0.005.

In the case of the dynamical noise, the noisy logistic map is given by:

xt+1 = rxt(1− xt) + σbt (3.3.1)

where bt are uniformly (uniform noise) distributed values and σ the standard deviation of

the noise. For the observational noise, the noise samples are simply added to the output

samples of the logistic map, thus leading to the following equation:

xbt = xt + σbt (3.3.2)

where xt is given by Eq. (1.3.1) and xbt is the logistic map contaminated by the observational

uniform noise bt. The noise bt is characterized by a standard deviation σ0 = 1 and a mean

value bt = 0. The corresponding MATLAB expression is given as bt = 4(−0.5 + rand).
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Figure 3.4: Dependence of the ME on the data precision η, T = 104, τ0 = 10, n = 200.
From top to bottom, η = 0.1/T, 0.5/T, 1/T and 2/T .

In Fig. 3.5 we give some spectra of the logistic map for various noise amplitudes σ, for

both observational and dynamical uniform noise. Looking at this figure, the ME algorithm

exhibits a high robustness against observational noise as only small values of η (the same

used for noise free data) are required for suppressing the noise effect. In the case of dy-

namical noise, using the same values of η as for noise free data, the behavior of the ME

spectrum for noisy data looks similar to that of noise free data, except for regular dynamics

as the internal behavior of the system is affected by the noise. We also tested the algorithm

with the Gaussian noise and obtained approximately the same results. From these results,

we can conclude that the ME algorithm performs well in the presence of noise, hence it can

be applied to real-world data.

3.3.5 Speed performance of the ME algorithm

The real-time application of the ME algorithm to time series analysis also requires that the

algorithm is computationally low cost. We compared in this section the speed performance

of the ME algorithm to that of the fast CPE whose MATLAB code is available online2.

The computational complexities of the algorithms are compared based on the approach we

2at www.mathworks.com/matlabcentral/fileexchange/48684-fast-conditional-entropy-of-ordinal-patterns

Habilitation thesis, University of Kassel, June 2017



3.3 Impact of the parameter setting on the result 77

3.6 3.8 4
0

0.2
0.4
0.6

E
(n

)

3.6 3.8 4
0

0.2
0.4
0.6

E
(n

)

3.6 3.8 4
0

0.2
0.4
0.6

E
(n

)

3.6 3.8 4
0

0.2
0.4
0.6

r

E
(n

)

3.6 3.8 4
0

0.2
0.4
0.6

E
(n

)

3.6 3.8 4
0

0.2
0.4
0.6

E
(n

)

3.6 3.8 4
0

0.2
0.4
0.6

E
(n

)

3.6 3.8 4
0

0.2
0.4
0.6

r

E
(n

)

Figure 3.5: Robustness against noise of the ME algorithm, T = 104, τ0 = 10, n = 200.
From top to bottom, σ = 5 · 10−4, η = 0.5/T ; σ = 10−3, η = 0.5/T ; σ = 2 · 10−3, η = 0.5/T ;
and σ = 5 · 10−3, η = 0.55/T . The left side shows results for the observational noise, while
the right side shows results for the dynamical noise.

used in [26]. The test code below was run for 100 iterations to get the average running time

D0. The average running time of the fast CPE and the ME algorithm are respectively D1

and D2, obtained by evaluating each algorithm for 100 iterations. The complexity K of the

algorithm is theorized by:

Ki =
Di

D0
(3.3.3)

where i = 1 for the fast CPE and i = 2 for the ME algorithm. The test code is given as:

a=1:20000

for k=1:20000

b(k)=1/sqrt(a(k))

c(k)=a(k)*b(k)

d(k) = 3
√

c(k)

end
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Using this definition, the complexities of the fast CPE and ME algorithms are respec-

tively K1 = 9.3737 (corresponding to D1 = 0.0950s average running time on our computer)

and K2 = 0.4469 (corresponding to D2 = 0.0045s average running time on our computer).

The comparison of these values confirms that the ME algorithm is computationally low cost

by a wide margin (more than ten times faster) compared to the fast CPE, although the

algorithm has not yet been optimized. The speed performance of the ME algorithm can

be controlled by τ0, which is not possible for the CPE algorithm. Indeed, we showed in

[28] that the permutation entropy strongly depends on τ0, and that satisfactory results are

obtained only for τ0 = 1. We used an input sequence of length T = 104 samples for both

algorithms, as well τ0 = 200, η = 1/T for the ME algorithm and n = 7 for the fast CPE

algorithm. The average running time of the test code is about D0 = 0.0101s

3.4 Example of application

3.4.1 Application to the Duffing oscillator

The Duffing oscillator is used in this section as an example of a continuous time system,

for verifying the efficiency of the ME algorithm for the analysis of this type of systems.

The analysis of continuous time series is quite difficult as the errors due to the sampling

process and the precision of the integrator should be taken into account. The time series

should then be considered as noise contaminated. The Duffing system is described by the

system of ordinary differential equations defined in Eq. (1.6.2) with a = 0.3. We used the

fourth order Runge-Kutta algorithm to solve Eq. (1.6.2) with sampling step Ts = 4π/1000.

The parameters of the MATLAB integrator was set as RelTol = 10−5 for the relative error

tolerance and AbsTol = 10−5 for the absolute error tolerance of the xt and yt variables. The

solutions xt and yt are analyzed and the corresponding energies are compared. We used as

noise tolerance η = 3.75 · 10−6, and the data length is T = 400001.

We applied the ME algorithm to both the continuous time series and the series of the

local maxima. For the continuous time series, we set n = 2 · 104 and τ0 = 1.8 · 104; while
for the series of local maxima, we set n = 180 and τ0 = 1. The corresponding results

are depicted in Fig. 3.6. Compared to the Lyapunov exponent, it appears that the ME

algorithm performs well for the detection of chaos in continuous time systems. Using the
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Figure 3.6: ME spectrum of the Duffing oscillator. In (b) and (c) the results for xt variable
(continuous line) and yt variable (dashed line) are plotted. (b) is the result obtained with
the whole time series with n = 20000, τ0 = 18000 and η = 3.75 · 10−6, while (c) is obtained
using exclusively the series of local maxima with n = 180, τ0 = 1 and η = 3.75 · 10−6

series of local maxima allows to speed up the detection process, hence to make possible the

real-time analysis of large amount of data from continuous time real-world systems. It is

also observed that the spectra of both the x and y variables behave quite similarly, which

confirms that only a single time series is required for the ME algorithm to characterize the

complexity of a given system. This result is important as in practice only a single record is

available for many experiments.

3.4.2 Application to real-world data

We applied the ME algorithm to data generated from the electronic circuit exhibiting the

Duffing attractor [24]. The electrical model of the corresponding system is shown in Fig.

3.7. Resistors values are chosen as R0 = 2.2kΩ, R1 = 5.1kΩ, R2 = R3 = 1kΩ. Capacitors

values are C1 = 10nF and C2 = 2.2nF . The nonlinear element (NLE) implements the

cubic function i(x) = ax+bx3 where a and b can be experimentally evaluated, i(x) indicates

the current through the NLE and x is the voltage across it. Fig. 3.8 presents its schematic

where exclusively resistors and diodes are used. Resistances values are: R4 = 8.2kΩ and
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Figure 3.7: Schematic of the forced Duffing oscillator

Figure 3.8: Schematic of the nonlinear element (NLE)

R5 = R6 = 510Ω. The diodes are 1N4148 type and the TL082 integrated circuit (IC)

is used as operational amplifier (OA). This circuit has been implemented and the data

recorded for 300 forcing amplitudes as well as corresponding analogue phase portraits are

available online3. We used the RIGOL 1052DSE digital oscilloscope with sampling frequency

Fs = 1MHz, as shown in Fig. 3.9. The forcing amplitude and frequency (generated by the

sine wave function generator) were set as 0.2V ≤ Vm ≤ 6.18V and f = 6.67 kHz, respectively.

Data were recorded in the comma separated values (CSV) format, which is easily readable

in the Matlab environment. Given the practical limitation of the digital oscilloscope, each

record had only 8192 samples per channel. There are two channels representing voltages x1

and x2 across C1 and C2, respectively. Acquired data are 8-bit encoded, which implies that

the noise tolerance should be chosen such that η > 2−8 for the algorithm to be sensitive to

it.

The first 192 samples of variables x1 and x2 were discarded for transient die out, and

3at http://www.mathematik.uni-kassel.de/~fouda/
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Figure 3.9: Data acquisition experiment

the algorithm was applied separately to the series of local extrema of each variable with

n = 15 and n = 30. Due to the presence of noise, the spectra of the two variables are not

behaving similarly. For tackle this, we considered the geometric mean E(n) =
√
Ex1 · Ex2

for the decision making. Using the Rosenstein algorithm [63], we also computed the max-

imal Lyapunov exponent (MLE) for the two variables and considered the geometric mean

MLE =
√
MLEx1 ·MLEx2 . The corresponding results are depicted on Fig. 3.10. We

respectively analyzed the case of noisy data (η = 0), and the case of noise reduced data

(η > 0) by means of the DDQ. We set for this last case ηx1 = 1.9570% and ηx2 = 1.9922%

in Fig. 3.10(b), and ηx1 = ηx2 = 1.9531% for both variables x1 and x2 in Fig. 3.10(c). As

observed on Fig. 3.10(b) where n = 15, the algorithm presents a high natural robustness

against noise and successfully detects changes in the system dynamics. By using the noise

reduction, the inherent robustness of the method against noise is reinforced and the periodic

dynamics are thus detected with a zero energy, while that of chaotic dynamics remains un-

changed. By setting n = 30, the detection is improved and even dynamics with large phase

space periods (Vm > 3.30) as shown on Fig. 3.10(c) can be detected with a zero complexity.

The system has been already calibrated in our previous work [24] and is known to exhibit

chaotic dynamics approximately for 2.4 ≤ Vm ≤ 2.85 and 3.16 ≤ Vm ≤ 3.30. For Vm < 2.4

the system exhibits periodic dynamics with weak phase space periods, while for Vm > 3.30,

the phase space periods of the system are large. Compared to the MLE, the results of the

ME algorithm are confirmed if the three peaks Pk1, Pk2 and Pk3 appearing on the MLE

spectrum are interpreted as chaotic regions. The results obtained are also consistent with

those already presented in [24] for the PLSE algorithm. From the above results, it can be
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Figure 3.10: Experimental ME spectrum of the Duffing oscillator: (a) MLE spectrum; (b)
ME spectra for n = 15, η = 0 (solid line) and ηx1 = 1.9570%, ηx2 = 1.9922% (dashed line);
and (c) ME spectra for n = 30, η = 0 (solid line) and ηx1 = ηx2 = 1.9531% (dashed line)

concluded that the ME performs well with experimental data. Furthermore, given the large

value of the precision of the data analyzed (2−8), the algorithm can clearly detect chaotic

dynamics without need for noise reduction, while using the set of local extrema. This result

confirms its high robustness against noise and the assumption made for its sensitivity to

the data precision.

For the Rosenstein algorithm [63], we set the embedding dimension to m = 18, the

sampling frequency to Fs = 100Hz instead of 1MHz to avoid large values of MLE, and the

number of iterations as nit=100. Given the difficulty of determining the optimal values of

time lag τ and mean period T0, we set τ = 6 and T0 = 100, respectively, for the complete

data set.

3.4.3 Application to the detection of quasi-periodic dynamics

In this section we apply the ME algorithm to the sine-circle whose equation is given in Eq.

(1.2.2), and which is known to exhibit quasi-periodic dynamics as the control parameter r

varies from 0 to 1. We used as parameter setting for the ME algorithm n = 200, τ0 = 50

and η = 10−5. The result presented in Fig. 3.11 is obtained for T = 2× 104 and shows that
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Figure 3.11: ME spectrum for the sine-circle map: (a) bifurcation diagram (b) ME spectrum
for n = 200, τ0 = 50, η = 10−5 and T = 2× 104

the ME successfully detect periodic and chaotic dynamics, but fails to detect quasi-periodic

dynamics with a zero complexity. This result implies that the ME algorithm is not useful

for the analysis of quasi-periodically forced systems.

In summary, the ME algorithm can be efficiently applied to both discrete and continuous

time systems. For an efficient determination of matching samples, the precision of the data

under consideration needs to be limited to a finite value, depending on the data length.

The embedding dimension n also should be chosen such that L < n, where L is the phase

space period of the dynamics to be analyzed. In general, the embedding dimension should

be greater than the time period of the dynamics. However, the observation time should

increase as the embedding dimension increases to avoid false detection of periodic dynamics.

Indeed, in the case when the embedding dimension is equal to the data length, then the

dynamics is detected as periodic, according to the definition of the ME. So, the complexity

is close to zero as the ratio between the embedding dimension and the data length is small,

thus leading to a compromise between the choice of the embedding dimension in terms

of the data length and the phase space period of the dynamics. We observed from the

simulation results that the ME spectrum tracks the largest Lyapunov exponent λLyap with

a quite uniform bias which depends on the ratio between the data length and the embedding

dimension, and also on the limiting precision η of the data. Choosing embedding dimensions
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smaller than the phase space period can help to detect changes in the system dynamics.

However, it should be noticed that the ME fails to detect quasi-periodic dynamics as regular.

3.5 Conclusion

In this chapter we introduced the ME approach in which the energy of globally and locally

sorted sequences with matching samples is set to zero. The approach let us efficiently

detect periodic dynamics with a zero complexity while chaotic dynamics are characterized

by a nonzero complexity. Compared to existing detection algorithms, the ME algorithm

is computationally low cost and is well suited for real-time data analysis. The method

integrates the DDQ process for limiting the precision of the data to be analyzed to a finite

value, which contributes to increasing its robustness against noise, thus making it useful for

the analysis of real-world data. Considering the examples chosen for simulation, the ME

algorithm tracks the Lyapunov exponent with a uniform bias which depends on the setting

of the parameters n, η, τ0 and T . Based on this observation, the ME algorithm appears to

be suitable for real-time analysis of real-world data, more so than the Rosenstein algorithm

which is computationally costly. The dependence of the algorithm on the parameter setting

can be freely fixed according to the system under investigation and the range of complexity

required by the user. We intend to apply the ME algorithm to electroencephalography for

detecting the epileptic seizures. However, although we can now determine a complexity

measure from real-world data, it should be be nevertheless pointed out that the ME fails

to detect quasi-periodic dynamics. In the next chapter, we intend to characterize data

generated from quasi-periodically driven systems.
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Chapter 4

Ordinal-array-based indicators and
SNA detection

The ordinal matrix transform introduced in Chapter 2 is extended to multidimensional ar-

rays of permutations. The corresponding multidimensional ordinal array complexity (OAC)

is presented as a generalized approximation to the ordinal Komogorov-Sinai entropy. We

theoretically establish that the OAC provides a better estimate of the complexity measure

for short length time series. However, given that it does not indicate a zero complexity

for periodic dynamics with large period and other regular dynamics like SNA and tori,

we consider the behavior of the number of OA in terms of the corresponding embedding

dimension to define three new indicators, namely the periodicity, the quasi-periodicity and

the non-regularity index. Combining these indicators provides complementary information

and much richer possibilities for classifying regular and non-regular dynamics, than using

only entropy-based algorithms.

This chapter presents an extension of our investigation into complexity measures and

has not yet been published.

4.1 Introduction

To the best of our knowledge, research results on the application of ordinal pattern-based

algorithms to quasi-periodically forced systems have never been reported before our work

in [23]. The main reason for this research is probably due to the difficulty in distinguish-

ing between quasi-periodic and chaotic dynamics using ordinal patterns related complexity
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measure. Indeed, the PE, the CPE and other versions of ordinal pattern-based algorithms

are not able to output a zero complexity or entropy when applied to quasi-periodic dy-

namics. We showed using the permutation largest slopes that periodic dynamics and some

less complex quasi-periodic dynamics can be detected with a zero entropy [28]. However,

when the number of incommensurable frequencies composing the quasi-periodic dynamics

increases, even the PLSE is no longer able to output a zero entropy. We also showed in

chapter three that even the ME fails to detect quasi-periodic dynamics. Considering that

quasi-periodically forced systems exhibit dynamics which are more complex than the driv-

ing quasi-periodic signal, the analysis of the time series they are generating still remains a

challenging task.

To address this concern, we suggest applying the OPA to the values of the series of

ordinal patterns derived from the time series for measuring its complexity. Moreover, by

analyzing the increasing law of the number of symbols in terms of the embedding dimension,

we introduce three OA asymptotic growth indices as complementary chaos indicators. As

the effective number of symbols can be evaluated for ordinal patterns of order n, the entropy

of the new source of symbols can be well estimated. This approach let us increase the

number of patterns which has been reduced by the conversion into ordinal patterns, and

thus better approximate the entropy of the time series. For instance, for a given real-world

time series with Λ distinct symbols or values, the number of distinct ordinal patterns of

order n is n!, while the number of distinct embedding vectors of the same order derived

from the time series values is Λn. Now considering the series of ordinal patterns of order

n, the number of possible distinct embedding vectors of order n which can be derived from

the time series values increases as (n!)n � n!. The OA-based indices should thus allow us

to efficiently distinguish between the different types of regular and non-regular dynamics,

hence to achieve the detection of SNA.

4.2 Ordinal array entropy

4.2.1 Construction of M-dimensional ordinal arrays

Measuring the Shannon entropy of an information source requires that the number of sym-

bols is known and that the set of symbols (often called the alphabet A) is of finite size;
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otherwise, the Shannon entropy is infinite. It is common to define the information entropy

in bits. In the case of continuous random variables such as the speech signal for example,

a uniform quantizer can be used to convert the corresponding continuous alphabet into

a discrete one. Symbols of the discrete alphabet thus obtained are encoded with a finite

number of bits. Similarly, the ordinal pattern analysis approach which considers the order

relations between values of the time series instead of the values themselves can be seen as

a quantizer. It then converts the continuous alphabet of the source into an ordinal pattern

alphabet. Each ordinal pattern is encoded using positive integers. The set of ordinal pat-

terns can then be considered as a pseudo-source of information. If n is the length of ordinal

patterns, then the cardinality of the ordinal pattern alphabet is n!, while defining patterns

of the same length using the values of the time series would have led to an Λn-length alpha-

bet, Λ being the number of distinct values of the time series. It appears that considering

the order relation between values instead of the values themselves reduces the number of

distinguishable patterns. This reduction of the number of accessible patterns also leads to

a reduction of the diversity of the original time series, hence the reduction of its complexity.

This observation may justify why the PE of finite order n does not well approximate the

KS entropy.

Although the PE converges to the KS entropy as n tends to infinity for some maps,

the PE of finite order can be either much greater or much smaller than the KS entropy

[67]. In order to reduce the difference between the PE and the KS entropy, the CPE

was defined as the average diversity of ordinal patterns succeeding a given one [67]. The

CPE characterizes the diversity of the successors of the given ordinal patterns, whereas

the PE characterizes the diversity of the ordinal patterns themselves. In our approach,

we propose to convert the pseudo-source of ordinal patterns into a set of M -dimensional

arrays of ordinal patterns or simply M -dimensional ordinal arrays (OA) and to measure

their diversity. Indeed, given the set {Pk} of ordinal patterns, we define another set {S(1)
t1

}
of OA such that S

(1)
t1

=
(
P T
t1 , P

T
t1+τ , · · · , P T

t1+(d1−1)τ

)
, where P T

t1 is a column vector (the

transpose of Pt1). Pt1 is an n-length vector of positive integers in {1, 2, 3, · · · , n}, while S(1)
t1

is an n× d1 matrix of the same integer set, and d1 the number of permutations considered

to form S
(1)
t1

.

Let us clarify this presentation by considering for example a period-5 cycle orbit obtained
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by generating 5 distinct random numbers (0.8147, 0.9058, 0.1270, 0.9134, 0.6324) and repeat-

ing this basic sequenceK-times (K > 2). The five distinct 5-order permutations obtained by

sorting the values of vectors xk, k=0 to 4, are the following: P0 =
(
1,2,3,4,5
3,5,1,2,4

)
; P1 =

(
1,2,3,4,5
2,4,5,1,3

)
;

P2 =
(
1,2,3,4,5
1,3,4,5,2

)
, P3 =

(
1,2,3,4,5
5,2,3,4,1

)
and P4 =

(
1,2,3,4,5
4,1,2,3,5

)
. The corresponding set of ordinal pat-

terns for the whole time series is {Pt1} = {P0, P1, P2, P3, P4, P0, P1, P2, P3, P4, P0, P1, P2, . . .}.
From {Pt1}, one can deduce for example {S(1)

t1
} = {S(1)

0 ,S
(1)
1 ,S

(1)
2 ,S

(1)
3 ,S

(1)
4 ,S

(1)
0 , · · · } as the

set of 5 × 3 OA, where S
(1)
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 2 1

5 4 3

1 5 4

2 1 5

4 3 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, S

(1)
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 5

4 3 2

5 4 3

1 5 4

3 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, S

(1)
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 5 4

3 2 1

4 3 2

5 4 3

2 1 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

S
(1)
3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 4 3

2 1 5

3 2 1

4 3 2

1 5 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, and S

(1)
4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 3 2

1 5 4

2 1 5

3 2 1

5 4 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. Therefore, n = 5 and d1 = 3, {S(1)

t1
} is a

set of 2-dimensional OA (matrices) and is also 5-periodic as the generating time series {xt}.
Choosing any other value of d1 ≥ 1 will output a period-5 series of OA.

Considering the previous series {S(1)
t1

} of matrices, a series {S(2)
t2

} of 3-dimensional OA,

with S
(2)
t2

=
(
S
(1)
t2

,S
(1)
t2+τ , · · · ,S(1)

t2+(d2−1)τ

)
can be constructed. From {S(2)

t2
} can be con-

structed a series {S(3)
t3

} of 4-dimensional OA with S
(3)
t3

=
(
S
(2)
t3

,S
(2)
t3+τ , · · · ,S(2)

t3+(d3−1)τ

)
.

The process can be continued until the desired series {S(M−1)
t(M−1)

} of M-dimensional OA is

obtained. S
(M−1)
t(M−1)

is a d0 × d1 × d2 × · · · × dj × · · · × dM−1 structure, with 0 ≤ j ≤ M − 1

and d0 = n. We set τ = 1 for the rest of the chapter.

In the previous example, only 5 permutations were obtained, because of the periodic

nature of the time series. In the general case, the maximum number of permutations

which can be derived from a given times series is n!. Considering this possible maximum

number of permutations, the possible (maximum) number of ordinal matrices that can be

derived from the series of ordinal patterns is (n!)d1 . In the case of 2-dimensional series,

each ordinal matrix is encoded using d1 permutations similarly. In general, for a given time

series of length T , the length of the resulting A = n× d1 × d2 × · · · × dM−1 series of OA, is
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N = T − (n+ φ− 1), where

φ =

M−1∑
j=1

(dj − 1), dj > 0. (4.2.1)

For a time series of length T , the length of the derived 1-D OA series constructed with an

embedding dimension n is N = T − n+ 1. Extending this calculation to multi-dimensional

OA (M-D OA), the equivalent embedding dimension corresponding a M-D OA series can

be given by

ρ = n+ φ. (4.2.2)

In the ordinal pattern analysis approach, symbols are permutations (vectors) and are

encoded using natural numbers while in the OA based analysis we are defining, symbols

are arrays of permutations encoded using the same natural numbers. So, the entropy by

the proposed approach can be seen as the Shannon entropy of M-D OA derived from the

permutation series. The method combines both the ordering relations between values and

the values themselves. The idea is to consider the diversity of the OA as well as their

ranking in the time series. The ordering relation is used for determining the permutation

series while the values of OA themselves are used for determining the entropy of M-D OA.

4.2.2 Quantization of ordinal arrays

The ordinal patterns (permutations) are defined as in the PE from a given time series {xt}.
In order to avoid misinterpretations, the delay times of samples and embedding vectors

should be set as τ = 1 and τ0 = 1, respectively [28]. Storing permutations is memory and

computational time costly. To overcome such limitations, permutations are quantized and

stored as real numbers. Indeed, each permutation Pk of length n is converted into a real

number z
(0)
k such that

z
(0)
k =

n∑
i=1

a−
i

i+1Pk(i), (4.2.3)

where 1 < a ≤ 2 is chosen to avoid infinite values of z
(0)
k for large n. If {Pk} is an L-periodic

time series, then {z(0)k } is also a time series with the same period. This approach gives the

possibility of considering large permutation orders. For a given value of a, the maximum

value of n depends on the precision of the computer. In our algorithm, we fixed a = 2.
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By replacing the permutations by real numbers, the ordinal matrix S
(1)
t1

becomes a vector

z
(1)
t1

of real numbers. Although the order relations in the time series {xt} may differ from

that in {S(1)
t1

}, the diversity of {Pk} is preserved by the transform. Similarly to what we

did for the series of permutations, each ordinal matrix S
(1)
t1

is replaced by a real number

z
(1)
t1

such that

z
(1)
t1

=
1

∑d1
i=1 a

− i
i+1

·
d1∑
i=1

a−
i

i+1 z
(1)
t1

(i), (4.2.4)

where z
(1)
t1

=
(
z
(0)
t1

, z
(0)
t1+1, . . . , z

(0)
t1+(d1−1)

)
. Applying once more the same process to {z(1)t1

},
the third dimension is reduced and {z(2)t2

} is obtained. The process is to be continued until

{z(M−1)
t(M−1)

}, so that the whole M-D OA is converted into a scalar. The general term can then

be given as:

z
(j)
tj

=
1

∑dj
i=1 a

− i
i+1

·
dj∑
i=1

a−
i

i+1 z
(j)
tj

(i), j ≥ 1, (4.2.5)

where z
(j)
tj

=
(
z
(j−1)
tj

, z
(j−1)
tj+1 , . . . , z

(j−1)
tj+(dj−1)

)
, tj is a positive integer such that 0 ≤ tj ≤ T −ρ.

Repeating the procedure for the whole series of M-D OA allows to obtain a 1-D time series.

4.2.3 Ordinal array entropy

Definition 4.2.1. The ordinal array entropy (OAE) is defined as the Shannon entropy

of an information source whose alphabet elements are permutation-encoded OA. Let us

assume m = dM−1, zt = z
(M−1)
t(M−1)

and the equivalent embedding dimension s of the basic

(M-1)-dimensional OA such that

s = n+
M−2∑
j=1

(dj − 1). (4.2.6)

The OAE of M-D OA is defined as

Hm(s) = −
∑

p(z) · ln (p(z)), (4.2.7)

where

p(z) =
#{t | t ≤ T − s−m+ 1, zt = z}

T − s−m+ 2
. (4.2.8)
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In the particular case of 1-D OA series, the 1-D OA can be considered as an n×m OA

with m = 1. The OAE is thus reduced to the PE, by the similarity between Eq. (2.2.2) and

Eq. (4.2.8). The OA series is different from a 1-D series iff n > 1 and m > 1. In the case of

a 2-D OA series, setting zt = z
(1)
t1

, and m = d1, the OAE is defined as:

Hm(n) = −
∑

p(z) · ln (p(z)), (4.2.9)

where

p(z) =
#{t | t ≤ T − n−m+ 1, zt = z}

T − n−m+ 2
. (4.2.10)

The z values are numeric conversions of permutation-encoded words, in a similar way

to the way bit-encoded symbols are usually converted into decimal or real number values.

The size of the OA alphabet being (n!)m, the maximum value of Hm(n) is equal to m ln(n!).

Computing the Shannon entropy of OA allows us to better exploit the information provided

by the ordinal patterns, hence to better approximate the complexity of the original time

series as the number of OA increases as a power of m.

Hm(s) is the OAE obtained by consideringm-length vectors derived from an initial series

of quantized (M − 1)-dimensional OA, whose equivalent embedding dimension is equal to

s.

Theorem 4.2.1. Let {xt} be real-valued period-L cycle time series of length T . If L = q,

i.e no repeated value occurs in the basic period of {xt}, and the delay time of the embedding

vectors τ0 = 1, then the OAE does not depend on the embedding dimension m of the OA.

Proof. In the case of 1-D OA, {xt} can be considered as a series of n×m OA with m = 1

(s = n). For n = 1, the patterns are reduced to the time series values. {xt} being L-

periodic, there are L distinct patterns, also equal to the number of source symbols, each

of them appearing with the same probability p(θi) = 1
L , i = 1, 2, . . . , L, if the number of

patterns explored is a whole multiple of L. The OAE in that case is equal to Hm(s) = ln(L).

For n > 1, we also showed in [28] that the set {xk} of embedding vectors is L-periodic

if the delay time of the embedding vectors is τ0 = 1. Indeed, as all the values in the basic

period are assumed to be distinct, each embedding vector (pattern) is repeated after L steps:

xk = xk+L. As the new patterns are embedding vectors xk, it follows that the number of

distinct patterns is once more equal to the number of source symbols and all of them are

equiprobable, depending on the observation length, hence Hm(s) = ln(L).
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In the case of M -dimensional arrays (M ≥ 2), it can also be shown that the period of

the original time series is preserved in the series of ordinal arrays. Indeed, in that case

the time series is assumed to be a series of vectors or arrays {xk}. Let us assume that

{xk} is a L-periodic series of n-length vectors (n > 1). The first quantized ordinal arrays

series {z(1)t1
} is derived from {xk} by considering d1-length (d1 > 1) embedding vectors

z
(1)
t1

=
(
xt1 ,xt1+1, . . . ,xt1+(d1−1)

)
of n-length vectors (s = n, m = d1). We have already

shown at the beginning of the proof that for any value of n ∈ N�1, {xk} and {xt} have

the same period. By the same principle, {z(1)t1
}, hence {z(1)t1

} and {xk} also have the same

period L. z
(1)
t1

is the quantized value of the vector of scalars derived from {xk} or simply a

quantized ordinal matrix (2-D arrays). The number of distinct symbols in the basic period

of {z(1)t1
} being equal to L, its entropy is Hm(s) = ln(L).

Now let us consider the ordinal arrays series {z(2)t2
} derived from {z(1)t1

} and the corre-

sponding quantized series {z(2)t2
}. z(2)t2

is the quantized value of a vector of ordinal matrices

(3-D arrays). The series {z(2)t2
} is obtained by quantizing vectors of quantized ordinal ma-

trices z
(2)
t2

=
(
z
(1)
t2

, z
(1)
t2+1, . . . , z

(1)
t2+(d2−1)

)
. As the series of ordinal matrices is L-periodic

without repeated values, there are only L distinct possible embedding vectors of ordinal

matrices which repeats each one after L steps if τ0 = 1, hence {z(2)t2
} is L-periodic and its

entropy is Hm(s) = ln(L), with s = n+ d1 − 1 and m = d2. By continuing the process, the

same result is obtained for {z(3)t3
} derived from {z(2)t2

} and from step to step, the period of

the series {z(M−1)
t(M−1)

} derived from {z(M−2)
t(M−2)

} is also equal to L. The M-D array transform is

achieved after M successive transforms with embedding dimensions dj , where 0 ≤ j ≤ M−1

refers to the step index, with d0 = n. As each transform step preserves the period of the

corresponding input time series, from step to step the initial period is preserved in the whole

M-D transform. Given that there is no repeated value in the basic period of the time series

and the delay time of the embedding vectors is τ0 = 1, the entropy of the arrays series is

also equal to Hm(s) = ln(L). It can then be concluded that the OAE of a L-periodic time

series without repeated values in the basic period is equal to Hm(s) = ln(L), independently

of the value of m, which finishes the proof.

Remark 4.2.1. From the above proof, it appears that Hn(1) = H1(n). Hn(1) is the OAE

computed from the series of scalars by considering n-length embedding vectors, while H1(n)

corresponds to the OAE computed from the series of n-length vectors by considering each
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individual basic element (each n-length vector) as embedding vector. Hm(s) is the Shannon

entropy obtained by m-length embedding vectors from the initial (M − 1)-dimensional OA

series whose equivalent embedding dimension is s. If m = 1, the (M − 1)-dimensional basic

series remains unchanged, its dimension too. As a consequence, each Q-dimensional OA A

can be considered as M -dimensional (M > Q), such that A = d1×d2×· · ·×dQ×dQ+1 · · ·×
dM , where dj > 1, ∀ 1 ≤ j ≤ Q and dj = 1, ∀ j > Q.

4.3 Ordinal array complexity

4.3.1 Usefulness of M-dimensional ordinal arrays

When repeated values occur in the basic period (L < q), the OAE depends on their number

as well as their ordering. We showed in [28] that to avoid such dependence, embedding

vectors should include all the repeated values and at least one non-repeated value. It

then follows in the case of 1-D time series that the embedding dimension d0 = n of the

scalars should be chosen such that all the patterns are equiprobable. The equiprobability

property can be observed for n > R where R is the number of repeated values. In that case,

the OAE is equal to H1(n) = ln(q). Let us consider the following 3-periodic time series

{xt} = {a0, a1, a0, a1, a2, a0, a1, a0, a1, a2, a0, a1, a0, a1, a2, · · · } for example. {xt} presents a

time period q = 5 and is obtained by repeating its basic period x0 = {a0, a1, a0, a1, a2}. This
basic period has R = 2 repeated values (namely a0 and a1). If n = 2, equiprobability cannot

be obtained as the probability distribution is: p(a0,a1) = 2
5 ; p(a1,a0) = 1

5 ; p(a1,a2) = 1
5 and

p(a2,a0) =
1
5 . In this case, the OAE depends on m. For n = 3, the following equiprobability

distribution is observed: p(a0,a1,a0) = 1
5 ; p(a1,a0,a1) = 1

5 ; p(a0,a1,a2) = 1
5 ; p(a1,a2,a0) = 1

5

and p(a2,a0,a1) = 1
5 . It can be easily verified that the same equiprobability property is

obtained for all n > 3. This example thus confirms that choosing n > R leads to an

equiprobability distribution and that the OAE equals H1(n) = ln(5). In the case where

repeats are not reduced, the OAE may take different values, depending to the embedding

dimension, although the time series is periodic.

Indeed, for some periodic time series, the number R of repetitions may be very large.

Therefore, 2-D symbols can be considered for reducing their effect. Thus, there are two

trivial solutions with two combined embedding dimensions n and d1 = m (n > 1 andm > 1):
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the first one is to consider n > R and any small value of m; and the second one is to consider

large values of m > R and a small value of n. Due to practical limitations, considering large

values of embedding dimensions (n = 20 for example) is not interesting. It then follows that

even considering 2-D symbols is not enough as we may require large values for the first and

second dimensions n and m. Another simple possibility is to increase the dimension of the

ordinal pattern so that the repetition is eliminated in the final series of ordinal patterns from

which the entropy is evaluated. Let us for example consider an L-periodic time series with

16 consecutive identical values per period. The corresponding series of 9-order permutations

(n = 9) is also L-periodic with 8 consecutive identity permutations per period. For such

a repetition to be eliminated, we need to choose at least n = 16 or to convert the series

of permutations into a 2-D time series with at least d1 = 8. Let us consider d1 = 3, then

the resulting 2-D time series is periodic with 6 consecutive identical matrices per period.

As the repetition persists, a third dimension is required. Let us consider d2 = 4 for the

third dimension. Then the series of ordinal arrays obtained is periodic with 3 consecutive

identical values per period. The process then needs to be continued until the repetition is

eliminated. A last dimension can then be considered with d3 = 3. Finally, the series with

no repeated value is a set of Θ = n×D arrays, with n = d0 and D = d1×d2×d3 array. The

possible number of distinct OA is then equal to (n!)d1·d2·d3 . Replacing each permutation by

a real number reduces the dimension of the n × D OA by one. So, each M-D OA can be

reduced into a one dimensional vector by the successive quantization as described above,

see Eqs. (4.2.3) and (4.2.5).

Considering M-D OA is equivalent to decomposing a ρ-length embedding vector into an

n × D × m embedding array, where ρ = s + m − 1 according to Eqs. (4.2.1) and (4.2.6),

and D = d1× d2× · · · × dM−2. Thus, this approach contributes to improving the statistical

analysis of the time series by creating new criteria for discerning between patterns which

initially look similar. As we showed previously in [67, 28], even when repetitions occur in

the basic period of the time series (L < q), considering embedding dimensions n > q is

enough to get a q-periodic time series of the embedding vectors, hence an OAE which does

not depend on m for regular dynamics.

Remark 4.3.1. According to theorem 4.2.1, the OAE of periodic dynamics does not depend
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on the embedding dimension, if the latter is chosen such that all the patterns are equiprob-

able. Thus, we suggest using the difference between two OAE computed with two suitably

chosen embedding dimensions as a complexity measure. With this approach, periodic dy-

namics are detected with a zero complexity, provided that equivalent embedding dimensions

are chosen such to avoid any repetition in the resulting series of OA.

4.3.2 Ordinal array complexity

Definition 4.3.1. We define the ordinal array complexity (OAC) as:

hm1,m2(s) =
Hm2(s)−Hm1(s)

m2 −m1
, (4.3.1)

where m1 and m2 are two embedding dimensions applied to the series of Θ = n ×D OA,

with 1 ≤ m1 < m2. The Shannon entropy Hm(s) of the OA of size Θ×m is computed from

the series of OA of size Θ. The corresponding embedding dimension for the whole process

is ρ = s+m−1. The OAC is simply the differential of the OAE and measures the diversity

of OA as the embedding dimension m of (M − 1)-dimensional OA increases.

The OAC is zero for periodic dynamics if s > q. In the case of non-regular dynamics,

considering two different embedding dimensions leads to two different distributions of prob-

ability, hence to hm1,m2(s) > 0. The number of possible distinct Θ = n × d1 × · · · × dM−2

OA which can be derived from a basic time series containing no repeated value is equal to

(n!)Γ, where Γ is such that

Γ =

M−2∏
j=1

dj . (4.3.2)

D = d1×d2×· · ·×dM−2 is the array of permutations. For a given time series converted into

a series of size Θ OA, the possible number of Θ×m OA is equal to (n!)Γ·m. It then follows

that 0 ≤ Hm(s) ≤ Γ · m ln(n!), which also implies that Hm1(s) < Hm2(s) for m1 < m2,

hence 0 ≤ hm1,m2(s) ≤ Γ · ln(n!). This number expresses the large diversity of OA which

can be derived from the time series, whereas only n! � (n!)Γ·m ordinal patterns can be

described by the PE.

Remark 4.3.2. Considering the equivalent embedding dimension ρ = s + m − 1, the time

series length should be such that T � ρ!. Similarly, considering the number of possible

OA suggests that T � (n!)Γ·m. For Γ > 1 and m > 1, it is obvious that ρ! � (n!)Γ·m.
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Taking into account the gap between the smallest value of the required time series length

(n!)Γ·m and the smallest time series length ρ! due to the equivalent embedding dimension

ρ, it turns out that the OAC may give satisfactory results even for data lengths smaller

than the required one. Indeed, although the number of possible patterns is increased as a

power of the basic number of ordinal patterns, the corresponding embedding dimension just

slightly increases. For a given time series of length T , the length of the resulting Θ = n×D

(D = d1×d2×· · ·×dM−2) series of OA is equal to N = T−(s−1). Let us consider T = 100,

n = 4, and D = 3×3×5, the equivalent embedding dimension is ρ = 12 while the length of

the OA time series is N = 89. The possible number of distinct OA is (24)45 ∼= 1.2868 · 1062,
which is too large as compared to ρ! = 479001600. It follows from this observation that

by the OA approach, given a time series with fixed length, the number of patterns can

be significantly increased, therefore improving the statistical analysis. Large embedding

dimensions are necessary for detecting regular dynamics with large periods, but conversely

require infinite data length for estimating the complexity of non-regular dynamics. So there

is a compromise between the choice of the embedding dimension and the time series length,

which appears to be well balanced by the OAC algorithm. The above OAC in definition

4.3.1 thus appears as an improvement of the ordinal KS algorithm [67].

4.3.3 Relationship between the OAC and the Kolmogorov-Sinai entropy

Let us define the parametric function fm : [0,Γ ln(n!)] by:

fm(s) = hm,m+1(s),m ∈ N�1. (4.3.3)

Considering the definition of the ordinal representation of the KS entropy given in [67], the

relationship between the KS entropy and the OAC can be established as:

hKS = lim
s→∞ lim

m→∞ fm(s). (4.3.4)

Eq. (4.3.4) can be seen as the generalized approximation of the ordinal representation of

the KS entropy. For 2-D arrays (φ = 0 and s = n), it is equivalent to:

hKS = lim
n→∞ lim

m→∞ fm(n) (4.3.5)

which is the relation defined in [67].
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The CPE hc(n) of order n was defined as the first element of the sequence fm(n), hence

hc(n) = f1(n) = h1,2(n). Similarly, f1(s) can be seen as the conditional entropy of OA of

size Θ = n×D. The CPE characterizes the diversity of successors of the given permutations

(ρ = n) while the conditional entropy of OA characterizes the diversity of successors of a

given OA (ρ > n).

Let us define the function family gρ of OAC of order ρ such that

gρ = {fm(s)|ρ = m+ s− 1, 2 ≤ s ≤ ρ}. (4.3.6)

gρ is the set of parametric functions having the same embedding dimension ρ and whose

elements are gρ(s). gρ(ρ) is the last element of the family gρ and is equivalent to f1(ρ), and

thus corresponds to the CPE of order ρ. We call gρ the OAC of order ρ and its number of

elements depends on the dimension of the OA.

4.4 Influence of the parameter setting

In Fig. 4.1 we show an example of OAC spectrum for the logistic map. The logistic map is

commonly used as for almost all r ∈ [0, 4] the KS entropy either coincides with the Lyapunov

exponent if it is positive or is zero otherwise [51, 71]. Moreover, the Lyapunov exponent

for the logistic map can be estimated rather accurately [65]. From Fig. 4.1, applying the

OAC algorithm to the logistic map gives satisfactory results, compared to the CPE and the

Lyapunov exponent (λLyap).

We computed f7(9) for the OAC and f1(9) for the CPE, with T = 4 · 106 as time series

length. We observed that for the whole spectrum, f7(9) values are close to the Lyapunov

exponent, taking zero values for all the regular dynamics corresponding to negative values

of λLyap. The fact that the Lyapunov exponent remains slightly greater than f7(9) confirms

that the OAC uniformly tends to the KS limit as T tends to infinity. In contrast, the CPE

is greater than the Lyapunov exponent for some values of r. It can also be observed that

f1(9) = 0.063 for r = 3.602, while it should be zero as the corresponding dynamics is regular,

as indicated by the Lyapunov exponent value λLyap = −0.0085. Given this observation let

us investigate the impact of the OAC parameters.
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Figure 4.1: Comparison of the OAC with the CPE and the Lyapunov exponent, in the case
of the logistic map.
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Figure 4.2: Dependence of the OAC and CPE results on the data length.

4.4.1 Dependence of the CPE and the OAC on T and n

We theoretically established that the OAC algorithm depends less on the observation time

than the CPE. In Fig. 4.2 the behaviors of the OAC and the CPE for various values of T are

plotted. The CPE values are computed from f1(13), while those of the OAC are obtained

from f9(5). The time series length is incremented from T = 104 to T = 5×105, by step size

of ΔT = 104. As can be observed from this figure, the result of the OAC does not depend on

the time series length in the case of regular dynamics. We observed the same result for the

CPE. However, for r = 4 corresponding to chaotic motion, the OAC is uniformly increasing
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Figure 4.3: Relationship between the embedding dimension and the data length in the case
of (a) regular dynamics, (b) non-regular dynamics and (c) noise.

from 0.4080 up to 0.6068, corresponding to Δf9(5) = 0.1988; while the CPE is uniformly

increasing from 0.1772 up to 0.6642, corresponding to Δf1(13) = 0.4869. Therefore, for the

same embedding dimension ρ = n+m− 1 = 13, the OAC remains closer to its limit value,

even for T � (5!)9, than the CPE which strongly requires that the condition T � 13! is

satisfied. Using OA as patterns thus helps to increase the number of distinct futures to

be analyzed, hence to improve the statistical analysis. This observation is important as

it confirms that the OAC algorithm may be suitable for the analysis of short length time

series. Conversely, the CPE converges faster to the KS entropy than the OAC. This result

may be due to the fact that the CPE combines two OAE computed from two time series

with different dimensions: H1(ρ) computed from a 1-D time series and H2(ρ) computed

from a 2-D time series.

We further investigated the impact of the embedding dimension on the complexity mea-

sure, but for T = 106. We have chosen three types of dynamics: regular dynamics (r = 3.56

and r = 3.602); chaotic dynamics (r = 3.93 and r = 4) and stochastic dynamics with

uniform (UN) and Gaussian (GN) distributions, both obtained from MATLAB. The CPE

was evaluated as f1(n) and the OAC as fm(n), where m = 14 − n and 2 ≤ n ≤ 13. The

corresponding results are shown in Fig. 4.3. This figure shows that for regular dynamics,

the CPE requires large embedding dimensions, independently of the data length; while the
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OAC rapidly converges to zero, thus allowing the detection of regular dynamics with better

accuracy than the CPE.

Considering chaotic dynamics, f1(n) for the CPE increases with the embedding dimen-

sion. Similarly, g13(n) for the OAC uniformly increases with the permutation order n. In

that case, although the embedding dimension ρ = 13 remains constant, for n > 2 the re-

quired data length (n!)m becomes too large compared to T . Observing an increment of the

complexity for the OAC just confirms that the pattern distribution strongly depends on m

so that fm(n) is different from zero even when the time series length is too short compared

to the required data length.

In the case of noise, it is observed that f1(n) is the same for both the uniform noise

(UN) and the Gaussian noise (GN). Similarly, fm(n) is the same for the two distributions.

However, the CPE increases with n for T such that T � n!, and decreases to zero when

this condition is no longer satisfied. The same observation can be made for the OAC which

increases as T � (n!)m and decreases to zero otherwise. These two results imply that the

number of patterns rapidly increases in the case of noise and does not change anymore

when the data length is smaller than the required value, thus leading to zero values for the

complexity.

4.4.2 Impact of the equivalent embedding dimension ρ

For some values of the equivalent embedding dimension ρ, the detection result for regular

dynamics may be wrong. An example is given for the logistic map with r = 3.602. For

this dynamics, both the CPE and the OAC are giving a nonzero complexity for ρ < 13,

independently of the time series length. Conversely, increasing the embedding dimension

will require us to increase also the time series length T , otherwise the complexity will reduce.

In practice, the data length sometimes cannot be extended and an appropriate compromise

between the data length and the embedding dimension is required to avoid any confusion

between regular and non-regular dynamics. While considering the requirement T � ρ!, one

may set n and φ such that (n!)φ < ρ!. This particular possibility allows us to optimize the

exploitation of the data length and justify the weak dependency of the OAC algorithm on

the data length. Some example of combinations are given in Table 4.1.

In Fig. 4.4 the performances of the CPE and OAC algorithms are compared for a given
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Table 4.1: Possible combinations (n, φ) for ρ = n+ φ constant
ρ = n+ φ 2 3 4 5 6 7 8 9 10

φ \n 2 3 4 5 6 7 8 9 10

0 2! 3! 4! 5! 6! 7! 8! 9! 10!
1 - (2!)2 (3!)2 (4!)2 (5!)2 (6!)2 (7!)2 (8!)2 (9!)2

2 - - (2!)3 (3!)3 (4!)3 (5!)3 (6!)3 (7!)3 (8!)3

3 - - - (2!)4 (3!)4 (4!)4 (5!)4 (6!)4 (7!)4

4 - - - - (2!)5 (3!)5 (4!)5 (5!)5 (6!)5

5 - - - - - (2!)6 (3!)6 (4!)6 (5!)6

6 - - - - - - (2!)7 (3!)7 (4!)7

7 - - - - - - - (2!)8 (3!)8

8 - - - - - - - - (2!)9

data length (T = 104 samples), with varying equivalent embedding dimension (7 ≤ ρ ≤ 13).

We fixed the permutation order at n = 5 for the OAC algorithm. The dynamics to be

analyzed were generated from the logistic map with r = 3.602 corresponding to regular

dynamics, and r = 4 corresponding to chaotic dynamics. From the results obtained, it

appears that the OAC well balances the compromise between the embedding dimension

and the data length. Indeed, the data length should be chosen such that T � ρ!. This

requirement is not respected for both the OAC and the CPE. However, one observes in

the case of the chaotic dynamics that the value of the complexity by the CPE (i.e gρ(ρ))

drastically reduces from g7(7) = 0.6643 to g13(13) = 0.1788 when T < ρ!; while the OAC

result (gρ(5)) slightly decreases from g7(5) = 0.6114 to g13(5) = 0.4091. In the case of

regular dynamics, the two algorithms behave similarly, although it should be pointed out

that there is a smallest value of n (n = 5 for the dynamics corresponding to r = 3.602

as shown in Fig. 4.3(a)) under which the complexity of the regular dynamics is no longer

zero, even for large values of ρ. It can then be concluded that the required data length for

the OAC algorithm depends more strongly on the permutation order n than the equivalent

embedding dimension. Hence, choosing T � n! is enough for the OAC algorithm, while the

CPE algorithm requires T � ρ!. Moreover, the permutation order required for detecting

regular dynamics with a zero complexity is significantly reduced in the OAC algorithm,

as compared to the CPE algorithm. Although the required embedding dimension ρ is the

same for both the CPE and the OAC, it appears that its decomposition by the OA approach

contributes to reducing the permutation order required by the CPE for efficient complexity
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Figure 4.4: Impact of the embedding dimension on the OAC and the CPE algorithms: (a)
regular dynamics and (b) non-regular dynamics.

measure, hence to reducing the required data length. These observations thus confirm that

the OAC algorithm is more suitable than the CPE algorithm for discerning between regular

and non-regular dynamics from a small data set.

Now let us evaluate the impact of the permutation order for fixed values of ρ. For this

purpose, let us apply the OAC algorithm to the sine-circle map defined in Eq. (1.2.2). This

system can exhibit both periodic dynamics with large periods and quasi-periodic dynamics,

depending on the parameter setting. Indeed, we have already discussed the case of periodic

dynamics with a small period, and have verified that there is a lower limit for the permu-

tation order n under which the dynamics cannot be detected as regular. In practice, the

period is not known a priori and the embedding dimension ρ or the permutation order n

in some cases may be badly chosen. Due to the limited data length, it is also common to

choose small embedding dimensions. It is well known that the KS entropy of a periodic

dynamics is equal to zero. However, the CPE as well as the OAC in that case may output

nonzero values, depending on the period of the underlying dynamics. Such a result is illus-

trated in Fig. 4.5. We considered for this example the sine-circle map with x0 = 0.4 and

r = 0. When Ω is a rational number, the map provides a periodic behavior [67]. We used

T = 10000 as data length and Ω varying from 0 to 0.5, by step size ΔΩ = 10−3. As shown
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Figure 4.5: gρ(n)-spectrum of the sine-circle map (with r = 0), T = 104. The embedding
dimensions are respectively (a) ρ = 8 and (b) ρ = 13.

in Fig. 4.5, all the three functions of the families g8 and g13 behave similarly. We verified

that g8 and g13 go to 0 at rational numbers whose denominators are smaller than or equal

to 8 and 13 respectively. For the set of Ω values considered in Fig. 4.5, g8 goes to zero for

Ω ∈ {0, 18 , 15 , 14 , 38 , 25 , 12}, while g13 goes to zero for Ω ∈ {0, 1
10 ,

1
8 ,

1
5 ,

1
4 ,

3
10 ,

3
8 ,

2
5 ,

1
2}.

We also observed that g13 < g8, which confirms that the complexity converges to zero as

the embedding dimension tends to infinity. The result might become zero by increasing the

permutation order n and the embedding dimension ρ. Unfortunately, a significant increment

of these two parameters is not possible due to the limited data length. Another important

observation can be made: for periodic dynamical systems gρ depends only on the embedding

dimension ρ for n � L, and therefore slowly converges to zero. We verified this observation

for all the elements of the families g8 and g13. Taking into account this observation, it can

be conjectured that the difference of two parametric functions fm(s) belonging to the same

family gρ is equal to zero; which allows to easily detect regular dynamics with large periods.

In order to confirm the non-dependence of the behavior of gρ on the permutation order

n in the case of regular dynamics, let us apply the OAC algorithm to the sine-circle map,

but with Ω = −1+
√
5

2 and x0 = 0.5. For this value of Ω, the system is known to exhibit

quasi-periodic dynamics for 0 ≤ r ≤ 1 [2, 27]. We also considered sequences of length

T = 104 samples and the control parameter 0 ≤ r ≤ 2.5 varying by step size Δr = 0.01.

The corresponding result is shown in Fig. 4.6 from where it is confirmed that gρ does not
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Figure 4.6: gρ(n)-spectrum of the sine-circle map with Ω = −1+
√
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2 . The embedding dimen-
sions is ρ = 13 and T = 104.

depend on n in the case of regular (periodic and quasi-periodic) dynamics.

4.4.3 Useful array dimension

The above simulation results confirm that large embedding dimensions are still required.

Only dynamics whose periods are less than the equivalent embedding dimension ρ are surely

detected with a zero complexity. Although increasing the embedding dimension also requires

an increase of the data length, technically there is no limiting value for n while using the OA

approach unlike for the CPE algorithm described in [67]. Let us consider that ordinal arrays

are made of two main parts: the radial part described by the permutation length n and the

angular part described by the array Φ = D×m whose embedding dimension is equal to φ.

According to the definition of the OAC, two distinct angular arrays D = d1× d2× . . .× dM

and D′ = d′1 × d′2 × . . . × d′M ′ with di �= d′i, M
′ ≥ M and

∑M
i di =

∑M ′
j d′j provide the

same OAC for a given time series. This property of the OAC implies that there is no need

to consider more than three-dimensional arrays.

We showed in chapter 2 how to deal with the ordinal matrix transform where embed-

ding vectors where replaced by the largest slope of the corresponding permutations. The

extension made in this chapter transforms the permutation into a scalar value, instead of

the largest slope. While considering n = 2, we can easily verify that the two approaches are

equivalent. This observation implies that the OAC can be equally applied to the detection

of SNA and quasi-periodic dynamics. However, as we showed in chapter 2, this detection
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requires some prior knowledge of the system under investigation. So, the use of the OAC

also will not provide complete information on the nature of the underlying data series. In-

deed, the entropy measure gives us the information related to the distribution of the distinct

ordinal arrays (symbols) for a given embedding dimension ρ, but not on their evolution in

terms of ρ. The OAC results presented thus behave like the number Λ of distinct symbols

is known a priori for a given ρ. As it is not the case, we suggest to investigate the behavior

of Λ in terms of φ to get complementary information on the nature of the time series.

4.5 Asymptotic behavior of Λ in terms of the embedding

dimension

Theoretically, the largest number of distinct arrays which can be obtained for a given

embedding dimension ρ = n + φ is Λ0 = (n!)Γ·m. However, depending on the nature of

the data series and the observation length T , the effective number Λ of symbols obtained

is such that Λ ≤ Λ0. For an L-periodic (L = q) dynamics for example, we showed (see

theorem 4.2.1) that Λ is bounded by an upper limit which is equal to L. In that case, Λ

does not depend on T as long as T > L. This requirement is not always known a priori and

the behavior of Λ in terms of ρ for fixed values of T therefore can provide some information

on the nature of the time series.

4.5.1 Behavior of Λ in terms of the angular embedding dimension φ

By extending the dimension of the angular arrays while maintaining its embedding dimen-

sion φ unchanged, Γ increases and Λ also should increase. Consequently, the OAC should

vary as well. However, we verified that Λ and the OAC vary only when φ and n are modified.

This observation implies that the OAC as described is not sensitive to the size of the angular

arrays, but only to their equivalent embedding dimension φ. As a consequence, the upper

limit of Λ is reduced to Λ0 = (n)φ+1, which is far less than the theoretical value (n!)Γ·m.

Therefore, the useful data length required for an efficient evaluation of the complexity of

the time series is also reduced to T > (n!)φ+1. Fig. 4.7 shows some example of behaviors of

Λ for the particular cases corresponding to periodic, quasi-periodic, chaotic and stochastic

data. The periodic and chaotic dynamics were generated using the logistic equation with
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Figure 4.7: Particular behavior of Λ in terms of φ. From top to bottom are shown the
behavior of Λ for Λ0, periodic, quasi-periodic, chaotic and stochastic data. We set T =
5× 104, n = 2 and 0 ≤ φ ≤ 13

Table 4.2: Behavior of Λ in terms of φ for particular dynamics, n = 2: Λ1−4 for respectively
the periodic, quasi-periodic, chaotic and stochastic data series

φ 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Λ0 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
Λ1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Λ2 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Λ3 2 3 5 8 13 21 34 55 89 144 233 377 610 987
Λ4 2 4 8 12 32 64 128 254 500 964 1827 3377 5945 9824

r = 3.56 and r = 4 respectively, and x0 = 0.4. The quasi-periodic dynamics was generated

from the sine-circle map with r = 0, Ω = −1+
√
5

2 and x0 = 0.5; while the stochastic sequence

corresponds to white noise with a Gaussian distribution. From this figure, it is evident that

Λ is bounded by Λ0 = (n)!φ+1 for all the four dynamics. The corresponding values are

tabulated in Table 4.2. In the particular case of the chaotic dynamics, Λ corresponds to the

sequence of the Fibonacci numbers. One can also observe that in the case of the stochastic

data series, Λ is close to Λ0.
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4.5.2 Modeling of the behavior of Λ as a function of ρ

While looking at Fig. 4.7, one can observe three types of behaviors for Λ: constant, linear

and exponential behavior. All these behaviors of Λ as shown in Fig. 4.7 are bounded by

Λ0 and depend on the dynamics under investigation. It then follows from this observation

that each type of dynamics can be characterized by the evolution rule of Λ compared to

Λ0. For this purpose, we suggest modeling the behavior of Λ in terms of φ so that all

the above three behaviors are taken into account. For periodic dynamics, Λ(φ) = a0 where

n ≤ a0 ≤ L is related to the period of the underlying dynamics. In the case of quasi-periodic

dynamics, Λ(φ) = n+ φ. By combining the periodic and the quasi-periodic dynamics, the

modeling function can be expressed as Λ(ρ) = μ · ρα, given that ρ = n + φ. For this

modeling function, μ = a0 and α = 0 for periodic dynamics; for quasi-periodic dynamics,

μ = α = 1 . The exponential behavior can also be modeled as an attenuated value of

Λ0, i.e Λ(φ) = μ · (n!)λ·(φ+1), where λ ≤ 1. This function can also be written in terms of

ρ, which affects only the scaling of μ. The reduction of the value of the scaling factor λ

thus introduced by the use of ρ can be balanced by changing the basis of the exponential

function: instead of n!, one may use 2 for example. By combining the linear and exponential

models, the modeling function of Λ becomes

Λ(ρ) = μ · ρα · bλ·ρ, (4.5.1)

where μ ∈ R>0 is the periodicity index, α ∈ R is the quasi-periodicity index, λ ∈ R the

index of non-regularity and b ∈ R≥2 the exponential basis.

By considering the behavior of Λ = Λ0, which corresponds to a purely random source,

one can easily determine the limits of μ, α and λ by solving the equation

μ · ρα · bλ·ρ = Λ0. (4.5.2)

We solved this equation and found

⎧⎪⎪⎨
⎪⎪⎩

μ = (n!)1−n

α = 0

λ = ln(n!)
ln(b) .

(4.5.3)

In a purely random source, limn→∞ μ = 0, α = 0 and λ = ln(n!)
ln(b) . Solving the same equation
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in the case of quasi-periodic dynamics with Λ(ρ) = ρ, we found
⎧⎪⎪⎨
⎪⎪⎩

μ = 1

α = 1

λ = 0.

(4.5.4)

For periodic dynamics, the solution is trivial
⎧⎪⎪⎨
⎪⎪⎩

μ = a0

α = 0

λ = 0,

(4.5.5)

with n ≤ a0 ≤ L. Between the solutions presented above, there are many intermediate

combinations of μ, α and λ which depend on the nature of the underlying dynamics. The

appropriate solution ψ = (μ, α, λ) of Eq. (4.5.1) in that case can be determined using

least mean square interpolation, with f1(ρ) = 1, f2(ρ) = ln(ρ) and f3(ρ) = ρ as the

three basis functions. The values obtained are accurate as T → +∞, hence the usefulness

of the asymptotic behavior. In the case for example of the particular dynamics in Fig.

4.7, we found respectively ψ1 = (2, 0, 0), ψ2 = (1, 1, 0), ψ3 = (0.7647,−0.057, 0.7035),

and ψ4 = (0.4126, 0.4386, 0.8693) for the periodic, quasi-periodic, chaotic and stochastic

sequence. λ is close to its upper limit λ0 = ln(n!)
ln(b) as the dynamics is complex. The largest

complexity value which can be estimated by this model is given in Eq. (4.5.3). Similarly

to the Lyapunov exponent, we expect that regular dynamics are characterized by λ ≤ 0.

In this way, periodic dynamics with large periods as well as SNA may be easily detected

as regular. It should be pointed out that λ is bounded by 1 if the exponent basis is set as

b = n!. For any other basis less than n!, the upper limit of λ is greater than 1.

4.5.3 Example of detection and classification of complex regular dynamics

We call complex regular dynamics those for which the period is too large compared to

practical embedding dimension, such as SNA and quasi-periodic dynamics. Let us consider

two well known examples for which most of the time series analysis algorithms, especially

ordinal pattern-based algorithms, fail to detect the exhibited dynamics as regular: the circle

map whose detection results by the OAC algorithm are presented in Fig. 4.5 and the forced

GOPY map whose equation is

xt+1 = 2r tanh (xt) cos (2πyt) + ε cos (2π (yt + ϕ)) , (4.5.6)
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Figure 4.8: Detection of SNA and quasi-periodic dynamics: (a) sine-circle map with r = 0,
x0 = 0.4, 0 ≤ Ω ≤ 0.5, n = 2 and 8 ≤ φ ≤ 18; (b) forced GOPY map with ϕ = 1/8,
x0 = 0.1, ε = 0, 1 ≤ r ≤ 1.5, n = 2 and 4 ≤ φ ≤ 14; (c) forced GOPY map as in (b), except
for ε = 0.02. We set T = 2× 104 for all the dynamics.

with yt behaving as in Eq. (2.5.1). It was shown that the GOPY map exhibits SNA for

r > 1 and ε = 0, and quasi-periodic behaviors for r > 1 and ε > 0 [33, 39, 56]. The results

in Fig. 4.8 confirm that, using a small amount of data and relatively small embedding

dimensions, the index of non-regularity λ efficiently detect SNA, quasi-periodic and other

dynamics with large periods as regular. In the case of the circle map, this result contrasts

with the one obtained with the OAC for which only dynamics whose the period was less

than ρ were detected with a zero complexity. There now remains the problem related to

the classification of regular dynamics into periodic, quasi-periodic and SNA. This problem

may be solved by analyzing the behavior of μ and α for λ ≤ 0. In the case of the GOPY

map, both cases known as SNA and quasi-periodic are well detected as regular. In order to

make clear distinction between SNA and quasi-periodic dynamics, the behavior of μ and α

in Fig. 4.8(b-c) need to be analyzed in detail.

ψ0 = (μ = 1, α = 1, λ = 0) can be seen as the transition point between periodic, quasi-

periodic and SNA. In SNA and quasi-periodic dynamics, there is no period, therefore μ is

no longer an integer value greater than 1. Moreover, the behavior of Λ can be more complex

than linear, depending to the number of incommensurable frequencies combined, but it does

not behave exponentially. This smooth nonlinear increase of Λ implies α > 0 and λ ≤ 0 for
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SNA and quasi-periodic dynamics. One can then conjecture on the signature of SNA and

quasi-periodic dynamics as ψR = (μ �∈ N, α > 0, λ ≤ 0). The dynamics is quasi-periodic

when α is large. In the case of periodic dynamics, a period greater than or equal to 1

exists. Furthermore, the behavior of Λ for such a dynamics is constant (depending to the

embedding dimension), which implies α = 0. As some errors may occur due to the choice

of ρ compared to the period of the underlying dynamics, one may observe some behaviors

looking like quasi-periodic dynamics and SNA. Thus, the periodic behavior is characterized

by ψP = (μ ≥ 1, α = 0, λ = 0). The complexity of a regular dynamics increases as μ → 0,

α → +∞ and λ → −∞. A dynamics is as stochastic when μ → (n!)1−n, α → 0 and

λ → ln(n!)
ln(b) .

The above classification will be verified on other well known systems in the next section.

Nonetheless, it should be noticed that this approach performs well with dynamics with large

periods and strongly chaotic data, and should be used as a complementary tool for the OAC

whose efficiency for complexity measure has been shown in this chapter. In the case of low

dimensional systems, weakly chaotic dynamics are detected as regular and requires large

values of n to be detected as chaotic. This low sensitivity of the algorithm to weakly chaotic

data proves its high robustness against noise. In practice, most of the systems are high-

dimensional and real-world data are noise contaminated, the robustness of the algorithm

against noise constitutes an advantage for its applicability to experimental data. Thus, the

system is as complex (high dimensional) as for a given T , the admissible value of n is small.

For stochastic data for example, as the number of OA is close to (n!)φmax+1 , it is difficult

to consider n > 2 for φmax ≥ 10, thus attesting their high dimensionality.

4.6 Application of OA-based algorithms to the detection of

SNA

In this section, we combine, whenever it is necessary, all the algorithms previously described

for the characterization of quasi-periodically forced systems. We intend to clearly identify

SNA, quasi-periodic dynamics and tori. For this purpose, we used well known systems

which have been already described.
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4.6.1 Detection of route to SNA in the forced GOPY map

The GOPY map whose equation is described in Eq. (4.5.6) constitutes a good candidate

for the validation of our algorithms as it exclusively exhibit complex regular dynamics. The

GOPY map is known to exhibit SNA for r > 1 and ε = 0, and quasi-periodic behaviors

for r > 1 and ε > 0 [33, 56]. In this section, we compute the OAC, the ME as well as the

indices of regularity (μ and α) and non-regularity (λ). These indicators are compared to the

Lyapunov exponent for efficient decision making. From this comparison also are deduced

indications on the parameter setting of each of the underlying algorithms. In Fig. 4.9 are

depicted the Lyapunov spectrum and the spectra of OA growth indices μ, α and λ and the

ME. These spectra are obtained for T = 2×104 and n = 3, 4 ≤ φ ≤ 13 for the OA approach

and n = 200, τ0 = 10 for the ME algorithm.
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Figure 4.9: SNA detection spectra for the GOPY map with r = 1.5 and 0 ≤ ε ≤ 0.5: (a)
Lyapunov exponent (λLyap), (b) index of non-regularity (λ), (c) matching energy (ME) and
(d) periodicity index (μ) and quasi-periodicity index (α). We set T = 2× 104, τ0 = 10 and
n = 200 for the matching energy; n = 3 and 4 ≤ φ ≤ 13 for the OA growth indices.

The reference for the validation of our algorithms is the Lyapunov exponent. While

comparing it with λ, it comes that both spectra behave similar in terms of the detection

result: λLyap → −∞ as the dynamics is regular whereas λ → 0 as the dynamics is regular.

So, an increase of λLyap corresponds to a decrease of λ. For 0 ≤ ε ≤ 0.5 and r = 1.5, the
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system is progressively moving from SNA (ε = 0) to a smooth torus (ε ≥ 0.4). Between

these two extreme behaviors, the system exhibits a quasi-periodic dynamics (wrinkle torus)

and the transition between these three regions are quite difficult to establish while looking

at the Lyapunov spectrum. Both λ and λLyap indicate around ε = 0.37 an edge which

can be interpreted as the beginning of the smooth torus, while the transition between SNA

and wrinkle torus may occur around ε = 0.1. However, a contradiction is observed on

the ME spectrum. Indeed, the ME indicates a complex dynamics as the ME is large.

While comparing its spectrum with λLyap, this interpretation should be reconsidered as the

largest ME corresponds to the smallest λLyap. We then conclude that the ME algorithm is

not suitable for the analysis of quasi-periodically forced systems. Nonetheless, by reversing

the ME spectrum, it is observed that it perfectly matches the behavior of the spectrum of

the Lyapunov exponent, and thus confirms the above transition between SNA and quasi-

periodic dynamics.

Now considering the μ and α spectra, it appears that the transition between SNA

and quasi-periodic dynamics once more occurs around ε = 0.1 as previously observed. In

addition to the transition detection, combining μ and α allow to qualitatively characterize

SNA, wrinkled tori (quasi-periodic) and smooth tori. However, it still remains difficult

to clearly state which combination (μ, α) corresponds to SNA or quasi-periodic dynamics.

Nevertheless, the combination of μ and α improves the detection of transitions in the system

behavior. For this example, the couple (μ, α) shows that the transition between wrinkled

tori and smooth tori approximately occurs at ε = 0.4 where μ > α, and that ε = 0.37 is

still a wrinkled torus where the transition process begins.

Form the above results, it appears that the Lyapunov exponent, the matching energy

and the index of non-regularity only allow to detect transitions (need for spectrum or

varying control parameter) in the dynamics of a given system, while the regularity indices

give the possibility to get more details on the nature of a single time series: the dynamics

can be dominated by the periodic behavior (μ > α) or the quasi-periodic behavior (μ < α).

Applying the OAC algorithm for determining the complexity of the system also allows only

to detect structural changes in the whole dynamics of the underlying system as shown in

Fig. 4.10. One can observe that the behavior of the spectrum of the OAC approximates

that of the Lyapunov exponent as φ increases. Such a result is justified by the fact that the

diversity of the set of OA increases as φ is large. For small values of φ, all the dynamics
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Figure 4.10: OAC for SNA detection spectra in the GOPY map with r = 1.5 and 0 ≤ ε ≤
0.5. We set T = 2× 104, n = 3 and 4 ≤ φ ≤ 13 (7 ≤ ρ ≤ 17).

output almost the same number of ordinal patterns and no difference can be established

between them as their distribution of OA are looking similar. As a consequence, transitions

between closely behaving dynamics cannot be well appreciated. This may be the case for

the CPE for which φ = 0. Therefore, satisfactory result cannot be obtained by the CPE

unless n is increased, as it is not possible to increase φ. Similarly, PE requires large values

of n for it to detected regular dynamics. We verified that for the OAC and OA growth

indices to be well evaluated, n and φ should be chosen such that Λmax < T
20 , where Λmax

corresponds to the largest value φmax of φ. Furthermore, the value of n should be large as

possible, in order to increase the diversity of the set of Λ.

We now turn to the case ε = 0 for which the system exhibit SNA for all r > 1, the

corresponding OA growth indices are depicted in Fig. 4.11. The couple (μ, α) clearly de-

scribes the bifurcation in the route to SNA whereas the Lyapunov exponent only shows a

decreasing line with a constant slope. Indeed, (μ, α) shows that the system is progressively

moving from SNA to quasi-periodic motions (at r = 1.5 and ε > 0 starts the transition

to quasi-periodic dynamics). In Fig. 4.12 are shown the corresponding OAC. Once more,

the OAC spectra show that there are some variations in the system dynamics while moving

from SNA to quasi-periodic dynamics, but not as much detailed as in the (μ, α) diagram.

The behavior of (μ, α) depends on the parameter setting. Choosing large values of n

requires a large observation time; while choosing too small values of n for example, even if
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Figure 4.11: OA growth indices spectra for SNA detection in the GOPY with ε = 0 and
1 ≤ r ≤ 1.5. We set T = 2× 104, n = 3 and 4 ≤ φ ≤ 13 (7 ≤ ρ ≤ 17).
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Figure 4.12: OAC for SNA detection spectra in the GOPY map with ε = 0 and 1 ≤ r ≤ 1.5.
We set T = 2× 104, n = 3 and 4 ≤ φ ≤ 13 (7 ≤ ρ ≤ 17).
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Figure 4.13: OAC for SNA detection spectra in the GOPY map with r = 1.5 and 0 ≤ ε ≤
0.5. We set T = 2× 104, n = 2 and 9 ≤ φ ≤ 18 (11 ≤ ρ ≤ 20).

φ is large, may lead to some misinterpretations as it can be observed on Fig. 4.13 where

the OAC spectrum increases whereas the Lyapunov exponent decreases for ε > 0.4. This

false parameter setting also reduces the ability of (μ, α) to detect changes in the system

behavior, as shown on Fig. 4.14.

However, the above results may be improved by increasing the observation time. Indeed,

one should consider the asymptotic behavior of the OA growth indices for an efficient

characterization of the dynamics analyzed. By considering for example the dynamics in the

GOPY map characterized by r = 1.5 and ε = 0.42, and setting n = 2, 11 ≤ φ ≤ 19 and

T = 106, the values of the OA growth indices are μ = 0.1957, α = 3.3923 and λ = −0.2750

indicating that the dynamics is regular; while the same dynamics outputs μ = 5.5421,

α = 1.0916 and λ = 0.0064 for T = 2× 104, thus indicating that the dynamics is chaotic.

4.6.2 Impact of T : Discerning between SNA and tori

The number Λ of symbols strongly depends on T in the case of random sources and does

not in the case of periodic dynamics, provided that T > q. In the case of quasi-periodic

dynamics, it may or not strongly depend on. The main question is to know which one of the

two types of dynamics, SNA and tori, depends more on T . Such an investigation may help

for discerning between SNA and quasi-periodic dynamics. We then considered the GOPY

map for r = 1.5 and ε = 0 and ε = 0.4. For these two values of ε, the system exhibits
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Figure 4.14: OA growth indices spectra for SNA detection in the GOPY with r = 1.5 and
0 ≤ ε ≤ 0.5. We set T = 2× 104, n = 2 and 9 ≤ φ ≤ 18 (11 ≤ ρ ≤ 20).

respectively an SNA and a quasi-periodic dynamics. We consider 104 ≤ T ≤ 105 with step

size ΔT = 104, n = 2 and 4 ≤ φ ≤ 13. Fig. 4.15 shows the corresponding results for the

two dynamics. It clearly appears that SNA depend more on the time series length than

quasi-periodic dynamics.

Now computing Δμ = |μ1 − μ2|, Δα = |α1 − α2| and Δλ = |λ1 − λ2| for two distinct

time series lengths T1 = 2× 104 and T2 = 105, let us determine the nature of the dynamics

exhibited by the GOPY map for the two previous parameter settings: r = 1.5 and 0 ≤
ε ≤ 0.5, and 1 ≤ r ≤ 1.5 and ε = 0. In the first case, the system is continuously moving

from SNA to quasi-periodic dynamics, as Δμ, Δα and Δλ are continuously moving from

a positive value to zero. This result is consistent with the one presented in [39]. In the

second case, the system exhibits SNA as Δμ, Δα and Δλ are positive, also confirming

the result predicted in the literature [39]. According to Fig. 4.15, one may conclude that

for given values of n and φ, OA growth indices μ, α and λ asymptotically converge to

their respective limit values μ0, α0 and λ0 faster for quasi-periodic dynamics than SNA. In

practice, we suggest to choose n and φ such that Λm = Λ(φmax) � T , where φmax is the

largest value of φ.
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Figure 4.15: Dependance on T of SNA (r = 1.5 and ε = 0) and quasi-periodic dynamics
(r = 1.5 and ε = 0.4) OA growth indices. We considered 104 ≤ T ≤ 105 by step size
ΔT = 104, n = 2 and 4 ≤ φ ≤ 13.
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Figure 4.16: Detection of SNA using the sensitivity of OA growth indices on T . (a)-(c) case
of 0 ≤ ε ≤ 0.5 with r = 1.5; and (d)-(f) case of 1 ≤ r ≤ 1.5 with ε = 0. We considered two
observation times: T1 = 2× 104 and T2 = 105, and we set n = 3 and 4 ≤ φ ≤ 13.
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4.6.3 Detection of the Heagy-Hammel route in the forced logistic map

We have already described the Heagy-Hammel (H-H) route in chapter 2 in the case of the

extended PLSE. In this section, we further investigate in the case of the OA growth indices

and OAC. In the forced logistic map, a SNA occurs in the H-H route when the period-22

torus collides with its unstable parent [41, 54]. This phenomenon is observed for ε = 0.3

and the H-H transition appears at r0 � 3.487793 [34, 60]. We thus examined the behavior

of the system in the neighborhood of r0 and compared the result of the OA growth indices

and OAC with the Lyapunov exponent. In the other side of the SNA appears the transition

between SNA and chaos at r1 = 3.512 [54]. By setting n = 2 and 4 ≤ φ ≤ 13, the results

obtained are presented in Fig. 4.17 and Fig. 4.18. While interpreting the results in Fig. 4.17,

a periodic dynamics is detected for 3.48 ≤ r ≤ 3.488. Normally, this dynamics corresponds

to a torus, but which is not too complex than in the case of the GOPY map. By increasing

n, it is no longer be detected as periodic as shown in Fig. 4.19. We can also observe that

the transition SNA-chaos is early detected by λ, whereas λLyap still indicates and SNA.

In Fig. 4.18, the OAC does no longer significantly depend on φ as the time series length

is sufficiently large, T = 106. The OAC spectrum is clearly showing all the transitions

tori-SNA and SNA-chaos. However, it still remains difficult to define a threshold indicating

the maximum value of OAC that can be affected to SNA or the minimum value of OAC

for chaotic dynamics. Therefore, the detection of the transition SNA-chaos can only be

assured by the sign of λ. We also observed as in the case of the GOPY map that the

matching energy still behaves similarly as the Lyapunov exponent, but in the reverse way.

So, definitely it can efficiently help to detect transitions, but not to quantify the complexity

of the dynamics, as compared to the Lyapunov exponent. Such a result attests that the

ME algorithm performs well for systems which do not exhibit quasi-periodic dynamics.

Now setting n = 3, we observed that the detection of the transition SNA-chaos is

improved (see Fig. 4.19) and that in the OAC spectrum also a threshold can be defined (see

Fig. 4.20) for φ ≥ 8. However, the detection of chaotic motions is now delayed and we may

require to increase φ. Indeed, the diversity of the OA in that case is not well exploited for

small values of φ, although the time series length is sufficiently large. Nevertheless, it can

be observed in Fig. 4.20 that the sensitivity of the OAC to the variation of φ significantly

increased for n = 3 as compared to Fig. 4.18 where n = 2. We also observed that the OAC
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Figure 4.17: Detection of the transition from torus to SNA by the H-H route in the forced
logistic map, ε = 0.3, n = 2, 4 ≤ φ ≤ 13, T = 106. From top to bottom the Lyapunov
exponent, the non-regularity index λ, the matching energy E(200) and the regularity indices
μ and α.
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Figure 4.18: Detection of the transition from torus to SNA by the H-H route in the forced
logistic map, ε = 0.3, n = 2, 4 ≤ φ ≤ 13, T = 106. (a) the Lyapunov exponent spectrum
and (b) the OAC spectrum.
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Figure 4.19: Detection of the transition from torus to SNA by the H-H route in the forced
logistic map, ε = 0.3, n = 3, 4 ≤ φ ≤ 13, T = 106. From top to bottom the Lyapunov
exponent, the non-regularity index λ and the regularity indices μ and α.

increases with n. Finally, we can conclude that the detection results are better as n and

φ are large and T � Λmax. In this example, T = 106 while Λmax < 104, even for n = 3.

While dealing with more complex dynamics, increasing n may require too large values of T

as Λmax � (n!)φmax .

4.6.4 Detection of the Heagy-Hammel route in the forced cubic map

The forced cubic map is known to exhibit a SNA (torus-SNA transition) in the neighborhood

of β0 = 1.88697 for A = 0.7. Initially, it has for β = 1.8865 a period-2i torus, i ∈ N that

begins to wrinkle as β increases to the value 1.8868 until it approaches its unstable parent

[34]. After the appearance of SNA, the system moves smoothly toward a chaotic dynamics

as β approaches 1.8875. We applied the OA-based algorithm with n = 3 and T = 106.

The corresponding results are shown in Fig. 4.21 for the OA growth indices spectra and

in Fig. 4.22 for the OAC spectra. The spectra were obtained for β varying from 1.886 to

1.889, by step size Δβ = 10−5. According to these figures, the above transitions are well

detected in both spectra. Once more, we observed that the behavior of the OAC spectrum

approximates that of the Lyapunov exponent as φ increases.
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Figure 4.20: Detection of the transition from torus to SNA by the H-H route in the forced
logistic map, ε = 0.3, n = 3, 4 ≤ φ ≤ 13, T = 106. (a) the Lyapunov exponent spectrum
and (b) the OAC spectrum.
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Figure 4.21: Detection of the transition from torus to SNA by the H-H route in the forced
cubic map, A = 0.7, n = 4, 8 ≤ φ ≤ 17, T = 106. From top to bottom the Lyapunov
exponent, the non-regularity index λ and the regularity indices μ and α.
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Figure 4.22: Detection of the transition from torus to SNA by the H-H route in the forced
cubic map, A = 0.7, n = 4 and T = 106. (a) the Lyapunov exponent spectrum and (b) the
OAC spectrum for 8 ≤ φ ≤ 17.

4.6.5 Fractalization route in the forced logistic map

The fractalization route to SNA in the logistic map has also been presented in chapter 2.

It is obtained for ε = 1 and 2.64 ≤ r ≤ 2.67. In that case, a period-L torus attractor gets

wrinkled and eventually forms an L-band SNA [34, 60]. Fig. 4.23 shows the OA growth

indices spectra. The transition from torus to SNA is assumed to appear at r = 2.6587

according to this figure, instead of r0 = 2.6526 as predicted in [34]. Nevertheless, Fig. 4.24

gives more details on the different transitions that occur in the system behavior.

4.6.6 Fractalization route in the forced cubic map

The fractalization route to chaos in the cubic map is obtained for A = 0.1 and 2.14 ≤ β ≤
2.17, with Δβ = 10−4. While comparing the OA growth indices and the Lyapunov spectra,

it clearly appears that the OA indices efficiently detect transitions occurring in the system

behavior, even in the doubled torus region (β = 2.14 to β = 2.167) as it is observed in

Fig. 4.25. The system is assumed to start with a torus like motion at β = 2.14, thereafter

to exhibit a quasi-periodic oscillation of the double torus for β = 2.16, then to move to

a wrinkled torus for β = 2.165; the SNA appears for β = 2.167 and finally, the system

becomes chaotic for β = 2.1675 [34]. All these transitions can be also clearly observed on

the OAC spectrum in Fig. 4.26.
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Figure 4.23: Fractalization route to SNA in the forced logistic map, ε = 1, n = 3, 4 ≤ φ ≤
13, T = 106. (a) the Lyapunov exponent spectrum, (b) the non-regularity index λ and (c)
the regularity indices μ and α.
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Figure 4.24: Fractalization route to SNA in the forced logistic map, ε = 1, n = 3 and
T = 106. (a) the Lyapunov exponent spectrum, (b) the OAC spectrum for 4 ≤ φ ≤ 13, and
(c) OAC spectrum for φ = 12 and φ = 13.
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Figure 4.25: Fractalization route to SNA in the forced cubic map, A = 0.1, n = 3, 8 ≤ φ ≤
17, T = 106. (a) the Lyapunov exponent spectrum, (b) the non-regularity index λ and (c)
the regularity indices μ and α.
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Figure 4.26: Fractalization route to SNA in the forced cubic map, A = 0.1, n = 3 and
T = 106. (a) the Lyapunov exponent spectrum, (b) the OAC spectra for 8 ≤ φ ≤ 17, and
(c) OAC spectrum for φ = 16 and φ = 17.
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Figure 4.27: Chaos detection in the logistic map: (a) spectrum of the Lyapunov exponent,
(b) the non-regularity index λ and (c) the regularity indices μ and α. We set n = 5,
0 ≤ φ ≤ 9 and T = 106

4.7 Classifying data into deterministic or stochastic

We established in section 4.5 the behavior of Λ for a purely random source. As it is

well known that such sources are purely stochastic, we may extend the usefulness of the

OA asymptotic growth indices and the OAC to the classification of data as deterministic

or stochastic. Indeed, regular dynamics are undoubtedly deterministic and are now well

characterized by the OA-based algorithms. The main problem rely on non-regular dynamics

as it is not easy to determine whether a dynamics is chaotic (deterministic) or stochastic,

based on the complexity measure. Theoretically, the complexity of stochastic data should

normally be greater than that of deterministic data. However, while using ordinal pattern-

based algorithms as well as other common well scaled complexity measures, it arises that

the complexity of stochastic and chaotic data are approximately the same, thus making

difficult to define a threshold for distinguishing between the two types of data. An example

of controversial topic about the classification of the ECG data. Some researchers think that

the ECG is chaotic, so could be processed by nonlinear methods [14, 70, 53]; whereas the

others think that it is stochastic and should therefore be processed by statistical methods

[18]. Nonetheless, classifying data as deterministic or stochastic is important as it help to

determine the appropriate method to be used for an efficient data analysis.
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Figure 4.28: OAC spectra of the logistic map for 0 ≤ φ ≤ 9 and T = 106. The parameter
embedding dimension is set as n = 6 (left side spectra) and n = 7 (right side spectra).

Coming back to the OA-based approach, we established that periodic dynamics are

characterized by ψP = (μ ∈ N≥1, 0, 0) and a zero OAC if the embedding dimension is

suitably chosen, while quasi-periodic and SNA are characterized by ψQP = (μ ∈ R+ \N, α ∈
R+ \N, λ ≤ 0) and an OAC which asymptotically tends to zero as the embedding dimension

ρ increases. Chaotic data are intermediate between regular and purely random data, which

are characterized by ψR =
(
(n!)1−n, 0, ln(n!)ln(b)

)
. It is also well known that in a purely random

source, all the symbols are equiprobable. Taking into account this property in the definition

of the OAC in Eq. (4.3.1), it comes that the OAC of such sources is equal to ln(n), which

is the upper limit of gρ(n) in the assumption that the number of distinct symbols is upper

bounded by Λ0 = (n!)φ+1. Based on the definition of the purely random source (stochastic)

and the regular dynamics (deterministic), one can establish that a non-regular dynamics is

stochastic as μ → (n!)1−n, |α| → 0, λ → ln(n!)
ln(b) and gρ(n) → ln(n!). For the other values

smaller than these established limits, the dynamics can be said chaotic, hence deterministic.

Indeed, we observed that μ ≤ (n!)1−n for stochastic data and μ > (n!)1−n for chaotic data.

An example of chaos detection is given in Fig. 4.27 and Fig. 4.28 in the case of the logistic

map. It can be observed on these figures that the combination of the OAC and the OA
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growth indices allows to efficiently characterize all the dynamics of the logistic map.

4.8 Conclusion

In this chapter, we established the applicability of OA-based algorithms to the classification

of regular dynamics into periodic, quasi-periodic and SNA; as well as the classification

of non-regular dynamics into chaotic and stochastic. We applied the OA growth indices

to quasi-periodically forced maps and verified that periodic dynamics are characterized

by a positive integer value of the periodicity index and zero values of quasi-periodicity

and non-regularity indices; SNA and quasi-periodic dynamics are characterized by a non-

integer value of the periodicity index, a positive quasi-periodicity index and a negative non-

regularity index. All these regular dynamics are characterized by a small value of OAC,

which decreases as the angular embedding dimension φ increases. Non-regular dynamics

are characterized by a positive non-regularity index. A time series is stochastic as its

periodicity index is smaller than μ0 = (n!)1−n, its quasi-periodicity index tends to zero,

its non-regularity index tends to λ0 = ln(n!)
ln(b) and its OAC tends to ln(n). Chaotic data

belong to other intermediate combinations of the OA growth indices between regular and

stochastic data. They are particularly characterized by μ > (n!)1−n. In addition to the

detection of the structural changes occurring in the dynamics of the underlying system well

performed by the Lyapunov exponent, the ME, the PE and the CPE, the OA growth indices

give the possibility to determine the nature of a single time series. These properties thus

established may be helpful in many research domains wherever the real-time classification

of large amount of data is required, taking into account the high speed performance of the

OA-based algorithms and their applicability to any type of time series.
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Conclusion

This work has presented ordinal pattern-based algorithms for complexity measure, as well

as their improvement for the detection of SNA and quasi-periodic dynamics. The main

objective was to investigate the application of this type of algorithms to quasi-periodically

forced systems, as this appears not to have been studied.

Thus, we first presented the 3ST algorithm whose objective was to discern between pe-

riodic, quasi-periodic and chaotic dynamics. We showed that although the test can detect

periodic and chaotic dynamics, its fails to distinguish between quasi-periodic and periodic

dynamics with large periods, or between weakly chaotic and quasi-periodic dynamics. Fur-

thermore, the algorithm itself was not easy to implement, although the mathematical foun-

dation was clearly established. We then upgrade the 3ST algorithm by using the entropy

approach in the PLSE algorithm.

The PLSE was defined as an entropy measure related to the permutation largest slopes.

We showed that both the PLSE and the sensitivity to the initial phase defined in the 3ST

algorithms output a zero value for periodic and quasi-periodic dynamics. However, like the

3ST algorithm, the PLSE was not able to clearly distinguish between periodic and quasi-

periodic dynamics, despite its good performance for chaos detection. Then, we proposed an

extension of the PLSE for the detection of SNA and quasi-periodic dynamics. The results

obtained were quite satisfactory, but we could not clearly determine the difference between

SNA and weakly chaotic dynamics as the right parameter setting was not easy to determine.

Furthermore, PLSE algorithm was not able to scale chaos as it was initially developed for

detection purposes. By comparing the PLSE to the permutation entropy (PE), we showed

that PLSE is suitable for chaos detection, while PE is suitable for complexity measure.

Detection algorithms allow us to determine the nature of a given time series while
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complexity measures allow us to quantify its complexity. In order to define a complexity

measure, we introduced the ME, a recently developed algorithm for complexity measure in

real-world data. It has the ability to detect regular dynamics and to measure chaos even

in a noisy environment, but unfortunately it did not succeed in the case of quasi-periodic

dynamics. Both detection and complexity measure aspects were already combined in the

CPE, which has been shown to be an improvement of the PE algorithm. However, this

approach also failed to detect quasi-periodic and periodic dynamics with large periods. In

order to address this concern, we proposed in chapter 4 to consider ordinal arrays instead of

the permutations (ordinal patterns). This new approach gave us the possibility of defining

the OAC as a generalized approximation of the ordinal KS entropy, thus including the

CPE algorithm; and defining OA asymptotic growth indices allowing us to discern among

the different types of regular and non-regular dynamics. By combining the OAC and the

OA growth indices, we achieved the classification of regular dynamics into periodic, quasi-

periodic and SNA, which was not possible by the previous ordinal pattern algorithms.

Moreover, we showed that the above combination of the OAC and OA growth indices

also allows to classify non-regular dynamics into chaotic and stochastic, thus giving us the

possibility to classify time series into deterministic or stochastic. We showed that both

the OAC and the non-regularity index easily allow to measure chaos as they present an

upper limit which clearly depends on the embedding dimension. The above properties thus

established for the OA-based indicators may be helpful in many research domains wherever

the real-time classification of large amount of data is required, taking into account the high

speed performance and the robustness against noise of the OA-based algorithms and their

applicability to any type of time series. By further investigating the parameter setting, the

properties and the frontiers between the different types of data series, OA-based algorithms

may constitute a complete tool for the real-time analysis of real-world data.
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