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Abstract 

Today we are surrounded by technical systems and devices which aim to ease our live 

and support us in our daily activities. We use Smartphones to access information 

everywhere, intelligent home automation systems to gain security and comfort, and 

car assistance systems to drive more securely and comfortable. However, we often 

expect such systems to consider upcoming events: The Smartphone is expected to 

display the train delay before we begin our journey, the intelligent home automation is 

expected to air condition our home before we arrive and the car is expected to display 

the traffic jam before we get stuck in it. To achieve this, the systems monitor our 

behavior with sensors, process the collected sensor data in context sources and derive 

context values from it. Afterwards a context prediction algorithm predicts future 

upcoming context values, often only based on a single context source. While we expect 

the systems to predict as accurate as possible, there exists an upper boundary of how 

accurate a prediction algorithm can predict. This upper boundary can be calculated 

based on the context values. To increase the upper boundary and therefore to allow 

more accurate predictions, we propose the use of multiple context sources for context 

prediction. In this thesis 

- an approach to combine multiple context sources for prediction is given, 

- the gain of prediction accuracy when utilizing multiple context sources with an 

alignment based prediction approach is shown,  

- a method to determine which context sources will be useful to increase the 

prediction accuracy is given,  

- the effect of stability against disturbances when multiple context sources are 

used is shown  

- as also a survey on the practicability of a daily Smartphone use for context 

collection in terms of battery life is presented.  
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Zusammenfassung 

Heutzutage sind wir umgeben von technischen System und Geräten die unser 

alltägliches Leben unterstützen und vereinfachen sollen. Wir nutzen Mobiltelefone, 

um überall auf Informationen zugreifen zu können, intelligente Haussteuerungen, um 

unsere Sicherheit und unseren Wohnkomfort zu steigern und Fahrerassistenzsysteme 

im Automobil, um unsere Fahrten angenehmer und sicherer zu gestalten. Allerdings 

erwarten wir oft ein vorausschauendes Verhalten solcher Systeme: das Mobiltelefon 

soll die Bahnstörung einblenden bevor wir die Fahrt beginnen, die Wohnung soll 

geheizt sein bevor wir sie erreichen, und das Fahrzeug soll den Verkehrsstau 

einblenden bevor wir in ihm stehen. Dafür beobachten diese Systeme unser Verhalten 

mit Sensoren, verarbeiten die Informationen mittels spezieller Algorithmen in 

Kontextquellen und leiten dann Kontextwerte daraus ab. Anschließend machen sie 

Vorhersagen zu künftig auftretenden Kontextwerten, oft nur auf einzelnen 

Kontextquellen basierend. Während wir dabei möglichst genaue Vorhersagen 

erwarten, ist der Vorhersagegenauigkeit ist jedoch eine Obergrenze gesetzt, die man 

basierend auf dem Informationsgehalt der Kontextwerte berechnen kann. Um diese 

Grenze nach oben zu verschieben, und damit genauere Vorhersagen zu ermöglichen, 

schlagen wir die Nutzung mehrerer Kontextquellen zur Kontextvorhersage vor. In 

dieser Arbeit beschreiben wir eine Möglichkeit verschiedene Kontextquellen zu 

kombinieren, zeigen den Gewinn der Vorhersagegenauigkeit, beschreiben eine 

Methode im Vorhinein festzustellen welche Kontextquellen sich besonders effektiv 

kombinieren lassen, zeigen den Gewinn an Störsicherheit durch den Einfluss von 

mehreren Kontextquellen und zeigen die Umsetzbarkeit in Bezug auf den 

Energieverbrauch eines ständig Kontextwerte erhebenden Systems.   
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1. Introduction 

Systems that adapt to a user’s behaviour and support the user in his activities are called 

context sensitive. They recognize the context of the user by the help of sensors in the 

user’s environment, which get influenced by the user’s behaviour. In this work, we use 

the term context for a certain type of context like the activity or the location. 

Furthermore, we use the term context value for a certain value the context may have 

like ‘sitting’, or ‘walking’ or at ‘home’. The Term context value is also used in a similar 

way by Chen et al. in [10]. However, in the literature the actual value and the certain 

kind of context is often not separated [32] [15] [13] [12]. We need this separation to 

investigate the influence of the combination of multiple context sources. 

After the data is captured by the sensors the context values have to be derived. This is 

usually done by feature extraction and classification [14]. We use the term context 

source to describe the feature extraction and classification steps after the sensor data 

has been gathered. The separation of the two steps is not necessary for the discussion 

in this work and we also want to combine several feature extractions and 

classifications, therefore we use the simpler term context sources. Context sources 

continuously deliver context values. The activity context for example can be derived 

with the accelerometer of a Smartphone. It can take context values such as ‘sitting’, 

‘standing’ or ‘walking’ [4]. Such context values can then be used to adapt a system. 

An example for an adaptive system is the smart home. A smart home is a building 

where sensors sense the activities of its users and devices get controlled to support the 

activities of the users. If a user enters a room in the smart home the lighting can be 

switched on and adapted to the activity of the user to gain comfort. If the same user 

leaves the room the lighting can be switched off to save energy. However, in some 

situations a reactive adaption is not sufficient. 

In some use cases an adaption of a system is needed before a certain context value 

occurs. This is needed if it takes some time for the system to achieve the desired state. 

In the smart home example from above the heating or cooling of a room must be started 

before a user enters this room. If the heating or cooling is only started when the user 

already enters the room, the room will be uncomfortably tempered. If the heating or 

cooling is started before the user enters the room the room will be comfortably heated 
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when the user enters. Therefore, a prediction of upcoming events may be needed by 

adaptive systems. 

Context prediction algorithms predict future upcoming events. Prediction algorithms 

use the repetitive behaviour of users’. The repetitive behaviour can be found in 

repetitive pattern in the context history. A context history is a time series of all past 

context values of a context source. The prediction algorithm learns repetitive pattern 

from the context history. In the next step the prediction algorithm compares the 

recently occurred context values, including the current context value, with the pattern 

in the context history. If a similar pattern is found, the context value following the 

similar pattern in the history can be used as a prediction. Afterwards the predicted 

value can be compared with the actually occurring value to determine the prediction 

accuracy. 

A high prediction accuracy is important for the acceptance of proactive systems. A 

wrong prediction can cause an uncomfortable, unsecure or energy wasting system. Let 

us consider the smart home example once again. If the user’s position context is 

predicted wrong, the room will be air conditioned without a usage or the room will be 

used without being air conditioned. This will be either a waste of energy or cause an 

uncomfortable situation. Both situations will reduce the acceptance of a proactive 

system. 

One approach to increase the prediction accuracy is the use of better prediction 

algorithms. A number of different prediction algorithms like ARMA[13][14], Neural 

Networks for context prediction[15], Eigenbehaviors for context prediction [17], 

Alignment for context prediction [12] or HOSVD [16] can be utilized. However, 

despite all improvements there exists an upper boundary of prediction accuracy which 

is called predictability[23]. The predictability can be calculated for each user based on 

his individual context history. Prediction algorithms utilize repetitive pattern. The 

number of repetitive pattern in a context history strongly relies on a user’s behavior. It 

might be difficult to predict context values for a spontaneous user who often does 

things he has never done before. On the other hand, it might be easy to predict context 

values for a user doing the same things every day and in the same order. The number 

of repetitive patterns limits the predictability of a user and is therefore used to calculate 

this upper limit of prediction accuracy. Although it is not possible to overcome the 
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upper limit of prediction accuracy we propose another method to increase the 

prediction accuracy of a system. 

We propose the to increase the prediction accuracy using additional context sources. 

Additional sensors can be used for additional context sources which then can be used 

by a prediction algorithm. We call this a multi context source prediction approach. 

Additional information related to a user can be gathered using additional sensors. The 

additional information may include previously not recognized pattern so the 

predictability is likely to be higher, when multiple context sources are used and 

therefore the prediction accuracy can be increased. 

A multitude of sensors can be used more easily, since the number of sensors in our 

environment has increased over the last years. A Smartphone for example has a vast 

number of sensors like an accelerometer, gyroscope, compass, barometer, proximity 

sensor, GPS, light intensity sensors and within newer models also a pulse sensor. 

Smartphones are also equipped with multiple cameras and microphones. And they also 

have internal data sources like a user calendar, sent and received messages and emails 

or the list of phone calls. This internal data sources can also be used to derive context 

values. The Smartphone also has the advantage that it is worn close to the body of a 

user and therefore the collected sensor data strongly correlates with the behaviour of 

the user. Recently the Smartphones have been enhanced by wearables like smart 

watches or fitness trackers. Such devices are also equipped with sensors gathering 

information on the user’s behaviour which is often forwarded to a connected 

Smartphone. In addition to mobile sensors also mounted sensors can be found in our 

environment more often. Buildings get equipped with intelligent devices to enable 

them as smart spaces or smart homes. Often sensors are installed in windows or doors 

to gather their status, rooms are equipped with temperature, air quality and presence 

sensors, and even furniture can be equipped with sensors to notify the smart home 

about their usage. This variety of available sensors encourages their use for improving 

the context prediction accuracy. 

The use of multiple context sources for context prediction raises several questions, 

which get answered in this thesis. These questions are: Can the prediction accuracy be 

increased using multiple sensors? How should a prediction algorithm work, to make 

use of several context sources? Which of all available context sources should be 



12 

 

combined to increase the prediction accuracy? Can the redundancies of multiple 

context sources be used to make the prediction more stable against disturbances? Is a 

Smartphone useable for a daily context survey terms of battery life? Each of these 

questions is answered in a single chapter of the thesis. But first we are going to have a 

look on some motivating projects and the state of the art, where the upper boundary is 

also explained in more detail.  
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2. Motivation and Projects 

This section reflects my personal motivation to research in the field of context and 

context prediction. 

When I started working in the university I worked in an EU funded project named 

SPICE (Service Platform for Innovative Communication Environment) [49]. I worked 

in the service creation part of the project. Most of the innovative services we created 

relied on the context of a user. Usually the location context was used to trigger actions 

or to configure services. The influence of context was also a key element of the next 

project I worked in: MATRIX (unified context sensitive middleware for internet based 

tele medical services) [50], funded by the German BMBF (Federal Ministry of 

Education and Research). Context was used in this project to assist a tele medical 

patient monitoring and to support medical examinations. The prediction and use of 

future context values was also discussed in this project to find abnormalities in the 

behaviours of tele medical monitored patients. The actual project I work in named 

EnKonSens (Energy self-sufficient mobility for context sensitive building automation) 

[51] focuses on the reduction of energy usage in daily life, while at the same time the 

self-sustained life at home should be enabled as long as possible. Context is also the 

key for this project. It is used to adapt an automated building to the users’ activities 

and to provide a safe environment, especially for elderly people. Context is also used 

in the project to adopt user interfaces to enable even non-technical users to control 

building automation systems. 

During my work, I also had the chance to build up a laboratory environment with my 

colleagues, where we collected a wide variety of sensor data to derive all different kind 

of contexts. We equipped rooms with sensors such as temperature, humidity, light 

intensity and door and window sensors; we equipped cupboards with switches to see 

whether doors are open or closed; we connect all kinds of appliances to sensors to 

monitor their usage and we even equipped chairs with pressure switches. We also used 

a lot of mobile devices for the aggregation of sensor data, although the Smartphone is 

the most often used device, as it is equipped with many sensors. During the work with 

Smartphones I also proposed an approach to derive a novel context with the front 

camera of a Smartphone: the screen to face distance of a Smartphone user [52]. 
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The work in the different projects as also the work in the laboratory environment at 

the university chair encouraged my motivation to research in the field of context 

prediction.  
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3. State of the art 

The state of the art chapter consists of four parts. First we will have a look at the 

definition of context and some project and research work concerning context. Second 

we will get an overview on context prediction algorithms and frameworks. Third the 

stat of the art concerning the predictability is presented. We will need this in chapter 6 

when we investigate a method of how to choose context sources that benefit from each 

other when combined. And finally, a state of the art concerning the energy consumption 

of Smartphone sensors is given. This is need for chapter 0 where we investigate the 

usability of a Smartphone for a daily sensing and context survey. 

3.1 Definition of Context 

A very famous description of a ubiquities environment in the field of context aware 

computing is the vision of Mark Weiser in his article “The Computer for the 21st 

Century” [21], published in 1991. He describes a world where computers are 

ubiquities, appliances automatically adapt to the users’ needs and sensors are 

everywhere to keep track of the users’ activities. In his vision the computers are getting 

smaller; the sensors are attached to the computers so they can derive the users’ contexts 

and appliances are controlled by the computers. This implies the use of the context of 

the user by the computers. Later in 1999 Dey gave a useful definition of context which 

is:  

“Context is any information that can be used to characterize the situation of an entity. 

An entity is a person, place, or object that is considered relevant to the interaction 

between a user and an application, including the user and the application  

themselves.” [32].  

However, there are other definitions such as from Schilit et al. [33] who defined 

context categories, Lieberman et al. [34] who limits context to input and output data 

from a computer or Fitzpatrick et al. [35] who refined the definition of Dey by 

introducing the terms sensor and actuator in context. In this thesis, we will use the 

definition given by Dey. 
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Much research has been done in the field of applications and systems reasoning context 

and reacting on context, so called context aware systems. In this work context derived 

from permanently installed sensors and from mobile sensors is used. In accordance to 

this approaches are selected for this state of the art section where permanently installed 

sensors as also mobile sensors are used. First some research work concerning 

permanently installed context aware systems is described. Afterwards an overview on 

portable context aware systems is given. 

One of the most prominent examples for context awareness used in buildings is the 

Neural Network House from the University of Colorado [42]. The house was equipped 

with sensors like temperature sensors, illumination sensors, sound level sensors, 

motion detectors, status sensors of windows and doors and the status and setting 

sensors off all appliances. The system could control the air heating, the lighting, the 

ventilation and the water heating. The focus of this house was to implement a learning 

appliance control system. Likewise, the MavHome [40][41] from the Washington State 

University and the University of Texas at Arlington was also equipped with similar 

sensors and appliances. However, the focus of the MavHome was to build an agent 

based control system for the house. Smart doorplates were installed in an office 

building at the University of Augsburg [45][46]. The doorplates could direct office 

visitors in the absence of a user and display the office presence context. To derive the 

office presence context identification tags were used. Researchers from the Lancaster 

University installed load sensors in different surfaces and floors [47]. Based on the 

load sensors the position context of objects as well as objet interactions could be 

derived. The smart home utilized in this work was equipped with presence detectors 

(PIR sensors), door sensors (open/closed) and the status of all light switches and 

several appliances were available. Although we decided to only use the presence 

detectors of each room. This was done to focus on the prediction accuracy and not on 

the improvement of the context reasoning. 

Gellersen et al. investigated the use of multiple sensors to discover multiple situations 

with a small portable device[48]. The device was equipped with sensors like a 

microphone, light sensor, accelerometers, air pressure sensors and certain gas 

concentration sensors. It may be interesting to recognize that the TEA device had 

similar dimensions to a mobile phone, and most of the mounted sensors are today 

integrated in modern Smartphones. The described approach also focuses on the use of 
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a multitude of sensors as it is also done in this work. They also propose to use a 

multitude of sensors to increase the prediction accuracy. However, they did not show 

the influence of several sensors on the prediction accuracy and the also did not give a 

method of how to select different sensors to increase the prediction accuracy, which is 

done in this work. 

Van Laerhoven et al. developed a wrist worn device [43] to log motion data over a 

long-time period. Their goal was to derive several contexts with imprecise but energy 

efficient sensors. Although the idea of a wrist worn sensor was not novel to the time 

the device reminds of today’s smart watches and fitness trackers, where also sensors 

are worn at the wrist. Based on the idea of a long time worn device Lau et al. developed 

a Smartphone based system to derive the activity context of a user [4]. Therefore, the 

accelerometer of a Smartphone was used to derive the activities sitting, walking and 

standing. This system was also utilized in a telemedicine project to support patient 

monitoring and medical emanations [44]. Another usage of the Smartphone sensors 

was shown by Ye et al. when they used the Smartphone barometer to determine the 

floor level context of a user [39]. In this work the approach of Lau for the activity 

recognition is used. Although the barometer approach described by Ye has been 

implemented and user in this work. 

3.2 Context prediction 

In this subsection, several different context prediction approaches are described. The 

description is not a detailed technical explanation of each approach but rather a 

description of the idea of each and most important, the relation to this work is given. 

Mayrhofer developed a context prediction framework. For this framework, he 

implemented and tested seven different context prediction algorithms, namely ARMA, 

Backpropagation Multi-Layer Perceptron, Support Vector Regression, Central 

tendency, Active LeZi, Hidden Markov Modell and Support Vector Machines 

[13][14]. The framework uses different sensors to derive features which serve as 

context values. Therefore, the feature extractors in his framework correspond to the 

context sources in this thesis. The advantage of his framework is a ready to use 

software form multiple platforms. It was designed to ease the use of context and 
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context prediction for programmers. The framework builds vectors out of the values 

from different context sources which are then input data for the predictors. With this 

approach, he also uses a multitude of sensors for his prediction. However, he never 

investigated the influence of multiple context sources on the prediction accuracy. He 

also never investigated on an algorithm on how to choose which context sources 

should be combined to increase the prediction accuracy. 

Sigg proposed the use of sequence alignment for context prediction [12]. The 

alignment algorithm was originally designed for use in bioinformatics, to find DNA 

matchings. Its strength is finding subsequences which match only partially, including 

gaps or mismatches. This way similar context value pattern can be found, even if the 

pattern generating user behaves slightly different over time. This approach is very 

beneficial when using non-ordinal context values (like ‘sitting’, ‘walking’, ‘standing’) 

and when a repeated behavior pattern is similar to a past time behavior pattern but not 

exactly equal. Sigg proposed a method of using multiple context sources in parallel for 

prediction. However, he did not investigate the influence of multiple context sources 

on context prediction. In chapter 5.1.2 we also investigate his proposed method of 

multiple context sources and enhance it to a prediction approach with higher prediction 

accuracy.  

Petzold investigated prediction methods for the upcoming user locations, especially in 

an office building equipped with smart doorplates [56]. Therefore, he implemented a 

State Predictor [18] and a Bayesian Network [15] to predict future whereabouts of 

users. Vintan was investigating also on the smart doorplate experiment from Petzold, 

by implementing a Neural Network predictor [19]. All three approaches only focused 

on the use of location data as context source. Thus, they did not investigate the 

influence of multiple context sources on the location prediction. 

Eagle proposed the use of Eigenbehaviors for context prediction [17].  

With his approach, he focuses on the prediction of the user location.  The location data 

was collected with multiple sensors and afterwards labeled with a Hidden Markov 

Model. This way he also used only a single context source for context prediction. 

Voigtmann proposed a method he calls Collaboration-based Context Prediction [16]. 

This method is based on the Higher Order Singular Value Decomposition technique, 

which is also used in content recommendation systems [20]. His system can find 



19 

 

similarities between users and therefore predict the context values of one user based 

on the history of a similar user. In his investigation, he uses only one context source 

but from different users. However, he did not investigate the influence of one context 

source for the prediction of another context source. 

Some of the above described research is using multiple context sources while some 

research focuses only on a single context source. Most of the presented research work 

is utilizing multiple sensors to reason the context values more accurately. However, 

none of the research work investigates the influence of multiple context sources for 

context prediction. This encourages this thesis in which we investigate the influence 

of multiple context sources on the accuracy, the stability and the energy usage of 

context prediction, and where we also show how multiple context sources can be 

combined. 

3.3 Predictability according to Song 

The context prediction approaches presented in the last section vary in their prediction 

accuracy. This is caused by different factors such as the utilized prediction algorithm, 

the utilized dataset, and the parameter settings for the algorithms. With the optimal 

parameter settings, any of the described prediction algorithms may gain some 

prediction accuracy. However, the prediction accuracy has an upper limit, which we 

call the predictability. This upper limit is not relying on the utilized algorithm but on 

the utilized dataset. Each dataset has its own specific predictability.  

The relation between a time series dataset and the predictability was already introduced 

in 1992 by Feder et al. [22]. In 2010 Song et al. [23] defined the predictability by the 

use of Fano’s inequality in the field of location prediction. This predictability was later 

modified by McInerney et al. [24] in 2012 when they proposed to use only a section 

of the history. Song used the whole history for the calculation of the predictability, but 

they found periods of low predictability in daily life. Based on this Baumann et al. 

proposed in 2013 to use instantaneous entropy, to determine the predictability [25]. 

The instantaneous entropy only takes a limited time section and not the whole history 

into account, when calculating the entropy. Thus, he describes a momentary 

predictability. In 2014 Smith refined this limit by considering other constrains like the 
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spatial resolution when using location data [26]. We decided to use the definition given 

by Song as we not only use location data and we also want to compare several 

combinations of context sources independently from the chosen time section of the 

data. Therefore, the next subsection will give a more detailed description on the 

predictability introduced by Song. 

The predictability derived by Song et al. relies on Fano’s inequality and the entropy 

rate of a context source. Fano’s inequality is from the field of information and coding 

theory. It connects statistical features, especially the entropy rate of a symbol source 

with the error probability of the next symbol from the source. This is used to verify 

transmissions in the field of communication technology. Song et al. applied this to the 

field of context prediction, when he wanted to know how well a future context can be 

predicted, given the entropy rate of a context source is known.  

Song considers a context source as a stochastic process generating random variables. 

This enables him to calculate the corresponding entropy rate. The entropy rate is a 

measure for the uncertainty of a context source. Intuitively, a source with a high 

uncertainty allows only a low predictability and vice versa. Therefore, he used the 

entropy rate of a context source with Fano’s inequality and derive a formula for the 

predictability. The derived equation for the predictability is the following: 

ℋ 𝒳 = −Π&'( log, Π&'( − 1 − Π&'( log,
1 − Π&'(

𝑁 − 1  
(1) 

ℋ 𝒳  is the entropy rate of a context source, 𝑁 is the number of different context 

values from a context source and Π&'( is the predictability. 

The entropy rate ℋ 𝒳  has to be calculated for each context source. It is defined as  

ℋ(𝑋) = lim
4→6

1
𝑛𝐻(𝑋9|𝑋9;<, 𝑋9;,, … , 𝑋<) 

(2) 

On the right side of the equation a new entropy occurs: the conditional entropy 

𝐻(𝑋9|𝑋9;<, 𝑋9;,, … , 𝑋<). The conditional entropy is different to the normal entropy 

when it conditions the occurrence of a certain time series of context values 

𝑋9;<, 𝑋9;,, … , 𝑋<before the context value 𝑋9. Considering the past context values 

when calculating the information of a context value is important. A lot of information 

is in the order of the context values in a context history. This is because our actions 
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are, to some degree, relying on each other. If we assume the context to be the user 

activity context for example, we can have a look at the three context values ‘sitting’, 

‘standing’ and ‘walking’. It is very unlikely for a human to start walking after he was 

sitting. Usually he has to stand up, which will always generate the context value 

‘standing’ after ‘sitting’ in his context history. This also occurs in larger scales, like 

leaving the house in the morning, going to work, coming back at the evening or in 

annual scale like making holidays every summer or visiting the family each Christmas. 

To make use of this available information in the concatenation of the context values 

the conditional entropy has to be used. 

The conditional entropy must be calculated recursively, which is very computation 

intensive. To decrease the needed computation power an entropy estimator can be 

used. An estimator typically considers only a subpart of all possible symbol 

combinations while the estimation still converges to the real entropy value. This way 

a lot of computation power and time can be saved. However, an entropy estimator can 

only be used if the process generating the symbols is ergodic. This means the 

probabilities of the symbols and their combinations will converge against certain 

values. In the area of context prediction this means a user has to have a steady 

behaviour over time. Song et al. chose to use the Lempel-Ziv estimator because it “is 

known to rapidly converge to the real entropy of a time series” [27]. This estimator is 

defined as 

𝐻?@A =
1
𝑛 ΛC

9

CD<

;<

ln 𝑛 
(3) 

𝑛 is the number of elements in the context history and  ΛC is the length of the shortest 

time series from position 𝑖 on in history which does not appear before	𝑖. 

To calculate a value for the predictability Π&'( we can use (1). The left side can be 

estimated by the use of (3). As equation (1) cannot be solved for Π&'(, a numerical 

solver has to be used to calculate the numerical for Π&'(.  

 

 



22 

 

3.4 Energy consumption of Smartphone sensors 

In this section literature is presented concerning the energy consumption of 

Smartphones or components of Smartphones. 

In 2012 Carroll et al. made an analysis of the energy consumption in a Smartphone 

[28]. In this study, they investigated the influence of the GSM, CPU, RAM, Graphics 

and LCD Backlight. They also had a closer look at the battery lifetime, according to 

different usages of the Smartphone, like SMS, Video, Audio, Phone call, Web 

browsing and Email.  

Different usages and the resulting Smartphone energy consumption were also 

investigated in the same year by Flipsen et al. in their study about the sizing of 

Smartphone batteries [29]. They made a comparison of the battery use, where the 

individual energy consumption of different Smartphones and the individual battery 

capacity were related to different Smartphone usages.  

A study not concerning the usage but the components of a Smartphone was made by 

Perrucci et al. in their survey on energy consumption of single entities on the 

Smartphone [30]. They investigated the energy consumption of Bluetooth, Wi-Fi, 2G, 

3G, CPU, Mobile TV, Display, Memory, Voice, Video and SMS. The study gives a 

very detailed description of the energy consumption of these entities. For Bluetooth 

for example they measured the energy consumption in the states: BT off, BT on, BT 

connected and idle, BT discovery, BT receiving and BT sending.  

A component not investigated by G.P. Perrucci et al. is the GPS which was investigated 

by Pérez-Torres et al. They implemented a power aware Middleware [31] and 

concentrated on using a GPS in the Smartphone and determining the correlated battery 

runtime.  

Nevertheless, none of the above-mentioned publications investigated the energy 

consumption of Smartphone sensors like the accelerometer, gyroscope, compass, 

barometer, light sensor, and proximity sensor. This is what we did to conclude whether 

a Smartphone useable for a daily context survey. The results are presented in  

chapter 0.  
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4. Multi context prediction1 

In an environment where more and more technical devices work autonomously, we 

expect them to work well. Their actions should be a benefit for our workflow, comfort, 

security and health. And they should also help to decrease energy losses [9]. Examples 

are assistant applications like Google now or Siri on our Smartphones. They utilize the 

context of the user to support them at actual tasks [1]. To be useful such systems have 

to be as accurate as possible when deriving the user’s context to take reasonable 

actions. Context prediction systems have to meet the same design rule: they have to 

predict as accurate as possible to gain a high user acceptance. The following example 

may illustrate this. A smart home equipped with a prediction system can set the right 

temperature, before a resident enters the room. This can be archived by the prediction 

of the room usage. The room can then be air-conditioned, according the resident’s 

preferences. An inaccurate prediction of the room usage ends either in a comfort loss 

or an energy waste. An unpredicted room usage will cause a non-air-conditioned room, 

which means a loss of comfort. A predicted but never occurred room usage will cause 

an unnecessary air-conditioned room, which means an energy waste. Therefore, the 

accuracy of a context prediction system is crucial for the user acceptance. Predictions 

have to be as accurate as possible. 

The accuracy of a context prediction system can sometimes be improved using a better 

prediction algorithm or the refinement of the existing prediction algorithm. Such 

improvements are adequate steps as often a few percent of prediction accuracy can be 

gained [13]. However, as discussed in chapter 3.3 there exists an upper boundary of 

prediction accuracy, which cannot be overcome, even by refining or the changing the 

prediction algorithm. To overcome this upper boundary, we propose another approach. 

The accuracy of a context prediction system can be improved by the inclusion of 

additional information from additional sensors. The upper boundary of prediction 

accuracy is determined by the amount of information in a context history. By invoking 

                                                

1 Parts of this chapter have been published in [36]. 
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additional sensors, more information can be gathered and therefore the prediction 

accuracy can be improved [36]. 

In this chapter the multi context prediction approach is explained in detail. First the 

structure of common prediction systems is explained and terms are defied which are 

used in this thesis. Afterwards the proposed extension is explained. 

4.1 Context prediction system 

The goal of a context prediction system is to predict future upcoming context values. 

We divide such a system in three components needed for this task: first the actual 

context values of a user, second a context history, and third specific prediction 

algorithm. This subsection explains each component in detail. Also, some definitions 

are given for these components. 

4.1.1 Definition of Context 

Some minor extensions of Dey’s context definition have to be made, to keep the 

wording of this thesis stringent. In this work, we distinguish between a certain type of 

context and the value a certain type of context may have. This is explained in more 

detail in the next paragraphs. We extend the definition given by Dey the following 

way: “[A] Context [value] is any information that can be used to characterize the 

situation of an entity. An entity is a person, place, or object that is considered relevant 

to the interaction between a user and an application, including the user and the 

application themselves.” [32] 

4.1.2 Context source 

Sensors are components which get influenced by a user’s behaviour and capture a 

variety of physical quantities. Usually they convert the physical quantity they are 

designed to measure into an electrical quantity. The electrical quantity gets digitalized 

and can furthermore be represented by a numerical value. Although the sensors we 

refer to usually have strong correlations to the user’s behaviour, it is important to 

recognize for later chapters that sensors are not only influenced by the behaviour of a 

user. Other physical processes may also influence them. The accelerometer of a 
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Smartphone for example is influenced by the user’s movement. But it is also 

influenced by thermal noise, which is obviously not correlated to the user’s movement. 

We call all such other influences not correlated to the user’s behaviour disturbances.  

To “characterize” the information provided by a sensor we use a component we call 

context source [10]. A context source generates context values for a certain context 

(type) based on the input of one or multiple sensors. Usually specialized algorithms 

fulfill this task. An example is the context called ‘user activity’ presented in [4].  The 

‘user activity’ can generate context values like ‘sitting’, ‘standing’ or ‘walking’. The 

presented algorithm derives these values from the accelerometer of a Smartphone worn 

in the user’s pocket. 

A context source generates a timely ordered series of context values. A new context 

value is generated depending on the settings of the context source, either when new 

sensor values arrive or after a certain timespan has passed. The context values can then 

be further used to trigger actions, predict future context values or be stored in a context 

history. 

4.1.3 Context history 

A context history is a database where past time context values are stored. This is often 

needed by context prediction algorithms [14]. Some Prediction algorithms need a 

history to learn context value patterns, other to lookup context value patterns. 

All the above described terms are summarized in Table 1. Also, exemplarily values are 

given in the last column, where possible. 

Table 1: Differentiation of terms used in this thesis 

Name What it is Examples 
Context A certain type of context ‘user activity’ or 

‘location’ Contexts A combination of multiple types of 

contexts 

‘user activity’ and 

‘location’ 
context value The value a certain kind of context 

may have 

‘sitting’ or ‘standing’ or 

‘walking’ or ‘at home’ 

context values A combination of multiple values a 

certain kind of context may have.  
‘sitting’ and ‘walking’ 
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Also a combination of multiple 

values and multiple contexts may 

have 

‘sitting’ and ‘at home’ 

context source A source that generates context 

values from sensor values. Each 

context source generates a certain 

type of context. 

Algorithm to derive the 

location or an algorithm 

to derive the user activity 

context history A database where past time context 

values are stored 

 

context 

prediction 

algorithm 

The algorithm that predicts future 

upcoming context values 

state predictor, ARMA 

[13][14], Neural 

Networks [15], 

Eigenbehaviors [17], 

alignment [12], HOSVD 

[16] 

4.2 Basic idea of context prediction algorithms 

The basic purpose of a prediction algorithm is to predict upcoming context values. 

Therefore, the prediction algorithms utilize repetitions in human behaviour. When we 

perform a certain task we usually behave in a certain way. And when we repeat the 

same task another day we will repeat our behaviour. Of course, our behaviour will not 

be totally equal when we repeat a task but it will show similarities. Context sources 

which rely on our behaviour will produce a series of context values, which we call a 

pattern. A repeated task will produce an equal or at least similar pattern. 

Context prediction algorithms learn or use pattern to predict future context values. First 

they use a history to learn the algorithm. Then they utilize a series or recently occurred 

context values, including the actual context value, and try to find this recently pattern 

in the history or in the data they have learned. Afterwards they predict the most likely 

following context value, based on what they have learned from the past. 

Several prediction algorithms are available for the context prediction tasks. Examples 

are ARMA for context prediction [13][14], Neural Networks for context prediction 

[15], Eigenbehaviors for context prediction [17], alignment for context prediction [12], 

HOSVD for context prediction [16]. The all differ in the way they learn, their memory 
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usage, their runtime, the type of context values they can process and their impact on 

privacy. 

 

 

Figure 1: From human behaviour to context prediction 

 

4.3 Basic idea of a multi context source prediction approach 

Most context prediction algorithms are used to predict values for a certain context 

source, like the ‘user activity’ or the ‘user location’. Our approach also aims this goal. 

But in difference to most prediction algorithms we utilize not only the information 

generated by this certain context source. We also utilize the information generated by 
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other context sources [11]. The difference can be seen by comparing Figure 2 with 

Figure 1. Figure 1 shows the usual approach: a certain context source CS1 is connected 

to a context prediction algorithm CP. Only information generated by this context 

source is utilized to predict upcoming context values for CS1. In Figure 2 several 

context sources CS1…CSn are connected to a context prediction algorithm CP. Still 

upcoming context values are only predicted for the prior chosen context source CS1. 

But in contrast to the approach shown in Figure 1 also information generated by the 

other context sources CS1…CSn are used to predict upcoming values for CS1.  

The proposed extension only works when two conditions are fulfilled. First: more than 

one sensor has to be available and second: the sensors have to be correlated to the 

user’s behaviour to gain additional information. Both conditions are discussed in detail 

in the two following paragraphs. 

Multiple sensors related to one user are often available. A today’s Smartphone like the 

iPhone 6 for example hast a vast variety of sensors. It is equipped with an 

accelerometer, gyroscope, barometer, compass, proximity sensor, GPS, light intensity 

sensor, and one or more microphones. Also, the wireless communication possibilities 

of Smartphones can be utilized as sensors, like their signal strengths and address 

systems (GSM CELL ID, Wi-Fi SSID, and Bluetooth MAC address). Furthermore, the 

user related data stored in the Smartphone like the history of phone calls, send and 

receive messages and the user’s calendar can be utilized as sensors. And if the 

Smartphone is connected to a wearable like the Apple Watch even more sensors are 

available, like for example a wrist worn accelerometer and a heart rate sensor [2]. 

Another example of a multitude of available sensors is the smart home. A smart home 

also offers a variety of sensors related to a user. Rooms can be equipped with presence 

detectors and furniture with usage sensors. An occupied chair or bed or an opened or 

closed cupboard provide information about the user’s actions. Smart devices inside the 

home like smart refrigerators or smart ovens sense and communicate their usage. 

Smart meters can also serve as sensors for the usage of electricity, gas or water inside 

the smart home. The two exemplary domains Smartphone and smart home show that 

often multiple sensors are available, when the user action is observed by technical 

systems. Sometimes sensors from different domains can also be combined to gain more 

information [37].   
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The use of additional context sources and thus additional sensors only gains 

information when the different sensors are correlated to the user’s behaviour. A context 

source connected to a sensor that is uncorrelated to a user’s behaviour cannot add any 

information. For example: A Smartphone accelerometer can be used to derive the 

context ‘user activity’. Of course, only the activity of the user who carries the 

measuring Smartphone can be derived. When we add a second context source 

connected to the accelerometer in a Smartphone of a second user, living apart from the 

first user, we will not gain any information from this addition. However, in most 

environments where we are able to sense a user’s behaviour, we have several sensors, 

which are usually correlated. In the smart home, different sensors are influenced by 

the behaviour of one user. And in the Smartphone, several sensors are mounted in one 

case and thus usually several sensors get influenced at the same time by a user’s 

behaviour. Accordingly, different sensors are influenced by one source, the user 

behaviour, and thus produce correlated information. 

Not all context values added from one context source in addition to another context 

source are additional information. Some data may just be redundant. Some data may 

be useful to enhance the prediction accuracy and some may even be disturbing. This 

raises three important question: How exactly should a context prediction algorithm 

combine date from different context sources to improve the prediction accuracy? How 

can we decide which combination of context sources is useful and which combination 

just ads disturbances? And can we use the redundancies to keep the prediction stable 

against disturbances? These questions are answered in the next chapters. 
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Figure 2: From human behaviour to context prediction with multiple context sources 
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5. Enhancing alignment based context prediction2 

In the last chapter, we discussed the advantages of the use of multiple context sources 

for prediction. However, to verify the benefits in using multiple context sources by an 

experiment, we still need a concrete implementation of a prediction algorithm utilizing 

multiple context sources. 

The author of [7] proposed a method of how to use alignment for the prediction with 

multiple context sources. His proposed method mainly uses a pre-mapping, explained 

in more detail later in this chapter. Therefore, we refer to this method as the mapping 

approach. Unfortunately, the mapping approach does not use all information available 

in the different context histories generated by the different context sources. Thus, we 

propose a different approach to overcome the disadvantages of the mapping approach. 

In this chapter, we propose a novel method of how to use multiple context sources for 

context prediction. The approach utilizes the correlations between different context 

sources but does not expect the context sources to be entirely correlated. In parallel to 

the mapping approach our novel approach also utilizes alignment for context 

prediction. Therefore, we refer to this approach as the alignment multi context 

prediction.  

This chapter first describes each approach. Afterwards the prediction accuracy of the 

approaches is compared analytically. In section 0 an experiment we performed to 

compare the two approaches as also the influence of multiple context sources on the 

prediction accuracy is described. Thereafter the results are given and discussed and 

finally a conclusion is drawn. 

5.1 Alignment and multi context extension 

This subchapter will explain how local alignment can be used for context prediction. 

Afterwards the two approaches extending the alignment to utilizing multiple context 

                                                

2 Parts of this chapter have been published in [36]. 
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sources are explained. Graphics are used to illustrate the alignment process for each 

approach and also to highlight some problems regarding the mapping approach. 

5.1.1 Alignment for context prediction 

Alignment is originated in bioinformatics [8]. It can be used to measure the similarity 

of two sequences or to find a similar subsequence in a larger sequence. Global 

alignment is the alignment of two sequences of a similar length. It is used to measure 

the similarity of these sequences. Local alignment can be used to locate a shorter 

sequence inside a much longer sequence. These two applications occur when DNA 

sequences need to be compared to find affinities or when a DNA part needs to be 

located in a larger DNA sequence to find the location where the information is coded 

in the DNA.  

Sigg proposed the use of alignment for context prediction [12]. Alignment is very 

suitable for the prediction of human behaviour because it is able not to only to find 

exact matching pattern but also to find similar pattern. Alignment recognizes a pattern 

still as similar, even if gaps have to be insert or if mismatches occur in the alignment. 

In human behaviour, we usually have similarities in our repetitive behaviour pattern, 

but we also have small fluctuations. Gaps and mismatches are illustrated by an 

example for each in the following two paragraphs. 

Gap example: A user goes every morning from his home to the bus stop, to the bakery 

and then to his work. One morning, due to a lack of time, he just goes from his home 

to the bus stop and then to his work. He skips the bakery this day. Alignment is still 

able to align the sequence {‘home’, ‘bus stop’, ‘bakery’, ‘work’} with {‘home’, ‘bus 

stop’, ‘work’} by aligning {‘home’, ‘bus stop’, GAP, ‘work’} to it. 

Mismatch example: A user goes every morning from his home to the bus stop, to the 

bakery and then to his work. One morning, due to a changed appetite, he goes from his 

home to the bus stop, to the butcher and then to his work. He exchanges the bakery 

with the butcher this day. Alignment is still able to align the sequence {‘home’, ‘bus 

stop’, ‘bakery’, ‘work’} with {‘home’, ‘bus stop’, ‘butcher’, ‘work’} by aligning 

{‘home’, ‘bus stop’, MISSMATCH, ‘work’} to it. 

For the prediction of future context values local alignment is used. Therefore, we need 

a history filled with many time ordered past context values. We also need some 
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recently observed context values. This is illustrated in Figure 3. Each letter in the blue 

boxes represents a different context value. On the right side the recently observed 

context values can be seen. The context value of the empty blue box is the future value 

and has to be predicted. 

 

Figure 3: A context histories from context source CS1, recently observed context values on the 

right 

The local sequence alignment aligns the sequence of recently observed context values 

with the history. The goal of the alignment is to find a sequence that is as similar as 

possible to the recently observed sequence. Figure 4 illustrates an alignment at a 

certain position in the history. The light blue box behind the context values 

{‘B’,’A’,’C’} is the position where the recently observed sequence {‘B’,’A’,’C’} is 

aligned with the highest similarity.  

 

Figure 4: An alignment of some recently observed context values (light blue box) and a context 

value selected as prediction (light green box) 

The context value following the position of the best matching alignment is taken as a 

candidate to predict the future (light green box in Figure 4). This is done under the 

assumption that users will behave the same way the already did. However, sometimes 

multiple alignments are found in one history. Then the prediction algorithm has to 

decide which context value has to be predicted. This can be done by a random choice 

between candidates or by a majority count of candidates. Also, other considerations 

may influence the decision like the age of a candidate. An old candidate may be less 

useful as the user’s behavior may have changed recently.  
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Sequence alignment is not only able to align perfectly matching sequences. As 

described it can also align sequences with mismatches or gaps. This is shown in Figure 

5 where the sequence in the history has an additional ‘C’ in between. Therefore, a gap 

has to be insert between the ‘B’ and the ‘A, C’ in the sequence to be aligned. While 

this alignment has a higher alignment cost than the one shown in Figure 4, is shows 

also similar behavior pattern can be used for prediction. 

 

 

Figure 5: An alignment with a gap (light blue boxes) and a context value selected as prediction 

(light green box) 

 

5.1.2 Enhancement to multiple sources with a mapping approach 

In chapter 4 we discussed the advantages of a context prediction system, which is based 

on multiple context sources. In this subsection, we are going to have a look on two 

different approaches to achieve this. 

The enhancement from one to multiple context sources also ads more histories, one 

for each added context source. Figure 3 shows the history for an approach where we 

use only one single context history. Figure 6 illustrates the new situation, where we 

have three exemplary context sources CS1-CS3. Each context source generates context 

values for his context history so that we now have three context histories. We choose 

the Latin alphabet for CS1, hand signs for CS2 and the Greek alphabet for CS3, so we 

better remember that context sources usually produce nominal values and that we 

cannot compare values from two different context sources. On the right side of Figure 

6 we see the recently observed context values from each context source. Nevertheless, 

the task keeps still the same: we want to predict the next context value for CS1, 

indicated by the empty blue box in the upper right. 
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Figure 6: Three context histories from three different context sources CS1-CS3, recently 

observed context values are on the right side 

One simple approach proposed by the author of [7] is to map all existing combinations 

of context values from the different context sources at a certain time into new context 

values. The mapping needs to be bijective; a certain combination of context values 

needs to be mapped into a certain new context value. This creates a new artificial 

context source, wherein all the previous context sources are combined.  

Step one, illustrated in Figure 7: Mapping of all different context histories into one 

context history. Each of the yellow boxes is a new context value generated by a 

mapping of the original context values from CS1-CS3. All yellow boxes combined can 

be regarded as a context history generated by the artificially created context source 

CS*. 

 

Figure 7: Mapping of context values into new context source CS* 

Step two, illustrated in Figure 4: A prediction can be made based on an already 

implemented algorithm. This also applies to the alignment for context prediction 
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approach. The yellow row in Figure 7 is similar to the blue row of Figure 4, when we 

treat CS* from Figure 7 as equivalent to CS1 from Figure 4. 

This approach has a major advantage: existing context prediction approaches designed 

for a single context source can be further used, even with multiple context sources. 

Only a mapping needs to be pre-processed. This is a big advantage as the context 

prediction algorithms do not need to be rewritten. However, this approach also has a 

major disadvantage in terms of information usage. 

The mapping approach also has a major disadvantage: any disturbed context value 

from the original context sources will cause the mapping process to collect all 

disturbances and to ignore the information provided by the non-disturbed context 

sources. Note that we defined in chapter 4 any influence on the context sources which 

is not related to the user’s behaviour a disturbance. This means a single disturbed 

context value and several non-disturbed context values generate a disturbed mapped 

context value. The information from the non-disturbed values can no longer be 

accessed. The mapping acts as a kind of disturbance collector. 

The collection of disturbance is illustrated in Figure 8. The boxes with red marks 

represent disturbed context values. The first occurrence of a disturbance happens at the 

fourth column from the left. The mapping of {‘C’, disturbed, ‘h’} generates a disturbed 

context value in CS*. The information of the correlated occurrence of ‘C’ and ‘h’ is 

lost. 

The information loss can also be clearly tracked in Figure 8 when we calculate the 

quote of disturbed context values before and after the mapping. Before the mapping 

we have 51 values in total and 5 are disturbed. This results in a disturbance rate of 

about 10%. After the mapping we have 17 context values and 5 are disturbed. This 

means a disturbance rate of about 30%. 
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Figure 8: Wrong context values (red marks) are getting propagated through the mapping into 

CS* 

 

5.1.3 Multi alignment prediction 

To overcome the disadvantage shown in the last subsection we propose another way 

of how alignment for context prediction can be enhanced to process multiple context 

sources. This is explained in more detail in this subsection. 

The basic idea is to run the alignment several times, once for each context source. But 

in difference to the regular use of alignment for context prediction we take the value 

to predict always from the context source that should be predicted. This is illustrated 

with the help of an example. For the example, we consider again we use the three 

context source CS1-CS3 and we want to predict the next context value for CS1. Each 

step is illustrated from Figure 9 till Figure 11. 

Step one, illustrated in Figure 9: A prediction for CS1 is made based on the history of 

CS1. The recently observed context values {‘B’, ‘A’, ‘C’} of CS1 are aligned with the 

history of CS1, coloured in blue. The alignment is highlighted by the light blue box 

and the predicted value is highlighted by the light green box. This is still the same like 

the regular use of alignment for context prediction. 
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Figure 9: Alignment multi context prediction approach step one: a sequence of recently 

observed context values from CS1 gets aligned with CS1 and a prediction value is taken from CS1 

Step two, illustrated in Figure 10: A prediction for CS1 is made based on the history of 

CS2. The recently observed context values {‘A’, ‘C’, ‘A’} of CS2 are aligned with the 

history of CS2, coloured in green. (In this situation we have two alignments, 

highlighted by the two light blue boxes. This is only to show a situation where multiple 

alignments are made.) But in difference to the usual use of alignment for context 

prediction, we do not take the value to predict from CS2 but we take it from CS1. The 

position where we take the predicted value from is determined by the alignment in the 

history in CS2, but the value is given by CS1. We do this as we assume a correlation in 

the different histories between CS1-CS3. The two values taken to be predicted are 

highlighted by the light green boxes. 

 

Figure 10: Alignment multi context prediction approach step two: a sequence of recently 

observed context values from CS2 gets aligned with CS2 and two prediction values are taken 

from CS1. Note: although the sequence was aligned with CS2, the prediction was taken from CS1. 
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Step three, illustrated in Figure 11: A prediction for CS1 is made based on the history 

of CS3. The recently observed context values {‘g’, ‘h’, ‘a’} of CS3 are aligned with 

the history of CS3, coloured in green. (In this situation we also have two alignments, 

highlighted by the two light blue boxes. This is only to show a situation where multiple 

alignments with different results are made.) Here we also take it from CS1. The position 

where we take the predicted value from is determined by the alignment in the history 

in CS3, but the value is given by CS1. The two values taken to be predicted are 

highlighted by the light green boxes. This time different context values {‘A’, ‘B’} are 

the result of the alignment. 

 

Figure 11: Alignment multi context prediction approach step three: a sequence of recently 

observed context values from CS3 gets aligned with CS3 and two prediction values are taken 

from CS1. Note: although the sequence was aligned with CS3, the prediction was taken from CS1. 

Step four: We have to choose between all results which context value we want to 

predict. The alignment in CS1 resulted in ‘A’, the alignment in CS2 resulted in ‘A’ and 

‘B’ and the alignment in CS3 resulted in ‘A’ and ‘B’. In our approach, we decided to 

always pick the majority. In the example, we would now predict ‘A’ as future context 

value for CS1. However, this can also be improved in future work by considering the 

correlation strength or other factors. 

5.2 Analytic comparison of two multi context approaches 

We decided to compare the two approaches in two ways: first by an analytic 

comparison of the prediction accuracy and second by an experiment. In this subsection, 

the analytic comparison is described.  
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The Idea of the analytic comparison is the following: we are going to derive for both, 

the mapping approach and the multi context approach, the probability of making 

accurate predictions. We show in which way the dependency of the accurate prediction 

relies on the probability of each single context value is without a fault. By doing this 

we can compare the two approaches afterwards. 

We can calculate the probability the mapping approach predicts the accurate value is 

influenced by two factors: the prediction algorithm and the utilized history. We can 

assign both influencing factors a probability of being accurate. 𝑃IJ?K is the probability 

the prediction algorithm makes accurate predictions and 𝑃LM∗ is the average probability 

of the history of CS* being accurate. By multiplying these two factors we get the 

probability 𝑃&'IIC9O	that mapping approach is accurate.  

𝑃&'IIC9O = 𝑃IJ?K ∗ 𝑃LM∗ (4) 

The use of an average value is of course only a statistical way to determine the 

accuracy of a whole history. Some parts of the history may have a higher accuracy; 

some may have a lower. But after many predictions the average history accuracy will 

determine the average prediction accuracy. We calculate the average value 	𝑃LM∗by 

summing up all probability of the context values being accurate	𝑃LM∗ 𝑖 , and divide by 

the number of context values in the history. The index 𝑖 is an index to run over all 

context values in the history. 

𝑃LM∗ =
1
𝑛 𝑃LM∗ 𝑖

9

CD<

 
(5) 

As described in the last subsection, CS* is an artificial context source, generated by the 

mapping process. Therefore, the probability of each element of the history of CS* 

being accurate	𝑃LM∗ 𝑖  relies on the context values it is mapped from. To calculate 

𝑃LM∗ 𝑖 	we have to multiply the probability of being accurate of each context value it 

is mapped from. The probability of being accurate of each context value from the 

original context histories is represented by 𝑃LMP 𝑖 , where	𝑖 is an index to multiply over 

all context values in the history ,	𝑗 is the index for the original context source and 𝑚	is 

the number of context sources that are mapped into CS*. 
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𝑃LM∗ 𝑖 = 𝑃LMP 𝑖
&

SD<

 
(6) 

With this formula, we can already see what is happening during the mapping approach. 

𝑃LM∗ 𝑖  will always be smaller (or equal) than the smallest 𝑃LMT 𝑖 …𝑃LMU 𝑖  it consists 

of. This is the in 5.1.2 described and in Figure 8 illustrated disturbance collection 

process of the mapping. Using (6) we can write 

𝑃LM∗ 𝑖 ≤ min 𝑃LMT 𝑖 , 𝑃LMW 𝑖 , 𝑃LMX 𝑖 , … , 𝑃LMU 𝑖  (7) 

When we combine (7) with (5) and (6) we can also write 

𝑃LM∗ ≤ min 𝑃LMT, 𝑃LMW, 𝑃LMX, … , 𝑃LMU  (8) 

where 𝑃LMT …𝑃LMU are the average probabilities of the according histories of CS1 … 

CSm are being accurate, which can be calculated similar to (5). 

(8) is an important result: The history of CS* generated with the mapping process is 

always less (or equal) correct than the original context histories of CS1 … CSm. With 

(4) we can conclude the average prediction accuracy follows this rule. This means the 

average prediction accuracy based on the mapping approach is always less (or equal) 

accurate than a prediction based on the original history. Thus, we cannot increase the 

prediction accuracy by adding multiple context sources when the mapping approach is 

used. 

Now we can also have a look on the multi context approach to also relate its average 

prediction accuracy with the probability of each single context value being without a 

fault. 

The multi context approach uses only context values which ae in the majority of all 

predicted values. Accordingly, we can calculate the average prediction accuracy 𝑃&YZAC 

by 

𝑃&YZAC =
1

𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠	𝑖𝑛	𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑃IJ?K<,S ∗ 𝑃LMc defc Cg< D&'ShJCAi

&

SD<

 
(9) 
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This means the average accuracy of each used context histories 𝑃LMcis summed up. It 

is only used when the prediction mad on it is part of the majority (𝑃LMc 𝑖 + 1 =

𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦). To calculate the average accuracy, we divide by the number of elements 

in the majority. We always assume in the formula the prediction accuracy on the 

alignment 𝑃IJ?K<,S	for context	1, based on context	𝑗	. However, we could also predict 

for another context without losing the generality. 

We know an average value is always between (ore equal) the minimum and maximum 

values it is calculated from. Therefore, we can write with (9) 

min 𝑃IJ?K<,< ∗ 𝑃LMT defT Cg< D&'S.
, … , 𝑃IJ?K<,& ∗ 𝑃LMl defl Cg< D&'S.

≤ 𝑃&YZAC

≤ max 𝑃IJ?K<,< ∗ 𝑃LMT defT Cg< D&'S.
, … , 𝑃IJ?K<,&

∗ 𝑃LMl defl Cg< D&'S.
 

(10) 

The expression shows only some predictions are used in the calculation. To compare 

both methods we need to get rid of the conditions. To achieve this, we have look on 

two cases. 

Case one: A not used single prediction has a lower probability of being accurate than 

all used predictions  

𝑃IJ?K<,o ∗ 𝑃LMp defp Cg< q&'S.

≤ min 𝑃IJ?K<,< ∗ 𝑃LMT defT Cg< D&'S.
, … , 𝑃IJ?K<,&

∗ 𝑃LMl defl Cg< D&'S.
≤ 𝑃&YZAC 

(11) 

Now we can add the part left from the first inequality into the min function, as it will 

still be smaller than the original min function. This results in the loss of the conditions 

min 𝑃IJ?K<,< ∗ 𝑃LMT, … , 𝑃IJ?K<,& ∗ 𝑃LMl ≤ 𝑃&YZAC (12) 
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Case two: A not used single prediction has a higher probability of being correct than 

the one with the minimal probability of the used predictions 

𝑃&YZAC ≤ max 𝑃IJ?K<,< ∗ 𝑃LMT defT Cg< D&'S.
, … , 𝑃IJ?K<,&

∗ 𝑃LMl defl Cg< D&'S.
≤ 𝑃IJ?K<,o ∗ 𝑃LMp defp Cg< q&'S.

 

(13) 

Now we can add the part right from the second inequality into the max function, as it 

will still be larger than the original max function. This also results in the loss of the 

conditions 

𝑃&YZAC ≤ max 𝑃IJ?K<,< ∗ 𝑃LMT, … , 𝑃IJ?K<,& ∗ 𝑃LMl  (14) 

Now we can combine (12) and (14) and (4) and (8) to compare the multi context source 

approach with the mapping approach 

𝑃&'IIC9O ≤ min 𝑃IJ?K<,< ∗ 𝑃LMT, … , 𝑃IJ?K<,& ∗ 𝑃LMl

≤ 𝑃&YZAC ≤ max 𝑃IJ?K<,< ∗ 𝑃LMT, … , 𝑃IJ?K<,& ∗ 𝑃LMl  

(15) 

Now we can easily compare the probabilities of each approach of being accurate. The 

mapping approach accuracy will always be worse or equal but never be better than the 

multi context source approach. 

5.3 Experimental comparison of two multi context approaches 

After the analytic comparison, it would be nice to verify our findings in an experiment. 

To do this we designed an experiment to compare the two approaches, the mapping 

approach and the multi alignment approach. Therefore, we collected different datasets 

from both, data from a simulation and a real-world experiment. Each dataset consisted 

of the record of multiple context sources in parallel. Afterwards we split each dataset 

into a history and a test set. With the test set we performed a first series of prediction 

with both approaches and with one context sources. Afterwards we performed a second 

series of predictions with both approach but this time with two context sources. We 
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calculated the prediction accuracies and compared them to each other to investigate 

the influence of multiple context sources on the two approaches. 

The next subsections describe how the data was obtained and how the prediction 

accuracy was calculated.  

5.3.1 Simulated Data 

We used SIAFU, an open source context simulator [3] to generate the simulation data. 

We simulated an office environment, a scenario that is included in the simulator. In the 

simulation, different persons, called agents, moved through different offices. While the 

agents moved, different contexts were generated, depending on the time, movement 

and the position of the agents. In Figure 12 a screenshot of the simulator can be seen. 

We chose to record the following four context sources: activity, noise level, office area 

and Wi-Fi reception. The activity context had one of the eight values ‘AtDesk’, 

‘EnteringToilet’, ‘Going2Desk’, ‘Going2Meeting’, ‘Going2Toilet’, ‘InTheToilet’, 

‘LeavingWork’ and ‘Resting’. The noise level context had five possible context values 

‘average’, ‘loud’, ‘quiet’, ‘veryLoud’ and ‘veryQuiet’. The office area context 

indicated whether the agent was in an office or not. It was just represented by the 

context values ‘true’ and ‘false’. The Wi-Fi reception context indicated the signal 

strength of the Wi-Fi at the agent’s position, which had the five possible context values 

‘OutOfRange’, ‘VeryWeak’, ‘Weak’, ‘Strong’ and ‘VeryStrong’. 

Only the context sources activity and noise level were used in this experiment. 

Nevertheless, we decided to record two additional sources, as we also wanted to use 

the data in another experiment, described in 7.1. 

Fourteen different agents were recorded and over 94000 datasets for each agent. We 

choose one agent out of the fourteen recorded as the results of the other agents showed 

the same trends and to keep the results section focused. 
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Figure 12: SIAFU, the context simulator used to collect the simulation data 

5.3.2 Experimental Data 

The location as well as the surrounding temperature of a user was logged, to collect 

the real-world data. We chose to log the two sensors location and temperature as they 

are usually correlated. Therefore, a user carried two devices in daily life over a period 

of eight days. Two devices had to be used as no Smartphone was available that could 

measure the surrounding temperature. 

The location was collected by a Motorola milestone, an android based Smartphone. 

We activated google latitude on the phone, a former location recording service from 

google. Google latitude used GPS data, the Wi-Fi SSID and the GSM cell-id to 

determine the location of the Smartphone. After the collection was finished we 

downloaded the data, clustered it into 41 locations and labelled it like like ‘home’, 

‘work’, etc. This dataset of timestamp annotated locations was used as location context 

source. 

The temperature was collected by a SunSpot. A SunSpot is a little portable device from 

the company Sun which is equipped with a processor, some IO-ports and sensors, also 

including a temperature sensor, memory and an accumulator. The sunspot was carried 
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together with the Smartphone by the user, while the temperature sensor was pointing 

away from the user to minimize the influence of the user’s body temperature. We 

recorded the temperature each second and the data was downloaded during the night 

while the device was recharged. After the data collection was finished we post 

processed the temperature values, so our context source temperature had the three 

possible context values ‘outside’, ‘inside’ and ‘unknown’ 

5.3.3 Measurement of prediction accuracy 

After the data was collected we made a series of test to determine the prediction 

accuracy, first with the mapping approach and second with the multi context source 

approach. We used a two-step procedure with both, the simulation data and the real-

world data.  

Step one was to make a series of predictions. Therefore, the datasets had to be split in 

to the history and the test set. The test set was about 1/3 of the collected data and the 

history was about 2/3. A small time series was cut from the test set and both approaches 

had to predict on this time series on the context history. Afterwards the next small time 

series was cut from the test set and another prediction was performed. This procedure 

was repeated until all data of the test set was used.  

In step two the prediction accuracy was calculated. Therefore, each prediction was 

compared to the context value following the small time series from the test set which 

was used for the prediction. If the two symbols were equal the prediction was accurate, 

if not the prediction was wrong. This was done for all predictions and the average was 

calculated. 

5.4 Results of the experiment 

In this section the results of the above described experiment are presented. First the 

results of the prediction accuracy measurements based on the simulation data and 

afterwards the result based on the real-world data are given. 

5.4.1 Simulation data results  
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The results from the experiment based on the context simulator are shown in Figure 

13. When only one context source is used, both approaches perform equally. When a 

second context source is added, the mapping approach loses 18% of prediction 

accuracy, while on the other hand the multi alignment approach gains 4% of prediction 

accuracy.  

 

Figure 13: prediction accuracy over number of context sources for two different context 

prediction approaches, based on simulated context values 

5.4.2 Real-world data results 

Figure 14 shows the result of the experiment when real world data is used. The 

prediction accuracy is equal for both approaches when only one context source is used. 

When two context sources are used the prediction accuracy stays equal for the mapping 

approach. When using the multi alignment approach and two sources the prediction 

accuracy gains 7%.    
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Figure 14: prediction accuracy over number of context sources for two different context 

prediction approaches, based on data from a real-world experiment 

5.5 Discussion of the results 

The prediction accuracy increased when multiple context sources and the multi 

alignment prediction approach were used. We expected an increase, as the added 

context source also adds information to the predictor. The following example may 

explain this in more detail. In Table 2 a sample from the real-world experiment data is 

shown. The column context source ‘location’ shows a pattern where {‘work’, ‘work’} 

is once followed by ‘tram’ and another time by ‘take_a_walk’. Without the 

temperature context, it is impossible to predict the next context value after the pattern 

{‘work’, ‘work’}. But when we consider the temperature context the ambiguities are 

resolved. The pattern {‘work’ & ‘outside’, ‘work’ & ‘inside’} is followed by ‘tram’ 

and the pattern {‘work’ & ‘inside’, ‘work’ & ‘outside’} is followed by ‘take_a_walk’. 

Table 2: short data sample from real world experiment  
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1 1302266442761 work outside 

2 1302267151485 work inside 

3 1302267555217 tram inside 

 … … … 

4 1302703828420 work inside 

5 1302704419010 work outside 

6 1302704508229 take_a_walk outside 

 

The prediction accuracy did not increase when multiple context sources and the 

mapping approach were used, it either stayed equal or it even decreased.  This was 

already proposed in the analytical comparison of the two approaches. The mapping 

approach should not be used for multiple context sources. 

The prediction accuracy was equal for both investigated approaches when only one 

context source was used. Both approaches do exactly the same in this special case. The 

mapping maps each existing context value into new context values and starts a regular 

alignment based context prediction. The multi alignment prediction approach tries to 

predict a context value based on the history of the according context value. This is also 

a regular alignment based context prediction. This way the results for both approaches 

must be equal. 

The prediction accuracy gain is higher with data from the real world than with data 

from the simulator. The gain of prediction accuracy depends on some factors like the 

correlation strength of the context sources, the number of faults in the histories and the 

predictability of the user influencing the sensors. We cannot tell how much each factor 

influenced our real-world experiment. However, the gain is promising for a real-world 

application of the multi alignment prediction approach. 

The absolute values of the prediction accuracy are not relevant for the analysis of the 

experiment, but they show the potential of the context prediction. With the real-world 

data, we predicted the location context of the user which had 41 possible context 

values. With this high number the baseline is at 2.4% (the worst predictor should not 

drop below this line, as 2.4% prediction accuracy can be achieved when we just use a 

random generator). The achieved prediction accuracy of 76% is well above this value.  
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5.6 Conclusion 

In this chapter, we have investigates the influence on multiple context sources on the 

context prediction accuracy as well as two different approaches utilizing multiple 

context sources. An experiment was performed on both, real world data and simulated 

data to measure the prediction accuracy.  

The results of the experiment showed an increase of 4% – 7% of prediction accuracy 

when the alignment multi alignment prediction is used and a second context source is 

added. However, the results also demonstrated the prediction accuracy drops up to 

18% when the mapping approach was used. Therefore, we can conclude the prediction 

accuracy can be increased using multiple context sources, when a prediction approach 

is used that is benefiting from the correlations in the context histories. 

The context sources used in this chapter were chosen by us. However, a multitude of 

different context sources based on the increasing number of sensors in our environment 

is available to be used in context prediction. While the prediction may benefit from the 

combination of some context source, it may get irritated by the combination of others. 

The next chapter is presenting a method to determine beneficial context sources.  
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6. Selecting beneficial context sources to gain prediction 

accuracy 

A certain combination of context sources may increase the prediction accuracy while 

another combination may decrease it. To choose a beneficial combination, the task is 

to answer: ’Is certain combination is useful?’ The most intuitive way to answer the 

question may be to make some test predictions based on this certain combination of 

context sources and then compare the resulting prediction accuracy against the 

prediction accuracy without the combination or against other possible combinations. 

However, such a test approach can be time consuming depending on the selected 

prediction approach. Therefore, we propose a method to calculate the increase of the 

prediction accuracy beforehand, when multiple context sources are combined. 

In this chapter, we describe a method to calculate the increase in prediction accuracy 

due to a combination of context sources, which is based on statistical properties of the 

context sources. 

6.1 Selection approach 

Our proposed selection approach can be described in three simple steps:  

First: calculate the predictabilities. This has to be done for the context source 

you want to predict as also for each possible combination of context sources with the 

context source you want to predict.  

Second: compare the predictabilities to find the combination with the highest 

predictability.  

Third: choose the combination with the highest predictability for the prediction 

task. The next paragraphs explain how the predictability of multiple sources can be 

calculated. 

The formula to calculate the predictability was explained in the State of the art section 

in section 3.3. The equation for the predictability is: 
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ℋ 𝒳 = −Π&'( log, Π&'( − 1 − Π&'( log,
1 − Π&'(

𝑁 − 1  
(16) 

ℋ 𝒳  is the entropy rate of a context source, 𝑁 represents the number of different 

context values from a context source and Π&'( is the predictability. The entropy rate 

ℋ 𝒳  has to be calculated, which can be very time consuming if the history is very 

long. The more practical way is the use of an Entropy estimator. This is also done by 

other authors mentioned in the state of the art section. 

To estimate the entropy rate ℋ 𝒳  we used the Lempel-Ziv entropy estimator, which 

is 

𝐻?@A =
1
𝑛 ΛC

9

CD<

;<

ln 𝑛 
(17) 

𝑛 is the number of elements in the context history and  ΛC is the length of the shortest 

time series starting at position 𝑖 in the history which does not appear before 𝑖. 

Equation (17) only estimates the entropy rate of a single context source. Therefore, we 

have to add an additional step to the predictability calculation, to use it with multiple 

context sources.  

When the entropy rate of a single context source is not estimated, but calculated, the 

conditional probabilities of the context values must be calculated (This was also shown 

in equation (2) in section 3.3). This means the probabilities of a certain context value 

given the condition a certain combination of context values have been the predecessor 

has to be calculated. However, as we want to consider multiple context sources we 

have to consider the condition of a certain combination of predecessor context values 

in the history of the first context source and the history of the additional context 

sources. The constrained combination of predecessor context values is achieved when 

the context sources are mapped into a single context source.  

To always consider the appearance of certain combinations of predecessor context 

values of all context sources, we decided to add a prior mapping from multiple context 

sources into a new artificial context source. A mapping ensures that the combination 

of context values from multiple sources which occurred at a certain time is considered.  
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During the mapping, each combination of context values from the different context 

sources to be combined gets mapped into a unique context value. This mapping is 

illustrated in Figure 15. The exemplary context sources CS1, CS2 and CS3 are chosen 

for a multi context source based prediction. To determine their predictability, they get 

mapped into a new artificial context source CS*. The context values in the figure are 

symbols to remember the often non-ordinal character of context values. 

 

Figure 15: Mapping of context values into new context source CS* 

After the context sources have been mapped the entropy rate of the resulting artificial 

context source can been estimated with equation (17) just like from a single context 

source. Afterwards equation (16) can be used to determine the predictability of a 

certain combination of context sources. However, a solver has to be used to determine 

a numerical value for Π&'( as it cannot be isolated in (16). 

6.2 Experiment 

We decided to add an experiment to verify our approach. The experiment with the data 

collection and the measurements are described in this section. 

The experiment consisted of four steps. First we collected sensor data from two users 

and multiple sensors to derive context values in different context sources from the 

sensor data. Second we made a series of prediction accuracy tests with different 

combinations of the context sources. Third we calculated the predictabilities of 

different combination of the context sources. Finally, we were able to compare the 
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predictability values with the prediction accuracy values of the different context source 

combinations. Accordance of the values is expected to verify our proposed approach. 

6.2.1 Data collection 

We collected sensor data correlated to the behaviour of two users. The users carried a 

Smartphone in their pocket over the test period of five hours. They randomly moved 

through a smart home according their daily tasks. About 6400 datasets were recorded. 

A new dataset was generated each time a context value changed. 

A smartphone was used to record the contexts activity, noise and floor level. The 

activity context was derived by the approach described in [4], where the accelerometer 

of the smartphone is used to derive the context values ‘sitting’, ‘standing’ and 

‘walking’. The microphone of the Smartphone was used to derive the noise context. 

The noise level was averaged over a short time spawn and then quantized into the five 

levels ‘veryLoud’, ‘loud’, ‘average’, ‘quiet’ and ‘veryQuiet’. The Smartphone 

barometer was used to derive the user’s floor level context. An approach similar to [39] 

was implemented where the barometer value is quantized. As our smart home had two 

flor levels we derived the context values ‘downstairs’ and ‘upstairs’. 

The smart home used during the experiment was equipped with PIR motion sensors. 

They were used to record the user’s room context. We experiment took place in six 

different rooms, so we simply numbered the context values from ‘1’ to ‘6’. 

6.2.2 Prediction accuracy test 

After the context values were collected we made some measurements on the prediction 

accuracy. We utilized an alignment based approach able to use multiple context sources 

which is further described in section 5. The alignment approach uses a small series of 

recently observed context values to align them with the context history and predict 

future upcoming context values. Therefore, we split the collected context data into a 

context history part and into a test set of about 1/3 of the data. Then we successively 

took a small series of context values from the test set and feed it into the alignment 

predictor. We compared the predicted context value with the context value following 

the small series in the test set, which is what we expected to be predicted. If the two 

symbols were the same we evaluate the prediction as accurate, else as inaccurate 
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prediction. After we repeated this over the whole test set we calculated the average of 

accurate predictions, the prediction accuracy. 

We decided to predict the room number the user will be in. Thus we made the 

prediction accuracy test with each possible combination of the other context sources 

with the room context. We also did this for both users. 

6.2.3 Predictability calculation 

The last step of the experiment was to calculate the predictabilities. First we mapped 

each possible combination of context sources with the room context. Then we 

calculated the entropy rates for each mapped context source. Afterwards we used a 

solver to calculate the predictability for each combination. We did this for both users. 

6.3 Results 

In this section the results are presented. Table 3 shows the prediction accuracy and the 

predictability measurements. The results are separated by user and also by the context 

source used for the measurement. All numbers are percentages. 

Table 3: Results of the predictability and prediction accuracy comparison 

 
User 1 User 2 

predictability prediction accuracy predictability prediction accuracy 

Room 72% 27% 80% 41% 
room & noise 73% 29% 70% 36% 
room & activety 76% 27% 79% 41% 
room & floor level 72% 27% 80% 41% 
room & noise & activety 74% 17% 74% 26% 
room & noise & floor level 73% 29% 70% 36% 
room & activety & floor level 76% 27% 79% 41% 
room & noise & activety & floor level 74% 17% 74% 26% 

Figure 2 and Figure 3 show the results in graphs. The y axis is always the percentage 

of prediction accuracy and predictability. The graphs help to identify the trends of 

prediction accuracy and predictability. An interpretation of the results is given in the 

next subsection. 
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Figure 16: Results based on data from user 1, comparison of tendency between predictability 

and prediction accuracy. 

 

Figure 17: Results based on data from user 2, comparison of tendency between predictability 

and prediction accuracy. 
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6.4  Discussion of the results 

The results are interesting in several aspects: first we want to know if the prediction 

accuracy increases when the predictability also increases for a certain combination of 

context sources. Second we will discuss why the absolute values of the predictability 

and prediction accuracy differ so much. And third it is also interesting to compare the 

difference between user 1 and user 2 for the selection of beneficial context sources. 

6.4.1 Dependency on the combination 

In most cases the prediction accuracy rises when the predictability also rises. This 

result verifies our approach. The predictability can be used to check beforehand 

whether a certain selection of context sources will increase prediction accuracy or not. 

However, in some cases (for user 1 every time the activity was included) the 

predictability and the prediction accuracy did not correlate so well. Most likely this 

happened due to the only a fife hour context survey. The predictability is a statistical 

value which. Therefore, the accuracy of the statistical properties, including the 

predictability, is relying on the size of the utilized dataset. A too short dataset can 

decrease the accuracy of the statistical properties. Nevertheless, the predictability and 

prediction accuracy values de-correlate not much. 

6.4.2 Difference between predictability and prediction accuracy 

Although the absolute values of the predictability and the prediction accuracy do not 

matter for the verification of the proposed selection approach, it might be interesting 

to discuss the difference between them. 

An optimal prediction algorithm should be able to reach the predictability with the 

prediction accuracy. The prediction approach we chose performs only half as well as 

the optimal predictor. For the design of a prediction system for daily life this can be an 

indicator to change the prediction algorithm in order to get a better prediction 

performance. For our test, it was not necessary as we were only interested in the 

relative values. 

6.4.3 Influence of the user on the selection of context sources 
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For user 1 the combination of the room and noise context was gaining the prediction 

accuracy. The same combination did decrease the prediction accuracy for user 2. This 

is because the patterns in the context values are related to the specific user behaviour. 

Therefore, an optimal combination must be selected for each user individually. 

6.5 Conclusion 

In this chapter, we presented a context source selection approach. It can be used to 

select beneficial context sources for context prediction, in order to gain the prediction 

accuracy. Therefore, we utilized the predictability derived by song [23]. We made an 

extension to the predictability formula to use it for multiple context sources. 

Afterwards we made an experiment, where we collected sensor data from different 

smartphone sensors and different users, derived context values and performed 

prediction accuracy measurements with different combinations of context sources. We 

also calculated the predictabilities on different combinations of context sources. The 

accordance of the predictabilities with the prediction accuracies verified our approach. 

When the predictability increased due to a beneficial combination of context sources 

also the prediction accuracy increased and vice versa. Therefore, our presented 

approach can be used to make a prior selection of context sources when some context 

values are already collected. 
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7. The effect of prediction stability against disturbances of 

sensors3 

The prediction accuracy of a certain context prediction algorithm does not only rely 

on the algorithm itself but also on the utilized context history. Faulty data in the context 

history may reduce the prediction accuracy. The amount of faulty data in the history 

can vary, depending on the source of the fault. One example for a faulty context 

generation is a disturbed sensor. From time to time a certain sensor may pick up some 

electrical noise and therefore cause faulty data. Another example could be a faulty 

reasoning in the context source. A context source usually reasons context values with 

an algorithm trained on previous sensor data. If unknown sensor data occurs, a faulty 

context may be derived by the context source. However, a combination of multiple 

context sources can make a prediction system more stable against disturbances. 

A combination of multiple context sources can use redundancies to increase the 

stability against disturbances. While some disturbances cause faulty data in some 

context sources, others context sources may not be influenced by the same 

disturbances. When a prediction at a certain time is only based on one single context 

source which then gets disturbed, the prediction is likely to be inaccurate. But when 

the same prediction also considers other context sources, the fault can often be 

compensated by utilizing redundant information from the non-disturbed context 

sources.  

Redundant information is generated when multiple sensors are related to the behaviour 

of one user. This can be better understood by the help of Figure 2. The Sensors S1…Sm 

get influenced by the user’s behaviour, represented through the cloud with the different 

things the user might do. The context sources CS1…CSn derive different context values 

from the sensor data. If the user does a certain activity, most likely several sensors 

S1…Sm will be influenced at the same time. The information generated by CS1 will 

then for example have redundancies to CS2. 

                                                

3 Parts of this chapter have been published in [37]. 
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Figure 18: Sensor S1 and context source CS1 get disturbed 

Redundancies can be used to fix faulty context data. The context prediction algorithm 

CP predicts the upcoming context value for context source CS1, based on multiple 

context sources. The prediction algorithm is not only based on the context source CS1 

but using all context sources CS1…CSn. Figure 18 shows an example where the sensor 

S1 gets disturbed at a certain time. The context source CS1 might then derive faulty 

context data. This is an information loss in CS1. But the context predictor CP has access 

to redundant information from C2…Cn. This can be used to compensate the 

information loss of the disturbed C1. 

In this chapter, we present an investigation on the effect of stability against 

disturbances when multiple context sources are combined for context prediction. First 

the methods of the investigation are explained. Then the results are presented and 

afterwards discussed. 
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7.1 Methodology of the experiment 

We designed an experiment to measure the effect of stability against disturbances, 

when multiple context sources are used. The experiment was done with two datasets 

of context histories, the first one was generated by a simulator and the second one was 

collected by a real-world experiment. Afterwards artificial faults were introduced into 

the context histories. The number of faults was increase in 10% steps from zero to 

50%. The faulty context histories where then used in a multiple context prediction 

algorithm and the effect of the faults on the prediction accuracy was investigated. 

The process of the artificial faults introduction, the simulation and the real-world 

experiment are further described in this subsection. Also, the decisions on why a real 

world experiment was conducted and the measurement of the prediction accuracy are 

explained. 

7.1.1 Artificially introduced faults 

To investigate the effect of multiple context sources on the stability of the prediction 

accuracy against disturbances, we decided to artificially introduce disturbances. In 

contrast to naturally occurring disturbances, artificial introduced disturbances can be 

easily controlled. Disturbances which occur naturally can sometimes be quantified but 

usually not influenced.  

Two randomly selected context values inside a context history were exchanged to 

introduce a disturbance. This corresponds to a reasoning error in a context source. An 

alternative way to disturb the data would be to override randomly selected context 

values in the history with symbols like ‘not available’ or ‘unknown’. However, such 

new symbols can easily be identified by the prediction algorithm, but the exchange of 

two context values cannot be identified. Hence our chosen exchange approach results 

in a more difficult task to the prediction algorithm. 

We used a self-designed algorithm to exchange the context values in the context 

history. First the desired percentage of disturbance was set. Then the algorithm 

exchanged a pair of context values. Next the resulting amount of disturbances was 

calculated by comparing the original context history with the disturbed one. The 

calculation had to be done as a repetitive exchange at a certain position in the context 
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history could easily restore the original context value at this position in the context 

history. The process was repeated until the desired amount of disturbances was 

reached. 

7.1.2 Simulated Data 

We decided to use both, data from a simulation and data from a real-world experiment. 

The simulation did not include disturbances in contrast to the real-world experiment 

data, where always some disturbances are inherently included. We also cannot tell the 

quantity of the inherent disturbance in the real-world data. Hence the simulation data 

is more useful for an investigation on the effect of disturbances. Nevertheless, the real-

world data is useful to ensure the experiment has no bias from the simulator. 

We used the data from the simulation described in 5.3.1 which is based on SIAFU, a 

context simulator. Fourteen different agents were recorded and over 94000 datasets for 

each agent. We made the experiment with multiple agents, but as the results showed 

the same trends and to keep the results section focused, we only show the results of 

one agent. 

We chose to use the following four context sources: activity, noise level, office area 

and Wi-Fi reception from the simulator. With this selection, we have chosen context 

sources similarities to the context sources recorded in real world experiment. The real-

world experiment is described in the next subsection. 

7.1.3 Experimental Data 

The real-world experiment data was collected with both, a Smartphone and a smart 

home. A person was carrying a Samsung Galaxy III Smartphone in his pocket while 

he was moving through several rooms of a smart home. The rooms were distributed 

over two floor levels.  

The Smartphone collected the three contexts user activity, floor level and noise level. 

The user activity was derived with the approach shown in [4] where a Smartphone 

accelerometer is used to derive the human activities ‘sitting’, ‘standing’ and ‘walking’. 

The floor level was derived by an approach similar to [39] where a Smartphone 

barometer measures the air pressure. With each floor level the pressure changed about 

0.5hPa. A two-level quantization was deriving ‘upper floor’ or ‘lower floor’. The noise 
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level was derived by averaging the microphone input of the Smartphone and quantising 

it afterwards to fife levels from ‘low’, ‘medlow’, ‘med’, ‘medhigh’ to ‘high’.  

The smart home was used to collect the location context. Eight rooms of the smart 

home were used for the experiment, all equipped with presence detectors. The presence 

of the person moving through the house was recoded and simply represented by eight 

room numbers. Some of the rooms had a direct pass way between each other; some 

were connected through a hallway, which was also one of the monitored rooms. 

We recorded the contexts of two persons in over 3800 datasets from each. To verify 

our experiment, we did the accuracy measurement with the dataset of both persons, 

but as the results looked similar the results section only contains the results of one 

person. 

7.1.4 Measurement of prediction accuracy 

The measurement was done in two steps. First we made a series of predictions. The 

predictions were done with two different prediction algorithms, one which uses only 

one context source and one which uses multiple context sources. And the predictions 

were done with all disturbed context histories, reaching from 0% - 50% disturbances. 

The second step was to evaluate how accurate each approach had predicted upcoming 

context values, even under the influence of different amounts of disturbances. With 

this two-step procedure, we can compare the influence of disturbances on a multi 

context prediction approach with the influence of disturbances on a single context 

prediction approach. 

We used an alignment based predictor, described in chapter 5.1.1for the prediction. We 

used the same prediction algorithm in both cases, only once with the extension 

described in chapter 5.1.3 and once without the extension. This enables us to compare 

the results, without considering different prediction accuracies caused by different 

algorithms. When using the simulated data, we predicted the future activity context 

and when using the real word data, we predicted the future location context. 

Before we run the predictions, we split each dataset from the simulation data and real 

world data into two parts. One part of each dataset served as context history. This part 

was about two third of the length of the original dataset. The shorter part of about one 
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third served as a test set. The test set was used to run the prediction accuracy 

measurement. 

We measured the accuracy of a prediction by comparing the predicted context value 

with an expected context value. The alignment based context predictor uses a short 

sequence of about four or five recently occurred context values to aligning the 

sequence with the context history. We took the short sequence from our test set and 

started the predictor. The context value following out taken sequence in the test set is 

what we expected to be predicted. The predicted context value was compared to the 

expected context value and either be rated as accurate or inaccurate. This procedure 

was repeated over the whole test set. Afterwards the average percentage of accurate 

predictions was calculated. We call this average the prediction accuracy. 

When we made the measurements with the disturbed histories, we took the short 

sequence of context values from a test set that was also disturbed the same way the 

history was. It was necessary to use a disturbed test set when using a disturbed history. 

Disturbances will not only affect context values stored in the context history but also 

the last view context values that were derived by a context source. In contrast to this 

we took the expected context value, the context value following the position of the 

sequence in the test set, from the undisturbed test set. This was necessary as we defined 

the expected value as the truly future context value. Using a disturbed context value 

here would be wrong as the future upcoming context value cannot be disturbed and the 

prediction accuracy measurement would be faulty. 

7.2 Results of the experiment 

In this section the results of the experiment are presented. There are two sections, one 

for the results based on the simulation data and on or the results based on the real-

world data. First the results are given in a table. Afterwards the graph is shown to 

visualize the trend. 

7.2.1 Results based on measurements with simulated context data 

Table 4 shows the result of the experiment on the influence of disturbed context values 

on different context prediction approaches. A context prediction approach that utilizes 
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only one context source massively decreases prediction accuracy, as the amount of 

disturbances increase. The amount of disturbances also has a decreasing effect on the 

prediction approach utilizing four context sources, but only in a much lesser extent. 

The huge difference in the impact of the disturbance can be even better seen in Figure 

19, where the green bars tend much faster against zero then the blue bars. The absolute 

prediction accuracy plays only a minor role in this chapter, as we focus on the changes 

caused by disturbances. 

Table 4: prediction accuracy with context history disturbance based on context simulator data 

context history disturbance 0% 10% 20% 30% 40% 50% 

one context source 84% 71% 53% 35% 24% 11% 

four context sources  88% 88% 82% 77% 73% 71% 

 

 

Figure 19: Comparison of the influence of disturbances when one ore multiple context sources 

are used, based on disturbed simulation data 

7.2.2 Results based on measurements with real-world data 

The results from the experiment based on real world data are similar to the results 

based on the simulation data. Although the impact of the disturbances is smaller, the 

prediction accuracy of the approach utilizing only one context source still decreases 
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strongly. At the same time the prediction accuracy of the approach utilizing four 

context sources stays constant. 

Table 5: prediction accuracy with context history disturbance based on real world data 

context history disturbance 0% 10% 20% 30% 40% 50% 

one context source 81% 80% 71% 67% 51% 46% 

four context sources  82% 82% 82% 82% 82% 82% 

 

 

Figure 20: Comparison of the influence of disturbances when one ore multiple context sources 

are used, based on real world data 

7.3 Discussion of the results 

In this section the results are discussed. First we are going to discuss the impact of 

disturbances on a prediction approach utilizing only one context source. Then we will 

discuss the impact on a prediction approach utilizing multiple context sources. Finally, 

we are going to compare the results based on the real-world data with the one based 

on simulated context data.  
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7.3.1 Impact of disturbances on the multi context source approach 

The prediction accuracy of our multi context source approach stayed at a high level, 

when disturbances were added. This is in accordance with our preliminary 

consideration which is: a multi context source approach can compensate faults by 

using redundancies added using multiple sources. However, there are also 

redundancies in the context values derived by a single context source. This happens 

for example when a user does the same thing twice. But when the last few generated 

context values get disturbed, it gets difficult for a prediction algorithm to find an 

accurate prediction. The algorithm get irritated as the actual situation differs from what 

the context source delivers to the algorithm. From not knowing the actual context value 

properly it is even with redundancies in the context history difficult to predict future 

context values. This is where the multi context source approach gains most of it 

disturbance stability. Even if the actual situation differs from what one context source 

delivers to the algorithm, the other context sources may still deliver a proper 

description of the actual situation. 

The low influence of disturbances on the multi context source approach is remarkable. 

In the experiment with the real-world data the accuracy dropped only about 17% and 

in the experiment with the simulated context data the accuracy stayed constant when 

the disturbance level was at 50%. This means half of the information in the context 

history was wrong or faulty and the prediction system was still useable. These numbers 

can of course not be generalized as the actual stability always depends on factors like 

the correlation strength of the sensors and the user’s behaviour. But it can clearly be 

seen: a prediction approach based on multiple context sources adds stability against 

disturbances. 

7.3.2 Impact of disturbances on the singe context source approach 

The impact of the disturbances was much larger on a single context source approach. 

The single source approach had only minor possibilities to compensate the information 

loss caused by the disturbances. In the simulation data experiment the prediction 

accuracy dropped to about 11% prediction accuracy. This is close to the bottom line of 

prediction accuracy, when predicting a context source with eight possible symbols. 

Even a simple random generator would attempt a prediction accuracy of 12.5% by 
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simply guessing each possible symbol with the same probability. This means the single 

context source approach was not useable anymore at a disturbance rate of 50%. 

7.3.3 Differences between simulation and real world data 

The results from the experiments based on real world data and on simulated context 

data showed similar trends. The disturbance had a bigger impact on the single source 

based approach and disturbances decreased the prediction accuracy. However, there 

was also a difference in the amount the prediction accuracy was decreased by the 

disturbances. This can have multiple causes. First, the behaviour of the users also 

influences the amount of redundancies in the context history. A very repetitive user 

will cause a lot of redundancies in the context history and thus disturbances will not 

influence the prediction accuracy this much. Second, the sensors were differently 

strong correlated to the user’s behaviour. The noise level context in the context 

simulator fore example was also influenced by the other agents and not only by the 

user himself, whereas the noise level context in the real-world data was mainly 

influenced by the user himself, as it was pretty quiet during the data collection. Third 

cause can be the dependencies in the order of the context values. The location context 

in the real-world experiment for example was collected by monitoring the room the 

user is in. Some rooms can only be reached by passing other rooms like the hallway or 

the stairwell. Such arrangements generated conditional information in the history, 

which was also used by the prediction algorithm. The amount of such conditional 

information is depending on the user’s behaviour and the physical constrains of the 

environment, which was not the same in both data collections. 

7.4 Conclusion 

When engineers design a communication system they will usually add redundancies 

to the transmitted information to make the communication robust against disturbances. 

And usually the can decide how much redundancies the want to add. When we design 

a context aware system with multiple sensors and multiple context sources, we can 

usually not decide how much redundancies are generated by the different context 

sources. Nevertheless, we can also use the given redundancies to make a context 

prediction system more stable against disturbances. 
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In this chapter, we showed that a context prediction system can be more stable against 

disturbances by utilizing multiple context sources. We investigated this by an 

experiment where we measured the prediction accuracy in relation to artificially 

introduced disturbances. The results showed it is possible to keep the prediction 

accuracy high when using multiple context sources for prediction, whereas the 

prediction accuracy will significantly drop when only one context source is use and 

disturbances are added.  
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8. Energy usage on multiple sensors of modern 

Smartphones4 

Prediction future context values, using multiple context sources and increasing the 

prediction accuracy needs of course devices to be carried out on. One very suitable 

device is the Smartphone. It is usually in close proximity to a user a therefore also 

influenced by his behaviour. Smartphones are equipped with multiple sensors like an 

accelerometer, gyroscope, compass, GPS, barometer, light sensor, proximity sensor 

and some even have a pulse sensor.  This variety of sensors enables Smartphones to 

collect sensor data. Current Smartphones also have powerful processors with multiple 

cores and with more than one GHz. This enables them to process the collected sensor 

data and derive context values, such as the mode of transportation  [53][54][55] or the 

user activity like “sitting”, “standing” or “walking” [4]. The processing power can also 

be used to predict future upcoming context values. And with LTE or 3G current 

Smartphones have a fast connectivity, which can be used to trigger actions, based on 

current or predicted context values. On the other hand, using a Smartphone for context 

acquisition and prediction also increases the energy usage of a Smartphone. 

The energy usage of applications for a Smartphone, including context acquisition and 

prediction, is important. The energy amount of a Smartphone is strictly limited due to 

the battery life. An application which increases the energy consumption will decrease 

the battery runtime. Context aware applications are potentially energy-intensive. They 

are usually running in the background gathering sensor data. This is why “even a small 

power requirement has the potential to impact the device more heavily than other 

power hungry but short-lived programs” [5]. Kanhere pointed out how critical this 

problem is when he observed that, „people will stop participating if such applications 

use up their phone battery“[6]. 

To understand whether a modern multiple sensors equipped Smartphones is useable 

for daily sensing, in terms of energy consumption, we conducted an experiment. We 

investigate the energy consumption of different Smartphone sensors in two ways: First 

by measuring with a volt meter and an ammeter and second by the Smartphone internal 

                                                

4 Parts of this chapter have been published in [38]. 
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energy API. This approach enabled us not only to gather the needed information but 

also to compare the Smartphone energy API with actual measured values. We did our 

experiment exemplary with a Samsung Galaxy II (SGII), Samsung Galaxy 3 (SGIII) 

and an iPhone 4.  

In this chapter first the methodology is presented. Afterwards the results are presented 

and discussed. This also concludes the answer whether an average Smartphones can 

be used for a daily sensing and context survey or not. Finally, the conclusion is drawn. 

8.1 Methodology 

We measured the energy consumption of different Smartphone sensors and the 

influence of a certain sensor usage on the battery runtime. This enables us to conclude 

whether a daily sensing and context survey is feasible with an average Smartphone in 

terms of battery runtime. From this measurement, we can also conclude how much a 

certain sensor and therefore a context derived from this sensor costs in terms of energy 

or battery runtime. 

8.1.1 Energy measurement 

The sensors were built in the Smartphone during the measurement. This approach was 

chosen to make the energy measurements simple and practical. One alternative 

approach would be to unsolder the sensors and measure their energy consumption on 

the workbench. Unfortunately, the high integration in modern Smartphones makes it 

impossible to get a single sensor. Multiple sensors are usually combined in single chip. 

The other alternative approach of using the datasheets to simply lookup the energy 

consumption was also not possible. The sensor chips used in Smartphones are 

customized to the Smartphone manufactures constrains and they usually to not publish 

datasheets of such customisations. Our approach of testing the sensors in system is 

also much closer to the aimed scenario of using the sensors inside the Smartphone in 

daily life.  

The energy consumption was measured in two different ways. First we started with 

measuring the energy consumption of different Smartphone sensors by utilizing the 

Smartphone internally provided energy usage API. But to validate our measurements 
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we decided to repeat the same measurement with a volt meter and an ammeter 

connected to the Smartphone battery. This approach also enables us to compare the 

differently made measurements and examine the API precision. 

The API based measurement was made by utilizing the Smartphone internal energy 

APIs. As the APIs provide different values, depending whether an Android or iOS 

based phone is used, we had to use two different approaches. In Android based devices 

the energy consumption is provided directly. Therefore, we wrote an application which 

logs this energy consumption. In iOS based devices the battery status is provided. We 

wrote an application to log the battery status and calculated the energy consumption 

afterwards. 

For the meter based measurements we used two PeakTech 3415 USB digital data 

logger multimeters. They have an accuracy of ±1.5% in current range and ±0.5% in 

voltage range. The battery of a Smartphone was removed during measurement and 

connected to a special adapter. This enabled the interconnection of the meters between 

the Smartphones and their batteries. The schematic setup and a picture of an actual 

measurement are shown in Figure 21. The multimeters were also connected to a PC 

which stored the measured values into a file with a sample rate of 2 Hz. 

 

 

Figure 21: Schematic setup of the measurement(left) and measurement setup (right) 
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8.1.2 Investigated Smartphones and sensors 

We used four different Smartphones to measure the energy consumption: two different 

models of the Samsung Galaxy II (GT-I9100 and GT-I9100G), a Samsung Galaxy III 

(GT-I9300) and an iPhone 4 (MC603DN). We did our first series of measurements 

with the Samsung Galaxy II and the iPhone. But the results varied widely so we 

decided to add another hardware revision of the Samsung Galaxy II and a Samsung 

Galaxy III. As it turned out the additional measurements with the other Samsung 

Galaxy versions were much closer to one of the first measurements. The large diversity 

between our first two measurements is discussed later in the discussion section. 

The investigated iPhone showed some restrictions for the measurement. In the 

Samsung phones the sensors can be switched on and off separately. That is not possible 

for the iPhone. If the iPhone enters standby mode some processes are stopped, like 

sensing with the accelerometer. Therefore, we avoided the standby mode by 

deactivating the idle time of the iPhone. This lead to a problem concerning the display. 

The display is automatically switched off either by the idle timer or by the proximity 

sensor. To keep the measurement realistically, the display had to be turned off, as most 

of the time in a daily use of a Smartphone the display is turned off. Thus we decided 

to switch the display off by covering the proximity sensor. Therefore, the proximity 

sensor had to be turned on during all measurements. Another limitation of the iPhone 

is the accelerometer cannot be turned off, even when the rotation lock is activated. And 

a last limitation of the iPhone was a more practical problem. The back cover of the 

phone had to stay unattached during our measurement setup, to have access to the 

accumulator. However, with a removed back cover it was not possible to activate 

cellular connection on the iPhone. 

The sensors whose energy consumption should be measured had to be available on all 

devices, to compare the measurements afterwards. Therefore, we chose four sensors: 

the accelerometer, the proximity sensor, the gyroscope and the compass. We also 

decided to do add a measurement with an activated 3G connection and activated 

sensors. According the limitations described in the last paragraph, we did five different 

combinations of sensors and activated 3G:  

1. only the proximity and the accelerometer activated,  
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2. the proximity sensor, accelerometer and gyroscope,  

3. the proximity sensor, accelerometer and compass,  

4. the proximity sensor, accelerometer, gyroscope and compass,  

5. the proximity sensor, accelerometer, gyroscope and compass with an activated 3G 

connection. 

8.1.3 Measurement procedure 

All measurements were repeated three times and the average was taken afterwards. 

Each measurement was done with a certain Smartphone model and a certain sensor 

combination. The procedure of a single measurement was: fully charge the 

Smartphone and disconnect the phone from the charger, connect the measurement 

setup between the phone and the battery, activate a certain combination of sensors and 

then measure the energy consumption. 

To measure the energy consumption of a sensor as accurate as possible while it is 

Smartphone built in, side effects have to be reduced as much as possible. Before the 

measurement was started the phone was rebooted. Wi-Fi and Bluetooth were 

deactivated. The 3G connection was only activated in measurement number five. Only 

our measurement application was running. All other applications were closed with the 

multitasking toolbar or the task manager. 

8.2 Results of energy measurements 

In this section the results of the measurements are shown. Each Smartphone model is 

presented in a single table. Each table contains the measurements one till five and is 

made of two sections, one for the results of the API based measurements and one for 

the results of the voltmeter and ammeter measurements. The ‘Average P’ column 

contains the measured values. The ‘ΔP’ column contains the calculated difference 

caused by a single sensor or combination. 

Table 6: Measured consumptions of iPhone 4 sensors 

 Power consumption measured 
using software API 

Power consumption measured 
using volt meter and ammeter 
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Sensor Average P ∆P Average P ∆P 

Accelerometer, Proximity 102.90mW --- 121.99mW -- 

Accelerometer, Proximity, Gyroscope  153.13mW 50.32mW 175.59mW 53.60mW 

Accelerometer, Proximity, Compass 163.31mW 60.41mW 188.40mW 66.41mW 

Accelerometer, Proximity, Gyroscope, Compass 204.28mW 101.38mW 212.37mW 90.38mW 

Accelerometer, Proximity, Gyroscope, Compass, 3G 222.91mW 120.01mW -- -- 

 

Table 7: Measured consumptions of Samsung Galaxy II GT I9100 sensors 

 Power consumption measured 
using software API 

Power consumption measured 
using volt meter and ammeter 

Sensor Average P ∆P Average P ∆P 

Accelerometer, Proximity 436.24mW -- 514.55mW -- 

Accelerometer, Proximity, Gyroscope  895.20mW 458.96mW 996.49mW 481.94mW 

Accelerometer, Proximity, Compass 976.8mW 540.56mW 1102.13mW 587.58mW 

Accelerometer, Proximity, Gyroscope, Compass 1294.34mW 858.10mW 1510.41mW 995.86mW 

Accelerometer, Proximity, Gyroscope, Compass, 3G 1365.3mW 929.06mW 1686.85mW 1172.3mW 

 

Table 8: Measured consumptions of Samsung Galaxy II GT I9100G sensors 

 Power consumption measured 
using software API 

Power consumption measured 
using volt meter and ammeter 

Sensor Average P ∆P Average P ∆P 

Accelerometer, Proximity 135.83mW -- 129.76mW -- 

Accelerometer, Proximity, Gyroscope  155.85mW 20.02mW 150.90mW 21.14mW 

Accelerometer, Proximity, Compass 208.46mW 72.63mW 201.80mW 72.04mW 

Accelerometer, Proximity, Gyroscope, Compass 217.06mW 81.23mW 227.82mW 98.06mW 

Accelerometer, Proximity, Gyroscope, Compass, 3G 237.67mW 101.84mW 249.68mW 118.92mW 

 

Table 9: Measured consumptions of Samsung Galaxy III GT I9300 sensors 

 Power consumption measured 
using software API 

Power consumption measured 
using volt meter and ammeter 

Sensor Average P ∆P Average P ∆P 

Accelerometer, Proximity 219.79mW -- 229.79mW -- 

Accelerometer, Proximity, Gyroscope  270.69mW 50.9mW 273.58mW 44.29mW 

Accelerometer, Proximity, Compass 275.98mW 56.19mW 274.54mW 45.25mW 

Accelerometer, Proximity, Gyroscope, Compass 301.46mW 81.67mW 302.71mW 73.42mW 

Accelerometer, Proximity, Gyroscope, Compass, 3G 335.46mW 115.67mW 321.23mW 91.94mW 
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Table 10: Battery runtime 

 iPhone 4 Samsung 
Galaxy II GT 

I9100 

Samsung 
Galaxy II GT 

I9100G 

Samsung 
Galaxy III GT 

I9300 

Sensor T T T T 

Accelerometer, Proximity 51.06h 11.86h 47.95h 33.81h 

Accelerometer, Proximity, Gyroscope  34.31h 6.81h 40.46h 28.4h 

Accelerometer, Proximity, Compass 32.17h 6.25h 30.25h 28.3h 

Accelerometer, Proximity, Gyroscope, Compass 25.72h 4.71h 26.8h 25.67h 

Accelerometer, Proximity, Gyroscope, Compass, 3G 23.57h 4.471h 24.25h 24.19h 

    

 

  



78 

 

 

Figure 22: [%] difference of API values compared to meter based values  

8.3 Discussion of the results 

The discussion of the results in this section focuses on three main aspects. First, can 

an average Smartphone be used for a daily sensing, concerning the battery runtime? 

Second: How precise is the API based measurement, compared to the volt meter an 

ammeter based measurement? And third: How much does the selected Smartphone 

model influence the sensor energy usage? 

8.3.1 Duration of battery runtime for a daily sensing 

We derived the battery runtime for each Smartphone model and for each sensor usage 

from our measurements, as shown in Table 10. All investigated Smartphones reach 

even with all sensors and 3G activated a runtime of about 24h, with one exception 

(Samsung Galaxy II GT I9100, the exception is discussed in subsection 8.3.3). With 

this result we can conclude an average Smartphone can be used for a daily sensing and 

context survey. 
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iPhone 4 -15,59% -6,12% -9,03% 12,17%
SGII GT I9100 15,22% -12,96% -13,92% -16,20% -21,91%
SGII GT I9100G 4,68% 3,18% 3,19% -4,96% -5,05%
SGIII GT I9300 -4,55% -1,07% 0,52% -0,41% 4,24%

-25%
-20%
-15%
-10%
-5%
0%
5%

10%
15%
20%

[%
] d

iff
er

en
ce

 o
f A

PI
 v

al
ue

s 
co

m
pa

re
d 

to
 m

et
er

 b
as

ed
 v

al
ue

s



79 

 

The chosen scenarios of Smartphone usage are not limiting the general aspect of the 

measurements. During our measurement the screen of the Smartphone was switched 

off. Also no phone call was made or no massaging or web surfing was done. These 

activities are probably done in an everyday Smartphone usage and decrease the battery 

runtime additionally. Nevertheless, a Smartphone user usually charges the battery 

overnight. Thus the battery runtime of about 24h still leaves the phone with some 

energy for those daily activities. 

8.3.2 Comparison of measurement method 

As mentioned before we choose a dual approach to measure the power consumption 

of the Smartphone sensor. The first approach was to simply log the Smartphone 

internal API battery runtime values. The other chosen approach was to connect a volt 

meter and an ammeter, so the API results can be verified. 

After our measurement we not only have the ability to get the power consumption 

values of different Smartphone sensors but also to examine how accurate the 

Smartphone energy API is working. Therefore, we compared the meter based values 

with the API based values. As we consider the meter based values to be more accurate, 

we used them as base and related the API values to them. The result of the relation can 

be seen in Figure 22. For the iPhone the API values diverge up to 16% from the 

multimeter values. The API values of the Samsung Galaxy II (GT I9100) diverge up 

to 22% and the values from the other Samsung Smartphones (GT I9100G, GT I9300) 

diverge less than 6%. 

8.3.3 Influence of Smartphone model 

Three of the four investigated Smartphones have a similar battery runtime under sensor 

usage while one phone differs greatly in battery runtime from the other Smartphones. 

With a certain sensor combination, the Samsung Galaxy II (GT I9100) consummates 

more than 1.4W while the iPhone 4 with the same sensors activated only consummates 

about 212mW, which is less than a sixth of the power.  

We cannot tell which component of the Samsung Galaxy II (GT I9100) consummates 

the measured 1.4W but most probably it is not the sensor itself. Most of the power has 

to be distributed as heat from the Smartphone components. The usual sensor ICs are 
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not capable of distributing 1.4W in heat with a passive cooling, but the main CPU of 

the Smartphone is. Also the area where the processor is located was getting fairly 

warm. The increased power consumption also correlates with our observation of the 

reduced battery runtime, shown in Table 10. 

 

8.4 Conclusion on energy consumption 

In this chapter we investigated the energy consumption of the Smartphone sensors 

accelerometer, gyroscope, proximity and compass in four different Smartphone 

models. We did this to conclude whether an average Smartphones can be used for a 

daily sensing and context survey. To get the answer to this question we measured the 

consumption of the sensors and combination of sensors with a volt meter and an 

ammeter and also with the help of the Smartphone’s internal energy API. We also made 

some measurement with activated 3G connectivity, and we also measured the runtime 

of the battery when all sensors are activated. 

The runtime of three of the four investigated Smartphones with all sensors activated 

was about 24 hours. Therefore, we can conclude that a modern Smartphone can be 

used for a daily sensing and context survey.  Another finding is the usability of the 

energy API of Smartphones for energy measurements. The API values differ from the 

meter values about 22% which enables it for an approximation, but not for a detailed 

investigation. 
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9. Conclusion 

In this work the use of multiple context sources for context prediction was proposed. 

Therefore, we investigated four different aspects in the use of multiple context sources, 

each summarized in the next paragraphs. 

First we investigated whether a combination of multiple context sources can really 

increase the prediction accuracy. We decided to perform an experiment and therefore 

we also had to propose a certain method of how to combine several sources for 

prediction. The results of the experiment based on both, real world data and simulated 

data showed an increase of 4% to 7% of prediction accuracy. In the same investigation 

it was also shown that the prediction accuracy will not increase or even decrease when 

multiple sources are combined in the wrong way. 

Second we examined on the selection of beneficial context sources. As we found out 

some combinations of context source will increase the prediction accuracy while 

others will not, because they irritate each other. We presented a method of how to 

choose beneficial combinations of context sources and we also did an experiment to 

verify the presented method. 

Third we investigated the effect of stability against sensor disturbances when multiple 

context sources are used. Robust prediction systems are needed in real life application 

because disturbances will always occur in sensors. We made an experiment on real 

world data and simulated data, where we first artificially introduced different amounts 

of disturbances and afterwards measured the influence on the prediction accuracy. The 

prediction approach utilizing only one context source lost 35% – 73% of prediction 

accuracy while the approach utilizing two context sources lost only 0% - 11% of 

prediction accuracy, when 50% of the history data for the tests were disturbed. 

Forth we explored whether a modern Smartphone can be used for a daily context 

survey when multiple sensors are used. The energy of a Smartphone is limited and thus 

the use of multiple sensors will reduce its runtime. We did an experiment where we 

measured the energy consumption of several sensors and combinations of sensors in 

four different Smartphones. As it turned out most Smartphones have a battery runtime 

of about 24 hours when all sensors are activated. Only one Smartphone lasted only 
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about 4 hours. This makes the Smartphone a suitable device to collect sensor data for 

multiple context sources. 

Our daily environment gets equipped more and more with sensors, in the form of smart 

home sensors, sensors in Smartphones or sensors in wearables. This work emphasizes 

the use of multiple of the available sensors in multiple context sources in parallel, to 

enable an acceptable application of context prediction.  
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