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1. Introduction 

Livestock production is the largest user of land in the world for grazing and 

production of feed grains and agricultural products. The global demand for livestock 

products is expected to further increase due to population growth, rising incomes 

and urbanization (Bruinsma, 2003). Increase in market demand for meat and milk 

products, to provide food for a growing population, has led to a rapid growth in the 

scale of cattle and pig enterprises globally. For example, by 2014 the global numbers 

of live cattle and pigs had reached 1475 and 986 million heads, respectively (Table 

1.1). With an increase of 10.8 % in the global human population in the last decade, 

there has been a significant increase in pig and cattle meat production (around 

32.6% and 9.2% growth, respectively). As the scale of animal husbandry around the 

world increases, addressing the issue of animal welfare becomes more essential. 

Table 1.1- Changes in the global human population, cattle and pig inventories and 

production between 2005 and 2014 (faostat.fao.org). 

 2005 2014 Growth (%) 

Human population (billion) 6.5 7.2 10.8 

Live cattle (million) 1387.5 1474.5 6.3 

Live pigs (million) 883.8 985.7 11.5 

Cattle meat (thousand tonnes ) 59245.8 64681.1 9.2 

Pig meat (thousand tonnes) 94352 115313.7 32.6 

Cow fresh milk (thousand tonnes) 543444.2 655957.9 20.7 

 

  The relationship that people have with animals, and the duty they have to ensure 

that the animals under their care are treated correctly, is fundamental to animal 

welfare. Livestock welfare can be defined using such parameters as their behaviour, 

physiology, clinical state and performance (Averós et al., 2010; Costa et al., 2014; 

Nasirahmadi et al., 2015).  There are many links between animal behaviour, health, 

emotions and welfare, and identification of appropriate behaviours helps to deliver 

better health, welfare and production efficiency (Nasirahmadi et al., 2017b). 

Behaviour plays an essential role in transmission of disease, and veterinarians use 

changes in animal behaviour for diagnosis of disease in some cases (Broom, 2006). 

For instance, a cow with lameness may arch its back and has abnormal walking.  It is 

believed that emotions evolved to reinforce performance of behaviours important 

for survival, such as obtaining food and avoiding danger. In pigs, for example, hunger 

plays an essential role in their motivation for directing exploratory behaviour 

(Murphy et al., 2014).  
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Consumers and the wider society are increasingly concerned about the welfare, 

health and living conditions of farm animals. Awareness of animal needs underpins 

new production standards for animal health and welfare. Animals need to access 

fresh water and correctly formulated diets, which ensure gaining sufficient live 

weight and promote good animal health (Petherick, 2005). The appropriate 

environmental conditions lead to good animal welfare. High or low ambient 

temperatures, ventilation rate, and humidity are examples of environmental factors 

that may affect animal welfare. Animals also need proper facilities (e.g. space, 

housing, handling) to express normal behaviour without fear and distress. Early and 

real-time detection of normal and abnormal behaviours of animals reduces the cost 

of animal production, limiting losses from diseases and mortality, and improves the 

job satisfaction of the owners. However, due to the current scale of production, 

there is increasing awareness that the monitoring of animals can no longer be done 

by farmers in the traditional way and requires the adoption of new digital 

technologies.  

  The advancement of knowledge and technology in the current century, along 

with human expectations for adequate and high-quality livestock products, has 

therefore enhanced the need for improved production monitoring. Pig and cattle 

behaviour can provide information about their barn environmental situation, food 

and water adequacy, health, welfare and production efficiency. Real-time scoring of 

livestock behaviours is challenging, but the increasing availability and sophistication 

of technology make automated monitoring of animal behaviour practicable. With the 

development of new technologies, the application and integration of new sensors 

and interpretation of data from multiple systems with reducing processing times 

means that information supply for farmers and researchers has become easier 

(Barkema et al., 2015). There are many studies in the literature that demonstrate 

how such technologies can help in observation of both normal and abnormal 

behaviours of animals. Examples include studies based on Radio Frequency 

Identification (RFID), which is a wireless system included two parts: a data-carrying 

device (tags) and readers. In RFID, data are transferred by means of magnetic fields 

between tag and reader (Maselyne et al., 2014). The reader is a device with 

antennae to emit radio waves and receive signals from the tag. The tag uses radio 

waves to communicate its identity and other information to the readers. RFID have 

been used for locating animals, for detection of feeding and/or drinking behaviours 

of cattle (Sowell et al., 1998; Quimby et al., 2001; Wolfger et al., 2015; Shane et al., 

2016) and pigs (Reiners et al., 2009; Brown-Brandl et al., 2013a; Brown-Brandl et al., 

2013b; Andersen et al., 2014; Maselyne et al., 2014; Gertheiss et al., 2015).  
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There are many studies in the literature of methods by which technology and sensors 

help in observation of both normal and abnormal behaviours of animals, namely 

drinking, feeding, lying, locomotion, aggressive and reproductive behaviours. Further 

examples of the application of new technology are activity and lying behaviour 

monitoring in cattle and pigs using acceleration sensors attached to the animals 

(Robert et al., 2009; Trénel et al., 2009; Ringgenberg et al., 2010; Jónsson et al., 

2011). An accelerometer is an electromechanical device that measures the 

acceleration of both static and dynamic forces. This technique has been widely 

applied for locomotion and lameness assessment (e.g. Nielsen et al., 2010; Grégoire 

et al., 2013; Conte et al., 2014; Van Nuffel et al., 2015),  as has the use of other 

sensors which have been reviewed by Schlageter-Tello et al. (2014) for cows and 

Nalon et al. (2013) for pigs. However, attachment of sensors to monitor animal 

behaviours may cause stress and, in some cases, is impractical to use for scoring 

group behaviours due to their cost and vulnerability. One of the other technologies 

which has been used for a wide variety of applications in agriculture, industry, food 

engineering and animal science is the machine vision technique, which can provide 

an automated, non-contact, non-stress and cost-effective way to achieve animal 

behaviour monitoring requirements (Shao and Xin, 2008; Costa et al., 2014; 

Nasirahmadi et al., 2016b; Oczak et al., 2016).  

 In conclusion, to address the growing demand for meat and milk products, 

livestock farming has been scaling up during the last two decades. This gives new 

challenges in optimising the management of animal farming, which can be helped by 

the automated monitoring of farm processes (Banhazi et al., 2012). Automatic 

computer imaging systems could help both farmers and researchers to address the 

problems of monitoring animals, e.g. for visual scoring, animal weighing and other 

routine tasks which are both time-consuming and costly, and could result in more 

objective measurements by means of image processing techniques. A machine vision 

approach is a cheap, easy, non-stressful and non-invasive method which can be 

adapted to different animals, in both indoor and outdoor situations, using the 

animals͛ natural features (e.g. shape, colour, movement) for monitoring their 

behaviours. 

 

2. Objectives of the research  

 For many years, human observations of animals have been carried out to assess 

their behaviour, health and welfare. The main problem with this approach is the high 

requirement for both time and cost for complete monitoring of the farm. This is most 

challenging in large-scale farms with a high number of animals.  
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The overall objective of this study is to develop an automatic, computer-based 

monitoring system for behaviour of group-housed pigs.  The specific objectives 

include:  

1. Developing automatic machine vision based detection for lying behaviour of 

pigs in groups. 

2. Defining and categorising the group lying patterns of pigs. 

3. Automatic assessment of lying pattern changes of pigs after enrichment 

substrate provision. 

4. Developing an automatic computer-based detection system for mounting 

behaviour in pigs. 

 

 The research is presented in the form of state of the art image processing and 

neural networks algorithm development, farm experiments and application of the 

algorithms in the commercial farm situation. To date, no automatic lying behaviour 

detection system, along with different mathematical descriptions of group lying 

patterns in different ambient temperatures, or automatic mounting behaviour 

detection systems have been presented. To achieve this, different image processing 

algorithms in MATLAB® were developed to monitor pig behaviours captured from 

Closed Circuit Television (CCTV) cameras.  

 The present thesis, relating to the development of an automatic machine vision 

system for monitoring behaviours of pig groups, is structured in 8 sections. Section 3 

and its sub-sections provide a review of  literature on different types of camera and 

imaging systems used in livestock monitoring, the use of image processing for 

individual physical characterization of cattle and pigs and the monitoring of 

behaviours which may happen within the group. Section 4 covers material and 

methods for this research. Section 5 and 6 present results and discussion of the 

experimental components, along with an overall discussion of the research, while 

section 7 highlights future research needs. Summaries of the research in English and 

in German are given in section 8 and 9. Finally, references are presented in section 

10. 

  

3. Literature review  

3.1. Imaging systems for livestock monitoring 

 Image acquisition, which is the first step of any machine vision system, is defined 

as transfer of the signals from a sensing device (i.e. camera) into a numeric form.  

Cameras are a crucial element in machine vision applications, however each type of 
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camera offers different information on parameters of the image. The cameras 

applied in cattle and pig behaviour detection can be divided into Charge Coupled 

Device (CCD), infrared (IR) and depth sensor cameras.  

 The CCD cameras create images in two dimensions and are sensitive to visible 

bands reflected from objects (Mendoza et al., 2006). These types of camera need an 

additional source of light to make the image visible and the machine vision system 

consists of single or multiple cameras, i.e. video surveillance cameras, capturing 

objects which are visible to a human. Examples of using this type of camera in 

livestock behaviour detection are Shao et al. (1998), Hu and Xin (2000), Porto et al. 

(2015), Nasirahmadi et al. (2016b). The captured images are potentially suitable for 

image processing algorithms to extract image features based on colour, shape and 

textural properties. CCD cameras have the ability to detect pixels of objects in red, 

green and blue (RGB) bands. Nowadays, different image processing algorithms help 

to convert these bands to grey, hue, saturation, intensity and other parameters.  

 Infrared or thermal cameras work similarly to optical or common CCD cameras, in 

that a lens focuses energy onto an array of receptors to produce an image. By 

receiving and measuring infrared radiation from the surface of an object, the camera 

captures information on the heat that the object is emitting and then converts this to 

a radiant temperature reading (James et al., 2014; Matzner et al., 2015). Thus, while 

CCD cameras measure the radiation of visible bands, thermal cameras detect the 

characteristic near-infrared radiation (typically wavelengths of 8–ϭϮ μŵͿ of oďjeĐts 
(McCafferty et al., 2011). Thermal imaging was developed for industrial, medical and 

military applications, but it has also been applied in many livestock production 

studies as reviewed by Eddy et al. (2001), Gauthreaux and Livingston (2006), 

McCafferty (2007), McCafferty et al. (2011). All live animals emit infrared radiation, 

and the higher the temperature of an object, the greater the intensity of emitted 

radiation and thus the brighter the resulting image (Kastberger and Stachl 2003; 

Hristov et al., 2008).  

 In the last decade, the number of applications related to Three Dimensional (3D) 

imaging systems in machine vision has been growing rapidly, thanks to improved 

technology and reducing cost. The use of this type of imaging system in agricultural 

products has been recently described (Vázquez-Arellano et al., 2016).  Depth imaging 

is a core component of many machine vision systems and, within this technology, 

time of flight (TOF) and Kinect cameras have been used widely in livestock 

applications. TOF cameras sense depth by emitting a pulse and then measuring the 

time differential for that emitted light to travel to an object and back to a detector. 

They can provide a 3D image using an infrared light source and CCD detector (Kolb et 
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al., 2010; Pycinski et al., 2016) and the camera lens gathers the reflected light and 

images it onto the sensor or focal plane (Figure 3.1). 

 

      Figure 3.1- Time-of-flight (TOF) phase measurement principle. 

 The 3D depth sensing makes it possible to overcome common issues causing 

problems with Two Dimensional (2D) imaging systems, such as background removal, 

segmentation, feature extraction and sensitivity to lighting variance. TOF systems are 

limited by the number of data points that they capture at a given time and their 

relatively limited field of view. Therefore, TOF systems can lead to accuracy errors 

(Shelley, 2013). Although it is much easier and cheaper to use the 3D camera 

approach in farm environments rather than stereo vision, Laser or 2D triangulation, 

which are common alternatives for 3D reconstruction, the depth images still require 

some processing work to remove unwanted objects (e.g. noise, background), and in 

some cases calibration to deliver better results is needed. The Kinect sensor, 

introduced in 2010 and based on the TOF principle, made it possible for software 

developers to acquire a skeletal model of the user in real-time with no calibration 

needed (Han et al., 2013). The Kinect sensor lets the machine sense the third 

dimension (depth) of the object and the environment by employing data from a RGB 

camera, an infrared projector and infrared camera making the task much easier (Han 

et al., 2013; Nathan et al.,2015; Westlund et al., 2015; Marinello et al., 2015).  

 Once the basic images have been captured from these different camera systems, 

they are transferred onto a computer and are converted to digital images. The image 

processing technique enhances the quality of images by eliminating defects such as 

geometric complexity, inappropriate focus, repetitious noise, non-uniform 

illumination and camera motions or by the improvement of important features of 

interest (Narendra and Hareesh, 2010).  
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3.2. Image processing techniques used for characterising individual livestock 

Although livestock usually live in groups, monitoring of individual animals is one of 

the main goals of researchers. Most individual studies on cattle and pigs have been 

concerned with inspection of their weight and body condition as well as 

measurement of their health and sickness characteristics, such as mastitis in cows. 

Some of the characteristics are expressed in the form of individual animal monitoring 

indices, which will be addressed in the following paragraphs along with their image 

analysis strategies applied.  

 

3.2.1. Live weight 

 Knowledge of the live weight of pigs plays an important role in the control of 

performance-related parameters which affect the output of the herd, i.e. animal 

growth, uniformity, feed conversion efficiency, space allowance, health and 

readiness for market (Schofield, 1990; Brandl and Jorgensen, 1996; Wang et al., 

2008; Kongsro, 2014). An individual pig͛s live weight is usually obtained using manual 

or automatic weighing scales, to which pigs are driven in a way which is laborious 

and stressful to both the animal and the workers (Wang et al., 2008; Kongsro, 2014), 

while automatic scales are usually costly devices (Kongsro, 2014).  

 Information extracted from the literature shows a range of different image 

processing methods for monitoring pigs͛ live weight. Based on length and width 

dimensions of pigs (i.e. length from scapula to snout, length from tail to scapula, 

shoulder width, breadth at middle and breadth at back) and boundary area, some 

researchers (Schofield, 1990; Brandl and Jorgensen, 1996; Schofield et al., 1999; 

Doeschl-Wilson et al., 2004) have used top view CCD cameras to obtain estimates of 

individual pig live weight. Live weight has also been estimated by means of a top 

view image with extracted features including area, convex area, perimeter, 

eccentricity, major and minor axis length and boundary detection, along with 

Artificial Neural Network (ANN) methods (Wang et al., 2008; Wongsriworaphon et 

al., 2015). Recently a fully automated weight estimation technique has been 

introduced to estimate a marked pig͛s weight individually (Kashiha et al., 2014b; Shi 

et al., 2016). Furthermore, approaches for pig live weight estimation by means of a 

Kinect camera have utilized infrared depth map images (Kongsro, 2014; Zhu et al., 

2015).  

 Similarly, image processing has been used to measure cattle live weight due to 

the importance of live weight monitoring for milk and meat production, along with 

the difficulty of manually determining live weight on farm due to stress for the 

animals and their potential to cause damage to themselves, humans and weighing 
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equipment. Tasdemir et al. (2011a and 2011b) and Ozkaya (2013) utilized top and 

side view cameras for cow live weight detection, using features like hip height, body 

length, hip width and chest depth extracted from images, along with multi-linear 

regression and fuzzy rule models. Previously, a thermography and image analysis 

based method was developed by Stajnko et al. (2008) for measurement of the live 

weight of individual bulls. The thermal camera was able to separate the bull from the 

surroundings accurately and the measurements were based on the tail root and front 

hoof templates on each image. Moreover, a TOF camera method has recently been 

applied for body weight detection of cows based on 3D body and contour features 

(Anglart, 2016). 

 

3.2.2. Body shape and condition 

 Body shape and condition of a live pig/cow is an important indicator of its health, 

reproductive efficiency and value, whether for breeding or for carcass quality (Wu et 

al., 2004; Bercovich et al., 2013; Fischer et al., 2015). Assessment of live animal body 

condition by eye or hand is time and labour intensive and highly dependent on the 

subjective opinion of the stockman. However, imaging methods have become more 

affordable, precise and fast for on-farm application. Examples of using image 

processing for pig body condition have used 3D cameras for shape detection (Wu et 

al., 2004) and thermal cameras for shape and body contour detection (Liu and Zhu, 

2013). Image processing has been widely utilized for assessment of cow body 

condition, based on anatomical points (points around hook and tail) detected with 

top view CCD cameras (Bewley et al., 2008; Azzaro et al., 2011) and thermal camera 

measurement has been used to assess the thickness of fat and muscle layers and 

provide a body condition score (BCS) (Halachmi et al., 2008; Halachmi et al., 2013). In 

other research, the angles and distances between 5 anatomical points of the cow͛s 

back and the Euclidean distances (Ed) from each point in the normalised tail-head 

contour to the shape centre were used for body shape scoring (Bercovich et al., 

2013). Side view images have also been used for body shape capture of cows, based 

on RGB images and body features (González-Velasco et al., 2011; Hertem et al., 

2013). In order to determine the 3D shape of a cow͛s body, TOF and Kinect cameras 

have more recently been utilized, based on extracting body features and/or back 

postures in 3D images (e.g. Weber et al., 2014; Salau et al., 2014; Fischer et al., 2015; 

Kuzuhara et al., 2015; Spoliansky et al., 2016). 
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3.2.3. Health and disease 

Early detection of symptoms of illness or abnormal behaviour is essential to 

effectively deal with animal welfare and disease challenges in both cattle and pigs, 

and can help minimise lost production and even death of livestock. A method to 

detect the probability of a sick pig was tested by Zhu et al. (2009) by a combination 

of wireless technology and image processing. Monitoring of pigs daily movement, 

eating and drinking behaviours, along with wireless data, was considered as a tool for 

alarming suspected cases. The measurement of body temperature is a common 

method to monitor the health of an animal (Hoffmann et al., 2013). As a result, most 

of the research on health detection is based on surface temperature by using 

thermal cameras (e.g. Schaefer et al., 2004; Montanholi et al., 2008; Rainwater-

Lovett et al., 2009; Wirthgen et al., 2011; Gloster et al., 2011; Hoffmann et al., 2013).  

 Mastitis, which is one of the most common diseases in dairy cows and causes 

major economic loss to dairy farmers, has been detected based on udder surface 

temperature measurement (Hovinen et al., 2008; Colak et al., 2008). Recently, a 

thermography method was also developed for automatic parasite counting on cattle 

bodies to improve their health and welfare. The difference in temperatures between 

ectoparasites, such as ticks and horn flies, and the cow͛s body temperature made it 

possible to detect these parasites in images (Cortivo et al., 2016). However, many 

external parameters (e.g. high or low temperatures, soiled surfaces and variable 

distance from object to lens), together with difficulties in interpretation of animal 

surface temperature, make the real-time monitoring of health and disease using 

thermography more challenging. As a result, in most of the studies other methods 

(e.g. clinical symptoms) have been investigated for their reliability in health problem 

detection.  

 

3.2.4. Tracking 

 In order to automate monitoring of animals͛ health and welfare, tracking 

methods have been developed which differ according to the animal and husbandry 

situations. Livestock tracking tools which have been utilized can be listed as 

Bluetooth, WiFi networks, radio frequency methods and Global Positioning System 

(GPS) (Huhtala, 2007). However, the mentioned tools are more applicable to cattle 

rather than pigs. Pigs normally have more physical contact in pens and cannot easily 

carry electronic devices without risk of damage (Ahrendt et al., 2011). Furthermore, 

for large numbers of pigs many devices are needed which is not economically 

feasible. As a result, tracking animals by machine vision has many possible 

advantages in livestock monitoring.  
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McFarlane and Schofield (1995) applied a top view camera for tracking piglets, based 

on blob edge and an ellipse fitting technique, whereas Tillett et al. (1997) tracked 

individual pigs by using x and y coordinates of shape data of individual pigs over time 

sequences. Furthermore, movement of pigs in feeding stalls was investigated by 

Frost et al. (2000) by applying CCD cameras. Image processing approaches have been 

used for tracking the location of pigs in pens by Guo et al. (2015) and Nilsson et al. 

(2015). In another study, individual piglets were painted with different colours on 

their backs for tracking and the automatic algorithm was based on RGB value 

detection (Jover et al., 2009). In another study, a specific pattern was stamped on 

the back of each pig and ellipse fitting algorithms were employed to localise pigs in 

top view CCD images. Individual pigs were identified by their respective paint pattern 

using pattern recognition techniques (Kashiha et al., 2013b). A real-time machine 

vision system for tracking of pigs was developed by Ahrendt et al. (2011), based on 

building support maps and a Gaussian model of position and shape of individual pig.  

 In general, to improve animals͛ health, welfare and production efficiency, 

monitoring of individual animals plays an essential role in farm management. 

Measuring the individual weight, milk yield and lameness of dairy cows in robotic 

milking and using radio frequency methods of animal movement assessment for 

health detection are some examples of technology application. Image processing 

techniques for individual livestock monitoring seem promising due to drawbacks of 

alternative methods (e.g. price, stress of application and need for contact with the 

animal). The combination of imaging and sensor approaches could be more sensible 

in some cases. For instance the individual animal could be identified by using a 

sensor (i.e. RFID) while health parameters could be monitored by using image data. 

However, monitoring of some individual features (e.g. tracking) is still challenging, 

especially for animals in a herd, and the image processing methods need more 

investigation to address issues in commercial applications.  

 Information from the literature indicates various uses of image analysis methods 

in cattle and pig husbandry. Other than behaviour detection, which will be addressed 

later in this review, examples include teat position detection in robotic milking for 

dairy cows, based on colour and morphology features (Bull et al., 1996; 

Zwertvaegher et al., 2011) and milk yield estimation based on rear view depth, width 

and area of udder (Ozkaya, 2015). Furthermore, heat tolerance in pigs, based on 

surface temperature of group housed pigs, has been monitored (Brown-Brandl et al., 

2013a; Brown-Brandl et al., 2013b; Cook et al., 2015).   

 The validation scales used for evaluating the machine vision detection technique 

and the performance of a behaviour detection system can be described as sensitivity, 

specificity, error rate, precision and accuracy (Grzesiak et al., 2010; Pourreza et al., 
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2012) (Table 3.1). All accuracy results reported here are based on correlation to 

ground truth. Ground truth is used in machine vision to refer to data provided by 

direct observation (manual scoring) in comparison to the information provided by 

image processing. 

 

Table 3.1- Validation criteria for machine vision techniques. 

 

 In the current section, the individual characterisation of cattle and pigs by image 

processing techniques has been reviewed. The detection of behaviours which may 

occur within the group will be addressed in the following sections. 

 

3.3. Image processing techniques used for characterising grouped livestock 

3.3.1. Feeding and drinking behaviour 

 Feeding and drinking behaviours are often thought to provide some indication of 

how much animals are eating or drinking and contain important information that can 

enable better management of animals and detection of problems (Botreau et al., 

2007; Chapinal et al., 2007; Brown-Brandl et al., 2013a; Brown-Brandl et al., 2013b). 

Detecting these behaviours is therefore important in animal husbandry from an 

economic and welfare point of view and plays an essential role in meat and milk 

 

Performance 

 criterion 

                    

                  Equation for calculation 

 

Sensitivity (%) ܶܲܶܲ +  ܰܨ

 

 TP= true positive (correct detection of a relevant behaviour)  

Specificity (%) ܶܰܶܰ +  ܲܨ

 TN= true negative (correct detection of a not relevant behaviour) 

Accuracy (%) ܶܲ + ܶܰܶܲ + ܲܨ + ܶܰ +  ܰܨ

 FP= false positive (incorrect detection a relevant behaviour) 

Error rate   (%) ܲܶܲܨ +  ܲܨ

 FN= false negative (incorrect detection of a not relevant behaviour) 

Precision (%)  ܶܲܶܲ +  ܲܨ
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production. The amount of feed intake and water usage of dairy cattle affects milking 

efficiency (Azizi et al., 2009; Appuhamy et al., 2016) and changes in feeding and 

drinking behaviours in pigs could reflect pig health (Maselyne et al., 2016).  

 Traditionally, feeding behaviour has been monitored through direct human 

observation or using time-lapse video recording techniques (Bach et al., 2004; 

Meiszberg et al., 2009), but  computer controlled feeding stations are now used to 

register the feeding or drinking behaviours of individual animals using electronic 

tagging methods, i.e. radio frequency (Rushen et al., 2012).  

 Recently, machine vision has been used for feeding and drinking behaviour 

detection in cattle and pigs. In order to register the presence of dairy cows in a 

feeding area and detect feeding behaviour, a multi-camera video system for 

obtaining top view images has been applied (Porto et al., 2012; Porto et al., 2015), 

and a classifier based on the Viola–Jones algorithm (Viola and Jones, 2004) by using 

shapes composed of adjacent rectangles (Haar-like features, which is a digital image 

feature for object recognition based on the difference of the sum of pixels of areas 

inside the rectangles) features has been developed. An image which contained the 

object (here cow) was considered as a positive image, whereas a negative one 

contained only the part of the object which made up the background of the image 

and did not contain the target object (cow). The ability of the system to detect cow 

feeding behaviour was reported to have a sensitivity of 87% when compared to 

visual recognition.   

 In another study, a feed intake monitoring system that quantified how much feed 

was distributed to, and consumed by, an individual cow was developed by Shelley 

(2013). A 3D imaging system was implemented to record and monitor the change in 

feed bins before and after feeding. The monitoring equipment measured feed intake 

by the change in volume by recording the 3D image before and after a cow had 

consumed its individual daily feed. The imaging system was placed inside an enclosed 

box to give consistent lighting. By using shape and contour data of feed in the bin, 

the volumetric amount of feed was determined. Once the correlation between feed 

volume and image data was obtained, the process moved forward to determine an 

output value (weight) for the bin of feed, using a linear mapping of volume to weight 

by means of linear regression to derive a single weight-based value of feed. 

In order to automatically recognise feeding and drinking behaviours of lactating 

sows, a depth imaging system (Kinect) was developed by Lao et al. (2016). In this 

method, after removing unwanted objects like feeder and frame pipes, small holes 

from the subtraction in depth images were filled and, by converting the depth image 

to a binary image, the sow͛s physical features including the x-y centroid coordinates, 

head and hip pixels (leftmost and rightmost pixels, respectively) were identified. 
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Then, these features in the depth image of the sow were utilized for dividing the 

body into 7 body parts, namely; all, upper half, lower half, head, shoulder, loin and 

hip. Drinking behaviour was determined by searching sow pixels connected or near 

to the nipple drinker in horizontal distribution and with a height greater than the 

height of the nipple. For feeding behaviour they used the same strategy, registering 

when the head was in the feeder with up and down movement. An accuracy of 

97.4% in feeding and 92.7% in drinking behaviours was reported for the proposed 

method when compared to manual scoring.  

 Previously, a similar approach was recommended by Kashiha et al. (2013a) for 

automatic detection of pig water usage by means of a CCD top-view camera. The 

centroid of the pig͛s body binary image was obtained by analysis of the body contour 

profile, and the distances calculated between the centroid of body and head, tail and 

ears. Drinking was defined when a pig was in the drinking area and based on 

distances of less than 10 pixels between head, ears and drinking nipple which lasted 

for at least 2 s (Figure 3.2). Comparison of results from the developed method and 

the real amount of water usage indicated that the drinking behaviour was detected 

with an accuracy of 92%. 

Figure 3.2- Possible drinking region (left), pigs body contour (right); centre (C), distance to 

tail (d1), to sides (d2 and d6), to ears (d3 and d5), to head (d4) along with distance to nipple 

drink (dn).  (Kashiha et al., 2013a). 

 

In summary, to monitor feeding and drinking behaviours with image processing 

approaches, both 2D and 3D cameras have been utilized. Although, 2D monitoring is 

mainly based on shape and colour features of the animal, some classification models 

have been applied to enhance the process. However, the distance from object to 

camera is the main principle for 3D motion detection of animals. Identification of 

multiple animals during feeding and drinking times presents an additional challenge 
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which is not completely addressed yet by the researchers in this field. Furthermore, 

no study was found based on automatic machine vision to label each animal for the 

usage of feed and water in both indoor and outdoor environments. 

 

3.3.2. Locomotion and lameness behaviour 

 Animal locomotion is defined as the types of movements that an animal uses to 

travel from one place to another, and may lead to conclusions concerning welfare, 

health status, and behavioural disorders of animals (Brendle and Hoy, 2011). Manual 

locomotion scoring is a widely used method to detect lameness in cattle. This is done 

by visually inspecting a cow's standing posture or gait (Sprecher et al., 1997). Cows 

tend to exhibit gait abnormalities (or deviations from a healthy gait) as a reaction to 

pain or discomfort. Locomotion scoring is widely used for lameness detection in cows 

and abnormal locomotion considered as due to pain is based on the observation of 

cows standing and walking (gait), with special emphasis on their back posture (Van 

Nuffel et al., 2015). The use of sensors and different scoring methods for lameness 

behaviour detection has been reviewed (Rutten et al., 2013; Schlageter-Tello et al., 

2014; Van Nuffel et al., 2015; Caja et al., 2016).  

In order to automate cow lameness detection, different machine vision systems 

have been developed. An automatic system for continuous on-farm detection and 

prediction of lameness developed by Song et al. (2008) used a side view CCD camera. 

A background subtraction method was applied to the images and the centre points 

of the cow͛s four hooves were separated and defined in different orientations (left 

fore, left hind, right fore, and right hind) based on the different distances between 

them in the image. By comparing the vertical values (y) with a pre-defined standard 

boundary value, and two horizontal values (x) on each body side, the fore hoof and 

hind hoof were labelled. The correlation between the hoof track way and visual 

locomotion scoring was obtained to check the accuracy of the method, and results 

showed a high average correlation coefficient (94.8%). The presented method was 

not able to distinguish small changes, i.e. Score 1 and Score 2. However, it showed a 

relatively higher success when a simplified scoring system was applied in their study. 

Large variations of overlap measurements for the same individual cow were reported 

(1 to 12 cm), even with constant gait score. Apart from the expected occlusions and 

camera protection problems, their results also indicated that changes in the step 

overlap were not consistently matched by changes in gait score. Step overlap is a 

variable that shows a relationship with manual gait scores, but it is not strong 

enough to be used as a single classifier for lameness in all cows. Later, in another 

approach for recording posture and movement of cows, a camera and pressure 
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sensitive mat were used by Pluk et al. (2012) for recording posture and movement of 

cows. The exact timing and position of placement of the hoof on the ground was 

obtained from the pressure mat. Images from the camera, together with the position 

information, were used for image processing to automatically calculate the touch 

and release angles in the fetlock joint for the designated leg (Figure 3.3).  

 

 

Figure 3.3- Combining pressure and image data for calculation of touch and release angles 

during cow locomotion (Pluk et al., 2012).  

Their results indicated that, by detecting a decrease in the range of motion or an 

increase in the release angle of the front hooves, a large percentage of the cows 

could correctly be automatically detected for early lameness. 

 In order to extract back arch, as a postural indication of lameness, Poursaberi et 

al. (2010) applied circle fitting and standard background subtraction techniques 

along with statistical filtering to get a smoothed binary edge in images. Then, the 

back posture analysis was done by calculating the curvature of the back of each cow 

during standing and walking by fitting a circle through selected points on the spine 

line. The average inverse radius of arc was subsequently used for lameness scoring.  

The sensitivity, error rate, specificity and accuracy of the method were calculated as 

100, 5.26, 97.6 and 94.7 % respectively. Similarly, lameness in cows was detected by 

side view CCD camera by Viazzi et al. (2013), who used back posture with an 

acceptable classification rate (more than 85%). The highest point in the curvature of 

the animal͛s back was used as a starting point to find the body movement pattern. 

Two ellipses were fitted to the left (illustrates the shape of the back around the hip) 

and right (showing the shape of the back around the shoulder) sides of the highest 

point, and their orientations were obtained. Then, the intersection point of the two 

lateral axes of both ellipses, vertical distances between the highest point in the 
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curvature and intersection point, the position of the muzzle, vertical distance 

between the muzzle and longitudinal axis of the right ellipse were used for 

calculation of body movement pattern.  

 In further research by this group (Viazzi et al., 2014a), a 2D (CCD) and a Kinect 

depth sensor were used to measure back posture for abnormal locomotion or 

lameness detection. The algorithm used for the 2D camera was based on back 

posture recognition (Poursaberi et al., 2010; Viazzi et al., 2013), while for the 3D 

image processing approach, each cow was entered separately to the recording area. 

Here, to separate two consecutive cows the minimal distance along the longitudinal 

direction was applied, when the Kinect depth sensor calculated distance between 

the cow and the sensor. Then, the contour of cow back and body orientation found 

in the 3D image was used for lameness detection. The contour of the cow was 

calculated and the distance between the symmetrical axes of the binary image was 

used to extract the head from the body of the cow. By detecting the peak of body, 

the back and neck of the cow were obtained in the image. The body orientation was 

calculated by using the body features and then the highest pixels around the 

orientation axes (10% of the cow width) represented the back spine. The highest 

point in the curvature of the animal͛s back was used for the starting point and then 

the same procedure as already discussed applied for body movement pattern 

calculation. 

Recently, 3D depth video was applied in another study to detect early lameness 

in dairy cows (Abdul Jabbar et al., 2017). The captured top-down 3D image of the cow's 

body was used to segment high curvedness features of hook bones and the spine 

(Figure 3.4). Then, by tracking the segmented regions (hook bones and spine) a proxy 

of locomotion was introduced in the form of height measurements from the tracked 

regions. This proxy was further analysed in the form of gait asymmetry to assess the 

locomotion and detect early lameness.  An accuracy of 95.7% with a 100% sensitivity 

(detecting lame cows) and 75% specificity (incorrectly detecting non-lame cows) was 

obtained using a Support Vector Machine (SVM) classifier. 
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Figure 3.4- Example of depth image representation with a 3D camera: a raw depth cow 

image (left), the same image with the background removed (right) (Abdul Jabbar et al., 

2017). 

Monitoring of pigs͛ locomotion using different technologies can serve different 

purposes, i.e. detection of playing and lying behaviours (Kashiha et al., 2014a), 

lameness detection (Van Riet et al., 2013; Nalon et al., 2013) and welfare assessment 

(Lind et al., 2005). In order to use image processing to assess pig locomotion, a 

software tool was developed based on a combination of image subtraction and 

automatic threshold detection methods (Lind et al., 2005). The drawback for the 

proposed system was that pigs had to be manually controlled by allowing them to 

walk one by one in front of the camera. Kongsro (2013) developed an image 

processing technique using top view images for pig locomotion monitoring. The RGB 

images were cropped to focus on the significant areas of the image and then 

converted to grayscale. Background noise was filtered out by labelling of the biggest 

object after converting grey images to binary. A filter was designed to capture only 

pig cropped RGB images where the centre point was moving. The position of the 

head and ears of the pig was located using the width of the pig, and the positions 

were found using the derivative of the width curves. By finding the image map to 

represent total movement of the pig in a stack of added binary images, and based on 

the fact that the largest values would represent the pixels where the binary pig 

would appear most frequently, the locomotion of the pig was obtained in images. 

Background subtraction and ellipse fitting techniques for localising pigs in top view 

images, and calculating movements of ellipse features, made the tracking of 

locomotion of pigs more accurate (89.9%) (Kashiha et al., 2014a). The principal was 

based on the linear movement of the centre of the fitted ellipse in different time 

frames and the angular movement (orientation of ellipse) for tracking some marked 

pigs in images in a sequence of frames. Locomotion was defined as when a pig 

(centre of fitted ellipse) moved more than 40% of its body length (value in pixels). In 

order to make the technique independent of body size of the pig, the sum of linear 

and angular movements was divided by the length of each pig.  
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Locomotion of groups of pigs has been obtained by finding an activity index (Ott et 

al., 2014). Images of each top view CCD camera were analysed using background 

subtraction algorithms, then the images were binarised to eliminate the background 

and noisy areas were filtered out from the image by a morphological closing 

operator. Calculation of the activity index was based on the difference in pixel values 

between the binary image at time t and that at time t+1. A strong correlation was 

obtained between human observation, as an evaluation tool, and the proposed 

technique.  

 Pig group movement has also been investigated by means of the optical flow 

pattern (Gronskyte et al., 2015; Gronskyte et al., 2016). Optical flow is defined as the 

distribution of the apparent velocities of objects in an image, caused by the relative 

motion between camera and the object. The method was based on the analysis of 

motion and the estimation included optical flow estimation, identification of pigs, 

optical flow filtering and distortion correction, feature extraction, and frame 

classification. In order to determine optical flow a correction method (Horn-Schunck 

method) was applied. Thresholding of the pixel colour values was applied to pig 

movement monitoring, then to identify individual pigs colour map adjustment and 

filtering, blob detection, image dilation and hole filling were applied. SVM as a 

classifier was utilized to classify pigs͛ movement in different transportation and 

slaughterhouse situations. A 6.5% error rate was obtained from the model, however 

the sensitivity and specificity were high at 93.5% and 90%, respectively.  

Locomotion behaviour has also been investigated using the Kinect depth camera 

system to detect pig lameness. Movement of pigs was first captured by using the 

Vicon 3D optoelectronic motion analysis system to detect the characteristic 

locomotory changes of lame pigs (Stavrakakis et al., 2015a). This system was then 

compared with the Kinect sensor to distinguish sound and lame pigs by Stavrakakis et 

al. (2015b). Hemispherical, reflective markers were attached at the central nasal 

bone, the mid-neck proximal to shoulders (frontal to the shoulder widening), the 

posterior mid-thorax, anterior mid-pelvis and tail base of pigs (Figure 3.5). A high 

correlation between Vicon marker trajectory data and the vertical excursions of the 

Kinect sensor on the neck marker was found for lame pigs. 
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Figure 3.5- (left) five reflective Vicon markers, (middle) reflective marker visible on the Vicon 

software, (right) neck marker extracted by Kinect (Stavrakakis et al., 2015b). 

In all, different types of automatic locomotion and lameness behaviour detection 

have been developed. Lameness detection of cows by means of side view CCD 

camera has been adopted in several studies, mainly based on back posture/arc and 

gait asymmetry analysis. However, to have a better detection, a combination of 2D 

and 3D depth images has been applied in other studies. Monitoring of pigs͛ 
locomotion by machine vision techniques is still challenging, due to their similarity in 

shape and size, so using some mark or paint on a pig͛s body or using radio frequency 

tags could be an alternative for short time locomotion tracking. Locomotion 

behaviour characterisation for pain assessment in lame animals, especially in pigs, 

still needs further effort for earlier detection in terms of applying automatic machine 

vision approaches for welfare improvement.  

 

3.3.3. Aggressive behaviour 

 Aggressive behaviour amongst animals includes behaviours that involve actual or 

potential harm to another animal. Most farm animals live in groups and aggressive 

behaviour can be observed in the first days after the mixing of unfamiliar animals, or 

when competition for resources occurs such as during feeding times. This behaviour 

can affect growth, health and welfare of animals and gives rise to economic loses 

from reduced performance. Most studies of aggression detect the behaviours using 

direct observation or video recording with subsequent human decoding. However, 

automatic monitoring of aggressive behaviours in livestock based on image 

processing has recently been developed. A continuous automated detection of 

aggressive behaviour among pigs by means of CCD image features has been 

developed (Viazzi et al., 2014b). Two features were extracted from the segmented 
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region of the Motion History Image (MHI); i) the mean intensity of motion which 

represents how strong and intense the motion is in the image, and ii) the occupation 

index which illustrates the distribution of movement inside the regions. A Linear 

Discriminant Analysis (LDA) was used to classify aggressive interactions in every 

episode with an accuracy of 89.0%, sensitivity of 88.7% and specificity of 89.3%. 

 In another study, the feasibility of a method for aggressive behaviour detection 

based on a percentage of activity index (number of pixels of moving animals/total 

number of pixels) and ANN was tested (Oczak et al., 2014). Five features (average, 

maximum, minimum, sum and variance) of the activity index were calculated from 

the recorded videos (average, maximum, minimum, sum and variance) over different 

time intervals and classified high aggression events with a sensitivity of 96.1%, 

specificity of 94.2% and accuracy of 99.8%. The Kinect depth sensor has also most 

recently been utilised to recognise and classify aggressive behaviour among pigs with 

an accuracy of 95.7% and 90.2%, respectively (Lee et al., 2016). In their study, the 

automatic detection and recognition of pig aggression consists of three modules; the 

pre-processor, the feature generator, and the aggression detector and classifier. The 

depth information related to pigs is obtained using a Kinect depth sensor, then five 

features (minimum, maximum, average, standard deviation of velocity, and distance 

between the pigs) were extracted from the depth image. Finally, the aggression 

detector classified (using SVM) the features to detect the aggressive events, based 

on behavioural sub-types, i.e. chasing (following another pig with biting) and head-

to-head/body knocking (hitting the snout against the head/body of another pig).  

 In addition, a CCD based method was applied to monitor interactions (i.e. body 

pushing, head butting, head pressing, body sniffing) between dairy cows (Guzhva et 

al., 2016). Geometric features (distances) were extracted from every pair of cows 

then the values used as inputs of a SVM classifier with a detection accuracy of 

around 85%. However, although the CCD and Kinect cameras have been applied to 

address aggressive behaviour detection in some studies, further efforts are needed 

in commercial conditions to develop a reliable alarm system for farmers. 

 In addition to the use of machine vision approaches to monitor the behaviours 

reviewed in the preceding sections, other behaviours of group housed animals have 

also been studied. Two of these, which are reviewed in the following sections, are 

the subject of the experimental work in this doctoral thesis.  

 

3.3.4. Lying behaviour  

 Lying behaviour plays a critical role in livestock health and welfare. In dairy cattle, 

the lying behaviour affects the milk production, and deprivation of adequate lying 
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time reduces welfare (Bewley et al., 2010). The duration and frequency of lying bouts 

are behavioural indicators of cow comfort, and adequate opportunity to rest and lie 

down are considered important for maximising meat and milk production (Porto et 

al., 2013; Haley et al., 2000).  

 In order to detect cows͛ lying behaviour in real time, a top view CCD camera 

system was developed (Cangar et al., 2008). The centre point and the orientation of 

cow were calculated in the first image and given to a lying detection algorithm. Lying 

and standing behaviours of a cow were classified as a function of time, based on the 

x–y coordinates of the geometric centre of the animal, back area of cow (m2) and the 

cumulative distance walked. On average 85% of lying and standing behaviours were 

correctly classified. Porto et al. (2013) detected cow lying behaviour with a high 

sensitivity (92%) using CCD cameras based on Viola and Jones algorithm (Viola and 

Jones, 2004).  

 A multi-camera video recording system was installed to monitor a panoramic 

top-view, and positive and negative images were cropped from the panoramic top-

view image of the barn. The positive and negative images were used for training a 

classifier based on the Viola-Jones algorithm, and then each trained classifier was 

tested in testing phase. Although the pixel brightness values of the image areas of 

the stalls were highly variable during the daylight hours, results indicated that images 

used for the training and execution of the lying behaviour detector did not require 

any image enhancement thanks to the classification method.  

 Pigs spend most of their time lying and, in some cases, older pigs lie for up to 

90% of their daily time (Ekkel et al., 2003). Their lying behaviours can provide 

information on environmental factors affecting production efficiency, health and 

welfare. Temperature is the main parameter affecting pigs lying behaviour; at high 

environmental temperatures, pigs tend to lie down in a fully recumbent position with 

their limbs extended and avoid physical contact with others, while at low 

environmental temperatures, pigs will adopt a sternal lying posture and huddle 

together (Hillmann et al., 2004; Spoolder et al., 2012). Design of the pen, location of 

feeders and drinkers, air velocity and humidity are other factors which affect the 

lying behaviour (Spoolder et al., 2012; Costa et al., 2014).  

Observations of the lying behaviour of pigs have already been made in numerous 

studies, often in conjunction with other behavioural and/or physiological features of 

the animals. However, these investigations have generally been carried out under 

experimental conditions, reflected by a small number of pigs in the pen.  

 The influence of floor and surface temperature on thermal behaviour of pigs was 

investigated by Geers et al. (1990). Experiments have been carried out to study the 

lying postures and space occupation (Ekkel et al., 2003; Spoolder et al., 2012), and to 
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assess optimal temperature ranges for fattening pigs of different weights kept in 

pens (Hillmann et al., 2004). The results showed that with increasing temperature, 

pigs were more often lying in the dunging area and without contact with pen mates, 

whilst pigs showed huddling at lower temperatures. The same result was reported by 

Huynh et al. (2005) when investigating the effect of high temperature and humidity 

on the behaviour of growing pigs. Such data have generally been collected either by 

direct observation of the pen or with the aid of video recordings. These methods are 

both labour-intensive and time-consuming (Stukenborg et al., 2011).  

 Accelerometers as sensors have been also used for characterising changes in 

livestock postural behaviour mainly for cattle and sows, but some limitations (i.e. risk 

of destruction and price) make them almost infeasible for research on group-housed 

pigs.  

  There are several recent studies in the literature where computer vision has 

been applied to pig group behaviour (Ahrendt et al., 2011; Kashiha et al., 2013; Viazzi 

et al., 2014; Ott et al., 2014). Image processing features were used as inputs for 

environmental control in piglet houses by Wouters et al. (1990). Shao et al. (1998) 

used CCD cameras to obtain behavioural features from binary images of pigs, namely 

the Fourier transform, moments, perimeter and area, which were used as the input 

data to an ANN to identify pig lying behaviours. The highest rate of correct 

classification was obtained by combination of perimeter, area and moment. 

Subsequently, Shao and Xin (2008) used other features, i.e. object compactness, 

average frequency of pixel change from background to foreground, area occupation 

ratio, and moment invariant, to detect and classify lying behaviours of grouped pigs. 

The developed machine vision system could successfully detect motion of the pigs, 

segment the pigs from their background, and classify the thermal comfort state of 

the pigs. More recently, other studies have been carried out using imaging systems 

to study lying behaviours of grouped pigs in different environmental situations.  

 A research group has performed image processing in pigs focusing on behaviour 

classification (Costa et al., 2013). The aim of this study was to develop an innovative 

method for measuring the activity level of pigs in a barn in real time. An infrared-

sensitive camera was placed over two pens of the piggery, images were recorded for 

24 h a day for eight days during the fattening period, and the activity and occupation 

indices were calculated every second in real time. In a similar study, Costa et al. 

(2014) used infrared sensitive CCD cameras for detection of pig behaviours, including 

lying, in different conditions of ventilation rate, air speed, temperature and humidity. 

The difference between the pixel intensity value of an image and the previous image 

was taken and, from this difference, the binary activity image was calculated by 

setting all pixels between thresholds to 1 and others to 0.  
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Although these studies have concentrated on describing activity and resting 

parameters by image analysis, no specific patterns of change in lying behaviour in 

different environmental circumstances have been investigated in groups of pigs 

under commercial farm conditions. There are different contexts in which knowledge 

of lying behaviour of group-housed pigs could be useful to farmers and researchers. 

Two of these are reviewed below; the first relates to the possibility to automatically 

monitor pig thermal comfort, while the second relates to understanding how pen 

design and management will impact on pig use of different functional areas within 

the pen. 

 

3.3.5. Categorizing pig lying behaviour in relation to the thermal environment 

 The heat regulation capacity of pigs is poorly developed compared to other 

mammals and heat loss is critical for them (Mendes et al., 2013). Controlling 

environmental parameters helps to deliver high health, welfare and production 

performance efficiency (Mount, 1968; Shao et al., 1998). The activity, feed intake and 

lying behaviour of pigs will change in different thermal conditions (Hillmann et al., 

2004; Renaudeau et al., 2008; Spoolder et al., 2012; Weller et al., 2013). When the 

temperature drops, pigs try to increase their heat production by means of 

energetically demanding muscular shivering thermogenesis and they try to reduce 

their heat loss by social and individual thermoregulatory behaviours. Therefore, by 

investigation of pig lying posture and group lying pattern, it could be possible to 

assess how comfortable or uncomfortable they are in their current environment. This 

requires a method to further process and interpret information from the images 

which are captured. 

 ANN is a non-linear modelling technique which can provide the classification 

abilities and processing information into the area of human brain level of 

performance. The ANN has recently been of interest to researchers and engineers in 

various research areas and industries. The ANN is increasingly being applied to the 

dynamic modelling of process operations, pattern recognition, process prediction, 

optimizing, non-linear transformation, remote sensing technology and parameter 

estimation for the design of controllers (Nasirahmadi et al., 2014; Oczak et al., 2014).  

 The ANN model contains an input layer, an output layer and one or more hidden 

layers. The number of neurons in the input is equal to the number of system inputs 

and output layer is equal system͛s outputs. The neurons of the input layer are 

connected with the first hidden layer of the network, the first and last hidden layer 

of the network are connected to second and the output layer of the network, 

respectively (Oczak et al., 2014). 
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Some of the ANN applications in recent years have been in livestock based research: 

dairy cattle (Grzesiak et al., 2010), sheep (Kominakis et al., 2002; Tahmoorespur and 

Ahmadi, 2012) and pigs (Oczak et al., 2014; Wongsriworaphon et al., 2015). The 

performance of classifiers has a significant effect on machine vision outputs 

(Pourreza et al., 2012), and the feed-forward neural network is one of the most 

powerful classifiers, which could be fast enough and acceptable for many processes 

(Khoramshahi et al., 2014). The Multilayer Perceptron (MLP) network has become 

very popular as a feed-forward network architecture; the complexity of the MLP 

network depends on the number of layers and neurons in each one (Chandraratne et 

al., 2007).  

 The frequent fluctuations in external air temperature in the UK make barn 

ventilation management difficult. Room temperature in a building for growing pigs is 

normally kept within their thermal comfort zone (at around 20 oC), and the 

conventional measuring systems in commercial pig farms are based on only one or 

two air temperature sensors at fixed points above pig level (Mendes et al., 2013). 

This system cannot respond quickly to climate changes in farms, so finding a method 

which indicates the thermal experience of the pigs themselves by image processing 

could be a first step to improve control of the ventilation system for better thermal 

comfort and welfare of pigs in the room.   

 

3.3.6. Categorizing pig lying behaviour in relation to use of functional areas in the 

pen 

 The natural behaviour of pigs is to establish separate function areas within their 

living space for behaviours such as feeding, resting, excreting and exploratory activity 

(Stolba and Wood-Gush, 1989). This is important to maintain hygiene and allow 

stable resting behaviour. Pigs are animals which are naturally motivated to root in 

their surroundings and, in natural conditions, spend a large part of their active time 

searching for food (Studnitz et al., 2007). Access to enrichment materials can 

improve pig welfare by reducing the level of aggression (Day et al., 2002) and the 

biting of tails, ears and other body parts (Van de Weerd et al., 2006; Zonderland et 

al., 2008; Jensen and Pedersen, 2010), and allowing the animals to express 

behavioural elements such as feeding and exploring (Bracke et al., 2007; 

Vanheukelom et al., 2012).  

 European legislation states that pigs must have permanent access to sufficient 

quantity of material to enable manipulation behaviours (Commission Directive, 

2008/120/EC). Observations of the use of different enrichment materials for pigs 

have already been made in numerous studies. It has been shown that substrates in 
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which pigs can root are more attractive than hanging toys (Scott et al., 2006). 

Furthermore, use of a rooting substrate can be influenced by its complexity and 

accessibility. For example, Jensen and Pedersen (2007) demonstrated that pigs prefer 

more complex rooting materials and valued maize silage mixed with chopped straw 

about 4 times more than chopped straw. In a subsequent study (Jensen and 

Pedersen, 2010) they confirmed this preference and showed that reducing the 

number of pigs increased the manipulation of rooting material. The nutritional 

properties of rooting material can also influence behaviour. Bolhuis et al. (2010) 

investigated the effect of fermentable starch in barren and enriched pens with straw 

bedding on lying, activity and aggression of pigs. The enriched pens increased 

activity, exploration and play behaviour while declined manipulation of pen mates.  

 In terms of providing enough materials and space for pigs, limited accessibility of 

rooting materials may lead to aggression and restlessness by causing competition in 

groups of pigs (Van de Weerd et al., 2006). Therefore, pigs should have enough 

material and space to allow several pigs to explore and manipulate the material 

simultaneously (Zwicker et al., 2012).  

 This suggests that distribution onto the flooring would be preferable to a 

localised substrate dispenser. Whilst it has been demonstrated that the provision of 

a rooting material is desirable to meet behavioural needs, in pens with solid or partly 

slatted flooring enrichment substrates are often placed into the lying area to avoid 

contamination or passage into the slurry system. However, the provision of 

enrichment material generally increases activity (e.g. Lyons et al 1995) and this might 

be deleterious if resting is disrupted in this area of the pen.  

 Studies on the effect of enrichment provision have generally been done by video 

recording and subsequent human quantification of behaviours, which is both a 

labour-intensive and time-consuming method. Image processing therefore offers an 

automated methodology to assist researchers in studying the influence of pen design 

and management, such as method of enrichment provision, on the establishment 

and maintenance of functional areas by groups of pigs. 

 

3.3.7. Mounting/Reproductive behaviour 

Detecting reproductive behaviour in cows and sows is very important for 

breeding management, as the estrous cycles occur only periodically and correctly 

detecting the signs of estrus is very important for reproductive success and economic 

efficiency of a herd (Tsai and Huang, 2014). Mounting behaviour, defined as when an 

animal lifts its two front legs and puts these or its sternum on any part of the body or 
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head of another animal, is the most widely used indicator of reproductive behaviour 

for estrus detection (Rydhmer et al., 2006).  

 In order to detect mounting among dairy cows, a top view machine vision system 

was developed by Tsai and Huang (2014). In a mounting event, initially one cow 

closely follows another cow for a few seconds, so the following and mounting 

behaviours were identified based on the changes of moving object lengths in binary 

images in sequential frames. The following behaviour yields a moving object with the 

length of approximately 2-cows in images. The length of the moving object in images 

will then be changed to roughly 1.5 cows while they are performing the mounting 

behaviour. Finally, an operator (farmer) is required to view the recorded video 

frames to confirm that the detected results are true estrus/mounting events.  

 Both male and female growing pigs also perform mounting events, with different 

frequencies (Rydhmer et al., 2006; Hemsworth and Tilbrook, 2007). Mounting 

behaviour amongst pigs can increase the risk of injuries, such as bruises and damage 

to the skin when pigs mount one another and scratch the back with the claws of the 

forelimbs (Faucitano, 2001; Harley et al., 2014), and lameness or leg fractures 

(Rydhmer et al., 2004). These injuries and the general unrest in the group can have 

considerable negative economic consequences (Rydhmer et al., 2006). Although the 

level of activity declines with increasing weight, mounting behaviour (Thomsen et al., 

2012), and skin lesions and lameness (Teixeira and Boyle, 2014), happen during the 

entire growing period of pigs.  

 Investigations of the mounting behaviour of pigs have already been made in 

different studies. However, these have generally been carried out using direct visual 

observations to sample behaviour under experimental conditions, reflected by a 

small number of pigs in the pen. Hintze et al. (2013) developed an ethogram of 

different types of mounting behaviours and their consequences. According to their 

classification, sexual mounts were longer than non-sexual mounts and were 

associated with more screaming, which is an indicator of stress and reduced welfare 

in pigs, by the mounted animal.  

 Every year approximately 100 million male piglets are castrated in the European 

countries to control risk of boar taint and undesirable male behaviours. Surgical 

castration is a painful and stressful event (Prunier et al., 2006; Hintze et al., 2013), 

and its abolition is currently being proposed. If systems with entire male pigs are 

adopted in consequence, employing an automated machine vision method as a non-

contact way for monitoring mounting behaviours in pig farms could help to inform 

farm managers about the number of mounting events and identify pens requiring 

intervention. It would also facilitate large-scale research into methods to reduce this 

behavioural problem. 
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In conclusion, image processing has been an important technique for a wide variety 

of applications in agriculture and food engineering. This technique is an alternative, 

cheap and non-contact method to replace human observation of behaviour and 

causes no disruption to the animals͛ normal behaviour (Tillet et al., 1997; Shao and 

Xin, 2008; Costa et al., 2013; Kashiha et al., 2014).  

 Having identified knowledge gaps in the literature, two aspects of the further 

implementation of image analysis in monitoring pig behaviour are addressed in this 

thesis. The main purpose of the first study was to identify the lying pattern of pigs, 

the location of pigs during lying time and the distance between them using image 

analysis technology based on a Delaunay Triangulation (DT) method involving CCD 

cameras. The DT model does not investigate in detail the mathematical relationships 

showing how pigs behave in different temperatures, so different lying patterns 

(close, normal and far) under commercial pig farm conditions were defined and 

computed using the mathematical features of their lying styles. Then, based on DT 

features and using a MLP network, lying patterns were classified in different thermal 

categories. To illustrate a practical application of the developed image processing 

algorithm, the change in lying position of pigs was investigated, based on an ellipse 

fitting method, in pens enriched by daily maize silage provision into the lying area 

compared with control pens which had only a suspended enrichment toy in the 

activity area. In the second study, an automatic image processing model was 

developed to monitor mounting events among group pigs under commercial pig farm 

conditions. 

 

4. Material and methods 

4.1. Animal and housing  

 The observations were conducted at a commercial pig farm in the UK (Figure 4.1). 

A series of rooms each housed 240 finishing pigs; rooms were 14.35 m wide × 18.60 

m long, mechanically ventilated and subdivided into 12 pens, each 6.75 m wide × 

3.10 m long, and with a fully slatted floor. All pens were equipped with a liquid 

feeding trough and one drinking nipple.  
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Figure 4.1- External view of the commercial barn (top) and internal view of a research room 

(bottom). 

 

One room was selected for the work and the white fluorescent tube lights were 

switched on during day and night. Room temperature was recorded every 15 min 

over the total experimental period with 16 temperature sensors (TE sensor Solutions, 

5K3A1 series 1 Thermistor, Measurement Specialties Inc. USA) arranged in a grid 

pattern.  

 The experimental phase started after placement of pigs of about 30 kg live 

weight in the pen. Each temperature sensor was positioned around 20 cm above the 

pen walls (suspended from the ceiling) which was the nearest possible distance to 

the pigs without risk of damage. All sensors were set up and calibrated specifically 

for the experiment and the average of all sensors was used for room temperature 

calculation. The camera (Sony RF2938, Board lens 3.6 mm, 90o, Gyeonggi-do, South 

Korea) was located 4.5 m above the ground with its lens pointing downward and 

directly above each pen to get a top view (Figure 4.2). Cameras were connected via 

cables to a Personal Computer (PC) and video images from the cameras were recorded 
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simultaneously for 24 h a day and stored on the hard disk of the PC using Geovision 

software (Geovision Inc.) with a frame rate of 30 frame per second (fps). 

 

Figure 4.2- A camera and lighting source used in this study. 

 

4.2. Image processing 

 The original resolution of an extracted image from the video was 

640 × 480 pixels. In order to remove Barrel distortion in the images, camera 

calibration was carried out using the ͚Camera Calibration Toolbox͛ of Matlab® 

(R2014b, the Mathworks Inc., Natick, MA, USA) and 25 images of a checkerboard 

pattern were taken in different orientations for each camera (Wang et al., 2007). 

Images from each camera were then analysed and, in order to extract foreground 

objects (pigs) from the background (pen), a background subtraction method was 

used. The threshold of grey image was determined based on Otsu's method, which 

chooses the threshold to minimize the intra-class variance of the black and white 

pixels (Otsu, 1979). Then the threshold was applied to convert the greyscale image 

into a binary [0, 1] image, and 1 assigned to the object and 0 assigned to the 

background. Erosion and dilation orders with disk structure were used for smoothing 

of edges. To remove small objects from the image, a morphological closing operator 

with a disk-shaped structuring element was used (Gonzalez and Woods, 2007) 

(Figure 4.3). Since each single pig in the image is similar to an ellipsoidal shape, the 

x–y coordinates of each binary image could be used for ellipse fitting algorithms to 

localize each pig. As a result, ellipse parameters such as ͞Major axis (a)͟, ͞Minor axis 

(b)͟, ͞OrieŶtatioŶ ;βͿ͟ and ͞Centroid (c)͟ could be calculated for all fitted ellipses to 

separate the touching pigs (Figure 4.4). Therefore each pig͛s body was extracted as 

an ellipse using the direct least squares ellipse fitting method and the 
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aforementioned ellipse parameters (McFarlane and Schofield, 1995; O͛Leary, 2004; 

Kashiha et al., 2013). 

 

Figure 4.3- Image processing steps in this study; background (top left), grey image (middle 

left), subtracted image (top right), binary image (bottom right) and fitted ellipse (bottom 

left). 
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Figure 4.4- Ellipse parameters used in the ellipse fitting method applied to each pig. 

 

4.3. Lying behaviour and position changes 

In order to detect lying behaviour and position changes, two pens were selected for 

the experiments from the 12 pens in a room (Figure 4.5), each containing 22 pigs. To 

develop algorithms for continuous automated identification of changes in the lying 

pattern of the pigs, the location of each group of pigs needs to be known during 

defined periods. After downloading the recorded data, the video files were visually 

investigated and labelled (24 h/day for five days selected from the first 15 days) in 

order to evaluate animal lying times during the study. Four 30-min durations 

(duration 1, from 6.00 to 6:30 AM; duration 2, from 12.00 to12:30 PM; duration 3, 

from 18.00 to 18:30 PM; duration 4, from 0.00 to 0:30 AM) were selected based on 

observations that showed almost all pigs to be lying in these times during the 24 h in 

a day. 

 

Figure 4.5- Top view of the research room and the two pens used for lying change studies. 

b 

a 

Ci 

Cj 

a: Major axis  

b: Minor axis  

c: Centre 

β: Orientation 

β 

Reference line (i-axis) 

 ܫ

 m 3.1 ܫܫ

6.75 m 

14.35 m 

18.6 m 

   Temperature sensor Door Window Camera 



 
 

32 

 

Extracted images from video files were analysed according to the scheme presented 

in Figure 4.6 using the MATLAB® software. To describe the lying pattern of the pigs, a 

method using the DT was applied. The DT of a set of points on a plane is defined to 

be a triangulation such that the circumcircle of every triangle in the triangulation 

contains no point from the set in its interior and the circumcircle of a triangle is the 

unique circle that passes through all three of its vertices (Hansen et al., 2001). The DT 

maximized the minimum angle of all the angles of the triangles in the triangulation 

and tended to avoid skinny triangles. It is one of the most popular techniques for 

generation of unstructured meshes and the principle of this method was originally 

developed from the study of structures in computational geometry (Jin et al., 2006). 

 

Figure 4.6- Schematic of image processing algorithm used to detect lying behaviour. 
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Figure 4.7 shows a sample of a DT. In this study the method used for the 

computation of the DT was implemented in the MATLAB® software and we used the 

centre of each ellipse (Figure 4.4) obtained from the image as a triangulation point. 

Furthermore, for obtaining a set of non-overlapping triangles with the minimum of 

inner angles was used, at first the algorithm in the MATLAB® transformed the 2D 

points to 3D, here it computed the convex hull in 3D, and then projected the lower 

part of the hull back to 2D to obtain the triangulation (Häfner et al., 2012). 

 

Figure 4.7- The Delaunay Triangulation (DT) for the point set P1, P2….P7 in a plane. B is the 

circumscribing circle of Delaunay triangle. 

 

 Figure 4.8 shows the channel with 22 vertexes (number of pigs) of a sample 

image from the image database along with the DT. 

Figure 4.8- The Delaunay Triangulation (DT) along with the fitted ellipse on lying pigs. 
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side of the triangle (in pixels). In order to find pigs͛ lying positions during the lying 

times, each pen was virtually subdivided into four zones (Figure 4.9); zone one 

against the outer wall and zone four being near the corridor.  The centroid of each 

fitted ellipse indicated the specific position of each pig in the pen during the lying 

time. 

Figure 4.9- Top view of a pen indicating the four designated zones. 

 

4.4. Lying pattern definition 

 To define lying patterns and model these by neural networks, four pens were 

selected from the 12 pens in a room (each containing 22 pigs) and a studied over a 

period of 15 days for the experiment (Figure 4.10). The experiment was carried out 

on two occasions (cold and warm seasons) giving different room temperatures. 

These ranged from 14 oC in the first days as the batch started in the cold season, up 

to 28 oC in warm situations; the room set point temperature was 21 oC during both 

the study periods but was not always achieved at more extreme external 

temperatures.  

Figure 4.10- Top view of research room and the four pens used for the study on lying 

pattern modelling and definition. 
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The image processing approaches used for lying pattern and categorizing used in this 

study was shown in Figure 4.11. 

  

Figure 4.11- Schematic of image processing algorithm used for different lying pattern 

definition. 
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By using the major and minor axis of each fitted ellipse, the overall lying pattern was 

determined as the following:  ܱݕ݈ ݈݈ܽݎ݁ݒ𝑖݊݃ ݊ݎ݁ݐݐܽ݌ሺ%ሻ = ݏ𝑖݈ܽ݊݃݁ݎݐ ݈݈ܽ ݂݋ ݎܾ݁݉ݑ݊ ݊ݎ݁ݐݐܽ݌ 𝑖݊ܽݐݎ݁ܿ ℎݐ𝑖ݓ ݏ𝑖݈ܽ݊݃݁ݎݐ ݂݋ ݎܾ݁݉ݑ݊) ) × ͳͲͲ        ሺͶ.ͳሻ 
 where the certain pattern was defined as ͚close pattern͛, ͚normal pattern͛ or ͚far 

pattern͛ based on principles which have been reported previously for pigs͛ lying 

postures in different temperatures (Table 4.1).  

 In cold conditions pigs crouch, sometimes shivering violently, and change their 

lying posture to support their body on their limbs and reduce conductive heat loss to 

the floor. They also huddle together to increase body contact with other pigs. In this 

study, we defined this as a ͚close pattern͛; here the size of ellipses is considered 

almost uniform and the number for each pig in the model can be defined in any 

order. Based on the principles in Table 4.1, this category was recorded if three pigs 

presented a pattern like those shown in Figure 4.12 (all ellipses (pigs) or at least two 

of the three possible pairs closely touching each other). Therefore, in a close pattern, 

the maximum length of side of triangle (Lmax) and minimum length of side of triangle 

(Lmin) are equal to or less than (
ୠభଶ + ୠయଶ + bଶ) and (

ୠభଶ + ୠమଶ ), respectively (Table 4.1).   

 
 Table 4.1- Group lying patterns of pigs with their subsequent mathematical description. 

Lying 

pattern 

Lying 

 posture 

Theoretical  

description 

Mathematical description 

 in the study 

close 

pattern 
Sternal 

 

Huddle together and 

lying close (Mount, 

1968; Riskowski, 1986; 

Shao et al., 1998; Shao 

and Xin, 2008). 

𝐿௠௔௫ ч (௕భଶ + ௕యଶ + ܾଶ) 

 𝐿௠௜௡ ч (௕భଶ + ௕మଶ ) 

 

normal 

pattern 
Side-by-side 

Nearly touching each 

other (Riskowski, 1986; 

Shao et al., 1998; Shao 

and Xin, 2008). 

 

(
௕భଶ + ௕యଶ + ܾଶ) < 𝐿௠௔௫ < ሺ௔భଶ + ௔మଶ + ௕యଶ ሻ 

(
௕భଶ + ௕మଶ ) < 𝐿௠௜௡ < ሺ௕భଶ + ܾଶሻ 

far 

pattern 
Spreading 

Avoid touching each 

other, with limbs 

extended (Riskowski, 

1986; Hahn et al., 1987; 

Shao et al., 1998; 

Hillmann et al., 2004). 

𝐿௠௔௫ ш ሺ௔భଶ + ௔మଶ + ௕యଶ ሻ 
 𝐿௠௜௡ ш (௕భଶ + ܾଶ) 

Lmax= maximum length of side of triangle, Lmin= minimum length of side of triangle 

a=major axis of fitted ellipse, b= minor axis of fitted ellipse 
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In warm conditions, pigs try to avoid touching each other, the limbs are stretched out 

and pigs lie extended on their side (Table 4.1). The image processing data showed 

patterns like those in Figure 4.12, defined as ͚far pattern͛. If three pigs are touching 

each other from head to head or head to tail (as sometimes happened in warm 

conditions), the Lmax is greater than or equal to (
ୟభଶ + ୟమଶ + ୟయଶ ሻ; furthermore, if three 

pigs do not touch or two partly touch and the third is far from the others (as happens 

in grouped pigs), the Lmax is greater than or equal to (
ୟభଶ + ୟమଶ + ୠయଶ ሻ. Lmin in far patterns 

is greater than or equal to (
ୠభଶ + bଶ) (Table 4.1). In normal temperature conditions, 

pigs lie nearly touching each other and the resulting pattern is between the close and 

far patterns (Figure 4.12), defined as  ͚normal pattern͛ (Table 4.1).  

 

Figure 4.12- Fitted ellipses in different lying patterns; (A) Touching ellipses with their 

parameters and a triangle of DT in cold situations (close pattern), (B) in normal situations 

(normal pattern), (C) in warm situations (far pattern). 
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4.5. Lying pattern categorizing by artificial neural network  

Figure 4.13 indicates the image processing algorithm used for categorizing pigs lying 

pattern in different ambient temperatures.  

 

Figure 4.13- Schematic of image processing algorithm used for categorizing lying pattern by 

the ANN. 
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A MLP was employed in the MATLAB® software as the modelling network for 

classification. The MLP network applied here had four layers: an input layer, two 

hidden layers and an output layer. The number of neurons in the input layer was 

dependent on the number of features extracted from each triangle of the DT; in this 

study the perimeter (P), Lmax and Lmin of side of each triangle were calculated. Then 

the mean value of perimeter (MVP) of triangles, mean value of maximum lengths 

(MVLmax), mean value of minimum lengths (MVLmin) of side of triangles in each DT 

were considered as inputs for the ANN (3 neurons). The output layer was equal to 

the number of categories (Figure 4.14); in this case the room temperatures was 

divided into 3 thermal categories which were based on the room set point 

temperature: first for temperatures around (± 2 oC) the room set temperature (ARST; 

19-23 oC), next for lower than the room set temperature (LRST; 14-18 oC), and third 

for those higher than the room set temperature (HRST; 24-28 oC). The categories 

LRST, ARST and HRST were represented with the sets of numbers 100, 010, 001, 

respectively. In order to simplify the problem with different ranges of values for the 

network, the dataset was normalized within the range [0, 1] to achieve fast 

convergence and to ensure that all variables received equal attention during the 

process.  

 
Figure 4.14- Architecture of the network along with the Delaunay Triangulation (DT) 

features as inputs. 

 The learning procedure for developing a neural network can be either supervised 

or unsupervised. The supervised learning algorithm used in this research was the 

back propagation algorithm (Chandraratne et al., 2007). Before updating the weights 

once at the end of the epoch, this algorithm gets the average gradient of the error 

surface across all cases and minimises the Mean Square Error (MSE) between input 

DT features 

Input layer 
Output layer 

Hidden layer 



 
 

40 

 

layer values and output layer values. In order to achieve the optimum hidden layer, a 

trial and error procedure was used by trying various numbers of neurons and layers 

to build the network (Mashaly and Alazba, 2016) and the network which gave the 

lowest MSE of the verification subset was chosen. The two hidden layers of the 

selected network had different numbers of neurons (16 and 22, respectively). Lastly, 

the selected MLP network with 3-16-22-3 was used to evaluate the ability of this 

multivariable technique for classification. In this study the MLP used a tansig function 

(y = tansig ሺxሻ = ଶଵ+e−మx − ͳ) in the hidden layers and linear function (y = x) in the 

output layer. 

 Data sets of 1800 observations with 600 observations (5 temperatures in each 

category × 120 frames for each temperature) for each of the three thermal 

categories were used.  The ANNs were trained on the first subset (training set), and 

their performance was monitored using the second subset (validation set). In this 

method the network stops the training before overfitting occurs, which is a 

technique automatically provided for all supervised networks in the MATLAB® Neural 

Netǁork Toolďoǆ™. FiŶallǇ, the last suďset ;test setͿ ǁas used to ĐheĐk the prediĐtiǀe 
performance of the network, since the data included in this subset were not used in 

the network development. Experimental data sets were randomly divided into 

training (70%; 1260 observations), validating (15%; 270 observations), and testing 

(15%; 270 observations) sets. For finding the classification performance, the 

sensitivity, specificity and accuracy (category-specific and the model͛s overall 

performance) were computed based on the following definitions (Grzesiak et al., 

2010; Pourreza et al., 2012):  ܵ݁݊ݏ𝑖ݐ𝑖ݒ𝑖ݕݐ = 𝑇𝑃𝑇𝑃+ி𝑁 × ͳͲͲ                                                                                                ሺͶ.ʹሻ   ܵܿ݁݌𝑖݂𝑖ܿ𝑖ݕݐ = ܶܰܶܰ + ܲܨ × ͳͲͲ                                                                                        ሺͶ.͵ሻ 𝐴ܿܿݕܿܽݎݑ = 𝑇𝑃+𝑇𝑁𝑇𝑃+ி𝑃+𝑇𝑁+ி𝑁 × ͳͲͲ                                                                                      ሺͶ.Ͷሻ  
 TP: Samples of a specific category correctly classified as that category. FN: 

Samples of a specific category incorrectly classified as other categories. TN: Samples 

of other categories correctly classified as their categories. FP: Samples of other 

categories incorrectly classified as the specific category. 

 Assessment of the discrimination accuracy between different classes of individual 

models also involved the relative operating characteristic (ROC), which was 

computed in MATLAB® based on true positive and false negative rates (Pearce and 



 
 

41 

 

Ferrier, 2000; Fawcett, 2006) and can be used for assessment of binary classifiers 

(Barnes et al., 2010) ܵ݁݊ݏ𝑖ݐ𝑖ݒ𝑖ݕݐ + ݁ݐܽݎ ݁ݒ𝑖ݐܽ݃݁݊ ݁ݏ݈݂ܽ = ͳ                                                                       ሺͶ.ͷሻ  ܵܿ݁݌𝑖݂𝑖ܿ𝑖ݕݐ + ݁ݐܽݎ ݁ݒ𝑖ݐ𝑖ݏ݋݌ ݁ݏ݈݂ܽ = ͳ                                                                        ሺͶ.͸ሻ 
Eq. (4.5 and 4.6) can be written as (Pearce and Ferrier, 2000): ቀݔݓ = ͳቁ + ቀݔݒ = ͳቁ = ͳ                                                                                                     ሺͶ.͹ሻ  ቀ௪௫ = Ͳቁ + ቀ௩௫ = Ͳቁ = ͳ                                                                                                       ሺͶ.ͺሻ   
 where w is a predicted output greater or equal to the threshold probability, and v 

is a predicted output less than the threshold probability. In ROC, two values are 

calculated for each threshold: the true positive rate (the number of w, divided by the 

number of 1 targets), and the false positive rate (the number of v, divided by the 

number of 0 targets) (Pearce and Ferrier, 2000). The area under the ROC curve (AUC) 

reflects the proportion of the total area of the unit square and ranges from 0.5 for 

models with no discrimination ability, to 1 for models with best discrimination. 

 

4.6. Lying behaviour monitoring after enrichment substrate provision 

 To assess the effect of a rooting material on the lying behaviour, six pens were 

selected for the experiments from the 12 pens in a room, each containing 17-20 pigs 

(Figure 4.15).  

 

Figure 4.15- Top view of research room and six pens used for studies on lying positions with 

enrichment substrate. 

 In each of two replicates, three pens were equipped with a solid plate (1m × 1m) 

on the floor in the lying area to allow for delivery of rooting material, while the other 

With plate Control pen 

   Temperature sensor Door Window Camera 
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three had no plate and only a hanging plastic toy for enrichment. The experimental 

phase started after placement of pigs in the pen at approximately 30 kg live weight, 

and lasted to the end of the batch. The enrichment material provided was chopped 

maize silage (10kg per day for each pen) and was manually distributed once in a day, 

at approximately 9 AM, onto the floor plate in the experimental pens. Extracted 

images from video files were analysed according to the scheme presented in Figure 

4.16 using MATLAB® software. 

 

Figure 4.16- Schematic of image processing algorithm used for monitoring the effect of 

rooting material on grouped pig lying positions. 

 

 To develop algorithms for continuous automated identification of changes in the 

lying position of the pigs, the location of each group of pigs needs to be known 

during defined periods. Animal lying positions were obtained at 10 minute intervals 

for 10 separate days across the duration of the batch period (with 5 day intervals) for 

two replicates of the study over time. Each pen was virtually subdivided into four 

zones in the extracted frame from video files as previously described. Similarly, the 

centroid of each fitted ellipse was used in order to find pigs͛ lying position in the pen 

in x-y coordinates (Figure 4.17). 
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Figure 4.17- Lying position detection; converting grey image to binary and removing small 

objects (A), using ellipse features for fitting ellipse to each pig (B), fitting ellipse to each pig 

(C), finding the centre of each fitted ellipse in x-y coordinates (D). 

To compare activity levels and lying locations of pigs between the two treatments, 

using the full dataset from the image processing output, the total proportion of the 

pigs which were lying, and the proportion of lying pigs in each zone of the pen were 

analysed using the MIXED procedure in SAS software (Statistical Analysis System; 

SAS®, 9.4 version for Windows). The model used for all analyses was treatment 

(rooting plate or control pen), stage of growth (day) and time of day (hour) as fixed 

effects  and, following testing of separate interaction effects and removal of non-
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 Extracted group pig images 
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significant interactions, included the interaction between treatment and time of day; 

time of day (hour) was included as the repeated factor. 

 

4.7. Mounting event detection 

 To define mounting events in this study, two pens (Figure 4.5) were selected for 

the experiment from the 12 pens in a room, each containing 22–23 pigs of mixed 

entire males and females, and studied for 20 days. After downloading the recorded 

data, the video files were directly observed and labelled in order to evaluate peak 

times of mounting activity (Hintze et al., 2013). A sufficient number of occurrences of 

the behaviour for testing the automated approach were obtained using five days of 

24 h activity selected from the available sample. Two periods were selected (2 h 

between 09:30 to 11:30 AM; 3 h between 14:30 to 17:30 PM) for each day and pen, 

during which the number of mounting events was increased compared to other 

periods. The selected video files were then used for extracting frames for further 

processing as illustrated in Figure 4.18.  

Figure 4.18- Schematic of image processing algorithm used for pig mounting event 

detection. 
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The detection rule for pig mounting events in frame sequences is based on distance 

between pigs, as normally a mounting pig gets close to another pig and then lifts its 

two front legs and puts them on any part of the recipient or mounted pig (Figure 

4.19).  

    

Figure 4.19- Mounting behaviour in pigs: (f1- f2) getting close, (f3-f5) mounting happened, 

(f6) getting away/mounting finished.  

(f1) (f2) 

(f3) (f4) 

(f5) (f6) 

   Mounting pig                           Mounted pig  
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The mounted pig may stand, sit down or run away, and the duration of mounting can 

be short (<1s), medium (1-10s) or long (>10-60s) (Hintze et al., 2013). Figure 4.19 

illustrates a video sequence for a mounting event in a pen, where in frames (f1-f2) 

the distance between two pigs (mounting and mounted) became less; this distance 

could be between the centre of two pigs or the head of one pig to the tail of the next 

one. The mounting event happened in frames (f3-f5), in frame (f6) the 

mounting/mounted pig moved away and the event finished.  

 In order to find the distance between two pigs in a mounting event, it was 

necessary to identify the head, tail and two sides of pigs. As a tool, analysis of the 

body contour of a pig was suggested by Kashiha et al. (2013), but in this study the 

long distance from the lens (camera) to the object (pig), low quality of images and 

the background noise made the method inaccurate. Therefore, in this work, the 

intersections of the major and minor axis with the ellipse have been considered as 

tail/head and sides respectively (Figure 4.20), named as T, H, S and then the Ed 

௜ܪሺ ݀ܧ) , ௝ܶሻሻ = √∑ ሺܪ௜ − ௜ܶሻ௡௜=ଵ ଶ
 and (݀ܧ ሺܪ௜ , ௝ܵሻሻ = √∑ ሺܪ௜ − ௜ܵሻ௡௜=ଵ ଶ

of each pair 

was calculated as follows:  

    Matrix of head and/or tail for n pigs (T, H): 

[  
   
   
 ଵܶ ଵଶܶܪ .ଶܪ .. .. .. .. .. .௡ܶ−ଵ ௡−ଵ௡ܶܪ ௡ܪ ]  

   
   
 
                                      ሺͶ.ͻሻ   

   Matrix of pig sides for n pigs (S, S):  

[  
   
   
 ଵܵ ܵଶܵଷ ܵସ. .. .. .. .. .. .ܵଶ௡−ଷ ܵଶ௡−ଶܵଶ௡−ଵ ܵଶ௡ ]  

   
   
 
                                               ሺͶ.ͳͲሻ    
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ሺா𝑞.ସ.9ሻ→      ݀ܧሺ ଵܶ, [  

   
௡ܪ௡−ଵܪ..ଷܪଶܪ ]  
   ሻ, ݀ܧሺ ଶܶ, [  

   
௡ܪ௡−ଵܪ..ଷܪଵܪ ]  
   ሻ …. ݀ܧሺ ௡ܶ, [  

   
  [௡−ଵܪ௡−ଶܪ..ଶܪଵܪ
   ሻ                                  ሺͶ.ͳͳሻ     

 

     
ሺா𝑞.ସ.9ሻ→      ݀ܧሺ ଵܶ, [  

   ଶܶܶଷ..௡ܶ−ଵ௡ܶ ]  
   ሻ, ݀ܧሺ ଶܶ, [  

   ଵܶܶଷ..௡ܶ−ଵ௡ܶ ]  
   ሻ ….  ݀ܧሺ ௡ܶ, [  

   ଵܶܶଶ..௡ܶ−ଶ௡ܶ−ଵ]  
   ሻ                                   ሺͶ.ͳʹሻ      

 

  ሺா𝑞.ସ.9ሻ→      ݀ܧሺܪଵ, [  
   
௡ܪ௡−ଵܪ..ଷܪଶܪ ]  
   ሻ, ݀ܧሺܪଶ, [  

   
௡ܪ௡−ଵܪ..ଷܪଵܪ ]  
   ሻ …. ݀ܧሺܪ௡, [  

   
  [௡−ଵܪ௡−ଶܪ..ଶܪଵܪ
   ሻ                                  ሺͶ.ͳ͵ሻ      

 

 
ሺா𝑞.  ସ.9 ௔௡ௗ ସ.ଵ଴ሻ→              ݀ܧሺ ଵܶ, [  

   
ܵଷܵସ..ܵଶ௡−ଵܵଶ௡ ]  

   ሻ, ݀ܧሺ ଶܶ, [  
   ଵܵܵଶ..ܵଶ௡−ଵܵଶ௡ ]  

   ሻ …. ݀ܧሺ ௡ܶ, [  
   ଵܵܵଶ..ܵଶ௡−ଷܵଶ௡−ଶ]  

   ሻ                   ሺͶ.ͳͶሻ      

ሺா𝑞.  ସ.9 ௔௡ௗ ସ.ଵ଴ሻ→              ݀ܧሺܪଵ, [  
   
ܵଷܵସ..ܵଶ௡−ଵܵଶ௡ ]  

   ሻ, ݀ܧሺܪଶ, [  
   ଵܵܵଶ..ܵଶ௡−ଵܵଶ௡ ]  

   ሻ …. ݀ܧሺܪ௡, [  
   ଵܵܵଶ..ܵଶ௡−ଷܵଶ௡−ଶ]  

   ሻ                  ሺͶ.ͳͷሻ      
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Figure 4.20- Intersection points of major and minor axis and ellipse for finding the position 

of head, tail and sides in pigs. (A); tail (T), head (H) and side (S) in two fitted ellipses, (B); the 

T, H and S in a pig in binary image. 

Based on the typical behaviour of pigs, they normally move forward and mount with 

their front legs onto a part of the mounted pig͛s body. As a result, in a sequence of 

frames, the distance from the head of one pig to the other pig (head or tail) could be 

obtained from its direction of movement, as well as the distances between head of 

one pig to both sides of other pigs. By finding the region of interest (ROI) for each 

participant pair (two pigs) with an Ed less than a defined value (here, about half of 

the major axis length), the possibility of mounting events has been investigated in 

the algorithm, and the x-y coordinates of the centre of the two pigs in the ROI 

recorded for the next steps. Note that as the mounting event is performed, the Ed 

between the head of the first pig and the tail/head or side of the second one has 

been reduced from the previous frame and the two pigs considered as one in the 

algorithm; here the length of two pigs (length of major axis in fitted ellipse) will be 

changed to approximately 1.3 to 2 pig lengths if the pig is mounting from behind the 

second one. 

 The length of major and minor axis will be around 1.3-1.8 pig lengths if the pig is 

mounting from the side of another pig. So, if the length of the ellipse(s) was between 
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the aforementioned value and the x-y coordinates of the ellipse located in the ROI, 

the mounting behaviour was declared.  

 Furthermore, if two pigs were standing close to each other without any mounting 

event, the algorithm just fitted an ellipse to each of the pigs and no mounting 

behaviour was specified.   

 

5. Results and discussion 

5.1. Lying behaviour and position changes 

 Two pens (ܫ and ܫܫ) were selected for group pig lying behaviour and position 

changes in this study. In order to validate the automated image processing 

technique, the percentage of frames with correct estimation of the number of pigs in 

the pen with reference to manual labelling was determined. There were 15 (days) × 

30 (min) × 4 (times in a day) × 2 (pens) of video duration, and each video consisted of 

1800 frames (one frame per second). From the 108000 (15 × 30 × 60 × 4) extracted 

frames for each pen, 19592 were processed in pen ܫ and 20306 frames in pen ܫܫ as 

described in the following paragraph. 

 The four time periods were selected during times when almost all pigs were 

lying. In the case that pig(s) were not lying during the aforementioned period, the 

image locomotion method which was defined by Kashiha et al. (2014) was used in 

order to automatically select the lying pigs in each frame; after using the ellipse 

fitting technique, angular and linear movements of each ellipse between two 

consecutive frames were calculated. By visual investigation of the pigs͛ movement 

time in the video files, the first frame ft (at time zero) and the next one ft+5 (after five 

seconds) (Figure 5.1) were selected. According to the figure, due to pig movement 

the angular and linear movement of the mentioned ellipse from frame ft to ft+5 was 

changed; the pig initially had angular movement then moved from C (i1, j1) to C (i2, j2) 

in the next frame. Finally, after finding the pigs in motion, by removing these active 

pixels in the ellipse fitting algorithm we fitted ellipses to lying pigs only in the last 

frame (fl).  
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Figure 5.1- Pigs with fitted ellipse in two frames ft and ft+5, the moving pig was not selected 

in frame fl and the ellipse was fitted for lying pigs in final grey image. 

The estimated number of pigs in each processed image was calculated and then 

compared with the number of pigs in that pen (Table 5.1).  
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Table 5.1- The percentage of frames with correct estimation of pigs in the pen from 

automated image processing compared to manual labelling. 

 
Pen 

I II 

Day 

Number of frames 

analysed 

 

Correct 

estimation (%) 

Number of frames 

analysed 

 

Correct 

estimation (%) 

1 1290 96.5 1359 95.0 

2 1199 94.4 1378 97.6 

3 1338 95.2 1400 94.9 

4 1287 97.1 1321 98.3 

5 1354 95.0 1298 92.6 

6 1360 98.6 1387 97.7 

7 1257 97.1 1385 93.2 

8 1290 94.4 1355 94.0 

9 1327 91.4 1375 93.9 

10 1200 96.8 1342 95.3 

11 1321 99.5 1370 97.3 

12 1385 95.0 1346 97.0 

13 1308 93.3 1321 98.5 

14 1366 93.3 1295 94.2 

15 1310 98.9 1374 96.3 

Total 19592  20306  

 

The results showed that the percentage of frames with correct estimation of pigs in 

the pen using image processing techniques was 95.8(±2) %, on average (Table 7.1). 

There were a few reasons behind false identification: first and foremost because the 

project was carried out in a commercial farm where housing conditions could not be 

controlled, there was a water pipe in the middle of each pen (2.5 m from the floor) 
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which caused some invisible areas in images. Furthermore, as time progressed, 

soiling by flies dirtied the camera lenses and reduced the visibility. 

 The averages temperatures of four sensors within each of the two pens (see 

Figure 4.5) during the 15 days of study are shown in Figure 5.2. Over the recording 

period, temperature ranges were 14.3-22.3 oC for pen ܫ, and 13.7-22.2 oC for pen ܫܫ. 
The temperature patterns showed more fluctuation in the first week of study and 

had a constant pattern in the second week, possibly because of better heat balance 

between the pigs͛ body heat emission and environmental temperature.  

 

Figure 5.2- Temperature in each of the experimental pens during the 15 day study period. 

 Figure 5.3 shows sample images from the image database with the respective DT 

at different temperatures. From this figure it can be seen that the MVP of each 

triangle was different as average temperature changed during the study. The MVP 

was higher at 22.3 oC than at other temperatures, indicating that pigs had more 

separation during lying time at that temperature, while at lower temperature the 

MVP declined and pigs were lying closer or huddled together. Therefore this feature 
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can be used for distinguishing different lying patterns in the DT and indicates that the 

output could be used for assessing the uniformity of room temperature for 

improving pig welfare.   

 

Figure 5.3- The Delaunay Triangulation (DT) patterns in different environmental 

temperatures. 

 The extracted data from the images were submitted to regression analysis (SPSS® 

21, IBM, USA) to evaluate the effects of environmental temperature on the MVP in 

both pens (Table 5.2). The relationship between temperatures and the MVP pattern 

was statistically significant (P<0.001) for both pens.  

 

14.2oC 
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17.1oC 

MVP= 201.3 MVP=210.9 

MVP=283.2 MVP=307.8 
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 Table 5.2- Linear regression analysis for effect of environmental temperature on the MVP in 

both pens. 

Pen Equation (± Std. Error) R2 p-value 

Pen I MVP= -340.3 (±29.0) + 31.3 (±2.0) temperature 0.81 <0.001 

Pen II  MVP= -342.4 (±27.4) + 31.2 (±1.9) temperature 0.82 

  

<0.001 

 

     MVP=mean value of perimeter  

 

In the presented study, video monitoring of pig lying behaviour, which was 

performed through image processing techniques and using the DT, showed that at 

higher temperatures, pigs lay down with their limbs extended and in a fully 

recumbent position so that the MVP was higher than at lower temperatures. In 

contrast, at lower environmental temperatures pigs adopted a body posture that 

minimized their contact with the floor and maximized the contact with other pigs, so 

that the MVP was lower. This result is in agreement with other researchers (Shao and 

Xin, 2008; Costa et al., 2014) who have reported that in higher temperatures pigs 

tended to spread out, and in cold situations they tried to huddle or touch each other. 

Different MVPs in different temperatures for the two pens during this study are 

shown in Figures 5.4 and 5.5.  

Figure 5.4- The mean value of perimeter (MVP) over 15 days assigned with their 

temperature (oC) in pen ܫ. 
 By comparing temperatures in the two pens and according to the MVP data, pigs 

tended to lie further apart and had less contact in pen ܫ (Figure 5.4) than in pen ܫܫ 
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(Figure 5.5). In some cases the MVP was different at identical temperatures in both 

pens. This is likely due to additional environmental influences (i.e. different 

ventilation rates in different locations in each pen) which could not be controlled as 

the project was carried out in a commercial pig farm.  

Figure 5.5- The mean value of perimeter (MVP) over 15 days assigned with their 

temperature (oC) in pen ܫܫ. 
 Employing modern technology has helped farm managers to improve animal 

welfare (Kashiha et al., 2014). The proposed method can help to monitor a large 

number of pigs in different commercial pens and to adjust room temperature for 

higher welfare and economic outputs.  

Knowing the position of each pig in the pen during lying time can be used to 

assess and improve animal welfare, since lying in the dunging area has negative 

consequences for hygiene, resulting in dirtier pigs and pens (Spoolder et al., 2012). 

Using the x-y coordinates of each pig in binary images and the centroid of each fitted 

ellipse indicated the specific position of each pig in the pen during the lying time (see 

Figure 6.4). Over the 15 days, the percentage of lying positions was higher in zone 4 

(near the corridor) and zone 3 when the temperature was lower in both pens; similar 

results were reported by Costa et al. (2014). According to Figure 5.6, in both pens 

pigs tended to lie in zone 4 and 3 more than other zones, but when temperature 

increased they tended to lie more often in zone 1 and 2. The percentage of time in 

different lying zones was different between the two pens during the study; in pen ܫܫ 
more than 70% of the animals were in zone 4 for the first 6 days while there was a 

more even distribution between zones 3 and 4 in pen ܫ. The lying zone which pigs 

choose is determined by a number of factors including design of the pen, location of 
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feeder and drinker, and environmental conditions relating to temperature, air 

velocity and humidity (Spoolder et al., 2012; Costa et al., 2014). In the two 

investigated pens, feeder and drinker locations were the same and the temperature 

sensors showed almost equal values for both pens during the study. However, with 

the ventilation system in use, the air velocity pattern or the volume of air 

displacement may have differed between the pens to cause the different distribution 

in lying positions. 

 

Figure 5.6- The percentage of lying pigs located in different zones over 15 days. 

 

5.2. Lying pattern definition 

Table 4.1 shows the mathematical description of Lmax and Lmin obtained from the 

lying patterns. Since the perimeter of each triangle is the sum of the length of sides 

(L) of each triangle, the P value (pixels) for each lying pattern is found as follows.  
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In the close pattern:   

 P= 𝐿௠௔௫ + 𝐿௠௜௡ + 𝐿                                                                                                            ሺͷ.ͳሻ  ሺ 𝑇௔௕௟௘ ଺.ଵ  ௔௡ௗ ா𝑞.  ሺହ.ଵሻሻ→                   ܲ ൑ (ܾଵʹ + ܾଷʹ + ܾଶ) + (ܾଵʹ + ܾଶʹ) + 𝐿                                    ሺͷ.ʹሻ 
 The maximum value of P was obtained when a triangle had two Lmax (isosceles) 

means: 𝐿 = 𝐿௠௔௫                                                                                                                                  ሺͷ.͵ሻ       ா𝑞.  ሺହ.ଶ ௔௡ௗ ହ.ଷሻ⇒               ܲ ൑ ቀଷ௕భ+ହ௕మ+ଶ௕యଶ ቁ                                                                                    ሺͷ.Ͷሻ  
 In this study, by computing Eq. (5.4), the perimeter of each triangle to be 

ĐoŶsidered as the Đlose patterŶ gaǀe PчϮϬϬ (pixels). 

In the far pattern:     

 ሺ𝑇௔௕௟௘ ଺.ଵଵ ௔௡ௗ ா𝑞.  ሺ9ሻሻ→                     ܲ ൒ (ܽଵʹ + ܽଶʹ + ܾଷʹ) + (ܾଵʹ + ܾଶ) + 𝐿                                   ሺͷ.ͷሻ 
When triangle had two sides with Lmin value, so; 

 𝐿 = 𝐿௠௜௡                                                                                                                                  ሺͷ.͸ሻ  ா𝑞.  ሺହ.ହ ௔௡ௗ ହ.଺ሻ⇒               ܲ ൒ ௔భ+௔మ+ଶ௕భ+ସ௕మ+௕యଶ                                                                              ሺͷ.͹ሻ  
 The perimeter of each triangle in the far pattern, by calculation of Eq. (5.7), gave 

Pшϯ5Ϭ ;piǆelsͿ, ǁith the Ŷorŵal patterŶ haǀiŶg periŵeter ǀalues ďetǁeeŶ these tǁo, 
i.e. 200<P<350 (pixels).  

 The percentage of DT indicating pigs in each of the three lying patterns for the 

defined thermal categories in this study, are shown in Figure 5.7. for each mean 

temperature. According to this figure, in the LRST category the percentage of close 

pattern declined from 71.4 % to 54.8 % as the temperature increased from 14 to 18 
oC; the values for both normal and far pattern were increased from 17.2 to 30.1 % 

and 11.4 to 15.1 %, respectively. In the ARST category, with a temperature range of 

19 to 23 oC, the percentage of close pattern showed a downward trend from 46.1 to 

20.2 %, while the far pattern showed an increase from 19.6 to 45.5 %. As the 

temperature increased in the HRST category from 24 to 28 oC, the percentage of 

normal and close pattern declined from 34.4 to 27% and 18.8 to 8.4%, respectively. 

In this category, an increase of 4 oC of temperature raised the far pattern by 16% 

(Figure 5.7).  
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Figure 5.7- The three lying patterns for each thermal category allocated (mean % of 

Delaunay Triangulations (DTs) with their standard deviation (SD) bar). ARST= around the 

room set temperature, LRST= lower than the room set temperature, HRST= higher than the 

room set temperature. 

Results of pig lying patterns, described through the image processing techniques and 

using the DT features, showed that in the LRST category pigs at the lowest 
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environmental temperature (14 oC) adopted a body posture that minimised their 

contact with the floor and maximized contact with other pigs. As a result, the 

number of triangles with a perimeter of less than 200 pixels in the DT was higher, as 

a well as the percentage of close patterns. As the temperature increased in this 

category the number of huddling pigs declined, so the number of triangles with 

PчϮϬϬ piǆels deĐreased.  
 Conversely, in the HRST category, where the temperature range was between 24-

28 oC, pigs lay down with their limbs extended in a fully recumbent position and tried 

to minimise their contact with pen mates. The number of triangles with perimeter of 

more than 350 pixels increased and the percentage of far patterns was higher than 

other patterns. The maximum value for far pattern in this group happened when the 

temperature was at the highest level (28 oC), and the percentage of close pattern 

showed the lowest value in the study. This result is in agreement with other 

researchers (Shao and Xin, 2008; Costa et al., 2014) who have reported that in higher 

temperatures pigs tended to spread out and in a cold situation they tried to huddle 

or touch each other. In the ARST category, because the situation was around the 

room set point temperature, pigs had more side-by-side patterns (Riskowski, 1986; 

Shao et al., 1998) so that the percentage of triangles with 200<P<350 pixels was 

higher in this category. It needs to be considered that the value of P obtained from 

the DT features for different lying patterns depends on the age and size of pigs, so 

more study is needed for generalization of the method and determination of the 

values of P in relation to the size and age of pigs.   

 

5.3. Categorizing of lying patterns  

 Table 5.3 shows the average, maximum and minimum values, and SDs of the 

three extracted features (MVP, MVLmax, MVLmin) from each DT. According to the 

ANOVA results, the MVP, MVLmax and MVLmin differed significantly between thermal 

categories used in the ANN definition (all P<0.001). With the five temperatures in the 

range for the LRST category, the minimum value of each variable was observed in the 

lowest temperature (14 oC) while the maximum value was at the highest 

temperature (18 oC). Furthermore, the same tendency was obtained for the other 

two thermal categories.  The results obtained for the described MLP network showed 

that the selected neural network was able to correctly classify lying behaviours with 

an overall accuracy 95.6 % according to the different thermal categories, and with 

satisfactory sensitivity (from 89.1 to 94.2 %), specificity (from 94.4 to 95.4 %) and 

accuracy (from 93.3 to 95.2 %), for the test set data (Table 5.4). 
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Table 5.3- Statistical data (average, minimum, maximum and SD) of the Delaunay 

triangulation features in different thermal categories. 

 

LRST ARST HRST 

MVP MVLmax MVLmin MVP MVLmax MVLmin MVP MVLmax MVLmin 

Ave 170.8 84.3 46.2 284.9 122.4 71.4 398.3 179.9 92.3 

Max 250.6 126.1 73.3 340.9 162.4 98.2 460.8 230.7 120 

Min 138.1 57.4 30 208.2 85.2 44.2 336 120 70.4 

SD 25.1 14.1 9.1 31.8 13 7.8 33.9 27.3 11.5 

ARST= around the room set temperature, LRST= lower than the room set temperature, HRST= higher 

than the room set temperature. MVP= mean value of perimeter, MVLmin = mean value of minimum 

lengths, MVLmax = mean value of maximum lengths, Ave= average, max= maximum, min=Minimum. 

All measures (MVP, MVLmin and MVLmax) differed significantly between temperature categories 

(P<0.001) 

Figure 5.8 presents the ROC curves for individual thermal categories, comprising both 

the sensitivity (equivalent to true positive rate) and complement of specificity to 

unity (equivalent to false positive rate). The AUC values obtained were 0.98 for the 

LRST, 0.96 for the ARST and 0.98 for the HRST test sets. The value of AUC represents 

the discrimination ability of a classifier (Grzesiak et al., 2010) and the value for a 

realistic classifier should be more than 0.5, with the AUC range between 1 (best 

separation between the values) and 0.5 (no distributional differences between 

values) (Fawcett, 2006).  

 It is generally difficult to develop a simple linear model to predict data with 

overlapping categories. Thus, all three mentioned variables of the DT were assigned 

in the MLP network to identify the three thermal categories. As can be inferred from 

Table 5.4, the HRST category showed the lowest value of precision for the test 

dataset, in which sensitivity was 89.1%, specificity was 94.7% and accuracy was 

93.3%, while the values obtained for LRST were 94.2%, 95.4%, 95.2%, respectively. 

Shao et al. (1998), who studied classification of swine thermal comfort using feed-

forward network and binary image features (i.e. Fourier coefficients, moments, 

perimeter and area, combination of perimeter) in laboratory conditions (4 chambers 

and 10 pigs per chamber), obtained values of correctly classified samples of 78, 73, 

86 and 90% for the test sets.  
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Figure 5.8- The relative operating characteristic (ROC) and the area under curve (AUC) 

values of network test set. ARST= around the room set temperature, LRST= lower than the 

room set temperature, HRST= higher than the room set temperature. 

Computing the mentioned binary image features in a commercial pig farm, with 

different pen structures, may increase the error of classification; for instance some 

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Se
n

si
ti

vi
ty

 

1-Specificity 

LRST 

AUC= 0.98 

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Se
n

si
ti

vi
ty

 

1-Specificity 

ARST 

AUC= 0.96 

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Se
n

si
ti

vi
ty

 

1-Specificity 

HRST 

AUC=0.98 



 
 

62 

 

pigs tend to lie close to the walls which makes the area or perimeter results 

inaccurate. Therefore, using a method for finding the centre of each pig and applying 

a precise mathematical model, the method used in this study, could increase the 

classification precision. In this study, the lower performance of ANN classification in 

HRST might be explained by the fact that, in higher temperatures, pigs increase the 

space they occupy and normally move to cooler places like the dunging area 

(Spoolder et al., 2012). As a result, the DT extracted features could change more than 

in the usual situation. Furthermore, in the LRST condition, they huddle together 

more in an area which appears warmer to them and the network could classify with 

better performance by using arranged DT features (Table 5.4).  

Table 5.4- The ANN analysis: sensitivity, specificity and accuracy for the test dataset. 

 

      

 

 

 

ARST= around the room set temperature, LRST= lower than the room set temperature, HRST=     

higher than the room set temperature. 

 

 Developing a classifier with high performance could be a basic step for creating 

an automatic monitoring system for enhancing pigs͛ welfare and, if the controller 

system of the environmental conditions can be based on the comfort behaviour of 

pigs, better welfare may be achieved (Shao et al., 1998). The technique presented in 

this study allows classification of lying behaviour using an ANN on the basis of the DT 

features. Since the experiment was run for a period of only 15 days, in pens with the 

same size and shape, the change in size of the pigs during this period was not great. 

Thus, further research is needed to model pigs with different sizes across a whole 

production batch, and pens with different structures should be considered in the 

model before making the method practicable for pig farms. The major advantage of 

applying a high performance classification system in commercial farm conditions is 

that the changes of lying behaviour in the different thermal categories, which mainly 

rely on the room set temperature, could be used in an automatic and continuous 

way with a large number of pigs and pens in non-laboratory situations. Changes in 

environmental temperature in pig farms result in alterations in body heat transfer 

and cause energy and meat production losses, so using an automatic image analysis 

and precise mathematical method can provide a less stressful situation for pigs and 

workers, and benefit economic outputs.   

Thermal category 

Group data 

Sensitivity  Specificity  Accuracy  

LRST 94.2% 95.4% 95.2% 

ARST 90.6% 94.4% 94.3% 

HRST 89.1% 94.7% 93.3% 
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In the current study, the ventilation system in use was not capable of maintaining the 

room at a temperature around the set point temperature for periods in both cold 

and warm seasons. This illustrates the need to design more appropriate ventilation 

systems in commercial practice. However, a single room set point may not be the 

most appropriate for animals in different situations.  Knowing the lying pattern of the 

pigs gives the possibility for farm managers to select the best room set temperature 

regarding their own animals and farm conditions. Connecting the proposed 

monitoring system to the room ventilation and potential heating or cooling system 

will be worthwhile to deliver better performance in an automated farm management 

system. As a result, more economic outputs and better animal welfare may be 

achieved. 

 

5.4. Lying behaviour monitoring after enrichment substrate provision 

 Direct vision and video scoring of pig lying behaviours are popular methods in pig 

welfare monitoring, however these are time consuming methods (Stukenborg et al., 

2011). A computer based approach was chosen to find the lying position and pattern 

of groups of pigs when providing an enrichment rooting material in a commercial 

farm situation. To validate the image processing technique 4000 images (10 days × 2 

replicates × 200 images per day) were analysed, which is around 25 % of the total 

number that were used in this study. The number of fitted ellipses (pigs) in each 

selected image after applying the image processing algorithm was counted and then 

compared to the number of pigs in that image with reference to manual labelling.  

Using machine vision techniques, the lying position of pigs in different zones could be 

automatically calculated. In total, 17280 images were separately analysed (10 days × 

144 times in a day × 6 pens × 2 replicates). Results of the validation study on ~25% of 

the images showed that the average percentage of frames with correct estimation of 

pigs in the control pen and plate treatment pen using the image processing 

technique was 95 and 93%, respectively. Incorrect estimations occurred when the 

algorithm wrongly considered other objects in the pen as pigs or failed to truly 

localize them. This was most often due to a reduced image quality when flies 

covered the camera lens with dirt over time. 

 The percentages of lying pigs in 10 min intervals for the plate and control pens 

are shown in Figure 5.9. The percentage of lying pigs increased during the period of 

the experiment for both the plate and control pens.  Statistical analysis showed that 

there was a significant effect of day on overall percentage of lying (p<0.001), with 

lying time increasing with age, but no difference between the treatments or 

treatment × day interaction. 
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Figure 5.9- Pig lying frequency during 10 separate days at 5 day intervals over the fattening 

period (left), and over the 24 hours of the day (right) in pens provided with daily maize 

silage substrate onto a plate or control pens with a hanging toy enrichment along with 

standard errors. 

As shown in Figure 5.9, between midnight (12 AM) and early morning (6 AM), which 

was the first feed delivery time, almost all pigs were lying. The lying percentages 

were reduced from 6 to 9 AM by delivery of fresh feed in both treatments, and 

further reduced in plate pens because of delivery of rooting material between 8 and 

10 AM; on average, around 65% of pigs were lying pigs in these pens while in control 

pens this value was about 80%. In both treatments, a second activity peak was 

apparent in the late afternoon and was more pronounced in the control pens. There 

was a significant treatment × time (hour) interaction indicating that pigs of different 

treatment had different lying behaviours during the 24 h (p<0.001).  Table 5.5 shows 

the results of statistical comparison of the effect of treatment on the lying pattern of 

grouped pigs. Whilst provision of rooting material had no significant effect on the 

overall time spent lying by the pigs, it did influence lying location.  
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Table 5.5- The effect of rooting material provision onto a plate on the total lying time of pigs 

and the percentage of lying animals in different pen locations. 

       SEM= standard error of the mean 

 

The general activity patterns of the animals were in accordance with published 

literature. The proportion of pigs lying showed an increasing trend over time, which 

is in line with previous findings that lying time increases with age (Ekkel et al., 2003). 

Furthermore, when looking at the effect of time of day, pigs showed a typical bi-

phasic pattern of activity, with morning and later afternoon activity periods as 

reported elsewhere (Zwicker et al., 2012; Lahrmann et al., 2015). However, the 

results illustrate that the pattern of pigs͛ activity during a day was altered by delivery 

of a rooting substrate, in agreement with Bolhuis et al. (2010) and Fraser (1985). The 

presentation of an attractive and novel substrate stimulated activity while this 

remained present, but animals then showed more lying behaviour later in the day, 

possibly as a consequence of gut fermentation effects of the ingested material 

(Bolhuis et al., 2010).  

 The percentage of lying pigs in each zone during the experiment is shown in 

Figure 5.10. In the control pens, the majority of pigs chose to rest in zone 1, the 

designated lying area, but as the pigs aged and became larger, the percentage of 

lying pigs in zone 1 declined and the occurrence of resting in other pen areas 

increased. In plate pens, the proportion of pigs resting in zone 1 decreased more 

markedly over time, whilst an increasing proportion of pigs chose to lie in zones 2 

and 3, adjacent to the plate.  

 

 

         Treatments (mean value) SEM F Value P-value  

 Plate Control    

Total lying (%) 85.73 84.74 0.871 0.39 0.565 

Zone 1 (%) 23.68 30.93 0.817 38.23 0.003 

Zone 2 (%) 24.33 21.83 0.952 3.44 0.137 

Zone 3 (%) 30.64 22.26 0.594 65.1 0.0006 

Zone 4 (%) 21.39 25.01 0.866 8.39 0.044 
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Figure 5.10- The percentage of lying pigs located in different regions of the pen during 10 

separate days at 5 day intervals over the fattening period in pens provided with daily maize 

silage substrate onto a plate (top) or control pens with a hanging toy enrichment (bottom) 

along with standard errors. 

The mean value of the percentage of lying pigs of each zone across the 24 h period is 

shown in Figure 5.11. Control pens showed a consistent pattern of pen use across 

the day. In contrast, the pens equipped with plates showed a change in the preferred 

zones in the hours immediately following substrate provision, when they reduced 

resting in the region of the plate, reverting back to their original preference once 

substrate related activity was over. 
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Figure 5.11- The percentage of lying pigs located in different regions of the pen over the 24 

hours of the day in pens provided with daily maize silage substrate onto a plate (top) or 

control pens with a hanging toy enrichment (bottom) along with standard errors. 

Treatment significantly affected the spatial distribution of the lying pigs. Control pigs 

showed a consistent preference for lying in zone 1, the designated lying area, and 

later as they increased in size also in zone 4. Although this was the designated 

dunging area, the choice to lie there might reflect the preference of animals to lie 

against pen walls rather than in open areas. In contrast, pigs in the plate pens 

changed their preferred lying area according to the time of day, avoiding the plate 

zone during the period of substrate-induced activity, but then showing more lying in 

zones 2 and 3 across the rest of the day. The avoidance of resting in an area of 

activity is to be expected (Olsen et al., 2001). Since the amount of rooting substrate 

delivered in this experiment was limited, and it had largely disappeared after 2-3 

hours, the effects on focussed activity and inhibition of resting were intense but 

transient. However, current legislation states that enrichment should be 

permanently available, raising the question of whether a greater quantity of rooting 
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material lasting throughout the day would cause less intense disruption or give rise 

to long term relocation of the preferred resting area. The reason for choice of the 

zones in the vicinity of the plate for subsequent resting in the current experiment is 

less obvious. It is possible that, since the plate was the only area of solid flooring in 

the pen, pigs might be attracted to lie there for this reason (Aarnink et al., 1996; 

Savary et al., 2009), with social facilitation resulting in other pigs subsequently 

joining this resting group. Further work with different flooring types would be 

necessary to further investigate this issue. 

  The lying zone which pigs choose is determined by a number of factors, including 

design of the pen, location of feeder and drinker, and environmental conditions 

relating to temperature, air velocity and humidity (Spoolder et al., 2012). Lying in the 

dunging area has negative consequences for hygiene and thermoregulation, and 

results in dirtier animals (Spoolder et al., 2012). This study illustrates how automatic 

monitoring of animals can be a useful tool for researchers and for farmers, allowing 

low cost monitoring of pigs lying behaviour which can be used as an indication of the 

way in which environmental conditions affect their welfare and health. 

 

  5.5. Mounting event detection 

 Following image capture and processing, the relative distances between 

individual pigs were estimated. Figure 5.12 shows the how the Ed between two 

points (H/T, H/S of one pig to another one) changed in successive frames; it could be 

inferred that the distances between the mounting and mounted pig declined before 

the mounting event happened. The algorithm only detected an Ed less than 43 (in 

pixels) (Figure 5.13) as the ROI in this study. Figure 5.13 illustrates the changes in Ed 

before and after the ROI for a mounting behaviour has been identified; when the 

Ed=0 the mounting events happened (for period of 5-14 s, 17 s, 27-33 s and 35 s) and 

it can be seen that there was a discontinuous mounting event. The major axis length 

of the fitted ellipse for both mounting and mounted pigs for a mounting event which 

happened from behind is shown in Figure 5.14. According to the diagram, the length 

of each pig was around 80 (pixels) (see Table 5.6) and, as the mounting event 

happened at second 5, the algorithm considered the mounting and mounted pigs as 

one pig and fitted an ellipse with a bigger major length. At the beginning of the 

mounting event, the length of the major axis was greater and it then declined over 

time as the mounting pig demonstrated pelvic thrusts (Hintze et al., 2013). Figures 

5.15 and 5.16 illustrate the major and minor axis length of mounting and mounted 

pigs when the mounting event occurred from the side. Here, the major length during 
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the mounting event was around 1.4 pig lengths, while the major axis length in the 

mounting event was approximately 2 times one pig͛s minor length.   
 

Figure 5.12- The Euclidean distance (Ed) between Tail and Head of two pigs during a 

mounting event. For a mount from behind: (A and B) the Ed declined, (C) mounting 

happened from the back giving a bigger ellipse. 

             

 
Figure 5.13- The Euclidean distance (Ed) between two pigs (mounting and mounted) and the 

region of interest (ROI). 

0

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Ed
 (

p
ix

el
) 

Time (second) 

Mounting event 

   

A B 

C 

𝐸𝑑 ሺܪ,ܶሻ = √ሺܪ௫ − ௫ܶሻଶ + ሺܪ௬ − ௬ܶሻଶ 

 
Euclidian distance between two points (H and T) 
 

x 

y 

ROI 



 
 

70 

 

 

 

Figure 5.14- The major axis length of mounting and mounted pigs, along with the mounting 

event length, for a mounting event from behind. 

Figure 5.15- The Euclidean distance (Ed) between Tail and Head of two pigs during a 

mounting event. For a mount from the Side: (A and B) the Ed declined, (C) mounting 

happened from the side giving a bigger ellipse. 
 

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Le
n

gt
h

 (
p

ix
el

) 

Time (second) 

Major length
for mounting
pig

Major length
for mounted
pig

Major length
for mounting
event

Mounting event 

   𝐸𝑑 ሺܪ, ܵሻ = √ሺܪ௫ − ܵ௫ሻଶ + ሺܪ௬ − ܵ௬ሻଶ 

 
Euclidian distance between two points (H and S) 
 

A B 

C 



 
 

71 

 

 
Figure 5.16- The major and minor axis length of mounting and mounted pigs along with 

mounting event length, for a mounting event from the side. 

 

Table 5.6- Mean and standard deviation (SD) of major and minor axis length of pigs in region 

of interest (ROI) before and after a mounting event.  

Time (second) 1 2 3 4 27 28 29 

Major axis length 

(pixel) ± SD 76.4±0.5 75.8±0.6 77.8±0.4 76.8±0.6 76.4±0.2 76.9±0.6 77.3±0.9 

Minor axis length 

(pixel) ± SD 26.4±0.3 27.4±0.8 27.3±1.1 26.7±0.6 26.5±0.9 25.9±1.2 27.1±0.9 

 

From the 200 h of recorded videos, a total of 120 mounting events were visually 

obtained. In general, 1800 s of mounting events and 7,200 frames (4 frames per 

second) were obtained from both pens during the study. The mounting events were 

manually validated from the recorded video frames by an expert. The validation 

scales used for finding the performance of the detection system were defined as in 

Table 5.7 (Firk et al., 2002; Pourreza et al., 2012; Tsai and Huang, 2014). 

 

Table 5.7- Definition of validation parameters. 

Scale  Definition Value  

TP Mounting event considered as mounting event 4753 

FP Non-mounting event considered as mounting event  247 

TN Non-mounting event considered as non-mounting event 1925 

FN Mounting event considered as non-mounting event  275 

 

 The results obtained from the validation of the algorithm show a good mounting 

detection rate with satisfactory sensitivity (94.5%), specificity (88.6%) and accuracy 

(92.7%). According to the criteria of Table 5.7, some mounting frames were not 
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recognized and there were some false positives. These errors sometimes occurred 

due to limitation in the pen structure where there was a water pipe in the middle of 

each pen (2.5 m from the floor) and some mounting events happened in this invisible 

area. Furthermore, when the apparent mounting event happened near a pen wall 

and/or when the mounting pig contacted or tried to contact a pig from a 

neighbouring pen, drank from the attached nipple drinker or licked the wall (Hintze 

et al., 2013), and due to the low image quality, the system could not properly 

distinguish the wall and pigs.  

ݕݐ𝑖ݒ𝑖ݐ𝑖ݏ݊݁ܵ  = ܶܲܶܲ + ܰܨ × ͳͲͲ               →    Ͷ͹ͷ͵Ͷ͹ͷ͵ + ʹ͹ͷ = ͻͶ.ͷ%                                    ሺͷ.ͺሻ 
ݕݐ𝑖݂𝑖ܿ𝑖ܿ݁݌ܵ  =  ܶܰܶܰ + ܲܨ  × ͳͲͲ              →   ͳͻʹͷͳͻʹͷ + ʹͶ͹ = ͺͺ.͸%                                  ሺͷ.ͻሻ 
 𝐴ܿܿݕܿܽݎݑ =  ܶܲ + ܶܰ ܶܲ + ܲܨ + ܶܰ + ×  ܰܨ ͳͲͲ               →    Ͷ͹ͷ͵ + ͳͻʹͷͶ͹ͷ͵ + ʹͶ͹ + ͳͻʹͷ + ʹ͹ͷ = ͻʹ.͹%                                                                                                                                ሺͷ.ͳͲሻ 
 

 It is clear that the mounting behaviours in pigs need different detection methods 

from those of some other species due to differences in the nature of their 

behaviours. For example, the mounting behaviour in cows contains a few seconds of 

following behaviours (Tsai and Huang, 2014), in which the mounting cow closely 

follows the mounted cow, and then a jumping or mounting event happens. Tsai and 

Huang, (2014) have shown that, because of following behaviours in cows, using the 

motion analysis of mounting events could be a good technique for mounting 

detection. In contrast, mounting in the pig often happens without any preceding 

following. Furthermore,  the mounted pig may be sitting down or moving away 

during the event, so using the recommended method for cows may not be applicable 

in pig behaviour detection.  

 This study has shown that binary image and fitted ellipse features can be used to 

extract features related to mounting behaviour among pigs. However, the system 

could not identify all mounting events, because the CCTV camera could not always 

detect the pig͛s body and make a clear distinction between pigs and wall or pigs and 

background (pen). This problem might be overcome by using 3D image data (i.e. TOF, 

Kinect depth sensor) which has the advantages of eliminating errors related to 

animal colours, background and different ambient lighting (Kongsro, 2014), animal 

body detection in more detail (Weber et al., 2014) and pictures with higher 
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resolution. However, using expensive cameras with better colour and object 

detection in commercial farms, in an environment with high levels of humidity, dust 

and ammonia, and their associated detrimental effects on electronics, may not be 

economically acceptable for farm managers. So, possibilities for improving the 

algorithm for images from simple CCTV cameras or using other methods need to be 

considered in future research.  

 To date, no previous studies have been carried out to automatically detect pig 

mounting behaviours. The technique proposed here can automatically detect 

mounting events among pigs, even in commercial farm conditions. The method could 

be a valuable tool to aid farmers to increase animal welfare and health, and reduce 

injuries and economic losses, particularly as the use of entire males becomes more 

common. As the pigs grow larger, the mounted pigs may have increased risk of injury 

(Clark and D͛Eath, 2013), and may be mounted more frequently by other pigs. So, 

with accurate information about the mounting events, the farmer can move quickly 

to address problem pens or seek interventions. Additionally, automated tracking of 

the time course and frequency of mounting behaviours within pens could facilitate 

the work of researchers exploring methods of prevention or alleviation of this 

behavioural problem.  

 

6. General discussion  

 The main objective of the present study was to develop an automated computer 

vision based system for monitoring behaviour of groups of pigs. The developed 

machine vision approaches and the results of the study have been presented. The 

image processing and the ANN algorithms were developed in MATLAB® software and 

tested in a commercial pig farm in Stafford, UK. The video recording methods 

presented in this research were based on a top view capture system in the pig barn 

due to the simplicity and robustness of top view monitoring systems for 

implementation in field conditions (Van der Stuyft et al., 1991). 

 The present research was focused on developing automatic monitoring systems 

which can be applicable for commercial situations by using cheap CCTV cameras. 

Various technologies, such as animal-borne sensors, are now available and applicable 

for monitoring pig or sow behaviours, i.e., feeding, drinking or lying behaviours. 

However, the advantages of camera based monitoring systems can be named as: no 

physical contact with the animal, cheap in large scale application, no pain for animals 

(such as insertion of ear tags), less stress and no negative hygiene consequences for 

either animals or farmers. Improving digital camera quality, remote data transfer 

systems and modern computer technologies provide many opportunities for 
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researchers and business owners to work more on automation in livestock 

husbandry.   

 In this research it was first explored how lying behaviour of group-housed pigs in 

a commercial situation could be characterised in a fully automated system. One of 

the most important factors affecting welfare throughout the stages of breeding, 

growth and maturity is the environment in which animals are maintained. 

Environmental factors provide important information for the better management of 

pig farms and they have significant effects on pigs͛ production efficiency, health and 

welfare. Due to the physiological and morphological limitations on thermoregulation 

of pigs, they change their lying behaviour to adapt to high and low temperatures. In 

hot conditions they avoid physical contact with others in the pen during resting time, 

while at low ambient temperatures they will huddle together with more physical 

contact (Hillmann et al., 2004; Spoolder et al., 2012). Conventional observation 

which is based on direct or recorded video observation has been made in numerous 

studies. This monitoring approach has its own limitations due to time requirement 

and has the possibility for subjective interpretation and hence observer bias 

(Tuyttens et al., 2014). This was the first time that group lying behaviours could be 

detected precisely thanks to image processing and the DT method. The methodology 

used was based on ellipse fitting models to identify the location of each animal. Since 

each single pig in the image is similar to an ellipsoidal shape, the x–y coordinates of 

each binary image could be used for ellipse fitting algorithms to localize each pig 

(Kashiha et al., 2014a and 2014b). Fitting an ellipse to each animal simplified the 

model details in comparison with more precise perimeter measurements because 

projecting body parts (limbs) were ignored. The principles of such a model are 

independent of type of animal and potentially can be tested for application to other 

livestock. Different parameters of each ellipse were found to help in distinguishing 

animal from background, and also from other animals, to provide useful information 

for behaviour analysis. These parameters included the centre of ellipse (or centre of 

pig͛s body in top view image), a major and minor axis giving an orientation to the 

fitted ellipse (Kashiha et al., 2013a).  

 One of the possible applications of the proposed lying behaviour detection 

method is to characterise group lying patterns in relation to environmental 

temperature. A methodology was developed which employs a DT model to obtain 

the distance between different pigs in the group during the lying time, and it was 

demonstrated that this was sensitive to detect changes in lying behaviour in different 

room temperatures. Information on the lying pattern of the pigs reflects the 

perception of thermal comfort of the animals themselves and gives the chance to the 

farm manager to select the best room set temperature regarding their own animals 
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and farm conditions. Defining different lying patterns, based on the extracted DT 

features from the group lying patterns of pigs, could therefore help farm managers 

to assess the adequacy of thermal provision for pigs in large scale farms. Use of the 

MLP classifier network made it possible to classify the thermal category in a room 

using the DT features without need for human interpretation. The ability to generate 

rapid categorisation of environmental adequacy means that such data could be used 

as an input for ventilation system management. The frequent fluctuations in external 

air temperature make barn ventilation management difficult. Room temperature in a 

building for growing pigs is normally kept within their thermal comfort zone (at 

around 20 oC), and the conventional measuring systems in commercial pig farms are 

based on some air temperature sensors (one or two) at fixed points above pig level 

(Mendes et al., 2013). This system cannot respond quickly to climate changes in 

some cases, so finding a method which indicates the thermal experience of the pigs 

themselves by image processing could be a first step to improve control of the 

ventilation system for better thermal comfort and welfare of pigs in the room. By 

connecting the proposed monitoring system to the room ventilation control system, 

it could be possible to deliver better animal performance and welfare in an 

automated farm management system.  

 Another application of the proposed method is automatic and continuous 

monitoring of location of pigs in a pen during the lying time by finding the x-y 

coordinates of each fitted ellipse in the image. This provides an impression of how 

group pigs spend their lying time in relation to their resting, dunging or feeding 

zones. Such information is important in assessing the adequacy of pen design and 

management, and has important implications for pen hygiene. For example, lying in 

the dunging area has negative consequences for pig͛s hygiene, resulting in dirtier pigs 

and pens (Spoolder et al., 2012). At a time when there is public pressure to reduce 

antibiotic use and presence of zoonotic organisms in animal products, maintaining a 

hygienic environment which will help to prevent subclinical disease is becoming 

increasingly important. Furthermore, changes to established patterns of pen use, or 

instability in functional areas, may be a precursor to behavioural problems such as 

tail biting. Early warning of such risk would allow farmers to implement appropriate 

interventions to avert the problem. Allowing pigs to express behavioural elements 

like feeding and exploring by providing rooting materials can improve their welfare 

(Bracke et al., 2007; Vanheukelom et al., 2012), reducing the level of aggression, the 

biting of tails, ears and other body parts among pigs (Day et al., 2002; Van de Weerd 

et al., 2006; Zonderland et al., 2008; Jensen et al., 2010). In this research, the 

application of the proposed image processing technique was also demonstrated for 

automatic monitoring of pigs lying behaviour (time and position changes) when 
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enrichment material was distributed into pens. Automated image processing 

techniques now give the potential to carry out behavioural research in a more 

effective way (Nasirahmadi et al., 2017a). This study shows that machine vision can 

be used as a precise and rapid method for quantifying pig lying behaviour for 

research or practical applications. 

 The research has demonstrated how image geometrical (ellipse) features could 

also be utilized to monitor mounting events amongst group-housed pigs. Mounting 

events amongst pigs can increase the risk of bruises and damage to the skin, and 

lameness or leg fractures (Rydhmer et al., 2004; Faucitano, 2001; Harley et al., 2014). 

These injuries and the general unrest in the group can have considerable negative 

economic consequences (Rydhmer et al., 2006). To control risk of boar taint and 

undesirable male behaviours European countries are castrating piglets which is a 

painful and stressful event (Prunier et al., 2006; Hintze et al., 2013). This research 

was the first explored how mounting behaviour of group-housed pigs could be 

detected by employing an automated machine vision method. Based on the ellipse 

features and the Ed between head/tail of one pig to head/tail of other pigs, the 

behaviour can be deduced through images extracted from the CCTV cameras. 

Comparison of image processing measurement with visual observation illustrated 

that mounting events could be measured in real-time with a high accuracy by using 

the ellipse fitting technique and mathematical approaches. The results show that the 

model is accurate enough to monitor the behaviour among pigs and issue alerts 

which could be used by farmers to intervene when this behaviour becomes frequent 

enough to affect welfare and performance. Furthermore, the principals and the 

developed algorithms could be used for automatic mounting behaviour detection to 

detect returns to oestrus in group-housed sows. Additionally this could be used in 

other species, such as cattle, to achieve successful detection of oestrus signs. In 

cattle, where poor fertility is a major problem, detecting the signs of oestrus is very 

important for reproductive success and economic efficiency of a herd.  

 As described in this research, a camera as a single sensor could be utilized to 

monitor many different variables in livestock farms. To use this monitoring system, 

the farmer will need to install only one sensor (camera) to collect extensive 

information on animal behaviour relating to the welfare status of a group of animals. 

This is more efficient than using devices on individual animals, such as application of 

RFID tags. Although the two technologies could also be used in combination, with 

RFID for monitoring of feeding and using cameras for the group monitoring of 

thermal behaviours which, together with thermal data of the animal barn (from 

temperature sensors), could be used in controlling the room ventilation system. 

However, it needs to be indicated that, despite the mentioned advantages of 
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automatic machine vision monitoring systems, some environmental parameters such 

as dust, dirt, flies and moisture can lead to failure in the image acquisition system. 

These practical constraints require further attention if system failures and 

consequent economic losses are to be avoided. 

 In addition to its commercial applications, the use of an automated computer 

vision based system for monitoring animal behaviour also has many potential 

research applications. Most behavioural studies to date have involved video 

recording approaches (e.g., Scott et al., 2006; Jensen and Pedersen, 2007) which 

require a great deal of time and effort to score animals͛ activity or lying behaviour. 

However, in this research an automatic monitoring system which employs an ellipse 

fitting method has been demonstrated to be effective to monitor lying behaviour 

changes after daily maize silage provision into the resting area of pigs. This technique 

can help to rapidly and objectively monitor a large number of animal groups in 

studies designed to improve animal welfare by manipulating lying position and daily 

activity levels. Hence, there are many possibilities for application of this technique to 

benefit animal monitoring, not only for pigs but also for other livestock when testing 

a range of housing and management interventions.   

 

7. Current limitations and future research needs  

 The automatic monitoring of animal behaviours by machine vision techniques has 

its own limitations in commercial farms compared to controlled conditions. The cost 

of cameras and sensors is an essential parameter for the farm owners; as a result 

more efforts need to be carried out for developing algorithms which work with cheap 

cameras and low quality images. The issues addressed in this study were only 

examined in one farm, so the reliability of the system needs to be more examined in 

a wider range of environmental situations.  

One of the current challenges in commercial pig farms is control of the building 

ventilation system across a range of different outdoor climatic conditions to improve 

animal welfare and optimize energy usage. More efforts are needed to develop 

camera-based real-time control systems which allow animal-based input parameters. 

However, better solutions for environmental challenges like flies, which can cover 

camera lenses with dirt and reduce visibility, need to be investigated before a fully 

automated machine vision technique can be implemented in commercial pig farms 

with low maintenance input. Furthermore, the monitoring systems working in pig 

farms can be subject to other changing and challenging ambient situations (e.g. 

temperature, moisture, dust and light changes) and thus require a higher degree of 
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flexibility and wider range of operation than generally taken into account by the 

previous studies.  

  This work focussed on application of cameras for the monitoring of animal 

behaviours. However, the combination of machine vision and multi-sensor 

approaches to record environmental changes may lead to improved performance of 

problem detection, since further sensors could compensate for some limitations of 

image distinction of machine vision systems. For instance, simultaneous application 

of acoustic sensors for recording animal vocalisations could make animal welfare 

assessment more accurate. Furthermore, there are major practical challenges in 

automation of individual livestock monitoring. Individual animal identification can be 

achieved using radio frequency tags which give greater reliability than image analysis 

due to the various uncontrolled conditions in indoor and outdoor farm 

environments, in combination with the fact that the animals in a group (i.e. cattle 

and pigs) can be highly similar in shape, colour and size. Fixed cameras also have a 

limited field of view, making them less practical in more extensive livestock systems. 

However, other imaging systems like drone-mounted cameras, which are widely 

used in tracking of wild animals in different outdoor situations, might also be applied 

for tracking of extensively kept livestock. For such further development of the 

technology, different feature detection algorithms e.g. Scale Invariant Feature 

Transform (SIFT), Speeded Up Robust Features (SURF), Haar-like and machine 

learning approaches are essential (Olivares-Mendez et al., 2015). Therefore, more 

research is still needed, based on new machine learning methods and using 

improved technologies.  

 Future opportunities could lie in the development of complete real time systems 

to monitor animal behaviours according to their natural biology and taking account 

of changes in environmental parameters to allow detection of behavioural 

alterations. The application of a system to detect mounting behaviours can be tested 

in different farm situations with different group sizes of pigs to improve the 

developed algorithm. In particular, monitoring that can accommodate the changing 

features of pigs during the whole period of husbandry (i.e. between birth and 

slaughter), with automatic adjustment of algorithms as animals grow or change 

reproductive status, is another area of research that affects the potential of machine 

vision outputs and needs to be addressed in future studies.  

Future opportunities could lie in further technological development. The major 

practical challenges in automation of individual pig monitoring due to various indoor 

and outdoor farm environments, in combination with the fact that the animals in a 

group can be highly similar in shape, colour and size, might be addressed by research 

based on new machine learning methods and using 3D features of animal body 
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shape. There is also a need for the development of intelligent systems to monitor 

animal behaviours according to their natural biology and the pertaining 

environmental parameters, allowing for detection of behavioural alterations 

indicative of early health or welfare problems. Most of the studies on pig monitoring 

are based on complex programming algorithms and the system operability, 

particularly how easy and friendly usage is for farmers, is another dimension that can 

be improved in future. Nowadays, thanks to wide accessibility of networks and smart 

phone devices on farms, much more research effort needs to be carried out toward 

availability of real-time online monitoring with alarm systems on these devices to 

address the problem of commercial accessibility.  

 Pig monitoring is accompanied by recording large amounts of video data during 

animal husbandry; compiling and analysing these data is a challenge facing most 

researchers when evaluating their findings and results. Standard databases or 

automated data cleaning and selection could be utilized for large scale evaluation 

and monitoring systems to reduce costs and timing demands.  

 Table 1-A (appendix A) and   Table 2-A summarise the automatic 2D and 3D 

image processing methods used for the different characterisation parameters and 

behavioural categories in cattle and pigs which have been reviewed in the thesis. 

These show that both 2D and 3D machine vision systems have been most commonly 

applied as a cheap and non-invasive ways to detect behaviour, individual and group 

features in cattle and pigs. Only in some cases have researchers developed and 

tested the systems in commercial conditions, which is one of the main goals in 

livestock automation research. Thus, in future, greater effort should be focused on 

more effective practical application of both 2D and 3D machine vision approaches to 

monitoring of individual and group livestock (e.g. automatic individual tracking, 

injurious interactions between pen mates) which are still challenging.  In order to 

improve the efficiency,  labour and energy cost of keeping large numbers of animals 

in commercial applications, collaboration is needed among animal building designers, 

to make the farm environment more suitable for automatic monitoring, animal 

biologists, to define animal requirements and interpret responses, and control, 

process modelling and machine vision specialists to refine available tools.  
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8. Summary  

Real-time monitoring of animal health, welfare and behaviour is the key factor for 

farmers to manage the farm and achieve the highest income. Employing modern 

monitoring technology has helped farm managers to improve animal production and 

welfare and there are now many different types of machine vision techniques which 

could be used in new commercially-applicable technology tools. With accurate 

information about livestock behaviours, the farmer can move quickly to address 

problem pens or seek interventions. Additionally, automated monitoring of the time 

course and frequency of some abnormal behaviours within pens could facilitate the 

work of researchers exploring methods for prevention or alleviation of the 

behavioural problem. Due to the importance of monitoring animal behaviours in 

commercial production, a series of research studies was carried out in a commercial 

pig farm in Stafford, UK, for automatic detection of group lying behaviours in 

different environmental conditions, along with mounting events among pigs. Figure 

8.1 shows the overall scheme of the developed monitoring system. In this research 

the image processing algorithms were developed using MATLAB® software.  

 

 

Figure 8.1- General scheme of monitoring system used in this research. 

 Pig lying patterns can provide information on environmental factors affecting 

production efficiency, health and welfare. One objective of this study was to 

investigate the feasibility of using image processing and the Delaunay Triangulation 

(DT) method to detect change in group lying behaviour of pigs under commercial 

farm conditions and relate this to changing environmental temperature. Two pens of 

22 growing pigs were monitored during 15 days using top view CCD cameras. 

Lying behaviour 
detection 

Lying pattern 
categorization 

Lying behaviour and rooting 
material provision 

Mounting behaviour 
detection 

MATLAB 



 
 

81 

 

Animals were extracted from their background using image processing algorithms, 

and the x–y coordinates of each binary image were used for ellipse fitting algorithms 

to localize each pig. By means of the region properties and perimeter of each DT, it 

was possible to automatically find the changes in lying posture and location within 

the pen of grouped pigs caused by temperature changes.  Over a 15 day period, 

39898 frames were analysed for the lying behaviour detection study and the results 

showed that the image processing technique yielded an acceptable level of correct 

detection (around 96 %). The developed method could contribute in the future as an 

important and economically feasible technique in commercial farms for assessment 

of livestock welfare in terms of the adequacy of environmental conditions. This is an 

important step towards the development of an automated system that can detect 

over time exact lying patterns and location of pigs during lying time by image 

features.  

 A study for the definition and categorization of lying patterns of grouped pigs in 

different ambient temperatures was conducted in four pens with 22 pigs. Three 

thermal categories were defined relative to room set-point temperature (21oC), i.e. 

ARST (around the room set temperature, from 19 to 23oC), LRST (lower than the 

room set temperature, from 14 to 18oC), and HRST (higher than the room set 

temperature, from 24 to 28oC). An image processing technique based on the DT was 

utilized. Different lying patterns (close, normal and far) were defined based on the 

perimeter of each DT triangle, and the percentages of each lying pattern were 

obtained for each thermal category. A method using a Multilayer Perceptron (MLP) 

neural network to automatically classify group pig lying behaviours into the three 

thermal categories was developed and tested for its feasibility. The DT features 

(mean value of perimeters, maximum and minimum length of sides of triangles) were 

calculated as inputs for the MLP classifier. The network was trained, validated and 

tested and the results revealed that MLP could classify lying features with a high 

overall sensitivity, specificity and accuracy (varying from 93.0% to 97.4%) into the 

three thermal categories. The technique indicates that a combination of image 

processing, MLP classification and mathematical modelling can be used as a precise 

method for quantifying pig lying behaviour in welfare investigations.  

 The application of the method developed to monitor pig lying behaviour was 

demonstrated in a study on the effects of environmental enrichment on pig 

behaviour. To deliver good animal welfare, pigs should have a hygienic and 

undisturbed lying area within the pen. So, a study was carried out to determine 

whether daily provision of a rooting material (maize silage) onto a solid plate in the 

lying area of a fully slatted pen resulted in changed lying location. The lying patterns 

of 6 groups of pigs in enriched pens were compared with those of control pens which 
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had only a suspended enrichment toy. Since visual monitoring of pig behaviours over 

long periods is very time consuming, the developed image processing technique was 

applied to identify changes in pig lying positions and behaviour. Each pen was 

virtually subdivided into four zones and the position of each lying pig obtained at 10 

minute intervals over a series of 24 periods. Results indicated that once daily 

provision of rooting material significantly changed the diurnal activity pattern 

(p<0.001) and resulted in a modified diurnal pattern of resting location. The results 

demonstrate that the developed machine vision approach can be used as a precise 

and fast method for quantifying pig lying behaviour for research or practical 

applications. 

 Since excessive mounting behaviours amongst pigs cause a high risk of poor 

welfare, arising from skin lesions, lameness and stress, and economic losses from 

reduced performance, a further objective of this research was to develop a method 

for automatic detection of mounting events amongst pigs under commercial farm 

conditions by means of image processing. Two pens were selected for the study and 

were monitored for 20 days by means of top view camera. The recorded video was 

then visually analysed for selecting mounting behaviours, and extracted images from 

the video files were subsequently used for image processing. An ellipse fitting 

technique was applied to localize pigs in the image. The intersection points between 

the major and minor axis of each fitted ellipse and the ellipse shape were used for 

defining the head, tail and sides of each pig. The Euclidean distance (Ed) between 

head and tail, head and sides, the major and minor axis length of the fitted ellipse 

during the mounting were utilized for development of an algorithm to automatically 

identify a mounting event. The proposed method could detect mounting events with 

high level of sensitivity, specificity and accuracy, 94.5, 88.6 and 92.7%, respectively. 

The results show that it is possible to use machine vision techniques in order to 

automatically detect mounting behaviours among pigs under commercial farm 

conditions. 

 In summary, the machine vision approaches developed and tested in this 

research programme were effective in automatically monitoring different behaviours 

of group-housed pigs under commercial farm conditions. Although many machine 

vision techniques have been developed and applied for livestock behaviour 

detection, further elaboration of image processing techniques could be an important 

step towards the development of an automated system that can detect behavioural 

changes of animals and decide and implement appropriate solutions, or generate 

alarms in unusual situations. 
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9. Zusammenfassung 

Für die erfolgreiche Unternehmensführung landwirtschaftlicher Betriebe und zu 

deren Einkommenssteigerung ist die Echtzeitüberwachung von Tiergesundheit, -wohl 

und –verhalten ein Schlüsselfaktor. Der Einsatz moderner 

Tierüberwachungstechnologien ermöglicht es den Landwirten eine hohe 

Tierproduktion mit einem hohen Tierwohl im Einklang zu bringen. Neuartige 

Verfahren der Bilderkennung haben ein hohes Potential durch eine noch präzisere 

Tierüberwachung für weitere Steigerungen von Tierwohl und Ertrag zu ermöglichen. 

Präzisere Daten zum Tierverhalten erlauben es dem Betriebsleiter, schneller auf 

potentielle Probleme zu reagieren und Gegenmaßnahmen einzuleiten. Weiterhin 

kann die automatische Bilderkennung durch die Erfassung der zeitlichen Abfolge und 

Häufigkeit von auffälligen Verhaltensmustern die Arbeit von Wissenschaftlern bei der 

Forschung zur Verminderungs- und Präventionsstrategien zur Vermeidung von 

Verhaltensstörungen und tiergesundheitlichen Problemen unterstützen. Aufgrund 

dieses Potentials der Bilderkennung für die praktischen Betriebe wurde eine Serie 

wissenschaftlicher Untersuchungen auf einem Schweinemastbetrieb in Stafford, 

Großbritannien, mit Fokus auf die automatische Erfassung des 

Gruppenliegeverhaltens in unterschiedlichen Stallklimabedingungen und der 

Erkennung des Aufreitverhaltens durchgeführt. Abbildung 9.1 gibt eine Übersicht 

über das in diesem Kontext entwickelte System. Alle in diesen Forschungsarbeiten 

entwickelten Bilderkennungsalgorithmen wurden unter der Nutzung von MATLAB® 

entwickelt.  
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Abbildung 9.1 - Schema des in dieser Arbeit verwendeten Überwachungssystems. 

Das Liegeverhalten von Schweinen kann als Indikator wichtige Informationen 

darüber liefern wie Umgebungsbedingungen (Raumtemperatur, Stallluft, etc.) die 

Produktionseffizienz, die Tiergesundheit und das Tierwohl beeinflussen. Eine zentrale 

Zielsetzung dieser Dissertation war die Untersuchung der praxisrelevanten 

Umsetzbarkeit von Bilderkennungsmethoden unter der Nutzung von Delaunay 

Triangulation (DT) zur Evaluierung des Liegeverhaltens von in Buchten gehaltenen 

Schweinen, insbesondere in Abhängigkeit der Umgebungstemperatur. Zwei Buchten 

mit jeweils 22 Mastschweinen wurden über einen Zeitraum von 15 Tagen mit CCD-

Kameras überwacht, welche an der Stalldecke montiert eine komplette Übersicht 

über die jeweilige Einzelbucht ermöglichten. Die Tierkonturen in den einzelnen 

Bildern wurden unter Nutzung eines selbst entwickelten Bildauswertungsalgorithmus 

vom Hintergrund (Stallboden) separiert, in ein Binärbild umgewandelt. Anschließend 

wurden die x- und y-Koordinaten der genauen Position der Tierkonturen der 

einzelnen Schweine in jedem Einzelbild mittels Ellipsenanpassungssalgorithmen 

bestimmt. Die temperaturveränderungsbedingte Anpassung der Liegeanordnung und 

Positionierung der Gruppe wurde durch Einsatz der Koordinaten und des Umfangs 

jeder DT, erfolgreich ermittelt. Insgesamt wurden in den 15 Versuchstagen 39.898 

Bilder erzeugt und ausgewertet. Die Ergebnisse zeigen, dass das entwickelte 

Bildverarbeitungsverfahren ein hohes Korrektheitsmaß im Vergleich zur manuellen 

Auswertung von 96 % aufweist. Die entwickelte Bilderkennungsmethode ist somit 

geeignet das Liegeverhalten der Schweine zu erfassen und kann zur Beurteilung der 

Erfassung des 
Liegeverhaltens 

Kategorisierung der 
Liegemuster 

Liegeverhalten und  
manipulierbare 

Materialiengabe 

Erkennung des 
Aufreitverhaltens 
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Umgebungsbedingungen und deren Auswirkungen auf das Gruppenwohl in 

kommerziellen Schweinemastbetrieben eingesetzt werden. Aufgrund der geringen 

technischen Anforderungen an die Mess- und Auswertungshardware kann davon 

ausgegangen werden, dass  die entwickelte Methode in der Praxis wirtschaftlich 

einsetzbar ist. Dies ist ein wichtiger Schritt hin zu der Entwicklung eines marktfähigen 

automatisierten Bildererkennungssystems welches exakt die Position von Schweinen 

und die entstehenden Liegemuster in der Gruppe erfassen kann. 

 Die zweite Studie zur Bestimmung und Charakterisierung der Liegemuster von in 

Gruppen gehaltenen Schweinen bei unterschiedlichen Umgebungstemperaturen 

wurde in insgesamt 4 Buchten mit jeweils 22 Schweinen durchgeführt. Es wurden 

drei thermische Kategorien in Bezug auf die Solltemperatur des Stalles (21°C) 

definiert: ARST (um die Solltemperatur, 19-23°C); LRST (niedriger als die 

Solltemperatur, 14-18°C) und HRST (höher als die Solltemperatur, 24-28°C). 

Basierend auf dem Umfang jedes DT Dreiecks wurden drei Liegemuster (eng, normal 

und weit) der Schweinegruppen definiert und die prozentuale Verteilung jedes 

Musters für jede thermische Kategorie bestimmt. Zur Klassifizierung der Liegemuster 

in die drei Temperaturkategorien wurde ein neuronales Netzwerk mit mehrlagigen 

Perzeptron (MLP) entwickelt. Die DT Merkmale (Durchschnittswert des Umfangs, 

maximale und minimale Länge der Seiten des DT) wurden als Eingangsgrößen für die 

MLP Klassifizierung berechnet und das Netzwerk wurde damit trainiert, validiert und 

getestet. Die Ergebnisse zeigen, dass das MLP das gezeigte Liegeverhalten mit einer 

hohen Gesamtsensitivität, Spezifität und Genauigkeit (93% bis 97.4%) in die drei 

thermischen Kategorien klassifizieren kann. Es konnte somit der Beweis erbracht 

werden, dass das entwickelte Verfahren bestehend aus einer Kombination von 

Bilderkennung und mathematischer Modellierung mittels MLP Klassifizierung als 

präzise Methode zur Quantifizierung des Liegeverhaltens von Schweinen in Bezug auf 

das Wohlbefinden der Tiergruppe geeignet ist. 

 In einer dritten Studie wurde die entwickelte Methode am Beispiel einer 

Untersuchung zur Auswirkung der Gabe von Wühlmaterialien auf das Liegeverhalten 

von Schweinegruppen untersucht. Für ein hohes Tierwohl, sollten Schweine Zugang 

zu einer hygienisch einwandfreien und ungestörten Liegezone haben. Daher wurde in 

einer weiteren Studie untersucht, inwieweit sich die tägliche Gabe von Wühlmaterial 

(Maissilo) auf einem planbefestigten Stallboden in der Liegezone auf das 

Liegeverhalten auswirkt. Die Liegemuster von sechs Gruppen von Schweinen, welche 

Wühlmaterial erhalten hatten, wurden mit dem Liegeverhalten von Schweinen in 

Kontrollbuchten, welche lediglich über hängendes Beschäftigungsmaterial verfügten, 

verglichen. Da die visuellen Beobachtungen des Verhaltens der Schweine sehr 

zeitaufwendig ist, wurde das entwickelte Bildverarbeitungsverfahren zur 
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Bestimmung eventueller Veränderungen im Liegeverhalten angewandt. Jede Bucht 

wurde virtuell in 4 Zonen unterteilt und die Veränderung der Position der liegenden 

Schweine in 10 Minuten Intervallen während der Aktivitätsphase des Tages (24 

Intervalle / Tag) aufgenommen. Die Ergebnisse zeigen, dass eine einmalige Gabe des 

Wühlmaterial während der Tagesstunden die Aktivitätsmuster (p<0,0001) beeinflusst 

und in einer Veränderung des täglichen Aktivitätsmuster innerhalb des 

Liegebereiches resultiert. Es konnte somit demonstriert werden, dass das 

entwickelte Bilderkennungsverfahren zur schnellen und präzisen Quantifizierung des 

Liegeverhaltens bei Schweinen sowohl in der Wissenschaft als auch der Praxis 

eingesetzt werden kann. 

 Das Auftreten exzessiven Aufreitens stellt eine signifikante Minderung des 

Tierwohls in der Schweinehaltung dar. Ursachen hierfür sind die durch das Aufreiten 

hervorgerufenen Verletzungen wie Hautläsionen und Lahmheiten und der 

hervorgerufene Stress in der Schweinegruppe, welche wiederum zu einer Reduktion 

der Tierleistung führen können. Daher war ein weiteres Ziel dieser Dissertation, eine 

auf Bildverarbeitung basierende Methode zu entwickeln, welche es ermöglicht das 

Aufreitverhalten in einer Tiergruppe unter Praxisbedingungen zu überwachen. Für 

diese Studie wurden zwei Buchten für 20 Tage mittels Kameras mit 

Übersichtsperspektive überwacht. Die aufgenommenen Videos wurden manuell 

bonitiert um die Zeitpunkte des Aufreitens zu erfassen. Die betreffenden Bilder 

wurden aus den Aufnahmen extrahiert und für die Bildverarbeitung verwendet. Zur 

Lokalisierung der einzelnen Tiere wurde eine Ellipsenanpassungsmethode anhand 

der Konturen der im Kamerabild erfassten Schweine verwendet (s.o.). Die 

Kreuzungspunkte zwischen der Haupt- und Nebenachse jeder Ellipse sowie deren 

Form wurden zur Bestimmung des Kopfes, des Schwanzes sowie der Seiten der 

Einzeltiere verwendet. Die Euklidische Distanz (Ed) zwischen Kopf und Schwanz, Kopf 

und Seite, sowie die Haupt- und Nebenachsenlängen der angepassten Ellipse 

während des Aufreitereignisses wurden zur Entwicklung eines Algorithmus zur 

automatischen Erkennung von Aufreitereignisses genutzt. Die vorgestellte Methode 

war dazu in der Lage, Aufreitereignisse mit einem großen Maß an Sensitivität, 

Spezifität und Genauigkeit zu bestimmen (94,5%, 88,6% und 92,7%). Wiederum 

zeigten die Ergebnisse klar, dass es möglich ist unter Nutzung von 

Bilderkennungstechniken, das Aufreitverhalten in kommerziellen Ställen zuverlässig 

zu erfassen. 

 Zusammenfassend kann gesagt werden, dass der in dieser Arbeit entwickelte 

Ansatz der Integration von Methoden der Bilderkennung eine effektive Einbindung in 

eine automatisierten Überwachung unterschiedlicher Verhaltensmerkmale von in 

Gruppen gehaltenen Schweinen in Praxisställen erlaubt. Obwohl bereits eine Reihe 
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von Bilderkennungsmethoden zur Erfassung von Tierverhalten existieren und 

Verwendung finden, konnte gezeigt werden das durch die Anwendung innovativer 

Auswertungsverfahren (DT und MLP) weiterhin ein großes Potential der 

Bilderkennung zur Entwicklung automatisierter Bilderkennungssysteme zur Erfassung 

und Auswertung von Verhaltensänderungen in der Schweinehaltung vorhanden ist. 

Insbesondere in der Entwicklung von Managementempfehlungen anhand des 

erfassten Tierverhaltens liegt noch ein großer Aufgabenbereich. 
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Appendix A 

  

Table 1-A Summary of automatic 2D and 3D image processing methods used for cattle 

monitoring. 

Monitoring Imaging system Technique  Source 

Live weight 

2D (CCD camera) 

 
Based on hip height, body 
length, hip width and chest 
depth. 

Tasdemir et al., 2011a; 
2011b; Ozkaya, 2013 

 
2D (Thermal camera) 

 
Based on tail root and front 
hoof templates. 

 
Stajnko et al., 2008 

 
3D (TOF sensor) 

 
Based on 3D and contour 
features of body. 

 
Anglart, 2016 

Body shape 
and condition 

 
2D (CCD camera) 

 
Based on anatomical points 
(points around hook and tail). 

 
Bewley et al., 2008; Azzaro 
et al., 2011 

2D (CCD camera) 

 
Based on the angles and 
distances between anatomical 
points and the ED from each 
point in the normalized tail-
head contour to the shape 
centre. 

 
Bercovich et al., 2013 

 
2D (CCD camera) 

 
Based on RGB and body 
features. 

 
González-Velasco et al., 
2011; Hertem et al., 2013 

 
2D (Thermal camera) 

 
Based on thickness of fat and 
muscle layers. 

 
Halachmi et al., 2008; 
Halachmi et al., 2013 

3D (TOF and depth 
imaging sensors) 

Based on body features and 
back postures. 

Weber et al., 2014; Salau et 
al., 2014; Fischer et al., 
2015; Kuzuhara et al., 2015; 
Spoliansky et al., 2016 

Health and 
disease 

 
2D (Thermal camera) 
 
 
 

 
Based on udder surface 
temperature. 

 
Schaefer et al., 2004; 
Montanholi et al., 2008; 
Hovinen et al., 2008; Colak 
et al., 2008; Rainwater-
Lovett et al., 2009; Wirthgen 
et al., 2011; Gloster et al., 
2011; Hoffmann et al., 2013 

 
 2D (Thermal camera) 

 
Based on body surface 
temperature. 

 
Cortivo et al., 2016 

Feeding and 
drinking 
behaviour 

     
 2D (Thermal camera) 

 
Based on the Viola–Jones 
algorithm. 

 
Porto et al., 2012; Porto et 
al., 2015 

 
3D (Structured light 
illumination scanning) 

 
Based on change in volume of 
food. 

 
Shelley, 2013 
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Table 1-A (continued) 
 

Monitoring  Imaging system Technique  Source 

Lying behaviour 
2D (CCD camera) 
 
 

 
Based on the x–y 
coordinates of the 
geometric centre of the 
animal. 

 
Cangar et al., 2008 

Based on Viola and Jones 
algorithm. 

Porto et al., 2013 
 

Locomotion and 
lameness behaviour 

2D (CCD camera) 

 
Based on body features 
extraction from binary 
image.  

 
Song et al., 2008 
 

 
Based on the touch and 
release angles in the 
fetlock joint of leg along 
with pressure mat data.  

 
Pluk et al., 2012 

Based on the curvature 
of the back of each 
animal. 

Poursaberi et al., 2010; 
Viazzi et al., 2013 

 
3D (Kinect sensor) 

 
Based on 3D and 2D 
features of depth and 
binary images.   

 
Viazzi et al., 2014a 

3D (Depth video) 

 
Based on tracking hooks 
and spine of animal in 
depth image.  
 

 
Abdul Jabbar et al., 2017 

 
Aggressive behaviour 
 
 

 
2D (CCD camera) 
 
 

 
Based on geometric 
features between 
animals. 

 
Guzhva et al., 2016 

 
Mounting behaviour 
 
 

 
2D (CCD camera) 
 
 

 
Based on motion 
detection and length of 
moving animals. 

 
Tsai and Huang, 2014 
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Table 2-A Summary of Automatic 2D and 3D image processing methods used for pig 

monitoring. 

Monitoring Imaging system Technique  Source 

Live weight 

2D (CCD camera) 

Based on length and width 

dimension and boundary area. 

 

 

Schofield, 1990; Brandl 

and Jorgensen, 1996; 

Schofield et al., 1999; 

Doeschl-Wilson et al., 

2004 

 

Based on area, convex area, 

perimeter, eccentricity, major 

and minor axis length. 

 

Wang et al., 2008; 

Kashiha et al., 2014b ; 

Wongsriworaphon et 

al., 2015;  

 

3D (Kinect sensor) 

 

Based on volume and area of 

body. 

 

Kongsro, 2014; Zhu et 

al., 2015 

 

3D (Stereo Vision) 

Based on body length, withers 

height and back area. 

 

Shi et al., 2016 

Body shape 

and condition 

2D (Thermal camera) 

 

Based on shape and contour 

detection. 

 

Liu and Zhu, 2013 

 

3D (Stereo 

photogrammetry) 

 

 

Based on triangulating on animal 

natural skin texture. 

 

 

Wu et al., 2004 

Health and 

disease 
2D (CCD camera) 

 

Based on daily movement pattern 

in binary images. 

 

Zhu et al., 2009 

Tracking 2D (CCD camera) 

 

Based on blob edge and an ellipse 

fitting technique. 

 

McFarlane and 

Schofield, 1995; 

Kashiha et al., 2013b 

 

Based on x-y coordinates of 

shape. 

 

Tillett et al., 1997 

 

Based on positions of locatable 

features (kinks) of body. 

 

Frost et al., 2000 

 

Based on RGB values. 

 

Jover et al., 2009 

 

Based on building up support 

maps and Gaussian model. 

 

Ahrendt et al., 2011 

 

Learning based segmentation 

 

Nilsson et al., 2015 
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Table 2-A (continued) 

Monitoring  Imaging system Technique  Source 

Tracking 

 

 

2D (CCD camera) 

 

 

Based on adaptive 

partitioning and 

multilevel thresholding 

segmentation. 

 
Guo et al., 2015 

Feeding and drinking 

behaviour 
2D (CCD camera) 

 

Based on fitted ellipse 

features and distance to 

drinking nipple.  

 

Kashiha et al., 2013a 

 

 

3D (Kinect sensor) 

 

 

 

Based on depth image 

and x-y coordinates of 

binary image. 

 

 

Lao et al., 2016 

Lying behaviour 2D (CCD camera) 

Based on features of 

binary image. 

Shao et al., 1998;  Shao 

and Xin, 2008 

 

Based on the pixel 

intensity in binary image. 

 

Costa et al., 2014 

 

Based on fitted ellipse 

and the DT features. 

 

Nasirahmadi et al., 2015; 

2016a ; 2017b 

 

Locomotion and 

lameness behaviour 

2D (CCD camera) 

 

Based on RGB and image 

map values. 

 

Kongsro, 2013 

  

Based on activity index. 

 

Ott et al., 2014 

 

Based on fitted ellipse 

features in consecutive 

frames.  

 

Kashiha et al., 2014a; 

Nasirahmadi et al., 2015 

 

Based on optical flow 

pattern.  

 

Gronskyte et al., 2015; 

Gronskyte et al., 2016 

3D (Kinect sensor) 

 

Based on Vicon 3D 

optoelectronic motion 

analysis. 

 

Stavrakakis et al., 2015a; 

2015b 

 

Aggressive behaviour 

2D (CCD camera) 
Based on motion history 

image and activity index.  

Viazzi et al., 2014b; 

Oczak et al., 2014 

3D (Kinect sensor) 

 

Based on features from 

depth image. 

Lee et al., 2016 

 

Mounting behaviour 2D (CCD camera) 

Based on fitted ellipse 

features and ED between 

animals. 

Nasirahmadi et al., 2016b 
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