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1. Introduction

Livestock production is the largest user of land in the world for grazing and
production of feed grains and agricultural products. The global demand for livestock
products is expected to further increase due to population growth, rising incomes
and urbanization (Bruinsma, 2003). Increase in market demand for meat and milk
products, to provide food for a growing population, has led to a rapid growth in the
scale of cattle and pig enterprises globally. For example, by 2014 the global numbers
of live cattle and pigs had reached 1475 and 986 million heads, respectively (Table
1.1). With an increase of 10.8 % in the global human population in the last decade,
there has been a significant increase in pig and cattle meat production (around
32.6% and 9.2% growth, respectively). As the scale of animal husbandry around the
world increases, addressing the issue of animal welfare becomes more essential.

Table 1.1- Changes in the global human population, cattle and pig inventories and
production between 2005 and 2014 (faostat.fao.org).

2005 2014 Growth (%)
Human population (billion) 6.5 7.2 10.8
Live cattle (million) 1387.5 1474.5 6.3
Live pigs (million) 883.8 985.7 11.5
Cattle meat (thousand tonnes ) 59245.8 64681.1 9.2
Pig meat (thousand tonnes) 94352 115313.7 32.6
Cow fresh milk (thousand tonnes) 543444.2 655957.9 20.7

The relationship that people have with animals, and the duty they have to ensure
that the animals under their care are treated correctly, is fundamental to animal
welfare. Livestock welfare can be defined using such parameters as their behaviour,
physiology, clinical state and performance (Averds et al., 2010; Costa et al., 2014;
Nasirahmadi et al., 2015). There are many links between animal behaviour, health,
emotions and welfare, and identification of appropriate behaviours helps to deliver
better health, welfare and production efficiency (Nasirahmadi et al., 2017b).
Behaviour plays an essential role in transmission of disease, and veterinarians use
changes in animal behaviour for diagnosis of disease in some cases (Broom, 2006).
For instance, a cow with lameness may arch its back and has abnormal walking. It is
believed that emotions evolved to reinforce performance of behaviours important
for survival, such as obtaining food and avoiding danger. In pigs, for example, hunger
plays an essential role in their motivation for directing exploratory behaviour
(Murphy et al., 2014).



Consumers and the wider society are increasingly concerned about the welfare,
health and living conditions of farm animals. Awareness of animal needs underpins
new production standards for animal health and welfare. Animals need to access
fresh water and correctly formulated diets, which ensure gaining sufficient live
weight and promote good animal health (Petherick, 2005). The appropriate
environmental conditions lead to good animal welfare. High or low ambient
temperatures, ventilation rate, and humidity are examples of environmental factors
that may affect animal welfare. Animals also need proper facilities (e.g. space,
housing, handling) to express normal behaviour without fear and distress. Early and
real-time detection of normal and abnormal behaviours of animals reduces the cost
of animal production, limiting losses from diseases and mortality, and improves the
job satisfaction of the owners. However, due to the current scale of production,
there is increasing awareness that the monitoring of animals can no longer be done
by farmers in the traditional way and requires the adoption of new digital
technologies.

The advancement of knowledge and technology in the current century, along
with human expectations for adequate and high-quality livestock products, has
therefore enhanced the need for improved production monitoring. Pig and cattle
behaviour can provide information about their barn environmental situation, food
and water adequacy, health, welfare and production efficiency. Real-time scoring of
livestock behaviours is challenging, but the increasing availability and sophistication
of technology make automated monitoring of animal behaviour practicable. With the
development of new technologies, the application and integration of new sensors
and interpretation of data from multiple systems with reducing processing times
means that information supply for farmers and researchers has become easier
(Barkema et al., 2015). There are many studies in the literature that demonstrate
how such technologies can help in observation of both normal and abnormal
behaviours of animals. Examples include studies based on Radio Frequency
Identification (RFID), which is a wireless system included two parts: a data-carrying
device (tags) and readers. In RFID, data are transferred by means of magnetic fields
between tag and reader (Maselyne et al., 2014). The reader is a device with
antennae to emit radio waves and receive signals from the tag. The tag uses radio
waves to communicate its identity and other information to the readers. RFID have
been used for locating animals, for detection of feeding and/or drinking behaviours
of cattle (Sowell et al., 1998; Quimby et al., 2001; Wolfger et al., 2015; Shane et al.,
2016) and pigs (Reiners et al., 2009; Brown-Brandl et al., 2013a; Brown-Brandl et al.,
2013b; Andersen et al., 2014; Maselyne et al., 2014; Gertheiss et al., 2015).



There are many studies in the literature of methods by which technology and sensors
help in observation of both normal and abnormal behaviours of animals, namely
drinking, feeding, lying, locomotion, aggressive and reproductive behaviours. Further
examples of the application of new technology are activity and lying behaviour
monitoring in cattle and pigs using acceleration sensors attached to the animals
(Robert et al., 2009; Trénel et al., 2009; Ringgenberg et al., 2010; Jénsson et al.,
2011). An accelerometer is an electromechanical device that measures the
acceleration of both static and dynamic forces. This technique has been widely
applied for locomotion and lameness assessment (e.g. Nielsen et al., 2010; Grégoire
et al.,, 2013; Conte et al., 2014; Van Nuffel et al., 2015), as has the use of other
sensors which have been reviewed by Schlageter-Tello et al. (2014) for cows and
Nalon et al. (2013) for pigs. However, attachment of sensors to monitor animal
behaviours may cause stress and, in some cases, is impractical to use for scoring
group behaviours due to their cost and vulnerability. One of the other technologies
which has been used for a wide variety of applications in agriculture, industry, food
engineering and animal science is the machine vision technique, which can provide
an automated, non-contact, non-stress and cost-effective way to achieve animal
behaviour monitoring requirements (Shao and Xin, 2008; Costa et al., 2014;
Nasirahmadi et al., 2016b; Oczak et al., 2016).

In conclusion, to address the growing demand for meat and milk products,
livestock farming has been scaling up during the last two decades. This gives new
challenges in optimising the management of animal farming, which can be helped by
the automated monitoring of farm processes (Banhazi et al., 2012). Automatic
computer imaging systems could help both farmers and researchers to address the
problems of monitoring animals, e.g. for visual scoring, animal weighing and other
routine tasks which are both time-consuming and costly, and could result in more
objective measurements by means of image processing techniques. A machine vision
approach is a cheap, easy, non-stressful and non-invasive method which can be
adapted to different animals, in both indoor and outdoor situations, using the
animals’ natural features (e.g. shape, colour, movement) for monitoring their
behaviours.

2. Objectives of the research

For many years, human observations of animals have been carried out to assess
their behaviour, health and welfare. The main problem with this approach is the high
requirement for both time and cost for complete monitoring of the farm. This is most
challenging in large-scale farms with a high number of animals.



The overall objective of this study is to develop an automatic, computer-based
monitoring system for behaviour of group-housed pigs. The specific objectives
include:

1. Developing automatic machine vision based detection for lying behaviour of
pigs in groups.

2. Defining and categorising the group lying patterns of pigs.

3. Automatic assessment of lying pattern changes of pigs after enrichment
substrate provision.

4. Developing an automatic computer-based detection system for mounting
behaviour in pigs.

The research is presented in the form of state of the art image processing and
neural networks algorithm development, farm experiments and application of the
algorithms in the commercial farm situation. To date, no automatic lying behaviour
detection system, along with different mathematical descriptions of group lying
patterns in different ambient temperatures, or automatic mounting behaviour
detection systems have been presented. To achieve this, different image processing
algorithms in MATLAB® were developed to monitor pig behaviours captured from
Closed Circuit Television (CCTV) cameras.

The present thesis, relating to the development of an automatic machine vision
system for monitoring behaviours of pig groups, is structured in 8 sections. Section 3
and its sub-sections provide a review of literature on different types of camera and
imaging systems used in livestock monitoring, the use of image processing for
individual physical characterization of cattle and pigs and the monitoring of
behaviours which may happen within the group. Section 4 covers material and
methods for this research. Section 5 and 6 present results and discussion of the
experimental components, along with an overall discussion of the research, while
section 7 highlights future research needs. Summaries of the research in English and
in German are given in section 8 and 9. Finally, references are presented in section
10.

3. Literature review
3.1. Imaging systems for livestock monitoring

Image acquisition, which is the first step of any machine vision system, is defined
as transfer of the signals from a sensing device (i.e. camera) into a numeric form.
Cameras are a crucial element in machine vision applications, however each type of

4



camera offers different information on parameters of the image. The cameras
applied in cattle and pig behaviour detection can be divided into Charge Coupled
Device (CCD), infrared (IR) and depth sensor cameras.

The CCD cameras create images in two dimensions and are sensitive to visible
bands reflected from objects (Mendoza et al., 2006). These types of camera need an
additional source of light to make the image visible and the machine vision system
consists of single or multiple cameras, i.e. video surveillance cameras, capturing
objects which are visible to a human. Examples of using this type of camera in
livestock behaviour detection are Shao et al. (1998), Hu and Xin (2000), Porto et al.
(2015), Nasirahmadi et al. (2016b). The captured images are potentially suitable for
image processing algorithms to extract image features based on colour, shape and
textural properties. CCD cameras have the ability to detect pixels of objects in red,
green and blue (RGB) bands. Nowadays, different image processing algorithms help
to convert these bands to grey, hue, saturation, intensity and other parameters.

Infrared or thermal cameras work similarly to optical or common CCD cameras, in
that a lens focuses energy onto an array of receptors to produce an image. By
receiving and measuring infrared radiation from the surface of an object, the camera
captures information on the heat that the object is emitting and then converts this to
a radiant temperature reading (James et al., 2014; Matzner et al., 2015). Thus, while
CCD cameras measure the radiation of visible bands, thermal cameras detect the
characteristic near-infrared radiation (typically wavelengths of 8-12 um) of objects
(McCafferty et al., 2011). Thermal imaging was developed for industrial, medical and
military applications, but it has also been applied in many livestock production
studies as reviewed by Eddy et al. (2001), Gauthreaux and Livingston (2006),
McCafferty (2007), McCafferty et al. (2011). All live animals emit infrared radiation,
and the higher the temperature of an object, the greater the intensity of emitted
radiation and thus the brighter the resulting image (Kastberger and Stachl 2003;
Hristov et al., 2008).

In the last decade, the number of applications related to Three Dimensional (3D)
imaging systems in machine vision has been growing rapidly, thanks to improved
technology and reducing cost. The use of this type of imaging system in agricultural
products has been recently described (Vazquez-Arellano et al., 2016). Depth imaging
is a core component of many machine vision systems and, within this technology,
time of flight (TOF) and Kinect cameras have been used widely in livestock
applications. TOF cameras sense depth by emitting a pulse and then measuring the
time differential for that emitted light to travel to an object and back to a detector.
They can provide a 3D image using an infrared light source and CCD detector (Kolb et



al., 2010; Pycinski et al., 2016) and the camera lens gathers the reflected light and
images it onto the sensor or focal plane (Figure 3.1).
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Figure 3.1- Time-of-flight (TOF) phase measurement principle.

The 3D depth sensing makes it possible to overcome common issues causing
problems with Two Dimensional (2D) imaging systems, such as background removal,
segmentation, feature extraction and sensitivity to lighting variance. TOF systems are
limited by the number of data points that they capture at a given time and their
relatively limited field of view. Therefore, TOF systems can lead to accuracy errors
(Shelley, 2013). Although it is much easier and cheaper to use the 3D camera
approach in farm environments rather than stereo vision, Laser or 2D triangulation,
which are common alternatives for 3D reconstruction, the depth images still require
some processing work to remove unwanted objects (e.g. noise, background), and in
some cases calibration to deliver better results is needed. The Kinect sensor,
introduced in 2010 and based on the TOF principle, made it possible for software
developers to acquire a skeletal model of the user in real-time with no calibration
needed (Han et al., 2013). The Kinect sensor lets the machine sense the third
dimension (depth) of the object and the environment by employing data from a RGB
camera, an infrared projector and infrared camera making the task much easier (Han
et al., 2013; Nathan et al.,2015; Westlund et al., 2015; Marinello et al., 2015).

Once the basic images have been captured from these different camera systems,
they are transferred onto a computer and are converted to digital images. The image
processing technique enhances the quality of images by eliminating defects such as
geometric complexity, inappropriate focus, repetitious noise, non-uniform
illumination and camera motions or by the improvement of important features of
interest (Narendra and Hareesh, 2010).



3.2. Image processing techniques used for characterising individual livestock

Although livestock usually live in groups, monitoring of individual animals is one of
the main goals of researchers. Most individual studies on cattle and pigs have been
concerned with inspection of their weight and body condition as well as
measurement of their health and sickness characteristics, such as mastitis in cows.
Some of the characteristics are expressed in the form of individual animal monitoring
indices, which will be addressed in the following paragraphs along with their image
analysis strategies applied.

3.2.1. Live weight

Knowledge of the live weight of pigs plays an important role in the control of
performance-related parameters which affect the output of the herd, i.e. animal
growth, uniformity, feed conversion efficiency, space allowance, health and
readiness for market (Schofield, 1990; Brandl and Jorgensen, 1996; Wang et al.,
2008; Kongsro, 2014). An individual pig’s live weight is usually obtained using manual
or automatic weighing scales, to which pigs are driven in a way which is laborious
and stressful to both the animal and the workers (Wang et al., 2008; Kongsro, 2014),
while automatic scales are usually costly devices (Kongsro, 2014).

Information extracted from the literature shows a range of different image
processing methods for monitoring pigs’ live weight. Based on length and width
dimensions of pigs (i.e. length from scapula to snout, length from tail to scapula,
shoulder width, breadth at middle and breadth at back) and boundary area, some
researchers (Schofield, 1990; Brandl and Jorgensen, 1996; Schofield et al., 1999;
Doeschl-Wilson et al., 2004) have used top view CCD cameras to obtain estimates of
individual pig live weight. Live weight has also been estimated by means of a top
view image with extracted features including area, convex area, perimeter,
eccentricity, major and minor axis length and boundary detection, along with
Artificial Neural Network (ANN) methods (Wang et al., 2008; Wongsriworaphon et
al., 2015). Recently a fully automated weight estimation technique has been
introduced to estimate a marked pig’s weight individually (Kashiha et al., 2014b; Shi
et al., 2016). Furthermore, approaches for pig live weight estimation by means of a
Kinect camera have utilized infrared depth map images (Kongsro, 2014; Zhu et al.,
2015).

Similarly, image processing has been used to measure cattle live weight due to
the importance of live weight monitoring for milk and meat production, along with
the difficulty of manually determining live weight on farm due to stress for the
animals and their potential to cause damage to themselves, humans and weighing
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equipment. Tasdemir et al. (2011a and 2011b) and Ozkaya (2013) utilized top and
side view cameras for cow live weight detection, using features like hip height, body
length, hip width and chest depth extracted from images, along with multi-linear
regression and fuzzy rule models. Previously, a thermography and image analysis
based method was developed by Stajnko et al. (2008) for measurement of the live
weight of individual bulls. The thermal camera was able to separate the bull from the
surroundings accurately and the measurements were based on the tail root and front
hoof templates on each image. Moreover, a TOF camera method has recently been
applied for body weight detection of cows based on 3D body and contour features
(Anglart, 2016).

3.2.2. Body shape and condition

Body shape and condition of a live pig/cow is an important indicator of its health,
reproductive efficiency and value, whether for breeding or for carcass quality (Wu et
al., 2004; Bercovich et al., 2013; Fischer et al., 2015). Assessment of live animal body
condition by eye or hand is time and labour intensive and highly dependent on the
subjective opinion of the stockman. However, imaging methods have become more
affordable, precise and fast for on-farm application. Examples of using image
processing for pig body condition have used 3D cameras for shape detection (Wu et
al., 2004) and thermal cameras for shape and body contour detection (Liu and Zhu,
2013). Image processing has been widely utilized for assessment of cow body
condition, based on anatomical points (points around hook and tail) detected with
top view CCD cameras (Bewley et al., 2008; Azzaro et al., 2011) and thermal camera
measurement has been used to assess the thickness of fat and muscle layers and
provide a body condition score (BCS) (Halachmi et al., 2008; Halachmi et al., 2013). In
other research, the angles and distances between 5 anatomical points of the cow’s
back and the Euclidean distances (Ed) from each point in the normalised tail-head
contour to the shape centre were used for body shape scoring (Bercovich et al.,
2013). Side view images have also been used for body shape capture of cows, based
on RGB images and body features (Gonzalez-Velasco et al., 2011; Hertem et al.,
2013). In order to determine the 3D shape of a cow’s body, TOF and Kinect cameras
have more recently been utilized, based on extracting body features and/or back
postures in 3D images (e.g. Weber et al., 2014; Salau et al., 2014; Fischer et al., 2015;
Kuzuhara et al., 2015; Spoliansky et al., 2016).



3.2.3. Health and disease

Early detection of symptoms of illness or abnormal behaviour is essential to
effectively deal with animal welfare and disease challenges in both cattle and pigs,
and can help minimise lost production and even death of livestock. A method to
detect the probability of a sick pig was tested by Zhu et al. (2009) by a combination
of wireless technology and image processing. Monitoring of pigs daily movement,
eating and drinking behaviours, along with wireless data, was considered as a tool for
alarming suspected cases. The measurement of body temperature is a common
method to monitor the health of an animal (Hoffmann et al., 2013). As a result, most
of the research on health detection is based on surface temperature by using
thermal cameras (e.g. Schaefer et al., 2004; Montanholi et al., 2008; Rainwater-
Lovett et al., 2009; Wirthgen et al., 2011; Gloster et al., 2011; Hoffmann et al., 2013).

Mastitis, which is one of the most common diseases in dairy cows and causes
major economic loss to dairy farmers, has been detected based on udder surface
temperature measurement (Hovinen et al.,, 2008; Colak et al., 2008). Recently, a
thermography method was also developed for automatic parasite counting on cattle
bodies to improve their health and welfare. The difference in temperatures between
ectoparasites, such as ticks and horn flies, and the cow’s body temperature made it
possible to detect these parasites in images (Cortivo et al., 2016). However, many
external parameters (e.g. high or low temperatures, soiled surfaces and variable
distance from object to lens), together with difficulties in interpretation of animal
surface temperature, make the real-time monitoring of health and disease using
thermography more challenging. As a result, in most of the studies other methods
(e.g. clinical symptoms) have been investigated for their reliability in health problem
detection.

3.2.4. Tracking

In order to automate monitoring of animals’ health and welfare, tracking
methods have been developed which differ according to the animal and husbandry
situations. Livestock tracking tools which have been utilized can be listed as
Bluetooth, WiFi networks, radio frequency methods and Global Positioning System
(GPS) (Huhtala, 2007). However, the mentioned tools are more applicable to cattle
rather than pigs. Pigs normally have more physical contact in pens and cannot easily
carry electronic devices without risk of damage (Ahrendt et al., 2011). Furthermore,
for large numbers of pigs many devices are needed which is not economically
feasible. As a result, tracking animals by machine vision has many possible
advantages in livestock monitoring.



McFarlane and Schofield (1995) applied a top view camera for tracking piglets, based
on blob edge and an ellipse fitting technique, whereas Tillett et al. (1997) tracked
individual pigs by using x and y coordinates of shape data of individual pigs over time
sequences. Furthermore, movement of pigs in feeding stalls was investigated by
Frost et al. (2000) by applying CCD cameras. Image processing approaches have been
used for tracking the location of pigs in pens by Guo et al. (2015) and Nilsson et al.
(2015). In another study, individual piglets were painted with different colours on
their backs for tracking and the automatic algorithm was based on RGB value
detection (Jover et al., 2009). In another study, a specific pattern was stamped on
the back of each pig and ellipse fitting algorithms were employed to localise pigs in
top view CCD images. Individual pigs were identified by their respective paint pattern
using pattern recognition techniques (Kashiha et al., 2013b). A real-time machine
vision system for tracking of pigs was developed by Ahrendt et al. (2011), based on
building support maps and a Gaussian model of position and shape of individual pig.

In general, to improve animals’ health, welfare and production efficiency,
monitoring of individual animals plays an essential role in farm management.
Measuring the individual weight, milk yield and lameness of dairy cows in robotic
milking and using radio frequency methods of animal movement assessment for
health detection are some examples of technology application. Image processing
techniques for individual livestock monitoring seem promising due to drawbacks of
alternative methods (e.g. price, stress of application and need for contact with the
animal). The combination of imaging and sensor approaches could be more sensible
in some cases. For instance the individual animal could be identified by using a
sensor (i.e. RFID) while health parameters could be monitored by using image data.
However, monitoring of some individual features (e.g. tracking) is still challenging,
especially for animals in a herd, and the image processing methods need more
investigation to address issues in commercial applications.

Information from the literature indicates various uses of image analysis methods
in cattle and pig husbandry. Other than behaviour detection, which will be addressed
later in this review, examples include teat position detection in robotic milking for
dairy cows, based on colour and morphology features (Bull et al.,, 1996;
Zwertvaegher et al., 2011) and milk yield estimation based on rear view depth, width
and area of udder (Ozkaya, 2015). Furthermore, heat tolerance in pigs, based on
surface temperature of group housed pigs, has been monitored (Brown-Brandl et al.,
2013a; Brown-Brandl et al., 2013b; Cook et al., 2015).

The validation scales used for evaluating the machine vision detection technique
and the performance of a behaviour detection system can be described as sensitivity,
specificity, error rate, precision and accuracy (Grzesiak et al., 2010; Pourreza et al.,
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2012) (Table 3.1). All accuracy results reported here are based on correlation to
ground truth. Ground truth is used in machine vision to refer to data provided by
direct observation (manual scoring) in comparison to the information provided by
image processing.

Table 3.1- Validation criteria for machine vision techniques.

Performance
criterion Equation for calculation
Sensitivity (%) TP
TP + FN
TP= true positive (correct detection of a relevant behaviour)
Specificity (%) TN
TN + FP
TN= true negative (correct detection of a not relevant behaviour)
Accuracy (%) TP +TN
TP+FP+TN+FN
FP= false positive (incorrect detection a relevant behaviour)
Error rate (%) FP
TP + FP
FN= false negative (incorrect detection of a not relevant behaviour)
Precision (%) TP
TP + FP

In the current section, the individual characterisation of cattle and pigs by image
processing techniques has been reviewed. The detection of behaviours which may
occur within the group will be addressed in the following sections.

3.3. Image processing techniques used for characterising grouped livestock
3.3.1. Feeding and drinking behaviour

Feeding and drinking behaviours are often thought to provide some indication of
how much animals are eating or drinking and contain important information that can
enable better management of animals and detection of problems (Botreau et al.,
2007; Chapinal et al., 2007; Brown-Brandl et al., 2013a; Brown-Brandl et al., 2013b).
Detecting these behaviours is therefore important in animal husbandry from an
economic and welfare point of view and plays an essential role in meat and milk
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production. The amount of feed intake and water usage of dairy cattle affects milking
efficiency (Azizi et al., 2009; Appuhamy et al., 2016) and changes in feeding and
drinking behaviours in pigs could reflect pig health (Maselyne et al., 2016).

Traditionally, feeding behaviour has been monitored through direct human
observation or using time-lapse video recording techniques (Bach et al., 2004;
Meiszberg et al., 2009), but computer controlled feeding stations are now used to
register the feeding or drinking behaviours of individual animals using electronic
tagging methods, i.e. radio frequency (Rushen et al., 2012).

Recently, machine vision has been used for feeding and drinking behaviour
detection in cattle and pigs. In order to register the presence of dairy cows in a
feeding area and detect feeding behaviour, a multi-camera video system for
obtaining top view images has been applied (Porto et al., 2012; Porto et al., 2015),
and a classifier based on the Viola—Jones algorithm (Viola and Jones, 2004) by using
shapes composed of adjacent rectangles (Haar-like features, which is a digital image
feature for object recognition based on the difference of the sum of pixels of areas
inside the rectangles) features has been developed. An image which contained the
object (here cow) was considered as a positive image, whereas a negative one
contained only the part of the object which made up the background of the image
and did not contain the target object (cow). The ability of the system to detect cow
feeding behaviour was reported to have a sensitivity of 87% when compared to
visual recognition.

In another study, a feed intake monitoring system that quantified how much feed
was distributed to, and consumed by, an individual cow was developed by Shelley
(2013). A 3D imaging system was implemented to record and monitor the change in
feed bins before and after feeding. The monitoring equipment measured feed intake
by the change in volume by recording the 3D image before and after a cow had
consumed its individual daily feed. The imaging system was placed inside an enclosed
box to give consistent lighting. By using shape and contour data of feed in the bin,
the volumetric amount of feed was determined. Once the correlation between feed
volume and image data was obtained, the process moved forward to determine an
output value (weight) for the bin of feed, using a linear mapping of volume to weight
by means of linear regression to derive a single weight-based value of feed.

In order to automatically recognise feeding and drinking behaviours of lactating
sows, a depth imaging system (Kinect) was developed by Lao et al. (2016). In this
method, after removing unwanted objects like feeder and frame pipes, small holes
from the subtraction in depth images were filled and, by converting the depth image
to a binary image, the sow’s physical features including the x-y centroid coordinates,
head and hip pixels (leftmost and rightmost pixels, respectively) were identified.
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Then, these features in the depth image of the sow were utilized for dividing the
body into 7 body parts, namely; all, upper half, lower half, head, shoulder, loin and
hip. Drinking behaviour was determined by searching sow pixels connected or near
to the nipple drinker in horizontal distribution and with a height greater than the
height of the nipple. For feeding behaviour they used the same strategy, registering
when the head was in the feeder with up and down movement. An accuracy of
97.4% in feeding and 92.7% in drinking behaviours was reported for the proposed
method when compared to manual scoring.

Previously, a similar approach was recommended by Kashiha et al. (2013a) for
automatic detection of pig water usage by means of a CCD top-view camera. The
centroid of the pig’s body binary image was obtained by analysis of the body contour
profile, and the distances calculated between the centroid of body and head, tail and
ears. Drinking was defined when a pig was in the drinking area and based on
distances of less than 10 pixels between head, ears and drinking nipple which lasted
for at least 2 s (Figure 3.2). Comparison of results from the developed method and
the real amount of water usage indicated that the drinking behaviour was detected
with an accuracy of 92%.

Drinking
nipple
Drinking
region
4 d,
<>

Figure 3.2- Possible drinking region (left), pigs body contour (right); centre (C), distance to
tail (dy), to sides (d, and dg), to ears (d3 and ds), to head (d4) along with distance to nipple
drink (d,). (Kashiha et al., 2013a).

In summary, to monitor feeding and drinking behaviours with image processing
approaches, both 2D and 3D cameras have been utilized. Although, 2D monitoring is
mainly based on shape and colour features of the animal, some classification models
have been applied to enhance the process. However, the distance from object to
camera is the main principle for 3D motion detection of animals. Identification of
multiple animals during feeding and drinking times presents an additional challenge
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which is not completely addressed yet by the researchers in this field. Furthermore,
no study was found based on automatic machine vision to label each animal for the
usage of feed and water in both indoor and outdoor environments.

3.3.2. Locomotion and lameness behaviour

Animal locomotion is defined as the types of movements that an animal uses to
travel from one place to another, and may lead to conclusions concerning welfare,
health status, and behavioural disorders of animals (Brendle and Hoy, 2011). Manual
locomotion scoring is a widely used method to detect lameness in cattle. This is done
by visually inspecting a cow's standing posture or gait (Sprecher et al., 1997). Cows
tend to exhibit gait abnormalities (or deviations from a healthy gait) as a reaction to
pain or discomfort. Locomotion scoring is widely used for lameness detection in cows
and abnormal locomotion considered as due to pain is based on the observation of
cows standing and walking (gait), with special emphasis on their back posture (Van
Nuffel et al., 2015). The use of sensors and different scoring methods for lameness
behaviour detection has been reviewed (Rutten et al., 2013; Schlageter-Tello et al.,
2014; Van Nuffel et al., 2015; Caja et al., 2016).

In order to automate cow lameness detection, different machine vision systems
have been developed. An automatic system for continuous on-farm detection and
prediction of lameness developed by Song et al. (2008) used a side view CCD camera.
A background subtraction method was applied to the images and the centre points
of the cow’s four hooves were separated and defined in different orientations (left
fore, left hind, right fore, and right hind) based on the different distances between
them in the image. By comparing the vertical values (y) with a pre-defined standard
boundary value, and two horizontal values (x) on each body side, the fore hoof and
hind hoof were labelled. The correlation between the hoof track way and visual
locomotion scoring was obtained to check the accuracy of the method, and results
showed a high average correlation coefficient (94.8%). The presented method was
not able to distinguish small changes, i.e. Score 1 and Score 2. However, it showed a
relatively higher success when a simplified scoring system was applied in their study.
Large variations of overlap measurements for the same individual cow were reported
(1 to 12 cm), even with constant gait score. Apart from the expected occlusions and
camera protection problems, their results also indicated that changes in the step
overlap were not consistently matched by changes in gait score. Step overlap is a
variable that shows a relationship with manual gait scores, but it is not strong
enough to be used as a single classifier for lameness in all cows. Later, in another
approach for recording posture and movement of cows, a camera and pressure
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sensitive mat were used by Pluk et al. (2012) for recording posture and movement of
cows. The exact timing and position of placement of the hoof on the ground was
obtained from the pressure mat. Images from the camera, together with the position
information, were used for image processing to automatically calculate the touch
and release angles in the fetlock joint for the designated leg (Figure 3.3).
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Figure 3.3- Combining pressure and image data for calculation of touch and release angles
during cow locomotion (Pluk et al., 2012).

Their results indicated that, by detecting a decrease in the range of motion or an
increase in the release angle of the front hooves, a large percentage of the cows
could correctly be automatically detected for early lameness.

In order to extract back arch, as a postural indication of lameness, Poursaberi et
al. (2010) applied circle fitting and standard background subtraction techniques
along with statistical filtering to get a smoothed binary edge in images. Then, the
back posture analysis was done by calculating the curvature of the back of each cow
during standing and walking by fitting a circle through selected points on the spine
line. The average inverse radius of arc was subsequently used for lameness scoring.
The sensitivity, error rate, specificity and accuracy of the method were calculated as
100, 5.26, 97.6 and 94.7 % respectively. Similarly, lameness in cows was detected by
side view CCD camera by Viazzi et al. (2013), who used back posture with an
acceptable classification rate (more than 85%). The highest point in the curvature of
the animal’s back was used as a starting point to find the body movement pattern.
Two ellipses were fitted to the left (illustrates the shape of the back around the hip)
and right (showing the shape of the back around the shoulder) sides of the highest
point, and their orientations were obtained. Then, the intersection point of the two
lateral axes of both ellipses, vertical distances between the highest point in the
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curvature and intersection point, the position of the muzzle, vertical distance
between the muzzle and longitudinal axis of the right ellipse were used for
calculation of body movement pattern.

In further research by this group (Viazzi et al., 2014a), a 2D (CCD) and a Kinect
depth sensor were used to measure back posture for abnormal locomotion or
lameness detection. The algorithm used for the 2D camera was based on back
posture recognition (Poursaberi et al., 2010; Viazzi et al., 2013), while for the 3D
image processing approach, each cow was entered separately to the recording area.
Here, to separate two consecutive cows the minimal distance along the longitudinal
direction was applied, when the Kinect depth sensor calculated distance between
the cow and the sensor. Then, the contour of cow back and body orientation found
in the 3D image was used for lameness detection. The contour of the cow was
calculated and the distance between the symmetrical axes of the binary image was
used to extract the head from the body of the cow. By detecting the peak of body,
the back and neck of the cow were obtained in the image. The body orientation was
calculated by using the body features and then the highest pixels around the
orientation axes (10% of the cow width) represented the back spine. The highest
point in the curvature of the animal’s back was used for the starting point and then
the same procedure as already discussed applied for body movement pattern
calculation.

Recently, 3D depth video was applied in another study to detect early lameness
in dairy cows (Abdul Jabbar et al., 2017). The captured top-down 3D image of the cow's
body was used to segment high curvedness features of hook bones and the spine
(Figure 3.4). Then, by tracking the segmented regions (hook bones and spine) a proxy
of locomotion was introduced in the form of height measurements from the tracked
regions. This proxy was further analysed in the form of gait asymmetry to assess the
locomotion and detect early lameness. An accuracy of 95.7% with a 100% sensitivity
(detecting lame cows) and 75% specificity (incorrectly detecting non-lame cows) was
obtained using a Support Vector Machine (SVM) classifier.
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Figure 3.4- Example of depth image representation with a 3D camera: a raw depth cow
image (left), the same image with the background removed (right) (Abdul Jabbar et al.,
2017).

Monitoring of pigs’ locomotion using different technologies can serve different
purposes, i.e. detection of playing and lying behaviours (Kashiha et al., 2014a),
lameness detection (Van Riet et al., 2013; Nalon et al., 2013) and welfare assessment
(Lind et al., 2005). In order to use image processing to assess pig locomotion, a
software tool was developed based on a combination of image subtraction and
automatic threshold detection methods (Lind et al., 2005). The drawback for the
proposed system was that pigs had to be manually controlled by allowing them to
walk one by one in front of the camera. Kongsro (2013) developed an image
processing technique using top view images for pig locomotion monitoring. The RGB
images were cropped to focus on the significant areas of the image and then
converted to grayscale. Background noise was filtered out by labelling of the biggest
object after converting grey images to binary. A filter was designed to capture only
pig cropped RGB images where the centre point was moving. The position of the
head and ears of the pig was located using the width of the pig, and the positions
were found using the derivative of the width curves. By finding the image map to
represent total movement of the pig in a stack of added binary images, and based on
the fact that the largest values would represent the pixels where the binary pig
would appear most frequently, the locomotion of the pig was obtained in images.
Background subtraction and ellipse fitting techniques for localising pigs in top view
images, and calculating movements of ellipse features, made the tracking of
locomotion of pigs more accurate (89.9%) (Kashiha et al., 2014a). The principal was
based on the linear movement of the centre of the fitted ellipse in different time
frames and the angular movement (orientation of ellipse) for tracking some marked
pigs in images in a sequence of frames. Locomotion was defined as when a pig
(centre of fitted ellipse) moved more than 40% of its body length (value in pixels). In
order to make the technique independent of body size of the pig, the sum of linear
and angular movements was divided by the length of each pig.
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Locomotion of groups of pigs has been obtained by finding an activity index (Ott et
al., 2014). Images of each top view CCD camera were analysed using background
subtraction algorithms, then the images were binarised to eliminate the background
and noisy areas were filtered out from the image by a morphological closing
operator. Calculation of the activity index was based on the difference in pixel values
between the binary image at time t and that at time t+1. A strong correlation was
obtained between human observation, as an evaluation tool, and the proposed
technique.

Pig group movement has also been investigated by means of the optical flow
pattern (Gronskyte et al., 2015; Gronskyte et al., 2016). Optical flow is defined as the
distribution of the apparent velocities of objects in an image, caused by the relative
motion between camera and the object. The method was based on the analysis of
motion and the estimation included optical flow estimation, identification of pigs,
optical flow filtering and distortion correction, feature extraction, and frame
classification. In order to determine optical flow a correction method (Horn-Schunck
method) was applied. Thresholding of the pixel colour values was applied to pig
movement monitoring, then to identify individual pigs colour map adjustment and
filtering, blob detection, image dilation and hole filling were applied. SVM as a
classifier was utilized to classify pigs’ movement in different transportation and
slaughterhouse situations. A 6.5% error rate was obtained from the model, however
the sensitivity and specificity were high at 93.5% and 90%, respectively.

Locomotion behaviour has also been investigated using the Kinect depth camera
system to detect pig lameness. Movement of pigs was first captured by using the
Vicon 3D optoelectronic motion analysis system to detect the characteristic
locomotory changes of lame pigs (Stavrakakis et al., 2015a). This system was then
compared with the Kinect sensor to distinguish sound and lame pigs by Stavrakakis et
al. (2015b). Hemispherical, reflective markers were attached at the central nasal
bone, the mid-neck proximal to shoulders (frontal to the shoulder widening), the
posterior mid-thorax, anterior mid-pelvis and tail base of pigs (Figure 3.5). A high
correlation between Vicon marker trajectory data and the vertical excursions of the
Kinect sensor on the neck marker was found for lame pigs.
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Figure 3.5- (left) five reflective Vicon markers, (middle) reflective marker visible on the Vicon

software, (right) neck marker extracted by Kinect (Stavrakakis et al., 2015b).

In all, different types of automatic locomotion and lameness behaviour detection
have been developed. Lameness detection of cows by means of side view CCD
camera has been adopted in several studies, mainly based on back posture/arc and
gait asymmetry analysis. However, to have a better detection, a combination of 2D
and 3D depth images has been applied in other studies. Monitoring of pigs’
locomotion by machine vision techniques is still challenging, due to their similarity in
shape and size, so using some mark or paint on a pig’s body or using radio frequency
tags could be an alternative for short time locomotion tracking. Locomotion
behaviour characterisation for pain assessment in lame animals, especially in pigs,
still needs further effort for earlier detection in terms of applying automatic machine
vision approaches for welfare improvement.

3.3.3. Aggressive behaviour

Aggressive behaviour amongst animals includes behaviours that involve actual or
potential harm to another animal. Most farm animals live in groups and aggressive
behaviour can be observed in the first days after the mixing of unfamiliar animals, or
when competition for resources occurs such as during feeding times. This behaviour
can affect growth, health and welfare of animals and gives rise to economic loses
from reduced performance. Most studies of aggression detect the behaviours using
direct observation or video recording with subsequent human decoding. However,
automatic monitoring of aggressive behaviours in livestock based on image
processing has recently been developed. A continuous automated detection of
aggressive behaviour among pigs by means of CCD image features has been
developed (Viazzi et al., 2014b). Two features were extracted from the segmented
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region of the Motion History Image (MHI); i) the mean intensity of motion which
represents how strong and intense the motion is in the image, and ii) the occupation
index which illustrates the distribution of movement inside the regions. A Linear
Discriminant Analysis (LDA) was used to classify aggressive interactions in every
episode with an accuracy of 89.0%, sensitivity of 88.7% and specificity of 89.3%.

In another study, the feasibility of a method for aggressive behaviour detection
based on a percentage of activity index (number of pixels of moving animals/total
number of pixels) and ANN was tested (Oczak et al., 2014). Five features (average,
maximum, minimum, sum and variance) of the activity index were calculated from
the recorded videos (average, maximum, minimum, sum and variance) over different
time intervals and classified high aggression events with a sensitivity of 96.1%,
specificity of 94.2% and accuracy of 99.8%. The Kinect depth sensor has also most
recently been utilised to recognise and classify aggressive behaviour among pigs with
an accuracy of 95.7% and 90.2%, respectively (Lee et al., 2016). In their study, the
automatic detection and recognition of pig aggression consists of three modules; the
pre-processor, the feature generator, and the aggression detector and classifier. The
depth information related to pigs is obtained using a Kinect depth sensor, then five
features (minimum, maximum, average, standard deviation of velocity, and distance
between the pigs) were extracted from the depth image. Finally, the aggression
detector classified (using SVM) the features to detect the aggressive events, based
on behavioural sub-types, i.e. chasing (following another pig with biting) and head-
to-head/body knocking (hitting the snout against the head/body of another pig).

In addition, a CCD based method was applied to monitor interactions (i.e. body
pushing, head butting, head pressing, body sniffing) between dairy cows (Guzhva et
al., 2016). Geometric features (distances) were extracted from every pair of cows
then the values used as inputs of a SVM classifier with a detection accuracy of
around 85%. However, although the CCD and Kinect cameras have been applied to
address aggressive behaviour detection in some studies, further efforts are needed
in commercial conditions to develop a reliable alarm system for farmers.

In addition to the use of machine vision approaches to monitor the behaviours
reviewed in the preceding sections, other behaviours of group housed animals have
also been studied. Two of these, which are reviewed in the following sections, are
the subject of the experimental work in this doctoral thesis.

3.3.4. Lying behaviour

Lying behaviour plays a critical role in livestock health and welfare. In dairy cattle,
the lying behaviour affects the milk production, and deprivation of adequate lying
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time reduces welfare (Bewley et al., 2010). The duration and frequency of lying bouts
are behavioural indicators of cow comfort, and adequate opportunity to rest and lie
down are considered important for maximising meat and milk production (Porto et
al., 2013; Haley et al., 2000).

In order to detect cows’ lying behaviour in real time, a top view CCD camera
system was developed (Cangar et al., 2008). The centre point and the orientation of
cow were calculated in the first image and given to a lying detection algorithm. Lying
and standing behaviours of a cow were classified as a function of time, based on the
x—y coordinates of the geometric centre of the animal, back area of cow (m?) and the
cumulative distance walked. On average 85% of lying and standing behaviours were
correctly classified. Porto et al. (2013) detected cow lying behaviour with a high
sensitivity (92%) using CCD cameras based on Viola and Jones algorithm (Viola and
Jones, 2004).

A multi-camera video recording system was installed to monitor a panoramic
top-view, and positive and negative images were cropped from the panoramic top-
view image of the barn. The positive and negative images were used for training a
classifier based on the Viola-Jones algorithm, and then each trained classifier was
tested in testing phase. Although the pixel brightness values of the image areas of
the stalls were highly variable during the daylight hours, results indicated that images
used for the training and execution of the lying behaviour detector did not require
any image enhancement thanks to the classification method.

Pigs spend most of their time lying and, in some cases, older pigs lie for up to

90% of their daily time (Ekkel et al., 2003). Their lying behaviours can provide
information on environmental factors affecting production efficiency, health and
welfare. Temperature is the main parameter affecting pigs lying behaviour; at high
environmental temperatures, pigs tend to lie down in a fully recumbent position with
their limbs extended and avoid physical contact with others, while at low
environmental temperatures, pigs will adopt a sternal lying posture and huddle
together (Hillmann et al., 2004; Spoolder et al., 2012). Design of the pen, location of
feeders and drinkers, air velocity and humidity are other factors which affect the
lying behaviour (Spoolder et al., 2012; Costa et al., 2014).
Observations of the lying behaviour of pigs have already been made in numerous
studies, often in conjunction with other behavioural and/or physiological features of
the animals. However, these investigations have generally been carried out under
experimental conditions, reflected by a small number of pigs in the pen.

The influence of floor and surface temperature on thermal behaviour of pigs was
investigated by Geers et al. (1990). Experiments have been carried out to study the
lying postures and space occupation (Ekkel et al., 2003; Spoolder et al., 2012), and to
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assess optimal temperature ranges for fattening pigs of different weights kept in
pens (Hillmann et al., 2004). The results showed that with increasing temperature,
pigs were more often lying in the dunging area and without contact with pen mates,
whilst pigs showed huddling at lower temperatures. The same result was reported by
Huynh et al. (2005) when investigating the effect of high temperature and humidity
on the behaviour of growing pigs. Such data have generally been collected either by
direct observation of the pen or with the aid of video recordings. These methods are
both labour-intensive and time-consuming (Stukenborg et al., 2011).

Accelerometers as sensors have been also used for characterising changes in
livestock postural behaviour mainly for cattle and sows, but some limitations (i.e. risk
of destruction and price) make them almost infeasible for research on group-housed
pigs.

There are several recent studies in the literature where computer vision has
been applied to pig group behaviour (Ahrendt et al., 2011; Kashiha et al., 2013; Viazzi
et al., 2014; Ott et al., 2014). Image processing features were used as inputs for
environmental control in piglet houses by Wouters et al. (1990). Shao et al. (1998)
used CCD cameras to obtain behavioural features from binary images of pigs, namely
the Fourier transform, moments, perimeter and area, which were used as the input
data to an ANN to identify pig lying behaviours. The highest rate of correct
classification was obtained by combination of perimeter, area and moment.
Subsequently, Shao and Xin (2008) used other features, i.e. object compactness,
average frequency of pixel change from background to foreground, area occupation
ratio, and moment invariant, to detect and classify lying behaviours of grouped pigs.
The developed machine vision system could successfully detect motion of the pigs,
segment the pigs from their background, and classify the thermal comfort state of
the pigs. More recently, other studies have been carried out using imaging systems
to study lying behaviours of grouped pigs in different environmental situations.

A research group has performed image processing in pigs focusing on behaviour
classification (Costa et al., 2013). The aim of this study was to develop an innovative
method for measuring the activity level of pigs in a barn in real time. An infrared-
sensitive camera was placed over two pens of the piggery, images were recorded for
24 h a day for eight days during the fattening period, and the activity and occupation
indices were calculated every second in real time. In a similar study, Costa et al.
(2014) used infrared sensitive CCD cameras for detection of pig behaviours, including
lying, in different conditions of ventilation rate, air speed, temperature and humidity.
The difference between the pixel intensity value of an image and the previous image
was taken and, from this difference, the binary activity image was calculated by
setting all pixels between thresholds to 1 and others to 0.
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Although these studies have concentrated on describing activity and resting
parameters by image analysis, no specific patterns of change in lying behaviour in
different environmental circumstances have been investigated in groups of pigs
under commercial farm conditions. There are different contexts in which knowledge
of lying behaviour of group-housed pigs could be useful to farmers and researchers.
Two of these are reviewed below; the first relates to the possibility to automatically
monitor pig thermal comfort, while the second relates to understanding how pen
design and management will impact on pig use of different functional areas within
the pen.

3.3.5. Categorizing pig lying behaviour in relation to the thermal environment

The heat regulation capacity of pigs is poorly developed compared to other
mammals and heat loss is critical for them (Mendes et al., 2013). Controlling
environmental parameters helps to deliver high health, welfare and production
performance efficiency (Mount, 1968; Shao et al., 1998). The activity, feed intake and
lying behaviour of pigs will change in different thermal conditions (Hillmann et al.,
2004; Renaudeau et al., 2008; Spoolder et al., 2012; Weller et al., 2013). When the
temperature drops, pigs try to increase their heat production by means of
energetically demanding muscular shivering thermogenesis and they try to reduce
their heat loss by social and individual thermoregulatory behaviours. Therefore, by
investigation of pig lying posture and group lying pattern, it could be possible to
assess how comfortable or uncomfortable they are in their current environment. This
requires a method to further process and interpret information from the images
which are captured.

ANN is a non-linear modelling technique which can provide the classification
abilities and processing information into the area of human brain level of
performance. The ANN has recently been of interest to researchers and engineers in
various research areas and industries. The ANN is increasingly being applied to the
dynamic modelling of process operations, pattern recognition, process prediction,
optimizing, non-linear transformation, remote sensing technology and parameter
estimation for the design of controllers (Nasirahmadi et al., 2014; Oczak et al., 2014).

The ANN model contains an input layer, an output layer and one or more hidden
layers. The number of neurons in the input is equal to the number of system inputs
and output layer is equal system’s outputs. The neurons of the input layer are
connected with the first hidden layer of the network, the first and last hidden layer
of the network are connected to second and the output layer of the network,
respectively (Oczak et al., 2014).
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Some of the ANN applications in recent years have been in livestock based research:
dairy cattle (Grzesiak et al., 2010), sheep (Kominakis et al., 2002; Tahmoorespur and
Ahmadi, 2012) and pigs (Oczak et al., 2014; Wongsriworaphon et al., 2015). The
performance of classifiers has a significant effect on machine vision outputs
(Pourreza et al., 2012), and the feed-forward neural network is one of the most
powerful classifiers, which could be fast enough and acceptable for many processes
(Khoramshahi et al., 2014). The Multilayer Perceptron (MLP) network has become
very popular as a feed-forward network architecture; the complexity of the MLP
network depends on the number of layers and neurons in each one (Chandraratne et
al., 2007).

The frequent fluctuations in external air temperature in the UK make barn
ventilation management difficult. Room temperature in a building for growing pigs is
normally kept within their thermal comfort zone (at around 20 °C), and the
conventional measuring systems in commercial pig farms are based on only one or
two air temperature sensors at fixed points above pig level (Mendes et al., 2013).
This system cannot respond quickly to climate changes in farms, so finding a method
which indicates the thermal experience of the pigs themselves by image processing
could be a first step to improve control of the ventilation system for better thermal
comfort and welfare of pigs in the room.

3.3.6. Categorizing pig lying behaviour in relation to use of functional areas in the
pen

The natural behaviour of pigs is to establish separate function areas within their
living space for behaviours such as feeding, resting, excreting and exploratory activity
(Stolba and Wood-Gush, 1989). This is important to maintain hygiene and allow
stable resting behaviour. Pigs are animals which are naturally motivated to root in
their surroundings and, in natural conditions, spend a large part of their active time
searching for food (Studnitz et al., 2007). Access to enrichment materials can
improve pig welfare by reducing the level of aggression (Day et al., 2002) and the
biting of tails, ears and other body parts (Van de Weerd et al., 2006; Zonderland et
al., 2008; Jensen and Pedersen, 2010), and allowing the animals to express
behavioural elements such as feeding and exploring (Bracke et al., 2007;
Vanheukelom et al., 2012).

European legislation states that pigs must have permanent access to sufficient
quantity of material to enable manipulation behaviours (Commission Directive,
2008/120/EC). Observations of the use of different enrichment materials for pigs
have already been made in numerous studies. It has been shown that substrates in
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which pigs can root are more attractive than hanging toys (Scott et al., 2006).
Furthermore, use of a rooting substrate can be influenced by its complexity and
accessibility. For example, Jensen and Pedersen (2007) demonstrated that pigs prefer
more complex rooting materials and valued maize silage mixed with chopped straw
about 4 times more than chopped straw. In a subsequent study (Jensen and
Pedersen, 2010) they confirmed this preference and showed that reducing the
number of pigs increased the manipulation of rooting material. The nutritional
properties of rooting material can also influence behaviour. Bolhuis et al. (2010)
investigated the effect of fermentable starch in barren and enriched pens with straw
bedding on lying, activity and aggression of pigs. The enriched pens increased
activity, exploration and play behaviour while declined manipulation of pen mates.

In terms of providing enough materials and space for pigs, limited accessibility of
rooting materials may lead to aggression and restlessness by causing competition in
groups of pigs (Van de Weerd et al., 2006). Therefore, pigs should have enough
material and space to allow several pigs to explore and manipulate the material
simultaneously (Zwicker et al., 2012).

This suggests that distribution onto the flooring would be preferable to a
localised substrate dispenser. Whilst it has been demonstrated that the provision of
a rooting material is desirable to meet behavioural needs, in pens with solid or partly
slatted flooring enrichment substrates are often placed into the lying area to avoid
contamination or passage into the slurry system. However, the provision of
enrichment material generally increases activity (e.g. Lyons et al 1995) and this might
be deleterious if resting is disrupted in this area of the pen.

Studies on the effect of enrichment provision have generally been done by video
recording and subsequent human quantification of behaviours, which is both a
labour-intensive and time-consuming method. Image processing therefore offers an
automated methodology to assist researchers in studying the influence of pen design
and management, such as method of enrichment provision, on the establishment
and maintenance of functional areas by groups of pigs.

3.3.7. Mounting/Reproductive behaviour

Detecting reproductive behaviour in cows and sows is very important for
breeding management, as the estrous cycles occur only periodically and correctly
detecting the signs of estrus is very important for reproductive success and economic
efficiency of a herd (Tsai and Huang, 2014). Mounting behaviour, defined as when an
animal lifts its two front legs and puts these or its sternum on any part of the body or
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head of another animal, is the most widely used indicator of reproductive behaviour
for estrus detection (Rydhmer et al., 2006).

In order to detect mounting among dairy cows, a top view machine vision system
was developed by Tsai and Huang (2014). In a mounting event, initially one cow
closely follows another cow for a few seconds, so the following and mounting
behaviours were identified based on the changes of moving object lengths in binary
images in sequential frames. The following behaviour yields a moving object with the
length of approximately 2-cows in images. The length of the moving object in images
will then be changed to roughly 1.5 cows while they are performing the mounting
behaviour. Finally, an operator (farmer) is required to view the recorded video
frames to confirm that the detected results are true estrus/mounting events.

Both male and female growing pigs also perform mounting events, with different
frequencies (Rydhmer et al., 2006; Hemsworth and Tilbrook, 2007). Mounting
behaviour amongst pigs can increase the risk of injuries, such as bruises and damage
to the skin when pigs mount one another and scratch the back with the claws of the
forelimbs (Faucitano, 2001; Harley et al., 2014), and lameness or leg fractures
(Rydhmer et al., 2004). These injuries and the general unrest in the group can have
considerable negative economic consequences (Rydhmer et al., 2006). Although the
level of activity declines with increasing weight, mounting behaviour (Thomsen et al.,
2012), and skin lesions and lameness (Teixeira and Boyle, 2014), happen during the
entire growing period of pigs.

Investigations of the mounting behaviour of pigs have already been made in
different studies. However, these have generally been carried out using direct visual
observations to sample behaviour under experimental conditions, reflected by a
small number of pigs in the pen. Hintze et al. (2013) developed an ethogram of
different types of mounting behaviours and their consequences. According to their
classification, sexual mounts were longer than non-sexual mounts and were
associated with more screaming, which is an indicator of stress and reduced welfare
in pigs, by the mounted animal.

Every year approximately 100 million male piglets are castrated in the European
countries to control risk of boar taint and undesirable male behaviours. Surgical
castration is a painful and stressful event (Prunier et al., 2006; Hintze et al., 2013),
and its abolition is currently being proposed. If systems with entire male pigs are
adopted in consequence, employing an automated machine vision method as a non-
contact way for monitoring mounting behaviours in pig farms could help to inform
farm managers about the number of mounting events and identify pens requiring
intervention. It would also facilitate large-scale research into methods to reduce this
behavioural problem.
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In conclusion, image processing has been an important technique for a wide variety
of applications in agriculture and food engineering. This technique is an alternative,
cheap and non-contact method to replace human observation of behaviour and
causes no disruption to the animals’ normal behaviour (Tillet et al., 1997; Shao and
Xin, 2008; Costa et al., 2013; Kashiha et al., 2014).

Having identified knowledge gaps in the literature, two aspects of the further
implementation of image analysis in monitoring pig behaviour are addressed in this
thesis. The main purpose of the first study was to identify the lying pattern of pigs,
the location of pigs during lying time and the distance between them using image
analysis technology based on a Delaunay Triangulation (DT) method involving CCD
cameras. The DT model does not investigate in detail the mathematical relationships
showing how pigs behave in different temperatures, so different lying patterns
(close, normal and far) under commercial pig farm conditions were defined and
computed using the mathematical features of their lying styles. Then, based on DT
features and using a MLP network, lying patterns were classified in different thermal
categories. To illustrate a practical application of the developed image processing
algorithm, the change in lying position of pigs was investigated, based on an ellipse
fitting method, in pens enriched by daily maize silage provision into the lying area
compared with control pens which had only a suspended enrichment toy in the
activity area. In the second study, an automatic image processing model was
developed to monitor mounting events among group pigs under commercial pig farm
conditions.

4. Material and methods
4.1. Animal and housing

The observations were conducted at a commercial pig farm in the UK (Figure 4.1).
A series of rooms each housed 240 finishing pigs; rooms were 14.35 m wide x 18.60
m long, mechanically ventilated and subdivided into 12 pens, each 6.75 m wide x
3.10 m long, and with a fully slatted floor. All pens were equipped with a liquid
feeding trough and one drinking nipple.
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Figure 4.1- External view of the commercial barn (top) and internal view of a research room
(bottom).

One room was selected for the work and the white fluorescent tube lights were
switched on during day and night. Room temperature was recorded every 15 min
over the total experimental period with 16 temperature sensors (TE sensor Solutions,
5K3A1 series 1 Thermistor, Measurement Specialties Inc. USA) arranged in a grid
pattern.

The experimental phase started after placement of pigs of about 30 kg live
weight in the pen. Each temperature sensor was positioned around 20 cm above the
pen walls (suspended from the ceiling) which was the nearest possible distance to
the pigs without risk of damage. All sensors were set up and calibrated specifically
for the experiment and the average of all sensors was used for room temperature
calculation. The camera (Sony RF2938, Board lens 3.6 mm, 90°, Gyeonggi-do, South
Korea) was located 4.5 m above the ground with its lens pointing downward and
directly above each pen to get a top view (Figure 4.2). Cameras were connected via
cables to a Personal Computer (PC) and video images from the cameras were recorded
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simultaneously for 24 h a day and stored on the hard disk of the PC using Geovision
software (Geovision Inc.) with a frame rate of 30 frame per second (fps).

Figure 4.2- A camera and lighting source used in this study.

4.2. Image processing

The original resolution of an extracted image from the video was
640 x 480 pixels. In order to remove Barrel distortion in the images, camera
calibration was carried out using the ‘Camera Calibration Toolbox’ of Matlab®
(R2014b, the Mathworks Inc., Natick, MA, USA) and 25 images of a checkerboard
pattern were taken in different orientations for each camera (Wang et al., 2007).
Images from each camera were then analysed and, in order to extract foreground
objects (pigs) from the background (pen), a background subtraction method was
used. The threshold of grey image was determined based on Otsu's method, which
chooses the threshold to minimize the intra-class variance of the black and white
pixels (Otsu, 1979). Then the threshold was applied to convert the greyscale image
into a binary [0, 1] image, and 1 assigned to the object and 0 assigned to the
background. Erosion and dilation orders with disk structure were used for smoothing
of edges. To remove small objects from the image, a morphological closing operator
with a disk-shaped structuring element was used (Gonzalez and Woods, 2007)
(Figure 4.3). Since each single pig in the image is similar to an ellipsoidal shape, the
x—y coordinates of each binary image could be used for ellipse fitting algorithms to
localize each pig. As a result, ellipse parameters such as “Major axis (a)”, “Minor axis
(b)”, “Orientation (B)” and “Centroid (c)” could be calculated for all fitted ellipses to
separate the touching pigs (Figure 4.4). Therefore each pig’s body was extracted as
an ellipse using the direct least squares ellipse fitting method and the
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aforementioned ellipse parameters (McFarlane and Schofield, 1995; O’Leary, 2004;
Kashiha et al., 2013).

uoneziieulg

Localization

Figure 4.3- Image processing steps in this study; background (top left), grey image (middle
left), subtracted image (top right), binary image (bottom right) and fitted ellipse (bottom

left).
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Figure 4.4- Ellipse parameters used in the ellipse fitting method applied to each pig.

4.3. Lying behaviour and position changes

In order to detect lying behaviour and position changes, two pens were selected for
the experiments from the 12 pens in a room (Figure 4.5), each containing 22 pigs. To
develop algorithms for continuous automated identification of changes in the lying
pattern of the pigs, the location of each group of pigs needs to be known during
defined periods. After downloading the recorded data, the video files were visually
investigated and labelled (24 h/day for five days selected from the first 15 days) in
order to evaluate animal lying times during the study. Four 30-min durations
(duration 1, from 6.00 to 6:30 AM; duration 2, from 12.00 to12:30 PM; duration 3,
from 18.00 to 18:30 PM; duration 4, from 0.00 to 0:30 AM) were selected based on
observations that showed almost all pigs to be lying in these times during the 24 h in
a day.

18.6 m

14.35m

. 6.75m .
1 31m

XS Temperature sensor uDoor 0 window - Camera

Figure 4.5- Top view of the research room and the two pens used for lying change studies.
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Extracted images from video files were analysed according to the scheme presented
in Figure 4.6 using the MATLAB® software. To describe the lying pattern of the pigs, a
method using the DT was applied. The DT of a set of points on a plane is defined to
be a triangulation such that the circumcircle of every triangle in the triangulation
contains no point from the set in its interior and the circumcircle of a triangle is the
unique circle that passes through all three of its vertices (Hansen et al., 2001). The DT
maximized the minimum angle of all the angles of the triangles in the triangulation
and tended to avoid skinny triangles. It is one of the most popular techniques for
generation of unstructured meshes and the principle of this method was originally
developed from the study of structures in computational geometry (Jin et al., 2006).

Extracted group pig images Extracted background image

Background subtraction

Binary image

Erosion and dilation l Small objects removal

Ellipse fitting

A

Ellipse centre

l

Delaunay Triangulation and Lying behaviour detection

Figure 4.6- Schematic of image processing algorithm used to detect lying behaviour.
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Figure 4.7 shows a sample of a DT. In this study the method used for the
computation of the DT was implemented in the MATLAB® software and we used the
centre of each ellipse (Figure 4.4) obtained from the image as a triangulation point.
Furthermore, for obtaining a set of non-overlapping triangles with the minimum of
inner angles was used, at first the algorithm in the MATLAB® transformed the 2D
points to 3D, here it computed the convex hull in 3D, and then projected the lower
part of the hull back to 2D to obtain the triangulation (Hafner et al., 2012).
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Figure 4.7- The Delaunay Triangulation (DT) for the point set P4, P,....P; in a plane. B is the
circumscribing circle of Delaunay triangle.

Figure 4.8 shows the channel with 22 vertexes (number of pigs) of a sample
image from the image database along with the DT.

100 200 300 400 500 600

Figure 4.8- The Delaunay Triangulation (DT) along with the fitted ellipse on lying pigs.

The perimeter of each triangle in the DT shape reflects how closely pigs touch
each other, and is calculated as: P = [1 4+ (2 4+ [3 where [ represents the length of
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side of the triangle (in pixels). In order to find pigs’ lying positions during the lying
times, each pen was virtually subdivided into four zones (Figure 4.9); zone one
against the outer wall and zone four being near the corridor. The centroid of each
fitted ellipse indicated the specific position of each pig in the pen during the lying

time.
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Figure 4.9- Top view of a pen indicating the four designated zones.

4.4. Lying pattern definition

To define lying patterns and model these by neural networks, four pens were
selected from the 12 pens in a room (each containing 22 pigs) and a studied over a
period of 15 days for the experiment (Figure 4.10). The experiment was carried out
on two occasions (cold and warm seasons) giving different room temperatures.
These ranged from 14 °C in the first days as the batch started in the cold season, up
to 28 °C in warm situations; the room set point temperature was 21 °C during both
the study periods but was not always achieved at more extreme external

temperatures.
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Figure 4.10- Top view of research room and the four pens used for the study on lying

pattern modelling and definition.
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The image processing approaches used for lying pattern and categorizing used in this
study was shown in Figure 4.11.

Extracted group pig images Extracted background image

Background subtraction

Binary image
v
Erosion and dilation Small objects removal
A
Ellipse fitting
v v \4
Ellipse major length Ellipse centre Ellipse minor length

\4

Delaunay Triangulation

Lying pattern definition

Figure 4.11- Schematic of image processing algorithm used for different lying pattern
definition.
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By using the major and minor axis of each fitted ellipse, the overall lying pattern was

determined as the following:
number of triangles with certain pattern

Overall lying pattern(%) = ( ) x 100 (4.1)

number of all triangles

where the certain pattern was defined as ‘close pattern’, ‘normal pattern’ or ‘far
pattern’ based on principles which have been reported previously for pigs’ lying
postures in different temperatures (Table 4.1).

In cold conditions pigs crouch, sometimes shivering violently, and change their
lying posture to support their body on their limbs and reduce conductive heat loss to
the floor. They also huddle together to increase body contact with other pigs. In this
study, we defined this as a ‘close pattern’; here the size of ellipses is considered
almost uniform and the number for each pig in the model can be defined in any
order. Based on the principles in Table 4.1, this category was recorded if three pigs
presented a pattern like those shown in Figure 4.12 (all ellipses (pigs) or at least two
of the three possible pairs closely touching each other). Therefore, in a close pattern,
the maximum length of side of triangle (L,.x) and minimum length of side of triangle

(Lmin) are equal to or less than (bz—1 + b2—3 + b,) and (% + %), respectively (Table 4.1).

Table 4.1- Group lying patterns of pigs with their subsequent mathematical description.

Lying Lying Theoretical Mathematical description
pattern posture description in the study

Huddle together and
close Sternal lying c.Iose '(Mount, L <(ﬁ+ﬁ)
pattern 1968; Riskowski, 1986; min =1, 2

Shao et al., 1998; Shao

and Xin, 2008).

Nearly touching each

other (Riskowski, 1986;
Side-by-side Shao et al., 1998; Shao

b b b
pattern and Xin, 2008). (5 + %) <Lmin < G +b2)

Limax S (2 + 2+ by)

b b a a b
normal (5 +3+Db2) <Lpax < G+7+5)

Avoid touching each

other,  with  limbs i ,
far s di extended  (Riskowski, Lmax2 (71 +o+ 73)
preading ' .
pattern 1986; Hahn et al., 1987; Lonin 2 (% +by)

Shao et al, 1998;
Hillmann et al., 2004).

Lmax= maximum length of side of triangle, L,j,= minimum length of side of triangle
a=major axis of fitted ellipse, b= minor axis of fitted ellipse
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In warm conditions, pigs try to avoid touching each other, the limbs are stretched out
and pigs lie extended on their side (Table 4.1). The image processing data showed
patterns like those in Figure 4.12, defined as ‘far pattern’. If three pigs are touching
each other from head to head or head to tail (as sometimes happened in warm

conditions), the L. is greater than or equal to (— + 2 4 ) furthermore, if three
pigs do not touch or two partly touch and the third is far from the others (as happens
in grouped pigs), the L. is greater than or equal to (az—1 + 32—2 + b2—3). Lin in far patterns
is greater than or equal to (% + b,) (Table 4.1). In normal temperature conditions,

pigs lie nearly touching each other and the resulting pattern is between the close and
far patterns (Figure 4.12), defined as ‘normal pattern’ (Table 4.1).

Huddle together

/
Z

Avoid touching

Figure 4.12- Fitted ellipses in different lying patterns; (A) Touching ellipses with their
parameters and a triangle of DT in cold situations (close pattern), (B) in normal situations
(normal pattern), (C) in warm situations (far pattern).
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4.5. Lying pattern categorizing by artificial neural network

Figure 4.13 indicates the image processing algorithm used for categorizing pigs lying
pattern in different ambient temperatures.

Extracted group pig images l Extracted background image

Background subtraction

Binary image

Erosion and dilation Small objects removal

Ellipse fitting

Ellipse centre

Delaunay Triangulation

Mean of perimeter

Mean of maximum length Mean of minimum length

Classification

Figure 4.13- Schematic of image processing algorithm used for categorizing lying pattern by
the ANN.
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A MLP was employed in the MATLAB® software as the modelling network for
classification. The MLP network applied here had four layers: an input layer, two
hidden layers and an output layer. The number of neurons in the input layer was
dependent on the number of features extracted from each triangle of the DT; in this
study the perimeter (P), L. and Ly, of side of each triangle were calculated. Then
the mean value of perimeter (MVP) of triangles, mean value of maximum lengths
(MVLpax), mean value of minimum lengths (MVL,,,) of side of triangles in each DT
were considered as inputs for the ANN (3 neurons). The output layer was equal to
the number of categories (Figure 4.14); in this case the room temperatures was
divided into 3 thermal categories which were based on the room set point
temperature: first for temperatures around (+ 2 °C) the room set temperature (ARST;
19-23 °C), next for lower than the room set temperature (LRST; 14-18 °C), and third
for those higher than the room set temperature (HRST; 24-28 °C). The categories
LRST, ARST and HRST were represented with the sets of numbers 100, 010, 001,
respectively. In order to simplify the problem with different ranges of values for the
network, the dataset was normalized within the range [0, 1] to achieve fast
convergence and to ensure that all variables received equal attention during the
process.

0r Hidden layer
100
00+
300

DT features
400+

500

600

00
0

100 20 300 400 50 600

Figure 4.14- Architecture of the network along with the Delaunay Triangulation (DT)
features as inputs.

The learning procedure for developing a neural network can be either supervised
or unsupervised. The supervised learning algorithm used in this research was the
back propagation algorithm (Chandraratne et al., 2007). Before updating the weights
once at the end of the epoch, this algorithm gets the average gradient of the error
surface across all cases and minimises the Mean Square Error (MSE) between input
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layer values and output layer values. In order to achieve the optimum hidden layer, a
trial and error procedure was used by trying various numbers of neurons and layers
to build the network (Mashaly and Alazba, 2016) and the network which gave the
lowest MSE of the verification subset was chosen. The two hidden layers of the
selected network had different numbers of neurons (16 and 22, respectively). Lastly,
the selected MLP network with 3-16-22-3 was used to evaluate the ability of this
multivariable technique for classification. In this study the MLP used a tansig function

(y = tansig (x) =

output layer.

T 1) in the hidden layers and linear function (y = x) in the

Data sets of 1800 observations with 600 observations (5 temperatures in each
category x 120 frames for each temperature) for each of the three thermal
categories were used. The ANNs were trained on the first subset (training set), and
their performance was monitored using the second subset (validation set). In this
method the network stops the training before overfitting occurs, which is a
technique automatically provided for all supervised networks in the MATLAB® Neural
Network Toolbox™. Finally, the last subset (test set) was used to check the predictive
performance of the network, since the data included in this subset were not used in
the network development. Experimental data sets were randomly divided into
training (70%; 1260 observations), validating (15%; 270 observations), and testing
(15%; 270 observations) sets. For finding the classification performance, the
sensitivity, specificity and accuracy (category-specific and the model’s overall
performance) were computed based on the following definitions (Grzesiak et al.,
2010; Pourreza et al., 2012):

Sensitivity = TPT+PFN X 100 (4.2)

Specificity = TN+ FP x 100 (4.3)

Accuracy = — TN %100 (4.4)
TP+FP+TN+FN

TP: Samples of a specific category correctly classified as that category. FN:
Samples of a specific category incorrectly classified as other categories. TN: Samples
of other categories correctly classified as their categories. FP: Samples of other
categories incorrectly classified as the specific category.

Assessment of the discrimination accuracy between different classes of individual
models also involved the relative operating characteristic (ROC), which was
computed in MATLAB® based on true positive and false negative rates (Pearce and

40



Ferrier, 2000; Fawcett, 2006) and can be used for assessment of binary classifiers
(Barnes et al., 2010)

Sensitivity + false negative rate = 1 (4.5)
Specificity + false positive rate = 1 (4.6)

Eqg. (4.5 and 4.6) can be written as (Pearce and Ferrier, 2000):

(¥=1)+(;=1)=1 (4.7)

(£=0)+(:=0)=1 (4.8)

X X

where w is a predicted output greater or equal to the threshold probability, and v
is a predicted output less than the threshold probability. In ROC, two values are
calculated for each threshold: the true positive rate (the number of w, divided by the
number of 1 targets), and the false positive rate (the number of v, divided by the
number of O targets) (Pearce and Ferrier, 2000). The area under the ROC curve (AUC)
reflects the proportion of the total area of the unit square and ranges from 0.5 for
models with no discrimination ability, to 1 for models with best discrimination.

4.6. Lying behaviour monitoring after enrichment substrate provision

To assess the effect of a rooting material on the lying behaviour, six pens were
selected for the experiments from the 12 pens in a room, each containing 17-20 pigs
(Figure 4.15).

With plate Control pen

/\
B

$3  Temperature sensor UDoor 0 window - Camera

Figure 4.15- Top view of research room and six pens used for studies on lying positions with
enrichment substrate.

In each of two replicates, three pens were equipped with a solid plate (1m x 1m)
on the floor in the lying area to allow for delivery of rooting material, while the other
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three had no plate and only a hanging plastic toy for enrichment. The experimental
phase started after placement of pigs in the pen at approximately 30 kg live weight,
and lasted to the end of the batch. The enrichment material provided was chopped
maize silage (10kg per day for each pen) and was manually distributed once in a day,
at approximately 9 AM, onto the floor plate in the experimental pens. Extracted
images from video files were analysed according to the scheme presented in Figure
4.16 using MATLAB® software.

Extracted group pig images Extracted background image

\4

Background subtraction

y

Binary image

' !

Erosion and dilation Plate removing Small objects removal

!

Ellipse fitting

A\ 4

Ellipse centre and Lying position detection

Figure 4.16- Schematic of image processing algorithm used for monitoring the effect of
rooting material on grouped pig lying positions.

To develop algorithms for continuous automated identification of changes in the
lying position of the pigs, the location of each group of pigs needs to be known
during defined periods. Animal lying positions were obtained at 10 minute intervals
for 10 separate days across the duration of the batch period (with 5 day intervals) for
two replicates of the study over time. Each pen was virtually subdivided into four
zones in the extracted frame from video files as previously described. Similarly, the
centroid of each fitted ellipse was used in order to find pigs’ lying position in the pen
in x-y coordinates (Figure 4.17).
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Figure 4.17- Lying position detection; converting grey image to binary and removing small
objects (A), using ellipse features for fitting ellipse to each pig (B), fitting ellipse to each pig
(C), finding the centre of each fitted ellipse in x-y coordinates (D).

To compare activity levels and lying locations of pigs between the two treatments,
using the full dataset from the image processing output, the total proportion of the
pigs which were lying, and the proportion of lying pigs in each zone of the pen were
analysed using the MIXED procedure in SAS software (Statistical Analysis System;
SAS®, 9.4 version for Windows). The model used for all analyses was treatment
(rooting plate or control pen), stage of growth (day) and time of day (hour) as fixed
effects and, following testing of separate interaction effects and removal of non-
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significant interactions, included the interaction between treatment and time of day;
time of day (hour) was included as the repeated factor.

4.7. Mounting event detection

To define mounting events in this study, two pens (Figure 4.5) were selected for
the experiment from the 12 pens in a room, each containing 22-23 pigs of mixed
entire males and females, and studied for 20 days. After downloading the recorded
data, the video files were directly observed and labelled in order to evaluate peak
times of mounting activity (Hintze et al., 2013). A sufficient number of occurrences of
the behaviour for testing the automated approach were obtained using five days of
24 h activity selected from the available sample. Two periods were selected (2 h
between 09:30 to 11:30 AM; 3 h between 14:30 to 17:30 PM) for each day and pen,
during which the number of mounting events was increased compared to other
periods. The selected video files were then used for extracting frames for further
processing as illustrated in Figure 4.18.

Extracted group pig images Extracted background image

v

Background subtraction

l

Binary image

A 4 \ 4

Erosion and dilation Small objects removal

v

Ellipse fitting

!

Euclidian distances

'

Mounting event detection

Figure 4.18- Schematic of image processing algorithm used for pig mounting event
detection.
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The detection rule for pig mounting events in frame sequences is based on distance
between pigs, as normally a mounting pig gets close to another pig and then lifts its
two front legs and puts them on any part of the recipient or mounted pig (Figure
4.19).

(f1) | (72)

(73) o (1)

(f6)
Mounting pig Mounted pig
— —

Figure 4.19- Mounting behaviour in pigs: (f1- f2) getting close, (f3-f5) mounting happened,
(fe) getting away/mounting finished.
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The mounted pig may stand, sit down or run away, and the duration of mounting can
be short (<1s), medium (1-10s) or long (>10-60s) (Hintze et al., 2013). Figure 4.19
illustrates a video sequence for a mounting event in a pen, where in frames (f1-f2)
the distance between two pigs (mounting and mounted) became less; this distance
could be between the centre of two pigs or the head of one pig to the tail of the next
one. The mounting event happened in frames (f3-f5), in frame (f6) the
mounting/mounted pig moved away and the event finished.

In order to find the distance between two pigs in a mounting event, it was
necessary to identify the head, tail and two sides of pigs. As a tool, analysis of the
body contour of a pig was suggested by Kashiha et al. (2013), but in this study the
long distance from the lens (camera) to the object (pig), low quality of images and
the background noise made the method inaccurate. Therefore, in this work, the
intersections of the major and minor axis with the ellipse have been considered as
tail/head and sides respectively (Figure 4.20), named as T, H, S and then the Ed

(Ed (H;, T;)) = \/Z?:l(Hi —T)* and (Ed (H;,S))) = \/Z?:l(Hl- — 5)%of each pair

was calculated as follows:

— T1 H1 -
T, H,
Matrix of head and/or tail for n pigs (T, H): | ' (4.9)
Tn—l Hn—l
7, H,
[ S1 S
S3 Sa
Matrix of pig sides for n pigs (S, S): ' ' (4.10)

SZn—3 SZn—Z

—SZn—l SZn -
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Fitted ellipse; Fitted ellipse,

Intersection points

B

Figure 4.20- Intersection points of major and minor axis and ellipse for finding the position
of head, tail and sides in pigs. (A); tail (T), head (H) and side (S) in two fitted ellipses, (B); the
T, Hand S in a pig in binary image.

Based on the typical behaviour of pigs, they normally move forward and mount with
their front legs onto a part of the mounted pig’s body. As a result, in a sequence of
frames, the distance from the head of one pig to the other pig (head or tail) could be
obtained from its direction of movement, as well as the distances between head of
one pig to both sides of other pigs. By finding the region of interest (ROI) for each
participant pair (two pigs) with an Ed less than a defined value (here, about half of
the major axis length), the possibility of mounting events has been investigated in
the algorithm, and the x-y coordinates of the centre of the two pigs in the ROI
recorded for the next steps. Note that as the mounting event is performed, the Ed
between the head of the first pig and the tail/head or side of the second one has
been reduced from the previous frame and the two pigs considered as one in the
algorithm; here the length of two pigs (length of major axis in fitted ellipse) will be
changed to approximately 1.3 to 2 pig lengths if the pig is mounting from behind the
second one.

The length of major and minor axis will be around 1.3-1.8 pig lengths if the pig is
mounting from the side of another pig. So, if the length of the ellipse(s) was between
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the aforementioned value and the x-y coordinates of the ellipse located in the ROI,
the mounting behaviour was declared.

Furthermore, if two pigs were standing close to each other without any mounting
event, the algorithm just fitted an ellipse to each of the pigs and no mounting
behaviour was specified.

5. Results and discussion
5.1. Lying behaviour and position changes

Two pens (I and II) were selected for group pig lying behaviour and position
changes in this study. In order to validate the automated image processing
technique, the percentage of frames with correct estimation of the number of pigs in
the pen with reference to manual labelling was determined. There were 15 (days) x
30 (min) x 4 (times in a day) x 2 (pens) of video duration, and each video consisted of
1800 frames (one frame per second). From the 108000 (15 x 30 x 60 x 4) extracted
frames for each pen, 19592 were processed in pen I and 20306 frames in pen II as
described in the following paragraph.

The four time periods were selected during times when almost all pigs were
lying. In the case that pig(s) were not lying during the aforementioned period, the
image locomotion method which was defined by Kashiha et al. (2014) was used in
order to automatically select the lying pigs in each frame; after using the ellipse
fitting technique, angular and linear movements of each ellipse between two
consecutive frames were calculated. By visual investigation of the pigs’ movement
time in the video files, the first frame f; (at time zero) and the next one f.,s (after five
seconds) (Figure 5.1) were selected. According to the figure, due to pig movement
the angular and linear movement of the mentioned ellipse from frame f; to f.,5 was
changed; the pig initially had angular movement then moved from C (iy, j1) to C (i, j,)
in the next frame. Finally, after finding the pigs in motion, by removing these active
pixels in the ellipse fitting algorithm we fitted ellipses to lying pigs only in the last
frame (f)).
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Moving pig with no ellipse

Angular
movement

CiZ Cil
Figure 5.1- Pigs with fitted ellipse in two frames f; and fi.s, the moving pig was not selected
in frame f, and the ellipse was fitted for lying pigs in final grey image.

The estimated number of pigs in each processed image was calculated and then
compared with the number of pigs in that pen (Table 5.1).
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Table 5.1- The percentage of frames with correct estimation of pigs in the pen from
automated image processing compared to manual labelling.

Pen
l Il
Number of frames Number of frames
Day analysed .Corr.ect analysed .Corr.ect
estimation (%) estimation (%)
1 1290 96.5 1359 95.0
2 1199 94.4 1378 97.6
3 1338 95.2 1400 94.9
4 1287 97.1 1321 98.3
5 1354 95.0 1298 92.6
6 1360 98.6 1387 97.7
7 1257 97.1 1385 93.2
8 1290 94.4 1355 94.0
9 1327 91.4 1375 93.9
10 1200 96.8 1342 95.3
11 1321 99.5 1370 97.3
12 1385 95.0 1346 97.0
13 1308 93.3 1321 98.5
14 1366 93.3 1295 94.2
15 1310 98.9 1374 96.3
Total 19592 20306

The results showed that the percentage of frames with correct estimation of pigs in
the pen using image processing techniques was 95.8(x2) %, on average (Table 7.1).
There were a few reasons behind false identification: first and foremost because the
project was carried out in a commercial farm where housing conditions could not be
controlled, there was a water pipe in the middle of each pen (2.5 m from the floor)
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which caused some invisible areas in images. Furthermore, as time progressed,
soiling by flies dirtied the camera lenses and reduced the visibility.

The averages temperatures of four sensors within each of the two pens (see
Figure 4.5) during the 15 days of study are shown in Figure 5.2. Over the recording
period, temperature ranges were 14.3-22.3 °C for pen I, and 13.7-22.2 °C for pen II.
The temperature patterns showed more fluctuation in the first week of study and
had a constant pattern in the second week, possibly because of better heat balance
between the pigs’ body heat emission and environmental temperature.
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Figure 5.2- Temperature in each of the experimental pens during the 15 day study period.

Pen Il

Figure 5.3 shows sample images from the image database with the respective DT
at different temperatures. From this figure it can be seen that the MVP of each
triangle was different as average temperature changed during the study. The MVP
was higher at 22.3 °C than at other temperatures, indicating that pigs had more
separation during lying time at that temperature, while at lower temperature the
MVP declined and pigs were lying closer or huddled together. Therefore this feature
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can be used for distinguishing different lying patterns in the DT and indicates that the
output could be used for assessing the uniformity of room temperature for

improving pig welfare.

17.1°C

14.2°C

MVP=201.3 MVP=210.9

19.7°C r 22.3°C

MVP=283.2 MVP=307.8

Figure 5.3- The Delaunay Triangulation (DT) patterns in different environmental

temperatures.

The extracted data from the images were submitted to regression analysis (SPSS®
21, IBM, USA) to evaluate the effects of environmental temperature on the MVP in
both pens (Table 5.2). The relationship between temperatures and the MVP pattern
was statistically significant (P<0.001) for both pens.
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Table 5.2- Linear regression analysis for effect of environmental temperature on the MVP in

both pens.
Pen Equation (¢ Std. Error) R? p-value
Pen/ MVP=-340.3 (+29.0) + 31.3 (+2.0) temperature 0.81 <0.001
Pen I MVP=-342.4 (+27.4) + 31.2 (£1.9) temperature 0.82 <0.001

MVP=mean value of perimeter

In the presented study, video monitoring of pig lying behaviour, which was
performed through image processing techniques and using the DT, showed that at
higher temperatures, pigs lay down with their limbs extended and in a fully
recumbent position so that the MVP was higher than at lower temperatures. In
contrast, at lower environmental temperatures pigs adopted a body posture that
minimized their contact with the floor and maximized the contact with other pigs, so
that the MVP was lower. This result is in agreement with other researchers (Shao and
Xin, 2008; Costa et al., 2014) who have reported that in higher temperatures pigs
tended to spread out, and in cold situations they tried to huddle or touch each other.
Different MVPs in different temperatures for the two pens during this study are
shown in Figures 5.4 and 5.5.
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Figure 5.4- The mean value of perimeter (MVP) over 15 days assigned with their
temperature (°C) in pen 1.

By comparing temperatures in the two pens and according to the MVP data, pigs
tended to lie further apart and had less contact in pen I (Figure 5.4) than in pen I]
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(Figure 5.5). In some cases the MVP was different at identical temperatures in both
pens. This is likely due to additional environmental influences (i.e. different
ventilation rates in different locations in each pen) which could not be controlled as
the project was carried out in a commercial pig farm.
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Figure 5.5- The mean value of perimeter (MVP) over 15 days assigned with their
temperature (°C) in pen I1.

Employing modern technology has helped farm managers to improve animal
welfare (Kashiha et al.,, 2014). The proposed method can help to monitor a large
number of pigs in different commercial pens and to adjust room temperature for
higher welfare and economic outputs.

Knowing the position of each pig in the pen during lying time can be used to
assess and improve animal welfare, since lying in the dunging area has negative
consequences for hygiene, resulting in dirtier pigs and pens (Spoolder et al., 2012).
Using the x-y coordinates of each pig in binary images and the centroid of each fitted
ellipse indicated the specific position of each pig in the pen during the lying time (see
Figure 6.4). Over the 15 days, the percentage of lying positions was higher in zone 4
(near the corridor) and zone 3 when the temperature was lower in both pens; similar
results were reported by Costa et al. (2014). According to Figure 5.6, in both pens
pigs tended to lie in zone 4 and 3 more than other zones, but when temperature
increased they tended to lie more often in zone 1 and 2. The percentage of time in
different lying zones was different between the two pens during the study; in pen 11
more than 70% of the animals were in zone 4 for the first 6 days while there was a
more even distribution between zones 3 and 4 in pen I. The lying zone which pigs
choose is determined by a number of factors including design of the pen, location of

55



feeder and drinker, and environmental conditions relating to temperature, air
velocity and humidity (Spoolder et al., 2012; Costa et al.,, 2014). In the two
investigated pens, feeder and drinker locations were the same and the temperature
sensors showed almost equal values for both pens during the study. However, with
the ventilation system in use, the air velocity pattern or the volume of air
displacement may have differed between the pens to cause the different distribution
in lying positions.
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Figure 5.6- The percentage of lying pigs located in different zones over 15 days.

5.2. Lying pattern definition

Table 4.1 shows the mathematical description of L.« and L, obtained from the
lying patterns. Since the perimeter of each triangle is the sum of the length of sides
(L) of each triangle, the P value (pixels) for each lying pattern is found as follows.
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In the close pattern:

P= Liax + Lipin + L (5.1)

Table 6.1 and Eq. (5.1 by b by b
(Jobeol et B S<?1+?3+b2)+(?1+?2)+L (5.2)

The maximum value of P was obtained when a triangle had two L. (isosceles)
means:

L= Lygy (5.3)

(5.4)

Eq. (52and53) p < (3b1+5b2+2b3)
> -

2

In this study, by computing Eq. (5.4), the perimeter of each triangle to be
considered as the close pattern gave P<200 (pixels).

In the far pattern:

Table 6.11 and Eq. (9 a a b b
(Table 6.11 and Eq. (9)) 2(71+72+73)+(71+b2)+l: (5.5)

When triangle had two sides with L, value, so;

L = Liyin (5.6)
Eq. (5.5 and 5.6) P> a1+a2+21;1+4b2+b3 (5.7)

The perimeter of each triangle in the far pattern, by calculation of Eq. (5.7), gave
P>350 (pixels), with the normal pattern having perimeter values between these two,
i.e. 200<P<350 (pixels).

The percentage of DT indicating pigs in each of the three lying patterns for the
defined thermal categories in this study, are shown in Figure 5.7. for each mean
temperature. According to this figure, in the LRST category the percentage of close
pattern declined from 71.4 % to 54.8 % as the temperature increased from 14 to 18
°C; the values for both normal and far pattern were increased from 17.2 to 30.1 %
and 11.4 to 15.1 %, respectively. In the ARST category, with a temperature range of
19 to 23 °C, the percentage of close pattern showed a downward trend from 46.1 to
20.2 %, while the far pattern showed an increase from 19.6 to 45.5 %. As the
temperature increased in the HRST category from 24 to 28 °C, the percentage of
normal and close pattern declined from 34.4 to 27% and 18.8 to 8.4%, respectively.
In this category, an increase of 4 °C of temperature raised the far pattern by 16%
(Figure 5.7).
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Figure 5.7- The three lying patterns for each thermal category allocated (mean % of
Delaunay Triangulations (DTs) with their standard deviation (SD) bar). ARST= around the

room set temperature, LRST= lower than the room set temperature, HRST= higher than the
room set temperature.

Results of pig lying patterns, described through the image processing techniques and
using the DT features, showed that in the LRST category pigs at the lowest
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environmental temperature (14 °C) adopted a body posture that minimised their
contact with the floor and maximized contact with other pigs. As a result, the
number of triangles with a perimeter of less than 200 pixels in the DT was higher, as
a well as the percentage of close patterns. As the temperature increased in this
category the number of huddling pigs declined, so the number of triangles with
P<200 pixels decreased.

Conversely, in the HRST category, where the temperature range was between 24-
28 °C, pigs lay down with their limbs extended in a fully recumbent position and tried
to minimise their contact with pen mates. The number of triangles with perimeter of
more than 350 pixels increased and the percentage of far patterns was higher than
other patterns. The maximum value for far pattern in this group happened when the
temperature was at the highest level (28 °C), and the percentage of close pattern
showed the lowest value in the study. This result is in agreement with other
researchers (Shao and Xin, 2008; Costa et al., 2014) who have reported that in higher
temperatures pigs tended to spread out and in a cold situation they tried to huddle
or touch each other. In the ARST category, because the situation was around the
room set point temperature, pigs had more side-by-side patterns (Riskowski, 1986;
Shao et al.,, 1998) so that the percentage of triangles with 200<P<350 pixels was
higher in this category. It needs to be considered that the value of P obtained from
the DT features for different lying patterns depends on the age and size of pigs, so
more study is needed for generalization of the method and determination of the
values of P in relation to the size and age of pigs.

5.3. Categorizing of lying patterns

Table 5.3 shows the average, maximum and minimum values, and SDs of the
three extracted features (MVP, MVL., MVL.in) from each DT. According to the
ANOVA results, the MVP, MVL,,,, and MVL,,, differed significantly between thermal
categories used in the ANN definition (all P<0.001). With the five temperatures in the
range for the LRST category, the minimum value of each variable was observed in the
lowest temperature (14 °C) while the maximum value was at the highest
temperature (18 °C). Furthermore, the same tendency was obtained for the other
two thermal categories. The results obtained for the described MLP network showed
that the selected neural network was able to correctly classify lying behaviours with
an overall accuracy 95.6 % according to the different thermal categories, and with
satisfactory sensitivity (from 89.1 to 94.2 %), specificity (from 94.4 to 95.4 %) and
accuracy (from 93.3 to 95.2 %), for the test set data (Table 5.4).
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Table 5.3- Statistical data (average, minimum, maximum and SD) of the Delaunay
triangulation features in different thermal categories.

LRST ARST HRST
MVP  MV0iny MVina MVP  MV0in MVin, MVP  MVin, MVl

Ave 170.8 84.3 46.2 284.9 122.4 71.4 398.3 179.9 92.3

Max 250.6 126.1 73.3 340.9 162.4 98.2 460.8 230.7 120

Min 138.1 57.4 30 208.2 85.2 44.2 336 120 70.4

SD 25.1 141 9.1 31.8 13 7.8 33.9 27.3 11.5

ARST= around the room set temperature, LRST= lower than the room set temperature, HRST= higher
than the room set temperature. MVP= mean value of perimeter, MVL,,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>