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Abstract

Let k£ be an extension field of Q which is algebraically closed and has characteristic zero,
and k(z)[0] be the ring of differential operators with coefficients in k(x). Let L € k(x)[0]
be an irreducible third-order linear differential operator without Liouvillian solutions. Let
E = {B2, |F? oF, 1F,, 2F,} where B, is the Bessel function (see [2]), B(z) = B2(y/x)
and ,F, with p € {0,1,2}, ¢ € {1, 2}, the generalized hypergeometric functions (see [10]
and [29]). The goal of this thesis is to find a solution (if that exists) of L in terms of
S € E, change of variables, algebraic operations and exponential integrals. That means
to find a solution (if it exists) of the form

exp ([ rde) (S 4 r(SUE@)) +rals())

where 7,70,71,72, f € k(x). We have implemented in Maple five solvers for B2, {F2, Fb,
1F5 and o F,. We complete the work by providing explicit examples for each solver.



List of abbreviations

deg: degree.

denom: denominator.

gcd: greatest common divisor.

Icm: least common multiple.

numer: numerator.

N= set of natural numbers with zero included.
N*= set of natural numbers without zero included.
Q= set of rational numbers.

R= set of real numbers.

C = set of complex numbers.

K[z] = ring of polynomials with one variable x and coefficients in a field K.



Chapter 0

(zeneral Introduction

Ordinary differential equations have always been of interest since they occur in many
applications. Although there is no general algorithm to solve every equation, there are
many methods, such as integrating factors, symmetry method, etc.

A special class of ordinary differential equations is the class of linear homogeneous
differential equations L(y) = 0, where L is a linear differential operator

L= i (ligi
=0

with n € N and the coefficients a; in some differential field K, e.g. K = Q(z) or K = C(x)

d
and 0 = —. Information on the solutions of the differential equation L(y) = 0 can be

obtained b)% studying algebraic properties of the operator L, see e.g. van der Put and Singer
[31]. Beke’s algorithm and the algorithm in [32] help us to factor L when L is reducible.
This makes the operator’s resolution easy. If the order of L is larger than two, one can look
for Fulerian solutions, that are solutions which can be expressed as products of second-
order operators (using sums, products, field operations, algebraic extensions, integrals,
differentiations, exponentials, logarithms and change of variables). Singer showed in [35]
that solving such an operator L can be reduced to solving second-order operators through
factoring operators (see [17], [16], [18] and [22]), or reducing operators to tensor products
of lower order operators. For irreducible operators, we can try to find Liouvillian solutions
by using Kovacic’s algorithm [27].

There are some special linear differential operators which don’t have Eulerian solutions,
which are not reducible and which don’t have Liouvillian solutions. That is the case for
some differential operators coming from certain special and useful functions. For example,
we have the operators coming from: the Bessel square root functions B2(z) = B2(/z)
where B, are the Bessel functions with parameter not in 1/2 + Z and the functions
1F2 oF,, 1 Fy and oF,. That is why we focus on those operators in this thesis.

Let k£ be an extension field of Q which is algebraically closed and has characteristic zero,
and k(x)[0] be the ring of differential operators with coefficients in k(x). Let L € k(z)[0]
be an irreducible linear differential operator of order n without Liouvillian solutions, and
S(x) a special function that satisfies a linear differential equation of order n with Lg as
its associated operator.

Definition 0.1. A function y is called a linear S-expression if there exist algebraic func-
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tions f,r, 19,71, ..., n_1 Such that

T </ Td‘”) (roS(f (@) + 11 (SUF@ND +ra( S @NP + - + s (S(F(2)) ")
1)

We say that y can be expressed in terms of S.

The form (1) is closed under the three following transformations that send irreducible
order n operators in k(z)[d] to linear order n irreducible operators:

(i) change of variables: y(x) — y(f(x)), f € k(x)\ k,
(ii) exp-product: y — exp (frdx) y, r € k(x), and

(iii) gauge transformation: y — roy +riy + -+ 1™V, ro, v, ... Tl € k().

where y) represents the j* derivative of y according to the variable z. The function f in

(1) above is called pullback function. These transformations are denoted by im, g,
1Tt respectively. Hence, finding a solution y of L in terms of S corresponds to
finding a sequence of those transformations that sends Lg to L. So every complete solver
for finding solutions in terms of S must be able to deal with all those transformations,
i.e. it must be able to find any solution of the form (1) if it exists.

Let E = {B2, |F2, oFy, Fy, oF>} where B2(x) = B2(y/z) with B, the Bessel function
(see [2]), and ,F, with p € {0,1,2}, ¢ € {1, 2}, the generalized hypergeometric functions
(see [10] and [29]). We are interested here in the case of order n = 3 such that y in
the definition above can be a solution of our given operator L. with S € E. The goal of
this thesis is the following: given L € k(z)[0], an irreducible third-order linear differential
operator without Liouvillian solutions and S € E with Lg as its associated differential
operator, our task is to find

Ly e M —Dop Ly 220 L 2)

with 7,79, 71,79, f € k(z) and M, Ly € k(x)[0]. A solution y of L in terms of S will be

v= e [rar) (rSU@) + (S +rsU@)') )

We compute those transformations (r,rg, 71,79, f) from the singularities of M (see
Definition 1.12) which are not apparent (see Definition 1.15). Since we don’t yet know
M, the only singularities of M that we know are those singularities of M that cannot
disappear (turn into regular points (see Definition 1.12)) under transformations “—5°¢

and —> 5.

Definition 0.2. A singularity of an operator is called non-removable if it stays singular
under any combination of ““3°¢ and —s . Otherwise, it is called removable singularity.

In order to find f, our approach is the following:

1. For S € {{F}?, 2F»}, the ramification index (see [32] and [16]) of Lg at oo is 1.
Hence, we can compute the polar part of f (see Definition 3.26) from the generalized
exponents (see also [32] and [10]) at irregular singularities of L (see Definition 1.15),
and then f by using the regular singularities of L (see Definition 1.15) or some
information related to the degree of the numerator that f can have.



2. Let us denote by Lg: the operator associated to the Bessel square function B2.
For S = B2 = B2(\/z), the operator Lg = Lpz can be derived from Lgz by the
transformation /7. Hence, if f = ¢ with g € k(x), then the transformation

Ly e M

is equivalent to the transformation
Lpz —S5c M.

Since the ramification index of Lz at oo is 1, we can use, when f = ¢* with g € k(z),
the same approach as in 1. above to find ¢, and then f.

3. For S € {B?, (F,, 1 F,}, the ramification index is n, > 2 (n, = 2 for B2 when f # ¢°
A
with ¢ € k(x) or for 1 F», and n, = 3 for ¢F»). We put f in the form f = B with

A, B € k[z], B monic and ged(A,B) = 1. Using the generalized exponents at the
irregular singularities of L (see [42]), we can compute B and a bound for the degree
of A. Hence, we can get the truncated series for f and some linear equations for the
coefficients of A. By comparing the number of linear equations for the coefficients
of A and the degree of A, we will deal with some cases which will help us to find A.

Since finding f is equivalent to finding M, we also get M. Our basic strategy to find
r, 19,71 and 7o is to use the p-curvature test (see [24], [30], [10] and [4]) between M and
L, and some information coming from the generalized exponents of . and M at their
non-removable singularities.

This thesis is organized as follows: first, we will give some preliminaries about dif-
ferential operators, they singularities, and an overview over Bessel and hypergeometric
functions. We will also deal with formal solutions and generalized exponents. Chapter
two will describe the above three transformations and how they affect the generalized
exponents. In chapter three, we will clarify our problem and give the main step to solve
it. Chapter four will show us how to have Bessel square root type solutions, and chapter
five how to have S-type solutions with S € {{F?, oFy, 1Fy, oFy}. We will also handle
the constant parameter v of the Bessel function, and the upper and lower parameters
of S € {\F?, oFy, 1F, oF,}. For any solver, we will apply the resolution algorithm
developed case by case with explicit examples.

We have all our algorithms implemented in one Maple package called Solver3 which
is part of this dissertation. All the examples in this thesis and others are included in a
Maple worksheet and are also a part of this dissertation.

There is no publication until now which can solve those families of third-order linear
differential equations that we study in this thesis. Let’s just show by the following simple
example on the | F, type solutions at which all other existing algorithms fail to solve. The
1 Fy differential operator (see the first section of chapter three) that we denote by Lo, is
given by

Lip = 220 + 2 (14 by + by) 0> + (b1ba — x) 0 — ay.
We consider this operator Lis with upper parameter a; = 1/4 and lower parameters
by =1/2 and by = 3/4:
> L12:=subs({al=1/4,b1=1/2,b2=3/4},L12);
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L12 = 2°Dx® +9/4xDx* + (3/8 — x) Dv — 1/4
Let us apply to it the change of variables transformation with parameter f:
> fi=(x-1)/(x"2);

z—1

;=
x
That gives us the following operator called I,
> L1:=Change0fVariables(L12,f);
L1 =8 (v —1)*2° (x — 2)* Da* + 6 (527 — 202 + 12) (v — 1) 2* (z — 2) Da”

+ (152° — 1282° + 420 2" — 5922° + 54422 — 3842 + 128) 2Dz + 2 (v — 2)°
Let us apply to it the exp-product transformation with parameter r:
> r:=-1/x;

ro= —a !
We get the following operator called Lo

> L2:=ExpProduct(Ll,r);
L2 =8 (v —1)*2° (x — 2)* D2* + 6 (927 — 322 +20) (z — 1) 2* (x — 2) Da”
+ (752° — 548 2° 4+ 1404 2" — 1504 2° + 8322” — 384z + 128) Dz

+152°% — 126 2° + 400 2" — 5122% + 384 2° — 224 7 + 64
Finally, let us apply to Ly the gauge transformation with parameters:
> r0:=2%x;

=2z
> rl:=x"2;

rl = a?
> r2:=0;

2 :=0

That gives us the following operator called L that we will consider as our given
operator:

> L:=GaugeTransf(L2,r0,r1,r2);

L= 82" (x—2)" (325 +22° + 802" — 3362° + 608 2% — 544 v + 192)2 (x —1)° Da?
+22* (xr —2) (32° +22° + 802" — 336 2” + 608 2° — 544z + 192) (452° + 1756 2°
—702" — 13848 2° + 44640 2* — 79520 2° + 81600 2° — 44672z + 9984) (z — 1)* Da”
+z(z—2) (32°+22° + 802" — 3362° + 608 2% — 544 v + 192) (452" — 542"
+1976 27 — 22440 2° + 100336 27 — 257888 2° + 415872 2° — 437632 " + 318464 2*
—172032 2% + 65536 v — 12288) (v — 1)° Dz + 32 (+112° — 332" + 68 2° — 942
+22% + 722 — 24) (32° + 22° + 802" — 336 2% + 60827 — 5ddx +192) (x — 1)°
x (z —2)*

There are no implemented algorithms that can take this operator L as an input

value and returns its solutions in terms of ;| F5 hypergeometric functions. Let us try
for example the Maple dsolve command:

> dsolve(diffop2de(L,y(x)),y(x));



y(z) = DESol ({ (642" — 322° — 2400 2" + 12224 2° — 31552 2° + 54912 2" — 68096 2°
+56320 2 — 27648 x + 6144) _Y () + (452" — 542" +1976 2" — 22440 2°
+100336 2° — 257888 2" + 415872 x° — 437632 2 + 318464 2 — 172032 2

d
+65536 2° — 12288 ) Y (2)+ (902" — 2302 4 36522 — 31208 '
T

+116976 2° — 248320 2° + 322240 " — 252544 2° + 109312 2° — 19968 z*)

d2
xos Y (z) + (242" — 802" + 696 2" — 5216 2'! + 18784 2" — 38528 2°
3

d
+48640 z° — 37632 27 + 16384 2° — 3072 2°) T3V (93)} Y (g;)})

Therefore, Maple cannot find any solution of this third-order differential equation.
Also by trying with Mathematica, we didn’t succeed to find any solution. But one of
our implemented codes called Hyp1F2Solutions can do it. That means it will return
the Bessel square parameter, the exp-product parameter and also the gauge parameters
that we considered at the beginning. The result of this code is the following:

> HyplF2Solutions(L) ;

B [ )2

1.141
From this output, we observe that the hypergeometric function | F, comes with
upper parameter a; = 1/4 and lower parameters by = 1/2 and by = 3/4, associated
with the considered transformation parameters: r = —1/x, 1o = 2z, r; = 2%, 15 = 0
and f = (z—7)/2% Hence, by using equation (3), we have found the following solution
of L in terms of the | F5 hypergeometric functions:

> y:=expand(exp(int (r,x))*(rOxhypergeom([al]l, [bl, b2], f)
+ri*normal (diff (hypergeom([al]l, [bl, b2], £),x))
+r2*normal (diff (hypergeom([al]l, [bl, b2], £),x$2))));

113 -1 2 5 37 -1
= 2Py (o S ) - R (o S e
Y 1 2(4a 2747 .132 ) le 2(47 2741 .’L‘2 )

4 5 37 z—1
+_xlF2 (—; 5 )

x2
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Chapter 1

Preliminaries

In this chapter, we recall some known results about differential operators, singularities,
hypergeometric series, Bessel functions and operators, and formal solutions. At some
places we try to improve or to give a new approach. Those results are mainly from Ruben
Debeerst [11], Quan Yuan [12] and van der Put and Singer [32]. They also refer to some
references like: 2], [1], [6], [12], [8], [14], [15], [34], [36], [37], [38], [31], [21], [£0], [9], [13],
[26], [23] and [41].

1.1 Differential Operators and Singularities

1.1.1 Differential Operators

Definition 1.1. Let K be a field. A derivation D on K is a linear map D : K — K
satisfying the product rule

D(ab) = aD(b) + bD(a), Va,be K.
A field K with a derivation D is called differential field.
Theorem 1.2. Let K be a differential field with derivation D, then
Ck :={a € K|D(a) =0}
18 also a field. It is called the constant field of K.
Proof. The proof is simple and can be found in [32]. O

Example 1.3. Let us assume that Ck is an extension field of Q, and D = 0 := %, then

- Ck(x) is a differential field, called the field of rational functions over Ck;

- Ck((z)) is a differential field, called the field of formal Laurent series over Ck.

In our context we will consider rational functions in terms of the variable z with the

"usual" derivation 0 := %. Another derivation which is sometimes used is 9 := z-%

dx”
Definition 1.4. Let K be a differential field with derivation O, then

L:iaz@i, a; € K
=0
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is called differential operator. If a, # 0, then n is the degree of L, denoted by deg(L),
and a,, is the leading coefficient of L. In case L = 0 we define the order to be —oo.

The associated ring of differential operators with coefficients in K is denoted by K[0].

Remarks 1.5. 1. In general, there ezists a € K with 0(a) # 0. So in general, the
ring K[0] is not commutative. For example when K = C(z) and 0 := L, we have

dz’
d(x) =1+#0. Therefore,
Or =20+ 0(x) = 20+ 1 # z0.

2. K[0] is an Euclidean ring since for Ly, Ly € K[0] with Ly # 0, there are unique
differential operators Q,R € K[J] such that Ly = QL; + R and deg(R) < deg(Ly).
We call this operation right division. If R = 0 then Ly is called right divisor of L.
Since an Fuclidean ring is also a principal ideal ring, we can define the greatest
common right divisor and the least common right multiple of differential operators.
Similarly, we can define the greatest common left divisor and the least common
left multiple. But, since K[J] is not commutative, we can not define the greatest
common divisor and the least common multiple of differential operators.

Every differential operator L corresponds to a homogeneous differential equation Ly =
0 and vice versa. Hence, when talking about homogeneous differential equations, the
term order is commonly used for the order of the corresponding operator. We will always
assume that L # 0.

Definition 1.6. By the solutions of a differential operator L we mean the solutions of the
homogeneous linear differential equation Ly = 0.

Definition 1.7. The set of all solutions of a differential operator L is called its solution
space. It is denoted by V(L).

Remark 1.8. The set V(L) is a vector space of dimension deg(L) and a set of deg(L)
linearly independent solutions of L is called fundamental system of L.

Note that a linear differential equation is commonly solved by transforming it into a
matrix equation of order one.

Let k be a field and k an extension field of k. Let us consider, for a € k, the homo-
morphism

0o k[ X]— k
P +~—— P(a)

and Kery, = { P € k[X]||¢a(P) = 0} where k[X] is the ring of polynomials with unknown
variable X and coefficients in &.

Definition 1.9. We say that a is algebraic over k if Kerp, # {0}.

The set of algebraic elements of k over k is a sub-field of k containing k. We call it
the algebraic closure of k, denoted by k.

Theorem 1.10. Let k be a sub-field of C, then
K@) = k- (J k(™)

neN*

Proof. The proof can be found in [32]. O
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1.1.2 Singularities
1.1.3 Singular Points

Let y(x) be a function with values in C.
Definition 1.11. A function y(x) is called

(1) regular at p € C if there exists a neighborhood O of p such that y(x) is continuous
on O,

(ii) regular at oo if y (%) is reqular at 0,

(i73) analytic at p € C if y(x) can be represented as a convergent power series

y() =) ailz—p), a€C

=0

Definition 1.12. Let K be a differential field, Ck its constant field and Ck the algebraic
closure of Cx. We call a point p € Cx U {oo} a singularity of the differential operator
L € K[0], if p is a zero of the leading coefficient of L or p is a pole of one of the other
coefficients. All other points are called regular.

Remark 1.13. - To understand the singularity at x = oo, one can always use the
change of variables v — % and deal with 0.

- At all regular points of L we can find a fundamental system of power series solutions.

If p is a singularity of a solution of L, then p must be a singularity of L. But the converse
is not true (see apparent singularity in the definition after this following definition).

Definition 1.14. If p € Cx U {oo}, we define the local parameter t, as

r—p if p#F oo,
% 1f p=o0.
Let L;/, denoted the operator coming from L by the change of variables z — %

Definition 1.15. Let L = Y ;0" € K[9] where a; are polynomials. A singularity p of L
i=0
15 called

(i) apparent singularity if all solutions of L are regular at p,

(i) regular singular (p # oo) if t, ag,

Ls reqular at p for 1 <i<mn,

(iii) regular singular (p = 0o) if Ly, has a reqular singularity at x =0, and
(iv) irregular singular otherwise.

Remark 1.16. If a solution of L has no singularity at a point x = p then x = p is either
a reqular point or an apparent singularity or a reqular singularity of L.
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1.2 Hypergeometric Series

Definition 1.17. The generalized hypergeometric series ,F; is defined by

+oo

a1, 0, ..., 0 B (al)k'(OQ)k;"‘(Oép)k i
Bl,ﬁz,...,ﬂq ' _;(ﬁl)k(BQ)k(ﬁq>k/{}'x )

where () denotes the Pochhammer symbol

1 ifk=0,
A1 -(A+k=1) ifk>0.

()\)k =

It satisfies the following differential equation.

Theorem 1.18. The generalized hypergeometric series ,F, in the previous definition sat-
isfies the differential equation

60+P—1)-(0+ 8 —Dy(x) =z +a1) (6 + ap)y(z)
where 6 = xd%.

Remarks 1.19. 1. For p < q the series ,I is convergent for all x. For p > q+ 1 the
radius of convergence is zero, and for p = q+ 1 the series converges for |x| < 1.

2. For p < q+ 1 the series and its analytic continuation is called hypergeometric
function.

1.3 Bessel Functions

Bessel’s Differential Equation

The Bessel’s ordinary equation of order v with parameter A , where v, A € C, is given by

iy d
Pl (VP =)y =0, (1.1)

By doing a change of variables from ¢ to x using the substitution x = A\t we get

d? d
xQd_xz + x% + (2 =)y =0, (1.2)

which is known as Bessel’s differential equation of order v. v is called the Bessel’s param-
eter. The solutions of this equation are called Bessel functions of order v. This equation
has singularities at 0 and oo.
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Bessel Functions of the first and second kind

Let us be in the vicinity of x = 0 with v € R. Since the equation (1.2) has a regular singu-
lar point at x = 0, then by applying the Frobenius method we get two linear independent
solutions J,(z) and Y, (z) given by

00 (—1)k 2\ V+2k 1
o mrte (5) for vl £ 4,

J(x) = \/%cos(x) for v=—3, (1.3)

\/ = sin(x) for v =3,

Jy - J—y .

(z) COS_(WW (z) if ve&Z. (1.4)
sin(mv)

J, 1s the Bessel function of the first kind and Y, the Bessel function of the second kind

(Neumann function or Weber function). Since Bessel’s equation has no finite singular

points except the origin, the series

Zk'F u+13<:+ )( >V+2k’

converges for all finite x # 0. By the d’Alembert criteria we have the convergence for all
finite = if v > 0. It is clear that if v is not an integer Y, (x) must be a solution of (1.2),
but if not, it will be like an undefined form since cos(nmv) = (—1)" and sin(rv) = 0. Let
m € Z, by the application of Hospital’s rule:

—msinmvJ,(x) + COS(?TV)J (x) — J_,(x)

and Y, (z) =

Yo (z) = lim
v—om 7 cos(mv)
~=[tim Lo)] = (072 [ (o] 15)

1

Y )

k=0

Lan(3) -

x>2k+m. (1.6)

_ %Z(k(;—;i)!m[w(erkJrl)—@b(kle)] ¢

where ¢ is the Digamma function given by relation
I'v+k+1)
IF'(v+k+1)

The Bessel function J,(z) can be expressed in terms of hypergeometric functions

=y +k+1).

[T\ 1 - 1,
Tolw) = (2) NUES 4"

Modified Bessel Functions of the first and second kind
Definition 1.20. The modified Bessel equation of order v € C is the differential equation:
Y +ay — (P40 y=0

obtained by replacing x by ix (where i*> = —1) in the Bessel equation of order v.
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As in Bessel’s differential equation, we have two linearly independent solutions

I 1 N\ v+2k
I(x) = ]; KD(v+k+1) (5)

T (I y(x) = 1 (x))

2sin(vm)

and K,(x)=

which are called modified Bessel functions of first and second kind, respectively.
The Bessel function I,(x) can be expressed in terms of hypergeometric functions

T\V 1 — |1
IL(zx) = <—> — F g2
@) =3) roxp°h 1"

Zeroes of Bessel Functions

The zeroes of Bessel functions are of great importance in many applications. Bessel
functions of the first and second kind have an infinite number of zeroes as the values of x
tend to oo.

The modified Bessel functions of the first kind (7, (x)) have only one zero at the point
xz = 0, and the modified Bessel functions of the second kind (K, (z)) do not have zeroes.
Notation: B, refers to any element of {.J,,Y,, I,,, K, }. For example, the following lemma
holds for all four elements:

Lemma 1.21. Consider S := C(z)B, + C(z)B,, where B, = LB,. The space S is
movariant under the substitutions v — v +1 and v — —v.

Proof. See Corollary 1.23 in [11]. O

1.3.1 Bessel Operators

d
Definition 1.22. Let v € C and 0 := .
T

(i) The Bessel differential equation of order v corresponds to the operator
L = 220> + 20 + <1E2 — V2)
which is called the Bessel operator and denoted by Lp, .
(ii) The modified Bessel differential equation of order v corresponds to the operator
L =220* + 20 — (x2 + V2)
which s called the modified Bessel operator and denoted by Lp,.

Lemma 1.23. The Bessel functions with parameter v € % + Z are hyperexponential
functions and in that case L, and Lp, are reducible.

Since we only consider irreducible operators, we will exclude the case v € % + Z from
this thesis.
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1.4 Formal Solutions

Universal Extension and Generalized Exponents

In this section, we introduce the idea of generalized exponents. Generally, the generalized
exponents give us the asymptotic local information about solutions. In this section we
consider operators in C((x))[0]. Since we work with solutions of differential operators
we have to be sure that we can have all of them; that is why we have to construct the
universal Picard-Vessiot ring of C((x)) that contains a fundamental system of solution
of differential operators. Before that, let us give the general definition of the universal
extension U (universal Picard-Vessiot ring) of a differential field.

Let K be a differential field, with Ck as its field of constants.

Definition 1.24. A universal extension U of K is a minimal (simple) differential ring in
which every operator L € K[0] has precisely deg(L) Ck-linear independent solutions (Ck
the algebraic closure of Cx ). It exists if K has an algebraically closed field Ck of constants
of characteristic zero.

Hence the universal extension U of C((z)) exists and for every nonzero operator L €
C((x))[0], and we define the solution space of L, which has dimension deg(L), as follows

V(L) = {y € U|L(y) = 0}.

From now, we will take K = C((x)), i.e. Cx = C.

At the point x = 0 we have the following construction of a universal extension U of
C((x))-
First we denote 2 = {J,, oy 7 Y/™Clz~1/™], M C C such that M & Q= C, and C((z)) the
algebraic closure of C((z)) given by C((z)) = U, cx- C((z¥/™)) (see Theorem 1.10).

Theorem 1.25.  1- Define the ring R = C((x)) [{X*}aerm, {E(q) }geq, ] as the polyno-
mial ring over C((x)) in the infinite collection of variables { X} aen U{E () }qea U{!}-

2- Define the differentiation 6 on R by: 0 is = on C((z)), 6X* = aX?®, 6E(q) =
qE(q), and 8l = 1. This turns R into a differential ring.

3- Let I C R denote the ideal generated by the elements
X0 —1, X" — XX E(0) -1, E(q1 +¢) — E(q1)E(qa).
Hence, I is a differential ideal and I # R.
4- PutU:=R/I;

then U is a universal extension of C((x)) which means:

x the constant field of U is C;

« if L has order n, then V(L) := Ker(L: U — U) is a C-vector space of dimension
n.

Proof. The proof and other details of universal extension can be found in [32]. O
We can think of E(g), X and [ as

E(q) = exp ( / %dx) . X = exp (aln(z)) and [ = In(z)

because x% acts:
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- on F(q) as multiplication by ¢,
- on X% as multiplication by a, and

- on [ as the solution of the equation mg—g = 1.
Hence, at z = 0 we have:

Theorem 1.26. The universal extension U of K is unique and has the form

U=K [{xa}aeM ) {e<q)}qeﬂ A

where M C C is such that M ® Q= C, Q = |J,,>, g~ /mClz=Y™], | the solution of the
equation xj—i =1, and the following rules hold:

(i) The only relations between the symbols are 2° = 1,270 = x9%2° ¢(0) = 1 and

e(q + q2) = e(qu)e(qa)-

(i) The differentiation in U is given by dx* = ax® de(q) = qe(q) and §l = 1 where

d= x%.
Proof. To give a complete proof we would have to introduce too many details about
differential rings. This is why we refer to [32] where we can find the proof. O
A solution whose formal representation in the universal extension U involves [ = In(x)

is called logarithmic solution.
A more detailed structure of the universal extension is given by the following lemma.

Lemma 1.27. The universal extension U of C((z)) is a C((x))[0]-module which can be
written as a direct sum of C((x))[0]-module:

U=Pe()C{@){z"}ecra. I =P P el@aC((="))[I

=e) qeQ aeC/(iZ)

=@ D craClM=@ D ca+aCla Nl
969 aeC/(£2) 9€Q aeC/ (7 2)

=D (@),
qgeE

where Q= |, o 2 YMClz=V™], E = {q +algef, ac (C/(iZ)} C U,pen: Clz=m]

and rq s the ramification index of q, i.e. the smallest number such that q € Clz=1/r4].

Proof. The first equality is proven in [32, Chapter 3.2|, for the second we refer to |16,
Chapter 2.8|, and the third comes by assuming e(q) = exp ( I d:c). To have the fourth
equality we use the definition of the ramification index which helps us to understand the
fact that ¢ and ¢ + a (with a € C) have the same ramification index. The fifth equality
is just the definition of the set E. O

Remark 1.28. Let the conditions of Lemma 1.27 be satisfied and L € C(z)[0]. For q € E,
let R, = e(q)C((z'/"))[l], then U = D, cx Ly Put V(L), = V(L) N Ry; since the action
of L on U leaves each R, invariant, one has V(L) = @ g V(L),-

y € V(L), = y = exp < / % dx) S, S e C((z"/™))[In(x));

q € Clz~/4] is what is called generalized exponent of L in the next definition (at x = 0).
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Note that this construction of U at the point £ = 0 can also be performed at other
points x = p by replacing x with the local parameter ¢, which is ¢, = x — p for a point
p e Candt, =1 for p=oo.

Definition 1.29. Let L € C(x)[0] and let p be a point with local parametert,. An element
e € Clt,”V/™], r. € N* is called a generalized exponent of L at the point p if there exists
a formal solution of L of the form

o) =exp ([ £dt,) 5. 5 €, ) i) (17)

where the constant term of the Puiseux series S is non-zero. For a given solution this
representation is unique and r. € N is called the ramification index of e.

The set of generalized exponents at a point p is denoted by gexp(L, p).

Similarly, we call e a generalized exponent of the solution y at the point p if y = y(x)
has the representation (1.7) for some S € C((t,/"))[In(t,)].

For a given generalized exponent there is a unique solution of the form (1.7) if we
require the constant term of the series to be one.

If e € C we just get a solution ¢S5, in this case e is called an exponent. If r. = 1, then
e is unramified, otherwise it is ramified.

Remarks 1.30. Since the order of L is n, at every point p we have yi,...,y, € V(L)
linear independent solutions of L, that means at every point p there are n generalized
exponents ey, ..., e, such that the solution space V(L) is generated by the functions

exp </ ? dtp> S;  with S; € C((tpl/ﬁzi))[ln<tp)] and 1<i<n.
p

Theorem 1.31. Let L € K[0], n = deg(L), r € N* and let p be a point with local
parameter t,. Suppose that the ramification indices of the generalized exponents at p

divide r. Then there exists a basis 1y, ..., y, of V(L) which satisfies the condition:
Vie{l,...,n}

Y; = exp (/ % d:c) S; for some S; € (C((t}g/T))[ln(:c)]

P

where eq,...,e, € C[t;l/r] are generalized exponents and the constant term of S; is
non-zero.

Proof. We just use the definition of the universal extension and the fact that, for
1=1,...,n

e; € C[tp_l/T],
Te, | 7 =
S; € C((t,"") In(t,)] -
The details can be found in [16, Chapter 4.3.3, theorem 5|. O

Remarks 1.32. By using the construction of the universal extension space, Lemma 1.27
and the definition of the generalized exponents, we get:
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1
1. For all ey,e5 € E, 61 —es € —Z < R., = R., (working modulo the ideal I in
Tey

Theorem 1.25). Therefore, by Theorem 1.31 the set of generalized exponents in E at

p is unique modulo —7 where r is the product of all the ramification indices of the
r

generalized exponents at p.

1
2. For two generalized exponents ey and ey at p, if e; # es modulo —7Z, their associated

€1
solution spaces belong to different sub-modules of the universal extension and they
are not related.

1
3. For two generalized exponents e; and ey at p, if e = es modulo —7Z, their associated

€1
solution spaces belong to the same sub-modules of the universal extension and they
can be related. So we can have in certain cases a logarithmic solution at p.

4. Let p be a point and ey, es € E two generalized exponents at p. Then R., = R., if
and only if re, = r., and one of the following statements holds:

(a) at most one term in one of the coefficients of the series expansion of e; and
es at p differ, and those terms that differ are roots of the same irreducible
polynomial in Q[X];

(b) There exists a € Q such that by doing the change of variable T = "4/a(x — p),

i.e. T'1 = a(x — p), in ey and ey we have e; = e3.
Let E be as in Lemma 1.27.

Remark 1.33. For ¢ € E such that V(L), # {0} and P,(z) the minimal polynomial with
maximal degree of all the minimal polynomials coming from expressions related to the

coefficients in the series expansion of q such that taking any other root of this polynomial
instead of the chosen one gets also V(L), # {0}, we have

dim V(L)y = deg (Py(2)) - rg
where V(L), is defined as in Remark 1.28.

Lemma 1.34. Let L € C(z)[0] be a linear differential operator of order n, and as in
Lemma 1.27 and Remark 1.28, Q =, 2 V/™Clz=V/™], E = {q +algeR, ac (C/(%Z) },
V(L), = V(L) N R, where ¢ € E, R, := e(q)C((z/"))[I] with | = In(x) and e(q) =
exp (f%d:c) For q € E such that V(L), # {0}, and P (x) the minimal polynomial

with maximal degree of all the minimal polynomials coming from expressions related to
the coefficients in the series expansion of q at x = 0 such that taking any other root of
this polynomial instead of the chosen one gets also V(L), # {0}. Then r, € {1,...,n}.

Proof. By using Remark 1.33 we have dim V(L), = deg (Py(z)) - ;. Remark 1.28 gives
us V(L) = @, V(L), and then n = 3 deg (Py(x)) - 4. Since deg (P,(z)) > 1 and

qeE
r, >1 forall ¢ € E, then r, <n. Sor, € {1,...,n}. O
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Relations between Singularities and Generalized Exponents

We consider here the case where the number of singularities of the differential operator is
finite. Hence the singularities will be isolated.

Definition 1.35. If p € CU {oo}, we define the local parameter t, as

z—p if p# oo,

t., =
b 1
z

if p=o0.
Let
L=0"+P, 1(2)0" " + P, 5(2)0" 2+ -+ P(2)0 + Py(2) (1.8)

where P;(z), 0 < i < n — 1 are analytic functions in some domain D of the z-plane.
Suppose that 2, is either an isolated singularity or a regular point of L.

Definition 1.36. y € V(L) is called a regular solution at zy if its generalized exponent e
belong to C. In that case the ramification index of e is 1. That means

y =155, with S € C((ts,))[In(t,)] and ec C. (1.9)
When e ¢ C, y is an irregular solution.

Lemma 1.37. zy is either a reqular point or an apparent singularity or a reqular sin-
gularity of L if V(L) has a basis at zy of reqular solutions. Otherwise zy is an irreqular
singularity of L.

Proof. We just use the Definition 1.15 of singularities of an operator and the Frobenius
method. 0
By this lemma we can conclude the following;:

Corollary 1.38. For a basis {y1,...,yn} of V(L) at zo with associated generalized expo-
nents {ey, ..., ey}, we say that zq is either a reqular point or an apparent singularity or a
reqular singularity of L if {e1,...,e,} C C. Otherwise zqy is an irreqular singularity of L.

Regular Solution

The condition that the coefficients of the operator L. must satisfy at zy to have a basis of
regular solutions is the following:

+00
B(Z) = Zpidtj%;(nii), with Dij S C, 0 S 1 S n—1. (110)
7=0

By taking solutions in the form t¢ S, with S € C((t.,))[In(t,,)] and e € C, and substitute
them into the differential equation associated to L we get an indicial equation in the form

n—1

AA=DA=2) (A= (n=1))+ > pioA""" =0 (1.11)

=0

with A € C. Generalized exponents of solutions of L. at zy are solutions of this indicial
equation.
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Lemma 1.39. Let us assume that L has at zy a basis of reqular solutions which are not
logarithmic. The generalized exponents of L at zy are non-negative integers if and only if
zo s either a regular point or an apparent singularity of L.

Proof. We just use the fact that at every regular point or apparent singularity of L the
solutions are analytic. 0

Corollary 1.40. When L has at zy a basis of reqular solutions and zy is not a reqular
point nor an apparent singularity of L, then zy is a reqular singularity of L. That means
there exists at least one generalized exponent of L at zy which is not in N when L doesn’t
have a logarithmic solution at zg.

Corollary 1.41. If zy s a reqular point of L then the generalized exponents of L at z
are 0,1,2,... , n—1.

Proof. Since all the coefficients P;(z) of L are regular at z, for 0 < i < n — 1, all the
coefficients p; ; of the negative powers of P;(z) in equation (1.10) will be zero. That means,
for 0 <i<n—1, we will have

piJ:O, 0<j3<n—u.
Hence, p; o = 0 with 0 < ¢ <n — 1 and our indicial equation will become
AA=1DA=2)---(A=(n—1))=0.

SoAe{0,1,2,...,n—1}. O

1.5 Maple Commands

In this thesis, we will develop all of our algorithms, codes and examples with Maple. So
in this section we want to introduce some commands we need in Maple.

In Maple, the DEtools package contains commands that help us to work with
differential equations. The input to use this package is

> with(DETools):

This following command tells Maple that we use = as variable and Dz as deriva-
tion.

> _Envdiffopdomain:=[Dx,x]:

We will always assume that the DEtools package is loaded and the differential domain
is defined by [Dz, z].

1.5.1 From an operator to a differential equation and vice versa

With the command diffop2de Maple can transform a linear differential operator
to its associated differential equation. Let us take the irreducible third-order linear
differential operator Lgp associated to the modified Bessel square function of the first
kind I (v, 2)* with parameter v.

> LBB :=x"2%Dx"3+3*x*Dx"~2+(1-4%x~2-4*nu~2) *Dx-4*x;

LBB := 2Dz + 32Dz’ + (1 —42? —41/2) Dy —4x
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With the command diffop2de Maple can transform a differential operator to the left
hand side of its associated differential equation.

> eq:=diffop2de(LBB,y(x));
2 3

d d d
eq = —dxy(z)+ (1 — 4% — 4V2) %y (z) + 35@9 (z) + IQ@Q (z)

With the command de2diffop Maple can transform a linear differential homogeneous
equation to its associated differential operator.

> de2diffop(eq, y(x));
2?Dx® + 3 Dr® + (1 —42* — 41/2) Dr —4x

1.5.2 Solving linear differential equations

With the command dsolve Maple can solve linear differential equations.
> dsolve(eq,y(x));
y(x)=_C1(I(v,2))*+ _C2 (K(v, 2))*+ _C31(v, 2)K (v, 2)
where C'1 and _(C?2 are constants and, I (v, x) and K (v, x) are respectively the modified
Bessel functions of the first and second kind with parameter v.

1.5.3 Factorization into irreducible linear differential operators

With the command Dfactor Maple can factorize reducible linear differential operators
(see [17], [16], [18] and [22]). If the parameter v = 1/2 in the expression of Lgpg, then
Lpp is reducible and we can factor it
> L1l:=subs(nu=1/2,LBB);
L1 := 2’Dx® + 3aDx* —42°Dx — 4z
> DFactor(L1);

1+2
i gj,Dx—i—x_l]

[°Dx — 2 (—1+2x), Dx +

1.5.4 Generalized Exponents

Generalized exponents can be computed in Maple with the command gen_exp, which
belongs to the package DEtools. The input is an operator, a variable ¢ to express the
generalized exponents and a point x = p at which we want to compute the generalized
exponents. The output is a list of pairs [g,eq] which each represents a generalized
exponent at the given point p. In this pair the equation eq describes the variable x —p
which is used to express the generalized exponent g.

> gen_exp(LBB,t,x=0);

[[0,t =x],[-2v,t =z],[2v,t = x]]
> gen_exp(LBB,t,x=infinity) ;
[Lt=a" 2t +1,t =27, [2t7 + 1, t =271
> gen_exp(LBB,t,x=1);
[[0,1,2,t =z — 1]]
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1.5.5 Formal and logarithmic solutions

With the command formal_sol Maple can compute the formal solutions of an oper-
ator at a point.

> L2:=subs(nu=0,LBB);
L2 := 2Dz’ +32Dx” + (1 —42°) Dx — 4z
> formal_sol(L2,t,x=0);

Hm (In(#)” + (=1/4 In(t) + 1/4 (In (1)) * + <634 (In (1))* — 5 0 ()

+3i2> O (1), (8) + (~1/4+ 1/2 I (1) 2 + (3 (1) — 1) ¢

+O (%), 1+1/282+ 2t*+ O (t% ,t = z]]
> formal_sol(L2,t,x=1);
13 49 7
1/2 —1/2 2 ~Y43 4 0 4b 6
H/ /2t +5/8t 51! togt 16t+0(t),
11 27
— 4+ =328+ —t' ="+ O (¢°
+ 288+ St = S+ O (1)

= +5/4t* = 7/61°+ 0 (1°) ,t =2 — 1]]
If we want to know whether the operator Ly has logarithmic solutions at a point,
we can also use the command formal_sol but with ’has logarithm?’ as second
argument.

> formal_sol(L2,’has logarithm?’,x=0);
true

> formal_sol(L2,’has logarithm?’,x=1);
false



Chapter 2

Transformations

In this chapter, some results are ours, and the others are our extension to third-order linear
differential operators of results from Ruben Debeerst |1 1] and Quan Yuan [412] related to
second-order linear differential operators. Those two authors also refer to some references
like: [3], [7], [5], [7], [35], [28], and [20].

Our idea, in order to solve a differential operator in terms of solutions of another
differential operator, starts by seeing first how they can be connected. That will help us to
find the map between their solution spaces. Therefore, we will discuss the transformations
that preserve third-order differential operators and how they can affect the generalized
exponents of solutions of a third-order differential operator. We assume here that all of
our operators are irreducible.

Let k£ be an extension field of Q which is algebraically closed and has characteristic
zero. Let K = k(x) be the field of rational functions in z.

2.1 Types of Transformations

Definition 2.1. A transformation between two differential operators Ly, Ly € K9] is a
map from the solution space V(L1) onto the solution space V(Lyg).

The transformation is invertible if there also exists a map from V(Lg) onto V(L;).
There are three known types of transformations that preserve the differential field and
preserve order three. They are:

Definition 2.2. Let Ly € K[J] be a differential operator of degree three. Fory = y(x) €
V(L) we have:

(i) change of variables: y(x) — y(f(z)), feK\k,
(it) exp-product: y — exp ([rdz)y, r €K, and
(111) gauge transformation: y — roy + my + roy”, 10,171,720 € K.

They are denoted by — ¢, — g, —>¢ respectively and for the resulting operator

T0,71,T"

Ly € K[0] we write Ly im Lo, L1 ——=p Lo, Ly 22552 Ly, respectively. Furthermore, we
write L; — Lo if there exists a sequence of those transformations that sends L; to Ls.
The rational functions f,r,rg, 1 and ro will be called parameters of the transformations,
and in case (i¢) the function exp ( fr dac) is a hyperexponential function.
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Theorem 2.3. Let L; € K[0] be an irreducible third-order linear differential operator. If
the parameters of the transformations above are given, we can always find Ly € K[0] with
deg(Ly) = 3 coming from Ly by the transformations associated to those parameters.

Proof . Let Ly = a3(x)0® + az(x)0* 4+ a1(x)d + ag(x) be an irreducible third-order linear
differential operator with coefficients in K (az(z) # 0). Let y = y(x) be a solution of Ly,

i.e
d? d? d
ag(x)d—xg + ag(m)d—xz + al(x)é +ap(z)y =0
Let us also assume, if it exists,
d3z d*z dz
P + bz(x)@ + bl({t)% + bo(z)z =0

to be the equation coming from (2.1) after one of our three transformations.

sometimes use the notation ’ for e
x

a- The change of variables transformation:
Let f € Kand z = y(f). Then

(2.1)

(2.2)

Let us

z=y(f),
== ) = )|,
B = dp) = @) U@P )] S
wd 5= ) = gt [— oL, <f'<x>>3+3f'<x>f”<x>]
i x . _al(a:) . ,{L’ 3 ”/95
e e | IR >]
— ulz aO(x) "(2))3
Vs )@
We can rewrite the equation (2.2) in terms of y(z),_; C%y(:c) and dd—;y(x)
. . xz=f z=f
using the equations above and get
d_2 L= &2(33) A / 3 l 2 ! "
e 2 @) + @) + 30 @)
= 3\X z=f
Py - () 4 b)) + @ @) + 5w
dx o as(x) ot
S Co [— Z?Exi (@) +bo($)] 0 (2:3)
3T z=f
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d2

d
and @y(x)

Since Ly is irreducible, all the coefficients of y(z)|,_; , %y(x)

z=f z=f

in the equation (2.3) have to be zero. That gives us:

(bo(:E): ZZEx) (f'(x )3,
(x 2 f///(f) as(x) o ay(x) a2
=3 (f,,gl';) (f;(x)  as(x) s () + w@),. (f'(2))?,
\b2(l‘): -3 (x) (x> . . f/(l’)

Thus, we have found a differential equation (2.2) for z = y(f) which has order three.

b- The exp-product transformation:
Let r € K and z = exp ([ 7 dz) y(z). Then

c=en ([ rac) uo),
(] 4)

Pz [Py(x) o, dy(x) o,
@ | e + 2r o +(r'+r )y(a;)] exp </rdx),

and &z _ :(37"— aQ(x)) Fy() + (3 + 3r ’—#) y(x)

dz3 as(z)) da? a(z)) dx
+ (7“” + 3y 4P — Zzg ) } exp ( rdm)
dy(z) ( )

We can rewrite the equation (2.2) in terms of y(z),

equations above and get

Kbg(x) +3r — Zzgg) dzy;f )4 (37“2 + 3¢ + 2rby(x) + by () — 2 (-75)) dy(z)

+ (r" 43+ 13+ (1 + 1) bo(2) + by () + bo(z) — ZZEQ) y(:v)] exp ( / r d:z:)
_ (2.4)
dy(z) o Py(@) dzy(iﬂ)

Since L; is irreducible, all the coefficients of y(x), ——= e
x x?

in the equation

(2.4) have to be zero. That gives us:

(

e R
by(x) = Z;gig —2r Zigg +3r2 — 3¢,
be(z) = Z;i) — 3r.

Thus, we have found a differential equation (2.2) for z = exp ( Ik rda:) y(z) which
has order three.
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ro € Kand z =r

¢- The gauge transformation:
Let 7o, 71,

24

TN TN
~ ~_ . ElEa
& ~ | N T2~ —~
+ — &= TE T EE :
N o ] I SIS e ~|= + —
GO Wo I3 Py — ~— ~ ™ (OA/I@M_|_
— ~— Tl | %/. OM = SIS~
+ ~ -~ G _ . NI
== T < 5 2Ly o T—~ E 423 s
S = + = = EE 7 T =2 o+
n” _ /ﬁ\(x\ 1 | al WO/ N——— = ~
INE N5 I ~__ + S
l_l S~ ~ SIS | o . N o
—_ |~ N— = = o o N = | ~ l_l
~—[— ~—[—
G . S £ 55 s
— | & S| & _ + S o| o “l\ =
_ S _ N———— =~ ]~ e S ™
— - ~ I EE 5 T— 7
~ [N}
= <l=-—_ <& &l == <=
== sis — X = ~— &|s —~ 7% Sis BB
((2\(& ~— 8|y = . = o =l S
SIRS ==z + =TT Sl EE RS
. 3 - N2 N — l2e) e
_ e 8y __~ —| » 3 a_/J(Tw\(ﬁ\ —
—~—~ 8 = Ts — B &2 + ~— Hmll 2| 2L <
8 |~ ) — < P ] 3
S nw2 OW + + == h o = ~8
'S 2 5ose oo K
—~|— I_I N /.n“(\./) . /TQ o = ~
SRS IT |~ N 3 = ] — l_l VN _
T2 g3 - =S S GG SC
& S —— T+ : ~ » IS I
— 3 ]~ —~|— - N S8 N 3T
= + —— SHRSIRS N N = s |'s — :
Nl ~I~= = o aC el G + ~— [~— & —~— |
3l EE sle sl + & L o+ EEEE
=% 3|5 = o ~— s — 5 ' .~ 3T T
S ) S 2 X a L~ < g[S S
— <O — 5 R G &
_ X I _ _ + _ _ _ + +
N ™
e
= <[k

o. Hence, we will find a

educible, all the coefficients o

(2.2) in terms of y(z),

. Then, since L is irr
, in the equation that we will get, have to be zer

dx?

We can rewrite the equation
y(z) .

equations above
and
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Py(z) | dy()
2 &}

We cannot present here the result because it is too large. This result is included in

a Maple worksheet and is also a part of this dissertation.

differential equation (2.2) for z = ry +7oy(z) which has order three.

O

2.2 Examples

We wrote and implemented Maple algorithms for those three transformations. All of them
are in our implemented package called 0DE3solve. They take as input a linear irreducible
third-order differential operator and the parameters of transformation(s). The output is
another linear irreducible third-order differential operator coming from the input through
the transformation associated to our input transformation parameter(s).

a- The change of variables transformation:
Let us take the irreducible third-order linear differential operator Lg, associated to

the hypergeometric function ¢ F3 x | and the change of variable param-
1/7,1/12
2(x — 7)%(x — 12)
(z —3)?
> L02:=x"2*Dx"~3+(103/84) *x*Dx~2+(1/84) *Dx-1;
9 5 103 5, 1
L02 = x"Dx +8—4xDx +QDx—1
> f:= normal ((2*(x-7)"2%(x-12))/(x-3)"2,expanded) ;
. 223 — 5222 +434x — 1176
J = 2 —6x+9

To transform Ly, by the change of variables with parameter f, we use the algorithm
ChangeOfVariables in our implemented package ODE3solve

> L:=ChangeOfVariables(L02,f);

L:=84 (2 =22 —75)" (x = 7% (x = 12)° (z — 3)° Da® + («® — 22 — 75) (103 2"
—412 2% — 59390 22 + 913908 2 — 3630033) (z — 7)* (z — 12)* (z — 3)* Da?
+(z—7) (z—12) (28 — 827 + 25948 26 — 1451784 2% + 34550774 2:*
—458049624 2% 4 3589905852 2% — 15576038424 = 4 28661695857) (z — 3)° D
—168 (z —7)° (x — 12) (22 — 22 — 75)°

eter f = . We have:

b- The exp-product transformation:
Let us take the irreducible third-order linear differential operator Li, associated to

1/3
the hypergeometric function | F5 x | and the exp-product transformation

1/5,1/9
parameter r = (x — 5)(z — 9). We have:
> L12:=x"2%Dx"~3+(59/45) *x*Dx~2+(1/45-x) *Dx-1/3;
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29
L12 = x2Dx3+ExDx2+(1/45—x) Dr —1/3
> r:=(x-5)*(x-9);
r = (x—>5)(xr—9)

To transform Ly by the exp-product transformation with parameter r, we use the
algorithm ExpProduct in our implemented package ODE3solve

> L:=ExpProduct(L12,r);
L = 452°Dx® — 2 (=59 + 135 2% — 1890 2° + 6075 ) Da* + (1 — 5355« — 170488 z*
+276917 2% + 135 2% — 3780 2° + 38610 2*) Dz — 1471397 * + 3882779 2
—4260854 2% + 122340z — 60 — 45 2® + 1890 z7 — 32535 2% + 293909 z°

c- The gauge transformation:

Let us take the irreducible third-order linear differential operator Lo associated

. . 1/7,1/3
to the hypergeometric function oF5 x

1/2,1/4
parameters 7o = « + 1,7, = 0 and r, = 2. We have:
> L22:=x"2*Dx"3+(-x"2+(7/4)*x) *Dx~2+ (- (31/21) *x+1/8) *Dx-1/21;

31
L22 := 2°Da® + (=2 + 7/4x) Dx* + <—ﬁ T+ 1/8) Dr —1/21

and the gauge transformation

> r0:=x+1;

=x+1
> rl1:=0;
rl ;=0
> r2:=x73;
2 = g’

To transform Loy by the gauge transformation with parameters rg, 7y and ry, we use
the algorithm GaugeTransf in our implemented package ODE3solve

> L:=GaugeTransf (L22,r0,r1,r2);

L := 1682” (47424 2° + 97456 =" + 180789 x” + 28224 + 128919 2 + 86436 =) Dz®
— 42 2 (189696 25 + 1006336 ° + 1392780 * + 1367751 2° 4 526533 2.2
—146412x — 197568) Da® + (41733122 + 48970048 2° + 28542024 2*
—173928001 2° — 78087429 22 — 19261116  + 592704) Dz — 4552704 2°
+56356881 22 + 18202716 2 — 818496 — 44657216 2* + 16950528 2>

2.3 Transformations as relations

Solving an equation in terms of a function is like to find the relation (connection) be-
tween this equation and the equation that the considered function is solution. Hence, a
transformation between differential operators can be considered as relation between them.

Remark 2.4. We can consider — ¢, —g and —¢ as binary relations on C(z)[0].
Hence, — g and —¢q are equivalence relations, but —>¢ is not: the symmetry of —¢
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would require algebraic functions as parameter. For example, to cancel the operation
z — 2%, we would need x — /3.

An important question when searching for transformations between two operators
L; and L, is whether we can restrict our search to a specific order of transformations
—c,—g and —q .

Lemma 2.5. Let Ly, Lo, Lg € K[9] be three irreducible third-order linear differential op-
erators such that Ly —¢ Lo —> g Ls. Then there exists a differential operator M € K[0]
such that Ly — g M — ¢ Ls.

Similarly, if Ly — g Ly —¢ Ly we find M € K[0] such that L —¢ M — g Ls.

Proof. We use a similar proof as in [11, Lemma 2.7]. O
We write — g for any sequence of those transformations. Since they are equivalence
relations, — gq is also.

Definition 2.6. We say L; € K|[0] is
(a) gauge equivalent to Lo if and only if Li — ¢ Lo,
(b) exp-product equivalent to Lo if and only if Ly — g Lo,
(c) projectively equivalent to Ly if and only if L1 — pg Lo.

Lemma 2.7. Let Ly, Lo, Lg € K[9] be three irreducible third-order linear differential op-
erators. The following holds:

(Z) Li —g Ly —¢cLs=— dM € K[@] Li —cM —pg Lg,
(ZZ) Li —¢ Ly —cLs=— dM € K[@] Li —cM —¢ Ls.

Note that the converse of (i) and (i) is not generally true since — ¢ is not symmetric.
By those two lemmas above, we can then have the following statement:

Lemma 2.8. Let Ly, Ly € K[0] be two irreducible third-order linear differential operators
such that Ly — Lo. Then there exists an operator M € K[J] such that Ly —c M — ¢
Ly.

Proof. We just use Lemma 2.5 and Lemma 2.7 and the rest follows immediately. 0

2.4 Relation between Transformations and Generalized
Exponents

Let k be an extension field of Q which is algebraically closed and has characteristic zero
(that is to be sure that the universal extension of k(z) exists). Let K = k(z) be the field
of rational functions in z. All of our differential operators are taken from K|[d].

As it was previously said, our three known transformations connect the solutions
spaces of two irreducible third-order linear differential operators. Since the solutions are
related by the generalized exponents, we can think also about the way that the generalized
exponents change from one solution space to another by those transformations.
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2.4.1 Relation between Exp-product Transformation and Gener-
alized Exponents

The following lemma states how the generalized exponent varies after an exp-product
transformation:

Lemma 2.9. Let L,M € K[0J] be two irreducible third-order linear differential operators
such that M —=5 L and let e be a generalized exponent of M at the point p € kU {oo}
with the ramification index n. € N*. Furthermore, let r has at p the series representation

+o0
r= Z rit;, my € Z with r; €k and 1,, # 0.
i=mp

1- If p is not a pole of r then m, > 0 and the generalized exponent of L at p is

e if p# o0,
e — rot} — 71 otherwise.

2- If p is a pole of v then we will have m, < —1, where —m,, is the multiplicity order
of r at p, and the generalized exponent of L at p will be given by

-1
e+ Y mtytif p# oo,
i=myp
1 .
e— > rit's! otherwise.

1=Moo

Proof. Since e is a generalized exponent of M at p, M has a solution of the form

y:exp</£dtp>5
tp

for some Puiseux series S € k:((t,l,/ "))[In(t,)] with non-zero constant term. The exp-
product transformation, with parameter r € k(x), converts this solution into

2 = exp (/rdx) X exp (/ % dt,,) S, (2.5)

In order to determine the generalized exponent € of L. at p we have to rewrite (2.5) in the

form: 3
Z = exp (/Edtp>§
tp

for some Puiseux series S € k((t}g/ "))[In(t,)] with non-zero constant term and n € N*.

1- Since p is not a pole of r and 7, # 0, we have m,, > 0.

*p#oo:
By using the fact that ¢, = 2 — p, which means dt, = dx, we have

exp (/de) = exp Z :_—ilt;“ . (2.6)
i

i=mp
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+o0o x]
With exp(z) = > — when z tends to zero, we can rewrite (2.6) as power
j=0J:
+oo T
series in ¢, since Z T 1%“ also tends to zero when ¢, tends to zero.
+00 1 —+00 r 7
_ 2 T i
exp</rdx>—z i ,Zz'—i—ltp
7=0 1=my
+oo .
= Zajt;f, with a; € k and qp = 1. (2.7)

Substituting (2.7) in (2.5) we get

z:exp(/tidtp)g
p

where S = S - 2 a;t) € k((t;,/"e))[ln(tp)] has a non-zero constant term.

*

p=00:
1
Since to, = 1/z we have dt,, = ——de = —t2 dz which means dr = —t_2dt,,
x
Hence,
+00
exp </rd:c) = exp (/(ro + mtoo) dx) exp (/ <Z ritéo> da:)
i=2
~+00 A
~ exp ( [ nta-2) dtoo) esxp ( / (Z nt;)
i=2
X (—t:2) dtoo)
Tot + 1 o
— i—1
= exp (— / T dtoo) exp (ZZQ 1too ) . (2.8)
+oo a’;]
With exp(z) = > — when z tends to zero, we can rewrite the second right
7=0 J:
+o00 T;
factor in (2.8) as power series in ¢, since Y 1t’ L also tends to zero when
=2 Z

t~ tends to zero.

= =11 = ’
exp (Z i——lltij) = Z —. <Z i——zltgl)

|
=2 i—0 |70 \i=

= Zajtio with a; € £ and ag = 1. (2.9)

Substituting (2.9) in (2.8) and then the result in (2.5) we get

— ot — —
Z:exp(/%dtm)s
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_ +oo )
where =S5 a;t!_ € k(( ééne))[ln(too)] has a non-zero constant term.
=0

2- Since p is a pole of r and r,,, # 0 then m, < —1, and —m,, is the multiplicity order
of r at p.

* .
pF 0o
We have to handle the positive and negative powers of ¢, in r separately. Here
(2.5) becomes

1 +o0o
Z = exp / Z rit; dr | -exp (/ (Z rit;> dm) - exp (/ ti dtp> S.

i=myp =0
(2.10)
By using the fact that ¢, = x — p, which means dt, = dz, the positive powers
of t, in r become

exp (/ (Z ml) d:r;) = exp (Z J:lt;“) . (2.11)

“+oo

With exp(z) = > — when z tends to zero, we can rewrite (2.11) as power
j=0J-
+oo T

series in ¢, since ) n 1t;“ also tends to zero when ¢, tends to zero.
=0 i

+o0 +oo 1 “+o0o r J
i _ i it
oo ([ (So) o) =S 15 (S 2)
=0 =0 =0
= Zajt; with a; € k and ap = 1. (2.12)

The negative powers of ¢, in the series expansion of r becomes a part of the
generalized exponent:
—1

-1
) 1 )
exp / > i) = exp / oty | (213)

i=myp i=myp

U
8

Substituting (2.12) and (2.13) in (2.10) we get

-1

1 , —

Z = exp / 7l e—l—th;H dt, | S
P

i=myp

where S = S - 2 a;t] € k((t;,/"e))[ln(tp)] has a non-zero constant term.

D =00:

1
Since to, = 1/x, we have dt,, = ——2d$ = —t2 dx which means dr = —t_2dt,
x
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Hence,
1 +o00
exp (/T’dl‘) = exp (/ ( Z TZﬁoo) d.f(]) - exp (/ <Z7"Ztéo> dl)&')
=Moo =2
1 +o00
= exp (/ ( Z Titzoo> (—t2) dtoo> - exp (/ (Z Titfx))
X (—t:2) dtoo)
1
Z ritégl +oo
i=m Tq i—
= — ] /= dt | - — ¢~ (2,14
exp / t exp (;i—l o > ( )
With exp(z) = > — when z tends to zero, we can rewrite the second right
j=0J*
—+00 /r'l. i
factor in (2.8) as power series in t., since » ,—ltgl also tends to zero when
i=2 0
t- tends to zero.
=gy =11 =, ’
i i1 2 i i1
P Zi—lt‘” _Z ;! Zi—lto"
=2 7=0 =2
+00 ‘
= Zajtjoo with a; € k and qp = 1. (2.15)
=0

Substituting (2.15) in (2.14) and then the result in (2.5) we get

1
e— > rtict

2 = exp / i:;noo dtes | S

— too .
where S =5 > a;tl € k(( 1)) [In(to0)] has a non-zero constant term.
i=0

Example

Let us take the irreducible third-order linear differential operator Ly associated to the

hypergeometric function ¢F3 x | and the exp-product parameter
1/7,1/12
2(x — 7)%(x — 12 r
r = (@ G ) such that Loy —> 5 M.
(z —3)°

> L02:=x"2*Dx~3+(103/84) *x*Dx~2+(1/84) *Dx-1;
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5 103 1
L02 := 2°Dz’ + —axDa* + — Dr — 1
0 x°Dr” + Y R +84 x
> M:=ExpProduct(L02,T);

M = 842% (v — 3)* Da® + 2 (1032° — 2049 2" + 22374 2% — 137178 % + 338067 x
—25029) (v — 3)"° Da® + (2! + 566 2° — 28567 2° + 48777227 — 3652074 2

49698904 z° + 24950142 2* — 208055196 2> 4+ 375197913 22 — 59065038
+59049) (z — 3)"° Do — 2 (422" — 1890 2™ + 39989 #*% — 536323 »'2

+5165621 't — 37389819 21 + 198814604 x° — 703239656 % + 1187929356 "
+1661566320 225 — 12458079627 ° + 17843929317 z* + 15530253525 2.
—53256919635 2% + 15808471434 ¢ — 637374906) (z — 3)°

- x =0 is not a pole of r and the generalized exponents of Ly, at = 0 are

> gen_exp(L02,t,x=0);

[0,t =], [55.1 = ], [6/7, = a]
For the operator M we have

> gen_exp(M,t,x=0);
11
E’t
So the generalized exponents of Lgy and M at x = 0 are the same (that can be seen
by the part 1- of Lemma 2.9).

[[Oat:x]’[ :[E],[6/7,t:1’“

- x = o0 is not a pole of r and the generalized exponents of Lgy at x = oo are

> gen_exp(L02,t,x=infinity);

Let t1,t, and 3 be the roots of the equation —t* = 1/x where ¢ is the unknown.

-1 65 4 -1 _ 65 -1 65
Let €1 = tl 2527 €y = tg 259 and €3 = t3 252
For the operator M we have

> gen_exp(M,t,x=infinity);

5, — ¢.-1_ 65 <5 _ g4 -1 _ 65 S, — o1 _ 65 i
Soe =t 55y €2 = lo 55 and e3 = i3 555 Will be the generalized

exponents of M at x = oc.
The series expansion of r at x = 0o, with coefficient r;, is

> series(r,x=infinity);
2072 —2227% = 762" +20427° 4+ O (279
So 1 = 2t% — 2213 — 76t + 204 ¢..° + O (to.°) and hence ro = 0 and r; = 0.

Therefore, for j = 1,2, 3, we have

-1 _ -1 S
ej— ot —T1=¢; —0xt 5 —0=¢; =¢;.

So the part 1- of our Lemma 2.9 is satisfied.
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- x = 3 is a pole of r of order 5 and the generalized exponents of Lyy; at = 3 are
> gen_exp(L02,t,x=3);
[[0,1,2,t =z — 3]
Let e4 =0, e =1 and ez = 2.
For the operator M we have
> gen_exp(M,t,x=3);
[[2¢7" =34t +176¢7° —288¢ 4 1 + 27" — 34¢7> + 176¢7% — 288¢ 7%,
242¢7 =34t 4176t — 288t t =z — 3]]

Lete;, =2t =34t 24176t 3 —288t™%, €y =1+2¢t 1 =34t 24+ 176¢t3 —288¢~*
and 65 = 2 + 2t —34¢t72 4 176¢t3 — 288¢~*. The series representation of r at
x = 3, with coefficient r;, is

> series(r,x=3);

—288 (£ —3) " +176 (1 —3) ' =34 (. —=3) P +2 (x —3)?

—1 )
Hence Y rit5t = —288 (. —3) 4176 (1 —3)° =34 ( —3) > +2 (z —3)"".
i=—>5

( —1 4
e+ Sttt =0-288 (z —3) ' 4176 (1 —3) P =34 (z —3) P +2 (z —3)7"
i=—>5

ex+ > rithtt=1-288 (v — 3)_4 + 176 (2 — 3)_3 —34 (z — 3)—2 Y2 (- 3)—1
] i=—b5

= €9,

-1 ]
e3+ S ritit=2-288 (2 —3)' 4176 (v —3) " —34 (z —3) 42 (x—3)"
i=—5

. = €3.

So the part 2- of our Lemma 2.9 is satisfied.

Let us now take the exp-product parameter r = (z—>5)(z —9) such that Loy — 5 M.
> r:=(x-5)*(x-9);
r:= (z—>5)(r—9)
> M:=ExpProduct(L02,r);
M := 842Dz’ — x (—103 + 252 2° — 3528 2” + 11340 z) Dz” + (2522° — 318230 2

+1+5167122% — 9270 — 7056 2° 4 72072 2*) D — 2746408 2* 4 7245730 2

—7943415 2% + 210031 = — 129 — 84 2® + 3528 27 — 60732 25 + 548623 °
x = oo is a pole of r of order 2. By the computations above, the generalized
exponents of Loy at © = co are ey = 171 — 22, ey =lo7 ! — 2 and ey = ¢35 — 2
where t1, 1, and t3 are the roots of the equation —t3 = 1/x with the unknown ¢.
For the operator M we have
> gen_exp(M,t,x=infinity);

65
[t — 555+ A5t + 140+ 77 P =27
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So e = 1/t; —65/252 + 45/t13 + 14/1,% + 1/t,%, &, = 1/ty — 65/252 + 45/t5> +
14/t5° +1/t,° and €3 = 1/t3 — 65/252 + 45 /t33 + 14 /3% 4+ 1/t3° will be the generalized
exponents of M at x = cc.

The series expansion of r at x = oo, with coefficient r;, is

> series(r,x=infinity);
r? — 142+ 45
So 7 =ty 2 — 14t} + 45 and hence
1
D it =t = 1417 451
i=—2
= (=) =14 () 2+ 45 () for —tP=1/2 =t
=t —14¢t%—45¢7 for — ' =1/2 =t..

Therefore, for j = 1,2, 3, we have

1
. 65
ej— Yy miti =t — = (77 = 14— 457) for — P =1/x =t

= 252
o1 69 9 6 3y 3
=1 —@—(—tj —14¢;7° — 45¢; ) since —1t;° =1/ =t
_ 65 _ _ _
— ¢ 1_ﬁ+tj P4 14,70+ 454,77

= €j.

So the part 2- of our Lemma 2.9 is satisfied.

2.4.2 Relation between Gauge Transformation and Generalized
Exponents

The following lemma states how the generalized exponent varies after a gauge transfor-
mation:

Lemma 2.10. Let L,M € C(x)[0] be two irreducible third-order linear differential oper-
ators such that M — ¢ L and let e be a generalized exponent of M at the point p. The
operator L has at p a generalized exponent € such that € = e mod niZ, where n, € N* is
the ramification index of e. )

Proof. Since e is a generalized exponent of M at p, then M has a solution of the form

waPQ/%ﬁOS (2.16)

for some Puiseux series S € k((ty "))[In(t,)] with non-zero constant term. The gauge
transformation, with parameter ro, 71,79 € k(x), converts this solution into

z=ry" + 11y + oy (2.17)

In order to determine the generalized exponent € of L at p we have to rewrite (2.17) in

the form: 3
2 = exp (/Edtp)g
tp
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for some Puiseux series S € k((t;,/ "))[In(t,)] with non-zero constant term and n € N*.
Let, for i € {0,1,2}, r; has at p the series representation

+o0
r; = Z awt; m; € 7, with Q; j € k and Aim; 7é 0.

Jj=m;

Then, for i € {0,1,2}

“+o0o
— my E J
T, = tp ¢ ai,ﬂmitp.
7=0

+oo .
Since Y a;jymt) € k(t,) € k((ty™)) then
=0

for some Puiseux series S; € k:((té/ "))[In(t,)] with non-zero constant term.
Since M is an irreducible third-order operator, then ¥,y and y” are linearly indepen-
dent. That means in particular they cannot be zero.

Yy = Eexp (/Edtp> S + exp </£dtp> S’
tp tp tp
= exp </ Edtp) [ESvL S'] .
tp tp

e
With the fact that 4/ # 0 and S is a Puiseux series, we can conclude that t_S + S5 isa
p
non-null Puiseux series, and can be written as

(A ~
54+ 8 =118
tp

1 ~ n . . .
where oy € —Z and S € k((t},/ “))In(t,)] a Puiseux series with non-zero constant term.

/ O¢1~ €
Yy =t, S-exp(/gdtp)
= exp (/ ‘ Jtr Oél dtp> S. (2.19)
P

y' = crm exp /mdtp S+ exp /ﬂdtp S’ (2.20)
tp tp tp

— exp (/6:0‘1 dtp> {eto‘léjué’}. (2.21)
P P

1 _
With the fact that y” # 0, oy € —Z and S is a Puiseux series, we can conclude that
n

e

Hence

e+ary . & . . .
n S + 5’ is a non-null Puiseux series, and can be written as
P

CrNGL 5 =S

P
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1 = n . . . .
where ap € —Z and S € k((t)/ °))[In(¢,)] is a Puiseux series with non-zero constant term.

Ne
o & e+ aq
y" = t52S - exp (/ . dtp)
_ exp ( / etarta dtp) g (2.22)

By using (2.17), (2.18), (2.19) and (2.22), our equation (2.17) becomes

z =175, - exp (/tgdtp)5+t;’“§1-exp (/etal dtp)g
p p

e L
p

Hence,

e — — ~ — =
— exp ( / - dtp> |65 + 8,5 o gt eag,g) (2.23)

1 o~ I~
With the fact that z # 0,{mg, m1, ms,a1,a2} C —Z, and S, Sy, S1,S52,5 and S are
Ne

Puiseux series, we can conclude that ¢7'°S,S + t;"1+0‘1815 + tg"”2+a1+°‘2525 is a non-null
Puiseux series, and can be written as

tm0SeS + TS, S 4 graterte2 g, & — 409

1 —
where o € —Z and S € k((t;,/ "))[In(¢,)] is a Puiseux series with non-zero constant term.

ne
Hence
s e
z=1,5"exp Edtp
— exp (/ ctra dt,,) S. (2.24)
tp
O
Example

Let us take the irreducible third-order linear differential operator L5 associated to the

1/3
hypergeometric function | F5 / x | and the gauge parameters
1/7,1/12
. 3 T . T0,T1,72
ro=—, = 7andr2—az—7suchthatL12 —"a M.
x x —

> L12:=x"2*Dx"~3+(103/84) *x*Dx~2+(1/84-x)*Dx-1/3;
103 1
L12 = 2°Dx® + = 2 = 1
2 xDa:—|—84:cDa: +<84 x)D:c /3

> r0:=3/x;
) = 3z7°
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> ril:=x/(x-7);

> r2:=x-1;
2 =x—1

> M:=GaugeTransf (L12,r0,rl1,r2);

M = 842° (x — 7)% (2195227 — 498540 2° + 3209213 2° — 6210396 2" + 7536812 2>
—498540 2% — 24756039 2 4 1510327 x — 1029)2 Dx® + 2* (x — 7) (21952 2"
+3209213 2° — 6210396 2" + 7536812 2° — 24756039 2° + 1510327 2 — 1029)

x (4105024 2° — 125116180 27 + 1205576435 2% — 5040206417 2° + 12071161040 2*
—20324248037 z° + 62562392872 2° — 4642032346 = + 3767169) Da* — x (x — 7)

x (1843968 2° — 56651056 2° — 2782269063 2° + 7351831423 2° — 25304734510 z*
+595006692 2" + 52630605482 2 — 39362575777 2* + 4084231683 x — 4653138)

x (21952 2" — 498540 2° + 3209213 z° — 6210396 z* + 7536812 2° — 24756039 z
+1510327 z — 1029) Dz — (z — 7) (2458624 2" — 82127920 2° 4 972393772 2"

—5432120281 2° + 16952067129 2° — 35816091042 2* + 40872253492 2.
—4796991661 2* + 142564863 x — 749112) (21952 2" — 498540 2° + 3209213 2°

—6210396 2* + 7536812 z* — 24756039 * + 1510327 = — 1029)

- The generalized exponents of L5 at x = 0 are

> gen_exp(L12,t,x=0);
11

E’t =x|,[6/7,t = x]]

[[Oat = l’],[

11 6 . . . .
Let e; =0, es = Tz and e3 = — be those generalized exponents. Their ramification
indices are ne, = Ne, = N, = 1.

For the operator M we have

> gen_exp(M,t,x=0);

8 13
—1,t= ——, 1= —— 1t =
-1t =a], -2t =) [-35.t =]

_ _ 13 _ 8 . .
Soe = —1, e5 = T and e3 = — will be the generalized exponents of M at
xz=0.

( 1

51—61: -1-0 =-1€Z= Z,
13 11 s

€—eg=————=-2¢€7Z= 7

“2TeT T T 10 < Lo
8 6

e3—e3= ———— =—-2€Z= Z.

(7% T 777 Teg

- The generalized exponents of L5 at x = oo are

> gen_exp(L12,t,x=infinity);
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11/3.¢ =271, [¢! — g £2 = 7]

1_ 17
56

t1 and ty are solutions of the equation t?> = 2~! with unknown ¢. The ramification
index of e; is n., = 1 but for e; and e5 we have n., = n., = 2.
For the operator M we have

1
Let e; = 3 ey =t~ and e3 =ty ' — % be those generalized exponents where

> gen_exp(M,t,x=infinity);

([4/3,t =27, [t — =, > =27

, € =1t ' — 1 and &3 = t,7! — I will be the generalized exponents of M
1

ol

So €] =

at © = oo where t; and t, are solutions of the equation ¢?> = z~! with unknown t.

( 4 1 1
e —e = - — = =1€Z= Z,
3 3 ) Ne,
<Eg—egztl_l—é—g—(tl_l—%)ZOG—eZ,
2
1
63—63:752_1—;—2—(152_1—%):06n 7.
\ €3

- The generalized exponents of L5 at x = 7 are
> gen_exp(L12,t,x=7);
[0,1,2,t =2 —7]]
Let e; =0, e; = 1 and e3 = 2 be those generalized exponents. Their ramification
indices are ne, = Ne, = Ney = 1.
For the operator M we have

> gen_exp(M,t,x=7);

[-1,0,1,t =z — 7]

Soe; = —1, e =0 and e3 = 1 will be the generalized exponents of M at x = 7.
( 1
61—61:—1—02—1€Z: Z,

fl
62—62: 0—-1=-1€Z= Z,

f2
63—63: 1-2=-1€Z= 7.
\ neg

- The generalized exponents of L5 at x = 1 are
> gen_exp(L12,t,x=1);
[[0,1,2,t =z — 1]]

Let e = 0, e5 = 1 and e3 = 2 be those generalized exponents. Their ramification
indices are ne, = Ne, = Ney = 1.
For the operator M we have
> gen_exp(M,t,x=1);
[[0,1,2,t = o — 1]]
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Soe; =0, e =1 and e3 = 2 will be the generalized exponents of M at x = 0.

( 1
61—61:0—O:0€Z: Z,
el
Ey—ea=1—-1=0€Z = Z,
€2
53—63:2—2:0622—2.
\ neg

2.4.3 Relation between Change of Variable Transformation and
Generalized Exponents

The following theorem states how the generalized exponents look like after a change of
variables f at the point p such that f(p) =0 and f(p) = co (i.e. at the zeroes and poles
of f) since we will assume that our differential operator Ly that we want to solve in terms
of its solutions has only two singularities: 0 and oo.

Theorem 2.11. Let Ly, M € KJ[0] be two irreducible third-order linear differential opera-
tors such that Ly L>C M, feK\k.

(i) Let p be a zero of f with multiplicity m, € N* and e a generalized exponent of Ly
at x = 0 with ramification index n, € N*. Then p is a reqular singularity of M and
the generalized exponent of M at p related to e is

n —1 . —q
,] . ei - O _ Ime
mpeo= D, ———Fijrimty (2.25)
i=1 j=—i-my

where

+o0 .
f=t7> fith, with fi€k and fo#0,
7=0

e=> et with bt" =z, bek\ {0}, neN and e; €k,

i=0

—i/ne
too foo_ . .
(ZO fjté) == Zofzﬂt%/ne U)Zth fl,] (- k‘7 7, = 1’ ceem
J= J=

| and o s solution of X" — b1 =0 with unknown X.

(ii) Let p be a pole of f with multiplicity m, € N* and e a generalized exponent of Ly
at x = 0 with ramification index n, € N*. Then p is an irreqular singularity of M
and the generalized exponent of M at p related to e is

n

-1 . i
J €0 "= i Ine
my - €y — Z Z i _fld_’_lmpt;/ <226)

i=1 j=—imy
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where

—m +m . .
f=t PJ;) Jimmpty, with fi_m, €k and [, #0,

e=> et " withbt™ =t., b€ k\ {0}, n€ N and ¢; €k,
=0

i/ne ’
+o0 ) +oo __ i/n ) _ )
<Z f]_mptg)> - Z fl,_]t% N thh fl,] E k, 1 = 1, <N
=0 =0

and o is solution of X" —b~! =0 with unknown X.

Proof .

(i) Let p be a zero of f with multiplicity m, € N* and e a generalized exponent of L
at x = 0 with ramification index n. € N*. Then f has the representation

—+oco
f=tm> fith, with fi€k and fo #0 (2.27)
j=0

and there exists a solution y(z) of Ly at = 0 of the form

y(z) = exp ( / : d:c) S(x) (2.28)

for some Puiseux series S(z) € k((z'/"))[In(x)] with non-zero constant term. Since
e € k[z~'/"¢] with integer constant term, we can write e in the form

e:Zeit”’ with bt" =z, be k\ {0}, n€N and e €k

1=0

= Z (ei . U_i) 27" with o solution of X" —b~' =0 with unknown X.
i=0

Hence,

i (62' ) gii) e n
=0 —1 —(3 —
— d — .. g (i/ne)—1 d
y(x) = exp / . x| S(x) =exp (/ ;:0 (e;-07")m x)

x S(z)

= exp <— Z w:vi/n‘) z?S(x). (2.29)

i=1

If we now replace x by f in (2.29), we get a solution z of M at p

n

2= y(f) = exp (— > #f/) Fo5(f). (2.30)

- 7
=1
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1My iy
_ 400 1/Me +oo €0
—i/ne __ Ne j eg __ 4Mp-€ j
frime = ¢, (Z fjt;> and f =m0 (Z j;-t;) .
=0 j=0

+00 .
Since fo # 0 then ;} fit), doesn’t vanish at & = p. Therefore
]:

= (2.31)

+0o0 /e +o0 .

<ij0 fjtg;> = Z foth" with f,. ek
+o0 0

<Z fjtg;) Z tj/d with E € k and d = denominator of eq
=0

and we have
i my

- “+o00 .
—i/ne _ e - Ne imp)/Me
frime=t, > Fugtil Zf”t” i
j:
+o0 .
e mp-e T 4J/d
fe :tPPOijt%/-

=0

(2.32)

Now by replacing (2.32) in (2.30) we get
n 4oo —i +oo
€0 " Ne— j—imp)/ne mp-e £ 43/d
@ Y R EUEES W
J:

i=1 j=0

n “+oo

—i . +oo -
—exp | — Z Z uf i, t%/"e S(f)tmeeo ijt;/d. (2.33)
Z 2
J=0

i=1 j=—i-my

+o0o
By splitting the sum > in (2.33) into three parts: —i-m, < j < —1, j =0
J=—timp

and j > 1, we get

n —1 —i
62' "0 " Tle Ne Mp-€ d
z=-exp | — Z Z — Jijti mpt;/ tor - ToTyS( Z th]/ (2.34)

i=1 j=—i-mp

TO = exXp ( Z ei.a;i.ne?i,i-mp) )

where notoo . _ i
— €0 ‘Ne e
Ti=exp|—> = [ i, tp :
i=1 j=1
+00 xT
With exp(z) = >_ — when  tends to zero, we can rewrite Ty as power series in t,,
=0 ¢
SR j/n
€0 "‘Ne ne e
since ) | Z —"fijrim,ty * also tends to zero when t, tends to zero.
i=1j=
+oo n +oo N q
7 e j/me
T = Z =2 Funmt
= i=1 j=1

+o0
= Zaqtg/”e with a, € k and ap = 1.
q=0
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By taken t, as the variable and using (2.27), f has no constant term. Adding the fact
that S(x) has a non-zero constant term, we conclude that S(f(z)) has a non-zero
constant term.

+o0 €o
fo#0 = <Z fﬂ%) has a non-zero constant term
§=0

+o0o
- Z fjtz,/d has a non-zero constant term by (2.31).
=0

+oo o
Since tp,t;,/ne,tll,/"e, tll,/d € k((t,l/(ne'd))), T1,S(f(x)) and > fjtg)/d are Puiseux series
j=0

in k((t},/ (ne'd)))[ln(tp)] with non-zero constant term. With the fact that T, # 0,
otherwise z will be zero, we conclude that

+oo
S =TyTWS(f) Z fjtg,/d € k((t;/(”e'd)))[ln(tp)] with a non-zero constant term,
=0
therefore
n —1 e; - O-fi N
SR Z %fi,j-‘rimptg’/ne tpr S
i=1 j=—i-m,
n —1 —1 .
€0 " ]= e — —
- &P / - — ity "ty | S
i=1 j=—imy
xexp(/mp'eodtp)S
tp
LU i/n
my - € — ; '_Z S i grimy e
= exp / S — m; dt, | S.
p

Let p be a pole of f with multiplicity m, € N* and e a generalized exponent of Ly
at * = oo with ramification index n. € N*. Then f has the representation

+o00
F=t""" fimmth, with fim, €k and f, #0 (2.35)

J=0

and there exists a solution y(z) of Ly at © = 0 of the form

y(z) = exp ( / ti dtoo> S(to) (2.36)

o0

for some Puiseux series S(ts) € k(( Cl,éne))[ln(too)] with non-zero constant term.
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Since e € k[t;ol/ "] with integer constant term, we can write e in the form

e=Y et M with bt" =ty, b€ k\{0}, n€N and ¢ €k
=0

= Z (ei . O'_i) t/"e  with o solution of X™ —b~! =0 with unknown X.

y(x) = exp /i:O dtoo | S(tso)

= exp /i (eZ )t (i/ne)=1 dtoo> S(too)

=0

—exp | — Xn: @t W“P) £95 (o). (2.37)

=1

If we now replace t, by 1/f in (2.37) since t,, = 1/x, we get a solution z of M at p

= y(f) = exp <_ é % G) Wne) G) s (%) L (239)

(2.35) gives us
. —i/ne _ - 14 oo | i/ne
() = (Srwn)
7=0

1\ +oo -

mp-€ y
(?) =67\ X oty |
\ J=0

+o .
Since f_,,, # 0, it follows that ) f;j_,,,tJ doesn’t vanish at x = p. Therefore
7=0

p

T j o T i/n . -
;) f]_mpt]jo Z f tp € Wlth fZ,] 6 k
Jj=

—eo
+00 . ~

(Z fjmpt;{,> Z t]/ with f; € k and d = denominator of ey,
j=0

(2.39)
and we have
, 1My,

1 Tt/Te a Ne Too j/ne (j—i-mp)/ne
(?) :tp ]Z::Ofwtp = Zfz]t ) (2 40)

1\ og £~

- =t 3 fits.
(f) p J;O 1P
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Now by replacing (2.40) in (2.38) we get

m .
n 4o » P
€ 0 " Ne— i) /e 1
Z = exp (— Z Z f Jtz(a] »)/ > g (m) t l Z f]t]/d
i=1 j=0

n +oo i +oo
_ . v e /ne mp-e 4j/d
= exp E E — Fijtiom, b S (_f(x)) o E fithe.
Jj=0

i=1 j=—imy

(2.41)

+o0o
By splitting the sum ) in (2.41) into three parts: —im, < j < —1, j =0 and

J=—timyp
7 >1, we get
"N g0 im
e DI D e A L
i=1 j=—i-my
1) <X
~
x TyT\ S <m) > fit) (2.42)
=0
n 4 i
Ty = exp <_ Z € O'i Ne fi,i'mp> )
=1
where - . A '
noew (_ Zl = ara fi,j+i-mpti’/ne> |
i=1j=
+00 4
With exp(z) = > — when 2 tends to zero, we can rewrite T3 as power series in ¢,
q=0 q:
n +oo i/
since > Z Gio_te "e i +¢-m,,tg> " also tends to zero when ¢, tends to zero.
i=1j=

n  +oo q
I = Zq'[ ZZG’ e 7J+lmptg’/ne]

q=0 =1 j=1
= Z aqtg/"e with a, € k and ap = 1.
By taking ¢, as the variable and using (2.35), 1/f has no constant term. Adding

the fact that S(x) has a non-zero constant term, we conclude that S (1/f(x)) has a
non-zero constant term.

+00 €0
fem, #0 = (Z fj_mpt§;> has a non-zero constant term

j=0

+oo
= Z fjt;/ ¢ has a non-zero constant term by (2.39).
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+oo .
Since t,, ty/™ /™ 0/ € k() ")), Ty, S (1/f(x)) and 3 f;t3/* are Puiseux se-
7=0

ries in k((tll/ (ne'd)))[ln(tp)] with non-zero constant term. With the fact that Ty # 0,
otherwise z will be zero, we conclude that

S =TS ( ) Z f]tj/d € k( tl/ ned)))[In(t,)] with a non-zero constant term,
therefore

Z = exp

<
|

€; - 0'72’ *Ne— —
_ § R j/ne | pmp-eo
i fz Jtiemy tp tp S

€0t j— 1
/ - ' ‘ Z ffzj—f—zm tzjo/ dtp

dt, | S.

= exp

n —1 )
o j/m
(mp “ €0 — Z ' >, = gi ]fi,jJri-mptP ‘

Example

Let us take the irreducible third-order linear differential operator Lgp associated to
the Bessel square root function B%(z) = B2(y/z) where B, is the modified Bessel
function of the first kind with parameter v = 3.

> LBB:=2*x"2%Dx~3+6*x*Dx "2+ (-16-2*x) *Dx-1;
LBB = 22°Dz® + 62Dz* 4+ (—16 — 22) Dz — 1
The generalized exponents of Lgg at x = 0 are
> gen_exp(LBB,t,x=0);
[-3,0,3,t =]
Let us denote by ¢/ = —3, ¢ = 0 and e¥ = 3 the generalized exponents of Lpp at

x = 0. For a € {6, ¢, 1} the ramification index of e* is n.« = 1 and the element b € k\ {0}
such that b - "> = z is b = 1. Therefore, the solution of X" — b1 =0 is o, = 1. By

substituting e® in the form e* = i et~ we have

i=0
Na = Oa
eg = e

The generalized exponents of Lgp at x = 0o are
> gen_exp(LBB,t,x=infinity) ;
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/2,8 = a7, [0+ 172,82 = 571

E’ = 1/2is a generalized exponent of Lpp at o = oo. Its ramification index is nge = 1
and the element b € k\ {0} such that b-¢"s% =t is b = 1. Therefore, the solution of
X" —p 1 =01is 0y = 1.

t71+1/2 with t? = t,, are generalized exponents of Lpp at x = co. Their ramification
index is 2. The element b € k\ {0} such that b-¢* = t, is b = 1, and therefore
solution of X?—b~! = 0 are 0, = 1 and oy, = —1. Therefore, for o, = 1 (resp. o, = —1)
E? = t;o1/2—|—1/2 (resp. EY = 107+ 1/2) is a generalized exponent of Lgp at © = oo
with ramification index nge = 2 (resp. nge = 2). For a € {0, ¢,v}, by substituting E“

Na ]
in the form E* = ) | E*t™" we have

=0

n9:0, TL¢:1, nwzl,

E§=1/2 with a€{0,¢,9},

EY =1, BV =1.
Let M be the operator coming from Lgpg by the change of variable transformation
(z —1)% 28

(z—12)"°"
> f:=(x-1)"8*xx"6/((x-12)"10);

with parameter f =

= (x — 1)8 28
S (z—12)"
> M:=ChangeOfVariables(LBB,f);
M = (z—1)%2%(x —12)" (2* — 412+ 18)° Dz® + 3 (2! — 822° + 5752% — 468 x + 216)
x (x — 1)z (v —12)" (2 — 41z + 18) Dz® — (933087744110886912 — 627170724 2"

—9299742418343559168 - — 72791577911076323328 2> + 36716049153820459008 2
+16 222 — 2752 22! + 183968 220 + 92172927 2 4 2409383746 2% — 6314702496 z°
+ 541073854638635904 2 — 64409641148306304 z° 4 76208058878030512128 z*
+5730368146930000 2*° + 30279851895 2'* — 744912611952 '3 + 19429306967672 2
—3332740360025590272 27 — 42594780648286715904 > + 14553041176441463040 2°

—5927232 1'% — 384289295082784 4'") ( — 12) D — 32 (x — 1) 2° (2% — 412 + 18)°
1. Let us analyse the generalized exponents of M at the zeros of f.

e r = () is a zero of f with order my = 6 and the series representation of f at
r=01s
> sgeries(f,x=0,9);
28 43 27 3127 28
61917364224 371504185344 + 8916100448256

+o0 .
Hence f has the form 2° Y f;z/ with f; € k and fo # 0. The generalized
j=0

+0 (:z:g)

exponents of M at x = 0 are
> gen_exp(M,t,x=0);
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[[—18,0,18,t = z]|.
Let ¢f = —18, ¢? = 0 and e¥ = 18 we have

mo- e} =6x (—3)=—18 =€’
mo-el =6x0=0=e?

mo'eg):6><3:18:e_¢.

Since n, =0 Va € {60, ¢,1}, our Theorem 2.11 is satisfied.

e z = 1is a zero of f with order m; = 8 and the series representation of f at
r=11is
> series(f,x=1,10);
(z—1)° 76 (2 —1)°
25937424601 285311670611
Hence f has the form (x —1)8 Jrf:o fit] with f; € k and fy # 0. The generalized
=0

J]=

+0 ((xz—1)")

exponents of M at x =1 are
> gen_exp(M,t,x=1);
[[—24,0,24,t = = — 1]]
Let ¢f = —24, ¢? =0 and e¥ = 24 we have

m1-68:8>< (—3):—24:6_0,
my-el =8x0=0=e?
my-ef =8x3=24=¢b.
Since n, =0 Va € {60, ¢,v}, our Theorem 2.11 is satisfied.
2. Let us analyse the generalized exponents of M at the poles of f.

e r =12 1is a pole of f with order m;5 = 10 and the series representation of f at
r =12 is
> series(f,x=12);
640072188923904 (z — 12)~'% 4 785543140952064 (= — 12)~°
+447543588019968 (z — 12)_8 + 156886659198720 (z — 12)_7
+37804890836592 (z — 12)° + 6624387287496 (x — 12)°

+0 ((z —12)7")

+oo .
Hence f has the form (x — 12)71° 3~ f; 1ot} with f; € k and f_10 # 0. Let
i=0

+o00 i/nEa 400
(Z fj_mt{2> =Y T th with i€N, i>1 and o€ {0,6,0}.
j=0 Jj=0

Since n, € {0,1} Va € {0,¢,v}, our i will be in {0,1}. For i = 1, we have
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> sgeries((f*(x-12)"10)"~(1/2),x=12);
—160997760 + 15524784 & 4+ 4081572 (2 — 12)* + 595969 (z — 12)°
+52196 (2 — 12)* + 2742 (x — 12)° + O ((x — 12)°)
So fio = —160997760, f,, = 15524784, f,, = 4081572, f,s = 595969,

7178 = 52196, and 717]- =0 Vj€{1,3,57,9}. The generalized exponents of
M at x = 12 are

> gen_exp(M,t,x=12);
[5,t =2 —12], [5 — 23838761 % — 124198272¢~* — 252996480 ¢
—104392¢" — 244894321 7%t = . — 12| , [2383876 ¢ > + 104392¢~"

+252096480 ¢~° + 124198272¢~* + 24489432 45, ¢ = x — 12|

Let
(0 = 5,
E% = —252996480¢5 — 104392 ¢! — 124198272 ¢* — 24489432¢3
—2383876t2 + 5,
E% = 252096480t + 104392¢ 1 + 124198272 ¢ * + 24489432 ¢ 3
| +2383876¢2 + 5.
We have

(m1y - B =10 x 1/2 = E7,

. — j/n ey
m12‘Eg)_ Z J 'Ef'0¢'f1,j+10t12 B = E?,

1 .

. — J/m e
mig - Eép - .2210] : Eip oy ity 7T = EY.
\ j=-

Since ny = 0, ny = 1 and ny = 1, our Theorem 2.11 is satisfied.

e 1 = 00 is a pole of f with order m., = 4 and the series representation of f at

T =00 IS
> series(f,x=infinity);
ot 4+ 1122% + 6988 22 + 320104 = + 12000070 4 389761048 2"
+11353950076 272 4 303501512344 3 + 7565103474817 4
+177920465247480 2 ° 4+ O (z7°)
Hence f has the form ¢ JFZO:O fi—atl, with f; € k and f_4 # 0. Let

Jj=0

(Z fj4ti°> - Z?z‘,jtiénm with ¢ €N, i >1 and o € {0, 6,9}
j=0 J=0

Since n, € {0,1} Va € {0, ¢,1}, our i will be in {0,1}. For i = 1, we have
> series((fx(1/x)"~4)~(1/2),x=infinity,5);
1+562 " 4+19262 % + 521962 4+ 12223212~ + O (z7°)
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So f10=1, fi, =56 and 71’]» =0 Vj € {1,3}. The generalized exponents of
M at x = oo are
> gen_exp(M,t,x=infinity);

[2,t=a 1], [-4t 2 =112t + 2t =2 ][4t 2 + 112t + 2.t = 27 !]]

Let o
E0 =2,
Eé =412 4112t + 2,
EY = —4t2 —112¢71 4+ 2.
We have

(

moo-Eg:2:ﬁ,

—1 .
. — j/n e
Moo - BY — 24; B} oy frate 0 = E°,
J=-

—1 .
. — j/n —y
e B = BB oy Fapnl B
\ j=-

Since ny = 0, ny = 1 and ny = 1, our Theorem 2.11 is satisfied.

Let us now consider another operator M coming also from Lgg above but with the
(z —3)?

210

change of variable parameter f =

> f:=(x-3)"2/x"10;

> M:=ChangeOfVariables(LBB,f);

M = (z—3)%2" (42— 15)* Da® + 3 (42 — 302 + 45) (v — 3) 2'? (42 — 15) Da”
—x (1822500 — 3159000 z — 872640 2° + 2276100 2* 4 1820475 z'% + 9200 2"
—138000 "% + 776250 2" — 1941030 2" — 21504 2° + 1024 2° + 187776 2*) D

+4 (42 —15)° (z — 3)
1. Let us analyse the generalized exponents of M at the zeros of f.

e © = 3 is a zero of f with order m3s = 2 and the series representation of f at
r=31s
> series(f,x=3);
(z—3)7% 10(z—-3)° 55 (x—3)*

59049 177147 531441
220 (x — 3)° 6
~omm ¢ (2 =3)")

+oo .
Hence f has the form (z —3)? Y f;t] with f; € k and f, # 0. The generalized
j=0
exponents of M at x = 3 are

> gen_exp(M,t,x=3);
[[-6,0,6,t =z — 3]
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Let ¢? = —6, ¢ = 0 and e¥ = 6 we have

ms- e =2 x (=3) = —6 = ¢,
ms-el =2x0=0=e?

ms-el =2x3=6=e?.

Since n, =0 Va € {6,¢,1}, our Theorem 2.11 is satisfied.

e r = 0 is a zero of f with order my, = 8 and the series representation of f at
T =00 18
> series(f,x=infinity,12);
8627?4927 10
+oo .
Hence f has the form 3, > f;tZ. with f; € k and fo # 0. The generalized
=0

]:
exponents of M at x = oo are

> gen_exp(M,t,x=infinity);
[—24,0,24,t = 27 ']]
Let f = —24, ¢? = 0 and e¥ = 24 we have

Moo - €] =8 x (—3) = —24 = ¢,
moo~e§:8><0:0:e_¢,

Moo - €5 =8 X 3=24= eV,

Since n, =0 Vo € {6, 9,1}, our Theorem 2.11 is satisfied.

2. Let us analyse the generalized exponents of M at the poles of f.
The only pole of f is x = 0 with order my = 10 and the series representation of f
at z =01s
> series(f,x=0);
8627+ 92710

+00 .
Hence f has the form z719 " f; 1927 with f; € k and f_10 # 0. Let
=0

J

+00 i/nEa 400
(Z fj_10$j> = Z?i,jxj/"’f“ with i €N, i>1 and « € {0,0,v}.
j=0 Jj=0
Since n, € {0,1} Va € {0,¢,v}, our i will be in {0,1}. For i = 1, we have

> series(f*x~5,x=0);

r—3

So 7170 = 3, 7172 = —1 and Tl,j =0 Vj€{1,3,4,56,7,89}. The generalized
exponents of M at x = 0 are

> gen_exp(M,t,x=0);

([5,t =], [-30t >+ 8t * +5,t =x],[30t° -8t * +5,t = ]|
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Let B9 =5, B¢ =302"° -8t %45 and EY = 302" + 8¢t% + 5. We have

.

ngg:E):ﬁ,

{ Mo~ Eg) - Z j‘Ef 0% '?1,3’+5-75j/nE<25 = E°,

j=-10
VN g o
mo-Ey — > j-Ej ’%’fl,j+55ff]/"” = Ev.
3 j=—10

Since nyg = 0, ny = 1 and ny = 1, our Theorem 2.11 is satisfied.
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Chapter 3

Steps to Find Solutions

In this chapter, all the results are ours, except in

- the p-curvature test where some results come from Katz [24], van der Put [30], Quan
Yuan [12], Cluzeau and van Hoeij [10], and Alin Bostan, Xavier Caruso and Eric
Schost [1];

- the gauge equivalence which contains an algorithm from van Hoeij, van der Put and
Michael Singer (see [17] and [32]).

From the previous chapter, we know how two irreducible third-order linear differential
operators can be connected and some modifications that can appear when we move from
the solution space of one of them to the other. In this chapter, we try

1. first to clarify our method of solving a third-order differential operator in terms of
solutions of another third-order differential operator. That will be done by consid-
ering some specific transformations (connections) learnt previously between them:
change of variables, exp-product and gauge transformations. L will be our given
third-order differential operator and Ly the third-order differential operator that we
need to solve L in terms of its solutions. Hence, by the previous studies on those
transformations in the last chapter, we will have

Lo L3¢ M —p¢ L (3.1)

where M is a differential operator and r,r, 71,79, f € K the parameters of the
transformations. By taking y as solution of L, the solutions of L. will be written in
the form

exp ( / rd:c) (ray(F(@))” + ry(F(@)) + roy(F(@)) (3.2)

In this work, the solution y of Ly will be one of the following functions: Bessel
square root function B2(x) = B2(y/x) where B, is the Bessel function, o Fy, 1 Fb, oFb
hypergeometric functions and the square of the ; Fy hypergeometric function.

2. Then we give some steps and main tools to find the parameters of the transforma-
tions between the operators (L and L):

(a) the first step will be to find the change of variable parameter (f). That will
be done mainly by some studies on the generalized exponents of L, Ly and M
(if those transformations exist) at their singularities which will help us to find
the zeroes and poles of f, with also their associated multiplicity orders.
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(b) If f is known (or equivalently M), then the next step will be to find the exp-
product and gauge transformations. That will be done also by some studies on
the generalized exponents of L and M at their singularities. The p-curvature
test can be good in order to reduce the number of candidates for the exp-
product and gauge transformations. But we will not use it since it uses one of
Grothendieck’s conjectures which is not yet proved.

Let k be an extension field of (Q which is algebraically closed and has characteristic
zero. Let K = k(z) be the field of rational functions in z. All of our differential operators
are irreducible and belong to K[0]. For n € N\ {0} and a an element of K = k(z) or not,

when we will talk about a modulo —Z%, that will means a modulo an additive element of
n

1
—7.
n

3.1 Meaning of our Problem

With what we have learnt in the last chapter, we can state what we mean by solving a
differential operator in terms of a particular function.

Definition 3.1. Assuming y is a solution of a differential operator Lo, we say that we
can solve a differential operator L in terms of y when we can find the transformations

Lo L3¢ M —p¢ L (3.3)

where M s a differential operator. That is: the solutions of L can be written in the
following form

exp ( / rdx) (ray(F(@))” + iy (@) + roy(f()) (3.4)

with r,19, 71,70, f € K (parameters of transformations).

We will concentrated in this thesis on the determination of those parameters of trans-
formation.

In our work, we solve irreducible third-order linear differential equations in terms of
those functions:

e Bessel square root functions B2 (z) = B2(y/z) where B2 is the Bessel square functions
of parameter v, with associated differential operators

Lz = 22°0° + 620% + (2 — 20 — 20°) 0 — 1,

ay, a
o the o F) x | hypergeometric functions, with associated differential operators

b17 b2

ng:x283—|—x(1—|—b1+bg—aj)82+(blbg—x(1—|—a1+a2))8—a1a2,
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ay
e the 1 Fy x | hypergeometric functions, with associated differential operators

b17 b2

ng :$203+$(1+bl+b2)82+ (ble —x)@—al,

e the oFy x | hypergeometric functions, with associated differential operators
bla b2

LOQ = x233 +x (1 + b1 + b2) 82 + b1628 - 17

a
o the | F? x | functions, with associated differential operators
b

L} = 2?0 +3z (—x + b) 0* — (=22 + 4z(a+b) — b(2b — 1)) 0 — 2a (—2z + 2b — 1)

where aq, as, by, ba, a, b are constants called hypergeometric parameters, and v is a constant
called Bessel parameter.

Therefore, Ly can be L B2 Or Loy or Ly or Loy or L2,. All those third-order operators
are irreducible and have singularities just at 0 and oo.

Remarks 3.2. 1. For a given hypergeometric function, one can generate the associated
differential equation using Theorem 1.18. That is how we got the differential equation
SCLt’éSﬁ@d b'y 1F1, OFQ, 1F2 and 2F2.

2. For a given hypergeometric function, one can use algebraic operations to develop
differential equation satisfied by its powers, its derivative, the power of its derivative
and by its composition with a algebraic function (see [39] and [35]).

3. In general, the product of two solutions of a second-order differential equation sat-
1sfies a fourth order differential equation. However, the square of a solution of
differential equation of order two can satisfy a differential equation of order three.
That is the case for the differential equation satisfied by the functions B?, = B2(\/7)
and \F}? (see [59] and [33]).

Lemma 3.3. Let Ly € {Lpz, Lag, Lia, Loz, L, }. Then x = 0 is a regular singularity of Lo
and x = oo is an wrreqular singularity of Lg.

Proof. Let Lg € {LBg> Lo, Lyo, Log, L3, }. By the representation of Ly, Ly has two singu-
larities: 0 and oo.

1. For the point x = 0.
(a) If Ly = L. then, by using Maple, the generalized exponents of Lo at z = 0 are
—v, 0, v

i. For v # 0, Ly has at same time positive and negative constant generalized
exponents at x = 0. So x = 0 is a regular singularity of L.
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ii. For v = 0 all the generalized exponents of Ly at x = 0 are zero. By
checking, using Maple, if Ly has at this point a logarithmic solution, we
get

> LBB:=2%x"2*Dx"3+6*x*Dx~2+(2-2*x) *Dx-1;
LBB = 22*Dx* + 6xDz* + (2 — 2x) Dr — 1
> DEtools[’formal_sol’] (LBB, ’has logarithm?’,x=0);
true

So at x = 0 we have a logarithmic solution of Ly. Therefore z = 0 is a
regular singularity of L.

(b) If Ly € {Lao, L2, Lo, L%} then, by using Maple, the generalized exponents of
Lo at x =0 are

i. for Loy € {Lag, Lo, L2}
1-— bl, O, 1— b2

ii. for Ly = L2,
0, 1—0b, 2(1-0)

where b,b; and by are the lower parameters of the hypergeometric function
associated to Ly. Since we don’t have the variable ty, = x in the expression of
the generalized exponents, x = 0 can be either a regular point or an apparent
singularity or a regular singularity of L.

For x = 0 to be an apparent singularity or a regular point of L, it is necessary
that 1 —b,1—b;,1 — by € N. Since the lower parameter(s) of a hypergeometric
function cannot be zero (b # 0,b; # 0,by # 0), that means b = by = by = 1.
Hence all the generalized exponents of Ly at © = 0 are zero. Using the fact that
at a regular point the generalized exponents are 0,1 and 2 (see corollary 1.41),
x = 0 cannot be a regular point. By checking, using Maple, if Ly has at x =0
a logarithmic solution, the answer is "true". For example when Ly = L1y with
upper parameter a; = 1

> L12:=x"2%Dx"3+3*x*Dx~2+(1-x)*Dx-1;
L12 := 2*Da® +32xDx* + (1 — x) Dr — 1
> DEtools[’formal_sol’](L12,’has logarithm?’,x=0);
true

Hence x = 0 is neither an apparent singularity nor a regular point of Lj. So
x = 0 is a regular singularity of L.

2. For the point © = oo, by using Maple to compute the generalized exponents, we
have at least one non-constant generalized exponent of L at this point. So z = oo
is an irregular singularity of L.

O

Remark 3.4. The necessary and sufficient condition for Ly to have a logarithmic solution
at x =0 is that

1. for Lo = L. we have v € Z,
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2. for Ly € {Laa, L1, Loa} we have by € Z or by € Z or by — by € Z or (2by, 2by €
Z with b1 - b2 < 0), and

3. for Ly = L3, we have b € Z.

Let y be a solution of the differential operator Ly, and L a given irreducible third-order
linear differential operator that we want to solve in terms of y. There are two steps to
find y type solutions of L. The first step is to find the middle operator M (i.e the change
of variables f). If M (or equivalently f) is known, then the next step is to find the map
from M to L: This step is called the equivalence of differential operators.

3.2 The first step to solve our problem

This step is to find the change of variable parameters f such that

Lo —Lso M.

Here we will just give capital tools that can help us to find this parameter.

If y is a solution of Ly then y(f(z)) is a solution of M. If y has singularity at po, it is
obvious that y(f(x)) has a singularity at those points x such that f(z) = py. Since in our
case Ly has only singularities at 0 and oo, if y has a singularity at py then py € {0, 00}
(singularity of a solution of an operator is always singularity of this operator). Therefore,
a singularity of M which is not an apparent singularity belong to the set formed by the
zeroes (f(x) =0) and poles (f(x) = 00) of f:

- Any regular singularity of M is a zero of f, but the converse is not always true.

- Poles of f are irregular singularities of M.

3.2.1 Observations

The main way to find a rational function (here f) is to find its zeroes and its poles. We
are showing here how the singularities of L can be related to the zeroes and poles of f.

case 1: L=M
That is when we have no exp-product and gauge transformations:

Lo -0 L.

The poles of f are always the irregular singularities of L. but for a zero of f it can become
either a regular singularity or an apparent singularity or a regular point of L.

(a) All the zeroes of f are regular singularities of L.
Example: Let us take Ly to be the Bessel square root operator Ly, with parameter
(x —1)82°
(x —12)10°
> LBB:= 2%x~2*Dx"3+6xx*Dx~ 2+ (-2*x-16) *Dx-1;
LBB := 22°Dr* 4+ 62Dx* + (—2x — 16) Dx — 1

v = 3 and the change of variable parameter f =



58 Steps to Find Solutions

> f:=(x-1)"8%x"6/(x-12)"10;
f o= (x —1)% 28
(. —12)"
> L:=Change0fVariables(LBB,f);
L= (z—1)2% (¢ —12)"® (® = 412 + 18)° Da® + 3u (¢ — 824% 4 5752% — 468

+216) (x — 1) (v — 12)"? (27 — 412 + 18) Da? — (—42594780648286715904 2°
+933087744110886912 — 9299742418343559168 = + 36716049153820459008 12
+14553041176441463040 2° + 76208058878030512128 z* + 5730368146930000 z'°
+16 2% — 2752 22 + 183968 220 — 5927232 % 4 30279851895 24 + 92172927 z!#
—627170724 '™ 4 2409383746 '® — 6314702496 '° — 3332740360025590272 ="
—72791577911076323328 2> + 541073854638635904 2° — 64409641148306304 «°

—744912611952 ' 4 19429306967672 2'* — 384289295082784 ') (x — 12) Dz
3245 (2 — 1)7 (a® — 412 4 18)°

The zeroes of f are x =0 and = = 1, and the poles of f are x = 12 and x = o0
Next we compute all the singularities of L. which are different from oco:

> {solve(coeff(L,Dx,3),x)};

{0,1,12 —1/2v16009, —|—1/2\/160 }
The generalized exponents of L at its singularities are
> gen_exp(L,t,x=0);

[[—18,0,18,t = z]|
> gen_exp(L,t,x=1);

([—24,0,24,¢ = 2 — 1]]
> gen_exp(L,t,x=12);
[[5,t =z — 12], [-252996480¢° — 104392¢ ' — 124198272 ¢ * — 24489432¢~*

—2383876t > +5,t = x — 12] , [2529096480 ¢ ° + 104392¢ ' + 124198272 ¢~*
+24480432¢7°% + 2383876 + 5,t = x — 12]]

> gen_exp(L,t,x= 41/2 (1/2) *sqrt (1609)) ;

0,2,4 t—:x——~|—1/2\/160
> gen_exp(L,t, X—41/2+(1/2)*sqrt(1609))

0,2,4 t—m———1/2\/160
> gen_exp(L,t,x= 1nf1n1ty)
([2,t =2 ), [4t 2+ 112t + 2.t = 27 1], [—4t2

— 112t 4+ 2,t =27 Y]

Hence x = 0 and x = 1 are regular singularities of L since all of their generalized
exponents are constant and not all of them have the same sign. So all the zeroes of
f are regular singularities of L. The only irregular singularities of L. are x = 12 and
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(b)

x = oo since L has at those points at least one non-constant generalized exponents.
They correspond to the poles of f.

A zero of f can become an apparent singularity of L.
Example: Let us take Ly to be the operator Ly coming from the hypergeometric

function ¢ F5 z |, and the change of variable parameter f = 2(z — 1)8.
3/4,1/2
> L02:=x"2*xDx"~3+(9/4)*x*Dx~2+(3/8) *Dx-1;
L02 := 2*Da® +9/4xDx* +3/8 Dx — 1
> f:=2%(x-1)"8;
f=2(@x-1)7°
> L:=ChangeOfVariables(L02,f);
L= (x—1)° Dz + (=32 +3) Da® + 3 Dz — 1024 (z — 1)”
x = 11is a zero of f. Let us see which kind of point x = 1 is for L. First we have to
see if z = 1 is a singularity or a regular point of L:
> {solve(coeff(L,Dx,3),x)};
{1}
Hence x = 1 is a singularity of L.
> gen_exp(L,t,x=1);
[[0,2,4,t =z — 1]]
So x = 1 can be either an apparent singularity or a regular singularity of L. Since all

the generalized exponents at x = 1 are positive, for z = 1 to be a regular singularity,
L must have at this point a logarithmic solution.

> DEtools[’formal_sol’] (L, ’has logarithm?’,x=1);
false

Therefore x = 1 is an apparent singularity of L.

A zero of f can become a regular point of L.
Example: Let us take Ly as in (b) above but now with the change of variable
parameter f = 2(x — 1)*,

> f:=2%x(x-1)"4;

f=2@-1"
> L:=ChangeOfVariables(L02,f);
L := Dz’ +128 — 128z

x = 11is a zero of f. Let us see which kind of point x = 1 is for L. First we have to
see if z = 1 is a singularity or a regular point of L:

> {solve(coeff(L,Dx,3),x)};

{}

So x = 1isnot a singularity of L. That can also be seen by computing the generalized
exponents of L at z = 1:
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> gen_exp(L,t,x=1);
[[0,1,2,t =z — 1]]
Therefore x = 1 is a regular point of L.
case 2: L#M

That is when both exp-product and a gauge transformation are involved:
Lo —5¢ M —sp¢ L.

(a) Regular singularity of L. can be a regular singularity of M.
Example: Let us take Ly to be the Bessel square root operator Ly, with parameter

v =3 and

e the change of variable parameter f = 4(z — 1),

(z—3)°
e the exp-product parameter r = — and
(x—7)

e the gauge parameters ro =1, r1 =0 and 5 = 0.
> LBB:= 2%x~2%Dx~3+6*x*Dx~2+(-2*x-16)*Dx-1;
LBB := 22°Dz® + 62Dz* + (—2x — 16) Dz — 1
> fi=4x(x-1)"2;
fo=4@x-1)7
> M:=ChangeOfVariables(LBB,f);
M = Da* (v — 1) + (=3 +32) D2* + (=16 2% + 322 — 51) Dz — 162 + 16
> r:=(x-3)"5/(x-7)"2;

> L1:=ExpProduct(M,r);

Ll = (z—7)°(x — 1) Da® — 3 (674 2% — 6342 + 194 + 2% — 162° + 105 2*
—3602°) (x — 7)" (v — 1) Dz® + (—66075 — 410476 = + 1637220 2
—1850976 2° + 872012 2° + 2763364 2* — 2756132 > — 295032 2" — 96 2
+71670 2% — 12240 2° + 1398 2'° + 32'2) (v — 7) Dz — 30962009

+74560847 z — 6765252 22 — 712520204 2° + 612617908 2% + 569424702 2
—9253119160 2° — 27 + 47 2'% — 1036 ' — 390079508 27 + 190709494 2.

—72915454 2 + 21964884 x'° + 14220 z'* — 136068 ' + 962598 212

—5207528 2!
> r0:=1;
=1
> 1rl1:=0;
rl :==0
> r2:=0;

2 =0
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> L:=GaugeTransf(L1,r0,r1,r2);
L= (x—1)(x—7)"?Ds* -3 (6742 — 634z + 194 + 2° — 16 2° + 1052"
—3602°%) (z — 1)" (v — 7)™ D2® + (—66075 — 410476 x + 1637220 2

+872012 2% + 2763364 2* — 2756132 2 — 295032 2" — 96 ' + 32
—1850976 2° + 71670 2° — 12240 2° + 1398 2'%) (x — 1)* (v — 7)° Dz
— (30962009 — 74560847 = + 6765252 2 + 712520204 2° — 612617908 z°
—569424702 z* + 253119160 2 + 2'7 — 47 2'® + 1036 2° 4 390079508 ="
—190709494 2% + 72915454 27 — 21964884 2! — 14220 ' + 136068 z'*
—962598 22 + 5207528 2'*) (z — 1)* (v — 7)°

Let us see which kind of point « = 1 is for the operators L and M:
> gen_exp(M,t,x=1);
[-6,0,6,t =2 —1]]
> gen_exp(L,t,x=1);
[[-6,0,6,t =z —1]]

Hence z = 1 is a regular singularity of L and M since all its generalized exponents,
in the case of L and M, are constant and all of them don’t have the same sign.

(b) Regular singularity of L can be a regular point of M.
Example: Let us take Ly to be the operator Lgs coming from the hypergeometric

function oF5 B x|, and
3/4,1/2

2
(z — 1)

e the change of variable parameter f =

e the exp-product parameter r = %, and
e the gauge parameters ro =z — 1, r; =0 and r, = 0.
> L02:=x"2*Dx"~3+(9/4) *x*Dx~2+(3/8) *Dx-1;
L02 = 2°Dx® +9/4xDx* +3/8 Dr — 1
> f:=2/(x-1)"4;
f=2@-1"
> M:=ChangeOfVariables(L02,f);
M = (-1 Di®+6 (x —1)° Dz’ + 6 (z —1)° Dz + 128
L1:=ExpProduct(M,r);
L1 = 3432° (x — 1) D2® + 1472% (112 + 3) (x — 1)° Da?
+42 2 (2227 + 122+ 15) (z — 1)’ Dx — 23102 — 6302°
+510 + 420 2% + 1470 2* — 13227 + 4032 2° + 40544 2°

Vv

> r0:=x-1;
N =z-1
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> 1rl1:=0;

> 12:=0;
2 =0
> L:=GaugeTransf(L1,r0,r1,r2);
L= 3432 (x — 1)° Da® +1472% 4z + 3) (x — 1)" Da?
~1267 (22 +5) (v — 1)" Dz + 2 (34652% — 1470 2 + 255
+2625 2 + 602" — 1052° — 630 2° + 177522%) (z — 1)
Let us see which kind of point x = oo is for the operators L. and M:

> gen_exp(M,t,x=infinity);

[0,1,2,¢ =2 "]
> gen_exp(L,t,x=infinity);
10
- ~3/7,4/7,1 = a™"]

Hence z = oo is a regular singularity of L since all its generalized exponents are
constants and all of them are not integers. But x = oo is a regular point of M.

(c) Apparent singularity of L can be a regular singularity of M.
Example: Let us take Ly to be the Bessel square root operator Ly, with parameter

v =1/3 and
. 4
e the change of variable parameter f = ————,
(e—1y
3
e the exp-product parameter r = ——, and
x

e the gauge parameters ro =1, r1 =0 and r, = 0.
> LBB:= 2%x~2*Dx~3+6*xx*¥Dx"~2+(-2*x+16/9) *Dx-1;

LBB = 22*Daz® + 6xDx* + (—Zx + %) Dx —1
> f:=4/(x-1)"6;
f=4(@-1)"°
> M:=ChangeOfVariables(LBB,f);
M= (x-1)"Ds*+3 (z—1)°Dz* -3 (2° — 62° + 152"
—202* + 1527 — 61 + 49) (x — 1) Dz + 432
r:=-3/x;

\%

ro= —3z7!
> L1:=ExpProduct(M,r);
L1 == 2*(x — 1)’ Da® + 327 (42— 3) (v — 1)° Dz” + 32 (112° — 8427 + 2792°
—5262° + 615 2" — 456 2 4+ 1612° — 542+ 6) (v — 1) Dx — 6+ T2

+81 22+ 1701 2° — 1197 2% — 15752 + 94523 + 531 2" — 1352° + 15 2°
> r0:=1;
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=1
> 1rl1:=0;

rl == 0
> r2:=0;

2 :=0

\

L:=GaugeTransf (L1,r0,rl,r2);
=23 (2 —1)® D+ 3224z —3) (2 — 1) D2® + 3z (112® — 842" +2792°
—5262° + 6152" — 456 2% + 1612 — 542 +6) (z — 1)"" Dr + 3 (=2 + 24 x
+27 2% + 567 2° — 399 2% — 525 2" + 3152% + 17727 — 452% + 52°) (v — 1)°

h

Let us see which kind of point x = oo is for the operators L and M:
> gen_exp(M,t,x=infinity);
[-2,0,2,t =27
> gen_exp(L,t,x=infinity);
[1,3,5,t =27
Hence © = oo is a regular singularity of M since all its generalized exponents are
constants and all of them don’t have the same sign. But x = oo can be a regular
singularity or an apparent singularity of L (we have excluded the case of x = oo
to be a regular point of L since its generalized exponents are not 0, 1,2). To have

an clear idea about z = oo we need to check, using Maple, if L has at this point a
logarithmic solution:

> DEtools[’formal_sol’] (L, ’has logarithm?’,x=infinity);
false

So L doesn’t have logarithm solution at = oco. Therefore z = oo is an apparent
singularity of L.

(d) Irregular singularities of L can be a regular singularity of M.
Example: Let us take L to be the Bessel square root operator L B2 with parameter
v =3 and

e the change of variable parameter f = 4(z — 1),
(z —3)°
(z—1)”
e the gauge parameters ro = 1, r; = 0 and r, = 0.
> LBB:= 2%x~2*Dx"3+6*x*Dx~2+(-2*x-16) *Dx-1;

LBB = 22?Dx* + 6xDz* 4+ (—22 — 16) Dz — 1
> f:=4%(x-1)"2;

e the exp-product parameter r = and

fo=4(x—1)
M:=ChangeOfVariables(LBB,f);
M = (z— 1)’ Da® + (=3 + 32) Di® + (—162° + 322 — 51) Dz — 16z + 16
r:=(x-3)"5/(x-1)"2;

>

>
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> L1:=ExpProduct(M,r);
L1 == (z—1)°Da® — 3 (4042 — 242 + 2° — 152" + 90 2* — 27027) (z — 1)* Da?
+ (175881 — 586306 « + 880339 2° — 183498 2° + 51015 2° 4 458069 «*
—783836 2% — 972027 + 12152° — 902° + 32'%) (z — 1)® Dx + 14218567

—70983755 = + 165535207 2 — 175940275 2° + 97936689 2% + 239499317 «*
4239499317 z* — 239206503 2> — 2'° — 42052279 27 + 14039831 28 — 945 213
—3644249 27 + 729387 219 + 45 21 + 12285 22 — 110553 2!

> r0:=1;

=1
> rl1:=0;

rl :== 0
> 12:=0;

2 :=0

> L:=GaugeTransf(L1,r0,rl,r2);
L= (r—1)?Ds®—3 (404w — 242 + 2° — 152 + 902° — 2702?) (z — 1)"° Da?
+ (175881 — 586306 « + 880339 2 — 183498 z° + 51015 2° + 458069 z*
— (—14218567 — 783836 2° — 972027 + 12152° — 902° + 32'°) (v — 1)° Dx
+70983755 x — 165535207 2% + 175940275 2° — 97936689 2° — 239499317 2*
—729387 x° + 239206503 2° + x'° + 42052279 27 — 14039831 2° + 3644249 *
—452" + 945 2% — 12285 2'% + 110553 21 (v — 1)°

Let us see which kind of point « = 1 is for the operators L and M:
> gen_exp(M,t,x=1);
[[-6,0,6,t =z —1]]
> gen_exp(L,t,x=1);
([74 —32¢71,80 — 321,86 — 32t 1 t =2 — 1]]
Hence z = 1 is a regular singularity of M since all its generalized exponents are

constants and all of them don’t have the same sign. The generalized exponents of
L at x = 1 contain the parameter ¢, so x = 1 is an irregular singularity of L.

(e) Irregular singularities of L can be a regular point of M.
Example: Let us take Lo to be the Bessel square root operator L, as in (d) with
the same change of variable parameter f and the same gauge parameters. For the
(z—3)°
(z —7)

exp-product parameter, let us take r =

> r:=(x-3)"5/(x-7)"2;

> L1:=ExpProduct(M,r);
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Ll = (2 —7)°(x — 1)’ Ds* — 3 (6742% — 6342 + 194 + 2% — 16 2° + 1052 — 360 2%)

x (x —7)" (x — 1) Da® + (—66075 — 410476 x + 1637220 2 — 1850976 2° + 3 12
12763364 * — 2756132 2% — 295032 27 + 71670 2° — 12240 2° 4 1398 z'° — 96 2!
+8720122%) (x — 7)® D — 30962009 — 1036 2'° — 390079508 27 + 74560847 x
—6765252 2 — 712520204 2° + 612617908 2° + 569424702 2* — 253119160 z*

— 217+ 47 20 + 190709494 28 — 72915454 2° + 21964884 ' — 136068 23
+14220 2 + 962598 212 — 5207528 '

> r0:=1;

=1
> 1rl1:=0;

rl .= 0
> 12:=0;

2 :=0

> L:=GaugeTransf(L1,r0,rl,r2);

L= (r-1)"(x—7)"" Dz~ 3 (6742 — 6342 + 194 + 2° — 162° + 1052* — 360 2°)

(f)

x (x — 1) (x = 7)"° Da® + (66075 — 410476 = + 1637220 % + 1398 2'° + 3 22
+872012 25 + 2763364 2* — 2756132 2> — 295032 2" + 71670 2% — 12240 27 — 96 2!
—1850976 2°) (z — 1)° (z — 7)® Dz — (30962009 — 612617908 2° — 569424702 x*
—T74560847  + 6765252 22 + 712520204 x° + 253119160 2% + 2'7 — 47 2'°

+1036 2" + 390079508 " — 190709494 2° + 72915454 x° — 21964884 2'°

—14220 7' + 136068 23 — 962598 212 + 5207528 ') (x — 1)* (v — 7)°

Let us see which kind of point x = 7 is for the operators L and M:

> {solve(coeff(M,Dx,3),x)};

{1}

So x = 7 is a regular point of M. That can also be seen by computing the generalized
exponents of M at x =7

> gen_exp(M,t,x=7);

[0,1,2,t = —T7]]

For the operator L. we have

> gen_exp(L,t,x=7);

[[1280 + 1024 ¢ 71,1281 + 1024 ¢ 1, 1282 + 1024t t = 2 — 7]

The generalized exponents of L at x = 7 contain the parameter ¢, so x = 7 is an
irregular singularity of L.

Apparent singularities of L can be a regular point of M.

Example: Let us take Ly to be the operator Ly as in (b) with the change of variable
parameter f = 2(z — 1)* and the same gauge parameters. For the exp-product
parameter, let us take r = x — 3.

> f:=2%x(x-1)"4;
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f=2(x-1)"
> M:=ChangeOfVariables(L02,f);
M = Dz’ +128 — 128z
> r:=x-3;
ri=x—3
> L1:=ExpProduct(M,r);
L1 := Di* 4+ (9—32)Dz* + 3 (x — 2) (v — 4) Dz + 146 — 1522 — 2° + 9 22
> r0:=x-1;
0 :=x—1
> 1r1:=0;
rl == 0
> r2:=0;
2 =0
> L:=GaugeTransf(L1,r0,r1,r2);
L= (x—-1D2®-3@-2%@-1°Ds>+3 (z—2) (2 — 62"+ 11z —8) (z

(2)

~1)* Dz — (9722% — 654 2% + 1852 + 2% — 6802 — 122° + 194) (v — 1)°
Let us see which kind of point x = 1 is for the operators L. and M:
> {solve(coeff(M,Dx,3),x)};

{}

So x = 11is a regular point of M. That can also be seen by computing the generalized
exponents of M at x =1
> gen_exp(M,t,x=1);
[[0,1,2,t =z — 1]]

For the operator L. we have
> gen_exp(L,t,x=1);
[1,2,3,t =z —1]]

Hence x = 1 can be a regular singularity or an apparent singularity of L (we have
excluded the case of x = 1 to be a regular point of L since its generalized exponents
are not 0,1,2). To have a clear idea about x = 1 we need to check, using Maple, if
L has at this point a logarithmic solution:

> DEtools[’formal_sol’] (L, ’has logarithm?’,x=1);
false

So L doesn’t have a logarithm solution at = 1, and therefore x = 1 is an apparent
singularity of L.

Irregular singularities of M are always a subset of the set of irregular singularities
of L.

Example: Let us take Ly to be the Bessel square root operator Ly, as in (a) with
the same change of variable parameter f, the same gauge parameters and the same
exp-product parameter. Let us see which kind of point © = oo is for the operators
L and M:
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> gen_exp(M,t,x=infinity);
[Lt=a 4t + 1Lt =at, -4t + 1t =21
> gen_exp(L,t,x=infinity);
[[-157¢ " = 1279 — 27t 2 + % —t i =a7"]
[—153¢7' = 1279 —27¢ > + ¢ —t e =],
(161t —1279 —27¢ 2 4+ 47—t t = a7 ']
There are generalized exponents of L and M at x = oo which contain the parameter

t, so x = oo is an irregular singularity of L and also of M.

Remarks 3.5. - Looking at (g), all the poles of f are a subset of the set of irreqular
singularities of L.

- Looking at (a),(c) and (d) we have that a zero of f can become by exp-product
and gauge transformations a reqular point or an apparent singularity or reqular
singularity or irreqular singularity of L. Hence, it is difficult to find the zeroes of f.

For computing f, the only information retrieved from L that we can use is the in-
formation on the invariance under projective equivalence. The invariant we use is the
difference of the exponents of L.

3.2.2 Exponent differences

Definition 3.6. Let L € K[J] be a linear differential operator of order greater than one,
let p be any point, and e, ey be two generalized exponents of L at p. Then the difference
ey — e 1s called an exponent difference of L. at p.

If deg(L) = 3 there exists just three generalized exponents at each point p: e;, e and
e3, and we define

A(Lyp) =t(ea —e1), Ag(L,p) = E(e3 —e1), and As(L,p) = £(ez — e2).

We define A modulo a factor —1 to make it well-defined because we have no ordering in
the generalized exponents.

Corollary 3.7. Let L € K[0] be an irreducible third-order linear differential operator. Let
e1 and ey be two generalized exponents of L at p with ramification index n.,,i = 1,2. The

exponent difference e; — ey is tnvariant modulo —Z, under — gq, where n € N* is the

1 1 1
smallest positive integer such that { 7, Z} C —Z.
Ney  Mey n

Proof. We just use Theorem 1.31, Lemma 2.9 and Lemma 2.10. U

1
Remark 3.8. The exponent difference A;(L, p)modulo —Z,1 = 1,2, 3, is invariant under
n

(—Eg), where n € Z is related to the ramification index of the generalized exponents of
L at p (see Corollary 3.7). Hence, to compute the change of variable parameter f, the
mformation on the difference of the generalized exponents of L at its singularities will be

very important for us. We will take a closed look at the part Ly i>C M and analyse
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1
A;(L,p),i = 1,2,3 because, using the invariance of the exponents difference modulo —7
n

under —ga, we can then apply results not only to Lo i>C M but also to Lg iﬁ;
M —gq L.

Assumptions on L

Let p be a point and e;,7 = 1,2, 3 the generalized exponents of Ly at p with ramification

l/nei:|

index n,,. Since e; € k [t; , ¢; can be put in the form

e = et with bt =t, b€ k\{0}, n; €N and e;; €k, i=1,23
=0

= Z (ejﬂ»ai_j) t;j/n” with o; solution of X" —b;' =0 with unknown X, i=1,2,3.
=0

(3.5)
1- For Ly € {LBEa Lo, L2, Lo, L%} and p = 0, the generalized exponents of Ly at p are
e; =epq, 1=1,2,3. (3.6)

All the other coefficients e;; with j > 0 are zero.

If we now apply Theorem 2.11 to Ly and M such that L i>C M, then the gener-
alized exponents of M at a zero p of f are €;,7 = 1,2, 3 given by

€; = mMp€o,i, 1= ]_, 2, 3 (37)

+o0 .
where f =1t,7 Y fit), with f; € k and fo # 0. Hence the ramification index of
=0

the generalized exponents of M at p is 1.

2- For Ly € {ng, Lo, Lyo, Lo, L2, } and p = oo, the generalized exponents of Ly at p
are

. i=1,2,3. (3.8)

€; = €04 + 61,2'0',;
All the others coefficients e;; with j > 1 are zero.
If we now apply Theorem 2.11 to Ly and M such that L i>C M, then the gener-
alized exponents of M at a pole p of f are €;,7 = 1,2, 3 given by

—1
&= myeni — eio; Y fimty ", i=1,2,3 (3.9)

Jj=—mp

f=t"" j;ofj_mpt;, with f;_,, € kand f_, #0,
where

“+o00 1/7151- —+o00 .
<Z fj_mptg;> — S 7t/ with ; € k.
7=0 7=0



3.2 The first step to solve our problem 69

Theorem 3.9. Let L € K[J] be an irreducible third-order linear differential operator and
p a point. Let e;, 1 =1,2,3, be the generalized exponents of L at p with ramification index
Ne, 0 =1,2,3. Then

e; € k[t, =Y with no= mazx (ne,,i = 1,2,3). (3.10)

Proof. Let L € K[J] be an irreducible third-order linear differential operator and p a
point. Let e;,7 = 1,2, 3, be the generalized exponents of L. at p with ramification index
Ne, i = 1,2,3and P, (x),i = 1,2, 3 their associated minimal polynomial as in Lemma 1.34.

By the definition of the generalized exponent, we have e; € klt, Ve i, 1=1,2,3.

By Remark 1.28 we have V(L) = @ V(L), with E as in Lemma 1.27. Let us rename
the indices of n.,, i = 1,2, 3 as follows: n,,, ne,, ne, With a, 8,7 € {1, 2,3} and all different.

- If all the generalized exponents belong to different sub-modules of V(L) then

=P vw),=VvL). PVL). PVL)

q€E
dim V(L) = dim V(L),, + dim V(L),, + dim V(L).,
deg (P, (z)) x ne, + deg (P, () X ne, + deg (P, (z)) x n., =3 by
Remark 1.33
— deg (P., (2)) X ne, = deg (Pe,(x)) X ne, = deg (Pe, (2)) X ne, =1 since
deg (P, (z)) X ne,,deg (Pe,(z) ) X neﬁ,deg (P, (z)) x n,, € N*
=Ny = Ne, = 1 since deg (P ), deg (Peﬁ(:p ) deg( ) e N*.

I

= N

(&3

Hence e,, 5,6, € k[t;l/n] with n = max (n.,,i=1,2,3) = 1.

- If exactly two of the generalized exponents e,, eg belong to the same sub-module of
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V(L), called V(L), with e € E and n, its ramification index, then

1
Z, dim V(L) =2 and V(L L). VL)

eq = €3 modulo
Meg

(

Ne, = Neg = Tle,

@

— deg (P.(z)) x ne =2 by Remark 1.33,
| deg (Pc(z)) x ne + deg (P, (z)) x n., =3 by Remark 1.33

(e, = Ney = Me,

= | deg(Pe(2)) x ne =2,

| deg (Pe,(2)) xne, =1

= Ne, = Ney = 2, Ne €{1,2} and n,, =1 since deg(P.(z)) > 1 and
deg (Pe, (z)) > 1

= Ne, = Ney € 11,2} and ne, =1

= (N, =10

5 = Ne, = 1) or (nea =MNe; =2 and ne, = 1)
n = max (Ne,,Ney, Ne,) = 1 and eq, €3, €, € k[t

= or
n = max (Ne,, Ny, Ne,) = 2, €a, €8 € K[ty /] and ey € k[t 1] C K[ty .
= €a; 5,6y € K[t, ~1/M) with n = max (Mew > Megs Ne,y )

- If all the generalized exponents belong to the same sub-module of V(L), called V(L).
with e € €2 and n, its ramification index, then

—1/n
Ney = Ney = Ne,, = Ne, €as 8,64 € K[E, / ] and n = max (ne,, ey, Ne,) = Ne

«

= €a, 8,6y € K[t 1/"] with n = max (n,, 1y, Ne,)-

O

Corollary 3.10. Let M € K[0] be an irreducible third-order linear differential operator
such that L() L>C M with L() S {LBE’ LQQ, ng, Log, L%l}

a- If p is a zero of f with multiplicity m, € N* and e;,1 = 1,2,3 are the generalized
exponents of Ly at x = 0 with ramification index n., € N*. Then the exponent
differences of M at p are

Al(M,P) = mp(€0,2_€0,1>7 Az(M,P) = mp(eo,:s—eo,l) and Aa(M,p) = mp(60,3_€0,2>

(

f=t" Z fith, with fi €k and fo #0,

where €; = Z Bjyitij wzth bztnel = tp7 bz < k? \ {0},
=0

n, €N and e;; €k, i=1,2,3.
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b- If p is a pole of f with multiplicity m, € N* and e;,7 = 1,2,3 are the generalized
exponents of Ly at x = oo with ramification index n., € N*. Then the exponents
differences of M at p are

A1(M, p) = myp(eo2 — €0,1) — (61,202_1 - 61,101_1) Z jfj+mpt;/n6iﬂ
Ao(M, p) = my(egs — €o1) — (61,30371 - 61,101_1) Z j?ﬂmpti)/nei,

and - Ag(M,p) = my(eos = e02) = (1305 = €1205") D T pim by

Jj=—mp

+o0 .
f=t""% fimmth, with fi_m, €k and f_p, #0
=0
€; = Zl: ejyit_j with bt = tp, b; € k \ {O},
j=0
where n; €N and e;; €k, 1=1,2,3
+oo . l/nei +oo __ i/ne. _
;)fjtg, = Zofjtp “with fj ek
J= j=

and o; is solution of X" — b7t =0 with unknown X, i=1,2,3.

\

Proof. We just use the assumptions above on Lj as element of {L Bg,ng,ng,Log,L%I}
and Theorem 3.9, and then compute the difference of the generalized exponents. 0J

Corollary 3.11. Let L, M € KJ[0] be irreducible third-order linear differential operators
such that Lg i>c M —pe L with Lo € {Lpz, Loz, Lia, Loa, L%, }. Let p be a point.

If {A;(L,p),i = 1,2,3} C k then the maximum of the ramification index of the generalized
exponents of L at p is 1.

Proof. Let e;,1 = 1,2,3 be the generalized exponents of L. at p with ramification index
ne; € N*. Let us assume that {A;(L,p),7 =1,2,3} C k. Then by Corollary 3.7 about the

invariance of the difference exponents modulo —7Z (n depends on n.,, i = 1,2,3), under

the transformation — g we have also {A;(M, p),i = 1,2,3} C k. Hence p is a regular
point or a regular singularity of M since we have assumed in this thesis that M will not
have apparent singularities. Therefore, p is a regular point of M or a zero of f and, by
our assumption part, the ramification index of the generalized exponents of M at p is 1.
Lemma 2.9 and Lemma 2.10 show us that the ramification index doesn’t change after
— gg. That means we also have n., = 1, i = 1,2,3. Hence max (n.,,i =1,2,3) =1. O

Definition 3.12. Let L € K[J] be a irreducible third-order linear differential operator.
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Siog(L) = {p | L has logarithmic solution at p}, (3.11)
Sreg(L) ={p | {Ai(L,p),i=1,2,3} Ck and ({Ai(L,p),i=1,2,3} ¢ N

or p € Sie(L))}, (3.12)

Sir(L) ={p| 3 € {1,2,3}, A;(L,p) contains t,}, (3.13)
Sreg(L) = {Ps € k[z] | Ps is the minimal polynomial at s € S,¢,(L) over k}, (3.14)

and Sir(L) = {Ps € k[x] | Ps is the minimal polynomial at s € Sy..(L) over k}. (3.15)

We define the minimal polynomial at 0o as Py, =1 and its degree deg (Py) = 1.

Corollary 3.13. Let L,M € KJ[0] be irreducible third-order linear differential operators
such that Ly i>c M —ge L with Ly € {LBgv Log, Ly, Log, L3 }. The following holds:

(a) p € Sim(L) < p is a pole of f, and
(b) p € Srey(L) = p is a zero of f.
Proof. Let p be a point and n, be the maximum of the ramification index of L at p.

(a) Let us assume that p € S;;(L). Then by the definition of S;,(L) and the fact that
— e 18 an equivalence relation, and also Corollary 3.7 about the invariance of the

1
difference exponents modulo —Z under the transformation — g, we get
np
30 € {1,2,3}, A;(L, p) contains ¢,
< i€ {1,2,3},A;(M,p) contains ¢,
<= p is an irregular singularity of M
<= p is a pole of f.

(b) Let us assume that p € S,eg(L). We will proceed by contradiction. Let us assume
that p is not a zero of f.

* If p is a pole of f then by the proof of (a), 3i € {1,2,3}, A;(L,p) contains ¢,,.
Hence {A;(L,p),i = 1,2,3} ¢ k. That is wrong by the definition of an element
P in Syeg(L).

* If p is not a pole of f then p will be a regular point of M since M doesn’t
have apparent singularities (regular singularities of M are the zeroes of f and
irregular singularities of M are the poles of f). Hence {A;(M,p),7 =1,2,3} C
N (the maximum of the ramification index of M at p is n = 1) and M doesn’t
have logarithmic solution at p. Using Corollary 3.7 about the invariance of

the difference exponents modulo —Z under the transformation —gg we get

n
{A;(L,p),i =1,2,3} C N. Therefore, L. doesn’t have logarithmic solution at p.
That is wrong by the definition of an element p in S,es(L).

So we can conclude that p is a zero of f.
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Conclusion

To find the change of variable parameter f we proceed as follows:

1. We compute all the singularities of our input operator L. and their associated gen-
eralized exponents.

2. We find the set S,eg(L) and Si,(L).
3. For Sirr(L)I

(a) By Corollary 3.13 we can have all the poles of f.
(b) By Corollary 3.10, Corollary 3.13 and also Corollary 3.7 about the invariance

of the exponent differences modulo —7Z, n € N* under — g, we can have all

n
the multiplicity orders of all the poles of f.

4. For S,eqg(L):

We have two cases

(a) when S,eq(L) # 0:
Here using Corollary 3.10, Corollary 3.13 and also Corollary 3.7 about the

invariance of the exponent differences modulo —Z, n € N* under — g,
n

i. If S;eq(L) contains all the zeroes of f then we can have all the multiplicity
orders of all the zeros of f. The only unknown will be the leading coefficient
of the numerator of f. We will see in the next chapters how to get it. Then
we will find our f.

ii. If Syeg(L) gives just a part (not all) of the zeroes of f then we can just
have some zeroes of f and their multiplicity orders. That is not enough to
compute f. This case will be treated in the next chapters.

(b) when S, (L) = 0:
Here we don’t know any zero of f and it is difficult to find f. We will see what
to do in the next chapters.

Now, we assume that we have found f (that means also M). The next step is to find
the map from M to L (—gq).

3.3 The second step to solve our problem

Here we have our input third-order irreducible linear differential operator L. and we know
M (or equivalently f) which is also a third-order irreducible linear differential operator.
This step is just how to find the parameters of the exp-product and gauge transformations
between two third-order irreducible linear differential operators.

3.3.1 The p-curvature test

In this thesis, the p-curvature test (see [4], [10], [24], [30] and [12]) can increase the speed
of our algorithm because it quickly eliminates most of candidates for f.
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Roughly speaking, the p-curvature of the linear differential operator L is a matrix
that measures to what extent the solution space of L has dimension close to its order.
One of Grothendieck’s conjectures states that an irreducible linear differential operator
with coefficients in Q(z) admits a basis of algebraic solutions over Q(x) if and only if its
reductions modulo p admit a zero p-curvature for almost all primes p.

Let F, denote the algebraic closure of the finite field F, (field of characteristic p). The
field of constants of F,(z)[0] is F,(«?). We briefly introduce the idea of the p-curvature
test here, for more details, see [10] and [30].

The differential field F,(x) is a finite dimensional vector space over its field of constant

Fy(a?):
p—1
Fy(2) = D F ()
i=0
To any differential operator L € F,(x)[d], one can associate the differential module
My, =y () 0]/ () oI

My, is a finite dimensional vector space over F,(z) and a basis of it is (1,0,...,0""1),
where n denotes the degree of L with respect to 0. Multiplication by 0 gives a map 0
satisfying:

dfm = f'm+ fom, ¥Yme M and feTF,(z).

Definition 3.14. The p-curvature of L € F,(2)[0] is the F,(x)-linear endomorphism of
My, induced by the multiplication by the central element OP. In other words, it is the
IFp( )-linear map Gk acting on the differential module My, associated to L.

In terms of matrices we have:

Definition 3.15. The p-curvature of a differential operator L of order n in F_p(x)[ﬁ] 1S5
the (n x n) matriz with coefficients in Fy(x), whose (i,7) entry is the coefficient of 8" in
the remainder of the Euclidean (right) division of O™ by L, for 0 <i,j < n.

Given L € F,(z)[d] of degree n, we denote by A,(L) the matrix of the p-curvature of
L in the basis (1,9,...,0" ") and by X (A,(L)) its characteristic polynomial:

X (Ay(L)) (X) = det (X - Id, — A, (L))

where Id,, is the (n x n) identity matrix. Katz [24] gave the first algorithm for A,(L),
based on the following matrix recurrence:

where A € M (F,()) is the companion matrix associated to L. It was observed that it
is slightly more efficient to replace (3.16) by the recurrence

/
Viy1 = U; + Ay,

which computes the first column v; of A;, by taking for v; the first column of A. Then
Up, ..., Uptn—1 are the columns of A,. This alternative requires only matrix-vector prod-
ucts, and thus saves a factor of n, but still remains quadratic in p.



3.3 The second step to solve our problem 75

Lemma 3.16. Let L € F,(2)[0]. If L = LiLy then X (A, (L)) = X (A, (L)) X (A,(Ly))
with deg (X (Ap(L;))) = deg(L;), i=1,2.

Proof. See [12]. O

Theorem 3.17. Let H C Q(z). Let Ly, Ly € H[O] with order n and L; —¢ Lg, then
X (Ap(La)) = X (Ay(Ls)) for any prime p

Proof . See [12]. O
Remark 3.18. Let K, = F,(2)[y]/ (F(z,y)) be an algebraic extension of F,(z) of degree

n, where n < p. Let C, = {a € K, | ' =0}. Then [K, : C,)] =p and K, =C, +C, - v +
-+ +Cp- P71, Hence we can use the p-curvature for K, in the same way in Theorem 3.17.

Proof. See [12]. O
Remark 3.19. — g changes X (A,(L)), but not its discriminant.

To apply the p-curvature test between two third-order linear irreducible differential
operators L; and Ls:

1. We compute Ay, and Ay, the companion matrices associated to L; and Ly, respec-
tively.

2. By the proof of Remark 3.18 in [12], we assume p > 3 and p is a prime number.

3. We compute A,(L;) and A,(Ly) the matrices of the p-curvature of L; and Ls, re-
spectively.

4. We compute X (A,(L;)) and X (A,(Lz2)) the characteristic polynomials associated
to Ay(Ly) and A,(Ls), respectively.

(a) If X (A,(Ly)) # X (A,(Ls)), then Ly and Ly can not be related just by a gauge
transformation (—¢).

(b) If the discriminant (X (A,(L;))) # discriminant (X (A,(Lz))), then L; and Ly
can not be related by an exp-product transformation (—g).

(c) If the discriminant (X (A,(L;))) # discriminant (X (A,(Lz))), then L; and Ly
can not be related by the transformation — g¢.

Remark 3.20. [t is true that the p-curvature test can increase the speed of our algorithm
by quickly eliminating most of candidates for the change of variables parameter f. But
since it uses one of Grothendieck’s conjectures which is not yet proved, we will not use it
in our implemented codes.

3.3.2 The Exp-product Equivalence

Definition 3.21. Two linear differential operators Ly and Lo in k(x)[0] are exp-product
equivalent if there exists r € k(x) such that

Ly —=p Ly

and vice versa.
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Theorem 3.22. Two linear differential operators Ly and Lg in k(x)[0] defined as follow
Ly = a3(2)?® + aa(2)0? + a1 (z)0" + ag(z)

L2 = bg(ZL‘)aB —|— bg(m)82 + bl(l')al —|— bo(ZL‘)

are related by an exp-product transformation with parameter r, Ly — g Lo, if

az(x) — ba(z)
3

r =
and r satisfies

ai(z) — by(x) — 2ras(x) + 3r* — 3r' =0,
(r* = 1")ag(x) — bo(x) — ras(x) — 1" + 3rr’ —r° + ag(x) = 0.

Proof. Just see the proof of Theorem 2.3. O
To show that two operators L; and Ly are exp-product equivalent, we have to

1. apply the p-curvature test: we see if
discriminant (X (A,(L;))) = discriminant (X (A,(Ls)))
where p > 3 is a prime number. (we will not use this test because of Remark 3.20).
2. compute the exp-product parameter r such that Ly — g L, .

We have implemented in Maple an algorithm called ExpProdEquiv which takes as input
two third-order irreducible linear differential operators L; and L, and returns r if L; and

Ly are related just by an exp-product transformation with parameter r, otherwise returns
0.

Examples

1) Let L; be the Bessel square root operator Ly, with parameter v = 3 and Ly the
BV

operator coming from L; by the exp-product transformation with parameter r =
(z—3)°
(x—7)%

> Ll:= 2*xx~2*Dx~3+6*x*Dx~2+(-2*x-16) *Dx-1;

L1 := 22*Ds* + 6xDz* + (—2x — 16) Dx — 1
> r:=(x-3)"5/(x-7)"2;

> L2:=ExpProduct(Ll,r);
L2 == 2 (x—7)°2?Da’® — 6 (2° — 152° + 902" — 270 2> + 404 2% — 229z — 49)
x (x —7)'wDr® +2 (=90 2™ + 12152 — 9720 2° + 51015 2° — 12644

— 183276 27 + 454281 2% — 757351 2° + 784370 z* — 397780 2® + 80017 z
+32'2 — 19208) (v — 7)° Dz — 22'7 — 1890 2™ + 24570 2** — 221106 2
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+90 2% — 7276896 ' + 27913502 2'° + 187904862 2° — 320893598 7
11458408 212 — 82688140 ° + 394295049 2° — 316407588 2° — 9452737
+119726385 * + 37324028 2° — 65292369 2 + 32352936
> ExpProdEquiv(L1,L2);
(x—3)°
(z—7)"

(2) Let us change the exp-product parameter above by taking r = (z — 7)(z — 12).
> r:=(x-7)*x(x-12);

r=(x—7)(xr—12)
> L2:=ExpProduct(L1,r);

L2 = 22°D2® — 6 (2° — 192 + 842 — 1) 2 Dx” + (62° — 2282° + 3174 2"
—19176 2° + 42678 z* — 1010 — 16) Dz — 22° + 11427 — 2670 2°

+32888 1% — 224850 z* 4+ 810734 23 — 1214174 2% + 42314 - + 1343
> ExpProdEquiv(L1,L2);

[(z = 7) (x —12)]

(3) Let us consider the case where Ly comes from L; by a gauge transformation.

Let L; be the same operator as in (1) and Ls the operator coming from L; by the
gauge transformation with parameters ro =x —7, 1y =2 —9 and ry = x — 11.

> r0:=x-7;

N :=x-7
> rl:=x-9;

rl .=z2z—9
> r2:=x-11;

2 = x—11

> L2:=GaugeTransf(L1,r0,rl,r2);

L2 = 22% (42" —202° + 308 2° — 1892 2" — 15352° + 177192° — 11033 z
—12463) Dz® — 2 (202° — 616 2° + 5676 2* + 6140 2” — 88595 2>
+66198 z + 87241) xDx* — 2 (42" + 82° + 2474 2" — 38935 2°
+184 2° + 15413 2 4 158511 © — 89155) wDx + 42" + 9156 2*

+5225 — 160 2° — 80677 22 — 11893 2% + 299673 = + 19965
> ExpProdEquiv(L1,L2);
0

(4) Let us consider the case where Ly comes from L; by an exp-product transformation
and a gauge transformation.

Let L; be the same operator as in (1) and L, the operator such that L; ——g
MlTw?GLQ withr=x—1, 1o =0, ry =2 and r, = 0.
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> r:=x-1;
r=x—1
> M1:=ExpProduct(Ll,r);
Ml = 22°Ds® — 6 (22 — 2 — 1) Do’z + (62 — 122° — 122° + 102 — 16) Dz
—22° + 62" + 62 — 142% + 142 — 17

> 1r0:=0;

M :=0
> rl:=x;

rl .=z
> r2:=0;

2 := 0

> L2:=GaugeTransf(M1,r0,rl,r2);
L2 := 22" (22" — 62" —62° + 142 — 142+ 17) Dz® — 2 (62" — 242° + 62°
+482* — 902® + 932% — 372 — 34) Da’2® +2 (—302° + 3027 + 402°
+62° — 1122° + 1952* + 40 2° — 335 2% + 2252 — 153) Dz + 242"
—4a'" =362 —202% 4+ 922" — 2042° — 882 + 686 2" — 1624 z*

+1186 22 — 793 = + 306
> ExpProdEquiv(L1,L2);

3.3.3 The Gauge Equivalence

Definition 3.23. Two third-order linear differential operators Ly and Ly in k(x)[0] are
gauge equivalent if there exists ro, 1 and ro € k(zx) such that

L, "0 Ly
and vice versa.
To show that two operators L,; and Ly are gauge equivalent, we have to
1- apply the p-curvature test: we see if
X (Ap(L1)) = X (Ap(L2))
where p > 3 is a prime number. (we will not use this test because of Remark 3.20).

2- compute the gauge parameters rg,r; and ro such that Ly TMQG L, .

There already exists in Maple an algorithm called Homomorphisms, implemented by Mark
van Hoeij (see [17]), which takes as input two linear differential operators L; and Lg
of order n and returns a basis where we can take an operator G of order n — 1 such
that L; = LyG or Ly = LG, otherwise it returns an empty list. Let n = 3 and G =
as(x)0% + a1(2)0 + ag(x)0, we deduce the gauge parameters ry, 71 and ry by taking

o = ao(w),
r1 = ai(x), (3.17)

ro = as(T).
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Examples

(1) Let Ly be the Bessel square root operator Ly, with parameter v = 3 and Ly the
operator coming from L; by the gauge transformation with parameters rq = x —
7, rm=x—9and ro =z — 11.

>

>

L1l:= 2*x~2*Dx~3+6*x*Dx~2+(-2%x-16) *Dx-1;
L1 := 22°Dr* + 6xDz* 4+ (—22 — 16) Dz — 1

r0:=x-7;

M :=x—7
rl:=x-9;

rl :==x—9
r2:=x-11;

2 = x—11

L2:=GaugeTransf(L1,r0,rl,r2);

L2 := 22" (427 — 922° + 8842° — 5216 2" + 18133 2° — 15052” — 132473z

>

—128623) Dz® — 2 (922° — 1768 2° + 15648 z* — 72532 2% 4 7525 2
+794838  + 900361) x Dx” — 2 (427 + 402° + 4454 * — 57991 2°
—642° + 327005 2% — 322917 x — 1013155) Dz + 42" — 1576 2°

+28 2% + 14544 2* — 111253 23 + 179279 2% + 445665 = + 19965
Homomorphisms (L1, L2);
[(x —11) Dx* + (z — 9) Dz + 2 — 7]

(2) Let Ly be the operator coming from the Bessel square root operator L., with
parameter v = 3, by the exp-product transformation with parameter r = x — 1. Let
Ly be the operator coming from L; by the gauge transformation with parameters
ro =0, ry = x and ro = 0.

>

>

>

LBB:= 2%x~2*Dx~3+6*x*Dx~2+(-2%*x-16)*Dx-1;
LBB := 22°Dr* 4+ 62Dx* + (—2x — 16) Dx — 1
r:=x-1;
r.=x—1
L1:=ExpProduct (LBB,r) ;
22°Dx® — 6 (2° —x — 1) aDa® + (62" — 122° — 122° + 102 — 16) Dx
225+ 621 +62° — 142+ 142 — 17

r0:=0;

M :=0
rl:=x;

rl .=z
r2:=0;

2 :=0

L2:=GaugeTransf (L1,r0,rl1,r2);

L2 := 2Dz (22° — 62" — 62° + 142° — 142 +17) =2 (62" — 242° + 62°
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+482% —902° + 932% — 372 — 34) 2*Dr” + 2 (—302° + 3027 + 40 2°
+62” — 1122° + 1952* + 402° — 3352% + 2252 — 153) Dr x + 24 2'°

—362° —202% + 9227 — 204 2° + 686 2 — 1624 2> + 1186 22 — 793
—42M —882° + 306
> Homomorphisms (L1, L2);
[z Dx]

3.3.4 The Projective Equivalence

Definition 3.24. Two third-order linear differential operators 1, and Ly in k(x)[0] are
projective equivalent if there exists r,ro,m1 and ro € k(x) and also Ly € k(x)[0] such that

T T0,71,72
Li — gLy — ¢ Lo
and vice versa.

We will see how to find those transformation parameters (r,rg, 71 and 7).

Definition 3.25. Let g € K = k(x) and p € k. The polar part of g at p is

> gith, if p is apole of g,

i=—myp

0 otherwise,

+oo .
where Y git, is the series expansion of g at p, g; € k and m, € N\ {0}. We denote it
i=—myp

by Polar(g,p). my, is called the multiplicity order of p as a pole of g.

Definition 3.26. Let ¢ € K = k(x). Then g can be defined in terms of its poles as
follows:

g=c+ Z Polar(g, p) (3.18)
peP
where ¢ € k and P = Py U {oco} with Py the set of poles of g. We call > Polar(g,p) the
peEP

polar part of g.

Theorem 3.27. Let g € K = k(z). Then the constant term c in the expansion of g as in
Definition 3.26 is the same as the constant in the series expansion of g at oo.

+oo .
Proof . Let us consider the series expansion of g at co given by > g;t’ . Then
i=—my
+00 ‘
g = Polar(g, 00) + go + Y _ git’s. (3.19)
i=1
By using the expansion of g as in Definition 3.26 we have
g = Polar(g, 00) + ¢ + Z Polar(g, p) . (3.20)

peP\{oo}
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h
Since g can be also be brought in the form h—l + a+ Polar(g, 00) with hy, he € k[x], a € k
2

and deg(hy) < deg(hsa) or hy = 0, we conclude by (3.19) and (3.20) that

Z Polar(g, p) = —Zgltl and c=a=g.
pEP\{oo}

O

Theorem 3.28. Let Ly, Ly € k(x)[0] be two irreducible third-order linear differential
operators and r € k(z) the exp-product parameter such that L 55 Ls. Let p be a pole of
r with multiplicity m,, such that m, > 2 if p # oco. If we assume that Ly is not the image
of an exp-product transformation with rational function —r + apt;1 with a, € k, then p is
an irreqular singularity of L.

Proof. Let p be a pole of r of order m, and e a generalized exponent of L; at p. Then by
Lemma 2.9 a generalized exponent of Ly at p is

e+ > mtytif p# oo,

g = i:flmp
e— > riti-totherwise,
I=—Moo
+o0 .
where ) 7t is the series expansion of r at p. Since L; doesn’t come from an operator

i=—mmyp
by the exp-product transformation of parameter —r + a,t; ! with a, € k, and m, > 2 if
p # 00, e cannot be written in the form

—2

b— > rmththif p# oo,

i=—myp

0
b+ > ritisotherwise,

I=—Moo

with b € k. Hence, we will always have in € the parameter ¢,. So € € k and we conclude
that p is an irregular singularity of L. 0

Theorem 3.29. Let Ly, Ly € k(x)[0] be two irreducible third-order linear differential
operators and r € k(x) the exp-product parameter such that L, 55 Ly. Let Py be the set
of poles of r and for all p € Py, m,, its multiplicity order as a pole of r. For all p € k,
let éﬁ,, i € {1,2,3}, be the generalized exponents of Lo at p. If we assume that Ly is not
the tmage of an exp-product transformation with rational function —r + aptzjl with a, € k
and p € Py such that m, > 2 if p # oo, then

Z Polar(r, p) Z Polar(r,p) Z Polar(r,p) (3.21)

pES peP pGIP

where S is the set of all non-apparent singularities of Ly, P =Py U {oo} and
Py ={p € Po| {e}, 22, &3} CZ}.
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Proof. For all p € k let é;, i € {1,2,3}, be the generalized exponents of Ly at p. Let us
define also the following sets:

={peP{e,.e2,e} Ck and Ji € {1,2,3},¢ ¢ Z}
We have Py = P} UP2 U P} and for all p € P2 (resp. p € P3), p is a regular singularity of

Ly (resp. p is an irregular singularity of Ly using Theorem 3.28) . Hence, P2UP; C S. By
Definition 3.25, the polar part of r at p ¢ Py is zero since p is not a pole of r. Therefore,

ZPolar(r p) Z Polar(r, p) Z Polar(r, p) Z Polar(r, p)

peES PESNPy p€ePZUPS pePINS
= E Polar(r, p) E Polar(r, p).
pEPy pEPL\S

Using again Definition 3.25, Polar(r, c0) = 0 if co ¢ Py and then

Z Polar(r, p) Z Polar(r, p) Z Polar(r, p)

pES pePoU{cc} pEP{\S
= Z Polar(r, p) Z Polar(r, p).
peP pEP\S

O

Theorem 3.30. Let Ly, Ly, Ly € k(x)[0] be three irreducible third-order linear differential
operators, r,ro, 1,72 € k(x) such that 1y L Ly S Ly, Let Py be the set of poles
of v and for all p € Py, m, its multiplicity order as a pole of r. For all p € k, let
éﬁ,, i € {1,2,3}, be the generalized exponents of Lg at p. If we assume that Ly is not the
image of an exp-product transformation with rational function —T—i-apt;l with a, € k and

p € Py such that m, > 2 if p # oo, then

Z Polar(r,p) Z Polar(r, p) Z Polar(r, p) (3.22)

pEeES peP pEPA\S

where S is the set of all non-apparent singularities of Ly, P =Py U {oo} and
Py = {p € Po| {e}, e, &3} CZ}.

Proof. We just use Theorem 3.28 and the fact that, by gauge transformation, the gener-
alized exponents vary by a constant. So an irregular singularity of Ly remains an irregular
singularity of Ls. The rest follows as in the proof of Theorem 3.29. U

Now we will show how to find the exp-product parameter in the projective equivalence.

Theorem 3.31. Let Ly, Ly € k(z)[0] be two irreducible third-order linear differential
operators such that Ly — gg Lo and r the parameter of the exp-product transformation.
Let S be the set of all non-apparent singularities of Ly and Py the set of all the poles of .
Forp e Py US, let us set

e =e(Ly) —eb(Ly), i=1,2,3
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where e;(Lj) is the i generalized exponent of L; at p, j € {1,2}, and r has series
representation

r= Z pith,  my €N with ry; €k and ry_p, #0.
i=—mmyp
If we assume that

(a)- P§' ={p € Py| {e} (La), €2 (La), €3 (Lo)} S Z and ry 1 ¢ Z} =0,

- Ly is not the image of an exp-product transformation with rational function —r +
b)- Ly i t the i f duct transf ti ith rational functi
apt;I with a, € k and p € Py such that m, > 2 if p # oo,

then
€p i p - -1
> o too €la =T+ Y pt S ot (3.23)
pES\{oo} pES\{oo} pEPG?\(SU{oo})
where ei = e’ — const(el,) with const(e’,) the constant term of €', b, € 7Z,

Ny = Max | Nei (1,), ¢ = 1,2,3 with Nei (Ly) the ramification index ofe (Ly), and

P2 = {p € Po| {e} (o), €2 (o) , € (Lo) 11} C Z}.

Proof. Let p e Sand i € {1,2,3}:

* If p # oo then by Lemma 2.9 and Lemma 2.10

b
ey (L) + Z rp]t3+1+n—p, b, € Z if p isa pole of r,

6;<L2) e ' ]b_imp p
ey (L1) + n_p’ b, € Z otherwise.
P

Since €}, = ¢}, (Ly) — e}, (Ly1), we have

> rpith +Lt)t, b, eZ if p isapoleof r,
n

6_;7 — 0 j=—myp p
t by .
P —, b, €Z otherwise
p
b
= Polar(r,p) + pt_ , by, €Z. (3.24)

* If p = oo then by Lemma 2.9 and Lemma 2.10

boo
A eto(L) — ZrOOthl+—, b €Z if oo is a pole of 7,
eéo(LQ) — J=Meo boo
el (L1) — Too,otgol — Tool T = by €Z otherwise.

p
o)
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Since e’ = e’ (Lg) — € (L) then
( 1 b
S reotict+ =, b €7Z if oo isa poleof r,
ei = J=Moo Neo

—7“oo,015§o1 — oo t+ > by €7Z otherwise
\ Neo
)

A boo . .
e —(—Too1+—), b €Z if oo is a pole of 7,

— o= ]
Coo = % boo .
el — (—Too1 + —), bs €Z otherwise
L Moo
_ — > reoytl, if oo isa poleof r,
EESS too : eéo = J=moo
[ 70,0 otherwise
—Too0 — Y. Teojtl, if oo isa pole of r,
- < J=moo
[ ~ 70,0 otherwise

( 1 A
- (Too,o+ > reojtlo | if oo isa pole of r.

| 700 otherwise
= — (reoo + Polar(r, 00)). (3.26)
Let P§ = {p € Po| {e} (L2), €2 (Ly), e} (Ly)} C Z} . Using (3.24) and (3.26), we get
el — b
Z t_p — too - €L, = oo + Polar(r, 0o) + Z Polar(r, p) + Z —pt;I
pes\{oo} P pes\{oo} pes\{oo} P
= T'eo0 + Polar(r, 0o) Z Polar(r, p) Z Polar(r, p)
pEP\{OO} pEP\(SU{oo})
+ Z pt 1" by Theorem 3.30
peSi{oc} P
bp 1
=Teo+ Z Polar(r, p) + Z n—ptp — Z Polar(r, p).
peP pES\{oo} PEPG\(SU{o0})
(3.27)

Using the fact that r o is the constant term in the series expansion of r at oo and also
Definition 3.26 and Theorem 3.27 we have

€ - _ by,
Z E —too € =T+ Z pt Z Polar(r, p).
pES\{oo} pES\{oc} PEPG\ (SU{oc})

Since P§ = P{'UPE?, and by assumption Pyt = 0, we have Pf = P32 For p € Py, if m,, > 2
then using Theorem 3.28, p will be an irregular singularity of L, and that is not true by
the definition of P§. Therefore, m, = 1 and then

Z Polar(r, p) = Z o1ty = Z Tp—1t, .

PEP\(SU{o0}) PEPG\(SU{oo}) PEP?\(SU{oo})
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Hence,

~ |%ms_

Z —to - ez =r+ Z pt T— Z rp,,ltljl

pesS\{oo} peS\ (oo} P pEPY?\ (SU{oo})
O

Lemma 3.32. Let us consider the hypothesis and notations of Theorem 3.31, and assume
that all the conditions in Theorem 3.31 are also satisfied. Then the parameter r of the
exp-product transformation is given by

= ——too el ”t— 3.28
r= . 7 “t D (3.28)
pES\{o0} peS\{oo}

with ¢, € Z and |c,| < n,.
Proof. By Theorem 3.31 we have

r= Z ?—tm-@— Z b_pt;1+ Z Tp’_lt;I

pes\{oo} P pes\(oo} 7 peww\(su{oon

6i
- X Fewede BB 3 B 5
pesS\{oo} P pes\ oo} P peS\ (oo} | P peP32\<su{oo}>

where —b, = ¢, + d, with ¢,,d, € Z and |c,| < n,. Let y be a solution of L;. Since we are
searching solutions 7 of Ly in the form

Y= exp </rdx) <r0y + rly/ + szﬁ> ,

d
the term >  —Fi' 4 > Tp1t, " in the expression of 7 will be transformed
pedilool T peBi?\(E0{oo))
as follows:
DEECARIED DR R N R
exp oty Tp,—1ty z Toy Ty T 71y
pes\foo} P PEP§?\(SU{oc})
d
_p+ 122 Tp’_l / 1
=N Tl pergP\EULeeD) <7"oy +riy +ry >
=Toy + Ty + 73y’
d
— 122 et
with 75 = 7y - 2" pEERNCUh Uging the fact that 7,y € Z Vp € P2\

(SU{oo}), and also d, € Z Vp € S\ {oo}, we will have 75,771,753 € k(x). Therefore,
we can take the exp-product parameter r as

ei
_ P p -
- Y Gme Y By
pes\{oc} ¥ pes\foo} P
and that will just change the gauge transformation parameters ry, o and rs. 0
We know now how to find the exp-product parameter in the projective equivalence.

What remains for us is to show how to find the gauge parameters in the projective
equivalence.
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Definition 3.33. Let Ly, Ly € k(x)[0]. The symmetric product of Ly and Ly, denoted
L1®Ls, is the smallest order monic operator L € k(x)[0] for which y1y2 € V(L) for every
y1 € V(L) and y, € V(Ly). The operator LE™ is called the m*™ symmetric power of L, it
15 the symmetric product of m copies of L.

More details about the symmetric product can be found in [20], [19] and [26].

Definition 3.34. Let L € k(x)[0]. A hyperexponential solution of L over k(x) is a non-
zero y € V(L) for which v/ [y € k(x). This corresponds to a first order right-hand 0 —r of
L where r =3/ Jy. We will denote a non-zero solution y of O — r as exp (f rdx) .

Remark 3.35. By assuming that we know the exp-product parameter r, Definition 3.33
and Definition 3.34 will help us to find the middle operator Ly in the transformation
Ly —g Ly —¢ Ls. It is given by

L2 = L1®(a — 7’).

Hence, we just have to find the gauge transformation between L1&)(0 — r) and L. This
reduces to the gauge equivalence between 1,&(0 — r) and Lg, and that can be found using
the last paragraph on how to find the gauge equivalence.

Conclusion

Let us consider two irreducible third-order linear differential operators L, M € k(z)[0]
such that M — g L. To find the exp-product and gauge transformation parameters we
proceed as follow:

1. We compute the set S of non-apparent singularities of L.

2. We compute for all p € S, i = 1,2,3 the difference ¢}, = ¢! (L) — e/(M) where ¢} (L)

and e;(M) are the i'"generalized exponent of L and M at p, respectively.

3. We compute the exp-product parameter r using the relation

el — C
p P 4—1
r= — —t - €L+ —1
2 3 2 oty
peS\{oo} pES\{oo}

)

', — const(e’,) with const(el) the constant term of e. , n, =

where el = e
max {neg)(L),i = 1,2,3} with ne () the ramification index of efp (L), and ¢, € Z

such that |c,| < n,.

4. We compute the middle operator L; € k(z)[d] such that M ——p L; —¢ L which
is given by Ly = M®(0 — r). There exists in Maple an algorithm called symmetry
(see [20], [19] and [26]) to compute the symmetric product between two differential
operators.

5. We compute the operator G € k(z)[d] of order two such that L. = GL;. That can
be done in Maple by the algorithm called Homomorphisms (see [17] and [32]).
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6. Let G = a90% + 010 + ao with ag,a;,as € k(x). We deduce the gauge parameters
ro, 71,72 € k(x) by taking

To = ao,
L = as,
To = Q2.

We have succeeded by writing and implementing in Maple algorithms for projective
equivalence called EquivExpgaugeBesSql, EquivExpgaugeBesSqRoot1, EquivExpgauge2F2,
EquivExpgaugelF2, EquivExpgaugeOF2, EquivExpgaugelF1sq when one involved oper-
ator is coming from the operator L, with f = g* and g € k(x), the Lpz with f # g°
and g € k(z), Lag, Lia, Lo2, L}, respectively. Those algorithms take as input two third-
order irreducible linear differential operators L; and Lo, and return as output, if they are
equivalent, a list of two elements:

e the first is the exp-product parameter r such that L g A —pe Ly where A is
an operator in k(z)[0];

e the second is a list containing a basis where we can take an operator G of order
two such that A = LyG. Let G = as(2)0? 4 a1(x)d + ao(x)d, we deduce the gauge
parameters rg, r; and ry by taking

ro = ao(x),
r = a(z), (3.29)
ro = as(x).

If L; and Ly are not equivalent, the algorithm returns an empty list.

Examples

(1) Let L; be the Bessel square root operator L 2 with parameter v = 3, Ly the operator
coming from L; by the exp-product transformation with parameter r = x — 1 and
L3 the operator coming from Ly by the gauge transformation with parameters rq =
0, /1 =2 and r, = 0.

> L1l:= 2%x~2%Dx"3+6%x*Dx"~2+(-2%x-16)*Dx-1;
L1 = 22°D2® + 62 Dx* + (=22 — 16) Dz — 1
> r:=x-1;
r:=x—1
> L2:=ExpProduct(Ll,r);
L2 :=22°Ds® — 6 (2° —x — 1) 2Dz’ + (62" — 122° — 122 + 10z — 16) Dx
—22° 4+ 62 +62° — 1427 + 142 — 17
> 10:=0;
M =0
> rl:=x;

rl .= x
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> 12:=0;
2 :=0
> L3:=GaugeTransf(L2,r0,rl,r2);
L3 = 22" (22" — 62" —62° + 142 — 142+ 17) Dz® — 2 (62" — 242° + 62°
+483* — 902° + 932” — 37z — 34) 2°Dx® + 2 (302" + 302" + 402°
+62% — 1122° + 1952 + 402® — 33527 + 225 % — 153) zDx + 24 2™

—362° — 2028 + 9227 — 204 25 — 88 2° + 686 2% — 1624 2> + 1186 22
—42" — 7932 + 306
> B2:= Singular(L2,{});

B2 := [[z,0], [00, o0]]
> 82:= NotAppSing(L2,B2,{});
52 = [[QZ,OL[O0,00H

> (C2:=IrrRegAppsingBesSqRoot(L2,t,B2,{}):
> EquivExpgaugeBesSqRoot1(L1,L2,C2,x,t,T,{});

== =] B = E

=229 | o - 10,

x
> B3:= Singular(L3,{});

R%;:[h5—3m4—3m3+7x1—7x+1ﬂ@Jﬂmﬂﬁ(2_Z5—6_Z4
—6_Z°+14_2Z*—14_Z+17)],[z,0], 00, oc]]

> S83:= NotAppSing(L3,B3,{});
83 = [[z,0], [00, 00]]
> (3:= IrrRegAppsingBesSqRoot(L3,t,B3,{}):

> EquivExpgaugeBesSqRoot1(L2,L3,C3,x,t,T,{});

U] (el o owl] | 5] broesen)
] e [ 5 -)) E] [F -2
([ -=1))

> EquivExpgaugeBesSqRoot1(L1,L3,C3,x,t,T,{});

= o2 (= oo [
F-2 = E A ] ]

(4000 g [[E420=3] (i, ]

T T

[z — 1], [z Dz}
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(2) Let L; be the same operator as in (1), Ly the operator coming from L; by the
exp-product transformation with parameter r = (z — 1)(x — 7) and L3 the operator

coming from Ly by the gauge transformation with parameters ro = x —9, r; =0
and r, = 0.

> ri=(x-1)*(x-7);
ri=(r—1)(z—7)
L2:=ExpProduct(L1,r);
L2 :=22"Dx* -6 (¢° —82° + 7w — 1) xDa” + (62° — 96 2° + 468 2* — 696 2°
+438 2% — 86 — 16) Dx + 482" — 426 2° + 1714 2° — 3222 2* + 3290 z*
—22% —17102” + 228z + 111

> r0:=x-9;

\%

> 1rl1:=0;
rl == 0
> 12:=0;
2 =0
> L3:=GaugeTransf(L2,r0,rl,r2);
L3 = 22” (22° — 482° — 1864 2° + 4560 2° — 8354 z* + 97522° — 8528 2
+43227 + 42112 — 1296) Dz® — 2 (=192 2" + 2490 2" — 16956 2

+62'% + 67248 2% — 171918 27 + 319920 2° — 425946 2° + 413743 2
—284040 2* + 128063 2* — 35638 x + 3888) wDx” + (122 — 480 =™

—76440 22 — 1657216 2'° + 4333048 2° — 8391000 2 + 12203078 27
+8136 2% + 440652 ' — 13401932 25 + 11005272 z° — 6540700 «*
+2623026 2° — 593486 % + 22068 = + 20736) Dz — 42" — 4020 2"

+192 2% — 369996 '3 — 6928124 2 + 18406312 ' — 8411426 3
+48304 ' + 1910192 % — 37207068 =¥ + 58247804 2° + 242081 x
—71057310 27 4 67146884 2° — 48140538 2° + 1220934 22 — 125568
424996944 2

> B2:= Singular(L2,{});

B2 := [z, 0], 00, <]
> S2:= NotAppSing(L2,B2,{});
S2 = [[z, 0], [00, 00]]
> (C2:= IrrRegAppsingBesSqRoot(L2,t,B2,{}):

> EquivExpgaugeBesSqRoot1(L1,L2,C2,x,t,T,{});

{[[@—1)(90—7)]7[1]]7 Hx3—8x2+7a:—6} | [x(ﬂ 7 Hx?’—8x2+7x—3]7

i T

s A | (e HE

> B3:= Singular(L3,{});
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B3 = [[z,0], [¢° — 242® 4+ 216 2" — 9322° 4 2280 2° — 4177 2" + 4876 2°
4211 x

—4264 2% + — 648, RootOf (2 _2° —48 _Z°+432_Z'

—1864 7%+ 4560 Z° —8354 Z*4 9752 7% — 8528 7P
+4211 7 —1296)] , [o0, 00
> 83:= NotAppSing(L3,B3,{});
§3 = [[x,0], [o0, o0]]
> (€3:= IrrRegAppsingBesSqRoot(L3,t,B3,{}):
> EquivExpgaugeBesSqRoot1(L2,L3,C3,x,t,T,{});
6 3
{ H——} , [x7Dx+x7 — 3x6}] , H——} , [x4Dm + a2t — 6x3ﬂ ,
x x
3 Da:+x—12 6 Dm+x—15
x| | x? x3 ]| 2P 20
> EquivExpgaugeBesSqRoot1(L1,L3,C3,x,t,T,{});
-8+ T —6
{iw- 167l || |\

T

2 —8x2+T7x—3
x

pﬁh+nﬁ—3fﬂ,n

«ﬁ—GﬁH,H :

3 —822+T7x+6 Dx x-—-15
st 6
T T T

} , [2*Dx

x3—8x2+7x+3] [Dx :r;—lQ”
) _2+ 3 )
x x




Chapter 4

Bessel Square Root Type Solutions

Let L be an irreducible third-order linear differential operator that we want to solve in
terms of Bessel square root functions. In this chapter, we apply the theories developed
in the last chapter to discuss the details of the algorithm to find Bessel square root type
solutions of L if they exist. Using what we have done before, with Ly = Lz, (as in the
last chapter) we just have to consider

Lp —e M —sp L. (4.1)

The operator L is the only input to the algorithm. We define k to be an extension field
of Q which is algebraically closed and has characteristic zero such that L € K|[J] with
K = k(x).

As we have said in the last chapter, we will just take a closer look at the part L B2 im
M. Once we found the Bessel parameter v and the parameter f we can obtain M from
Lpz. For fixed M € K[9] we know how to solve, by the last chapter, the question of
equivalence between M and L. We can then finally solve (4.1).

Note that f and v are related. If we can fix f then we can get a finite list of candidates
for v by using the exponents differences at the zeroes of f. On the other hand, if we know
v we can identify disappearing singularities and it will give us the information about the
multiplicity orders of the factors of f.

In order to find Bessel square root type solutions (solutions in terms of B(z) = B2(\/z)
functions), we will deal with v/f where f € k(z) is the change of variable parameter.
Therefore, we will consider two cases:

1. when f = ¢* with g € k(x),
2. when f # ¢* with g € k(z).

In this chapter, for n € N\ {0} and a an element of K = k(x) or not, when we will

talk about a modulo —Z, that will mean ¢ modulo an additive element of —Z.
n n

4.1 Change of variable parameters are squares of ratio-
nal functions in k(z)

Let us denote by Lpz the operator associated to the Bessel square function B2:

Lpz = %0 + 320° + (1 — 42® — 40%) 0 — 4. (4.2)
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The operator L, can be derived from Lp: by the transformation /z:

Lyz 0 L. (4.3)

Since f = ¢g? with g € k(x), then the transformation

LBE i)c M —gq L
is equivalent to the transformation
Lpz e M —pe L.

Therefore, in the whole section we will consider the situation

Lps —5c M —pg L (4.4)

instead of (4.1), and solve now in terms of solutions of Lz2 that means find Bessel square
type solutions. To get Bessel square root solutions (solutions in terms of B2(z) = B2(y/x)),
we will just replace the change of variable parameter f, in the solutions that we have found
in terms of B2, by its square.

1
Remarks 4.1. 1. The operator Lp: is irreducible when v ¢ 5 + 7Z, and has two sin-

gularities: one regular at x = 0 and another irreqular at r = oo.

2. v € Z 1is the necessary and sufficient condition for Lz to have logarithmic solutions
at x = 0.

3. All the theorems, lemmas, corollaries and remarks that we have seen in chapter two
and chapter three related to the operator Ly, are also wvalid for the operator Lps:.

4. The parts, in chapter three, called "Observations” and "Assumptions” hold also for
LO - LBQ.

4.1.1 Exponent differences

The generalized exponents of Lz at 0 and oo are
> gen_exp(LBB,t,x=0);
[[0,t = z], [-2v,t =], [2v,t = x]]
> gen_exp(LBB,t,x=infinity);
[[Lt=a" -2t + L, t=a""], 2t + L, =27]]
Hence the ramification index of Lg; at all the points is 1.
Using the assumptions of the last chapter, the generalized exponents of M at

- a zero p of f are
0, —2myv, 2my| (4.5)
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- a pole p of f are

-1

-1
mp7 mp + 2 Z jfl,j—&-mpt‘]yo? mP —2 Z jf17j+mpti’

J=—myp J=—myp

f=t, ”jzz%fj_mpt%, with f;_,,, € k and f_,, #0,

R
Z f]_mpté - Zoflv]t% Wlth ij S k
]:

+oo . +oo __ . _
.Zofj_mpt% = .Zoflvjtijf’ = fijem, = i Vj € N. Therefore, the generalized
j= j=

exponents of M at a pole p of f are

—1 —1
My, my+2 > jfith my—2 > jfit)|. (4.6)

J=—mp Jj=—myp

So the ramification index of M at all the points is 1. Since the exp-product and gauge
transformations don’t change the ramification index, the ramification index of L at all the
points has also to be 1, otherwise L. can’t have Bessel square type solutions.

Using (4.5) and (4.6) we have that the exponents differences, modulo a factor —1, of
M at

- a zero p of f are
[—2m,v, 2myy,  4m,u] (4.7)

- a pole p of f are
-1

-1 —1
23 Gt =2 > it -4 Y jfit) (4.8)

Jj=—mp Jj=—mp Jj=—mp

1
By using now the fact that the exponent difference is invariant modulo —Z (here n = 1)

n
under the exp-product and gauge transformations, the exponent differences of L at

- a zero p of f are

[—2m,v + aq,  2mpr + o, 4dmyr + g (4.9)
with aq, a9, a3 € Z
- a pole p of f are
~1 ~1 ~1
Bi+2 > jfith, B—=2 > jfith Bs—4 > jfit] (4.10)
Jj==—mp Jj=—mp Jj=—mp

with 617 527 63 € 7.
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Since one of the main tool of our work are exponent differences and for the reason of
generalization, we will consider the first two exponent differences. The third one will be
used as a necessary condition to test if we are solving in terms of Bessel square functions.

Definition 4.2. Let us consider the situation in (4.4). We define the exponent differences
of L at

- azerop of f by

A(L,p) = £2m,v mod Z, (4.11)
- a pole p of f by
~1
A(L,p)=+2 > jfit) mod Z. (4.12)
J=—mp

Since we know how to find all the poles of f (using Corollary 3.13) which are elements
of the set Si; (L), and also their multiplicity orders (using their exponent differences), we
can start in order to find f, to first find its polar part at all its poles. By summing them,
we will have f up to a constant (see Definition 3.26).

4.1.2 Parameter f up to a constant

Since, by Corollary 3.13, S;;(L) contains all the poles of f, we can always find candidates
for the parameter f up to a constant using the set S;,(L) and the exponent differences
at its elements: that is the polar part of f. The polar part of f at a pole p is given by
—1

' > fjti where m,, is the multiplicity order of p.
J=—mp

Let us have a look on the exponent differences of L at a pole of f in (4.12). It can be
brought in the form

-1
B+ Y ajt], with3eZ

Jj=—myp
where a; = £2jf;. So the polar part of f, modulo a factor —1, at a pole p is

-1

aj .
> Q—jtg,. (4.13)

Jj=—mp

Maple’s output for the generalized exponents is not ordered. Hence it will be difficult
to order the exponent differences. They will be defined modulo a factor —1. So the
polar part of f at a pole p given by (4.13) will appear modulo a factor —1 using Maple.
Therefore, we will have two candidates for the polar part of f at any of its poles. By
choosing at each pole one candidate and doing the summation of all of them, we obtain
a candidate for f up to a constant (candidate of the polar part of f).

We have implemented in Maple an algorithm called BesSquarSubst for finding the
candidates for f up to a constant.

Let us denote by F the set of candidates for f up to a constant. We know how to find
the parameter f up to a constant. The problem is how to find this constant. Knowing a
zero of f (element of S,es(L)) can be helpful. Hence we will distinguish two cases: when
Sreg(L) # 0 and when S, (L) = 0.
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4.1.3 No zero of f is known (Syeg(L) = 0)

Here we have absolutely no information about the zeroes of f and A(L,s) € Z for all
s & Siir(L). What we know is just the candidates for the polar part of f. Those candidates
are the candidates for f modulo a constant ¢ € k.

Definition 4.3. For m € N, we can define
J .
N = —10<35<2m—1,. 4.14
) ={ o< <om-1f (4.14)

Fora= L ¢ Q with ged(ay, az) = 1, let us denote numer(a) = a; and denom(a) = as.
a

2
We will see by the proof of the following lemma that, for p = denom(2v), N(p) gives us
some information about the Bessel square parameter v: the Bessel square parameter
appears modulo an additive integer in N(p).

Lemma 4.4. Consider the situation in (4.4) with S,e(L) = 0. Let n be the degree of the
numerator of f and p = denom(2v). Then v € N(p) modulo Z and p divides n.

Proof. For s & Six(L), we have A(L, s) € Z since S;eq(L) = 0. Therefore, by Definition 4.2,
v € Q and we can find a,p € N and 2z € Z such that

I/:Z—i-;, 0<a<2p-—1, ged(a,p) =1
p

Therefore, v € N(p) modulo Z.
Let s be a zero of f with multiplicity order m,. Since taking v or —v doesn’t change
our operator Lgz, we can assume by (4.11) that A(L, s) = 2m,v mod Z. Hence we have

A(L,s)=2myw+beZ with beZ

€L

— 2m, <z+1)+beZ —, M
2p p

— p divides mg since ged(a,p) = 1.

Let n be the degree of the numerator of f. Since p divides all the multiplicity orders of
the zeroes of f then p = denom(2v) divides n. Hence the numerator of f has to be a p-th
power. [

Let g be a candidates for f. Then g = g + ¢ where ¢, is a candidate for the polar part
of f. We know how to find ¢g; by our algorithm BesSquarSubst but we don’t know the
value of c. That means we don’t know the degree n of the numerator of g. In order to
find v, the problem now remains how to find this degree n without knowing the constant
part ¢ of g.

Lemma 4.5. Consider the situation in (4.4) with S,,(L) =0 and v = z + 2£ for some
P

a,p € Z and ged(a,p) = 1.
(a)- If oo € Sir(Lh), then deg(numer(f)) = deg(numer(f +c¢)) Ve e C.

(b)- If 00 & Siy(L), then p | deg(numer(f)) < p | deg(denom(f)).
Proof . Similar as the proof of |11, Lemma 3.16]. O



96 Bessel Square Root Type Solutions

Corollary 4.6. Consider the situation in (4.4) with S,ey(L) = 0. Let us define

deg(numer(g +c¢)) if oo € S;(L),
n =

deg(denom(g + ¢)) otherwise,

where g is the polar part of f. Then the set of divisors of deg(numer(f)) is the set of
divisors of n.

Proof. Just use Lemma 4.5 above. 0]

Corollary 4.7. Consider the situation in (4.4) with S,e,(L) = 0 and n as in Corollary 4.6
above. Then n > 2.

Proof. Let p = denom(2v). By Lemma 4.4, p | deg(numer(f)) and then, using Corollary 4.6,
we will also have p | n. g polar part of f implies f = g+ cand g = f1/fo + f3 with ¢ € k,

f1, fo, f3 € k[x] and deg(f1) < deg(f2) or f; = 0.

1. Let us show that n > 1.

(a) Let us assume oo € Si; (L) and me its multiplicity order as a pole of f. Then
fs € k[z] \ k (fs is the polar part of f at co) and me, > 1.

deg(numer(f)) = deg(numer(g + ¢)) = deg(numer(f/fo + f3 + ¢))
= deg(numer(f1/fo + f3)) since f3 € k[z] \ k and

deg(f1) < deg(f2) or f1 =0
= deg(numer(g)) = n. (4.15)

oo pole of f implies deg(numer(f)) = deg(denom( f))+m., and hence we have
deg(numer(f)) > 1 since my, > 1. Therefore, by using (4.15), we have n > 1.

(b) Let us assume 0o & S;;(L). Then f3=01ieg= fi/fo+¢

Sir(L) # 0 and oo & S;r (L) = f1 # 0 i.e. deg(fa) > 1 since deg(f1) < deg(f2)
= n = deg(denom(g)) = deg(f2) > 1.

2. Let us show that n # 1.
Let us assume n = 1. p | n implies p | 1. That means 2v € Z ie v € Z or
v € 1/2 4+ Z. Therefore we are in the logarithmic case or Lp: is reducible, that
means Syeg(L) # 0 or Lz is reducible. All of that is not true. Hence n # 1.

OJ
We know now how to find the degree n of the numerator of a candidate g = g1 +c of f
with ¢ € k ¢g; a candidate for the polar part of f. So we can find its associated candidates
for the Bessel square parameter v.
Conclusion:
To find candidates for (f,v), we proceed as follow:

1. We compute the polar part of f: that can be done by our algorithm BesSquarSubst.
Hence we get candidates for f modulo a an additive constant.
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2. Let g be a candidate for the polar part of f (g is an element in the list giving by
the algorithm BesSquarSubst). Then we have to find, if it exists, ¢ € k such that

f=g+c

(a)

(b)

We take n as in Corollary 4.6:

deg(numer(g + ¢)) if oo € Sy (L),
n =

deg(denom(g + ¢)) otherwise.

denom(2r) must divide n (by the proof of Lemma 4.4): if n = 1 then denom(2v)
will also be 1 and that means v = 3 with z € Z. That is not good since we

will be in the logarithmic case (v € Z) or Lgz will be a reducible operator

1
(v=n2zn+ 3 with z; € Z). Hence n > 1. For n < 1, we will say that g + ¢,

Ve € k, is not a good candidate for f and then we will return to step 2., and
take another candidate g for the polar part of f.

We are not in the logarithmic case so v ¢ Z. Hence denom(2v) # 1. If not that

1
will means v = z + - with z € Z and therefore Lpg; is a reducible operator.
Thus denom(2v) > 2.

Since denom(2r) > 2, we take all the divisors p of n greater or equal to 2. Let
C be the set of those divisors.

Let p € C (a divisor of n). We check whether for certain constants ¢ € k the
monic part of the numerator of g + ¢ becomes a p-th power. This can simply
be done with linear algebra and leads to a non-linear system of equations for
the constant c. Solving these equations gives us a set C,, of possible values for
c related to p. If C, = 0, p is not a good candidate for denom(2v) and then we
will return and take another element p in C.

i. Vc € C,, compute g 4 c. They will give us the list of candidates F, for f
related to p.
ii. Compute N(p).
iii. Remove in N(p)

A. all the modulo integers which appear for an element.

1
B. all the integers and the elements in the form z + 5 with z € Z

Let us call again N(p) the final set of N(p) after all the modifications. [F,, N(p)]
will be a list related to p such that the first element is the list of candidates
for f and the second their associated candidates for v. All those elements
[F,, N(p)] generate a set W.

W will represent all the candidates for (f,v).

We have implemented in Maple an algorithm called findBesselvfInt to get those
candidates for (f,v), if they exist. An example for this case can be found in our Maple
worksheet associated to this thesis.
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4.1.4 Some zeroes of f are known (S;eg(L) # 0)

For a fixed candidate g of the polar part of f (¢ € F), we can find the constant ¢ such that
[ = g+ c using an element of S, (L). This can be done by our implemented algorithm
in Maple called changeconstantBesSq. But the other elements of S, (L) must also be
the zeroes of g + ¢, otherwise we will exclude ¢ from the list of candidates for f up to a
constant (F). This test can also be done by one of our implemented algorithms in Maple
called CandichangvarBesSq. So we have a list of possible candidates for f.

Since f and v are related, let us now see how to get candidates for v. This will help
us also to reduce the number of candidates for f.

Lemma 4.8. Consider (4.4). Then the following statements are equivalent:
(a)- The Bessel square parameter is an integer, i.e. v € Z.
(b)- There is s € S,e4(L) such that L is logarithmic at s.

Proof. Using Lemma 3.7 in [11], our lemma will be true if we can replace the Bessel
operator L, by our operator Lpz. The key is the fact that Lp, has a logarithmic solution
at = 0 if and only if v € Z. Since B} (solutions of Lgz) are the squares of B, (solutions
of Lp,), we can apply Lemma 3.7 (in [11]) to Lpa. O

Remark 4.9. If there exists s € S,¢;(L) at which L is logarithmic then L is logarithmic at
every element of Sye(L). Moreover, if there exists one zero of the parameter f at which L
is logarithmic then L will be logarithmic at all the zeroes of f. That means all the zeroes
of f are exactly the singularities S,.,(L).

We will distinguish here two cases for finding v:
1. the logarithmic case: when v € Z,

2. the non-logarithmic case: when v ¢ Z.

Logarithmic case

By Remark 4.9, S,.;(L) represents all the zeroes of f. Since in this case v € Z and using
the invariance of C(w)BiU + C(m)Bﬁl + C(z)B2 under v — —v and v + v+ 1, we can
take zero as the Bessel parameter (v = 0). But that can generate gauge transformations
which may not be needed. Therefore, to simplify the output, we will proceed as follows
to find the Bessel parameter:

1. For every P; € S,e(L), let m4 be the multiplicity order of its associated s € S;eg(L)
as zero of f. Since taking v or —v doesn’t change the Bessel square operator Lp:
then

A(L, s) = 2mgv + B with g € Z,

and we have as set of candidates for v related to s:
N, - { A(L, s) + Js
2mg

[l 5 der)
2my - deg(Ps)

jSENand0§j5<2ms}

jSENandOSjS<2mS}.
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Since taking again v or —v doesn’t change the Bessel square operator Lpz then we
can take N as

N ={[ Bl ra) delR)

_ { IA(L, s) + js| - deg(Ps)
2my - deg(Ps)

jSENandO§j8<2ms}

jSENand0§j8<2m5}.

2. We taken = > 2myg-deg(P;). Hence

PyESreg(L)
deg(numer(f?)) + 2meoo if 00 € Syeq(L),
n =
deg(numer( f?)) otherwise
deg(denom(f?))if 0o € S,eq(L),
deg(numer(f?)) otherwise
= max(deg(numer(f?)), deg(denom( f?))). (4.16)
3. We choose for P; € S;s(L) one element N,. With those chosen elements we can
compute
1
= A(L js| - deg(Ps
o= X 1AL il den(R) |

Ps€Sreg (L) Py€Sreg (L)

where 7, € N with 0 < j, < 2m, VP, € Sreg( ). Since all the j, are positive, we have

1
Z 2ms ' deg(Ps) '

Ps esrcg (L)

a<| X (AWLS)+J) - deg(P)

P5€Sreg(L)
Using equation (4.16) we get
a< Z |A(L, s)| - deg(Ps) | - 1 + Z Js - deg(Ps) | - l (4.17)
- — n — n
Ps€Sreg(L) P €Sreg(L)

Since VPs € S,eg(L) we have 0 < j, < 2my,

Z Js - deg(Py) < Z 2m - deg(Ps)

Ps€Sreg (L) Ps€Sreg(L)
1
— i - deg(Py)| - = < 1. 4.18
D Jedeg(P)| -~ (4.18)
Psesrcg(L)

Using (4.17),(4.18) we get
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4. For e € Q let us denote by "floor(e)" the integer least or equal to e. By the fact
that v € Z and in order to simplify the output, it is better to take as candidate for
v the floor of a:

v = floor ;A(L, s) - deg(Ps) | - % . (4.19)

Ps ESreg(L)

We have implemented in Maple an algorithm called findBesselvfln to get both (v, f)
candidates, if they exist. An example for this case can be found in our Maple worksheet
associated to this thesis.

Non-logarithmic case

When we have candidates for f, we have also all the multiplicity orders of the elements of
Sreg(L) as zeroes of f. Using now the exponent differences of L at the elements of S, (L)
given by (4.11), we can get v modulo an integer.

Definition 4.10. Consider (4.4) and s € S,¢,(L). Let my be the multiplicity order of s as
a zero of f. We define

A(L '
NSZ{M'OSJSZmS—l} (4.20)
2mg
and N={v € k\Z|Vs € Sy,(L), Jas €Z: v+ a, € Ny} . (4.21)

For every singularity s € S,e¢(L) the Bessel square parameter v appears in N, modulo
some integer.

Lemma 4.11. Consider (4.4) and assume S,.,(L) # 0. Then there exists some integer
2z € Z such that v+ z € N. That means N 1is the set of candidates for v modulo 7.

Proof. Let s € Syee(L). Since taking v or —v doesn’t change the Bessel square operator
A(L,s) — I,
2my
rewrite Iy = I, + 2m, X a with ZS, as €Z and 0 <1, <2m, — 1. Therefore,

Lp:z, we get A(L,s) = 2m,v + [, with [, € Z. Hence v = . We can always

V—%—FQS with l;, s € Zand 0 <[, <2my—1,
mS

and we have
v —ag € N;.

Hence dz, € 7Z such that v + z, € N,. In this way, we find such an integer z, for every
S € Syeg(L) such that v + z, € Ny. From the definition of N it follows that v + z € N for
some z € Z. 0

Since (C(:C)BBH + C(m)Bﬁl + C(z)B? is invariant under v — v+ 1 and v — —v we
only need to find ¥ modulo an integer and a factor -1. So we can regard N as a set of
candidates for v.
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How to improve the set N of candidates for v

By the definition of N we have

N = ﬂ [Ny modulo Z or a factor — 1J. (4.22)

$ESreg(L)

1. Because of the invariance of C(x)B§/l+C(x)B§/ +C(z)B? under v + —v, we remove
in N all the negative elements.

2. Because of the invariance of C(z)B2 + C(z)B2 + C(z)B2 under v — v + 1, we
remove in N all the modulo an integer equivalents of its elements.

3. Because we are not in the logarithmic case, we remove all the integers in N.

4. Because Lp: has to be an irreducible operator, we also remove in N all the elements

1
of the form 3 + 2z with z € Z.
So the new set N that we will get at the end will be the improved set of candidates for v.

To reduce the set of candidates for (v, f), we have to distinguish between three cases:
1. rational case: when A(L,s) € Q for all s € S;eg(L). That means v € Q.

2. basefield case: when there exists s € Seg(L) with A(L,s) € £\ Q. That means
vek\Q.

3. irrational case: when there exists s € Seg(L) with A(L, s) € k. That means v ¢ k.

Rational case

Let g be a candidate for f and N its associated candidates for v given by our algorithm

numer
findcand3. Let h = (&)
[I (z—s)m
SGSreg(L)
( ) of f. h doesn’t have zeroes in S,(L), so we are in the integer case with

Sre
h. Therefore, by taking n as the degree of h we will have:

where mg is the multiplicity order of the zero

s €
f =
- if n <1 then we cannot reduce our set N of candidates for v;

- if n > 2 then a similar argument as in the case S,ee(L) = ) (integer case) is used
since each zero s of h satisfies A;(L,s) € Z (i = 1,2,3) and L is not logarithmic at
s. Hence, for v € N, the denominator p of 2v must divide n. If not, our candidate
v for v is not good and we have to remove it from N. Hence, the monic part of the
polynomial h must be a p-th power.

Conclusion:
To reduce the set of candidates for (f,r) we proceed as follow:

1. We take an element (g, N) where g is a candidate for f and N the set of its associated
candidates for v. These conditions are given by our algorithm findcand3.
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e
2. We compute h = numer(g) where m, is the multiplicity order of the zero
I (z—s)m™
5E€Sreg(L)

S € Speg(L) of f.
3. We compute the monic part of h.

4. For each element v € N, we check if the monic part of h is a p-th power with
p = denom(2v). If the result is true then v is good. If not, we take another v in N
and repeat the same procedure. All those elements v for which this is true generate
a set W.

5. (g,W) will be the reduced set of candidates of (f,v).

We have implemented in Maple an algorithm for this reduction called findBesselvfRat.
An example for this case can be found in our Maple worksheet associated to this thesis.

Basefield case

That is the case where v € k\ Q. Then every zero s of f must, by (4.11), satisfy
A(L,s) € k\ Q. That means s € S;es(L) (for s to be a regular point or an apparent
singularity we need A;(L,s) € Q, i =1,2,3). So S,e(L) represents all the zeros of f.

To reduce the set of candidates for (f,v), we use the following statement about the
multiplicity orders of the zeroes of f.

Lemma 4.12. Consider (4.4). Letv € k\Q, Sy(L) = {s1,...,5,} andd; = A(L,s;), i =
1,...,n. Then we can do the following steps:

1- Compute r;, t; € Q such that d; = r;dy + t;.

2- Let a;,b; € 7Z be such that r; = % and ged(a;, b;) = 1.

3- Let | = lem(b;, 1 <i<n).
Then the monic part of the numerator of [ is a power of h € klx]| where
h=]]@-s)".
i=1

Proof. The proof is similar to the proof of Lemma 3.19 in [11]. O
Conclusion:
To reduce the set of candidates for (f,r), we proceed as follow:

1. Let Sieg(L) = {s1,...,5,}, with s, € k& Vie {1,...,n}.
2. Take one element in S,es(L). We have taken for example s.
3. Let d; = A(L,s;), i=1,...,n.

(a) Compute r; € Q, i =1,...,n, such that d; = r;d; + t; where t; € Q. This can
be done in Maple with the algorithm called "compare" (see [11] and [42]).

(b) Compute | = lem(denom(r;), i =1,...,n).
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(c) If 0o € Syeg(L) then take 1 as its minimal polynomial: 1 =2 —oco or 1 =

K| —

(d) Compute h = [](x — s;)"".
i=1
4. Take an element (g, N,) where g is a candidate for f and N, the set of its associated
candidates for v..

5. Define
1 if deg(h) =0,
a=1< d
eglnumer(g)) otherwise.
deg(h)
If a ¢ Ny then (g,Ny) is not a good element, we have to go in 4., and take another
(9, Ny).

6. Define: g; to be the monic part of g and h; the monic part of h.

7. If gy — h$ # 0 then (g,N,) is not a good element and we have to go to step 4. and
take another (g, Ny). All the pairs (g, N,) for which g; —h{ = 0 generate a set called
E.

E will be the reduced set for the candidates for (f,v).
We have implemented in Maple an algorithm for this reduction called findBesSqvf-

Basfield. An example for this case can be found in our Maple worksheet associated to
this thesis.findBesSqv{Basfield

Irrational case

Lemma 4.13. In the irrational case, we know all the zeroes of f.

Proof. A change of variables can transfer a regular singularity to a removable singularity
only if v € Q\ Z (v € Z because we are not in the logarithmic case). Since — gg

1 1
only changes the exponent differences by an element of —7Z (invariance modulo —Z, here
n n

n = 1) then — g can also transfer a regular singularity to a removable singularity only
if v € @\ Z. So in the irrational case (v € k), S;eg(L) contains all the zeroes of f. O

To reduce the set of candidates for (v, f) we proceed as follows:

1. For all s € S,e5(L), we find the extension ext(s) of k using the expression of the
exponent differences of L at s. Then we define

extl = m ext(s) | \ k.

5E€Sreg(L)

If extl = () then we are in the basefield case and we can use our algorithm findBesSqvf -
viBasfield to find, if they exist, candidates for (v, f). Since we have v ¢€ k and v
appears in the expression of the exponent differences of L at any s € S, (L), then

extl # 0.
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2. We choose one element o of extl. For all s € S,.(L), let o, be the leading coefficient
of the exponent differences of L. at s with respect to the variable o. Let mg be the
multiplicity order of s as zero of f. Since we work with A(L,s) = £2m,v + 2z, with
zs € Z then

o5 =2msf Vs € Seg(L)
where [ € extl U k is independent of s.
3. For all s € S;ee(L) let Py be the minimal polynomial associated to s. Hence the set

{P,,,..., P, } of all those minimal polynomials has m elements with m < n where
n is the number of elements in S,e;(L). Let

bp, = os,deg(Py;) Vie{l,...,m}.
4. For all i € {1,...,m}, we can define the following rational numbers r;
1 it =1, 1 if =1,
i = bp,. = 1= . _ 4.23
Pi | otherwise s - deg(P) otherwise, (4.23)
st1 Mgy deg(P81)

and denote by 7; their denominator: 7; = denom(r;).

5. Let us define [ = lem(r;,1 < @ < m). Then r; -l € N and [ | my, - deg(Ps,)
since 7; | ms, - deg(Py,) for all 1 < i < m. Therefore, r; - [ | mg, - deg(Ps,) for all
i€ {l,...,m} since by (4.23) we have my, - deg(Ps,) = r; - mg, - deg(Ps,).

3-'d PS'
6. Foralli € {1,...,m},let ¢; = W—egl(z)
;-

Mgy - deg(Psl)
)

€ N. Hence, by replacing r; by its value

n (4.23), we have ¢; =
So

= ¢ which is independent of 7 € {1,...,m}.

my, - deg(Ps,) = (r; - 1)g 1€ {1,...,m}.

7.Leth= [ PU) Then

ie{l, m}
(ri-lq /deg(P5 ) mS -deg( Py, ))/deg(Ps,) M.
hi = H PS = H Ps V= H P
ie{1, i€{1,- ie{l,,m}

Hence h? is the monic part of the numerator of f. That means the numerator of f
must be a scalar multiple of a ¢"* power of h.

8. For every candidate of (v, f), we check if the numerator of f is a scalar multiple of
a ¢'"* power of h. If it is the case, we keep (v, f) in our list of candidates, if it is not,
we just remove it from our list of candidates.

We have implemented in Maple an algorithm for this reduction called findBesSqIrr.
An example for this case can be found in our Maple worksheet associated to this thesis.
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4.1.5 Example

We have written some algorithms (depending on many cases) on how to find Bessel square
type solutions, if they exist, with change of variable parameter f € K\ k. We have
also summarize them by writing another algorithm called BesSqSolutions which takes
as input an third-order linear differential operator L and returns, if they exist, all the
parameters of transformations (r, 2, 71,70, f € k(x)) and also the Bessel square parameter
v € k such that we are in situation (4.4)

Lps 5o M —pa L.

If not it will return "No Bessel square type solutions". This algorithm deals with
all possible cases.

We will take here just one example and show explicitly how some of our algorithms
work.

Let us consider the Bessel square operator Lgp with parameter v = a-RootOf(x? +
2)+1/2

> LBB:=subs(nu=a*Root0f (x~2+2)+1/2,LBB) ;

LBB := 2*Dz* + 3xDx* + (1 —42* — 4 (a RootOf (_Z*+2) + 1/2)2) Dx —4x

Let us apply to Lgg the change of variables transformation with parameter f given
by

> fi=(x-2)"2%(x-7)/(x-1)"5;
o= (x—2)2(x—7)

| (= 1)

That gives us the following operator called L
> L:=ChangeOfVariables(LBB,f);

L= (-2 -7 -1)"%(2® =132 +27)" Dz® + 3 (¢! — 262> 4 1882 — 512«
+439) (. — 2) (x = 7) (x —1)"* (22 — 132 + 27) Dz* — (=17006112 a2 + 5061 21
+8503056 a RootOf (_ Z? + 2) — 28099018824 x + 32! — 186 2'7 — 80970 x5

—6178910 23 + 32446722 22 — 126753214 2™ + 380186954 x'° — 923670030 2°
+849004 ' 4 2035186004 28 — 4736476918 27 4+ 11776763148 25 — 26665094450 2°
+47608789582 x4 4 53675365323 22 — 61591453506 2% — 32 a®x'® + 1984 a%2!7
—322654944 a®x'? + 1233427200 a’2'! — 3572058432 a?x'° + 7942409984 a’x?
—13663419712 a?2® + 18229147136 a*x™ — 18799770848 2% + 14838366784 a’x®
—8794541792 a®x* 4 3787568640 a®x> — 1118974176 a’x? + 202813632 a’x
+853760 a’x'® — 8788192 a’x' 4 62679104 a’x'3 + 16 a RootOf( 7% +2) a8

+26992 a RootOf (_ Z* 4 2) 2% — 992 a RootOf (_Z* + 2) z'" — 53984 a*z'6
—7419183392 a RootOf (_ Z* 4 2) 2° — 101406816 a RootOf (_Z* + 2) x
—9114573568 a RootOf (_ 22 +2) 27 + 1786029216 a RootOf (_Z* + 2) z'°
+6831709856 a RootOf (_ Z* + 2) a® + 4397270896 a RootOf (_ 2% + 2) z*
—1893784320 a RootOf (_ Z* + 2) 2* — 3971204992 a RootOf (_ Z* + 2) 2°
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—616713600 a RootOf (_Z* + 2) 2! + 559487088 a RootOf (_ Z* + 2) 2
+4394096 @ RootOf (_ Z* + 2) 2 4 161327472 a RootOf (_ Z* + 2) 22
+9399885424 a RootOf (_ Z* + 2) 2° — 426880 a RootOf (_ Z* + 2) z'®
—31339552 a RootOf (_ Z% + 2) 2% + 6668295207) (v — 1) Dz + 32 (z — 2)°

x (22 — 132 +27)° (z — 7)
Let us assume that we have as input this operator L. and then see how with our codes
we can find its Bessel square type solutions if they exist. That means if we can find the
Bessel square parameter v and the transformation parameters such that

LBB i>C M —EG L.

Let ext be the set of algebraic numbers, parameters and names (except the variable
x) which appear in the expression of the coefficients of L:

> ext:=indets(L,{Root0f,name}) minus {x,Dx};
ext = {a, RootOf (_Z2 + 2)}
Let extp be the set of all algebraic numbers given by the RootOf expressions in ext such
that all its elements are algebraic over the minimal field containing Q U (ext \ extp).
Since sometimes we can use in our computations the RootOf expression associated with
its index, we will take extp = { }.

Let us denote by E the set of all the singularities of L (we can find it using our
implemented code called Singular).

> E:=Singular(L,ext):
Then the set of non-apparent singularities of L is given by

> F:=NotAppSing(L,E,ext);

F := [[oo,00], [z — 1,1], [z — 2,2], [z — 7,7]]

Let S;.; be a set of irregular singularities of L. which are the set of poles of f.

> Sirr := irrsingBesSq(L,t,F,ext);

Sirr = [[[x — 1,1]], [[5, =60t + 54+ 104¢* — 48¢° +4¢72,60¢t > +5
—104¢* +48¢73 — 4t72]],[[-60¢ 5 +104¢* — 48¢73 + 4t 72]], [5]]

Let us take G as the set of elements in F at which L has all its exponent differences
in k. Let S,¢s be the set of elements in G at which L has logarithmic solutions or all

its exponent differences are not, at same time, in N. All the elements of S,¢; belong
to the set of the zeroes of f and they are given by

> Sreg:=regsingtrueBesSq(L,t,Sirr[-1],ext);
Sreg := |[[[o0,00], [z —2,2], [z —7,7]],[[0,—2 — 4a RootOf (_Z* +2),
2 4+ 4.a RootOf (_ ZZ+2)] [0, -2 — 4a RootOf (_Z* +2),
24 4a RootOf (_Z* +2)], [0, =1 — 2a RootOf (_ 2%+ 2)
1+2aR00tOf( )H [[2+4aRootOf(_Z2+2)},

[2 + 4 .a RootOf (_Z2 + 2)] , [ + 2a RootOf (_Z2 + 2)“]
Sreg can be divided into two subsets: the set of non-removable singularities of L (at
least one exponent difference is not an integer or L has logarithmic solution(s)) and
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a set of removable singularities of L. (all the exponent differences are integers and L
doesn’t have logarithmic solution(s)). The set of non-removable singularities of L can
also be divided into two sets: the singularities at which L has logarithmic solutions and
the singularities at which L doesn’t have logarithmic solutions. Hence, let us denote
by RS, a set of three sets: the first is the set of non-removable singularities of L with
non-logarithmic solutions, the second is the set of removable singularities of L in S,eg,
and the third is the set of singularities of L with logarithmic solutions. With our code
called SregseptrueBesSq we can find this set RS,eq:

> NRemSreg:= SregseptrueBesSq(L,Sreg,ext) [1];
NRemSreg = [[[co,00], [z —2,2],[z — 7,7]], [[0, -2 — 4a RootOf (_Z* +2) ,
2 4+ 4a RootOf (_Z* +2)], [0, =2 — 4a RootOf (_ 2% +2),
24+ 4a RootOf (_Z* +2)], [0, -1 — 2a RootOf (_ 2% +2)
1+2a RootOf (_2Z*+2)]],[[2+4a RootOf (_Z*+2)],
[2 + 4 .a RootOf (_22 + 2)} , [1 + 2a RootOf (_22 + 2)“}
> LogSreg := SregseptrueBesSq(L,Sreg,ext) [3];
LogSreg = ||
> RemSreg := SregseptrueBesSq(L,Sreg,ext) [2];
RemSreg := ||

Since NRemS, ¢, # [|, we know some zeroes of f. Those zeroes represent all the
zeroes of f because the exponent differences of L at elements of NRemS,., are not in
Q.

In order to make our codes faster, we have implemented one procedure called
IrrRegAppsingBesSq which gives at the same time and, by avoiding duplicate compu-
tations, in a shorter time all the outputs of the procedures irrsingBesSq, regsingtrue-
BesSq and SregseptrueBesSq.

> R1l:=IrrRegAppsingBesSq(L,t,E,ext):

With our code called BesSqSubst, we can compute the candidates for f up to a
constant (the polar part of f).

> F1:=BesSqSubst(L,x,t,R1[1],ext);

Fli=[6@-1)"-13@-1)"+8@-1)" (-1
With our code called CandichangvarBesSq, we can compute all the candidates for
the change of variables parameter f.

> CandichangvarBesSq(F1,R1,ext);

[_ (- 2)%(z — 7)]

(= 1)°
Since the exponent differences of L at elements of RS,c; are not in QQ, we are in
the irrational case. Our code called findBesSqIrr gives us the set of candidates for

(v, f).
> findBesSqIrr(L,R1,F1,x,t,ext);

{a RootOf (_Z% +2) + % 1+ a RootOf (_Z* + 2)} ,— @ _(Q)i %5_ 7)]
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Bessel Square Root Type Solutions

All the transformation parameters, if they exist, and also the Bessel square parameter
can be given using our code called BesSqSolutions:

> BesSqgSolutions(L);

—2)*(z -7
o RootOf (_ 7% +2) + 1/2,[0], =2 @ . )
(—1+2)

Hence, L has Bessel square type solutions with Bessel square parameter v = a -
RootOf(z? + 2) + 1/2 and transformation parameters: r =0, ro = 1, 71 = 0, r, = 0 and
f= _(@-=2P@ -7

- (x—1)° =
4.2 Change of variable parameters are not squares of

rational functions in k(x)

A
Since f € k(x), we will assume f = B with A, B € k[z], B monic and ged(A,B) = 1.

in the whole section, we will consider the situation (4.1).
The problem now is how to get information about A and B from L (our input operator).

4.2.1 Exponent differences

The generalized exponents of Ly, at 0 and oo are

>

>

gen_exp(LBB,t,x=0) ;
[[0,t = x|, [-v,t = 2], [v,t = z]]
gen_exp(LBB,t,x=infinity) ;

(- b1

Hence the ramification index of Ly, is 2 at = oo and 1 at all the other points.
Using the assumptions of the last chapter, the generalized exponents of M at

a zero p of f are
0, —myr, myy] (4.24)

where m,, is the multiplicity order of p as a zero of f,
a pole p of f are
m m ! m !
7}7’ 727 + Z ]fjerptg’/ ’ 710 o Z ']fjJFmpt;/ (425)
J=—mp J=—mp

where m,, is the multiplicity order of p as a pole of f and
f=t"" Zofj_mptg?’ with f;_,, € k and f_, #0,
]:

+ 1/2 +
7=0 7=0
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So the ramification index of M belongs to {1,2} for the poles of f and is 1 for all the other
points. Since the exp-product and gauge transformations don’t change the ramification
index, the ramification index of L. belongs to {1,2} for the poles of f and is 1 for all the
other points, otherwise L can’t have Bessel square root type solutions.

Using (4.24) and (4.25) we have that the exponents differences, modulo a factor —1,
of M at

- a zero p of f are

[—mpy, mypy,  2myv| (4.26)
- a pole p of f are
—1 —1 —1
= /2 F i/2 7 /2
> et = D0 et =2 0 iF et (4.27)
Jj=—mp J=—mp Jj=—mp

1
By using now the fact that the exponent difference is invariant modulo —Z (here n € {1, 2}
n

for the poles of f and n = 1 for all the other points) under the exp-product and gauge
transformations, the exponent differences of L at

- a zero p of f are
[—myv + a1, myr+az, 2myr + as) (4.28)

with aq, a9, a3 € Z
- a pole p of f are

-1

-1 -1
Bit D iFsm ) Bo= D iFiem ) Bs—2 > ifjmt)

Jj=—myp Jj=—mp J=—mp

(4.29)
1
with B, B2, 83 € §Z-
Since one of the main tool of our work are exponent differences and for the reason

of generalization, we will consider the first two exponent differences. The third one will
be used as a necessary condition to test if we are solving in terms of Bessel square root

functions B2 = B2(\/z).

Definition 4.14. Let us consider the situation in (4.1). We define the exponent differences
of L at

- a zerop of f by
A(L,p) = £m,v mod Z (4.30)

where my, is the multiplicity order of p as a zero of f,

- a pole p of f by
—1
— ) 1
A(L,p) =+ ' /% mod 7. 4.31
L=+ mod | (131)

J+mp°p
J=—mp
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where m,, is the multiplicity order of p as a pole of f and
+oo )
f=t"" > fimmpth,  with fim, €k and f_n, #0,
+00 12 +00 _]:.0 _
(JZ% fj_mptg,> :]Z:% Fit)* with F; € k.

Since we know how to find all the poles of f (using Corollary 3.13) which are elements
of the set S, (L), and also their multiplicity orders by using their exponent differences,

we can start in order to find f = B’ to first find the truncated series for f at all its poles

by squaring the truncated series for f1/2 at all those poles.

4.2.2 Truncated series for f

This lemma gives us the form of the power of ¢, in the series expansion of f 1/2 at a point
p.

. 1
Lemma 4.15. Let p be a point in k. If f € k(x) and f*/? = > aity, wherei € §Z, a; € k
and t, is the local parameter at x = p, then the set {i|a; # 0} is either a subset of Z or

1
a subset of > + Z.

Proof . Similar to the proof of Lemma 9 in [12]. O

Definition 4.16. Letp € k and g = > ait;/z, a; € k and ay # 0. We say that we have
i=N

an n-term truncated power series for f when the coefficients of tf)v/Q, e ,téNJrn*l)/Q are

known.

Remark 4.17. If an n-term truncated series for fY? is known then we can compute a
n-term truncated series for f.

Let us have a look on the exponent difference of L at a pole p of f in (4.31). It can
be brought in the form

-1
B+ Y ati? with B €Z
Jj=—mp

where a; = £j and

J+myp

400 )
F=t""% fi—mt), with fj_n, €k and f_,, #0,
. 1/2 . 7=
(ZO fj_mptg;> = Zofjti/ ? with 7]. € k.
J= J=

So a truncated series for f%/2, modulo a factor —1, at a pole p is

-1

3 %tg/z. (4.32)

Jj=—mp
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Let p € Sip(L) and fY/2 = Y ait;/Q, a; € k with m,, the multiplicity order of p as

=—mp

a zero of f. By (4.32), we have a truncated series for f1/2 with [m,/2] terms (see [12]).
We square it to obtain a truncated series of f at p. But this truncated series for f has
[m,/2] terms (see Remark 4.17) which is only half (rounded up) of the polar part of f.

We have implemented in Maple an algorithm called SirrBesSqRootinfol to find all
those truncated series for f related to the elements of S;.(L).

Since we know how to find the truncated series for f, the next step will be to find,
using the poles of f, the denominator B of f.

4.2.3 How to compute the denominator B of f

We retrieve B from S;,,(L) as follows:

Lemma 4.18. Consider the situation (4.1) and f = A/B with A, B € k[z], B monic and
gcd(A,B) = 1. Then

B= [] @-p™= ][ t7»= [ ~™ (4.33)

PESir(L) pE€Sirr(L) PyeSi(L)\{1}
where ¥p € Sy (L), f= > ait; (my,, is the multiplicity order of p as a pole of f).
1=—my

Proof. We We just use, by Corollary 3.13, the fact that S;,(L) represents all the poles of
f. O
The algorithm SirrBesSqRootinfol that we have implemented computes this denom-
inator B of f.
We know how to find B (denominator of f). The next problem is now to find the
numerator A of f. In order to solve it, we will need to find a bound for the degree of A.

4.2.4 How to get a bound for the degree of the numerator A of f
Remarks 4.19. (i) If oo € S;(L) we will have deg(A) > deg(B).
(11) If 00 € Syey(L) we will have deg(A) < deg(B).

(111) If oo is an apparent singularity of L, oo can be a zero of f but never a pole of f.
So deg(A) < deg(B) (if oo is not a zero of f then deg(A) = deg(B)).

The following lemma gives us a bound for the degree of A.
Lemma 4.20. Let

deg(B) + Mmoo if 00 € Sipy(L), (4.34)

QU
=
Il

deg(B) otherwise

where My, 1s the multiplicity order of oo as a pole of f (00 € Sy(L) ).
(i) If oo € Si(L) then deg(A) = da,
(11) if 00 € Syeg(L) then deg(A) < da,
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(111) otherwise deg(A) < da (00 & Si(L) U Spey(Lh)).

Proof. 1t follows from Remarks 4.19. O
Hence, da given by (4.34) is a bound for the degree of the numerator A of f.

Corollary 4.21. For s € S;..(L), let mg be its multiplicity order as a pole of f. Then

dA: Z mg .

SESZ‘TT(L)
Proof. By Lemma 4.20 we have
. > ms + My if 00 € S (L),
deg(B) + my, if 0o € Sir(L), seS: ~
g, des(B) ) g = ) s
deg(B) otherwise > my otherwise .
SESirr(L)
Soda= >, ms. O

SESirr(L)
The algorithm SirrBesSqRootinfol that we have implemented computes dju.

Now we know a bound da for the degree of A. The next step will be to find its
coefficients. In order to achieve it, we will first see how to get linear equations for those
coefficients of A.

4.2.5 How to get linear equations for the coefficients of the nu-
merator A of f

Since we know a bound for the degree of A, denoted by da, we can write

da
A= Z a;x',  a; € k. (4.35)
i=0
So we have dy + 1 unknowns: ay,...,aq4,. The equations for those coefficients of A will

come from the set Si, (L) U Syeg(L). For a point s € Siy (L) U Syeg(L), we will deal with
two cases:

- when s € k,
- when s € k but s € k. k is the algebraic closure of k.

That is done by taking instead of x — s the minimal polynomial P; of s over k and working
on k(s) instead of k.

Lemma 4.22. Let us assume S,ey(L) # 0. Then the remainder of the Euclidean division
of Aby [] Ps will giveus >, deg(Ps) linear equations for the coefficients of A.

Psesreg(L) Psesreg(L)

Proof. For s € S,¢(L), let mg be its multiplicity order as a zero of f. We can write A in

the form
A=c H P™ with ¢ € k.

S

P ESreg (L)
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Since ms; > 1 Vs € Sie(L), let R be the remainder of A divided by  [[ Ps. Hence

Py€Sreg(L)
R is a polynomial of degree —1 + > deg(P;). The fact that m, € N\ {0} Vs €
P:€Sreg(L)
Sreg(L) implies R = 0 and therefore we will have ) deg(P;) linear equations for the
PyESreg(L)
coefficients of A. O

Remark 4.23. By the proof of Lemma 4.22, 0o € S,,(L) gives us one equation: aq, = 0.
That means we have deg(A) < dx.

Lemma 4.24. For s € Sirr(L) let my be its multiplicity order as a zero of f, fs the polar
part of f at s and f, the [mg/2]-truncated series of f at s. Let

TOERTEND DA R | I (4.3

Ps Esi'r'r(L) Ps Esi'r'r(L)\{l}
Then u(x) € k[x] and the remainder of the Euclidean division of numer(u(zx)) by
denom(u(z)) will give us > deg(Ps) - [ms/2] linear equations for the coefficients

PseSi(L\{1}
of A.
Furthermore, if oo € S;(LL), the quotient of the Euclidean division of numer(u(x)) by
denom(u(z)) will give us, in addition, [ms /2] linear equations.

Proof . For s € Sirr(L) let mg be its multiplicity order as a zero of f, fs the polar part of
f at s and f, the [m,/2]-truncated series of f at s. We have

1
B B 3 bl b€ ko if s = oo,

fS:fs+f8 where fs: Z:{ns .

A /2] 5. € k otherwise.

1=mg

By our algorithm SirrBesSqRootinfol we can compute all the f, for s € S;.,(L).

= To=i= X (-R)=lr- X L)+t X R

PSESirr(L) Psesirr(L) Psesirr(L) PSESirr(L)\{l}
where f € k[x] and fo=0ifco ¢ Sir(L). Since f — > fs=a €k, we get
PSESM(L)
f - Z 75 =a-+ foo + Z fs-
PseSir (L) PseSipr (L)\{1}

f € k(z) implies that the polar part of f at s doesn’ﬁ have half integer powers (element
of 1/2 4 Z) for all s € S;,(L). Hence Vs € Sy (L), fs € k(x), f, € k(z), fo € k[z] and
fo € k[z]. So we have

( ~
a+ fo € klz],
~ hi(z
T fm M ) < e,
Psesirr(L)\{l} L PS (437>
Psesirr(L)\{l}
_ — ho(x
Y Fo=Tut - P 12l) € k2]
Psesirr(L) L 5
L Psesirr(L)\{l}
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with deg(hy) < Z deg (Ps) - [ms/2] and deg(hg) < Z deg (Ps) - ms.

P.€Si (D\{1} Ps€Sin (L)\ {1}

_ ~ h
Therefore f — >, fi=a+ foo + 1(z) [ms/2]
P.€Sin (L) L o

Psesirr(L)\{l}

TOEIVEND DR A R | I

. Now u(x) becomes

| Py€Sie (L) PseSi (L)\{1}
~ hi(x) s /2)
S|t m P II =

i PeSim (D\{1} P

= (a + ]700) . H P2 4, ()

Ps€Si (L)\ {1}
= u(z) € k[z] and deg(u(z)) = |mw/2] + Z deg(Ps) - [ms/2]. (4.38)

PseSip (L)\{1}
On the other hand, since f = A/B,

TR D S A R | G
Ps€Si (L) PseSi (L)\{1}
- “ |
a;x"
= Z;O o ? o h2 (37) . H PLWS/QJ
I rr =7 [ Pr S
P.€Sim (L)\{1} PoeSim (D\{1} P.€Si(L)\{1}

using (4.35), (4.37) and Lemma 4.18

da
1 i F m
— pima—ms/2] DB SE | A
L s i=0 PyeSi (L)\{1}
Psesirr(L)\{l}
1 Ao
_ el DL P | R CO) PR )
L s i=0 P€Sin (L)\{1}

Psesirr(L)\{l}

dy

Since > ax' — f o - IT P — hy(x) € k[z] and we don’t know the coefficients a;
=0 Py€S;i (L)\{1}

of A,

numer(u(x)) = dZA a;xt — fo - I P — hy(x),
i=0

R@esirr(L)\{l}
denom(u(z)) =  [[  P™/*.

Psesirr(L)\{l}
Let R be the remainder of numer(u(x)) divided by denom(u(z)). Hence R is a polynomial
of degree —1 + > deg(Ps) - [ms/2]. The fact that u(x) € k[z] implies R = 0 and
Ps esirr(L)\{l}
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therefore we will have > deg(Ps) - [ms/2] linear equations for the coefficients of
P.eSi (V1)

A.

Let us assume that oo € S, (L). Let Q be the quotient of numer(u(x)) divided by
denom(u(z)) and d; its degree. Then d; = deg(Q) = deg(u(z)) since u(z) € k[z]. Hence,
by (4.38) we have d; = |mw/2]| + > deg(P;) - |ms/2] and this implies

Ps €S (L)\{1}

> deg(Py) - [my/2) = di — [mao/2] . (4.40)

PseSin (L)\{1}

For 0o € Si. (L), u(z) will be taken as u(z) - (1/x)™=/2 and therefore

deg(u(z)) = Y deg(P)- [my/2] .

PseSin (L)\{1}

Since deg(Q) = deg(u(z)), we will also have deg(Q) = > deg(Ps) - [ms/2]. So
Psesirr(L)\{l}
all the coefficients of Q with degree i = > deg(Ps) - [ms/2] +1---dy have to be

Ps €S (L)\{1}
zero. By using (4.40), all the coefficients of Q with degree i = d; — |ms /2] +1---d; have
to be zero. That gives us dy — [dy — [moo/2] + 1] + 1 linear equations for the coefficients
of A. Therefore, we will have |ms /2| linear equations for the coefficients of A when
o0 € Sirr(L)- U

Remarks 4.25.  a- By Lemma 4.22 and Lemma 4.24, we have

Z deg(Ps)+ Z deg(Ps)-[ms/2] linear equations for the coefficients of A
Ps esreg(L) PS esim'(L)

where my is the multiplicity order of s € Sy(L) as a pole of f. That means we have

Z 1+ Z [ms/2] linear equations.

SE€Seq(L) $€Sir (L)

b- Since Syy(L) can be an empty set but S;..(L) never, we have at least
Z deg(Ps) - [ms/2] linear equations for the coefficients of A.
P€S, (L)

That means
Z [ms/2] linear equations.

SGSW,«(L)
Lemma 4.26. The number of linear equations for the coefficients of A is greater or equal
1
to —da + Z 1.
2 PESreg(L)

Proof. By Corollary 4.21 we have

= 3 omossh= 3 s O[]
$€Si (L)

$€Siyr (L) $€Sipr (L)
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Hence, by the part (a) of Remarks 4.25, the number of linear equations for the coefficients

1
of A is greater or equal to —dx + > 1. O
PESreg(L)
The algorithm SirrBesSqRootinfol that we have implemented computes dy and the

number of linear equations satisfied by the coefficients of A.

We have now the linear equations satisfied by the coefficients of the numerator A of
f. Let n be the number of those equations. If this number is greater than the degree of A
then we can solve those equations to get the coefficients of A. If this is not the case, we will
discuss further methods later using the zeroes of f (elements of S, (L)) and the exponent
differences of L at those zeroes. At the same time, we can see how to find candidates for
the Bessel parameter v.

4.2.6 How to compute the numerator A of f and the Bessel pa-
rameter v

By comparing da and the number n of linear equations satisfied by the coefficients of A
(we can use the algorithm SirrBesSqRootinfol to get n) we have:

1. if n > da then we can solve those equations and get A: that is the "Easy case".
2. if n < da, we have to distinguish between two cases:

(a) when all the zeroes of f are known:
i. "Logarithmic case" (v € Z),
ii. "Irrational case" (v € k'\ Q),
(b) when we are not sure that we know all the zeroes of f: "Rational case" (v €

Q\Z).

Normally, we just have three cases: "Logarithmic case", "Irrational case" and "Ra-
tional case". The "Easy case" just helps us to find candidates for f. To find candidates
for v we have to search whether we are in the "Logarithmic case", "Irrational case" or
"Rational case" and use a particular technique, too.

Easy Case
Lemma 4.27. In the Easy case, S;,(L) # 0.

Proof . For s € S;(L), let m4 be its multiplicity order as a pole of f.

Since {%W <mgVs € Sy (L), weget > {%W < > mg, and by Corollary 4.21

sESirr(L) 2 B sesirr(L)

3 {%} <d, . (4.41)

SESirr (L)

we have

If Syeg(L) = 0 then, using the part (a) of Remarks 4.25, we will have n = ) {%-‘
€S (L)
linear equations for the coefficients of A. So by (4.41), n < du, and that means we are
not in the Easy case (n > da). O
To find candidates for (v, f) we proceed as follows:
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1. We solve our linear equations for the coefficients of A using Lemma 4.22 and
Lemma 4.24:

(a) If we find solutions then we already have A and therefore f = A/B because we
know B.

(b) If we don’t find solutions then we cannot find Bessel square root (B2 = B2(,/z))
type solutions for L using the Easy case. That means the number of linear
equations for the coefficients a; of A is less than or equal to dj.

2. To find candidates for v we have to search whether we are in the "Logarithmic case",
"Irrational case" or "Rational case" and use a particular technique (those cases will
be treated and explained in the next sections). Since S,eq(L) # 0, we take the first
element s in S, (L) and proceed as follows:

(a) if L has a logarithmic solution at s then we are in the logarithmic case and we
use its technique.
(b) if L doesn’t have a logarithmic solution at s then:

i. if A(L, s) € Q, we are in the rational case and we use its technique.

ii. if A(L,s) € Q, we are in the irrational case and we use its technique.

We have implemented in Maple an algorithm called easyBesSqRootf to find candidates
for f and another algorithm called easyBesSqRoot to find both candidates for (v, f), if
they exist. An example for this case can be found in our Maple worksheet associated to
this thesis.

Logarithmic case

As in the Bessel square root case with f = ¢ and g € k(z), we know all the zeroes
of f: the set Siee(L). They have logarithmic solutions and v € Z. So we have now
to do a combinatorial search to find their multiplicities as zeroes of A: try all possible
combinations of multiplicities of zeroes of A. For a zero s of f, let my be its multiplicity
order. We will have

deg(A)= > deg(P.) - m,. (4.42)
Ps€Sreg (L)

To find the list of combinations of multiplicities m, of s € S,eg(L) as zeroes of A we
proceed as follows:

1. We take one element of S,e;(L) and we call it so.
2. We put deg(A) in the form
deg(A) = Qs, - deg(Ps,) + Rs, with Qs,, Rs, € N and 0 < Ry, < deg(Ps,).

By using (4.42) and the fact that my > 1 Vs € S,ee(L), we have my, € {1,..., Qs }-

3. Forms,, € {1,..., Qs }, we repeat the process by considering S,es(L) = Syeq(L)\{Ps, }
and deg(A) = deg(A) — deg(Ps,) - ms, -
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4. At the end, we will have the list of combinations of multiplicities m; of s € S;eq(L).
The only unknown will be the leading coefficient of A. By Remarks 4.25 we have
enough equations to find it.

We have implemented in Maple an algorithm called SearchKnLog to find candidates
for A up to a multiplicative constant.

Once we get candidates for f = A/B, we use the same technique as in the logarithmic
case with f = g% and g € k(z) to find candidates for v related to any f.

We have also implemented in Maple an algorithm called findBesSqRoot1n which gives
us candidates for (v, f), if they exist. An example for this case can be found in our Maple
worksheet associated to this thesis.

Irrational case

Lemma 4.28. In the irrational case, we know all zeroes of f and their multiplicity as
well.

Proof .

1- All the zeroes of f are known:

A change of variables can transfer a regular singularity to a removable singularity

only if v € Q\ Z (v ¢ Z because we are not in the logarithmic case). Since — g
1 1

only changes the exponent differences by an element of —Z (invariance modulo —Z,
n n

here n = 1), —> g can also transfer a regular singularity to a removable singularity
only if v € Q\ Z. So in the irrational case (v € k\ Q), Seg(L) contains all the
zeroes of f.

2- All the multiplicities of the zeroes of f are known:

For all s € S,es(L), we find the extension ext(s) of Q using the exponent differences
of L at s. Then we define

extl = ﬂ ext(s) | \ Q.

$E€Sreg(L)

Since we have v ¢ Q and v appears in the exponent differences of L at any s €
Sreg(L), we have extl # (). We choose one element o of extl. For all s € See(L), let
as be the leading coefficient of the exponent differences of L at s with respect to the
variable 0. Let m, be the multiplicity order of s as zero of f. Since we work with
A(L, s) = £2m; - v + 2z, with 2z, € Z it follows that

as =203 -mg ie. mg= ;—Z) Vs € Sreg(L) (4.43)

where [ € extl UQ is independent of s.
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Sreg(L) contains all the zeroes of f, therefore

deg(A) = Z ms - deg(Fs)

Ps€Sreg (L)
= deg(A) = Z (;—s> - deg(Ps) using (4.43)
Ps€Sreg (L)
Z Qs+ deg<Ps)
Ps€Sreg (L)
= 28 = 4.44
(4.43) and (4.44) give us
a
s = ® -deg(A reg(L). 4.4
m Z ag - deg(PS) eg( ) VS < S g( ) ( 5)
Ps€Sreg(L)
So we know all the multiplicities of the zeroes of f.
O

To find candidates for (v, f) we proceed as follows:
1. We find all the zeroes of f by computing the set S;ee(L).

2. For every zero of f, we find its multiplicity order by using (4.45) in the proof of
Lemma 4.28. So we have A up to a multiplicative constant.

3. Now there is only one unknown coefficients of A that we have to find: the leading
coefficient. By Remarks 4.25 we have enough equations to find it.

4. Once we get candidates for f = A/B, we use Definition 4.10 and Lemma 4.11 to get
a list of candidates for v related to any f.

We have implemented in Maple an algorithm called findBesSqRootIrr to find both
candidates for (v, f), if they exist. An example for this case can be found in our Maple
worksheet associated to this thesis.

Rational case

Here we are not sure that we know all the zeroes of f. The denominator of v (denoted
by d) will be very important in that case because d along with the multiplicities will
determine whether the singularities disappear. Let s be a root of A with multiplicity m,
then A(L,s) = +myv mod Z. If d|mg, the change of variables © — f can send s to a
removable singularity, and then not all the roots of A are known (not all the roots of A
are in S,ee(L)). We can conclude that if a zero of A becomes a removable singularity, then
m,s must be a multiple of d.
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Definition 4.29. Let us define for S,.,(L) the two following sets:

(

NS,(L) = {s € S,(L) |Fi € {1,2,3}, A;(L,s) € Q\ Z},
RemS,;(L) = {s € S,(L) |Ai(L,s) € Z Vi€ {1,2,3}},
A = set of all the zeroes of A,

NS,ey(L) = {P;s € k[z] | Ps is the minimal polynomial of s € NS,,(L) over k},
RemS,,(L) = {Ps € k[z] | Ps is the minimal polynomial of s € RemS,,(L) over k},

A = {P, € k[z] | P, is the minimal polynomial of s € A over k} .

\

NB: Every time when we will take an element s of NS,e.(L), A(L, s) will represent one
of A;(L,s), ¢ € {1,2,3}, which belongs to Q \ Z.

Remark 4.30. RemS,.,(L) and NS,.,(L) are, respectively, the set of removable and non-
removable singularities of L in S,,(L), and we have S;ey(L) = NS,5(L) [J RemS,,(L).

Lemma 4.31. A can be written in the form A = cA;A$ where

(cek andd= denom(v),

Alz H Psﬁsa
P;eA

Ay =a [] P%, witha €k,
P,cA

mgs = the multiplicity order of s € A as zero of f,
ms = a,-d+ Bs withs e A, (as, ;) € N2, 0 < B, <d.

\

Proof. For s € A, let m, be the multiplicity order of s as a zero of f. We can put m, in
the form: m, = a, - d + 8, with (a,, 8;) € N? and 0 < S, < d.

A=b ] Pre=bv ][] P¥- J] P withbek

PseA PseA PseA
d
:cHPfS~ aHPSaS ,  with a,c € kand b=c-a”.
PseA PseA

Lemma 4.32. We will take d = denom(v) > 2.
Proof .

- Ford =1, v € Z, and we are in the logarithmic case which has already been treated.

1
-Ford=2,ve€e §+Z, and then L2 will be reducible. We can solve it by factorization.

U
Lemma 4.33. Let d = denom(v).
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deg(A
I- If NSoy(L) = 0 then Ay = 1, d|deg(A) and deg(Az) = egcﬁ ),
2- If NS,y(L) # 0 then Ay = I1 P where my = oy - d+ B, with (as, B,) € N2,

PyENS, o (L)
1 < By < d for s € NS,(L) and % its multiplicity order as zero of f.

Proof. Let v = %, a € Z, ged(a,d) = 1. For any zero s of A, let my be its multiplicity

order as a zero of f and
ms = ag - d+ B, with (ag, ;) € N?, 0 < B, < d. (4.46)

1- Let s be a zero of A. Then s € S;eg(L) = NS;ee(L) | RemS, (L) or s is an apparent
singularity or a regular point of L. Hence

NSieg(L) =0 = A(L,s) €Z = ms + 2z, € Z with z; € Z
a a
= (a,-d+B,) (3)+ZSEZ = BS'EGZ‘

We have 3, - % € Z, ged(a,d) =1 and 0 < By < d. Then, f; = 0. Hence

A= Pr=1] =1

PscA PscA

that means deg(A;) = 0 and therefore, we have the following implications:

A = cA1AY = deg(A) = deg(A) + deg(Ay) -d = deg(A) = deg(A,) - d
deg(A)

= d|dy and deg(Aq) = ¥

2-  a- Let s be a zero of A;. Then 5, > 1 and that means d { m, by (4.46).

A(L,s) = mgv + zg = my (g) + z, with z, € Z. (4.47)

d{ms and gecd(a,d) = 1 gives us my (%) ¢ Z. So, by (4.47), A(L,s) € Z.
Therefore s € NS,¢.(L).
b- Let s € NS,ee(L). Then A(L, s) & Z by the definition of NS,e(L).
a
d
= dtms since ged(a,d) =1
= fs # 0 using (4.46)

= s is a zero of A;.

= myv+ 2, €1 = ms< >+ZS§ZZ with z, € Z.

SOA1: H Psﬁs

PseNS;eg(L)

By the previous lemma, we can conclude that
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Corollary 4.34. A can be written in the form A = cA;AS where

(cek andd= denom(v),

1 if NS,(L) =0,
A= [T PP  otherwise,
PLENSog(L)
Ay =a [] P%, witha€k,

PseA
ms = the multiplicity order of s € A as zero of f,
as - d+ By with (as, Bs) €N?, 1< By < d if s€NS,(L),

mg =
o+ d otherwise.

\

Proof . Just use Lemma 4.31 and Lemma 4.33. U

Lemma 4.35. Let s € A and ds = denom(A(L, s)). Then we have ds | d and therefore,
if NSpe(L) # 0, 1| d where | = lemgens,,,w)(ds).

Proof. Let v = %, a € Z, ged(a,d) = 1. Let s € A and m, be its multiplicity as a zero
of f. Then

A(L, s) = mgv + zg = my (%) + 2z, with 2, € Z
:% where c =mg-a+d- z, € Z.

Therefore, denom(A(L, s)) | d ie ds|d.
Let us assume NS, (L) # (0. Since NS,e(L) € A then denom(A(L,s)) | d for all s €
NSieg(L). That means lemgens,.,1)(ds)|d ie 1] d. O

Lemma 4.36. Let us assume NS,(L) # 0 and | = lemgens,.,w)(ds). Then Vs € NS, ¢(L)
d d
with Bs as in Corollary 4.34, = Bs, and therefore deg(Ay) > T deg(Ps) for all Py €

S S

—_ d
NS,ey(L) and deg(A,) > 7

Proof. Let v = ?Z, a € Z, ged(a,d) = 1. Let s € NS,es(L) and m, its multiplicity as

a zero of f such that my = a, -d + B, with (as,8;) € N?, 0 < 8, < d. Then we have
A(L,s)=myw+ 2,7, 2, €L
a

= (a-d+5) (5) +2 ¢2

= ﬁsg ¢ 7 and ds = denom(A(L, s)) = denom (ﬁsg) since o a + 25 € Z.

d
By Lemma 4.35, we have d; | d. Therefore d = ¢, - ds with e, € N ie g, = e

a

ﬁsE¢Z7 d:‘ss'dsa 55Ta7 dSJ[CL,
a =

ged(a,d) =1, ds = denom (ﬁsa> s | Bs-
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d d
Hence 7= €s | Bs. So Vs € NS,e(L), T

S

Bs. Let | = lemgens,,,1)(ds) and Vs €

d
NS,ee(L), Bs =05 - 7 with o, € N. Using Corollary 4.34, s > 1 and therefore o, > 1.

Again by Corollary 4.34, we have A; = [T P>
PyENS, g (L)

Sdeg(A) = Y deg(P) o= Y deg(P) oy o

P,eNS g L) P,eNS.eg (L) i
= deg(Ay) > deg(Fs) - o5 - d% Vs € NS,eg(L) since deg(Fs) - o5 - d% >0 Vs e NS,e(L)
= deg(A;) > deg(P) - d% Vs € NS,ee(L) since o, > 1
= deg(Ay) > d% Vs € NS,e(L) since deg(Ps) > 1
= deg(A;) > %l since [ > dy Vs € NS, (L).

O

Lemma 4.37. Assume NS, (L) # 0 and | = lemgens,,,)(ds). If | > deg(A) then we
have deg(A) = deg(A1) and deg(Ay) = 0. That means Ay = o with o € k.

Proof . Let NS, (L) # 0 and | = lemgens,,,(1)(ds). Then deg(A;) > 1 and by Lemma 4.35,
[ | d where d = denom(v). Hence d = o -l with o € N\ {0} since d # 0.

deg(A) = deg(Ay) + deg(Ay) - d = deg(A) + deg(Asy) - o - L. (4.48)
Using (4.48) and the fact that { > deg(A) and deg(A;) > 1 we will get deg(Az) = 0.
Therefore deg(A) = deg(A1) and Ay = o with o € k. O

How to find d = denom(v)

We can find a list of candidates for d = denom(v).

Lemma 4.38. Let us assume NS,.,(L) = 0. Then the candidates for d = denom(v) are

{iEN‘SSiS? and i|dA}U{dA}.

Proof. Since NS,¢(L) = 0 then by Lemma 4.33, d | deg(A) and deg(A) = deg(A2) x d.

1- If deg(As) = 0, then oo is a zero of f, otherwise f will be a constant function and
that is not good (f? € k(x) \ k). Let my be the multiplicity order of oo as zero of
f. We have mq, = deg(B) and A(L, 00) € Z since NS,¢s(L) = 0. So

d = denom(v) | mo = deg(B) = d|da = deg(B) by Lemma 4.20
d
= dy=d-0, oeN\{0} since dy =deg(B)#£0 = d=d, or dgf.

By Lemma 4.32 we also know that 3 < d. Hence d satisfies

<3§d§d7A and d|dA) or d=dj,.
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2- If deg(Ay) = 1, then deg(A) = deg(Az) - d = d. Since we don’t know deg(A) but
just its bound du, d can be taken as dp: d = da.
dog(A) _ deg(4)

3- If deg(Az) > 2, then we have deg(A) = deg(Az) -d = d= deg(Ay) = 2

By Lemma 4.32 we also know that 3 < d. So d satisfies

deg(A)

3<d<
- = 2

and d | deg(A).
Since we don’t know deg(A) but just its bound dy, d satisfies
da
3§d§7 and d | da.

O

Lemma 4.39. Let us assume NS,(L) # 0 and dy = denom(A(L, s)) Vs € NS,(L). Let
I = lemgens, ,w)(ds)-

1- If 1 > da then the candidates for d = denom(v) are

{ieNB<i<da-l and l]i}.

2- If l < dp, let dp be on the form dpn = q -1+ r with q,r € N, 0 < r < [. Then the
candidates for d = denom(v) are

da

- -1 il
i-llee{l, ..., q}, Z - deg(Ps) < da and gedgeys,,, 1) ( g )

P.eNS, (L) s

Proof. By Lemma 4.35 we know that ds | d Vs € NS,(L) and { | d.

1- Let us assume [ > dn. By Lemma 4.37 and Lemma 4.36 we have, respectively,
da = deg(A;) and d/l < deg(A1). So d/l < dp ied <dy-l. We also know by
Lemma 4.32 that d > 3. Therefore we have

3<d<dy-l and []d.
So the candidates for d = denom(v) are

{ieN|3<i<dy-1 and 1]i}.

2- Let us assume [ < da. || d and d > 3 by Lemma 4.32 then d =114, i € N and
i > 1. So deg(A) = deg(As) - d + deg(Ay) = deg(Asy) - 1 - i+ deg(Ay). Since we don’t
know deg(A) but just du, then we can take

dp = deg(Az) - 11+ deg(Ay), i>1. (4.49)
On the other hand, let ds have the form

dy=¢q-l+r, withgreN, 0<r<I. (4.50)
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(4.49) and (4.50) imply
ie{l,...q. (4.51)

d [

Letdi = Y —.deg(P)= Y !
PseNS;eg(L) ds PseNS;eg(L) ds
d

7 Bs Vs € NSyeg(L). Then Vs € NS,e(L) s =05 - di’ with o, € N and o, > 1
because s # 0 .

- deg(P;). By Lemma 4.36 we get

dp = deg(Ag) - 1-i+deg(Ay) = deg(Ay) - 1-i+ Y B, -deg(P,)

P, ENSreg (L)
. d
= deg(Ay) - i+ Z Os - q deg(Ps)
P, ENSreg (L)
d
> Z Os - T deg(Ps) since deg(As)-1-i>0
PseNSreg(L)
d
> Z i deg(Ps) since o4 >1 Vs € NS,(L)
P.eENS, (D)
= dy > dy. (4.52)

d -1 d
Let dy = gcdseNSreg(L) (d—) = ngseNSreg(L) (Zd ) . Vs € NS, (L), Since dy 7 and

g Bs, we get dy | Bs. Therefore dy |deg(A1) because
deg(Al) - Z Bs : deg(Ps)

P,ENS, e (L)

d d
7 Vs € NS,ee(L) = 7= bs - dy with by € N Vs € NS, (L)

S S

da

= d=(dy-b,)dy Vs € NSpeg(L) = dy | d.
We have dy |deg(Ay) , do | d and dpy = deg(As) - d + deg(A;), therefore
do |d . (4.53)

Using (4.50), (4.51), (4.52) and (4.53), the candidates for d are i - [ such that

;

dya=q-l+r, withgreN 0<r<l,
ied{l,...,q},
11

>

y da.
L PseNSeg(L) 7%

11
-deg(Ps) < da and gcdseNSreg(L) (d )

S




126 Bessel Square Root Type Solutions

How to find the degree of A; and A,

Let us first see how to get a list of candidates for deg(As).

Lemma 4.40. Let d = denom(v).

d_A

T

2- If NS,oy(L) # 0, let da = q-d+r, withq,r € N, 0 < r < d. Then we have
deg(Az) € {0,...,q}.

Proof. Let d = denom(v).

1- If NS, (L) = 0, then we have deg(Ay) =

1- Let us assume NS, (L) = (). We have by Lemma 4.33 dy = deg(As) - d. So we have

d
deg(Az) = ?A‘

2- Let us assume NS,oo(L) # 0@ and dy = ¢-d+r, with ¢,r € N, 0 <r < d. Since we
also have dy = deg(As) - d + deg(A;) then we can take the candidates for deg(As)
in the set {0,...,q}.

O
When we find a candidate for deg(As) we can also get its associated candidate for
deg(A1).

Corollary 4.41. Let us assume that we know deg(As), then by using the relation
da = deg(Az) - d + deg(Aq)
we also have deg(Ay).

Proof. Since we know deg(Asz), we just use the relation dy = deg(Az) - d + deg(A;) and
get
deg(Al) = dA — deg(Ag) -d.

How to find A,

For NS,es(L) = 0, we can use Lemma 4.33 to get A;: Ay = 1. The problem now is what to
do if NS, (L) # 0. In that case, also by Lemma 4.33, we know that A; =[]  PP.
Py€NS eg (L)
Hence, finding A, is equivalent to find 8, Vs € NS,e(L).
We will see in this lemma which technique can be used to find all the g, with s €

NS,eg(L).

Lemma 4.42. Let d = denom(v). Let us assume NS,y(L) # 0 and ds = denom(A(L, s))
for all s € NS,4(L). Then we can find 55 Vs € NS,,(L) by solving the Diophantine
equation:

1 <6, < d,

Z Bs - deg(Ps) = deg(Ay) with (4.54)

d
P.eNS (L) d, |7
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Proof. By Lemma 4.33 we have A; =[] PP, 1<, <d. Then
P.eNS,eg(1)

deg(A;) = ;ﬁs - deg(P,)

Py€NSreg (L)
By Lemma 4.36 we have
d

Since we know d, deg(A;) and ds Vs € NS, (L), all the 5 with s € NS, (L) will be
solutions of this Diophantine equation

ps for all s € NS,(L).

1 S /BS < d’
Z B - deg(P;) = deg(A;) with

d
P5ENSog (L) d_s Bs-

O
Let us see now how to solve our Diophantine equation and find all 55, s € NS, (L).
This will lead to find candidates for A;.

Lemma 4.43. Let us assume NS,(L) # 0. Then we can solve the Diophantine equation
of Lemma 4.42 and get a list of candidates for Ay.

Proof. Let d = denom(v). For s € NS, (L), let d; = denom(A(L, s)), m, the multiplicity
order of s as a zero of f and put m, in the form

ms = - d+ B with (ag, 3) € N?, 1< 3, < d. (4.55)

By Lemma 4.36, Vs € NS, (L)

d d d
7 Bs = Bs:d—-as with 0, € N = 1§d—-as<d by (4.55)
= o0, > 1.

D R | GRS

PyeNS (L) PyeNS,eg(L)
d d
= deg(A;) = Z i o5 - deg(Ps) > Z 4 deg(Ps) (05 > 1 Vs € NS,e(L))
PseNSreg (L) Ps€NS;eg(L)

= deg(Ay) > di -deg(P;) VP; € NS,e(L) since di -deg(P;) > 0 VP, € NS,(L)

d
= deg(Al) — d_ . deg(PS) >0 VP, e NSreg(L). (456)

Let us take one element s; € NS, (L). By (4.56) we have

dog(A) — - - dea(P,,) > 0. (4.57)

S1
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deg(A;) = Lﬂs - deg(P,)

Py€NS,eg(L)

= deg(Al) - Z ﬁs ' deg(Ps) = Bs1 ’ deg(Ps1)
PyeNS g M\ Py, }

= deg(A;) — > deg(P,) > B, - deg(P;,) since B; > 1 Vs € NS,e(L)
PyeNSieg(W\{ Ps, }

d

= deg(Ay) — Z deg(Ps) > o, - [d— : deg(Psl)l : (4.58)

P.eNSioz L\ P2, } .
On the other side, let
d .
deg(A;) — > deg(Ps) =q - Ll_ : deg(Psl)} +7r with ¢,r €N

PyeNSeg(D\{ Ps; } (4.59)

and 0<r< di - deg(Py, ).

S1

Then we can take, because of (4.58), a5, € {0,...,q}. The fact that o5, > 1 reduces this
set to

o, €{1,...,q} (4.60)

di S0, < d. (4.61)

Since we know d, deg(A;) and dy Vs € NS, (L), using (4.57), (4.59), (4.60) and (4.61)
we can find candidates for o, by solving

Bs, < d =

( d
deg(Ay) — > deg(Ps) =q - ld— : deg(Psl)] +r with ¢,r € N
P.ENS oL\ Py } -
d
and 0<r < T deg(Ps,), (4.62)
s1
d d
o, €{1,...,q}, 04 - < d, and deg(A;) — T deg(Ps,) > 0.

Therefore, by using the relation 35, = — - 0,,, we get also the candidates for fj, .
s1
We continue the process by considering

A= 1T PP 1< B, <d.
PyeNS g (L\{ Ps; }

d
That means deg(A;) = deg(A;) — 7O -deg(Ps,), and we take another sy € NS,¢.(L).

At the end, we will find all the candildates for Bs, Vs € NS,e(L).

Since Ay = [] PP, we have also the candidates for A;. O]
Py€NSreg(L)
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How to find ¢ such that A = cA;A{

We have seen how to find A, B € k[z]. That means we have A;/B € k(z) and f-B/A; €
k[z]. So cA4 € k[z]. This doesn’t imply that Ay € k[x]. To get Ay € k[z], as in our
assumption, we choose ¢ € k by the following method.

Case 1: (kU{oo}) NS (L) # 0.

We have here A(L, s) € k(ts) Vs € (kU{o0})NS;y(L) and we can compute a truncated
series for f = (cAjAg) /B at « = s. Therefore, we have a truncated series for f - B/A;
(which equals cAd) at © = s. If we want to have A monic then we have to take ¢ as
the coefficient of the first term of this series (the truncated series of f-B/A; at z = s).
That implies the truncated series of Ay at = s has first term 1 (or another d-th root of
1 in k). Hence we can construct other terms of A; by Hensel Lifting (see [12]). By the
construction method, Ay will be in k[x].

The problem we face now is the following: if we choose other ¢ such that Ay € k[z],
will that lead to the same candidates for f7

Definition 4.44. We say that ¢, and cy are equivalent (c; ~ ¢3), if ¢; = ¢y - ¢ where
c€ek.

Lemma 4.45. Assume kU {oco}) N S;(L) # 0. Ay and B, which are monic and in k[z],
are fized. Let s € kU {oo}) N Sy(L) and c1,¢co and Ay be computed by the method we

introduced in case 1 above and theorem below such that (c;A1A3) /B and <02A1K§) /B

are candidates for [ with AQ,;&Q € kl[z]. Then ¢ and ¢y lead to the same candidates if
and only if c; ~ cs.

Proof .

1- Assume that ¢; and ¢y lead to the same candidates for f. That means we will have

A Ad A A4 - Ad
ClPi 2:C2Bl 2 = C1A§l:C2A§l = a_

— k= Ay, =cA, withceck
o Age 2 = CAo with ¢ € K,

d

such that ¢ = c1/ca. S0 ¢y - ¢ = ¢q and then ¢; ~ cs.

2- Assume that ¢; ~ ¢y. That means ¢; = ¢, - ¢%.

ClAlAg . Co CdAlAg . CQAI (CAQ)d . CQAll/&g . O
= = 3 = 3 =5 with Ag = cAy € k[z].

So (clAlAg) /B gotten from ¢; can also be gotten from cy. Therefore ¢; and ¢, lead
to the same candidates for f.

O
Conclusion : If we choose other ¢ such that Ay € k[x], then it will lead to the same
candidates of f. So our method is sufficient in this case.

Case 2: (kU {00})NSim(L) =0

For some s € Si; (L), we can temporarily extend the field k to k(s) and recompute
the local data over the new field. Then we compute all candidates g € k(s,x) for f as in
case 1. Any candidate g for f that is defined over k(x) will be discarded without further
computation (see the last part "Algebraic Extension").
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Remark 4.46. In the case 2, sometimes we can still use the way in case 1 to guess the
value of c. But it might not lead to the correct candidates because ¢ might not be unique
(up to multiplication by a d-th power) over k. So we need to introduce algebraic extensions
(see the last part "Algebraic Extension”).

How to find A,

d
In order to find A in f = iy

, the only unknown part is now As.

1
Lemma 4.47. To recover Ay we only need §dA + 1 linear equations for its coefficients.

Proof. Let d = denom(v). By Lemma 4.32 d > 3.

d
da = deg(A1) +deg(As) -d = deg(Az)-d <dy = deg(As) < ?A
d
= deg(Ay) < ?A since d > 3.
1 . . . :

Hence to get Ay we only need §dA + 1 linear equations for its coefficients. O
deg(A2)

Let Ay = bix', b; € k. By using the same methods as in Lemma 4.22 and

i=0

Lemma 4.24, the equations we get for {b;} will not be linear because we need to evaluate
the d-th power. We use here the method of Hensel Lifting (see [12]) to find linear equations
for the coefficients {b;} of As.

deg(A2)
Theorem 4.48. Let Ay in A = cAlAg be on the form Ay = bix', b; € k. For
i=0
each s € Sy (L) with mg as its multiplicity order as a pole of f, we will get [ms] linear
equations for {b;}.

Proof. The proof is similar as the proof of theorem 10 in [12]. O

Remark 4.49. If s € k, we can use the results from Lemma 4.22 and Lemma 4.24 to
1 1
get equations. Therefore, we can always obtain > §dA linear equations, while {gdAJ +1

equations are sufficient. So we always get enough linear equations.

How to find the Bessel parameter v

We take v = a/d, a € Z, d € N\ {0} and gcd(a,d) = 1. We know how to find
d = denom(v). What remains now is how to find a.

Since we just have to take v modulo Z, then a € [—d,d] N Z. That is also equivalent
toa € [—d/2,d/2)NZ. We also know that a/d ¢ Z, if not we are in the logarithmic case.
Then a € (] — d/2,—1]U[1,d/2[) N Z. Since taking v or —v is the same for our operator

Lgz, a € [1,d/2[ N N. Let
a d
b= ilee 5]
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If Syeq(L) # 0, using Definition 4.10 and Lemma 4.11, we can find N, the set of candidates
for » modulo Z. Therefore, the reduced set of candidates for v is

V=ViNnN

where "N" represents the intersection modulo Z.

We have implemented in Maple an algorithm called BesSqRootRat to find candidates
for (v, f) in the rational case, if they exist. An example for this case can be found in our
Maple worksheet associated to this thesis.

4.2.7 Example

We have written some algorithms (depending on many cases) on how to find Bessel square
root B2 = B2(\/z) type solutions, if they exist, with change of variable parameters which
are not square of rational functions in k(z). We have also summarized them by writing
another algorithm called BesSqRootSolutions which takes as input a third-order linear
differential operator L. and returns, if they exist, all the parameters of transformations
(r,ro,r1,70, f € k(x)) and also the Bessel parameter v € k such that we are in the
situation
Lp: e M —spg L.

If not, it will return "No Bessel square roots type solutions". This algorithm deals
with all the cases.

We will take here just one example and show explicitly how some of our algorithms
work.

Let us consider the Bessel square root operator Lpp = Lp. with parameter v =
5/12.

> LBB:=subs(nu=5/12,LBB);
119
LBB := 22°Dx” 4+ 6 xDx* + <— — 2x> Dz —1
Let us apply to Lgg the change of variables transformation with parameter f given
by
> fi=((x-1)"5x(x-7)"4)/((x-12)*(x-14)*(x-3) ) ;
PR 1)’ (z—7)"
" (z—12) (z — 14) (z — 3)
That gives us the following operator called L
> L:=ChangeOfVariables(LBB,f);
L =36 (z—1)° (z — 7)* (8967 — 5878z + 3a* — 109.4° + 1307 2?)° (z — 12)* (z — 3)"
X (r — 14)4 Dx® 4+ 108 (x — 1) (z — 7) (=218 27 + 6499 25 — 104180 2° 4 987827 *
+3 2% — 5732068 x + 20096501 x* — 38751258 = + 30858534) (8967 — 5878 x + 3!
—109 23 + 1307 22) (z — 12)° (x — 3)® (x — 14)® Dz® — (x — 12) (z — 3) (x — 14)
x (18520665120908031123126 = + 3998651202636212263 215 + 173832480 223

—9053528544 22 — 245979402650313330482820 z* — 911870515880074445602 z'2
—29483091110607109603 z** — 3091611815345853 218 — 447919384137869370 216
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—69036545299869074699541 22 — 13240379544983023993231 210 + 11664 2:2°
—2080080 x** — 87252176473291126851370 x® + 280228836976025631929820 x°
+3824107057746349765223 21 + 41222620813286268 17 + 329691581136 22
+180075462606323412536 23 — 8928362729232 x2° + 186723184797765 29
—242129495391633879835802 25 + 37650005677084427654216 x°
—2300502610610535723336 + 157429488642064200020025 x>

+163041223796184338489462 27) D — 144 (z — 7)* (z — 1)* (8967 — 5878 x
+324 — 109 2% + 1307 22)°

Let us assume that we have as input this operator L and then see how we can find its
Bessel square root B2 = B2(\/x) type solutions with our codes if they exist. That means

our code should return the Bessel parameter v and the transformation parameters such
that

Lps ¢ M —pq L.
Let ext be the set of all non-rational numbers, parameters and names (except the
variable z) which appear in the expression of the coefficients of L:
> ext:=indets(L,{Root0f ,name}) minus {x,Dx};
ext == {}
Let extp be the set of all algebraic numbers given by the RootOf expressions in ext such

that all its elements are algebraic over the minimal field containing Q U (ext \ extp).

Since sometimes we can use in our computations the RootOf expression associated with
its index, we will take extp = { }.

Let us denote by E the set of all the singularities of L (we can find it using our
implemented code called Singular).

> E:=Singular(L,ext):
Then the set of non-apparent singularities of L is given by
> F:=NotAppSing(L,E,ext);
F = [[oo,00],[x — 1,1],[z = 3,3], [z = 7,7], [xr — 12,12] , [x — 14, 14]]
Let Si; be the set of irregular singularities of L which is the set of poles of f.
> Sirr := irrsingBesSqRoot(L,t,F,ext);

Sirr = [[[o0,00], [z — 3,3], [z — 12,12], [z — 14,14]], [[3, -6 ¢° + 8t > — 781"
+3, 6t*3—8t*2+78t*1+3],[1/2 SR 12, -5 2 +1/2],[1/2,

» 33
50251\/7 Z\/ﬁ
Vo

2 1/2] ,[1/2, 551 V38 4 1/2, S8 38 4 1]

(6473 + 8472 — T8¢, [~ 84 V2 [T V22 | st VARG (319 1 /9,
1/2]]

Let us take G as the set of elements of F at which L has all its exponent differences
in k. Let S,eg be the set of elements of G at which L has logarithmic solutions or all
its exponent differences are not, at same time, in N. All the elements of S,.; belong
to the set of the zeroes of f and they are given by

> Sreg := regsingtrueBesSqRoot(L,t,Sirr[-1],ext);

Sreg i= [llo— 110, o= 7,70 | |- 25.0. 5] lmsimosyal] | |3 v
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Sreg can be divided into two subsets: the set of non-removable singularities of L (at
least one exponent difference is not an integer or L has logarithmic solution(s)) and
a set of removable singularities of L (all the exponent differences are integers and L
doesn’t have logarithmic solution(s)). The set of non-removable singularities of L can
also be divided into two sets: the singularities at which L has logarithmic solutions and
the singularities at which L. doesn’t have logarithmic solutions. Hence, let us denote
by RS,cs a set of three sets: the first is the set of non-removable singularities of L with
non-logarithmic solutions, the second is the set of removable singularities of L in S,
and the third is the set of singularities of L. with logarithmic solutions. With our code
called SregseptrueBesSqRoot we can find this set RS,eg:

> NRemSreg := SregseptrueBesSqRoot(L,Sreg,ext) [1];

B, %] ,[—5/3,075/3]] , H% B S]H

> LogSreg := SregseptrueBesSqRoot(L,Sreg,ext) [3];

MRemsreg = |lle= 1,11, 7,7, ||

LogSreg = ]

> RemSreg := SregseptrueBesSqRoot(L,Sreg,ext) [2];
RemSreg := ||

Since NRemS, ¢, # [], we know some zeroes of f. But we are not sure that they re-
present all the zeroes of f because the exponent differences of L. at elements of
NRemS,, are in Q \ Z.

In order to make our codes faster, we have implemented one procedure called
IrrRegAppsingBesSqRoot which gives at the same time and, by avoiding duplicate
computations, in a shorter time all the outputs of the procedures irrsingBesSqRoot,
regsingtrueBesSqRoot and SregseptrueBesSqRoot.

> R1l:=IrrRegAppsingBesSqRoot(L,t,E,ext):

Let f = A/B with A and B as in our theoretical part. Using our code called
SirrBesSqRootinfol, we can compute the truncated series for f related to the ele-
ments of S, the degree of A denoted ds and also the number n of linear equations
satisfied by the coefficients of A. It shows us if we are in the "Easy case" or not. If
we are not in this case, according to the exponent differences of elements in RS,eg[1],
we can see in which case we are.

> infol:=SirrBesSqRootinfol(L,R1[1],R1[2],x,t,ext);
infol = [[[oo,x7 !, [822* — 42° + 2,4, {}, {}], [3,2 — 3, (8192 (99x — 297) ],
17 {} ’ {}] ) [127 T — 127 [_100656875 (181’ - 216)_1]7 17 {} ) {}]7 [147 T — 147
891474493 (22 — 308) '), 1,{},{}]] . 9.8, (z — 12) (x — 3) (v — 14) , 1]
We have n = 8 and dp = 9 . Hence n < da and therefore we cannot solve those
equations and get A: that is not the "Easy case".

According to the exponent differences of the elements of NRemS, .., we are here in
the rational case. Our code called findBesSqRootRat gives us the set of candidates

for (v, f).
> findBesSqRootRat(L,R1,infol,x,t,T,ext);

[
127 (z —12) (x — 3) (z — 14)
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All the transformation parameters, if they exist, and also the Bessel parameter can
be given using our code called BesSqRootSolutions :

> BesSqRootSolutions(L);

5 (-1+2) (- 7)*
{ [E I = e — - 3)] }

. 5
Hence, L has B2 = B2(y/z) type solutions with Bessel parameter v = 2 and trans-

formation parameters: r =0, =1, r; =0, r, =0 and
f= (z —1)°(@ — 7)*
C (z—12)(z — 14)(z - 3)°

4.2.8 Uniqueness of the Change of Variables Parameter f

In this section, we want to show that the change of variables f is unique. We prove it only
for k(z) = Q(x) and k(z) = Q(z) and v € Q. We also exclude the case v = 1/24n, n € Z,
because Ly, will be reducible.

All the theorems, lemmas and remarks here about the Bessel square root operators L B2
are similar as in the PhD thesis of Quan Yuan (see [12]) about Bessel operators related
with second order linear differential operators in the part called: Proof of Uniqueness.
Let us consider

T0,71,I2

Lz —v0 My 2570 My 55 L (4.63)

Lemma 4.50. Let r,rg € Q(z), v € Q, f =z, 15 =0, 1 =0, and exp (f rdx) ro 1S a

constant. Then exp ([ rdz) € Q(z) and we can rewrite

o () [0 () 0. 027) 0 (02 ()
st (47) 5 (8 () 5 (3 (V) o e

Proof . Tt is similar as the proof of Lemma 21 in [42]. O
By taking L as L. we have the following lemma:

as

Lemma 4.51. If v € Q, and roB% (\/f) + r1 (B2 (ﬁ))l +ry (B2 (\/7))" is a solution

of Lz where ro, 11,72, [ € Q(x), then f = +x + ¢, where ¢ is a constant.

Proof . 1t is similar as the proof of Lemma 25 in [12]. O
Lemma 4.52. The constant ¢ in Lemma 4.51 1s equal to 0.

Proof. Tt is similar as the proof of Lemma 26 in [12]. O
By taking L as Lj» we have the following theorem:

Theorem 4.53. If Ly, has a solution

o () o (7). 5 (7)) 4 (7

where r,79,71,72, f € Q(x) and v € Q, then f =z, ry =0, r, = 0 and exp (frdx) ro 18
a constant.
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Proof . Tt is similar as the proof of Theorem 11 in [12]. We use Lemma 4.50, Lemma 4.51
and Lemma 4.52. 0

Remark 4.54. Using a standard argument, Theorem 4.53 implies a similar statement
with Q replaced by C.

Theorem 4.55. (Uniqueness)
If L has solutions

’

exp (/rdx) {TOBE (VR) +n (82 (VR)) +r (82 (Vi
i o () s (V) 47 52 (V) 4732 ()

where r,19,T1,T2,T0, 71, T2, [1, f2 € @(m) , then f1 = % fs

Proof. 1t is similar as the proof of Theorem 12 in [12] which takes, for i € {1,2} f; =
F = = : _ ——
D, € Q(z), where F;, D; € Q[z], and defines an inverse (denoted f; ') of f; over Q(z) as
a solution in Q(z) of Fy(T) — Dy(T) - x € Q(z)[T] with unknown 7. O

Remark 4.56. This Theorem 4.55 also holds if we replace Q(x) by Q(x). The proof is
essentially the same, but, for i € {1,2}, the definition of f; ' is more technical (similar
as for Remark 23 in [/2]).

Remark 4.57. Let Q C k C Q. Let K = k(x) and K[0] of order 3. Suppose L has a
solution of the form

exp ( [ ) [raB2 (V) 4 (82 (V) e (82 (vE)) |
where r, 1o, 11,79, [ € m The uniqueness of f implies f € K. In our algorithm

any candidate g for f that is not defined over K can thus be discarded without further
computation.

4.3 Algebraic Extension

This section is similar as the PhD thesis of Quan Yuan (see [12]) in the part called:
Algebraic Extension.
There are three types of algebraic extensions we need to deal with:

1- When a singularity or the Bessel parameter v is not in k.

If v € k, we are in the irrational case and we just use the coefficients of irrational
parts of the exponent differences of L at all the elements of S, (L) (those irrational
parts are the same: the irrational part of v) to find the multiplicity orders of the
zeroes of f. Hence we can find f. If a singularity s is not in k, by using Lemma 4.22
and Lemma 4.24, we can still get the linear equations we need.

92 When k # Q.

There is no problem because our algorithm works for all £ of characteristic 0. But
we might need more computations in the rational case.
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3- When the algebraic extension is introduced by the algorithm itself.

It happens when ¢ is not unique (up to multiplication by a d-th power) over k.
Although it is possible to compute all ¢’s up to ~ directly, it is a complicated
algebraic problem. Instead, to find proper ¢’s in that case, we add one irregular
singularity s into k. So now we work over k(s). This action requires that we compute
the exponent differences over the new field k(s), because some algebraic singularities
might factor now. Once we extend the base field, we only need to deal with the
other two types of algebraic extensions. And c¢ is unique (up to multiplication by a
d-th power) in the new field according to Lemma 4.45.



Chapter 5

oF5, 1F5, oF5 and 1F12 Type Solutions

All the results in this chapter are new.

We take here the initial conditions as for the Bessel square type solutions in the last
chapter. We just change the Bessel square functions (see the first part of the last chapter)
by the functions o Iy, | Fy, oFb, 1 F2. Hence we will get complete solver algorithms for o Fb,
1By, oFy and 1 F? type solutions.

Let L € K[0] be our input operator which has to be an irreducible third-order
linear differential operator. Let Ly be the operator associated to the function Fj €
{uFy, 1Fy, oFy, 1F2}. We just have to consider (see chapter three)

Lo L3¢ M —spc L. (5.1)

with M € KJ[J].

As for the Bessel square case, we will just take a closer look at the part Ly i>C M.
Once we found the parameters of the function Fj and the parameter f, we can obtain M
from Ly. Then, by solving the question of equivalence between M and L, we can finally
solve (5.1).

For n € N\ {0} and @ an element of K = k(x) or not, when we will talk about a

modulo —Z, that will means a modulo an additive element of —Z.
n n

5.1 Some Help Tools

5.1.1 Properties

We recall here some properties about hypergeometric functions. Theorem 5.1, Theorem 5.2
and Definition 5.4 are from [25].

d

Theorem 5.1. Let 0 be the differential operator given by 6 (f(x)) = xf'(x) = xd—f(:c)
x

) ) ) A1y ..y ap ) ) )
The generalized hypergeometric function ,I, x | satisfies the derivative rule
bi, ..., b,
0 (fu(2)) = n(fos(z) — fal(z))
for any of its numerator parameters n :=a; (i =1,...,p), and

0 (fu(x)) = (n=1) (fa1(z) = fulz))
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for any of its denominator parameters n:=b; (i=1,...,q).
Proof . See [25]. O
) ) . Ary... ,(Ip )
Theorem 5.2. The generalized hypergeometric function ,F, x| has this
bi,..., b4
property:
p
d a1y ..., ap Zl;[lai ar+1,...,a,+1
%qu ) =5 —ply Z
bi,..., b4 IT b by +1,...,b,+1
i=1
Proof. See [25]. O
Corollary 5.3. The linear space over C(z) spanned by
ai,...,a d ai,...,a
oIy "lz | and r—pFy "l
x
bi, ..., b, bi,...., b,
ai,...,a; +1,...,a al,...,a
contains each of ,Fy ! Pl s oYy P x|,
bi,..., by bi,...,0; —1,...,b,
ar+1,...,a,+1 ay,...,a
G O x| and Iy x
bi+1,...,b,+1 bi,... by
o . : - : ptq+3
Stmilarly, by applying the differentiation formulas twice, there are such
2

. d d 2 Ay,...,0p .
functions contained in < 1, a:d—, :cd— oIy x |, which has dimension three
v v b1, ..., b,

(any four are linearly dependent).
Proof. We use Theorem 5.1 and Theorem 5.2. O

Definition 5.4. A function obtained by adding £1 to exactly one of the parameters a; in
. . ) ) A,y ... ,ap
bj (ie{l,...,p} and j € {1,...,q}) is called contiguous to ,F, x
bi,..., b,

For a given ,F}, hypergeometric function, the following corollary shows us the existence
of a linear space over C(x), with dimension equals to the order of the differential equation
for ,F}, which contains all the functions coming from ,F, and all its derivatives by any
integer parameter-shift.
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aly...,Q
Corollary 5.5. Let us consider a generalized hypergeometric function ,F, Plo
bi,..., b,
and the C(z) vector space
ay, ) ap dn—l ay, 9 ap
S = C(z),F, x| 4+ C(x)dznflp v x
b17 ) bq b17 ) bq
) ) ) ) A,y ... ,ap
where n = max{p, ¢ + 1} is the order of the differential equation for ,F, x
bi, ..., b,
Hence, S is invariant under substitution v — v+ 1 and v — v — 1 of upper and lower
A1y ..., Qp
parameter(s) of ,F, x
bi,.... b,
Proof. We use Theorem 5.1 and Theorem 5.2. O

Remark 5.6. In our case, when ,Fy satisfies a third-order differential equation, we have
n =max{p,q+ 1} =3 and

aiy ..., 0 d aty...,a d? aiy...,a
e +C(x)——pky aE: ‘HC(Z')@qu aE:

S = C(z),F,
az br,...\b, br,...\b,

by, ... b,

Hence, this space S is invariant under any integer parameter-shift of ,Fy. Therefore, we
will assume that the upper and lower parameter(s) of ,F, belong to [—1,1].

Notation: In the rest of this thesis, the function Fj refers to any element of the set
{oFs, 1Fs, oFy, 1F7} with

1. a; and as as upper parameters when Fy=sF5,
2. ap as upper parameter when Fy € {|Fy, {F{}
3. by and by as lower parameters when Fy € {oFy, 1Fs, oFb},

4. by as lower parameter when Fy=F?.

Lemma 5.7. Consider (5.1) and Fy € {2Fs, 1Fs, oFs, 1F7}. If Spe(L) # O then the
following statements are equivalent:

(a)- The lower parameter(s) of Fy satisfy

¥by €Z orby €Z orby — by € Z or (2by, 2by € Z with bl x b2 < 0) for Fy €
{2F2, 1Fs, oF2}, and

* bl € ZfOT’ F0:1F12

(b)- There is py € Syeg(L) such that L is logarithmic at po.
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Proof. Similar as the proof of Lemma 4.8: we have to use Remark 5.6 and Remark 3.4.
O

For computing f and the upper and lower parameter(s) of Fy € {oFy, 1Fy, oFy, 1F2},
the only information retrieved from L that we can use is the information on invariance
of exponent differences of L. under projective equivalence. The poles and zeroes of f are
the main points at which we can really use those exponent differences. Let us check the
exponent differences of L at those points.

5.2 Exponent Differences

Let Lo € {Lpz, Lag, L2, Log, L2,}. Lo has two singularities: one regular at z = 0 and the
other irregular at * = oo. The generalized exponents of Ly at 0 and oo are

- For Ly=Lo,
> gen_exp(L22,t,x=0);
[[0,t =z, [1 —bl,t =2x],[1 —b2,t =z
> gen_exp(L22,t,x=infinity);
Jal,t =271, [a2,t = 27", [t + bl — al — a2 + b2, t = 27 ']]

For Lo=L15
> gen_exp(L12,t,x=0);
[[0,t =z],[1 —bl,t =x],[1 —b2,t =z]]
> gen_exp(L12,t,x=infinity);
fal,t =2 '], [t7  +1/2b1 —1/4 —1/2al +1/2b2,1* = 27]]

For Ly=Lgs
> gen_exp(L02,t,x=0);
[[0,t =z, [1 —bl,t =2x],[1 —b2,t =z
> gen_exp(L02,t,x=infinity);
[t —1/3+1/30241/3b1,—* =27 ']

For Lo=L%
> gen_exp(L112,t,x=0);
[[0,t ==z],[1 —bl,t =2x],[2—20b1,t = x]]
> gen_exp(L112,t,x=infinity);
[2al,t =271, [-2t' —2al +2b1,t =2 1], [t + bl,t = 27!

Hence the ramification index of

Ly at z=0and x =000 is 1,

-Lipatxr=0is1and at z = o0 is 2,
- Lppat x =01is 1 and at x = oo is 3,

- L} atz=0and z = o0 is 1.
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Using the assumptions of chapter 3, the generalized exponents of M at
- a zero p of f
* for L() € {LQQ,ng,LOQ}, are

[0, mp (1 —=01), 2m,(1—0bo)],

* for Lo=L2,, are
[07 myp (1 - bl) ) 2mp (1 B bl)] )

where m,, is the multiplicity order of p as a zero of f;

- apolepof f
* For L0:L22
-1
mpar, myay, my[by+by — (a+az)] + > jfith]
J=—mp
* For L0:L12

-1
m 1 Jj— .
My, 71) (bl + by —ay — 5) + | g gfl,jerpt;/Q ,

J=—mp

+oo . _
with ¢ solution of X2 —1=0and /2= f17j+mptf,/2 with f; i1, €K,

Jj=—myp
* For LO == L02
mp

-1 .
j— .
5 (bitb—1)+ > gf1,j+mpt§/3 ;

J=—mp

+oo . —
with e solution of X® +1=0and f1/2 = ijerptfy/g with f, ;... €Fk,

J=—mp

* For Lo=12,

-1 —1
2mpay, —2my(a; —by) + 2 Z jfjtg;, mpby + Z jfjt;{; ,
J=—mp j=—mp
where m,, is the multiplicity order of p as a pole of f, and f =1,"" > fj_, 1] with
j=0
fi—m, € kand f_,, #0.
Hence the ramification index of M
- for Ly =Lss, at all the zeroes and poles of f is 1;

- for Lo=Lj,, at all the zeroes of f is 1 and at all the poles of f belongs to {1,2};
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- for Ly=Lgg, at all the zeroes of f is 1 and at all the poles of f belongs to {1, 3};
- for Ly=L2,, at all the zeroes and poles of f is 1.

Since the exp-product and gauge transformation don’t change the ramification index, for
a given point p, the index of L at this point is the same like the ramification index of M

also at this point.
Using the generalized exponents of M at p, we can get the exponent differences of M
at p. They are given by

- pis a zero of f and
* Lo € {Lo2, L2, Lo }

[my (1 —=01), my (1 —=0by), my (b —by)],

* LO:L%1
my(L—="01), 2m, (1 —51), m,(1—10)].

- pis a pole of f

* LO:L22
-1
my (CLQ — al) , My [bl + bg — (2@1 + (12)] + Z jfjtg),
Jj=—mp
-1
mp [bl -+ bQ — ((11 —+ 2&2)] + Z jfjtg) s
J=—mp
* Lo=Lio

-1 .
myp 1 J = /2 mp 1
7 <b1 + b2 - 3&1 - 5) + Z €_1f17j+mpt;; ) 7 (bl + bQ - 3al - 5

j:*mp

-1

+ Z fl ]erpt] & Z ] (52_1 B 51_1) 71J+mpt;/2 ’

]—_mp j:_mp

where ¢4, €5 are the two distinct solutions of X2 —1 = 0. Since e, — &' = 42
then we have

1
my 1 7= 9 My 1
> (51 + by — 3a; — 5) + Z €—1f1,j+mptfg/ e (bl + by — 3a; — 3

Jj=—mp

. —1
+ Z f1J+mpt]/2’ + Y 21wt

J—*mp j:*mp
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* LOZLOZ
—1 -1
Z j (87 - 51 ) fl j—&-mpt;/:s? Z j (87 - 81 ) fl j—&—mpté 37
j=—myp j=—myp
-1
Z jles' — e )f1,1+mptz]v/3 ’
Jj=—mp

where €1, g5 and €3 are the three distinct solutions of X3 4+ 1 = 0.

—1 -1
2my (b —2a1) +2 > jfith, my (b —2a1) + > jfit),
j=—myp J=—myp

-1

—my (b —2a) — > jfit]

Jj=—mp

1
Since by the fact that the exponent difference at any point p is invariant modulo —Z (n,
n

P
is the ramification index of M at p, here n, € {1,2,3}) under the exp-product and gauge
transformations, the exponent differences of L at

- a zero p of f, for Ly € {Lag, Lyo, Lo} are
m, (1 —b1) + a1, my(1—0bs)+a, my,(by —be) + s
with aq, as, ag € Z.
- apolepof f
* Lo=Layy

-1

myp (ay —ay) + B1, my [by + by — (241 + az)] + Z jfjtg: + b,

J=—myp

—1
my [by + by — (a1 + 2a2)] + Z jfjti + 03]
j=—mp
where (31, B2, B3 € Z.
* Lo=Lqy

-1

my, 1 J = /2 myp
o5 (b1 + b2 — 3a1 — §> + ) afl,ﬁmpt; +h, (bt b

j:*mp

-1

. -1
1 J — ;
= 5) 2 LT £ Y Tt

Jj=—mp Jj=—mp

where €1, &5 are the two distinct solutions of X2 — 1 = 0 and 31, 3», 33 € Z.
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* LOZLOZ
1 B ' 1 - |
Z J (62_1 N 61_1) flJerpt;fJ/g + 5, Z J (551 - 51_1) fl,j+mpt1]o/3 + o,
jzfmp j:*mp

-1

Z J (551 - 52_1> ?1,j+mpt;/3 + B3],

Jj=—myp

where €1, g5 and g5 are the three distinct solutions of X241 = 0 and 31, 82, 33 €

7.
* LOZL%I
1 -1
2m,, (by — 2ay) + 2 Z Jfit, + B, my (by — 2ay) + Z 71ty + B2,
Jj=—myp J=—mp

-1

_mp(b1_2a1)_ Z ]f]t;{)‘i‘ﬁ?, )

J=—mp

where 81, 3, 83 € Z.

Let us first start showing how to find the lower parameters of Fy € {3 F», 1Fy, oFy, 1F?}.
This can be done by using the exponent differences of L at elements of Syeq(L) if Syeg(L) #
(), or by another technique based on the divisors of the multiplicity orders of the zeroes of
f (we need in this situation to find first f before searching for those lower parameters).

5.3 How to find the lower parameters 6; and b, or b of
Fy when Speg(L) # 0

We have implemented in Maple algorithms to find candidates for [by, bo] depending on the
cases that we will see after:

1. For oFy we have: £indbi2F21n (logarithmic case) and £findbi2F2 (non-logarithmic
case);

2. For 1 F; we have: £indbi1F21n (logarithmic case) and findbilF2 (non-logarithmic
case);

3. For ¢oF, we have: findbiOF2ln (logarithmic case), findbiOF2 (non-logarithmic
case);

4. For 1 F? we have: findbi1F1sq (non-logarithmic case).

To implement them, we have taken into account the fact that the values of 2b;, 2b, €
7, with b1 - b2 < 0 or not, and also the fact that b; or by or by — by can be an integer or
not if Ly € {Las, L1a, Loz}, and by can be an integer if Lo=13,.
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5.3.1 Sreg(L) 7§ 1]
For Lj € {Las, Li2, Lp2}
by 7Z and by € Z and by — by ¢ Z and (2b; or 2by ¢ Z or bl - b2 > 0)

We proceed as follows:

1. For p € S,eg(L) with m, its multiplicity order as a zero of f, the three exponent
differences modulo Z of L at p are: Ay(L,p) = m,(1 — by), As(L,p) = m,(1 — by)
and As(L,p) = m,(by — by). We compute the sets

Ny = { D ez < my -1,

P
+Ao(L,p) + 7| . .

2 2\

N = { 2D ez < my -1,
P

Ny = {ERD T e g <y -1
P

(a) For i € {1,2,3}, we take NI as the set of candidates for by — by. Then the
other N7, j € {1,2,3}\ {i} will be the sets of candidates for 1 —b; and 1 — by,
respectively, since by permuting the values of b; and by our function Fy doesn’t
change. Hence we can get the sets Ng;l and Ng? of candidates for b; and b,.
Using Remark 5.6, we replace in N} all the rational parts of the elements by
their representant modulo Z in [—1, 1], and in Ng;l and Ng? all the rational parts
of the elements by their representant modulo Z in |0, 1]. We define

Nim = {{bl,b2}| bl € N;l and b2 S Ngf} .
We remove in N/'? all the elements {b1, by} satisfying
by € Z or by € Z or by — by € Z or (2by, 2by € Z with bl x b2 < 0).  (5.2)

We take E! = 0. For any {by, by} € NI if by — by or by — by belongs to N? then
we put {by, by} in E.

(b) Ep =Uicpi 23 E} is the set of candidates for {1, by} associated to p. If E, = 0
then b; and by don’t exist. That means we cannot solve L in terms of Fy €
{QFQ, 1F2, OFQ} functions.

2. B =Vpes,., 1) Ep is the set of candidates for {b,bo}. If E = () then b; and b, don’t
exist. That means we cannot solve L in terms of Fy € {oF,, 1Fy, oF»} functions.

by €Z or by € Z or by —by € Z or (2by, 2by € Z with b1 -b2 < 0)

We proceed as in the case by € Z and by & Z and by — by & Z and (2b; or 2by & Z or
bl - b2 < 0 above. But we replace conditions in (5.2) with

by € Z and by ¢ Z and by — by ¢ Z and (2by or 2by € Z or bl - b2 < 0). (5.3)
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For Lo=L2

by &7
We proceed as follows:

1. For p € S;eg(L) with m, its multiplicity order as a zero of f, the three exponents
differences modulo Z of L at p are: Ay(L, p) = £m,(1—b1), As(L,p) = £2m,(1—b)
and Az(L,p) = £m,(1—by). We choose ¢, j, k € {1,2,3}, all different, satisfying the
conditions

(5.4)

Hence Ag(L,p) = £2m,(1—b1), A;(L, p) = £m,(1—by) and A;(L, p) = £m,(1—by).
We compute the sets

+AL(Lyp)+ 71 . .

k L, P J

Np—{ om, ‘jEZ,|j|§2mP—1},

Np:{TJEZ,MSmp—l :

. +A;(L,p) +J]| . .

N%I{J—JGZ,Ijlémp—l :
P

Nk, N; and Ng; are the sets of candidates for +(1 — b;). Hence we can get the sets
Ngl, N;} and Nél of candidates for b; using N’;, N;) and Ng;, respectively. Using
Remark 5.6, we replace in Ni', Nit and NJ! all the rational parts of the elements by
their representant modulo Z in |0, 1]. E, = ,c(, 25 N} is the set of candidates for
by associated to p. If E, = 0 then b; doesn’t exist. That means, we cannot solve L
in terms of Fy=1F} functions.

2. E= ﬂpesreg(L) E, is the set of candidates for by. If E = () then b; doesn’t exist. That
means we cannot solve L in terms of Fyy=1F} functions.

b eZ

Using Remark 5.6, we can take by = 1.

5.3.2  Speg(L) =10

We will see (in the next sections) that in this case, we first compute the candidates for
the change of variable parameter f before computing the candidates for b; and by for
Lo € {Lao, L1z, Lo2} and by for Ly =12,. Let us assume that we have a candidate for f.
So we can have all the zeroes and their multiplicity order of f. Let S be the set of all the
zeroes of f.
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For Ly € {La, Lio, Lo}
by €7 and by ¢ Z and by — by ¢ Z and (2b; or 2by ¢ Z or bl - b2 > 0)

We proceed as follows:
1. For p € S with m,, its multiplicity order as a zero of f, let us define
N, ={keN|k|m, and k # 1}. (5.5)

N, is the set of candidates for the denominator of 1 —b,, 1—0bs and b; — b, associated
to p. Therefore, N, is the set of candidates for the denominator of by, b, and by — by
associated to p. We have taken in (5.5) k # 1 because, if not, by or by or by — by will
be integers and we are not in this case.

2. N= ﬂpes N, is the set of candidates for the denominator of by, by and by — bs.

3. Let us define
R; = kEZ,\k|§s—l,k#0ands€N},

Ry =

w | >™w |

keNk<s—1, k:%()andsEN}.

R; and Ry are the sets of the representants modulo Z of candidates for b; — by in
]—1,1] and b; and by in |0, 1], respectively. We have taken in R; and Ry k # 0
because, if not, by or by or by — by will be integers and we are not in this case. We
have also considered the candidates for b, and by in |0,1] and by — by in |—1,1]
because of Remark 5.6.

4. R = {{i,7}|7,7 € Ry} is the set of candidates for {b;,by}. We remove in R all the
elements {by, by} satisfying

b1EZoerEZOrbl—bgeZor(le, 2[)26ZW1thb1[)2<0)

5. For any {b1, b2} € R, if b —by or by—b; belongs to Ry then {b1, by} is a good candidate
for the lower parameters of our function. All those good candidates generate a set

E. If E = () then b; and by don’t exist. That means we cannot solve L in terms of
Fy € {QFQ, 1F5, OFQ} functions.

by €Z or by € Z or by — by € Z or (2by, 2by € Z with bl - b2 < 0)

We proceed as follows:

1. For p € S with m,, its multiplicity order as a zero of f, let us define
N, ={keN|k]|m,}. (5.6)

N, is the set of candidates for the denominator of 1—b;, 1—0b, and b; — b, associated
to p. Therefore, N, is the set of candidates for the denominator of by, by and by — by
associated to p. We have taken in (5.6) & = 1 because by or by or by — by can also be
an integer.
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2. N= ﬂpES N, is the set of candidates for the denominator of by, by and by — bs.

3. Let us define

R: = kEZ,|k|§s,k:0andsEN},

w | >™w |

Ry = kEN,kSS,k:OandSEN}.

R; and Ry are the sets of the representants modulo Z of candidates for b; — by in
[—1,1] and b; and by in ]0, 1], respectively. We have taken in R; and Ry &k = 0
because b; or by or by — by can also be an integer. We have also considered the
candidates for b; and by in 0, 1] and b; — by in [—1, 1] because of Remark 5.6.

4. R = {{i,7}|4,j € Ra} is the set of candidates for {by,b2}. We remove in R all the
elements {by, by} satisfying

by € Z and by & Z and by — by & 7 and (2by or 2by & 7 or bl - b2 > 0).

5. For any {b1, b2} € R, if by —by or by—b; belongs to Ry then {b, b} is a good candidate
for the lower parameters of our function. All those good candidates generate a set
E. If E = () then b; and by don’t exist. That means we cannot solve L in terms of
Fo S {QFQ, 1FQ, OFQ} functions.
For Lo=12,

hg?
We proceed as follows:
1. For p € S with m,, its multiplicity order as a zero of f, let us define
N, ={keN|k|m,and k # 1}. (5.7)

N, is the set of candidates for the denominator of +(1—b,) associated to p. Therefore,
N, is the set of candidates for the denominator of b; associated to p. We have taken
in (5.7) k # 1 because, if not, b; will be an integer and we are not in this case.

2. N'={),cs N is the set of candidates for the denominator of b;.

3. E= {ﬁ‘ EeNE<s—1, k#0and s € N} is the set of the representants modulo
s

Z of candidates for by in |0, 1[. We have taken in E k # 0 because, if not, b; will be
an integer and we are not in this case. We have also considered the candidates for
by in |0, 1] because of Remark 5.6. If E = () then b; doesn’t exist. That means we
cannot solve L in terms of Fy=1F} functions.

b eZ

Using Remark 5.6, we can take b; = 1.
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5.4 oF, and 1F12 Type Solutions

Here the techniques of resolutions are a little bit similar to the Bessel square functions
(see the first part of the last chapter). That is due to the form of the exponent differences
at 0 and oo and also to the fact that the ramification index of the generalized exponents
at oo is 1.

5.4.1 Parameter f up to a constant
To find the parameter f up to a constant, we proceed as follows.
1. Let p € Sy, (L) with m, its multiplicity order as a pole of f.

(a) If Lo=Lgg, we choose the non-constant exponent difference of L at p. We take
—1
its non-constant part: it will be Y- jf;tl.
J=—mp

b) If Ly =12, we choose the two exponent differences of L at p which have the
11
same (up to a factor —1) non-constant part: this non-constant part will be

2 Jfit

J=—mp
By dividing any coefficient of this series by the power of its associated parameter

—1
t,, we get the polar part of fatp: F, =+ > jfjtg.

J=—mp

2. F= > F,is a candidate for f up to a constant.
pESirr(L)
We have implemented in Maple algorithms called Hyp2F2Subst when Ly = Lgy and
Hyp1F1sqSubst when Lo=L2, to find the candidates for f up to a constant.
The problem now is how to find this constant. We will distinguish two cases: when

we know at least one zero of f (Seg(L) # 0) and when we don’t know any zero of f
(Sreg(L) = 0) (integer case).

5.4.2 No Zero of f is known (Syeg(L) = 0)

We call this case the integer case. Here we have absolutely no information about the
zeroes of f and all the exponent differences of L at p & S;(L) are integers. What we
know is just the candidates for f modulo a constant ¢ € k.

Definition 5.8. For m € N, we can define

N(m) = { 2

m

jez,j%oumm—l}. (5.8)

Remark 5.9. By using Definition 5.8 and taking, in the Bessel square type solutions
case (see the first part of the last chapter), instead of 2v respectively 1 — by and by — by
for Lo = Las and 1 — by for Ly = L3, Lemma 4.4, Lemma 4.5 and Corollary 4.6 hold
also here (in this case). Let n be the degree of the numerator of f and for i € {1,2},
m; = denom(b;). Then m; divides n and the lower parameter b; appears modulo an integer
in N(m;) (i € {1,2}).
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In Definition 5.8, 0 € N(m) because, if not, the lower parameter can be an integer and
we are not in this case: the logarithmic case with S,ee(L) # 0 (we will see this later).

Since we know how to compute the lower parameter(s) of Fy € {oF», 1F?}, we can see,
using the exponent differences of L at elements of S;, (L), how to get upper parameter(s).

How to compute a; and as

Let us assume that we know the lower parameter(s) of Fy € {3F,, 1F£}. To have candi-
dates for the upper parameter(s), we proceed as follows:

1. We take a candidate for the lower parameter(s) of Fy € {oFy, 1F2} : {b1,bo} if
F0:2F2 and bl if F0:1F12.

2. Let p € S;x(L) with m,, its multiplicity order as a pole of f.
(a) If LO :L227

i. We call C}D the constant exponent difference of L at p: C}? = my(ay —
a1) modulo Z. We call C2 and CJ the constant part of the other ex-
ponent differences: C2 = my, [by + by — (2a1 4 a)] modulo Z and C} =
my, [by + by — (a1 + 2a2)] modulo Z.

ii. We compute the sets N}, N2 and N? of candidates modulo Z for +(az — a1 ),
+(2a; + a2) and £(a; + 2as), respectively:

r Ee]
N;:{] P jeZ,|j|§mp—1},
Tjace
Ng:{b1+52—‘7 p jEZ,|j|§mp—1},
P
e
\Ng:{bl‘i‘bg—j ijZ,‘j|§mp—1}
P

t+7+s
3
of candidates modulo Z for +(a; + a3). Hence,

5 Jitj+s
St

iii. We compute N = ‘z € NZand j € N3 [s| < 2} - N} is the set

Z’EN;‘;andjEN;,|s|§1}

is the set of candidates modulo Z for +a, and
N, = {(i—j,i)|i € N> and j € N} }

is the set of candidates modulo Z x Z for (aq, az). We replace in N, all the
rational parts of the elements in the pair by their representants modulo Z
in [0, 1].
(b) If Ly=L%,
i. We choose the two exponent differences of L at p which have the same (up

to a factor —1) non-constant part. The constant part of those exponent
differences are

C, = £m,, (by — 2a;) modulo Z and C2 = £+m,, (b — 2a;) modulo Z.
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ii. We compute the set N,

jgECI\ 1] . ,
Np:{<b1— mp>§'jez,|]|§2mp—1}

P

iii. We replace in N,, all the rational part of the element by their representant
modulo Z in [0, 1].

Mpes,..y Np is the set of candidates for (a1, as) if Lo =L, and a; if L= L3,
= (), the value

(a) of by or by when Ly=Lsy does not lead to a solution,

(b) of by when Lo=12, does not lead to a solution.

So we take another candidate for the lower parameter(s) of Fy € {3 F,, 1F?} and we
repeat all the process.

We have implemented in Maple algorithms called findcandai2F2 and findcandailF1sq
to find candidates for the upper parameter(s) of Fy=,F, and Fy = F?, respectively, if
they exist.

Conclusion

To find candidates for [{ai, as}, {b1, b2}, f] when Fy=5F, and [{a,}, b1, f] when Fy=1F?
we proceed as follows:

1. We compute the polar part of f: that can be done by our algorithm Hyp2F2Subst
if Lo =Ly and Hyp1F1sqSubst if Ly =L2%. Hence, we get candidates for f modulo
an additive constant.

2. For g candidate for the polar part of f, we have to find, if it exists, ¢ € k such that
f=g+c

(a) We take n as in Corollary 4.6

deg(numer(g + ¢)) if oo € Sy (L),
n =
deg(denom(g + ¢)) otherwise.

(b) denom(1—b;), denom(1—by), and denom(b; —bs) must divide n (by Remark 5.9
and the proof of Lemma 4.4 ): if n = 1 then by,by € Z for Lo=1gy or by € Z
for Lo=L%; (logarithmic case: we will consider this case afterwards). Son > 1
and denom(b;), denom(by) > 2 for Lo=Lyy or denom(b;) > 2 for Lo=L2,. For
n < 1, we will say that g + ¢, Ve € k, is not a good candidate for f and then
we will return to step 2. and take another candidate g for the polar part of f.

(c) We take all the divisors m of n greater or equal to 2. Let C be the set of those
divisors. Hence C is the set of candidates for the denominators of b; and b,
when Ly=Lys or the denominator of b; when L[):L%l.
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i. If Lo =Log, let (my, mg) € CxC. We check whether for certain constants ¢ €

k the monic part of the numerator of g+c becomes at the same time an m{"
and an mi" power. This can simply be done using linear algebra and leads
to a linear system of equations for the constant c. Solving these equations
gives us a set C(m, m,) Of possible values for c¢ related to (mq,my). If
Clmy,ms) = 0, (M1, m2) is not a good candidate for (denom(b;), denom(bs))
and then we will return and take another element (m;,mg) in C x C.

e V¢ € Cmy ms), we compute g+c. These will give us the set of candidates
F (i, ms) for f related to (mq,ms). Let us compute also N(m;) and
N(mg)

e Forge F(m1,m2)7
« For (by,by) € N(mq)xN(ms), we compute the set B of candidates for

{a1,as} (we have shown that above). If B # () then [B, {b1, b2},7] is
a good candidate for [By, {b1, b2}, f] where By is the set of candidates
for {a1,as}. All those candidates generate a set Gy, m,)-

* If a set Gy my) 7 0 is not generated then g is not a good candidate
for f. Then we will return and take another g in F(,,, m.,)-

We define a set G4 to be the union of the sets G, my), With (mq,ms) €
C xC.

ii. If Ly =L%, let my € C. We check whether for certain constants ¢ € k
the monic part of the numerator of g + ¢ becomes an mi{" power. This
can simply be done with linear algebra and leads to a linear system of
equations for the constant c. Solving these equations gives us a set C,,, of
possible values for ¢ related to my. If C,,, = (), my is not a good candidate
for the denominator of b; and then we will return and take another element
my in C.

e Vc € Cy,,, we compute g + c¢. These will give us the list of candidates

F,., for f related to m;. Let us compute also N(m).

e ForgeF,,

« For by € N(m;), we compute the set B of candidates for a; (we
have shown that above). If B # () then [B, b;,7] is a good candidate
for [By, b1, f] where By is the set of candidates for a;. All those
candidates generate a set G, .

x If a set G,,, # 0 is not generated then g is not a good candidate for
f. Then we will return and take another g in F,,,.

We define a set G, to be the union of the sets G,,,, with m; € C.

(d) If G, # 0 then G, is a good set in which we can have candidates for [{ay, as}, {b1,
by}, f] when Fy=oF, and [{a;}, by, f] when Fy=1F?Z. If not, ¢ is not a good
candidate for the polar part of f. Then we will return and take another candi-
date g for the polar part of f.

3. We define a set A to be the union of the sets G,, with g a candidate for the polar
part of f. If A # (), then L has Fy type solutions, if not, we cannot solve L in terms
of Fj functions.

We have implemented in Maple an algorithm called £ind2F2Int to find candidates for
[{ay,as},{b1,b2}, f] when Fy=5F5, and another called find1F1sqInt to find candidates
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for [{a1}, b1, f] when Fy=1F?Z, if they exist.

5.4.3 Some Zeroes of [ are known (S;eg(L) # 0)

The technique here is similar to the Bessel square case with (see the first part of the last
chapter). Instead of Lemma 4.8 we take Lemma 5.7. Remark 4.9 also holds.
We will distinguish two cases:

- the logarithmic case: the lower parameter(s) of Fj satisfy
*by€Zorby€Zor by —by €7 or (2by, 2by € Z with b1 - b2 < 0) for
Fy=3F5, or
* bl € Z for F0:1F12

- the non-logarithmic case: we are not in the logarithmic case.

Logarithmic Case

By Remark 4.9 (which holds here), S,c(L) represents all the zeroes of f. So Seg(L) # 0
in this case.
To find candidates for ({aq, as}, {b1,b2}, f) we proceed as follows:

1. We compute the polar part of f: that can be done by our algorithm Hyp2F2Subst
when L =Ly, and Hyp1F1sqSubst when Ly=L%,. Hence, we get a set of candidates
for f modulo an additive constant. Let us denote this set by F.

2. For g € F (candidate for the polar part of f)

(a) We use an element of S,¢;(L) to find this constant c. Let g = g + c.

(b) We test if the other elements in S, (L) are also zeroes of g. If that is true
then ¢ is a good candidate for the polar part of f. If not, we return and take
another g in F.

We have implemented in Maple algorithms called Candichangvar2F2 when L= Lo
and Candichangvar1F1sq when Ly=L3, to find g = g+ c. All those elements g for
which this is true generate a set F.

3. If F = (), then L has not Fy € {3F,, 1F2} type solutions.

4. ForgeF
(a) we compute the set of candidates for the lower parameter(s) of Fy (we have
shown above how to get this set). Let E be this set. If E=1(), g € F is not a

good candidate for f and then we take another g in F.

(b) For an element b of E, we compute the set for candidates for the upper param-
eter(s) of Fy (we have shown above how to get this set). Let B, be this set.
If B, = 0, the chosen candidate b for the lower parameter(s) is not good and
then we take another candidate b in E.

All the lists [By, b, g] for which B, # () generate a set A.



154 oFy, 1 Fy, oF, and | F? Type Solutions

5. If A # 0 then L has Fy type solutions, if not, we cannot solve L in terms of
Fy € {3F,, 1F}?} functions.

We have implemented in Maple algorithms called £find2F21n when Ly =Lss and find-
1F1sqln when Ly = L%, to find at the same time candidates for f, lower and upper
parameter(s) of Fy € {oF, 1F}7}, if they exist.

Non-Logarithmic Case

In this case we know at least one zero of f (Syeg(L) # 0), and we have the following
conditions on the lower parameter(s) of Fy:

1. by € 7Z and by € Z and by — by € Z and (2b; or 2by & Z or bl - b2 < 0) when Lo=L2,,
2. by € Z when Lo=L1%,.

To find candidates for ({aq,as}, [b1, ba], f) we proceed as in the logarithmic case, but
with some considerations in the computations:

1. for L, some elements of S, (L) can have exponent differences not in Q or £,

2. the constant parts of the exponent differences of L at some elements of S;(L) can
be not in Q or k.

So, we need sometimes to work in an extension field of Q, and in some cases in an extension
field of k£ (Q C k). Hence, we will take into consideration all the extension fields of Q or
k coming from the exponent differences of L at every element of S, (L) and S;,(L). For
Sirr(L), we need just to consider the extension field of Q or k coming from the constant
part of the exponent differences of L at all its elements. This case combines similar cases
as the rational, basefield and irrational cases from the Bessel square type solutions (see
the first part of the last chapter).

For this case, we have implemented in Maple algorithms called find2F2RatIrr when
Lo = Ly and find1FisqRatIrr when Ly = L%, to find at same time candidates for f,
lower and upper parameter(s) of Fy € {oFy, 1F?} if they exist.

5.4.4 Examples

We have written some algorithms on how to find Fy € {3Fb, 1 F}} type solutions if they ex-
ist. We have also summarized them by writing another algorithms called Hyp2F2Solutions
when Lo =Ly and Hyp1FisqSolutions when Ly=L2, which take as input a third-order
linear differential operator L. and return, if they exist, all the parameters of transforma-
tions (r,r9, 71,70, f € k(z)) and also the upper and lower parameter(s) of Fy € {oFy, 1F2}
such that we are in situation (5.1)

Lo Ls¢ M —sp¢ L

with Lo € {Lgs, L% }. If not, it will return "No F, type solutions". Those algorithms
deal with all the cases and give us the short solutions, if they exist, associated to the
upper and lower parameter(s) of Fp.

We will take here just one example, depending on Fyy € {3 F», 1F#}, and show explicitly
how some of our algorithms work.
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o F, type solutions

Let us consider the differential operator Loy associated to the oF, hypergeometric
function with parameters (upper and lower) a; = 1/7, as = 1/3, by = 1 and by = 1/12.
To get Loy with Maple we proceed as follows:

> eq:=sumdiffeq(hyperterm([al,a2], [bl,b2],x,1i),1i,J(x));
2

eq = (d—BJ(:p)> 2? + (—x + b2+ 1+ b1) (%J(z)) T

dx3

d
—($a1+$a2—b2b1+x)%J(x)—a1a2J(a:):O

> LA:=de2diffop(eq,J(x));
LA = 2Dz’ + (—2° + 202 + o + xb1) D2* + (—zal — xa2 + b2 bl — ) Dz — al a2

> L22:=subs({al=1/7,a2=1/3,bl1=1,b2=1/12},LA);

1

25 31
122 := 2?Dx® + <—x2 + Ex) Dx? + (—ﬁx + 1/12) Dz — 31

Let us apply to Loy the change of variables transformation with parameter f given
by
> fi=(2%(x-7)"4%(x-12))/((x-3)"2);
— )z —12
fomp@=D —12)
(¢~ 3)
That gives us the following operator called L:
> L:=ChangeOfVariables(L22,f);

L= 84 (x—12)° (z - 7)° (322 = 322 — 3)° (x — 3)° Da® — 7 (z — 12) (216 2°
—13248 2% — 4922601 2° + 41680902 z° — 208564471 z* + 565736148 2*
+344544 27 — 609105879 2% — 131038290 & — 3472713) (z — 3)* (v — 7)°
x (322 =320 —3)? Da? — (x — 3) (¢ — 7) (322 — 322 — 3) (—910656 '
—692939925 1% + 9119049254 27 — 76891672763 2° + 16184128819722 z*
+33121152 ' + 394635286912 27 — 944552894530 2° — 1376352434380 z°
+11016 ' — 41634936222768 2 + 34489504598535 22 + 7779400339662 x
+210612181185) Dz — 8 (z — 7)* (322 — 322 — 3)°

Let us assume that we have as input this operator L. and then see how with our codes we

can find its o F, type solutions if they exist. That means if we can find the hypergeometric
parameters aq, as, by and by of o F5 and the transformation parameters such that

LQQ i)c M —EG L.

Let ext be the set of all non-rational numbers, parameters and names (except the
variable z) which appear in the expression of the coefficients of L :

> ext:=indets(L,{Root0f,name}) minus {x,Dx};

ext .= {}
Let extp be the set of all algebraic numbers given by the RootOf expressions in ext such
that all its elements are algebraic over the minimal field containing Q U (ext \ extp).
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Since sometimes we can use in our computations the RootOf expression associated with
its index, we will take extp = { }.

Let us denote by E the set of all the singularities of L (we can find E using our
implemented code called Singular).

> E:=Singular(L,extp):
Then the set of non-apparent singularities of L is given by

> F:=NotAppSing(L,E,ext);

F = oo, 00|, [x = 3,3],[x = 7,7], [vr — 12,12]]
Let S;; be the set of irregular singularities of L. which is the set of poles of f.
> Sirr:=irrsing2F2(L,t,F,ext);
2 2

3 51
rr = ||[0o, 00 — 1,=,—6t 2 +136t2—-834t 1+ —|, |% 2
SZTT |:[|: Y :I?['CL‘ 373”7 |:{ 7 77 6 36 83 28:| 9 |:37 7’

1 23 4
9216t % — 5120t " + —7H , H—6t‘3 + 136172 — 834t + 2 __} 7

14 28" 7
23 8
[9216t2 — 5120t + oL _ﬁH 13, 2]}

Let us take G as the set of elements in F at which L has all its exponent differences
in k. Let S,eg be the set of elements in G at which L has logarithmic solutions or all
its exponent differences are not, at same time, in N. All the elements of S,.; belong
to the set of all the zeroes of f and they are given by

> Sreg:=regsingtrue2F2(L,t,Sirr[-1],ext);

s = [le= 1o oo oo gl [0 55 o1 |

Sreg can be divided into two subsets: the set of non-removable singularities of L (at
least one exponent difference is not an integer or L has logarithmic solution(s)) and
a set of removable singularities of L (all the exponent differences are integers and L
doesn’t have logarithmic solution(s)). The set of non-removable singularities of L can
also be divided into two sets: the singularities at which L has logarithmic solutions and
the singularities at which L doesn’t have logarithmic solutions. Hence, let us denote
by RS,es a set of three sets: the first is the set of non-removable singularities of L with
non-logarithmic solutions, the second is the set of removable singularities of L in S,cg,
and the third is the set of singularities of L. with logarithmic solutions. With our code
called Sregseptrue2F2 we can find this set RS,e,:

> RSreg:= Sregseptrue2F2(L,Sreg,ext);

RSreg = {[] 1., {[[m ST [ — 12,12]], Ho 0. 1—31} , [0, 0. %H ,

U[5] 0] [[12 m) 01]]

Since the third element in RS, is not an empty list, there exists a singularity of L
with logarithmic solutions. That means we are in the logarithmic case and we know all
the zeroes of f.

In order to make our codes faster, we have implemented one procedure called
IrrRegAppsing2F2 which gives at the same time and, by avoiding duplicate computa-
tions, in a shorter time all the outputs of the procedures irrsing2F2, regsingtrue2F2
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and Sregseptrue2F2.

> R1:=IrrRegAppsing2F2(L,t,E,ext):

With our code called Hyp2F2Subst, we can get the candidates for f up to an
additive constant (the polar part of f).

> F1l:= Hyp2F2Subst(L,x,t,R1[1],ext);

Fl = [-22° +682% — 8342 — 4608 (z — 3)° + 5120 (v — 3)"', —22° + 6827 — 834z
+4608 (x —3) 7> = 5120 (z —3)"",22% — 6822 + 834z — 4608 (z —3) >
+5120 (z —3)7",22° — 68 2% + 8342 + 4608 (x — 3)"* — 5120 (z — 3) ']

With our code called Candichangvar2F2, we can get all the candidates for the
change of variables parameter f.

> B:= Candichangvar2F2(F1,R1,ext);

5o |p@=D" @12 2(93—7)4(33_12)]

(x =37 (z = 3)°
Our code called £ind2F21n gives us the set of candidates for [{[a1, az]}, {[b1, b2]}, f]
(change of variable parameter and also upper and lower parameters of 5 Fy)

> find2F21n(L,R1,F1,ext,x,t);

(o] [ 2] [ ) o] 2t Do)

(2] (5] [52) ) ) o)

([t [ 20 ) o ot

(505 B4 BT b))

Our implemented code Hyp2F2Solutions gives us all the transformation parame-
ters, if they exist, and also the upper and lower parameters of 5 Fj:

> Hyp2F2Solutions(L);

{ H[%’%} ) [1%} (0], [1]” 9 (x _(f)_(;); 7)4]}

Hence, L has o F; type solutions with hypergeometric parameters a; = 1/3, as = 1/7,
by = 1 and by = 1/12, and transformation parameters: » =0, 7o = 1, r; = 0, ro = 0 and
f= 2(x — )z — 12)

(@32

1F? type solutions

Let us consider the differential operator L3, associated to the ;F? hypergeometric
function with parameters (upper and lower) a; = 1/7 and b, = 1/3:

> L112:=MinOp(hypergeom([1/7],[1/3],x)"2);



158 oFy, 1 Fy, oF, and | F? Type Solutions

—r 41 4 1 2 271
1112 = Dt 43 T2 pa (_Ox_zg;u_) pyp_ 2722 -1/3
x

Let us apply to L?, the change of variables transformation with parameter f given
by

> fi=(x-1)"6/(x-12);
(-1

=
r—12
That gives us the following operator called L:

> L:=ChangeOfVariables(L112,f);
L =63 (z—12)° (x — 1) (52— 71)> Da® — 63 (752° — 258027 + 29028 2° — 73447 x
—124188 2° + 270570 z* — 334825 2° + 238286 2% — 74793) (v — 12)° (z — 1)
x (5a — 71) Dz + (41643716165 2 4 1536998515098 2* — 1230477210270 z°

+460524395496 210 — 121187182692 ! + 21336285096 ='? — 481721327852 2*
—2867623517288 2° + 3677984618849 2° + 2390095153908 2® — 3439319623344 27
+78750 ' — 5418000 x'® + 154148400 2'* — 2357777520 23 4 124928729910
—26597677398 ) (x — 12) Dz + 6 (62° — 362° + 902" — 1202° + 902 — 352 — 6)
x(z—1°(Bz—71)°

Let us assume that we have as input this operator L and then see how with our

codes we can find its | F? type solutions if they exist. That means if we can find the
hypergeometric parameters a; and by of { F? and the transformation parameters such that

12, 150 M —s 56 L.

Let ext be the set of all non-rational numbers, parameters and names (except the
variable z) which appear in the expression of the coefficients of L:

> ext:=indets(L,{Root0f ,name}) minus {x,Dx};

ext == {}

Let extp be the set of all algebraic numbers given by the RootOf expressions in ext such
that all its elements are algebraic over the minimal field containing Q U (ext \ extp).
Since sometimes we can use in our computations the RootOf expression associated with
its index, we will take extp = { }.

Let us denote by E the set of all the singularities of L (we can find E using our
implemented code called Singular).

> E:=Singular(L,ext):
Then the set of non-apparent singularities of L is given by
> F:=NotAppSing(L,E,ext);
F = [[x — 12,12], [00, o0]]
Let S;.; be a set of irregular singularities of L which is the set of poles of f.
> Sirr:=irrsingiF1sq(L,t,F,ext);

2 1 8 10
Sirr = |[[x —12,12], [00, oc]] , H? —1771561t7 + 3 —3543122¢71 + ﬁ} : {7,

5
—5t7° —12303¢t7 ' — 24+ 4 — 26172 — 2048172 + 3 —10t7° — 24606 ¢!
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40 2
—48¢74 — 522¢73 — 40962 + ﬁ” : [[—354312215—1 + o7 —1771561¢7*

1 1 10
— 1771561t 4+ — |, =10t — 48+ 4 —522¢73 — 4096t 7% + —
+21’ +21}’{ +217

5
—24606¢7 1, —5¢7° —12303¢ 1 — 24t % —261¢7% — 2048t % + Ik —5t7°

5
—12303¢t7" — 2417 — 261¢7° — 2048t 7% + ﬁ” J[1,5], [[[—3543122¢ 7"
8 2 12 8
— | | =1771561 ¢ + = 2 | —3543122¢  + — . —1771561 ¢
+21’71’[ +3’71’{ or

1 40 10
+§H : H—lo t7° — 24606t 1 — 48t — 522¢7% — 40962 + 5 7} :

5 10
{—51&—5 —12303¢ " — 241" — 261¢7° — 2048t + 3 7} ,[—10¢7°

40
—24606t" " — 48¢t* — 522173 — 4096172 + BTk —5t7° —12303¢t7 ' —24¢74

5 2 1 1 10 5 5
—261t73 —2048¢72 + = 1.1 Bl B B
+3m’[’ ]’H21’21’21}’{21’21’211”

Let us take G as the set of elements in F' at which L has all its exponent differences
in k. Let S,¢g be the set of elements in G at which L has logarithmic solutions or all
its exponent differences are not, at same time, in N. All the elements of S,.; belong
to the set of the zeroes of f, and they are given by

> Sreg:=regsingtruelFlsq(L,t,Sirr[-1],ext);
Sreg = |]

Sreg can be divided into two subsets: the set of non-removable singularities of L (at
least one exponent difference is not an integer or L has logarithmic solution(s)) and
a set of removable singularities of L (all the exponent differences are integers and L
doesn’t have logarithmic solution(s)). The set of non-removable singularities of L can
also be divided into two sets: the singularities at which L has logarithmic solutions and
the singularities at which L doesn’t have logarithmic solutions. Hence, let us denote
by RS, a set of three sets: the first is the set of non-removable singularities of L with
non-logarithmic solutions, the second is the set of removable singularities of L in S,
and the third is the set of singularities of L. with logarithmic solutions. With our code
called SregseptruelFlsq we can find this set RS;eq:

> RSreg:= SregseptruelF1sq(L,Sreg,ext);

RSreg := [, ], []]

Since S,eq = [], we have absolutely no information about the zeroes of f: that is
the integer case.

In order to make our codes faster, we have implemented one procedure called
IrrRegAppsinglF1sq which gives at the same time and, by avoiding duplicate compu-
tations, in a shorter time all the outputs of the procedures irrsing1F1sq, regsingtrue-
1F1sq and SregseptruelFisq.

> R1:=IrrRegAppsinglF1lsq(L,t,E,ext):
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With our code called Hyp1F1sqSubst, we can get the candidates for f up to
a constant (the polar part of f).

> F1:= HyplF1sqSubst(L,x,t,R1[1],ext);
F1 = [—1771561 (z — 12) ' —2° — 62" — 872" — 10242% — 12303 x, +1024 2
1771561 (v — 12)" + 2° + 6 2* + 872 4+ 12303 2, 1771561 (z — 12)~"
—2® — 62t — 872% — 102422 — 12303 2, 1771561 (z — 12)" " + 2° 4+ 872°

+6 2" + 1024 2° + 12303 ]

Our code called find1F1sqlInt gives us the set of candidates for [{ai},{b1}, f]
(change of variable parameter and also upper and lower parameter of | F'?)

> find1F1sqInt(L,R1,F1,x,t,ext);
11 25 37 79 5 (:c—l)G 19 23 61 65 1 (56—1)6
28728784784 7|67 wx—12 |7||84'84°84°84 7|2 x—12 |’

5 61317\ [2] [(@-1°] [f3 5 1747\ [1] (-1
14°7°42°21 )7 3] x—12 |’ 28784728’ 84 [ |6|" x—12 |’
11 25 37 79} [g] (x—1)6]

14 9 2) 17 @-1° [
7ol 14420 3]0 w—12 |7|128°28° 8484 6] & — 12

19 23 61 65) [1] (z—1)°] 5 6 13 17) [2] (z—1)°
84'84'84'84 [ |2]  w—12 ||\ 14’7 42’21 3] w—12 |

3 5 1747\ 1] (@=1°] [f1 4 9 20\ [1] (@—1)]
28'84728°84 7|6 x—12 ||| 7721714742 |3 x—12

Our i;nplemented code Hyp1F1sqgSolut ions gives us all the transformation param-
eters, if they exist, and also the upper and lower parameters of | F7:

> HypiF1sqgSolutions(L);

17 [1 (z—1)°
- - 1
{[HM 3] o], m_H”
Hence, L has 1 F?2 type solutions with hypergeometric parameters a; = 1/7 and

(z—1)°
(x —12)

by = 1/3, and transformation parameters: » = 0,79 = 1,7, = 0,7, =0 and f =

5.5 1F, and (F), type solutions

Here the technique of resolutions is a little bit similar for the Bessel square root functions
with the change of variable parameters f # ¢*> where g € k(z). That is due to the
form of exponent differences at 0 and oo, and the fact that the ramification index of the
generalized exponents of Ly € {Lj2, L2} at 0is 1 and at oo belong to {2, 3}, i.e. is greater
than one.

A
We can assume f = B with A, B € k[z|, B monic and ged(A, B) = 1 since we have

some generalized exponents of Ly € {Li2, Lp2} at oo with ramification index different from
1.
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The problem now is how to get information about A and B from L (our input operator).

5.5.1 Truncated series for f

Let Lo € {Ly2, Lo} with n. € {2,3} its ramification index at co. We know all the poles
of f, but the exponent differences give us just information about the polar part of f1/7.

The following lemma, definition and remark are similar to Lemma 4.15, Definition 4.16
and Remark 4.17 in the Bessel square root case:

Lemma 5.10. Let p be a point in k and n. € {2,3}. If f € k(z) and /" =3 a;tt,

1
where i € —Z, a; € k and t, is the local parameter at x = p, then the set {i]a; # 0} is

e

1
either a subset of Z. or a subset of — + 7Z.

€

Proof . Similar to the proof of lemma 4.15. U

Definition 5.11. Let p € k and fV/" = S a;t™, a; € k and ay # 0. We say that we
i=N

have an n-term truncated power series for fY/me if the coefficients of to'7, ... £V n=1/ne

are known.

Remark 5.12. If an n-term truncated series for f*/™ is known, then we can compute an
n-term truncated series for f.

We have implemented in Maple one algorithm called SirriF2infol when Ly = Lis
and another one called SirrOF2infol when Lg=Lgs, to find all those truncated series for
f related to the elements of S;.(L).

5.5.2 How to compute the denominator B of f

With our implemented algorithms irrsinglF2 and irrsingOF2 we can get the multiplic-
ity order m,, of each pole p of f (elements of S;;;(L)). To retrieve B we just use Lemma 4.18
for the Bessel square root case:

B= [[ @G-p™= ] t»= [ »~™

PESirr (L) PESirr (L) Ps€Si (L\{1}

Our implemented algorithms Sirr1F2infol when Ly = Lj5 or SirrOF2infol when
Lo=Lgs compute this denominator B of f.

5.5.3 How to get a bound for the degree of the numerator A of f
As for the Bessel square root case, Remarks 4.19, Lemma 4.20 and Corollary 4.21 also

hold here:
dA = Z mg .
SESirr(L)

Our implemented algorithms SirriF2infol when Ly = Lis or SirrOF2infol when
Lo=Lgy compute dj.
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5.5.4 How to get linear equations for the coefficients of the nu-
merator A of f

As for the Bessel square root case, Lemma 4.22 and Remarks 4.23 hold also here. Con-
cerning Lemma 4.24, here we have

Lemma 5.13. For s € S;(L) let mg be its multiplicity order as a zero of f, gs the polar
part of [ at s and g, the [mg/n.]|-truncated series of f at s. Let

u@ = |f= 3 a|- [ Pl (5:9)

Psesi'r'r(L) PSeSiTT(L)\{l}

Then u(x) € k[x] and the remainder of the Euclidean division of numer(u(z)) by denom(u(x))
will give us > deg(Py) - [mg/n.| linear equations for the coefficients of A.
Ps€Sirr(L)\{1}
Furthermore, if oo € S (L), the quotient of the Euclidean division of numer(u(zx)) by
denom(u(z)) will give us, in addition, [Ms/ne| linear equations.

Proof. Similar to the proof of Lemma 4.24. O
Similar as in Remarks 4.25, here we have

Remarks 5.14. 1. We know

Z deg(Ps)+ Z deg(Ps)-[mg/n.| linear equations for the coefficients of

Ps es'r'eg(L) PS ESi’V"V‘(L)

A where myg is the multiplicity order of s € S;(L) as a pole of f. That means we
have

Z 1+ Z [ms/ne| linear equations.

SESTEQ(L) Sesir'r(L)

2. Since Syey(L) can be an empty set, but S;-(L) not, we know at least

Z deg(Ps) - [ms/n.| linear equations for the coefficients of A.
F’SGSi’I"I‘(L)

That means we have

Z [ms/ne| linear equations.
sESi,,.,,.(L)

Similar as in Lemma 4.26, here we have

Lemma 5.15. The number of linear equations for the coefficients of A is greater or equal
1
to —dy+ Y, L

Te PESreg(L)

Proof. Similar to the proof of Lemma 4.26. 0J
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5.5.5 How to compute the upper parameter a; when Ly = L5

Let us assume that we know b; and by. To find candidates for {a; }, we proceed as follows:
1. We take a candidate {by, by} for the lower parameter(s) of 1 Fy.
2. Let p € Sx(L) with m,, its multiplicity order as a pole of f.

(a) We choose the two exponent differences of L at p which have the same, up to a

1
factor —1 and modulo ~Z, non-constant part. Let C} and C2 be the constant

part of those exponent differences:

m 1 1
C; = :|:7p b1 + bg - 3@1 - 5 modulo §Z,

my 1 1
Cg = 7 bl + b2 - 3&1 — 5 modulo §Z

(b) We compute the set N,, of candidates modulo Z for £a; associated to p

1 j:l:QCl 1] . .
Np={ (bi+b—2—L=22) 2 ez | <3m, -1}
P {(1 275 m, 336 7] < 3my,

We replace in N, all the rational parts of elements by their representant modulo
Z in [0, 1].

3. E= ﬂpesm(L) N, is the set of candidates modulo Z for £a,. If E = () then a; doesn’t
exist. That means {b1, by} is not a good candidate for the lower parameters of | Fy.

We take another {b, b2} and repeat the process.

We have implemented in Maple an algorithm called findcandailF2 to find candidates
modulo Z for the upper parameter of | F5.

5.5.6 How to compute the numerator A of f

As for the Bessel square root case, we also have here four cases:
- "Easy case": as in Bessel square root case;

- "Logarithmic case": when by € Z or by € Z or by — by € Z or (2by, 2by € Z with
bl - b2 < 0);

- "Trrational case": when we are not in the logarithmic case and b; or by is not a
rational number;

- "Rational case": when we are not in the logarithmic case and by, by € Q.
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Easy Case

To find candidates for [{a1}, {b1, b2}, f] when Ly=Ljs or candidates for [{by, b2}, f] when
Lo=Lgs2, we proceed as follows:

1. We solve our linear equations for the coefficients of A using Lemma 4.22 and
Lemma 5.13:

(a) If we find solutions, then we can get A and therefore f = A/B because we
know how to find B.

(b) If we don’t find solutions then we cannot find ,F, € {1 F5, ¢F>} type solutions
for L using the Easy case. That means the number of linear equations for the
coefficients of A is less than or equal to du, or the system of equations given
by those coefficients doesn’t have solutions.

2. We compute the set C of candidates for {by,b2} (we have shown above how to get
it).

3. If L():ng then for {bl,bg} € C

(a) we compute Cg, p,) the set of candidates for a; related to {bi,by} (we have
shown that above).

(b) If Cp, p,) = 0 then we will go back and take another {b;,b,} in C.
All the lists [C(bl,bz)> {b1, b2}, f] for which C, 4,) # () generate a set called E.
4. If L0:L02 then E = {C, f} .

5. If E # () then L has Fy € {1Fs, oF2} type solutions, if not we cannot solve L in
terms of Fy € {1 F», oFy} functions.

We have implemented in Maple, for this case, one algorithm called easy1F2 to find
candidates for [{ai},{b1,b2}, f] when Lo =Lj5 and another one called easyOF2 to find
candidates for [{by, by}, f] when Ly=Lgs.

Logarithmic Case

The technique to find candidates for f is the same as for the Bessel square root case.
Once we get candidates for f = A/B, we proceed as follows to find the candidates for
the upper and lower parameters for Fy € {;Fs, oFy} related to any candidate for f:

1. Let F be the set of candidates for f.
2. forgeF

(a) We compute the set C of candidates for {b1,bs} (we have shown above how to
get it).

(b) If L0:L12 then for {bl, b2} eC

i. we compute Cy, p,) the set of candidates for a; (we have shown above how
to get it)
ii. If Cp, p,) = 0 then we will return and take another {b;,b2} in C.
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All the lists [C(p, 4,), {b1, b2}, f] for which Cy, 5,) # 0 generate a set called E.
(C) If L0:L02 then E = [C, f] .

3. If E # 0 then L has Fy € {{F,, oF5} type solutions, if not, we cannot solve L in
terms of Fy € {1 Fy, oFy} functions.

We have implemented in Maple, for this case, one algorithm called £ind1F21n to find
candidates for [{a1},{b1,b2}, f] when Lo=1L;5 and another one called £indOF21n to find
candidates for [{by, by}, f] when Lg=Lgs.

Irrational Case

The technique to find candidates for f is a little bit similar as for the Bessel square root
case (just some modifications).

Once we get candidates for f = A/B, we use the same technique as in the logarithmic
case to find the candidates for the upper and lower parameters for Fy € {1 Fy, oF»} related
to any candidate for f.

We have implemented in Maple, for this case, one algorithm called find1F2Irr to
find candidates for [{a;},{b1,b2}, f] when Lo =1Ljs and another one called findOF2Irr
to find candidates for [{b1, b2}, f] when Lo=Lgs.

Rational Case

Here the numerator A of f can be written in the form A = cA;A¢ as in Corollary 4.34.
The technique to find candidates for f is similar as for the Bessel square root case

with f # ¢ where g € k(x).
Once we get candidates for f = A/B =

the logarithmic case to find the candidates for the upper and lower parameters for Fy €
{1F,, oF5} related to any candidate for f.

We have implemented in Maple, for this case, one algorithm called find1F2Rat to
find candidates for [{a;},{b1, b2}, f] when Ly =L;5 and another one called findOF2Rat
to find candidates for [{b1, b2}, f] when Lo=Los.

CA1 Ag

, we use the same technique as in

5.5.7 Examples

We have written some algorithms on how to find Fy € {1 F», oF»} type solutions if they
exist. We have also summarize them by writing other algorithms called Hyp1F2Solutions
when Ly = Li2 and HypOF2Solutions when Ly = Lo, which take as input a third-order
linear differential operator L and return, if they exist, all the parameters of transformations
(r,r9,71,70, f € k(z)) and also the upper and lower parameter(s) of Fy € {1 F», oF5} such
that we are in situation (5.1)

Lo L5e M —sp0 L

with Ly € {Lis, Lo2}. If not, it will return "No F, type solutions". Those algorithms
deal with all the cases and give us short solutions, if they exist, associated to the upper
and lower parameter(s) of Fj.

We will take here just one example, depending on Fy € {1 F, oF3}, and show explicitly
this algorithm works.
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1 F5 type solutions

Let us consider the differential operator L5 associated to the | F5 hypergeometric func-
tion with parameters (upper and lower) a; = 1/2,b; = 1/3 and by = RootOf (2 + 1).
To get L1, with Maple, we proceed as follows:

> eq:=sumdiffeq(hyperterm([al], [bl,b2],x,i),i,J(x));

d? d? d
eq = <@J(x)) 2%+ (b2 + 1+ bl) (wJ(x)) z+ (0201 — ) aJ(x) —alJ(z)=0
> LA:=de2diffop(eq,J(x));
LA = 2°Dx* + (22 + 2 + 2b1) Dx* + (b2 b1 — 2) Dz — al
> L12:=subs({al=1/2,b1=1/3,b2=Root0f (x~2+1)},LA);
4 1 1
L12 = 2*Da® + (x RootOf (_Z2 + 1) + 3 x) Dx* + (§ RootOf (_ 7% + 1) — x) Dz — 3
Let us apply to Li, the change of variables transformation with parameter f given
by
> f£:=(2%(x-1)"3)/((x-9));
1)
f=2 (z )
x—9
That gives us the following operator called L:
> L:=ChangeOfVariables(L12,f);

1
L:=3@x-1%x-13)7"(x-9)" Dz + = (6 RootOf (_Z*+1) — 1) (962

+37 2% + 6685 + 2592 RootOf (_Z% + 1)) (z — 13) (z — 1) (z — 9)° Da”

— (z—9) (+242" — 952146 RootOf (_Z* + 1) + 3252 RootOf (_Z* + 1) z*
—50847 + 28151 2° + 2 RootOf (_ 2% + 1) 2° — 122 RootOf (_Z* + 1) z*
+2046851  — 45908 RootOf (_ 2% + 1) 2* 4 331370 z RootOf (_ Z° + 1)

—2683358 2 + 1390494 2® — 287627 2* — 13202°) Do — 24 (x — 13)° (z — 1)

Let us assume that we have as input this operator L and then see how with our
codes we can find its | Fy type solutions if they exist. That means if we can find the
hypergeometric parameters aq, b; and by of 1 F5, and the transformation parameters such
that

Lo i)c M— EG L.

Let ext be the set of all non-rational numbers, parameters and names (except the
variable x) which appear in the expression of the coefficients of L:

> ext:=indets(L,{Root0f,name}) minus {x,Dx};
ext = { RootOf (_Z2 + 1)}
Let extp be the set of all algebraic numbers given by the RootOf expressions in ext such

that all its elements are algebraic over the minimal field containing Q U (ext \ extp).
Since sometimes we can use in our computations the RootOf expression associated with

its index, we will take extp = { }.
Let us denote by E the set of all the singularities of L (we can find E using our

implemented code called Singular).
> E:=Singular(L,ext):
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Then the set of non-apparent singularities of L is given by
> F:=NotAppSing(L,E,ext);
F = [[oo, 00|, [z — 1,1],[z — 9,9]]
Let Si; be the set of irregular singularities of L which is the set of poles of f.
> Sirr:=irrsingiF2(L,t,F,ext);

Sirr = [[[oo,oo], [z —9,9]], ”1,2\/7§ — g + RootOf (_Z*+1),—

2
27

Wl N

+ RootOf (_Z* +1)], B,sz <\/¥) o % +1/2 RootOf (_Z*+1),

32 (\/%)_1 - % + % RootOf (_ 2° + 1)” , Hg — RootOf (_2%+1)

RootOf (—8 + 72 index = 1) 5  RootOf (—8 + 7% index = 2)

t '3 t
RootOf (—8 + _Z2) -1 5
2 t I, [32 <\/E> 6

+% RootOf (_Z*+1),-32 (ﬁ) — g +1/2 RootOf (_2Z*+1),

o 14

Let us take G as the set of elements in F' at which L has all its exponent differences
in k. Let S,¢; be the set of elements in G at which L has logarithmic solutions or all
its exponent differences are not, at same time, in N. All the elements of S,.; belong
to the set of the zeroes of f and they are given by

— RootOf (_Z*+1) ,—

> Sreg:=regsingtruelF2(L,t,Sirr[-1],ext);
Sreg = [[[z —1,1]], [[0,2,3 = 3 RootOf (_2Z*+1)]], [[2,3 — 3 RootOf (_Z* + 1)

1 —3 RootOf (_2Z*+1)]]]

Sreg can be divided into two subsets: the set of non-removable singularities of L (at
least one exponent difference is not an integer or L has logarithmic solution(s)) and
a set of removable singularities of L (all the exponent differences are integers and L
doesn’t have logarithmic solution(s)). The set of non-removable singularities of L can
also be divided into two sets: the singularities at which L has logarithmic solutions and
the singularities at which L. doesn’t have logarithmic solutions. Hence, let us denote
by RS,es a set of three sets: the first is the set of non-removable singularities of L with
non-logarithmic solutions, the second is the set of removable singularities of L in S,
and the third is the set of singularities of L with logarithmic solutions. With our code
called SregseptruelF2 we can find this set RS,e,:

> RSreg:= SregseptruelF2(L,Sreg,ext);

RSreg = [[[[z — 1,1]],[[0,2,3 — 3 RootOf (_Z*+1)]], [[[3 — 3 RootOf (_2*+1),

1—3 RootOf (_2z*+1)],[2]]].1,0]
Since RS;eq[1] # [], we know some zeroes of f. Those zeroes represent all the ze-
roes of f because the exponent differences of L at elements of RS,e[1] are not in Q.
In order to make our codes faster, we have implemented one procedure called
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IrrRegAppsingl1F2 which gives at the same time and, by avoiding duplicate computa-
tions, in a shorter time all the outputs of the procedures irrsingl1F2, regsingtruelF2
and SregseptruelF2.

> R1:=IrrRegAppsinglF2(L,t,E,ext):

Let f = A/B with A and B as in our theoretical part, and [ = 1. We can get
the truncated series for f related to the elements of S;,;, the degree of A denoted da
and also the number n of linear equations satisfied by the coefficients of A using our
implemented code called Sirri1F2infol. It shows us if we are in the "Easy case" or
not. If we are not in this case, we can see in which case we are according to the
exponent differences of elements in RS,eq[1].

> infol:= Sirri1F2infol(L,R1[1],R1[2],1,x,t,ext);
infol == [[[9,2 —9,[1024 (z — 9)"'],1,{}, { RootOf (_Z* +1)}], [00,27", [227],
1, { RootOf (_Z2 — 2)} , { RootOf (_Z2 — 2) , RootOf (_Z2 + 1)}“ ,
3,3,z —9,1]
We have n = 3 and dy = 3 . Hence n = dn and therefore we cannot solve those
equations and get A: that is not the "Easy case".
Since the exponent differences of L at elements of RS,e[1] are not in Q, we are
in the irrational case. Our code called £ind1F2Irr gives us the set of candidates for

[{a1},{[b1,b2]}, f] (change of variable parameter and also upper and lower parameters
of 1F2)

> find1F2Irr(L,R1,infol,x,t,ext);

1 7 13 21 9 115 2 2
) (53 + ooz 0] {5554 55
115

+ RootOf (_2Z*+1)]], Hi’é’é}’ El + RootOf (_Z* + 1)” :

1135)] [1 5 11 17) [2

266l |3 f(L2%+1 e i = f(_22+1
[{2’6’6}’ {3’ RootOF (2% + )H ’ [{18’18’18}’ {3’ RootOf (_ 27+ )H

5 11 17) [2 ) 5 11 17) [1 1
L) om0 2| { o) (o

+ RootOf (_2Z*+1)]], H L 13}, F 2y RootOf(_ZQ+1)]] :

18718°18[ |3’ 3
(z—1)° 1 7 13) 21 ) 115
) — L 2L 2 24 RootOf( Z2+1 - - Z
o '\l |zs T Rt L2+ D1 1356
2 9 115) [1
|:§,§ + ROOtOf(_Z2+ ].):|:| s {{5,6,6}, |:§71 + ROOtOf (_22 + ].):|:| s

115) [1 5 11 17) [2

— — — _ f 2 - f 2
[{2,6,6}, [3, RootOf (_Z +1)H , {{—18,—18,—18}, {3,Root0 (_z +1)H,

5 11 17) [2 5 11 17) [1 1

— =, =, |51 f(Z2%+1 — = =, ==
[{18’18’18}’[3’ + RootOf (_ 2%+ )” ’ [{18’18’18}’ {3’3

2 1 713 712 2
+ RootOf (_ 2% +1)]], {{18, 18,18}, {3,3+ RootOf (_Z +1)H,
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9 (x—1)3”
rz—9

Our implemented code Hyp1F2Solutions gives us all the transformation parame-
ters, if they exist, and also the upper and lower parameters of 1 Fj:

> Hypl1F2Solutions(L);

(N e =

Hence, L has 1 F5 type solutions with hypergeometric parameters a; = 1/2, by = 1/3
and by = RootOf (2 + 1) = +i, and transformation parameters: r = 0, g = 1, 7, = 0,

2(r —1)3
r2:0andf:%.

oF5 type solutions

Let us consider the differential operator Lg, associated to the ¢F, hypergeometric
function with lower parameters b, = 1/3 and by = 1/7. To get Loy with Maple we
proceed as follows:

> eq:=sumdiffeq(hyperterm([], [b1,b2],x,1),1,J(x));
a3 9 d? d
eq = <%J(1‘)) z° 4+ (b2+ 14 01) (EJ(JJ)) r—J(z)+ 0201 %J(:c) =0
> LA:=de2diffop(eq,J(x));
LA := 2*Dx® + (xb2 + z + 2b1) Da® + b2 bl Dx — 1

> L02:=subs({b1=1/3,b2=1/7},LA);

L02 := 2?Dx® + % rDx* + % Dr—1
Let us apply to Ly the change of variables transformation with parameter f given

by
> fi=(2%(x-1)"2%(x-3)*(x-7)"3) / ((x-9) ~2%(x-12)"3) ;
fi @D @ =3 -7
. (. —9)%(z —12)°
That gives us the following operator called L:
> L:=ChangeOfVariables(L02,f);

L:=21(r-12)°(@—9)(x—7)°(x —3)* (v — 1)* (5193 — 3852 — 60 2° + 830 2
+21)? Da® 4 (173735685 + 300375864 2 + 32319144 2° — 159987168 2% + 31 2°
—635762 2% — 372027 — 649176 2° + 86200 2°) Da® (v — 1) (x — 3) (v — 7) (x — 9)*
x (v —12)° (5193 — 3852z — 602° + 2* + 8302%) + (—5387188885607952 « + z'°
—6395117622870960 * + 3388591949109444 x* + 7748517717658728 2% — 240 z:*°
+54803306488 1% — 3065641808 =1 — 3904976 '3 + 63960 x4 — 746349293552 ¥
+130520372 212 — 56984531313168 = + 7599004335182 2% — 1223256100618800 z°
+311300882943048 2° + 1632102637284153) Dz (x — 9)° (z — 12)" — 42 (—3852x

+5193 — 602 + 2% + 83042)° (x — 7)* (z — 1)
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Let us assume that we have as input this operator L and then see how with our
codes we can find its oFy type solutions if they exist. That means if we can find the
hypergeometric parameters b; and by of o F3; and the transformation parameters such that

Loy 50 M — g L.

Let ext be the set of all non-rational numbers, parameters and names (except the
variable x) which appear in the expression of the coefficients of L:

> ext:=indets(L,{Root0f,name}) minus {x,Dx};

ext = {}

Let extp be the set of all algebraic numbers given by the RootOf expressions in ext such
that all its elements are algebraic over the minimal field containing Q U (ext \ extp).
Since sometimes we can use in our computations the RootOf expression associated with
its index, we will take extp ={ }.

Let us denote by E the set of all the singularities of L (we can find E using our
implemented code Singular).

> E:=Singular(L,ext):
Then the set of non-apparent singularities of L is given by

> F:=NotAppSing(L,E,ext);

F = [[oo,00],[x — 1,1],[x — 3,3],[x = 7,7],[xr — 9,9], [z — 12, 12]]
Let S;; be the set of irregular singularities of L which is the set of poles of f.
> Sirr:=irrsingOF2(L,t,F,ext);

V2 11 1
Sirr = ||loo, 00|, [ —9,9|, v —12,12]], | | ——= — —,
[H L1 L1 J ” Vit 637 (174223 — 1/4i/322/3) ¥/t
1 1 1l 16/3312_22 22 16384
637 (1/4223 4 1/4iv/3223) J/t 63" 2363 63 9
1 16384 1

X )
(—8/3 /12 +8/3iV/3/12) 123" 9 (=8/3 /12 — 8/3i/3¢/12)" 12/3
221 [_ V2211152928 -15/2V33282 1111

63 t 21 t 21" 21
+15/2 V242 4 15/21+/3+/242 1 N V2
t (14228 — 1/440/3223) N/t N/t
1 V2 1

(L4225 4 1/ai32B) Vi | i (1/4225 + 1/ain/322P) Vi

- 1 ] [16384 1
(1/42%3 —1/4iV/3223) V8| 7| 9 (=8/3 /124 8/3i/3V/12)" ¢2/3

16/3 V12 16384 1 16/ V12 16384
279 (_8/3y12 —8/3iv3V/12)" 12/3 2379

1 16384 1
X J—
(—8/3 /12 — 8/3i/3/12)" 12/3 9 (—8/3 12+ 8/3iv/3V/12)" 2/3
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RootOf (816750 + _ Z*, index = 2)  RootOf (816750 + _ Z°, index = 1)

Y

t t
RootOf (816750 + _ Z°, index = 3)  RootOf (816750 + _ Z°, index = 1)

t t ’
RootOf (816750 + _ Z°, index = 3)  RootOf (816750 + _ Z°, index = 2) ”

t t ’

1 2
a9 9 1
33
Let us take G as the set of elements in F' at which L has all its exponent differences
in k. Let S,¢; be the set of elements in G at which L has logarithmic solutions or all

its exponent differences are not, at same time, in N. All the elements of S,.; belong
to the set of the zeroes of f, and they are given by

> Sreg:=regsingtrueOF2(L,t,Sirr[-1],ext);

Sreg = [[[ac—1,1],[x—3,3],[x—7,7]], Ho%“—f] | {ogg} , [1—7802H |

124 81962 47 18 4,
73 2 my Tl T

Sreg can be divided into two subsets: the set of non-removable singularities of L (at
least one exponent difference is not an integer or L has logarithmic solution(s)) and
a set of removable singularities of L (all the exponent differences are integers and L
doesn’t have logarithmic solution(s)). The set of non-removable singularities of L can
also be divided into two sets: the singularities at which L has logarithmic solutions and
the singularities at which L doesn’t have logarithmic solutions. Hence, let us denote
by RS,es a set of three sets: the first is the set of non-removable singularities of L with
non-logarithmic solutions, the second is the set of removable singularities of L in S,eg,
and the third is the set of singularities of L. with logarithmic solutions. With our code
called SregseptrueOF2 we can find this set RS,cg:

> RSreg:= SregseptrueOF2(L,Sreg,ext);

RSreg = {[[x—1,1],[35—3,3],[1’—7,7]], Hogl—f] , [ogg} | {1—7802” ,

7521 ] [73ai] 1) [ ] l] 0

Since RS,e[1] # [], we know some zeroes of f. But we are not sure that they
represent all the zeroes of f because the exponent differences of L at elements of
NRemS, ., are in Q \ Z.

In order to make our codes faster, we have implemented one procedure called
IrrRegAppsingOF2 which gives at the same time and, by avoiding duplicate computa-
tions, in a shorter time all the outputs of the procedures irrsing0F2, regsingtrue0F2
and SregseptruelF2.

> R1l:=IrrRegAppsingOF2(L,t,E,ext):

Let f = A/B with A and B as in our theoretical part, and [ = 1. We can get

the truncated series for f related to the elements of S;., the degree of A denoted da
and also the number n of linear equations satisfied by the coefficients of A using our
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implemented code called Sirr1F2infol. It shows us if we are in the "Easy case" or
not. If we are not in this case, we can see in which case we are according to the
exponent differences of elements in RS,eq[1].

> infol:= SirrOF2infol(L,R1[1],R1[2],x,t,ext);
infol i mg,x—g, [@ @-9)‘2} ,1,{},{}} Joose ™t 24] 1, (), ()] 12,2 — 12,
[-30250 (v —12)7%],1,{},{}]] .6,6, (x — 9)* (x — 12)* , (z — 9) (x — 12)*]

We have n = 6 and dp = 6 . Hence n = da and therefore we cannot solve those
equations and get A: that is not the "Easy case".

According to the exponent differences of the elements of RS,e[1], we are here in the
rational case. Our code called £findOF2Rat gives us the set of candidates for [{[b1, bs]}, f]
(change of variable parameter and also lower parameters of ¢F5)

> findOF2Rat (L,R1,infol,x,t,T,ext);

(69 ) B 5] B3] ) o]

Our implemented code HypOF2Solutions gives us all the transformation parame-
ters, if they exist, and also the upper and lower parameters of o Fj:

> HypOF2Solutions(L);

{22 o]y 2 e a1

Hence, L has ¢F; type solutions with hypergeometric parameters b; = 1/3 and
by = 1/7, and transformation parameters: r =0, rg = 1, 11 =0, 75 = 0 and
2 — 1)*(z —3)(x —7)3
/= (x —9)%(x — 12)3




Chapter 6

Conclusion and Perspectives

Let k£ be an extension field of Q which is algebraically closed and has characteristic
zero, and k(z)[d] is the ring of differential operators with coefficients in k(x). Let E =
(B2, \F?, oFy, 1Fy, oF5} where B, is the Bessel function (see [2]), B2(z) = B2(y/x) and
»F, with p € {0,1,2}, ¢ € {1,2}, the generalized hypergeometric functions (see [40] and
[29]). Given an irreducible third-order linear differential operator L without Liouvillian
solutions, we have developed algorithms to solve L in terms of S € E. We find a solution
y (if that exists) of L in terms of S € E, change of variables, algebraic operations and
exponential integrals:

— exp ( / m) (roS( ) +ra(SF@) + (S ()

where 7,79, 71, 72, f € k(2). So we have shown how to find (if they exist) transformations
between our given operator L and some operators coming from S € E such that

LS f c M T B Ll rO:'rl:'rQG L

where M, Ly € k(x)[0].

We start by studying the local information from generalized exponents of L at its non-
removable singularities. That helps us to get partial information about zeroes and poles of
f. So we can construct a possible list of candidates for f, and upper and lower parameters
of S when S € {|F?, oFy, 1Fs, 2F,} or the Bessel parameter otherwise (S = B2). Since
finding f is equivalent to finding M, we can also get a list of candidates for M related
to f. We find r,rg, 71,72 € k(x) by using some information coming from the generalized
exponents of L and M at their non-removable singularities.

The next steps of this work would be to apply such a formalism to solve some families
of difference and g-difference equations.
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