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Abstract: Accurate estimates of daily rainfall are essential for understanding and modeling the
physical processes involved in the interaction between the land surface and the atmosphere.
In this study, daily satellite soil moisture observations from the Advanced Microwave Scanning
Radiometer–Earth Observing System (AMSR–E) generated by implementing the standard National
Aeronautics and Space Administration (NASA) algorithm are employed for estimating rainfall,
firstly, through the use of recently developed approach, SM2RAIN and, secondly, the nonlinear
autoregressive network with exogenous inputs (NARX) neural modelling at five climate stations
in the Karkheh river basin (KRB), located in south-west Iran. In the SM2RAIN method, the period
1 January 2003 to 31 December 2005 is used for the calibration of algorithm and the remaining
9 months from 1 January 2006 to 30 September 2006 is used for the validation of the rainfall estimates.
In the NARX model, the full study period is split into training (1 January 2003 to 31 September 2005)
and testing (1 September 2005 to 30 September 2006) stages. For the prediction of the rainfall as the
desired target (output), relative soil moisture changes from AMSR–E and measured air temperature
time series are chosen as exogenous (external) inputs in NARX. The quality of the estimated rainfall
data is evaluated by comparing it with observed rainfall data at the five rain gauges in terms of
the coefficient of determination R2, the RMSE and the statistical bias. For the SM2RAIN method,
R2 ranges between 0.32 and 0.79 for all stations, whereas for the NARX- model the values are generally
slightly lower. Moreover, the values of the bias for each station indicate that although SM2RAIN is
likely to underestimate large rainfall intensities, due to the known effect of soil moisture saturation,
its biases are somewhat lower than those of NARX. Moreover, Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks–Climate Data Record (PERSIANN–CDR) is
employed to evaluate its potential for predicting the ground-based observed station rainfall, but it
is found to work poorly. In conclusion, the results of the present study show that with the use of
AMSR–E soil moisture products in the physically based SM2RAIN algorithm as well as in the NARX
neural network, rainfall for poorly gauged regions can be predicted satisfactorily.
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1. Introduction

Rainfall as a natural phenomenon plays an important role in driving the hydrological cycle.
Precise information on the amount and distribution of rainfall is indispensable in many hydrological
applications, e.g., climate change assessment, drought monitoring, flood forecasting and extreme
weather prediction [1–3].

Rain gauges and satellite rainfall products are two of the most widely used sources of data for
rainfall measurements [4]. Although individual rain gauges provide rainfall values at relatively high
accuracy, their often sparse regional coverage limits the spatial resolution of rainfall measurements
required for the kind of hydrological studies mentioned above. Difficulties in estimating rainfall have
been addressed in many studies [5,6], especially in developing countries where ground-based rainfall
networks may be sparse or even non-existent [7]. In fact, areal rainfall data from even a dense rain
gauge network may be highly uncertain [8,9], as the spatial distribution of rainfall is usually obtained
by some kind of geostatistical interpolation of point rainfall data (e.g., [10–14]).

Another alternative approach for proper rainfall estimation is offered by satellite rainfall
products [15–17]. The recent satellite-based rainfall products can provide accurate rainfall data
sets at high spatial and temporal resolutions for a wide range of hydrological applications [18,19].
Hughes [20] presented a preliminary analysis of the potential for using satellite rainfall estimates
through a comparison with available point gauge data for four poorly gauged river basins in South
Africa, Zambia, and Angola.

A large number of satellite rainfall products with steadily increasing spatial and temporal
resolution have become available since the 1990s, e.g., Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks (PERSIANN) [21,22]; the Tropical Rainfall
Measuring Mission (TRMM), and the Passive Microwave InfraRed technique (PMIR) [23]. Su et al. [24]
first assessed the performance of four latest and widely used satellite-based precipitation datasets,
namely Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks–Climate Data Record (PERSIANN–CDR), the version 7 (V7) of the Tropical Rainfall
Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) products (3B42) and two
products from CMORPH (the Climate Prediction Center Morphing technique): bias corrected product
(CMORPH–CRT) and satellite-gauge blended product (CMORPH BLD ) over the upper Yellow river
basin in China during the 2001–2012 time period for the simulation of streamflow for two flood events.
Whereas the 2005-flood event was well predicted for all four satellite-based precipitation data sets,
they performed poorly for the 2012-flood event, as the latter was induced by more torrential rainfall
with larger estimation errors.

Another way to estimate rainfall time series is to build a prediction model with satellite surface
soil moisture products. A novel approach named SM2RAIN proposed by [25] employs soil moisture
observations to infer the rainfall. This technique is based on the inversion of the water balance equation
and has already been successfully applied in situ [25] and to satellite soil moisture data [26–29] in
different regions. Ciabatta et al. [30] employed the obtained rainfall estimates through SM2RAIN in
hydrological modeling to predict the river discharge over four catchments in Italy during the 4-year
period 2010–2013. Massari et al. [31] used SM2RAIN-corrected daily rain gauge data in flood modeling
in a small watershed in southern France and showed the superiority of this correction approach over
the use of rain gauge data alone.

As calibration and validation of the SM2RAIN model for estimating water balance components
and rainfall constitutes a time-consuming iterative process, other non-parametric approaches such
as artificial neural networks (ANNs) have been proposed and applied to the prediction of complex
physical systems, such as rainfall, in many parts of the world (e.g., [32–36]). However, in most of these
studies ANN has been used in the form of a classical input–output multi-perceptron model between
various climate components as input and rainfall as output, with only a few taking into account likely
(auto) lagged relationships in the climate variables and/or the rainfall [37].
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This deficiency of classical ANN in describing time-lagged input-output correlations is partly
remedied by the NARX (nonlinear auto-regressive with exogenous inputs) neural network model
introduced by [38] as a new representation for a wide range of discrete and nonlinear systems. NARX is
a dynamic neural network that uses time delays as well as feedback (memory) connections between
both output and input layers to come up with more reliable ANN-prediction models [39,40].

Wunsch et al. [41] applied NARX successfully to obtain groundwater-level forecasts for several
wells in three different types of aquifers, namely porous, fractured and karst aquifers in south-west
Germany, using precipitation and temperature as input parameters.

In this paper we describe a new application of the NARX neural network to better predict
continuous rainfall series across the Karkheh river basin (KRB), Iran, which has been the focus of
several studies of the authors over the last years (e.g., [42]). To this end, changes of relative AMSR–E
satellite soil moisture and measured temperature data are considered as input data in NARX to estimate
the rainfall. These estimates are then compared with the ground-based observations, Precipitation
Estimates from Remotely Sensed Information using Artificial Neural Networks Climate Data Record
(PERSIANN CDR) as well as with those obtained by [29] using the SM2RAIN approach.

2. Materials and Methods

2.1. Study Area and Ground-Based Data Collection

The study area, KRB, is located in south-west Iran between 30◦58–34◦56 N latitude and
46◦06–49◦10 E longitude (Figure 1). KRB is about 51,000 km2 in size and contains a relatively flat
topography (i.e., <100 m) in its southern- and mountainous areas of the Zagros of up to 3600 m a.s.l.
(meters above sea level) in the northern parts.
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The climate of the basin is mainly characterized by Mediterranean climate conditions with annual
rainfall varying from 150 to 250 mm in the flat south and from 550 to 750 mm in the mountainous
north [42,43].

In the middle and upper reaches, the coldest month of the year, January, experiences a mean
temperature of −2 ◦C, and the warmest month, August, of 29 ◦C. In the lower regions of the KRB,
the annual mean temperature fluctuates from 3 ◦C to 9 ◦C during wintertime and 36 ◦C to 41 ◦C in
summertime [44].

Climatological data for daily precipitation, maximum and minimum air temperature from 5
weather stations (Table 1) for the time period January 2003–October 2006—the time interval with the
least number of gaps for all stations—were obtained from the Iran Meteorology Department.

Table 1. Geographical characteristics of the selected climate stations.

Climate Station Longitude (◦East) Latitude (◦North) Elevation (m a.s.l.)

Hamedan 48.53 34.87 1741
Kermanshah 47.15 34.35 1319

Ilam 46.43 33.63 1337
Khorramabad 48.28 33.43 1148

Ahvaz 48.67 31.33 22

2.2. Advanced Microwave Scanning Radiometer–Earth Observing System (AMSR–E) Soil Moisture
Product Data

The Advanced Microwave Scanning Radiometer (AMSR–E) on board of NASA’s Aqua satellite
was a passive microwave radiometer observing brightness temperatures at six different frequencies,
ranging from 6.9 to 89.0 GHz since May 2002, with daily ascending (13:30 equatorial local crossing
time) and descending (01:30 equatorial local crossing time) overpasses, over a swath width of 1445 km.
It stopped producing data in October 2011 after more than 9 years’ observation, due to some technical
problems with the antenna. Several algorithms are applied to retrieve soil moisture products from
AMSR–E. In this study, the daily soil moisture data based on the National Aeronautics and Space
Administration (NASA) algorithm [45,46] are derived directly from gridded Level-3 land surface
product (AE_Land3) for the same time period as for the ground-based climate data above (January
2003–October 2006).

2.3. SM2RAIN Algorithm

Based on the land phase of hydrological cycle, the spatial distribution of rainfall p(t) across a
watershed at each time step is calculated from the classical, rearranged water balance equation:

p(t) = nZds(t)/dt + q(t) + e(t) + g(t) (1)

where n[-] is the soil porosity, Z[L] is the soil layer depth, s(t)[-] is the relative soil moisture, t[T] is the
time and p, q, e and g[L/T] are the precipitation, surface runoff, evapotranspiration, and drainage rate,
respectively. By solving this equation and knowing all other components of the hydrological cycle,
the rainfall for each time step can be estimated from soil moisture data [25,26]. It should be noted that,
as shown by [47], the surface runoff q can assumed to be negligible.

g(t) = a s(t)b (2)

The drainage rate g(t) is estimated with the following equation [48]. The actual evapotranspiration
rate e(t) is represented by a product of the potential evapotranspiration ETp(t) and the relative soil
moisture s(t) (e.g., [27]):

e(t) = ETp(t)× s(t) (3)
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where ETp(t) is calculated by means of the theoretical Blaney and Criddle approach as modified
by [49]:

ETp(t) = −2 + c[ξ(0.46Ta(t) + 8.13)] (4)

where Ta[C0] is the mean air temperature, ξ is the fraction of daytime hours for the time step used (daily
time step in this study) in the total daytime hours of the year, and c is a parameter—to be determined
in the calibration process further down—that depends on the daytime wind speed, minimum relative
humidity and actual insolation time. Although a value of c = 1.26 has been proposed for this parameter
in many studies (see e.g., [49]), it will be further optimized in the calibration/validation process within
an acceptable range (0.8–2.1). The parameter values in Equations (2)–(4) (nZ, a, b, and c) are calibrated
for reproducing observed rainfall data.

2.4. Artificial Neural Network (ANN)

2.4.1. ANN-Basics and Classification

An artificial neural network (ANN) is a computational approach that has been widely used
since the 1990’s in various fields of science, involving function estimation, time series forecasting
(e.g., [50]) and classification purposes ([51]). The major advantage of using an ANN model instead of
deterministic modeling is that the former allows the determination of complicated nonlinear function
relationships between some input (action) variables and output (reaction) variables for which the
physics is not known a priori. For further details on the concepts and methodology of ANN the reader
is referred to the seminal book of [52]. Neural networks can be categorized as either static or dynamic.
In a static (feedforward) network the information moves in only one direction from the input to the
output (target), irrespective of time, so that there is no feedback from (previous) values of the input
and/or output signal. In contrast, in a dynamic network [53] output (target) depends on values of the
input and/or output at previous times, i.e., reflecting some kind of inherent memory in the series, as is
prevalent in many scientific fields, namely hydrology and meteorology [54] and often described by
some autocorrelation. More specifically, dynamic neural networks can then be further divided into
time-delay networks (output depends on previous values of input) and feedback (recurrent) (output
depends on previous values of output) networks [55,56]. Dynamic neural networks are particularly
suitable for nonlinear dynamic systems modeling and have been used in many applications involving
time series modeling and prediction.

2.4.2. Nonlinear Autoregressive Neural Network with Exogenous Inputs (NARX)

The nonlinear autoregressive network with exogenous inputs (NARX) is an important class of
a dynamic network which encompasses the two features above, i.e., a time-delayed nonlinear input
(x)–output (y) relationship (NX) and the auto-regressive properties of the output Y (AR) [39,56,57]. The
general input-output formulation of a NARX model is as follows:

y(t) = f (y(t − 1), y(t − 2), . . . , y(t − d), x(t − 1), x(t − 2), . . . , x(t − d)) + ε(t), (5)

i.e., predicted values of the dependent variable y(t) at time t is regressed on given d past values of
series y and up to d previous values of an independent (exogenous) input signal x(t).

The process of the NARX-network training is usually performed in open-loop form, using known
historical values of the input x, i.e., relative soil moisture changes and air temperatures, and output
y, i.e., rainfall (see Figure 2, upper panel) and in closed-loop form for subsequent multistep-ahead
prediction of y (see Figure 2, lower panel).

The weight values (w) constrain how input data (relative soil moisture, temperature) are related
to output data (rainfall). Similarly, bias values (b) are added to the sums calculated in the intermediate
and output layers of the network. These values increase the capacity of the network to solve problems
by allowing the hyperplanes that separate individual classes to be offset for superior positioning [58].
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In order to obtain an accurate prediction model, speed up the calculation and to avoid overfitting, it is
important to adjust the maximum number of delays d in Equation (5). Both the SM2RAIN and the
NARX neural network are implemented within the MATLAB© environment [59].
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2.5. Precipitation Estimates from Remotely Sensed Information Using Artificial Neural Networks Climate Data
Record (PERSIANN–CDR)

PERSIANN–CDR (Precipitation Estimates from Remotely Sensed Information using Artificial
Neural Networks–Climate Data Record) is a satellite-based precipitation dataset at a resolution of
0.25◦ × 0.25◦ for the latitude band 60 N–60 S on the daily scale over the period of 1 January 1983
to present, i.e., is a product with a long-term, global coverage useful for meteorological studies
and water resource assessments. The PERSIANN algorithm employs an artificial neural network
model to convert the infrared brightness temperatures information into rain rates [21,60]. The daily
PERSIANN–CDR product is available to the public and can be downloaded from NOAA’s National
Centers for Environmental Information website [61].

3. Results and Discussion

As mentioned in the introduction, two different approaches of daily rainfall estimation in the
KRB, i.e., (1) the SM2RAIN algorithm incorporating soil moisture observations from AMSR–E and
(2) the NARX neural network algorithm also employing AMSR–E soil moisture observations and
ground-based mean air temperature as input and gauge-measured rainfall as output are used and
compared to each other.

3.1. SM2RAIN Rainfall Estimation Using AMSR–E Soil Moisture Data

The SM2RAIN model is calibrated using AMSRE soil moisture and gauge rainfall data for the
period 1 January 2003 to 31 December 2005 and validated with data for the remaining 9 months from
1 January 2006 to 30 September 2006. The calibration is performed as an iterative process whereby
the free parameters in the SM2RAIN algorithm (Equations (1)–(4)) are adjusted within their allowable
ranges, until the estimated rainfall values are in line with the measured ones, using the coefficient of
determination (R2) and the root-mean-square error (RMSE) as quantitative statistical measures.

Time series of the daily SM2R-AMSRE- estimated and observed rainfall for the different stations
are shown in the upper panels of Figure 3, with the AMSR–E soil moisture time series depicted
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in the corresponding lower panels. Table 2 lists the R and root-mean-square error (RMSE) values
of the SM2RAIN model fits obtained for the 5 KRB climate stations for both the calibration and
validation periods. One may notice from the table that the observed rainfall data are reproduced with
reasonable accuracy. In the validation period, the R2-values range between 0.33 for Khorramabad
to 0.65 for Ilam. The RMSE is the lowest for Ahvaz station, in accordance with the better R2-value
there. Lower performances are also acquired for Ilam and Khorramabad stations, most likely due to
the presence of more noise in the associated satellite soil moisture data (see Figure 3).
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Besides, surface conditions and topography of the climate stations affect the outcome as well.
Thus, the high altitude stations Ilam and Khorramabad stations in the mountainous regions, with more
snow cover and frozen soils, do worse than the low altitude station Ahvaz.

Comparisons between the gauge-measured and SM2R-AMSRE estimated rainfall show that the
SM2RAIN underestimates the total rainfall amount at all sites. The major reason for this is the constant
values of soil moisture for any rainfall amount after reaching saturation [25,47,62,63].

This issue could also explain the reason why at the high-altitude stations, which experience
more large rainfall events, the RMSEs are higher. The optimized values of the four parameters (after
calibration/validation) that control the water cycle in SM2RAIN method (see Equations (1)–(3)) are
listed in Table 3.

Similar to [25,47], the values of these parameters are consistent with their expected physical ones.

Table 2. Coefficient of determination (R2), root-mean-square error (RMSE) and Nash–Sutcliffe efficiency
(NSE) of SM2RAIN model fit of rainfall at the 5 Karkheh river basin (KRB) climate stations for calibration
and validation periods.

Climate Station
R2 RMSE (mm) NSE

Cal Val Cal Val Cal Val

Ahvaz 0.57 0.44 2.5 2.5 0.63 0.36
Kermanshah 0.48 0.23 3.07 3.91 0.55 0.11

Hamedan 0.38 0.31 3.06 0.12 0.44 0.09
Khorramabad 0.35 0.33 4.19 4.32 0.38 0.26

Ilam 0.28 0.65 5.58 4.47 0.33 0.56

Table 3. Optimized parameter values of the SM2RAIN-Equations (1)–(3) for the 5 KRB climate stations.

Climate Station Zn (mm) a (mm/day) b c

Ahvaz 32.1 39 2.2 1.90
Kermanshah 34.8 50 2.3 2.00

Hamedan 58.3 56 1.5 1.20
Khorramabad 39.2 46 1.9 1.95

Ilam 44.6 87 2.5 1.90

3.2. Rainfall Estimation Using the Nonlinear Autoregressive Network with Exogenous Inputs (NARX)
Neural Network

Using AMSR–E satellite data for soil moisture, ground-measured temperatures and rainfall as
input (open-loop, see Figure 2) and output, the new NARX neural forecasting model was trained
iteratively for the time period January 2003 to September 2005, by adjusting the number of hidden
neurons and delays for each KRB station, until a minimal RMSE was obtained. The subsequent
testing was performed in closed-loop setup with data in the period September 2005 to September 2006.
As mentioned, the application of the NARX model requires the tuning of parameters of the neural
network. Table 4 presents the optimal number of hidden neurons and delays d (Equation (5)) found
after some lengthy trial-and-error runs to get the best results in terms of the least RMSE.

Table 4. Optimal number of hidden neurons and delays d for the NARX model at 5 KRB stations.

Climate Station Neurons Delays

Ahvaz 8 10
Kermanshah 10 8

Hamedan 9 10
Khorramabad 14 10

Ilam 10 12
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Using the parameters of Table 4, Figure 4 shows the average NARX-estimated daily rainfall for
the training and testing periods for the 5 KRB stations.

Furthermore, the training and one-year prediction accuracies of the NARX model were evaluated
by the coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE) and the RMSE, both of which
are listed in Table 5. Similar to the results of the SM2RAIN method in the previous section, the best
and worst NARX model performances are obtained for stations Ahvaz and Khorramabad, respectively,
with R2-values ranging between 0.57 for the former and 0.17 for latter in the testing phase.Water 2018, 10, x FOR PEER REVIEW  9 of 15 
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Figure 4. Observed and NARX model-predicted daily rainfall for the KRB stations for training and
testing stages.

Table 5. Coefficient of determination (R2), root-mean-square error (RMSE) and Nash–Sutcliffe efficiency
(NSE) of the NARX-model fits for the 5 KRB climate stations for the training and testing phases.

Climate Station
Training Testing

R2 RMSE (mm) NSE R2 RMSE (mm) NSE

Ahvaz 0.65 3.3 0.62 0.57 4.8 0.28
Kermanshah 0.60 4.8 0.55 0.37 6.6 0.53

Hamedan 0.40 5.8 0.16 0.26 6.8 0.10
Khorramabad 0.37 5.9 0.38 0.17 7.3 0.27

Ilam 0.32 6.3 0.79 0.23 8.9 0.31
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3.3. PERSIANN–CDR Satellite-Based Rainfall

Besides the SM2RAIN- and NARX-estimated rainfalls, the PERSIANN–CDR satellite-based
rainfall is also compared with the observed rainfall at the five climate stations in the KRB (see Figure 5).

The PERSIANN–CDR product statistical performances for detecting the observed rainfall are
displayed in Table 6.Water 2018, 10, x FOR PEER REVIEW  10 of 15 
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Figure 5. Observed and Precipitation Estimates from Remotely Sensed Information using Artificial
Neural Networks–Climate Data Record (PERSIANN–CDR) satellite-based rainfall for the KRB stations
during the period from January 2003 to September 2006.

The best results are achieved for Ahvaz station, followed by Hamedan station, however,
with values of R2 and NSE, substantially lower (RMSE higher) than those obtained with the SM2RAIN-
(Table 2) and NARX- (Table 5) models. The reason of that somewhat disappointing performance of the
PERSIANN–CDR product could be the lack of training of the neural network parameters (over Iran),
due to the limited gauge information [64,65], and the low quality of the longwave infrared (IR)-based
precipitation estimates [64,66]. Moreover, as can be seen from Figure 5, PERSIANN–CDR tends to
underestimate the rainfall at all stations, particularly, for heavy rainfall events.
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Table 6. Coefficient of determination (R2), root-mean-square error (RMSE) and Nash–Sutcliffe efficiency
(NSE) for PERSIANN–CDR during the period from January 2003 to September 2006.

Climate Station R2 RMSE (mm) NSE

Ahvaz 0.30 3.24 0.18
Kermanshah 0.29 3.87 0.09

Hamedan 0.31 6.03 0.31
Khorramabad 0.27 4.41 0.21

Ilam 0.12 4.06 −0.26

3.4. Comparison of SM2RAIN- and NARX-Simulated Rainfall

Comparison of the rainfall series predicted by NARX (Figure 4) with those of SM2RAIN (Figure 3)
as well as of the corresponding statistical performance indicators (Tables 3 and 5) shows that for climate
stations Ahvaz and Kermanshah the simulated NARX-predicted rainfall has a higher correlation with
the observed one than the SM2RAIN-predicted one, and this holds for both training/calibration and
testing/validation phases/periods.

For station Hamedan, NARX provides almost the same, or even little better results than SM2RAIN.
In contrast, for Khorramabad and Ilam stations, SM2RAIN is generally superior by delivering a higher
correlation than NARX for all periods/phases. A more revealing picture of the performance differences
between the two methods is provided by the plots of the biases, i.e., the absolute differences between the
simulated and observed rainfalls for the KRB stations in Figure 6. As can be clearly seen, the SM2RAIN
model has for all stations generally less bias, i.e., also less RMSE (see Tables 2 and 5) than the NARX
model. Moreover, as mentioned earlier, SM2RAIN has a tendency to underestimate higher rainfall rates
due to saturation and this is the reason why many of the SM2RAIN biases are negative, whereas the
NARX bias show more temporary systematic over/under prediction of the rainfall. In any case,
these results indicate that a physically based model (SM2RAIN) is—at least in this application—indeed
superior to a non-physical neural network model (NARX).
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4. Conclusions

In this study, the recently developed SM2RAIN algorithm [26] and a new NARX neural network
model are applied to convert AMSR–E soil moisture data to predict daily rainfall at 5 climate stations in
the KRB, Iran, which has been a major study region of the authors for some time. The results show that
SM2RAIN is able to predict the rainfall at the KRB stations located in different climate regions—from the
mountainous north to the flat south of KRB—with varying reliability. Thus, the SM2RAIN-simulated
rainfall shows good correlations with the observed one, with R2-values ranging from 0.32 to 0.79
during the calibration and validation period.

The new NARX neural network developed here turns out to be fast and robust and is able to also
approximate the daily rainfall data at the same KRB stations in an acceptable manner, whereby the R2

values range between 0.17 and 0.65 for the testing period. From the time series of the biases obtained
with the two prediction methods (Figure 5), it can be inferred that although SM2RAIN underestimates
daily rainfall in many cases, this method works somewhat better than NARX which produces higher
biases and RMSE (Tables 2 and 5) at all stations. Whether this holds generally, or only in the present
KRB application, is yet to be investigated. However, given that SM2RAIN is a physical model its slight
superiority may be of no surprise. On the other hand, the appealing feature of the NARX network is
that, thanks to the use of exogenous (external) input data, its network complexity is reduced compared
with classical multilayer perceptron neural networks. For an additional independent check of the
observed rainfall, the PERSIANN–CDR rainfall product has also been applied, but it shows a lower
performance than the SM2RAIN and NARX models.

In conclusion, the results of the present study indicate that both SM2RAIN- and NARX models,
using AMSR–E satellite soil moisture products, have a high potential for real-time rainfall prediction,
but should be further applied with other satellite soil moisture data sets to more catchments worldwide
with different physiographic characteristics in order to better assess their practical usefulness.
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