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Abstract

The consequences of keV light-ion bombardment of polycrystalline exchange bias layer systems on
individual magnetic anisotropies composing the effective unidirectional magnetic anisotropy are
investigated by vectorial magneto-optic Kerr effect measurements. Preferential reduction of rotatable
magnetic anisotropy as compared to the other magnetic anisotropies is observable, disproving the
intuitive assumption of an equable weakening of all magnetic anisotropies due to the bombardment.
Itis concluded that light-ion bombardment has a stronger impact on the magnetic characteristics of
smaller grains in a polycrystalline antiferromagnet as compared to those of larger ones.

1. Introduction

Light-ion bombardment has proven to be a versatile and powerful technique to tailor magnetic characteristics of
magnetic thin film systems [1-5] after their deposition. This technology is one among a few enabling the
production of a multitude of functional elements in a large variety of applications [6—10]. In magnetoresistive
sensor stacks (sensors based on the giant magnetoresistance effect or magnetic tunnel junctions) with magnetic
reference electrodes pinned by exchange bias, for example, the pinning direction can be set to an arbitrary
direction after completion of the deposition process essentially without changing the magnetoresistive effect
amplitude [11-13]. Its possible use in creating magnetic logic elements has similarly been proven [14] as its
potential to create engineered domain patterns by ion beam writing or when combined with lithographical
techniques [1, 4, 15-17]. The latter patterns have shown to be useful for magnetic particle transport by moving
domain walls [18], by changing potential energy landscapes associated with the stray fields above the engineered
domains [19, 20] or by topological transport [21].

The two classes of layer systems most commonly used for modification by keV light-ion bombardment are
polycrystalline Co/noble metal multilayers with an effective perpendicular-to-plane magnetic anisotropy and
polycrystalline exchange bias layer systems with an effective in-plane magnetic anisotropy. Evidently the
effective magnetic anisotropies in these layer systems result from a complex interplay of different individual
magnetic anisotropies originating from interactions between layers or from the layers themselves [22-26]. Due
to hyperthermal energy transfer from the ions into the layer system, implantation of ions, and defect creation the
different prevailing magnetic anisotropies will be modified resulting in an altered effective magnetic anisotropy
of the complete system. Whereas the modification of the effective magnetic anisotropies after keV light-ion
bombardment is experimentally easily accessible and has been well characterized for along time there are only
reasonable conjectures how the different magnetic anisotropy contributions are individually affected by the
impinging ions. As the effective magnetic anisotropy usually decreases with increasing ion fluence due to
increased defect creation and ion implantation a likely supposition is that all magnetic anisotropy contributions
of the layer system are decreased parallel to the decrease of the effective magnetic anisotropy. One exception is
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Figure 1. [llustration of angles and vectors for the used model in a polar coordinate system. M isthe magnetization vector of the
ferromagnetic layer and [ its azimuth. K is the energy density per unit volume of the ferromagnetic uniaxial magnetic anisotropy
and +y; the azimuth of its magnetic easy direction. Hey is the external magnetic field vector during the characterization measurements
with the azimuth ¢, . ]Eg ( ]éff) is the energy area density of the unidirectional magnetic anisotropy (rotatable magnetic anisotropy)
with the corresponding azimuth g (734 )- Reprinted figure with permission from [23], Copyright (2016) by the American Physical
Society.

the increase of the exchange bias field in polycrystalline exchange bias layer systems, which may be also explained
by a decrease of magnetic anisotropy in larger antiferromagnetic crystallites [22, 27-29]. Although experimental
evidence for the modification of the individual magnetic anisotropies via keV light-ion bombardment exists
[26], a quantitative disentanglement of the individual contributions, allowing a corresponding experimental
proof of such a conjecture, is still missing.

In the present work we show that a recently developed model describing the effective unidirectional
magnetic anisotropy in exchange bias layer systems by the different individual magnetic anisotropies can be used
in conjunction with accurate measurements by vectorial magneto-optic Kerr effect (MOKE) magnetometry to
identify effects of keV light-ion bombardment on the individual contributions. The investigations indicate that
not all magnetic anisotropies in the layer system are reduced in the same way. The rotatable magnetic anisotropy
prevailing in a certain class of smaller antiferromagnetic grains of the polycrystalline antiferromagnetic layer is
reduced more dramatically than the other magnetic anisotropies in the system. This leads to the conclusion that
keV light-ion bombardment does more efficiently modify the magnetic anisotropy associated with this class of
grains. More generally our results indicate that the effects of light-ion bombardment on polycrystalline layer
systems are grain size dependent. The results may initiate investigations to understand the physics fundamentals
of the impact oflight ions on individual material parameters of polycrystalline magnetic thin films rather than
on averaged values.

2. Experimental

Exchange bias samples of the type Cu®*"™ /Ir;;Mna3"™/CooFels ™ /Si**"™ were fabricated on naturally
oxidized Siincluding a field cooling procedure with a setting temperature of 573.15 K and an external magnetic
field HFC of 80 kA m ™! as done in [23]. Thereafter, samples were bombarded with 10 keV-He ions in ahome
built setup described in [30] under high vacuum conditions with a base pressure of 4 x 10~° mbar. Ion
bombardment (IB) was carried out with an ion current of approximately 10~° A creating bombardment doses D
ranging from 10'® to 10" ions cm 2. During IB an external magnetic field Hyz of 70 kA m ™" was applied either
parallel or antiparallel to Hyc. The two bombardment geometries will in the following be abbreviated by 71

IB and T| IB, respectively.

Magnetization curves as a function of ¢, ,, the angle between the direction of the external magnetic field
applied for the characterization measurements and the arbitrarily chosen reference axis (¥ in figure 1), were
measured using vectorial MOKE magnetometry as described in [23, 31, 32]. In the setup longitudinal and
transversal components of the magnetization are detected by analyzing polarization and intensity of the reflected
light from a 632 nm diode laser, respectively. Magnetization curves were measured using 300 external magnetic
field steps in a range of 80 kA m ™' within 80 s. For each sample ¢, , was varied in the range of 0°~450° with a
resolution of 1°. Absence of significant training effects was verified by comparing data from 0° to 90° with
360°-450°.




10P Publishing

NewJ. Phys. 20 (2018) 053018 N D Miiglich et al

3.Model

For the numerical calculations the model of [23] was used whose main characteristics will be briefly summarized
here. Itis based on the coherent rotation approach introduced by Stoner and Wohlfarth [33, 34] calculating the
angle of the ferromagnetic magnetization direction B¢ with respect to the x-axis (see figure 1 for an overview of
magnetic anisotropy and angle definitions). In the model the magnetic anisotropy of the ferromagnet was
assumed to be uniaxial with the energy volume density Kg. The polycrystalline antiferromagnet was modeled by
classifying its grains, exhibiting exchange interaction with the ferromagnet, in respect to their individual energy
barriers AE; distinguishing between a pinned and an unpinned state of the antiferromagnetic moment of the
respective grain to the ferromagnetic magnetization [27]. The individual energy barriers can be expressed in first
order by the product of the magnetic anisotropy Kr ; and the volume Vg ; of the grains. This allows the division
based on the relaxation times of the grains

T, = Tp €Xp [%] with AE;‘ = KAF, iVAF,i: ey
B

where fy = 1/71s the characteristic frequency for spin reversal [35], T'is the temperature and kg is Boltzmann’s
constant. The grain size distribution of the antiferromagnet can be consequently connected to the distribution of
relaxation times and is therefore commonly divided into four size classes with different thermal stability in
comparison to the measurement conditions [22, 27, 36]. Small antiferromagnetic grains with corresponding
energy barriers are thermally unstable during a magnetization reversal and can be divided into super-
paramagnetic grains (Class I) and those having relaxation times in the order of the hysteresis duration (Class II)
and therefore contributing to the coercivity of the system [22]. Thermally stable grains with relaxation times
longer than the duration of the magnetization reversal are able to mediate the unidirectional anisotropy. Grains
which can be set during field cooling conditions can yield a macroscopic contribution to the exchange bias (Class
I1I), while grains with the highest energy barriers being stable during the field cooling procedure (Class IV)
feature a random contribution to the direction of the unidirectional anisotropy.

The influence of the thermally unstable grains of Class I is modeled with a time-dependent rotatable
magnetic anisotropy by considering an average relaxation time 7,4 for all grains of the corresponding class. The
energy area density of the unidirectional and the rotatable magnetic anisotropyis J&i and J&&, respectively, and
is connected to the number of antiferromagnetic grains in each class. The total energy area density of a system
with the sample surface A consisting of the potential energy of the ferromagnetic moment inside of the external
magnetic field (Zeemann energy) Ez and the anisotropy energies of the ferromagnetic uniaxial magnetic
anisotropy (FUMA) Eryma, the unidirectional Eyp, and the rotatable magnetic anisotropy Egpa 1S

E/A = (Ez + Epuma + Eupa + Erma) /A
= _NoHextMsat Ip COS(ﬁF - SDext)

+ Kgty sin? (B — )

— JE§ cos(Be — ven)

& cos(Br — Yrmia)

with yrva = Be(t — Tavg)- 2

Here, 1 is the magnetic permeability in vacuum, My, the saturation magnetization of the ferromagnet with
thickness tg. Hey and ¢, are strength and direction of the external magnetic field, respectively. g, 75 and
Tama are the angles between the x-axis of the coordinate system and the magnetic easy directions of the FUMA,
the unidirectional ansitropy, and the rotatable magnetic anisotropy, respectively (figure 1). While ; and
Vg emerge from sample processing 7y, ;4 is connected to 3p via T,yg with the time #[23].

4. Results

The exchange bias field Hgp () and the coercivity Hc(¢,,,) determined from vectorial MOKE measurements
for different D (figure 2) show the modifications of the characteristic quantities Hgg and Hc of the investigated
exchange bias layer systems by IB. Hgp(¢,,,) behaves roughly sinusoidal for all ion doses. The fine structure near
the magnetic easy axis of the system (¢, & 90°) leading to a deviation from the sine shape is caused by FUMA
[23,37, 38]. Small deviations from the mirror symmetry with respect to the magnetic easy axis can be attributed
to a misalignment (<2°) between FUMA and the unidirectional magnetic anisotropy [39, 40]. For increasing ion
dose Dinthe T] IB case theamplitude of Hgp(¢,,,) is successively reduced until it reaches a maximum with
opposite sign atabout D = 10" ions cm~2 and is for higher doses reduced in magnitude. This is in accordance
with previous magnetic easy axis hysteresis measurements [3, 41, 42]. Additionally, the fine structure near the
magnetic easy axis of the system is reduced for higher ion doses until it vanishes. This first important result
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Figure 2. Experimentally determined (a) exchange bias field Hgg(¢.) and (b) coercivity Hc(¢,,,) for an exchange bias system of
Cu"™™/Try;Mngg™/CozoFelg™ /Si?*" ™ after 1| IB with different D. Solid lines correspond to a fit using equation (2).

indicates the individual response of the FUMA contribution to the present light-ion bombardment as a part of
the modification of the total effective magnetic anisotropy of the layer system.

The experimentally determined relations Hc(g,,,) show alorentzian like shape indicating that coercivity
results from a superposition of FUMA and rotatable magnetic anisotropy [23]. The peak height and width of
Hc(@,) isreduced with higher D.

Fitting the model parameters to the experimental data (solid lines in figure 2) enables the determination of
material parameters as functions of D (figure 3). For the calculations M,; was assumed to be dependent on the
ion dose with

cm?

My = (1230 —5x10°%.D-
ons

)kA m~! 3)

as derived in [5] for a similar exchange bias layer system. Solely J&f as a function of D shows a dependence on the
direction of Hyg (figure 3(a)). Inthe 77 IB case ]Eg is slightly increased for smaller D while it is more complex in
the T| IB case. Both relations agree with previous magnetic easy axis hysteresis measurements where Hgg was
measured as a function of D [3, 28]. The small increase in the absolute value of ]Eg at D ~ 10" ions cm?%1is
linked to a part of Class IV grains converted to Class III grains (figure 4(a)) [ 18, 27]. Due to the high energy
transfer of the ions into the layer system some of these grains may overcome their relatively high energy barrier
and relax into their energetically favored state. In this sense a number of grains are transferred by the IB from
Class IV to Class I11. The decrease of J& for higher ion doses of D ~ 10'¢ ions cm~2is linked to a general
decrease of the ferromagnet/antiferromagnet interaction as a consequence of interlayer intermixing [43]. The
complexity of J&f inthe 7| IB case including the sign change is due to local field cooling induced by
hyperthermal energy transfer. One should note that the macroscopic J&i displays the coupling of the
ferromagnetic magnetization to the vector sum of the microscopic antiferromagnetic moments. In this sense
Iﬁg refers to the average exchange bias direction. Thus, in the T| IB case, the directions of the microscopic
exchange constants Jp,4r,; are changed. In contrast to previous magnetic easy axis hysteresis measurements
showing perfectly the macroscopic modification of the effective unidirectional magnetic anisotropy [27], the
angular resolved measurements clearly reveal that exchange bias reorientation takes place successively on alocal
basis correlated to the modification of individual grains representing a certain size class and not via coherent
rotation.
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Figure 3. Characteristic quantities (a) ]ﬁg , (b) Kg, (¢) ]éff and (d) 7,4 of the exchange bias layer as functions of D obtained by a fit of
the model parameters to the experimental results Hgg(¢,,,) and Hc(g,,). Black circles belong to unbombarded, red squares and blue
diamonds to bombarded samplesin | IB and T IB configuration, respectively. The uncertainty in the fit parameters has been
determined by a variation of the starting conditions. Lines are guides to the eye.

Kg asthe characteristic quantity of FUMA shows a decrease for higher D and is reduced to roughly 25% for
D = 10' ions cm~2 as compared to the value for the unbombarded layer system (figure 3(b)) which is in
qualitative agreement to previous studies involving a different material system [1]. The reduction of magnetic
anisotropy can be attributed to the ion induced defect creation in the ferromagnetic layer leading to a decrease of
crystalline order. Kg shows no dependence on the direction of Hig.

For ](e;ff and 7.y, which are used to describe the thermally unstable grains of Class II, again, no influence of
the bombardment field Hyy direction on the dose dependency was detected (figures 3(c), (d)). This was
suspected since the magnetic state is thermally unstable and the magnetic conditions during the field cooling or
the bombardment process are not memorized. J&' shows a massive decrease to only 10% for ion doses of
10'® jons cm ™2 as compared to the value of the unbombarded sample. For small ion doses 7.y, seems to increase
slightly while it is not possible to determine a trend for higher ion doses due to the large uncertainty.

Summing up bombardment by light ions reduces the rotatable magnetic anisotropy much stronger than it
modifies the unidirectional magnetic anisotropy. This is a counterintuitive result when assuming a statistical
distribution of defects in all grains of the polycrystalline layer system. In first order, the energy densities of both,
rotatable and unidirectional magnetic anisotropy, can be approximated as the product of the number of grains
in Classes IT and I1I, respectively, and the microscopic ferromagnet/antiferromagnet exchange interaction
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Figure 4. Sketches of (a) the energy barrier probability density and of (b) the relative change of the magnetic anisotropy Kur,15/Kar,0
due to IB in dependence on antiferromagnetic grain volume for a virgin sample (blue line), grain size independent (red/dashed) and
dependent (green/dash-dotted) reduction of K.

constant J /A ; for grains 7in contact to the ferromagnet. Both are altered by defect creation as IB not only
decreases Ji/arp,; but also the magnetic anisotropy of antiferromagnetic grains Kar (and of the ferromagnet, as
has been shown above) [27]. Thus, thermal stability of antiferromagnetic grains is changed by the bombardment
process leading to different numbers of grains in each category.

If we now assume evenly distributed defects, Jp /s ; and Kar should be reduced by a similar percentage for all
grain sizes as the number of defects per unit volume is constant. For alognormal antiferromagnetic grain size
distribution the resulting distribution of energy barriers of antiferromagnetic grains in contact to the
ferromagnet should be also lognormal (blue line in figure 4(a)). A grain size independent reduction of Kg
(dashed line in figure 4(b)) would modify this distribution towards lower energies (dashed line in figure 4(a)).
Such a modified energy barrier distribution is not able to explain the dramatic decrease of J&T relative to the
modification J&I for higher D. This statement holds even if we would assume that all grains of Class IV would
contribute to J& as the number of unset grains at field cooling temperatures of 300 °C for an antiferromagnet
with a Néel temperature of 400 °C should be rather low [22].

A grain size dependent reduction of K would reduce the magnetic anisotropy of a large number of Class I1
grains to become superparamagnetic, whereas the magnetic anisotropy of larger grains is much less affected, not
only explaining the massive decrease of J&, but also the increase of Tavg for smaller ion doses as the average
energy barrier of the remaining Class II grains is increased. The reason for this unexpected finding is not fully
clear, however, we may hypothesize on it by two arguments: (1) smaller grains are thinner, i.e. their spatial
extension orthogonal to the ferromagnet/antiferromagnet interface is smaller, which makes them prone to be
more efficiently affected by intermixing. (2) Their proportion of surface with respect to bulk atoms is higher. At
room temperature the chance of recombination after defect creation in bulk is 99% [44] so that most of the
created defects vanish quickly. In case of surface atoms displaced atoms could be out of range for recombination

reducing their chance of recombination.

5. Conclusions

In this work, we have determined the influence of keV-He ion bombardment on individual magnetic
anisotropies of exchange bias systems quantitatively by fitting a coherent rotation model to experimental data
obtained by vectorial MOKE magnetometry. The results show that ion bombardment induced modification of
exchange bias takes place locally supporting the validity of the polycrystalline model of exchange bias. The
reduction of coercivity caused by ion bombardment can be attributed to both a reduction of the ferromagnetic
uniaxial magnetic anisotropy and the rotatable magnetic anisotropy. The fast decrease of rotatable magnetic
anisotropy with increasing ion doses suggests that the reduction of magnetic anisotropy by light-ion
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bombardment in the antiferromagnet is more prominent in smaller grains having a higher proportion of surface
atoms and/or a smaller thickness. This excludes the intuitive assumption that ion bombardment causes an
equable weakening of all magnetic anisotropies. The result that in polycrystalline layer systems smaller grains are
much more affected by statistically impinging ions may be the basis for revisiting phenomena associated with ion
bombardment induced material modifications.
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