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Abstract
The consequences of keV light-ion bombardment of polycrystalline exchange bias layer systems on
individualmagnetic anisotropies composing the effective unidirectionalmagnetic anisotropy are
investigated by vectorialmagneto-optic Kerr effectmeasurements. Preferential reduction of rotatable
magnetic anisotropy as compared to the othermagnetic anisotropies is observable, disproving the
intuitive assumption of an equable weakening of allmagnetic anisotropies due to the bombardment.
It is concluded that light-ion bombardment has a stronger impact on themagnetic characteristics of
smaller grains in a polycrystalline antiferromagnet as compared to those of larger ones.

1. Introduction

Light-ion bombardment has proven to be a versatile and powerful technique to tailormagnetic characteristics of
magnetic thinfilm systems [1–5] after their deposition. This technology is one among a few enabling the
production of amultitude of functional elements in a large variety of applications [6–10]. Inmagnetoresistive
sensor stacks (sensors based on the giantmagnetoresistance effect ormagnetic tunnel junctions)withmagnetic
reference electrodes pinned by exchange bias, for example, the pinning direction can be set to an arbitrary
direction after completion of the deposition process essentially without changing themagnetoresistive effect
amplitude [11–13]. Its possible use in creatingmagnetic logic elements has similarly been proven [14] as its
potential to create engineered domain patterns by ion beamwriting orwhen combinedwith lithographical
techniques [1, 4, 15–17]. The latter patterns have shown to be useful formagnetic particle transport bymoving
domainwalls [18], by changing potential energy landscapes associatedwith the strayfields above the engineered
domains [19, 20] or by topological transport [21].

The two classes of layer systemsmost commonly used formodification by keV light-ion bombardment are
polycrystalline Co/noblemetalmultilayers with an effective perpendicular-to-planemagnetic anisotropy and
polycrystalline exchange bias layer systemswith an effective in-planemagnetic anisotropy. Evidently the
effectivemagnetic anisotropies in these layer systems result from a complex interplay of different individual
magnetic anisotropies originating from interactions between layers or from the layers themselves [22–26]. Due
to hyperthermal energy transfer from the ions into the layer system, implantation of ions, and defect creation the
different prevailingmagnetic anisotropies will bemodified resulting in an altered effectivemagnetic anisotropy
of the complete system.Whereas themodification of the effectivemagnetic anisotropies after keV light-ion
bombardment is experimentally easily accessible and has beenwell characterized for a long time there are only
reasonable conjectures how the differentmagnetic anisotropy contributions are individually affected by the
impinging ions. As the effectivemagnetic anisotropy usually decreases with increasing ion fluence due to
increased defect creation and ion implantation a likely supposition is that allmagnetic anisotropy contributions
of the layer system are decreased parallel to the decrease of the effectivemagnetic anisotropy. One exception is
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the increase of the exchange biasfield in polycrystalline exchange bias layer systems, whichmay be also explained
by a decrease ofmagnetic anisotropy in larger antiferromagnetic crystallites [22, 27–29]. Although experimental
evidence for themodification of the individualmagnetic anisotropies via keV light-ion bombardment exists
[26], a quantitative disentanglement of the individual contributions, allowing a corresponding experimental
proof of such a conjecture, is stillmissing.

In the present workwe show that a recently developedmodel describing the effective unidirectional
magnetic anisotropy in exchange bias layer systems by the different individualmagnetic anisotropies can be used
in conjunctionwith accuratemeasurements by vectorialmagneto-optic Kerr effect (MOKE)magnetometry to
identify effects of keV light-ion bombardment on the individual contributions. The investigations indicate that
not allmagnetic anisotropies in the layer system are reduced in the sameway. The rotatablemagnetic anisotropy
prevailing in a certain class of smaller antiferromagnetic grains of the polycrystalline antiferromagnetic layer is
reducedmore dramatically than the othermagnetic anisotropies in the system. This leads to the conclusion that
keV light-ion bombardment doesmore efficientlymodify themagnetic anisotropy associatedwith this class of
grains.More generally our results indicate that the effects of light-ion bombardment on polycrystalline layer
systems are grain size dependent. The resultsmay initiate investigations to understand the physics fundamentals
of the impact of light ions on individualmaterial parameters of polycrystallinemagnetic thinfilms rather than
on averaged values.

2. Experimental

Exchange bias samples of the typeCu50nm/Ir17Mn83
30nm/Co70Fe30

15nm/Si20nmwere fabricated on naturally
oxidized Si including afield cooling procedure with a setting temperature of 573.15Kand an externalmagnetic
field HFC


of 80 kAm−1 as done in [23]. Thereafter, samples were bombardedwith 10 keV-He ions in a home

built setup described in [30] under high vacuumconditions with a base pressure of 4× 10−6 mbar. Ion
bombardment (IB)was carried out with an ion current of approximately 10−6 A creating bombardment dosesD
ranging from1013 to 1016ions cm−2 . During IB an externalmagnetic field HIB


of 70 kAm−1 was applied either

parallel or antiparallel to HFC


. The two bombardment geometries will in the following be abbreviated by 

IBand  IB, respectively.
Magnetization curves as a function of extj , the angle between the direction of the externalmagnetic field

applied for the characterizationmeasurements and the arbitrarily chosen reference axis (x

infigure 1), were

measured using vectorialMOKEmagnetometry as described in [23, 31, 32]. In the setup longitudinal and
transversal components of themagnetization are detected by analyzing polarization and intensity of the reflected
light from a 632nmdiode laser, respectively.Magnetization curves weremeasured using 300 externalmagnetic
field steps in a range of±80 kAm−1 within 80 s. For each sample extj was varied in the range of 0°–450°with a
resolution of 1°. Absence of significant training effects was verified by comparing data from0° to 90°with
360°–450°.

Figure 1. Illustration of angles and vectors for the usedmodel in a polar coordinate system. MF


is themagnetization vector of the

ferromagnetic layer and Fb its azimuth. KFis the energy density per unit volume of the ferromagnetic uniaxialmagnetic anisotropy
and Fg the azimuth of itsmagnetic easy direction. Hext


is the externalmagneticfield vector during the characterizationmeasurements

with the azimuth extj . JEB
eff  (JC

eff ) is the energy area density of the unidirectionalmagnetic anisotropy (rotatablemagnetic anisotropy)
with the corresponding azimuth EBg  ( RMAg ). Reprinted figurewith permission from [23], Copyright (2016) by theAmerican Physical
Society.

2

New J. Phys. 20 (2018) 053018 NDMüglich et al



3.Model

For the numerical calculations themodel of [23]was usedwhosemain characteristics will be briefly summarized
here. It is based on the coherent rotation approach introduced by Stoner andWohlfarth [33, 34] calculating the
angle of the ferromagneticmagnetization direction Fb with respect to the x-axis (see figure 1 for an overview of
magnetic anisotropy and angle definitions). In themodel themagnetic anisotropy of the ferromagnet was
assumed to be uniaxial with the energy volume density KF. The polycrystalline antiferromagnet wasmodeled by
classifying its grains, exhibiting exchange interactionwith the ferromagnet, in respect to their individual energy
barriersΔEi distinguishing between a pinned and an unpinned state of the antiferromagneticmoment of the
respective grain to the ferromagneticmagnetization [27]. The individual energy barriers can be expressed infirst
order by the product of themagnetic anisotropyKAF,i and the volumeVAF,i of the grains. This allows the division
based on the relaxation times of the grains

E

k T
E K Vexp with , 1i

i
i i i0

B
AF, AF,t t=

D
D =

⎡
⎣⎢

⎤
⎦⎥ ( )

where f0=1/τ0 is the characteristic frequency for spin reversal [35],T is the temperature and kB is Boltzmann’s
constant. The grain size distribution of the antiferromagnet can be consequently connected to the distribution of
relaxation times and is therefore commonly divided into four size classes with different thermal stability in
comparison to themeasurement conditions [22, 27, 36]. Small antiferromagnetic grains with corresponding
energy barriers are thermally unstable during amagnetization reversal and can be divided into super-
paramagnetic grains (Class I) and those having relaxation times in the order of the hysteresis duration (Class II)
and therefore contributing to the coercivity of the system [22]. Thermally stable grains with relaxation times
longer than the duration of themagnetization reversal are able tomediate the unidirectional anisotropy. Grains
which can be set during field cooling conditions can yield amacroscopic contribution to the exchange bias (Class
III), while grains with the highest energy barriers being stable during the field cooling procedure (Class IV)
feature a random contribution to the direction of the unidirectional anisotropy.

The influence of the thermally unstable grains of Class II ismodeledwith a time-dependent rotatable
magnetic anisotropy by considering an average relaxation time avgt for all grains of the corresponding class. The

energy area density of the unidirectional and the rotatablemagnetic anisotropy is JEB
eff and JC

eff , respectively, and
is connected to the number of antiferromagnetic grains in each class. The total energy area density of a system
with the sample surfaceA consisting of the potential energy of the ferromagneticmoment inside of the external
magnetic field (Zeemann energy) EZ and the anisotropy energies of the ferromagnetic uniaxialmagnetic
anisotropy (FUMA)EFUMA, the unidirectionalEUDA and the rotatablemagnetic anisotropy ERMA is
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Here,μ0 is themagnetic permeability in vacuum, Msatthe saturationmagnetization of the ferromagnet with
thickness tF. Hextand extj are strength and direction of the externalmagnetic field, respectively. Fg , EBg and

RMAg are the angles between the x-axis of the coordinate system and themagnetic easy directions of the FUMA,
the unidirectional ansitropy, and the rotatablemagnetic anisotropy, respectively (figure 1).While Fg and

EBg emerge from sample processing RMAg is connected to Fb via avgt with the time t [23].

4. Results

The exchange biasfield HEB extj( )and the coercivity HC extj( )determined from vectorialMOKEmeasurements
for differentD (figure 2) show themodifications of the characteristic quantities HEBand HCof the investigated
exchange bias layer systems by IB. HEB extj( )behaves roughly sinusoidal for all ion doses. Thefine structure near
themagnetic easy axis of the system ( 90extj » ) leading to a deviation from the sine shape is caused by FUMA
[23, 37, 38]. Small deviations from themirror symmetry with respect to themagnetic easy axis can be attributed
to amisalignment ( 2 ) between FUMAand the unidirectionalmagnetic anisotropy [39, 40]. For increasing ion
doseD in the  IBcase the amplitude of HEB extj( )is successively reduced until it reaches amaximumwith
opposite sign at about D 10 ions cm15 2= - and is for higher doses reduced inmagnitude. This is in accordance
with previousmagnetic easy axis hysteresismeasurements [3, 41, 42]. Additionally, the fine structure near the
magnetic easy axis of the system is reduced for higher ion doses until it vanishes. This first important result
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indicates the individual response of the FUMAcontribution to the present light-ion bombardment as a part of
themodification of the total effectivemagnetic anisotropy of the layer system.

The experimentally determined relations HC extj( )show a lorentzian like shape indicating that coercivity
results from a superposition of FUMAand rotatablemagnetic anisotropy [23]. The peak height andwidth of
HC extj( )is reducedwith higherD.

Fitting themodel parameters to the experimental data (solid lines infigure 2) enables the determination of
material parameters as functions ofD (figure 3). For the calculations Msatwas assumed to be dependent on the
ion dosewith

M D1230 5 10
cm

ions
kA m 3sat

14
2

1= - ´ - -
⎛
⎝⎜

⎞
⎠⎟· · ( )

as derived in [5] for a similar exchange bias layer system. Solely JEB
eff as a function ofD shows a dependence on the

direction of HIB


(figure 3(a)). In the  IBcase JEB

eff is slightly increased for smallerDwhile it ismore complex in
the  IBcase. Both relations agree with previousmagnetic easy axis hysteresismeasurements where HEBwas
measured as a function ofD [3, 28]. The small increase in the absolute value of JEB

eff at D 10 ions cm15 2» - is
linked to a part of Class IV grains converted toClass III grains (figure 4(a)) [18, 27]. Due to the high energy
transfer of the ions into the layer system some of these grainsmay overcome their relatively high energy barrier
and relax into their energetically favored state. In this sense a number of grains are transferred by the IB from
Class IV toClass III. The decrease of JEB

eff for higher ion doses of D 10 ions cm16 2» - is linked to a general
decrease of the ferromagnet/antiferromagnet interaction as a consequence of interlayer intermixing [43]. The
complexity of JEB

eff in the  IBcase including the sign change is due to localfield cooling induced by
hyperthermal energy transfer. One should note that themacroscopic JEB

eff displays the coupling of the
ferromagneticmagnetization to the vector sumof themicroscopic antiferromagneticmoments. In this sense
JEB

eff refers to the average exchange bias direction. Thus, in the  IBcase, the directions of themicroscopic
exchange constants J iF AF, are changed. In contrast to previousmagnetic easy axis hysteresismeasurements
showing perfectly themacroscopicmodification of the effective unidirectionalmagnetic anisotropy [27], the
angular resolvedmeasurements clearly reveal that exchange bias reorientation takes place successively on a local
basis correlated to themodification of individual grains representing a certain size class and not via coherent
rotation.

Figure 2.Experimentally determined (a) exchange bias field HEB extj( )and (b) coercivity HC extj( )for an exchange bias system of
Cu50nm/Ir17Mn83

30nm/Co70Fe30
15nm/Si20nm after  IBwith differentD. Solid lines correspond to a fit using equation (2).
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KFas the characteristic quantity of FUMA shows a decrease for higherD and is reduced to roughly 25% for
D 10 ions cm16 2= - as compared to the value for the unbombarded layer system (figure 3(b))which is in
qualitative agreement to previous studies involving a differentmaterial system [1]. The reduction ofmagnetic
anisotropy can be attributed to the ion induced defect creation in the ferromagnetic layer leading to a decrease of
crystalline order. KFshows no dependence on the direction of HIB


.

For JC
eff and avgt , which are used to describe the thermally unstable grains of Class II, again, no influence of

the bombardment field HIB


direction on the dose dependencywas detected (figures 3(c), (d)). This was

suspected since themagnetic state is thermally unstable and themagnetic conditions during the field cooling or
the bombardment process are notmemorized. JC

eff shows amassive decrease to only 10% for ion doses of
10 ions cm16 2- as compared to the value of the unbombarded sample. For small ion doses avgt seems to increase
slightly while it is not possible to determine a trend for higher ion doses due to the large uncertainty.

Summing up bombardment by light ions reduces the rotatablemagnetic anisotropymuch stronger than it
modifies the unidirectionalmagnetic anisotropy. This is a counterintuitive result when assuming a statistical
distribution of defects in all grains of the polycrystalline layer system. Infirst order, the energy densities of both,
rotatable and unidirectionalmagnetic anisotropy, can be approximated as the product of the number of grains
inClasses II and III, respectively, and themicroscopic ferromagnet/antiferromagnet exchange interaction

Figure 3.Characteristic quantities (a) JEB
eff , (b) KF, (c) JC

eff and (d) avgt of the exchange bias layer as functions ofD obtained by afit of
themodel parameters to the experimental results HEB extj( )and HC extj( ). Black circles belong to unbombarded, red squares and blue
diamonds to bombarded samples in  IBand  IBconfiguration, respectively. The uncertainty in thefit parameters has been
determined by a variation of the starting conditions. Lines are guides to the eye.
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constant J iF AF, for grains i in contact to the ferromagnet. Both are altered by defect creation as IB not only
decreases J iF AF, but also themagnetic anisotropy of antiferromagnetic grainsKAF (and of the ferromagnet, as
has been shown above) [27]. Thus, thermal stability of antiferromagnetic grains is changed by the bombardment
process leading to different numbers of grains in each category.

If we now assume evenly distributed defects, J iF AF, andKAF should be reduced by a similar percentage for all
grain sizes as the number of defects per unit volume is constant. For a lognormal antiferromagnetic grain size
distribution the resulting distribution of energy barriers of antiferromagnetic grains in contact to the
ferromagnet should be also lognormal (blue line infigure 4(a)). A grain size independent reduction ofKAF

(dashed line infigure 4(b))wouldmodify this distribution towards lower energies (dashed line infigure 4(a)).
Such amodified energy barrier distribution is not able to explain the dramatic decrease of JC

eff relative to the
modification JEB

eff for higherD. This statement holds even if wewould assume that all grains of Class IVwould
contribute to JEB

eff as the number of unset grains atfield cooling temperatures of 300 °C for an antiferromagnet
with aNéel temperature of 400 °C should be rather low [22].

A grain size dependent reduction ofKAFwould reduce themagnetic anisotropy of a large number of Class II
grains to become superparamagnetic, whereas themagnetic anisotropy of larger grains ismuch less affected, not
only explaining themassive decrease of JC

eff , but also the increase of avgt for smaller ion doses as the average
energy barrier of the remaining Class II grains is increased. The reason for this unexpected finding is not fully
clear, however, wemay hypothesize on it by two arguments: (1) smaller grains are thinner, i.e. their spatial
extension orthogonal to the ferromagnet/antiferromagnet interface is smaller, whichmakes themprone to be
more efficiently affected by intermixing. (2)Their proportion of surface with respect to bulk atoms is higher. At
room temperature the chance of recombination after defect creation in bulk is 99% [44] so thatmost of the
created defects vanish quickly. In case of surface atoms displaced atoms could be out of range for recombination
reducing their chance of recombination.

5. Conclusions

In this work, we have determined the influence of keV-He ion bombardment on individualmagnetic
anisotropies of exchange bias systems quantitatively by fitting a coherent rotationmodel to experimental data
obtained by vectorialMOKEmagnetometry. The results show that ion bombardment inducedmodification of
exchange bias takes place locally supporting the validity of the polycrystallinemodel of exchange bias. The
reduction of coercivity caused by ion bombardment can be attributed to both a reduction of the ferromagnetic
uniaxialmagnetic anisotropy and the rotatablemagnetic anisotropy. The fast decrease of rotatablemagnetic
anisotropywith increasing ion doses suggests that the reduction ofmagnetic anisotropy by light-ion

Figure 4. Sketches of (a) the energy barrier probability density and of (b) the relative change of themagnetic anisotropy K KAF,IB AF,0

due to IB in dependence on antiferromagnetic grain volume for a virgin sample (blue line), grain size independent (red/dashed) and
dependent (green/dash-dotted) reduction ofKAF.
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bombardment in the antiferromagnet ismore prominent in smaller grains having a higher proportion of surface
atoms and/or a smaller thickness. This excludes the intuitive assumption that ion bombardment causes an
equable weakening of allmagnetic anisotropies. The result that in polycrystalline layer systems smaller grains are
muchmore affected by statistically impinging ionsmay be the basis for revisiting phenomena associatedwith ion
bombardment inducedmaterialmodifications.
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