Dissertation zur Erlangung des akademischen Grades Doktorin der Naturwissenschaften (Dr. rer. nat.)

Schadenserhebung, Kartierung und Charakterisierung des „Diplodia-Triebsterbens“ der Kiefer, insbesondere des endophytischen Vorkommens in den klimasensiblen Räumen und Identifikation von den in Kiefer (Pinus sylvestris) vorkommenden Endophyten

In Kooperation mit der Nordwestdeutschen Forstlichen Versuchsanstalt

vorgelegt von:
Johanna Bußkamp
Tag der Disputation: 4.07.2018

1. Gutachter: Prof. Dr. Ewald Langer
2. Gutachter: Prof. Dr. Oliver Gailing
Danksagung

Ich möchte mich bei folgenden Personen und Institutionen herzlich bedanken, ohne die diese Arbeit nicht möglich gewesen wäre:

Prof. Dr. Ewald Langer für die Betreuung der Doktorarbeit

Prof. Dr. Oliver Gailing für die Übernahme des Koreferats

das Team des Fachbereichs Ökologie der Universität Kassel, insbesondere bei
Ulrike Frieling und **Sylvia Heinemann** für die Laborarbeiten und bei **Janett Riebesehl** für die Hilfestellung beim Einstellen der genetischen Sequenzen

Dr. Gitta Langer für die intensive inhaltliche Begleitung der Doktorarbeit und Hilfestellungen

Dr. Ulrich Bressem für die freundliche Unterstützung der Arbeit

Annette Ihlemann für die Laborarbeiten, Recherchen, den großen Einsatz, Unterstützung und Ermutigungen in allen Lagen

Peter Gawehn für die Außenaufnahmen, viele Ideen zur Umsetzung der praktischen Arbeiten, 1000 ende gefahrene Kilometer, weitergegebene Erfahrungen

Markus Pfeffer für die Außenaufnahmen in Letzlingen und Pfungstadt

Christine Weinert, Kerstin Herwig, Hanna Judaschke und Martina Hille für Laborarbeiten

Dr. Michael Habermann, Leiter der Abteilung Waldschutz, für die wohlwollende Unterstützung der Arbeit

Abteilung Waldschutz der Nordwestdeutschen Forstlichen Versuchsanstalt für die Bereitstellung von Daten und die Unterstützung

Den beteiligten Förstern

Dr. Paul Heydeck vom LFE für Zusendung von Kiefernmaterial mit *Truncatella conorum-piceae* und Hilfe beim Auswählen von Untersuchungsbeständen in Brandenburg

Waldklimafonds für die finanzielle Unterstützung des WAHYKLAS-Projekt (Förderkennzeichen 28W-C-4-031) und den **Projektpartnern** des Projekts: Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, Bayerische Landesanstalt für Wald und Forstwirtschaft (LWF), Landeskompetenzzentrum Forst Eberswalde (LFE), Thüringen Forst – AöR, Service- und Kompetenzzentrum Gotha, Potsdam Institut für Klimafolgenforschung (PIK) für die Bereitstellung von Daten und die gemeinsamen Probennahmen.
Inhaltsverzeichnis

Abbildungsverzeichnis v
Tabellenverzeichnis vii

Inhalt

1. Einleitung .. 1

1.1 Diplodia-Triebsterben .. 1

1.1.1 Der Erreger - *Sphaeropsis sapinea* .. 1

1.1.2 Symptome des Diplodia-Triebsterbens ... 5

1.2 *Pinus sylvestris* .. 10

1.3 Schaderreger an *Pinus sylvestris* .. 12

1.3.1 Kiefern-Mistel .. 12

1.3.2 Wurzelschwamm .. 13

1.3.3 Sonstige Schaderreger ... 14

1.4 Endophyten ... 17

1.4.1 Diversität und Ordination .. 22

1.5 Ziele der Arbeit .. 23

2. Material und Methoden ... 24

2.1 Untersuchte Kiefernbestände ... 24

2.1.1 Beprobungen von Kiefernbeständen ... 25

2.1.2 Systematische Beprobung von Kiefernbeständen .. 27

2.1.3 Monatliche Probennahme einer Kiefer .. 29

2.1.4 Zusätzliche Versuche mit Kiefernzwiegen ... 30

2.2 Erhebung des Wurzelschwammvorkommens ... 30

2.3 Erfassung des Mistelvorkommens an Kiefern ... 32

2.4 Isolation von Endophyten ... 32
Abbildungsverzeichnis

<table>
<thead>
<tr>
<th>Abbildung</th>
<th>Beschreibung</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pyknidien von S. sapinea auf Kiefernzwigen</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Makro- und mikroskopische Ansichten von S. sapinea</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Verbreitung des Diplodia-Triebsterbens weltweit</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Symptome des Diplodia-Triebsterbens</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>Kiefern auf verschiedenen Standorten</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>Natürliches Verbreitungsgebiet von P. sylvestris</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>Das natürliche, zonale Verbreitungsgebiet von P. sylvestris</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>Wurzelschwamm-Fruchtkörper an einem Kiefernstubben</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>Kiefern nach einem Fraß der Kiefernbuschhornblattwespe</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>Untersuchte Probeflächen mit P. sylvestris</td>
<td>24</td>
</tr>
<tr>
<td>11</td>
<td>Untersuchte Probeflächen entlang des Transekts</td>
<td>28</td>
</tr>
<tr>
<td>12</td>
<td>Kiefernstubben mit Fruchtkörpern von H. annosum</td>
<td>30</td>
</tr>
<tr>
<td>13</td>
<td>Mikroskopische Ansichten von Spiniger meineckellus</td>
<td>31</td>
</tr>
<tr>
<td>14</td>
<td>Entnadelter Kieferntrieb</td>
<td>33</td>
</tr>
<tr>
<td>15</td>
<td>Isolation von Endophyten auf MYP-Medium</td>
<td>34</td>
</tr>
<tr>
<td>16</td>
<td>Kiefernzwieg für den Versuch zur Lokalisierung der Endophyten</td>
<td>40</td>
</tr>
<tr>
<td>17</td>
<td>Verwendetes PCR-Programm</td>
<td>44</td>
</tr>
<tr>
<td>18</td>
<td>Kiefernzwiege in der feuchten Kammer</td>
<td>51</td>
</tr>
<tr>
<td>19</td>
<td>VC-Test mit 12 S. sapinea-Stämmen</td>
<td>54</td>
</tr>
<tr>
<td>20</td>
<td>Wuchsverhalten der Pilzkulturen im Antagonistentest</td>
<td>55</td>
</tr>
<tr>
<td>21</td>
<td>Test zur Hypheninterferenz</td>
<td>57</td>
</tr>
<tr>
<td>22</td>
<td>Endophytisches Vorkommen von S. sapinea</td>
<td>60</td>
</tr>
<tr>
<td>23</td>
<td>Kartierung der Fruchtkörper des Wurzelschwamms</td>
<td>61</td>
</tr>
<tr>
<td>24</td>
<td>Kartierung des Mistelvorkommens an der Waldkiefer</td>
<td>62</td>
</tr>
<tr>
<td>25</td>
<td>Kartierung der Wurzelschwamm-Fruchtkörper</td>
<td>66</td>
</tr>
<tr>
<td>26</td>
<td>Lage der kartierten Stubben und der Wurzelschwamm-Fruchtkörper</td>
<td>66</td>
</tr>
<tr>
<td>27</td>
<td>Mistelvorkommen auf der Untersuchungsfläche Bürstadt</td>
<td>67</td>
</tr>
<tr>
<td>28</td>
<td>Niederschlagsmengen pro Monat für Lamperheim</td>
<td>68</td>
</tr>
<tr>
<td>29</td>
<td>Durchschnittliche monatliche Temperatur für Mannheim</td>
<td>69</td>
</tr>
<tr>
<td>30</td>
<td>Tagesmaximal-Temperatur der Wetterstation in Mannheim</td>
<td>69</td>
</tr>
<tr>
<td>31</td>
<td>Tagesminimal-Temperatur für die Wetterstation in Mannheim</td>
<td>69</td>
</tr>
<tr>
<td>32</td>
<td>Venn-Diagramm zum Vorkommen der OTUs</td>
<td>70</td>
</tr>
</tbody>
</table>
Abbildung 33: Vorkommen der OTUs dargestellt im Venn-Diagramm 71
Abbildung 34: Grafische Darstellung der Beratungsfälle 72
Abbildung 35: Kartografische Darstellung der Beratungsfälle 73
Abbildung 36: Vielfalt der Endophyten .. 75
Abbildung 37: Konidien von OTU11 (Truncatella conorum-piceae) 78
Abbildung 38: Reinkultur von OTU11 auf Kiefernnadelagar 78
Abbildung 39: Längen und Breiten der Konidiosporen von Truncatella-Stämmen ... 80
Abbildung 40: Abklatsch eines Kiefernzwieges ... 85
Abbildung 41: Anteil der verschiedenen Klassen an der absoluten Häufigkeit 92
Abbildung 42: Anteil der verschiedenen Ordnungen an der absoluten Häufigkeit ... 93
Abbildung 43: Venn-Diagramm des Vorkommens der OTUs in Kiefernzweigen 94
Abbildung 44: Relative Häufigkeiten ausgewählter OTUs in Triebsegmenten 94
Abbildung 45: Gerundete relative Häufigkeit der OTUs in Prozent 97
Abbildung 46: Endophytisches Vorkommen von Biscogniauxia mediterranea ... 98
Abbildung 47: CA-Korrespondenzanalyse mit ausgewählten OTUs 99
Abbildung 48: DCA-Korrespondenzanalyse mit ausgewählten OTUs 99
Abbildung 49: Kanonische Korrespondenzanalyse mit ausgewählten OTUs 100
Abbildung 50: Relative Häufigkeit der Isolation von S. polyspora und M. olivacea ... 101
Abbildung 51: Alter der untersuchten Triebsegmente von Kiefer 102
Abbildung 52: Morphologie der im Temperaturversuch verwendeten Kulturen .. 117
Abbildung 53: Verschiedene Wuchsformen von M. olivacea 118
Abbildung 54: Wachstumsgeschwindigkeit von S. sapinea 118
Abbildung 55: Wachstumsgeschwindigkeit von S. polyspora 119
Abbildung 56: Verschiedene Dualkulturen im Antagonistentest 120
Abbildung 57: Kontaktlose Hemmung im Antagonistentest 121
Abbildung 58: Antagonistentest, Überwachsen von S. sapinea 121
Abbildung 59: Hypheninterferenz von S. sapinea 124
Tabellenverzeichnis

Tabelle 1: Diplodia-Schadensfälle an Kiefer ... 8
Tabelle 2: Übersicht über die Untersuchungsflächen ... 25
Tabelle 3: Übersicht über forstliche Kenngrößen und Standortmerkmale 26
Tabelle 4: Schadstufen für Symptome des Diplodia-Triebsterbens 28
Tabelle 5: Auf den Untersuchungsflächen erhobene Daten 29
Tabelle 6: Schadstufen für das Vorkommen der Kiefernmistel………………………… 32
Tabelle 7: Verschiedene Varianten der Oberflächensterilisierung 38
Tabelle 8: Versuchsreihen mit verschiedenen Segmentlängen 39
Tabelle 9: PCR-Ansatz ... 43
Tabelle 10: Primer für die ITS und LSU-Region ... 44
Tabelle 11: Vergleichskulturen von CBS und DSMZ .. 45
Tabelle 12: Wachstumsbedingungen zur Identifizierung der Endophyten 46
Tabelle 13: Für die Temperaturuntersuchungen verwendete Isolate 52
Tabelle 14: Gemessene Temperaturen der verwendeten Thermoschränke 53
Tabelle 15: Endophytischer Nachweis von S. sapinea .. 60
Tabelle 16: Ergebnis der Aufnahme von Fruchtkörpern des Wurzelschwamms 65
Tabelle 17: Ergebnis der Kartierung von Fruchtkörpern des Wurzelschwamms 65
Tabelle 18: Ergebnisse bezüglich endophytischer Besiedlung 68
Tabelle 19: Übersicht über alle untersuchten Proben ... 75
Tabelle 20: Isolierte Pilze aus Triebsegmenten von Kiefernzwiegen 76
Tabelle 21: Verwendete Stämme der Gattung Truncatella 79
Tabelle 22: Ergebnis der Sporenmessung ... 79
Tabelle 23: 90 isolierte Pilze aus Kieferntrieben .. 81
Tabelle 24: Ergebnisse des Abklatsches .. 86
Tabelle 25: Erfolgskontrolle der Oberflächensterilisierung V15 (Versuch 3) 87
Tabelle 26: Erfolgskontrolle der Oberflächensterilisierung V15 (Versuch 4) 88
Tabelle 27: Isolierte OTUs nach unterschiedlichen Lagerungszeiten 89
Tabelle 28: Isolierte OTUs aus unterschiedlich langen Triebsegmenten 90
Tabelle 29: Versuch zur Lokalisierung der Endophyten .. 91
Tabelle 30: Ergebnisse zum endophytischen Vorkommen von S. sapinea 96
Tabelle 31: Ergebnis der Isolation von Endophyten im Jahresverlauf 101
Tabelle 32: Vorkommen der Endophyten nach Alter der Triebsegmente 103
Tabelle 33: Übersicht über publizierte Arbeiten zu den Endophyten 104
Tabelle 34: Übersicht der wissenschaftlichen Arbeiten zu Endophyten................. 105
Tabelle 35: Bisher bekannte Endophyten aus P. sylvestris und Pinus spp. 106
Tabelle 36: Erstmals endophytisch isolierte Pilzarten... 110
Tabelle 37: Ökologische Eingruppierung der isolierten Endophyten 111
Tabelle 38: Ergebnis des Temperaturexperiments von verschiedenen Pilzstämmen.. 117
Tabelle 39: Verschiedene Formen der Hemmung von S. sapinea 120
Tabelle 40: Antagonisten-Test nach der Zellophan-Methode............................... 123
1. Einleitung

1.1 Diplodia-Triebsterben

Das *Diplodia*-Triebsterben der Kiefer wird durch den Schlauchpilz *Sphaeropsis sapinea* (Fr.) DYKO & B. SUTTON (Abbildung 1 und Abbildung 2) ausgelöst und verursacht weltweit Schäden an Arten der Gattungen *Pinus* L. (Burgess et al. 2004b; CABI 2014).

1.1.1 Der Erreger - *Sphaeropsis sapinea*

Botryodiplodia pinea (Desm.) Petr., Annls mycol. 20(5/6): 308 (1922)

Diplodia pinastri Grove, J. Bot., Lond. 54: 193 (1916)

Diplodia pinea (Desm.) J. Kickx f., Fl. Crypt. Flandres (Paris) 1: 397 (1867)

Diplodia sapinea (Fr.) Fuckel, Jb. nassau. Ver. Naturk. 23-24: 393 (1870) [1869-70]

Diplodia sapinea var. lignicola Sacc., Syll. fung. (Abellini) 3: 356 (1884)

Diplodia sapinea var. pinsapo Brunaud, Act. Soc. linn. Bordeaux 40: 2 [repr.] (1886)

Granulodiplodia sapinea (Fr.) Zambett., Bull. trimest. Soc. mycol. Fr. 70(3): 331 (1955) [1954]
Macrophoma pinea (Desm.) Petr. & Syd., Feddes Repert., Beih. 42: 116 (1926)
Macrophoma pinea (Desm.) Petr. & Syd., Feddes Repert., Beih. 42: 116 (1926) var. pinea
Macrophoma sapinea (Fr.) Petr., Sydowia 15(1-6): 311 (1962) [1961]
Macroplodia ellisii (Sacc.) Kuntze, Revis. gen. pl. (Leipzig) 3(2): 492 (1898)
Macroplodia pinastri (Lév.) Kuntze, Revis. gen. pl. (Leipzig) 3(2): 492 (1898)
Sphaeropsis ellisii Sacc., Syll. fung. (Abellini) 3: 300 (1884)
Sphaeropsis ellisii var. abietis Fautrey Sphaeropsis ellisii Sacc., Syll. fung. (Abellini) 3: 300 (1884) var. ellisii
Sphaeropsis pinastri (Lév.) Sacc., Syll. fung. (Abellini) 3: 300 (1884) var. ellisii
Sphaeropsis pinastri (Lév.) Sacc., Syll. fung. (Abellini) 3: 300 (1884)
Sphaeropsis pinastri Cooke & Ellis, Grevillea 7(no. 41): 5 (1878)

Abbildung 1: Pyknidien von S. sapinea auf Kiefernzweigen.

Beschrieben wurde S. sapinea erstmals als Sphaeria sapinea FR. (1823) als Saprophyt an Kiefer (Pinus sp. L.) und Tanne (Abies sp. MILL., Fries 1821) in Südschweden von Elias Magnus Fries im 19 ten Jahrhundert. Da die Exsikkatensammlung von Fries (Scleromyceti Sueciae Exsiccati no. 126. Sphaeria sapinea FRIES) teilweise in einem sehr schlechten Zustand war, wurde von Sutton und

In der Vergangenheit wurde angenommen, dass Pilze aus der Familie der Botryosphaeriaceae ihren Wirt über Wunden infizieren. Heute ist bekannt, dass sie auch via Lentizellen, Stomata und andere Öffnungen in die Pflanze eindringen können (Michailides 1991; Slippers und Wingfield 2007). Es werden verschiedene Wege des

1.1.2 Symptome des Diplodia-Triebsterbens

Seit einigen Jahren treten verstärkt Diplodia-Schadensfälle in den Kiefernbeständen Sachsen-Anhalts, Niedersachsens und Hessens auf (Habermann et al. 2015). Auch in anderen Bundesländern wurden Schäden durch *S. sapinea* beobachtet (Tabelle 1). Begünstigt wurde die Erkrankung dort oftmals durch Vitalitätsverluste z. B. aufgrund von Trockenheit und Hitze und / oder durch Vorschädigungen durch Insektenfraß an Nadeln oder Hagelschlag (Habermann et al. 2015).
Abbildung 4: Symptome des Diplodia-Triebsterbens und starker Befall mit Mistel, in Letzlingen (links) und Süd-Hessen (rechts).

Schumacher (2012) stellte in Infektionsversuchen mit Waldkiefer-Sämlingen eine umso größere Anfälligkeit gegenüber *S. sapinea* fest, umso rauer die Klimabedingungen am Herkunftsstandort und je geringer die Wuchsigkeit der Pflanze waren. Er nimmt daher an, dass schwachwüchsigen Pflanzen weniger Energie zur Verfügung steht, um auf Störungen zu reagieren und der wärmeliebende Pilz schon länger in wärmeren Regionen vorkommen könnte. Weiterhin könnten diese Kiefern an

Tabelle 1: *Diplodia*-Schadensfälle an Kiefer im Jahr 2014 in Deutschland, Datengrundlage: AFZ- Der Wald, Ausgabe 7 / 2015; KA = keine Angaben.

<table>
<thead>
<tr>
<th>Bundesland</th>
<th>Meldung</th>
<th>Ha / Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baden-Württemberg</td>
<td>KA</td>
<td></td>
</tr>
<tr>
<td>Bayern</td>
<td>auffälliges Vorkommen</td>
<td>↑</td>
</tr>
<tr>
<td>Saarland</td>
<td>KA</td>
<td></td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>KA</td>
<td></td>
</tr>
<tr>
<td>Hessen</td>
<td>auffälliges Vorkommen, wirtschaftlich fühlbar</td>
<td>↑</td>
</tr>
<tr>
<td>Thüringen</td>
<td>auffälliges Vorkommen</td>
<td></td>
</tr>
<tr>
<td>Sachsen</td>
<td>unbedeutend</td>
<td>270</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>wirtschaftlich fühlbar</td>
<td>20</td>
</tr>
<tr>
<td>Niedersachsen</td>
<td>wirtschaftlich fühlbar</td>
<td>↑</td>
</tr>
<tr>
<td>Sachsen-Anhalt</td>
<td>wirtschaftlich fühlbar</td>
<td>↑</td>
</tr>
<tr>
<td>Brandenburg</td>
<td>auffälliges Vorkommen, wirtschaftlich fühlbar</td>
<td>↑</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>KA</td>
<td></td>
</tr>
<tr>
<td>Mecklenburg-Vorpommern</td>
<td>KA</td>
<td></td>
</tr>
</tbody>
</table>

De Kam (1985) hat drei mögliche Erklärungen für das pathogen werden von *S. sapinea* in Europa: die europäische Population von *Sphaeropsis* wurde durch einen virulenten Spezieskomplex *S. sapinea sensu lato* ausgetauscht (1), durch den Klimawandel (Hagel, Trockenheit, Hitzewellen) ist die Anfälligkeit des Wirtes und die Pathogenität von *S. sapinea* erhöht worden (2) oder eine erhöhte Anfälligkeit des Wirtes liegt vor, die z. B. durch anthropogene Stickstoffdisposition verursacht wurde (3).

1.2 Pinus sylvestris
Abbildung 5: Kiefern auf verschiedenen Standorten, links: Kiefernforst (in Brandenburg) und rechts: Kiefer auf einem Extremstandort (Nationalpark Kellerwald-Edersee).

1.3 Schaderreger an *Pinus sylvestris*

1.3.1 Kiefern-Mistel

1.3.2 Wurzelschwamm

Ein weiterer Faktor, der die Vitalität der Kiefer herabsetzen kann, ist der gemeine Wurzelschwamm (*Heterobasidion annosum* (Fr.) BREF. s.l.). Der Wurzelschwamm ist einer der schwerwiegendsten Forstpathogene und gilt als die Kiefer schwächender bzw. zum Absterben führender Faktor (Abbildung 8). Es handelt sich um einen bodenbürtigen Basidiomyceten, der bei seinen Wirt en eine Weißfäule erzeugt. In Europa kommt der Wurzelschwamm mit drei heimischen Arten mit unterschiedlichen Wirtsspektren vor (Woodward et al. 1998). Der Kiefern wurzelschwamm

Abbildung 8: Wurzelschwamm-Fruchtkörper an einem Kiefernstubben (links) und Bestandeslücke im Kiefernbestand verursacht durch den Wurzelschwamm (rechts, Foto: NW-FVA)

1.3.3 Sonstige Schaderreger
Die Kiefer wird aus forstlicher Sicht durch eine Vielzahl von Pathogenen besiedelt. Einerseits ist sie durch zu Massenwechsel fähigen Insekten gefährdet (Schmetterlinge und Blattwespen), andererseits durch pilzliche Schaderreger. Durch die Altersstruktur der Kiefernbestände und ihre standörtlichen Gegebenheiten (Anbauflächen auf trockenen, armen Standorten) ist sie vielerorts prädisponiert für ein Fraßgeschehen durch die im Folgenden aufgelisteten Insektenarten (siehe auch Abbildung 9), deren Fraßaktivitäten zum Teil bestandesbedrohende Ausmaße annehmen können.
Untersuchungen zeigten, dass eine Erholung der Kiefer auf Grund ihrer Regenerationsfähigkeit möglich ist, wenn noch > 10 % Restbenadelung vorhanden ist (Landesforstanstalt Eberswalde 2007; NW-FVA 2008).

Forstlich relevante Insekten an Kiefer

Kiefernspinner, *Dendrolimus pini* L. (Lepidoptera, Lasiocampidae)

Forleule, *Panolis flammea* DEN. und SCHAFF. (Lepidoptera, Noctuidae)

Nonne, *Lymantria monacha* L. (Lepidoptera, Lymantriidae)

Kiefernspanner, *Bupalus piniaria* L. (Lepidoptera, Geometridae)

Kiefernbuschhornblattwespen, *Diprion* sp., *Gilpinia* sp., *Neodiprion sertifer* GEOFFR. (Hymenoptera, Diprionidae)

Kiefernnadelscheiden-Gallmücke, *Thecodiplosis brachyntera* SCHW. (Diptera, Cecidomyiidae)

![Abbildung 9: Kiefern nach einem Fraß der Kiefernbuschhornblattwespe (Sachsen-Anhalt, Glücksburg 2016).](image)

Holz- oder Wurzelfäulen können von verschiedenen Pilzarten hervorgerufen werden, wie z. B. dem Wurzelschwamm (*H. annosum*), dem Kiefern-Baumschwamm

Heydeck und Dahms (2012). Der Kiefernholznematode *Bursaphelenchus xylophilus* (STEINER & BUHRER NICKLE, der in Nordamerika heimisch ist, wird durch Bockkäfer der Gattung *Monochamus* spp. verbreitet. Der Nematode wurde in Portugal im Freiland nachgewiesen (CABI 2016). In Importholz wurde er bereits in Deutschland, Frankreich, Finnland, Norwegen und Schweden festgestellt (Schröder 2004). In Deutschland wird derzeit ein Monitoring durchgeführt, um eine Einschleppung frühzeitig erkennen zu können.

1.4 Endophyten

Nährmedium inkubiert wird. Es gibt Studien, die zeigten, dass nicht alle Endophyten *in vitro* kultivierbar sind (Duong et al. 2008; Tao et al. 2008).

können Pilze der Gattung *Trichoderma* als Antagonisten Hyphenspiralen, vergrößerte Hyphenspitzen und kurze Hakenhyphen bilden, auch kann es zur Vakuolisierung, Granulation und Koagulation des Zytoplasmas durch *Trichoderma* sp. kommen.

Zahlreiche AutorInnen haben verschiedene Gewebe der Waldkiefer untersucht: Carroll und Carroll (1978); Petrini und Fisher (1988); Fisher et al. (1991); Kowalski und Kehr (1992); Kowalski (1993); Sieber et al. (1999); Kowalski und Zych (2002); Guo et al. (2003, 2008); Pirttilä et al. (2003); Zamora et al. (2008); Giordano et al. (2009); Botella et al. (2010); Lygis et al. (2010); Menkis und Vasaitis (2010); Peršoh et al. (2010); Terhonen et al. (2011); Martínez-Álvarez et al. (2012); Millberg et al. (2015); Sanz-Ros et al. (2015). So haben Martínez-Álvarez et al. (2012) Pilzkulturen okular bestimmt und in den von ihnen untersuchten Kiefernzwiegen 10 verschiedene Pilzarten gefunden. Dazu zählte eine Art des *Alternaria alternata*-Komplex *Ness ex Fr.*, *Aspergillus niger van Tieghem*, *Aureobasidium pullulans* VIALA & BOYER, *Chaetomium cochliodes Palliser*, *Cladosporium* spp., *Diplodia* spp., *Penicillium* spp. und drei Deuteromyceten. Kowalski (1993) hat als Probematerial Nadeln von fünf bis acht Jahre alten Kiefern (*P. sylvestris*) untersucht. Es zeigte sich, dass 80,1 % der Nadeln mit Pilzen besiedelt waren. Die 86 isolierten Taxa konnten 63 Spezies zugeordnet werden (Kowalski 1993). Dabei war auffällig, dass nur sieben Arten mit einer Häufigkeit von

Probleme bei der Isolation von Endophyten bereitet das Auswachsen von Epiphyten, welches durch unzureichende Oberflächensterilisierung begünstigt wird. Weiterhin werden in Kultur häufiger schnell wachsende Pilze isoliert, langsam wachsende werden überwachsen und so nur selten oder nie isoliert (Guo et al. 2001;
1.4.1 Diversität und Ordination

Der Diversitätsindex H' (Shannon-Index, Shannon und Weaver (1949)) wird in der Ökologie verwendet, um die Artenvielfalt zu charakterisieren. Er nimmt Werte zwischen null und $\ln k$ an (k beschreibt die Anzahl der Kategorien bzw. Arten). H' ist null wenn nur eine von mehreren Kategorien auftritt. Bei einer Gleichverteilung, d. h. in allen Kategorien tritt die gleiche Häufigkeit auf, nimmt H' seinen maximalen Wert an, abhängig von der Artanzahl. Um die Diversität von Verteilungen zu untersuchen, die unterschiedliche Anzahlen von k beinhalten, normiert man die Diversität H' mit ihrem maximalen Wert $\ln k$ (Eveness: $E = \frac{H'}{\ln k}$).

1.5 Ziele der Arbeit

Teilziele der Arbeit waren Untersuchungen zum / zur:

- Einfluss verschiedener Labormethoden auf das Ergebnis der Isolation der Endophyten
- Lokalisierung der Endophyten im Kiefernzwieg (Rinde, Kambialbereich, Holz)
- Einfluss der Jahreszeiten auf die Zusammensetzung der Endophyten
- Vergleich der Zusammensetzung der Endophyten in vitalen und erkrankten Kiefern
- Einfluss eines Befalls mit Mistel und Wurzelschwamm (*H. annosum*) auf das Diplodia-Triebsterben
- Bewertung der potentiellen Pathogenität der in Zweigen der Waldkiefer vorkommenden endophytischen Arten
- Potentiellen antagonistischen Wirkung der isolierten Pilze aus Kiefernzwigen gegen *S. sapinea* durch Antagonistentests *in vitro*
2. Material und Methoden

2.1 Untersuchte Kiefernbestände

Im Rahmen der Arbeit fanden verschiedene Probenahmen statt. Die 106 untersuchten Standorte sind in Abbildung 10 dargestellt, die sich in folgende Gruppen einteilen lassen (im digitalen Anhang findet sich eine Tabelle mit den Standortangaben).

2.1.1 Beprobungen von Kiefernbeständen mit Verdacht auf oder vorherigem Befalls mit Diplodia-Triebsterben und entsprechende Nullflächen, Standorte Abbildung 10, rote Punkte.

2.1.2 Systematische Beprobung auf dem BZE- / WZE-Raster von Kiefernbeständen entlang des WAHYKLAS-Transeks (Standorte Abbildung 10, kleine Punkte).

2.1.3 Monatliche Probennahme einer Kiefer (Standort Dransfeld, Süd-Niedersachsen, Abbildung 10, gelber Punkt).

2.1.4 Zusätzliche Versuche mit Kiefernmaterial aus Dransfeld und dem Isetal in Niedersachsen (Standorte Abbildung 10, gelbe Punkte).

2.1.1 Beprobungen von Kiefernbeständen mit Verdacht auf oder mit vorherigem Befall mit *Diplodia*-Triebsterben und entsprechende Nullflächen

Tabelle 2: Übersicht über die Untersuchungsf lächen mit und ohne Symptome des *Diplodia*-Triebsterbens, siehe Abbildung 10 (rote Punkte).

<table>
<thead>
<tr>
<th>Probefläche</th>
<th>Bundesland</th>
<th>Beprobung</th>
<th>Flächentypen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prezelle</td>
<td>Niedersachsen</td>
<td>2014 - 2016</td>
<td>Kiefernspinner-Flächen</td>
</tr>
<tr>
<td>Bad Freienwalde (FW650/FW312)</td>
<td>Brandenburg</td>
<td>2015 Sommer</td>
<td>Diplodia-Schadfläche / 0 - Fläche</td>
</tr>
<tr>
<td>Lüderitz (LU4451)</td>
<td>Sachsen-Anhalt</td>
<td>2014 Sommer / Herbst</td>
<td>Diplodia-Schadfläche</td>
</tr>
<tr>
<td>Schlaubetal</td>
<td>Brandenburg</td>
<td>2014</td>
<td>Nadelscheidengallmücke-Fläche</td>
</tr>
<tr>
<td>Pfungstadt (PF59)</td>
<td>Hessen</td>
<td>2014 Sommer</td>
<td>Diplodia-Schadfläche / Mistel-Schadfläche</td>
</tr>
<tr>
<td>Pfungstadt (PF122)</td>
<td>Hessen</td>
<td>2014 Sommer</td>
<td>0 - Fläche</td>
</tr>
<tr>
<td>Bürstadt</td>
<td>Hessen</td>
<td>2016 Frühling</td>
<td>Diplodia-Schadfläche / Mistel-Schadfläche</td>
</tr>
<tr>
<td>Viernheim (VN0226)</td>
<td>Hessen</td>
<td>2014 Sommer</td>
<td>Mistel- Schadfläche</td>
</tr>
<tr>
<td>Wildpark (WP0714 und WP0710)</td>
<td>Baden-Württemberg</td>
<td>2014 Sommer</td>
<td>Mistel-Schadfläche / 0 - Fläche</td>
</tr>
<tr>
<td>Waldstadt (WS0305)</td>
<td>Baden-Württemberg</td>
<td>2014 Sommer</td>
<td>Mistel-Schadfläche</td>
</tr>
</tbody>
</table>
Tabelle 3: Übersicht über forstliche Kenngrößen und Standortmerkmale zu den Untersuchungsflächen, Alter und BHD (Brusthöhendurchmesser) sind für die untersuchten Kiefern angegeben (arithmetisches Mittel); siehe Abbildung 10 (rote Punkte).

<table>
<thead>
<tr>
<th>Probefläche</th>
<th>Bestandestyp</th>
<th>Alter / BHD</th>
<th>Standort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prezelle</td>
<td>Einschichtige Kiefer</td>
<td>55-80 Jahre, BHD 23 cm</td>
<td>Mäßig sommertrocken, im tieferen Unterboden mäßig frische Standorte, schwach mit Nährstoffen versorgt, Sande z. T. schwach verlehmt oder kiesig, auch mit Steinen und Kies</td>
</tr>
<tr>
<td>Bad Freienwalde (FW650/-FW312)</td>
<td>Oberstand: Kiefer, Zwischen- und Unterstand: Ulme Traubeneiche, Vogelbeere, Roteiche</td>
<td>BHD 36 cm</td>
<td>Fläche auf Choriner Moränenkomplex, Stamm-Nährkraftstufe „kräftig“</td>
</tr>
<tr>
<td>Lüderitz (LU4451)</td>
<td>Oberstand: Kiefer, Mittelschicht: Eiche, Unterschicht: Vogelbeere, Birke, Holunder</td>
<td>ca. 110-jährig, BHD 40 cm</td>
<td>Wuchsgebiet Mittleres nordost-deutsches Altmoränenland; Bodenart: Geschiebelehm-Sand-Kalk; Bodenfeuchte: mittelfrisch, grundwasserfern, Nährkraftstufe: kräftig; Klima: trockenes Tiefland</td>
</tr>
<tr>
<td>Pfungstadt (PF59)</td>
<td>Oberstand: Kiefer, mit geringen Anteilen an Robinie, Roteiche und Birke</td>
<td>55 Jahre, BHD 24 cm</td>
<td>Hessische Rheinebene, Zentrale Eichen-Mischwald-Zone, schwach subkontinental, Geländewasserhaushalt: frisch, Trophie: mesotroph; Bodenart: Sand, über sandigem Sand, Skelett < 5 %, sehr tiefgrün</td>
</tr>
<tr>
<td>Pfungstadt (PF122)</td>
<td>Oberstand: Kiefer, Unterstand: Traubenkirsche</td>
<td>60 Jahre, BHD 34 cm</td>
<td>Hessische Rheinebene, Zentrale Eichen-Mischwald-Zone, schwach subkontinental, Geländewasserhaushalt: frisch, Trophie: mesotroph; Bodenart: Sand, carbonathaltiger sandiger Schluff, über schluffigem Sand</td>
</tr>
<tr>
<td>Viernheim (VN0226)</td>
<td>Oberstand: Kiefer, Unterstand: Traubenkirsche</td>
<td>Ca. 70-jährig, BHD 22 cm</td>
<td>Hessische Rheinebene, Zentrale Eichen-Mischwald-Zone, schwach subkontinental, Geländewasserhaushalt: mäßig frisch/ frisch, Trophie: mesotroph</td>
</tr>
<tr>
<td>Wildpark (WP0710)</td>
<td>Oberstand: Kiefer, Unterstand: Traubenkirsche, Traubeneiche, Birne, Fichte (vereinzelt)</td>
<td>BHD 25 cm</td>
<td>Flugsandsediment, mäßig trockener anlehnmiger Sand, mäßig trocken</td>
</tr>
<tr>
<td>Wildpark (WP0714)</td>
<td>Oberstand: Kiefer, Unterstand: Hainbuche, Traubeneiche, Trauben-kirsche</td>
<td>BHD 34 cm</td>
<td>Würm-Schotter, mäßig trockener anlehnmiger Sand, mäßig trocken bis mäßig frisch</td>
</tr>
<tr>
<td>Waldstadt (WS0305)</td>
<td>Oberstand: Kiefer, Unterstand: Fichte, Traubenkirsche und Buche</td>
<td>BHD 28 cm</td>
<td>Flugsandsediment, mäßig trockener anlehnmiger Sand, mäßig trocken bis mäßig frisch</td>
</tr>
</tbody>
</table>
2.1.2 Systematische Beprobung von Kiefernbeständen entlang des Transekts

<table>
<thead>
<tr>
<th>Schadstufe</th>
<th>Prozentanteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>keine Schäden</td>
</tr>
<tr>
<td>1</td>
<td>< 5</td>
</tr>
<tr>
<td>2</td>
<td>5-10</td>
</tr>
<tr>
<td>3</td>
<td>11-20</td>
</tr>
<tr>
<td>4</td>
<td>21-30</td>
</tr>
<tr>
<td>5</td>
<td>31-40</td>
</tr>
<tr>
<td>6</td>
<td>41-50</td>
</tr>
<tr>
<td>7</td>
<td>51-70</td>
</tr>
<tr>
<td>8</td>
<td>71-90</td>
</tr>
<tr>
<td>9</td>
<td>> 90</td>
</tr>
<tr>
<td>10</td>
<td>100, Baum abgestorben</td>
</tr>
</tbody>
</table>
Tabelle 5: Auf den Untersuchungsflächen erhobene Daten.

<table>
<thead>
<tr>
<th>Aufnahme-</th>
<th>Definition</th>
<th>Aufnahme-</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>parameter</td>
<td></td>
<td>parameter</td>
<td></td>
</tr>
<tr>
<td>Land</td>
<td>Bundesland</td>
<td>Ästigkeit</td>
<td>feinastig, mittelastig, grobastig, starkastig</td>
</tr>
<tr>
<td>Forstamt</td>
<td>Forstamt, soweit bekannt</td>
<td>Blüte / Mast</td>
<td>ohne, gering, mittel, stark</td>
</tr>
<tr>
<td>Abteilung</td>
<td>Abteilung, soweit bekannt</td>
<td>Schäden</td>
<td>Beschreibung im Klartext</td>
</tr>
<tr>
<td>Datum</td>
<td>Aufnahmedatum</td>
<td>Vegetation /</td>
<td>Misch- und Nebenbaumarten und häufigste,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baumarten</td>
<td>auffälligste Bodenvegetation</td>
</tr>
<tr>
<td>Koordinate</td>
<td>Koordinate der Fläche im Format Gauß-Krüger</td>
<td>Diplodia</td>
<td>Vorkommen von Diplodia-Schadensymptomen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(rot/braune Nadeln) im Bestand, Gesamtzahl der</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bäume. Stärke des mittleren Einzelbaum-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>befalls (Tabelle 4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kiefernmistel</td>
<td>Vorkommen der Mistel im Bestand, Gesamtzahl der</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bäume. Stärke des mittleren Einzelbaum-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>befalls (Tabelle 6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wurzel-</td>
<td>Funde von Fruchtkörper des Wurzelschwamms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>schwammschwamm-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fruchtkörper</td>
<td></td>
</tr>
<tr>
<td>Bestandes-</td>
<td>gedrängt, geschlossen, locker, licht,</td>
<td>Lage /</td>
<td>Lage und Exposition</td>
</tr>
<tr>
<td>schluss</td>
<td>räumdig, lückig, ungleichmäßig</td>
<td>Exposition</td>
<td></td>
</tr>
<tr>
<td>Schaft</td>
<td>gerade, bogig, knickig, drehwüchsig,</td>
<td>Lage /</td>
<td></td>
</tr>
<tr>
<td></td>
<td>beulig, stark abholzig</td>
<td>Exposition</td>
<td></td>
</tr>
<tr>
<td>Krone</td>
<td>groß, mittel, klein, allseitig, einseitig,</td>
<td>Besonder-</td>
<td>Besonderheiten, die die Fläche beeinflussen</td>
</tr>
<tr>
<td></td>
<td>eingeklemmt, fahnenförmig, beschädigt</td>
<td>heiten</td>
<td>können</td>
</tr>
</tbody>
</table>

2.1.3 Monatliche Probennahme einer Kiefer

2.1.4 Zusätzliche Versuche mit Kiefernzwiegen
Für die Laborversuche (Kapitel 2.5), bei denen der Einfluss verschiedener Methoden auf das Ergebnis der Endophytenisolation untersucht werden sollte, wurden jeweils frisch geerntete Kiefernzwiege aus Dransfeld oder aus dem Isetal (Niedersachsen, Abbildung 10) verwendet. Dazu wurde je nach Versuch unterschiedlich viel frisches Probematerial (Kiefernzwiege) geerntet.

2.2 Erhebung des Wurzelschwammvorkommens
Auf den Diplodia-Schadflächen und auf unbefallenen Flächen wurde das Vorkommen von Wurzelschwamm-Fruchtkörpern an Stubben und abgestorbenen Bäumen erhoben. Der Wurzelschwamm kommt als Saprophyt bevorzugt an abgestorbenem Holz vor, deshalb wurden keine vitalen Bäume untersucht. Die Kartierung wurde an folgenden Terminen durchgeführt:

21.10.2014, Letzlingen
27. und 28.10.2014, Pfungstadt

Um das Vorhandensein / Nichtvorhandensein von Fruchtkörpern des Wurzelschwamms zu erheben, wurde mit einer Hacke bei jedem Stubben und abgestorbenem Baum die Streu beiseitegeschoben. Informationen wie Fund eines Wurzelschwamm-Fruchtkörpers, Baumart und Alter des besiedelten Stubbens wurden mit Hilfe eines GPS Geräts (GARMIN, GPSMAP 64s) aufgenommen und die Stubben farblich markiert.

Abbildung 12: Kiefernstubben mit Fruchtkörpern von H. annosum s.str.
Auf den Untersuchungsflächen in Pfungstadt (PF122 und PF59) wurden für die Probennahme der Zweige ohnehin jeweils 6 Kiefern gefällt. Im Hinblick auf die Wurzelschwamm-Untersuchungen wurde vom Stammfuß eine ca. 20 cm dicke basale Stammscheibe abgeschnitten. Diese wurde vor Ort direkt mit 70 %igem Ethanol benetzt und einzeln verpackt. Vor der Weiterbearbeitung im Labor wurde bei den Stammscheiben auf beiden Seiten mehrere Zentimeter mit einer Bandsäge abgeschnitten, um Oberflächen zu schaffen, die nicht der Waldluft ausgesetzt waren. Anschließend wurden die Scheiben einer Inkubation (Methode verändert nach Rishbeth (1951) und Langer und Bressem (2017)) unterzogen: Dazu wurden die Stammscheiben in sterilen Plastiksäcken verpackt und bei 8 °C über mehrere Wochen vorinkubiert. Nach der Vorinkubation wurde jede Scheibe einzeln in feuchtes Zeitungspapier eingewickelt und bei Raumtemperatur (ca. 22 °C) unter Plastikfolie inkubiert (Hauptinkubation). Nach der Hauptinkubation der Stammscheiben wurden diese nach 7, 14 bzw. 21 Tagen mit Hilfe eines Binokulars und eines Mikroskops untersucht, um die typischen Konidienträger des Wurzelschwammes (Spiniger meineckellus, Abbildung 13), festzustellen. Das Auffinden dieser Nebenfruchtform gilt als Nachweis einer Besiedlung der Stammscheibe bzw. des Baumes mit dem Wurzelschwamm (Garbelotto und Gonthier 2013).

Im Zuge der systematischen Beprobung entlang des Transeks wurde das Vorhandensein von Fruchtkörpern des Wurzelschwamms ebenfalls erhoben. Dazu wurden die nächsten 10 Stubben im direkten Umfeld zur beprobten Kiefer gesucht und mit einer Hacke bei jedem Stubben Streu beiseitegeschoben, um Fruchtkörpern des Wurzelschwamms erkennen zu können.

Abbildung 13: Mikroskopische Ansichten von Spiniger meineckellus unter dem Binokular (links und Mitte) sowie unter dem Lichtmikroskop (rechts), Fotos NW-FVA.
2.3 Erfassung des Mistelvorkommens an Kiefern

Das Vorkommen der Mistel (Viscum album subsp. austriacum) an den Probebäumen und im Bestand wurde kartiert (Tabelle 5). Dazu wurde in Prozentstufen der Anteil der Kiefern eines Bestandes, an denen Misteln wuchsen, erfasst. Weiterhin wurde aufgenommen, welchen Anteil die Mistel an der grünen Biomasse einer Kiefer einnahm. Die Prozentangaben wurden in 4 Klassen eingeteilt (Tabelle 6).

Tabelle 6: Schadstufen für das Vorkommen der Kiefernmiestel (0-3), klassifiziert nach Anteil der Mistel an der grünen Krone der Kiefer.

<table>
<thead>
<tr>
<th>Stufe</th>
<th>Klasse</th>
<th>Anteil der Mistel in Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>kein</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>wenig</td>
<td>10 - 20</td>
</tr>
<tr>
<td>2</td>
<td>mittel</td>
<td>30 - 40</td>
</tr>
<tr>
<td>3</td>
<td>viel</td>
<td>> 40</td>
</tr>
</tbody>
</table>

2.4 Isolation von Endophyten

Da die Methode, wie die pilzlichen Endophyten isoliert werden, sehr bedeutend für das Isolationsergebnis ist (Hyde und Soytong 2008), wurden zahlreiche Einflussfaktoren bei der Isolation untersucht (siehe dazu Kapitel 2.4.1).

Die zu untersuchenden Triebspitzen wurden von dem gewonnenen Probematerial (Kiefernzwiege Durchmesser von 0,2 cm - 1 cm) zufällig ausgewählt und auf die gewünschte Länge zugeschnitten, dann entnadelt und unter fließendem Leitungswasser mit einer Zahnbürste äußerlich gesäubert. Anschließend wurde der Zweig vermessen, dabei wurde die Länge der Zweige nach Jahrgängen bestimmt (Abbildung 14), in der Regel wurden die letzten drei bis vier Nadeljahrgänge untersucht. Die Länge eines Jahrgangs des Kieferntriebs variierte dabei erheblich, so waren die untersuchten Jahrgänge zwischen 0,5 und 16 cm lang. Der Kiefernzwieb wurde in einer Sicherheitswerkbank (THERMO ELECTRON CORPORATION, HERASAFE KSP, Werkbank der Sicherheitsklasse 2) chemisch Oberflächen-sterilisiert (Kapitel 2.5.1) und mit einem abgeflammten Skalpell in fünf Millimeter große Triebsegmente geschnitten (Abbildung 15). Ein Abflammen des Skalpells fand nach jedem Schnitt statt, danach musste das Skalpell erst auskühlen.
Pro Petrischale (MYP-Nährmedium, Durchmesser 9 cm) wurden drei Triebsegmente bei Raumtemperatur inkubiert (Abbildung 15).

Das Auswachsen einer Pilzart aus einem Kieferntriebstück mit einer Länge von 0,5 cm wurde als ein endophytisches Vorkommen gewertet, unabhängig von der Anzahl der Kolonien, die aus einem Holzstück auswuchsen. Die relative Häufigkeit des Auftretens einer Pilzart gibt an, wie hoch der prozentuale Anteil der Holzstücke ist, die von dem jeweiligen Pilz besiedelt waren. Die absolute Häufigkeit gibt an, wie hoch der prozentuale Anteil der Pilzart an allen Isolationen war.

Relative Häufigkeit (% RH) \(\frac{N_{bes}}{N_t} \times 100 \)

\(N_{bes} = \sum \) Triebsegmente kolonisiert vom jeweiligen Pilz

\(N_t = \sum \) Triebsegmente untersucht

In der Summe kann die Prozentzahl RH > 100 sein, da ein Triebsegmente von mehr als einer Pilzart besiedelt sein kann (siehe Besiedlungsrate).

Absolute Häufigkeit (% AH) \(\frac{N_{bes}}{N_A} \times 100 \)

\(N_{bes} = \sum \) Triebsegmente kolonisiert vom jeweiligen Pilz

\(N_A = \sum \) aller Pilzauswüchse

Die Besiedlungsrate \(\frac{N_A}{N_t} \) gibt an, mit wie vielen verschiedenen Pilzarten ein Triebsegment im Durchschnitt (arithmetisches Mittel) besiedelt war.

Abbildung 14: Entnadelter Kieferntrieb, rot markiert sind die Internodien, die die Jahrgangsübergänge markieren.

Für die Isolation und zur Bestimmung der Pilzkulturen wurden nachfolgende sterile Nährmedien verwendet. Jede Petrischale (Durchmesser 9 cm) wurde mit ca. 20 ml Nährmedium befüllt.

Benomyl-Agar nach Summerbell (1993)
6,25 g Malzextrakt (MERCK), 6,25 g Maltose (FLUKA), 1,25 g Kaliumhydrogenphosphat (MERCK), 1 g Hefe (FLUKA), 0,625 g Magnesiumsulfat (SIGMA-ALDRICH), 0,625 g Pepton (MERCK) und 20 g Agar (SIGMA-ALDRICH) werden in 1 l demin. Wasser gelöst und autoklaviert. Wenn die Lösung auf ca. 60 °C abgekühlt ist, werden 5 mg Benomyl (FLUKA) in 1 ml Dimethylsulfoxid (ALDRICH) gelöst und zur Nährösung hinzugegeben.

CHA (Cherry decoction agar) verändert nach Samson (2010)
9 Kirschextrakt Tabletten („Cherry fruit extract Tabletten“, SOURCENATURALS, entsprechen 1 kg Kirschen) in 15 g Agar (FLUKA) werden zerstoßen und in 1 l demin. H2O aufgelöst und autoklaviert.

CMA (Corn Meal Agar) nach Angaben des Herstellers
17 g CMA (FLUKA) werden in 1 l demin. H2O gelöst und autoklaviert.

MEA (Malt Extract Agar)
20 g Malz (MERCK) und 15 g Agar (FLUKA) werden in 1 l demin. H2O gelöst und autoklaviert.

MYP (Malz-Yeast-Pepton), nach Langer (1994)
7,0 g Malz (MERCK), 1 g Pepton (MERCK), 0,5 g Hefe (FLUKA), 15 g Agar (SIGMA-ALDRICH) werden in 1 l demin. H2O gelöst und autoklaviert.
MYP mit Bromkresolgrün verändert nach Powell (1995)
7,0 g Malz (MERCK), 1 g Pepton (MERCK), 0,5 g Hefe (FLUKA), 15 g Agar (SIGMA-ALDRICH) werden in 1 l demin. H₂O gelöst und autoklaviert. Wenn die Nährlösung auf ca. 60 °C abgekühlt ist, werden 50 mg des Farbstoffs und pH-Indikators Bromkresolgrün (SIGMA-ALDRICH) hinzugefügt.

OA (Oat Meal Agar) nach Angaben des Herstellers
72,5 g OA (FLUKA) werden in 1 l demin. H₂O gelöst und autoklaviert.

OPP nach Barnard et al. (1985)
20 g Malzextrakt (MERCK), 17 g Agar (SIGMA-ALDRICH), 2,5 ml einer Lösung aus 0,24 g Orthophenylphenol (SAFC) in 10 ml 95%igem Ethanol (MERCK) und 0,5 ml Milchsäure (FLUKA) werden in 1 l demin. Wasser gelöst und autoklaviert. Nach dem Autoklavieren werden 100 mg Streptomycinsulfat (SIGMA) hinzugegeben.

PBA (Pine Bark Agar)
30 g getrocknete und fein gemahlene Kiefernrinde (von maximal 3 cm dicken Kiefernästen) werden mit 20 g Agar (SIGMA-ALDRICH) auf 1 l H₂O aufgefüllt und zweimal autoklaviert.

PCA (Potato Carrot Agar) nach Samson (2010)
20 g geschälte und gewürfelte Kartoffeln (aus biologischer Landwirtschaft) und 20 g geschälte und gewürfelte Karotten (aus biologischer Landwirtschaft) werden für 30 min in 250 ml H₂O gekocht und anschließend zu Brei gemixt, dann werden 20 g Agar (SIGMA-ALDRICH) hinzugegeben und auf 1 l H₂O aufgefüllt. Anschließend werden 0,01g ZnSO₄·7H₂O (SIGMA-ALDRICH) und 0,005 g CuSO₄·5H₂O (SIGMA-ALDRICH) hinzugegeben

PDA (Potato dextrose agar) nach Angaben des Herstellers
39 g PDA (FLUKA) werden in 1 l demin. H₂O gelöst und autoklaviert.

PNA (Pine Needle Agar, verändert nach Luchi et al. (2007))
30 g getrocknete und fein gemahlene Kiefernadeln werden mit 20 g Agar (SIGMA-ALDRICH) auf 1 l H₂O aufgefüllt und zweimal autoklaviert.

PWA (Pine Wood Agar)
30 g getrocknetes und fein gemahlenes Kiefernholz werden mit 20 g Agar (SIGMA-ALDRICH) auf 1 l H₂O aufgefüllt und zweimal autoklaviert.
SNA (Synthetischer Nährstoffarmer Agar) nach Nirenberg (1976)
1 g Kaliumhydrogenphosphat (MERCK), 1 g Kaliumnitrat (SIGMA-ALDRICH), 0,5 g Magnesiumsulfat-Heptahydrat (SIGMA-ALDRICH), 0,5 g Kaliumchlorid (MERCK), 0,2 g Glucose (SIGMA) und 0,2 g Saccharose (SIGMA) werden mit 20 g Agar (SIGMA-ALDRICH) versetzt und auf 1 l demin. H₂O aufgefüllt und autoklaviert.

2.4.1 Versuche zum Einfluss der Isolationsmethode

Versuche zur Oberflächensterilisierung

Probennahme Sommer 2014

Für die Oberflächensterilisierung wurde wie folgt vorgegangen (Tabelle 7, V1): Die Triebspitzen wurden für zwei Minuten in 70 % Ethanol gegeben, danach zweimal in autoklaviertes Leitungswasser getaucht. Ein Tausch des Ethanol / Wassers erfolgte je nach Trübungsgrad nach zwei Kieferntrieben. Dafür wurden je nach Größe der Proben autoklavierte Glasgefäße (180 ml, 5 cm x 9 cm) oder große Reagenzgläser (100 ml, 30 x 200 mm) verwendet. Der Transfer der Proben von einem zum anderen Gefäß erfolgte mit einer abgeflammten Pinzette. Nach dem letzten Schritt wurde der Zweig mit Hilfe eines autoklavierten Filterpapiers trocken getupft. Anschließend wurden die Kieferntriebe mit einem sterilen Skalpell in 0,5 cm große Triebsegmente geschnitten, nach jedem Schnitt wurde das Skalpell abgeflammt und ausgekühlt. Waren die Holzstücke zu dick, um mit einem Skalpell durchgeschnitten zu werden, werden die Holzstücke nach der Oberflächensterilisierung mit einer desinfizierten Rosenschere zerkleinert.

Da der Abklatsch von sterilisierten Kiefernzwiegen zeigte, dass die Triebe mit der Behandlung von Ethanol nicht ausreichend oberflächensteril waren, wurde zur Optimierung der Oberflächensterilisierung ein Versuch mit verschiedenen Konzentrationen von Natriumhypochlorit (NaOCl) und Vor- und Nachbehandlungen durchgeführt (Tabelle 7).

Versuch 1

Der Erfolg einer Sterilisationsvariante wurde mit Hilfe eines Abklatsches überprüft (Schulz et al. 1998; Sánchez Márquez et al. 2007). Bei einem Abklatsch wird der Zweig oberflächensterilisiert, trockengetupft und anschließend wird ein Abdruck auf einer MYP-Platte angefertigt (Abbildung 40). Die Platten wurden mehrere Wochen beobachtet, um zu prüfen ob und welche Pilzkulturen auswachsen. Mit einer Auswahl
an Sterilisationsvarianten wurde eine Endophytenisolation durchgeführt. Der Auswuchs von Endophyten nach erfolgter Oberflächensterilisierung stellte sicher, dass die Sterilisierung nicht zu aggressiv ist, d. h. Endophyten im Gewebe abtötet.

Versuch 2
Ein weiterer Schritt, den Erfolg einer Oberflächensterilisierung zu testen war es, die Zweige nach erfolgter Oberflächensterilisierung in steriles Leitungswasser zu schütteln und dieses Wasser auf Nährmedium auszuplattieren.

Versuch 3

Versuch 4

Probennahme 2015 / 2016
Zur Oberflächensterilisierung wurde wie folgt vorgegangen: Die Holzstücke wurden vor der Behandlung unter fließendem Leitungswasser mit einer weichen Bürste gereinigt, anschließend unter der Sterilwerkbank 1 min lang mit 70 % Ethanol benetzt, danach 5 min in einer 3 % NaOCl-Lösung sterilisiert und zum Entfernen des NaOCl 1 min in 70 % Ethanol getaucht. Das weitere Vorgehen war identisch mit dem aus der Probennahme Sommer 2014.
Tabelle 7: Verschiedene Varianten der Oberflächensterilisierung (V1-V25) für die Kiefernzweige.

<table>
<thead>
<tr>
<th>Variante</th>
<th>Bürsten</th>
<th>Vorbehandlung</th>
<th>Sterilisation</th>
<th>Nachbehandlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>ohne Bürsten</td>
<td>-</td>
<td>2 min 70 %EtOH</td>
<td>2x spülen H₂O</td>
</tr>
<tr>
<td>V2</td>
<td>ohne Bürsten</td>
<td>1 min 70 % EtOH</td>
<td>2 min 6 % NaOCl</td>
<td>1 min 70 % EtOH</td>
</tr>
<tr>
<td>V3</td>
<td>ohne Bürsten</td>
<td>1 min 70 % EtOH</td>
<td>5 min 6 % NaOCl</td>
<td>1 min 70 % EtOH</td>
</tr>
<tr>
<td>V4</td>
<td>ohne Bürsten</td>
<td>1 min 70 % EtOH</td>
<td>2 min 6 % NaOCl</td>
<td>2x spülen H₂O</td>
</tr>
<tr>
<td>V5</td>
<td>ohne Bürsten</td>
<td>1 min 70 % EtOH</td>
<td>5 min 6 % NaOCl</td>
<td>2x spülen H₂O</td>
</tr>
<tr>
<td>V6</td>
<td>ohne Bürsten</td>
<td>1 min 70 % EtOH</td>
<td>2 min 3 % NaOCl</td>
<td>1 min 70 % EtOH</td>
</tr>
<tr>
<td>V7</td>
<td>ohne Bürsten</td>
<td>1 min 70 % EtOH</td>
<td>5 min 3 % NaOCl</td>
<td>1 min 70 % EtOH</td>
</tr>
<tr>
<td>V8</td>
<td>ohne Bürsten</td>
<td>1 min 70 % EtOH</td>
<td>2 min 3 % NaOCl</td>
<td>2x spülen H₂O</td>
</tr>
<tr>
<td>V9</td>
<td>ohne Bürsten</td>
<td>1 min 70 % EtOH</td>
<td>5 min 3 % NaOCl</td>
<td>2x spülen H₂O</td>
</tr>
<tr>
<td>V10</td>
<td>mit Bürsten</td>
<td>1 min 70 % EtOH</td>
<td>2 min 6 % NaOCl</td>
<td>1 min 70 % EtOH</td>
</tr>
<tr>
<td>V11</td>
<td>mit Bürsten</td>
<td>1 min 70 % EtOH</td>
<td>5 min 6 % NaOCl</td>
<td>1 min 70 % EtOH</td>
</tr>
<tr>
<td>V12</td>
<td>mit Bürsten</td>
<td>1 min 70 % EtOH</td>
<td>2 min 6 % NaOCl</td>
<td>2x spülen H₂O</td>
</tr>
<tr>
<td>V13</td>
<td>mit Bürsten</td>
<td>1 min 70 % EtOH</td>
<td>5 min 6 % NaOCl</td>
<td>2x spülen H₂O</td>
</tr>
<tr>
<td>V14</td>
<td>mit Bürsten</td>
<td>1 min 70 % EtOH</td>
<td>2 min 3 % NaOCl</td>
<td>1 min 70 % EtOH</td>
</tr>
<tr>
<td>V15</td>
<td>mit Bürsten</td>
<td>1 min 70 % EtOH</td>
<td>5 min 3 % NaOCl</td>
<td>1 min 70 % EtOH</td>
</tr>
<tr>
<td>V16</td>
<td>mit Bürsten</td>
<td>1 min 70 % EtOH</td>
<td>2 min 3 % NaOCl</td>
<td>2x spülen H₂O</td>
</tr>
<tr>
<td>V17</td>
<td>mit Bürsten</td>
<td>1 min 70 % EtOH</td>
<td>5 min 3 % NaOCl</td>
<td>2x spülen H₂O</td>
</tr>
<tr>
<td>V18</td>
<td>mit Bürsten</td>
<td>1 min 70 % EtOH</td>
<td>2 min 9 % NaOCl</td>
<td>1 min 70 % EtOH</td>
</tr>
<tr>
<td>V19</td>
<td>mit Bürsten</td>
<td>1 min 70 % EtOH</td>
<td>5 min 9 % NaOCl</td>
<td>1 min 70 % EtOH</td>
</tr>
<tr>
<td>V20</td>
<td>mit Bürsten</td>
<td>1 min 70 % EtOH</td>
<td>2 min 9 % NaOCl</td>
<td>2x spülen H₂O</td>
</tr>
<tr>
<td>V21</td>
<td>mit Bürsten</td>
<td>1 min 70 % EtOH</td>
<td>5 min 9 % NaOCl</td>
<td>2x spülen H₂O</td>
</tr>
<tr>
<td>V22</td>
<td>mit Bürsten</td>
<td>1 min 70 % EtOH</td>
<td>10 min 3 % NaOCl</td>
<td>1 min 70 % EtOH</td>
</tr>
<tr>
<td>V23</td>
<td>mit Bürsten</td>
<td>1 min 70 % EtOH</td>
<td>10 min 3 % NaOCl</td>
<td>2x spülen H₂O</td>
</tr>
<tr>
<td>V24</td>
<td>mit Bürsten</td>
<td>1 min 70 % EtOH</td>
<td>10 min 6 % NaOCl</td>
<td>1 min 70 % EtOH</td>
</tr>
<tr>
<td>V25</td>
<td>mit Bürsten</td>
<td>1 min 70 % EtOH</td>
<td>10 min 6 % NaOCl</td>
<td>2x spülen H₂O</td>
</tr>
</tbody>
</table>

Versuche zum Einfluss der Lagerungsdauer

Versuche zur Länge der Triebsegmente

Kieferntriebe wurden in verschiedene Segmentlängen (2, 1, 0.5, 0.25, 0.1 cm) geschnitten und beobachtet, wie viele und welche Pilze auswachsen (Tabelle 8). Die Endophyten wurden auf ihre Artenzusammensetzung, Artenanzahl und Häufigkeit hin untersucht. Weiterhin sollte geprüft werden, ob z. B. langsam wachsende Pilzarten vermehrt auswachsen. Bei dem ersten Versuch (LA 1 - 4), der den Einfluss der Länge der Triebsegmente klären sollte, ergab sich je nach Segmentlänge eine unterschiedliche Anzahl an Wiederholungen. Bei der Untersuchung von 2 cm-Segmentlänge ergaben sich nur 4 Wiederholungen bzw. Triebsegmente aus einem 8 cm langen Kieferntrieb. Bei 0,15 cm Segmentlänge ergaben sich 60 Wiederholungen bzw. Triebsegmente aus einem 8 cm langen Kieferntrieb (Tabelle 28). Um den Effekt der häufigeren Wiederholung berücksichtigen zu können, wurde der Versuch mit einer anderen Versuchsanordnung wiederholt (LA 5 - 9, Tabelle 28). Untersucht wurden 80 Triebsegmente je Segmentlänge (80 Triebsegmente à 2, 1, 0.5, 0.25, 0.1 cm Segmentlänge; Tabelle 28, LA5 - LA9). Bei diesem Versuch unterschied sich die Länge des Probematerials (verwendeter Kieferntrieb): bei 2 cm Segmentlänge betrug die Länge der untersuchten Kiefernzwiege insgesamt 1,6 m. Bei 0,1 cm Segmentlänge betrug die Länge der untersuchten Kiefernzwiege hingegen nur 8 cm.

Tabelle 8: Versuchsreihen mit verschiedenen Segmentlängen (LA1-LA9), zur Ermittlung des Einflusses der Länge der Triebsegmente auf die Isolation der Endophyten.

<table>
<thead>
<tr>
<th>Name</th>
<th>Segmentlänge (cm)</th>
<th>Länge des Probematerials (cm)</th>
<th>Anzahl untersuchter Triebsegmente</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA1</td>
<td>2</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>LA2</td>
<td>1</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>LA3</td>
<td>0,5</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>LA4</td>
<td>0,15</td>
<td>8</td>
<td>60</td>
</tr>
<tr>
<td>LA6</td>
<td>1</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>LA7</td>
<td>0,5</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>LA8</td>
<td>0,25</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>LA9</td>
<td>0,1</td>
<td>8</td>
<td>80</td>
</tr>
</tbody>
</table>
Versuche zur Lokalisierung der Endophyten

In diesem Experiment wurde geprüft, in welchen Gewebebereichen die Endophyten im Kiefernzwieg vorkommen. Insbesondere wurde auch geprüft, aus welchem Gewebe S. sapinea isoliert werden kann. Dafür wurde jeweils ein zuvor oberflächensterilisierter Kiefernzwieg in die Teile Holz, Kambialbereich und Rinde getrennt (Abbildung 16). Je Gewebetyp (Rinde, Kambialbereich und Holz) wurden 416 Triebsegmente à 5 mm inkubiert und untersucht (1248 Proben). Das Probematerial stammte aus Dransfeld und bestand aus ca. 8 cm langen Trieben. Aus technischen Gründen wurde der aktuelle Jahrgang nicht untersucht, da sich unverholztes Gewebe schlecht in die verschiedenen Gewebetypen trennen lässt.

Versuche zur Isolierung von Basidiomyceten

Versuche zum saisonalen Einfluss auf die Endophyten

2.5 Identifizierung der Pilzkulturen

2.5.1 Einordnung nach Morphotypen
Alle ausgewachsenen Pilzkolonien wurden, wenn sie nicht direkt eindeutig einem Morphotypen bzw. einer OTU (OTU, operational taxonomic unit) zugeordnet werden konnten, in Reinkultur gebracht. Dort zeigten diese oft ein anderes und eindeutigeres Wachstum und konnten mikroskopiert werden. Die Pilzisolate wurden nach Form, Höhe und Farbgebung der Kultur einem Morphotyp zugeordnet. Weiterhin wurden Oberflächenstruktur, Wachstumsgeschwindigkeit, Einwachstiefe der Kultur in das Medium, Abgrenzung zu anderen Arten und Merkmale in der Wachstumszone berücksichtigt (Kim et al. 2013). Es wurden auch molekulargenetische Methoden zur Identifizierung verwendet (siehe Kapitel 2.5.2).

Im Weiteren wurden die isolierten Pilze in ökologische Gruppen eingeteilt (Tabelle 37). Die Einteilung erfolgte auf Grund einer umfangreichen Literaturrecherche zu den isolierten Arten bzw. Gattungen. Folgende Gruppen wurden gebildet:

- Generalisten
- Saprophyten
- Epiphyten
- als Endophyten in Kiefer bekannt
- mit Laubholz assoziierte Pilze
- potentielle Pathogene (an holzigen Pflanzen)
2.5.2 DNA-Analyse

Die Extraktion der DNA erfolgte mit der Mikrowellen-Methode verändert nach Izumitsu et al. (2012). Dazu wurden 1 mg Pilzmyzel in ein 1,5 ml Eppendorfgefäß (SARSTEDT) überführt. Das Material wurde in 100 µl 1 x TRIS-EDTA (TE)-Puffer suspendiert. Das halb verschlossene Eppendorfgefäß erhitze man bei 600 Watt für 1 min in der Mikrowelle (CASO CM 1000, BRAUKMANN GmbH). Danach erfolgte eine Inkubation von 30 sec bei Raumtemperatur. Dann wurde das Eppendorfgefäß erneut bei 600 Watt für 1 min in der Mikrowelle erhitzt, abschließend für mindestens 10 min auf Eis inkubiert. Um festes und flüssiges Material zu trennen wurde die Probe bei 10 000 rpm 5 min zentrifugiert (BIOFUGE FRESCO, HERAEUS). Der Überstand (ca. 50-70 µl) wurde in ein neues Eppendorfgefäß überführt und für die PCR (Polymerase-Kettenreaktion) verwendet. Die isolierte DNA wurde 1:100 verdünnt und jeweils 5 µl als DNA-Template für die PCR verwendet. Mit spezifischen ITS-Primern wurde die DNA mit Hilfe einer PCR amplifiziert (Tabelle 10). In Einzelfällen wurde die LSU-Region untersucht.

Tabelle 9: PCR-Ansatz für eine Probe 50 µl.

<table>
<thead>
<tr>
<th>Bestandteile</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2O bidest</td>
<td>4,3 µl</td>
</tr>
<tr>
<td>10 x PCR-Puffer (mit MgCl2), (CoralLoad, QIAGEN)</td>
<td>5 µl</td>
</tr>
<tr>
<td>MgCl2 25 (QIAGEN)</td>
<td>1,5 µl</td>
</tr>
<tr>
<td>dNTPs (THERMO FISHER SCIENTIFIC INC.)</td>
<td>2 µl</td>
</tr>
<tr>
<td>Primer ITS1/ITS1-f</td>
<td>1 µl</td>
</tr>
<tr>
<td>Primer ITS4/ITS4-b</td>
<td>1 µl</td>
</tr>
<tr>
<td>Taq-Polymerase (QIAGEN)</td>
<td>0,2 µl</td>
</tr>
<tr>
<td>DNA</td>
<td>5 µl</td>
</tr>
<tr>
<td>Total</td>
<td>50 µl</td>
</tr>
</tbody>
</table>
Abbildung 17: Verwendetes PCR-Programm mit den Schritten zur Denaturierung, Annealing und Elongation.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Primer-Sequenz (5′- 3′)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITS1</td>
<td>TCCGTAGGTGAACCTGCGG</td>
</tr>
<tr>
<td>ITS1-f</td>
<td>CTTGGTCATTTAGAGGAAGTAA</td>
</tr>
<tr>
<td>ITS4</td>
<td>TCCTCGCCTTATTGATATGC</td>
</tr>
<tr>
<td>ITS4-b</td>
<td>CAGGAGACTTGTACACGTCCAG</td>
</tr>
<tr>
<td>LR0R</td>
<td>ACCCGCTGAACTTAAGC</td>
</tr>
<tr>
<td>LR5</td>
<td>TCCTGAGGGAAACTTCG</td>
</tr>
</tbody>
</table>

2.5.3 Kulturversuche zur Bestimmung der isolierten Endophyten
Mit den gewonnenen ITS-Sequenzen wurden BLAST-Suchanfragen in der NCBI-Datenbank durchgeführt. Nicht immer ließ sich mit Hilfe der ITS-Sequenzen ein Artname für das zu identifizierende OTU zuweisen, teilweise wurden die OTUs lediglich auf Gattungsn-, Familien- oder Ordnungsniveau charakterisiert. Für Artnamen mit hoher Übereinstimmung im Sequenzbereich (Querycover) und Ähnlichkeit (Identity), wurden Erstbeschreibungen gesucht oder weiterführende Bestimmungsliteratur genutzt, um die entsprechenden Pilze mit den Beschreibungen in der Literatur zu vergleichen (Tabelle 12).

Es wurden Experimente (Tabelle 12), wie z. B. Wachstumstests auf bestimmten Nährmedien und unter bestimmten Bedingungen durchgeführt. Die Pilzkulturen wurden auf unterschiedliche Nährmedien bei verschiedenen Temperaturen inkubiert.
(OA, CMA, SNA, PDA, MEA, MYP), um ihr Aussehen mit publizierten Beschreibungen oder Fotos zu vergleichen.

<table>
<thead>
<tr>
<th>Stammnummer</th>
<th>Wissenschaftlicher Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBS 262.85</td>
<td>Allantophomopsis lycopodina (HÖHN.) CARRIS</td>
</tr>
<tr>
<td>CBS 398.81</td>
<td>Anthostomella formosa KIRCHST.</td>
</tr>
<tr>
<td>CBS 119219</td>
<td>Camarosporium brabei M.J. WINGF. & CROUS</td>
</tr>
<tr>
<td>DSMZ Nr. 4845</td>
<td>Cenangium ferruginosum Fr.</td>
</tr>
<tr>
<td>CBS 137.38</td>
<td>Chaetomium elatum KUNZE</td>
</tr>
<tr>
<td>CBS 857.68</td>
<td>Chaetomium globosum KUNZE EX Fr.</td>
</tr>
<tr>
<td>CBS 110433</td>
<td>Chaunopycnis pustulata BILLS, POLISHOOK & J.F. WHITE</td>
</tr>
<tr>
<td>CBS 170.58</td>
<td>Crumenulopsis pinicola (REBENT.) J.W. GROVES</td>
</tr>
<tr>
<td>CBS 439.82</td>
<td>Diaporthecotonastea (PUNITH.) UDAYANGA, CROUS & K.D. HYDE</td>
</tr>
<tr>
<td>CBS 200.39</td>
<td>Diaporthetobilis SACC. & SPEG.</td>
</tr>
<tr>
<td>CBS 113201</td>
<td>Diaporthetrudis (FR.) NITSCHKE (Epitope of Diaporthewiticola NITSCHKE)</td>
</tr>
<tr>
<td>CBS 336.78</td>
<td>Microsphaeropsis olivacea (BONORD.) HÖHN.</td>
</tr>
<tr>
<td>CBS 263.85</td>
<td>Paraphaeosphaeria verrulosa VERKLEY, GÖKER & STIELOW</td>
</tr>
<tr>
<td>DSMZ Nr. 63184</td>
<td>Phoma herbarum WESTEND.</td>
</tr>
<tr>
<td>CBS 317.33</td>
<td>Rhinocladiella atrovirens NANNF.</td>
</tr>
<tr>
<td>CBS 234.83</td>
<td>Trybliopsis pinastri (PERS.) P. KARST.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OTU</th>
<th>Vergleichskultur</th>
<th>Wachstumsbedingungen (Medium; Temperatur; Licht; Dauer)</th>
<th>Sporulationsbedingungen (Medium; Temperatur; Licht)</th>
<th>Beschreibung auf Medium (Medium; Temperatur; Licht; Dauer)</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NW-FVA 2467 (S. polyspora) und 2637 (Rhizosphaera kalkhoffii vom JKI)</td>
<td>MEA; 16 °C; dunkel; 10 d</td>
<td>PNA; RT</td>
<td></td>
<td>Sutton und Waterston (1970); Talgø et al. (2010)</td>
</tr>
<tr>
<td>2</td>
<td>CBS 336.78</td>
<td>MEA; 15 °C; weißlich hell / dunkel; 7 d</td>
<td>OA, PNA; RT</td>
<td></td>
<td>Domsch et al. (1993); Kinsey (2002); Samson et al. (2010)</td>
</tr>
<tr>
<td></td>
<td>DSZM 63184</td>
<td>OA, MEA; 22 °C; dunkel; 7 d</td>
<td>PNA; RT</td>
<td></td>
<td>Crous et al. (2011); Chen et al. (2015); Liu et al. (2015)</td>
</tr>
<tr>
<td>3</td>
<td>OA; RT; hell / dunkel; täglich</td>
<td></td>
<td></td>
<td></td>
<td>Domsch et al. (1993); Minter (2006a, 2006b, 2006c); Samson et al. (2010)</td>
</tr>
<tr>
<td>7</td>
<td>MEA; 23-28 °C; UV hell / dunkel</td>
<td>MEA, PDA, RT; 7 d</td>
<td></td>
<td></td>
<td>Fávaro et al. (2011); Samson et al. (2010)</td>
</tr>
<tr>
<td>8</td>
<td>PNA; RT</td>
<td></td>
<td></td>
<td></td>
<td>Lindau (1922)</td>
</tr>
<tr>
<td>10</td>
<td>PNA; RT</td>
<td></td>
<td></td>
<td></td>
<td>Lundqvist (1972)</td>
</tr>
<tr>
<td>11</td>
<td>NW-FVA 3623 und 3624 Truncatella conorum-piceae (aus Brandenburg, leg. und det. P. Heydeck); NW-FVA 2068, 3803</td>
<td></td>
<td></td>
<td></td>
<td>Tubeuf (1889); Steyaert (1949); Guba (1961); Jeewon et al. (2002)</td>
</tr>
<tr>
<td>12</td>
<td>PNA, PBA, PDA, OA, MEA; 20 °C; UV hell / dunkel</td>
<td></td>
<td></td>
<td></td>
<td>Punithalingam (1979, 1990); Gomes et al. (2013)</td>
</tr>
<tr>
<td>13</td>
<td>PCA; 22-24 °C; weißlich hell / dunkel</td>
<td>PDA, PCA 25 °C, 7 d</td>
<td></td>
<td></td>
<td>Domsch et al. (1993); Samson et al. (2010)</td>
</tr>
<tr>
<td>14</td>
<td>MEA; 20 °C; 10 d</td>
<td></td>
<td></td>
<td></td>
<td>Arevalo et al. (2009)</td>
</tr>
<tr>
<td></td>
<td>OA; 25 °C; 14 d</td>
<td></td>
<td></td>
<td></td>
<td>Zare und Games (2003)</td>
</tr>
<tr>
<td>OTU</td>
<td>Vergleichskultur</td>
<td>Wachstumsbedingungen (Medium; Temperatur; Licht; Dauer)</td>
<td>Sporulationsbedingungen (Medium; Temperatur; Licht)</td>
<td>Beschreibung auf Medium (Medium; Temperatur; Licht; Dauer)</td>
<td>Literatur</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>16</td>
<td>CBS113201, CBS200.39 CBS439.82</td>
<td>PNA, PBA, PDA, OA, MEA; 20 °C; UV hell / dunkel</td>
<td></td>
<td>Punithalingam (1979, 1990); Gomes et al. (2013)</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>PNA, PBA; RT</td>
<td>MEA</td>
<td>Paul (1971); Shoemaker (1962)</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>PNA; RT</td>
<td></td>
<td>Fournier und Magni (2004a); Petrini und Petrini (2005)</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>PBA; RT</td>
<td></td>
<td>Fournier (2014)</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>PBA; RT</td>
<td></td>
<td>Sivanesan und Holliday (1972); Fournier (2014)</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>SNA; RT</td>
<td>PDA, RT; 7-14 d</td>
<td></td>
<td>Samson et al. (2010)</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>PBA, PNA; RT</td>
<td></td>
<td></td>
<td>Bell und Mahoney (1997)</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>PBA, PNA; RT</td>
<td></td>
<td></td>
<td>Petrini und Müller (1986); Petrini und Rogers (1986); Fournier und Magni (2004b)</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>PBA, PNA; RT</td>
<td></td>
<td></td>
<td>www.pilzbestimmer.de (2017)</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>PBA, PNA; RT</td>
<td></td>
<td></td>
<td>Domsch et al. (1993)</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>OA; RT; hell / dunkel; täglich</td>
<td>PNA; RT</td>
<td></td>
<td>Domsch et al. (1993); Minter (2006a, 2006b, 2006c); Samson et al. (2010)</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>PBA, PNA; RT</td>
<td></td>
<td>Petrini und Petrini (2005); Fournier und Magni (2004c)</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>NW-FVA 2710 (Diaporthe sp.), CBS200.39 CBS439.82</td>
<td>PNA, PDA, OA, MEA; 20 °C; UV hell / dunkel</td>
<td></td>
<td>Punithalingam (1979, 1990); Gomes et al. (2013)</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>OA; RT; hell / dunkel</td>
<td>PNA; RT</td>
<td></td>
<td>Domsch et al. (1993); Minter (2006a, 2006b, 2006c); Samson et al. (2010)</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>PDA; 28 °C; dunkel; 7 d</td>
<td>SNA, SNA & PNA; RT</td>
<td></td>
<td>Weber (2002)</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>PBA; RT</td>
<td></td>
<td></td>
<td>Kirk (1994)</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>CBS 170.58</td>
<td>PNA; RT</td>
<td></td>
<td>Hennebert (1973)</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>PNA; RT</td>
<td></td>
<td></td>
<td>Jong und Rogers (1972); Henriques et al. (2014); Henriques et al. (2015)</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>PNA, OA, PDA; RT</td>
<td></td>
<td></td>
<td>Kliejunas (1985); Domsch et al. (1993)</td>
<td></td>
</tr>
</tbody>
</table>

47
<table>
<thead>
<tr>
<th>OTU</th>
<th>Vergleichskultur</th>
<th>Wachstumsbedingungen (Medium; Temperatur; Licht; Dauer)</th>
<th>Sporulationsbedingungen (Medium; Temperatur; Licht)</th>
<th>Beschreibung auf Medium (Medium; Temperatur; Licht; Dauer)</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td></td>
<td>PNA; RT</td>
<td>MEA</td>
<td>Greenhalgh und Chesters (1968); Rogers et al. (2002); Ju und Rogers (1996)</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>PDA; 28 °C; dunkel; 7 d</td>
<td>SNA, SNA & PNA; RT</td>
<td>Weber (2002)</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>PNA; RT</td>
<td></td>
<td>Brady (1979)</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>PNA; RT</td>
<td></td>
<td>Kirk (1991)</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>CBS 119219</td>
<td>PNA; RT</td>
<td></td>
<td>Marincowitz et al. (2008)</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td></td>
<td>PBA, PNA; RT</td>
<td></td>
<td>Arx (1981)</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td></td>
<td>PBA, PNA; RT</td>
<td></td>
<td>Arx (1975); Stichgel et al. (2002)</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td></td>
<td>PDA, SNA; 25 °C, 35 °C; dunkel; 3 d</td>
<td>PDA; 30 °C; dunkel</td>
<td>Domsch et al. (1993); Samson et al. (2010); Samuels et al. (2015)</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td></td>
<td>PNA; RT</td>
<td>MEA</td>
<td>Greenhalgh und Chesters (1968); Collado et al. (2001)</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td></td>
<td>PBA, PNA; RT</td>
<td></td>
<td>Breitenbach und Kränzlin (1984); Arx (1981)</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>OA; 20 °C; 8-11 d</td>
<td>PNA; RT</td>
<td>Minter (2006d); Stadler et al. (2014)</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td></td>
<td>OA; 20 °C; 6-8 d</td>
<td>PNA; RT</td>
<td>OA nach 2 bzw. 4 Wochen</td>
<td>Rogers et al. (2002); Stadler et al. (2014)</td>
</tr>
<tr>
<td>78</td>
<td></td>
<td>PDA; 28 °C; dunkel; 7 d</td>
<td>SNA, SNA & PNA; RT</td>
<td>Kokaew et al. (2011); Ivanová et al. (2016)</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>MEA; 20 °C; 10 d</td>
<td>PNA; RT</td>
<td>Domsch et al. (1993); Samson et al. (2010)</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td></td>
<td>PCA; 22-24 °C; Weißlicht hell / dunkel</td>
<td>PDA, PCA 25 °C,7 d</td>
<td>Domsch et al. (1993); Samson et al. (2010)</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td>PBA, PNA, PCA; Weißlicht hell / dunkel</td>
<td>PDA, PCA 25 °C,7 d</td>
<td>Domsch et al. (1993); Samson et al. (2010)</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td></td>
<td>MEA; RT; hell / dunkel; 7 d</td>
<td>PNA; RT</td>
<td>Domsch et al. (1993); Samson et al. (2010)</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td></td>
<td>MEA; RT; 7 d, 10 d</td>
<td>MEA; RT</td>
<td>Rappaz (1987)</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
<td>PBA, PNA; RT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td></td>
<td>MEA; RT; dunkel; 7 d</td>
<td>PNA; RT</td>
<td>Samson et al. (2010)</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td>SNA; 25 °C; dunkel; 7 d</td>
<td>PNA; RT</td>
<td>Schubert et al. (2007)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDA; 25 °C; dunkel; 14 d</td>
<td>PNA; RT</td>
<td>Schubert et al. (2007)</td>
<td></td>
</tr>
<tr>
<td>OTU</td>
<td>Vergleichskultur</td>
<td>Wachstumsbedingungen (Medium; Temperatur; Licht; Dauer)</td>
<td>Sporulationsbedingungen (Medium; Temperatur; Licht)</td>
<td>Beschreibung auf Medium (Medium; Temperatur; Licht; Dauer)</td>
<td>Literatur</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>96</td>
<td></td>
<td>PNA; RT</td>
<td></td>
<td>Mirza und Cain (1969); Lundqvist (1972); Arx (1981)</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td></td>
<td>PDA, OA, MEA; RT</td>
<td></td>
<td>Crous und Groenewald (2013)</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>OA, MEA; RT; hell / dunkel; 10 d</td>
<td>OA; 18 °C; UV hell / dunkel</td>
<td>MEA</td>
<td>Verkley et al. (2014)</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td></td>
<td>PNA; RT</td>
<td></td>
<td>Chester und Greenhalgh (1964); Fournier und Magni (2004a)</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td></td>
<td>PNA; RT</td>
<td>PDA, MEA</td>
<td>Greenhalgh und Chesters (1968); Hawksworth (1972); Rogers et al. (2002); Ju und Rogers (1996)</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td></td>
<td>PNA; RT</td>
<td></td>
<td>Bernicchia und Gorjö (2010)</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>OA; 20-22 °C; 7 d</td>
<td>PNA; RT</td>
<td></td>
<td>Boerema und Dorenbosch (1973); Samson et al. (2010)</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>MEA; 23 °C; hell / dunkel; 15 d</td>
<td>PNA; RT</td>
<td>MEA</td>
<td>Petrini und Rogers (1986)</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>MEA; PDA; RT; MEA, 28 d</td>
<td>MEA</td>
<td></td>
<td>Diederich et al. (2007); Lawrey et al. (2012)</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>MEA; RT; 7 d</td>
<td>MEA</td>
<td></td>
<td>Lundqvist (1972); Hilber und Hilber (1979); Chang und Wang (2005)</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>PDA, OA, MEA; 22 °C; UV hell / dunkel</td>
<td>PDA, OA, MEA; 22 °C; UV hell / dunkel</td>
<td></td>
<td>Arenal et al. (2007); Kruys et al. (2006); Domsch et al. (1993)</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>PNA; RT</td>
<td>PDA</td>
<td></td>
<td>Samuels und Hallet (1983)</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>OA, MEA; 18 °C; UV hell / dunkel; 7, 10, 14, 16, 21 d</td>
<td>OA, PNA, PBA; 18 °C; UV hell / dunkel</td>
<td>OA</td>
<td>Verkley (1999)</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>PNA; RT</td>
<td></td>
<td></td>
<td>Meyer und Gams (2003)</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>PBA, PNA; RT</td>
<td></td>
<td></td>
<td>Zhao et al. (2016)</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>PBA, PNA; RT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>MEA, PDA; 23 °C; Weißlicht hell / dunkel; 7 d</td>
<td>WA mit steril Kiefern-Nadel; 25 °C; UV hell / dunkel</td>
<td></td>
<td>Rossman et al. (2008); Sogonov et al. (2008)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PDA, 25 °C; UV hell / dunkel; 7 d</td>
<td></td>
<td></td>
<td>Rossman et al. (2008); Sogonov et al. (2008)</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>CBS 262.85</td>
<td>PNA; RT</td>
<td>OA, PDA</td>
<td>Crous et al. (2014)</td>
<td></td>
</tr>
<tr>
<td>OTU</td>
<td>Vergleichskultur</td>
<td>Wachstumsbedingungen (Medium; Temperatur; Licht; Dauer)</td>
<td>Sporulationsbedingungen (Medium; Temperatur; Licht)</td>
<td>Beschreibung auf Medium (Medium; Temperatur; Licht; Dauer)</td>
<td>Literatur</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>116</td>
<td></td>
<td>PNA; RT</td>
<td></td>
<td></td>
<td>Samson et al. (2010)</td>
</tr>
<tr>
<td>117</td>
<td>CBS 263.85</td>
<td>OA; RT; hell / dunkel; 10 d</td>
<td>OA; 18 °C; UV hell / dunkel</td>
<td></td>
<td>Verkley et al. (2014)</td>
</tr>
<tr>
<td>118</td>
<td></td>
<td>PNA; RT</td>
<td></td>
<td></td>
<td>Hughes (1958); Guba (1961)</td>
</tr>
<tr>
<td>119</td>
<td></td>
<td>PNA; RT</td>
<td></td>
<td></td>
<td>Guba (1961)</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>OA, MEA; 18 °C; UV hell / dunkel; 7, 10, 14, 16, 21 d</td>
<td>OA, PNA, PBA; 18 °C; UV hell / dunkel</td>
<td>OA</td>
<td>Verkley (1999)</td>
</tr>
<tr>
<td>121</td>
<td></td>
<td>PNA; RT</td>
<td></td>
<td></td>
<td>Punithalingam (1979, 1990); Gomes et al. (2013)</td>
</tr>
<tr>
<td>122</td>
<td>NW-FVA 34 (Apiognomonia sp.) und 2322 (Fusicooccum sp.)</td>
<td>MEA, MYP, PDA; 23 °C; hell / dunkel; 14 d</td>
<td>PNA; RT</td>
<td></td>
<td>Monod (1983); Sogonov et al. (2007)</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td>OA, MEA; 18 °C; UV hell / dunkel; 7, 10, 14, 16, 21 d</td>
<td>OA, PNA, PBA; 18 °C; UV hell / dunkel</td>
<td>OA</td>
<td>Verkley (1999); Yuan und Verkley (2015)</td>
</tr>
<tr>
<td>124</td>
<td></td>
<td>OA, MEA; 18 °C; UV hell / dunkel; 7, 10, 14, 16, 21 d</td>
<td>OA, PNA, PBA; 18 °C; UV hell / dunkel</td>
<td>OA</td>
<td>Verkley (1999)</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>OA, MEA; 18 °C; UV hell / dunkel; 7, 10, 14, 16, 21 d</td>
<td>OA, PNA, PBA; 18 °C; UV hell / dunkel</td>
<td>OA</td>
<td>Verkley (1999)</td>
</tr>
<tr>
<td>126</td>
<td></td>
<td>MEA, MYP, PDA; 23 °C; hell / dunkel; 14 d</td>
<td>PNA; RT</td>
<td></td>
<td>Sogonov et al. (2007)</td>
</tr>
<tr>
<td>127</td>
<td></td>
<td>MEA, MYP, PDA; 23 °C; hell / dunkel; 14 d</td>
<td>PNA; RT</td>
<td>PDA 7 d</td>
<td>Strømeng und Stensvand (2011)</td>
</tr>
<tr>
<td>128</td>
<td></td>
<td>PNA; RT</td>
<td></td>
<td></td>
<td>Guba (1961)</td>
</tr>
<tr>
<td>129</td>
<td></td>
<td>PNA; RT</td>
<td></td>
<td></td>
<td>Levine (1914)</td>
</tr>
<tr>
<td>130</td>
<td></td>
<td>PNA; RT</td>
<td></td>
<td></td>
<td>Domsch et al. (1993)</td>
</tr>
<tr>
<td>131</td>
<td></td>
<td>PNA; RT</td>
<td></td>
<td></td>
<td>Domsch et al. (1993); Samson et al. (2010)</td>
</tr>
</tbody>
</table>
2.6 Untersuchungen zu ausgewählten Endophyten

Abbildung 18: Kiefernzweige in der feuchten Kammer.

2.6.1 Temperaturversuche

Um die Optimal-, Kardinal-, Minimal-Temperatur zu bestimmen, wurden vier verschiedene S. sapinea-Stämme, Sydowia polyspora, Microsphaeropsis olivacea

Tabelle 13: Für die Temperaturuntersuchungen verwendete Isolate aus Zweigen von *P. sylvestris*.

<table>
<thead>
<tr>
<th>NW-FVA Nr. / Art</th>
<th>Probenherkunft</th>
<th>Material für die Isolierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2703 / S. sapinea</td>
<td>TH07 (Thüringen / Illmenau)</td>
<td>Aus gesundem Gewebe</td>
</tr>
<tr>
<td>2738 / S. sapinea</td>
<td>Pfungstadt PF59 (Hessen)</td>
<td>Aus Pyknidien von erkranktem Gewebe</td>
</tr>
<tr>
<td>2740 / S. sapinea</td>
<td>Pfungstadt PF59 (Hessen)</td>
<td>Aus erkranktem Gewebe</td>
</tr>
<tr>
<td>2715 / S. sapinea</td>
<td>BW03 (Mannheim / Baden-Württemberg)</td>
<td>Aus gesundem Gewebe</td>
</tr>
<tr>
<td>2201 / S. polyspora</td>
<td>Wetzlar (Hessen)</td>
<td>Aus erkranktem Gewebe</td>
</tr>
<tr>
<td>2202 / M. olivacea</td>
<td>Wetzlar (Hessen)</td>
<td>Aus erkranktem Gewebe</td>
</tr>
<tr>
<td>2215 / Truncatella conorum-piceae</td>
<td>Wetzlar (Hessen)</td>
<td>Aus erkranktem Gewebe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NR</th>
<th>Thermoschränke</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mittelwert</th>
<th>Schwankungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>Klimaprüfschrank, Rumed, Typ 4000</td>
<td>28</td>
<td>30,6</td>
<td>30,0</td>
<td>2,6</td>
</tr>
<tr>
<td>2*</td>
<td>Klimaprüfschrank, Rumed, Typ 4000</td>
<td>20,2</td>
<td>23,2</td>
<td>21,3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Klimaprüfschrank, Rumed, Typ 4000</td>
<td>28,4</td>
<td>29,1</td>
<td>28,8</td>
<td>0,7</td>
</tr>
<tr>
<td>4</td>
<td>Klimaprüfschrank, Rumed, Typ 4000</td>
<td>24,3</td>
<td>26,3</td>
<td>25,4</td>
<td>2</td>
</tr>
<tr>
<td>6*</td>
<td>Klimaprüfschrank, Rumed, Typ 4000</td>
<td>25,9</td>
<td>29,7</td>
<td>27,7</td>
<td>3,8</td>
</tr>
<tr>
<td>7</td>
<td>Klimaprüfschrank, Rumed, Typ 4000</td>
<td>21</td>
<td>22,1</td>
<td>21,6</td>
<td>2,1</td>
</tr>
<tr>
<td>8</td>
<td>Klimaprüfschrank, Rumed, Typ 4000</td>
<td>35,4</td>
<td>36,1</td>
<td>35,7</td>
<td>0,7</td>
</tr>
<tr>
<td>9</td>
<td>Klimaprüfschrank, Rumed, Typ 4000</td>
<td>8,1</td>
<td>9,2</td>
<td>8,8</td>
<td>0,9</td>
</tr>
<tr>
<td>10</td>
<td>Klimaprüfschrank, Rumed, Typ 4000</td>
<td>11,5</td>
<td>13,1</td>
<td>12,3</td>
<td>1,6</td>
</tr>
<tr>
<td>11</td>
<td>Kühlschrank, Liebherr, Premium BioFresh</td>
<td>-0,6</td>
<td>1</td>
<td>0,3</td>
<td>0,4</td>
</tr>
<tr>
<td>12</td>
<td>Brutschrank, Memmert, Typ BKE 30</td>
<td>27,9</td>
<td>28,1</td>
<td>27,9</td>
<td>0,2</td>
</tr>
<tr>
<td>13</td>
<td>Universalschrank, Memmert, Typ UM 700</td>
<td>45,0</td>
<td>45,2</td>
<td>45,2</td>
<td>0,2</td>
</tr>
<tr>
<td>14</td>
<td>Kühlbrutschrank, Memmert, ICE 500</td>
<td>30</td>
<td>30,4</td>
<td>30,3</td>
<td>0,4</td>
</tr>
<tr>
<td>15</td>
<td>Präzisionsprüfschrank, Rumed, P530</td>
<td>11,9</td>
<td>12,2</td>
<td>12,0</td>
<td>0,3</td>
</tr>
<tr>
<td>16</td>
<td>Präzisionsprüfschrank, Rumed, P530</td>
<td>7,8</td>
<td>8</td>
<td>7,9</td>
<td>0,2</td>
</tr>
<tr>
<td>17</td>
<td>Brutschrank, Memmert, Typ BKE 30</td>
<td>26,8</td>
<td>27</td>
<td>26,9</td>
<td>0,2</td>
</tr>
<tr>
<td>18</td>
<td>Universalschrank, Memmert, Typ UM 700</td>
<td>39,7</td>
<td>40,1</td>
<td>39,9</td>
<td>0,3</td>
</tr>
<tr>
<td>19</td>
<td>Kühlbrutschrank, Memmert ICE 500</td>
<td>26</td>
<td>26,2</td>
<td>26,1</td>
<td>0,2</td>
</tr>
</tbody>
</table>

2.6.2 VC-Test mit verschiedenen S. sapinea-Stämmen

Abbildung 19: VC-Test mit 12 *S. sapinea*-Stämmen aus einem Zweig (PF59), inkubiert auf mit Bromkresolgrün versetzten MYP-Nährmedium, Vorder- und Rückseite der Petrischale, nach 2 Wochen Inkubation bei Raumtemperatur; kompatible Stämme (D7-D17, roter Pfeil).

2.6.3 Antagonistentests mit *S. sapinea* und Endophyten

Um nicht nur die Größe der Kultur messen zu können, sondern auch ihre Verformung zu dokumentieren, wurde das Wachstum der Pilzkulturen an drei Achsen in der Petrischale (Zentral, rechte und linke Achse; Abbildung 20, links) nach 7 Tagen gemessen (Methode nach Santamaría et al. 2007). Von allen Petrischalen wurden Fotos angefertigt, sowie die Kombination Endophyt - *S. sapinea* beschrieben. Dabei wurde jede Paarung folgendermaßen kategorisiert: Formveränderung von *S. sapinea*; Barragebildung zwischen *S. sapinea* und Endophyt; Endophyt überlagert *S. sapinea*; Endophyt wird von *S. sapinea* überlagert.

Die Versuche mit *S. sapinea* und dem endophytischen Pilz wurden jeweils dreimal wiederholt. Insgesamt belief sich die Anzahl der Versuchsansätze damit auf 724 (89 x 3 Endophyten x *S. sapinea* NW-FVA 2740, 89 x 3 Endophyten x *S. sapinea* NW-FVA 2738, 89 x Endophyt gegen sich selbst, 89 x Endophyt alleine, 3 x *S. sapinea*
NW-FVA 2740 alleine, 3 x S. sapinea NW-FVA 2740 gegen sich selbst, 3 x S. sapinea NW-FVA 2738 alleine, 3 x S. sapinea NW-FVA 2738 gegen sich selbst).

2.6.3.1 Zellophan-Versuch
2.6.3.2 Hypheninteraktion in vitro

Um zu prüfen, wie der Antagonist *in vitro* gegen *S. sapinea* wirkt, wurden Versuche zum Wuchsverhalten durchgeführt.

Um die Hyphen von *Trichoderma* sp. und *S. sapinea* unter dem Mikroskop unterscheiden zu können, wurde die zu mikroskopierende Stelle mit Baumwollblau (bestehend aus: 20 g Phenol (MERCK), 20 g Milchsäure (FLUKA), 40 g Glycerin (SIGMA-ALDRICH), 0,05 g Baumwollblau (SIGMA-ALDRICH) und 20 ml Aqua demin.) angefärbt (Krieglsteiner und Kaiser 2000).

Abbildung 21: Test zur Hypheninterferenz; links OTU71 (*Trichoderma* sp., oben) und *S. sapinea* (unten) nach 4 Tagen Inkubation bei Raumtemperatur (Rückansicht), rechts OTU110 (*Pezicula eucrita*, oben) und *S. sapinea* (unten) nach 7 Tagen Inkubation bei Raumtemperatur; rot markiert ist der Bereich, der nach verschiedenen Zeiten mikroskopisch untersucht wurde.
2.7 Datenanalyse

Weiterhin wurde das Programm iNEXT (Hsieh et al. 2013) zur Analyse des Stichprobenumfangs verwendet.

Mit den ITS-Sequenzen wurde ein Suchlauf mit Hilfe der BLAST-Funktion (Basic Local Alignment Search Tool, Zhang et al. 2000) in der NCBI (National Center for Biotechnology Information) -Datenbank durchgeführt.

3. Ergebnisse

3.1 Schadenskartierung

Die Ergebnisse der Untersuchungen von Kiefernbeständen sind in folgender Reihenfolge dargestellt:

- Systematische Beprobung entlang des Transekts
- Beprobungen mit Verdacht auf oder vorherigem Befalls mit Diplodia-Triebsterben und entsprechende Nullflächen, von Nord nach Süd
- Beratungsfälle der NW-FVA

Es werden Ergebnisse hinsichtlich der Schadensfälle des Diplodia-Triebsterbens, zum Vorkommen der Mistel und des Wurzelschwamms, sowie zu auffälligen Endophytenvorkommen dargestellt.

Systematische Beprobung

Sydowia polyspora (OTU1) wurde an jedem der 91 Probepunkte festgestellt, Microsphaeropsis olivacea (OTU2) an nur zwei Probepunkten nicht (ST06, BB12). Truncatella conorum-piceae (OTU11) wurde an 90 der 91 Probepunkte endophytisch detektiert, mit einer RH zwischen 1 - 53 %. Auffällig war das gehäufte Vorkommen von Desmazierella acicola (OTU34) an den Probepunkten in Brandenburg. Dort wurde D. acicola an allen 20 Probepunkten festgestellt mit einer RH zwischen 4 - 64 %. Weiterhin wurde Gnomoniaceae sp. (OTU114) an 40 der 91 Probepunkte endophytisch aus Kieferntriebsegmenten isoliert, mit einer relativen Häufigkeit zwischen 1 - 44 %.

<table>
<thead>
<tr>
<th>Land</th>
<th>Anzahl Probepunkte</th>
<th>RH von S. sapinea endophytisch in %</th>
<th>Anzahl untersuchter Triebsegmente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brandenburg</td>
<td>20</td>
<td>14</td>
<td>1580</td>
</tr>
<tr>
<td>Sachsen-Anhalt</td>
<td>18</td>
<td>32</td>
<td>1572</td>
</tr>
<tr>
<td>Thüringen</td>
<td>9</td>
<td>6</td>
<td>724</td>
</tr>
<tr>
<td>Bayern</td>
<td>15</td>
<td>14</td>
<td>1152</td>
</tr>
<tr>
<td>Hessen</td>
<td>16</td>
<td>25</td>
<td>1227</td>
</tr>
<tr>
<td>Baden-Württemberg</td>
<td>13</td>
<td>18</td>
<td>1025</td>
</tr>
<tr>
<td>Summe</td>
<td>91</td>
<td>-</td>
<td>7270</td>
</tr>
</tbody>
</table>

Beprobungen mit Verdacht auf oder mit vorherigem Befall mit Diplodia-Triebsterben und entsprechende Nullflächen (von Nord nach Süd)

Im Folgenden werden die untersuchten Flächen hinsichtlich des Schadgeschehens charakterisiert, dabei werden nicht alle isolierten Endophyten genannt, sondern nur auffällige Ergebnisse dargestellt. Die vollständige Übersicht über alle isolierten Endophyten findet sich im digitalen Anhang.

Weder auf den Untersuchungsflächen in den Kiefernreinbeständen in Prezelle (Niedersachsen), noch auf der Untersuchungsfläche Schlaubetal (Brandenburg) zeigten sich, nach einem Fraß des Kiefernspinners (Dendrolimus pini L.) bzw. der Nadelscheidengallmücke (Thecodiplosis brachyntera), im Beobachtungszeitraum (2014 - 2016) Symptome des Diplodia-Triebsterbens. Endophytisch wurde S. sapinea in den 10 untersuchten Kiefern auf der Untersuchungsfläche Schlaubetal mit einer RH von 5 % nachgewiesen. Auffällig war, dass rund 50 % der Triebsegmente mit Schimmelpilzen verunreinigt waren. S. polyspora (OTU1) und Truncatella conorum-

In **Lüderitz** (LU4451, Sachsen-Anhalt), einem reinen Kiefernbestand (110-jährig), ist als krankheitsauslösender Faktor für das *Diplodia*-Triebsterben ein starker Hagelschlag im Juni 2013 identifiziert worden. Die exponierte Lage in einer Feldmark und die vielen Bestandesränder verstärkten das Schadgeschehen, da Bestandesränder besonders stark besonn werden. Die untersuchten Kiefern mit und ohne Symptomen des *Diplodia*-Triebsterbens wiesen eine hohe endophytische Besiedlung mit *S. sapinea* auf (zwischen 33-90 %). Auch auf der Untersuchungsfläche

diese füllten einen großen Teil der grünen Kiefernkrone aus (bis zu 50 %). Oft war zu beobachten, dass die Kronenspitze der Kiefer durch eine Mistel überformt wurde und dann der darüber liegende Kiefernkronenteil abgestorben war.

Tabelle 16: Ergebnis der Aufnahme von Fruchtkörpern des Wurzelschwamms und Untersuchung der basalen Stammscheibe, nach Inkubation nachgewiesene Nebenfruchtf orm des Wurzelschwamms (*Spiniger meineckellus*), KU = Keine Untersuchungen durchgeführt.

<table>
<thead>
<tr>
<th>Probefläche</th>
<th>Wurzelschwamm-Fruchtkörper Nachweis</th>
<th>Wurzelschwamm-Nebenfruchtf orm Nachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prezelle</td>
<td>positiv</td>
<td>positiv</td>
</tr>
<tr>
<td>Bad Freienwalde (FW650 und FW312)</td>
<td>negativ</td>
<td>FW650: 100 % (n = 6), FW312: KU</td>
</tr>
<tr>
<td>Lüderitz (LU4451)</td>
<td>positiv</td>
<td>KU</td>
</tr>
<tr>
<td>Schlaubetal</td>
<td>positiv</td>
<td>90 % positiv (n = 10)</td>
</tr>
<tr>
<td>Pfungstadt (PF59)</td>
<td>positiv</td>
<td>100 % positiv (n = 6)</td>
</tr>
<tr>
<td>Pfungstadt (PF122)</td>
<td>positiv</td>
<td>100 % positiv (n = 6)</td>
</tr>
<tr>
<td>Bürstadt</td>
<td>positiv</td>
<td>KU</td>
</tr>
<tr>
<td>Viernheim (VN0226)</td>
<td>positiv</td>
<td>KU</td>
</tr>
<tr>
<td>Wildpark (WP0714 und WP0710)</td>
<td>positiv</td>
<td>100 % positiv (n = 12)</td>
</tr>
<tr>
<td>Waldstadt (WS0305)</td>
<td>positiv</td>
<td>100 % positiv (n = 3)</td>
</tr>
</tbody>
</table>

Tabelle 17: Ergebnis der Kartierung von Fruchtkörpern des Wurzelschwamms an Stubben von Kiefer, Eiche, Birke und Mehlbeere, \(^1\)prozentualer Anteil der Kiefernstubben mit Fruchtkörpern des Wurzelschwamms.

<table>
<thead>
<tr>
<th></th>
<th>Lüderitz</th>
<th>Pfungstadt 122</th>
<th>Pfungstadt 59</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flächengröße in Hektar</td>
<td>4,7</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Aufgenommene Stubben</td>
<td>335</td>
<td>822</td>
<td>1214</td>
</tr>
<tr>
<td>davon Kiefern-Stubben</td>
<td>115</td>
<td>714</td>
<td>1119</td>
</tr>
<tr>
<td>Kiefer mit Wurzelschwamms FK %(^1)</td>
<td>35</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
Abbildung 25: Kartierung der Wurzelschwamm-Fruchtkörper an Stubben aller Baumarten in den Untersuchungsflächen Pfungstadt PF122 (links) und PF59 (rechts), Stubben ohne Wurzelschwamm-Fruchtkörper sind grün • dargestellt, Stubben mit Wurzelschwamm-Fruchtkörper rot •.

Abbildung 26: Lage der kartierten Stubben und der Wurzelschwamm-Fruchtkörper an allen Baumarten auf der Untersuchungsfläche Lüderitz. Stubben ohne Wurzelschwamm-Fruchtkörper sind grün • dargestellt, Stubben mit Wurzelschwamm-Fruchtkörper rot •.

<table>
<thead>
<tr>
<th>Probe</th>
<th>Symptome</th>
<th>S. sapinea</th>
<th>OTU1</th>
<th>OTU2</th>
<th>OTU11</th>
<th>OTU52</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kiefer mit starken Symptomen des Diplodia-Triebsterben, nur noch 20 % der Triebe sind vital, starker Mistelbefall, teilweise sind Misteln bereits abgestorben, Bläue im Stammholz, Schildlausbefall an den Nadeln</td>
<td>30</td>
<td>28</td>
<td>26</td>
<td>24</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Kiefer mit verkürzten Trieben und Nadeln</td>
<td>5</td>
<td>30</td>
<td>41</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>Kiefer vital</td>
<td>17</td>
<td>23</td>
<td>44</td>
<td>30</td>
<td>6</td>
</tr>
</tbody>
</table>

Abbildung 32: Venn-Diagramm zum Vorkommen der OTUs auf der Untersuchungsfläche Viernheim, in Kiefernzweigen von Bäumen mit (blau) und ohne Mistelbesatz (rosa), OTUs mit einer relativen Häufigkeiten von > 5 % sind mit einem * gekennzeichnet.

Abbildung 33: Vorkommen der OTUs dargestellt im Venn-Diagramm für die Untersuchungsfläche Wildpark, in Kiefernzwiegen von Bäumen mit (blau) und ohne Mistelbesatz (rosa). OTUs mit einer relativen Häufigkeiten von > 5 % sind mit einem * gekennzeichnet.
Beratungsfälle

Abbildung 34: Grafische Darstellung der Beratungsfälle zu Diplodia-Erkrankungen nach verschiedenen Baumarten (links, n = 96), rechts: Bestandesalter der betroffenen Kiefern (n = 66; bei 4 Beratungsfällen war kein Bestandesalter dokumentiert); Quelle: interne Daten aus dem Zuständigkeitsgebiet der NW-FVA, Abteilung Waldschutz, Sachgebiet 3, aus den Jahren 2006 - 2014.
3.2 Isolierte und identifizierte Endophyten und Schaderreger

In Tabelle 20 sind die aus Kieferntrieben isolierten Pilze aufgelistet. Im Rahmen dieser Arbeit wurden 90 Pilzarten isoliert und bestimmt, die unter den Bezeichnungen OTU 1-135 aufgeführt werden (Auswahl in Abbildung 36). Zusätzlich zu den 90 endophytisch isolierten Pilzarten wurden wenige Pilze aus der Abteilung der
Zygomyceten, diverse Hefen (2,5 % relative Häufigkeit, Tabelle 19) und nicht näher bestimmte Ascomyceten (2,5 % relative Häufigkeit, Tabelle 19) nachgewiesen. Die Anzahl der Holzstücke, aus denen keine Pilzkultur auswuchs war gering (3,5 %, Tabelle 19).

Probleme bei der Bestimmung der Pilzarten

Einige isolierte Pilze sporulierten zu Anfang, mit fortschreitender Stammhaltung und nach mehrmaligem Abimpfen ging ihre Vitalität verloren, sie wuchsen langsamer und die Farben ihrer Myzelien wurden blasser. Um diese Pilze wieder aufzufrischen, wurden sie auf Kiefernnadelagar (PNA), Kiefernrindenagar (PBA) und Kiefernholzagar (PWA) kultiviert. Trotz zahlreicher Versuche zur Anregung der Sporulation (Tabelle 12) blieben von 90 isolierten OTUs 17 Pilze unter den gewählten Wachstumsbedingungen in Kultur steril. Dies entspricht einem Anteil von 19 % der isolierten Endophyten. Es
handelte sich dabei um folgende Arten: Drechslera sp. (OTU19), Rosellinia sp. 1 (OTU21), D. acicola (OTU34), Rosellinia sp. 2 (OTU38), Trichocladium sp. (OTU50), H. fragiforme (OTU59), Ascomycet sp. 1 (OTU69), P. domesticum (OTU74), Ascomycet sp. 2 (OTU93), H. rubiginosum (OTU101), Lambertella sp. (OTU112), Ascomycet sp. 3 (OTU113), Diaporthe sp. 4 (OTU121), Coprinellus sp. (OTU129), Pleosporaceae sp. (OTU130), Preussia sp. 2 (OTU132), S. sapinea.

Abbildung 36: Vielfalt der Endophyten, von oben links nach unten rechts: Epicoccum nigrum (OTU7), Microsphaeropsis olivacea (OTU2), Fusarium sp. (OTU29), Nemania diffusa (OTU32), Hypoxylon fragiforme (OTU59), Microsphaeropsis olivacea (OTU2), Chaetomium sp. 2 (OTU46), Biscogniauxia mediterranea (OTU52); nach einem Monat Inkubation auf MYP-Medium bei Raumtemperatur.

Tabelle 19: Übersicht über alle untersuchten Proben, Anzahl der Triebsegmente von Kiefernästen und die relative Häufigkeit der isolierten Pilze in Prozent (RH); Pilze, die als Fungus sp. aufgeführt werden, konnten nicht näher bestimmt werden; KA = kein Auswuchs; Anzahl ohne Laborversuche.

<table>
<thead>
<tr>
<th>Triebsegmente, n</th>
<th>Bäume, n</th>
<th>Bestände, n</th>
<th>Arten, n</th>
<th>KA, RH</th>
<th>Schimmel, RH</th>
<th>Hefe, RH</th>
<th>Fungus. sp, RH</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 807</td>
<td>190</td>
<td>106</td>
<td>90</td>
<td>3,5</td>
<td>4,4</td>
<td>2,5</td>
<td>2,5</td>
</tr>
</tbody>
</table>
Tabelle 20: Isolierte Pilze aus Triebsegmenten von Kiefernzwigen (n = 20807 Triebsegmente mit 29286 Isolaten, Besiedlungsrate $\approx 1,4$) und ihre relative Häufigkeit (RH) aller untersuchten Triebsegmente in Prozent; in der Spalte Standorte ist angegeben, in wie vielen der 106 untersuchten Bestände der jeweilige Pilz auftrat; mit * markiert sind einmalig isolierte Pilzarten (einemaliger Auswuchs).

<table>
<thead>
<tr>
<th>OTU Endophyt</th>
<th>RH</th>
<th>Standorte</th>
<th>OTU Endophyt</th>
<th>RH</th>
<th>Standorte</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Sphaeropsis sapinea</td>
<td>19,0</td>
<td>92</td>
<td>81 Alternaria sp.</td>
<td>0,1</td>
<td>4</td>
</tr>
<tr>
<td>*Sydowiia polyspora</td>
<td>30,7</td>
<td>104</td>
<td>85 Alternaria infectoria</td>
<td>0,5</td>
<td>32</td>
</tr>
<tr>
<td>*Microsphaeropsis olivacea</td>
<td>24,6</td>
<td>102</td>
<td>86 Cladosporium sp. 1</td>
<td><0,01</td>
<td>1*</td>
</tr>
<tr>
<td>*Chaetomium globosum</td>
<td>0,2</td>
<td>11</td>
<td>89 Xylaria sp. 2</td>
<td><0,01</td>
<td>1*</td>
</tr>
<tr>
<td>*Epicoccum nigrum</td>
<td>1,8</td>
<td>50</td>
<td>93 Ascomycet2</td>
<td>0,01</td>
<td>3</td>
</tr>
<tr>
<td>*Sordaria sp.</td>
<td>0,1</td>
<td>9</td>
<td>94 Acremonium sp.</td>
<td><0,01</td>
<td>2</td>
</tr>
<tr>
<td>*Sordaria fimbicola</td>
<td>7,6</td>
<td>24</td>
<td>95 Cladosporium sp. 2</td>
<td><0,01</td>
<td>1</td>
</tr>
<tr>
<td>*Nigrospora oryzae</td>
<td>2,1</td>
<td>16</td>
<td>96 Podospora curvicolla</td>
<td><0,01</td>
<td>1</td>
</tr>
<tr>
<td>*Truncatella conorum-piceae</td>
<td>15,1</td>
<td>103</td>
<td>97 Arthropneusphaeria neglecta</td>
<td><0,01</td>
<td>1*</td>
</tr>
<tr>
<td>*Alternaria alternata</td>
<td>2,2</td>
<td>63</td>
<td>99 Nemania serpens</td>
<td>1,8</td>
<td>53</td>
</tr>
<tr>
<td>*Lecanicillium psalliotae</td>
<td>0,1</td>
<td>4</td>
<td>101 Hypoxylon rubiginosum</td>
<td><0,01</td>
<td>1*</td>
</tr>
<tr>
<td>*Diaporthe 2</td>
<td>3,0</td>
<td>63</td>
<td>102 Peniophora pini</td>
<td><0,01</td>
<td>1*</td>
</tr>
<tr>
<td>*Drechslera sp.</td>
<td>0,2</td>
<td>3</td>
<td>104 Phoma sp. 1</td>
<td><0,01</td>
<td>1*</td>
</tr>
<tr>
<td>*Rosellinia sp. 1</td>
<td>0,03</td>
<td>1</td>
<td>105 Xylaria sp. 3</td>
<td>0,02</td>
<td>2</td>
</tr>
<tr>
<td>*Xylaria longipes</td>
<td>1,1</td>
<td>45</td>
<td>106 Phoma sp. 2</td>
<td><0,01</td>
<td>1*</td>
</tr>
<tr>
<td>*Xylaria polymorpha</td>
<td>0,03</td>
<td>6</td>
<td>107 Jugulospora rotula</td>
<td><0,01</td>
<td>1*</td>
</tr>
<tr>
<td>*Fusarium sp.</td>
<td>0,5</td>
<td>25</td>
<td>108 Preussia sp. 1</td>
<td>0,02</td>
<td>1</td>
</tr>
<tr>
<td>*Sordariales sp.</td>
<td><0,01</td>
<td>2</td>
<td>109 Microdochium nivale</td>
<td><0,01</td>
<td>2</td>
</tr>
<tr>
<td>*Nemania diffusa</td>
<td>1,1</td>
<td>37</td>
<td>110 Pezicula eucrita</td>
<td>1,1</td>
<td>28</td>
</tr>
<tr>
<td>*Desmazierella acicola</td>
<td>2,8</td>
<td>46</td>
<td>111 Umbelopsis isabellina</td>
<td>0,01</td>
<td>2</td>
</tr>
<tr>
<td>*Pezizomyces sp. 1</td>
<td>0,2</td>
<td>17</td>
<td>112 Lambertella sp.</td>
<td><0,01</td>
<td>1</td>
</tr>
<tr>
<td>*Chaetomium sp. 1</td>
<td>0,5</td>
<td>13</td>
<td>113 Ascomycet sp. 3</td>
<td>0,02</td>
<td>3</td>
</tr>
<tr>
<td>*Rosellinia sp. 2</td>
<td>1,1</td>
<td>40</td>
<td>114 Gnomoniaceae sp.</td>
<td>0,9</td>
<td>41</td>
</tr>
<tr>
<td>*Diaporthe 3</td>
<td>0,4</td>
<td>16</td>
<td>115 Phacidiun lacerum</td>
<td>0,2</td>
<td>14</td>
</tr>
<tr>
<td>*Chaetomium sp. 2</td>
<td>0,05</td>
<td>5</td>
<td>116 Penicillum sp.</td>
<td><0,01</td>
<td>1*</td>
</tr>
<tr>
<td>*Lecythophora 1</td>
<td>0,02</td>
<td>2</td>
<td>117 Paraphaeosphaeria verruculosa</td>
<td>0,1</td>
<td>3</td>
</tr>
<tr>
<td>*Trichocladium sp.</td>
<td>0,1</td>
<td>4</td>
<td>118 Truncatella sp. 2</td>
<td>0,01</td>
<td>1</td>
</tr>
<tr>
<td>*Chromelosporium carneum</td>
<td><0,01</td>
<td>2</td>
<td>119 Pestalotiopsis sp. 1</td>
<td><0,01</td>
<td>1</td>
</tr>
<tr>
<td>*Biscogniauxia mediterraneae</td>
<td>2,7</td>
<td>51</td>
<td>120 Pezicula sp. 1</td>
<td>2,1</td>
<td>1</td>
</tr>
<tr>
<td>*Phoma eupyrena</td>
<td>0,05</td>
<td>6</td>
<td>121 Diaporthe 4</td>
<td>0,6</td>
<td>3</td>
</tr>
<tr>
<td>*Hypoxylon fragiforme</td>
<td>0,9</td>
<td>30</td>
<td>122 Apiognomonia sp. 1</td>
<td>0,03</td>
<td>5</td>
</tr>
<tr>
<td>*Lecythophora 2</td>
<td>0,2</td>
<td>11</td>
<td>123 Pezicula neosporulosa</td>
<td>0,4</td>
<td>1</td>
</tr>
<tr>
<td>*Beauveria bassiana</td>
<td>0,1</td>
<td>2</td>
<td>124 Pezicula cinnamomea</td>
<td>0,5</td>
<td>1</td>
</tr>
</tbody>
</table>
OTU11 (*Truncatella conorum-piceae*)

3624 finden sich in Tabelle 22 und in Abbildung 39. Steyaert (1949) beschrieb die Konidiosporen von *Truncatella conorum-piceae* wie folgt: (15) 17 - 20,2 - 23 (25) x 6 - 7 - 8 µm groß; mit 2, meist 3 Setulae und einer hyaline Epispore, die Pedizelle ist hinfällig.

Abbildung 38: Reinkultur von OTU11 auf Kiefernnadelagar, Vorder- und Rückseite, Bildung von Pyknidien (schwarze Punkte), nach 1 Monat Inkubation bei Raumtemperatur.
Tabelle 21: Verwendete Stämme der Gattung *Truncatella*, Ursprung und Herkunft der Isolate und durchgeführte Untersuchungen; * Messungen der Konidiosporen auf Kiefernnaadel-Agar.

<table>
<thead>
<tr>
<th>NW-FVA Nr.</th>
<th>Name</th>
<th>Ursprung</th>
<th>Herkunft</th>
<th>Untersuchungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2215 / OTU11</td>
<td>Truncatella sp.</td>
<td>Endophytisch aus Zweigen von P. sylvestris</td>
<td>Hessen</td>
<td>30 Messungen*, ITS, LSU</td>
</tr>
<tr>
<td>2068</td>
<td>Truncatella sp.</td>
<td>Endophytisch aus Zweigen von P. sylvestris</td>
<td>Niedersachsen</td>
<td>100 Messungen*, ITS</td>
</tr>
<tr>
<td>3803</td>
<td>Truncatella sp.</td>
<td>Endophytisch aus Zweigen von P. sylvestris</td>
<td>Hessen</td>
<td>100 Messungen*</td>
</tr>
<tr>
<td>3623</td>
<td>Truncatella conorum-piceae</td>
<td>Nadeln von P. sylvestris, leg. und det. P. Heydeck 2016</td>
<td>Brandenburg</td>
<td>100 Messungen*</td>
</tr>
<tr>
<td>3624</td>
<td>Truncatella conorum-piceae</td>
<td>Nadeln von P. sylvestris, leg. und det. P. Heydeck 2016</td>
<td>Brandenburg</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NW-FVA Nr.</th>
<th>Länge</th>
<th>Breite</th>
<th>Setulae</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Mittel</td>
<td>Max</td>
</tr>
<tr>
<td>2215</td>
<td>18</td>
<td>22-26</td>
<td>30</td>
</tr>
<tr>
<td>2068</td>
<td>15</td>
<td>18-20</td>
<td>25</td>
</tr>
<tr>
<td>3623</td>
<td>17</td>
<td>20-22</td>
<td>25</td>
</tr>
<tr>
<td>3624</td>
<td>17</td>
<td>19-21</td>
<td>23</td>
</tr>
<tr>
<td>3803</td>
<td>18</td>
<td>20-21</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OTU</th>
<th>Identifiziert als (Artname)</th>
<th>NW-FVA Nr.</th>
<th>Akzessionsnummer für den OTU</th>
<th>Länge der Sequenz</th>
<th>Abdeckung in %</th>
<th>Ähnlichkeit in %</th>
<th>Artname (Blast)</th>
<th>Akzessionsnummer (Blast)</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sphaeropsis sapinea</td>
<td>2744</td>
<td>MG098333</td>
<td>559</td>
<td>100</td>
<td>100</td>
<td>Sphaeropsis sapinea</td>
<td>KF766159</td>
<td>Slippers et al. 2013</td>
</tr>
<tr>
<td>2</td>
<td>Sydowia polyspora</td>
<td>2201</td>
<td>MG098248</td>
<td>590</td>
<td>100</td>
<td>99</td>
<td>Sydowia polyspora</td>
<td>GQ412728</td>
<td>Talgo et al. 2009</td>
</tr>
<tr>
<td>3</td>
<td>Microsphaeropsis olivacea</td>
<td>2202</td>
<td>MG098249</td>
<td>560</td>
<td>97</td>
<td>100</td>
<td>Microsphaeropsis olivacea</td>
<td>JX681101</td>
<td>Verkley et al. 2012</td>
</tr>
<tr>
<td>6</td>
<td>Chaetomium globosum</td>
<td>2205</td>
<td>MG098250</td>
<td>606</td>
<td>99</td>
<td>99</td>
<td>Chaetomium globosum</td>
<td>FN868476</td>
<td>Botella et al. 2010</td>
</tr>
<tr>
<td>7</td>
<td>Epicoccum nigrum</td>
<td>2206</td>
<td>MG098251</td>
<td>504</td>
<td>100</td>
<td>100</td>
<td>Epicoccum nigrum</td>
<td>GU566259</td>
<td>Bukovska et al. 2010</td>
</tr>
<tr>
<td>8</td>
<td>Sordaria sp.</td>
<td>2208</td>
<td>MG098252</td>
<td>618</td>
<td>99</td>
<td>99</td>
<td>Sordaria sp.</td>
<td>JN207268</td>
<td>Loro et al. 2011</td>
</tr>
<tr>
<td>9</td>
<td>Sordaria fimicola</td>
<td>2242</td>
<td>MG098253</td>
<td>600</td>
<td>99</td>
<td>99</td>
<td>Sordaria fimicola</td>
<td>FN868475</td>
<td>Botella et al. 2010</td>
</tr>
<tr>
<td>10</td>
<td>Nigrospora oryzae</td>
<td>2209</td>
<td>MG098254</td>
<td>577</td>
<td>97</td>
<td>99</td>
<td>Nigrospora oryzae</td>
<td>EU436680</td>
<td>Miles et al. 2008</td>
</tr>
<tr>
<td>11</td>
<td>* Truncatella conorum-piceae</td>
<td>2215</td>
<td>MG098255</td>
<td>593</td>
<td>89</td>
<td>99</td>
<td>Pestalotiopsis besseyi</td>
<td>FN868480.</td>
<td>Botella et al. 2010</td>
</tr>
<tr>
<td>12</td>
<td>Diaporthe sp. 1</td>
<td>2214</td>
<td>MG098256</td>
<td>331</td>
<td>100</td>
<td>100</td>
<td>Diaporthe sp.</td>
<td>KC145855</td>
<td>Johnston et Park 2012</td>
</tr>
<tr>
<td>13</td>
<td>Alternaria alternata</td>
<td>2213</td>
<td>MG098257</td>
<td>588</td>
<td>99</td>
<td>100</td>
<td>Alternaria alternata</td>
<td>KU179665</td>
<td>Vicent 2015</td>
</tr>
<tr>
<td>14</td>
<td>Lecaniiellum psalliota</td>
<td>2212</td>
<td>MG098334</td>
<td>898</td>
<td>97</td>
<td>99</td>
<td>Lecaniiellum psalliota</td>
<td>AY261180</td>
<td>Li et al. 2003</td>
</tr>
<tr>
<td>16</td>
<td>* Diaporthe sp. 2</td>
<td>2218</td>
<td>MG098258</td>
<td>612</td>
<td>99</td>
<td>100</td>
<td>Diaporthe rudis/viticola</td>
<td>EF155490</td>
<td>Volkenant et Langer 2006</td>
</tr>
<tr>
<td>19</td>
<td>Drechslera sp.</td>
<td>2221</td>
<td>MG098259</td>
<td>587</td>
<td>93</td>
<td>99</td>
<td>Drechslera sp.</td>
<td>GU067763</td>
<td>Vasaitis. et al. 2009</td>
</tr>
<tr>
<td>21</td>
<td>Rosellinia sp. 1</td>
<td>2223</td>
<td>MG098260</td>
<td>566</td>
<td>90</td>
<td>99</td>
<td>Rosellinia sp.</td>
<td>FN435734</td>
<td>Persoh et al. 2009</td>
</tr>
<tr>
<td>26</td>
<td>Xylaria longipes</td>
<td>2228</td>
<td>MG098261</td>
<td>610</td>
<td>97</td>
<td>98</td>
<td>Xylaria longipes</td>
<td>JX501293</td>
<td>Mathieu et al. 2012</td>
</tr>
<tr>
<td>27</td>
<td>Xylaria polymorpha</td>
<td>2229</td>
<td>MG098262</td>
<td>632</td>
<td>93</td>
<td>98</td>
<td>Xylaria polymorpha</td>
<td>GU322460</td>
<td>Hsieh et al.</td>
</tr>
<tr>
<td>29</td>
<td>Fusarium sp.</td>
<td>2231</td>
<td>MG098263</td>
<td>563</td>
<td>100</td>
<td>99</td>
<td>Fusarium sp.</td>
<td>HQ630964</td>
<td>Shrestha et al. 2010</td>
</tr>
<tr>
<td>30</td>
<td>* Sordariales sp.</td>
<td>2232</td>
<td>MG098264</td>
<td>585</td>
<td>99</td>
<td>93</td>
<td>Podospora appendiculata</td>
<td>AY999126</td>
<td>Cai et al. 2005</td>
</tr>
<tr>
<td>32</td>
<td>Nemania diffusa</td>
<td>2234</td>
<td>MG098265</td>
<td>563</td>
<td>99</td>
<td>100</td>
<td>Nemania diffusa</td>
<td>KT323181</td>
<td>Martinez-Alvarez et al. 2015</td>
</tr>
<tr>
<td>34</td>
<td>Desmazierella acicola</td>
<td>2236</td>
<td>MG098266</td>
<td>653</td>
<td>90</td>
<td>100</td>
<td>Desmazierella acicola</td>
<td>LN589957</td>
<td>Koukol et al. 2014</td>
</tr>
<tr>
<td>35</td>
<td>Pezizomycetes sp. 1</td>
<td>2237</td>
<td>MG098267</td>
<td>534</td>
<td>100</td>
<td>99</td>
<td>Pezizomycetes sp.</td>
<td>GQ153018</td>
<td>Arnold et al. 2009</td>
</tr>
<tr>
<td>37</td>
<td>* Chaetomium sp. 1</td>
<td>2267</td>
<td>MG098335</td>
<td>758</td>
<td>100</td>
<td>99</td>
<td>Chaetomidiu m pilosum</td>
<td>FJ666356</td>
<td>Greif et al. 2009</td>
</tr>
<tr>
<td>OTU</td>
<td>Identifiziert als (Artname)</td>
<td>NW-FVA Nr.</td>
<td>Akzessions-nummer für den OTU</td>
<td>Länge der Sequenz</td>
<td>Abdeckung in %</td>
<td>Ähnlichkeit in %</td>
<td>Artname (Blast)</td>
<td>Akzessions-nummer (Blast)</td>
<td>Autor</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>-------</td>
</tr>
<tr>
<td>38</td>
<td>* Rosellinia sp. 2</td>
<td>2268</td>
<td>MG098268</td>
<td>581</td>
<td>96</td>
<td>100</td>
<td>Rosellinia corticium</td>
<td>KC311485</td>
<td>Gorfer et al.</td>
</tr>
<tr>
<td>41</td>
<td>* Diaporthe sp. 3</td>
<td>2261</td>
<td>MG098269</td>
<td>597</td>
<td>100</td>
<td>99</td>
<td>Diaporthe nobilis</td>
<td>KJ609006</td>
<td>Dissanayake et al.14</td>
</tr>
<tr>
<td>46</td>
<td>* Chaetomium sp. 2</td>
<td>2281</td>
<td>MG098270</td>
<td>515</td>
<td>99</td>
<td>99</td>
<td>Chaetomium globosum</td>
<td>KT371334</td>
<td>Chandra Sekhar et al. 2015</td>
</tr>
<tr>
<td>47</td>
<td>* Lecythophora sp. 1</td>
<td>2273</td>
<td>MG098271</td>
<td>591</td>
<td>98</td>
<td>100</td>
<td>Coniochaeta sp.</td>
<td>KF367565</td>
<td>Oliveira et al.2013</td>
</tr>
<tr>
<td>50</td>
<td>* Trichocladium sp.</td>
<td>2272</td>
<td>MG098272</td>
<td>572</td>
<td>100</td>
<td>99</td>
<td>Trichocladium asperum</td>
<td>KC311502</td>
<td>Gorfer et al.2012</td>
</tr>
<tr>
<td>51</td>
<td>Chromelosporium carneum</td>
<td>2264</td>
<td>MG098273</td>
<td>637</td>
<td>93</td>
<td>99</td>
<td>Chromelosporium carneum</td>
<td>FJ872075</td>
<td>Lygis et al.2009</td>
</tr>
<tr>
<td>52</td>
<td>Biscogniauxia mediterranea</td>
<td>2274</td>
<td>MG098274</td>
<td>602</td>
<td>93</td>
<td>100</td>
<td>Biscogniauxia mediterranea</td>
<td>KT823762</td>
<td>Meyer et al.2015</td>
</tr>
<tr>
<td>57</td>
<td>Phoma eupyrena</td>
<td>2198</td>
<td>MG098275</td>
<td>557</td>
<td>97</td>
<td>100</td>
<td>Phoma eupyrena</td>
<td>AJ890436</td>
<td>Ronhede et al.2005</td>
</tr>
<tr>
<td>59</td>
<td>Hypoxylon fragiforme</td>
<td>2331</td>
<td>MG098276</td>
<td>648</td>
<td>100</td>
<td>99</td>
<td>Hypoxylon fragiforme</td>
<td>EF155528</td>
<td>Volkenant et Langer 2006</td>
</tr>
<tr>
<td>60</td>
<td>Lecythophora sp. 2</td>
<td>2332</td>
<td>MG098277</td>
<td>605</td>
<td>92</td>
<td>98</td>
<td>Lecythophora sp.</td>
<td>KT264687</td>
<td>Torres Cruz et al. 2015</td>
</tr>
<tr>
<td>61</td>
<td>Beauveria bassiana</td>
<td>2333</td>
<td>MG098278</td>
<td>548</td>
<td>99</td>
<td>100</td>
<td>Beauveria bassiana</td>
<td>KM114549</td>
<td>Hallmann et al.2014</td>
</tr>
<tr>
<td>63</td>
<td>* Nigrospora sp.</td>
<td>2335</td>
<td>MG098279</td>
<td>545</td>
<td>100</td>
<td>99</td>
<td>Nigrospora sphaerica</td>
<td>KC505176</td>
<td>Chong et al.2013</td>
</tr>
<tr>
<td>67</td>
<td>Camarosporium brabeji</td>
<td>2387</td>
<td>MG098280</td>
<td>611</td>
<td>100</td>
<td>99</td>
<td>Camarosporium brabeji</td>
<td>EU552105</td>
<td>Groenewald et al.2008</td>
</tr>
<tr>
<td>68</td>
<td>Xylaria sp. 1</td>
<td>2388</td>
<td>MG098281</td>
<td>590</td>
<td>92</td>
<td>100</td>
<td>Xylaria sp.</td>
<td>AY315404</td>
<td>Davis et al.2003</td>
</tr>
<tr>
<td>69</td>
<td>Ascomycet sp. 1</td>
<td>2389</td>
<td>MG098282</td>
<td>603</td>
<td>94</td>
<td>99</td>
<td>Fungal endophyte</td>
<td>EF42004</td>
<td>Arnold et al.2007</td>
</tr>
<tr>
<td>71</td>
<td>Trichoderma sp.</td>
<td>2391</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Biscogniauxia nummularia</td>
<td>2393</td>
<td>MG098283</td>
<td>550</td>
<td>100</td>
<td>100</td>
<td>Biscogniauxia nummularia</td>
<td>EF155488</td>
<td>Volkenant et Langer 2006</td>
</tr>
<tr>
<td>74</td>
<td>Pyronema domesticum</td>
<td>2396</td>
<td>MG098284</td>
<td>602</td>
<td>99</td>
<td>100</td>
<td>Pyronema domesticum</td>
<td>HQ115722</td>
<td>Gorfer et al.2010</td>
</tr>
<tr>
<td>75</td>
<td>Daldinia concentrica</td>
<td>2401</td>
<td>MG098285</td>
<td>603</td>
<td>99</td>
<td>99</td>
<td>Daldinia concentrica</td>
<td>AM292046</td>
<td>Srutka et al.2006</td>
</tr>
<tr>
<td>77</td>
<td>Daldinia chilidae</td>
<td>2403</td>
<td>MG098286</td>
<td>563</td>
<td>100</td>
<td>99</td>
<td>Daldinia chilidae</td>
<td>KJ957789</td>
<td>Choi et Eom 2014</td>
</tr>
<tr>
<td>78</td>
<td>Coniochaeta ligniaria</td>
<td>2404</td>
<td>MG098287</td>
<td>593</td>
<td>99</td>
<td>99</td>
<td>Coniochaeta ligniaria</td>
<td>AY198390</td>
<td>Lopez et al.2002</td>
</tr>
<tr>
<td>80</td>
<td>Botrytis cinerea</td>
<td>2415</td>
<td>MG098288</td>
<td>558</td>
<td>99</td>
<td>99</td>
<td>Botrytis cinerea</td>
<td>CP009808</td>
<td>van Kan 2014</td>
</tr>
<tr>
<td>81</td>
<td>* Alternaria sp.</td>
<td>2418</td>
<td>MG098289</td>
<td>550</td>
<td>99</td>
<td>100</td>
<td>Alternaria arborescens</td>
<td>KJ789851</td>
<td>Domiciano et al.2014</td>
</tr>
<tr>
<td>85</td>
<td>Alternaria infectoria</td>
<td>2444</td>
<td>MG098290</td>
<td>558</td>
<td>100</td>
<td>100</td>
<td>Lewia infectoria</td>
<td>JQ818414</td>
<td>Trovao et al.2012</td>
</tr>
<tr>
<td>86</td>
<td>Cladosporium sp. 1</td>
<td>2445</td>
<td>MG098291</td>
<td>571</td>
<td>100</td>
<td>100</td>
<td>Cladosporium</td>
<td>KM520367</td>
<td>Busby 2014</td>
</tr>
<tr>
<td>89</td>
<td>* Xylaria sp. 2</td>
<td>2448</td>
<td>MG098292</td>
<td>616</td>
<td>93</td>
<td>97</td>
<td>Diatrype stigma</td>
<td>JX515704</td>
<td>Urbez-Torres et al.2012</td>
</tr>
<tr>
<td>OTU</td>
<td>Identifiziert als (Artname)</td>
<td>NW-FVA Nr.</td>
<td>Akzessions-nummer für den OTU</td>
<td>Länge der Sequenz</td>
<td>Abdeckung in %</td>
<td>Ähnlichkeit in %</td>
<td>Artname (Blast)</td>
<td>Akzessions-nummer (Blast)</td>
<td>Autor</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------</td>
<td>------------</td>
<td>--------------------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>93</td>
<td>* Ascomycet sp. 2</td>
<td>2452</td>
<td>MG098293</td>
<td>757</td>
<td>96</td>
<td>99</td>
<td>Morchella elata</td>
<td>AJ698477</td>
<td>Kellner et al. 2007</td>
</tr>
<tr>
<td>94</td>
<td>* Acremonium sp.</td>
<td>2460</td>
<td>MG098294</td>
<td>591</td>
<td>99</td>
<td>100</td>
<td>Acremonium sclerotigenum</td>
<td>KJ194115</td>
<td>Li et al. 2014</td>
</tr>
<tr>
<td>95</td>
<td>Cladosporium sp. 2</td>
<td>2461</td>
<td>MG098295</td>
<td>500</td>
<td>100</td>
<td>99</td>
<td>Cladosporium sp.</td>
<td>HF952649</td>
<td>Garcia-Anton et al. 2013</td>
</tr>
<tr>
<td>96</td>
<td>Podospora curvicularis</td>
<td>2462</td>
<td>MG098296</td>
<td>589</td>
<td>99</td>
<td>100</td>
<td>Podospora curvicularis</td>
<td>GQ922546</td>
<td>Peay et Dunkirk 2015</td>
</tr>
<tr>
<td>97</td>
<td>Arthrinium kogelbergense</td>
<td>2463</td>
<td>MG098297</td>
<td>467</td>
<td>100</td>
<td>100</td>
<td>Arthrinium kogelbergense</td>
<td>KF144895</td>
<td>Crous et Groenewald 2013</td>
</tr>
<tr>
<td>98</td>
<td>Paraphaeosphaeria neglecta</td>
<td>2464</td>
<td>MG098298</td>
<td>621</td>
<td>97</td>
<td>100</td>
<td>Paraphaeosphaeria neglecta</td>
<td>JX496092</td>
<td>Verkley et al. 2012</td>
</tr>
<tr>
<td>99</td>
<td>Nemania serpens</td>
<td>2465</td>
<td>MG098299</td>
<td>600</td>
<td>100</td>
<td>99</td>
<td>Nemania serpens</td>
<td>EF155504</td>
<td>Volkenant et Langer 2006</td>
</tr>
<tr>
<td>101</td>
<td>Hypoxylon rubiginosum</td>
<td>2522</td>
<td>MG098300</td>
<td>597</td>
<td>95</td>
<td>99</td>
<td>Hypoxylon rubiginosum</td>
<td>KC968929</td>
<td>Kuhnert et al. 2013</td>
</tr>
<tr>
<td>102</td>
<td>Peniophora pini</td>
<td>2523</td>
<td>MG547963</td>
<td>648</td>
<td>100</td>
<td>99</td>
<td>Peniophora pini</td>
<td>EU118651</td>
<td>Larsson 2007</td>
</tr>
<tr>
<td>104</td>
<td>* Phoma sp. 1</td>
<td>2527</td>
<td>MG098301</td>
<td>497</td>
<td>100</td>
<td>99</td>
<td>Phoma herbarum</td>
<td>JX421725</td>
<td>Sanz et al. 2012</td>
</tr>
<tr>
<td>105</td>
<td>* Xylaria sp. 3</td>
<td>2528</td>
<td>MG098302</td>
<td>558</td>
<td>98</td>
<td>99</td>
<td>Xylariales sp.</td>
<td>HQ823756</td>
<td>Larkin et al. 2010</td>
</tr>
<tr>
<td>106</td>
<td>* Phoma sp. 2</td>
<td>2565</td>
<td>MG098303</td>
<td>606</td>
<td>100</td>
<td>99</td>
<td>Phoma foliaceiphila</td>
<td>JQ318008</td>
<td>Lawrey et al. 2011</td>
</tr>
<tr>
<td>107</td>
<td>* Jugulospora rotula</td>
<td>2597</td>
<td>MG098304</td>
<td>570</td>
<td>99</td>
<td>99</td>
<td>Cercophora coprophila</td>
<td>AY999136</td>
<td>Cai et al. 2005</td>
</tr>
<tr>
<td>108</td>
<td>Preussia sp. 1</td>
<td>2525</td>
<td>MG098305</td>
<td>464</td>
<td>100</td>
<td>100</td>
<td>Preussia sp.</td>
<td>FJ210518</td>
<td>Pan et May 2008</td>
</tr>
<tr>
<td>109</td>
<td>Microdochium niveale</td>
<td>2646</td>
<td>MG098306</td>
<td>570</td>
<td>99</td>
<td>99</td>
<td>Microdochium niveale</td>
<td>AM502266</td>
<td>Ernst et al. 2007</td>
</tr>
<tr>
<td>111</td>
<td>Umbelopsis isabellina</td>
<td>2657</td>
<td>MG098308</td>
<td>636</td>
<td>99</td>
<td>99</td>
<td>Umbelopsis isabellina</td>
<td>AJ876493</td>
<td>Renker et al. 2005</td>
</tr>
<tr>
<td>112</td>
<td>* Lambertella sp. 3</td>
<td>2658</td>
<td>MG098309</td>
<td>505</td>
<td>54</td>
<td>90</td>
<td>Lambertella exophila</td>
<td>KF499362</td>
<td>Galan et al. 2013</td>
</tr>
<tr>
<td>113</td>
<td>Ascomycet sp. 3</td>
<td>2686</td>
<td>MG098310</td>
<td>585</td>
<td>94</td>
<td>100</td>
<td>foliar endophyte Pecia</td>
<td>AY561220</td>
<td>Stefani et Berube 2004</td>
</tr>
<tr>
<td>114</td>
<td>Gnomoniaceae sp.</td>
<td>2687</td>
<td>MG098311</td>
<td>618</td>
<td>98</td>
<td>99</td>
<td>Gnomoniaceae sp.</td>
<td>DQ872667</td>
<td>Weber et al. 2006</td>
</tr>
<tr>
<td>116</td>
<td>Penicillium sp.</td>
<td>2689</td>
<td>MG098313</td>
<td>587</td>
<td>100</td>
<td>99</td>
<td>Penicillium sp.</td>
<td>KF367536</td>
<td>Oliveira et al. 2013</td>
</tr>
<tr>
<td>117</td>
<td>Paraphaeosphaeria verruculosa</td>
<td>2690</td>
<td>MG098314</td>
<td>597</td>
<td>97</td>
<td>99</td>
<td>Paraphaeosphaeria verruculosa</td>
<td>JX496059</td>
<td>Verkley et al. 2012</td>
</tr>
<tr>
<td>118</td>
<td>* Truncatella sp. 2</td>
<td>2747</td>
<td>MG098315</td>
<td>606</td>
<td>100</td>
<td>100</td>
<td>Truncatella angustata</td>
<td>GU566260</td>
<td>Bukovska et al. 2010</td>
</tr>
<tr>
<td>OTU</td>
<td>Identifiziert als (Artname)</td>
<td>NW-FVA Nr.</td>
<td>Akzessionsnummer für den OTU</td>
<td>Länge der Sequenz</td>
<td>Abdeckung in %</td>
<td>Ähnlichkeit in %</td>
<td>Artname (Blast)</td>
<td>Akzessionsnummer (Blast)</td>
<td>Autor</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>119</td>
<td>* Pestalotiopsis sp. 1</td>
<td>2748</td>
<td>MG098316</td>
<td>622</td>
<td>97</td>
<td>100</td>
<td>Pestalotiopsis hollandica</td>
<td>KM199328</td>
<td>Maharachchik umbura et al. 2008</td>
</tr>
<tr>
<td>120</td>
<td>* Pezicula sp. 1</td>
<td>2746</td>
<td>MG098317</td>
<td>575</td>
<td>99</td>
<td>100</td>
<td>Pezicula neocinnamom ea</td>
<td>KR859220</td>
<td>Chen et al. 2015</td>
</tr>
<tr>
<td>121</td>
<td>Diaporthe sp. 4</td>
<td>2788</td>
<td>MG098318</td>
<td>565</td>
<td>98</td>
<td>99</td>
<td>Diaporthe sp.</td>
<td>KC343205</td>
<td>Gomes et al. 2012</td>
</tr>
<tr>
<td>122</td>
<td>* Apiognomonia sp. 1</td>
<td>2749</td>
<td>MG098319</td>
<td>526</td>
<td>95</td>
<td>100</td>
<td>Apiognomonia hystrix</td>
<td>EU255016</td>
<td>Sogonov et al. 2008</td>
</tr>
<tr>
<td>123</td>
<td>Pezicula neosporulosa</td>
<td>2789</td>
<td>MG098320</td>
<td>461</td>
<td>100</td>
<td>99</td>
<td>Pezicula neosporulosa</td>
<td>KR859231</td>
<td>Chen et al. 2015</td>
</tr>
<tr>
<td>124</td>
<td>Pezicula cinnamomea</td>
<td>2752</td>
<td>MG098321</td>
<td>756</td>
<td>100</td>
<td>100</td>
<td>Pezicula cinnamomea</td>
<td>KR859162</td>
<td>Chen et al. 2015</td>
</tr>
<tr>
<td>125</td>
<td>* Pezicula sp. 3</td>
<td>2816</td>
<td>MG098322</td>
<td>576</td>
<td>100</td>
<td>100</td>
<td>Pezicula sporulosa</td>
<td>AF141166</td>
<td>Abeln et al. 1999</td>
</tr>
<tr>
<td>126</td>
<td>* Apiognomonia sp. 2</td>
<td>2814</td>
<td>MG098323</td>
<td>601</td>
<td>95</td>
<td>99</td>
<td>Apiognomonia errabunda</td>
<td>AJ888475</td>
<td>Bahnweg et al. 2005</td>
</tr>
<tr>
<td>127</td>
<td>Leotiomycetes sp.</td>
<td>2866</td>
<td>MG098324</td>
<td>542</td>
<td>95</td>
<td>99</td>
<td>Godronia cassandrae</td>
<td>KC595271</td>
<td>Weber 2013</td>
</tr>
<tr>
<td>128</td>
<td>* Pestalotiopsis sp. 2</td>
<td>2867</td>
<td>MG098325</td>
<td>618</td>
<td>100</td>
<td>99</td>
<td>Pestalotiopsis maculiformans</td>
<td>EU552147</td>
<td>Marinowitz et al. 2008</td>
</tr>
<tr>
<td>129</td>
<td>* Coprinellus sp.</td>
<td>2881</td>
<td>MG098326</td>
<td>335</td>
<td>98</td>
<td>99</td>
<td>Coprinellus micaceus</td>
<td>KM010302</td>
<td>Bont et Rigling 2014</td>
</tr>
<tr>
<td>130</td>
<td>Pleosporaceae sp.</td>
<td>2880</td>
<td>MG098327</td>
<td>619</td>
<td>99</td>
<td>100</td>
<td>Pleospora ceae sp.</td>
<td>KT268913</td>
<td>Glynou et al. 2015</td>
</tr>
<tr>
<td>131</td>
<td>* Phoma sp. 3</td>
<td>2882</td>
<td>MG098328</td>
<td>556</td>
<td>100</td>
<td>99</td>
<td>Didymella pinodella</td>
<td>EU167565</td>
<td>Simon et al. 2007</td>
</tr>
<tr>
<td>132</td>
<td>Preussia sp. 1</td>
<td>3083</td>
<td>MG098329</td>
<td>551</td>
<td>98</td>
<td>99</td>
<td>Preussia sp.</td>
<td>JN225886</td>
<td>Johnston et al. 2011</td>
</tr>
<tr>
<td>133</td>
<td>Periconia sp.</td>
<td>3085</td>
<td>MG098330</td>
<td>644</td>
<td>99</td>
<td>99</td>
<td>Periconia sp.</td>
<td>JX981482</td>
<td>Pawlowska et al. 2014</td>
</tr>
<tr>
<td>134</td>
<td>Peziza varia</td>
<td>3086</td>
<td>MG098331</td>
<td>625</td>
<td>99</td>
<td>99</td>
<td>Peziza varia</td>
<td>FN868472</td>
<td>Botella et Diez 2010</td>
</tr>
<tr>
<td>135</td>
<td>Pezizomycetes sp. 2</td>
<td>3087</td>
<td>MG098332</td>
<td>641</td>
<td>99</td>
<td>94</td>
<td>Pezizomycetes</td>
<td>FN868473</td>
<td>Botella et Diez 2010</td>
</tr>
</tbody>
</table>
3.2.1 Einfluss der Isolationsmethode auf die Diversität der Endophyten

Es wurden verschiedene Versuche durchgeführt, um den Einfluss der Methode auf die Diversität der isolierten Endophyten zu überprüfen. Dazu werden im Folgenden die Ergebnisse der Versuche zur Methode der Oberflächensterilisierung, zum Einfluss der Lagerung, zum Einfluss der Länge der Triebssegmente und zur Lokalisierung der Endophyten im Kiefernzweig vorgestellt.

Oberflächensterilisierung, Versuch 1

Bei den Versuchen zu verschiedenen Vor- und Nachbehandlungen der Kiefernzweige und unterschiedlichen Konzentrationen von NaOCl zeigte sich, dass die Variante V15 (Bürsten unter Leitungswasser, 1 min Inkubation in 70 % EtOH, 5 min Inkubation in 3 % NaOCl und abschließend 1 min Inkubation in 70 % EtOH) die besten Sterilisierungsergebnisse von den getesteten Varianten erzielte (Tabelle 24 und Abbildung 40). Danach wurde am wenigsten Auswuchs von Pilzen nach Anfertigung des Abklatsches festgestellt. Aus 35 % der Abklatsche nach dieser Variante wuchs nur eine Pilzart aus (Sydowia polyspora OTU1, Fusarium sp. OTU29, Desmazierella acicola OTU34, Phoma eupyrena OTU57, Daldinia childiae OTU77, Nemania serpens OTU99, Tabelle 24). Auch das Ergebnis der Isolation von Endophyten nach der erfolgten Oberflächensterilisierung mit der Variante V15 zeigte eine bekannte Diversität, d. h. es wuchsen zahlreiche verschiedene Pilzarten aus. Das bedeutet, dass bei der gewählten Methode V15 die Konzentration und Dauer der NaOCl-Sterilisation nicht zu stark ist, da sie den Kiefernzwieig nicht durchdringt. Jedoch war der Auswuchs von S. fimicola deutlich geringer, wenn die Variante V15 angewendet wurde, im Gegensatz zu der Behandlung des Zweiges ausschließlich mit Ethanol.

Tabelle 24: Ergebnisse des Abklatsches der Variante V15, mit 20 Wiederholungen; KA bedeutet kein Auswuchs festgestellt.

<table>
<thead>
<tr>
<th>Wiederholungsnummer</th>
<th>Ausgewachsene OTUs</th>
<th>Wiederholungsnummer</th>
<th>Ausgewachsene OTUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KA</td>
<td>11</td>
<td>99</td>
</tr>
<tr>
<td>2</td>
<td>57</td>
<td>12</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>13</td>
<td>KA</td>
</tr>
<tr>
<td>4</td>
<td>73</td>
<td>14</td>
<td>99</td>
</tr>
<tr>
<td>5</td>
<td>KA</td>
<td>15</td>
<td>29</td>
</tr>
<tr>
<td>6</td>
<td>KA</td>
<td>16</td>
<td>KA</td>
</tr>
<tr>
<td>7</td>
<td>KA</td>
<td>17</td>
<td>KA</td>
</tr>
<tr>
<td>8</td>
<td>KA</td>
<td>18</td>
<td>34</td>
</tr>
<tr>
<td>9</td>
<td>KA</td>
<td>19</td>
<td>KA</td>
</tr>
<tr>
<td>10</td>
<td>KA</td>
<td>20</td>
<td>KA</td>
</tr>
</tbody>
</table>

Überprüfung der gewählten Methode
Versuch 2
Der Versuch, 20 Kieferntriebe mit der gewählten Methode V15 zu sterilisieren und anschließend die oberflächensterilen Zweige in sterilen Leitungswasser zu schütteln und dieses Wasser auf Nährmedium auszuplattieren zeigte, dass nach zwei Wochen Inkubation keine Pilzkolonien auf dem Nährmedium auswuchsen.

Versuch 3
Der Versuch, Kieferntriebe vor der Oberflächensterilisierung in einer sporulierenden Pilzkultur zu rollen (Diaporthe sp. NW-FVA 2710) und nach erfolgter Oberflächensterilisierung ein Abklatsch anzufertigen zeigte, dass in 4 von 20 Fällen (20 %) Diaporthe sp. auswachsen konnte (Tabelle 25). Die Negativkontrolle (ein Kiefern Zweig wurde in einer Diaporthe-Kultur gerollt und der Zweig wurde anschließend nicht oberflächensterilisiert) zeigte, dass die entsprechenden Nährmedien schon nach fünf Tagen Inkubation vollständig mit Diaporthe sp. (2710) bewachsen waren.
Tabelle 25: Erfolgskontrolle der Oberflächensterilisierung V15 (Versuch 3), Sterilisierung von 20 Kieferntrieben nach vorangegangenem Wälzen in einer sporulierenden Diaporthe-Kultur (NW-FVA 2710), anschließend wurde ein Abklatsch angefertigt; KA bedeutet kein Auswuchs festgestellt.

<table>
<thead>
<tr>
<th>Wiederholungs-nummer</th>
<th>Ausgewachsener Pilzstamm</th>
<th>Wiederholungs-nummer</th>
<th>Ausgewachsener Pilzstamm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KA</td>
<td>11</td>
<td>KA</td>
</tr>
<tr>
<td>2</td>
<td>KA</td>
<td>12</td>
<td>KA</td>
</tr>
<tr>
<td>3</td>
<td>KA</td>
<td>13</td>
<td>KA</td>
</tr>
<tr>
<td>4</td>
<td>KA</td>
<td>14</td>
<td>KA</td>
</tr>
<tr>
<td>5</td>
<td>NW-FVA 2710</td>
<td>15</td>
<td>KA</td>
</tr>
<tr>
<td>6</td>
<td>NW-FVA 2710</td>
<td>16</td>
<td>KA</td>
</tr>
<tr>
<td>7</td>
<td>KA</td>
<td>17</td>
<td>NW-FVA 2710</td>
</tr>
<tr>
<td>8</td>
<td>KA</td>
<td>18</td>
<td>KA</td>
</tr>
<tr>
<td>9</td>
<td>KA</td>
<td>19</td>
<td>KA</td>
</tr>
<tr>
<td>10</td>
<td>NW-FVA 2710</td>
<td>20</td>
<td>KA</td>
</tr>
</tbody>
</table>

Versuch 4

In einem weiteren Versuch sollte überprüft werden, ob und wann sich die NaOCl-Lösung während der Sterilisierung mehrerer Kieferntriebe unwirksam wird. Dazu wurden 30 Kieferntriebe à 8 cm nacheinander mit der Methode V15 sterilisiert und mit jedem sterilisierten Kieferntrieb ein Abklatsch angefertigt. Es zeigte sich kein Unterschied in dem Auswachsen von Pilzkulturen nach dem Abklatsch von 30 sterilisierten Kieferntrieben, in 9 von 30 Fällen (30 %) wurde ein Auswuchs nach Anfertigung des Abklatsches festgestellt (Tabelle 26). Das heißt, die NaOCl-Lösung (100 ml im Reagenzglas, 30 x 200 mm) ist für mindestens 30 Kieferntriebe bedenkenlos nutzbar, ohne dass es zur Minderung der Sterilisationsleistung kommt. Bei den Arbeiten im Labor wurden die Alkohol- und NaOCl-Lösungen standardmäßig nach 20 Kieferntrieben gewechselt.

<table>
<thead>
<tr>
<th>Wiederholungsnummer</th>
<th>Ausgewachsene OTUs</th>
<th>Wiederholungsnummer</th>
<th>Ausgewachsene OTUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>59</td>
<td>16</td>
<td>132</td>
</tr>
<tr>
<td>2</td>
<td>KA</td>
<td>17</td>
<td>75, 99</td>
</tr>
<tr>
<td>3</td>
<td>KA</td>
<td>18</td>
<td>KA</td>
</tr>
<tr>
<td>4</td>
<td>73</td>
<td>19</td>
<td>KA</td>
</tr>
<tr>
<td>5</td>
<td>KA</td>
<td>20</td>
<td>KA</td>
</tr>
<tr>
<td>6</td>
<td>99</td>
<td>21</td>
<td>KA</td>
</tr>
<tr>
<td>7</td>
<td>59, 99</td>
<td>22</td>
<td>KA</td>
</tr>
<tr>
<td>8</td>
<td>KA</td>
<td>23</td>
<td>KA</td>
</tr>
<tr>
<td>9</td>
<td>KA</td>
<td>24</td>
<td>KA</td>
</tr>
<tr>
<td>10</td>
<td>KA</td>
<td>25</td>
<td>KA</td>
</tr>
<tr>
<td>11</td>
<td>KA</td>
<td>26</td>
<td>99</td>
</tr>
<tr>
<td>12</td>
<td>KA</td>
<td>27</td>
<td>KA</td>
</tr>
<tr>
<td>13</td>
<td>KA</td>
<td>28</td>
<td>KA</td>
</tr>
<tr>
<td>14</td>
<td>KA</td>
<td>29</td>
<td>99</td>
</tr>
<tr>
<td>15</td>
<td>99</td>
<td>30</td>
<td>KA</td>
</tr>
</tbody>
</table>

Einfluss der Lagerung auf das Probematerial

Bei dem Versuch zeigte sich, dass die Artenanzahl und das Artenspektrum bei einer Lagerung von 14 Tage stabil blieben. Wurde die Isolation der Endophyten am Tag der Ernte durchgeführt zeigten sich ähnliche Isolationsergebnisse wie nach 7 und 14 Tagen (Tabelle 27). Nach 4 Wochen Lagerung war die Anzahl der isolierten Pilzarten deutlich geringer (9 OTUs). Das Spektrum der aus den Triebsegmenten ausgewachsenen Arten war an den verschiedenen Untersuchungszeitpunkten nicht identisch. Zu jedem Untersuchungszeitpunkt wurden S. polyspora (OTU1), M. olivacea (OTU2), Truncatella conorum-piceae (OTU11) und Desmazierella acicola (OTU34) isoliert.
Tabelle 27: Isolierte OTUs nach unterschiedlichen Lagerungszeiten aus Kiefern-Zweigen (1, 7, 14 und 28 Tagen nach der Ernte), je Zeitraum wurden 5 Triebspitzen untersucht.

<table>
<thead>
<tr>
<th>Tage nach der Ernte</th>
<th>Anzahl OTU</th>
<th>Ausgewachsene OTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>1, 2, 9, 11, 12, 13, 16, 34, 37, 52, 67, 99, S. sapinea</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>1, 2, 7, 9, 10, 11, 13, 16, 34, 38, 59, 67</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>1, 2, 7, 11, 13, 26, 32, 34, 35, 38, 67, 71, 75, 99</td>
</tr>
<tr>
<td>28</td>
<td>9</td>
<td>1, 2, 7, 11, 16, 32, 34, 67, S. sapinea</td>
</tr>
</tbody>
</table>

Einfluss der Länge der Triebssegmente

Der Versuch, der den Einfluss der Länge der Triebssegmente klären sollte, erbrachte insgesamt 26 verschiedene Pilze, die bei jeder getesteten Segmentlänge auswuchsen (Tabelle 28). Ist die Anzahl der Wiederholungen (Anzahl untersuchter Triebssegmente) konstant (LA5-LA9), nimmt die Anzahl der isolierten OTUs mit kleiner werdender Segmentlänge ab. Ist hingegen die Länge des Probematerials konstant (LA1-LA4), nimmt die Artanzahl mit kleiner werdenden Segmenten zu. Es zeigte sich, dass auch bei einer Segmentlänge von 2 cm langsam wachsende Pilze, wie z.B. *Nemania serpens* (OTU99) und *Pezicula eucrita* (OTU110) auswachsen konnten. Die hier standardmäßig verwendete Segmentlänge von 0,5 cm erwies sich als gut geeignet, um auch langsam wachsende Pilze isolieren zu können. Die verwendete Segmentlänge von 0,5 cm ist ein Kompromiss aus Durchführbarkeit (Probenanzahl) und Isolationsergebnis.
Tabelle 28: Isolierte OTUs aus unterschiedlich langen Triebsegmenten aus Kiefernzwiegen.

<table>
<thead>
<tr>
<th>Versuchsbezeichnung</th>
<th>Segmentlänge (cm)</th>
<th>Länge Probematerial (cm)</th>
<th>Anzahl Triebsegmente</th>
<th>Anzahl isolierte OTUs</th>
<th>Ausgewachsene OTUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA1</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>5</td>
<td>1, 2, 11, 34 S. sapinea</td>
</tr>
<tr>
<td>LA2</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>1, 2, 11, 34, S. sapinea</td>
</tr>
<tr>
<td>LA3</td>
<td>0,5</td>
<td>8</td>
<td>16</td>
<td>5</td>
<td>2, 11, 13, 16, 34</td>
</tr>
<tr>
<td>LA4</td>
<td>0,15</td>
<td>8</td>
<td>60</td>
<td>10</td>
<td>1, 2, 7, 11, 26, 34, 73, 99, 110, S. sapinea</td>
</tr>
<tr>
<td>LA5</td>
<td>2</td>
<td>160</td>
<td>80</td>
<td>21</td>
<td>1, 2, 7, 9, 11, 13, 16, 26, 34, 35, 38, 52, 59, 60, 99, 110, 115, 121, 124, 125, S. sapinea</td>
</tr>
<tr>
<td>LA6</td>
<td>1</td>
<td>80</td>
<td>80</td>
<td>17</td>
<td>1, 2, 7, 11, 13, 16, 32, 34, 38, 71, 99, 115, 121, 124, 125, 127, S. sapinea</td>
</tr>
<tr>
<td>LA7</td>
<td>0,5</td>
<td>40</td>
<td>80</td>
<td>15</td>
<td>1, 2, 9, 13, 16, 34, 38, 59, 73, 99, 110, 115, 124, 125, 127</td>
</tr>
<tr>
<td>LA8</td>
<td>0,25</td>
<td>20</td>
<td>80</td>
<td>13</td>
<td>1, 2, 16, 38, 59, 73, 99, 110, 115, 121, 124, 125, S. sapinea</td>
</tr>
<tr>
<td>LA9</td>
<td>0,1</td>
<td>8</td>
<td>80</td>
<td>11</td>
<td>1, 2, 7, 16, 59, 73, 74, 99, 121, 125, 127</td>
</tr>
</tbody>
</table>

Lokalisierung der Endophyten

Im Rahmen des Versuches wurden aus den drei verschiedenen Gewebetypen insgesamt 32 verschiedene Pilzarten isoliert (Tabelle 29). Der Versuch zur Lokalisierung der Endophyten in den Kiefernzwiegen zeigte, dass die größte Anzahl an endophytischen Pilzen aus dem Rindengewebe isoliert werden konnte (n = 26 Arten, 81 % der isolierten Arten). Weniger Arten als aus der Rinde konnten aus dem Kambialgewebe isoliert werden (n = 20 Arten, 62 % der isolierten Arten). Die geringste Anzahl (n = 9 Arten, 32 % der isolierten Arten) an endophytischen Pilzarten fand sich im Holz, darunter aber zwei Arten, die nur dort isoliert werden konnten (Umbelopsis isabellina OTU111, Phacidium lacerum OTU115). Dort war auch der Anteil der Segmente, aus denen kein Auswuchs festgestellt werden konnte, am

<table>
<thead>
<tr>
<th>Gewebetyp</th>
<th>Anteil der Triebsegmente ohne Auswuchs in %</th>
<th>Anzahl isolierte OTUs</th>
<th>Ausgewachsene OTUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rinde</td>
<td>7</td>
<td>26</td>
<td>1, 2, 6, 9, 11, 13, 16, 26, 29, 32, 35, 37, 38, 59, 71, 73, 85, 96, 99, 110, 121, 123, 124, 125, 127, S. sapinea</td>
</tr>
<tr>
<td>Kambialbereich</td>
<td>74</td>
<td>20</td>
<td>1, 2, 9, 11, 16, 19, 29, 59, 71, 73, 85, 99, 106, 110, 112, 115, 123, 124, S. sapinea</td>
</tr>
<tr>
<td>Holz</td>
<td>92</td>
<td>9</td>
<td>1, 2, 26, 32, 73, 99, 110, 111, 115</td>
</tr>
</tbody>
</table>
3.2.2 Analyse der Endophytendiversität in Abhängigkeit von verschiedenen Methoden

Abbildung 41: Anteil der verschiedenen Klassen an der absoluten Häufigkeit (AH) aller Endophytenisolationen aus Kieferntrieben. OTU69, 93, 113 (Ascomyceten sp.) konnten nicht in das Diagramm aufgenommen werden, da sie nicht bis zur Klassenebene bestimmt werden konnten. Ebenso sind Klassen, die mit einem Anteil unter < 1 % AH (Agaricomycetes, Eurotiomycetes) vorkommen, nicht aufgeführt.

Betrachtet man die Zusammensetzung der Pilzarten, die aus gesunden Zweigen (ca. 18 000 untersuchte Triebsegmente) isoliert wurden im Vergleich zu denen, die aus Kiefern mit Symptomen des *Diplodia*-Triebsterbens (ca. 2800 untersuchte Triebsegmente) isolierten wurden, zeigte sich, dass *S. sapinea* mit einer durchschnittlichen relativen Häufigkeit (RH) von 50 % der Triebsegmente von erkrankten Bäumen isoliert werden konnte. Aus den Triebsegmenten von vitalen Kiefertrieben wurde *S. sapinea* mit einer RH von nur 13 % nachgewiesen (Abbildung 44). In den Triebsegmenten von erkrankten Kiefern konnten nur rund 45 OTUs isoliert werden, in denen aus gesunden Kiefern hingegen 90 OTUs (Abbildung 43). Alle Pilzarten (n = 45), die aus Triebsegmenten von Bäumen mit Symptomen des *Diplodia*-Triebsterbens isoliert wurden, kamen auch in Kieferntriebsegmenten von vitalen Bäumen vor, deshalb ist der rosa Kreis in Abbildung 43 vollständig von dem blauen Kreis umschlossen. Da *S. sapinea* in Kultur schnellwüchsig ist (Flowers et al. 2001), überwächst der Pilz oft andere langsam wachsende Endophyten.

Abbildung 44: Relative Häufigkeiten ausgewählter OTUs in Triebsegmenten von Bäumen mit (krank) und ohne Symptome (gesund) des Diplodia-Triebsterbens.
Tabelle 30: Ergebnisse zum endophytischen Vorkommen von *S. sapinea* in anderen publizierten Studien; - bedeutet keine Untersuchungen bzw. Angaben vorhanden.

| Autor | Baumart | Anzahl untersuchte Bäume | Anzahl Triebsegmente | %-Anteil der vitalen Kiefern mit *S. sapinea* | %-Anteil der erkrankten Kiefern mit *S. sapinea*
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diese Arbeit</td>
<td>P. sylvestris</td>
<td>166 24</td>
<td>~20 000</td>
<td>89</td>
<td>100</td>
</tr>
<tr>
<td>Flowers et al. 2001</td>
<td>P. nigra</td>
<td>31 65</td>
<td>-</td>
<td>39</td>
<td>55 100</td>
</tr>
<tr>
<td>Flowers et al. 2003</td>
<td>P. sylvestris</td>
<td>10 14</td>
<td>-</td>
<td>70</td>
<td>66 100</td>
</tr>
<tr>
<td>Flowers et al. 2007</td>
<td>P. nigra</td>
<td>- 13</td>
<td>325</td>
<td>-</td>
<td>77 -</td>
</tr>
<tr>
<td>Maresi et al. 2007</td>
<td>P. nigra</td>
<td>27 -</td>
<td>1300</td>
<td>59</td>
<td>- -</td>
</tr>
<tr>
<td>Bihon et al. 2011a</td>
<td>P. patula</td>
<td>5 -</td>
<td>276</td>
<td>100</td>
<td>- -</td>
</tr>
</tbody>
</table>

Die Abundanz der Arten (Abbildung 45) zeigt, dass nur wenige Pilzarten häufig vorkommen (RH > 5 %) und viele isolierte Arten selten auftreten. Die Artenakkumulationskurve beschreibt: je mehr Bäume untersucht wurden, desto mehr Arten wurden isoliert. Das heißt, würden mehr Kiefernäste untersucht werden, würden vermutlich noch mehr Arten detektiert werden. Das legt auch die Schätzung der Arten mit verschiedenen Modellen nahe: Die Schätzung der zu findenden Arten durch verschiedene Methoden ergab nach CHAO insgesamt 118 Arten (Standardabweichung 17), nach JACKKNIFE1 110 Arten (Standardabweichung 7) und nach der Methode BOOTSTRAP 98 Arten (Standardabweichung 3,5).
Abbildung 45: Gerundete relative Häufigkeit der OTUs in Prozent in allen untersuchten Kieferntriebsegmenten.

Diversität der Endophyten entlang des Transekts

Die Variabilität der Endophytenzusammensetzung ließ sich auch nicht durch die durchgeführten Ordinationen erklären: diese zeigten, dass die zur Verfügung stehenden Variablen (Längengrad, Höhe über NN) die Muster in der Artenzusammensetzung nicht beschreiben konnten. Bei der Ordination mit den Aufnahmedaten der 91 Standorte entlang des Transeks hatten die ersten beiden Ordinationsachsen einen Eigenwert von nur 0,24 bzw. 0,21 (Abbildung 47). Bei der kanonischen Korrespondenzanalyse (CCA, Abbildung 49) kommen noch Umweltvariablen hinzu, dazu wird ein lineares Regressionsmodell benutzt. Sollte die Umweltvariable (z. B. der Längengrad) als Erklärung der Hauptvariation in der Artenstruktur stehen, müssten die Arten und Aufnahmen der DCA (Abbildung 48) und CCA (Abbildung 49) ungefähr in gleicher Position zu den Achsen liegen, was hier nicht der Fall war.
Abbildung 47: CA-Korrespondenzanalyse mit ausgewählten OTUs (CA / correspondence analysis).

Abbildung 48: DCA-Korrespondenzanalyse mit ausgewählten OTUs (DCA / detrended correspondence analysis). Eigenwerte 0,2 (x-Achse und y-Achse), Länge der 2,2 SD / 2 SD (x-Achse / y-Achse).
Abbildung 49: Kanonische Korrespondenzanalyse mit ausgewählten OTUs, (CCA / correspondence analysis) und den Variablen Höhe über NN und Hochwert (geographische Länge). Eigenwerte 0,2 / 0,17 (x-Achse / y-Achse).

Monatliche Untersuchung der Endophyten

<table>
<thead>
<tr>
<th>Monat</th>
<th>OTU Anzahl</th>
<th>Relative Häufigkeit in %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gesamt</td>
<td>RH > 1 %</td>
</tr>
<tr>
<td>Sep</td>
<td>28</td>
<td>15</td>
</tr>
<tr>
<td>Okt</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Nov</td>
<td>32</td>
<td>13</td>
</tr>
<tr>
<td>Dez</td>
<td>27</td>
<td>12</td>
</tr>
<tr>
<td>Jan</td>
<td>24</td>
<td>9</td>
</tr>
<tr>
<td>Feb</td>
<td>28</td>
<td>10</td>
</tr>
<tr>
<td>März</td>
<td>28</td>
<td>10</td>
</tr>
<tr>
<td>April</td>
<td>24</td>
<td>13</td>
</tr>
</tbody>
</table>

Alter der Triebsegmente

Im Rahmen der Untersuchungen wurden 20 136 Holzsegmente inkubiert, bei denen das Alter bekannt war (Tabelle 32). *S. sapinea* kam in allen untersuchten Jahrgängen ungefähr gleich häufig vor (Abbildung 51). Bei Triebsegmenten des jüngsten Jahrgangs (1) wuchs in ca. 10% der Triebsegmente kein Pilz aus. Mit zunehmendem Alter der Triebsegmente erhöhte sich die Besiedlungsrate mit Pilzen (Tabelle 32). Bei *S. polyspora* und *M. olivacea* zeigte sich ein gegenläufiges Vorkommen, abhängig vom Alter. *S. polyspora* kam insbesondere in jüngeren Triebsegmenten gehäuft vor (Abbildung 51), das Vorkommens von *M. olivacea* hingegen nahm mit zunehmendem Alter der Triebsegmente zu (Abbildung 51). Bei allen anderen isolierten Pilzen ließ sich kein Zusammenhang zwischen dem Alter der Triebsegmente und ihrer Abundanz erkennen. Es stellte sich heraus, dass mit zunehmendem Alter der Triebsegmente die Anzahl an OTUs, die mit einer relativen Häufigkeit von > 1 bzw. > 5 % vorkommen, zunahm (Tabelle 32).

![Abbildung 51: Alter der untersuchten Triebsegmente von Kiefer nach Alter in Jahren (1-4).](image-url)
Tabelle 32: Vorkommen der Endophyten nach Alter der Triebsegmente. \(^1\)arithmetisches Mittel der Besiedlungsrate (Anzahl Isolationen / Anzahl Triebsegmente), RH: relative Häufigkeit in Prozent; Jahrgang 1 ist der aktuelle, Jahrgang 4 der älteste der im Rahmen der Untersuchungen analysiert wurde. In die Analyse flossen folgende Anzahlen an Triebsegmenten mit ein: Jahrgang 1 (aktuell): 5369, Jahrgang 2: 5647, Jahrgang 3: 5566, Jahrgang 4: 3554.

<table>
<thead>
<tr>
<th>Jahrgang</th>
<th>OTU-Anzahl</th>
<th>Kein Auswuchs RH</th>
<th>OTU-Anzahl mit RH > 1%</th>
<th>OTU-Anzahl mit RH > 5%</th>
<th>Besiedlungsrate (^1)</th>
<th>Eveness E</th>
<th>S. sapinea RH</th>
<th>S. polyspora RH</th>
<th>M. olivacea RH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58</td>
<td>10</td>
<td>12</td>
<td>6</td>
<td>1,3</td>
<td>0,57</td>
<td>20</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>66</td>
<td>1</td>
<td>17</td>
<td>11</td>
<td>1,5</td>
<td>0,63</td>
<td>22</td>
<td>33</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>66</td>
<td>1</td>
<td>20</td>
<td>12</td>
<td>1,4</td>
<td>0,66</td>
<td>18</td>
<td>23</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>63</td>
<td>0,3</td>
<td>21</td>
<td>13</td>
<td>1,4</td>
<td>0,65</td>
<td>20</td>
<td>20</td>
<td>34</td>
</tr>
</tbody>
</table>

3.2.3 Bewertung der Endophyten hinsichtlich Pathogenität und ökologischer Bedeutung

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Anzahl Isolate</th>
<th>Anzahl isolierte Arten</th>
<th>Häufigste Arten</th>
<th>Standort; Probenart; Sterilisationsmethode; Nährmedium; Inkubationszeit; Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diese Arbeit</td>
<td>~ 20 000</td>
<td>90</td>
<td>Sydowia polyspora Microsphaeropsis olivacea Sphaeropsis sapinea</td>
<td>Deutschland; 1-4 jährige Zweige von adulten Bäumen; 5 min 3 % NaOCl; MYP; 1-4 Wochen; MT, Sporulation, ITS</td>
</tr>
<tr>
<td>Petrini und Fisher (1988)</td>
<td>400</td>
<td>19*</td>
<td>Desmazierella acicola Phymatotrichopsis sp. Sordaria macrospora</td>
<td>England; 2 - 3 jährige Zweige von adulten Bäumen; - ; 2 % MEA mit 250 mg / l Terramycin; 5 - 14 Tage; Sporulation</td>
</tr>
<tr>
<td>Kowalski und Kehr (1992)</td>
<td>ca. 1000</td>
<td>44</td>
<td>Pezicula eucrita Sirodothis spp. Sydowia polyspora</td>
<td>Deutschland und Polen; Zweigstücke unterschiedlich alter Bäume; 5 min 4 % NaOCl; 2 % MEA mit 100 mg / l Streptomycin; einige Wochen; Sporulation</td>
</tr>
<tr>
<td>Persoh et al. (2010)</td>
<td>Keine Angabe</td>
<td>13</td>
<td>Keine Angaben getrennt nach Nadeln und Zweigen vorhanden</td>
<td>Deutschland; Nadeln, Stammsegmente; 3 min 1,2 % NaOCl; MEA mit 0,1 % Tetracyclin; tägliche Kontrolle; MT und ITS</td>
</tr>
<tr>
<td>Martinez-Alvarez et al. (2012)</td>
<td>216</td>
<td>10</td>
<td>Aureobasidion pullulans Deuteromycet Cladosporium sp.</td>
<td>Spanien; Zweigstücke und Nadeln; 5 - 7 min 2 % NaOCl; PDA; 1 Monat dunkel; Sporulation und MT</td>
</tr>
<tr>
<td>Sanz-Ros et al. (2015)</td>
<td>360</td>
<td>42</td>
<td>Phoma herbarum Sydowia polyspora Alternaria infectoria</td>
<td>Spanien; Zweigstücke; 5 min 6% NaOCl; PDA; bis zu einem Monat; ITS</td>
</tr>
</tbody>
</table>

Im Rahmen einer Literaturrecherche zu Endophyten, die aus *Pinus* spp. isoliert wurden, wurden 38 publizierte Arbeiten analysiert (Tabelle 34 / Tabelle 33). Die Angaben (insgesamt 1950 Artnennungen) wurden mit den 90 hier isolierten Pilzarten und ihren 595 Synonymen (Index Fungorum) verglichen. Die verschiedenen Autoren unterscheiden dabei Isolate aus:

- Zweigen von *P. sylvestris*
- verschiedenen Organen (Nadel, Knospe, Wurzel, Splinholz) von *P. sylvestris*
- Arten der Gattung *Pinus* (Nadel, Knospe, Wurzel, Splinholz) ohne *P. sylvestris*

Der Vergleich von verschiedenen publizierten Arbeiten zu Endophyten in *Pinus*-Gewächsen (Tabelle 35) zeigte, dass im Rahmen dieser Arbeit 13 Endophyten-
arten neu für die Gattung *Pinus* beschrieben worden sind, 20 endophytische Pilze für verschiedene Gewebe von *P. sylvestris* und 26 endophytische Pilzarten erstmalig aus Zweigen von *P. sylvestris* isoliert wurden (Tabelle 36).

Tabelle 34: Übersicht der wissenschaftlichen Arbeiten zu Endophyten von *P. sylvestris* und *Pinus* spp., die Zahl, die hinter den Autoren angegeben ist, ist die Referenznummer für Tabelle 35.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Martinez-Álvarez et al. (2012)</td>
<td>Botella und Diez (2011)</td>
</tr>
<tr>
<td></td>
<td>Giordano et al. (2009)</td>
<td>Min et al. (2014)</td>
</tr>
<tr>
<td></td>
<td>Romeralo et al. (2012)</td>
<td>Larkin et al. (2012)</td>
</tr>
<tr>
<td></td>
<td>Menkis et al. (2006)</td>
<td>Qadri et al. (2014)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ganley und Newcombe (2006)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ganley et al. (2015)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carroll und Carroll (1978)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hata und Futai (1995)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jurc et al. (1996)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jurc et al. (1999)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pinto et al. (2006)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alonso et al. (2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lee et al. (2014)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lygis et al. (2014)</td>
</tr>
</tbody>
</table>
Tabelle 35: Bisher bekannte Endophyten aus *P. sylvestris* und *Pinus* spp., für die Referenznummern siehe Tabelle 34; die Nummer ist **fett** gedruckt, wenn die Art gefunden wurde, normal gedruckt, wenn nur die Gattung isoliert wurde.

<table>
<thead>
<tr>
<th>OTU</th>
<th>Name</th>
<th>Kowalski und Kehr 1992</th>
<th>Sánz-Ros et al. 2015</th>
<th>Martínez-Álvarez et al. 2012</th>
<th>Petrioli und Fisher 88</th>
<th>Persoh et al. 2010</th>
<th>P. sylvestris</th>
<th>Pinus sylvestris</th>
<th>Pinus spp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sphaeropsis sapinea</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>17,26</td>
<td>7,14,32,37</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sydowia polyspora</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>2,5,16,17,36</td>
<td>5,7,18,23,27,31,34,35,37</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Microsphaeropsis olivacea</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>1,17,36</td>
<td>7,18,25,31,34</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Chaetomium globosum</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,8,12,17,26,36</td>
<td>12,14,22,23</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Epicoecum nigrum</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,12,17,20,26,36</td>
<td>7,12,13,14,21,23,24,25,28,34,37</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Sordaria sp.</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>16,17</td>
<td>12,14,21,25</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Sordaria fimicola</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>16,17</td>
<td>12,14,21,25</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Nigrospora oryzae</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,25,34,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Truncatella conorum-piceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,2,36</td>
<td>12,13,14,19,22,25,30</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Diaporthe sp. 1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,10,13,14,19,21,22,25,27,30,31,34,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Alternaria alternata</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>1,2,12,17,20,26,36</td>
<td>7,12,13,14,19,21,24,25,30,31,34,35,37</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Lecanicillum psalliotae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Diaporthe sp. 2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,10,13,14,19,21,22,25,27,30,31,34,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Drechslera sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,17</td>
<td>7,19,28,34</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Rosellinia sp. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,17</td>
<td>6,10,23,25</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Xylaria longipes</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,11,17</td>
<td>6,7,13,14,18,23,25,31,34,35</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Xylaria polymorpha</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,11,17</td>
<td>6,7,13,14,18,23,25,31,34,35</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Fusarium sp.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,11,16,20,26,33,36</td>
<td>14,19,22,25,33,34</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Sordariales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Nemania diffusa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>6,23,27</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Desmazerella acicola</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Pezizomycetes sp. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Chaetomium sp. 1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,8,12,17,26,36</td>
<td>12,14,22,23</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>-----------------------</td>
<td>-------------------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>38</td>
<td>Rosellinia sp. 2</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>2,10,17</td>
<td>6,23,25</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Diaporthe sp. 3</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>7,10,13,14,19,21,22,25,27,30,31,34,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Chaetomium sp. 2</td>
<td>x</td>
<td>1,8,12,17,26,36</td>
<td></td>
<td></td>
<td></td>
<td>12,14,22,23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Lecythophora sp. 1</td>
<td>x</td>
<td>1,17,36</td>
<td></td>
<td></td>
<td></td>
<td>7,18,25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Trichocladium sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Chromelosporium carneum</td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td>23,37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Biscogniauxia mediterranea</td>
<td>x</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>6,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Phoma eupyrena</td>
<td>x</td>
<td>x</td>
<td>20,36</td>
<td></td>
<td></td>
<td>13,14,19,22,23,25,27,31,34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Hyphoxylon fragiforme</td>
<td>x</td>
<td>x</td>
<td>2,15,17</td>
<td></td>
<td></td>
<td>6,7,18,31,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Lecythophora sp. 2</td>
<td>x</td>
<td>1,17,36</td>
<td></td>
<td></td>
<td></td>
<td>7,18,25,37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Beauveria bassiana</td>
<td>x</td>
<td>11,20</td>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Nigrospora sp.</td>
<td>x</td>
<td>x</td>
<td>10,25,34</td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Camarosporium brabeji</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Xylaria sp. 1</td>
<td>x</td>
<td>5,11,17</td>
<td></td>
<td></td>
<td></td>
<td>6,7,13,14,18,23,25,31,34,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Ascomycet sp. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Trichoderma sp.</td>
<td>x</td>
<td>1,2,4,8,11,20,33,36</td>
<td></td>
<td></td>
<td></td>
<td>9,12,14,21,22,25,33,34,37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Biscogniauxia nummularia</td>
<td>x</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>6,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Pyronema domesticum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Daldinia concentrica</td>
<td>x</td>
<td>x</td>
<td>2</td>
<td></td>
<td></td>
<td>6,23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Daldinia childiae</td>
<td>x</td>
<td>x</td>
<td>2</td>
<td></td>
<td></td>
<td>6,23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Coniochaeta lignaria</td>
<td>x</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td>23,25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Botrytis cinerea</td>
<td></td>
<td></td>
<td>11,16,17</td>
<td></td>
<td></td>
<td>7,12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Alternaria sp.</td>
<td>x</td>
<td>x</td>
<td>2,12,17,20,26,36</td>
<td></td>
<td></td>
<td>7,9,12,13,14,21,24,25,30,31,34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Alternaria infectoria</td>
<td>x</td>
<td>x</td>
<td>2,12,17,20,26,36</td>
<td></td>
<td></td>
<td>7,9,12,13,14,21,23,24,25,30,31,34,37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Cladosporium sp. 1</td>
<td>x</td>
<td>x</td>
<td>8,12,16,17,20,26</td>
<td></td>
<td></td>
<td>7,12,14,18,19,21,22,23,24,25,27,28,31,34,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Xylaria sp. 2</td>
<td>x</td>
<td>x</td>
<td>5,11,17</td>
<td></td>
<td></td>
<td>6,7,13,14,18,23,25,31,34,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Ascomycet sp. 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTU</td>
<td>Name</td>
<td>P. sylvestris Zweige</td>
<td>Pinus sylvestris</td>
<td>Pinus spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---------------------</td>
<td>-----------------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Acremonium sp.</td>
<td>×</td>
<td>16,20</td>
<td>22,31,34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Cladosporium sp. 2</td>
<td>×</td>
<td>8,12,15,16,17,20,26</td>
<td>7,12,14,18,19,21,22,23,24,25,27,28,31,34,35,37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>Podospora curvicalla</td>
<td></td>
<td></td>
<td>20,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>Arthrinium kogelbergense</td>
<td>17</td>
<td></td>
<td>10,19,21,34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>Paraphaeosphaeria neglecta</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Nemania serpens</td>
<td>×</td>
<td>1,15</td>
<td>5,6,23,27,31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Hypoxylon rubiginosum</td>
<td>×</td>
<td>2,15,17</td>
<td>6,7,18,31,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Peniophora pini</td>
<td></td>
<td>16,20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Phoma sp. 1</td>
<td>×</td>
<td>20,36</td>
<td>13,14,19,22,23,25,27,31,34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Xylaria sp. 3</td>
<td>×</td>
<td>5,11,17</td>
<td>6,7,13,14,18,23,25,31,34,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Phoma sp. 2</td>
<td>×</td>
<td>20,36</td>
<td>13,14,19,22,23,25,27,31,34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>Jugulospora rotula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Preussia sp. 1</td>
<td>16</td>
<td></td>
<td>12,14,23,25,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Microdochium nivale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Pecicula eucritia</td>
<td>×</td>
<td></td>
<td>6,7,37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Umbelopsis isabelina</td>
<td>11,20</td>
<td></td>
<td>9,22,24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Lambertella sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>Ascomycet sp. 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Gnomoniaceae sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Phacidium lacerum</td>
<td>×</td>
<td></td>
<td>6,31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>Penicillium sp.</td>
<td>×</td>
<td>1,2,8,12,16,20,26,36</td>
<td>9,12,14,21,22,23,24,25,31,37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Paraphaeosphaeria verruculosa</td>
<td></td>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>Truncatella sp. 2</td>
<td></td>
<td>1,2,36</td>
<td>12,13,14,19,22,25,30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>Pestalotiopsis sp. 1</td>
<td></td>
<td></td>
<td>12,13,14,19,22,25,30,31,34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Pecicula sp. 1</td>
<td>×</td>
<td></td>
<td>6,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>Diaporthe sp. 4</td>
<td>×</td>
<td></td>
<td>7,10,13,14,19,21,22,25,27,30,31,34,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>Apiognomonia sp. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Die ökologische Eingruppierung der Endophyten findet sich in Tabelle 37. Viele isolierte Pilze wurden bereits in anderen Studien an Kiefernwässern isoliert. Es finden sich zahlreiche Saprophyten unter den Pilzen, potentielle Pathogene sind auch detektiert worden, wobei die meisten aber bisher nicht an Pinus sp. in Erscheinung getreten sind. Auffällig war, dass viele isolierte Pilzstämmen typische mit Laubholz assoziierte Pilze sind (Tabelle 37).
Tabelle 36: Erstmalig endophytisch isolierte Pilzarten aus verschiedenen Gewebetypen von *Pinus* spp., verschiedenen Gewebetypen von *P. sylvestris* und Zweigen von *P. sylvestris*.

<table>
<thead>
<tr>
<th>Pinus spp. ohne P. sylvestris</th>
<th>P. sylvestris</th>
<th>Zweige P. sylvestris</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truncatella conorum-piceae</td>
<td>Truncatella conorum-piceae</td>
<td>Truncatella conorum-piceae</td>
</tr>
<tr>
<td>Lecanicillium psalliotae</td>
<td>Lecanicillium psalliotae</td>
<td>Lecanicillium psalliotae</td>
</tr>
<tr>
<td>Nemania diffusa</td>
<td>Nemania diffusa</td>
<td>Nemania diffusa</td>
</tr>
<tr>
<td>Pyronema domesticum</td>
<td>Pyronema domesticum</td>
<td>Pyronema domesticum</td>
</tr>
<tr>
<td>Daldinia childiae</td>
<td>Daldinia childiae</td>
<td>Daldinia childiae</td>
</tr>
<tr>
<td>Coniochaeta ligniaria</td>
<td>Coniochaeta ligniaria</td>
<td>Coniochaeta ligniaria</td>
</tr>
<tr>
<td>Podospora curvicolla</td>
<td>Podospora curvicolla</td>
<td>Podospora curvicolla</td>
</tr>
<tr>
<td>Arthrinium kogelbergense</td>
<td>Arthrinium kogelbergense</td>
<td>Arthrinium kogelbergense</td>
</tr>
<tr>
<td>Paraphaeosphaeria neglecta</td>
<td>Paraphaeosphaeria neglecta</td>
<td>Paraphaeosphaeria neglecta</td>
</tr>
<tr>
<td>Jugulospora rotula</td>
<td>Jugulospora rotula</td>
<td>Jugulospora rotula</td>
</tr>
<tr>
<td>Microdochium nivale</td>
<td>Microdochium nivale</td>
<td>Microdochium nivale</td>
</tr>
<tr>
<td>Paraphaeosphaeria verruculosa</td>
<td>Paraphaeosphaeria verruculosa</td>
<td>Paraphaeosphaeria verruculosa</td>
</tr>
<tr>
<td>Pezicula neosporulosa</td>
<td>Pezicula neosporulosa</td>
<td>Pezicula neosporulosa</td>
</tr>
<tr>
<td>Peziza varia</td>
<td>Peziza varia</td>
<td>Peziza varia</td>
</tr>
<tr>
<td>Xylaria longipes</td>
<td>Xylaria longipes</td>
<td>Xylaria longipes</td>
</tr>
<tr>
<td>Xylaria polymorpha</td>
<td>Xylaria polymorpha</td>
<td>Xylaria polymorpha</td>
</tr>
<tr>
<td>Chromelosporium carneum</td>
<td>Chromelosporium carneum</td>
<td>Chromelosporium carneum</td>
</tr>
<tr>
<td>Daldinia concentrica</td>
<td>Daldinia concentrica</td>
<td>Daldinia concentrica</td>
</tr>
<tr>
<td>Hypoxylon rubiginosum</td>
<td>Hypoxylon rubiginosum</td>
<td>Hypoxylon rubiginosum</td>
</tr>
<tr>
<td>Phoma eupyrena</td>
<td>Phoma eupyrena</td>
<td>Phoma eupyrena</td>
</tr>
<tr>
<td>Biscogniauxia nummularia</td>
<td>Biscogniauxia nummularia</td>
<td>Biscogniauxia nummularia</td>
</tr>
<tr>
<td>Chaetomium globosum</td>
<td>Chaetomium globosum</td>
<td>Chaetomium globosum</td>
</tr>
<tr>
<td>Botrytis cinerea</td>
<td>Botrytis cinerea</td>
<td>Botrytis cinerea</td>
</tr>
<tr>
<td>Peniophora pini</td>
<td>Peniophora pini</td>
<td>Peniophora pini</td>
</tr>
<tr>
<td>Umbelopsis isabellina</td>
<td>Umbelopsis isabellina</td>
<td>Umbelopsis isabellina</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Art</th>
<th>Familie</th>
<th>OTU</th>
<th>Potentielles Pathogen</th>
<th>Saprophyt</th>
<th>Bereits als Endophyt in Pinus spp. beschrieben</th>
<th>Typischer Laubholzbesiedler</th>
<th>Epiphyt</th>
<th>Generalist</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthrinium kogelbergense</td>
<td>Apiosporaceae</td>
<td>97</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Crous und Groenewald (2013)</td>
</tr>
<tr>
<td>Truncatella conorum-piceae</td>
<td>Bartaliniaceae</td>
<td>11</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Guba (1961); Maharachchikumbura et al. (2011); Landeskompetenzzentrum Forst Eberswalde (2016)</td>
</tr>
<tr>
<td>Truncatella sp. 2</td>
<td>Bartaliniaceae</td>
<td>118</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Guba (1961)</td>
</tr>
<tr>
<td>Pestalotiopsis sp. 1</td>
<td>Bartaliniaceae</td>
<td>119</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Guba (1961)</td>
</tr>
<tr>
<td>Pestalotiopsis sp. 2</td>
<td>Bartaliniaceae</td>
<td>128</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Guba (1961)</td>
</tr>
<tr>
<td>Sphaeropsis sapinea</td>
<td>Botryosphaeriaceae</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Swart und Wingfield (1991)</td>
</tr>
<tr>
<td>Chaetomium globosum</td>
<td>Chaetomiaceae</td>
<td>6</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>Minter (2006b); Samson et al. (2010)</td>
</tr>
<tr>
<td>Chaetomium sp. 1</td>
<td>Chaetomiaceae</td>
<td>37</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>Minter (2006b); Samson et al. (2010)</td>
</tr>
<tr>
<td>Chaetomium sp. 2</td>
<td>Chaetomiaceae</td>
<td>46</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>Minter (2006b); Samson et al. (2010)</td>
</tr>
<tr>
<td>Trichocladium sp.</td>
<td>Chaetomiaceae</td>
<td>50</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>Kirk (1994)</td>
</tr>
<tr>
<td>Desmazierella acicola</td>
<td>Chorioactidaceae</td>
<td>34</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Przybyl et al. (2008); Martinović et al. (2016)</td>
</tr>
<tr>
<td>Cladosporium sp. 1</td>
<td>Cladosporiaceae</td>
<td>86</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>Samson et al. (2010)</td>
</tr>
<tr>
<td>Cladosporium sp. 2</td>
<td>Cladosporiaceae</td>
<td>95</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Samson et al. (2010)</td>
</tr>
<tr>
<td>Lecythophora sp. 1</td>
<td>Coniochaetaceae</td>
<td>47</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Domsch et al. (1993); Damm et al. (2010)</td>
</tr>
<tr>
<td>Lecythophora sp. 2</td>
<td>Coniochaetaceae</td>
<td>60</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Domsch et al. (1993); Damm et al. (2010)</td>
</tr>
<tr>
<td>Coniochaeta ligniaria</td>
<td>Coniochaetaceae</td>
<td>78</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>Weber (2002)</td>
</tr>
<tr>
<td>Art</td>
<td>Familie</td>
<td>OTU</td>
<td>Potential Pathogen</td>
<td>Saprophyt</td>
<td>Bereits als Endophyt in Pinus spp. beschrieben</td>
<td>Typischer Laubbödenbesiedler</td>
<td>Epiphyt</td>
<td>Generalist</td>
<td>Quelle</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------------</td>
<td>-----</td>
<td>-------------------</td>
<td>-----------</td>
<td>---</td>
<td>-------------------------------</td>
<td>----------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Lecanilium psalliotae</td>
<td>Cordycipitaceae</td>
<td>14</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Zare und Games (2003); Arevalo et al. (2009); Entomopathogen</td>
</tr>
<tr>
<td>Beauveria bassiana</td>
<td>Cordycipitaceae</td>
<td>61</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Brady (1979); Entomopathogen</td>
</tr>
<tr>
<td>Pezicula eucrita</td>
<td>Dermateaceae</td>
<td>110</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Verkley (1999)</td>
</tr>
<tr>
<td>Pezicula sp. 1</td>
<td>Dermateaceae</td>
<td>120</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Verkley (1999)</td>
</tr>
<tr>
<td>Pezicula neosporulosa</td>
<td>Dermateaceae</td>
<td>123</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yuan und Verkley (2015)</td>
</tr>
<tr>
<td>Pezicula cinnamomea</td>
<td>Dermateaceae</td>
<td>124</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Verkley (1999)</td>
</tr>
<tr>
<td>Pezicula sp. 3</td>
<td>Dermateaceae</td>
<td>125</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verkley (1999)</td>
</tr>
<tr>
<td>Diaporthe sp. 1</td>
<td>Diaporthaceae</td>
<td>12</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>Gomes et al. (2013)</td>
</tr>
<tr>
<td>Diaporthe sp. 2</td>
<td>Diaporthaceae</td>
<td>16</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>Gomes et al. (2013)</td>
</tr>
<tr>
<td>Diaporthe sp. 3</td>
<td>Diaporthaceae</td>
<td>41</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Gomes et al. (2013)</td>
</tr>
<tr>
<td>Diaporthe sp. 4</td>
<td>Diaporthaceae</td>
<td>121</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Gomes et al. (2013)</td>
</tr>
<tr>
<td>Epicoccum nigrum</td>
<td>Didymellaceae</td>
<td>7</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>Fávaro et al. (2011); Samson et al. (2010)</td>
</tr>
<tr>
<td>Phoma eupyrena</td>
<td>Didymellaceae</td>
<td>57</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Domsch et al. (1993); Hansen et al. (2013) bodenbürtig</td>
</tr>
<tr>
<td>Phoma sp. 1</td>
<td>Didymellaceae</td>
<td>104</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Aveskamp et al. (2010); Samson et al. (2010)</td>
</tr>
<tr>
<td>Phoma sp. 2</td>
<td>Didymellaceae</td>
<td>106</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Aveskamp et al. (2010); Samson et al. (2010)</td>
</tr>
<tr>
<td>Phoma sp. 3</td>
<td>Didymellaceae</td>
<td>131</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Aveskamp et al. (2010); Samson et al. (2010)</td>
</tr>
<tr>
<td>Sydowia polyspora</td>
<td>Dothioraceae</td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Sutton und Waterston (1970); Brener et al. (1974); Talgø et al. (2010); Heydeck (1991); Heydeck und Dahms (2012);</td>
</tr>
<tr>
<td>Gnomoniaceae sp.</td>
<td>Gnomoniaceae</td>
<td>114</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sogonov et al. (2008)</td>
</tr>
<tr>
<td>Art</td>
<td>Familie</td>
<td>OTU</td>
<td>Potentielles Pathogen</td>
<td>Saprophyt</td>
<td>Bereits als Endophyt in Pinus spp. beschrieben</td>
<td>Typischer Laubholzbesiedler</td>
<td>Epiphyt</td>
<td>Generalist</td>
<td>Quelle</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------------</td>
<td>-----</td>
<td>-----------------------</td>
<td>-----------</td>
<td>---</td>
<td>-----------------------------</td>
<td>---------</td>
<td>------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Apiognomonia sp. 1</td>
<td>Gnomoniaceae</td>
<td>122</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sogonov et al. (2008)</td>
</tr>
<tr>
<td>Apiognomonia sp. 2</td>
<td>Gnomoniaceae</td>
<td>126</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sogonov et al. (2008)</td>
</tr>
<tr>
<td>Trichoderma sp.</td>
<td>Hypocreaceae</td>
<td>71</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Samson et al. (2010)</td>
</tr>
<tr>
<td>Daldinia concentrica</td>
<td>Hypoxylaceae</td>
<td>75</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Breitenbach und Kränzlin (1984); Stadler et al. (2014)</td>
</tr>
<tr>
<td>Hypoxylon fragiforme</td>
<td>Hypoxylaceae</td>
<td>59</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Greenhalgh und Chesters (1968); Breitenbach und Kränzlin (1984); Rogers et al. (2002)</td>
</tr>
<tr>
<td>Hypoxylon rubiginosum</td>
<td>Hypoxylaceae</td>
<td>101</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Breitenbach und Kränzlin (1984); Rogers et al. (2002)</td>
</tr>
<tr>
<td>Podospora curvicolla</td>
<td>Lasiosphaeriaceae</td>
<td>96</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mirza und Cain (1969); Lundqvist (1972)</td>
</tr>
<tr>
<td>Jugulospora rotula</td>
<td>Lasiosphaeriaceae</td>
<td>107</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lundqvist (1972); Brandstellen</td>
</tr>
<tr>
<td>Microsphaeropsis olivacea</td>
<td>Montagnulaceae</td>
<td>2</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Chen et al. (2015); Liu et al. (2015)</td>
</tr>
<tr>
<td>Paraphaeosphaeria neglecta</td>
<td>Montagnulaceae</td>
<td>98</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verkley et al. (2014)</td>
</tr>
<tr>
<td>Paraphaeosphaeria verruculosa</td>
<td>Montagnulaceae</td>
<td>117</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verkley et al. (2014)</td>
</tr>
<tr>
<td>Fusarium sp.</td>
<td>Nectriaceae</td>
<td>29</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Samson et al. (2010)</td>
</tr>
<tr>
<td>Chromelosporium carneum</td>
<td>Pezizaceae</td>
<td>51</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hennebert (1973)</td>
</tr>
<tr>
<td>Peziza varia</td>
<td>Pezizaceae</td>
<td>134</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Breitenbach und Kränzlin (1984)</td>
</tr>
<tr>
<td>Phacidium lacerum</td>
<td>Phacidiaceae</td>
<td>115</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nawrot-Chorabik et al. (2013, 2016); Crous et al. (2014)</td>
</tr>
<tr>
<td>Alternaria alternata</td>
<td>Pleosporaceae</td>
<td>13</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Samson et al. (2010)</td>
</tr>
<tr>
<td>Drechslera sp.</td>
<td>Pleosporaceae</td>
<td>19</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternaria sp.</td>
<td>Pleosporaceae</td>
<td>81</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Samson et al. (2010)</td>
</tr>
<tr>
<td>Alternaria infectoria</td>
<td>Pleosporaceae</td>
<td>85</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Samson et al. (2010)</td>
</tr>
<tr>
<td>Art</td>
<td>Familie</td>
<td>OTU</td>
<td>Potenzielles Pathogen</td>
<td>Saprophyt</td>
<td>Bereits als Endophyt in Pinus spp. beschrieben</td>
<td>Typischer Laubholzbesiedler</td>
<td>Epiphyt</td>
<td>Generalist</td>
<td>Quelle</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------</td>
<td>-----</td>
<td>-----------------------</td>
<td>-----------</td>
<td>---</td>
<td>----------------------------</td>
<td>---------</td>
<td>------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Pleosporaceae sp.</td>
<td>Pleosporaceae</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chang et al. (2011) Pathogen an Getreide/Rasen</td>
</tr>
<tr>
<td>Microdochium nivale</td>
<td>Phlogicylindriaceae</td>
<td>109</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Breitenbach und Kränzlin (1984); Brandstetten</td>
</tr>
<tr>
<td>Pyronema domesticum</td>
<td>Pyronemataceae</td>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zhao et al. (2016)</td>
</tr>
<tr>
<td>Lambertella sp.</td>
<td>Rutstroemiaceae</td>
<td>112</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Domsch et al. (1993); Samson et al. (2010)</td>
</tr>
<tr>
<td>Botrytis cinerea</td>
<td>Sclerotiniaceae</td>
<td>80</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Domsch et al. (1993)</td>
</tr>
<tr>
<td>Sordaria sp.</td>
<td>Sordariaceae</td>
<td>8</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lundqvist (1972)</td>
</tr>
<tr>
<td>Sordaria fimicola</td>
<td>Sordariaceae</td>
<td>9</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lundqvist (1972)</td>
</tr>
<tr>
<td>Preussia sp. 1</td>
<td>Sporormiaceae</td>
<td>108</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Domsch et al. (1993)</td>
</tr>
<tr>
<td>Preussia sp. 2</td>
<td>Sporormiaceae</td>
<td>132</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Domsch et al. (1993)</td>
</tr>
<tr>
<td>Penicillium sp.</td>
<td>Trichocomaceae</td>
<td>116</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Samson et al. (2010)</td>
</tr>
<tr>
<td>Umbelopsis isabellina</td>
<td>Umbelopsidaceae</td>
<td>111</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Meyer und Gams (2003); bodenbürtig und cropophil</td>
</tr>
<tr>
<td>Biscogniauxia mediterranea</td>
<td>Xylariaceae</td>
<td>52</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Jong und Rogers (1972); Breitenbach und Kränzlin (1984) Henriques et al. (2014)</td>
</tr>
<tr>
<td>Rosellinia sp. 1</td>
<td>Xylariaceae</td>
<td>21</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fournier und Magni (2004c); Petrini und Petrini (2005); Butin (2011)</td>
</tr>
<tr>
<td>Xylaria longipes</td>
<td>Xylariaceae</td>
<td>26</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Breitenbach und Kränzlin (1984)</td>
</tr>
<tr>
<td>Xylaria polymorpha</td>
<td>Xylariaceae</td>
<td>27</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Breitenbach und Kränzlin (1984)</td>
</tr>
<tr>
<td>Nemania diffusa</td>
<td>Xylariaceae</td>
<td>32</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fournier und Magni (2004b); Balasuriya und Adikaram (2009)</td>
</tr>
<tr>
<td>Rosellinia sp. 2</td>
<td>Xylariaceae</td>
<td>38</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fournier und Magni (2004c); Petrini und Petrini (2005)</td>
</tr>
<tr>
<td>Art</td>
<td>Familie</td>
<td>OTU</td>
<td>Potential Pathogen</td>
<td>Saprophyt</td>
<td>Bereits als Endophyt in Pinus spp. beschrieben</td>
<td>Typischer Laubholzbewohner</td>
<td>Epiphyt</td>
<td>Generalist</td>
<td>Quelle</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------------</td>
<td>-----</td>
<td>---------------------</td>
<td>-----------</td>
<td>---</td>
<td>-----------------------------</td>
<td>----------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Xylaria sp. 1</td>
<td>Xylariaceae</td>
<td>68</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Petrini und Petrini (1985)</td>
</tr>
<tr>
<td>Biscogniauxia nummularia</td>
<td>Xylariaceae</td>
<td>73</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>Fournier und Magni (2004d); Luchi et al. (2006)</td>
</tr>
<tr>
<td>Daldinia childiae</td>
<td>Xylariaceae</td>
<td>77</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Stadler et al. (2014)</td>
</tr>
<tr>
<td>Xylaria sp. 2</td>
<td>Xylariaceae</td>
<td>89</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Petrini und Petrini (1985)</td>
</tr>
<tr>
<td>Nemania serpens</td>
<td>Xylariaceae</td>
<td>99</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>Breitenbach und Kränzlin (1984)</td>
</tr>
<tr>
<td>Xylaria sp. 3</td>
<td>Xylariaceae</td>
<td>105</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Petrini und Petrini (1985)</td>
</tr>
<tr>
<td>Nigrospora oryzae</td>
<td>Incertae sedis</td>
<td>10</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td>Sivanesan und Holliday (1971)</td>
</tr>
<tr>
<td>Nigrospora sp.</td>
<td>Incertae sedis</td>
<td>63</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>Domsch et al. (1993)</td>
</tr>
<tr>
<td>Camarosporium brabeji</td>
<td>Incertae sedis</td>
<td>67</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Botella und Diez (2011)</td>
</tr>
<tr>
<td>Acremonium sp.</td>
<td>Incertae sedis</td>
<td>94</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Samson et al. (2010)</td>
</tr>
<tr>
<td>Periconia sp.</td>
<td>Incertae sedis</td>
<td>133</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Domsch et al. (1993); Bodenpilz</td>
</tr>
<tr>
<td>Leotiomycetes sp.</td>
<td></td>
<td>127</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>KA</td>
</tr>
<tr>
<td>Sordariales</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zhang et al. (2006)</td>
</tr>
<tr>
<td>Pezizomycetes sp. 1</td>
<td></td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hansen et al. (2013)</td>
</tr>
<tr>
<td>Pezizomycetes sp. 2</td>
<td></td>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hansen et al. (2013)</td>
</tr>
<tr>
<td>Ascomycet sp. 1</td>
<td></td>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>KA</td>
</tr>
<tr>
<td>Ascomycet sp. 2</td>
<td></td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>KA</td>
</tr>
<tr>
<td>Ascomycet sp. 3</td>
<td></td>
<td>113</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>KA</td>
</tr>
<tr>
<td>Peniophora pini</td>
<td>Peniophoraceae</td>
<td>102</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Bernicchia und Gorjón (2010)</td>
</tr>
<tr>
<td>Coprinellus sp.</td>
<td>Psathyrellaceae</td>
<td>129</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>Gminder (2010)</td>
</tr>
</tbody>
</table>
3.3 Untersuchungen zu ausgewählten Endophyten

3.3.1 Temperaturversuche

Tabelle 38: Ergebnis des Temperaturversuchs von verschiedenen Pilzstämmen, Minimal-, Optimal- und Kardinaltemperaturen in °C.

<table>
<thead>
<tr>
<th>Stamm</th>
<th>Minimal</th>
<th>Optimal</th>
<th>Kardinal</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. sapinea</td>
<td>zwischen 0 - 8</td>
<td>26</td>
<td>zwischen 36-40</td>
</tr>
<tr>
<td>OTU1</td>
<td>zwischen 0 - 8</td>
<td>22</td>
<td>zwischen 29-35</td>
</tr>
<tr>
<td>OTU2</td>
<td>< 0,3</td>
<td>12</td>
<td>zwischen 29-35</td>
</tr>
<tr>
<td>OTU11</td>
<td>< 0,3</td>
<td>22</td>
<td>zwischen 29-35</td>
</tr>
</tbody>
</table>

Abbildung 52: Morphologie der im Temperaturversuch verwendeten Kulturen: S. sapinea-Stämme (oben NW-FVA 2703, 2715, 2740), S. polyspora (OTU1, NW-FVA 2201), M. olivacea (OTU2, NW-FVA 2202) und Truncatella conorum-piceae (OTU11, NW-FVA 2215) in Kultur nach 7 Tagen bei RT auf MYP-Medium, obvers.
Abbildung 53: Verschiedene Wuchsformen von *M. olivacea* (OTU2, NW-FVA 2202), nach 7 bzw. 14 Tagen, auf MYP-Medium bei Raumtemperatur inkubiert.

Abbildung 54: Wachstumsgeschwindigkeit von *S. sapinea*-Stämmen (NW-FVA 2703, 2715, 2738, 2740), die bei verschiedenen Temperaturen auf MYP-Medium inkubiert wurden.
Abbildung 55: Wachstumsgeschwindigkeit von *S. polyspora* (OTU1, NW-FVA 2201), *M. olivacea* (OTU2, NW-FVA 2202) und *Truncatella conorum-piceae* (OTU11, NW-FVA 2215), die bei verschiedenen Temperaturen auf MYP-Medium inkubiert wurden.

3.3.2 VC-Test

3.3.3 Antagonistentests
Grundsätzlich ließen sich drei verschiedene Typen der Hemmung von *S. sapinea* durch die 89 getesteten endophytisch isolierten Pilze erkennen (Tabelle 39):

1.) Kontaktlose Hemmung von *S. sapinea* durch den Endophyten (Abbildung 56 links und Abbildung 57)

2.) *S. sapinea* wird durch das schnelle Wachstum des Endophyten überwachsen (Abbildung 56, Mitte)

3.) *S. sapinea* hatte ein verringertes Wachstum (Abbildung 56, rechts). Das heißt, dass das Wachstum von *S. sapinea* im Vergleich zu der Kombination *S. sapinea / S. sapinea* ein geringeres Wachstum aufwies (Wachstum von *S. sapinea* < 3,7 cm (Mittelwert der Messungen nach 7 Tage entlang der Zentral-Achse).

<table>
<thead>
<tr>
<th>Kontaktlose Hemmung</th>
<th>S. sapinea wird von dem Endophyten überwachsen</th>
<th>Verringertes Wachstum von S. sapinea</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTU</td>
<td>OTU</td>
<td>OTU</td>
</tr>
<tr>
<td>Chaetomium sp. 2</td>
<td>39</td>
<td>Sordaria sp. 25</td>
</tr>
<tr>
<td>Alternaria sp.</td>
<td>39</td>
<td>S. fimicola 25</td>
</tr>
<tr>
<td>P. eucrita</td>
<td>38</td>
<td>Trichoderma sp. 21</td>
</tr>
<tr>
<td>Pezicula sp. 1</td>
<td>42</td>
<td>P. domesticum 17</td>
</tr>
<tr>
<td>Pezicula sp. 3</td>
<td>47</td>
<td>D. concentrica 26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N. oryzae 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fusarium sp. 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. carneum 31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. mediterrane 33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nigrospora sp. 34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. cinerea 31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. kogelbergense 36</td>
</tr>
</tbody>
</table>

Abbildung 56: Verschiedene Dualkulturen im Antagonistentest, *S. sapinea*-Stamm versus links: *Pezicula* sp. 3 (OTU125), Mitte: *Sordaria fimicola* (OTU9) und rechts: *Botrytis cinerea* (OTU80), alle Fotos Aufsicht auf MYP-Medium nach 10 Tagen Inkubation bei Raumtemperatur.
So ergaben die Antagonistentests, dass rund 7 % der Endophyten das Wachstum von *S. sapinea* kontaktlos hemmen (Typ 1, Abbildung 57):

- OTU81 (*Alternaria* sp.),
- OTU46 (*Chaetomium* sp.),
- OTU110, OTU120, OTU123 und OTU125 (*Pezicula* spp.)

Rund 6 % der Endophyten konnten durch schnelles Wachstum *S. sapinea* hemmen und die *S. sapinea*-Kultur überwachsen (Typ 2, Abbildung 56):

- OTU8 (*Sordaria* sp.),
- OTU9 (*Sordaria fimicola*),
- OTU71 (*Trichoderma* sp.),
- OTU74 (*Pyronema domesticum*),
- OTU75 (*Daldinia concentrica*)

Trotz der hemmenden Wirkung von *S. sapinea in vitro* wurden einige der 18 festgestellten potentiellen Antagonisten *in vivo* als Begleitarten zusammen mit *S. sapinea* im selben Triebssegment festgestellt: *Sordaria* sp. (OTU8), *S. fimicola* (OTU9), *Chaetomium* sp. 2 (OTU46), *Alternaria* sp. (OTU81).

S. sapinea wurde mit folgenden Endophyten im Zuge der Untersuchungen niemals aus demselben Kieferntriebsegment isoliert (Endophyten mit einer potentiellen antagonistischen Wirkung gegenüber *S. sapinea*, die *in vitro* durch Antagonistentest beobachtet wurde, sind mit einem * markiert): *Drechslera* sp. (OTU19), *Rosellinia* sp. 1 (OTU21), *X. polymorpha* (OTU27), *Sordariales* (OTU30), *N. diffusa* (OTU32), *Lecythophora* sp. 1 (OTU47), *C. carneum* (OTU51), *H. fragiforme* (OTU59), *Nigrospora* sp. (OTU63), Ascomycet sp. 1 (OTU69), *Trichoderma* sp. (OTU71)*, *P. domesticum* (OTU74), *C. ligniaria* (OTU78), *B. cinerea* (OTU80), *Cladosporium* sp. 1 (OTU86), *Xylaria* sp. 2 (OTU89), *Acremonium* sp. (OTU94), *Cladosporium* sp. 2 (OTU95), *Podospora curvicolla* (OTU96), *A. kogelbergense* (OTU97), *P. neglecta* (OTU98), *Hypoxylon rubiginosum* (OTU101), *Peniophora pini* (OTU102), *Phoma* sp. 1 (OTU104), *Xylaria* sp. 3 (OTU105), *Phoma* sp. 2 (OTU106), *Preussia* sp. 1 (OTU108), *M. nivale* (OTU109), *P. eucrita* (OTU110)*, *U. isabellina* (OTU111), *Lambertella* sp. (OTU112), Ascomycet sp. 3 (OTU113), *Penicillium* sp. (OTU116), *Pestalotiopsis* sp. 1 (OTU119), *Pezicula* sp. 1 (OTU120)*, *Apiognomonia* sp. 1 (OTU122), *P. neosporulosa* (OTU123)*, *P. cinnamomea* (OTU124), *Pezicula* sp. 3 (OTU125)*, *Apiognomonia* sp. 2 (OTU126), *Leotiomyctes* sp. (OTU127), *Pestalotiopsis* sp. 2 (OTU128), *Coprinellus* sp. (OTU129), *Pleosporaceae* sp. (OTU130), *Phoma* sp. 3 (OTU131), *Preussia* sp. 2 (OTU132), *Periconia* sp. (OTU133), *P. varia* (OTU134), *Pezizomycetes* sp. 2 (OTU135).

Zellophan-Versuch

Nach vorangegangener Inkubation der acht potentiellen Antagonisten auf der Zellophan-Membran zeigte sich, dass je nach Art ein deutlich gehemmtes Wachstum von *S. sapinea* hervorgerufen wurde (Tabelle 40). Die Kontrolle, ein Wachstumsversuch mit *S. sapinea* nach vorangegangener Inkubation einer Zellophan-Membran ohne antagonistischen Pilz, zeigte jedoch, dass auch das Zellophan selbst einen negativen Einfluss auf das Wachstum der *S. sapinea*-Kultur hervorrief (Tabelle 40, Spalte Kontrolle). Bei vorangegangener Inkubation von

<table>
<thead>
<tr>
<th>Wiederholung</th>
<th>S. sapinea</th>
<th>Kontrolle</th>
<th>OTU 9</th>
<th>OTU 110</th>
<th>OTU 71</th>
<th>OTU 123</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42,5</td>
<td>34,5</td>
<td>21,5</td>
<td>10</td>
<td>16</td>
<td>14,5</td>
</tr>
<tr>
<td>2</td>
<td>42,5</td>
<td>34</td>
<td>20</td>
<td>8</td>
<td>12,5</td>
<td>11,5</td>
</tr>
<tr>
<td>3</td>
<td>41</td>
<td>31,5</td>
<td>28,5</td>
<td>22,5</td>
<td>13</td>
<td>11,5</td>
</tr>
<tr>
<td>4</td>
<td>39</td>
<td>34</td>
<td>27,5</td>
<td>8</td>
<td>11</td>
<td>9,5</td>
</tr>
<tr>
<td>5</td>
<td>42</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10,5</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>41,4</td>
<td>33,5</td>
<td>24,4</td>
<td>12,1</td>
<td>13,1</td>
<td>11,5</td>
</tr>
</tbody>
</table>

Hypheninteraktion in vitro

In diesem Experiment wurde untersucht, ob und wie sich die Hemmung von S. sapinea durch die ermittelten potentiellen Antagonisten an den Hyphen von S. sapinea zeigt. Veränderungen wurden an Hyphen von S. sapinea nur beobachtet, wenn P. neosporulosa (OTU123) gegenüber in der Petrischale wuchs. Durch Lichtmikroskopie konnten bei dieser Dualkultur veränderte Hyphenspitzen von S. sapinea (Abbildung 59, Mitte) beobachtet werden, die teilweise aufplatzten (Abbildung 59, links) und Hyphen, die sich wellten (Abbildung 59, rechts). Wenn Trichoderma sp. und S. sapinea in einer Petrischale zusammen wuchsen und ihre Hyphen unter dem Mikroskop untersucht wurden, war nicht erkennbar welche Hyphen zu welchem Pilz gehörten. Um dieses Problem zu lösen, wurde die zu mikroskopierende Stelle mit Baumwollblau angefärbt. Doch erbrachte auch das
Anfärben mit Baumwollblau keinen Erfolg, da die Hyphen von *S. sapinea* und *Trichoderma* sp. beide cyanophil sind und nun alle Hyphen blau eingefärbt waren.

4. Diskussion

4.1. Auslösende Faktoren für ein Diplodia-Triebsterben

Eine direkte Beeinflussung könnte durch günstige Umwelteinflussfaktoren für S. sapinea, einen wärmeliebenden Pilz, z. B. durch einen Temperaturanstieg hervorgerufen werden. Im Rahmen dieser Arbeit wurde ein Temperaturoptimum in vitro auf einem
MYP-Nährmedium für das Myzelwachstum verschiedener *S. sapinea*-Stämme aus Deutschland von rund 26 °C ermittelt, ähnlich hohe Temperaturoptima konnten auch von anderen Studien bestätigt werden (siehe Diskussion 4.4.1 Temperaturversuche, Seite 163).

Standortfaktoren

Im Rahmen dieser Arbeit wurden die Stickstoffversorgung und andere Ernährungsparameter der Kiefernbestände, die als Faktoren für eine Erkrankung am *Diplodia*-Triebsterben beschrieben wurden (Kam de 1985; Dijk et al. 1992; Stanosz et al. 2004; Diminić et al. 2012), nicht untersucht.

Die Auswertung der Beratungsfälle der NW-FVA ergab, dass *Diplodia*-Triebsterben Schadensfälle oftmals auf Kuppenlagen oder an Süd-exponierten Hängen auftreten. Das gehäufte Auftreten des *Diplodia*-Triebsterbens auf solchen Standorten erklärt sich
daraus, dass Kuppenlagen und Süd-exponierte Hänge für Bäume oft mit einer angespannten Wasserversorgung einhergehen. Für Pfungstadt spielt eine Grundwasserabsenkung eine prädisponierende Rolle, hinzu kommt ein sandiger Boden, der wenig Wasserspeicherkapazität aufweist. In Bad Freienwalde ist die Kuppenlage des Kiefernbestandes ein prädisponierender Faktor.

Trockenheit ab, den Baumreserven und anderen Stressfaktoren am Standort (Niinemets 2010). Das bedeutet, durch den Klimawandel (Temperaturerhöhung und Extremwetterereignisse) kann einerseits die Kiefer, obwohl sie eine trockenresistente Baumart ist (Oberhuber et al. 1998; Rigling et al. 2002; Allen et al. 2010) geschwächt werden, andererseits könnte S. sapinea von steigenden Temperaturen durch den Klimawandel profitieren und sich in nördlichen Gebieten (z. B. Baltikum) ausbreiten (Adamson et al. 2015).

Fraß durch Insekten

In diesem beschriebenen Fall in der Letzlinger Heide war mit großer Wahrscheinlichkeit neben dem Fraß der Kiefernbuschhornblattwespe, der prädisponierend bzw. devitalisierend auf die Kiefern wirkte, der Hagel schadauslösender Faktor für ein *Diplodia*-Triebsterben. Hingegen gab es auf den Untersuchungsflächen Schlaubetal und Prezelle keine zusätzliche Schwächung durch Hagel. In solchen komplexen Absterbeprozessen ist es schwierig, den entscheidenden
Faktor, der letztlich zum Absterben führt, zu identifizieren (Amoroso et al. 2012). Das zeigte sich auch an dem Schadensfall Letzlinger Heide.

Inwieweit ein Absterben durch den Nadelverlust aufgrund von Insektenfraß und / oder durch einen Befall mit *S. sapinea* zu Stande kommt, lässt sich nur schwer entwirren. Wie Untersuchungen im Zusammenhang von Nadelfraß durch Insekten und Baumkatastrophe gezeigt haben, kann sich die Kiefer bei einer Restbenadelung von unter 10 % auch ohne eine weitere Schwächung durch *S. sapinea* nicht regenerieren und stirbt folglich ab (Landesforstanstalt Eberswalde 2007; NW-FVA 2008). Inwieweit *S. sapinea* das Schadgeschehen durch nadelfressende Insekten intensivieren kann, sollte zukünftig durch Gewächshausversuche geklärt werden.

Nachstehend zu dem obig beschriebenen Schadensfall in der Letzlinger Heide mit Beteiligung von Insektenfraß an Nadeln, werden im Folgenden die in der Literatur beschriebenen *Diplodia*-Triebsterbenfälle mit Beteiligung von Insekten beschrieben:

- Peterson (1981) beschrieb lediglich Wunden durch Insekten als auslösenden Faktor für ein *Diplodia*-Triebsterben in den USA und konkretisierte den Verursacher nicht weiter.
- Swart et al. (1987b) isolierten *S. sapinea* von Wunden an Trieben von absterbenden *P. radiata* in Südafrika, die durch die Eiablage von *Pissodes nemorensis* Germ. verursacht wurden.

Feci et al. (2003) beobachteten ein *Diplodia*-Triebsterben an *P. resinosa* nach Zweig-und Zapfenverletzungen durch *Dioryctria* sp. (*Pyralidae* / Familie der Zünsler) in den USA.

Untersuchungsfläche Bürstadt

Truncatella conorum-piceae (OTU11) und Biscogniauxia mediterranea (OTU52) könnten auf der Untersuchungsfläche Bürstadt in Südhessen eine Rolle als Schwächezepathogene gespielt haben. B. mediterranea ist als opportunistischer Parasit an verschiedenen Quercus-Arten im Mittelmeerraum bekannt und tritt insbesondere im Zusammenhang mit Wasserstress auf (Desprez-Loustau et al. 2006). Insbesondere

4.2. Einfluss der Methode auf die Isolation von Endophyten
Oberflächensterilisierung

Einfluss der Lagerung des Probenmaterials

Länge der Triebsegmente

In der Literatur finden sich Hinweise, dass die Länge bzw. Größe der Holzstücke aus denen Endophyten isoliert werden sollen, einen Einfluss auf das Isolationsergebnis haben (Gamboa et al. 2003). Im ersten Versuch (LA1-4) konnten bei kleineren Triebsegmenten und der damit einhergehenden größeren Anzahl an Wiederholungen

Lokalisierung der Endophyten

Im Rahmen dieses Teil-Versuchs wurden insgesamt 32 Pilzarten aus Holz, Kambialbereich und Rinde eines Kiefernzwieges isoliert. Die Mehrheit der Pilze wurde in der Rinde der Kieferntriebe nachgewiesen (26 Arten, ca. 80 % der im Rahmen...

Cladosporioides, Epicoccum pupurascens zusammensetzen. Er ist der Meinung, dass es bei diesen Pilzen um subcuticulare Infektion handelt, also nicht wirklich um endophytisch vorkommende Pilze, sondern um solche, die bei der Oberflächensterilisierung nicht eliminiert wurden, die also auf methodische Probleme hinweisen. Um eine Abgrenzung zwischen Epi- und Endophyten vornehmen zu können, wären in Zukunft Studien hilfreich, bei denen beide ökologischen Gruppen auf dem gleichen Wirt und zur gleichen Zeit untersucht werden würden (Arnold 2007).

Selektivmedien für Basidiomyceten

Dass Basidiomyceten in Untersuchungen zu Endophyten oft unterrepräsentiert sind, könnte daran liegen, dass (1) wirklich wenige Basidiomyceten in dieser ökologischen Nische leben, (2) die Isolierungsmethode bzw. (3) die verwendeten Nährmedien nicht zur Isolation von Basidiomyceten geeignet sind oder (4) eine unzureichende Oberflächensterilisation verwendet wurde, die nicht alle Hyphen epiphytischer Organismen abtötet. Dadurch könnten schnellwüchsige Epiphyten aus dem Kiefernmaterial auswachsen und langsam wachsende Basidiomyceten überwachsen werden.

anderen Studien bekannt waren (siehe Tabelle 35, Seite 106) und wenig Verunreinigungen durch Bakterien oder Hefen festgestellt wurden.

beschriebenen Basidiomyceten gut auf einem MYP-Medium isolieren und kultivieren (persönliche Mitteilung Gitta Langer).

Zusammenfassend lässt sich also feststellen, dass Hypothese (1) mit der Annahme, dass wirklich wenige Basidiomyceten in dieser ökologischen Nische leben, nicht zutreffend zu sein scheint, da andere Autoren mit molekulargenetischen Methoden zahlreiche Basidiomyceten aus der gleichen ökologischen Nische (lebende Kiefernzwiege) isolieren konnten (Peršoh 2013). Hypothese 2 (die Isolierungsmethode bzw. die verwendeten Nährmedien sind nicht zur Isolation von Basidiomyceten geeignet) scheint zutreffend zu sein, da auch andere Autoren mit ähnlichen Methoden wenige Basidiomyceten isolieren konnten. Hypothese 3 (es wurde eine unzureichende Oberflächensterilisation verwendet, die nicht alle Hyphen epiphytischer Organismen abtötet; dadurch könnten schnellwüchsige Epiphyten aus dem Kiefernmaterial auswachsen und Basidiomyceten überwachsen werden) trifft insofern nicht zu, da die Ergebnisse der Versuche zur Oberflächensterilisierung gezeigt haben, dass die angewendete Methode eine hinreichende Oberflächensterilität gewährleistet. Die Hypothese trifft aber insoweit zu, als dass auch aus oberflächensterilen Kieferntriebsegmenten zahlreiche schnellwüchsige Ascomyceten auswuchsen und nachgewiesen werden konnten, die ein Auswachsen von langsam wachsenden Basidiomyceten verhindern könnten.
4.3 Isolierte Endophyten
Bestimmung der isolierten Endophyten

Ein weiteres Problem, das sich aus der Methode der Artabgrenzung ergibt, ist die Berechnung von Diversitätsindizes. Diese verändern sich, je nachdem ob man z. B. Arten mit einer Ähnlichkeit von 95 % als gleiche Art ansieht oder ein höheres Level z. B. bei 99 % ansetzt. Im Rahmen dieser Arbeit wurde für die Artebene eine Ähnlichkeit der ITS-Sequenz von mindestens 98 % vorausgesetzt.

Diversität der isolierten Endophyten

Einige der hier identifizierten endophytischen Pilzarten wurden sogar erstmalig für Pinus spp., P. sylvestris oder an Zweigen von P. sylvestris beschrieben. Die isolierten Arten unterscheiden sich zum Teil erheblich von den Arten, die in anderen Studien...

Den Einfluss der Probenanzahl bildet auch die Artenakkumulationskurve ab, da mit zunehmender Probenanzahl mehr Arten isoliert wurden. Das legt auch das Modell zur Schätzung der zu findenden Arten nach der Methode nach Chao nahe, das 118 Arten annimmt. Das bedeutet, würden weitere Triebsegmente untersucht werden, könnten nach dem Modell von Chao noch rund weitere 20 Endophyten-Arten zusätzlich nachgewiesen werden.

In der vorliegenden Arbeit konnte ein Einfluss des Gewebealters auf die Diversität der Endophyten nachgewiesen werden. So war die Anzahl der isolierten Taxa im jüngsten Gewebe des Kiefernzweiges am geringsten, wie auch die Besiedlungsrate und die Eveness. Auch wurde bei der Untersuchung des jeweils aktuellen Jahrgangs bei deutlich mehr Triebsegmenten kein Auswuchs festgestellt (Tabelle 32). Ebenso konnte

Das Vorkommen von *Biscogniauxia mediterranea* und die Baumarten-
zusammensetzung

Die durchgeführten Ordinationen (Abbildung 47 - 45) zeigten für die isolierten Arten in
der Regel keine eindeutige Variation der Endophytenzusammensetzung entlang des
Transekt von Nord nach Süd. Eine Ausnahme bildet *B. mediterranea*, das
Vorkommen (endophytische Isolation / relative Häufigkeit) des Pilzes variiert von Nord
nach Süd entlang des Transekt. Bei *B. nummularia* hingegen zeigte sich dieses
Verteilungsmuster nicht. *B. mediterranea* fruktifiziert unter anderem auf Buche oder
Eiche und gilt als wärmeliebender Pilz, der auch als Schwächepathogen an Arten der
Gattung *Quercus* in mediterranen Gebieten in Erscheinung tritt (Henriques et al. 2015).
Auf den Untersuchungsflächen in Brandenburg, Sachsen-Anhalt, Thüringen und
Bayern wurde *B. mediterranea* nur selten nachgewiesen (Abbildung 46). In Hessen
und Baden-Württemberg hingegen trat *B. mediterranea* verstärkt auf.

Das Vorkommen könnte einerseits von dem wärmeren Klima im Süden des
Untersuchungsgebiets abhängen, da *B. mediterranea* eine wärmeliebende Art ist
(Vannini und Valentini 1994; Vannini et al. 2009). Andererseits könnte das Vorkommen
von *B. mediterranea* aber auch von der Umgebungsvegetation beeinflusst worden
sein, da bisher nicht bekannt ist, dass *B. mediterranea* auf der Kiefer sporuliert,
sondern nur auf Buche, Eiche und anderen Hartlaubhölzern (Ju et al. 1998). So fanden
sich im Norden des Untersuchungsgebietes vermehrt große Kiefernreinbestände, im
Süden des Transekt waren häufiger Laubbäume innerhalb oder in der Umgebung der
Probebestände zu finden.

Dass die Baumartenzusammensetzung einen Einfluss auf die Zusammensetzung der
Endophyten in Kiefer und Mistel hatten, konnte Peršoh (2013) ebenfalls nachweisen.
Er untersuchte Gewebe von Kiefern und Mistle zum einen aus einem
Kiefernreinbestand und zum anderen aus einem Bestand mit u. a. Buche, Fichte, Birke,
und konnte unterschiedliche Endophytenzusammensetzungen feststellen.

Abweichend von der Nord-Süd-Tendenz tritt *B. mediterranea* an dem
Untersuchungspunkt ST03 im Nord-Osten Sachsen-Anhalts verstärkt auf. Eine
Erklärung könnte die Bestandeszusammensetzung sein, da dort Eiche mit Kiefer im
Oberstand zu finden waren.

In Untersuchungen von Sanz-Ros et al. (2015) in Nordspanien an Zweigen von
P. sylvestris war *B. mediterranea* der am viertäufigsten isolierte Pilz und wurde von
den Autoren als potentiell schädlich eingestuft. In den Arbeiten von Sanz-Ros et al.

Probenumfang

Häufig isolierte Pilzarten

Truncatella conorum-piceae (OTU11) war der viert häufigste Pilz bei den hier durchgeführten Endophytenisolationen und auf nahezu allen untersuchten Standorten (97 %, n = 103) nachzuweisen. Auf einigen Untersuchungsflächen (Viernheim, Pfungstadt 59, Lüderitz, Bürstadt und einzelne Probepunkte entlang des Transekts)

mit einer Häufigkeit von 3,4 %. Pilze aus der Gattung *Pezicula* sind als Primärbesiedler und als Endophyten bekannt, einige treten als Schwächerpathogene, wenn der Baum unter Stress steht, in Erscheinung (Verkley 1999).

In Rahmen der vorliegenden Arbeit wurden keine Quarantäne-Schaderreger isoliert. *Cenangium ferruginosum* wurde ebenfalls nicht nachgewiesen, was verwunderlich ist, da der Pilz ein typischer Besiedler von Kiefernästen und ein Schwächerpathogen ist (Butin 2011). *C. ferruginosum* fruktifizierte auch an Ästen gefällter Kiefern in Pfungstadt (PF59), wurde jedoch auch dort nicht endophytisch nachgewiesen. Dieses Ergebnis lässt sich nicht durch die Kultivierbarkeit von *C. ferruginosum* erklären, da Kowalski und Kehr (1992) den Pilz aus Kiefernästen auf einem Nährmedium isolieren konnten. Der Pilz wurde darüber hinaus aus zahlreichen anderen Geweben von *Pinus* spp. endophytisch isoliert: Kowalski (1993); Hata und Futai (1996); Jurc et al. (1996); Jurc et al. (1999); Sieber et al. (1999); Kowalski und Zych (2002); Alsonso et al. (2011); Lee et al. (2011).

Das Vorkommen von *Sphaeropsis sapinea*

Endophyten, Pathogene und Saprophyten scheinen in der Pflanze eine Gemeinschaft zu bilden und sich in ihrem ökologischen Verhalten zu überlappen. Wie die drei ökologischen Gruppen zusammen wirken ist bisher unklar. Viele Pilze haben verschiedene ökologische Rollen. Arnold et al. (2009) verdeutlicht das am Beispiel von *Chaetomium globosum*, der Pilz wurde in verschiedenen Studien als Pathogen,

Bei erkrankten Kiefern mit dem Diplodia-Triebsterben war auffällig, dass einerseits eine sehr hohe Besiedlungsrates mit *S. sapinea* festzustellen war (RH Ø 50 %). Andererseits wurden ähnlich hohe Isolierungs raten auch an einzelnen symptomlosen, vitalen Kiefern nachgewiesen (*S. sapinea* RH 68 % am Probepunkt HE12), wobei die durchschnittliche Besiedlungsraten von *S. sapinea* in symptomlosen Kiefern deutlich geringer war (RH Ø 13 %).

Grundsätzlich war die Artenanzahl in erkrankten Bäumen geringer (n = 45) als bei symptomlosen Kiefern (n = 90). Letzteres könnte sich zum einen dadurch erklären, dass durch das schnelle Auswachsen von *S. sapinea* (Slippers und Wingfield 2007; Decourcelle et al. 2015) andere, insbesondere langsam wachsende Pilzarten nicht mehr auswachsen können. Andererseits war die Probenanzahl der beiden Kategorien

Im Rahmen dieser Arbeit wurde S. sapinea mit einer relativen Häufigkeit von 19 % aus grünen Kiefernzwiegen isoliert (Mittelwert aus allen untersuchten Triebsegmenten, Tabelle 19). Auf 87 % der 106 untersuchten Standorte konnte mindestens jeweils ein S. sapinea-Stamm isoliert werden. Vergleicht man das endophytische Vorkommen mit anderen Arbeiten zum endophytischen Vorkommen von S. sapinea (Flowers et al. (2001), Flowers et al. (2003), Maresi et al. (2007), Bihon et al. (2011a), Tabelle 30), liegt eine hohe Besiedlungsrate in den hier untersuchten Kieferntrieben vor.

4.4 Untersuchungen zu ausgewählten Endophyten

4.4.1 Temperaturversuche

4.4.2 VC-Test

4.4.3 Potentielle Antagonisten

Es wurden 18 Arten unter den 89 Endophyten als potentielle Antagonisten ermittelt, das sind 20 % der hier isolierten Endophyten. Viele der hier untersuchten Endophyten (80 %) zeigten in vitro keine antagonistische Wirkung gegenüber S. sapinea, trotzdem wuchsen sie niemals mit S. sapinea aus dem gleichen Triebsegment aus. Das kann zum einen daran liegen, dass sie das Wachstum von S. sapinea nur im Zweig hemmen oder zum anderen, dass sie so selten vorkamen, dass ein gemeinsames Auswachsen vom gleichen Triebsegment unwahrscheinlich war.

Kwee und Keng (1990) beschrieben haben, sich nicht beobachten ließen, konnte abschließend nicht geklärt werden.

Lediglich *Trichoderma* sp. (OTU71) und die Pilze der Gattung *Pezicula* (OTU110, 120, 123, 125; mit Ausnahme von *Pezicula cinnamomea* (OTU124)) zeigten bei den Versuchen in Dualkultur und im Zellophanversuch antagonistische Wirkung und wurden niemals aus dem gleichen Triebsegment mit *S. sapinea* isoliert.

Trichoderma sp. (OTU71) zeigte in der Dualkultur starke antagonistische Wirkung auf *S. sapinea*, indem er *S. sapinea* stark im Wachstum hemmte. Die Untersuchungsergebnisse des Zellophan-Versuchs lassen darauf schließen, dass *Trichoderma* sp. (OTU71) Stoffe, die durch das Zellophan hindurch in den Agar diffundieren, abgibt, die *S. sapinea* im Wachstum hemmen.

Chaetomium sp. 2 (OTU46) wurde von fünf Standorten (Pfungstadt, Lüderitz, Schlaubetal, BY04, Prezelle) mit einer relativen Häufigkeit < 0,1 % aus den untersuchten Kiefernzweigen isoliert. Antagonistisches Verhalten gegenüber Pilzen ist von Arten der Gattung *Chaetomium* aus verschiedenen Studien bekannt (Perelló et al. 2002; Busby et al. 2016; Larran et al. 2016). *Chaetomium* sp. 2 zeigte in den
durchgeführten Dualkulturentests (Kapitel 3.3.3) antagonistisches Verhalten gegenüber *S. sapinea*, wohingegen andere isolierte Endophyten der Gattung *Chaetomium* (OTU6 und 37) dieses nicht erkennen ließen. Der Zellophan-Versuch (Kapitel 3.3.5) zeigte deutlich, dass *Chaetomium* sp. 2 vermutlich hemmende Stoffe in den Agar abgibt, die das Wachstum von *S. sapinea* auf dem MYP-Medium hemmen.

Auch andere Forschungsarbeiten haben Endophyten schon als potentielle Antagonisten beschrieben. So zeigten Romeralo et al. (2015a), dass vier endophytisch vorkommende Pilze (*Trichoderma viride, Aureobasidium pullulans, Aureobasidium* sp. und ein unbestimmter Endophyt 20.1) im Gewächshausversuch die Nekrosenlänge, die durch *Gremmeniella abietina* bei *P. halepensis*-Sämlingen verursacht wurden, reduzieren konnten.

Obwohl sich in Dualkulturen von *S. sapinea* mit *Chaetomium* sp. 2 bzw. *Alternaria* sp. eine kontaktlose Hemmung von *S. sapinea* zeigte und sich ebenfalls im Zellophan-Versuch kein Wachstum von *S. sapinea* feststellen ließ, wurden *Chaetomium* sp. 2
4.5 Ausblick
5. Zusammenfassung

6. Literatur

Brady, B. L. K. (1979). Beauveria bassiana, CMI Descriptions of Pathogenic Fungi and Bacteria (602).

Cladosporium herbarum complex (Davidiellaceae, Capnodiales), with standardisation of methods for Cladosporium taxonomy and diagnostics. Studies in Mycology, 58, 105–156.

7. Anhang

Index fungorum

Acremonium sp. ... 76, 83, 108
Alternaria alternata ... 19, 20, 76, 81, 106, 140
Alternaria infectoria.. 76
Alternaria sp. ... 56, 57, 76, 82, 107, 121, 166
Apiognomonia sp.1.. 76, 84, 108
Apiognomonia sp.2.. 77, 84, 109
Arthrinium kogelbergense .. 76, 83, 93, 108
Ascomycet1 ... 77, 82
Ascomycet2 .. 76, 83
Ascomycet3 .. 76, 83
Aspergillus ... 52, 73
Aspergillus niger ... 19
Aureobasidium pullulans.. 19, 147, 169, 170
Beauveria bassiana ... 76, 82, 107
Biscogniauxia mediterranea ... 68, 76, 82, 97, 98, 107
Biscogniauxia nummularia .. 77, 82, 107
Botrytis cinerea ... 77, 82, 107
Camarosporium brabei .. 45, 77, 82, 107
Cenangium ferruginosum .. 16, 64, 74
Chaetomium ... 19, 45, 76, 81, 82, 106, 107, 121, 158, 168
Chaetomium sp.2 .. 56, 57, 76, 82, 107, 166
Chromelosporium carneum ... 76, 82, 107
Cladosporium ... 19, 20, 76, 82, 83, 104, 107, 140
Coniochaeta ligniaria ... 77, 82, 107
Coprinellus sp. .. 77, 84, 109
Daldinia childeae ... 77, 82, 107
Daldinia concentrica .. 77, 82, 107, 121
Desmazerella acicola .. 76, 81, 106
Diaporthe sp.1 ... 76, 81, 106
Diaporthe sp.2 ... 76, 81, 106
Diaporthe sp.3 ... 76, 82, 107
Diaporthe sp.4 ... 76, 84, 108
Dothistroma septosporum ... 16
Drechslera sp. .. 76, 81, 106
Epicoccum nigrum ... 20, 55, 76, 81, 106
Fusarium sp. ... 76, 81, 106
Gibberella cincinata .. 16
Gnomoniaceae sp. .. 76, 83, 108
Gremmeniella abietina ... 16, 169
H. annosum ... 14, 126, 129
Hypoxylon fragiforme ... 76, 82, 107
Hypoxylon rubiginosum ... 76, 83, 108
Jugulospora rotula .. 76, 83, 108
Lambertella sp. .. 76, 83, 108
Lecanicillium psalliota ... 76, 81, 106
Lecanosticta acicola ... 16
Lecythophora sp.1 .. 76, 82, 107
Lecythophora sp.2 .. 76, 82, 107
Leotiomyces sp. ... 77, 84, 109
M. olivacea .. 100, 101, 102, 116, 118, 119
Microdochium nivale ... 76, 83, 108
Microsphaeropsis olivacea .. 76
Nemania diffusa .. 76, 81, 106
Nemania serpens ... 76, 83, 108
Nigrospora oryzae .. 76, 81, 106
Nigrospora sp. ... 77, 82, 107
Paraphaeosphaeria neglecta .. 76, 83, 108
Paraphaeosphaeria verruculosa .. 45, 76, 83, 108
Penicillium .. 19, 20, 52, 73, 76, 83, 108, 144, 169
Peniophora pinii .. 76, 83, 108
Periconia sp. ... 77, 84, 109
Pestalotiopsis sp.1 ... 76, 84, 108
Pestalotiopsis sp.2 ... 77, 84, 109
Pezicula cinnamomea ... 76, 84, 109
Pezicula eucrita .. 56, 57, 76, 83, 108, 157, 166
Pezicula neosporulosa ... 56, 57, 76, 84, 109
Pezicula sp.1 ... 76, 84, 108
Pezicula sp.3 ... 77, 84
Peziza varia ... 77, 84, 109
Pezizomyces sp.1 ... 76, 81, 106, 109
Pezizomyces sp.2 ... 77, 84
Phacidium lacerum .. 76, 83, 108
Phoma eupyrena .. 76, 82, 107
Phoma sp.1 ... 76, 83, 108
Phoma sp.2 ... 76, 83, 108
Phoma sp.3 ... 77, 84, 109
Pleosporaceae sp. .. 76, 84, 109
Podospora curvicolia .. 76, 83, 108
Preussia sp.1 ... 76, 77, 83, 108, 109
Pyronema domesticum ... 77, 82, 107, 121
Rosellinia sp.1 .. 76, 81, 106
Rosellinia sp.2 .. 76, 82, 107
S. polyspora .. 100, 101, 102, 116, 119
S. sapinea... 1, 2, 3, 4, 5, 6, 8, 9, 23, 40, 51, 53, 54, 55, 56, 57, 59, 60, 63, 64, 72, 75, 90, 91, 96, 102, 116, 118, 119, 120, 121, 122, 123, 124, 125, 127, 129, 131, 132, 134, 140, 159, 160, 161, 162, 163, 164, 165, 166
Sordaria fimbicola ... 56, 76, 81, 106, 121
Sordaria sp. ... 76, 81, 106, 121
Sordariales sp. .. 76, 81
Sphaeropsis sapinea .. 1, 2, 76, 81, 106
Sydowia polyspora .. 76, 81, 106, 165
Trichocladium sp. ... 76, 82, 107
Trichoderma .. 19, 20, 56, 57, 77, 80, 82, 107, 121, 123, 166, 167, 168
Truncatella sp.2 .. 76, 83, 108
Umbelopsis isabellina ... 76, 83, 108
Xylaria longipes 76, 81, 106
Xylaria polymorpha .. 76, 81, 106
Xylaria sp.1 ... 77, 82, 107
Xylaria sp.2 ... 76, 82
Xylaria sp.3 ... 76, 83
<table>
<thead>
<tr>
<th>Abkürzungsverzeichnis</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHD</td>
<td>Brusthöhendurchmesser</td>
</tr>
<tr>
<td>BMELV</td>
<td>Bundesministerium für Ernährung und Landwirtschaft</td>
</tr>
<tr>
<td>BMU</td>
<td>Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit</td>
</tr>
<tr>
<td>BZE</td>
<td>Bodenzustandserhebung</td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
</tr>
<tr>
<td>CBS</td>
<td>Centraalbureau voor Schimmelcultures</td>
</tr>
<tr>
<td>cf.</td>
<td>Conferre</td>
</tr>
<tr>
<td>CHA</td>
<td>Cherryagar</td>
</tr>
<tr>
<td>cm</td>
<td>Zentimeter</td>
</tr>
<tr>
<td>d</td>
<td>Tag</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxyribonukleosid Triphosphat</td>
</tr>
<tr>
<td>DSMZ</td>
<td>Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethyldiamintetraessigsäure</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>ha</td>
<td>Hektar</td>
</tr>
<tr>
<td>ITS</td>
<td>Internal transcribed spacer</td>
</tr>
<tr>
<td>KA</td>
<td>Kein Auswuchs</td>
</tr>
<tr>
<td>KU</td>
<td>Keine Untersuchungen</td>
</tr>
<tr>
<td>km</td>
<td>Kilometer</td>
</tr>
</tbody>
</table>
LSU large subunit
m Meter
MEA Malzextraktagar
MgCl₂ Magnesiumchlorid
mg Miligramm
min Minuten
Mio. Millionen
MT Morphotyp

Digitaler Anhang

Im Anhang befinden sich folgende Dateien:

- Fotos der OTUs auf MYP-Medium nach 7 und 28 Tagen Inkubation
- ITS bzw. LSU-Sequenzen der OTUs
- Wissenschaftliche Namen der OTUs
- Übersicht über die Untersuchungsflächen