Molecular studies on a *Dictyostelium* homolog of the *tafazzin* gene, the cause of Barth Syndrome in humans

Inaugural-Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.)

Vorgelegt beim Fachbereich Biologie/Chemie der Universität Kassel

von

Ying Chen

November 2002
vom Fachbereich Biologie/Chemie der Universität Kassel als Dissertation angenommen.

Dekan: Prof. Dr. W. Nellen
1. Gutachter: Prof. Dr. W. Nellen
2. Gutachter: Prof. Dr. M. Schäfer

Table of contents

Abbreviation V

Zusammenfassung IX

Summary XI

1. Introduction 1
 Part I 1
 Dictyostelium discoideum as a model organism to study developmental and cellular biology 1
 Using the REMI strategy and discoidin gene family as a marker to study the growth –
 differentiation-transition (GDT) signalling 4
 Part II 8
 Learning from the slime mold: Dictyostelium and human disease 8
 X-linked cardioskeletal myopathy and neutropenia (Barth syndrome) – MIM 302060 11
 G4.5 gene and its products - tafazzins 13
 The function of tafazzins – Neuwald hypothesis 14
 The biosynthesis and functional role of cardiolipin 16
 Part III 20
 Aims of this thesis 20

2. Results 21
 Identification of REMI mutant 17-1-J-3-1 21
 Isolation of an approximate 10 kb genomic DNA from the integration site in REMI mutant 17-1-J-3-1 25
 There is no differential splicing in Dictyostelium discoideum tafazzin gene 27
Verification of the tafazzin gene disruption 29
Dictyostelium discoideum tafazzin protein shows high similarity to its orthologues from different organisms 31
Cells of REMI mutant *taz* can compete with wild type cells to enter development stage 34
REMI mutant *taz* exhibits aberrant cardiolipin metabolism 35
REMI mutant *taz* shows growth defect 36
Genomic disruption of the *tafazzin* gene via homologous recombination 38
Southern analysis to verify the secondary disruption 40
The secondary disruption strains display discoidin mis-expression 42
Knock out strains exhibit axenic growth defect at 15°C 43
Construction of GFP tagged tafazzin 45
Dictyostelium discoideum tafazzin protein is mitochondria associated 48
Overexpression of tafazzin rescues the mutant phenotypes 50
Endogenous tafazzin plays a major role in *Dictyostelium discoideum* 52

3. Discussion 55

Using REMI mutagenesis and discoidin gene family to study growth differentiation transition in *Dictyostelium discoideum* 55
REMI mutant *taz* showed variable discoidin I expression on KA plates 56
Mitochondria and signal transduction 58
Dictyostelium discoideum is a model organism to study Barth syndrome 59
Disruption of enzymes involved in the cardiolipin biosynthesis causes growth defect 61
Neuwald hypothesis: tafazzin and acyltransferase 64
The relationships between growth temperature, fatty acid composition and the physical state and fluidity of membrane lipids 68
Defects in cardiolipin biosynthesis pathway cause alterations in mitochondrial morphology 69
Dictyotelim discoideum endogenous tafazzin plays a major role 71
REMI mutant *taz* can compete against wild type Ax2 in development 72
Conclusions 72

Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verification of the tafazzin gene disruption</td>
<td>29</td>
</tr>
<tr>
<td>Dictyostelium discoideum tafazzin protein shows high similarity to</td>
<td>31</td>
</tr>
<tr>
<td>its orthologues from different organisms</td>
<td></td>
</tr>
<tr>
<td>Cells of REMI mutant taz can compete with wild type cells to</td>
<td>34</td>
</tr>
<tr>
<td>enter development stage</td>
<td></td>
</tr>
<tr>
<td>REMI mutant taz exhibits aberrant cardiolipin metabolism</td>
<td>35</td>
</tr>
<tr>
<td>REMI mutant taz shows growth defect</td>
<td>36</td>
</tr>
<tr>
<td>Genomic disruption of the tafazzin gene via homologous recombination</td>
<td>38</td>
</tr>
<tr>
<td>Southern analysis to verify the secondary disruption</td>
<td>40</td>
</tr>
<tr>
<td>The secondary disruption strains display discoidin mis-expression</td>
<td>42</td>
</tr>
<tr>
<td>Knock out strains exhibit axenic growth defect at 15°C</td>
<td>43</td>
</tr>
<tr>
<td>Construction of GFP tagged tafazzin</td>
<td>45</td>
</tr>
<tr>
<td>Dictyostelium discoideum tafazzin protein is mitochondria associated</td>
<td>48</td>
</tr>
<tr>
<td>Overexpression of tafazzin rescues the mutant phenotypes</td>
<td>50</td>
</tr>
<tr>
<td>Endogenous tafazzin plays a major role in Dictyostelium discoideum</td>
<td>52</td>
</tr>
<tr>
<td>3. Discussion</td>
<td>55</td>
</tr>
<tr>
<td>Using REMI mutagenesis and discoidin gene family to study growth</td>
<td>55</td>
</tr>
<tr>
<td>differentiation transition in Dictyostelium discoideum</td>
<td></td>
</tr>
<tr>
<td>REMI mutant taz showed variable discoidin I expression on KA plates</td>
<td>56</td>
</tr>
<tr>
<td>Mitochondria and signal transduction</td>
<td>58</td>
</tr>
<tr>
<td>Dictyostelium discoideum is a model organism to study Barth</td>
<td>59</td>
</tr>
<tr>
<td>syndrome</td>
<td></td>
</tr>
<tr>
<td>Disruption of enzymes involved in the cardiolipin biosynthesis</td>
<td>61</td>
</tr>
<tr>
<td>causes growth defect</td>
<td></td>
</tr>
<tr>
<td>Neuwald hypothesis: tafazzin and acyltransferase</td>
<td>64</td>
</tr>
<tr>
<td>The relationships between growth temperature, fatty acid composition</td>
<td>68</td>
</tr>
<tr>
<td>and the physical state and fluidity of membrane lipids</td>
<td></td>
</tr>
<tr>
<td>Defects in cardiolipin biosynthesis pathway cause alterations in</td>
<td>69</td>
</tr>
<tr>
<td>mitochondrial morphology</td>
<td></td>
</tr>
<tr>
<td>Dictyotelim discoideum endogenous tafazzin plays a major role</td>
<td>71</td>
</tr>
<tr>
<td>REMI mutant taz can compete against wild type Ax2 in development</td>
<td>72</td>
</tr>
<tr>
<td>Conclusions</td>
<td>72</td>
</tr>
</tbody>
</table>
4. Materials and methods

4.1 Materials

Antibiotics 75
Antibodies 75
Biological materials 76
Chemicals and reagents 76
Devices 78
DNA and protein markers 79
Enzymes and proteins 79
General buffers and solutions 80
Kits and reagents sets 80
Media 81
Oligonucleotide primers 82
Plasmids 83
Radioactive materials 83
Supplementary marterials 83

4.2 Methods

Cell biological methods 84
Cell growth 84
Cloning of *Dictyostelium discoideum* on SM plates 84
Differentiation conditions 84
Dictyostelium discoideum transformation 84
Cell sorting assay 86
Standard time course 86

Molecular biological methods 88
Isolation of plasmid DNA from *E. coli* 88
Isolation of genomic DNA from *Dictyostelium discoideum* 88
Isolation of total RNA from *Dictyostelium discoideum* 89
Nucleic acid electrophoresis in agarose gel 90
Cloning of DNA fragments into vector 90
Transformation of *E. coli* 91
DNA sequencing 92
Polymerase chain reaction 93
RT-PCR and 3’ RACE PCR 93
Northern and Southern hybridization 94
REMI mutagenesis 97
Plasmid rescue – isolation of the disrupted gene from REMI mutant 97
<table>
<thead>
<tr>
<th>Protein analytical methods</th>
<th>98</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation of total protein from Dictyostelium discoideum</td>
<td>98</td>
</tr>
<tr>
<td>Discontinuous SDS polyacrylamide gel electrophoresis</td>
<td>98</td>
</tr>
<tr>
<td>Electroblotting of proteins</td>
<td>101</td>
</tr>
<tr>
<td>Immunodetection with enzyme conjugated secondary antibodies</td>
<td>101</td>
</tr>
<tr>
<td>Protein quantification</td>
<td>101</td>
</tr>
<tr>
<td>Colony immunoblotting</td>
<td>102</td>
</tr>
<tr>
<td>Immunofluorescence assay</td>
<td>102</td>
</tr>
</tbody>
</table>

5. References 105

6. Appendixes 123

Erklärung 135

Acknowledgement 136
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aa</td>
<td>amino acid</td>
</tr>
<tr>
<td>Ab</td>
<td>antibody</td>
</tr>
<tr>
<td>ABP</td>
<td>Actin-binding protein</td>
</tr>
<tr>
<td>Amp</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>APS</td>
<td>ammonium persulphate</td>
</tr>
<tr>
<td>AT(s)</td>
<td>Acyltransferase(s)</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine 5’-triphosphate</td>
</tr>
<tr>
<td>A260(280)</td>
<td>absorbance at 260 nm (280nm)</td>
</tr>
<tr>
<td>b</td>
<td>base</td>
</tr>
<tr>
<td>BCIP</td>
<td>5-bromo-4-chloro-3-indolylphosphate</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>Bs’</td>
<td>blasticidin resistance casset</td>
</tr>
<tr>
<td>CAR</td>
<td>cAMP receptor</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>CHO</td>
<td>Chinese Hamster Ovary cells</td>
</tr>
<tr>
<td>Ci</td>
<td>Curie</td>
</tr>
<tr>
<td>CL</td>
<td>Cardiolipin (1,3-bis (1’, 2’-diacyl-3’-phosphoryl-sn-glycerol)-sn-glycerol)</td>
</tr>
<tr>
<td>DABCO</td>
<td>1, 4 – diazabicyclo 2. 2. 2. octane</td>
</tr>
<tr>
<td>DEPC</td>
<td>diethylpyrocarbonate</td>
</tr>
<tr>
<td>DLMC</td>
<td>dilysocardiolipin</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>ddNTP</td>
<td>Didesoxyribonucleotide: ddATP, ddCTP, ddGTP, ddTTP</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxyribonucleotide: dATP, dCTP, dGTP, dTTP</td>
</tr>
<tr>
<td>DTT</td>
<td>1,4-dithiothreitol</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediamintetraacetic acid</td>
</tr>
<tr>
<td>ESTs</td>
<td>Expressed sequence tags</td>
</tr>
<tr>
<td>g</td>
<td>gram, gravitation constant (relative centrifugal force)</td>
</tr>
<tr>
<td>G418</td>
<td>geneticin</td>
</tr>
<tr>
<td>GDT</td>
<td>growth-differentiation transition</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescence protein</td>
</tr>
<tr>
<td>Gro</td>
<td>glycerol</td>
</tr>
<tr>
<td>GroP</td>
<td>Sn-glycero-3-phosphate</td>
</tr>
<tr>
<td>GTC</td>
<td>guanidine thiocyanate</td>
</tr>
<tr>
<td>hr</td>
<td>hour</td>
</tr>
<tr>
<td>HEPES</td>
<td>N-2-hydroxyethylpiperazine-N’-2-ethasulfonic acid</td>
</tr>
<tr>
<td>IPTG</td>
<td>isopropyl-β-D-thiogalactopyranoside</td>
</tr>
<tr>
<td>KA</td>
<td>Klebsiella aerogenes</td>
</tr>
<tr>
<td>kDa</td>
<td>kilo Dalton</td>
</tr>
<tr>
<td>μ</td>
<td>micro (10⁻⁶)</td>
</tr>
<tr>
<td>m</td>
<td>Milli (10⁻³)</td>
</tr>
<tr>
<td>mAb</td>
<td>Monoclonal antibody</td>
</tr>
<tr>
<td>Mb</td>
<td>Mega (10⁶) base pairs</td>
</tr>
<tr>
<td>MCS</td>
<td>Multiple cloning site, poly linker</td>
</tr>
<tr>
<td>B-ME</td>
<td>beta-mercaptoethanol</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>MLCL</td>
<td>monolysocardiolipin</td>
</tr>
<tr>
<td>MLCL AT</td>
<td>Monolysocardiolipin acyltransferase</td>
</tr>
<tr>
<td>MOPS</td>
<td>γ-(morpholino)-propanesulfonic acid</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>Mₜw</td>
<td>Molecular weight</td>
</tr>
<tr>
<td>NP 40</td>
<td>ethylenephenylpolyethyleneglycol</td>
</tr>
<tr>
<td>nt</td>
<td>nucleotide</td>
</tr>
<tr>
<td>NTP</td>
<td>ribonucleotide, ATP, CTP, GTP, TTP</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>OLB</td>
<td>Oligo labelling</td>
</tr>
<tr>
<td>ORF</td>
<td>open reading frame</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PDE</td>
<td>phosphodiesterase</td>
</tr>
<tr>
<td>PG</td>
<td>phosphatidylglycerol</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PIPES</td>
<td>1,4-piperazindieethansulfonic acid</td>
</tr>
<tr>
<td>PLA</td>
<td>Phospholipase A</td>
</tr>
<tr>
<td>PtdCMP</td>
<td>Phosphatidyl-CMP</td>
</tr>
<tr>
<td>PtdGro</td>
<td>phosphatidylglycerol</td>
</tr>
<tr>
<td>PtdGroP</td>
<td>phosphatidylglycerophosphate</td>
</tr>
<tr>
<td>PtdOH</td>
<td>Phosphatidic acid</td>
</tr>
<tr>
<td>RACE</td>
<td>Rapid amplification of cDNA ends</td>
</tr>
<tr>
<td>REMI</td>
<td>Restriction enzyme mediated integration</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RNase</td>
<td>ribonuclease</td>
</tr>
<tr>
<td>RNasin</td>
<td>Rnase inhibitor</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>reverse transcription-PCR</td>
</tr>
<tr>
<td>SAP</td>
<td>shrimp alkaline phosphatase</td>
</tr>
<tr>
<td>TAZ</td>
<td>tafazzin (G4.5)</td>
</tr>
<tr>
<td>TEMED</td>
<td>N, N, N', N'-tetramethyl-ethyldiamine</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris-(hydroxymethyl-aminomethane</td>
</tr>
<tr>
<td>Triton X 100</td>
<td>octylphenylpoly-(ethylenglycolether)</td>
</tr>
<tr>
<td>Tween 20</td>
<td>polyxyethylene-sorbitan-monolaurate</td>
</tr>
<tr>
<td>U</td>
<td>Unit(s)</td>
</tr>
<tr>
<td>Vol</td>
<td>volume</td>
</tr>
<tr>
<td>wt</td>
<td>wild type</td>
</tr>
</tbody>
</table>
Zusammenfassung

Summary

Dictyostelium discoideum, a eukaryotic microorganism, exists as free-living amoeba as long as a food supply is available. When starved, the cells undergo a transition from single cell amoebae to a multicellular organism that finally develops into multicellular fruiting bodies. This process is organised by various signals which regulate the differential expression of genes. The discoidin I gene family is among the first to be activated at the growth-differentiation-transition (GDT) and thus serves as an excellent marker for the onset of differentiation.

By using REMI mutagenesis and the discoidin I gene family as a molecular marker, several GDT signal components have been investigated in this laboratory (Zeng et al., 2000 A and B; Riemann and Nellen, unpublished data). In this work, a *Dictyostelium discoideum* REMI mutant, which was disrupted in the human tafazzin homologue and resulted in mis-expression of discoidin and an axenic growth defect at 15°C, was found by the same approach. The *tafazzin* gene was disrupted again by homologous recombination and the initial mutant phenotypes were reconstructed in the secondary gene disruption strains. Moreover, overexpression of tafazzin complemented the mutant phenotypes. Immunofluorescence experiment indicated that the *Dictyostelium discoideum* tafazzin was mitochondria associated. Although the linkage between a putative GDT signal component and the mitochondrial protein was unexpected, our preliminary finding added at least one more example for the concept that mitochondria may be directly involved in the signal transduction.

In *Dictyostelium discoideum*, *tafazzin* disruption led to an abnormal metabolism of cardiolipin, which is the characteristic phospholipid of the mitochondrial inner membrane and is required for the function of several mitochondrial enzymes. Our preliminary phospholipid result is consistent with that from human Barth syndrome patients whose tafazzin gene was mutated and from yeast gene disruption strain. They strongly suggest that *Dictyostelium discoideum* could be another model organism for the study and therapy of human Barth syndrome.
Introduction

Part I

Dictyostelium discoideum as a model organism to study developmental and cellular biology

Mycologist Brefeld (1869) first observed Dictyostelium mucoroides while examining the fungal flora in the horse dung, and then grew purer cultures in rabbit dung, he named the species Dictyostelium (Dicty means net-like and stelium means tower) because the aggregation territories he observed looked like nets and the fruiting bodies like towers.

It was Raper (1935) who first discovered Dictyostelium discoideum in the woods of North Carolina (this strain is now called NC4). Dictyostelium discoideum is a member of the class Acrasieae which includes those species of free-living amoebae that lack a flagellated stage and aggregate to form fruiting bodies. Dictyostelium discoideum is found in nature as a soil amoeba in forest detritus and feeds on bacteria by phagocytosis. During this vegetative part of the life cycle, cells multiply by mitotic division. When the bacteria that the amoebae feed on are consumed, the onset of starvation forces a major revision in the life cycle and entrances into a muticellular development cycle. Starvation induces a variety of new genes whose products are necessary for chemotaxis towards cAMP (Konijin et al., 1968). A pulse of cAMP is secreted first by chance within a small population and serves as a signal for the cells to stream together and form loose aggregates of approx. 10^5 cells. In the aggregates, cells undergo differentiation and morphogenesis to result in a 2mm high fruiting body that consists of thin stalk of dead, vacuolized cells supporting a ball of resistant spores. The ratio of stalk to spore cells is about 1:4. Stalk cells are no longer viable after vacuolization but the spores can remain viable. Whenever the environmental conditions are suitable, the spores are dispersed to generate small but normal amoebae which enter the vegetative life cycle again. (figure 1-1) (For details, see Kessin, 2001).
Raper showed that nearly any species of bacteria, spread as a lawn, would support the luxuriant growth of *Dictyostelium discoideum*, he employed *E.coli* or *Aerobacter* (now *Klebsiella*) aerogenes as *Dictyostelium discoideum* food source and solved the problem of limited material. R. Sussman and M. Sussman (1967) first isolated a laboratory strain that can grow in axenic medium, since then *Dictyostelium discoideum* can be easily and cheaply cultured either in Ax medium (Watts and Ashworth, 1970) or in suspension culture or on plates with *Klebsiella aerogenes* (KA) as a food source. Thus *Dictyostelium discoideum* became one of the model organisms to study development and cellular biology because of its unique life cycle and easy manipulation.

The main advantages are:

1. It is haploid throughout its life cycle, so loss of function mutations usually cause phenotypes without the need for further manipulation.

2. Its genome is relatively small (~34 Mb on 6 chromosomes) and believed to code for 8000 to 10000 genes (Loomis and Kuspa, 1997), compared to the 6000 genes in *S. cerevisiae* (Goffeau et al., 1996) and the estimated 15000 genes in *Drosophila* and *C. elegans* (Waterston and Sulston 1995). A genomic sequence project (http://dictybase.org/dictyostelium_genomics.htm) and a cDNA project (http://www.csm.biol.tsukuba.ac.jp/cDNAproject.html) are now well under way to be finished soon.

3. It is possible to transform the cells by electroporation and to knock out genes by homologous recombination and marker replacement (De Lozanne and Spudich, 1987). Because multiple selectable markers are available (Nellen et al., 1984; Egelhoff et al., 1989; Sutoh, 1993), strains can be constructed with complex genotypes. Mutagenesis by antisense RNA (Crowley et al., 1985) and RNAi (Martens et al., 2002) are possible. The established Restriction Enzyme Mediated Integration (REMI) technique (Kuspa and Loomis, 1992) is a very elegant method for random fishing of genes by insertion mutagenesis.

Due to the above reasons, *Dictyostelium discoideum* has become a versatile model system for basic research in developmental and cell biology. The fundamental cellular processes including cytokinesis, motility, phagocytosis, chemotaxis, signal tranduction, and aspects of development such as cell sorting, pattern formation, and cell-type determination have been well investigated. (For details, see Kessin, 2001 or visit http://dicty.cmb.nwu.edu/dicty/dicty.html).
Recently, research on this model organism is applied to the study of human health and disease (Hägels et al., 2000; Li et al., 2000; Pukatzki et al., 2002; Saxe, 1999; Solomon et al., 2000).

Figure 1-1. Life and development cycle of *Dictyostelium discoideum*
(Internet: http://www.uni-kassel.de/fb19/genetics)
Using the REMI strategy and discoidin gene family as a marker to study the growth-differentiation-transition (GDT) signaling in Dictyostelium discoideum

Although mutants of *Dictyostelium* can be isolated since 1953 (Sussman and Sussman), it was impossible until recently to recover the affected genes. Many of the mutated genes had been mapped to particular linkage groups by parasexual genetics (Newell, 1978; Welker and Williams, 1982), but in only a few cases had it been possible to isolate the affected genes. Even after transformation became possible, the mutations could not be complemented by transformation with libraries of genomic DNA, and therefore the affected genes could not be recovered in a manner that was available in bacteria or later became a powerful tool in the study of yeast. Transposon tagging has led to the isolation of genes in other systems, including *Myxococcus* (Kuner and Kaiser, 1981), *Drosophila* (Cooley and Spradling, 1988), and *Ceanorhabditis* (Greenwald, 1985; Moerman et al., 1986), but depends on the ability to mobilize transposable elements, which has not been possible in *Dictyostelium*.

REMI (Restriction Enzyme Mediated Integration) (Figure 1-2) is a technique developed in *Dictyostelium discoideum* by Kuspa and Loomis (1992). In *Dictyostelium discoideum* mutagenesis can be performed by electroporation of a linearized transformation vector along with high concentrations of a compatible restriction enzyme. The difference between REMI and simple transformation is that at the time of electroporation, a restriction enzyme is also included. Apparently, the enzyme enters the cell and cuts the genomic DNA. Occasionally, the compatible ends of the linearized plasmid are introduced to the restriction sites of the genomic DNA and ligated into place such that an insertion is created. REMI generates apparently random insertions into genomic DNA. Some integrations cause gene disruptions and thus result in mutations. The resulting mutant phenotypes with aberrant morphology can be directly identified by observation while the expression pattern of marker genes is detected by colony blot technique. Then the disrupted genomic DNA together with the inserted plasmid can be isolated by plasmid rescue. The resulting plasmid can be used for further molecular analysis, for example, sequence and southern analysis.
Since development and vegetative growth are distinct phases in *Dictyostelium discoideum*, it is possible to isolate mutants defective in signal transduction pathways of development without impairing the viability of the cell. The REMI mutagenesis is used in this laboratory to isolate mutants with defects in the GDT signaling by using the discoidin I gene family as a molecular marker. This approach has been proven to be successful (Zeng et al., 2000A and B; Riemann and Nellen, unpublished data).

The discoidins are cytoplasmic proteins which are not essential for growth or development under laboratory conditions, but appear to be involved in cell shape changes at the onset of development. The function of the lectin, discoidin I, has been a source of interest and controversy. Discoidin was long thought to have a role in cell adhesion (Barondes et al., 1982), but this does not appear to be the case. Antisense and other experiments suggest however, that in strains with reduced discoidin levels, cell-substrate adhesion is altered (Barondes et al., 1987 and Crowley et al., 1985). A homology to fibronectin domains has been postulated, but never proved (Poole et al., 1981 and Springer et al., 1984). More recently, Vogel et al. (1997) reported there is close homology of discoidin with two mammalian receptor tyrosine kinases.
In wild type cells grown on a standard bacterial food source, discoidin is expressed several generations before the food source is exhausted, the expression level is increasing with further cell proliferation. Another boost of expression is observed where cells are completely deprived of nutrients. Discoidin can thus serve as a sensitive marker to monitor abnormalities in the growth-differentiation-transition (GDT) (Endl et al., 1996; Riemann and Nellen, unpublished data; Wetterauer et al., 1995 and Zeng et al., 2000A and B).

After starvation, various soluble factors are secreted by the cells of Dictyostelium discoideum and serve as signals controlling gene expression, developmental initiation, morphogenesis and cell differentiation (Devreotes, 1989). There are two density-sensing mechanisms that function during the early stages of development. One mechanism is mediated by a molecule called prestavation factor (PSF) and controls induction of certain very early genes (Rathi and Clarke, 1992). PSF is synthesized during growth and accumulates in the micro-environment according to the ratio of Dictyostelium amoebae to bacteria (Clarke et al., 1992). Using partially purified PSF, a number of genes that were previously thought to be induced by complete starvation have been induced in growing cells. These genes include members of the discoidin gene family (Clarke et al., 1987), cAMP receptor (cAR1), pdsA which encodes the aggregation-specific form of cyclic nucleotide phosphodiesterase, the α - mannosidase gene - manA, and gp24 (contact sites B). Cells growing on reduced amounts of bacteria, which do not express these genes, will express them if PSF is added (Clarke et al., 1992). When the food supply has been depleted, PSF production declines, and a second density-sensing pathway, mediated by a molecule called conditioned medium factor (CMF) (Gomer et al., 1991), is activated to help the cells to assess density at a slightly later period-during aggregation. The CMF signaling pathway most likely involves the G – protein α2 (Blusch et al., 1995), pianissmo (Chen et al., 1997), cytosolic regulator of adenyl cyclase (CRAC) (Riemann and Nellen, unpublished data), and PKA (Endl et al., 1996).

The cAMP dependent protein kinase A (PKA) plays a critical role during the early stage of development and at all later ones and is expressed early in development. The PKA of Dictyostelium is a dimer of one regulatory and one catalytic subunit, rather than the tetramer of higher organisms. Several of the genes involved in chemotaxis - acaA (adenyl cyclase), pdiA, the phosphodiesterase inhibitor, and carA, the major cAMP receptor in early development, are not transcribed at all in the absence of the PKA catalytic subunit (Mann et al., 1997; Wu et al., 1995). Cells overexpressing a mutated regulatory subunit R which results in constitutive repression of PKA activity,
display undetectable levels of discoidin. In cells with a non-functional PKA, discoidin is still expressed, though at strongly reduced levels (Primpke et al., 2000).

yak A was recovered in a mutant screen employing REMI (Souza et al., 1998). yak A is required for the shut-off of growth stage genes and the induction of early developmental genes. The PKA catalytic subunit mRNA appears as normal in the yak A-null mutant, but PKA enzyme activity does not show the characteristic increase after 5 hours of starvation. Yak A-null cells do not turn off genes that are expressed in growing cells. Accordingly, a knock – out of yakA appears to reduce the levels of discoidin (Riemann, Wille and Nellen, unpublished data). puf A was found by a REMI suppressor screen on yak A-null cells (Souza et al., 1999). Puf A is a translational inhibitor of PKA-C mRNA and should thus serve as a negative regulator of the GDT. Puf A is downregulated by YaK A, a disruption of puf A can therefore partially rescue the yak A phenotype.

By REMI mutagenesis and discoidin I as a molecular maker, Zeng et al. (2000A and B) reported a new GDT component, gdt1, which is a negative regulator of discoidin expression and the GDT in Dictyostelium discoideum. The encoded protein has four putative transmembrane regions and is localized in the cell membrane. Two PKA phosphorylation consensus sequences have been detected. Disruption of the gdt1 results in overexpression of discoidin and in a premature onset of development. However, gdt cells respond normally to PSF and produce similar amounts of PSF compared to the wild type. gdt1/PKA double mutants show no aggregation but high levels of discoidin expression, suggesting that gdt1 may be a downstream target of PKA in a branched signalling cascade initiating differentiation.
Part II

Learning from the slime mold: Dictyostelium and human disease

Yeasts and several invertebrate or vertebrate model systems are widely known for their contribution to our understanding of human diseases, but Dictyostelium has rarely been included in this list in the past. However, over the last few years, research on this social amoeba has revealed some common cellular characteristics shared across diverse phyla.

Dictyostelium offers numerous advantages as an experimental organism (see above). Specially, its genome is small with a low amount of noncoding sequence and, where vertebrates may express a large number of similar genes with overlapping functions, Dictyostelium often carries only a single orthologous gene. The organism is haploid throughout its life cycle, so loss-of-function mutations usually cause phenotypes without the need for further manipulation. For the same reason, neither recombination nor complementation is possible by the usual means (mating) in this system, but mutants may be rescued by introducing the gene of interest directly, in either wild-type or mutant form, and with variable levels of expression. This organism is uniquely suited for studies of cytokinesis, motility, phagocytosis, chemotaxis, signal transduction and aspects of development. Many of these processes, which play important roles in health and disease, are either absent or are less accessible in other model organisms. For example, leukocytes and Dictyostelium discoideum share certain characteristics (Devreotes and Zigmond 1988), both use G protein-mediated signaling to regulate chemotaxis. They are very similar in size, appearance and function as they both are highly motile and engulf and digest bacteria.

Complex signal transduction networks are activated when amoebae are starved and are used throughout the remainder of development to coordinate the morphogenetic and cellular differentiation events that result in the terminal structure, the fruiting body (see Parent and Devreotes, 1996; Soderbom and Loomis 1998 for reviews). Molecular genetic studies of these signaling pathways have also led to the identification of a number of other well-known signaling components, including MAP kinases, phosphatidylinositol-3 kinases, phospholipase C, protein kinase B, and STAT proteins (Drayer and Van Haastert, 1992; Zhou et al., 1995; Subry et al., 1997; Kawata et al., 1997; Meili et al., 1999). It appears that pathways from mammalian cell biology are conserved in Dictyostelium.
Dictyostelium cells have long been a favorite of researchers interested in the changing interactions of actin filaments and actin-associated proteins (ABPs) during cell movement and cytokinesis. For example, the Dictyostelium “gelation factor”, ABP-120, is related to a class of human actin-cross-linking proteins, the filamins, a targeted ablation of this gene disrupts actin filament networks, blocks pseudopodia formation, and impairs cell motility (Cox, et al., 1992). Interestingly, mutations in a human ABP-120 relative, Filamin-1 (also known as “ABP-280”), lead to periventricular heterotopia in humans, a developmental abnormality in which cortical neurons fail to migrate (Fox and Walsh 1999). The possibility that this human migration defect and the motility defects seen in the Dictyostelium ABP-120 mutants are similar may make Dictyostelium a powerful system for studying the molecular basis of this disease.

Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency disease that results from the failure of both T and B cell function and additional defects in monocyte chemotaxis (Ochs, et al., 1980; for review, see Brickell et al., 1998), Clinical and laboratory evidence points out WAS being a defect in some aspect of actin organization. The protein responsible for Wiskott-Aldrich syndrome, WASp, has been shown to bind both actin and the actin-nucleating protein complex, arp2/3 (Machesky and Insall 1998). Bear et al., (1998) identified a Dictyostelium homolog, SCAR which is a suppressor of one of the cAMP receptors, cAR2. SCAR shares most of the functional domain with WASp. When scar was disrupted in a wild-type background, both morphogenetic and actin cytoskeletal defects were seen in Dictyostelium (Bear, et al., 1998), indicating that SCAR might behave in a similar manner as the closely related protein WASp. Use of Dictyostelium which is full of information regarding signaling and actin cytoskeletal organization may reveal many parts of Wiskott-Aldrich syndrome.

Recently, there has been interest in studying host-pathogen interactions by using simple, genetically manipulatable hosts. It is hoped that the bacterial factors and host genes involved in causing pathogenic effects in these simple organisms will be relevant to mammalian disease processes. For example, studies of the expression of antimicrobial peptides in Drosophila melanogaster led to the discovery of Toll receptors, critical components of innate immunity that have been recently recognized in mammals (Kopp et al., 1999; Lemaitre et al., 1996). Labrousse et al., (2000) reported that Salmonella typhimurium, an enteropathogenic bacterium representing a major public health problem, can infect Caenorhabditis elegans, and that genes important for its full pathogenicity in vertebrates also play a role during infection of Caenorhabditis elegans.
The idea of using simple, genetically tractable host organisms to study the virulence mechanisms of pathogens date back at least to the work of Depraltère and Darmon (1978). They proposed using the predatory amoeba Dictyostelium discoideum as a model host, an approach that has proved to be valid at least in the case of the intracellular pathogen Legionella (Hägele et al., 2000; Solomon et al., 2000) and Pseudomonas aeruginosa (Pukatzki et al., 2001). Legionella pneumophila grows in alveolar macrophages, cells that are phagocytic and motile like amoebae to cause Legionnaires’ disease (a type of pneumonia) (Chandler et al., 1977). In recent years, genes and genetic loci involved in virulence of Legionella have been identified (Gao et al., 1997; 1998; Hickey et al., 1997; Segal et al., 1998; Vogel et al., 1998; Wintermeyer et al., 1995). In contrast, very little is known about specific target host cell factors or binding partners of Legionella virulence factors. Hägele et al., (2000) infected Dictyostelium discoideum with different Legionella species, and showed that Dictyostelium discoideum cells are able to support intracellular growth of Legionella pneumophila etc. highly virulent parasites in the same way as their growth in the natural host Acanthamoeba castellanii. Interestingly, Profillin-minus Dictyostelium mutant cells showed a higher rate of infection when compared with wild type. Solomon et al., (2000) focused on the infection of Legionella pneumophila and its mutants and their results are well consistent with those of Hägele et al., (2000). Pukatzki et al., (2001) studied the interactions of Dictyostelium discoideum and human pathogen Pseudomonas aeruginosa which is an opportunistic pathogen that causes life-threatening infections in individuals with compromised immune systems and found that Pseudomonas aeruginosa utilizes conserved virulence pathway to infect Dictyostelium discoideum. All the above work clearly indicates that Dictyostelium discoideum is a new model host system for the investigation of pathogenicity of Legionella, Pseudomonas and maybe other pathogens. It should allow the elucidation of essential susceptibility factors of the host in the future.

Cisplatin [cis-diaminedichloroplatinum(II)] and its derivatives are widely used anticancer drugs (Chu, 1994; Eastman, 1986; Lippard, 1982). However, its therapeutic efficiency is frequently limited by the development of drug-resistant tumour cell populations (Perez, 1998). Considerable attention had been paid to the underlying mechanisms of resistance to this drug (Andrews and Howell, 1990; Chu, 1994; Perez, 1998), but all of these studies were focused on genes and mechanisms which were a priori suspected to modulate the cellular response to the drug. Recently, Li et al., (2000) reported a direct genetic approach, employing insertional mutagenesis, to specifically identify novel genetic pathways that are involved in the cellular response and resistance to cisplatin in Dictyostelium discoideum. They have identified 6 genes
which are involved in cisplatin resistance. Interestingly, none of these genes are
directly involved in drug import or efflux, DNA repair or multi-drug resistance. Some
of these genes encode proteins that are involved in signal transduction pathways
which regulate cell death, cell proliferation or gene regulation. Importantly, some of
the mutants exhibit abnormal developmental phenotypes, demonstrating that the
genes that are involved in responding to DNA damage also function in normal
development. These pathways will provide potential targets for modulating the
response to this important drug. For example, one of their drug resistant genes, *regA*
was identified as a central component in the pathway for spore differentiation in
Dictyostelium (Shaulsky et al., 1996). The RegA protein is a cAMP phosphodiesterase,
regulating the cAMP level in prespore cells, which in turn regulates protein kinase A
(PKA). The discovery of this gene in drug resistant selection suggests that cisplatin
resistance may be linked to PKA signalling pathways. In fact the work of Cvijic et al.,
(1998) has linked PKA to cisplatin resistance in CHO cells. This work clearly indicates
Dictyostelium discoideum can be effectively used to discover genes underlying cellular
responses to important pharmacological agents.

*X-linked cardioskeletal myopathy and neutropenia (Barth syndrome) –
MIM 302060*

Barth et al. (1981, 1983) described a large pedigree showing X-linked inheritance of a
disorder characterized by dilated cardiomyopathy, neutropenia, skeletal myopathy,
diminished statural growth, and abnormal mitochondria (Figure 1-3). Neustein et al.
(1979) reported a family that may have the same disorder. By electron microscopy,
the mitochondria showed concentric, tightly packed cristae and occasional inclusion
bodies. The family reported by Barth et al., (1981, 1983) was Dutch. Since then a
number of families studied in Europe, North America, Australia and Japan present
essentially the same picture with some variation (Ades et al., 1993; Bolhuis et al.,
1991; Cantlay et al., 1999; Hodgson et al., 1987; Ino et al., 1988; Katsushima et al,
2002; Kelley et al., 1991). The most common presentation is that of a young,
moderately growth-retarded male infant with cardiac failure caused by dilated
cardiomyopathy. Presentation may be slowly progressive or precipitous. In most
patients cardiomyopathy becomes manifest in infancy. Studies on the respiratory
chain in Barth syndrome patients’ skeletal muscle showed impaired oxidative
phosphorylation at the level of complexes III (ubihydroquinone: cytochrome
oxidoreductase) and IV (Cytochrome oxidase) (Barth et al., 1983) and decreased
activity of complex IV (Christodoulou et al., 1994). Barth et al., (1996) showed again
the decreased activities of complex III and IV from cultured fibroblasts of Barth syndrome. These findings provide evidence that respiratory-chain dysfunction is an essential component of BTHS. Results of clinical experiments pertaining to the organic acid abnormality (increased urinary excretion of 3-methylglutaconic acid, 3-methylglutaric acid and 2-ethylhydracrylic acid (Keller et al., 1991; Gibson et al., 1991) and the low serum cholesterol.

For the moment, therapeutic prospects are limited. Myocardial failure is amenable to standard treatment. In severe cases of progressive myocardial failure, cardiac transplantation has been performed (Adwani et al., 1995 and 1997). Several therapies have been offered on the basis of suspected metabolic derangement, but none has been a singular success so far, probably because none has addressed the basic molecular defect of BTHS (for review, see Barth et al., 1999).

\[\text{Figure 1-3. Patient with Barth syndrome at the age of 5 years is attempting to rise with typical Grower's manoeuvre, demonstrating pelvic muscle weakness (from P. G. Barth et al. (1999), J. Inher Metab. Dis. 22)}\]

Obligate female carriers of Barth syndrome do not show clinical symptoms. Ørstavik et al., studied X-inactivation patterns in female carriers with BTHS and found skewed X
inactivation, likely to be the result of a selection against cells that have the mutated
gene on the active chromosome. This fits well in the absence of clinical symptoms.

The last decade had seen several new developments in Barth syndrome. After its
clinical and biochemical characterization (Barth et al., 1983; Ino et al., 1988; Kelley et
al., 1991), the gene was mapped to Xq28 (Bolhuis et al., 1991; Adès et al., 1993;
Christodoulou et al., 1994). And then Bione et al., (1996) identified unique mutations
in a gene that is located in the gene rich region Xq28 where Barth syndrome maps.
The gene was termed G4.5 (tafazzin) by them. This made it possible to make a
definite diagnosis and to offer antenatal diagnostics for future pregnancies in an
affected family.

G4.5 gene and its products- tafazzins

The Barth syndrome responsible gene G4.5 located on Xq28 is a relatively small (~4
kb) but complex gene incorporating 11 exons. Different mRNAs were produced by
alternative splicing of the primary G4.5 transcript, encoding proteins that differed at
their N terminus and in the central region. Two regions of the proteins may be
functionally significant. There are 2 transcription initiation sites, on exon 1 and 3.
Isoforms with a highly hydrophobic stretch of 30 residues at the N terminus are
thought to be membrane anchored. The shortest forms of tafazzins (starting from exon
3) lacking the hydrophobic stretch, may be soluble cytoplasmic proteins. The reason of
2 fundamentally different gene products, one membrane-bound and the other
cytosolic, is not clear. The second variable region is the central portion between amino
acids 124 and 195 (exon 5, 6 and 7). Alternative splicing of the hydrophilic central
region produces 5 variants. Removal of exons 5, 6 and 7 would progressively shorten
a hydrophilic domain of the protein, which may serve as an exposed loop interacting
with other proteins. Two isoforms, containing all 3 exons or lacking exon 5 only are
consistently abundant. Because of the two 5’ ends together with various splice variants,
up to 10 isoforms were found. Bione et al., (1996) termed these proteins tafazzins
(Tafazzi is a masochistic comic character from an Italian television sports show). Most
isoforms are ubiquitous. Isoforms that lack the N-terminus are found in leukocytes and
fibroblasts, but not in heart and skeletal muscles. Some forms appear to be restricted
to cardiac and skeletal muscle or to leukocytes.

More than 30 mutations of the G4.5 gene were published (Bione et al., 1996;
D'Adamo et al., 1997, Ichida et al., 2001, Johnston et al., 1997 and Sakamoto et al.,
2001). The mutations involved exons 1-3 and 6-11 and some adjacent intron
sequences, resulting in a variety of gene alterations including missense and non-sense mutations, splice site mutations, and various deletions of one or more base pairs resulting in frame shifts. There is no apparent correlation between genotype and phenotype, nor is there a correlation between the location of the mutation in G4.5 (tafazzin) gene and the severity of Barth syndrome, implicating that all the splicing variants seem to be equally important for cellular function or other environmental or genetic factors influencing the phenotypic severity for Barth syndrome (Johnston et al., 1997). Moreover, Mutations in G4.5 result in not only BTHS but also other X-linked infantile cardiomyopathies, including left ventricular noncompaction (LVNC) (Bleyl et al., 1997), X-linked infantile cardiomyopathy (D’Adamo et al., 1997 and Gedeon et al., 1995), and X-linked endocardial fibroelastosis (D’Adamo et al., 1997).

G4.5 orthologues from S. cerevisiae, C. elegans, and D. melanogaster have been cloned and sequenced, but no studies to investigate the function of these genes and their gene products have been published so far. It is important to note that the C.elegans G4.5 gene (ZK809.2 gene) shares several splice sites with its human orthologue. Notably, the worm protein is missing exon 5, which appears to be removed from many of the tafazzin splice variants. Thus, the C. elegans mutant may serve as a useful model to explore the molecular mechanisms underlying Barth syndrome. There are no differential splicing variants in S.cerevisiae and D. melanogaster.

The function of tafazzins - Neuwald Hypothesis

The biological function of tafazzins is so far unclear. In 1997 Neuwald, using a genomic database search, reported that human tafazzins belong to a superfamily consisting of established and putative acyltransferases (PFAM 01553) involved in phospholipid biosynthesis and/or remodeling.

This superfamily includes known or putative acyltransfereas from bacteria, fungi, plants, and vertebrate and invertebrate metazoans. Characterized enzymes in this superfamily all function in phospholipid biosynthesis and have either glycerolphosphate, 1-acylglycerolphosphate, or 2-acylglycerolphosphoethanolamine acyltransferase activity. The sequence alignment contains five conserved regions that presumably reflect similar structural and functional features shared by these proteins (Figure 1-4). As all of the characterized proteins are acyltransferases involved in phospholipid biosynthesis, the uncharacterized proteins are likely to have similar catalytic activity.
The potential acyltransferase activity of tafazzins suggests a possible disease mechanism of Barth syndrome. Differential splicing of tafazzins (Bione et al., 1996), at least 9 putative acyltransferases in C.elegans and 4 in E.coli, suggest a variety of substrate specific or tissue and organelle specific forms of those acyltransferases. If so, Neuwald (1996) predicted the mitochondrial structural and respiratory-chain abnormalities associated with BTHS may be due to alterations in mitochondrial membrane phospholipid composition.

Figure 1-4. Neuwald hypothesis. Human tafazzins belong to a superfamily consisting of established and putative acyltransferases (PFAM 01553) involved in phospholipid biosynthesis (from Neuwald (1997), Curr. Biol. 7, R465-466).

The work of Vreken et al. (2000) supported the Neuwald hypothesis (1997). They studied the biosynthesis and remodeling of the phospholipids phosphatidylglycerol (PG) and cardiolipin (CL), which is a unique phospholipid with dimeric structure, carrying 4 acyl groups, two negative charges, exclusively found in bacterial and mitochondrial membranes and is required for optimal function of many of the respiratory and ATP synthesizing enzymes (for review, see Schlame et al., 2000). Their data showed that the biosynthesis rate of PG and CL is normal but that the CL pool size is 75% reduced in cultured skin fibroblasts of BTHS patients compared to control cells, indicating accelerated degradation. In particular, the incorporation of
linoleic acid which is the characteristic acyl side chain found in mammalian CL, into both PG and CL is dramatically reduced, whereas the incorporation of other fatty acids into these phospholipids is normal. These data suggest that the G4.5 gene indeed encodes an acyltransferase, or at least a co-factor required of the function of such enzymes. Their unpublished data from a \textit{S. cerevisiae} G4.5 disruption strain indicates that also in yeast, phospholipid remodeling is disturbed leading to reduced CL concentration and abnormal CL-acyl composition (Vreken, personal communication).

On 2002, Bissler \textit{et al} and Schlame \textit{et al.} respectively reported that their Barth syndrome patient tissues contained decreased unsaturated and increased saturated fatty acids.

Noticeably, Mushegian \textit{et al.} (1997) predicted hydrolytic activity for tafazzins based on weak similarity to the \textit{E. coli} \textit{radC} gene, which may possess hydrolytic activity needed for DNA repair, thus it is possible that tafazzins perform some other hydrolytic function.

\textbf{The biosynthesis and functional role of cardiolipin}

Diphasphatidylglycerol Cardiolipin (1, 3-bis (1’, 2’-diacyl-3’-phosphoryl-sn-glycerol)-sn-glycerol) (CL) is a unique phospholipid with dimeric structure, carrying four acyl groups and two negative charges (Figure 1-5). It is thus highly hydrophobic and acidic. It is exclusively found in bacterial and mitochondrial membranes to generate an electrochemical potential for substrate transport and synthesis (For review, see Schlame \textit{et al.}, 2000). The trivial name “cardiolipin” is derived from the fact that it was first found in animal hearts (Pangborn 1942), cardiolipin is most abundant in mammalian hearts, but it can be found in mitochondria of all animal tissues and indeed of the eukaryotic kingdom. For example, it amounts to about 10% of the phospholipids of bovine heart muscle, and 20% of the phospholipids of the mitochondrial membrane.
Figure 1-5. Structure of Cardiolipin. In the acid form of authentic cardiolipin, X and Y are hydrogens while A, B, C, and D are fatty acyl groups.

The biosynthetic pathway of cardiolipin is shown in Figure 1-5. The route is similar to other phospholipid pathways as it passes through the common intermediates, phosphatidic acid and phosphatidyl-CMP. Only the final step of cardiolipin synthesis is a unique reaction, which is utterly different in prokaryotes and eukaryotes (Schlame *et al.*, 1997). Prokaryotic cardiolipin synthase catalyzes a transesterification in which the phosphatidyl moiety of one phosphatidylglycerol is transferred to the free 3’-hydroxyl group of another phosphatidylglycerol ((Hirshberg and Kennedy 1972). This reaction is mainly controlled by substrate availability. In contrast, eukaryotic CL synthase catalyzes a phosphatidyl transfer from CDP-DG to PG (Hostetler *et al.*, 1972; Schlame *et al.*, 1993; Tamai and Greenberg 1976). This is an irreversible reaction that involves cleavage of a high energy anhydride bond. This reaction can take place in the presence of low substrate concentration and is mainly regulated by CL synthase activity.

Notably, in animal tissues, cardiolipin contains almost exclusively 18 carbon fatty acids (Table 1-1), and 80% of this is typically linoleic acid (18:2 (n-6)). This appears to be true in higher plants also. Yeast cardiolipin can differ in having more 16:1 and 18:1 fatty acids, while the bacterial lipid contains saturated and monoenoic fatty acid with 14 to 18 carbons.
Figure 1-6. De novo biosynthesis of cardiolipin.

1. Glycerokinase
2. glycerophosphate acyltransferase and lysophosphatidate acyltransferase
3. phosphatidate cytidylyltransferase
4. phosphatidyl-CMP:glycerolphosphate phosphatidylyltransferase (phosphatidylglycerophosphate snythase)
5. phosphatidylglycerophosphatase
6. cardiolipin synthase (CLS)
7. tafazzins (?)

Abbreviations: Gro, glycerol; GroP, sn-glycero-3-phosphate; PtdCMP, phosphatidyl-CMP; PtdGro, phosphatidylglycerol; PtdGroP, phosphatidylglycerophosphate; PtdOH, phosphatidic acid; PtdGroPtd, cardiolipin
Eukaryotic cardiolipins have their unique fatty acid pattern (C\textsubscript{18} chains) with the exception of *Saccharomyces cerevisiae* (C\textsubscript{16} residues). The dominant C\textsubscript{18} chain in mammals is the linoleoyl group (18:2). Rüstow *et al.* 1989 suggested the generation of the characteristic acyl pattern of CL does not occur during de novo synthesis but requires additional synthetic steps, newly synthesized CL probably undergoes remodeling of its acyl groups. Neuwald hypothesis (1997) and the work of Vreken *et al.*, (2000) and Bissler *et al.*, (2002) supported the above evidence and their data suggest that the *G4.5* gene indeed encodes an acyltransferase involved in the deacylation and reacylation of CL side chain, or at least a factor required for the function of such enzymes.

Table 1-1 Major molecular species of mammalian cardiolipina (from Schlame *et al.*, 2000)

<table>
<thead>
<tr>
<th>Source of cardiolin</th>
<th>Residue A (3’ (1-glycerol))</th>
<th>Residue B (3’ (2-glycerol))</th>
<th>Residue C (1’ (2-glycerol))</th>
<th>Residue D (1’ (1-glycerol))</th>
<th>Abundance (Mol%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bovine heart</td>
<td>18:2</td>
<td>18:2</td>
<td>18:2</td>
<td>18:2</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>18:3</td>
<td>18:2</td>
<td>18:2</td>
<td>18:2</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>18:2</td>
<td>18:3</td>
<td>18:2</td>
<td>18:2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18:2</td>
<td>18:2</td>
<td>18:3</td>
<td>18:2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18:2</td>
<td>18:1</td>
<td>18:2</td>
<td>18:2</td>
<td>15</td>
</tr>
<tr>
<td>Rat liver</td>
<td>18:2</td>
<td>18:2</td>
<td>18:2</td>
<td>18:2</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>18:2</td>
<td>18:1</td>
<td>18:2</td>
<td>18:2</td>
<td>37</td>
</tr>
</tbody>
</table>

a The table shows distribution of fatty acyl residues among the four ester positions in cardiolipin. Residues are as designated as shown in figure 1-4.

b The molecular composition was obtained from Keenan *et al.*, 1970

Defects in enzymes involved in the biosynthesis of PG and CL have so far only been documented for CHO cells, yeast and *E.coli*. Those studies showed that the presence of PG and/or CL is essential for normal respiratory-chain function and PG could substitute for CL in most essential mitochondrial functions. (Chang *et al.*, 1998 a and

The biomembrane function of cardiolipin has been unresolved, although it is believed that its function is related to its unique ability to interact with proteins (Hoch 1992; Schlame and Greenberg 1997) because of its acidic and hydrophobic nature. Biochemical analysis suggests that CL is required for many enzymatic activities, such as cytochrome c oxidase (Awashti et al., 1971) and the carnitine acylcarnitine translocase (Noel and Pande 1986), and is involved in cellular functions, such as mitochondrial protein import (Ardail et al., 1990; Ou et al., 1988; Schleyer and Neupert 1985) and binding of matrix Ca^{2+} (Krebs et al., 1979).

Part III

Aims of this thesis

In this work, *Dictyostelium discoideum* tafazzin mutant strain was initially found by chance. At the beginning, this work was focused on the signal transduction pathway of the growth differentiation transition (GDT) and started by screening REMI mutants using the discoidin gene family as a molecular marker to investigate the transition from growth to multicellular differentiation. Just during the routine REMI mutant analysis, the sequence from one of the rescue plasmid showed high similarity to human Barth Syndrome responsible gene *G4.5* (*tafazzin*).

The aim of this thesis was to characterize the *G4.5* (*tafazzin*) gene homolog and the biological function of its gene product – tafazzin in *Dictyostelium discoideum*. Hopefully, the data on this model organism can provide some useful clue to the further study and therapy of Human Barth syndrome.
Results

Identification of REMI mutant 17-1-J-3-1

REMI (Restriction Enzyme Mediated Integration) is an insertional mutagenesis technique first published for *Dictyostelium discoideum* by Kuspa and Loomis (1992). It introduces mostly single copy integration. In our laboratory, REMI mutagenesis was applied to isolate mutants and genes involved in the transition from growth to differentiation (Zeng et al., 2000A and B). REMI introduces into *Dictyostelium discoideum* cells a linearized plasmid DNA along with high concentration of a restriction enzyme (In our case, *DpnII*) that will generate ends compatible with those of the linearized plasmid (In our case, *BamH I*). This leads to random integration of the plasmid into genomic sites of the enzyme. Some integrations cause gene disruptions and thus mutations. The mutant phenotypes can be identified by the colony blot technique detecting the expression pattern of marker genes.

The marker gene, which is used to investigate the transition from growth to differentiation in our laboratory, is discoidin I – a developmentally regulated lectin that is expressed at relatively high levels during development and its developmental expression is among the most thoroughly studied genetic regulatory systems in *Dictyostelium discoideum* (Cooper and Barondes, 1984; Ma and Firtel, 1978). The expression of discoidin protein is distinct from growth to development, which is easily observed in colony blots. Since colony blots are semi-quantitative, over-expression and low-expression mutants which display stronger or weaker antibody staining than wild type can easily be detected.

The use of REMI mutagenesis and discoidin I as a molecular marker to study GDT signaling has been proven to be successful (Riemann and Nellen, unpublished data; Zeng et al., 2000A and B) in our laboratory. Like the others, this work started from
screening interesting REMI clones by using colony blot technique and discoidin I antibody.

![Colony blots for discoidin expression](image)

Figure 2-1. Colony blots for discoidin expression. Cells of wild type Ax2 and REMI mutant 17-1-J-3-1 (*taz*, see below) were picked on a lawn of KA, colonies were grown to a diameter of approximately 1-2 cm, blotted and incubated first with the anti-discoidin antibody (Wetterauer *et al.*, 1993), and then alkaline phosphatase coupled secondary goat-anti mouse antibody.

Just as the others, the REMI mutant 17-1-J-3-1 (*taz*, see below) was initially detected in a REMI screen as discoidin over-expression (figure 2-1). Compared to wild type Ax2 colony, in REMI mutant 17-1-J-3-1, discoidin protein was detected in vegetative growth beyond the visible border of the colony, where growing cells still have a sufficient amount of nutrients. Surprisingly, the discoidin over-expression phenotype was not always reproduced and REMI mutant 17-1-J-3-1 exhibited variable discoidin expression levels from over-expression to low-expression depending on the experiments. All efforts to control the culture conditions and to find out stable cell
lines failed and discoidin expression remained highly variable in colony blots. Meanwhile another phenotype (growth defect, see below for details) was perfectly reproducible. The colony blots shown in figure 2-1 are representative examples, where the discoidin expression is higher (figure 2-1B), normal (figure 2-1C) or lower (figure 2-1D) compared to that of wild type Ax2 (figure 2-1A).

![Image](image_url)

Figure 2-2. Western blots for discoidin expression. Cells of wild type Ax2 standard control and REMI mutant 17-1-J-3-1 were grown in KA suspension or axenic medium with agitation (180 rpm) and harvested at the cell densities indicated. At a density of 1 x 10^6 cells/ml, cells were harvested and set up for 4 hours development either in phosphate buffer suspension culture (2 x 10^7 cells/ml) or on filters (5 x 10^7 cells/3 cm diameter filter). Total protein was separated by SDS-PAGE, and discoidin I was detected by anti-discoidin antibody (Wetterauer et al., 1993). Equal amounts of protein were loaded.

The western blot is another technique to detect discoidin I protein expression. For standard time course (see materials and methods for details), cells were grown in KA suspension and harvested at densities of 5 x 10^5, 1 x 10^6 and 3 x 10^6 cells/ml by differential centrifugation, the cells from 1 x 10^6 cells/ml were allowed to develop in shaking suspension or on filter for 4 hours. Expression of discoidin I was monitored by Western blot. As shown in figure 2-2A, when wild type Ax2 cells grow on a standard bacterial food source, discoidin I is first detected at a cell density around 1 x 10^6/ml, the amounts then gradually increase with further cell proliferation. When completely deprived of nutrients, another boost of expression is observed. The discoidin I expression of REMI mutant 17-1-J-3-1 was delayed (figure 2-2B) and could only be detected at high cell density (3 x 10^6 cells/ml), compared to wild type Ax2 where the discoidin expression can be detected from 1 x 10^6 cells/ml on. In addition, in REMI
mutant 17-1-J-3-1, the developmental expression levels of discoidin were lower than that of wild type Ax2.

Interestingly, unlike the variable colony blot results, the low discoidin expression phenotype in Western blots was perfectly reproducible, in both filter development and shaking development.

The low discoidin expression phenotype in Western blots was verified by Northern blot using an in vitro transcript of the discoidin Iγ gene as a hybridization probe (figure 2-3).

![Figure 2-3. Northern blots for discoidin expression](image)

Figure 2-3. Northern blots for discoidin expression. Cells of wild type Ax2 and REMI mutant 17-1-J-3-1 were grown in KA suspension with agitation (180 rpm). RNA was isolated from the cells of wild type Ax2 and REMI mutant 17-1-J-3-1 at cell densities of 3×10^6 cells/ml and after 4 hrs filter development. 10 μg RNA were separated on a 2% agarose gel with 20 mM freshly prepared guanidine thiocyanate (GTC) and blotted onto nylon membrane. A 32P labelled in vitro transcript of the discoidin Iγ gene was used as a hybridisation probe. 17s rRNA is shown as a loading control to indicate approximately equal loading.
Isolation of an approximate 10 kb genomic fragment from the integration site in REMI mutant 17-1-J-3-1

Figure 2-4. Physical map of REMI mutant 17-1-J-3-1 and rescue plasmid pDdtaz1.
(A). REMI mutant 17-1-J-3-1 was originally generated by insertion of BamH I linearized pUC118+Bsr vector into a Dpn II site of the Ax2 genome (Zeng et al., 2000A).
(B). A 10 kb Xba I digested genomic DNA included the entire integration plasmid (pUC118 + BsR) and an approximately 6 kb genomic fragment was isolated from REMI mutant 17-1-J-3-1 by plasmid rescue (See materials and methods for details), the resulting plasmid was termed pDdtaz1
An 6kb genomic fragment including approximately 800bp of the affected gene in REMI mutant 17-1-J-3-1 together with 4.4kb integrated transformation vector was isolated from the REMI mutant 17-1-J-3-1 by “plasmid rescue” (See materials and methods for details) by using XbaI digested genomic DNA (figure 2-3B).

The resulting plasmid termed pDdtaz1 was sequenced by reverse primer from the original integrated plasmid pUC118. The approximately 100bp sequence showed high homology to the human Barth syndrome responsible gene G4.5 (tafazzin, taz) by Blast search (http://www.expasy.ch/cgi-bin/blastEMBnt-CH.pl) and was used to fish the entire Dictyostelium discoideum tafazzin orthologue from the Genome Sequence Center Jena, Germany (http://genome.imb-jena.de/dictyostelium). A 1041bp genomic DNA sequence with approximately 450bp non-coding region and 2 potential ATG start codons was obtained by overlapping random genomic clones: IIAFP1D41103, JC1b156g05.r1, JC1a25c03.r1, IIAFP1D84888, JC1b156g05.s1 (See appendix III, for details). For simplicity, the REMI mutant 17-1-J-3-1 will be denominated taz in the following text.

From the multiple alignment (figure 2-9), we thus predict that the nonsense codon (TAA) at the 3 ‘end of the 1041bp sequence was probably the stop codon of the Dictyostelium discoideum tafazzin gene. 3’end RACE (Rapid Amplify cDNA End) was performed to check our prediction. cDNA was synthesized by reverse transcriptase using an oligo (dT)-adaptor primer - Smart-dT and total RNA isolated from axenically grown wild type Ax2 and taz mutant.

A first round of PCR was performed using the tafazzin gene specific primer TAZ4 which is approximately 500bp downstream of gene disruption site (see appendix I for the position of the primer) and Smart-dT. This amplification resulted in only a smear of products of 100bp-400bp. These products were used as a template for a second round of PCR by using ‘nested’ tafazzin gene specific primer TAZ10, which is approximate 100 bp upstream of the TAA nonsense codon, and an adaptor primer – Smart. This primer pair is inside the sequence amplified in the first round PCR and a distinct 200bp product was detected (figure 2-5). Southern analysis indicated that this approximately 200bp PCR product is amplified from tafazzin gene (data not shown). Although the nested PCR product was not cloned and sequenced, its length and southern analysis suggested that this 3’end TAA nonsense codon could be the real stop codon. Additional, two AATAAA elements were found downstream of the TAA stop codon, probably poly A signals.
There is no differential splicing in Dictyostelium discoideum tafazzin gene

The 1041bp genomic sequence obtained by overlapping randomly genomic clones was translated from different ATGs at N-terminal. Although there was no continuous open reading frame, the resulting amino acid sequence which was translated from the 4th ATG showed good similarity to the human tafazzin gene (G4.5) (figure 2.9). We thus predicted the existence of intron(s) and RT-PCR was performed to test our prediction.

The primers used for RT-PCR reaction (figure 2.6C) were TAZ7/TAZ8, TAZ7/8 primer pair nearly covered the entire coding region of the tafazzin gene and gave a 956bp PCR product, while the only RT-PCR product was approximately 780 bp, which was approximately 180bp smaller than the PCR product. The 780bp RT-PCR product was cloned into pGEM-T easy and sequenced. Sequence analysis indicated a 186bp intron in the middle region of tafazzin gene (See appendix I for details). Because this is the only intron in Dictyostelium discoideum tafazzin gene, we thus conclude that unlike human and C. elegans tafazzin genes, there is no differential splicing in the Dictyostelium discoideum orthologue.
Figure 2-6. Genomic organization of the tafazzin gene

(A). REMI mutant taz’. (B). Schematic diagram of Dictyostelium discoideum tafazzin gene. The intron is from 370bp to 556bp after ATG start codon. Arrows indicate the orientation of the primers used in PCR and RT-PCR reactions. (C). PCR and RT-PCR reactions from wild type Ax2 and REMI mutant taz’. 5 µl of the PCR products were separated on a 0.9% agarose gel by electrophoresis. The DNA and cDNA used are indicated on the top, the primers are indicated on the bottom, a pair of ribosomal DNA primers is used as a positive control.
Verification of the tafazzin gene disruption

Disruption of the tafazzin gene was confirmed by Southern hybridization analysis (figure 2-7).

Figure 2-7. Analysis of genomic DNA from REMI mutant taz. Genomic DNA was prepared from wild type Ax2 and REMI mutant taz, digested with Cla I (left) or Hind III + XbaI (right), separated on 0.9% agarose gel, blotted to nylon membrane and hybridized with a 32P labelled RT-PCR product of TAZ5/2 primer pair. Presence of the wild type allele is indicated by a 10 kb (Cla I digestion, left) or a 4.9 kb (Hind III + Xba I digestion, right) fragment, and the interrupted allele is indicated by a 14 kb (Cla I digestion, left) or a 5.7 kb (Hind III + Xba I digestion, right) fragment. The DNA used is indicated on the top. The restriction enzymes are indicated on the bottom. Locations of DNA are shown on the left or right.

Genomic DNA from wild type Ax2 and REMI mutant taz was isolated and digested with ClaI or Hind III + Xba I. A probe specific for the tafazzin gene was generated using the 32P labelled RT-PCR product of the TAZ5/2 primer pair. For Cla I digestion,
in wild type Ax2, a 10 kb hybridizing band was seen, and in REMI mutant \textit{taz}', an approximately 14 kb band consisting of predicted 10 kb from the genome and 4.4 kb from the integrated plasmid was found. \textit{Xba} I cuts in the genome once approximately 2.2 kb upstream the \textit{tafazzin} gene and once approximately 5 kb downstream the \textit{tafazzin} gene, \textit{Hind} III cuts once in the integrated plasmid and once in the genome approximately 2.5 kb downstream the \textit{tafazzin} gene. For \textit{Hind} III + \textit{Xba} I digestion, in wild type Ax2, a predicted approximately 4.9 kb band was seen, and in REMI mutant \textit{taz}', a predicted approximately 5.7 kb band was found.

The \textit{tafazzin} gene disruption was also verified by PCR reactions (figure 2-8). A series of PCR reactions was performed by using genomic DNA from wild type Ax2, REMI mutant \textit{taz}', and rescue plasmid DNA as templates and several primer pairs to confirm the \textit{tafazzin} gene disruption. As shown in figure 2-8, when primer pair TAZ1/2 was used, the predicted approximately 580 bp PCR products should cover the \textit{Dpn} II disruption site (239bp downstream the ATG start codon), under the conditions used, the PCR reaction cannot proceed successfully across the inserted 4.4 kb plasmid, therefore PCR products only can be obtained from wild type Ax2. When primer pair TAZ2/reverse, which is specific for the integrated plasmid pUC118, was used, PCR products only can be obtained from REMI mutant \textit{taz}' and the rescued plasmids. When primer pair TAZ5/2 was used, all of the templates used should give PCR products because primer TAZ5 was designed approximately 60 bp downstream the \textit{Dpn} II disruption site.

Taken together, the above results of southern analysis and PCR reactions confirm that the genomic structure of the \textit{tafazzin} gene was altered in the REMI mutant \textit{taz}'.

Figure 2-8. PCR reaction to verify gene disruption
Primer pair TAZ1/2 covers the *Dpn* II disruption site, under the conditions used, PCR did not proceed across the inserted plasmid (4.4 kb), therefore PCR product only from wild type Ax2 was obtained. PCR product was not obtained from wild type Ax2 using primer pair TAZ2/reverse because reverse primer is from inserted vector. Primer TAZ5 is approximate 60 bp downstream of the disruption site, therefore, products were obtained from all of them by using primer pair TAZ5/2. A pair of ribosomal DNA primer was used as a positive control. 5 μl of the PCR products were separated on a 0.8% agarose gel by electrophoresis. The DNA used is indicated on the top and the primers used on the bottom.

Dictyostelium discoideum tafazzin protein shows high similarity to its orthologues from different organisms

Dictyostelium discoideum tafazzin gene defines a putative 855 bp open reading frame encoding a 285 amino acid protein with a predicted molecular weight of 30.875 kDa. *Dictyostelium discoideum* tafazzin protein showed 35% identity and 57% similarity to its human orthologue (figure 2-9 lower part). Moreover, the identity or similarity
Figure 2-9. Multiple alignment of tafazzin proteins from different organisms
Upper part: Comparison of known sequences of tafazzin (or putative proteins) from Homo sapiens (Q16635), Drosophila melanogaster (AAL48681), Caenorhabditis elegans (Q23589), Saccharomyces cerevisiae (Q06510) and Arabidopsis thaliana (AAF64532).
Lower part: Alignment of tafazzins from Homo sapiens (Q16635) and Dictyostelium discoideum. Dictyostelium discoideum tafazzin gene product is 35% identity and 57% similarity to its human orthologue.
Red: identity. Green: similarity. MultiAlign tool (Corpet et al., 1988) was used to perform the above alignment (http://www.toulouse.inra.fr/multalign.htm

existed through the entire amino acid sequences, the only part lacking similarity was from exon 5 of the human tafazzins, which in fact does not exist in most of the isoforms. Significant similarity to tafazzin orthologue from Drosophila melanogaster (Q9V6G5), Saccharomyces cerevisiae (Q06510) from Caenorhabditis elegans (Q23598) were also found (figure 2-9 upper part).
Cells of REMI mutant **ta^z can compete with wild type cells to enter development stage**

In order to investigate if ta^z caused defect during development, a GFP transformation vector pDdA15gfp was transformed into both ta^z mutant and wild type Ax2 cells. Cell sorting experiments were performed by mixture the GFP labeled cells and non-labeled cells in the different rations and setting up for development.

![Image](image.png)

(A) (B)

Figure 2-10. Cells of REMI mutant ta^z can compete with wild type cells to enter developmental cycle. Cells of REMI mutant ta^z/pDdA15gfp and wild type Ax2 were grown in axenic medium with agitation (180 rpm) and harvested at the density of 1×10^6 cells/ml, washed twice and resuspended in phosphate to a density of 2×10^7 cells/ml. Cells of REMI mutant ta^z/pDdA15gfp and wild type Ax2 were mixed in a ratio of 1:1 and set up for development over nigh in Costar plate. (A). The image of the cells in aggregates. (B). The image of GFP labelled cells of ta^z mutant in same aggregates. Images were captured by an OLYMPUS OM-4 camera mounted Leica DM IRB microscope equipped with appropriate filter sets to allow visualization of fluorescein and with a 40 \times objective lens.

GFP labeled cells of ta^z mutant were mixed with non-labeled wild type cells in the ratio of 1:1 and set up for development in Costar plate over night (figure 2-10). Figure 2-10A shows the image of the cells in aggregates and figure 2-10B shows the image of GFP labeled cells of ta^z mutant in same aggregates, where the mutant cells are randomly dispersed in the whole aggregates. The same result was obtained by using GFP labeled wild type cell and non-labeled mutant cells (data not shown).

When the same cell sorting experiments were set up on a slide covered with a thin agarose sheet, the cells of ta^z mutant were found to scatter randomly throughout the
entire development stage, from streaming, to slug, to final fruiting body (data not shown).

These results demonstrate that the cells of \textit{taz} mutant can compete against wild type cells and enter developmental stage in the same way as wild type cells.

\textbf{REMI mutant \textit{taz} exhibits aberrant cardiolipin metabolism}

As reported by Vreken \textit{et al.} (2000) and Bissler \textit{et al.} (2002), disruption of the human \textit{tafazzin} gene which may involve in cardiolipin remodelling leads to a defect in phospholipid metabolism. We thus investigated phospholipid metabolism of \textit{Dictyostelium discoideum} cells. Our preliminary results showed that in the REMI \textit{taz} mutant, the cardiolipin biosynthesis was normal (data not shown) but as shown in figure 2-11, the cardiolipin pool size of REMI mutant \textit{taz} was 80\% reduced compared to that of wild type Ax2, while the other phospholipid classes were normal (data not shown). Our preliminary phospholipid assay indicates that \textit{Dictyostelium discoideum} tafazzin has the same function as its human orthologue.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{cardiolipin.png}
\caption{\textbf{Aberrant cardiolipin metabolism.} Cardiolipin pool size is 80\% reduced compared to that of wild type Ax2 (data from collaboration with P. Vreken).}
\end{figure}
REMI mutant taz' shows growth defect

As reported previously from Yeast Saccharomyces cerevisiae and Chinese hamster ovary (CHO) (Jiang et al., 1999 and 2000; Kawasaki et al., 1999; Ohtsuka et al., 1993A and B, Ostrander et al., 2001; Tuller et al., 1998; Verken, personal communication), defects in enzymes involved in the biosynthesis of cardiolipin pathway lead to a loss of viability at elevated temperature. We thus examined the growth of Dictyostelium discoideum cells. Pre-warmed axenic medium and KA suspension were inoculated with exponentially growing cells from wild type Ax2 or REMI mutant taz', and incubated at 15°C, 22°C or 27°C with agitation (180rpm) (figure 2-12). When cells of REMI mutant taz' grew in KA suspension, they displayed no temperature sensitivity compared to wild type Ax2 cells and grew with the same doubling time as the wild type Ax2 at different temperatures (15°C, 22°C or 27°C) (figure 2-12A-C). However, when grown in axenic medium (figure 2-12 D-F), at 15°C REMI mutant taz' had significant growth defect compared to the wild type Ax2. After increasing the growth temperature to 22°C, which is the normal laboratory culture temperature for Dictyostelium discoideum, the mutant only had slight growth defect compared to the wild type Ax2 cells. At 27°C, mutant cells exhibited no temperature sensitivity and grew with the same doubling time as wild type Ax2 cells (table 2-1). It is worth to mention here that the growth defect phenotype of REMI mutant taz' is perfectly reproducible independent of the variability in the colony blot results.

Table 2-1 Generation time of Ax2 and REMI mutant taz' at different temperature (hours)

<table>
<thead>
<tr>
<th></th>
<th>Growth in KA suspension</th>
<th>Growth in axenic medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ax2 (15°C)</td>
<td>≈ 9</td>
<td>≈ 20-26</td>
</tr>
<tr>
<td>REMI mutant taz' (15°C)</td>
<td>≈ 9</td>
<td>> 50</td>
</tr>
<tr>
<td>Ax2 (22°C)</td>
<td>≈ 4</td>
<td>≈ 8</td>
</tr>
<tr>
<td>REMI mutant taz' (22°C)</td>
<td>≈ 4</td>
<td>≈ 10</td>
</tr>
<tr>
<td>Ax2 (27°C)</td>
<td>≈ 3-4</td>
<td>≈ 7-8</td>
</tr>
<tr>
<td>REMI mutant taz' (27°C)</td>
<td>≈ 3-4</td>
<td>≈ 7-8</td>
</tr>
</tbody>
</table>
Figure 2-12. Growth curves. Prewarmed axenic medium and KA suspension were inoculated with exponential cells from wild type Ax2 and REMI mutant *taz* and incubated at 15°C, 22°C or 27°C with agitation (180rpm). At the times indicated, the cells were counted microscopically. The experiment was performed in duplicate at least three times.
Genomic disruption (knock-out, K. O.) of the tafazzin gene via homologous recombination

REMI is a random mutagenesis. By this technique, while one specific gene is disrupted, defects in different parts of the genome may be caused due to the introduced restriction enzyme, although it has been reported that *Dictyostelium discoideum* has exceptionally powerful DNA repair mechanisms which may prevent damage from restriction enzymes (Deering, 1998). To unambiguously confirm the phenotypes of the tafazzin mutant, the gene was knocked out by homologous recombination which is a targeted, specific mutagenesis.

![Diagram of tafazzin knock out construct](image)

Figure 2-13. Knock-out construct

(A). The plasmid pDdtaz8 of knock-out construct. 963bp PCR fragment of the tafazzin gene was cloned into the pGEM T-easy vector, the *BamH* I site in this fragment was used to insert the Bs⁸ cassette. *Bpi* I sites are present in PCR primers flanking the entire fragment and allow for excision of the whole construct from the plasmid.

(B). Schematic diagram of knock out construct 8. Arrows indicate the orientation of the primers used in PCR reactions (figure 2-14)
The disruption vector was constructed as follows (figure 2-13): The *Dictyostelium discoideum* *tafazzin* gene was amplified by PCR using the TAZ7/TAZ8 primer pair and genomic DNA from wild type Ax2 as a template. This 972 bp PCR product was cloned into pGEM T-easy which is a specific clone vector for PCR products, then the Bs^r cassette (containing the blasticidin resistance gene under control of the actin-15 promoter (Sutoh, 1993)) was inserted into the BamHI I site of the *tafazzin* gene cloned in the pGem T-easy. The resulting plasmid termed pDdtaz8 was digested with Bpi I that recognizes AGGAGG, but cuts 2-6 bp downstream of the recognition site. The Bs^r cassette flanked by two arms of 213 bp and 759 bp was purified from an agarose gel and electroporated into *Dictyostelium discoideum* Ax2 cells. Transformed cells were grown under blasticidin selection (10 μg/ml) on Petri dishes. After 10 days to 2 weeks, resistant cells were plated on KA plates in order to obtain single clones. 24 clones were reselected under blasticidin selection on Costar plates, some of these clones lost blasticidin resistance. DNA was prepared from the resistant single clones and a PCR strategy was used to check the gene disruption (figure 2-14).

PCR was performed by using primer TAZ11 which binds to the *tafazzin* gene, but 34 bp upstream of the left disruption arm (see appendix I, for the position of the primer used), and primer No. 384, which specifically binds to the coding region of the Bs^r cassette. Due to specific binding characteristics of the primer pair, PCR products can be obtained only when the Bs^r cassette is integrated into the correct locus. As shown in figure 2-14, 4 positive clones out of 12 blasticidin resistant clones were found. The reason that PCR product from the REMI mutant *taz* is slightly smaller than those of knock-out clones is that the gene disruption site of original REMI mutant (Dpn II) is approximately 50 bp upstream of the secondary gene disruption site (BamHI I).
Figure 2.14. PCR analysis for the *tafazzin* gene disruption. Upper: physical map of knock out construct 8. Lower: PCR analysis for the *tafazzin* gene disruption. PCR products only from positive clones and REMI mutant *tafazzin* were obtained using the TAZ11/384 primer pair where TAZ11 binds to the *tafazzin* gene upstream outside the recombination arm, 384 binds specifically within the coding region of the *Bs*^R cassette, PCR products from the REM mutant *tafazzin* is slightly smaller than that of knocked-out clones. 5 µl of the PCR products were separated on a 0.9% agarose gel by electrophoresis. The DNA used is indicated on the top.

Southern analysis to verify the secondary disruption

The secondary gene disruption was also confirmed by southern analysis (figure 2.15). Genomic DNA from 4 positive secondary disruption strains and REMI mutant *tafazzin* were isolated and digested with *Xho I* (see figure 2.4 and 2.14 for physical maps), A probe specific for the *tafazzin* gene was generated by using ³²P labelled RT-PCR product of the TAZ5/2 primer pair. *Xho I* cuts once in the *Bs*^R cassette and once in genomic DNA approximately 4.5 kb downstream of the two disruption sites. Therefore in secondary disruption strains, a single fragment of approximately 5 kb containing 0.6 kb from the C-terminal of the *Bs*^R cassette and approximately 4.4 kb from genomic DNA was seen.
In REMI mutant \textit{taz'}, a 8 kb fragment consisting of 0.6 kb BsR cassette, the whole integrated plasmid pUC118 (3 kb) and an approximately 4.4 kb genomic DNA fragment was observed. The hybridization bands of knock out strains differed from that of REMI mutant \textit{taz'} 3 kb by the size of the integrated plasmid pUC118. The reason why genomic DNA from wild type Ax2 was not included here is that another \textit{Xho I} restriction site locates upstream of the disrupted \textit{tafazzin} gene (> 10 kb). In southern blots, \textit{Xho I} digested genomic DNA from wild type Ax2 gave a weak, smear signal of approximately 15-20kb (data not shown).

The above PCR reactions and southern analysis indicate that the \textit{tafazzin} gene was disrupted by homologous recombination.

\begin{figure}[h]
\centering
\includegraphics[width=0.7\textwidth]{fig215.png}
\caption{Analysis of genomic DNA from the knock out mutant.}

Genomic DNA was prepared from 4 positive knock out clones and REM mutant \textit{taz'}, digested with \textit{Xho I}, separated on 0.9% agarose gel, blotted onto nylon membrane and hybridized with a 32P labeled probe (by oligo-labeling) of the TAZ2/5 RT-PCR product. A single fragment of approximate 8 kb was seen in REM mutant \textit{taz'}, and in knock out clones, a single fragment of approximate 5 kb was observed.
The secondary disruption strains display discoidin mis-expression

Because the original REMI mutant taz exhibits discoidin mis-expression, colony blots and Western blots were performed to investigate the discoidin expression pattern of secondary disruption strains (figure 2-16 and 2-17).

![Images of colony blots for discoidin expression]

Figure 2-16. Colony blots for discoidin expression. Cells of wild type, REMI mutant taz' and 4 knock out strains were grown on KA plates to a diameter of approximate 1-2 cm, blotted and incubated first with the anti-discoidin antibody (Wetterauer et al., 1993), and then alkaline phosphatase coupled secondary goat – anti mouse antibody.

Interestingly, like the original REMI mutant taz' that showed different levels of discoidin expression ranging from high to low compared to that of wild type Ax2 cells (figure 2-1), the 4 disruption strains also exhibited different levels of discoidin expression on colony blots. As shown in figure 2-16, K.O.8-14 showed high expression of discoidin. In comparison to a wild type Ax2 colony, in K.O.8-14, discoidin protein was found in cells beyond the visible border of the colony. K.O.8-16 showed nearly the same discoidin expression pattern as wild type Ax2, while K. O. 8-2 and K. O. 8-23 showed slightly higher or lower discoidin expression, respectively, than wild type Ax2.

Despite of the different levels of discoidin expression in colony blots, in Western blots, all the 4 disruption strains exhibited low discoidin expression compared to that of wild
type Ax2. Figure 2-17 shows the Western blots from K. O.8-2 and K.O.8-14, which represented discoidin low or high expression respectively on colony blots (figure 2-16). When the cells reached a density of 1×10^6 cells/ml, the discoidin protein expression can only be detected in wild type Ax2 cells. After 4 hours of development, discoidin expression can be detected in all strains, but both REMI mutant taz^- and two secondary disruption strains exhibited a weaker signal than that of wild type Ax2. In addition, all three disruption strains showed nearly the same discoidin expression level (figure 2-17).

Figure 2-17. Western blots for discoidin expression. Cells from wild type Ax2, REMI mutant taz^-, knock out construction K.O.8-2 and K.O.8-14 were grown in KA suspension with agitation (180 rpm) and harvested at the cell densities of 1×10^6 cells/ml, washed free of the bacteria by differential centrifugation and allowed to develop on filters for 4 hours. Total protein was separated by SDS-PAGE, and discoidin I was detected by anti-discoidin antibody (Wetterauer et al., 1993). Coomassie stained SDS-PAGEs are used as a loading control.

Knock out strains exhibit an axenic growth defect at 15°C

The secondary disruption strains were examined to investigate whether the axenic growth defect phenotype of the original REMI mutant taz^- could be reproduced. Prewarmed axenic medium was inoculated with exponentially growing cells from wild type Ax2, REMI mutant taz^-, and two secondary disruption strains: K.O.8-2 and K.O.8-14 (figure 2-18). All the three gene disruption strains exhibited significant axenic growth defects at 15°C compared to that of wild type Ax2 cells (table 2-2).
The growth of a REMI mutant 21-1-1 (blasticidin resistance) was monitored and found its axenic growth was normal at 15°C compared to that of wild type Ax2 cells (data not shown), indicating that the phenotype of axenic growth defect at 15°C is due to the *tafazzin* gene disruption, not a common phenotype of blasticidin resistant strains.

![Axenic growth curve of knock-out strain (15°C)](image)

Figure 2-18. Axenic growth curves at 15°C. Prewarmed axenic medium was inoculated with exponentially growing cells from wild type Ax2, REMI mutant *tafazzin*, K.O.8-2 and K.O.8-14, and incubated at 15°C with agitation (180 rpm). Cells were counted microscopically.

<table>
<thead>
<tr>
<th></th>
<th>Wild type Ax2</th>
<th>REMI mutant tafazzin</th>
<th>K.O.8-2</th>
<th>K.O.8-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation time</td>
<td>≈ 24</td>
<td>> 60</td>
<td>> 60</td>
<td>> 60</td>
</tr>
</tbody>
</table>

Table 2-2 Generation time of axenic growth at 15°C (hours)

Taken together, all the above results indicate that the axenic growth defect at 15°C and discoidin mis-expression phenotypes of original REMI mutant *tafazzin* and secondary gene disruption strains are due to the defect in the *Dictyostelium discoideum tafazzin* gene.
Construction of GFP tagged tafazzin

The Neuwald hypothesis (1997) and the work of Vreken et al. (2000) and Bissler et al. (2002) suggest that the human tafazzin gene (G4.5) may encode an acyltransferase involved in the deacylation and reacylation of cardiolipin side chain, or at least a cofactor required for the function of such enzymes. Cardiolipin and two most important enzymes involved in cardiolipin biosynthesis, PGP synthase and CL synthase, are exclusively found in mitochondrial inner membranes. We thus predicted that tafazzin was associated with mitochondria.

An expression vector (figure 2-19) encoding a fusion protein, in which the green fluorescent protein (GFP) of Aequorea victoria was attached to the carboxyl terminus of Dictyostelium discoideum tafazzin, was constructed by cloning the PCR product of the TAZ 17/19 primer pair (see appendix I for the positions of the primers) into the Bgl II restriction site of the Dictyostelium discoideum transformation vector pDdA15gfp (Gerisch et al., 1995).

The resulting plasmid termed pDdtaz15 was transformed into Dictyostelium discoideum cells of REMI mutant taz' and wild type Ax2 by the calcium method (Nellen et al., 1984). For comparison, the GFP protein alone was expressed by transforming the plasmid pDdA15GFP alone into Dictyostelium discoideum cells. Transformed cells were grown under G418 selection (10 μg /ml) (for the transformants in the mutant background, blasticidin and G418 double selection were used). After 10 days to 2 weeks, G418 resistant cells were plated on KA plates in order to obtain single clones. Individual clones were reselected under G418 selection on Costar plates, most of them still kept G418 resistant. Resistant cells were washed, diluted in phosphate buffer and GFP fluorescence images (figure 2-21) were taken by a conventional immunofluorescence microscope with CCD camera.
Figure 2-19. Construct used for the expression of tafazzin-GFP.

Upper part. Dictyostelium discoideum transformation vector pDdA15gfp (Gerisch et al., 1995). In addition to the gfp cassette which was preceded by a multiple cloning site, the vector contained a neomycin-resistance cassette (neo) for the selection of transformants in Dictyostelium discoideum and an ampicillin-resistance cassette (amp) for selection in E. coli.

Lower part. A 1097 bp tafazzin coding region (including 186 bp intron) was amplified by PCR and cloned in front of the gfp sequence of pDdA15gfp (Bgl II). The relevant portion of the resulting plasmid, pDdA15taz-gfp (pDdtaz15) is shown here. Transcription of the gene encoding the fusion protein was controlled by act 15 promoter, and the act 8 terminator from Dictyostelium discoideum. The tafazzin-GFP fusion protein produced by the vector pDdtaz15 contained 8 amino-terminal amino acids (behind the initial methionine) encoded by act 15 (lower case; single-letter amino-acid code), followed by the 267 amino acids of tafazzin (upper case). The tafazzin and GFP sequences were separated by 6 amino acids encoded by the poly linker (lower case). ‘act 6’ refers to the actin 6 promoter; ‘cp1’ refers to the cp1 terminator.

The clones were analyzed by immunoblotting with an anti-GFP monoclonal antibody (figure 2-20). 4 G418 resistant clones, which showed good green fluorescence images
in the microscope, and two control strains, one was REMI mutant \(taz/pDdA15gfp \) - a GFP expression positive control, the other was REMI mutant \(taz \) - a GFP expression negative control, were grown in axenic medium and harvested at the cell density of \(1 \times 10^6 \) cells/ml. The immunoblotting experiments revealed that the relevant clones contained a GFP labeled protein corresponding to the size of the fusion protein of 58 kDa (31 kDa tafazzin + 27 kDa GFP), the GFP positive control REMI mutant \(taz/pDdA15gfp \) only contained a labeled protein corresponding to the size of green fluorescent protein (27 kDa), no detectable GFP signal was found in REMI mutant \(taz \) negative control.

![Western blot for GFP expression](image)

Figure 2-20. Western blot for GFP expression. Cells from several G418 resistant clones, REMI mutant \(taz/pDdA15gfp \) and REMI mutant \(taz \) were grown in axenic medium with agitation (180 rpm) and harvested at the cell densities of \(1 \times 10^6 \) cells/ml. Total protein was separated by SDS-PAGE, and the expression of GFP was detected by anti-GFP antibody. Equal amounts of protein were loaded. The locations of see blue protein standard (kDa) are shown on the left and the locations of labeled protein are on the right.

The above results show that the fusion protein is expressed in *Dictyostelium discoideum* and may be used to localize the tafazzin protein by immunofluorescence.

All the following experiments were done by using one of the positive clones - REMI mutant \(taz/pDdA15tafazzin-gfp4 \) which exhibited best green fluorescence in the
microscope and the strongest GFP signal in the Western blot (figure 20), compared to that of the others.

Dictyostelium discoideum tafazzin protein is mitochondria associated

The green fluorescence images produced by positive clones had a dispersed, dotted distribution (data not shown), indicating the possibility that the fusion protein was organelle associated.

From our phospholipid result, and also from Neuwald hypothesis (1997) and the work published by Vreken *et al.* (2000) and Bissler *et al.* (2002), we thus predicted the possibility that mitochondrion is the target organelle for the tafazzin-gfp fusion protein, and immunofluorescence experiments were performed to test our prediction (figure 2-21).

Exponentially growing cells of REMI mutant *taz'/pDdA15tafazzin-gfp4* were washed and fixed with picric acid/formaldehyde. Subsequently they were processed for immunolabeling according to Humbel *et al.*, (1992). Porin (Zalman *et al.*, 1980 and Roos *et al.*, 1982), also known as voltage-dependent anion-selective channel (VDAC) (Schein *et al.*, 1976 and Colombini 1979), is a major mitochondrial outer membrane protein. An anti – mitochondria porin antibody (Troll *et al.*, 1992) was used for the immunolabeling of mitochondria. As shown in figure 2-21B and D, the porin antibody stained the periphery of mitochondria and showed sharply and dotted red images which were almost identical to those produced by tafazzin – GFP fusion protein.
REMI mutant *taz/pDdA15tafazzin-gfp*4 was grown in axenic medium to exponential phase, cells were allowed to settle and spread onto a clean coverslip, fixed with picric acid/formaldehyde, postfixed with 70% ethanol. Subsequently, mitochondria were detected with the *Dictyostelium discoideum* mitochondrial porin antibody (Troll et al., 1992), and Cy3-conjugated goat anti-mouse IgG. (See materials and methods for details). Images were taken by a conventional immunofluorescence microscope with CCD camera. (A) and (C) fluorescence images produced by tafazzin-GFP fusion protein in a single cell. (B) and (D) Immunofluorescence images stained with a mitochondrial porin antibody (red) in the same cell as (A) and (C). The red images produced by the mitochondrial porin antibody display an almost identical pattern as the GFP images.
Overexpression of tafazzin rescues the mutant phenotype

Colony blots and Western blots were performed to investigate the effect of GFP tagged tafazzin on discoidin expression (figure 2-22 and 2-23). As shown in figure 2-22, discoidin I protein detected in REMI mutant \(taz^+ /pDdA15tafazzin-gfp4 \) was found in cells beyond the visible border of the colony where there is still sufficient supply of nutrients.

![wild type Ax2](image1) ![REMI mutant taz\(^+ /pDdA15tafazzin-gfp\)](image2)

Figure 2-22. Colony blots for discoidin expression. Cells of wild type Ax2 and REMI mutant \(taz^+ /pDdA15tafazzin-gfp4 \) were grown on KA plates to a diameter of approximate 1-2 cm, blotted and incubated first with the anti-discoidin antibody (Wetterauer et al., 1993) and then alkaline phosphatase coupled secondary goat – anti mouse antibody.

In contrast to the \(taz^- \) mutants that showed variable expression levels of discoidin, REMI mutant \(taz^+ /pDdA15tafazzin-gfp4 \) reproducibly displayed discoidin overexpression.

In Western blots, after 4 hours starvation in phosphate buffer, the discoidin I expression levels of wildtype Ax2, REMI mutant \(taz^- \) and 4 tafazzin overexpression strains were quantified (figure 2-23), the discoidin I expression levels of the 4 tafazzin overexpression strains were obviously higher than that of their parent strain REMI mutant \(taz^- \) and reached the expression level of wild type Ax2 cells. The faint lower molecular weight signal in western blots is from the cross reaction of the antibody with discoidin II, a related protein.
Unlike the colony blot where the tafazzin overexpression strain exhibited high discodin I expression, in Western blot, tafazzin overexpression strains just rescued the discodin I expression level to that of wild type Ax2.

Figure 2-23. Western blot for discodin expression. Cells from wild type Ax2, REMI mutant taz and 4 overexpression strains were grown in KA suspension with agitation (180 rpm) and harvested at the cell densities of 1×10^6 cells/ml, washed the bacteria by differential centrifuge and allowed to develop in phosphate buffer for 4 hours. Total protein was separated by SDS-PAGE, and discodin I was detected by the anti-discodin antibody (Wetterauer et al., 1993). A coomassie stained SDS-PAGE is used as a loading control.

In order to examine whether GFP tagged tafazzin can complement the growth defect phenotype of gene disruption strains, the growth of one of the strains, REMI mutant taz/pDda15tafazzin-gfp4, was compared to that of wild type Ax2 cells and its parent strain REMI mutant taz (figure 2-24), the growth of the REMI mutant taz/pDda15tafazzin-gfp4 was significantly faster than that of REMI mutant taz, which exhibited axenic growth defect at 15 °C (figure 2-12 and 2-18), moreover, the tafazzin overexpression strain grew with nearly the same doubling time as wild type Ax2 cells.

Taken together, the above results indicate that overexpression of GFP tagged tafazzin can rescue all of the phenotypes of the gene disruption
Figure 2-24. Axenic growth curve of tafazzin overexpression strain (15°C)

Prewarmed axenic medium were inoculated with exponential growth cells from wild type Ax2, REMI mutant taz⁻ and REMI mutant taz⁻/pDdA15tafazzin-gfp4 and incubated at 15°C with agitation (180 rpm). The total cells were counted microscopically.

Endogenous tafazzin plays a major role in Dictyostelium discoideum

In order to further investigate whether overexpression tafazzin-gfp in wild type Ax2 background can lead to even faster growth than its parent strain wild type Ax2, the growth of two tafazzin overexpression strains, one from wild type Ax2 background, the other from the original REMI mutant taz⁻ background were compared to that of wild type Ax2 and the original REMI mutant taz⁻ (figure 2-25), the growth of Ax2/pDdA15tafazzin-gfp was nearly identical to that of its parent strain wild type Ax2, and both of them grew slightly faster than the other tafazzin-gfp overexpression strain - REMI mutant taz⁻/pDdA15tafazzin-gfp4.

The above results demonstrate that the endogenous tafazzin protein plays a major role in *Dictyostelium discoideum* and overexpression of tafazzin protein can rescue the function of the endogenous one to a certain extent.
Figure 2.25. Growth curve of tafazzin overexpression strain (15°C). Prewarmed axenic medium were inoculated with exponential growth cells from wild type Ax2, REMI mutant taz', REMI mutant taz/pDdA15tafazzin-gfp and Ax2/pDdA15tafazzin-gfp, and then incubated at 15°C with agitation (180 rpm). The total cells were counted microscopically.
Using REMI mutagenesis and discoidin gene family to study growth-differentiation-transition (GDT) in Dictyostelium discoideum

Until recently it was impossible to recover the affected genes from chemically induced mutants. REMI mutagenesis had been introduced from yeast (Schiestl and Petes, 1991) and is a form of insertional mutagenesis that permits the cloning of affected genes (Kuspa and Loomis, 1992). REMI mutagenesis could be able to identify any gene that is not present in functionally redundant copies and is not essential for viability. An increasing number of REMI mutants of great interest have been recovered, and every month produces new mutants that affect fundamental processes.

As a technique, REMI has certain limitations: it creates null mutants because in general it disrupts a gene. Thus many kinds of suppressors can not be found. One would employ it preferentially to remove inhibitory genes that control a pathway and thus create second site suppression. The other problem is that REMI mutants affected during the growth cycle are not recovered by current methods, thus defects in genes that are critical to pinocytosis, phagocytosis, or the cell cycle are not available, although several non-lethal genes like coronin, vacuolin, cyclins, myosin have been investigate by this method.

In our laboratory, REMI mutagenesis was applied to isolate mutants and genes involved in the transition from growth to differentiation (Zeng et al., 2000A and B; Riemann and Nellen, unpublished data).

The discoidin I gene family consists of 3 major polypeptides that are co-ordinately regulated (Devine et al., 1982). The developmental expression of the discoidin I gene family is among the most thoroughly studied genetic regulatory systems in Dictyostelium. The coordinate induction of transcription of these genes is mediated, at least in part, by the extracellular signal PSF (Clark et al., 1987), and this followed
later in development in down-regulation in response to cAMP (Alexander et al., 1990; Vanti et al., 1990). In addition, folate down-regulates discoidin mRNA accumulation in growing as well as developing cells (Alexander et al., 1990; Blusch et al., 1992 and Blusch and Nellen, 1994). An analysis of the discoidin gene promoter has revealed a sequence called the dIE element that is essential for the prestarvation response (Vauti et al., 1990). A TTG sequence was found in the discoidin promoter which is inactive during growth on bacteria, but active when cells are grown axenically.

Discoidin I gene expression pattern was used in our laboratory as a marker for screening REMI mutants affected in the growth-differentiation-transition (GDT) and some REMI mutants, which displayed over-or under-expression of discoidin I, have been generated in our laboratory. Among others, a discoidin overexpression mutant, termed 2-9, was detected. The affected gene, denominated gdt1, is a negative regulator of discoidin expression and the GDT signalling in Dictyostelium discoideum (Zeng et al., 2000A and B). Another one of these was identified as a disruption in CRAC (Riemann and Nellen, unpublished data) and confirmed the previous results that CRAC was involved in the GDT (Endl et al., 1996).

The REMI technique and the use of discoidin as a marker for molecular analysis of the GDT have been proven to be successful (Zeng et al., 2000A and B; Riemann and Nellen, unpublished data). Like the others, this Ph. D work was initially focused on GDT signalling by using the REMI approach and the discoidin gene family as a marker to find GDT genes. Among others, a REMI mutant 17-1-J-3-1 (taz) was detected. REMI mutant 17-1-J-3-1 (taz) exhibited variable discoidin expression levels from over-expression to low-expression on colony blots (See below, for discussion of variation), and low discoidin expression during growth and development on Western blots. In addition, the mutant cells showed an axenic growth defect at 15°C. The affected tafazzin gene was isolated from the REMI mutant by plasmid rescue .

REMI mutant taz showed variable discoidin I expression on KA plates

In this work, initially a REMI mutant 17-1-J-3-1 (taz) with elevated discoidin I expression was screened on a colony blot (figure 2-1). Surprisingly, the discoidin I expression level was variable, ranging from high to low dependent on experiments. Even colonies, which were originally inoculated from the same parent colony onto the same KA plate, showed variation. Interestingly, on Western blots, the mutant cells always exhibited low discoidin expression during growth and development (figure 2-
2). When *Dictyostelium discoideum* cells grow on KA plates, the cells feed on bacteria and form plaques. Then the cells inside the plaque, where the bacteria are consumed, enter the development cycle. The KA plaque where the *Dictyostelium discoideum* cells live close to natural conditions was used for colony blots. Unlike colony blots, the samples used for Western blot in this work were isolated from KA suspension shaking culture. In this case, the cells were forced to enter development by suddenly washing the bacteria, then resuspending and shaking in phosphate buffer for a certain time, this kind of development is not the natural one, but just imitates the normal development. Due to these reasons, other samples isolated from filter development, where *Dictyostelium* cells were forced to enter the development cycle like under natural conditions, were used for Western blots (figure 2-2). Unfortunately, this discrepancy still existed because REMI mutant cells always showed low discoidin expression compared to that of wild type Ax2 cells no matter where the samples used for the Western blot were isolated. Interestingly, the 4 secondary gene disruption strains also exhibited variable discoidin expression on colony blots (figure 2-16), although PCR reactions and southern hybridization demonstrated that they were identical (figure 2-14 and 2-15). Like original gene disruption strain, the secondary gene disruption strains also showed low discoidin expression compare to that of wild type Ax2 cells on Western blots (figure 2-17).

Obviously, the original REMI mutant has a fixed genotype and the genotypes of the 4 secondary gene disruption strains are identical. One possible explanation of the phenotype variation could be the **norm of reaction**.

In general, a single genotype may produce different phenotypes, depending on the environment in which organisms develop. Such a set of environment-phenotype relationships for a give genotype is called the **norm of reaction** of the genotype. Norms of reaction to temperature for eye-size genotypes in the fruit fly *Drosophila melanogaster* is a typical example. When flies of the wild type genotype are raised at higher temperature, they develop eyes that are somewhat smaller than those of wild type flies raised at cooler temperatures. A fly that has the *ultrabar* genotype has smaller eyes than wild type flies regardless of temperature during development. Temperatures have a stronger effect on development of *ultrabar* genotypes than on wild type genotypes. Any fly of the *infrabar* genotype also has smaller eyes than any wild type fly, but temperatures have the opposite effect on flies of this genotype: *infrabar* flies raised at higher temperatures tend to have larger eyes than those raised at lower temperatures. Another example is the norms of reaction to elevation for plant height genotypes in yarrow plant, *Achillea millefolium*. These norms of reaction
indicate that the relationship between genotype and phenotype is complex rather than simple.

In the taz' mutants (both original REMI mutant and secondary gene disruption), colony blot phenotype of discoidin expression ranged from high to low (the mutant norm of reaction) while the wild type phenotype was stable (the wild type norm of reaction), thus our findings suggest that KA plates (environment) have a stronger effect on the development of taz' mutants genotypes than on wild type genotype. In other words, the taz' mutants are more sensitive to slight changes of KA plates (environment) than wild type and show variable levels of discoidin expression. Provided that it is possible to make identical KA plates, one can imagine that the taz' mutants should exhibit stable phenotype on colony blot. Apparently, suspension culture and suspension development as well as filter development are better controlled conditions than KA plates, so the taz' mutants showed stable phenotypes on Western blots.

Mitochondria and signal transduction

As discussed above, the initial expectation of this Ph. D work was to find a signal transduction component of growth differentiation transition by using REMI technique and discoidin I as a molecular marker. Surprisingly, a *Dictyostelium discoideum* tafazzin homolog, which is a nuclear encoded mitochondrial protein and is responsible for human Barth syndrome, was found by using the above approach. Disruption of *Dictyostelium tafazzin* gene caused mis-expression of discoidin I- a molecular marker of growth differentiation transition.

The mechanism of unexpected linkage between mitochondrial protein and early development events is so far unclear. One possibility is that the simple energy problem caused by tafazzin gene disruption leads to development defect because the human tafazzin is believed to be involved in the remodelling of cardioliopin whose appropriate content is an important requirement for activation of enzymes involved in mitochondrial respiration. The other possibility is that the *Dictyostelium discoideum* tafazzin, a mitochondrial protein, may be directly involved in the development in addition to its putative function in energy production. In fact, several mitochondrial proteins (both nuclear and mitochondria encoded) have been published to be involved in *Dictyostelium* development in the past couple of years.
In *Dictyostelium discoideum*, several *dia* genes (differentiation associated gene) have been reported to express specifically in response to the initial differentiation from the PS point (putative shift point) (Chae et al., 1998; Inazu et al., 1999 and Hirose et al., 2000). Among them, *dia3* (Inazu et al., 1999) was found to be a mtDNA encoding mitochondrial protein cluster (NADH dehydrogenase subunit 11, 5, Ribosomal protein S4 (RPS4), RPS2 and NAD4L). The *dia3* expression was found to be developmentally regulated: the expression was scarcely detected at the vegetative growth phase, and the maximal expression was attained at 2 hour of starvation, followed by complete loss at the tight aggregate stage. Partial inactivation of *rps4*- a gene of the *dia3* cluster, greatly impaired the progression of cell differentiation, also the expression of *car1* which is essential for cell aggregation (Sun and Devreotes, 1991) was found to be markedly reduced. Overexpression of the *rps4* gene enhances the initial step of cell differentiation.

The finding that Tortoise, a nuclear DNA encoded mitochondrial protein is required for directional responses of *Dictyostelium* in chemotactic gradients (van Es et al., 2001) is fascinating and suggests that processes like chemotaxis also require mitochondrial proteins. Murgia et al. (1995) reported that *Dictyostelium discoideum* ACLA, an actin-related protein that belongs to the ARP3 family of actin-related proteins, was developmentally regulated and associated with mitochondria, but its function is unknown. In *Drosophila*, the germ cell line is determined by the large subunit (mt-tRNA) of mitochondrial rRNA (Kobayashi and Okada, 1989). More recently, mt-tRNA of *Dictyostelium* slug cells was found to be essential for photosensory and thermosensory signal transduction (Wilcznaka et al., 1997). Age related tissue dysfunction and the pathology of mitochondrial diseases might both be explained partly by defective signal transduction arising either directly from impairment of a mitochondrial role in intracellular signalling or indirectly from energy (ATP) depletion. Thus, this new aspect of mitochondria with several unexpected functions is growing up and our work added one more example to the new aspect of mitochondrial functions.

Dictyostelium discoideum is a model organism to study Barth syndrome

In the past, *S. cerevisiae* had contributed much to the study of human Barth syndrome (see introduction for details of Barth syndrome) because it is easier to be manipulated than mammalian cells. For example, in both yeast *tafazzin* gene disruption strain and human Barth syndrome patients, phospholipid remodelling is disturbed leading to
reduced cardiolipin concentration and abnormal cardiolipin-acyl composition (Vreken et al., 2000).

Dictyostelium discoideum is another simple, genetically tractable organism and contributes more and more to the study of human disease and health (see introduction for examples). The *Dictyostelium* genome is about 3 times bigger than that of yeast, and *Dictyostelium* proteins are more similar to mammalian proteins than those of yeast (Loomis and Smith 1995). *Dictyostelium* genes and their products may give a better approximation to the structure and regulation of mammalian proteins than do the sequences derived from budding yeast. *Dictyostelium* contains signal transduction pathways that exist in animal cells, but not in yeast. For example, *Dictyostelium* has STAT proteins (Signal Transducers and Activators of Transcription) which budding yeast lack (Kawata et al., 1997). These protein are associated with several mammalian growth factors and cytokine-induced signal transduction pathways. Dd-STATs are made throughout growth and development and localize to the nucleus during aggregation (Araki et al., 1998). Dd-STATs seem to function in the manner of mammalian STATS. Additional, yeast cells differ from both human and *Dictyostelium* cells in one important aspect-cell differentiation.

The results of this work may contribute to establish *Dictyostelium discoideum* as a new model system for the study and therapy of human Barth syndrome. In this work, the *Dictysotellum discoideum* homolog of the tafazzin gene was disrupted twice, initially the tafazzin gene was randomly disrupted by REMI mutagenesis, and then it was knocked out by homologous recombination. Both mutants exhibited identical phenotypes. Overexpression of *Dictyostelium discoideum* tafazzin protein complemented the mutant phenotypes. Immunofluorescence experiments demonstrated that *Dictyostelium discoideum* tafazzin was mitochondria associated. It is the first time that tafazzin is reported to be mitochondria associated and its location strongly suggests the molecular basis of its function. Moreover, in this work, phospholipid assays showed that cardiolipin of *Dictyostelium discoideum* REMI mutant taz' was 80% reduced compared to that of the wild type Ax2, while the other phospholipid classes were normal. Although the phospholipid composition from the secondary disruption strains and from the overexpression strains have not been investigated so far, from the observation that the secondary disruption strains exhibited the identical phenotypes and the overexpression strains rescued the phenotypes, we assume that cardiolipin remodelling was disturbed and rescued, respectively. Thus our preliminary results strongly demonstrate that the *Dictyostelium*
discoideum tafazzin protein has the similar function to its orthologues from human and yeast.

The results of this study clearly demonstrate that Dictyostelium discoideum is another model organism to the study and therapy of human Barth syndrome.

Disruption of enzymes involved in the cardiolipin biosynthesis causes growth defect

The biosynthetic pathway of cardiolipin is shown in figure 1-5. The route is similar to other phospholipid pathways and conserves through the eukaryote kingdom. For examples, the Dictyostelium discoideum phosphatidylglycerophosphate synthase (Q8SSY1, Gloeckner et al., 2002) shows high homology to its orthologues from yeast and CHO cells (see appendix IV). Although the Dictyostelium discoideum cardiolipin synthase has not been published yet, a Dictyostelium discoideum random clone (IIBEP1D0026, 448bp) exhibits nearly 100% identity to the middle region of yeast cardiolipin synthase (Q07560) (see appendix V). One can image that the entire Dictyostelium cardiolipin synthase should be found to share similarity to its orthologues from another organisms after the complete Dictyostelium genome sequence project is finished. Due to the conservation of the cardiolipin biosynthetic pathway, the study of the pathway in model organism could answer the general questions of the cardiolipin pathway.

One approach to understanding the metabolic mechanisms and the physiological roles of phosphatidylglycerol (PG) and cardiolipin (CL) is the establishment of mutants defective in the synthesis pathway. At present, the studies of the two most important enzymes involved in cardiolipin biosynthesis pathway, phosphatidylglycerolphosphate synthase that catalyses the committed and rate-limiting step in PG/CL biosynthesis, and cardiolipin synthase that differs from prokaryotes to eukaryotes, have only been documented for Chinese hamster ovary cell (CHO) and in lower eukaryotes and prokaryotes like yeast Saccharomyces cerevisiae and E.coli (For review, see Schlame et al., 2000).

Studies with the CHO-K1 mutant PGS-S, deficient in PGP synthase, have revealed that the mutant was temperature-sensitive at 40°C, and displayed growth defect to some extent even when grown with glucose. While grown with glucose-deficient medium, for example, galactose, in which the majority of cellular energy is derived from
oxidative phosphorylation, the mutant had a more significant growth defect at 40°C than in glucose containing medium (Ohtsuka et al., 1993 A and B). In yeast, disruption of the PGP synthase gene did not lead to the loss of viability (Chang et al., 1998A; Jiang et al., 1998 and Minskoff et al., 1997), although the mutant strain was dependent on a fermentable carbon source (petite lethal phenotype), specifically when the mutant cells grew at elevated temperature (37°C), its growth was significantly slower and cells reached a lower cell density in stationary phase than wild type cells.

Disruptions of the yeast cardiolipin synthase gene have been studied, the growth defect phenotypic changes brought about by this mutant are not dramatic (Chang et al., 1998B, Jiang et al., 1997 and 1999 and Koshkin and Greenberg, 2000), for example, mutants can grow on both fermentable and non-fermentable (glycol, ethanol containing medium) carbon sources at 30°C, although mutants show a slight growth defect on non-fermentable carbon source. However, when the growth temperature was increased to 37°C, cardiolipin synthase expression was essential for growth, even on a fermentable carbon source. The above studies suggest that since phosphatidylglycerol levels are elevated in these cells, phosphatidylglycerol could substitute for cardiolipin in most essential mitochondrial functions to some extent, but can not fully substitute the cardiolipin function.

Tafazzins share several conserved regions with phospholipid acyltransferase of diverse organisms (Neuwald hypothesis, 1997, figure 1-3), suggesting that Barth syndrome may be caused by a defect or defects in cardiolipin acyl transfer. Thus the growth of Dictyostelium discoideum taf mutant was investigated (figure 2-12). When grown on axenic medium containing 1% glucose, Dictyostelium discoideum taf mutants (both original REMI mutant and secondary gene disruption strains) exhibited a significant growth defect at 15°C. When the temperature was increased to 22°C which is the normal laboratory culture temperature for Dictyostelium discoideum, the growth of mutant cells was not significantly slower than that of wild type Ax2 cells. The mutant cells showed no growth defect compared to wild type Ax2 cells when the culture temperature was increased to 27°C. Because tafazzin maybe involved in cardiolipin remodelling (Bissler et al., 2002; Neuwald, 1997; Schlame et al., 2002; Vreken et al., 2000 and this work), the temperature sensitive growth defect suggested that in Dictyostelium discoideum, phosphatidylglycerol could substitute for cardiolipin in optimal conditions (22°C and 27°C), but this substitution was only sufficient to a limited extent and under severe conditions, for example 15°C, the growth of Dictyostelium discoideum cells needed the normal function of cardiolipin. Our data is
consistent with the findings of Chang et al. (1998B), Jiang et al. (1999) and Tuller et al. (1998) from yeast Saccharomyces cerevisiae cardiolipin synthase mutants. However, our growth defect is low temperature sensitive (15°C), differing to their observation that yeast cardiolipin synthase mutant cells are high temperature sensitive (37°C). Because no low temperature growths of yeast and CHO have been studied and published so far, and in this work, the high temperature growth above 27°C has not been investigated, it is too earlier to draw any final conclusion before the above experiments are done.

When grown with KA suspension, the cells of Dictyostelium discoideum mutant taz showed approximately the same doubling time as the wild type Ax2 cells no matter what the temperature was (figure 2-12A-C). Dictyostelium discoideum is extraordinarily efficient phagocyte, with the capability of consuming a variety of bacteria (Depratître and Darmon, 1978; Raper, 1937; Raper and Smith, 1939). Amoebae ingest a variety of prey by coordinating surface recognition, signal transduction, and mobilization of the cytoskeleton. Most of the bacterial materials are degraded as very little remains after digestion (Braun et al., 1972). As a medium, bacterial material which is the natural food source of Dictyostelium discoideum, is a most complicated one containing all the materials for bacterial survival and bacterial secondary metabolites. The reason why the cells of Dictyostelium discoideum mutant taz exhibited normal bacterial growth at different temperatures compared to that of wild type Ax2 cells could simply be due to the rich medium-bacterial materials, when grown with the complicated rich medium (a bacteria suspension), phosphatidylglycerol could substitute the function of cardiolipin to considerable extent compared to that of axenic growth and the cells of mutant taz displayed no growth defect at different growth condition.

Additional, the prokaryotic membrane is another source of cardiolipin. The rich medium (a bacterial suspension) used in this work contains the bacterial cardiolipin. Can the exogenous cardiolipin complement the lack of endogenous one? Nevertheless, some similar evidence already exists: Dietary modification of the molecular species composition of cardiolipin was shown to alter the oxygen consumption in cardiac mitochondria (Yamaoka-Koseki et al., 1990 and 1991. In addition, the activity of delipidated rat liver cytochrome c oxidase was reconstituted by the addition of cardiolipin. The fatty acid composition of the various phospholipid species in the heart was shown to be dependent upon a variety of factors including composition of diet (for review, see Van der Vusse et al., 1992). Shibata et al. (1994) reported, in vitro
incorporation of small amounts of cardiolipin can significantly stabilize the phosphatidylcholine bilayer structure.

Neuwald hypothesis: tafazzin and acyltransferase

Cardiolipin is a diphospholipid required for the structural integrity of the mitochondria and for the proper function of the electron transport chain. Cardiolipin biosynthesis occurs exclusively in mitochondria via the cytidine-5’-diphosphate-1, 2-diacyl-sn-glycerol (CDP-DG) pathway. Because the enzymes involved in cardiolipin *de novo* biosynthesis exhibit limited molecular species specificity (Rustow *et al*., 1989), it seems very unlikely that the characteristic acyl species of cardiolipin are already present during formation of the cardiolipin precursors. Thus once cardiolipin is synthesized *de novo* by this pathway, it must be remodelled to obtain the appropriate molecular species composition found in the mitochondria inner membrane (see table 1-1, for the major molecular species of mammalian cardiolipin). This special acyl side chain of cardiolipin is very important for proper biological function. It was reported that the hydrophobic double unsaturated linolei diacylglycerol species of mammalian cells appeared to be an important structural requirement of the high protein binding affinity of cardiolipin (Schlame *et al*., 1990).

![Proposed model of cardiolipin molecular remodelling in rat heart mitochondria.](image)

(From Ma *et al.* (1999), J. Lipid Res. 40, 1837-1845)
The deacylation-reacylation cycle for the molecular remodelling of glycerophospholipids was first described by Lands in 1960: Remodelling of a phospholipid requires the concerted action of phospholipase A₂ (PLA₂) followed by the reacylation of the resulting lysophospholipid. The acyltransferase (AT) activities for mammalian phosphatidylcholine remodelling have been extensively investigated (for review, see Choy et al., 1997). However, limited information is available on the acyltransferases that are involved in the molecular remodelling of cardiolipin. A deacylation-reacylation cycle for the molecular remodelling of endogenous cardiolipin in rat liver mitochondria was proposed (Schlame and Rüstow, 1990). Endogenous cardiolipin was deacylated to monolysocardiolipin (MLCL) and then reacylated with linoleoyl-coenzyme A to form cardiolipin (figure 3-2). Such a deacylation followed by reacylation scheme for cardiolipin seems logical as mitochondrial phospholipase A₂ was shown to readily hydrolyse endogenous and exogenous cardiolipin (Buchland et al., 1998; De Winter et al., 1987; Hostetler et al., 1978 and Waite and Sisson, 1971). Ma et al., (1999) identified and characterized the activity of monolysocardiolipin acyltransferase (MLCL AT) that was responsible for monolysocardiolipin acylation to cardiolipin in mammalian tissues. They found that the reacylation reactions were coenzyme A-dependent and separate AT activities were present for the incorporation linoleic acid (18:2) or oleic acid (18:1) into the side chain of newly formed cardiolipin. Mutter et al., (2000) postulated that MLCL AT may be a rate limiting enzyme of the molecular remodelling of cardiolipin in the heart. Additional, Taylar et al., (2000) reported that the expression of monolysocardiolipin acyltransferase activity was regulated in concert with the level of cardiolipin and cardiolipin biosynthesis in the mammalian heart. It is worth to mention here that all the AT activities were detected from mammalian tissues so far, neither of the above acyltransferases were purified nor the genes were cloned.

Neuwald (1997) reported that human tafazzins shared several conserved regions with phospholipid acyltransferases of diverse organisms and suggested that Barth syndrome may be caused by a defect or defects in lipid acyl transfer. In agreement with the Neuwald hypothesis, Vreken and colleagues (2000) reported reduced content of cardiolipin and reduced incorporation of linoleic acid into polyglycerophospholipids in cultured fibroblasts from Barth syndrome patients. In yeast tafazzin mutant strains, reduced cardiolipin concentration and abnormal acyl composition were also found (Vreken, personal communication). More recently, Schlame et al. (2002) investigated cardiolipin deficiency in several tissues from Barth syndrome patients and found that L₄-cardiolipin, a cardiolipin species in which all four acyl positions are substituted by linoleic acid, was virtually undetectable in platelets, heart tissue, and skeletal muscle
from affected boys, whereas Lc-cardiolipin was specifically enriched in normal skeletal muscle and normal heart. Our preliminary phospholipid assay showed reduced content of cardiolipin in Dictyostelium discoideum tas' mutant (figure 2-11). The findings from 3 groups by using different organisms quite agree with Neuwald’s suggestion that the mutated proteins are acyltransferases, or at least co-factors. Previous studies already indicated that the in vivo molecular remodelling of phospholipid including cardiolipin was a complex process and was likely regulated at several levels (Choy et al., 1997; Ma et al., 1999; Mutter et al., 2000, Taylor et al., 2002). Since phospholipid remodelling is defined as the conversion of one molecular species to another, it has been proposed that acyltransferase may exist in multiple molecular forms, and each form has a high degree of specificity for a defined acyl group (Choy et al., 1989). In fact some evidence already existed to support this (Deka et al., 1986; Ma et al., 1999 and Sanjanwala et al., 1988). Although more and more evidences are coming recently to support Neuwald hypothesis, people still know very less about the exact role of tafazzin in the complicated cardiolipin deacylation-reacylation cycle.
Figure 3-2. Comparison of amino acid sequence of *Dictyostelium discoideum* tafazzin with acyltransferases from other organisms.

Upper: multiple alignments between *Dictyostelium discoideum* tafazzin and acyltransferase from *Myobacterium tuberculosis* (O07808); 1-acyl-sn-glycerol-3-phosphate acyltransferase from *Thermoanaerobacter tengcongensis* (Q8R839) and from *Clostridium acetobutylicum* (Q97KF4); putative acyltransferase from *Yersinia pestis* (Q8ZCZ0).

Lower: Alignment between *Dictyostelium discoideum* tafazzin and acyltransferase from *Myobacterium tuberculosis* (O07808).

MultiAlign tool (Corpet et al., 1988) was used to perform the above alignment (http://www.toulouse.inra.fr/multalign.htm). Red: identity. Green: similarity.

In addition, *Dictyostelium discoideum* tafazzin shows some similarity to acyltransferase from *Mycobacterium tuberculosis* (Cole et al., 1998) by Blast search using *Dictyostelium discoideum* tafazzin protein. Although the identity and similarity are not high, the identical or similar amino acids are scattered throughout the sequence except the N terminal of *Dictyostelium discoideum* tafazzin (figure 3-2 lower part). Moreover, *Dictyostelium discoideum* tafazzin exhibits limited similarity to other acyltransferases from *Clostridium acetobutylicum* (Noelling et al., 2001), *Thermoanaerobacter tengcongensis* (Bao et al., 2002) and *Yersinia pestis* (Parkhill et al., 2001) (figure 3-2 upper part).
It is worth to mention here that all the above homologies are derived from bacterial acyltransferases, eukaryotic acyltransferases exhibit even lower similarity to *Dictyostelium discoideum* tafazzin (data not shown). Our findings are consistent with Neuwald hypothesis (1997): acyltransferases, derived by PROBE search using human tafazzins, were mainly from bacteria and lower eukaryotes, like yeast, roundworm (figure 1-3).

Since endosynbiont theory already suggested that eukaryotic mitochondria have evolved from aerobic bacteria that took to living inside the anaerobic ancestors of today’s eukaryotic cells, it was not unexpected to find that tafazzin, a putative acyltransferase involved in the reacylation of mitochondria inner membrane specific cardiolipin, shares homology to bacterial acyltransferases.

The relationships between growth temperature, fatty acid composition and the physical state and fluidity of membrane lipids

Almost all organisms possess the ability to vary the fatty acid composition of their cellular lipids in a characteristic fashion in response to alterations in the environmental temperature. Changes in membrane lipid fatty acid as a function of the temperature of growth are particularly evident in prokaryotic micro-organisms, some of which have become adapted to temperature extremes ranging from -10 to nearly 100°C.

Neuwald (1997) identified 5 regions of the human tafazzin proteins with acyltransferase homology (figure 1-3). He proposed that tafazzin proteins might be involved in phospholipid biosynthesis and remodelling. Bissler *et al.* (2002) found that their Barth syndrome patient tissues had more saturated and less unsaturated fatty acids than did controls. The acyl moieties of phospholipid molecules determine many of the physical properties of the membrane. The degree of unsaturation is important in determining membrane fluidity, a measure of the ease of movement of molecules with the membrane bilayer. Membrane fluidity at a given temperature is inversely proportional to the fraction of acyl chain moieties comprised of saturated fatty acids.

Cellular membrane fluidities are maintained with a narrow range by acyltransferase-mediated remodelling of phospholipid within the membrane. As the environmental temperature is increased, the proportion of saturated fatty acids found in the membrane lipids is also markedly increased with a concomitant decrease in the
proportion of unsaturated and branched chain fatty acids. The change from one state to the other occurs via a thermally induced phase transition with the ordered (gel) state occurring at lower temperatures and the disordered (liquid-crystal) state occurring at higher temperatures. Since the lipid phase transition is dependent on the fatty acyl groups of the membrane lipids, changes in the fatty acid composition would result in shifting the temperature range of the transition. This shift is assumed to be required to minimize the effect of temperature changes on the fluidity and physical state of the membrane lipid which is compatible with cellular growth and function. *Escherichia coli*, for example, is able to maintain the fluidity of its membrane lipids nearly constant over its entire growth temperature range by appropriate alterations in the fatty acid composition of its membrane lipids—a process termed “homeoviscous adaptations” (Sinensky, 1974). Since the permeability properties of the cellular membrane and the activity of certain membrane-bound enzymes and transport systems are markedly dependent on the fluidity and physical state of the membrane lipids, it seems likely that homeoviscous adaptation represents an important mechanism for maintaining optimal levels of cell growth over a wide range of environmental temperatures. If the *tafazzin* gene product is an acyltransferase present within the mitochondrial membrane, these membranes in affected patients or *Dictyostelium discoideum* taz mutant may have reduced fluidity, possibly reducing the normal function of integral membrane proteins.

Defects in cardiolipin biosynthesis pathway cause alterations in mitochondrial morphology

Ohtsuka *et al.* (1993) investigated the mitochondria of cultured Chinese hamster ovary (CHO) cells mutated in phosphatidylglycerophosphate synthase, which catalyses the committed step of cardiolipin biosynthesis, and found ultrastructural alterations in mitochondrial morphology (figure 3-3 left): all the mitochondria appeared greatly enlarged and swollen, cristae were lacking or disorganized, and a reduction in the electron density of the mitochondrial matrix was found. It is worthy to mention here that all the mitochondrial alterations observed by Ohtsuka *et al.* were from mutant cells cultivated at 40°C, where the cardiolipin content dropped to about 30% of that in the wild type. Mitochondria from mutant cells cultivated at 33°C were not significantly modified compared to that of the wild type cells. Furthermore, mitochondria from the mutant defect in another phospholipid biosynthesis, for example phosphatidylserine and sphingolipind, appeared similar to the wild type in shape, size, crista content, and electron density of the matrix. The results of Ohtsuka
et al. suggested that an alteration of mitochondrial ultrastructure was specifically associated with reduction in cardiolipin content.

When CHO PGS-S mutant was transfected with CHO PGS1 cDNA (Kawasaki et al., 1999), the structure of mitochondria in transformant PGS-S/cPGS1 was found to be normal with respect to both size and matrix electron density (figure 3-1 right), their results indicated phosphatidyglycerol and/or cardiolipin formation was critical for mitochondrila function and morphology.

Barth et al. (1983) and Neustein et al. (1979) independently reported mitochondrial ultrastructural abnormalities from their individual patients who are now known as suffering from Barth syndrome. They observed enlarged, spheric mitochondria and alterations in cristal structure where many mitochondria had tightly packed cristae in rectilinear or concentric array, the mitochondrial matrix in all cases was generally of low electron density except for occasional dense inclusion bodies of undetermined nature. The above observations from Barth syndrome patients were similar to that of Ohtsuka et al. (1993).

The consistent alteration in mitochondrial morphology observed from Barth syndrome patients whose tafazzin gene (G4.5) was disrupted, and from CHO phosphatidyglycerophosphate synthase (PGS) mutant cells, which had reduced cardiolipin content, could be one more evidences to support the Neuwald hypothesis that the human tafazzin gene (G4.5) is involved in cardiolipin biosynthesis. Mitochondrial ultra-structural morphology neither from Dictyostelium discoideum taz mutant (this work), nor from yeast disruption strains defect in cardiolipin biosynthesis have been investigated and published so far.
Figure 3-3(L).
Electron micrographs of PGS-S mutant and CHO-K1 wild type cells.
Cells were grown at 33°C (A and C) or 40°C (B and D). A and B, CHO-K1 wild type cells; C and D, mutant PGS-S cells (from Ohtsuka et al. (1993). J. Biol. Chem. 268, 22914-22919)

Figure 3-3(R).
Electron micrographs of transformant PGS-S/cPGS1 cells.
CHO-K1 (A), PGS-S (B), and PGS-S/cPGS1 (C) cells grown at 40°C were analysed by electron microscopy. (from Kawasaki et al.(1999), J. Biol. Chem. 274, 1828-1834)

Dictyostelium discoideum endogenous tafazzin plays a major role and exogenous tafazzin can only complement the function to some extent

In this work, a GFP tagged tafazzin overexpression strain rescued the phenotypes of *tax* mutant, the cells of overexpression strain exhibited the normal axenic growth compared to that of wild type Ax2 cells at 15°C (figure 2-24), and the developmental discoidin expression level of tafazzin overexpression strain reached that of wild type
Ax2 (figure 2-23). These results demonstrate that the functional defects were directly due to the tafazzin gene disruption and the \textit{taz} mutant transformed with GFP tagged tafazzin can complement the mutant phenotypes to the level of wild type Ax2. Noticeably, the wild type Ax2 cells transformed with GFP tagged tafazzin grew in the same double time as its parent strain Ax2 at 15°C (figure 2-26), no further increase of growth ability was observed, indicating that exogenous tafazzin only can restore the function of endogenous one to some extent.

Kawasaki and his colleagues (1999) investigated the growth of CHO PGS-S mutant transfected with the CHO \textit{PGS1} cDNA at 40°C and their result is consistent with ours: transformant PGP-S/cPGS1 can complement the growth defect of mutant PGS-S and the growth of transformat PGP-S/cPGS1 nearly reached the levels of wild type. The above findings indicate that cardiolipin is of vital importance at severe conditions.

\textbf{REMI mutant \textit{taz} can compete against wild type Ax2 in development}

In this work, a GFP labelled cell sorting assay was performed. GFP was transformed into both \textit{Dictyostelium discoideum} wild type Ax2 and original REMI mutant \textit{taz}. The cells of GFP labelled \textit{taz} and wild type Ax2 were mixed in different ratios, washed and forced to enter development stage at 22°C. The opposite assay that GFP labelled wild type Ax2 cells were mixed with non-labelled mutant \textit{taz} cells in different ratios was also done. All of these experiments showed the cells of the \textit{taz} mutant entered multicellular development stage in the same way as wild type Ax2 cells (figure 2-10). Our results indicate that at least at 22°C, the cells of \textit{Dictyostelium discoideum} \textit{taz} mutant can compete against wild type Ax2 cells to enter fruiting body. In order to further illuminate the function of tafazzin and cardiolipin, the cell sorting assay should be investigated under more stringent conditions, for example, low and high temperatures.

\textbf{Conclusions}

The REMI technique and the use of discoidin as a marker for molecular analysis of the GDT signalling have proven to be successful (Zeng et al., 2000A and Riemann et al., unpublished data). In this work, a \textit{Dictyostelium discoideum} tafazzin homolog, which is responsible for Barth syndrome in human, was found by the above approach. The \textit{Dictoyostelium discoideum} tafazzin was found to be mitochondria associated. The \textit{taz}
mutant displayed discoidin mis-expression. A linkage between GDT signalling and mitochondria was unexpected. Although the position of tafazzin, a mitochondria protein, in the GDT signalling cascade has not been investigated so far, our preliminary findings added at least one more example for the increasing evidences that mitochondria are directly involved in signal transduction network. The future work should concentrate on the interaction between tafazzin and other GDT components.

The *Dictyostelium discoideum* tafazzin showed homology to acyltransferases from different organism, especially from prokaryotes, and the cardiolipin content of the taz mutant was 80% reduced compared to that of wild type. All the above findings are consistent with Neuwald hypothesis and with the results from human Barth syndrome patients and yeast tafazzin disruption strains. Since *Dictyostelium* is a facultative multicellular organism, the further study of *Dictyostelium* tafazzin could therefore present new aspects for the diagnosis and therapy of human Barth syndrome.
4

Materials and Methods

4.1 Materials

Antibiotics
Ampicillin Sigma, Deisenhofen
amphotericin Serva, Heidelberg
blasticidin ICN, Arora
geneticin (G418) Sigma, Deisenhofen
penicillin/streptomycin Gibco BRL, Eggenstein
kanamycin Sigma, Deisenhofen
chloramphenicol Sigma, Deisenhofen
tetracyclin Serva, Heidelberg

Antibodies
Monoclonal antibodies
anti-Dictyostelium discoideum Wetterauer et al., 1993
discoidin antibody
anti-GFP antibody
anti-Dictyostelium discoideum Troll et al., 1992
mitochondrial porin antibody

IgG, goat-anti-mouse, Dianova, Hamburg
alkaline phosphatase-coupled
IgG, goat-anti-mouse, BioTrend
Cy3 (Cyanine 3.18) coupled
Biological Materials

Bacterial strains

Escherichia coli *DH 5α*
(Kanamycin, 1983)

Klebsiella aerogenes
(Williams and Newell, 1976)

Dictyostelium discoideum

Ax2
(Watts and Ashworth, 1970)

Chemicals and reagents

- acetic acid 100%
 (Fluka, Deisenhofen)
- acetone
 (Fluka, Deisenhofen)
- accu Gel 40%
 (National Diagnostics, USA)
- (19:1 acrylamide: bisacrylamide)
- acrylamide Protogel 30%
 (National Diagnostics, USA)
- agarose SeaKem
 (FMC Bioproducts, USA)
- ammonium peroxodisulfate(APS)
 (Merck, Darmstadt)
- bacto-peptone
 (Difco, Augsburg)
- bacto-tryptone
 (Difco, Augsburg)
- β-mercaptoethanol
 (Fluka, Deisenhofen)
- boric acid
 (Roth, Karlsruhe)
- bromophenol blue
 (Fluka, Deisenhofen)
- BSA
 (Roth, Karlsruhe)
- Calcium chloride (CaCl₂)
 (Roth, Karlsruhe)
- chloroform
 (Fluka, Deisenhofen)
- Coomassie Brilliant Blue R-250
 (Serva, Heidelberg)
- dATP
 (MBI Fermentas, St. Leon-Rot)
- dCTP
 (MBI Fermentas, St. Leon-Rot)
- dGTP
 (MBI Fermentas, St. Leon-Rot)
- dTTP
 (MBI Fermentas, St. Leon-Rot)
- diethylpyrocarbonate
 (Roth, Karlsruhe)
- DMSO
 (Serva, Heidelberg)
- DTT
 (Roth, Karlsruhe)
- EDTA
 (Roth, Karlsruhe)
- ethanol 99.8%
 (Roth, Karlsruhe)
- ethanol absolut
 (Fluka, Deisenhofen)
- ethidium bromide
 (Fluka, Deisenhofen)
- fischgelatine (45%)
 (Sigma)
formaldehyde 37% Riedel-de-Haen, Seelze
formamide Roth, Karlsruhe
D(+) glucose Fluka, Deisenhofen
glycerol, 86% Roth, Karlsruhe
glycine Roth, Karlsruhe
guanidine thiocyanate Roth, Karlsruhe
HEPES Fluka, Deisenhofen
IPTG Bts, St. Leon-Rot
isopropanol Fluka, Deisenhofen
liquid nitrogen Messer Griesheim, Krefeld
lithium chloride(LiCl) Roth, Karlsruhe
magnesium chloride (MgCl₂) Roth, Karlsruhe
magnesium sulphate (MgSO₄) Fluka, Deisenhofen
methanol Fluka, Deisenhofen
methylene blue Roth, Karlsruhe
MOPS Fluka, Deisenhofen
N-lauroylsarcosine Roth, Karlsruhe
phenol Roth, Karlsruhe
phenol/chloroform Roth, Karlsruhe
picric acid Sigma
Ponceau S Sigma, Deisenhofen
potassium acetate(KAc) Riedel-de-Haen, Seelze
potassium chloride(KCl) Roth, Karlsruhe
potassium hydrogenphosphate (KH₂PO₄) Fluka, Deisenhofen
Rotiphorese gel (acrylamide) Roth, Karlsruhe
sucrose Roth, Karlsruhe
SDS-sodium dodecyl(lauryl) sulfate Riedel de Haen, seelze
sephadex(G25, G50) Pharmacia, Freiburg
sodium acetate (NaAc) Fluka, Deisenhofen
sodium azid(NaN₃) Merck, darmstadt
sodium carbonate(NaCO₃) Roth, Karlsruhe
sodium citrate Roth, Karlsruhe
sodium dihydrogenphosphate (NaH₂PO₄) Fluka, Deisenhofen
sodium hydrogenphosphate (Na₂HPO₄) Fluka, Deisenhofen
sodium hydroxide Fluka, Deisenhofen
TEMED Biomol, Hamburg
Tris Riedel de Haen,Seelze
Triton-x-100 Serva, Heidelberg
Tween 20
urea
X-gal
xylene cyanol FF
Chemicals of the highest purity (analytical grade) were used.

Devices

autoclave
binocular
centrifuges:
 Appligene
 Avanti™ 30
 C0650, C1015, F2404 rotors
 Centrifuge 5417 C
 Rotina 48R
E.A.S.Y. gel documenting system
Fluorescence microscope
gel dryer
Gene Pulser®
GeneQuant®
Gradi Frac®
glasspipette
heating block
heating plate
hybridization oven
imager: Fuji X Bas 1500
Bio Imaging Analyzer –
BAS cassette 2025
magnetic stirring plate
microscope
microwave oven
Neubauer – counting chamber
PCR-Mastercycler personal
pH-Meter 320
pipetboy
pipettes (10µl, 20µl, 200µl, 1000µl)
photometer Uvikon 930
power supplies:
Power Pac 3000, Bio-Rad, Canada
EPS, Pharmacia, Freiburg
Pump, BioRad
rocking platform, Heidolf, Germany
scales, Satorius, Göttingen
semidry blotting apparatus, Von Kreuz, Reiskirchen
Speed Vac concentrator, Savant, USA
ultra-sonicator UP 200S, Dr. Hielscher GmbH, Stansdorf
Vortex Genie, Bender Hohbein AG, Germany
water bath Julabo F25, Schütt, Göttingen

DNA and protein markers

- 100bp DNA ladder, MBI Fermentas, St. Leon-Rot
- 100bp plus DNA ladder, MBI Fermentas, St. Leon-Rot
- 1 kb DNA ladder, MBI Fermentas, St. Leon-Rot
- protein marker, Serva
- SeeBlue pre-stained protein standards, Novex, USA

Enzymes and proteins

- proteinase K, Boehringer Mannheim, Mannheim
- restriction endonucleases, Boehringer Mannheim, Mannheim
- reverse transcriptase (Mu-MLV), MBI Fermentas, St. Leon-Rot
- RNase A, Boehringer Mannheim, Mannheim
- RNase inhibitor (RNasin), MBI Fermentas, St. Leon-Rot
- shrimp alkaline phosphatase (SAP), USB
- SP6 RNA polymerase, MBI Fermentas, St. Leon-Rot
- T4 DNA ligase, MBI Fermentase, St. Leon-Rot
- T7 RNA polymerase, MBI Fermentase, St. Leon-Rot
- Taq DNA polymerase, Home made, Department of Genetics, University of Kassel
General buffers and solutions

- **6 x DNA loading buffer**
 - 40% (w/v) sucrose
 - 0.25% bromophenol blue and or
 - 0.25% xylene cyanol FF
- **100 x Denhardt**
 - 2% Ficoll 400
 - 2% polyvinylpyrrolidone
 - 2% BSA
- **Ethidium bormide solution**
 - 10 mg/ml
- **Phosphate buffer, pH 6.7**
 - 56.5 ml 1M KH₂PO₄
 - 43.5 ml 1M K₂HPO₄
- **20 x SSC**
 - 3 M NaCl
 - 0.3 M sodium citrate
- **TAE buffer**
 - 40 mM Tris-acetate
 - 2 mM EDTA
- **TBE buffer**
 - 90 mM Tris-borate
 - 2 mM EDTA
- **TE buffer**
 - 10 mM Tris-Cl
 - 1 mM EDTA pH 7.4 or 8.0

All buffers and solutions were prepared using deionised or bidistilled water.

Kits and reagents sets

- **Nucleotrap elution kit**
 - Macherey & Nagel, Düren
- **Nucleobond AX 100**
 - Macherey & Nagel, Düren
- **pGem-T-easy cloning kit**
 - Promega, USA
- **BigDye™ Terminator Cycle Sequencing**
 - ABI PRISM
- **fmol® DNA Cycle Sequencing System**
 - Promega, USA
Media

Dictyostelium general media

AX medium, pH 6.7
(Watts and Ashworth, 1970)
14.3 g Bacto-Peptone
18.0 g glucose
0.616 g Na₂HPO₄ x 2 H₂O
0.486 g KH₂PO₄
7.15 g yeast extract
add H₂O to 1000 ml and autoclave for 20 minutes at 121°C

G0 medium
AX medium plus
50 µg/ml ampicillin
100 U/ml penicillin
100 µg/ml streptomycin
0.25 µg/ml amphotericin

SM agar plate, pH 6.5
(Sussman, 1951)
15 g bacto-agar
10 g peptone
10 g glucose
1 g yeast-extract
1 g MgSO₄ x 7 H₂O
2.2 g KH₂PO₄
1 g K₂HPO₄
add H₂O to 1L, 20 ml/petridish

Bacterial media

LB medium
10 g Bacto-Tryptone
5 g yeast-extract
5 g NaCl
add H₂O to 1L and autoclave for 20 minutes at 121°C

LB agar
1L LB medium plus 9g agar

LBₐµp plate
LB agar was chilled to 55°C and Ampicillin was added to a final concentration of 50 µg/ml
Oligonucleotide primers

All oligonucleotides were synthesized by Gibco BRL oligo-service

Bs\(^r\) primer No. 384: \[\text{GCCGCTCCCACATGATG}\]

pGEM primers:
- T7 promoter primer: \[\text{TGTAATACGACTCACTATAGGG}\]
- SP6 promoter primer: \[\text{ATTTAGGGACACCTATAGATAAC}\]

pUC primers:
- Universal primer: \[\text{CGCCAGGGTTTTCCCCAGTCACGAC}\]
- Reverse primer: \[\text{GAGCGGATAAACAATTCACACAGG}\]

RACE primers:
- Oligo(dT) – adapter (Smart-Clontech): \[\text{AAGCAGTGGTAACAAACGAGAGTACTTTTTTTTTT}\]
- Smart adapter (Smart – Clontech): \[\text{TTTTTTTTTTTTTTTTTTTTTTN}\]
 \[\text{AAGCAGTGGTAACAAACGAGAGTAC}\]

DdTafazzin primers:
- TAZ1: \[\text{CATATGTTAGATGATCCATTATTATGGGCTG}\]
- TAZ2: \[\text{CTCGAGTGGTATTTGGTAATTTGCCATATGG}\]
- TAZ5: \[\text{CAGTGACATTAGGTGCTTC}\]
- TAZ6: \[\text{GCATTGGATTTCTCCATACCTTG}\]
- TAZ7: \[\text{AGGAAGACGTTAAGGAGTTTTTACATAGTTG}\]
- TAZ8: \[\text{AGGAAGACCTTTAATTGTGGATGAGAAAAACG}\]
- TAZ9: \[\text{GAGGTCGTTCCTCTCATCCACAC}\]
- TAZ10: \[\text{CITGACTCTACCCGATTACCTTTC}\]
- TAZ11: \[\text{CATAATATGTGATATACAAAAACCTC}\]
- TAZ13: \[\text{TATTAATTTTATTTAAAAATCTTTAATTG}\]
- TAZ14: \[\text{CATATGTTGGTATTTGGTAATTTTTGCTATATG}\]
- TAZ15: \[\text{CCTCTAAACAATTTAATCTATTATTTT}\]
- TAZ16: \[\text{CTCGAGTGGTATTTGGTAATTTTTGCTATATG}\]
- TAZ17: \[\text{AGATCTCAAATATGTGATACAAAACACCTC}\]
- TAZ18: \[\text{AGATCTATGGATGAAATAGATAATAAATAAT}\]
- TAZ19: \[\text{AGATCTTGGTGGATGAGAAAACGACCTCT}\]
Plasmids

- pDdA15gfp
- pGem 7z
- pGem T-easy
- pUC118
- pUC118 Bs’ cassette

 - Gerisch *et al.*, 1995
 - Promega
 - Promega
 - novagene
 - plasmid book No.967, this laboratory

Radioactive materials

- [α-32P] dATP (40MBq)
- [α-32P] UTP (40MBq)
- [α-35S] dATP (40MBq)

 - Hartmann Analytic, Braunschweig
 - Hartmann Analytic, Braunschweig
 - Hartmann Analytic, Braunschweig

Supplementary Material

- 3MM paper
- Biodyne-A Nylon membranes
- charged (Hybond™) nylon membranes
- Coster-plates
- films
- glass pipettes
- injection needles
- injection syringes
- Parafilm M
- Petri dishes
- PCR-tubes
- PVDF-transfer membranes (Immobilon P)
- sterile-filter (0.22 μm, 1.45μm pores)
- transfer membranes Parablot NCP
- scalpels

 - Whatman, Göttingen
 - Pall
 - Pharmacia, Freiburg
 - Schütt, Göttingen
 - Kodak, Stuttgart
 - Hirschmann, Germany
 - B. Braun, Melsungen
 - B. Braun, Melsungen
 - American Can™, USA
 - Sarstedt, Nümbrecht
 - New England Biolabs, Schwalbach
 - Pharmacia Biotech, Freiburg
 - Millipore, Eschborn
 - Mecherey & Nagel, Düren
 - C. Bruno Bayha GmbH, Tuttlingen
4.2 Methods

Cell biological methods

Cell growth
Dictyostelium discoideum Ax2 and the derived transformants were grown either in axenic medium (Watts and Ashworth, 1970) or selection media or with klebsiella aerogenes (KA) (Williams and Newell, 1976) suspension as a food source. For growth in suspension, klebsiella aerogenes were grown on SM plates at RT for 2-3 days. Bacteria were washed off the plates with 30 ml phosphate buffer and the OD_{600} of KA suspension should be around 0.8. Dictyostelium discoideum cells were inoculated at 5 x 10^{4} cells/ml, shaken at 180 rpm 22°C and harvested at the cell densities indicated.

Cloning of Dictyostelium discoideum on SM plates
To obtain single clones of Dictyostelium discoideum, around 50-200 cells were resuspended in 100 µl KA suspension and plated on SM plates. Plates were incubated at 22°C for several days until colony plaques appeared on the bacterial lawn. Single clones were picked up with tooth picks, transferred to both new KA plates and selection medium in 24 well Costar plates in order to obtain single clones without KA contamination.

Differentiation conditions
Vegetative cells were harvested at densities indicated and washed free of bacteria by differential centrifugation (1500, 1100 and 950 rpm) using phosphate buffer, the cell pellet was then resuspended in phosphate buffer to density of 2 x 10^{7} cells/ml and allowed to develop in shaking (180 rpm) or on filter for the time indicated.

Dictyostelium discoideum transformation
Axenic Ax2 cells were harvested at a density of 1-2 x 10^{6} cells/ml and then transformed either by the calcium method (Nellen et al., 1984) or electroporation (Howard et al., 1988). All gene disruption mutants were done by electroporation, and the overexpression transformants with G418 resistance were generated by calcium method.

Classic transformation (calcium method)
10 ml axenic growth cells were plated on a Petri dish and incubated at 22° for 10-20 minutes. The medium was then carefully removed without destroying the cell layer
and 10 ml MES-Hl-5 medium was added for 30 minutes, meanwhile, 38 μl 2M CaCl₂ was added to 10-15 μg DNA and 600 μl 1x HPS mixture and vortexed 10 seconds, then precipitated at RT 25 minutes. After this step the MES-H1-5 medium was removed and CaCl₂-DNA precipitate was dropped and spread over the cell layer, and then the DNA-cells mixture was incubated at RT for 20 minutes before 10 ml MES-Hl-5 medium was added and incubated at 22°C for another 3 hrs. At the end, all medium was removed carefully and 2 ml glycerol solution was dropped for 5-8 minutes “glycerol-shock” treatment. Then the glycerol solution was completely removed, 10 ml DD20 medium was added and incubated at 22°C overnight. Next day the medium was changed and the appropriate selection medium was added. Cells were kept under selection until transformants were obtained.

DD20 medium

20 g/l proteose Peptone
7 g/l yeast extract
8 g/l glucose
0.35 g/l KH₂PO₄
0.47 g/l Na₂HPO₄·12H₂O
or 0.33 g Na₂HPO₄·7H₂O
adjust pH to 6.5 and autoclave for 20 minutes at 121°C

2 x HBS

16 g/l NaCl
0.72 g/l KCl
0.2 g/l NaH₂PO₄
10 g HEPES
2 g/l glucose
adjust pH to 7.05 and filter sterilize

MES-HI-5 medium

5 g/l yeast extract
10 g/l glucose
10 g proteose Peptone
1.6 g/l MOPS
adjust pH to 7.1 and autoclave for 20 minutes at 121°C

glycerol solution

3 ml 60% glycerol
2 ml H₂O
5 ml 2 x HBS
Electroporation
2 x 10^7 cells were collected, washed once with phosphate buffer (pH 6.0) and twice with EP buffer, then resuspended in 0.8 ml EP buffer, 10-20 µg DNA was added to the cells and incubated on ice for 10 minutes. Electroporation was performed at 1 kV, 25 µF in a 4 mm electroporation cuvette (the time constant was between 2 and 3 msec). Cells were plated on a Petri dish, mixed with two drops (8 µl) of each 0.1M CaCl₂ and 0.1 M MgCl₂ and left at RT for 15 minutes, finally 10 ml DD20 medium was added for overnight incubation. Next day the medium was changed and the appropriate selection medium was added. Cells were kept under selection until transformants were obtained.

EP buffer
10 mM Na₂HPO₄
50 mM sucrose
filter sterilize

Cell sorting assay
Axenically growing cells with or without GFP labelling were harvested at a density of approximate 1 x 10⁶ cells/ml, washed twice with phosphate buffer, resuspended in phosphate buffer at a density of 2 x 10⁷ cells/ml. GFP labelled cells and non-GFP labelled cells were mixed in the ratio of 1:9, 1:1 or 9:1 and allowed to develop on glass slide covered by a thin agarose sheet or Costar plate for a certain time. At the time indicated, images were taken with a conventional fluorescence microscope equipped with an OLYMPUS OM4 camera and Kodak film ISO 200

Standard time course
Preparation of pre-culture
A pre-culture was prepared two days before starting standard time course. Briefly, a Dictyostelium discoideum axenic or KA suspension growing culture was inoculated to 10 ml freshly prepared KA suspension to the density between 1 x 10⁴ cells/ml to 1 x 10⁵ cells/ml and incubated by shaking (180 rpm) until next day.

Preparation of over night culture for standard time course
Approximately 16 – 18 hours before starting standard time course, the pre-culture was counted, then inoculated to 3 flasks of freshly prepared KA suspension to the cell density of 2 x 10⁴ cells/ml, 3 x 10⁴ cells/ml, 8 x 10⁴ cells/ml respectively and incubated over night by shaking (180 rpm).
Standard time course
After approximately 16 – 18 hours incubation, the cells in 3 flasks were counted and the cell density should reach approximately 5 x 10^5 cells/ml, 1 x 10^6 cells/ml, 3 x 10^6 cells/ml respectively (In case that the cell density was lower than expected, wait another couple of hours). The cells were washed free of bacteria by differential centrifugation (1500, 1100, 950 rpm) in 20 mM phosphate buffer. Part of the cells from 1 x 10^6 cells/ml were resuspended in phosphate buffer to a density of 2 x 10^7 cells/ml and set up for development in shaking suspension or filter for a certain time. The cells from the another densities, together with that from the left part of 1 x 10^6 cells/ml were collected for RNA isolation or resuspended in 6 x Laemmli buffer to a density of 5 x 10^5 cells/μl for further protein analysis. After a certain time, the developed cells were collected as mentioned above. Meanwhile, axenically growing cells were harvested at 1 x 10^6 cells/ml and washed with phosphate buffer. Cell pellets were collected as mentioned above.
Molecular biological methods

Isolation of plasmid from E.coli

Plasmid mini-preparation-alkaline lysis (quick-dirty)

The alkaline lysis method (Birnboim and Doley, 1979) was used to extract the plasmid DNA from small culture (1ml) of *E.coli* transformants. *E.coli* cells were collected by centrifugation (4000 rpm x 5 min), and completely resuspended in 100 µl solution I by strong vortexing. After adding 200 µl solution II, the cells were lysed at RT for 5 min, then mixed with 150 µl solution III, incubated on ice for 5 min, the supernatant was collected by centrifugation (14000 rpm x 20min) and precipitated by adding 2 vol 100% ethanol, then the DNA pellet was washed with 70%, vacuum dried and resuspended in 40 µl TE buffer.

<table>
<thead>
<tr>
<th>Solution I</th>
<th>25 mM Tris-Cl, pH 7.4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 mM EDTA pH7.4</td>
</tr>
<tr>
<td></td>
<td>15% sucrose</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution II</th>
<th>0.2 M NaOH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1% SDS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution III</th>
<th>3 M NaAC pH 4.7</th>
</tr>
</thead>
</table>

Isolation of plasmid DNA from *E. coli* using Macherey & Nagel kit (Max-preparation)

Nucleobond™ AX100 from Macherey & Nagel was used according the manual of the supplier.

Plasmid max-preparation “quick-dirty”

100-300 ml *E.coli* cultures were used to isolate larger quantities of plasmids. The mini-preparation method was up-scaled for this purpose. RNase A, phenol/chloroform and proteinase K were additionally used.

Isolation genomic DNA from Dictyostelium discoideum

Fast mini-preparation (Barth et al., 1998)

Dictyostelium discoideum cells grown on Costar 24-well plates (5 x 10^6 cells) were collected, washed once with phosphate buffer and resuspended in 300 µl TES buffer, then snap frozen in liquid nitrogen. Cells were thawed slowly and 25 µg proteinase K
was added, then incubated at 60°C for 1 hr. The genomic DNA was extracted with phenol/chloroform and precipitated with ethanol. The resulted genomic DNA can be used for PCR reaction or single restriction digestion.

TES buffer	10 mM Tris/HCl
	1 mM EDTA
	0.1% SDS
	30 μg/ml RNase A

Maxi-preparation

Genomic DNA was prepared from isolated nuclei as described by Nellen *et al.*, 1987. Briefly, up to 10⁸ cells were collected from axenic culture, washed twice with ice-cold phosphate buffer and resuspended in NP-40 buffer. The nuclei fraction was obtained by centrifugation (2000 rpm x 10 min x 4°C). The nuclear pellet was then carefully resuspended in 5 ml SDS lysis buffer and incubated with 100 μl Proteinase K stock solution at 60°C for 3 hrs. The genomic DNA was extracted twice with phenol/chloroform, then precipitated by adding 1/10 vol. 8M LiCl and 2 vol. ethanol, the DNA pellet was washed with 70% ethanol, dried and then dissolved in a proper volume of ddH₂O

NP-40 buffer	30 mM HEPES, pH 7.5
	10 mM Mg(OAc)₂
	10 mM NaCl
	10% sucrose
	2% NP40
	filter sterilize

| SDS lysis buffer | 0.7% SDS in TE buffer |

| proteinase K solution | 25 mg/ml in ddH₂O |

Isolation of total RNA from Dictyostelium discoideum

Up to 10⁷ cells were collected and dissolved in 500 μl solution D. After adding 50 μl 3M NaAc (pH 4.7) and 500 μl phenol/chloroform, the sample was strongly vortexed and incubated on ice for at least 15 min. The upper phase was collected by centrifugation (14000 rpm x 30 min) and the total RNA was precipitated by adding 1 vol. isopropanol, the RNA was then pelleted, washed with 70% ethanol, dried and dissolved in DEPC treated H₂O or formamide.
solution D

4 mM guanidine thiocyanate
25 mM sodium citrate
0.1 M β-mercaptoethanol
0.5% sarcosyl

DEPC water

Millipore water was treated with 0.1% DEPC overnight, then autoclave.

Nucleic acid electrophoresis in agarose gel

Agarose in 1 x TBE buffer was melted in microwave and ethidium bromide was added to a final concentration of 0.5 μg/ml, then poured into a horizontal gel-forming chamber. Gels were run using 1 x TBE buffer, and were documented using UV light (256nm) and the E.A.S.Y system. 1% agarose was used for DNA gels and 2% agarose with freshly prepared GTC (20 mM) was used for RNA gels.

Cloning of DNA fragments into vector

Standard techniques were used as described by Sambrook, et al., 1989 and Ausubel et al., 1994.

Restriction digestion

Restriction enzymes from Boehringer Mannheim, Gibco BRL, MBI Fermentas or New England Biolabs were used. Restriction digestions were performed by using appropriate buffer and temperature according the manual of the supplier.

Dephosphorylation of vector

To prevent religation of linearized plasmid vector, usually the 5′- phosphate of vector was dephosphorylated by SAP (shrimp alkaline phosphatase, from USB). Briefly, 1U SAP was added to a 20 μl digestion mixture and incubated at 37°C for 30 min, SAP was then inactivated by heating 10 min at 70°C, then excuted once with phenol/chloroform.

DNA purification from agarose gel

The desired band was cut under UV light (366 nm). DNA was purified using Nucleotrap™ (Macherey & Nagel) purification kit. Purification was performed according to manual of the supplier.
Ligation

After restriction digestion, purified insert DNA fragment and the appropriate plasmid were mixed at a ration of 3:1 (cohesive ends) or 1.1 (blunt ends), ligation was performed in small volumes at 16°C over night or at RT several hours. PCR fragments were cloned by using pGEM-T-easy vector (Promega).

Transformation of E.coli
CaCl₂ method (Dagert and Ehrlich, 1979)

Competent cells preparation

2 ml overnight grown E.coli culture was inoculated into 100 ml LB medium and grown at 37°C by shaking to an OD₆₀₀ of 0.5. The bacteria were collected and washed once with ice-cold 0.1 M CaCl₂, then the cell pellets were incubated in 50 ml ice-cold 0.1 M CaCl₂ for 30 min. After that the cells were collected by centrifugation and carefully resuspended in 5 ml ice-cold 0.1 M CaCl₂. The competent cells were then aliquoted in 200 µl and frozen immediately at –80°C.

Transformation of competent E.coli

The competent cells were rapidly thawed, mixed with DNA, and incubated on ice for 30 min. The cells were then heat-shocked at 42°C for 2 min and 0.8 ml LB medium was added, after shaking at 37°C for 1 hour, the cells were collected by centrifugation, resuspended in the rest of the medium and spread on LB plates containing antibiotic. The transformants were then grown overnight at 37°C.

Electroporation

Competent cells preparation

2 ml overnight grown E.coli culture was inoculated into 100 ml LB medium and grown at 37°C by shaking to an OD₆₀₀ of 0.5, the cells were collected by centrifugation under cold condition, and then washed twice by ice-cold H₂O. Finally the pellet was resupended in 10ml 10% ice cold glycerol, aliquoted in 100 ul and frozen immediately at –80°C.

Transformation of E.coli by electroporation

The competent cells were rapidly thawed and mixed with DNA (in ddH₂O, no salt), the mixture was transferred into a chilled 2 mm BioRad electroporation cuvette and incubated on ice for 10 min. The DNA was then electroporated into E.coli at 3 kV, 25µF, 200 Ω. After that, 0.8 ml LB medium was immediately added and incubated at 37°C for 1 hour. Finally the cells were collected by centrifugation and spread on LB plates containing antibiotics. The transformants were then grown overnight at 37°C.
For blue-white screening (with vectors capable of α - complementation), the bacterial competent cells were spread on LB plates containing appropriate antibiotic, 0.1 mM IPTG and 40 μg/ml X – Gal and incubated overnight at 37°C. An alternative to preparing plates containing X – gal and IPTG was to spread 50 μl of X – gal stock solution and 5 μl IPTG stock solution onto previously prepared LB/antibiotic plates. Allow these components to absorb for at least 30 minutes perior to plating cells.

X-Gal stock solution (20 mg/ml)
0.2 g X – gal
add dimethylformamide to 10 ml

IPTG stock solution (200 mg/ml)
2 g IPTG
add H₂O to 10 ml, filter sterilize

DNA sequencing

After denaturetion, plasmid DNA was sequenced with the Sanger method (Sanger *et al*., 1977). *fmol*® DNA Cycle Sequencing System from Promega, the T7 sequencing kit from Pharmacia and BigDye™ Terminator cycle sequencing kits were used for all sequencing reactions. 6% denaturing polyacrylamide gels were used to separate the DNA products of sequencing reactions.

6% sequencing gel solution
5.7 g acrylamide
0.3 g bisacrylamide
42 g urea
10 ml 10 x TBE buffer
500 μl 10% APS*
50 μl TEMED
add deionised H₂O to 100 ml

*10% ammonium persulfate should be prepared fresh weekly in deionised water and stored at 4°C.
Polymerase Chain Reaction (PCR)

Polymerase chain reaction (Saiki et al., 1985) was used to amplify DNA in vitro. For amplification of plasmid and genomic DNA templates the following protocol was used:

<table>
<thead>
<tr>
<th>reaction mix</th>
<th>1 ng DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15 pmol each oligo-nucleotide primer</td>
</tr>
<tr>
<td></td>
<td>200 μM dNTP mix</td>
</tr>
<tr>
<td></td>
<td>2 μl 10 x PCR buffer</td>
</tr>
<tr>
<td></td>
<td>1 μl Taq polymerase</td>
</tr>
<tr>
<td></td>
<td>add H₂O to 20μl</td>
</tr>
</tbody>
</table>

a typical reaction protocol:

1st step
5 min 95°C

2nd step (30 cycles)
30 sec 95°C
30 sec 42°C-52°C
1 min 72°C

3rd step
10 min 72°C

10 x PCR reaction buffer (MBI)
100 mM Tris/Cl pH8,
0.1% Triton X-100
50 mM KCl
10-25 mM MgCl₂

RT-PCR and 3’RACE (rapid amplification of cDNA ends) PCR

First strand synthesis

Reverse transcription was performed from total RNA isolated from axenic growth *Dictyostelium discoideum* cells. The following protocol was used for first strand cDNA synthesis:

<table>
<thead>
<tr>
<th>total RNA</th>
<th>10 ng-5 μg</th>
</tr>
</thead>
<tbody>
<tr>
<td>oligo(dT)<sub>18</sub></td>
<td>0.5 μg</td>
</tr>
<tr>
<td>or sequence-specific primer</td>
<td>15 pmol</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>to 11 μl</td>
</tr>
</tbody>
</table>

The above mixture was incubated at 70°C for 5 min and chilled on ice, then added the following in the order indicated:
5 x reaction buffer 4 μl
10 mM dNTPs 2 μl
ribonuclease inhibitor 20 u
ddH₂O to 19 μl

incubated at 37°C for 5 min, and 1 μl RevertAid™ H Minus M-MuLV reverse transcriptase (MBI Fermentas) was added, the reaction mixture were then incubated at 42°C for 1 hr, the reaction was stopped by heating at 70°C for 10 min.

PCR reaction

<table>
<thead>
<tr>
<th>Step</th>
<th>Temp</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>95°C</td>
<td>5 min</td>
</tr>
<tr>
<td>2nd</td>
<td>95°C</td>
<td>30 sec</td>
</tr>
<tr>
<td></td>
<td>42°C-52°C</td>
<td>30 sec</td>
</tr>
<tr>
<td></td>
<td>72°C</td>
<td>1 min</td>
</tr>
<tr>
<td>3rd</td>
<td>72°C</td>
<td>10 min</td>
</tr>
</tbody>
</table>

Northern and Southern hybridization

Northern-blot analysis (Goda and Minton, 1995)

10 μg total RNA mixed with RNA loading buffer was denatured at 95°C for 5 minutes before loaded to a 2% agarose gel with freshly prepared 20 mM GTC (GTC should be added after the agarose solution cooled below 60°C), the total RNA was separated by electrophoresis at 4°C. The RNA was photographed under UV light (the 2 ribosomal RNA bands were used as molecular weight markers), washed briefly with ddH₂O, and used for Northern transfer by capillary elution. After overnight transfer with 20 x SSC, the nylon membrane was dried, cross-linked under UV light (314 nm, 0.12 J/cm²), then used for hybridization.

RNA loading buffer
100% formamide
0.1% Xylene Cyanol FF
0.1% bromophenol blue
0.1% 10mg/ml ethidium bromide

Southern blot analysis (Southern, 1975)

DNA fragments (PCR fragment, or digested genomic and plasmid DNA) were separated on a 1% agarose gel, and photographed under UV light to document DNA migration related to a molecular marker. The DNA was first denatured for 30 min, then naturalized for another 30 min. The gel was then washed briefly in ddH₂O and used for transfer by capillary elution. After overnight transfer with 20 x SSC, the
membrane was dried first, cross-linked under UV light (314 nm, 0.12 J/cm²), then used for hybridization.

denature buffer
0.5 M NaOH
1.5 M NaCl

renature buffer
0.5 M Tris-HCL, pH7.0
1.5 M NaCl

Radioactive labeling of nucleic acid
The “oligo-labelling” and in vitro transcription methods were used to label nucleic acid radioactively.

Oligo-labelling method
Approximately 1µg purified DNA template was denatured by heating at 95°C for 5 min, the following was then added:

OLB mix 10 µl
α-P³²-dATP 3-5 µl
Klenow fragment 1 µl
ddH₂O adjust the volume to 50 µl

The reaction was performed at 37°C for 1 hour, the free nucleotides were separated by centrifugation through a Sephadex G50 or G25 spin column. The purified radioactive probe was then denatured by heating at 95°C for 5 min, chilled on ice and then used for hybridization.

OLB mix 200mM Tris-HCl, pH7.5
25 mM MgCl₂
10 mM β-ME
1 M HEPES pH 6.6
13.5 U A₂₆₀ oligos-hexamers
0.25 mM dCTP, dGTP, dTTP

In vitro transcription
Radioactive RNA probes were made by in vitro transcription. The pGEM vector containing the appropriate DNA fragment was linearized with a unique restriction enzyme, then extracted with phenol/chloroform and precipitated with 100% ethanol. If the PCR product was used, it was extracted with phenol/chloroform and precipitated with 100% ethanol, too. The labelling reaction was set up at 37°C and
incubated for 1 hour. The free nucleotides were separated by centrifugation through a Sephadex G50 or G25 spin column. The purified radioactive probe was then denatured by heating at 95°C for 5 min, chilled on ice and then used for hybridization.

in vitro transcription reaction

n µl linearized plasmid (1 -2 µg)
or n µl PCR product (1-2 µg)
5 µl transcription buffer (MBI)
5 µl NTPs (5 mM each except 2 mM UTP)
1 µl Rnasein
1 µl RNA polymerise (10 U/µl)
5 µl 32P-UTP
add H2O to bring the volume of 50 µl

Hybridization

Southern or Northern blot were washed briefly with ddH2O and placed into a hybridization tube. The pre-hybridization was performed in hybridization solution at 37°C for 1 hour without radioactively labeled probe. Then the denatured probe was added and incubated by shaking overnight at 42°C (Southern blot) or 55°C (Northern blot). Next day the blot was washed twice with wash solution I and then once with wash solution II. The membrane was then exposed on an imaging plate for analysis in a Fuji X Bas 1500 bioimaging analyzer.

hybridization solution

50% formamide
50 mM sodium phosphate pH 7.2
5 x SSC
0.1% N-lauroylsarcosine
7% SDS

wash solution I

2 x SSC
0.1% SDS

wash solution II

0.2 x SSC
0.1% SDS
REMI mutagenesis (Kuspa and Loomis, 1992)

As described by Zeng et al., 2000. Briefly, 20 µg pUC118+Bs’ vector was linearized with BamHI and electroporated into Ax2 cells together with 100 units of BamHI at 2.5 kV, 3.0 µF (Howard et al., 1988). After electroporation, cells were distributed on 5 Petri dishes (9 cm diameter) and transformants were selected in Bs10 medium. When clones could be detected on the plates, cells were washed off, counted and plated in association with *Klebsiella aerogenes* on SM plates for cloning.

Plasmid rescue - isolation of the disrupted gene from REMI mutant

The strategy of this experiment is shown in figure 1-6.

An affected genomic fragment was recovered from the REMI mutant 17-1-J-3-1 by plasmid rescue as described by Kuspa and Loomis, 1992. Briefly, genomic DNA from REMI mutant 17-1-J-3-1 was digested with *Xba I* or *Xho I*, circularized by ligation in a diluted solution, and then transformed into *E.coli* DH5α.
Protein analytical methods

Preparation of total protein from Dictyostelium discoideum

Dictyostelium discoideum cells from the indicated density were washed once with phosphate buffer, and then the cell pellet was collected by centrifugation (4000 rpm x 5min). Total protein was prepared by lysing the cells in 6 x Laemmli buffer (5 x10^5 cells/μl Laemmli buffer).

6 x Laemmli buffer
70 ml 4 x Tris-HCl/SDS, pH 6.8
30 ml glycerol
10 g SDS
0.93 g DTT or
6 ml ME
12 mg bromphenol blue

Discontinuous SDS Polyacrylamide Gel Electrophoresis (SDS-PAGE)

12% polyacrylamide gels were prepared according to Laemmli (1970). Protein samples in 6 x Laemmli buffer were denatured by heating at 95°C for 5 minutes, and then separated on a SDS-PAGE. Electrophoresis was carried out in 1 x protein running buffer. After that the separating gel was either used for immunoblot transfer or immersed directly in Coomassie Blue staining solution with gentle shaking, destaining was performed by shaking in several changes of the sustaining solution.

Table 4-1. Recipe for polyacrylamide separating and stacking gel*

<table>
<thead>
<tr>
<th></th>
<th>12% separating gel</th>
<th>Stacking gel</th>
</tr>
</thead>
<tbody>
<tr>
<td>30% acrylamide/0.8% bisacrylamide (ml)</td>
<td>4.4</td>
<td>0.45</td>
</tr>
<tr>
<td>lower(separating) buffer (ml)</td>
<td>2.67</td>
<td>/</td>
</tr>
<tr>
<td>upper (stacking) buffer (ml)</td>
<td>/</td>
<td>1</td>
</tr>
<tr>
<td>H₂O (ml)</td>
<td>4.4</td>
<td>2.5</td>
</tr>
<tr>
<td>EDTA (μl)</td>
<td>43.2</td>
<td>16</td>
</tr>
<tr>
<td>TEMED (μl)</td>
<td>2.67</td>
<td>2</td>
</tr>
<tr>
<td>20% APS (μl)</td>
<td>120</td>
<td>60</td>
</tr>
</tbody>
</table>

* The recipe is special for 2 mini gels of Hoefer Mighty Small SE 250/SE 260.
<table>
<thead>
<tr>
<th>Buffer Type</th>
<th>Composition Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower buffer</td>
<td>181.7 g Tris (1.5 M) 4 g SDS (14 mM) add 900 ml H₂O and adjust pH to 8.8 with HCl, add H₂O to final volume of 1000 ml</td>
</tr>
<tr>
<td>Upper buffer</td>
<td>60.6 g Tris (0.5 M) 4 g SDS (14 mM) add 800 ml H₂O and adjust pH to 6.8 with HCl, add H₂O to the final volume of 1000 ml.</td>
</tr>
<tr>
<td>5 x protein running buffer</td>
<td>25 mM Tris base 380 mM Glycine 0.1% SDS</td>
</tr>
<tr>
<td>20% APS*</td>
<td>1 g APS add H₂O to 5 ml</td>
</tr>
<tr>
<td>* 20% ammonium persulfate should be prepared fresh weekly in deionised water and stored at 4°C.</td>
<td></td>
</tr>
<tr>
<td>Coomassie Brilliant Blue staining solution</td>
<td>0.1% Coomassie bright blue G250 10% acetic acid</td>
</tr>
<tr>
<td>Coomassie Brilliant Blue staining solution (improved protocol)</td>
<td>1.7% phosphoric acid 6% ammonium sulfate 0.1% CBB G250</td>
</tr>
<tr>
<td>Destaining solution</td>
<td>5% methanol 7% acetic acid</td>
</tr>
</tbody>
</table>
The tris-tricine system was used to separate of proteins under 15 kDa.

Table 4-2. Recipes for Tris – tricine separating and stacking gel

<table>
<thead>
<tr>
<th></th>
<th>Separating gel</th>
<th>Stacking gel</th>
</tr>
</thead>
<tbody>
<tr>
<td>30% acrylamide/0.8% bisacrylamide (ml)</td>
<td>9.8</td>
<td>1.62</td>
</tr>
<tr>
<td>gel buffer (ml)</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>glycerol (87%) (ml)</td>
<td>3.17</td>
<td>/</td>
</tr>
<tr>
<td>H₂O (ml)</td>
<td>7.03</td>
<td>7.78</td>
</tr>
<tr>
<td>TEMED (µl)</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>20% APS (µl)</td>
<td>50</td>
<td>25</td>
</tr>
</tbody>
</table>

gel buffer

182 g Tris base

add H₂O to 300 ml and adjust pH to 8.45 with HCl, bring the volume to 500 ml with H₂O, add 1.5 g SDS and store at 4°C.

anode buffer

24.2 g Tris base (0.2 M final)

add 500 ml H₂O, adjust pH to 8.9 with HCl, add H₂O to the final volume of 1000 ml. Store at 4°C

cathode buffer

12.11 g Tris base (0.1 M final)

17.92 g tricine (0.1 M final)

1g SDS (0.1% final)

add H₂O to the final volume of 1000 ml.

Store at 4°C
Electroblotting of proteins (Western blotting, Semi-dry blotting)
Proteins separated by SDS-PAGE were transferred to nitrocellulose membranes by using a sem-dry blotting system (Bjerrum, 1986). The transfer was performed with the “Semi-Dry” Blot apparatus at 2 mA/cm² membrane (maximal 40 V) for 1 hour.

Semi-dry transfer buffer
5.8 g Tris
2.92 g glycine
0.38 g SDS
200 ml methanol/ethanol
add H₂O to 1000 ml

Immunodetection with enzyme conjugated secondary antibodies
The Western blots were immersed in blocking buffer, incubated then with the first antibody at a proper dilution over night. The blots were washed several times with 1 X NCP buffer and then exposed to alkaline phosphatase (AP) conjugated secondary antibody directed against the primary antibody. Antigens were identified by chromogenic visualization in BCIP substrate solution.

10 x NCP buffer
12.1 g Tris base
87g NaCl
5ml Tween
2.0g Sodium azide

BCIP substrate buffer
0.2 mg/ml BCIP in sodium carbonate buffer (pH 10.2)
sodium carbonate buffer
100 mM Na₂CO₃, pH 10.2

Protein quantification
Protein concentration was determined by using the Amido-Black assay. 5 μl protein sample was added to 0.5 ml Amido-Black solution, mixed briefly and centrifuged at 10,000 rpm for 4 minutes. The supernatant was discarded and the pellet was carefully washed once in 0.5 ml washing solution without destroying the pellet. At the end the pellet was resuspended in 0.1 N NaOH, an optical density was measured photometrically at 615 nm. The concentration of the protein sample was derived from the standard curve by using BSA (1-50 μg) as standard.
Amido-Black solution 0.26 g amido-black
90% methanol
10% acetic acid
add H$_2$O to 1000 ml

washing solution 90% methanol
10% acetic acid

Colony immunoblot (Wallraff and Gerisch, 1991)

Dictyostelium discoideum clones on KA plates were transferred onto nictrocellulose filter. The filter was then put on a precolded (-20°C) metal board and incubated at -80°C for 10 minutes. After defrozen at room temperature, the filter was washed several times with 1 x NCP buffer, and then boiled in 6% SDS, followed by briefly washing with 1 X NCP buffer again. The first antibody was added and incubated over night after the filter was pre-incubated in 1 X NCP plus 2% BAS. The blots were washed several times with 1 X NCP buffer and then exposed to alkaline phosphatase (AP) conjugated secondary antibody directed against the primary antibody for several hours. Antigens were identified by chromogenic visualization in BCIP substrate solution. After that, filters were then stained with ponceau S to detect all Dictyostelium discoideum cellular protein.

Immunofluorescence assay

Exponentially growing Dictyostelium discoideum cells were collected, washed twice with cold phosphate buffer (1000 rpm x 4°C) and resuspended in phosphate buffer, cells were then allowed to settle down and spread onto HCl -treated clean coverslip for 45 minutes, then fixed with picric acid/formaldehyde at RT for 30 minutes. After that washed with PBS/glycine twice x 5 min, followed by twice x 15 min wash with PBG. Subsequently the first antibody was added for 3 hours incubation, after washed 6 times x 5min with PBG, the second antibody was added for 1 hour incubation followed by several wash step: 2 times x 5 min with PBG, 3 times x 5 min with PBS, then briefly washed with H$_2$O. Finally DABCO (1,4 – diazabicyclo 2.2.2. octane) was dropped to the coverslip and the glass slide covered coverslip was incubated overnight at 4°C in the dark condition. Next day the images can be taken by a cooled CCD camera connected to conventional immunofluorescence microscopy.
10 x PBS

80 g/l NaCl
2 g/l KCl
11.5 g/l Na₂HPO₄
or 14.4 g Na₂HPO₄·2H₂O
2.04 g/l KH₂PO₄
adjust pH to 7.4

PBS/glycine (Jungbluth et al., 1994)

100 ml 1 x PBS
0.75 g glycine

PBG

100 ml 1 x PBS
0.5 g BSA
0.1 g fischgelatine
[Sigma G7765 (45%)]

picric acid/formaldehyde (freshly prepared)

0.2 g formaldehyde
3.5 ml H₂O
5 ml 20 mM PIPES buffer
1.5 ml picric acid
adjust pH to 6.0

20 mM PIPES buffer, pH 6.0

6.05 g/l PIPES
adjust pH to 6.0
References

Molecular studies on a Dictyostelium homolog of the tafazzin gene

Molecular studies on a Dictyostelium homolog of the tafazzin gene

Molecular studies on a *Dictyostelium* homolog of the tafazzin gene

Molecular studies on a Dictyostelium homolog of the tafazzin gene

Molecular studies on a *Dictyostelium* homolog of the tafazzin gene

6

Appendix

appendix I sequence of the Dictyostelium discoidum tafazzin gene

The following 1584 bp sequence contains the complete coding region of the Dictyostelium discoideum tafazzin gene. The coding sequences for the tafazzin gene are shown in black and capitals and the other noncoding sequence including the intron are in grey and non-capitals. All the primers used in this work are indicated in the sequence. The start codon ATG, the stop codon taa are indicated in bold letters.

1 ngccctgngc gtgcactgca ggtcgactct agnagatccc ctcaaaacga aaaaaaaaaag

61 aaaaaactaa aaaaaaatatt taaaaagaaga aaaaaaatttt aaaaaaatttt tttaaaaaaa

121 aaaaaaaaaa aaaaaaatca aacaaaaatg atgttttaat tatttttttt tttttttttttttttttttttaaataattt
541 TGGAGTATTA TGTAATTTTT GGATATCAAT GAATACGGCC ACAACATCAG GTATTGATTA
601 ATTAGTAAAT GAAATTGATA A AACACTACAA ATTAAAAAGA CCAATGATAA CAATTGCAAA
661 TCATTGCTCA AATTTAGATG ATCCATTATT ATGGGGTGTT TTACCAAATC GTATTTTAAT
AATTTAGATG ATCCATTATT ATGGGGTG
→ TAZ1
721 GGATCCATCA AAACAAACGGTT GGACATTAGG TGCTTCAAT ATTTATTTTA CAAATTGGTT
CGTT GGACATTAGG TGCTT
→ TAZ5
781 TTATTCTAAA TTTTTTTCAT TAGTAAATGA Tgtaagtttt taattaaaaa Tgtaagtttt
→ interon
841 aaatttaata aattnctattt attttttattt atttttttttatttttttttttttttttattttttttttttttttttttt
901 tgaatatgt tactaaaata tttttttttttttttttttttttttattt...
Molecular studies on a *Dictyostelium* homolog of the tafazzin gene

1441 CCCAACCAAT AGAGGTCGTT TTTCTCATCC AACAATTAAA GATaatatat aaatttaaa
 GCAA AAAGAGTAGG TTGTTAATTT CTA

TAZ8* ←
 AGAGGTCGTT TTTCTCATCC AACA

TAZ19*←

1501 ttaaatatat taatgaatat aataaatta aaaaaaaaaaa aaaaaaaaat gatatttat

1561 ctagttgaa aaaaaaaaaa aaaa

*: Bpi I restriction digestion site was added at the 5’ end of primers TAZ7 and TAZ8.

GATC: original gene disruption site

GGATCC: secondary gene disruption site

TAT17*: Bgl II restriction digestion site + primer TAZ11

TAZ19*: Bgl II restriction digestin site was added at the 5´end of the primer.
Appendix II: amino acid sequence of *Dictyostelium discoideum* tafazzin protein

```
  10  20  30  40  50  60
MDSNSNKNKLNKQICDTPQPQFLSKVFTLWGLCKFWISMNTATTSGIDKLVNEIDK
  70  80  90 100 110 120
THQLKRPMTIANHSSNLDDPLWGLPNRILMDPQKWRWLTGASNLFTWFSKFFSL
  130 140 150 160 170 180
GKCIKTVRDBGTYQDGMPNISDRLSEGWLLHIFPEGRTSQTQLLYFKWGLGRLVGEYR
  190 200 210 220 230 240
RTGVPLVVPIYHQMEKSMPLAKLPTRVGINLDNKVGDNITCDQVISKYIDDNKISDL
  250 260 270 280
TDYLSDKKDYKDFYKTITLHIEDTQKLIPPTNCRFSHPTIKD
```
Appendix III

Dictyostelium discoideum tafazzin gene was “cloned” by overlapping the random clones: IIAPFPD84888, IIADP2D5704, JC1a25c03.r1, JC1b156g05.r1, JC1b156g05.s1, IIAPFPD41103, IIAPFPD12084, from the Dictyostelium genome project.

BLAST Report
Molecular studies on a *Dictyostelium* homolog of the tafazzin gene

>IIAFP1D41103
Length = 808

Plus Strand HSPs:

Score = 1556 (499.3 bits), Expect = 0., Sum P(4) = 0.
Identities = 322/356 (90%), Positives = 322/356 (90%), Strand = Plus / Plus

<table>
<thead>
<tr>
<th>Query:</th>
<th>Score</th>
<th>Expect</th>
<th>Sum P(4)</th>
<th>Identities</th>
<th>Positives</th>
<th>Strand</th>
</tr>
</thead>
<tbody>
<tr>
<td>466</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>525</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>585</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>645</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>704</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>760</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>380</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>440</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>198</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

|||
Query: 1238 GCATTGATTCTCCATACCTTGATGATAAATTGGTACA ACTAA 1196

Sbjct: 356 GCATTGATTCTCCATACCTTGATGATAAATTGGTACA ACTAA 398
Appendix IV: Multiple alignment of phosphatidylglycerophosphate synthase from different organisms.
Appendix V:

A *Dictyostelium* BLAST search by using yeast cardiolipin synthase (Q07560) as a query shows that a *Dictyostelium* random clone IIBEP1D8026 possesses 100% identity to the middle region of yeast cardiolipin synthase.

BLAST Report

```
>IIIBEP1D0026
Length = 448

Minus Strand HSPs:
Score = 2460 (789.0 bits), Expect = 9.2e-229, P = 9.2e-229
Identities = 410/410 (100%), Positives = 410/410 (100%), Strand = Minus / Plus

Query:   934 CCGAAAAGGCCATTCTATCATGTGTTATCAGGGTTAAC TGTACGCTTTAAGGTAAACCCG 875
Sbjct:    39 CCGAAAAGGCCATTCTATCATGTGTTATCAGGGTTAAC TGTACGCTTTAAGGTAAACCCG 98

Query:   874 CAATTAAATTACAATCTTTTCAGAGATCTCACTAGGAG GGAATATGCTACCAATCCGAGT 815
Sbjct:    99 CAATTAAATTACAATCTTTTCAGAGATCTCACTAGGAG GGAATATGCTACCAATCCGAGT 158

Query:   814 AAAACTCCTCATATAAAGAGCAAGTTGCTCAATATTCC CAACATTTTGACTTTATCACGA 755
Sbjct:   159 AAAACTCCTCATATAAAGAGCAAGTTGCTCAATATTCC CAACATTTTGACTTTATCACGA 218

Query:   754 ATAGGATGTACACCCTTTATCGGACTCTTCATTATAAC GAATAATTTGACCCCAGCATTA 695
Sbjct:   219 ATAGGATGTACACCCTTTATCGGACTCTTCATTATAAC GAATAATTTGACCCCAGCATTA 278

Query:   694 GGTTTGTTTGCATTTTCCAGCATCACTGATTTTATGGA TGGGTATATAGCAAGAAAATAC 635
Sbjct:   279 GGTTTGTTTGCATTTTCCAGCATCACTGATTTTATGGA TGGGTATATAGCAAGAAAATAC 338

Query:   634 GGCCTGAAAACCATTGCAGGAACCATATTAGATCCACT TGCAGATAAACTACTCATGATC 575
Sbjct:   339 GGCCTGAAAACCATTGCAGGAACCATATTAGATCCACT TGCAGATAAACTACTCATGATC 398

Query:   574 ACAACAACCTTTGGCTATTATCTGTACCATCAGTCCTGCACCAGTTATACCGG 525
Sbjct:   399 ACAACAACCTTTGGCTATTATCTGTACCATCAGTCCTGCACCAGTTATACCGG 448
```
Acknowledgments

I would like to thank my supervisor Prof. Dr. Wolfgang Nellen for his continual support during this work, for his patience, guidance and encouragement throughout this work.

Particularly, I express here my gratitude to Mrs. Petra Zahnwetzer and Mr. Karsten Riemann, who set me up in the laboratory.

I sincerely appreciate our co-operators, Dr. Peter Vreken and his co-worker from University of Amsterdam, The Nederland, for useful discussion, for providing the data of phospholipid assay.

I am deeply indebted to Dr. Jürgen Oberstrass for his inexhaustible supply of experience and and many laboratory tricks, as well as for useful discussion.

I acknowledge Prof. Dr. Marcus Maniak, who was always patient to answer any question concerning cell biology and kindly provided anti-mitochondrial porin antibody.

I thank all co-workers in the laboratory Nellen, who have accompanied me all these years and shared all my exciting successes and depressing failures.

I own thanks to all co-workers in the laboratory of Prof. Maniak, who help me a lot on microscopy and provided photos of immunofluorescence expriment.

I thank Dictyostelium data (http://dictybase.org/) and genome sequencing project (http://dictybase.org/dictyostelium_genomics.htm). Without them, the tafazzin gene would not been cloned so simply.

I also sincerely appreciate the critical reading of my thesis by Dr. Jürgen oberstrass, and Mr. Dayananda Rao.

I am particularly thankful to my dear husband, Yi Zhao. Without his support, this PhD thesis would not have been finished.

This work was supported by a grant of the Deutsche Forschungsgemeinschaft to Prof. Dr. Wolfgang Nellen.
Erklärung

Kassel, den 01.11.2002