Aufsatz
Evidence for cell turnover as the mechanism responsible for the transport of embryos towards the vagina in viviparous onychophorans (velvet worms)
Abstract
Background
Onychophorans, commonly known as velvet worms, display a remarkable diversity of reproductive strategies including oviparity, and placentotrophic, lecithotrophic, matrotrophic or combined lecithotrophic/matrotrophic viviparity. In the placentotrophic species, the embryos of consecutive developmental stages are attached to the uterus via a placental stalk, suggesting they might be transported passively towards the vagina due to proximal growth and distal degeneration of tissue. However, this assumption has never been tested using specific markers. We therefore analyzed the patterns of cell proliferation and apoptosis in the genital tracts of two placentotrophic peripatids from Colombia and a non-placentotrophic peripatopsid from Australia.
Results
All three species show a high number of apoptotic cells in the distal portion of the genital tract near the genital opening. In the two placentotrophic species, additional apoptotic cells appear in ring-like vestigial placentation zones of late embryonic chambers. While moderate cell proliferation occurs along the entire uterus in all three species, only the two placentotrophic species show a distinct proliferation zone near the ovary as well as in the ring-like implantation zone of the first embryonic chamber. In contrast to the two placentotrophic species, the non-placentotrophic species clearly does not show such regions of high proliferation in the uterus but exhibits proliferating and apoptotic cells in the ovarian stalks. While cell proliferation mainly occurs in stalks carrying maturating oocytes, apoptosis is restricted to stalks whose oocytes have been released into the ovarian lumen.
Conclusions
Our results confirm the hypothesis that the uterus of placentotrophic onychophorans grows proximally but is resorbed distally. This is supported by the detection of a proximal proliferation zone and a distal degenerative zone in the two placentotrophic species. Hence, cell turnover might be responsible for the transport of their embryos towards the vagina, analogous to a conveyor belt. Surprisingly, the distal degenerative zone is also found in the non-placentotrophic species, in which cell turnover was unexpected. These findings suggest that the distal degenerative zone is an ancestral feature of Onychophora, whereas the proximal proliferation zone might have evolved in the last common ancestor of the placentotrophic Peripatidae.
Onychophorans, commonly known as velvet worms, display a remarkable diversity of reproductive strategies including oviparity, and placentotrophic, lecithotrophic, matrotrophic or combined lecithotrophic/matrotrophic viviparity. In the placentotrophic species, the embryos of consecutive developmental stages are attached to the uterus via a placental stalk, suggesting they might be transported passively towards the vagina due to proximal growth and distal degeneration of tissue. However, this assumption has never been tested using specific markers. We therefore analyzed the patterns of cell proliferation and apoptosis in the genital tracts of two placentotrophic peripatids from Colombia and a non-placentotrophic peripatopsid from Australia.
Results
All three species show a high number of apoptotic cells in the distal portion of the genital tract near the genital opening. In the two placentotrophic species, additional apoptotic cells appear in ring-like vestigial placentation zones of late embryonic chambers. While moderate cell proliferation occurs along the entire uterus in all three species, only the two placentotrophic species show a distinct proliferation zone near the ovary as well as in the ring-like implantation zone of the first embryonic chamber. In contrast to the two placentotrophic species, the non-placentotrophic species clearly does not show such regions of high proliferation in the uterus but exhibits proliferating and apoptotic cells in the ovarian stalks. While cell proliferation mainly occurs in stalks carrying maturating oocytes, apoptosis is restricted to stalks whose oocytes have been released into the ovarian lumen.
Conclusions
Our results confirm the hypothesis that the uterus of placentotrophic onychophorans grows proximally but is resorbed distally. This is supported by the detection of a proximal proliferation zone and a distal degenerative zone in the two placentotrophic species. Hence, cell turnover might be responsible for the transport of their embryos towards the vagina, analogous to a conveyor belt. Surprisingly, the distal degenerative zone is also found in the non-placentotrophic species, in which cell turnover was unexpected. These findings suggest that the distal degenerative zone is an ancestral feature of Onychophora, whereas the proximal proliferation zone might have evolved in the last common ancestor of the placentotrophic Peripatidae.
Citation
In: Frontiers in Zoology 16 (2019-06-07) , S. 16 ; ISSN 1742-9994Sponsorship
Gefördert durch den Publikationsfonds der Universität KasselCitation
@article{doi:10.17170/kobra-20190909659,
author={Treffkorn, Sandra and Hernández-Lagos, Oscar Yesid and Mayer, Georg},
title={Evidence for cell turnover as the mechanism responsible for the transport of embryos towards the vagina in viviparous onychophorans (velvet worms)},
journal={Frontiers in Zoology},
year={2019}
}
0500 Oax 0501 Text $btxt$2rdacontent 0502 Computermedien $bc$2rdacarrier 1100 2019$n2019 1500 1/eng 2050 ##0##http://hdl.handle.net/123456789/11306 3000 Treffkorn, Sandra 3010 Hernández-Lagos, Oscar Yesid 3010 Mayer, Georg 4000 Evidence for cell turnover as the mechanism responsible for the transport of embryos towards the vagina in viviparous onychophorans (velvet worms) / Treffkorn, Sandra 4030 4060 Online-Ressource 4085 ##0##=u http://nbn-resolving.de/http://hdl.handle.net/123456789/11306=x R 4204 \$dAufsatz 4170 7136 ##0##http://hdl.handle.net/123456789/11306
2019-09-10T11:17:47Z 2019-09-10T11:17:47Z 2019-06-07 doi:10.17170/kobra-20190909659 http://hdl.handle.net/123456789/11306 Gefördert durch den Publikationsfonds der Universität Kassel eng Urheberrechtlich geschützt https://rightsstatements.org/page/InC/1.0/ apoptosis caspase-3 cell proliferation onychophora velvet worms TUNEL 570 Evidence for cell turnover as the mechanism responsible for the transport of embryos towards the vagina in viviparous onychophorans (velvet worms) Aufsatz Background Onychophorans, commonly known as velvet worms, display a remarkable diversity of reproductive strategies including oviparity, and placentotrophic, lecithotrophic, matrotrophic or combined lecithotrophic/matrotrophic viviparity. In the placentotrophic species, the embryos of consecutive developmental stages are attached to the uterus via a placental stalk, suggesting they might be transported passively towards the vagina due to proximal growth and distal degeneration of tissue. However, this assumption has never been tested using specific markers. We therefore analyzed the patterns of cell proliferation and apoptosis in the genital tracts of two placentotrophic peripatids from Colombia and a non-placentotrophic peripatopsid from Australia. Results All three species show a high number of apoptotic cells in the distal portion of the genital tract near the genital opening. In the two placentotrophic species, additional apoptotic cells appear in ring-like vestigial placentation zones of late embryonic chambers. While moderate cell proliferation occurs along the entire uterus in all three species, only the two placentotrophic species show a distinct proliferation zone near the ovary as well as in the ring-like implantation zone of the first embryonic chamber. In contrast to the two placentotrophic species, the non-placentotrophic species clearly does not show such regions of high proliferation in the uterus but exhibits proliferating and apoptotic cells in the ovarian stalks. While cell proliferation mainly occurs in stalks carrying maturating oocytes, apoptosis is restricted to stalks whose oocytes have been released into the ovarian lumen. Conclusions Our results confirm the hypothesis that the uterus of placentotrophic onychophorans grows proximally but is resorbed distally. This is supported by the detection of a proximal proliferation zone and a distal degenerative zone in the two placentotrophic species. Hence, cell turnover might be responsible for the transport of their embryos towards the vagina, analogous to a conveyor belt. Surprisingly, the distal degenerative zone is also found in the non-placentotrophic species, in which cell turnover was unexpected. These findings suggest that the distal degenerative zone is an ancestral feature of Onychophora, whereas the proximal proliferation zone might have evolved in the last common ancestor of the placentotrophic Peripatidae. open access Treffkorn, Sandra Hernández-Lagos, Oscar Yesid Mayer, Georg doi:10.1186/s12983-019-0317-x publishedVersion ISSN 1742-9994 Frontiers in Zoology 16 16
The following license files are associated with this item:
Urheberrechtlich geschützt