Zur Kurzanzeige

dc.date.accessioned2020-04-15T12:17:43Z
dc.date.available2020-04-15T12:17:43Z
dc.date.issued2020-03-29
dc.identifierdoi:10.17170/kobra-202004021131
dc.identifier.urihttp://hdl.handle.net/123456789/11512
dc.description.sponsorshipGefördert durch den Publikationsfonds der Universität Kasselger
dc.language.isoengeng
dc.rightsNamensnennung - Weitergabe unter gleichen Bedingungen 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.subjectlidareng
dc.subjectvertical extrapolationeng
dc.subjectwind profileeng
dc.subjectpower laweng
dc.subjectwind resource assessmenteng
dc.subject.ddc620
dc.titleImproving Vertical Wind Speed Extrapolation Using Short-Term Lidar Measurementseng
dc.typeAufsatz
dcterms.abstractThis study investigates how short-term lidar measurements can be used in combination with a mast measurement to improve vertical extrapolation of wind speed. Several methods are developed and analyzed for their performance in estimating the mean wind speed, the wind speed distribution, and the energy yield of an idealized wind turbine at the target height of the extrapolation. These methods range from directly using the wind shear of the short-term measurement to a classification approach based on commonly available environmental parameters using linear regression. The extrapolation strategies are assessed using data of ten wind profiles up to 200 m measured at different sites in Germany. Different mast heights and extrapolation distances are investigated. The results show that, using an appropriate extrapolation strategy, even a very short-term lidar measurement can significantly reduce the uncertainty in the vertical extrapolation of wind speed. This observation was made for short as well as for very large extrapolation distances. Among the investigated methods, the linear regression approach yielded better results than the other methods. Integrating environmental variables into the extrapolation procedure further increased the performance of the linear regression approach. Overall, the extrapolation error in (theoretical) energy yield was decreased by around 50% to 70% on average for a lidar measurement of approximately one to two months depending on the extrapolation height and distance. The analysis of seasonal patterns revealed that appropriate extrapolation strategies can also significantly reduce the seasonal bias that is connected to the season during which the short-term measurement is performed.eng
dcterms.accessRightsopen access
dcterms.creatorBasse, Alexander
dcterms.creatorPauscher, Lukas
dcterms.creatorCallies, Doron
dc.relation.doidoi:10.3390/rs12071091
dc.type.versionpublishedVersion
dcterms.source.identifierISSN 2072-4292
dcterms.source.issueIssue 7
dcterms.source.journalRemote sensingeng
dcterms.source.pageinfo1091
dcterms.source.volumeVolume 12
kup.iskupfalse


Dateien zu dieser Ressource

Thumbnail
Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International