Date
2017Metadata
Show full item record
Teil eines Buches
Prädiktive simulationsgestützte Optimierung von Kältemaschinen im Verbund
(Predictive Simulation-based Optimization of Cooling Systems)
Abstract
Prerequisite for an efficient cooling energy system is the knowledge and the optimal combination of different operating conditions of individual compression chillers. The performance of cooling systems depending on its part load performance and its condensing temperature are often unknown. Recorded energy data remains unused and manufacturers' data differs significantly from the real performance. For this purpose, manufacturer and real data are combined and continuously adapted to form partial load curve models. A predictive optimization algorithm calculates the optimal operating conditions of multiple chillers. The set points from the optimization are continuously validated by a dynamic simulation on the reaction and feedback effects of the system. Finally, a case study of a meat processing plant evaluates different scenarios against the status quo. Applying an optimal chiller loading and condensing temperature increases energy efficiency of up to 24 %.
Citation
In: Wenzel, Sigrid; Peter, Tim (Hrsg.): Simulation in Produktion und Logistik 2017. kassel university press: Kassel 2017, S. 69-78; ISBN 978-3-7376-0193-1Citation
@inbook{doi:10.17170/kobra-202101273066,
author={Peesel, Ron-Hendrik and Schlosser, Florian and Schaumburg, Chris and Meschede, Henning},
title={Prädiktive simulationsgestützte Optimierung von Kältemaschinen im Verbund},
pages={69-78},
publisher={kassel university press},
year={2017}
}
0500 Oax 0501 Text $btxt$2rdacontent 0502 Computermedien $bc$2rdacarrier 1100 2017$n2017 1500 1/ger 2050 ##0##http://hdl.handle.net/123456789/12473 3000 Peesel, Ron-Hendrik 3010 Schlosser, Florian 3010 Schaumburg, Chris 3010 Meschede, Henning 4000 Prädiktive simulationsgestützte Optimierung von Kältemaschinen im Verbund :Predictive Simulation-based Optimization of Cooling Systems / Peesel, Ron-Hendrik 4030 4060 Online-Ressource 4085 ##0##=u http://nbn-resolving.de/http://hdl.handle.net/123456789/12473=x R 4204 \$dTeil eines Buches 4170 5550 {{Kältemaschine}} 5550 {{Kälteanlage}} 5550 {{Energieeffizienz}} 5550 {{Simulation}} 7136 ##0##http://hdl.handle.net/123456789/12473
2021-02-08T12:38:32Z 2021-02-08T12:38:32Z 2017 doi:10.17170/kobra-202101273066 http://hdl.handle.net/123456789/12473 ger kassel university press Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International http://creativecommons.org/licenses/by-sa/4.0/ 620 Prädiktive simulationsgestützte Optimierung von Kältemaschinen im Verbund Teil eines Buches Prerequisite for an efficient cooling energy system is the knowledge and the optimal combination of different operating conditions of individual compression chillers. The performance of cooling systems depending on its part load performance and its condensing temperature are often unknown. Recorded energy data remains unused and manufacturers' data differs significantly from the real performance. For this purpose, manufacturer and real data are combined and continuously adapted to form partial load curve models. A predictive optimization algorithm calculates the optimal operating conditions of multiple chillers. The set points from the optimization are continuously validated by a dynamic simulation on the reaction and feedback effects of the system. Finally, a case study of a meat processing plant evaluates different scenarios against the status quo. Applying an optimal chiller loading and condensing temperature increases energy efficiency of up to 24 %. open access Predictive Simulation-based Optimization of Cooling Systems Peesel, Ron-Hendrik Schlosser, Florian Schaumburg, Chris Meschede, Henning Kassel Kältemaschine Kälteanlage Energieeffizienz Simulation publishedVersion Simulation in Produktion und Logistik 2017 Wenzel, Sigrid Peter, Tim ISBN 978-3-7376-0193-1 69-78 false
The following license files are associated with this item: