Zur Kurzanzeige

dc.date.accessioned2021-02-11T13:55:15Z
dc.date.available2021-02-11T13:55:15Z
dc.date.issued2021-01-11
dc.identifierdoi:10.17170/kobra-202102113197
dc.identifier.urihttp://hdl.handle.net/123456789/12496
dc.description.sponsorshipGefördert durch den Publikationsfonds der Universität Kassel
dc.language.isoeng
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectnanoimprinteng
dc.subjectphotonic nanomaterialseng
dc.subjectoptical spectrometerseng
dc.subjectinterferometerseng
dc.subjectFabry– Pérot filterseng
dc.subjectdetector arrayseng
dc.subjecttunable MEMSeng
dc.subjectlinewidtheng
dc.subjectminiaturizationeng
dc.subject.ddc530
dc.titleRole of Nanoimprint Lithography for Strongly Miniaturized Optical Spectrometerseng
dc.typeAufsatz
dcterms.abstractOptical spectrometers and sensors have gained enormous gimportance in metrology and information technology, frequently involving the question of size, resolution, sensitivity, spectral range, efficiency, reliability, and cost. Nanomaterials and nanotechnological fabrication technologies have huge potential to enable an optimization between these demands, which in some cases are counteracting each other. This paper focuses on the visible and near infrared spectral range and on five types of optical sensors (optical spectrometers): classical grating-based miniaturized spectrometers, arrayed waveguide grating devices, static Fabry–Pérot (FP) filter arrays on sensor arrays, tunable microelectromechanical systems (MEMS) FP filter arrays, and MEMS tunable photonic crystal filters. The comparison between this selection of concepts concentrates on (i) linewidth and resolution, (ii) required space for a selected spectral range, (iii) efficiency in using available light, and (iv) potential of nanoimprint for cost reduction and yield increase. The main part of this review deals with our own results in the field of static FP filter arrays and MEMS tunable FP filter arrays. In addition, technology for efficiency boosting to get more of the available light is demonstrated.eng
dcterms.accessRightsopen access
dcterms.creatorHillmer, Hartmut
dcterms.creatorWoidt, Carsten
dcterms.creatorIstock, André
dcterms.creatorKobylinskiy, Aliaksei
dcterms.creatorNguyen, Duc Toan
dcterms.creatorAhmed, Naureen
dcterms.creatorBrunner, Robert
dcterms.creatorKusserow, Thomas
dc.relation.doidoi:10.3390/nano11010164
dc.subject.swdOptische Spektroskopieger
dc.subject.swdSpektrometerger
dc.subject.swdNanophotonikger
dc.subject.swdLithografieger
dc.subject.swdLinienbreiteger
dc.type.versionpublishedVersion
dcterms.source.identifierEISSN 2079-4991
dcterms.source.issueIssue 1
dcterms.source.journalNanomaterialsger
dcterms.source.pageinfo164
dcterms.source.volumeVolume 11
kup.iskupfalse


Dateien zu dieser Ressource

Thumbnail
Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Namensnennung 4.0 International
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Namensnennung 4.0 International